1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, S_IRUGO); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int 107 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 108 109 /** 110 * mpt3sas_base_check_cmd_timeout - Function 111 * to check timeout and command termination due 112 * to Host reset. 113 * 114 * @ioc: per adapter object. 115 * @status: Status of issued command. 116 * @mpi_request:mf request pointer. 117 * @sz: size of buffer. 118 * 119 * @Returns - 1/0 Reset to be done or Not 120 */ 121 u8 122 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 123 u8 status, void *mpi_request, int sz) 124 { 125 u8 issue_reset = 0; 126 127 if (!(status & MPT3_CMD_RESET)) 128 issue_reset = 1; 129 130 ioc_err(ioc, "Command %s\n", 131 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 132 _debug_dump_mf(mpi_request, sz); 133 134 return issue_reset; 135 } 136 137 /** 138 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 139 * @val: ? 140 * @kp: ? 141 * 142 * Return: ? 143 */ 144 static int 145 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 146 { 147 int ret = param_set_int(val, kp); 148 struct MPT3SAS_ADAPTER *ioc; 149 150 if (ret) 151 return ret; 152 153 /* global ioc spinlock to protect controller list on list operations */ 154 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 155 spin_lock(&gioc_lock); 156 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 157 ioc->fwfault_debug = mpt3sas_fwfault_debug; 158 spin_unlock(&gioc_lock); 159 return 0; 160 } 161 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 162 param_get_int, &mpt3sas_fwfault_debug, 0644); 163 164 /** 165 * _base_readl_aero - retry readl for max three times. 166 * @addr - MPT Fusion system interface register address 167 * 168 * Retry the readl() for max three times if it gets zero value 169 * while reading the system interface register. 170 */ 171 static inline u32 172 _base_readl_aero(const volatile void __iomem *addr) 173 { 174 u32 i = 0, ret_val; 175 176 do { 177 ret_val = readl(addr); 178 i++; 179 } while (ret_val == 0 && i < 3); 180 181 return ret_val; 182 } 183 184 static inline u32 185 _base_readl(const volatile void __iomem *addr) 186 { 187 return readl(addr); 188 } 189 190 /** 191 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 192 * in BAR0 space. 193 * 194 * @ioc: per adapter object 195 * @reply: reply message frame(lower 32bit addr) 196 * @index: System request message index. 197 */ 198 static void 199 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 200 u32 index) 201 { 202 /* 203 * 256 is offset within sys register. 204 * 256 offset MPI frame starts. Max MPI frame supported is 32. 205 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 206 */ 207 u16 cmd_credit = ioc->facts.RequestCredit + 1; 208 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 209 MPI_FRAME_START_OFFSET + 210 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 211 212 writel(reply, reply_free_iomem); 213 } 214 215 /** 216 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 217 * to system/BAR0 region. 218 * 219 * @dst_iomem: Pointer to the destination location in BAR0 space. 220 * @src: Pointer to the Source data. 221 * @size: Size of data to be copied. 222 */ 223 static void 224 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 225 { 226 int i; 227 u32 *src_virt_mem = (u32 *)src; 228 229 for (i = 0; i < size/4; i++) 230 writel((u32)src_virt_mem[i], 231 (void __iomem *)dst_iomem + (i * 4)); 232 } 233 234 /** 235 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 236 * 237 * @dst_iomem: Pointer to the destination location in BAR0 space. 238 * @src: Pointer to the Source data. 239 * @size: Size of data to be copied. 240 */ 241 static void 242 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 243 { 244 int i; 245 u32 *src_virt_mem = (u32 *)(src); 246 247 for (i = 0; i < size/4; i++) 248 writel((u32)src_virt_mem[i], 249 (void __iomem *)dst_iomem + (i * 4)); 250 } 251 252 /** 253 * _base_get_chain - Calculates and Returns virtual chain address 254 * for the provided smid in BAR0 space. 255 * 256 * @ioc: per adapter object 257 * @smid: system request message index 258 * @sge_chain_count: Scatter gather chain count. 259 * 260 * Return: the chain address. 261 */ 262 static inline void __iomem* 263 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 264 u8 sge_chain_count) 265 { 266 void __iomem *base_chain, *chain_virt; 267 u16 cmd_credit = ioc->facts.RequestCredit + 1; 268 269 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 270 (cmd_credit * ioc->request_sz) + 271 REPLY_FREE_POOL_SIZE; 272 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 273 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 274 return chain_virt; 275 } 276 277 /** 278 * _base_get_chain_phys - Calculates and Returns physical address 279 * in BAR0 for scatter gather chains, for 280 * the provided smid. 281 * 282 * @ioc: per adapter object 283 * @smid: system request message index 284 * @sge_chain_count: Scatter gather chain count. 285 * 286 * Return: Physical chain address. 287 */ 288 static inline phys_addr_t 289 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 290 u8 sge_chain_count) 291 { 292 phys_addr_t base_chain_phys, chain_phys; 293 u16 cmd_credit = ioc->facts.RequestCredit + 1; 294 295 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 296 (cmd_credit * ioc->request_sz) + 297 REPLY_FREE_POOL_SIZE; 298 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 299 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 300 return chain_phys; 301 } 302 303 /** 304 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 305 * buffer address for the provided smid. 306 * (Each smid can have 64K starts from 17024) 307 * 308 * @ioc: per adapter object 309 * @smid: system request message index 310 * 311 * Return: Pointer to buffer location in BAR0. 312 */ 313 314 static void __iomem * 315 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 316 { 317 u16 cmd_credit = ioc->facts.RequestCredit + 1; 318 // Added extra 1 to reach end of chain. 319 void __iomem *chain_end = _base_get_chain(ioc, 320 cmd_credit + 1, 321 ioc->facts.MaxChainDepth); 322 return chain_end + (smid * 64 * 1024); 323 } 324 325 /** 326 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 327 * Host buffer Physical address for the provided smid. 328 * (Each smid can have 64K starts from 17024) 329 * 330 * @ioc: per adapter object 331 * @smid: system request message index 332 * 333 * Return: Pointer to buffer location in BAR0. 334 */ 335 static phys_addr_t 336 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 337 { 338 u16 cmd_credit = ioc->facts.RequestCredit + 1; 339 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 340 cmd_credit + 1, 341 ioc->facts.MaxChainDepth); 342 return chain_end_phys + (smid * 64 * 1024); 343 } 344 345 /** 346 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 347 * lookup list and Provides chain_buffer 348 * address for the matching dma address. 349 * (Each smid can have 64K starts from 17024) 350 * 351 * @ioc: per adapter object 352 * @chain_buffer_dma: Chain buffer dma address. 353 * 354 * Return: Pointer to chain buffer. Or Null on Failure. 355 */ 356 static void * 357 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 358 dma_addr_t chain_buffer_dma) 359 { 360 u16 index, j; 361 struct chain_tracker *ct; 362 363 for (index = 0; index < ioc->scsiio_depth; index++) { 364 for (j = 0; j < ioc->chains_needed_per_io; j++) { 365 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 366 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 367 return ct->chain_buffer; 368 } 369 } 370 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 371 return NULL; 372 } 373 374 /** 375 * _clone_sg_entries - MPI EP's scsiio and config requests 376 * are handled here. Base function for 377 * double buffering, before submitting 378 * the requests. 379 * 380 * @ioc: per adapter object. 381 * @mpi_request: mf request pointer. 382 * @smid: system request message index. 383 */ 384 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 385 void *mpi_request, u16 smid) 386 { 387 Mpi2SGESimple32_t *sgel, *sgel_next; 388 u32 sgl_flags, sge_chain_count = 0; 389 bool is_write = 0; 390 u16 i = 0; 391 void __iomem *buffer_iomem; 392 phys_addr_t buffer_iomem_phys; 393 void __iomem *buff_ptr; 394 phys_addr_t buff_ptr_phys; 395 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 396 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 397 phys_addr_t dst_addr_phys; 398 MPI2RequestHeader_t *request_hdr; 399 struct scsi_cmnd *scmd; 400 struct scatterlist *sg_scmd = NULL; 401 int is_scsiio_req = 0; 402 403 request_hdr = (MPI2RequestHeader_t *) mpi_request; 404 405 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 406 Mpi25SCSIIORequest_t *scsiio_request = 407 (Mpi25SCSIIORequest_t *)mpi_request; 408 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 409 is_scsiio_req = 1; 410 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 411 Mpi2ConfigRequest_t *config_req = 412 (Mpi2ConfigRequest_t *)mpi_request; 413 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 414 } else 415 return; 416 417 /* From smid we can get scsi_cmd, once we have sg_scmd, 418 * we just need to get sg_virt and sg_next to get virual 419 * address associated with sgel->Address. 420 */ 421 422 if (is_scsiio_req) { 423 /* Get scsi_cmd using smid */ 424 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 425 if (scmd == NULL) { 426 ioc_err(ioc, "scmd is NULL\n"); 427 return; 428 } 429 430 /* Get sg_scmd from scmd provided */ 431 sg_scmd = scsi_sglist(scmd); 432 } 433 434 /* 435 * 0 - 255 System register 436 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 437 * 4352 - 4864 Reply_free pool (512 byte is reserved 438 * considering maxCredit 32. Reply need extra 439 * room, for mCPU case kept four times of 440 * maxCredit). 441 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 442 * 128 byte size = 12288) 443 * 17152 - x Host buffer mapped with smid. 444 * (Each smid can have 64K Max IO.) 445 * BAR0+Last 1K MSIX Addr and Data 446 * Total size in use 2113664 bytes of 4MB BAR0 447 */ 448 449 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 450 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 451 452 buff_ptr = buffer_iomem; 453 buff_ptr_phys = buffer_iomem_phys; 454 WARN_ON(buff_ptr_phys > U32_MAX); 455 456 if (le32_to_cpu(sgel->FlagsLength) & 457 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 458 is_write = 1; 459 460 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 461 462 sgl_flags = 463 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 464 465 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 466 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 467 /* 468 * Helper function which on passing 469 * chain_buffer_dma returns chain_buffer. Get 470 * the virtual address for sgel->Address 471 */ 472 sgel_next = 473 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 474 le32_to_cpu(sgel->Address)); 475 if (sgel_next == NULL) 476 return; 477 /* 478 * This is coping 128 byte chain 479 * frame (not a host buffer) 480 */ 481 dst_chain_addr[sge_chain_count] = 482 _base_get_chain(ioc, 483 smid, sge_chain_count); 484 src_chain_addr[sge_chain_count] = 485 (void *) sgel_next; 486 dst_addr_phys = _base_get_chain_phys(ioc, 487 smid, sge_chain_count); 488 WARN_ON(dst_addr_phys > U32_MAX); 489 sgel->Address = 490 cpu_to_le32(lower_32_bits(dst_addr_phys)); 491 sgel = sgel_next; 492 sge_chain_count++; 493 break; 494 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 495 if (is_write) { 496 if (is_scsiio_req) { 497 _base_clone_to_sys_mem(buff_ptr, 498 sg_virt(sg_scmd), 499 (le32_to_cpu(sgel->FlagsLength) & 500 0x00ffffff)); 501 /* 502 * FIXME: this relies on a a zero 503 * PCI mem_offset. 504 */ 505 sgel->Address = 506 cpu_to_le32((u32)buff_ptr_phys); 507 } else { 508 _base_clone_to_sys_mem(buff_ptr, 509 ioc->config_vaddr, 510 (le32_to_cpu(sgel->FlagsLength) & 511 0x00ffffff)); 512 sgel->Address = 513 cpu_to_le32((u32)buff_ptr_phys); 514 } 515 } 516 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 517 0x00ffffff); 518 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 519 0x00ffffff); 520 if ((le32_to_cpu(sgel->FlagsLength) & 521 (MPI2_SGE_FLAGS_END_OF_BUFFER 522 << MPI2_SGE_FLAGS_SHIFT))) 523 goto eob_clone_chain; 524 else { 525 /* 526 * Every single element in MPT will have 527 * associated sg_next. Better to sanity that 528 * sg_next is not NULL, but it will be a bug 529 * if it is null. 530 */ 531 if (is_scsiio_req) { 532 sg_scmd = sg_next(sg_scmd); 533 if (sg_scmd) 534 sgel++; 535 else 536 goto eob_clone_chain; 537 } 538 } 539 break; 540 } 541 } 542 543 eob_clone_chain: 544 for (i = 0; i < sge_chain_count; i++) { 545 if (is_scsiio_req) 546 _base_clone_to_sys_mem(dst_chain_addr[i], 547 src_chain_addr[i], ioc->request_sz); 548 } 549 } 550 551 /** 552 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 553 * @arg: input argument, used to derive ioc 554 * 555 * Return: 556 * 0 if controller is removed from pci subsystem. 557 * -1 for other case. 558 */ 559 static int mpt3sas_remove_dead_ioc_func(void *arg) 560 { 561 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 562 struct pci_dev *pdev; 563 564 if (!ioc) 565 return -1; 566 567 pdev = ioc->pdev; 568 if (!pdev) 569 return -1; 570 pci_stop_and_remove_bus_device_locked(pdev); 571 return 0; 572 } 573 574 /** 575 * _base_fault_reset_work - workq handling ioc fault conditions 576 * @work: input argument, used to derive ioc 577 * 578 * Context: sleep. 579 */ 580 static void 581 _base_fault_reset_work(struct work_struct *work) 582 { 583 struct MPT3SAS_ADAPTER *ioc = 584 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 585 unsigned long flags; 586 u32 doorbell; 587 int rc; 588 struct task_struct *p; 589 590 591 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 592 if (ioc->shost_recovery || ioc->pci_error_recovery) 593 goto rearm_timer; 594 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 595 596 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 597 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 598 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 599 600 /* It may be possible that EEH recovery can resolve some of 601 * pci bus failure issues rather removing the dead ioc function 602 * by considering controller is in a non-operational state. So 603 * here priority is given to the EEH recovery. If it doesn't 604 * not resolve this issue, mpt3sas driver will consider this 605 * controller to non-operational state and remove the dead ioc 606 * function. 607 */ 608 if (ioc->non_operational_loop++ < 5) { 609 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 610 flags); 611 goto rearm_timer; 612 } 613 614 /* 615 * Call _scsih_flush_pending_cmds callback so that we flush all 616 * pending commands back to OS. This call is required to aovid 617 * deadlock at block layer. Dead IOC will fail to do diag reset, 618 * and this call is safe since dead ioc will never return any 619 * command back from HW. 620 */ 621 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 622 /* 623 * Set remove_host flag early since kernel thread will 624 * take some time to execute. 625 */ 626 ioc->remove_host = 1; 627 /*Remove the Dead Host */ 628 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 629 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 630 if (IS_ERR(p)) 631 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 632 __func__); 633 else 634 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 635 __func__); 636 return; /* don't rearm timer */ 637 } 638 639 ioc->non_operational_loop = 0; 640 641 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 642 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 643 ioc_warn(ioc, "%s: hard reset: %s\n", 644 __func__, rc == 0 ? "success" : "failed"); 645 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 646 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 647 mpt3sas_base_fault_info(ioc, doorbell & 648 MPI2_DOORBELL_DATA_MASK); 649 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 650 MPI2_IOC_STATE_OPERATIONAL) 651 return; /* don't rearm timer */ 652 } 653 654 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 655 rearm_timer: 656 if (ioc->fault_reset_work_q) 657 queue_delayed_work(ioc->fault_reset_work_q, 658 &ioc->fault_reset_work, 659 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 660 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 661 } 662 663 /** 664 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 665 * @ioc: per adapter object 666 * 667 * Context: sleep. 668 */ 669 void 670 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 671 { 672 unsigned long flags; 673 674 if (ioc->fault_reset_work_q) 675 return; 676 677 /* initialize fault polling */ 678 679 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 680 snprintf(ioc->fault_reset_work_q_name, 681 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 682 ioc->driver_name, ioc->id); 683 ioc->fault_reset_work_q = 684 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 685 if (!ioc->fault_reset_work_q) { 686 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 687 return; 688 } 689 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 690 if (ioc->fault_reset_work_q) 691 queue_delayed_work(ioc->fault_reset_work_q, 692 &ioc->fault_reset_work, 693 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 694 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 695 } 696 697 /** 698 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 699 * @ioc: per adapter object 700 * 701 * Context: sleep. 702 */ 703 void 704 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 705 { 706 unsigned long flags; 707 struct workqueue_struct *wq; 708 709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 710 wq = ioc->fault_reset_work_q; 711 ioc->fault_reset_work_q = NULL; 712 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 713 if (wq) { 714 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 715 flush_workqueue(wq); 716 destroy_workqueue(wq); 717 } 718 } 719 720 /** 721 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 722 * @ioc: per adapter object 723 * @fault_code: fault code 724 */ 725 void 726 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 727 { 728 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 729 } 730 731 /** 732 * mpt3sas_halt_firmware - halt's mpt controller firmware 733 * @ioc: per adapter object 734 * 735 * For debugging timeout related issues. Writing 0xCOFFEE00 736 * to the doorbell register will halt controller firmware. With 737 * the purpose to stop both driver and firmware, the enduser can 738 * obtain a ring buffer from controller UART. 739 */ 740 void 741 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 742 { 743 u32 doorbell; 744 745 if (!ioc->fwfault_debug) 746 return; 747 748 dump_stack(); 749 750 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 751 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 752 mpt3sas_base_fault_info(ioc , doorbell); 753 else { 754 writel(0xC0FFEE00, &ioc->chip->Doorbell); 755 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 756 } 757 758 if (ioc->fwfault_debug == 2) 759 for (;;) 760 ; 761 else 762 panic("panic in %s\n", __func__); 763 } 764 765 /** 766 * _base_sas_ioc_info - verbose translation of the ioc status 767 * @ioc: per adapter object 768 * @mpi_reply: reply mf payload returned from firmware 769 * @request_hdr: request mf 770 */ 771 static void 772 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 773 MPI2RequestHeader_t *request_hdr) 774 { 775 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 776 MPI2_IOCSTATUS_MASK; 777 char *desc = NULL; 778 u16 frame_sz; 779 char *func_str = NULL; 780 781 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 782 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 783 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 784 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 785 return; 786 787 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 788 return; 789 790 switch (ioc_status) { 791 792 /**************************************************************************** 793 * Common IOCStatus values for all replies 794 ****************************************************************************/ 795 796 case MPI2_IOCSTATUS_INVALID_FUNCTION: 797 desc = "invalid function"; 798 break; 799 case MPI2_IOCSTATUS_BUSY: 800 desc = "busy"; 801 break; 802 case MPI2_IOCSTATUS_INVALID_SGL: 803 desc = "invalid sgl"; 804 break; 805 case MPI2_IOCSTATUS_INTERNAL_ERROR: 806 desc = "internal error"; 807 break; 808 case MPI2_IOCSTATUS_INVALID_VPID: 809 desc = "invalid vpid"; 810 break; 811 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 812 desc = "insufficient resources"; 813 break; 814 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 815 desc = "insufficient power"; 816 break; 817 case MPI2_IOCSTATUS_INVALID_FIELD: 818 desc = "invalid field"; 819 break; 820 case MPI2_IOCSTATUS_INVALID_STATE: 821 desc = "invalid state"; 822 break; 823 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 824 desc = "op state not supported"; 825 break; 826 827 /**************************************************************************** 828 * Config IOCStatus values 829 ****************************************************************************/ 830 831 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 832 desc = "config invalid action"; 833 break; 834 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 835 desc = "config invalid type"; 836 break; 837 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 838 desc = "config invalid page"; 839 break; 840 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 841 desc = "config invalid data"; 842 break; 843 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 844 desc = "config no defaults"; 845 break; 846 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 847 desc = "config cant commit"; 848 break; 849 850 /**************************************************************************** 851 * SCSI IO Reply 852 ****************************************************************************/ 853 854 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 855 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 856 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 857 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 858 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 859 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 860 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 861 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 862 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 863 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 864 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 865 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 866 break; 867 868 /**************************************************************************** 869 * For use by SCSI Initiator and SCSI Target end-to-end data protection 870 ****************************************************************************/ 871 872 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 873 desc = "eedp guard error"; 874 break; 875 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 876 desc = "eedp ref tag error"; 877 break; 878 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 879 desc = "eedp app tag error"; 880 break; 881 882 /**************************************************************************** 883 * SCSI Target values 884 ****************************************************************************/ 885 886 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 887 desc = "target invalid io index"; 888 break; 889 case MPI2_IOCSTATUS_TARGET_ABORTED: 890 desc = "target aborted"; 891 break; 892 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 893 desc = "target no conn retryable"; 894 break; 895 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 896 desc = "target no connection"; 897 break; 898 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 899 desc = "target xfer count mismatch"; 900 break; 901 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 902 desc = "target data offset error"; 903 break; 904 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 905 desc = "target too much write data"; 906 break; 907 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 908 desc = "target iu too short"; 909 break; 910 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 911 desc = "target ack nak timeout"; 912 break; 913 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 914 desc = "target nak received"; 915 break; 916 917 /**************************************************************************** 918 * Serial Attached SCSI values 919 ****************************************************************************/ 920 921 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 922 desc = "smp request failed"; 923 break; 924 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 925 desc = "smp data overrun"; 926 break; 927 928 /**************************************************************************** 929 * Diagnostic Buffer Post / Diagnostic Release values 930 ****************************************************************************/ 931 932 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 933 desc = "diagnostic released"; 934 break; 935 default: 936 break; 937 } 938 939 if (!desc) 940 return; 941 942 switch (request_hdr->Function) { 943 case MPI2_FUNCTION_CONFIG: 944 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 945 func_str = "config_page"; 946 break; 947 case MPI2_FUNCTION_SCSI_TASK_MGMT: 948 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 949 func_str = "task_mgmt"; 950 break; 951 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 952 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 953 func_str = "sas_iounit_ctl"; 954 break; 955 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 956 frame_sz = sizeof(Mpi2SepRequest_t); 957 func_str = "enclosure"; 958 break; 959 case MPI2_FUNCTION_IOC_INIT: 960 frame_sz = sizeof(Mpi2IOCInitRequest_t); 961 func_str = "ioc_init"; 962 break; 963 case MPI2_FUNCTION_PORT_ENABLE: 964 frame_sz = sizeof(Mpi2PortEnableRequest_t); 965 func_str = "port_enable"; 966 break; 967 case MPI2_FUNCTION_SMP_PASSTHROUGH: 968 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 969 func_str = "smp_passthru"; 970 break; 971 case MPI2_FUNCTION_NVME_ENCAPSULATED: 972 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 973 ioc->sge_size; 974 func_str = "nvme_encapsulated"; 975 break; 976 default: 977 frame_sz = 32; 978 func_str = "unknown"; 979 break; 980 } 981 982 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 983 desc, ioc_status, request_hdr, func_str); 984 985 _debug_dump_mf(request_hdr, frame_sz/4); 986 } 987 988 /** 989 * _base_display_event_data - verbose translation of firmware asyn events 990 * @ioc: per adapter object 991 * @mpi_reply: reply mf payload returned from firmware 992 */ 993 static void 994 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 995 Mpi2EventNotificationReply_t *mpi_reply) 996 { 997 char *desc = NULL; 998 u16 event; 999 1000 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1001 return; 1002 1003 event = le16_to_cpu(mpi_reply->Event); 1004 1005 switch (event) { 1006 case MPI2_EVENT_LOG_DATA: 1007 desc = "Log Data"; 1008 break; 1009 case MPI2_EVENT_STATE_CHANGE: 1010 desc = "Status Change"; 1011 break; 1012 case MPI2_EVENT_HARD_RESET_RECEIVED: 1013 desc = "Hard Reset Received"; 1014 break; 1015 case MPI2_EVENT_EVENT_CHANGE: 1016 desc = "Event Change"; 1017 break; 1018 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1019 desc = "Device Status Change"; 1020 break; 1021 case MPI2_EVENT_IR_OPERATION_STATUS: 1022 if (!ioc->hide_ir_msg) 1023 desc = "IR Operation Status"; 1024 break; 1025 case MPI2_EVENT_SAS_DISCOVERY: 1026 { 1027 Mpi2EventDataSasDiscovery_t *event_data = 1028 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1029 ioc_info(ioc, "Discovery: (%s)", 1030 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1031 "start" : "stop"); 1032 if (event_data->DiscoveryStatus) 1033 pr_cont(" discovery_status(0x%08x)", 1034 le32_to_cpu(event_data->DiscoveryStatus)); 1035 pr_cont("\n"); 1036 return; 1037 } 1038 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1039 desc = "SAS Broadcast Primitive"; 1040 break; 1041 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1042 desc = "SAS Init Device Status Change"; 1043 break; 1044 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1045 desc = "SAS Init Table Overflow"; 1046 break; 1047 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1048 desc = "SAS Topology Change List"; 1049 break; 1050 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1051 desc = "SAS Enclosure Device Status Change"; 1052 break; 1053 case MPI2_EVENT_IR_VOLUME: 1054 if (!ioc->hide_ir_msg) 1055 desc = "IR Volume"; 1056 break; 1057 case MPI2_EVENT_IR_PHYSICAL_DISK: 1058 if (!ioc->hide_ir_msg) 1059 desc = "IR Physical Disk"; 1060 break; 1061 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1062 if (!ioc->hide_ir_msg) 1063 desc = "IR Configuration Change List"; 1064 break; 1065 case MPI2_EVENT_LOG_ENTRY_ADDED: 1066 if (!ioc->hide_ir_msg) 1067 desc = "Log Entry Added"; 1068 break; 1069 case MPI2_EVENT_TEMP_THRESHOLD: 1070 desc = "Temperature Threshold"; 1071 break; 1072 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1073 desc = "Cable Event"; 1074 break; 1075 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1076 desc = "SAS Device Discovery Error"; 1077 break; 1078 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1079 desc = "PCIE Device Status Change"; 1080 break; 1081 case MPI2_EVENT_PCIE_ENUMERATION: 1082 { 1083 Mpi26EventDataPCIeEnumeration_t *event_data = 1084 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1085 ioc_info(ioc, "PCIE Enumeration: (%s)", 1086 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1087 "start" : "stop"); 1088 if (event_data->EnumerationStatus) 1089 pr_cont("enumeration_status(0x%08x)", 1090 le32_to_cpu(event_data->EnumerationStatus)); 1091 pr_cont("\n"); 1092 return; 1093 } 1094 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1095 desc = "PCIE Topology Change List"; 1096 break; 1097 } 1098 1099 if (!desc) 1100 return; 1101 1102 ioc_info(ioc, "%s\n", desc); 1103 } 1104 1105 /** 1106 * _base_sas_log_info - verbose translation of firmware log info 1107 * @ioc: per adapter object 1108 * @log_info: log info 1109 */ 1110 static void 1111 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1112 { 1113 union loginfo_type { 1114 u32 loginfo; 1115 struct { 1116 u32 subcode:16; 1117 u32 code:8; 1118 u32 originator:4; 1119 u32 bus_type:4; 1120 } dw; 1121 }; 1122 union loginfo_type sas_loginfo; 1123 char *originator_str = NULL; 1124 1125 sas_loginfo.loginfo = log_info; 1126 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1127 return; 1128 1129 /* each nexus loss loginfo */ 1130 if (log_info == 0x31170000) 1131 return; 1132 1133 /* eat the loginfos associated with task aborts */ 1134 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1135 0x31140000 || log_info == 0x31130000)) 1136 return; 1137 1138 switch (sas_loginfo.dw.originator) { 1139 case 0: 1140 originator_str = "IOP"; 1141 break; 1142 case 1: 1143 originator_str = "PL"; 1144 break; 1145 case 2: 1146 if (!ioc->hide_ir_msg) 1147 originator_str = "IR"; 1148 else 1149 originator_str = "WarpDrive"; 1150 break; 1151 } 1152 1153 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1154 log_info, 1155 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1156 } 1157 1158 /** 1159 * _base_display_reply_info - 1160 * @ioc: per adapter object 1161 * @smid: system request message index 1162 * @msix_index: MSIX table index supplied by the OS 1163 * @reply: reply message frame(lower 32bit addr) 1164 */ 1165 static void 1166 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1167 u32 reply) 1168 { 1169 MPI2DefaultReply_t *mpi_reply; 1170 u16 ioc_status; 1171 u32 loginfo = 0; 1172 1173 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1174 if (unlikely(!mpi_reply)) { 1175 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1176 __FILE__, __LINE__, __func__); 1177 return; 1178 } 1179 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1180 1181 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1182 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1183 _base_sas_ioc_info(ioc , mpi_reply, 1184 mpt3sas_base_get_msg_frame(ioc, smid)); 1185 } 1186 1187 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1188 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1189 _base_sas_log_info(ioc, loginfo); 1190 } 1191 1192 if (ioc_status || loginfo) { 1193 ioc_status &= MPI2_IOCSTATUS_MASK; 1194 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1195 } 1196 } 1197 1198 /** 1199 * mpt3sas_base_done - base internal command completion routine 1200 * @ioc: per adapter object 1201 * @smid: system request message index 1202 * @msix_index: MSIX table index supplied by the OS 1203 * @reply: reply message frame(lower 32bit addr) 1204 * 1205 * Return: 1206 * 1 meaning mf should be freed from _base_interrupt 1207 * 0 means the mf is freed from this function. 1208 */ 1209 u8 1210 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1211 u32 reply) 1212 { 1213 MPI2DefaultReply_t *mpi_reply; 1214 1215 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1216 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1217 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1218 1219 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1220 return 1; 1221 1222 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1223 if (mpi_reply) { 1224 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1225 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1226 } 1227 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1228 1229 complete(&ioc->base_cmds.done); 1230 return 1; 1231 } 1232 1233 /** 1234 * _base_async_event - main callback handler for firmware asyn events 1235 * @ioc: per adapter object 1236 * @msix_index: MSIX table index supplied by the OS 1237 * @reply: reply message frame(lower 32bit addr) 1238 * 1239 * Return: 1240 * 1 meaning mf should be freed from _base_interrupt 1241 * 0 means the mf is freed from this function. 1242 */ 1243 static u8 1244 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1245 { 1246 Mpi2EventNotificationReply_t *mpi_reply; 1247 Mpi2EventAckRequest_t *ack_request; 1248 u16 smid; 1249 struct _event_ack_list *delayed_event_ack; 1250 1251 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1252 if (!mpi_reply) 1253 return 1; 1254 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1255 return 1; 1256 1257 _base_display_event_data(ioc, mpi_reply); 1258 1259 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1260 goto out; 1261 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1262 if (!smid) { 1263 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1264 GFP_ATOMIC); 1265 if (!delayed_event_ack) 1266 goto out; 1267 INIT_LIST_HEAD(&delayed_event_ack->list); 1268 delayed_event_ack->Event = mpi_reply->Event; 1269 delayed_event_ack->EventContext = mpi_reply->EventContext; 1270 list_add_tail(&delayed_event_ack->list, 1271 &ioc->delayed_event_ack_list); 1272 dewtprintk(ioc, 1273 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1274 le16_to_cpu(mpi_reply->Event))); 1275 goto out; 1276 } 1277 1278 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1279 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1280 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1281 ack_request->Event = mpi_reply->Event; 1282 ack_request->EventContext = mpi_reply->EventContext; 1283 ack_request->VF_ID = 0; /* TODO */ 1284 ack_request->VP_ID = 0; 1285 mpt3sas_base_put_smid_default(ioc, smid); 1286 1287 out: 1288 1289 /* scsih callback handler */ 1290 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1291 1292 /* ctl callback handler */ 1293 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1294 1295 return 1; 1296 } 1297 1298 static struct scsiio_tracker * 1299 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1300 { 1301 struct scsi_cmnd *cmd; 1302 1303 if (WARN_ON(!smid) || 1304 WARN_ON(smid >= ioc->hi_priority_smid)) 1305 return NULL; 1306 1307 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1308 if (cmd) 1309 return scsi_cmd_priv(cmd); 1310 1311 return NULL; 1312 } 1313 1314 /** 1315 * _base_get_cb_idx - obtain the callback index 1316 * @ioc: per adapter object 1317 * @smid: system request message index 1318 * 1319 * Return: callback index. 1320 */ 1321 static u8 1322 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1323 { 1324 int i; 1325 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1326 u8 cb_idx = 0xFF; 1327 1328 if (smid < ioc->hi_priority_smid) { 1329 struct scsiio_tracker *st; 1330 1331 if (smid < ctl_smid) { 1332 st = _get_st_from_smid(ioc, smid); 1333 if (st) 1334 cb_idx = st->cb_idx; 1335 } else if (smid == ctl_smid) 1336 cb_idx = ioc->ctl_cb_idx; 1337 } else if (smid < ioc->internal_smid) { 1338 i = smid - ioc->hi_priority_smid; 1339 cb_idx = ioc->hpr_lookup[i].cb_idx; 1340 } else if (smid <= ioc->hba_queue_depth) { 1341 i = smid - ioc->internal_smid; 1342 cb_idx = ioc->internal_lookup[i].cb_idx; 1343 } 1344 return cb_idx; 1345 } 1346 1347 /** 1348 * _base_mask_interrupts - disable interrupts 1349 * @ioc: per adapter object 1350 * 1351 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1352 */ 1353 static void 1354 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1355 { 1356 u32 him_register; 1357 1358 ioc->mask_interrupts = 1; 1359 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1360 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1361 writel(him_register, &ioc->chip->HostInterruptMask); 1362 ioc->base_readl(&ioc->chip->HostInterruptMask); 1363 } 1364 1365 /** 1366 * _base_unmask_interrupts - enable interrupts 1367 * @ioc: per adapter object 1368 * 1369 * Enabling only Reply Interrupts 1370 */ 1371 static void 1372 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1373 { 1374 u32 him_register; 1375 1376 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1377 him_register &= ~MPI2_HIM_RIM; 1378 writel(him_register, &ioc->chip->HostInterruptMask); 1379 ioc->mask_interrupts = 0; 1380 } 1381 1382 union reply_descriptor { 1383 u64 word; 1384 struct { 1385 u32 low; 1386 u32 high; 1387 } u; 1388 }; 1389 1390 static u32 base_mod64(u64 dividend, u32 divisor) 1391 { 1392 u32 remainder; 1393 1394 if (!divisor) 1395 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1396 remainder = do_div(dividend, divisor); 1397 return remainder; 1398 } 1399 1400 /** 1401 * _base_process_reply_queue - Process reply descriptors from reply 1402 * descriptor post queue. 1403 * @reply_q: per IRQ's reply queue object. 1404 * 1405 * Return: number of reply descriptors processed from reply 1406 * descriptor queue. 1407 */ 1408 static int 1409 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1410 { 1411 union reply_descriptor rd; 1412 u64 completed_cmds; 1413 u8 request_descript_type; 1414 u16 smid; 1415 u8 cb_idx; 1416 u32 reply; 1417 u8 msix_index = reply_q->msix_index; 1418 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1419 Mpi2ReplyDescriptorsUnion_t *rpf; 1420 u8 rc; 1421 1422 completed_cmds = 0; 1423 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1424 return completed_cmds; 1425 1426 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1427 request_descript_type = rpf->Default.ReplyFlags 1428 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1429 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1430 atomic_dec(&reply_q->busy); 1431 return completed_cmds; 1432 } 1433 1434 cb_idx = 0xFF; 1435 do { 1436 rd.word = le64_to_cpu(rpf->Words); 1437 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1438 goto out; 1439 reply = 0; 1440 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1441 if (request_descript_type == 1442 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1443 request_descript_type == 1444 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1445 request_descript_type == 1446 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1447 cb_idx = _base_get_cb_idx(ioc, smid); 1448 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1449 (likely(mpt_callbacks[cb_idx] != NULL))) { 1450 rc = mpt_callbacks[cb_idx](ioc, smid, 1451 msix_index, 0); 1452 if (rc) 1453 mpt3sas_base_free_smid(ioc, smid); 1454 } 1455 } else if (request_descript_type == 1456 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1457 reply = le32_to_cpu( 1458 rpf->AddressReply.ReplyFrameAddress); 1459 if (reply > ioc->reply_dma_max_address || 1460 reply < ioc->reply_dma_min_address) 1461 reply = 0; 1462 if (smid) { 1463 cb_idx = _base_get_cb_idx(ioc, smid); 1464 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1465 (likely(mpt_callbacks[cb_idx] != NULL))) { 1466 rc = mpt_callbacks[cb_idx](ioc, smid, 1467 msix_index, reply); 1468 if (reply) 1469 _base_display_reply_info(ioc, 1470 smid, msix_index, reply); 1471 if (rc) 1472 mpt3sas_base_free_smid(ioc, 1473 smid); 1474 } 1475 } else { 1476 _base_async_event(ioc, msix_index, reply); 1477 } 1478 1479 /* reply free queue handling */ 1480 if (reply) { 1481 ioc->reply_free_host_index = 1482 (ioc->reply_free_host_index == 1483 (ioc->reply_free_queue_depth - 1)) ? 1484 0 : ioc->reply_free_host_index + 1; 1485 ioc->reply_free[ioc->reply_free_host_index] = 1486 cpu_to_le32(reply); 1487 if (ioc->is_mcpu_endpoint) 1488 _base_clone_reply_to_sys_mem(ioc, 1489 reply, 1490 ioc->reply_free_host_index); 1491 writel(ioc->reply_free_host_index, 1492 &ioc->chip->ReplyFreeHostIndex); 1493 } 1494 } 1495 1496 rpf->Words = cpu_to_le64(ULLONG_MAX); 1497 reply_q->reply_post_host_index = 1498 (reply_q->reply_post_host_index == 1499 (ioc->reply_post_queue_depth - 1)) ? 0 : 1500 reply_q->reply_post_host_index + 1; 1501 request_descript_type = 1502 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1503 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1504 completed_cmds++; 1505 /* Update the reply post host index after continuously 1506 * processing the threshold number of Reply Descriptors. 1507 * So that FW can find enough entries to post the Reply 1508 * Descriptors in the reply descriptor post queue. 1509 */ 1510 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1511 if (ioc->combined_reply_queue) { 1512 writel(reply_q->reply_post_host_index | 1513 ((msix_index & 7) << 1514 MPI2_RPHI_MSIX_INDEX_SHIFT), 1515 ioc->replyPostRegisterIndex[msix_index/8]); 1516 } else { 1517 writel(reply_q->reply_post_host_index | 1518 (msix_index << 1519 MPI2_RPHI_MSIX_INDEX_SHIFT), 1520 &ioc->chip->ReplyPostHostIndex); 1521 } 1522 if (!reply_q->irq_poll_scheduled) { 1523 reply_q->irq_poll_scheduled = true; 1524 irq_poll_sched(&reply_q->irqpoll); 1525 } 1526 atomic_dec(&reply_q->busy); 1527 return completed_cmds; 1528 } 1529 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1530 goto out; 1531 if (!reply_q->reply_post_host_index) 1532 rpf = reply_q->reply_post_free; 1533 else 1534 rpf++; 1535 } while (1); 1536 1537 out: 1538 1539 if (!completed_cmds) { 1540 atomic_dec(&reply_q->busy); 1541 return completed_cmds; 1542 } 1543 1544 if (ioc->is_warpdrive) { 1545 writel(reply_q->reply_post_host_index, 1546 ioc->reply_post_host_index[msix_index]); 1547 atomic_dec(&reply_q->busy); 1548 return completed_cmds; 1549 } 1550 1551 /* Update Reply Post Host Index. 1552 * For those HBA's which support combined reply queue feature 1553 * 1. Get the correct Supplemental Reply Post Host Index Register. 1554 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1555 * Index Register address bank i.e replyPostRegisterIndex[], 1556 * 2. Then update this register with new reply host index value 1557 * in ReplyPostIndex field and the MSIxIndex field with 1558 * msix_index value reduced to a value between 0 and 7, 1559 * using a modulo 8 operation. Since each Supplemental Reply Post 1560 * Host Index Register supports 8 MSI-X vectors. 1561 * 1562 * For other HBA's just update the Reply Post Host Index register with 1563 * new reply host index value in ReplyPostIndex Field and msix_index 1564 * value in MSIxIndex field. 1565 */ 1566 if (ioc->combined_reply_queue) 1567 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1568 MPI2_RPHI_MSIX_INDEX_SHIFT), 1569 ioc->replyPostRegisterIndex[msix_index/8]); 1570 else 1571 writel(reply_q->reply_post_host_index | (msix_index << 1572 MPI2_RPHI_MSIX_INDEX_SHIFT), 1573 &ioc->chip->ReplyPostHostIndex); 1574 atomic_dec(&reply_q->busy); 1575 return completed_cmds; 1576 } 1577 1578 /** 1579 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1580 * @irq: irq number (not used) 1581 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1582 * 1583 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1584 */ 1585 static irqreturn_t 1586 _base_interrupt(int irq, void *bus_id) 1587 { 1588 struct adapter_reply_queue *reply_q = bus_id; 1589 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1590 1591 if (ioc->mask_interrupts) 1592 return IRQ_NONE; 1593 if (reply_q->irq_poll_scheduled) 1594 return IRQ_HANDLED; 1595 return ((_base_process_reply_queue(reply_q) > 0) ? 1596 IRQ_HANDLED : IRQ_NONE); 1597 } 1598 1599 /** 1600 * _base_irqpoll - IRQ poll callback handler 1601 * @irqpoll - irq_poll object 1602 * @budget - irq poll weight 1603 * 1604 * returns number of reply descriptors processed 1605 */ 1606 static int 1607 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1608 { 1609 struct adapter_reply_queue *reply_q; 1610 int num_entries = 0; 1611 1612 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1613 irqpoll); 1614 if (reply_q->irq_line_enable) { 1615 disable_irq(reply_q->os_irq); 1616 reply_q->irq_line_enable = false; 1617 } 1618 num_entries = _base_process_reply_queue(reply_q); 1619 if (num_entries < budget) { 1620 irq_poll_complete(irqpoll); 1621 reply_q->irq_poll_scheduled = false; 1622 reply_q->irq_line_enable = true; 1623 enable_irq(reply_q->os_irq); 1624 } 1625 1626 return num_entries; 1627 } 1628 1629 /** 1630 * _base_init_irqpolls - initliaze IRQ polls 1631 * @ioc: per adapter object 1632 * 1633 * returns nothing 1634 */ 1635 static void 1636 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1637 { 1638 struct adapter_reply_queue *reply_q, *next; 1639 1640 if (list_empty(&ioc->reply_queue_list)) 1641 return; 1642 1643 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1644 irq_poll_init(&reply_q->irqpoll, 1645 ioc->hba_queue_depth/4, _base_irqpoll); 1646 reply_q->irq_poll_scheduled = false; 1647 reply_q->irq_line_enable = true; 1648 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1649 reply_q->msix_index); 1650 } 1651 } 1652 1653 /** 1654 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1655 * @ioc: per adapter object 1656 * 1657 * Return: Whether or not MSI/X is enabled. 1658 */ 1659 static inline int 1660 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1661 { 1662 return (ioc->facts.IOCCapabilities & 1663 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1664 } 1665 1666 /** 1667 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1668 * @ioc: per adapter object 1669 * Context: non ISR conext 1670 * 1671 * Called when a Task Management request has completed. 1672 */ 1673 void 1674 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1675 { 1676 struct adapter_reply_queue *reply_q; 1677 1678 /* If MSIX capability is turned off 1679 * then multi-queues are not enabled 1680 */ 1681 if (!_base_is_controller_msix_enabled(ioc)) 1682 return; 1683 1684 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1685 if (ioc->shost_recovery || ioc->remove_host || 1686 ioc->pci_error_recovery) 1687 return; 1688 /* TMs are on msix_index == 0 */ 1689 if (reply_q->msix_index == 0) 1690 continue; 1691 if (reply_q->irq_poll_scheduled) { 1692 /* Calling irq_poll_disable will wait for any pending 1693 * callbacks to have completed. 1694 */ 1695 irq_poll_disable(&reply_q->irqpoll); 1696 irq_poll_enable(&reply_q->irqpoll); 1697 reply_q->irq_poll_scheduled = false; 1698 reply_q->irq_line_enable = true; 1699 enable_irq(reply_q->os_irq); 1700 continue; 1701 } 1702 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1703 } 1704 } 1705 1706 /** 1707 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1708 * @cb_idx: callback index 1709 */ 1710 void 1711 mpt3sas_base_release_callback_handler(u8 cb_idx) 1712 { 1713 mpt_callbacks[cb_idx] = NULL; 1714 } 1715 1716 /** 1717 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1718 * @cb_func: callback function 1719 * 1720 * Return: Index of @cb_func. 1721 */ 1722 u8 1723 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1724 { 1725 u8 cb_idx; 1726 1727 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1728 if (mpt_callbacks[cb_idx] == NULL) 1729 break; 1730 1731 mpt_callbacks[cb_idx] = cb_func; 1732 return cb_idx; 1733 } 1734 1735 /** 1736 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1737 */ 1738 void 1739 mpt3sas_base_initialize_callback_handler(void) 1740 { 1741 u8 cb_idx; 1742 1743 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1744 mpt3sas_base_release_callback_handler(cb_idx); 1745 } 1746 1747 1748 /** 1749 * _base_build_zero_len_sge - build zero length sg entry 1750 * @ioc: per adapter object 1751 * @paddr: virtual address for SGE 1752 * 1753 * Create a zero length scatter gather entry to insure the IOCs hardware has 1754 * something to use if the target device goes brain dead and tries 1755 * to send data even when none is asked for. 1756 */ 1757 static void 1758 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1759 { 1760 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1761 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1762 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1763 MPI2_SGE_FLAGS_SHIFT); 1764 ioc->base_add_sg_single(paddr, flags_length, -1); 1765 } 1766 1767 /** 1768 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1769 * @paddr: virtual address for SGE 1770 * @flags_length: SGE flags and data transfer length 1771 * @dma_addr: Physical address 1772 */ 1773 static void 1774 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1775 { 1776 Mpi2SGESimple32_t *sgel = paddr; 1777 1778 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1779 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1780 sgel->FlagsLength = cpu_to_le32(flags_length); 1781 sgel->Address = cpu_to_le32(dma_addr); 1782 } 1783 1784 1785 /** 1786 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1787 * @paddr: virtual address for SGE 1788 * @flags_length: SGE flags and data transfer length 1789 * @dma_addr: Physical address 1790 */ 1791 static void 1792 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1793 { 1794 Mpi2SGESimple64_t *sgel = paddr; 1795 1796 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1797 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1798 sgel->FlagsLength = cpu_to_le32(flags_length); 1799 sgel->Address = cpu_to_le64(dma_addr); 1800 } 1801 1802 /** 1803 * _base_get_chain_buffer_tracker - obtain chain tracker 1804 * @ioc: per adapter object 1805 * @scmd: SCSI commands of the IO request 1806 * 1807 * Return: chain tracker from chain_lookup table using key as 1808 * smid and smid's chain_offset. 1809 */ 1810 static struct chain_tracker * 1811 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1812 struct scsi_cmnd *scmd) 1813 { 1814 struct chain_tracker *chain_req; 1815 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1816 u16 smid = st->smid; 1817 u8 chain_offset = 1818 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1819 1820 if (chain_offset == ioc->chains_needed_per_io) 1821 return NULL; 1822 1823 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1824 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1825 return chain_req; 1826 } 1827 1828 1829 /** 1830 * _base_build_sg - build generic sg 1831 * @ioc: per adapter object 1832 * @psge: virtual address for SGE 1833 * @data_out_dma: physical address for WRITES 1834 * @data_out_sz: data xfer size for WRITES 1835 * @data_in_dma: physical address for READS 1836 * @data_in_sz: data xfer size for READS 1837 */ 1838 static void 1839 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1840 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1841 size_t data_in_sz) 1842 { 1843 u32 sgl_flags; 1844 1845 if (!data_out_sz && !data_in_sz) { 1846 _base_build_zero_len_sge(ioc, psge); 1847 return; 1848 } 1849 1850 if (data_out_sz && data_in_sz) { 1851 /* WRITE sgel first */ 1852 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1853 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1854 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1855 ioc->base_add_sg_single(psge, sgl_flags | 1856 data_out_sz, data_out_dma); 1857 1858 /* incr sgel */ 1859 psge += ioc->sge_size; 1860 1861 /* READ sgel last */ 1862 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1863 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1864 MPI2_SGE_FLAGS_END_OF_LIST); 1865 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1866 ioc->base_add_sg_single(psge, sgl_flags | 1867 data_in_sz, data_in_dma); 1868 } else if (data_out_sz) /* WRITE */ { 1869 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1870 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1871 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1872 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1873 ioc->base_add_sg_single(psge, sgl_flags | 1874 data_out_sz, data_out_dma); 1875 } else if (data_in_sz) /* READ */ { 1876 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1877 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1878 MPI2_SGE_FLAGS_END_OF_LIST); 1879 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1880 ioc->base_add_sg_single(psge, sgl_flags | 1881 data_in_sz, data_in_dma); 1882 } 1883 } 1884 1885 /* IEEE format sgls */ 1886 1887 /** 1888 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1889 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1890 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1891 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1892 * used to describe a larger data buffer. If the data buffer is too large to 1893 * describe using the two PRP entriess inside the NVMe message, then PRP1 1894 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1895 * list located elsewhere in memory to describe the remaining data memory 1896 * segments. The PRP list will be contiguous. 1897 * 1898 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1899 * consists of a list of PRP entries to describe a number of noncontigous 1900 * physical memory segments as a single memory buffer, just as a SGL does. Note 1901 * however, that this function is only used by the IOCTL call, so the memory 1902 * given will be guaranteed to be contiguous. There is no need to translate 1903 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1904 * contiguous space that is one page size each. 1905 * 1906 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1907 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1908 * contains the second PRP element if the memory being described fits within 2 1909 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1910 * 1911 * A PRP list pointer contains the address of a PRP list, structured as a linear 1912 * array of PRP entries. Each PRP entry in this list describes a segment of 1913 * physical memory. 1914 * 1915 * Each 64-bit PRP entry comprises an address and an offset field. The address 1916 * always points at the beginning of a 4KB physical memory page, and the offset 1917 * describes where within that 4KB page the memory segment begins. Only the 1918 * first element in a PRP list may contain a non-zero offest, implying that all 1919 * memory segments following the first begin at the start of a 4KB page. 1920 * 1921 * Each PRP element normally describes 4KB of physical memory, with exceptions 1922 * for the first and last elements in the list. If the memory being described 1923 * by the list begins at a non-zero offset within the first 4KB page, then the 1924 * first PRP element will contain a non-zero offset indicating where the region 1925 * begins within the 4KB page. The last memory segment may end before the end 1926 * of the 4KB segment, depending upon the overall size of the memory being 1927 * described by the PRP list. 1928 * 1929 * Since PRP entries lack any indication of size, the overall data buffer length 1930 * is used to determine where the end of the data memory buffer is located, and 1931 * how many PRP entries are required to describe it. 1932 * 1933 * @ioc: per adapter object 1934 * @smid: system request message index for getting asscociated SGL 1935 * @nvme_encap_request: the NVMe request msg frame pointer 1936 * @data_out_dma: physical address for WRITES 1937 * @data_out_sz: data xfer size for WRITES 1938 * @data_in_dma: physical address for READS 1939 * @data_in_sz: data xfer size for READS 1940 */ 1941 static void 1942 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1943 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1944 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1945 size_t data_in_sz) 1946 { 1947 int prp_size = NVME_PRP_SIZE; 1948 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1949 __le64 *prp_page; 1950 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1951 u32 offset, entry_len; 1952 u32 page_mask_result, page_mask; 1953 size_t length; 1954 struct mpt3sas_nvme_cmd *nvme_cmd = 1955 (void *)nvme_encap_request->NVMe_Command; 1956 1957 /* 1958 * Not all commands require a data transfer. If no data, just return 1959 * without constructing any PRP. 1960 */ 1961 if (!data_in_sz && !data_out_sz) 1962 return; 1963 prp1_entry = &nvme_cmd->prp1; 1964 prp2_entry = &nvme_cmd->prp2; 1965 prp_entry = prp1_entry; 1966 /* 1967 * For the PRP entries, use the specially allocated buffer of 1968 * contiguous memory. 1969 */ 1970 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1971 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1972 1973 /* 1974 * Check if we are within 1 entry of a page boundary we don't 1975 * want our first entry to be a PRP List entry. 1976 */ 1977 page_mask = ioc->page_size - 1; 1978 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1979 if (!page_mask_result) { 1980 /* Bump up to next page boundary. */ 1981 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 1982 prp_page_dma = prp_page_dma + prp_size; 1983 } 1984 1985 /* 1986 * Set PRP physical pointer, which initially points to the current PRP 1987 * DMA memory page. 1988 */ 1989 prp_entry_dma = prp_page_dma; 1990 1991 /* Get physical address and length of the data buffer. */ 1992 if (data_in_sz) { 1993 dma_addr = data_in_dma; 1994 length = data_in_sz; 1995 } else { 1996 dma_addr = data_out_dma; 1997 length = data_out_sz; 1998 } 1999 2000 /* Loop while the length is not zero. */ 2001 while (length) { 2002 /* 2003 * Check if we need to put a list pointer here if we are at 2004 * page boundary - prp_size (8 bytes). 2005 */ 2006 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2007 if (!page_mask_result) { 2008 /* 2009 * This is the last entry in a PRP List, so we need to 2010 * put a PRP list pointer here. What this does is: 2011 * - bump the current memory pointer to the next 2012 * address, which will be the next full page. 2013 * - set the PRP Entry to point to that page. This 2014 * is now the PRP List pointer. 2015 * - bump the PRP Entry pointer the start of the 2016 * next page. Since all of this PRP memory is 2017 * contiguous, no need to get a new page - it's 2018 * just the next address. 2019 */ 2020 prp_entry_dma++; 2021 *prp_entry = cpu_to_le64(prp_entry_dma); 2022 prp_entry++; 2023 } 2024 2025 /* Need to handle if entry will be part of a page. */ 2026 offset = dma_addr & page_mask; 2027 entry_len = ioc->page_size - offset; 2028 2029 if (prp_entry == prp1_entry) { 2030 /* 2031 * Must fill in the first PRP pointer (PRP1) before 2032 * moving on. 2033 */ 2034 *prp1_entry = cpu_to_le64(dma_addr); 2035 2036 /* 2037 * Now point to the second PRP entry within the 2038 * command (PRP2). 2039 */ 2040 prp_entry = prp2_entry; 2041 } else if (prp_entry == prp2_entry) { 2042 /* 2043 * Should the PRP2 entry be a PRP List pointer or just 2044 * a regular PRP pointer? If there is more than one 2045 * more page of data, must use a PRP List pointer. 2046 */ 2047 if (length > ioc->page_size) { 2048 /* 2049 * PRP2 will contain a PRP List pointer because 2050 * more PRP's are needed with this command. The 2051 * list will start at the beginning of the 2052 * contiguous buffer. 2053 */ 2054 *prp2_entry = cpu_to_le64(prp_entry_dma); 2055 2056 /* 2057 * The next PRP Entry will be the start of the 2058 * first PRP List. 2059 */ 2060 prp_entry = prp_page; 2061 } else { 2062 /* 2063 * After this, the PRP Entries are complete. 2064 * This command uses 2 PRP's and no PRP list. 2065 */ 2066 *prp2_entry = cpu_to_le64(dma_addr); 2067 } 2068 } else { 2069 /* 2070 * Put entry in list and bump the addresses. 2071 * 2072 * After PRP1 and PRP2 are filled in, this will fill in 2073 * all remaining PRP entries in a PRP List, one per 2074 * each time through the loop. 2075 */ 2076 *prp_entry = cpu_to_le64(dma_addr); 2077 prp_entry++; 2078 prp_entry_dma++; 2079 } 2080 2081 /* 2082 * Bump the phys address of the command's data buffer by the 2083 * entry_len. 2084 */ 2085 dma_addr += entry_len; 2086 2087 /* Decrement length accounting for last partial page. */ 2088 if (entry_len > length) 2089 length = 0; 2090 else 2091 length -= entry_len; 2092 } 2093 } 2094 2095 /** 2096 * base_make_prp_nvme - 2097 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2098 * 2099 * @ioc: per adapter object 2100 * @scmd: SCSI command from the mid-layer 2101 * @mpi_request: mpi request 2102 * @smid: msg Index 2103 * @sge_count: scatter gather element count. 2104 * 2105 * Return: true: PRPs are built 2106 * false: IEEE SGLs needs to be built 2107 */ 2108 static void 2109 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2110 struct scsi_cmnd *scmd, 2111 Mpi25SCSIIORequest_t *mpi_request, 2112 u16 smid, int sge_count) 2113 { 2114 int sge_len, num_prp_in_chain = 0; 2115 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2116 __le64 *curr_buff; 2117 dma_addr_t msg_dma, sge_addr, offset; 2118 u32 page_mask, page_mask_result; 2119 struct scatterlist *sg_scmd; 2120 u32 first_prp_len; 2121 int data_len = scsi_bufflen(scmd); 2122 u32 nvme_pg_size; 2123 2124 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2125 /* 2126 * Nvme has a very convoluted prp format. One prp is required 2127 * for each page or partial page. Driver need to split up OS sg_list 2128 * entries if it is longer than one page or cross a page 2129 * boundary. Driver also have to insert a PRP list pointer entry as 2130 * the last entry in each physical page of the PRP list. 2131 * 2132 * NOTE: The first PRP "entry" is actually placed in the first 2133 * SGL entry in the main message as IEEE 64 format. The 2nd 2134 * entry in the main message is the chain element, and the rest 2135 * of the PRP entries are built in the contiguous pcie buffer. 2136 */ 2137 page_mask = nvme_pg_size - 1; 2138 2139 /* 2140 * Native SGL is needed. 2141 * Put a chain element in main message frame that points to the first 2142 * chain buffer. 2143 * 2144 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2145 * a native SGL. 2146 */ 2147 2148 /* Set main message chain element pointer */ 2149 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2150 /* 2151 * For NVMe the chain element needs to be the 2nd SG entry in the main 2152 * message. 2153 */ 2154 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2155 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2156 2157 /* 2158 * For the PRP entries, use the specially allocated buffer of 2159 * contiguous memory. Normal chain buffers can't be used 2160 * because each chain buffer would need to be the size of an OS 2161 * page (4k). 2162 */ 2163 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2164 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2165 2166 main_chain_element->Address = cpu_to_le64(msg_dma); 2167 main_chain_element->NextChainOffset = 0; 2168 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2169 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2170 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2171 2172 /* Build first prp, sge need not to be page aligned*/ 2173 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2174 sg_scmd = scsi_sglist(scmd); 2175 sge_addr = sg_dma_address(sg_scmd); 2176 sge_len = sg_dma_len(sg_scmd); 2177 2178 offset = sge_addr & page_mask; 2179 first_prp_len = nvme_pg_size - offset; 2180 2181 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2182 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2183 2184 data_len -= first_prp_len; 2185 2186 if (sge_len > first_prp_len) { 2187 sge_addr += first_prp_len; 2188 sge_len -= first_prp_len; 2189 } else if (data_len && (sge_len == first_prp_len)) { 2190 sg_scmd = sg_next(sg_scmd); 2191 sge_addr = sg_dma_address(sg_scmd); 2192 sge_len = sg_dma_len(sg_scmd); 2193 } 2194 2195 for (;;) { 2196 offset = sge_addr & page_mask; 2197 2198 /* Put PRP pointer due to page boundary*/ 2199 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2200 if (unlikely(!page_mask_result)) { 2201 scmd_printk(KERN_NOTICE, 2202 scmd, "page boundary curr_buff: 0x%p\n", 2203 curr_buff); 2204 msg_dma += 8; 2205 *curr_buff = cpu_to_le64(msg_dma); 2206 curr_buff++; 2207 num_prp_in_chain++; 2208 } 2209 2210 *curr_buff = cpu_to_le64(sge_addr); 2211 curr_buff++; 2212 msg_dma += 8; 2213 num_prp_in_chain++; 2214 2215 sge_addr += nvme_pg_size; 2216 sge_len -= nvme_pg_size; 2217 data_len -= nvme_pg_size; 2218 2219 if (data_len <= 0) 2220 break; 2221 2222 if (sge_len > 0) 2223 continue; 2224 2225 sg_scmd = sg_next(sg_scmd); 2226 sge_addr = sg_dma_address(sg_scmd); 2227 sge_len = sg_dma_len(sg_scmd); 2228 } 2229 2230 main_chain_element->Length = 2231 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2232 return; 2233 } 2234 2235 static bool 2236 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2237 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2238 { 2239 u32 data_length = 0; 2240 bool build_prp = true; 2241 2242 data_length = scsi_bufflen(scmd); 2243 2244 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2245 * we built IEEE SGL 2246 */ 2247 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2248 build_prp = false; 2249 2250 return build_prp; 2251 } 2252 2253 /** 2254 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2255 * determine if the driver needs to build a native SGL. If so, that native 2256 * SGL is built in the special contiguous buffers allocated especially for 2257 * PCIe SGL creation. If the driver will not build a native SGL, return 2258 * TRUE and a normal IEEE SGL will be built. Currently this routine 2259 * supports NVMe. 2260 * @ioc: per adapter object 2261 * @mpi_request: mf request pointer 2262 * @smid: system request message index 2263 * @scmd: scsi command 2264 * @pcie_device: points to the PCIe device's info 2265 * 2266 * Return: 0 if native SGL was built, 1 if no SGL was built 2267 */ 2268 static int 2269 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2270 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2271 struct _pcie_device *pcie_device) 2272 { 2273 int sges_left; 2274 2275 /* Get the SG list pointer and info. */ 2276 sges_left = scsi_dma_map(scmd); 2277 if (sges_left < 0) { 2278 sdev_printk(KERN_ERR, scmd->device, 2279 "scsi_dma_map failed: request for %d bytes!\n", 2280 scsi_bufflen(scmd)); 2281 return 1; 2282 } 2283 2284 /* Check if we need to build a native SG list. */ 2285 if (base_is_prp_possible(ioc, pcie_device, 2286 scmd, sges_left) == 0) { 2287 /* We built a native SG list, just return. */ 2288 goto out; 2289 } 2290 2291 /* 2292 * Build native NVMe PRP. 2293 */ 2294 base_make_prp_nvme(ioc, scmd, mpi_request, 2295 smid, sges_left); 2296 2297 return 0; 2298 out: 2299 scsi_dma_unmap(scmd); 2300 return 1; 2301 } 2302 2303 /** 2304 * _base_add_sg_single_ieee - add sg element for IEEE format 2305 * @paddr: virtual address for SGE 2306 * @flags: SGE flags 2307 * @chain_offset: number of 128 byte elements from start of segment 2308 * @length: data transfer length 2309 * @dma_addr: Physical address 2310 */ 2311 static void 2312 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2313 dma_addr_t dma_addr) 2314 { 2315 Mpi25IeeeSgeChain64_t *sgel = paddr; 2316 2317 sgel->Flags = flags; 2318 sgel->NextChainOffset = chain_offset; 2319 sgel->Length = cpu_to_le32(length); 2320 sgel->Address = cpu_to_le64(dma_addr); 2321 } 2322 2323 /** 2324 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2325 * @ioc: per adapter object 2326 * @paddr: virtual address for SGE 2327 * 2328 * Create a zero length scatter gather entry to insure the IOCs hardware has 2329 * something to use if the target device goes brain dead and tries 2330 * to send data even when none is asked for. 2331 */ 2332 static void 2333 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2334 { 2335 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2336 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2337 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2338 2339 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2340 } 2341 2342 /** 2343 * _base_build_sg_scmd - main sg creation routine 2344 * pcie_device is unused here! 2345 * @ioc: per adapter object 2346 * @scmd: scsi command 2347 * @smid: system request message index 2348 * @unused: unused pcie_device pointer 2349 * Context: none. 2350 * 2351 * The main routine that builds scatter gather table from a given 2352 * scsi request sent via the .queuecommand main handler. 2353 * 2354 * Return: 0 success, anything else error 2355 */ 2356 static int 2357 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2358 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2359 { 2360 Mpi2SCSIIORequest_t *mpi_request; 2361 dma_addr_t chain_dma; 2362 struct scatterlist *sg_scmd; 2363 void *sg_local, *chain; 2364 u32 chain_offset; 2365 u32 chain_length; 2366 u32 chain_flags; 2367 int sges_left; 2368 u32 sges_in_segment; 2369 u32 sgl_flags; 2370 u32 sgl_flags_last_element; 2371 u32 sgl_flags_end_buffer; 2372 struct chain_tracker *chain_req; 2373 2374 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2375 2376 /* init scatter gather flags */ 2377 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2378 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2379 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2380 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2381 << MPI2_SGE_FLAGS_SHIFT; 2382 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2383 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2384 << MPI2_SGE_FLAGS_SHIFT; 2385 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2386 2387 sg_scmd = scsi_sglist(scmd); 2388 sges_left = scsi_dma_map(scmd); 2389 if (sges_left < 0) { 2390 sdev_printk(KERN_ERR, scmd->device, 2391 "scsi_dma_map failed: request for %d bytes!\n", 2392 scsi_bufflen(scmd)); 2393 return -ENOMEM; 2394 } 2395 2396 sg_local = &mpi_request->SGL; 2397 sges_in_segment = ioc->max_sges_in_main_message; 2398 if (sges_left <= sges_in_segment) 2399 goto fill_in_last_segment; 2400 2401 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2402 (sges_in_segment * ioc->sge_size))/4; 2403 2404 /* fill in main message segment when there is a chain following */ 2405 while (sges_in_segment) { 2406 if (sges_in_segment == 1) 2407 ioc->base_add_sg_single(sg_local, 2408 sgl_flags_last_element | sg_dma_len(sg_scmd), 2409 sg_dma_address(sg_scmd)); 2410 else 2411 ioc->base_add_sg_single(sg_local, sgl_flags | 2412 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2413 sg_scmd = sg_next(sg_scmd); 2414 sg_local += ioc->sge_size; 2415 sges_left--; 2416 sges_in_segment--; 2417 } 2418 2419 /* initializing the chain flags and pointers */ 2420 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2421 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2422 if (!chain_req) 2423 return -1; 2424 chain = chain_req->chain_buffer; 2425 chain_dma = chain_req->chain_buffer_dma; 2426 do { 2427 sges_in_segment = (sges_left <= 2428 ioc->max_sges_in_chain_message) ? sges_left : 2429 ioc->max_sges_in_chain_message; 2430 chain_offset = (sges_left == sges_in_segment) ? 2431 0 : (sges_in_segment * ioc->sge_size)/4; 2432 chain_length = sges_in_segment * ioc->sge_size; 2433 if (chain_offset) { 2434 chain_offset = chain_offset << 2435 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2436 chain_length += ioc->sge_size; 2437 } 2438 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2439 chain_length, chain_dma); 2440 sg_local = chain; 2441 if (!chain_offset) 2442 goto fill_in_last_segment; 2443 2444 /* fill in chain segments */ 2445 while (sges_in_segment) { 2446 if (sges_in_segment == 1) 2447 ioc->base_add_sg_single(sg_local, 2448 sgl_flags_last_element | 2449 sg_dma_len(sg_scmd), 2450 sg_dma_address(sg_scmd)); 2451 else 2452 ioc->base_add_sg_single(sg_local, sgl_flags | 2453 sg_dma_len(sg_scmd), 2454 sg_dma_address(sg_scmd)); 2455 sg_scmd = sg_next(sg_scmd); 2456 sg_local += ioc->sge_size; 2457 sges_left--; 2458 sges_in_segment--; 2459 } 2460 2461 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2462 if (!chain_req) 2463 return -1; 2464 chain = chain_req->chain_buffer; 2465 chain_dma = chain_req->chain_buffer_dma; 2466 } while (1); 2467 2468 2469 fill_in_last_segment: 2470 2471 /* fill the last segment */ 2472 while (sges_left) { 2473 if (sges_left == 1) 2474 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2475 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2476 else 2477 ioc->base_add_sg_single(sg_local, sgl_flags | 2478 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2479 sg_scmd = sg_next(sg_scmd); 2480 sg_local += ioc->sge_size; 2481 sges_left--; 2482 } 2483 2484 return 0; 2485 } 2486 2487 /** 2488 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2489 * @ioc: per adapter object 2490 * @scmd: scsi command 2491 * @smid: system request message index 2492 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2493 * constructed on need. 2494 * Context: none. 2495 * 2496 * The main routine that builds scatter gather table from a given 2497 * scsi request sent via the .queuecommand main handler. 2498 * 2499 * Return: 0 success, anything else error 2500 */ 2501 static int 2502 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2503 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2504 { 2505 Mpi25SCSIIORequest_t *mpi_request; 2506 dma_addr_t chain_dma; 2507 struct scatterlist *sg_scmd; 2508 void *sg_local, *chain; 2509 u32 chain_offset; 2510 u32 chain_length; 2511 int sges_left; 2512 u32 sges_in_segment; 2513 u8 simple_sgl_flags; 2514 u8 simple_sgl_flags_last; 2515 u8 chain_sgl_flags; 2516 struct chain_tracker *chain_req; 2517 2518 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2519 2520 /* init scatter gather flags */ 2521 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2522 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2523 simple_sgl_flags_last = simple_sgl_flags | 2524 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2525 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2526 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2527 2528 /* Check if we need to build a native SG list. */ 2529 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2530 smid, scmd, pcie_device) == 0)) { 2531 /* We built a native SG list, just return. */ 2532 return 0; 2533 } 2534 2535 sg_scmd = scsi_sglist(scmd); 2536 sges_left = scsi_dma_map(scmd); 2537 if (sges_left < 0) { 2538 sdev_printk(KERN_ERR, scmd->device, 2539 "scsi_dma_map failed: request for %d bytes!\n", 2540 scsi_bufflen(scmd)); 2541 return -ENOMEM; 2542 } 2543 2544 sg_local = &mpi_request->SGL; 2545 sges_in_segment = (ioc->request_sz - 2546 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2547 if (sges_left <= sges_in_segment) 2548 goto fill_in_last_segment; 2549 2550 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2551 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2552 2553 /* fill in main message segment when there is a chain following */ 2554 while (sges_in_segment > 1) { 2555 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2556 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2557 sg_scmd = sg_next(sg_scmd); 2558 sg_local += ioc->sge_size_ieee; 2559 sges_left--; 2560 sges_in_segment--; 2561 } 2562 2563 /* initializing the pointers */ 2564 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2565 if (!chain_req) 2566 return -1; 2567 chain = chain_req->chain_buffer; 2568 chain_dma = chain_req->chain_buffer_dma; 2569 do { 2570 sges_in_segment = (sges_left <= 2571 ioc->max_sges_in_chain_message) ? sges_left : 2572 ioc->max_sges_in_chain_message; 2573 chain_offset = (sges_left == sges_in_segment) ? 2574 0 : sges_in_segment; 2575 chain_length = sges_in_segment * ioc->sge_size_ieee; 2576 if (chain_offset) 2577 chain_length += ioc->sge_size_ieee; 2578 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2579 chain_offset, chain_length, chain_dma); 2580 2581 sg_local = chain; 2582 if (!chain_offset) 2583 goto fill_in_last_segment; 2584 2585 /* fill in chain segments */ 2586 while (sges_in_segment) { 2587 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2588 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2589 sg_scmd = sg_next(sg_scmd); 2590 sg_local += ioc->sge_size_ieee; 2591 sges_left--; 2592 sges_in_segment--; 2593 } 2594 2595 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2596 if (!chain_req) 2597 return -1; 2598 chain = chain_req->chain_buffer; 2599 chain_dma = chain_req->chain_buffer_dma; 2600 } while (1); 2601 2602 2603 fill_in_last_segment: 2604 2605 /* fill the last segment */ 2606 while (sges_left > 0) { 2607 if (sges_left == 1) 2608 _base_add_sg_single_ieee(sg_local, 2609 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2610 sg_dma_address(sg_scmd)); 2611 else 2612 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2613 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2614 sg_scmd = sg_next(sg_scmd); 2615 sg_local += ioc->sge_size_ieee; 2616 sges_left--; 2617 } 2618 2619 return 0; 2620 } 2621 2622 /** 2623 * _base_build_sg_ieee - build generic sg for IEEE format 2624 * @ioc: per adapter object 2625 * @psge: virtual address for SGE 2626 * @data_out_dma: physical address for WRITES 2627 * @data_out_sz: data xfer size for WRITES 2628 * @data_in_dma: physical address for READS 2629 * @data_in_sz: data xfer size for READS 2630 */ 2631 static void 2632 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2633 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2634 size_t data_in_sz) 2635 { 2636 u8 sgl_flags; 2637 2638 if (!data_out_sz && !data_in_sz) { 2639 _base_build_zero_len_sge_ieee(ioc, psge); 2640 return; 2641 } 2642 2643 if (data_out_sz && data_in_sz) { 2644 /* WRITE sgel first */ 2645 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2646 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2647 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2648 data_out_dma); 2649 2650 /* incr sgel */ 2651 psge += ioc->sge_size_ieee; 2652 2653 /* READ sgel last */ 2654 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2655 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2656 data_in_dma); 2657 } else if (data_out_sz) /* WRITE */ { 2658 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2659 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2660 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2661 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2662 data_out_dma); 2663 } else if (data_in_sz) /* READ */ { 2664 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2665 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2667 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2668 data_in_dma); 2669 } 2670 } 2671 2672 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2673 2674 /** 2675 * _base_config_dma_addressing - set dma addressing 2676 * @ioc: per adapter object 2677 * @pdev: PCI device struct 2678 * 2679 * Return: 0 for success, non-zero for failure. 2680 */ 2681 static int 2682 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2683 { 2684 u64 required_mask, coherent_mask; 2685 struct sysinfo s; 2686 2687 if (ioc->is_mcpu_endpoint) 2688 goto try_32bit; 2689 2690 required_mask = dma_get_required_mask(&pdev->dev); 2691 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2692 goto try_32bit; 2693 2694 if (ioc->dma_mask) 2695 coherent_mask = DMA_BIT_MASK(64); 2696 else 2697 coherent_mask = DMA_BIT_MASK(32); 2698 2699 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) || 2700 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2701 goto try_32bit; 2702 2703 ioc->base_add_sg_single = &_base_add_sg_single_64; 2704 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2705 ioc->dma_mask = 64; 2706 goto out; 2707 2708 try_32bit: 2709 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2710 return -ENODEV; 2711 2712 ioc->base_add_sg_single = &_base_add_sg_single_32; 2713 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2714 ioc->dma_mask = 32; 2715 out: 2716 si_meminfo(&s); 2717 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2718 ioc->dma_mask, convert_to_kb(s.totalram)); 2719 2720 return 0; 2721 } 2722 2723 static int 2724 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2725 struct pci_dev *pdev) 2726 { 2727 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 2728 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2729 return -ENODEV; 2730 } 2731 return 0; 2732 } 2733 2734 /** 2735 * _base_check_enable_msix - checks MSIX capabable. 2736 * @ioc: per adapter object 2737 * 2738 * Check to see if card is capable of MSIX, and set number 2739 * of available msix vectors 2740 */ 2741 static int 2742 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2743 { 2744 int base; 2745 u16 message_control; 2746 2747 /* Check whether controller SAS2008 B0 controller, 2748 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2749 */ 2750 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2751 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2752 return -EINVAL; 2753 } 2754 2755 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2756 if (!base) { 2757 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2758 return -EINVAL; 2759 } 2760 2761 /* get msix vector count */ 2762 /* NUMA_IO not supported for older controllers */ 2763 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2764 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2765 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2766 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2767 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2768 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2769 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2770 ioc->msix_vector_count = 1; 2771 else { 2772 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2773 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2774 } 2775 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2776 ioc->msix_vector_count)); 2777 return 0; 2778 } 2779 2780 /** 2781 * _base_free_irq - free irq 2782 * @ioc: per adapter object 2783 * 2784 * Freeing respective reply_queue from the list. 2785 */ 2786 static void 2787 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2788 { 2789 struct adapter_reply_queue *reply_q, *next; 2790 2791 if (list_empty(&ioc->reply_queue_list)) 2792 return; 2793 2794 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2795 list_del(&reply_q->list); 2796 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2797 reply_q); 2798 kfree(reply_q); 2799 } 2800 } 2801 2802 /** 2803 * _base_request_irq - request irq 2804 * @ioc: per adapter object 2805 * @index: msix index into vector table 2806 * 2807 * Inserting respective reply_queue into the list. 2808 */ 2809 static int 2810 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2811 { 2812 struct pci_dev *pdev = ioc->pdev; 2813 struct adapter_reply_queue *reply_q; 2814 int r; 2815 2816 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2817 if (!reply_q) { 2818 ioc_err(ioc, "unable to allocate memory %zu!\n", 2819 sizeof(struct adapter_reply_queue)); 2820 return -ENOMEM; 2821 } 2822 reply_q->ioc = ioc; 2823 reply_q->msix_index = index; 2824 2825 atomic_set(&reply_q->busy, 0); 2826 if (ioc->msix_enable) 2827 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2828 ioc->driver_name, ioc->id, index); 2829 else 2830 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2831 ioc->driver_name, ioc->id); 2832 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2833 IRQF_SHARED, reply_q->name, reply_q); 2834 if (r) { 2835 pr_err("%s: unable to allocate interrupt %d!\n", 2836 reply_q->name, pci_irq_vector(pdev, index)); 2837 kfree(reply_q); 2838 return -EBUSY; 2839 } 2840 2841 INIT_LIST_HEAD(&reply_q->list); 2842 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2843 return 0; 2844 } 2845 2846 /** 2847 * _base_assign_reply_queues - assigning msix index for each cpu 2848 * @ioc: per adapter object 2849 * 2850 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2851 * 2852 * It would nice if we could call irq_set_affinity, however it is not 2853 * an exported symbol 2854 */ 2855 static void 2856 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2857 { 2858 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2859 struct adapter_reply_queue *reply_q; 2860 2861 if (!_base_is_controller_msix_enabled(ioc)) 2862 return; 2863 ioc->msix_load_balance = false; 2864 if (ioc->reply_queue_count < num_online_cpus()) { 2865 ioc->msix_load_balance = true; 2866 return; 2867 } 2868 2869 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2870 2871 nr_cpus = num_online_cpus(); 2872 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2873 ioc->facts.MaxMSIxVectors); 2874 if (!nr_msix) 2875 return; 2876 2877 if (smp_affinity_enable) { 2878 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2879 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev, 2880 reply_q->msix_index); 2881 if (!mask) { 2882 ioc_warn(ioc, "no affinity for msi %x\n", 2883 reply_q->msix_index); 2884 continue; 2885 } 2886 2887 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2888 if (cpu >= ioc->cpu_msix_table_sz) 2889 break; 2890 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2891 } 2892 } 2893 return; 2894 } 2895 cpu = cpumask_first(cpu_online_mask); 2896 2897 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2898 2899 unsigned int i, group = nr_cpus / nr_msix; 2900 2901 if (cpu >= nr_cpus) 2902 break; 2903 2904 if (index < nr_cpus % nr_msix) 2905 group++; 2906 2907 for (i = 0 ; i < group ; i++) { 2908 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2909 cpu = cpumask_next(cpu, cpu_online_mask); 2910 } 2911 index++; 2912 } 2913 } 2914 2915 /** 2916 * _base_disable_msix - disables msix 2917 * @ioc: per adapter object 2918 * 2919 */ 2920 static void 2921 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 2922 { 2923 if (!ioc->msix_enable) 2924 return; 2925 pci_disable_msix(ioc->pdev); 2926 ioc->msix_enable = 0; 2927 } 2928 2929 /** 2930 * _base_enable_msix - enables msix, failback to io_apic 2931 * @ioc: per adapter object 2932 * 2933 */ 2934 static int 2935 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2936 { 2937 int r; 2938 int i, local_max_msix_vectors; 2939 u8 try_msix = 0; 2940 unsigned int irq_flags = PCI_IRQ_MSIX; 2941 2942 if (msix_disable == -1 || msix_disable == 0) 2943 try_msix = 1; 2944 2945 if (!try_msix) 2946 goto try_ioapic; 2947 2948 if (_base_check_enable_msix(ioc) != 0) 2949 goto try_ioapic; 2950 2951 ioc->reply_queue_count = min_t(int, ioc->cpu_count, 2952 ioc->msix_vector_count); 2953 2954 ioc_info(ioc, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n", 2955 ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors); 2956 2957 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 2958 local_max_msix_vectors = (reset_devices) ? 1 : 8; 2959 else 2960 local_max_msix_vectors = max_msix_vectors; 2961 2962 if (local_max_msix_vectors > 0) 2963 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 2964 ioc->reply_queue_count); 2965 else if (local_max_msix_vectors == 0) 2966 goto try_ioapic; 2967 2968 if (ioc->msix_vector_count < ioc->cpu_count) 2969 smp_affinity_enable = 0; 2970 2971 if (smp_affinity_enable) 2972 irq_flags |= PCI_IRQ_AFFINITY; 2973 2974 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count, 2975 irq_flags); 2976 if (r < 0) { 2977 dfailprintk(ioc, 2978 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 2979 r)); 2980 goto try_ioapic; 2981 } 2982 2983 ioc->msix_enable = 1; 2984 ioc->reply_queue_count = r; 2985 for (i = 0; i < ioc->reply_queue_count; i++) { 2986 r = _base_request_irq(ioc, i); 2987 if (r) { 2988 _base_free_irq(ioc); 2989 _base_disable_msix(ioc); 2990 goto try_ioapic; 2991 } 2992 } 2993 2994 return 0; 2995 2996 /* failback to io_apic interrupt routing */ 2997 try_ioapic: 2998 2999 ioc->reply_queue_count = 1; 3000 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3001 if (r < 0) { 3002 dfailprintk(ioc, 3003 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3004 r)); 3005 } else 3006 r = _base_request_irq(ioc, 0); 3007 3008 return r; 3009 } 3010 3011 /** 3012 * mpt3sas_base_unmap_resources - free controller resources 3013 * @ioc: per adapter object 3014 */ 3015 static void 3016 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3017 { 3018 struct pci_dev *pdev = ioc->pdev; 3019 3020 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3021 3022 _base_free_irq(ioc); 3023 _base_disable_msix(ioc); 3024 3025 kfree(ioc->replyPostRegisterIndex); 3026 ioc->replyPostRegisterIndex = NULL; 3027 3028 3029 if (ioc->chip_phys) { 3030 iounmap(ioc->chip); 3031 ioc->chip_phys = 0; 3032 } 3033 3034 if (pci_is_enabled(pdev)) { 3035 pci_release_selected_regions(ioc->pdev, ioc->bars); 3036 pci_disable_pcie_error_reporting(pdev); 3037 pci_disable_device(pdev); 3038 } 3039 } 3040 3041 /** 3042 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3043 * @ioc: per adapter object 3044 * 3045 * Return: 0 for success, non-zero for failure. 3046 */ 3047 int 3048 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3049 { 3050 struct pci_dev *pdev = ioc->pdev; 3051 u32 memap_sz; 3052 u32 pio_sz; 3053 int i, r = 0; 3054 u64 pio_chip = 0; 3055 phys_addr_t chip_phys = 0; 3056 struct adapter_reply_queue *reply_q; 3057 3058 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3059 3060 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3061 if (pci_enable_device_mem(pdev)) { 3062 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3063 ioc->bars = 0; 3064 return -ENODEV; 3065 } 3066 3067 3068 if (pci_request_selected_regions(pdev, ioc->bars, 3069 ioc->driver_name)) { 3070 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3071 ioc->bars = 0; 3072 r = -ENODEV; 3073 goto out_fail; 3074 } 3075 3076 /* AER (Advanced Error Reporting) hooks */ 3077 pci_enable_pcie_error_reporting(pdev); 3078 3079 pci_set_master(pdev); 3080 3081 3082 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3083 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3084 r = -ENODEV; 3085 goto out_fail; 3086 } 3087 3088 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3089 (!memap_sz || !pio_sz); i++) { 3090 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3091 if (pio_sz) 3092 continue; 3093 pio_chip = (u64)pci_resource_start(pdev, i); 3094 pio_sz = pci_resource_len(pdev, i); 3095 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3096 if (memap_sz) 3097 continue; 3098 ioc->chip_phys = pci_resource_start(pdev, i); 3099 chip_phys = ioc->chip_phys; 3100 memap_sz = pci_resource_len(pdev, i); 3101 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3102 } 3103 } 3104 3105 if (ioc->chip == NULL) { 3106 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 3107 r = -EINVAL; 3108 goto out_fail; 3109 } 3110 3111 _base_mask_interrupts(ioc); 3112 3113 r = _base_get_ioc_facts(ioc); 3114 if (r) 3115 goto out_fail; 3116 3117 if (!ioc->rdpq_array_enable_assigned) { 3118 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3119 ioc->rdpq_array_enable_assigned = 1; 3120 } 3121 3122 r = _base_enable_msix(ioc); 3123 if (r) 3124 goto out_fail; 3125 3126 if (!ioc->is_driver_loading) 3127 _base_init_irqpolls(ioc); 3128 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3129 * revision HBAs and also only when reply queue count is greater than 8 3130 */ 3131 if (ioc->combined_reply_queue) { 3132 /* Determine the Supplemental Reply Post Host Index Registers 3133 * Addresse. Supplemental Reply Post Host Index Registers 3134 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3135 * each register is at offset bytes of 3136 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3137 */ 3138 ioc->replyPostRegisterIndex = kcalloc( 3139 ioc->combined_reply_index_count, 3140 sizeof(resource_size_t *), GFP_KERNEL); 3141 if (!ioc->replyPostRegisterIndex) { 3142 dfailprintk(ioc, 3143 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3144 r = -ENOMEM; 3145 goto out_fail; 3146 } 3147 3148 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3149 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3150 ((u8 __force *)&ioc->chip->Doorbell + 3151 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3152 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3153 } 3154 } 3155 3156 if (ioc->is_warpdrive) { 3157 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3158 &ioc->chip->ReplyPostHostIndex; 3159 3160 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3161 ioc->reply_post_host_index[i] = 3162 (resource_size_t __iomem *) 3163 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3164 * 4))); 3165 } 3166 3167 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3168 pr_info("%s: %s enabled: IRQ %d\n", 3169 reply_q->name, 3170 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3171 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3172 3173 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3174 &chip_phys, ioc->chip, memap_sz); 3175 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3176 (unsigned long long)pio_chip, pio_sz); 3177 3178 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3179 pci_save_state(pdev); 3180 return 0; 3181 3182 out_fail: 3183 mpt3sas_base_unmap_resources(ioc); 3184 return r; 3185 } 3186 3187 /** 3188 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3189 * @ioc: per adapter object 3190 * @smid: system request message index(smid zero is invalid) 3191 * 3192 * Return: virt pointer to message frame. 3193 */ 3194 void * 3195 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3196 { 3197 return (void *)(ioc->request + (smid * ioc->request_sz)); 3198 } 3199 3200 /** 3201 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3202 * @ioc: per adapter object 3203 * @smid: system request message index 3204 * 3205 * Return: virt pointer to sense buffer. 3206 */ 3207 void * 3208 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3209 { 3210 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3211 } 3212 3213 /** 3214 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3215 * @ioc: per adapter object 3216 * @smid: system request message index 3217 * 3218 * Return: phys pointer to the low 32bit address of the sense buffer. 3219 */ 3220 __le32 3221 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3222 { 3223 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3224 SCSI_SENSE_BUFFERSIZE)); 3225 } 3226 3227 /** 3228 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3229 * @ioc: per adapter object 3230 * @smid: system request message index 3231 * 3232 * Return: virt pointer to a PCIe SGL. 3233 */ 3234 void * 3235 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3236 { 3237 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3238 } 3239 3240 /** 3241 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3242 * @ioc: per adapter object 3243 * @smid: system request message index 3244 * 3245 * Return: phys pointer to the address of the PCIe buffer. 3246 */ 3247 dma_addr_t 3248 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3249 { 3250 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3251 } 3252 3253 /** 3254 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3255 * @ioc: per adapter object 3256 * @phys_addr: lower 32 physical addr of the reply 3257 * 3258 * Converts 32bit lower physical addr into a virt address. 3259 */ 3260 void * 3261 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3262 { 3263 if (!phys_addr) 3264 return NULL; 3265 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3266 } 3267 3268 static inline u8 3269 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc) 3270 { 3271 /* Enables reply_queue load balancing */ 3272 if (ioc->msix_load_balance) 3273 return ioc->reply_queue_count ? 3274 base_mod64(atomic64_add_return(1, 3275 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3276 3277 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3278 } 3279 3280 /** 3281 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3282 * @ioc: per adapter object 3283 * @cb_idx: callback index 3284 * 3285 * Return: smid (zero is invalid) 3286 */ 3287 u16 3288 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3289 { 3290 unsigned long flags; 3291 struct request_tracker *request; 3292 u16 smid; 3293 3294 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3295 if (list_empty(&ioc->internal_free_list)) { 3296 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3297 ioc_err(ioc, "%s: smid not available\n", __func__); 3298 return 0; 3299 } 3300 3301 request = list_entry(ioc->internal_free_list.next, 3302 struct request_tracker, tracker_list); 3303 request->cb_idx = cb_idx; 3304 smid = request->smid; 3305 list_del(&request->tracker_list); 3306 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3307 return smid; 3308 } 3309 3310 /** 3311 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3312 * @ioc: per adapter object 3313 * @cb_idx: callback index 3314 * @scmd: pointer to scsi command object 3315 * 3316 * Return: smid (zero is invalid) 3317 */ 3318 u16 3319 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3320 struct scsi_cmnd *scmd) 3321 { 3322 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3323 unsigned int tag = scmd->request->tag; 3324 u16 smid; 3325 3326 smid = tag + 1; 3327 request->cb_idx = cb_idx; 3328 request->msix_io = _base_get_msix_index(ioc); 3329 request->smid = smid; 3330 INIT_LIST_HEAD(&request->chain_list); 3331 return smid; 3332 } 3333 3334 /** 3335 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3336 * @ioc: per adapter object 3337 * @cb_idx: callback index 3338 * 3339 * Return: smid (zero is invalid) 3340 */ 3341 u16 3342 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3343 { 3344 unsigned long flags; 3345 struct request_tracker *request; 3346 u16 smid; 3347 3348 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3349 if (list_empty(&ioc->hpr_free_list)) { 3350 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3351 return 0; 3352 } 3353 3354 request = list_entry(ioc->hpr_free_list.next, 3355 struct request_tracker, tracker_list); 3356 request->cb_idx = cb_idx; 3357 smid = request->smid; 3358 list_del(&request->tracker_list); 3359 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3360 return smid; 3361 } 3362 3363 static void 3364 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3365 { 3366 /* 3367 * See _wait_for_commands_to_complete() call with regards to this code. 3368 */ 3369 if (ioc->shost_recovery && ioc->pending_io_count) { 3370 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3371 if (ioc->pending_io_count == 0) 3372 wake_up(&ioc->reset_wq); 3373 } 3374 } 3375 3376 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3377 struct scsiio_tracker *st) 3378 { 3379 if (WARN_ON(st->smid == 0)) 3380 return; 3381 st->cb_idx = 0xFF; 3382 st->direct_io = 0; 3383 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3384 st->smid = 0; 3385 } 3386 3387 /** 3388 * mpt3sas_base_free_smid - put smid back on free_list 3389 * @ioc: per adapter object 3390 * @smid: system request message index 3391 */ 3392 void 3393 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3394 { 3395 unsigned long flags; 3396 int i; 3397 3398 if (smid < ioc->hi_priority_smid) { 3399 struct scsiio_tracker *st; 3400 void *request; 3401 3402 st = _get_st_from_smid(ioc, smid); 3403 if (!st) { 3404 _base_recovery_check(ioc); 3405 return; 3406 } 3407 3408 /* Clear MPI request frame */ 3409 request = mpt3sas_base_get_msg_frame(ioc, smid); 3410 memset(request, 0, ioc->request_sz); 3411 3412 mpt3sas_base_clear_st(ioc, st); 3413 _base_recovery_check(ioc); 3414 return; 3415 } 3416 3417 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3418 if (smid < ioc->internal_smid) { 3419 /* hi-priority */ 3420 i = smid - ioc->hi_priority_smid; 3421 ioc->hpr_lookup[i].cb_idx = 0xFF; 3422 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3423 } else if (smid <= ioc->hba_queue_depth) { 3424 /* internal queue */ 3425 i = smid - ioc->internal_smid; 3426 ioc->internal_lookup[i].cb_idx = 0xFF; 3427 list_add(&ioc->internal_lookup[i].tracker_list, 3428 &ioc->internal_free_list); 3429 } 3430 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3431 } 3432 3433 /** 3434 * _base_mpi_ep_writeq - 32 bit write to MMIO 3435 * @b: data payload 3436 * @addr: address in MMIO space 3437 * @writeq_lock: spin lock 3438 * 3439 * This special handling for MPI EP to take care of 32 bit 3440 * environment where its not quarenteed to send the entire word 3441 * in one transfer. 3442 */ 3443 static inline void 3444 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3445 spinlock_t *writeq_lock) 3446 { 3447 unsigned long flags; 3448 3449 spin_lock_irqsave(writeq_lock, flags); 3450 __raw_writel((u32)(b), addr); 3451 __raw_writel((u32)(b >> 32), (addr + 4)); 3452 spin_unlock_irqrestore(writeq_lock, flags); 3453 } 3454 3455 /** 3456 * _base_writeq - 64 bit write to MMIO 3457 * @b: data payload 3458 * @addr: address in MMIO space 3459 * @writeq_lock: spin lock 3460 * 3461 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3462 * care of 32 bit environment where its not quarenteed to send the entire word 3463 * in one transfer. 3464 */ 3465 #if defined(writeq) && defined(CONFIG_64BIT) 3466 static inline void 3467 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3468 { 3469 wmb(); 3470 __raw_writeq(b, addr); 3471 barrier(); 3472 } 3473 #else 3474 static inline void 3475 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3476 { 3477 _base_mpi_ep_writeq(b, addr, writeq_lock); 3478 } 3479 #endif 3480 3481 /** 3482 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3483 * @ioc: per adapter object 3484 * @smid: system request message index 3485 * @handle: device handle 3486 */ 3487 static void 3488 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3489 { 3490 Mpi2RequestDescriptorUnion_t descriptor; 3491 u64 *request = (u64 *)&descriptor; 3492 void *mpi_req_iomem; 3493 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3494 3495 _clone_sg_entries(ioc, (void *) mfp, smid); 3496 mpi_req_iomem = (void __force *)ioc->chip + 3497 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3498 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3499 ioc->request_sz); 3500 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3501 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3502 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3503 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3504 descriptor.SCSIIO.LMID = 0; 3505 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3506 &ioc->scsi_lookup_lock); 3507 } 3508 3509 /** 3510 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3511 * @ioc: per adapter object 3512 * @smid: system request message index 3513 * @handle: device handle 3514 */ 3515 static void 3516 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3517 { 3518 Mpi2RequestDescriptorUnion_t descriptor; 3519 u64 *request = (u64 *)&descriptor; 3520 3521 3522 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3523 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3524 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3525 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3526 descriptor.SCSIIO.LMID = 0; 3527 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3528 &ioc->scsi_lookup_lock); 3529 } 3530 3531 /** 3532 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware 3533 * @ioc: per adapter object 3534 * @smid: system request message index 3535 * @handle: device handle 3536 */ 3537 void 3538 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3539 u16 handle) 3540 { 3541 Mpi2RequestDescriptorUnion_t descriptor; 3542 u64 *request = (u64 *)&descriptor; 3543 3544 descriptor.SCSIIO.RequestFlags = 3545 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3546 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3547 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3548 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3549 descriptor.SCSIIO.LMID = 0; 3550 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3551 &ioc->scsi_lookup_lock); 3552 } 3553 3554 /** 3555 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware 3556 * @ioc: per adapter object 3557 * @smid: system request message index 3558 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3559 */ 3560 void 3561 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3562 u16 msix_task) 3563 { 3564 Mpi2RequestDescriptorUnion_t descriptor; 3565 void *mpi_req_iomem; 3566 u64 *request; 3567 3568 if (ioc->is_mcpu_endpoint) { 3569 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3570 3571 /* TBD 256 is offset within sys register. */ 3572 mpi_req_iomem = (void __force *)ioc->chip 3573 + MPI_FRAME_START_OFFSET 3574 + (smid * ioc->request_sz); 3575 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3576 ioc->request_sz); 3577 } 3578 3579 request = (u64 *)&descriptor; 3580 3581 descriptor.HighPriority.RequestFlags = 3582 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3583 descriptor.HighPriority.MSIxIndex = msix_task; 3584 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3585 descriptor.HighPriority.LMID = 0; 3586 descriptor.HighPriority.Reserved1 = 0; 3587 if (ioc->is_mcpu_endpoint) 3588 _base_mpi_ep_writeq(*request, 3589 &ioc->chip->RequestDescriptorPostLow, 3590 &ioc->scsi_lookup_lock); 3591 else 3592 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3593 &ioc->scsi_lookup_lock); 3594 } 3595 3596 /** 3597 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3598 * firmware 3599 * @ioc: per adapter object 3600 * @smid: system request message index 3601 */ 3602 void 3603 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3604 { 3605 Mpi2RequestDescriptorUnion_t descriptor; 3606 u64 *request = (u64 *)&descriptor; 3607 3608 descriptor.Default.RequestFlags = 3609 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3610 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3611 descriptor.Default.SMID = cpu_to_le16(smid); 3612 descriptor.Default.LMID = 0; 3613 descriptor.Default.DescriptorTypeDependent = 0; 3614 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3615 &ioc->scsi_lookup_lock); 3616 } 3617 3618 /** 3619 * mpt3sas_base_put_smid_default - Default, primarily used for config pages 3620 * @ioc: per adapter object 3621 * @smid: system request message index 3622 */ 3623 void 3624 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3625 { 3626 Mpi2RequestDescriptorUnion_t descriptor; 3627 void *mpi_req_iomem; 3628 u64 *request; 3629 3630 if (ioc->is_mcpu_endpoint) { 3631 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3632 3633 _clone_sg_entries(ioc, (void *) mfp, smid); 3634 /* TBD 256 is offset within sys register */ 3635 mpi_req_iomem = (void __force *)ioc->chip + 3636 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3637 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3638 ioc->request_sz); 3639 } 3640 request = (u64 *)&descriptor; 3641 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3642 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3643 descriptor.Default.SMID = cpu_to_le16(smid); 3644 descriptor.Default.LMID = 0; 3645 descriptor.Default.DescriptorTypeDependent = 0; 3646 if (ioc->is_mcpu_endpoint) 3647 _base_mpi_ep_writeq(*request, 3648 &ioc->chip->RequestDescriptorPostLow, 3649 &ioc->scsi_lookup_lock); 3650 else 3651 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3652 &ioc->scsi_lookup_lock); 3653 } 3654 3655 /** 3656 * _base_display_OEMs_branding - Display branding string 3657 * @ioc: per adapter object 3658 */ 3659 static void 3660 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3661 { 3662 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3663 return; 3664 3665 switch (ioc->pdev->subsystem_vendor) { 3666 case PCI_VENDOR_ID_INTEL: 3667 switch (ioc->pdev->device) { 3668 case MPI2_MFGPAGE_DEVID_SAS2008: 3669 switch (ioc->pdev->subsystem_device) { 3670 case MPT2SAS_INTEL_RMS2LL080_SSDID: 3671 ioc_info(ioc, "%s\n", 3672 MPT2SAS_INTEL_RMS2LL080_BRANDING); 3673 break; 3674 case MPT2SAS_INTEL_RMS2LL040_SSDID: 3675 ioc_info(ioc, "%s\n", 3676 MPT2SAS_INTEL_RMS2LL040_BRANDING); 3677 break; 3678 case MPT2SAS_INTEL_SSD910_SSDID: 3679 ioc_info(ioc, "%s\n", 3680 MPT2SAS_INTEL_SSD910_BRANDING); 3681 break; 3682 default: 3683 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3684 ioc->pdev->subsystem_device); 3685 break; 3686 } 3687 break; 3688 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3689 switch (ioc->pdev->subsystem_device) { 3690 case MPT2SAS_INTEL_RS25GB008_SSDID: 3691 ioc_info(ioc, "%s\n", 3692 MPT2SAS_INTEL_RS25GB008_BRANDING); 3693 break; 3694 case MPT2SAS_INTEL_RMS25JB080_SSDID: 3695 ioc_info(ioc, "%s\n", 3696 MPT2SAS_INTEL_RMS25JB080_BRANDING); 3697 break; 3698 case MPT2SAS_INTEL_RMS25JB040_SSDID: 3699 ioc_info(ioc, "%s\n", 3700 MPT2SAS_INTEL_RMS25JB040_BRANDING); 3701 break; 3702 case MPT2SAS_INTEL_RMS25KB080_SSDID: 3703 ioc_info(ioc, "%s\n", 3704 MPT2SAS_INTEL_RMS25KB080_BRANDING); 3705 break; 3706 case MPT2SAS_INTEL_RMS25KB040_SSDID: 3707 ioc_info(ioc, "%s\n", 3708 MPT2SAS_INTEL_RMS25KB040_BRANDING); 3709 break; 3710 case MPT2SAS_INTEL_RMS25LB040_SSDID: 3711 ioc_info(ioc, "%s\n", 3712 MPT2SAS_INTEL_RMS25LB040_BRANDING); 3713 break; 3714 case MPT2SAS_INTEL_RMS25LB080_SSDID: 3715 ioc_info(ioc, "%s\n", 3716 MPT2SAS_INTEL_RMS25LB080_BRANDING); 3717 break; 3718 default: 3719 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3720 ioc->pdev->subsystem_device); 3721 break; 3722 } 3723 break; 3724 case MPI25_MFGPAGE_DEVID_SAS3008: 3725 switch (ioc->pdev->subsystem_device) { 3726 case MPT3SAS_INTEL_RMS3JC080_SSDID: 3727 ioc_info(ioc, "%s\n", 3728 MPT3SAS_INTEL_RMS3JC080_BRANDING); 3729 break; 3730 3731 case MPT3SAS_INTEL_RS3GC008_SSDID: 3732 ioc_info(ioc, "%s\n", 3733 MPT3SAS_INTEL_RS3GC008_BRANDING); 3734 break; 3735 case MPT3SAS_INTEL_RS3FC044_SSDID: 3736 ioc_info(ioc, "%s\n", 3737 MPT3SAS_INTEL_RS3FC044_BRANDING); 3738 break; 3739 case MPT3SAS_INTEL_RS3UC080_SSDID: 3740 ioc_info(ioc, "%s\n", 3741 MPT3SAS_INTEL_RS3UC080_BRANDING); 3742 break; 3743 default: 3744 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3745 ioc->pdev->subsystem_device); 3746 break; 3747 } 3748 break; 3749 default: 3750 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3751 ioc->pdev->subsystem_device); 3752 break; 3753 } 3754 break; 3755 case PCI_VENDOR_ID_DELL: 3756 switch (ioc->pdev->device) { 3757 case MPI2_MFGPAGE_DEVID_SAS2008: 3758 switch (ioc->pdev->subsystem_device) { 3759 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 3760 ioc_info(ioc, "%s\n", 3761 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 3762 break; 3763 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 3764 ioc_info(ioc, "%s\n", 3765 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 3766 break; 3767 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 3768 ioc_info(ioc, "%s\n", 3769 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 3770 break; 3771 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 3772 ioc_info(ioc, "%s\n", 3773 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 3774 break; 3775 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 3776 ioc_info(ioc, "%s\n", 3777 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 3778 break; 3779 case MPT2SAS_DELL_PERC_H200_SSDID: 3780 ioc_info(ioc, "%s\n", 3781 MPT2SAS_DELL_PERC_H200_BRANDING); 3782 break; 3783 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 3784 ioc_info(ioc, "%s\n", 3785 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 3786 break; 3787 default: 3788 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 3789 ioc->pdev->subsystem_device); 3790 break; 3791 } 3792 break; 3793 case MPI25_MFGPAGE_DEVID_SAS3008: 3794 switch (ioc->pdev->subsystem_device) { 3795 case MPT3SAS_DELL_12G_HBA_SSDID: 3796 ioc_info(ioc, "%s\n", 3797 MPT3SAS_DELL_12G_HBA_BRANDING); 3798 break; 3799 default: 3800 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 3801 ioc->pdev->subsystem_device); 3802 break; 3803 } 3804 break; 3805 default: 3806 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 3807 ioc->pdev->subsystem_device); 3808 break; 3809 } 3810 break; 3811 case PCI_VENDOR_ID_CISCO: 3812 switch (ioc->pdev->device) { 3813 case MPI25_MFGPAGE_DEVID_SAS3008: 3814 switch (ioc->pdev->subsystem_device) { 3815 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 3816 ioc_info(ioc, "%s\n", 3817 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 3818 break; 3819 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 3820 ioc_info(ioc, "%s\n", 3821 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 3822 break; 3823 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3824 ioc_info(ioc, "%s\n", 3825 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3826 break; 3827 default: 3828 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3829 ioc->pdev->subsystem_device); 3830 break; 3831 } 3832 break; 3833 case MPI25_MFGPAGE_DEVID_SAS3108_1: 3834 switch (ioc->pdev->subsystem_device) { 3835 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3836 ioc_info(ioc, "%s\n", 3837 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3838 break; 3839 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 3840 ioc_info(ioc, "%s\n", 3841 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 3842 break; 3843 default: 3844 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3845 ioc->pdev->subsystem_device); 3846 break; 3847 } 3848 break; 3849 default: 3850 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 3851 ioc->pdev->subsystem_device); 3852 break; 3853 } 3854 break; 3855 case MPT2SAS_HP_3PAR_SSVID: 3856 switch (ioc->pdev->device) { 3857 case MPI2_MFGPAGE_DEVID_SAS2004: 3858 switch (ioc->pdev->subsystem_device) { 3859 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 3860 ioc_info(ioc, "%s\n", 3861 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 3862 break; 3863 default: 3864 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3865 ioc->pdev->subsystem_device); 3866 break; 3867 } 3868 break; 3869 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3870 switch (ioc->pdev->subsystem_device) { 3871 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 3872 ioc_info(ioc, "%s\n", 3873 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 3874 break; 3875 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 3876 ioc_info(ioc, "%s\n", 3877 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 3878 break; 3879 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 3880 ioc_info(ioc, "%s\n", 3881 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 3882 break; 3883 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 3884 ioc_info(ioc, "%s\n", 3885 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 3886 break; 3887 default: 3888 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3889 ioc->pdev->subsystem_device); 3890 break; 3891 } 3892 break; 3893 default: 3894 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 3895 ioc->pdev->subsystem_device); 3896 break; 3897 } 3898 default: 3899 break; 3900 } 3901 } 3902 3903 /** 3904 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 3905 * version from FW Image Header. 3906 * @ioc: per adapter object 3907 * 3908 * Return: 0 for success, non-zero for failure. 3909 */ 3910 static int 3911 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 3912 { 3913 Mpi2FWImageHeader_t *FWImgHdr; 3914 Mpi25FWUploadRequest_t *mpi_request; 3915 Mpi2FWUploadReply_t mpi_reply; 3916 int r = 0; 3917 void *fwpkg_data = NULL; 3918 dma_addr_t fwpkg_data_dma; 3919 u16 smid, ioc_status; 3920 size_t data_length; 3921 3922 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3923 3924 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 3925 ioc_err(ioc, "%s: internal command already in use\n", __func__); 3926 return -EAGAIN; 3927 } 3928 3929 data_length = sizeof(Mpi2FWImageHeader_t); 3930 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 3931 &fwpkg_data_dma, GFP_KERNEL); 3932 if (!fwpkg_data) { 3933 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3934 __FILE__, __LINE__, __func__); 3935 return -ENOMEM; 3936 } 3937 3938 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 3939 if (!smid) { 3940 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 3941 r = -EAGAIN; 3942 goto out; 3943 } 3944 3945 ioc->base_cmds.status = MPT3_CMD_PENDING; 3946 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 3947 ioc->base_cmds.smid = smid; 3948 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 3949 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 3950 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 3951 mpi_request->ImageSize = cpu_to_le32(data_length); 3952 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 3953 data_length); 3954 init_completion(&ioc->base_cmds.done); 3955 mpt3sas_base_put_smid_default(ioc, smid); 3956 /* Wait for 15 seconds */ 3957 wait_for_completion_timeout(&ioc->base_cmds.done, 3958 FW_IMG_HDR_READ_TIMEOUT*HZ); 3959 ioc_info(ioc, "%s: complete\n", __func__); 3960 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 3961 ioc_err(ioc, "%s: timeout\n", __func__); 3962 _debug_dump_mf(mpi_request, 3963 sizeof(Mpi25FWUploadRequest_t)/4); 3964 r = -ETIME; 3965 } else { 3966 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 3967 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 3968 memcpy(&mpi_reply, ioc->base_cmds.reply, 3969 sizeof(Mpi2FWUploadReply_t)); 3970 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 3971 MPI2_IOCSTATUS_MASK; 3972 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 3973 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data; 3974 if (FWImgHdr->PackageVersion.Word) { 3975 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n", 3976 FWImgHdr->PackageVersion.Struct.Major, 3977 FWImgHdr->PackageVersion.Struct.Minor, 3978 FWImgHdr->PackageVersion.Struct.Unit, 3979 FWImgHdr->PackageVersion.Struct.Dev); 3980 } 3981 } else { 3982 _debug_dump_mf(&mpi_reply, 3983 sizeof(Mpi2FWUploadReply_t)/4); 3984 } 3985 } 3986 } 3987 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 3988 out: 3989 if (fwpkg_data) 3990 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 3991 fwpkg_data_dma); 3992 return r; 3993 } 3994 3995 /** 3996 * _base_display_ioc_capabilities - Disply IOC's capabilities. 3997 * @ioc: per adapter object 3998 */ 3999 static void 4000 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4001 { 4002 int i = 0; 4003 char desc[16]; 4004 u32 iounit_pg1_flags; 4005 u32 bios_version; 4006 4007 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4008 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4009 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4010 desc, 4011 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4012 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4013 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4014 ioc->facts.FWVersion.Word & 0x000000FF, 4015 ioc->pdev->revision, 4016 (bios_version & 0xFF000000) >> 24, 4017 (bios_version & 0x00FF0000) >> 16, 4018 (bios_version & 0x0000FF00) >> 8, 4019 bios_version & 0x000000FF); 4020 4021 _base_display_OEMs_branding(ioc); 4022 4023 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4024 pr_info("%sNVMe", i ? "," : ""); 4025 i++; 4026 } 4027 4028 ioc_info(ioc, "Protocol=("); 4029 4030 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4031 pr_cont("Initiator"); 4032 i++; 4033 } 4034 4035 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4036 pr_cont("%sTarget", i ? "," : ""); 4037 i++; 4038 } 4039 4040 i = 0; 4041 pr_cont("), Capabilities=("); 4042 4043 if (!ioc->hide_ir_msg) { 4044 if (ioc->facts.IOCCapabilities & 4045 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4046 pr_cont("Raid"); 4047 i++; 4048 } 4049 } 4050 4051 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4052 pr_cont("%sTLR", i ? "," : ""); 4053 i++; 4054 } 4055 4056 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4057 pr_cont("%sMulticast", i ? "," : ""); 4058 i++; 4059 } 4060 4061 if (ioc->facts.IOCCapabilities & 4062 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4063 pr_cont("%sBIDI Target", i ? "," : ""); 4064 i++; 4065 } 4066 4067 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4068 pr_cont("%sEEDP", i ? "," : ""); 4069 i++; 4070 } 4071 4072 if (ioc->facts.IOCCapabilities & 4073 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4074 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4075 i++; 4076 } 4077 4078 if (ioc->facts.IOCCapabilities & 4079 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4080 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4081 i++; 4082 } 4083 4084 if (ioc->facts.IOCCapabilities & 4085 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4086 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4087 i++; 4088 } 4089 4090 if (ioc->facts.IOCCapabilities & 4091 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4092 pr_cont("%sTask Set Full", i ? "," : ""); 4093 i++; 4094 } 4095 4096 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4097 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4098 pr_cont("%sNCQ", i ? "," : ""); 4099 i++; 4100 } 4101 4102 pr_cont(")\n"); 4103 } 4104 4105 /** 4106 * mpt3sas_base_update_missing_delay - change the missing delay timers 4107 * @ioc: per adapter object 4108 * @device_missing_delay: amount of time till device is reported missing 4109 * @io_missing_delay: interval IO is returned when there is a missing device 4110 * 4111 * Passed on the command line, this function will modify the device missing 4112 * delay, as well as the io missing delay. This should be called at driver 4113 * load time. 4114 */ 4115 void 4116 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4117 u16 device_missing_delay, u8 io_missing_delay) 4118 { 4119 u16 dmd, dmd_new, dmd_orignal; 4120 u8 io_missing_delay_original; 4121 u16 sz; 4122 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4123 Mpi2ConfigReply_t mpi_reply; 4124 u8 num_phys = 0; 4125 u16 ioc_status; 4126 4127 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4128 if (!num_phys) 4129 return; 4130 4131 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4132 sizeof(Mpi2SasIOUnit1PhyData_t)); 4133 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4134 if (!sas_iounit_pg1) { 4135 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4136 __FILE__, __LINE__, __func__); 4137 goto out; 4138 } 4139 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4140 sas_iounit_pg1, sz))) { 4141 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4142 __FILE__, __LINE__, __func__); 4143 goto out; 4144 } 4145 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4146 MPI2_IOCSTATUS_MASK; 4147 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4148 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4149 __FILE__, __LINE__, __func__); 4150 goto out; 4151 } 4152 4153 /* device missing delay */ 4154 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4155 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4156 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4157 else 4158 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4159 dmd_orignal = dmd; 4160 if (device_missing_delay > 0x7F) { 4161 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4162 device_missing_delay; 4163 dmd = dmd / 16; 4164 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4165 } else 4166 dmd = device_missing_delay; 4167 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4168 4169 /* io missing delay */ 4170 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4171 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4172 4173 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4174 sz)) { 4175 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4176 dmd_new = (dmd & 4177 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4178 else 4179 dmd_new = 4180 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4181 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4182 dmd_orignal, dmd_new); 4183 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4184 io_missing_delay_original, 4185 io_missing_delay); 4186 ioc->device_missing_delay = dmd_new; 4187 ioc->io_missing_delay = io_missing_delay; 4188 } 4189 4190 out: 4191 kfree(sas_iounit_pg1); 4192 } 4193 4194 /** 4195 * _base_static_config_pages - static start of day config pages 4196 * @ioc: per adapter object 4197 */ 4198 static void 4199 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4200 { 4201 Mpi2ConfigReply_t mpi_reply; 4202 u32 iounit_pg1_flags; 4203 4204 ioc->nvme_abort_timeout = 30; 4205 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4206 if (ioc->ir_firmware) 4207 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4208 &ioc->manu_pg10); 4209 4210 /* 4211 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4212 * flag unset in NVDATA. 4213 */ 4214 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4215 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4216 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4217 ioc->name); 4218 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4219 ioc->manu_pg11.EEDPTagMode |= 0x1; 4220 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4221 &ioc->manu_pg11); 4222 } 4223 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4224 ioc->tm_custom_handling = 1; 4225 else { 4226 ioc->tm_custom_handling = 0; 4227 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4228 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4229 else if (ioc->manu_pg11.NVMeAbortTO > 4230 NVME_TASK_ABORT_MAX_TIMEOUT) 4231 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4232 else 4233 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4234 } 4235 4236 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4237 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4238 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4239 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4240 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4241 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4242 _base_display_ioc_capabilities(ioc); 4243 4244 /* 4245 * Enable task_set_full handling in iounit_pg1 when the 4246 * facts capabilities indicate that its supported. 4247 */ 4248 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4249 if ((ioc->facts.IOCCapabilities & 4250 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4251 iounit_pg1_flags &= 4252 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4253 else 4254 iounit_pg1_flags |= 4255 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4256 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4257 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4258 4259 if (ioc->iounit_pg8.NumSensors) 4260 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4261 } 4262 4263 /** 4264 * mpt3sas_free_enclosure_list - release memory 4265 * @ioc: per adapter object 4266 * 4267 * Free memory allocated during encloure add. 4268 */ 4269 void 4270 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4271 { 4272 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4273 4274 /* Free enclosure list */ 4275 list_for_each_entry_safe(enclosure_dev, 4276 enclosure_dev_next, &ioc->enclosure_list, list) { 4277 list_del(&enclosure_dev->list); 4278 kfree(enclosure_dev); 4279 } 4280 } 4281 4282 /** 4283 * _base_release_memory_pools - release memory 4284 * @ioc: per adapter object 4285 * 4286 * Free memory allocated from _base_allocate_memory_pools. 4287 */ 4288 static void 4289 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4290 { 4291 int i = 0; 4292 int j = 0; 4293 struct chain_tracker *ct; 4294 struct reply_post_struct *rps; 4295 4296 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4297 4298 if (ioc->request) { 4299 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4300 ioc->request, ioc->request_dma); 4301 dexitprintk(ioc, 4302 ioc_info(ioc, "request_pool(0x%p): free\n", 4303 ioc->request)); 4304 ioc->request = NULL; 4305 } 4306 4307 if (ioc->sense) { 4308 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4309 dma_pool_destroy(ioc->sense_dma_pool); 4310 dexitprintk(ioc, 4311 ioc_info(ioc, "sense_pool(0x%p): free\n", 4312 ioc->sense)); 4313 ioc->sense = NULL; 4314 } 4315 4316 if (ioc->reply) { 4317 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4318 dma_pool_destroy(ioc->reply_dma_pool); 4319 dexitprintk(ioc, 4320 ioc_info(ioc, "reply_pool(0x%p): free\n", 4321 ioc->reply)); 4322 ioc->reply = NULL; 4323 } 4324 4325 if (ioc->reply_free) { 4326 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4327 ioc->reply_free_dma); 4328 dma_pool_destroy(ioc->reply_free_dma_pool); 4329 dexitprintk(ioc, 4330 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4331 ioc->reply_free)); 4332 ioc->reply_free = NULL; 4333 } 4334 4335 if (ioc->reply_post) { 4336 do { 4337 rps = &ioc->reply_post[i]; 4338 if (rps->reply_post_free) { 4339 dma_pool_free( 4340 ioc->reply_post_free_dma_pool, 4341 rps->reply_post_free, 4342 rps->reply_post_free_dma); 4343 dexitprintk(ioc, 4344 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4345 rps->reply_post_free)); 4346 rps->reply_post_free = NULL; 4347 } 4348 } while (ioc->rdpq_array_enable && 4349 (++i < ioc->reply_queue_count)); 4350 if (ioc->reply_post_free_array && 4351 ioc->rdpq_array_enable) { 4352 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4353 ioc->reply_post_free_array, 4354 ioc->reply_post_free_array_dma); 4355 ioc->reply_post_free_array = NULL; 4356 } 4357 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4358 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4359 kfree(ioc->reply_post); 4360 } 4361 4362 if (ioc->pcie_sgl_dma_pool) { 4363 for (i = 0; i < ioc->scsiio_depth; i++) { 4364 dma_pool_free(ioc->pcie_sgl_dma_pool, 4365 ioc->pcie_sg_lookup[i].pcie_sgl, 4366 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4367 } 4368 if (ioc->pcie_sgl_dma_pool) 4369 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4370 } 4371 4372 if (ioc->config_page) { 4373 dexitprintk(ioc, 4374 ioc_info(ioc, "config_page(0x%p): free\n", 4375 ioc->config_page)); 4376 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4377 ioc->config_page, ioc->config_page_dma); 4378 } 4379 4380 kfree(ioc->hpr_lookup); 4381 kfree(ioc->internal_lookup); 4382 if (ioc->chain_lookup) { 4383 for (i = 0; i < ioc->scsiio_depth; i++) { 4384 for (j = ioc->chains_per_prp_buffer; 4385 j < ioc->chains_needed_per_io; j++) { 4386 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4387 if (ct && ct->chain_buffer) 4388 dma_pool_free(ioc->chain_dma_pool, 4389 ct->chain_buffer, 4390 ct->chain_buffer_dma); 4391 } 4392 kfree(ioc->chain_lookup[i].chains_per_smid); 4393 } 4394 dma_pool_destroy(ioc->chain_dma_pool); 4395 kfree(ioc->chain_lookup); 4396 ioc->chain_lookup = NULL; 4397 } 4398 } 4399 4400 /** 4401 * is_MSB_are_same - checks whether all reply queues in a set are 4402 * having same upper 32bits in their base memory address. 4403 * @reply_pool_start_address: Base address of a reply queue set 4404 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4405 * 4406 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4407 * memory address, else 0. 4408 */ 4409 4410 static int 4411 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4412 { 4413 long reply_pool_end_address; 4414 4415 reply_pool_end_address = reply_pool_start_address + pool_sz; 4416 4417 if (upper_32_bits(reply_pool_start_address) == 4418 upper_32_bits(reply_pool_end_address)) 4419 return 1; 4420 else 4421 return 0; 4422 } 4423 4424 /** 4425 * _base_allocate_memory_pools - allocate start of day memory pools 4426 * @ioc: per adapter object 4427 * 4428 * Return: 0 success, anything else error. 4429 */ 4430 static int 4431 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4432 { 4433 struct mpt3sas_facts *facts; 4434 u16 max_sge_elements; 4435 u16 chains_needed_per_io; 4436 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4437 u32 retry_sz; 4438 u16 max_request_credit, nvme_blocks_needed; 4439 unsigned short sg_tablesize; 4440 u16 sge_size; 4441 int i, j; 4442 struct chain_tracker *ct; 4443 4444 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4445 4446 4447 retry_sz = 0; 4448 facts = &ioc->facts; 4449 4450 /* command line tunables for max sgl entries */ 4451 if (max_sgl_entries != -1) 4452 sg_tablesize = max_sgl_entries; 4453 else { 4454 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4455 sg_tablesize = MPT2SAS_SG_DEPTH; 4456 else 4457 sg_tablesize = MPT3SAS_SG_DEPTH; 4458 } 4459 4460 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4461 if (reset_devices) 4462 sg_tablesize = min_t(unsigned short, sg_tablesize, 4463 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4464 4465 if (ioc->is_mcpu_endpoint) 4466 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4467 else { 4468 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4469 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4470 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4471 sg_tablesize = min_t(unsigned short, sg_tablesize, 4472 SG_MAX_SEGMENTS); 4473 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4474 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4475 } 4476 ioc->shost->sg_tablesize = sg_tablesize; 4477 } 4478 4479 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4480 (facts->RequestCredit / 4)); 4481 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4482 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4483 INTERNAL_SCSIIO_CMDS_COUNT)) { 4484 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4485 facts->RequestCredit); 4486 return -ENOMEM; 4487 } 4488 ioc->internal_depth = 10; 4489 } 4490 4491 ioc->hi_priority_depth = ioc->internal_depth - (5); 4492 /* command line tunables for max controller queue depth */ 4493 if (max_queue_depth != -1 && max_queue_depth != 0) { 4494 max_request_credit = min_t(u16, max_queue_depth + 4495 ioc->internal_depth, facts->RequestCredit); 4496 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4497 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4498 } else if (reset_devices) 4499 max_request_credit = min_t(u16, facts->RequestCredit, 4500 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4501 else 4502 max_request_credit = min_t(u16, facts->RequestCredit, 4503 MAX_HBA_QUEUE_DEPTH); 4504 4505 /* Firmware maintains additional facts->HighPriorityCredit number of 4506 * credits for HiPriprity Request messages, so hba queue depth will be 4507 * sum of max_request_credit and high priority queue depth. 4508 */ 4509 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4510 4511 /* request frame size */ 4512 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4513 4514 /* reply frame size */ 4515 ioc->reply_sz = facts->ReplyFrameSize * 4; 4516 4517 /* chain segment size */ 4518 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4519 if (facts->IOCMaxChainSegmentSize) 4520 ioc->chain_segment_sz = 4521 facts->IOCMaxChainSegmentSize * 4522 MAX_CHAIN_ELEMT_SZ; 4523 else 4524 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4525 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4526 MAX_CHAIN_ELEMT_SZ; 4527 } else 4528 ioc->chain_segment_sz = ioc->request_sz; 4529 4530 /* calculate the max scatter element size */ 4531 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4532 4533 retry_allocation: 4534 total_sz = 0; 4535 /* calculate number of sg elements left over in the 1st frame */ 4536 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4537 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4538 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4539 4540 /* now do the same for a chain buffer */ 4541 max_sge_elements = ioc->chain_segment_sz - sge_size; 4542 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4543 4544 /* 4545 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4546 */ 4547 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4548 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4549 + 1; 4550 if (chains_needed_per_io > facts->MaxChainDepth) { 4551 chains_needed_per_io = facts->MaxChainDepth; 4552 ioc->shost->sg_tablesize = min_t(u16, 4553 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4554 * chains_needed_per_io), ioc->shost->sg_tablesize); 4555 } 4556 ioc->chains_needed_per_io = chains_needed_per_io; 4557 4558 /* reply free queue sizing - taking into account for 64 FW events */ 4559 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4560 4561 /* mCPU manage single counters for simplicity */ 4562 if (ioc->is_mcpu_endpoint) 4563 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4564 else { 4565 /* calculate reply descriptor post queue depth */ 4566 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4567 ioc->reply_free_queue_depth + 1; 4568 /* align the reply post queue on the next 16 count boundary */ 4569 if (ioc->reply_post_queue_depth % 16) 4570 ioc->reply_post_queue_depth += 16 - 4571 (ioc->reply_post_queue_depth % 16); 4572 } 4573 4574 if (ioc->reply_post_queue_depth > 4575 facts->MaxReplyDescriptorPostQueueDepth) { 4576 ioc->reply_post_queue_depth = 4577 facts->MaxReplyDescriptorPostQueueDepth - 4578 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4579 ioc->hba_queue_depth = 4580 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4581 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4582 } 4583 4584 dinitprintk(ioc, 4585 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4586 ioc->max_sges_in_main_message, 4587 ioc->max_sges_in_chain_message, 4588 ioc->shost->sg_tablesize, 4589 ioc->chains_needed_per_io)); 4590 4591 /* reply post queue, 16 byte align */ 4592 reply_post_free_sz = ioc->reply_post_queue_depth * 4593 sizeof(Mpi2DefaultReplyDescriptor_t); 4594 4595 sz = reply_post_free_sz; 4596 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 4597 sz *= ioc->reply_queue_count; 4598 4599 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 4600 (ioc->reply_queue_count):1, 4601 sizeof(struct reply_post_struct), GFP_KERNEL); 4602 4603 if (!ioc->reply_post) { 4604 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 4605 goto out; 4606 } 4607 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 4608 &ioc->pdev->dev, sz, 16, 0); 4609 if (!ioc->reply_post_free_dma_pool) { 4610 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 4611 goto out; 4612 } 4613 i = 0; 4614 do { 4615 ioc->reply_post[i].reply_post_free = 4616 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4617 GFP_KERNEL, 4618 &ioc->reply_post[i].reply_post_free_dma); 4619 if (!ioc->reply_post[i].reply_post_free) { 4620 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 4621 goto out; 4622 } 4623 dinitprintk(ioc, 4624 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4625 ioc->reply_post[i].reply_post_free, 4626 ioc->reply_post_queue_depth, 4627 8, sz / 1024)); 4628 dinitprintk(ioc, 4629 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 4630 (u64)ioc->reply_post[i].reply_post_free_dma)); 4631 total_sz += sz; 4632 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 4633 4634 if (ioc->dma_mask == 64) { 4635 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 4636 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 4637 pci_name(ioc->pdev)); 4638 goto out; 4639 } 4640 } 4641 4642 ioc->scsiio_depth = ioc->hba_queue_depth - 4643 ioc->hi_priority_depth - ioc->internal_depth; 4644 4645 /* set the scsi host can_queue depth 4646 * with some internal commands that could be outstanding 4647 */ 4648 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 4649 dinitprintk(ioc, 4650 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 4651 ioc->shost->can_queue)); 4652 4653 4654 /* contiguous pool for request and chains, 16 byte align, one extra " 4655 * "frame for smid=0 4656 */ 4657 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 4658 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 4659 4660 /* hi-priority queue */ 4661 sz += (ioc->hi_priority_depth * ioc->request_sz); 4662 4663 /* internal queue */ 4664 sz += (ioc->internal_depth * ioc->request_sz); 4665 4666 ioc->request_dma_sz = sz; 4667 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 4668 &ioc->request_dma, GFP_KERNEL); 4669 if (!ioc->request) { 4670 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 4671 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4672 ioc->request_sz, sz / 1024); 4673 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 4674 goto out; 4675 retry_sz = 64; 4676 ioc->hba_queue_depth -= retry_sz; 4677 _base_release_memory_pools(ioc); 4678 goto retry_allocation; 4679 } 4680 4681 if (retry_sz) 4682 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 4683 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4684 ioc->request_sz, sz / 1024); 4685 4686 /* hi-priority queue */ 4687 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 4688 ioc->request_sz); 4689 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 4690 ioc->request_sz); 4691 4692 /* internal queue */ 4693 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 4694 ioc->request_sz); 4695 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 4696 ioc->request_sz); 4697 4698 dinitprintk(ioc, 4699 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4700 ioc->request, ioc->hba_queue_depth, 4701 ioc->request_sz, 4702 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 4703 4704 dinitprintk(ioc, 4705 ioc_info(ioc, "request pool: dma(0x%llx)\n", 4706 (unsigned long long)ioc->request_dma)); 4707 total_sz += sz; 4708 4709 dinitprintk(ioc, 4710 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 4711 ioc->request, ioc->scsiio_depth)); 4712 4713 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 4714 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 4715 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 4716 if (!ioc->chain_lookup) { 4717 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 4718 goto out; 4719 } 4720 4721 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 4722 for (i = 0; i < ioc->scsiio_depth; i++) { 4723 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 4724 if (!ioc->chain_lookup[i].chains_per_smid) { 4725 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 4726 goto out; 4727 } 4728 } 4729 4730 /* initialize hi-priority queue smid's */ 4731 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 4732 sizeof(struct request_tracker), GFP_KERNEL); 4733 if (!ioc->hpr_lookup) { 4734 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 4735 goto out; 4736 } 4737 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 4738 dinitprintk(ioc, 4739 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 4740 ioc->hi_priority, 4741 ioc->hi_priority_depth, ioc->hi_priority_smid)); 4742 4743 /* initialize internal queue smid's */ 4744 ioc->internal_lookup = kcalloc(ioc->internal_depth, 4745 sizeof(struct request_tracker), GFP_KERNEL); 4746 if (!ioc->internal_lookup) { 4747 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 4748 goto out; 4749 } 4750 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 4751 dinitprintk(ioc, 4752 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 4753 ioc->internal, 4754 ioc->internal_depth, ioc->internal_smid)); 4755 /* 4756 * The number of NVMe page sized blocks needed is: 4757 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 4758 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 4759 * that is placed in the main message frame. 8 is the size of each PRP 4760 * entry or PRP list pointer entry. 8 is subtracted from page_size 4761 * because of the PRP list pointer entry at the end of a page, so this 4762 * is not counted as a PRP entry. The 1 added page is a round up. 4763 * 4764 * To avoid allocation failures due to the amount of memory that could 4765 * be required for NVMe PRP's, only each set of NVMe blocks will be 4766 * contiguous, so a new set is allocated for each possible I/O. 4767 */ 4768 ioc->chains_per_prp_buffer = 0; 4769 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4770 nvme_blocks_needed = 4771 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 4772 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 4773 nvme_blocks_needed++; 4774 4775 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 4776 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 4777 if (!ioc->pcie_sg_lookup) { 4778 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 4779 goto out; 4780 } 4781 sz = nvme_blocks_needed * ioc->page_size; 4782 ioc->pcie_sgl_dma_pool = 4783 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 4784 if (!ioc->pcie_sgl_dma_pool) { 4785 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 4786 goto out; 4787 } 4788 4789 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 4790 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 4791 ioc->chains_needed_per_io); 4792 4793 for (i = 0; i < ioc->scsiio_depth; i++) { 4794 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 4795 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 4796 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4797 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 4798 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 4799 goto out; 4800 } 4801 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 4802 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4803 ct->chain_buffer = 4804 ioc->pcie_sg_lookup[i].pcie_sgl + 4805 (j * ioc->chain_segment_sz); 4806 ct->chain_buffer_dma = 4807 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 4808 (j * ioc->chain_segment_sz); 4809 } 4810 } 4811 4812 dinitprintk(ioc, 4813 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 4814 ioc->scsiio_depth, sz, 4815 (sz * ioc->scsiio_depth) / 1024)); 4816 dinitprintk(ioc, 4817 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 4818 ioc->chains_per_prp_buffer)); 4819 total_sz += sz * ioc->scsiio_depth; 4820 } 4821 4822 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 4823 ioc->chain_segment_sz, 16, 0); 4824 if (!ioc->chain_dma_pool) { 4825 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 4826 goto out; 4827 } 4828 for (i = 0; i < ioc->scsiio_depth; i++) { 4829 for (j = ioc->chains_per_prp_buffer; 4830 j < ioc->chains_needed_per_io; j++) { 4831 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4832 ct->chain_buffer = dma_pool_alloc( 4833 ioc->chain_dma_pool, GFP_KERNEL, 4834 &ct->chain_buffer_dma); 4835 if (!ct->chain_buffer) { 4836 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 4837 _base_release_memory_pools(ioc); 4838 goto out; 4839 } 4840 } 4841 total_sz += ioc->chain_segment_sz; 4842 } 4843 4844 dinitprintk(ioc, 4845 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 4846 ioc->chain_depth, ioc->chain_segment_sz, 4847 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 4848 4849 /* sense buffers, 4 byte align */ 4850 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 4851 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4852 4, 0); 4853 if (!ioc->sense_dma_pool) { 4854 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 4855 goto out; 4856 } 4857 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4858 &ioc->sense_dma); 4859 if (!ioc->sense) { 4860 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 4861 goto out; 4862 } 4863 /* sense buffer requires to be in same 4 gb region. 4864 * Below function will check the same. 4865 * In case of failure, new pci pool will be created with updated 4866 * alignment. Older allocation and pool will be destroyed. 4867 * Alignment will be used such a way that next allocation if 4868 * success, will always meet same 4gb region requirement. 4869 * Actual requirement is not alignment, but we need start and end of 4870 * DMA address must have same upper 32 bit address. 4871 */ 4872 if (!is_MSB_are_same((long)ioc->sense, sz)) { 4873 //Release Sense pool & Reallocate 4874 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4875 dma_pool_destroy(ioc->sense_dma_pool); 4876 ioc->sense = NULL; 4877 4878 ioc->sense_dma_pool = 4879 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4880 roundup_pow_of_two(sz), 0); 4881 if (!ioc->sense_dma_pool) { 4882 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 4883 goto out; 4884 } 4885 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4886 &ioc->sense_dma); 4887 if (!ioc->sense) { 4888 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 4889 goto out; 4890 } 4891 } 4892 dinitprintk(ioc, 4893 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4894 ioc->sense, ioc->scsiio_depth, 4895 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 4896 dinitprintk(ioc, 4897 ioc_info(ioc, "sense_dma(0x%llx)\n", 4898 (unsigned long long)ioc->sense_dma)); 4899 total_sz += sz; 4900 4901 /* reply pool, 4 byte align */ 4902 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 4903 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 4904 4, 0); 4905 if (!ioc->reply_dma_pool) { 4906 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 4907 goto out; 4908 } 4909 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 4910 &ioc->reply_dma); 4911 if (!ioc->reply) { 4912 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 4913 goto out; 4914 } 4915 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 4916 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 4917 dinitprintk(ioc, 4918 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4919 ioc->reply, ioc->reply_free_queue_depth, 4920 ioc->reply_sz, sz / 1024)); 4921 dinitprintk(ioc, 4922 ioc_info(ioc, "reply_dma(0x%llx)\n", 4923 (unsigned long long)ioc->reply_dma)); 4924 total_sz += sz; 4925 4926 /* reply free queue, 16 byte align */ 4927 sz = ioc->reply_free_queue_depth * 4; 4928 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 4929 &ioc->pdev->dev, sz, 16, 0); 4930 if (!ioc->reply_free_dma_pool) { 4931 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 4932 goto out; 4933 } 4934 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 4935 &ioc->reply_free_dma); 4936 if (!ioc->reply_free) { 4937 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 4938 goto out; 4939 } 4940 dinitprintk(ioc, 4941 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4942 ioc->reply_free, ioc->reply_free_queue_depth, 4943 4, sz / 1024)); 4944 dinitprintk(ioc, 4945 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 4946 (unsigned long long)ioc->reply_free_dma)); 4947 total_sz += sz; 4948 4949 if (ioc->rdpq_array_enable) { 4950 reply_post_free_array_sz = ioc->reply_queue_count * 4951 sizeof(Mpi2IOCInitRDPQArrayEntry); 4952 ioc->reply_post_free_array_dma_pool = 4953 dma_pool_create("reply_post_free_array pool", 4954 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 4955 if (!ioc->reply_post_free_array_dma_pool) { 4956 dinitprintk(ioc, 4957 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 4958 goto out; 4959 } 4960 ioc->reply_post_free_array = 4961 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 4962 GFP_KERNEL, &ioc->reply_post_free_array_dma); 4963 if (!ioc->reply_post_free_array) { 4964 dinitprintk(ioc, 4965 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 4966 goto out; 4967 } 4968 } 4969 ioc->config_page_sz = 512; 4970 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 4971 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 4972 if (!ioc->config_page) { 4973 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 4974 goto out; 4975 } 4976 dinitprintk(ioc, 4977 ioc_info(ioc, "config page(0x%p): size(%d)\n", 4978 ioc->config_page, ioc->config_page_sz)); 4979 dinitprintk(ioc, 4980 ioc_info(ioc, "config_page_dma(0x%llx)\n", 4981 (unsigned long long)ioc->config_page_dma)); 4982 total_sz += ioc->config_page_sz; 4983 4984 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 4985 total_sz / 1024); 4986 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 4987 ioc->shost->can_queue, facts->RequestCredit); 4988 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 4989 ioc->shost->sg_tablesize); 4990 return 0; 4991 4992 out: 4993 return -ENOMEM; 4994 } 4995 4996 /** 4997 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 4998 * @ioc: Pointer to MPT_ADAPTER structure 4999 * @cooked: Request raw or cooked IOC state 5000 * 5001 * Return: all IOC Doorbell register bits if cooked==0, else just the 5002 * Doorbell bits in MPI_IOC_STATE_MASK. 5003 */ 5004 u32 5005 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5006 { 5007 u32 s, sc; 5008 5009 s = ioc->base_readl(&ioc->chip->Doorbell); 5010 sc = s & MPI2_IOC_STATE_MASK; 5011 return cooked ? sc : s; 5012 } 5013 5014 /** 5015 * _base_wait_on_iocstate - waiting on a particular ioc state 5016 * @ioc: ? 5017 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5018 * @timeout: timeout in second 5019 * 5020 * Return: 0 for success, non-zero for failure. 5021 */ 5022 static int 5023 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5024 { 5025 u32 count, cntdn; 5026 u32 current_state; 5027 5028 count = 0; 5029 cntdn = 1000 * timeout; 5030 do { 5031 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5032 if (current_state == ioc_state) 5033 return 0; 5034 if (count && current_state == MPI2_IOC_STATE_FAULT) 5035 break; 5036 5037 usleep_range(1000, 1500); 5038 count++; 5039 } while (--cntdn); 5040 5041 return current_state; 5042 } 5043 5044 /** 5045 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5046 * a write to the doorbell) 5047 * @ioc: per adapter object 5048 * 5049 * Return: 0 for success, non-zero for failure. 5050 * 5051 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5052 */ 5053 static int 5054 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 5055 5056 static int 5057 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5058 { 5059 u32 cntdn, count; 5060 u32 int_status; 5061 5062 count = 0; 5063 cntdn = 1000 * timeout; 5064 do { 5065 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5066 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5067 dhsprintk(ioc, 5068 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5069 __func__, count, timeout)); 5070 return 0; 5071 } 5072 5073 usleep_range(1000, 1500); 5074 count++; 5075 } while (--cntdn); 5076 5077 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5078 __func__, count, int_status); 5079 return -EFAULT; 5080 } 5081 5082 static int 5083 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5084 { 5085 u32 cntdn, count; 5086 u32 int_status; 5087 5088 count = 0; 5089 cntdn = 2000 * timeout; 5090 do { 5091 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5092 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5093 dhsprintk(ioc, 5094 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5095 __func__, count, timeout)); 5096 return 0; 5097 } 5098 5099 udelay(500); 5100 count++; 5101 } while (--cntdn); 5102 5103 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5104 __func__, count, int_status); 5105 return -EFAULT; 5106 5107 } 5108 5109 /** 5110 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5111 * @ioc: per adapter object 5112 * @timeout: timeout in second 5113 * 5114 * Return: 0 for success, non-zero for failure. 5115 * 5116 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5117 * doorbell. 5118 */ 5119 static int 5120 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5121 { 5122 u32 cntdn, count; 5123 u32 int_status; 5124 u32 doorbell; 5125 5126 count = 0; 5127 cntdn = 1000 * timeout; 5128 do { 5129 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5130 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5131 dhsprintk(ioc, 5132 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5133 __func__, count, timeout)); 5134 return 0; 5135 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5136 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5137 if ((doorbell & MPI2_IOC_STATE_MASK) == 5138 MPI2_IOC_STATE_FAULT) { 5139 mpt3sas_base_fault_info(ioc , doorbell); 5140 return -EFAULT; 5141 } 5142 } else if (int_status == 0xFFFFFFFF) 5143 goto out; 5144 5145 usleep_range(1000, 1500); 5146 count++; 5147 } while (--cntdn); 5148 5149 out: 5150 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5151 __func__, count, int_status); 5152 return -EFAULT; 5153 } 5154 5155 /** 5156 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5157 * @ioc: per adapter object 5158 * @timeout: timeout in second 5159 * 5160 * Return: 0 for success, non-zero for failure. 5161 */ 5162 static int 5163 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5164 { 5165 u32 cntdn, count; 5166 u32 doorbell_reg; 5167 5168 count = 0; 5169 cntdn = 1000 * timeout; 5170 do { 5171 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5172 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5173 dhsprintk(ioc, 5174 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5175 __func__, count, timeout)); 5176 return 0; 5177 } 5178 5179 usleep_range(1000, 1500); 5180 count++; 5181 } while (--cntdn); 5182 5183 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5184 __func__, count, doorbell_reg); 5185 return -EFAULT; 5186 } 5187 5188 /** 5189 * _base_send_ioc_reset - send doorbell reset 5190 * @ioc: per adapter object 5191 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5192 * @timeout: timeout in second 5193 * 5194 * Return: 0 for success, non-zero for failure. 5195 */ 5196 static int 5197 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5198 { 5199 u32 ioc_state; 5200 int r = 0; 5201 5202 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5203 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5204 return -EFAULT; 5205 } 5206 5207 if (!(ioc->facts.IOCCapabilities & 5208 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5209 return -EFAULT; 5210 5211 ioc_info(ioc, "sending message unit reset !!\n"); 5212 5213 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5214 &ioc->chip->Doorbell); 5215 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5216 r = -EFAULT; 5217 goto out; 5218 } 5219 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5220 if (ioc_state) { 5221 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5222 __func__, ioc_state); 5223 r = -EFAULT; 5224 goto out; 5225 } 5226 out: 5227 ioc_info(ioc, "message unit reset: %s\n", 5228 r == 0 ? "SUCCESS" : "FAILED"); 5229 return r; 5230 } 5231 5232 /** 5233 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5234 * @ioc: per adapter object 5235 * @wait_count: timeout in seconds 5236 * 5237 * Return: Waits up to timeout seconds for the IOC to 5238 * become operational. Returns 0 if IOC is present 5239 * and operational; otherwise returns -EFAULT. 5240 */ 5241 5242 int 5243 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5244 { 5245 int wait_state_count = 0; 5246 u32 ioc_state; 5247 5248 do { 5249 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5250 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5251 break; 5252 ssleep(1); 5253 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5254 __func__, ++wait_state_count); 5255 } while (--timeout); 5256 if (!timeout) { 5257 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5258 return -EFAULT; 5259 } 5260 if (wait_state_count) 5261 ioc_info(ioc, "ioc is operational\n"); 5262 return 0; 5263 } 5264 5265 /** 5266 * _base_handshake_req_reply_wait - send request thru doorbell interface 5267 * @ioc: per adapter object 5268 * @request_bytes: request length 5269 * @request: pointer having request payload 5270 * @reply_bytes: reply length 5271 * @reply: pointer to reply payload 5272 * @timeout: timeout in second 5273 * 5274 * Return: 0 for success, non-zero for failure. 5275 */ 5276 static int 5277 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5278 u32 *request, int reply_bytes, u16 *reply, int timeout) 5279 { 5280 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5281 int i; 5282 u8 failed; 5283 __le32 *mfp; 5284 5285 /* make sure doorbell is not in use */ 5286 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5287 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5288 return -EFAULT; 5289 } 5290 5291 /* clear pending doorbell interrupts from previous state changes */ 5292 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5293 MPI2_HIS_IOC2SYS_DB_STATUS) 5294 writel(0, &ioc->chip->HostInterruptStatus); 5295 5296 /* send message to ioc */ 5297 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5298 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5299 &ioc->chip->Doorbell); 5300 5301 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5302 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5303 __LINE__); 5304 return -EFAULT; 5305 } 5306 writel(0, &ioc->chip->HostInterruptStatus); 5307 5308 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5309 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5310 __LINE__); 5311 return -EFAULT; 5312 } 5313 5314 /* send message 32-bits at a time */ 5315 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5316 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5317 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5318 failed = 1; 5319 } 5320 5321 if (failed) { 5322 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5323 __LINE__); 5324 return -EFAULT; 5325 } 5326 5327 /* now wait for the reply */ 5328 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5329 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5330 __LINE__); 5331 return -EFAULT; 5332 } 5333 5334 /* read the first two 16-bits, it gives the total length of the reply */ 5335 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5336 & MPI2_DOORBELL_DATA_MASK); 5337 writel(0, &ioc->chip->HostInterruptStatus); 5338 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5339 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5340 __LINE__); 5341 return -EFAULT; 5342 } 5343 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5344 & MPI2_DOORBELL_DATA_MASK); 5345 writel(0, &ioc->chip->HostInterruptStatus); 5346 5347 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5348 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5349 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5350 __LINE__); 5351 return -EFAULT; 5352 } 5353 if (i >= reply_bytes/2) /* overflow case */ 5354 ioc->base_readl(&ioc->chip->Doorbell); 5355 else 5356 reply[i] = le16_to_cpu( 5357 ioc->base_readl(&ioc->chip->Doorbell) 5358 & MPI2_DOORBELL_DATA_MASK); 5359 writel(0, &ioc->chip->HostInterruptStatus); 5360 } 5361 5362 _base_wait_for_doorbell_int(ioc, 5); 5363 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5364 dhsprintk(ioc, 5365 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5366 __LINE__)); 5367 } 5368 writel(0, &ioc->chip->HostInterruptStatus); 5369 5370 if (ioc->logging_level & MPT_DEBUG_INIT) { 5371 mfp = (__le32 *)reply; 5372 pr_info("\toffset:data\n"); 5373 for (i = 0; i < reply_bytes/4; i++) 5374 pr_info("\t[0x%02x]:%08x\n", i*4, 5375 le32_to_cpu(mfp[i])); 5376 } 5377 return 0; 5378 } 5379 5380 /** 5381 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5382 * @ioc: per adapter object 5383 * @mpi_reply: the reply payload from FW 5384 * @mpi_request: the request payload sent to FW 5385 * 5386 * The SAS IO Unit Control Request message allows the host to perform low-level 5387 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5388 * to obtain the IOC assigned device handles for a device if it has other 5389 * identifying information about the device, in addition allows the host to 5390 * remove IOC resources associated with the device. 5391 * 5392 * Return: 0 for success, non-zero for failure. 5393 */ 5394 int 5395 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5396 Mpi2SasIoUnitControlReply_t *mpi_reply, 5397 Mpi2SasIoUnitControlRequest_t *mpi_request) 5398 { 5399 u16 smid; 5400 u8 issue_reset = 0; 5401 int rc; 5402 void *request; 5403 5404 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5405 5406 mutex_lock(&ioc->base_cmds.mutex); 5407 5408 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5409 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5410 rc = -EAGAIN; 5411 goto out; 5412 } 5413 5414 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5415 if (rc) 5416 goto out; 5417 5418 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5419 if (!smid) { 5420 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5421 rc = -EAGAIN; 5422 goto out; 5423 } 5424 5425 rc = 0; 5426 ioc->base_cmds.status = MPT3_CMD_PENDING; 5427 request = mpt3sas_base_get_msg_frame(ioc, smid); 5428 ioc->base_cmds.smid = smid; 5429 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5430 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5431 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5432 ioc->ioc_link_reset_in_progress = 1; 5433 init_completion(&ioc->base_cmds.done); 5434 mpt3sas_base_put_smid_default(ioc, smid); 5435 wait_for_completion_timeout(&ioc->base_cmds.done, 5436 msecs_to_jiffies(10000)); 5437 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5438 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5439 ioc->ioc_link_reset_in_progress) 5440 ioc->ioc_link_reset_in_progress = 0; 5441 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5442 issue_reset = 5443 mpt3sas_base_check_cmd_timeout(ioc, 5444 ioc->base_cmds.status, mpi_request, 5445 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5446 goto issue_host_reset; 5447 } 5448 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5449 memcpy(mpi_reply, ioc->base_cmds.reply, 5450 sizeof(Mpi2SasIoUnitControlReply_t)); 5451 else 5452 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5453 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5454 goto out; 5455 5456 issue_host_reset: 5457 if (issue_reset) 5458 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5459 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5460 rc = -EFAULT; 5461 out: 5462 mutex_unlock(&ioc->base_cmds.mutex); 5463 return rc; 5464 } 5465 5466 /** 5467 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5468 * @ioc: per adapter object 5469 * @mpi_reply: the reply payload from FW 5470 * @mpi_request: the request payload sent to FW 5471 * 5472 * The SCSI Enclosure Processor request message causes the IOC to 5473 * communicate with SES devices to control LED status signals. 5474 * 5475 * Return: 0 for success, non-zero for failure. 5476 */ 5477 int 5478 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5479 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5480 { 5481 u16 smid; 5482 u8 issue_reset = 0; 5483 int rc; 5484 void *request; 5485 5486 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5487 5488 mutex_lock(&ioc->base_cmds.mutex); 5489 5490 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5491 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5492 rc = -EAGAIN; 5493 goto out; 5494 } 5495 5496 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5497 if (rc) 5498 goto out; 5499 5500 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5501 if (!smid) { 5502 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5503 rc = -EAGAIN; 5504 goto out; 5505 } 5506 5507 rc = 0; 5508 ioc->base_cmds.status = MPT3_CMD_PENDING; 5509 request = mpt3sas_base_get_msg_frame(ioc, smid); 5510 ioc->base_cmds.smid = smid; 5511 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5512 init_completion(&ioc->base_cmds.done); 5513 mpt3sas_base_put_smid_default(ioc, smid); 5514 wait_for_completion_timeout(&ioc->base_cmds.done, 5515 msecs_to_jiffies(10000)); 5516 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5517 issue_reset = 5518 mpt3sas_base_check_cmd_timeout(ioc, 5519 ioc->base_cmds.status, mpi_request, 5520 sizeof(Mpi2SepRequest_t)/4); 5521 goto issue_host_reset; 5522 } 5523 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5524 memcpy(mpi_reply, ioc->base_cmds.reply, 5525 sizeof(Mpi2SepReply_t)); 5526 else 5527 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5528 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5529 goto out; 5530 5531 issue_host_reset: 5532 if (issue_reset) 5533 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5534 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5535 rc = -EFAULT; 5536 out: 5537 mutex_unlock(&ioc->base_cmds.mutex); 5538 return rc; 5539 } 5540 5541 /** 5542 * _base_get_port_facts - obtain port facts reply and save in ioc 5543 * @ioc: per adapter object 5544 * @port: ? 5545 * 5546 * Return: 0 for success, non-zero for failure. 5547 */ 5548 static int 5549 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5550 { 5551 Mpi2PortFactsRequest_t mpi_request; 5552 Mpi2PortFactsReply_t mpi_reply; 5553 struct mpt3sas_port_facts *pfacts; 5554 int mpi_reply_sz, mpi_request_sz, r; 5555 5556 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5557 5558 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5559 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5560 memset(&mpi_request, 0, mpi_request_sz); 5561 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5562 mpi_request.PortNumber = port; 5563 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5564 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5565 5566 if (r != 0) { 5567 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5568 return r; 5569 } 5570 5571 pfacts = &ioc->pfacts[port]; 5572 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5573 pfacts->PortNumber = mpi_reply.PortNumber; 5574 pfacts->VP_ID = mpi_reply.VP_ID; 5575 pfacts->VF_ID = mpi_reply.VF_ID; 5576 pfacts->MaxPostedCmdBuffers = 5577 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5578 5579 return 0; 5580 } 5581 5582 /** 5583 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5584 * @ioc: per adapter object 5585 * @timeout: 5586 * 5587 * Return: 0 for success, non-zero for failure. 5588 */ 5589 static int 5590 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 5591 { 5592 u32 ioc_state; 5593 int rc; 5594 5595 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5596 5597 if (ioc->pci_error_recovery) { 5598 dfailprintk(ioc, 5599 ioc_info(ioc, "%s: host in pci error recovery\n", 5600 __func__)); 5601 return -EFAULT; 5602 } 5603 5604 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5605 dhsprintk(ioc, 5606 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 5607 __func__, ioc_state)); 5608 5609 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 5610 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5611 return 0; 5612 5613 if (ioc_state & MPI2_DOORBELL_USED) { 5614 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 5615 goto issue_diag_reset; 5616 } 5617 5618 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5619 mpt3sas_base_fault_info(ioc, ioc_state & 5620 MPI2_DOORBELL_DATA_MASK); 5621 goto issue_diag_reset; 5622 } 5623 5624 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5625 if (ioc_state) { 5626 dfailprintk(ioc, 5627 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5628 __func__, ioc_state)); 5629 return -EFAULT; 5630 } 5631 5632 issue_diag_reset: 5633 rc = _base_diag_reset(ioc); 5634 return rc; 5635 } 5636 5637 /** 5638 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 5639 * @ioc: per adapter object 5640 * 5641 * Return: 0 for success, non-zero for failure. 5642 */ 5643 static int 5644 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 5645 { 5646 Mpi2IOCFactsRequest_t mpi_request; 5647 Mpi2IOCFactsReply_t mpi_reply; 5648 struct mpt3sas_facts *facts; 5649 int mpi_reply_sz, mpi_request_sz, r; 5650 5651 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5652 5653 r = _base_wait_for_iocstate(ioc, 10); 5654 if (r) { 5655 dfailprintk(ioc, 5656 ioc_info(ioc, "%s: failed getting to correct state\n", 5657 __func__)); 5658 return r; 5659 } 5660 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 5661 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 5662 memset(&mpi_request, 0, mpi_request_sz); 5663 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 5664 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5665 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5666 5667 if (r != 0) { 5668 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5669 return r; 5670 } 5671 5672 facts = &ioc->facts; 5673 memset(facts, 0, sizeof(struct mpt3sas_facts)); 5674 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 5675 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 5676 facts->VP_ID = mpi_reply.VP_ID; 5677 facts->VF_ID = mpi_reply.VF_ID; 5678 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 5679 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 5680 facts->WhoInit = mpi_reply.WhoInit; 5681 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 5682 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 5683 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 5684 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 5685 ioc->combined_reply_queue = 0; 5686 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 5687 facts->MaxReplyDescriptorPostQueueDepth = 5688 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 5689 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 5690 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 5691 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 5692 ioc->ir_firmware = 1; 5693 if ((facts->IOCCapabilities & 5694 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 5695 ioc->rdpq_array_capable = 1; 5696 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 5697 facts->IOCRequestFrameSize = 5698 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 5699 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5700 facts->IOCMaxChainSegmentSize = 5701 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 5702 } 5703 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 5704 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 5705 ioc->shost->max_id = -1; 5706 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 5707 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 5708 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 5709 facts->HighPriorityCredit = 5710 le16_to_cpu(mpi_reply.HighPriorityCredit); 5711 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 5712 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 5713 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 5714 5715 /* 5716 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 5717 */ 5718 ioc->page_size = 1 << facts->CurrentHostPageSize; 5719 if (ioc->page_size == 1) { 5720 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 5721 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 5722 } 5723 dinitprintk(ioc, 5724 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 5725 facts->CurrentHostPageSize)); 5726 5727 dinitprintk(ioc, 5728 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 5729 facts->RequestCredit, facts->MaxChainDepth)); 5730 dinitprintk(ioc, 5731 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 5732 facts->IOCRequestFrameSize * 4, 5733 facts->ReplyFrameSize * 4)); 5734 return 0; 5735 } 5736 5737 /** 5738 * _base_send_ioc_init - send ioc_init to firmware 5739 * @ioc: per adapter object 5740 * 5741 * Return: 0 for success, non-zero for failure. 5742 */ 5743 static int 5744 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 5745 { 5746 Mpi2IOCInitRequest_t mpi_request; 5747 Mpi2IOCInitReply_t mpi_reply; 5748 int i, r = 0; 5749 ktime_t current_time; 5750 u16 ioc_status; 5751 u32 reply_post_free_array_sz = 0; 5752 5753 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5754 5755 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 5756 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 5757 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 5758 mpi_request.VF_ID = 0; /* TODO */ 5759 mpi_request.VP_ID = 0; 5760 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 5761 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 5762 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 5763 5764 if (_base_is_controller_msix_enabled(ioc)) 5765 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 5766 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 5767 mpi_request.ReplyDescriptorPostQueueDepth = 5768 cpu_to_le16(ioc->reply_post_queue_depth); 5769 mpi_request.ReplyFreeQueueDepth = 5770 cpu_to_le16(ioc->reply_free_queue_depth); 5771 5772 mpi_request.SenseBufferAddressHigh = 5773 cpu_to_le32((u64)ioc->sense_dma >> 32); 5774 mpi_request.SystemReplyAddressHigh = 5775 cpu_to_le32((u64)ioc->reply_dma >> 32); 5776 mpi_request.SystemRequestFrameBaseAddress = 5777 cpu_to_le64((u64)ioc->request_dma); 5778 mpi_request.ReplyFreeQueueAddress = 5779 cpu_to_le64((u64)ioc->reply_free_dma); 5780 5781 if (ioc->rdpq_array_enable) { 5782 reply_post_free_array_sz = ioc->reply_queue_count * 5783 sizeof(Mpi2IOCInitRDPQArrayEntry); 5784 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 5785 for (i = 0; i < ioc->reply_queue_count; i++) 5786 ioc->reply_post_free_array[i].RDPQBaseAddress = 5787 cpu_to_le64( 5788 (u64)ioc->reply_post[i].reply_post_free_dma); 5789 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 5790 mpi_request.ReplyDescriptorPostQueueAddress = 5791 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 5792 } else { 5793 mpi_request.ReplyDescriptorPostQueueAddress = 5794 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 5795 } 5796 5797 /* This time stamp specifies number of milliseconds 5798 * since epoch ~ midnight January 1, 1970. 5799 */ 5800 current_time = ktime_get_real(); 5801 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 5802 5803 if (ioc->logging_level & MPT_DEBUG_INIT) { 5804 __le32 *mfp; 5805 int i; 5806 5807 mfp = (__le32 *)&mpi_request; 5808 pr_info("\toffset:data\n"); 5809 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 5810 pr_info("\t[0x%02x]:%08x\n", i*4, 5811 le32_to_cpu(mfp[i])); 5812 } 5813 5814 r = _base_handshake_req_reply_wait(ioc, 5815 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 5816 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 5817 5818 if (r != 0) { 5819 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5820 return r; 5821 } 5822 5823 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 5824 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 5825 mpi_reply.IOCLogInfo) { 5826 ioc_err(ioc, "%s: failed\n", __func__); 5827 r = -EIO; 5828 } 5829 5830 return r; 5831 } 5832 5833 /** 5834 * mpt3sas_port_enable_done - command completion routine for port enable 5835 * @ioc: per adapter object 5836 * @smid: system request message index 5837 * @msix_index: MSIX table index supplied by the OS 5838 * @reply: reply message frame(lower 32bit addr) 5839 * 5840 * Return: 1 meaning mf should be freed from _base_interrupt 5841 * 0 means the mf is freed from this function. 5842 */ 5843 u8 5844 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 5845 u32 reply) 5846 { 5847 MPI2DefaultReply_t *mpi_reply; 5848 u16 ioc_status; 5849 5850 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 5851 return 1; 5852 5853 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 5854 if (!mpi_reply) 5855 return 1; 5856 5857 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 5858 return 1; 5859 5860 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 5861 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 5862 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 5863 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 5864 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5865 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5866 ioc->port_enable_failed = 1; 5867 5868 if (ioc->is_driver_loading) { 5869 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 5870 mpt3sas_port_enable_complete(ioc); 5871 return 1; 5872 } else { 5873 ioc->start_scan_failed = ioc_status; 5874 ioc->start_scan = 0; 5875 return 1; 5876 } 5877 } 5878 complete(&ioc->port_enable_cmds.done); 5879 return 1; 5880 } 5881 5882 /** 5883 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 5884 * @ioc: per adapter object 5885 * 5886 * Return: 0 for success, non-zero for failure. 5887 */ 5888 static int 5889 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 5890 { 5891 Mpi2PortEnableRequest_t *mpi_request; 5892 Mpi2PortEnableReply_t *mpi_reply; 5893 int r = 0; 5894 u16 smid; 5895 u16 ioc_status; 5896 5897 ioc_info(ioc, "sending port enable !!\n"); 5898 5899 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5900 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5901 return -EAGAIN; 5902 } 5903 5904 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5905 if (!smid) { 5906 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5907 return -EAGAIN; 5908 } 5909 5910 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5911 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5912 ioc->port_enable_cmds.smid = smid; 5913 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5914 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5915 5916 init_completion(&ioc->port_enable_cmds.done); 5917 mpt3sas_base_put_smid_default(ioc, smid); 5918 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 5919 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 5920 ioc_err(ioc, "%s: timeout\n", __func__); 5921 _debug_dump_mf(mpi_request, 5922 sizeof(Mpi2PortEnableRequest_t)/4); 5923 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 5924 r = -EFAULT; 5925 else 5926 r = -ETIME; 5927 goto out; 5928 } 5929 5930 mpi_reply = ioc->port_enable_cmds.reply; 5931 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5932 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5933 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 5934 __func__, ioc_status); 5935 r = -EFAULT; 5936 goto out; 5937 } 5938 5939 out: 5940 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 5941 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 5942 return r; 5943 } 5944 5945 /** 5946 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 5947 * @ioc: per adapter object 5948 * 5949 * Return: 0 for success, non-zero for failure. 5950 */ 5951 int 5952 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 5953 { 5954 Mpi2PortEnableRequest_t *mpi_request; 5955 u16 smid; 5956 5957 ioc_info(ioc, "sending port enable !!\n"); 5958 5959 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5960 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5961 return -EAGAIN; 5962 } 5963 5964 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5965 if (!smid) { 5966 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5967 return -EAGAIN; 5968 } 5969 5970 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5971 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5972 ioc->port_enable_cmds.smid = smid; 5973 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5974 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5975 5976 mpt3sas_base_put_smid_default(ioc, smid); 5977 return 0; 5978 } 5979 5980 /** 5981 * _base_determine_wait_on_discovery - desposition 5982 * @ioc: per adapter object 5983 * 5984 * Decide whether to wait on discovery to complete. Used to either 5985 * locate boot device, or report volumes ahead of physical devices. 5986 * 5987 * Return: 1 for wait, 0 for don't wait. 5988 */ 5989 static int 5990 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 5991 { 5992 /* We wait for discovery to complete if IR firmware is loaded. 5993 * The sas topology events arrive before PD events, so we need time to 5994 * turn on the bit in ioc->pd_handles to indicate PD 5995 * Also, it maybe required to report Volumes ahead of physical 5996 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 5997 */ 5998 if (ioc->ir_firmware) 5999 return 1; 6000 6001 /* if no Bios, then we don't need to wait */ 6002 if (!ioc->bios_pg3.BiosVersion) 6003 return 0; 6004 6005 /* Bios is present, then we drop down here. 6006 * 6007 * If there any entries in the Bios Page 2, then we wait 6008 * for discovery to complete. 6009 */ 6010 6011 /* Current Boot Device */ 6012 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6013 MPI2_BIOSPAGE2_FORM_MASK) == 6014 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6015 /* Request Boot Device */ 6016 (ioc->bios_pg2.ReqBootDeviceForm & 6017 MPI2_BIOSPAGE2_FORM_MASK) == 6018 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6019 /* Alternate Request Boot Device */ 6020 (ioc->bios_pg2.ReqAltBootDeviceForm & 6021 MPI2_BIOSPAGE2_FORM_MASK) == 6022 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6023 return 0; 6024 6025 return 1; 6026 } 6027 6028 /** 6029 * _base_unmask_events - turn on notification for this event 6030 * @ioc: per adapter object 6031 * @event: firmware event 6032 * 6033 * The mask is stored in ioc->event_masks. 6034 */ 6035 static void 6036 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6037 { 6038 u32 desired_event; 6039 6040 if (event >= 128) 6041 return; 6042 6043 desired_event = (1 << (event % 32)); 6044 6045 if (event < 32) 6046 ioc->event_masks[0] &= ~desired_event; 6047 else if (event < 64) 6048 ioc->event_masks[1] &= ~desired_event; 6049 else if (event < 96) 6050 ioc->event_masks[2] &= ~desired_event; 6051 else if (event < 128) 6052 ioc->event_masks[3] &= ~desired_event; 6053 } 6054 6055 /** 6056 * _base_event_notification - send event notification 6057 * @ioc: per adapter object 6058 * 6059 * Return: 0 for success, non-zero for failure. 6060 */ 6061 static int 6062 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6063 { 6064 Mpi2EventNotificationRequest_t *mpi_request; 6065 u16 smid; 6066 int r = 0; 6067 int i; 6068 6069 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6070 6071 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6072 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6073 return -EAGAIN; 6074 } 6075 6076 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6077 if (!smid) { 6078 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6079 return -EAGAIN; 6080 } 6081 ioc->base_cmds.status = MPT3_CMD_PENDING; 6082 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6083 ioc->base_cmds.smid = smid; 6084 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6085 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6086 mpi_request->VF_ID = 0; /* TODO */ 6087 mpi_request->VP_ID = 0; 6088 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6089 mpi_request->EventMasks[i] = 6090 cpu_to_le32(ioc->event_masks[i]); 6091 init_completion(&ioc->base_cmds.done); 6092 mpt3sas_base_put_smid_default(ioc, smid); 6093 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6094 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6095 ioc_err(ioc, "%s: timeout\n", __func__); 6096 _debug_dump_mf(mpi_request, 6097 sizeof(Mpi2EventNotificationRequest_t)/4); 6098 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6099 r = -EFAULT; 6100 else 6101 r = -ETIME; 6102 } else 6103 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6104 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6105 return r; 6106 } 6107 6108 /** 6109 * mpt3sas_base_validate_event_type - validating event types 6110 * @ioc: per adapter object 6111 * @event_type: firmware event 6112 * 6113 * This will turn on firmware event notification when application 6114 * ask for that event. We don't mask events that are already enabled. 6115 */ 6116 void 6117 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6118 { 6119 int i, j; 6120 u32 event_mask, desired_event; 6121 u8 send_update_to_fw; 6122 6123 for (i = 0, send_update_to_fw = 0; i < 6124 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6125 event_mask = ~event_type[i]; 6126 desired_event = 1; 6127 for (j = 0; j < 32; j++) { 6128 if (!(event_mask & desired_event) && 6129 (ioc->event_masks[i] & desired_event)) { 6130 ioc->event_masks[i] &= ~desired_event; 6131 send_update_to_fw = 1; 6132 } 6133 desired_event = (desired_event << 1); 6134 } 6135 } 6136 6137 if (!send_update_to_fw) 6138 return; 6139 6140 mutex_lock(&ioc->base_cmds.mutex); 6141 _base_event_notification(ioc); 6142 mutex_unlock(&ioc->base_cmds.mutex); 6143 } 6144 6145 /** 6146 * _base_diag_reset - the "big hammer" start of day reset 6147 * @ioc: per adapter object 6148 * 6149 * Return: 0 for success, non-zero for failure. 6150 */ 6151 static int 6152 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6153 { 6154 u32 host_diagnostic; 6155 u32 ioc_state; 6156 u32 count; 6157 u32 hcb_size; 6158 6159 ioc_info(ioc, "sending diag reset !!\n"); 6160 6161 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6162 6163 count = 0; 6164 do { 6165 /* Write magic sequence to WriteSequence register 6166 * Loop until in diagnostic mode 6167 */ 6168 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6169 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6170 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6171 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6172 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6173 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6174 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6175 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6176 6177 /* wait 100 msec */ 6178 msleep(100); 6179 6180 if (count++ > 20) 6181 goto out; 6182 6183 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6184 drsprintk(ioc, 6185 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6186 count, host_diagnostic)); 6187 6188 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6189 6190 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6191 6192 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6193 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6194 &ioc->chip->HostDiagnostic); 6195 6196 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6197 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6198 6199 /* Approximately 300 second max wait */ 6200 for (count = 0; count < (300000000 / 6201 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6202 6203 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6204 6205 if (host_diagnostic == 0xFFFFFFFF) 6206 goto out; 6207 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6208 break; 6209 6210 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6211 } 6212 6213 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6214 6215 drsprintk(ioc, 6216 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6217 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6218 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6219 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6220 6221 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6222 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6223 &ioc->chip->HCBSize); 6224 } 6225 6226 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6227 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6228 &ioc->chip->HostDiagnostic); 6229 6230 drsprintk(ioc, 6231 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6232 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6233 6234 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6235 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6236 if (ioc_state) { 6237 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6238 __func__, ioc_state); 6239 goto out; 6240 } 6241 6242 ioc_info(ioc, "diag reset: SUCCESS\n"); 6243 return 0; 6244 6245 out: 6246 ioc_err(ioc, "diag reset: FAILED\n"); 6247 return -EFAULT; 6248 } 6249 6250 /** 6251 * _base_make_ioc_ready - put controller in READY state 6252 * @ioc: per adapter object 6253 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6254 * 6255 * Return: 0 for success, non-zero for failure. 6256 */ 6257 static int 6258 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6259 { 6260 u32 ioc_state; 6261 int rc; 6262 int count; 6263 6264 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6265 6266 if (ioc->pci_error_recovery) 6267 return 0; 6268 6269 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6270 dhsprintk(ioc, 6271 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6272 __func__, ioc_state)); 6273 6274 /* if in RESET state, it should move to READY state shortly */ 6275 count = 0; 6276 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6277 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6278 MPI2_IOC_STATE_READY) { 6279 if (count++ == 10) { 6280 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6281 __func__, ioc_state); 6282 return -EFAULT; 6283 } 6284 ssleep(1); 6285 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6286 } 6287 } 6288 6289 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6290 return 0; 6291 6292 if (ioc_state & MPI2_DOORBELL_USED) { 6293 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6294 goto issue_diag_reset; 6295 } 6296 6297 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6298 mpt3sas_base_fault_info(ioc, ioc_state & 6299 MPI2_DOORBELL_DATA_MASK); 6300 goto issue_diag_reset; 6301 } 6302 6303 if (type == FORCE_BIG_HAMMER) 6304 goto issue_diag_reset; 6305 6306 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6307 if (!(_base_send_ioc_reset(ioc, 6308 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6309 return 0; 6310 } 6311 6312 issue_diag_reset: 6313 rc = _base_diag_reset(ioc); 6314 return rc; 6315 } 6316 6317 /** 6318 * _base_make_ioc_operational - put controller in OPERATIONAL state 6319 * @ioc: per adapter object 6320 * 6321 * Return: 0 for success, non-zero for failure. 6322 */ 6323 static int 6324 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6325 { 6326 int r, i, index; 6327 unsigned long flags; 6328 u32 reply_address; 6329 u16 smid; 6330 struct _tr_list *delayed_tr, *delayed_tr_next; 6331 struct _sc_list *delayed_sc, *delayed_sc_next; 6332 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6333 u8 hide_flag; 6334 struct adapter_reply_queue *reply_q; 6335 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6336 6337 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6338 6339 /* clean the delayed target reset list */ 6340 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6341 &ioc->delayed_tr_list, list) { 6342 list_del(&delayed_tr->list); 6343 kfree(delayed_tr); 6344 } 6345 6346 6347 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6348 &ioc->delayed_tr_volume_list, list) { 6349 list_del(&delayed_tr->list); 6350 kfree(delayed_tr); 6351 } 6352 6353 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6354 &ioc->delayed_sc_list, list) { 6355 list_del(&delayed_sc->list); 6356 kfree(delayed_sc); 6357 } 6358 6359 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6360 &ioc->delayed_event_ack_list, list) { 6361 list_del(&delayed_event_ack->list); 6362 kfree(delayed_event_ack); 6363 } 6364 6365 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6366 6367 /* hi-priority queue */ 6368 INIT_LIST_HEAD(&ioc->hpr_free_list); 6369 smid = ioc->hi_priority_smid; 6370 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6371 ioc->hpr_lookup[i].cb_idx = 0xFF; 6372 ioc->hpr_lookup[i].smid = smid; 6373 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6374 &ioc->hpr_free_list); 6375 } 6376 6377 /* internal queue */ 6378 INIT_LIST_HEAD(&ioc->internal_free_list); 6379 smid = ioc->internal_smid; 6380 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6381 ioc->internal_lookup[i].cb_idx = 0xFF; 6382 ioc->internal_lookup[i].smid = smid; 6383 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6384 &ioc->internal_free_list); 6385 } 6386 6387 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6388 6389 /* initialize Reply Free Queue */ 6390 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6391 i < ioc->reply_free_queue_depth ; i++, reply_address += 6392 ioc->reply_sz) { 6393 ioc->reply_free[i] = cpu_to_le32(reply_address); 6394 if (ioc->is_mcpu_endpoint) 6395 _base_clone_reply_to_sys_mem(ioc, 6396 reply_address, i); 6397 } 6398 6399 /* initialize reply queues */ 6400 if (ioc->is_driver_loading) 6401 _base_assign_reply_queues(ioc); 6402 6403 /* initialize Reply Post Free Queue */ 6404 index = 0; 6405 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6406 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6407 /* 6408 * If RDPQ is enabled, switch to the next allocation. 6409 * Otherwise advance within the contiguous region. 6410 */ 6411 if (ioc->rdpq_array_enable) { 6412 reply_q->reply_post_free = 6413 ioc->reply_post[index++].reply_post_free; 6414 } else { 6415 reply_q->reply_post_free = reply_post_free_contig; 6416 reply_post_free_contig += ioc->reply_post_queue_depth; 6417 } 6418 6419 reply_q->reply_post_host_index = 0; 6420 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6421 reply_q->reply_post_free[i].Words = 6422 cpu_to_le64(ULLONG_MAX); 6423 if (!_base_is_controller_msix_enabled(ioc)) 6424 goto skip_init_reply_post_free_queue; 6425 } 6426 skip_init_reply_post_free_queue: 6427 6428 r = _base_send_ioc_init(ioc); 6429 if (r) 6430 return r; 6431 6432 /* initialize reply free host index */ 6433 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6434 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6435 6436 /* initialize reply post host index */ 6437 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6438 if (ioc->combined_reply_queue) 6439 writel((reply_q->msix_index & 7)<< 6440 MPI2_RPHI_MSIX_INDEX_SHIFT, 6441 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6442 else 6443 writel(reply_q->msix_index << 6444 MPI2_RPHI_MSIX_INDEX_SHIFT, 6445 &ioc->chip->ReplyPostHostIndex); 6446 6447 if (!_base_is_controller_msix_enabled(ioc)) 6448 goto skip_init_reply_post_host_index; 6449 } 6450 6451 skip_init_reply_post_host_index: 6452 6453 _base_unmask_interrupts(ioc); 6454 6455 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6456 r = _base_display_fwpkg_version(ioc); 6457 if (r) 6458 return r; 6459 } 6460 6461 _base_static_config_pages(ioc); 6462 r = _base_event_notification(ioc); 6463 if (r) 6464 return r; 6465 6466 if (ioc->is_driver_loading) { 6467 6468 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6469 == 0x80) { 6470 hide_flag = (u8) ( 6471 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6472 MFG_PAGE10_HIDE_SSDS_MASK); 6473 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6474 ioc->mfg_pg10_hide_flag = hide_flag; 6475 } 6476 6477 ioc->wait_for_discovery_to_complete = 6478 _base_determine_wait_on_discovery(ioc); 6479 6480 return r; /* scan_start and scan_finished support */ 6481 } 6482 6483 r = _base_send_port_enable(ioc); 6484 if (r) 6485 return r; 6486 6487 return r; 6488 } 6489 6490 /** 6491 * mpt3sas_base_free_resources - free resources controller resources 6492 * @ioc: per adapter object 6493 */ 6494 void 6495 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6496 { 6497 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6498 6499 /* synchronizing freeing resource with pci_access_mutex lock */ 6500 mutex_lock(&ioc->pci_access_mutex); 6501 if (ioc->chip_phys && ioc->chip) { 6502 _base_mask_interrupts(ioc); 6503 ioc->shost_recovery = 1; 6504 _base_make_ioc_ready(ioc, SOFT_RESET); 6505 ioc->shost_recovery = 0; 6506 } 6507 6508 mpt3sas_base_unmap_resources(ioc); 6509 mutex_unlock(&ioc->pci_access_mutex); 6510 return; 6511 } 6512 6513 /** 6514 * mpt3sas_base_attach - attach controller instance 6515 * @ioc: per adapter object 6516 * 6517 * Return: 0 for success, non-zero for failure. 6518 */ 6519 int 6520 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6521 { 6522 int r, i; 6523 int cpu_id, last_cpu_id = 0; 6524 6525 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6526 6527 /* setup cpu_msix_table */ 6528 ioc->cpu_count = num_online_cpus(); 6529 for_each_online_cpu(cpu_id) 6530 last_cpu_id = cpu_id; 6531 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6532 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6533 ioc->reply_queue_count = 1; 6534 if (!ioc->cpu_msix_table) { 6535 dfailprintk(ioc, 6536 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6537 r = -ENOMEM; 6538 goto out_free_resources; 6539 } 6540 6541 if (ioc->is_warpdrive) { 6542 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6543 sizeof(resource_size_t *), GFP_KERNEL); 6544 if (!ioc->reply_post_host_index) { 6545 dfailprintk(ioc, 6546 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6547 r = -ENOMEM; 6548 goto out_free_resources; 6549 } 6550 } 6551 6552 ioc->rdpq_array_enable_assigned = 0; 6553 ioc->dma_mask = 0; 6554 if (ioc->is_aero_ioc) 6555 ioc->base_readl = &_base_readl_aero; 6556 else 6557 ioc->base_readl = &_base_readl; 6558 r = mpt3sas_base_map_resources(ioc); 6559 if (r) 6560 goto out_free_resources; 6561 6562 pci_set_drvdata(ioc->pdev, ioc->shost); 6563 r = _base_get_ioc_facts(ioc); 6564 if (r) 6565 goto out_free_resources; 6566 6567 switch (ioc->hba_mpi_version_belonged) { 6568 case MPI2_VERSION: 6569 ioc->build_sg_scmd = &_base_build_sg_scmd; 6570 ioc->build_sg = &_base_build_sg; 6571 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 6572 break; 6573 case MPI25_VERSION: 6574 case MPI26_VERSION: 6575 /* 6576 * In SAS3.0, 6577 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 6578 * Target Status - all require the IEEE formated scatter gather 6579 * elements. 6580 */ 6581 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 6582 ioc->build_sg = &_base_build_sg_ieee; 6583 ioc->build_nvme_prp = &_base_build_nvme_prp; 6584 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 6585 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 6586 6587 break; 6588 } 6589 6590 if (ioc->is_mcpu_endpoint) 6591 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io; 6592 else 6593 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 6594 6595 /* 6596 * These function pointers for other requests that don't 6597 * the require IEEE scatter gather elements. 6598 * 6599 * For example Configuration Pages and SAS IOUNIT Control don't. 6600 */ 6601 ioc->build_sg_mpi = &_base_build_sg; 6602 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 6603 6604 r = _base_make_ioc_ready(ioc, SOFT_RESET); 6605 if (r) 6606 goto out_free_resources; 6607 6608 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 6609 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 6610 if (!ioc->pfacts) { 6611 r = -ENOMEM; 6612 goto out_free_resources; 6613 } 6614 6615 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 6616 r = _base_get_port_facts(ioc, i); 6617 if (r) 6618 goto out_free_resources; 6619 } 6620 6621 r = _base_allocate_memory_pools(ioc); 6622 if (r) 6623 goto out_free_resources; 6624 6625 if (irqpoll_weight > 0) 6626 ioc->thresh_hold = irqpoll_weight; 6627 else 6628 ioc->thresh_hold = ioc->hba_queue_depth/4; 6629 6630 _base_init_irqpolls(ioc); 6631 init_waitqueue_head(&ioc->reset_wq); 6632 6633 /* allocate memory pd handle bitmask list */ 6634 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 6635 if (ioc->facts.MaxDevHandle % 8) 6636 ioc->pd_handles_sz++; 6637 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 6638 GFP_KERNEL); 6639 if (!ioc->pd_handles) { 6640 r = -ENOMEM; 6641 goto out_free_resources; 6642 } 6643 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 6644 GFP_KERNEL); 6645 if (!ioc->blocking_handles) { 6646 r = -ENOMEM; 6647 goto out_free_resources; 6648 } 6649 6650 /* allocate memory for pending OS device add list */ 6651 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 6652 if (ioc->facts.MaxDevHandle % 8) 6653 ioc->pend_os_device_add_sz++; 6654 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 6655 GFP_KERNEL); 6656 if (!ioc->pend_os_device_add) 6657 goto out_free_resources; 6658 6659 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 6660 ioc->device_remove_in_progress = 6661 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 6662 if (!ioc->device_remove_in_progress) 6663 goto out_free_resources; 6664 6665 ioc->fwfault_debug = mpt3sas_fwfault_debug; 6666 6667 /* base internal command bits */ 6668 mutex_init(&ioc->base_cmds.mutex); 6669 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6670 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6671 6672 /* port_enable command bits */ 6673 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6674 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6675 6676 /* transport internal command bits */ 6677 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6678 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 6679 mutex_init(&ioc->transport_cmds.mutex); 6680 6681 /* scsih internal command bits */ 6682 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 6684 mutex_init(&ioc->scsih_cmds.mutex); 6685 6686 /* task management internal command bits */ 6687 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6688 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 6689 mutex_init(&ioc->tm_cmds.mutex); 6690 6691 /* config page internal command bits */ 6692 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6693 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 6694 mutex_init(&ioc->config_cmds.mutex); 6695 6696 /* ctl module internal command bits */ 6697 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6698 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 6699 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 6700 mutex_init(&ioc->ctl_cmds.mutex); 6701 6702 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 6703 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 6704 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 6705 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 6706 r = -ENOMEM; 6707 goto out_free_resources; 6708 } 6709 6710 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6711 ioc->event_masks[i] = -1; 6712 6713 /* here we enable the events we care about */ 6714 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 6715 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 6716 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 6717 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 6718 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 6719 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 6720 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 6721 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 6722 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 6723 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 6724 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 6725 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 6726 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 6727 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 6728 if (ioc->is_gen35_ioc) { 6729 _base_unmask_events(ioc, 6730 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 6731 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 6732 _base_unmask_events(ioc, 6733 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 6734 } 6735 } 6736 r = _base_make_ioc_operational(ioc); 6737 if (r) 6738 goto out_free_resources; 6739 6740 ioc->non_operational_loop = 0; 6741 ioc->got_task_abort_from_ioctl = 0; 6742 return 0; 6743 6744 out_free_resources: 6745 6746 ioc->remove_host = 1; 6747 6748 mpt3sas_base_free_resources(ioc); 6749 _base_release_memory_pools(ioc); 6750 pci_set_drvdata(ioc->pdev, NULL); 6751 kfree(ioc->cpu_msix_table); 6752 if (ioc->is_warpdrive) 6753 kfree(ioc->reply_post_host_index); 6754 kfree(ioc->pd_handles); 6755 kfree(ioc->blocking_handles); 6756 kfree(ioc->device_remove_in_progress); 6757 kfree(ioc->pend_os_device_add); 6758 kfree(ioc->tm_cmds.reply); 6759 kfree(ioc->transport_cmds.reply); 6760 kfree(ioc->scsih_cmds.reply); 6761 kfree(ioc->config_cmds.reply); 6762 kfree(ioc->base_cmds.reply); 6763 kfree(ioc->port_enable_cmds.reply); 6764 kfree(ioc->ctl_cmds.reply); 6765 kfree(ioc->ctl_cmds.sense); 6766 kfree(ioc->pfacts); 6767 ioc->ctl_cmds.reply = NULL; 6768 ioc->base_cmds.reply = NULL; 6769 ioc->tm_cmds.reply = NULL; 6770 ioc->scsih_cmds.reply = NULL; 6771 ioc->transport_cmds.reply = NULL; 6772 ioc->config_cmds.reply = NULL; 6773 ioc->pfacts = NULL; 6774 return r; 6775 } 6776 6777 6778 /** 6779 * mpt3sas_base_detach - remove controller instance 6780 * @ioc: per adapter object 6781 */ 6782 void 6783 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 6784 { 6785 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6786 6787 mpt3sas_base_stop_watchdog(ioc); 6788 mpt3sas_base_free_resources(ioc); 6789 _base_release_memory_pools(ioc); 6790 mpt3sas_free_enclosure_list(ioc); 6791 pci_set_drvdata(ioc->pdev, NULL); 6792 kfree(ioc->cpu_msix_table); 6793 if (ioc->is_warpdrive) 6794 kfree(ioc->reply_post_host_index); 6795 kfree(ioc->pd_handles); 6796 kfree(ioc->blocking_handles); 6797 kfree(ioc->device_remove_in_progress); 6798 kfree(ioc->pend_os_device_add); 6799 kfree(ioc->pfacts); 6800 kfree(ioc->ctl_cmds.reply); 6801 kfree(ioc->ctl_cmds.sense); 6802 kfree(ioc->base_cmds.reply); 6803 kfree(ioc->port_enable_cmds.reply); 6804 kfree(ioc->tm_cmds.reply); 6805 kfree(ioc->transport_cmds.reply); 6806 kfree(ioc->scsih_cmds.reply); 6807 kfree(ioc->config_cmds.reply); 6808 } 6809 6810 /** 6811 * _base_pre_reset_handler - pre reset handler 6812 * @ioc: per adapter object 6813 */ 6814 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6815 { 6816 mpt3sas_scsih_pre_reset_handler(ioc); 6817 mpt3sas_ctl_pre_reset_handler(ioc); 6818 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 6819 } 6820 6821 /** 6822 * _base_after_reset_handler - after reset handler 6823 * @ioc: per adapter object 6824 */ 6825 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6826 { 6827 mpt3sas_scsih_after_reset_handler(ioc); 6828 mpt3sas_ctl_after_reset_handler(ioc); 6829 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 6830 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 6831 ioc->transport_cmds.status |= MPT3_CMD_RESET; 6832 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 6833 complete(&ioc->transport_cmds.done); 6834 } 6835 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6836 ioc->base_cmds.status |= MPT3_CMD_RESET; 6837 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 6838 complete(&ioc->base_cmds.done); 6839 } 6840 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6841 ioc->port_enable_failed = 1; 6842 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 6843 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 6844 if (ioc->is_driver_loading) { 6845 ioc->start_scan_failed = 6846 MPI2_IOCSTATUS_INTERNAL_ERROR; 6847 ioc->start_scan = 0; 6848 ioc->port_enable_cmds.status = 6849 MPT3_CMD_NOT_USED; 6850 } else { 6851 complete(&ioc->port_enable_cmds.done); 6852 } 6853 } 6854 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 6855 ioc->config_cmds.status |= MPT3_CMD_RESET; 6856 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 6857 ioc->config_cmds.smid = USHRT_MAX; 6858 complete(&ioc->config_cmds.done); 6859 } 6860 } 6861 6862 /** 6863 * _base_reset_done_handler - reset done handler 6864 * @ioc: per adapter object 6865 */ 6866 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 6867 { 6868 mpt3sas_scsih_reset_done_handler(ioc); 6869 mpt3sas_ctl_reset_done_handler(ioc); 6870 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 6871 } 6872 6873 /** 6874 * mpt3sas_wait_for_commands_to_complete - reset controller 6875 * @ioc: Pointer to MPT_ADAPTER structure 6876 * 6877 * This function is waiting 10s for all pending commands to complete 6878 * prior to putting controller in reset. 6879 */ 6880 void 6881 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 6882 { 6883 u32 ioc_state; 6884 6885 ioc->pending_io_count = 0; 6886 6887 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6888 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 6889 return; 6890 6891 /* pending command count */ 6892 ioc->pending_io_count = scsi_host_busy(ioc->shost); 6893 6894 if (!ioc->pending_io_count) 6895 return; 6896 6897 /* wait for pending commands to complete */ 6898 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 6899 } 6900 6901 /** 6902 * mpt3sas_base_hard_reset_handler - reset controller 6903 * @ioc: Pointer to MPT_ADAPTER structure 6904 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6905 * 6906 * Return: 0 for success, non-zero for failure. 6907 */ 6908 int 6909 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 6910 enum reset_type type) 6911 { 6912 int r; 6913 unsigned long flags; 6914 u32 ioc_state; 6915 u8 is_fault = 0, is_trigger = 0; 6916 6917 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 6918 6919 if (ioc->pci_error_recovery) { 6920 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 6921 r = 0; 6922 goto out_unlocked; 6923 } 6924 6925 if (mpt3sas_fwfault_debug) 6926 mpt3sas_halt_firmware(ioc); 6927 6928 /* wait for an active reset in progress to complete */ 6929 mutex_lock(&ioc->reset_in_progress_mutex); 6930 6931 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6932 ioc->shost_recovery = 1; 6933 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6934 6935 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6936 MPT3_DIAG_BUFFER_IS_REGISTERED) && 6937 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6938 MPT3_DIAG_BUFFER_IS_RELEASED))) { 6939 is_trigger = 1; 6940 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6941 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 6942 is_fault = 1; 6943 } 6944 _base_pre_reset_handler(ioc); 6945 mpt3sas_wait_for_commands_to_complete(ioc); 6946 _base_mask_interrupts(ioc); 6947 r = _base_make_ioc_ready(ioc, type); 6948 if (r) 6949 goto out; 6950 _base_after_reset_handler(ioc); 6951 6952 /* If this hard reset is called while port enable is active, then 6953 * there is no reason to call make_ioc_operational 6954 */ 6955 if (ioc->is_driver_loading && ioc->port_enable_failed) { 6956 ioc->remove_host = 1; 6957 r = -EFAULT; 6958 goto out; 6959 } 6960 r = _base_get_ioc_facts(ioc); 6961 if (r) 6962 goto out; 6963 6964 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 6965 panic("%s: Issue occurred with flashing controller firmware." 6966 "Please reboot the system and ensure that the correct" 6967 " firmware version is running\n", ioc->name); 6968 6969 r = _base_make_ioc_operational(ioc); 6970 if (!r) 6971 _base_reset_done_handler(ioc); 6972 6973 out: 6974 dtmprintk(ioc, 6975 ioc_info(ioc, "%s: %s\n", 6976 __func__, r == 0 ? "SUCCESS" : "FAILED")); 6977 6978 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6979 ioc->shost_recovery = 0; 6980 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6981 ioc->ioc_reset_count++; 6982 mutex_unlock(&ioc->reset_in_progress_mutex); 6983 6984 out_unlocked: 6985 if ((r == 0) && is_trigger) { 6986 if (is_fault) 6987 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 6988 else 6989 mpt3sas_trigger_master(ioc, 6990 MASTER_TRIGGER_ADAPTER_RESET); 6991 } 6992 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 6993 return r; 6994 } 6995