1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 133 134 /** 135 * mpt3sas_base_check_cmd_timeout - Function 136 * to check timeout and command termination due 137 * to Host reset. 138 * 139 * @ioc: per adapter object. 140 * @status: Status of issued command. 141 * @mpi_request:mf request pointer. 142 * @sz: size of buffer. 143 * 144 * @Returns - 1/0 Reset to be done or Not 145 */ 146 u8 147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 148 u8 status, void *mpi_request, int sz) 149 { 150 u8 issue_reset = 0; 151 152 if (!(status & MPT3_CMD_RESET)) 153 issue_reset = 1; 154 155 ioc_err(ioc, "Command %s\n", 156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 157 _debug_dump_mf(mpi_request, sz); 158 159 return issue_reset; 160 } 161 162 /** 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 164 * @val: ? 165 * @kp: ? 166 * 167 * Return: ? 168 */ 169 static int 170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 171 { 172 int ret = param_set_int(val, kp); 173 struct MPT3SAS_ADAPTER *ioc; 174 175 if (ret) 176 return ret; 177 178 /* global ioc spinlock to protect controller list on list operations */ 179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 180 spin_lock(&gioc_lock); 181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 182 ioc->fwfault_debug = mpt3sas_fwfault_debug; 183 spin_unlock(&gioc_lock); 184 return 0; 185 } 186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 187 param_get_int, &mpt3sas_fwfault_debug, 0644); 188 189 /** 190 * _base_readl_aero - retry readl for max three times. 191 * @addr: MPT Fusion system interface register address 192 * 193 * Retry the readl() for max three times if it gets zero value 194 * while reading the system interface register. 195 */ 196 static inline u32 197 _base_readl_aero(const volatile void __iomem *addr) 198 { 199 u32 i = 0, ret_val; 200 201 do { 202 ret_val = readl(addr); 203 i++; 204 } while (ret_val == 0 && i < 3); 205 206 return ret_val; 207 } 208 209 static inline u32 210 _base_readl(const volatile void __iomem *addr) 211 { 212 return readl(addr); 213 } 214 215 /** 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 217 * in BAR0 space. 218 * 219 * @ioc: per adapter object 220 * @reply: reply message frame(lower 32bit addr) 221 * @index: System request message index. 222 */ 223 static void 224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 225 u32 index) 226 { 227 /* 228 * 256 is offset within sys register. 229 * 256 offset MPI frame starts. Max MPI frame supported is 32. 230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 231 */ 232 u16 cmd_credit = ioc->facts.RequestCredit + 1; 233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 234 MPI_FRAME_START_OFFSET + 235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 236 237 writel(reply, reply_free_iomem); 238 } 239 240 /** 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 242 * to system/BAR0 region. 243 * 244 * @dst_iomem: Pointer to the destination location in BAR0 space. 245 * @src: Pointer to the Source data. 246 * @size: Size of data to be copied. 247 */ 248 static void 249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 250 { 251 int i; 252 u32 *src_virt_mem = (u32 *)src; 253 254 for (i = 0; i < size/4; i++) 255 writel((u32)src_virt_mem[i], 256 (void __iomem *)dst_iomem + (i * 4)); 257 } 258 259 /** 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 261 * 262 * @dst_iomem: Pointer to the destination location in BAR0 space. 263 * @src: Pointer to the Source data. 264 * @size: Size of data to be copied. 265 */ 266 static void 267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 268 { 269 int i; 270 u32 *src_virt_mem = (u32 *)(src); 271 272 for (i = 0; i < size/4; i++) 273 writel((u32)src_virt_mem[i], 274 (void __iomem *)dst_iomem + (i * 4)); 275 } 276 277 /** 278 * _base_get_chain - Calculates and Returns virtual chain address 279 * for the provided smid in BAR0 space. 280 * 281 * @ioc: per adapter object 282 * @smid: system request message index 283 * @sge_chain_count: Scatter gather chain count. 284 * 285 * Return: the chain address. 286 */ 287 static inline void __iomem* 288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 289 u8 sge_chain_count) 290 { 291 void __iomem *base_chain, *chain_virt; 292 u16 cmd_credit = ioc->facts.RequestCredit + 1; 293 294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 295 (cmd_credit * ioc->request_sz) + 296 REPLY_FREE_POOL_SIZE; 297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 298 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 299 return chain_virt; 300 } 301 302 /** 303 * _base_get_chain_phys - Calculates and Returns physical address 304 * in BAR0 for scatter gather chains, for 305 * the provided smid. 306 * 307 * @ioc: per adapter object 308 * @smid: system request message index 309 * @sge_chain_count: Scatter gather chain count. 310 * 311 * Return: Physical chain address. 312 */ 313 static inline phys_addr_t 314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 315 u8 sge_chain_count) 316 { 317 phys_addr_t base_chain_phys, chain_phys; 318 u16 cmd_credit = ioc->facts.RequestCredit + 1; 319 320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 321 (cmd_credit * ioc->request_sz) + 322 REPLY_FREE_POOL_SIZE; 323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 324 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 325 return chain_phys; 326 } 327 328 /** 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 330 * buffer address for the provided smid. 331 * (Each smid can have 64K starts from 17024) 332 * 333 * @ioc: per adapter object 334 * @smid: system request message index 335 * 336 * Return: Pointer to buffer location in BAR0. 337 */ 338 339 static void __iomem * 340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 341 { 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 // Added extra 1 to reach end of chain. 344 void __iomem *chain_end = _base_get_chain(ioc, 345 cmd_credit + 1, 346 ioc->facts.MaxChainDepth); 347 return chain_end + (smid * 64 * 1024); 348 } 349 350 /** 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 352 * Host buffer Physical address for the provided smid. 353 * (Each smid can have 64K starts from 17024) 354 * 355 * @ioc: per adapter object 356 * @smid: system request message index 357 * 358 * Return: Pointer to buffer location in BAR0. 359 */ 360 static phys_addr_t 361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 362 { 363 u16 cmd_credit = ioc->facts.RequestCredit + 1; 364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 365 cmd_credit + 1, 366 ioc->facts.MaxChainDepth); 367 return chain_end_phys + (smid * 64 * 1024); 368 } 369 370 /** 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 372 * lookup list and Provides chain_buffer 373 * address for the matching dma address. 374 * (Each smid can have 64K starts from 17024) 375 * 376 * @ioc: per adapter object 377 * @chain_buffer_dma: Chain buffer dma address. 378 * 379 * Return: Pointer to chain buffer. Or Null on Failure. 380 */ 381 static void * 382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 383 dma_addr_t chain_buffer_dma) 384 { 385 u16 index, j; 386 struct chain_tracker *ct; 387 388 for (index = 0; index < ioc->scsiio_depth; index++) { 389 for (j = 0; j < ioc->chains_needed_per_io; j++) { 390 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 391 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 392 return ct->chain_buffer; 393 } 394 } 395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 396 return NULL; 397 } 398 399 /** 400 * _clone_sg_entries - MPI EP's scsiio and config requests 401 * are handled here. Base function for 402 * double buffering, before submitting 403 * the requests. 404 * 405 * @ioc: per adapter object. 406 * @mpi_request: mf request pointer. 407 * @smid: system request message index. 408 */ 409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 410 void *mpi_request, u16 smid) 411 { 412 Mpi2SGESimple32_t *sgel, *sgel_next; 413 u32 sgl_flags, sge_chain_count = 0; 414 bool is_write = false; 415 u16 i = 0; 416 void __iomem *buffer_iomem; 417 phys_addr_t buffer_iomem_phys; 418 void __iomem *buff_ptr; 419 phys_addr_t buff_ptr_phys; 420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 422 phys_addr_t dst_addr_phys; 423 MPI2RequestHeader_t *request_hdr; 424 struct scsi_cmnd *scmd; 425 struct scatterlist *sg_scmd = NULL; 426 int is_scsiio_req = 0; 427 428 request_hdr = (MPI2RequestHeader_t *) mpi_request; 429 430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 431 Mpi25SCSIIORequest_t *scsiio_request = 432 (Mpi25SCSIIORequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 434 is_scsiio_req = 1; 435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 436 Mpi2ConfigRequest_t *config_req = 437 (Mpi2ConfigRequest_t *)mpi_request; 438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 439 } else 440 return; 441 442 /* From smid we can get scsi_cmd, once we have sg_scmd, 443 * we just need to get sg_virt and sg_next to get virual 444 * address associated with sgel->Address. 445 */ 446 447 if (is_scsiio_req) { 448 /* Get scsi_cmd using smid */ 449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 450 if (scmd == NULL) { 451 ioc_err(ioc, "scmd is NULL\n"); 452 return; 453 } 454 455 /* Get sg_scmd from scmd provided */ 456 sg_scmd = scsi_sglist(scmd); 457 } 458 459 /* 460 * 0 - 255 System register 461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 462 * 4352 - 4864 Reply_free pool (512 byte is reserved 463 * considering maxCredit 32. Reply need extra 464 * room, for mCPU case kept four times of 465 * maxCredit). 466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 467 * 128 byte size = 12288) 468 * 17152 - x Host buffer mapped with smid. 469 * (Each smid can have 64K Max IO.) 470 * BAR0+Last 1K MSIX Addr and Data 471 * Total size in use 2113664 bytes of 4MB BAR0 472 */ 473 474 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 476 477 buff_ptr = buffer_iomem; 478 buff_ptr_phys = buffer_iomem_phys; 479 WARN_ON(buff_ptr_phys > U32_MAX); 480 481 if (le32_to_cpu(sgel->FlagsLength) & 482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 483 is_write = true; 484 485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 486 487 sgl_flags = 488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 489 490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 492 /* 493 * Helper function which on passing 494 * chain_buffer_dma returns chain_buffer. Get 495 * the virtual address for sgel->Address 496 */ 497 sgel_next = 498 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 499 le32_to_cpu(sgel->Address)); 500 if (sgel_next == NULL) 501 return; 502 /* 503 * This is coping 128 byte chain 504 * frame (not a host buffer) 505 */ 506 dst_chain_addr[sge_chain_count] = 507 _base_get_chain(ioc, 508 smid, sge_chain_count); 509 src_chain_addr[sge_chain_count] = 510 (void *) sgel_next; 511 dst_addr_phys = _base_get_chain_phys(ioc, 512 smid, sge_chain_count); 513 WARN_ON(dst_addr_phys > U32_MAX); 514 sgel->Address = 515 cpu_to_le32(lower_32_bits(dst_addr_phys)); 516 sgel = sgel_next; 517 sge_chain_count++; 518 break; 519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 520 if (is_write) { 521 if (is_scsiio_req) { 522 _base_clone_to_sys_mem(buff_ptr, 523 sg_virt(sg_scmd), 524 (le32_to_cpu(sgel->FlagsLength) & 525 0x00ffffff)); 526 /* 527 * FIXME: this relies on a a zero 528 * PCI mem_offset. 529 */ 530 sgel->Address = 531 cpu_to_le32((u32)buff_ptr_phys); 532 } else { 533 _base_clone_to_sys_mem(buff_ptr, 534 ioc->config_vaddr, 535 (le32_to_cpu(sgel->FlagsLength) & 536 0x00ffffff)); 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } 540 } 541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 542 0x00ffffff); 543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 if ((le32_to_cpu(sgel->FlagsLength) & 546 (MPI2_SGE_FLAGS_END_OF_BUFFER 547 << MPI2_SGE_FLAGS_SHIFT))) 548 goto eob_clone_chain; 549 else { 550 /* 551 * Every single element in MPT will have 552 * associated sg_next. Better to sanity that 553 * sg_next is not NULL, but it will be a bug 554 * if it is null. 555 */ 556 if (is_scsiio_req) { 557 sg_scmd = sg_next(sg_scmd); 558 if (sg_scmd) 559 sgel++; 560 else 561 goto eob_clone_chain; 562 } 563 } 564 break; 565 } 566 } 567 568 eob_clone_chain: 569 for (i = 0; i < sge_chain_count; i++) { 570 if (is_scsiio_req) 571 _base_clone_to_sys_mem(dst_chain_addr[i], 572 src_chain_addr[i], ioc->request_sz); 573 } 574 } 575 576 /** 577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 578 * @arg: input argument, used to derive ioc 579 * 580 * Return: 581 * 0 if controller is removed from pci subsystem. 582 * -1 for other case. 583 */ 584 static int mpt3sas_remove_dead_ioc_func(void *arg) 585 { 586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 587 struct pci_dev *pdev; 588 589 if (!ioc) 590 return -1; 591 592 pdev = ioc->pdev; 593 if (!pdev) 594 return -1; 595 pci_stop_and_remove_bus_device_locked(pdev); 596 return 0; 597 } 598 599 /** 600 * _base_fault_reset_work - workq handling ioc fault conditions 601 * @work: input argument, used to derive ioc 602 * 603 * Context: sleep. 604 */ 605 static void 606 _base_fault_reset_work(struct work_struct *work) 607 { 608 struct MPT3SAS_ADAPTER *ioc = 609 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 610 unsigned long flags; 611 u32 doorbell; 612 int rc; 613 struct task_struct *p; 614 615 616 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 617 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 618 ioc->pci_error_recovery) 619 goto rearm_timer; 620 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 621 622 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 623 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 624 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 625 626 /* It may be possible that EEH recovery can resolve some of 627 * pci bus failure issues rather removing the dead ioc function 628 * by considering controller is in a non-operational state. So 629 * here priority is given to the EEH recovery. If it doesn't 630 * not resolve this issue, mpt3sas driver will consider this 631 * controller to non-operational state and remove the dead ioc 632 * function. 633 */ 634 if (ioc->non_operational_loop++ < 5) { 635 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 636 flags); 637 goto rearm_timer; 638 } 639 640 /* 641 * Call _scsih_flush_pending_cmds callback so that we flush all 642 * pending commands back to OS. This call is required to aovid 643 * deadlock at block layer. Dead IOC will fail to do diag reset, 644 * and this call is safe since dead ioc will never return any 645 * command back from HW. 646 */ 647 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 648 /* 649 * Set remove_host flag early since kernel thread will 650 * take some time to execute. 651 */ 652 ioc->remove_host = 1; 653 /*Remove the Dead Host */ 654 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 655 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 656 if (IS_ERR(p)) 657 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 658 __func__); 659 else 660 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 661 __func__); 662 return; /* don't rearm timer */ 663 } 664 665 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 666 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 667 ioc->manu_pg11.CoreDumpTOSec : 668 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 669 670 timeout /= (FAULT_POLLING_INTERVAL/1000); 671 672 if (ioc->ioc_coredump_loop == 0) { 673 mpt3sas_print_coredump_info(ioc, 674 doorbell & MPI2_DOORBELL_DATA_MASK); 675 /* do not accept any IOs and disable the interrupts */ 676 spin_lock_irqsave( 677 &ioc->ioc_reset_in_progress_lock, flags); 678 ioc->shost_recovery = 1; 679 spin_unlock_irqrestore( 680 &ioc->ioc_reset_in_progress_lock, flags); 681 mpt3sas_base_mask_interrupts(ioc); 682 _base_clear_outstanding_commands(ioc); 683 } 684 685 ioc_info(ioc, "%s: CoreDump loop %d.", 686 __func__, ioc->ioc_coredump_loop); 687 688 /* Wait until CoreDump completes or times out */ 689 if (ioc->ioc_coredump_loop++ < timeout) { 690 spin_lock_irqsave( 691 &ioc->ioc_reset_in_progress_lock, flags); 692 goto rearm_timer; 693 } 694 } 695 696 if (ioc->ioc_coredump_loop) { 697 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 698 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 699 __func__, ioc->ioc_coredump_loop); 700 else 701 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 702 __func__, ioc->ioc_coredump_loop); 703 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 704 } 705 ioc->non_operational_loop = 0; 706 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 707 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 708 ioc_warn(ioc, "%s: hard reset: %s\n", 709 __func__, rc == 0 ? "success" : "failed"); 710 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 711 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 712 mpt3sas_print_fault_code(ioc, doorbell & 713 MPI2_DOORBELL_DATA_MASK); 714 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 715 MPI2_IOC_STATE_COREDUMP) 716 mpt3sas_print_coredump_info(ioc, doorbell & 717 MPI2_DOORBELL_DATA_MASK); 718 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 719 MPI2_IOC_STATE_OPERATIONAL) 720 return; /* don't rearm timer */ 721 } 722 ioc->ioc_coredump_loop = 0; 723 724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 725 rearm_timer: 726 if (ioc->fault_reset_work_q) 727 queue_delayed_work(ioc->fault_reset_work_q, 728 &ioc->fault_reset_work, 729 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 730 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 731 } 732 733 /** 734 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 735 * @ioc: per adapter object 736 * 737 * Context: sleep. 738 */ 739 void 740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 741 { 742 unsigned long flags; 743 744 if (ioc->fault_reset_work_q) 745 return; 746 747 /* initialize fault polling */ 748 749 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 750 snprintf(ioc->fault_reset_work_q_name, 751 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 752 ioc->driver_name, ioc->id); 753 ioc->fault_reset_work_q = 754 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 755 if (!ioc->fault_reset_work_q) { 756 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 757 return; 758 } 759 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 760 if (ioc->fault_reset_work_q) 761 queue_delayed_work(ioc->fault_reset_work_q, 762 &ioc->fault_reset_work, 763 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 764 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 765 } 766 767 /** 768 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 769 * @ioc: per adapter object 770 * 771 * Context: sleep. 772 */ 773 void 774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 775 { 776 unsigned long flags; 777 struct workqueue_struct *wq; 778 779 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 780 wq = ioc->fault_reset_work_q; 781 ioc->fault_reset_work_q = NULL; 782 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 783 if (wq) { 784 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 785 flush_workqueue(wq); 786 destroy_workqueue(wq); 787 } 788 } 789 790 /** 791 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 792 * @ioc: per adapter object 793 * @fault_code: fault code 794 */ 795 void 796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 797 { 798 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 799 } 800 801 /** 802 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 803 * @ioc: per adapter object 804 * @fault_code: fault code 805 * 806 * Return nothing. 807 */ 808 void 809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 810 { 811 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 812 } 813 814 /** 815 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 816 * completes or times out 817 * @ioc: per adapter object 818 * @caller: caller function name 819 * 820 * Returns 0 for success, non-zero for failure. 821 */ 822 int 823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 824 const char *caller) 825 { 826 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 827 ioc->manu_pg11.CoreDumpTOSec : 828 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 829 830 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 831 timeout); 832 833 if (ioc_state) 834 ioc_err(ioc, 835 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 836 caller, ioc_state); 837 else 838 ioc_info(ioc, 839 "%s: CoreDump completed. (ioc_state=0x%x)\n", 840 caller, ioc_state); 841 842 return ioc_state; 843 } 844 845 /** 846 * mpt3sas_halt_firmware - halt's mpt controller firmware 847 * @ioc: per adapter object 848 * 849 * For debugging timeout related issues. Writing 0xCOFFEE00 850 * to the doorbell register will halt controller firmware. With 851 * the purpose to stop both driver and firmware, the enduser can 852 * obtain a ring buffer from controller UART. 853 */ 854 void 855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 856 { 857 u32 doorbell; 858 859 if (!ioc->fwfault_debug) 860 return; 861 862 dump_stack(); 863 864 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 865 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 866 mpt3sas_print_fault_code(ioc, doorbell & 867 MPI2_DOORBELL_DATA_MASK); 868 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 869 MPI2_IOC_STATE_COREDUMP) { 870 mpt3sas_print_coredump_info(ioc, doorbell & 871 MPI2_DOORBELL_DATA_MASK); 872 } else { 873 writel(0xC0FFEE00, &ioc->chip->Doorbell); 874 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 875 } 876 877 if (ioc->fwfault_debug == 2) 878 for (;;) 879 ; 880 else 881 panic("panic in %s\n", __func__); 882 } 883 884 /** 885 * _base_sas_ioc_info - verbose translation of the ioc status 886 * @ioc: per adapter object 887 * @mpi_reply: reply mf payload returned from firmware 888 * @request_hdr: request mf 889 */ 890 static void 891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 892 MPI2RequestHeader_t *request_hdr) 893 { 894 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 895 MPI2_IOCSTATUS_MASK; 896 char *desc = NULL; 897 u16 frame_sz; 898 char *func_str = NULL; 899 900 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 901 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 902 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 903 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 904 return; 905 906 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 907 return; 908 909 switch (ioc_status) { 910 911 /**************************************************************************** 912 * Common IOCStatus values for all replies 913 ****************************************************************************/ 914 915 case MPI2_IOCSTATUS_INVALID_FUNCTION: 916 desc = "invalid function"; 917 break; 918 case MPI2_IOCSTATUS_BUSY: 919 desc = "busy"; 920 break; 921 case MPI2_IOCSTATUS_INVALID_SGL: 922 desc = "invalid sgl"; 923 break; 924 case MPI2_IOCSTATUS_INTERNAL_ERROR: 925 desc = "internal error"; 926 break; 927 case MPI2_IOCSTATUS_INVALID_VPID: 928 desc = "invalid vpid"; 929 break; 930 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 931 desc = "insufficient resources"; 932 break; 933 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 934 desc = "insufficient power"; 935 break; 936 case MPI2_IOCSTATUS_INVALID_FIELD: 937 desc = "invalid field"; 938 break; 939 case MPI2_IOCSTATUS_INVALID_STATE: 940 desc = "invalid state"; 941 break; 942 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 943 desc = "op state not supported"; 944 break; 945 946 /**************************************************************************** 947 * Config IOCStatus values 948 ****************************************************************************/ 949 950 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 951 desc = "config invalid action"; 952 break; 953 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 954 desc = "config invalid type"; 955 break; 956 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 957 desc = "config invalid page"; 958 break; 959 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 960 desc = "config invalid data"; 961 break; 962 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 963 desc = "config no defaults"; 964 break; 965 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 966 desc = "config cant commit"; 967 break; 968 969 /**************************************************************************** 970 * SCSI IO Reply 971 ****************************************************************************/ 972 973 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 974 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 975 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 976 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 977 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 978 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 979 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 980 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 981 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 982 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 983 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 984 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 985 break; 986 987 /**************************************************************************** 988 * For use by SCSI Initiator and SCSI Target end-to-end data protection 989 ****************************************************************************/ 990 991 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 992 desc = "eedp guard error"; 993 break; 994 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 995 desc = "eedp ref tag error"; 996 break; 997 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 998 desc = "eedp app tag error"; 999 break; 1000 1001 /**************************************************************************** 1002 * SCSI Target values 1003 ****************************************************************************/ 1004 1005 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1006 desc = "target invalid io index"; 1007 break; 1008 case MPI2_IOCSTATUS_TARGET_ABORTED: 1009 desc = "target aborted"; 1010 break; 1011 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1012 desc = "target no conn retryable"; 1013 break; 1014 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1015 desc = "target no connection"; 1016 break; 1017 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1018 desc = "target xfer count mismatch"; 1019 break; 1020 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1021 desc = "target data offset error"; 1022 break; 1023 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1024 desc = "target too much write data"; 1025 break; 1026 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1027 desc = "target iu too short"; 1028 break; 1029 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1030 desc = "target ack nak timeout"; 1031 break; 1032 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1033 desc = "target nak received"; 1034 break; 1035 1036 /**************************************************************************** 1037 * Serial Attached SCSI values 1038 ****************************************************************************/ 1039 1040 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1041 desc = "smp request failed"; 1042 break; 1043 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1044 desc = "smp data overrun"; 1045 break; 1046 1047 /**************************************************************************** 1048 * Diagnostic Buffer Post / Diagnostic Release values 1049 ****************************************************************************/ 1050 1051 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1052 desc = "diagnostic released"; 1053 break; 1054 default: 1055 break; 1056 } 1057 1058 if (!desc) 1059 return; 1060 1061 switch (request_hdr->Function) { 1062 case MPI2_FUNCTION_CONFIG: 1063 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1064 func_str = "config_page"; 1065 break; 1066 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1067 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1068 func_str = "task_mgmt"; 1069 break; 1070 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1071 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1072 func_str = "sas_iounit_ctl"; 1073 break; 1074 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1075 frame_sz = sizeof(Mpi2SepRequest_t); 1076 func_str = "enclosure"; 1077 break; 1078 case MPI2_FUNCTION_IOC_INIT: 1079 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1080 func_str = "ioc_init"; 1081 break; 1082 case MPI2_FUNCTION_PORT_ENABLE: 1083 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1084 func_str = "port_enable"; 1085 break; 1086 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1087 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1088 func_str = "smp_passthru"; 1089 break; 1090 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1091 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1092 ioc->sge_size; 1093 func_str = "nvme_encapsulated"; 1094 break; 1095 default: 1096 frame_sz = 32; 1097 func_str = "unknown"; 1098 break; 1099 } 1100 1101 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1102 desc, ioc_status, request_hdr, func_str); 1103 1104 _debug_dump_mf(request_hdr, frame_sz/4); 1105 } 1106 1107 /** 1108 * _base_display_event_data - verbose translation of firmware asyn events 1109 * @ioc: per adapter object 1110 * @mpi_reply: reply mf payload returned from firmware 1111 */ 1112 static void 1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1114 Mpi2EventNotificationReply_t *mpi_reply) 1115 { 1116 char *desc = NULL; 1117 u16 event; 1118 1119 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1120 return; 1121 1122 event = le16_to_cpu(mpi_reply->Event); 1123 1124 switch (event) { 1125 case MPI2_EVENT_LOG_DATA: 1126 desc = "Log Data"; 1127 break; 1128 case MPI2_EVENT_STATE_CHANGE: 1129 desc = "Status Change"; 1130 break; 1131 case MPI2_EVENT_HARD_RESET_RECEIVED: 1132 desc = "Hard Reset Received"; 1133 break; 1134 case MPI2_EVENT_EVENT_CHANGE: 1135 desc = "Event Change"; 1136 break; 1137 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1138 desc = "Device Status Change"; 1139 break; 1140 case MPI2_EVENT_IR_OPERATION_STATUS: 1141 if (!ioc->hide_ir_msg) 1142 desc = "IR Operation Status"; 1143 break; 1144 case MPI2_EVENT_SAS_DISCOVERY: 1145 { 1146 Mpi2EventDataSasDiscovery_t *event_data = 1147 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1148 ioc_info(ioc, "Discovery: (%s)", 1149 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1150 "start" : "stop"); 1151 if (event_data->DiscoveryStatus) 1152 pr_cont(" discovery_status(0x%08x)", 1153 le32_to_cpu(event_data->DiscoveryStatus)); 1154 pr_cont("\n"); 1155 return; 1156 } 1157 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1158 desc = "SAS Broadcast Primitive"; 1159 break; 1160 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1161 desc = "SAS Init Device Status Change"; 1162 break; 1163 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1164 desc = "SAS Init Table Overflow"; 1165 break; 1166 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1167 desc = "SAS Topology Change List"; 1168 break; 1169 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1170 desc = "SAS Enclosure Device Status Change"; 1171 break; 1172 case MPI2_EVENT_IR_VOLUME: 1173 if (!ioc->hide_ir_msg) 1174 desc = "IR Volume"; 1175 break; 1176 case MPI2_EVENT_IR_PHYSICAL_DISK: 1177 if (!ioc->hide_ir_msg) 1178 desc = "IR Physical Disk"; 1179 break; 1180 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1181 if (!ioc->hide_ir_msg) 1182 desc = "IR Configuration Change List"; 1183 break; 1184 case MPI2_EVENT_LOG_ENTRY_ADDED: 1185 if (!ioc->hide_ir_msg) 1186 desc = "Log Entry Added"; 1187 break; 1188 case MPI2_EVENT_TEMP_THRESHOLD: 1189 desc = "Temperature Threshold"; 1190 break; 1191 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1192 desc = "Cable Event"; 1193 break; 1194 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1195 desc = "SAS Device Discovery Error"; 1196 break; 1197 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1198 desc = "PCIE Device Status Change"; 1199 break; 1200 case MPI2_EVENT_PCIE_ENUMERATION: 1201 { 1202 Mpi26EventDataPCIeEnumeration_t *event_data = 1203 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1204 ioc_info(ioc, "PCIE Enumeration: (%s)", 1205 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1206 "start" : "stop"); 1207 if (event_data->EnumerationStatus) 1208 pr_cont("enumeration_status(0x%08x)", 1209 le32_to_cpu(event_data->EnumerationStatus)); 1210 pr_cont("\n"); 1211 return; 1212 } 1213 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1214 desc = "PCIE Topology Change List"; 1215 break; 1216 } 1217 1218 if (!desc) 1219 return; 1220 1221 ioc_info(ioc, "%s\n", desc); 1222 } 1223 1224 /** 1225 * _base_sas_log_info - verbose translation of firmware log info 1226 * @ioc: per adapter object 1227 * @log_info: log info 1228 */ 1229 static void 1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1231 { 1232 union loginfo_type { 1233 u32 loginfo; 1234 struct { 1235 u32 subcode:16; 1236 u32 code:8; 1237 u32 originator:4; 1238 u32 bus_type:4; 1239 } dw; 1240 }; 1241 union loginfo_type sas_loginfo; 1242 char *originator_str = NULL; 1243 1244 sas_loginfo.loginfo = log_info; 1245 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1246 return; 1247 1248 /* each nexus loss loginfo */ 1249 if (log_info == 0x31170000) 1250 return; 1251 1252 /* eat the loginfos associated with task aborts */ 1253 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1254 0x31140000 || log_info == 0x31130000)) 1255 return; 1256 1257 switch (sas_loginfo.dw.originator) { 1258 case 0: 1259 originator_str = "IOP"; 1260 break; 1261 case 1: 1262 originator_str = "PL"; 1263 break; 1264 case 2: 1265 if (!ioc->hide_ir_msg) 1266 originator_str = "IR"; 1267 else 1268 originator_str = "WarpDrive"; 1269 break; 1270 } 1271 1272 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1273 log_info, 1274 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1275 } 1276 1277 /** 1278 * _base_display_reply_info - 1279 * @ioc: per adapter object 1280 * @smid: system request message index 1281 * @msix_index: MSIX table index supplied by the OS 1282 * @reply: reply message frame(lower 32bit addr) 1283 */ 1284 static void 1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1286 u32 reply) 1287 { 1288 MPI2DefaultReply_t *mpi_reply; 1289 u16 ioc_status; 1290 u32 loginfo = 0; 1291 1292 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1293 if (unlikely(!mpi_reply)) { 1294 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1295 __FILE__, __LINE__, __func__); 1296 return; 1297 } 1298 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1299 1300 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1301 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1302 _base_sas_ioc_info(ioc , mpi_reply, 1303 mpt3sas_base_get_msg_frame(ioc, smid)); 1304 } 1305 1306 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1307 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1308 _base_sas_log_info(ioc, loginfo); 1309 } 1310 1311 if (ioc_status || loginfo) { 1312 ioc_status &= MPI2_IOCSTATUS_MASK; 1313 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1314 } 1315 } 1316 1317 /** 1318 * mpt3sas_base_done - base internal command completion routine 1319 * @ioc: per adapter object 1320 * @smid: system request message index 1321 * @msix_index: MSIX table index supplied by the OS 1322 * @reply: reply message frame(lower 32bit addr) 1323 * 1324 * Return: 1325 * 1 meaning mf should be freed from _base_interrupt 1326 * 0 means the mf is freed from this function. 1327 */ 1328 u8 1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1330 u32 reply) 1331 { 1332 MPI2DefaultReply_t *mpi_reply; 1333 1334 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1335 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1336 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1337 1338 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1339 return 1; 1340 1341 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1342 if (mpi_reply) { 1343 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1344 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1345 } 1346 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1347 1348 complete(&ioc->base_cmds.done); 1349 return 1; 1350 } 1351 1352 /** 1353 * _base_async_event - main callback handler for firmware asyn events 1354 * @ioc: per adapter object 1355 * @msix_index: MSIX table index supplied by the OS 1356 * @reply: reply message frame(lower 32bit addr) 1357 * 1358 * Return: 1359 * 1 meaning mf should be freed from _base_interrupt 1360 * 0 means the mf is freed from this function. 1361 */ 1362 static u8 1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1364 { 1365 Mpi2EventNotificationReply_t *mpi_reply; 1366 Mpi2EventAckRequest_t *ack_request; 1367 u16 smid; 1368 struct _event_ack_list *delayed_event_ack; 1369 1370 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1371 if (!mpi_reply) 1372 return 1; 1373 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1374 return 1; 1375 1376 _base_display_event_data(ioc, mpi_reply); 1377 1378 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1379 goto out; 1380 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1381 if (!smid) { 1382 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1383 GFP_ATOMIC); 1384 if (!delayed_event_ack) 1385 goto out; 1386 INIT_LIST_HEAD(&delayed_event_ack->list); 1387 delayed_event_ack->Event = mpi_reply->Event; 1388 delayed_event_ack->EventContext = mpi_reply->EventContext; 1389 list_add_tail(&delayed_event_ack->list, 1390 &ioc->delayed_event_ack_list); 1391 dewtprintk(ioc, 1392 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1393 le16_to_cpu(mpi_reply->Event))); 1394 goto out; 1395 } 1396 1397 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1398 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1399 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1400 ack_request->Event = mpi_reply->Event; 1401 ack_request->EventContext = mpi_reply->EventContext; 1402 ack_request->VF_ID = 0; /* TODO */ 1403 ack_request->VP_ID = 0; 1404 ioc->put_smid_default(ioc, smid); 1405 1406 out: 1407 1408 /* scsih callback handler */ 1409 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1410 1411 /* ctl callback handler */ 1412 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1413 1414 return 1; 1415 } 1416 1417 static struct scsiio_tracker * 1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1419 { 1420 struct scsi_cmnd *cmd; 1421 1422 if (WARN_ON(!smid) || 1423 WARN_ON(smid >= ioc->hi_priority_smid)) 1424 return NULL; 1425 1426 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1427 if (cmd) 1428 return scsi_cmd_priv(cmd); 1429 1430 return NULL; 1431 } 1432 1433 /** 1434 * _base_get_cb_idx - obtain the callback index 1435 * @ioc: per adapter object 1436 * @smid: system request message index 1437 * 1438 * Return: callback index. 1439 */ 1440 static u8 1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1442 { 1443 int i; 1444 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1445 u8 cb_idx = 0xFF; 1446 1447 if (smid < ioc->hi_priority_smid) { 1448 struct scsiio_tracker *st; 1449 1450 if (smid < ctl_smid) { 1451 st = _get_st_from_smid(ioc, smid); 1452 if (st) 1453 cb_idx = st->cb_idx; 1454 } else if (smid == ctl_smid) 1455 cb_idx = ioc->ctl_cb_idx; 1456 } else if (smid < ioc->internal_smid) { 1457 i = smid - ioc->hi_priority_smid; 1458 cb_idx = ioc->hpr_lookup[i].cb_idx; 1459 } else if (smid <= ioc->hba_queue_depth) { 1460 i = smid - ioc->internal_smid; 1461 cb_idx = ioc->internal_lookup[i].cb_idx; 1462 } 1463 return cb_idx; 1464 } 1465 1466 /** 1467 * mpt3sas_base_mask_interrupts - disable interrupts 1468 * @ioc: per adapter object 1469 * 1470 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1471 */ 1472 void 1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1474 { 1475 u32 him_register; 1476 1477 ioc->mask_interrupts = 1; 1478 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1479 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1480 writel(him_register, &ioc->chip->HostInterruptMask); 1481 ioc->base_readl(&ioc->chip->HostInterruptMask); 1482 } 1483 1484 /** 1485 * mpt3sas_base_unmask_interrupts - enable interrupts 1486 * @ioc: per adapter object 1487 * 1488 * Enabling only Reply Interrupts 1489 */ 1490 void 1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1492 { 1493 u32 him_register; 1494 1495 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1496 him_register &= ~MPI2_HIM_RIM; 1497 writel(him_register, &ioc->chip->HostInterruptMask); 1498 ioc->mask_interrupts = 0; 1499 } 1500 1501 union reply_descriptor { 1502 u64 word; 1503 struct { 1504 u32 low; 1505 u32 high; 1506 } u; 1507 }; 1508 1509 static u32 base_mod64(u64 dividend, u32 divisor) 1510 { 1511 u32 remainder; 1512 1513 if (!divisor) 1514 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1515 remainder = do_div(dividend, divisor); 1516 return remainder; 1517 } 1518 1519 /** 1520 * _base_process_reply_queue - Process reply descriptors from reply 1521 * descriptor post queue. 1522 * @reply_q: per IRQ's reply queue object. 1523 * 1524 * Return: number of reply descriptors processed from reply 1525 * descriptor queue. 1526 */ 1527 static int 1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1529 { 1530 union reply_descriptor rd; 1531 u64 completed_cmds; 1532 u8 request_descript_type; 1533 u16 smid; 1534 u8 cb_idx; 1535 u32 reply; 1536 u8 msix_index = reply_q->msix_index; 1537 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1538 Mpi2ReplyDescriptorsUnion_t *rpf; 1539 u8 rc; 1540 1541 completed_cmds = 0; 1542 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1543 return completed_cmds; 1544 1545 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1546 request_descript_type = rpf->Default.ReplyFlags 1547 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1548 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1549 atomic_dec(&reply_q->busy); 1550 return completed_cmds; 1551 } 1552 1553 cb_idx = 0xFF; 1554 do { 1555 rd.word = le64_to_cpu(rpf->Words); 1556 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1557 goto out; 1558 reply = 0; 1559 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1560 if (request_descript_type == 1561 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1562 request_descript_type == 1563 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1564 request_descript_type == 1565 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1566 cb_idx = _base_get_cb_idx(ioc, smid); 1567 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1568 (likely(mpt_callbacks[cb_idx] != NULL))) { 1569 rc = mpt_callbacks[cb_idx](ioc, smid, 1570 msix_index, 0); 1571 if (rc) 1572 mpt3sas_base_free_smid(ioc, smid); 1573 } 1574 } else if (request_descript_type == 1575 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1576 reply = le32_to_cpu( 1577 rpf->AddressReply.ReplyFrameAddress); 1578 if (reply > ioc->reply_dma_max_address || 1579 reply < ioc->reply_dma_min_address) 1580 reply = 0; 1581 if (smid) { 1582 cb_idx = _base_get_cb_idx(ioc, smid); 1583 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1584 (likely(mpt_callbacks[cb_idx] != NULL))) { 1585 rc = mpt_callbacks[cb_idx](ioc, smid, 1586 msix_index, reply); 1587 if (reply) 1588 _base_display_reply_info(ioc, 1589 smid, msix_index, reply); 1590 if (rc) 1591 mpt3sas_base_free_smid(ioc, 1592 smid); 1593 } 1594 } else { 1595 _base_async_event(ioc, msix_index, reply); 1596 } 1597 1598 /* reply free queue handling */ 1599 if (reply) { 1600 ioc->reply_free_host_index = 1601 (ioc->reply_free_host_index == 1602 (ioc->reply_free_queue_depth - 1)) ? 1603 0 : ioc->reply_free_host_index + 1; 1604 ioc->reply_free[ioc->reply_free_host_index] = 1605 cpu_to_le32(reply); 1606 if (ioc->is_mcpu_endpoint) 1607 _base_clone_reply_to_sys_mem(ioc, 1608 reply, 1609 ioc->reply_free_host_index); 1610 writel(ioc->reply_free_host_index, 1611 &ioc->chip->ReplyFreeHostIndex); 1612 } 1613 } 1614 1615 rpf->Words = cpu_to_le64(ULLONG_MAX); 1616 reply_q->reply_post_host_index = 1617 (reply_q->reply_post_host_index == 1618 (ioc->reply_post_queue_depth - 1)) ? 0 : 1619 reply_q->reply_post_host_index + 1; 1620 request_descript_type = 1621 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1622 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1623 completed_cmds++; 1624 /* Update the reply post host index after continuously 1625 * processing the threshold number of Reply Descriptors. 1626 * So that FW can find enough entries to post the Reply 1627 * Descriptors in the reply descriptor post queue. 1628 */ 1629 if (completed_cmds >= ioc->thresh_hold) { 1630 if (ioc->combined_reply_queue) { 1631 writel(reply_q->reply_post_host_index | 1632 ((msix_index & 7) << 1633 MPI2_RPHI_MSIX_INDEX_SHIFT), 1634 ioc->replyPostRegisterIndex[msix_index/8]); 1635 } else { 1636 writel(reply_q->reply_post_host_index | 1637 (msix_index << 1638 MPI2_RPHI_MSIX_INDEX_SHIFT), 1639 &ioc->chip->ReplyPostHostIndex); 1640 } 1641 if (!reply_q->irq_poll_scheduled) { 1642 reply_q->irq_poll_scheduled = true; 1643 irq_poll_sched(&reply_q->irqpoll); 1644 } 1645 atomic_dec(&reply_q->busy); 1646 return completed_cmds; 1647 } 1648 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1649 goto out; 1650 if (!reply_q->reply_post_host_index) 1651 rpf = reply_q->reply_post_free; 1652 else 1653 rpf++; 1654 } while (1); 1655 1656 out: 1657 1658 if (!completed_cmds) { 1659 atomic_dec(&reply_q->busy); 1660 return completed_cmds; 1661 } 1662 1663 if (ioc->is_warpdrive) { 1664 writel(reply_q->reply_post_host_index, 1665 ioc->reply_post_host_index[msix_index]); 1666 atomic_dec(&reply_q->busy); 1667 return completed_cmds; 1668 } 1669 1670 /* Update Reply Post Host Index. 1671 * For those HBA's which support combined reply queue feature 1672 * 1. Get the correct Supplemental Reply Post Host Index Register. 1673 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1674 * Index Register address bank i.e replyPostRegisterIndex[], 1675 * 2. Then update this register with new reply host index value 1676 * in ReplyPostIndex field and the MSIxIndex field with 1677 * msix_index value reduced to a value between 0 and 7, 1678 * using a modulo 8 operation. Since each Supplemental Reply Post 1679 * Host Index Register supports 8 MSI-X vectors. 1680 * 1681 * For other HBA's just update the Reply Post Host Index register with 1682 * new reply host index value in ReplyPostIndex Field and msix_index 1683 * value in MSIxIndex field. 1684 */ 1685 if (ioc->combined_reply_queue) 1686 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1687 MPI2_RPHI_MSIX_INDEX_SHIFT), 1688 ioc->replyPostRegisterIndex[msix_index/8]); 1689 else 1690 writel(reply_q->reply_post_host_index | (msix_index << 1691 MPI2_RPHI_MSIX_INDEX_SHIFT), 1692 &ioc->chip->ReplyPostHostIndex); 1693 atomic_dec(&reply_q->busy); 1694 return completed_cmds; 1695 } 1696 1697 /** 1698 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1699 * @irq: irq number (not used) 1700 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1701 * 1702 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1703 */ 1704 static irqreturn_t 1705 _base_interrupt(int irq, void *bus_id) 1706 { 1707 struct adapter_reply_queue *reply_q = bus_id; 1708 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1709 1710 if (ioc->mask_interrupts) 1711 return IRQ_NONE; 1712 if (reply_q->irq_poll_scheduled) 1713 return IRQ_HANDLED; 1714 return ((_base_process_reply_queue(reply_q) > 0) ? 1715 IRQ_HANDLED : IRQ_NONE); 1716 } 1717 1718 /** 1719 * _base_irqpoll - IRQ poll callback handler 1720 * @irqpoll: irq_poll object 1721 * @budget: irq poll weight 1722 * 1723 * returns number of reply descriptors processed 1724 */ 1725 static int 1726 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1727 { 1728 struct adapter_reply_queue *reply_q; 1729 int num_entries = 0; 1730 1731 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1732 irqpoll); 1733 if (reply_q->irq_line_enable) { 1734 disable_irq_nosync(reply_q->os_irq); 1735 reply_q->irq_line_enable = false; 1736 } 1737 num_entries = _base_process_reply_queue(reply_q); 1738 if (num_entries < budget) { 1739 irq_poll_complete(irqpoll); 1740 reply_q->irq_poll_scheduled = false; 1741 reply_q->irq_line_enable = true; 1742 enable_irq(reply_q->os_irq); 1743 /* 1744 * Go for one more round of processing the 1745 * reply descriptor post queue incase if HBA 1746 * Firmware has posted some reply descriptors 1747 * while reenabling the IRQ. 1748 */ 1749 _base_process_reply_queue(reply_q); 1750 } 1751 1752 return num_entries; 1753 } 1754 1755 /** 1756 * _base_init_irqpolls - initliaze IRQ polls 1757 * @ioc: per adapter object 1758 * 1759 * returns nothing 1760 */ 1761 static void 1762 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1763 { 1764 struct adapter_reply_queue *reply_q, *next; 1765 1766 if (list_empty(&ioc->reply_queue_list)) 1767 return; 1768 1769 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1770 irq_poll_init(&reply_q->irqpoll, 1771 ioc->hba_queue_depth/4, _base_irqpoll); 1772 reply_q->irq_poll_scheduled = false; 1773 reply_q->irq_line_enable = true; 1774 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1775 reply_q->msix_index); 1776 } 1777 } 1778 1779 /** 1780 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1781 * @ioc: per adapter object 1782 * 1783 * Return: Whether or not MSI/X is enabled. 1784 */ 1785 static inline int 1786 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1787 { 1788 return (ioc->facts.IOCCapabilities & 1789 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1790 } 1791 1792 /** 1793 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1794 * @ioc: per adapter object 1795 * @poll: poll over reply descriptor pools incase interrupt for 1796 * timed-out SCSI command got delayed 1797 * Context: non ISR conext 1798 * 1799 * Called when a Task Management request has completed. 1800 */ 1801 void 1802 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1803 { 1804 struct adapter_reply_queue *reply_q; 1805 1806 /* If MSIX capability is turned off 1807 * then multi-queues are not enabled 1808 */ 1809 if (!_base_is_controller_msix_enabled(ioc)) 1810 return; 1811 1812 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1813 if (ioc->shost_recovery || ioc->remove_host || 1814 ioc->pci_error_recovery) 1815 return; 1816 /* TMs are on msix_index == 0 */ 1817 if (reply_q->msix_index == 0) 1818 continue; 1819 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1820 if (reply_q->irq_poll_scheduled) { 1821 /* Calling irq_poll_disable will wait for any pending 1822 * callbacks to have completed. 1823 */ 1824 irq_poll_disable(&reply_q->irqpoll); 1825 irq_poll_enable(&reply_q->irqpoll); 1826 /* check how the scheduled poll has ended, 1827 * clean up only if necessary 1828 */ 1829 if (reply_q->irq_poll_scheduled) { 1830 reply_q->irq_poll_scheduled = false; 1831 reply_q->irq_line_enable = true; 1832 enable_irq(reply_q->os_irq); 1833 } 1834 } 1835 } 1836 if (poll) 1837 _base_process_reply_queue(reply_q); 1838 } 1839 1840 /** 1841 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1842 * @cb_idx: callback index 1843 */ 1844 void 1845 mpt3sas_base_release_callback_handler(u8 cb_idx) 1846 { 1847 mpt_callbacks[cb_idx] = NULL; 1848 } 1849 1850 /** 1851 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1852 * @cb_func: callback function 1853 * 1854 * Return: Index of @cb_func. 1855 */ 1856 u8 1857 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1858 { 1859 u8 cb_idx; 1860 1861 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1862 if (mpt_callbacks[cb_idx] == NULL) 1863 break; 1864 1865 mpt_callbacks[cb_idx] = cb_func; 1866 return cb_idx; 1867 } 1868 1869 /** 1870 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1871 */ 1872 void 1873 mpt3sas_base_initialize_callback_handler(void) 1874 { 1875 u8 cb_idx; 1876 1877 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1878 mpt3sas_base_release_callback_handler(cb_idx); 1879 } 1880 1881 1882 /** 1883 * _base_build_zero_len_sge - build zero length sg entry 1884 * @ioc: per adapter object 1885 * @paddr: virtual address for SGE 1886 * 1887 * Create a zero length scatter gather entry to insure the IOCs hardware has 1888 * something to use if the target device goes brain dead and tries 1889 * to send data even when none is asked for. 1890 */ 1891 static void 1892 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1893 { 1894 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1895 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1896 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1897 MPI2_SGE_FLAGS_SHIFT); 1898 ioc->base_add_sg_single(paddr, flags_length, -1); 1899 } 1900 1901 /** 1902 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1903 * @paddr: virtual address for SGE 1904 * @flags_length: SGE flags and data transfer length 1905 * @dma_addr: Physical address 1906 */ 1907 static void 1908 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1909 { 1910 Mpi2SGESimple32_t *sgel = paddr; 1911 1912 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1913 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1914 sgel->FlagsLength = cpu_to_le32(flags_length); 1915 sgel->Address = cpu_to_le32(dma_addr); 1916 } 1917 1918 1919 /** 1920 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1921 * @paddr: virtual address for SGE 1922 * @flags_length: SGE flags and data transfer length 1923 * @dma_addr: Physical address 1924 */ 1925 static void 1926 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1927 { 1928 Mpi2SGESimple64_t *sgel = paddr; 1929 1930 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1931 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1932 sgel->FlagsLength = cpu_to_le32(flags_length); 1933 sgel->Address = cpu_to_le64(dma_addr); 1934 } 1935 1936 /** 1937 * _base_get_chain_buffer_tracker - obtain chain tracker 1938 * @ioc: per adapter object 1939 * @scmd: SCSI commands of the IO request 1940 * 1941 * Return: chain tracker from chain_lookup table using key as 1942 * smid and smid's chain_offset. 1943 */ 1944 static struct chain_tracker * 1945 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1946 struct scsi_cmnd *scmd) 1947 { 1948 struct chain_tracker *chain_req; 1949 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1950 u16 smid = st->smid; 1951 u8 chain_offset = 1952 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1953 1954 if (chain_offset == ioc->chains_needed_per_io) 1955 return NULL; 1956 1957 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1958 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1959 return chain_req; 1960 } 1961 1962 1963 /** 1964 * _base_build_sg - build generic sg 1965 * @ioc: per adapter object 1966 * @psge: virtual address for SGE 1967 * @data_out_dma: physical address for WRITES 1968 * @data_out_sz: data xfer size for WRITES 1969 * @data_in_dma: physical address for READS 1970 * @data_in_sz: data xfer size for READS 1971 */ 1972 static void 1973 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1974 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1975 size_t data_in_sz) 1976 { 1977 u32 sgl_flags; 1978 1979 if (!data_out_sz && !data_in_sz) { 1980 _base_build_zero_len_sge(ioc, psge); 1981 return; 1982 } 1983 1984 if (data_out_sz && data_in_sz) { 1985 /* WRITE sgel first */ 1986 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1987 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1988 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1989 ioc->base_add_sg_single(psge, sgl_flags | 1990 data_out_sz, data_out_dma); 1991 1992 /* incr sgel */ 1993 psge += ioc->sge_size; 1994 1995 /* READ sgel last */ 1996 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1997 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1998 MPI2_SGE_FLAGS_END_OF_LIST); 1999 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2000 ioc->base_add_sg_single(psge, sgl_flags | 2001 data_in_sz, data_in_dma); 2002 } else if (data_out_sz) /* WRITE */ { 2003 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2004 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2005 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2006 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2007 ioc->base_add_sg_single(psge, sgl_flags | 2008 data_out_sz, data_out_dma); 2009 } else if (data_in_sz) /* READ */ { 2010 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2011 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2012 MPI2_SGE_FLAGS_END_OF_LIST); 2013 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2014 ioc->base_add_sg_single(psge, sgl_flags | 2015 data_in_sz, data_in_dma); 2016 } 2017 } 2018 2019 /* IEEE format sgls */ 2020 2021 /** 2022 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2023 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2024 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2025 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2026 * used to describe a larger data buffer. If the data buffer is too large to 2027 * describe using the two PRP entriess inside the NVMe message, then PRP1 2028 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2029 * list located elsewhere in memory to describe the remaining data memory 2030 * segments. The PRP list will be contiguous. 2031 * 2032 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2033 * consists of a list of PRP entries to describe a number of noncontigous 2034 * physical memory segments as a single memory buffer, just as a SGL does. Note 2035 * however, that this function is only used by the IOCTL call, so the memory 2036 * given will be guaranteed to be contiguous. There is no need to translate 2037 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2038 * contiguous space that is one page size each. 2039 * 2040 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2041 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2042 * contains the second PRP element if the memory being described fits within 2 2043 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2044 * 2045 * A PRP list pointer contains the address of a PRP list, structured as a linear 2046 * array of PRP entries. Each PRP entry in this list describes a segment of 2047 * physical memory. 2048 * 2049 * Each 64-bit PRP entry comprises an address and an offset field. The address 2050 * always points at the beginning of a 4KB physical memory page, and the offset 2051 * describes where within that 4KB page the memory segment begins. Only the 2052 * first element in a PRP list may contain a non-zero offest, implying that all 2053 * memory segments following the first begin at the start of a 4KB page. 2054 * 2055 * Each PRP element normally describes 4KB of physical memory, with exceptions 2056 * for the first and last elements in the list. If the memory being described 2057 * by the list begins at a non-zero offset within the first 4KB page, then the 2058 * first PRP element will contain a non-zero offset indicating where the region 2059 * begins within the 4KB page. The last memory segment may end before the end 2060 * of the 4KB segment, depending upon the overall size of the memory being 2061 * described by the PRP list. 2062 * 2063 * Since PRP entries lack any indication of size, the overall data buffer length 2064 * is used to determine where the end of the data memory buffer is located, and 2065 * how many PRP entries are required to describe it. 2066 * 2067 * @ioc: per adapter object 2068 * @smid: system request message index for getting asscociated SGL 2069 * @nvme_encap_request: the NVMe request msg frame pointer 2070 * @data_out_dma: physical address for WRITES 2071 * @data_out_sz: data xfer size for WRITES 2072 * @data_in_dma: physical address for READS 2073 * @data_in_sz: data xfer size for READS 2074 */ 2075 static void 2076 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2077 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2078 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2079 size_t data_in_sz) 2080 { 2081 int prp_size = NVME_PRP_SIZE; 2082 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2083 __le64 *prp_page; 2084 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2085 u32 offset, entry_len; 2086 u32 page_mask_result, page_mask; 2087 size_t length; 2088 struct mpt3sas_nvme_cmd *nvme_cmd = 2089 (void *)nvme_encap_request->NVMe_Command; 2090 2091 /* 2092 * Not all commands require a data transfer. If no data, just return 2093 * without constructing any PRP. 2094 */ 2095 if (!data_in_sz && !data_out_sz) 2096 return; 2097 prp1_entry = &nvme_cmd->prp1; 2098 prp2_entry = &nvme_cmd->prp2; 2099 prp_entry = prp1_entry; 2100 /* 2101 * For the PRP entries, use the specially allocated buffer of 2102 * contiguous memory. 2103 */ 2104 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2105 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2106 2107 /* 2108 * Check if we are within 1 entry of a page boundary we don't 2109 * want our first entry to be a PRP List entry. 2110 */ 2111 page_mask = ioc->page_size - 1; 2112 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2113 if (!page_mask_result) { 2114 /* Bump up to next page boundary. */ 2115 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2116 prp_page_dma = prp_page_dma + prp_size; 2117 } 2118 2119 /* 2120 * Set PRP physical pointer, which initially points to the current PRP 2121 * DMA memory page. 2122 */ 2123 prp_entry_dma = prp_page_dma; 2124 2125 /* Get physical address and length of the data buffer. */ 2126 if (data_in_sz) { 2127 dma_addr = data_in_dma; 2128 length = data_in_sz; 2129 } else { 2130 dma_addr = data_out_dma; 2131 length = data_out_sz; 2132 } 2133 2134 /* Loop while the length is not zero. */ 2135 while (length) { 2136 /* 2137 * Check if we need to put a list pointer here if we are at 2138 * page boundary - prp_size (8 bytes). 2139 */ 2140 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2141 if (!page_mask_result) { 2142 /* 2143 * This is the last entry in a PRP List, so we need to 2144 * put a PRP list pointer here. What this does is: 2145 * - bump the current memory pointer to the next 2146 * address, which will be the next full page. 2147 * - set the PRP Entry to point to that page. This 2148 * is now the PRP List pointer. 2149 * - bump the PRP Entry pointer the start of the 2150 * next page. Since all of this PRP memory is 2151 * contiguous, no need to get a new page - it's 2152 * just the next address. 2153 */ 2154 prp_entry_dma++; 2155 *prp_entry = cpu_to_le64(prp_entry_dma); 2156 prp_entry++; 2157 } 2158 2159 /* Need to handle if entry will be part of a page. */ 2160 offset = dma_addr & page_mask; 2161 entry_len = ioc->page_size - offset; 2162 2163 if (prp_entry == prp1_entry) { 2164 /* 2165 * Must fill in the first PRP pointer (PRP1) before 2166 * moving on. 2167 */ 2168 *prp1_entry = cpu_to_le64(dma_addr); 2169 2170 /* 2171 * Now point to the second PRP entry within the 2172 * command (PRP2). 2173 */ 2174 prp_entry = prp2_entry; 2175 } else if (prp_entry == prp2_entry) { 2176 /* 2177 * Should the PRP2 entry be a PRP List pointer or just 2178 * a regular PRP pointer? If there is more than one 2179 * more page of data, must use a PRP List pointer. 2180 */ 2181 if (length > ioc->page_size) { 2182 /* 2183 * PRP2 will contain a PRP List pointer because 2184 * more PRP's are needed with this command. The 2185 * list will start at the beginning of the 2186 * contiguous buffer. 2187 */ 2188 *prp2_entry = cpu_to_le64(prp_entry_dma); 2189 2190 /* 2191 * The next PRP Entry will be the start of the 2192 * first PRP List. 2193 */ 2194 prp_entry = prp_page; 2195 } else { 2196 /* 2197 * After this, the PRP Entries are complete. 2198 * This command uses 2 PRP's and no PRP list. 2199 */ 2200 *prp2_entry = cpu_to_le64(dma_addr); 2201 } 2202 } else { 2203 /* 2204 * Put entry in list and bump the addresses. 2205 * 2206 * After PRP1 and PRP2 are filled in, this will fill in 2207 * all remaining PRP entries in a PRP List, one per 2208 * each time through the loop. 2209 */ 2210 *prp_entry = cpu_to_le64(dma_addr); 2211 prp_entry++; 2212 prp_entry_dma++; 2213 } 2214 2215 /* 2216 * Bump the phys address of the command's data buffer by the 2217 * entry_len. 2218 */ 2219 dma_addr += entry_len; 2220 2221 /* Decrement length accounting for last partial page. */ 2222 if (entry_len > length) 2223 length = 0; 2224 else 2225 length -= entry_len; 2226 } 2227 } 2228 2229 /** 2230 * base_make_prp_nvme - 2231 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2232 * 2233 * @ioc: per adapter object 2234 * @scmd: SCSI command from the mid-layer 2235 * @mpi_request: mpi request 2236 * @smid: msg Index 2237 * @sge_count: scatter gather element count. 2238 * 2239 * Return: true: PRPs are built 2240 * false: IEEE SGLs needs to be built 2241 */ 2242 static void 2243 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2244 struct scsi_cmnd *scmd, 2245 Mpi25SCSIIORequest_t *mpi_request, 2246 u16 smid, int sge_count) 2247 { 2248 int sge_len, num_prp_in_chain = 0; 2249 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2250 __le64 *curr_buff; 2251 dma_addr_t msg_dma, sge_addr, offset; 2252 u32 page_mask, page_mask_result; 2253 struct scatterlist *sg_scmd; 2254 u32 first_prp_len; 2255 int data_len = scsi_bufflen(scmd); 2256 u32 nvme_pg_size; 2257 2258 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2259 /* 2260 * Nvme has a very convoluted prp format. One prp is required 2261 * for each page or partial page. Driver need to split up OS sg_list 2262 * entries if it is longer than one page or cross a page 2263 * boundary. Driver also have to insert a PRP list pointer entry as 2264 * the last entry in each physical page of the PRP list. 2265 * 2266 * NOTE: The first PRP "entry" is actually placed in the first 2267 * SGL entry in the main message as IEEE 64 format. The 2nd 2268 * entry in the main message is the chain element, and the rest 2269 * of the PRP entries are built in the contiguous pcie buffer. 2270 */ 2271 page_mask = nvme_pg_size - 1; 2272 2273 /* 2274 * Native SGL is needed. 2275 * Put a chain element in main message frame that points to the first 2276 * chain buffer. 2277 * 2278 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2279 * a native SGL. 2280 */ 2281 2282 /* Set main message chain element pointer */ 2283 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2284 /* 2285 * For NVMe the chain element needs to be the 2nd SG entry in the main 2286 * message. 2287 */ 2288 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2289 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2290 2291 /* 2292 * For the PRP entries, use the specially allocated buffer of 2293 * contiguous memory. Normal chain buffers can't be used 2294 * because each chain buffer would need to be the size of an OS 2295 * page (4k). 2296 */ 2297 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2298 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2299 2300 main_chain_element->Address = cpu_to_le64(msg_dma); 2301 main_chain_element->NextChainOffset = 0; 2302 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2303 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2304 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2305 2306 /* Build first prp, sge need not to be page aligned*/ 2307 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2308 sg_scmd = scsi_sglist(scmd); 2309 sge_addr = sg_dma_address(sg_scmd); 2310 sge_len = sg_dma_len(sg_scmd); 2311 2312 offset = sge_addr & page_mask; 2313 first_prp_len = nvme_pg_size - offset; 2314 2315 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2316 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2317 2318 data_len -= first_prp_len; 2319 2320 if (sge_len > first_prp_len) { 2321 sge_addr += first_prp_len; 2322 sge_len -= first_prp_len; 2323 } else if (data_len && (sge_len == first_prp_len)) { 2324 sg_scmd = sg_next(sg_scmd); 2325 sge_addr = sg_dma_address(sg_scmd); 2326 sge_len = sg_dma_len(sg_scmd); 2327 } 2328 2329 for (;;) { 2330 offset = sge_addr & page_mask; 2331 2332 /* Put PRP pointer due to page boundary*/ 2333 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2334 if (unlikely(!page_mask_result)) { 2335 scmd_printk(KERN_NOTICE, 2336 scmd, "page boundary curr_buff: 0x%p\n", 2337 curr_buff); 2338 msg_dma += 8; 2339 *curr_buff = cpu_to_le64(msg_dma); 2340 curr_buff++; 2341 num_prp_in_chain++; 2342 } 2343 2344 *curr_buff = cpu_to_le64(sge_addr); 2345 curr_buff++; 2346 msg_dma += 8; 2347 num_prp_in_chain++; 2348 2349 sge_addr += nvme_pg_size; 2350 sge_len -= nvme_pg_size; 2351 data_len -= nvme_pg_size; 2352 2353 if (data_len <= 0) 2354 break; 2355 2356 if (sge_len > 0) 2357 continue; 2358 2359 sg_scmd = sg_next(sg_scmd); 2360 sge_addr = sg_dma_address(sg_scmd); 2361 sge_len = sg_dma_len(sg_scmd); 2362 } 2363 2364 main_chain_element->Length = 2365 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2366 return; 2367 } 2368 2369 static bool 2370 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2371 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2372 { 2373 u32 data_length = 0; 2374 bool build_prp = true; 2375 2376 data_length = scsi_bufflen(scmd); 2377 if (pcie_device && 2378 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2379 build_prp = false; 2380 return build_prp; 2381 } 2382 2383 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2384 * we built IEEE SGL 2385 */ 2386 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2387 build_prp = false; 2388 2389 return build_prp; 2390 } 2391 2392 /** 2393 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2394 * determine if the driver needs to build a native SGL. If so, that native 2395 * SGL is built in the special contiguous buffers allocated especially for 2396 * PCIe SGL creation. If the driver will not build a native SGL, return 2397 * TRUE and a normal IEEE SGL will be built. Currently this routine 2398 * supports NVMe. 2399 * @ioc: per adapter object 2400 * @mpi_request: mf request pointer 2401 * @smid: system request message index 2402 * @scmd: scsi command 2403 * @pcie_device: points to the PCIe device's info 2404 * 2405 * Return: 0 if native SGL was built, 1 if no SGL was built 2406 */ 2407 static int 2408 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2409 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2410 struct _pcie_device *pcie_device) 2411 { 2412 int sges_left; 2413 2414 /* Get the SG list pointer and info. */ 2415 sges_left = scsi_dma_map(scmd); 2416 if (sges_left < 0) { 2417 sdev_printk(KERN_ERR, scmd->device, 2418 "scsi_dma_map failed: request for %d bytes!\n", 2419 scsi_bufflen(scmd)); 2420 return 1; 2421 } 2422 2423 /* Check if we need to build a native SG list. */ 2424 if (base_is_prp_possible(ioc, pcie_device, 2425 scmd, sges_left) == 0) { 2426 /* We built a native SG list, just return. */ 2427 goto out; 2428 } 2429 2430 /* 2431 * Build native NVMe PRP. 2432 */ 2433 base_make_prp_nvme(ioc, scmd, mpi_request, 2434 smid, sges_left); 2435 2436 return 0; 2437 out: 2438 scsi_dma_unmap(scmd); 2439 return 1; 2440 } 2441 2442 /** 2443 * _base_add_sg_single_ieee - add sg element for IEEE format 2444 * @paddr: virtual address for SGE 2445 * @flags: SGE flags 2446 * @chain_offset: number of 128 byte elements from start of segment 2447 * @length: data transfer length 2448 * @dma_addr: Physical address 2449 */ 2450 static void 2451 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2452 dma_addr_t dma_addr) 2453 { 2454 Mpi25IeeeSgeChain64_t *sgel = paddr; 2455 2456 sgel->Flags = flags; 2457 sgel->NextChainOffset = chain_offset; 2458 sgel->Length = cpu_to_le32(length); 2459 sgel->Address = cpu_to_le64(dma_addr); 2460 } 2461 2462 /** 2463 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2464 * @ioc: per adapter object 2465 * @paddr: virtual address for SGE 2466 * 2467 * Create a zero length scatter gather entry to insure the IOCs hardware has 2468 * something to use if the target device goes brain dead and tries 2469 * to send data even when none is asked for. 2470 */ 2471 static void 2472 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2473 { 2474 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2475 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2476 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2477 2478 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2479 } 2480 2481 /** 2482 * _base_build_sg_scmd - main sg creation routine 2483 * pcie_device is unused here! 2484 * @ioc: per adapter object 2485 * @scmd: scsi command 2486 * @smid: system request message index 2487 * @unused: unused pcie_device pointer 2488 * Context: none. 2489 * 2490 * The main routine that builds scatter gather table from a given 2491 * scsi request sent via the .queuecommand main handler. 2492 * 2493 * Return: 0 success, anything else error 2494 */ 2495 static int 2496 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2497 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2498 { 2499 Mpi2SCSIIORequest_t *mpi_request; 2500 dma_addr_t chain_dma; 2501 struct scatterlist *sg_scmd; 2502 void *sg_local, *chain; 2503 u32 chain_offset; 2504 u32 chain_length; 2505 u32 chain_flags; 2506 int sges_left; 2507 u32 sges_in_segment; 2508 u32 sgl_flags; 2509 u32 sgl_flags_last_element; 2510 u32 sgl_flags_end_buffer; 2511 struct chain_tracker *chain_req; 2512 2513 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2514 2515 /* init scatter gather flags */ 2516 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2517 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2518 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2519 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2520 << MPI2_SGE_FLAGS_SHIFT; 2521 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2522 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2523 << MPI2_SGE_FLAGS_SHIFT; 2524 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2525 2526 sg_scmd = scsi_sglist(scmd); 2527 sges_left = scsi_dma_map(scmd); 2528 if (sges_left < 0) { 2529 sdev_printk(KERN_ERR, scmd->device, 2530 "scsi_dma_map failed: request for %d bytes!\n", 2531 scsi_bufflen(scmd)); 2532 return -ENOMEM; 2533 } 2534 2535 sg_local = &mpi_request->SGL; 2536 sges_in_segment = ioc->max_sges_in_main_message; 2537 if (sges_left <= sges_in_segment) 2538 goto fill_in_last_segment; 2539 2540 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2541 (sges_in_segment * ioc->sge_size))/4; 2542 2543 /* fill in main message segment when there is a chain following */ 2544 while (sges_in_segment) { 2545 if (sges_in_segment == 1) 2546 ioc->base_add_sg_single(sg_local, 2547 sgl_flags_last_element | sg_dma_len(sg_scmd), 2548 sg_dma_address(sg_scmd)); 2549 else 2550 ioc->base_add_sg_single(sg_local, sgl_flags | 2551 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2552 sg_scmd = sg_next(sg_scmd); 2553 sg_local += ioc->sge_size; 2554 sges_left--; 2555 sges_in_segment--; 2556 } 2557 2558 /* initializing the chain flags and pointers */ 2559 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2560 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2561 if (!chain_req) 2562 return -1; 2563 chain = chain_req->chain_buffer; 2564 chain_dma = chain_req->chain_buffer_dma; 2565 do { 2566 sges_in_segment = (sges_left <= 2567 ioc->max_sges_in_chain_message) ? sges_left : 2568 ioc->max_sges_in_chain_message; 2569 chain_offset = (sges_left == sges_in_segment) ? 2570 0 : (sges_in_segment * ioc->sge_size)/4; 2571 chain_length = sges_in_segment * ioc->sge_size; 2572 if (chain_offset) { 2573 chain_offset = chain_offset << 2574 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2575 chain_length += ioc->sge_size; 2576 } 2577 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2578 chain_length, chain_dma); 2579 sg_local = chain; 2580 if (!chain_offset) 2581 goto fill_in_last_segment; 2582 2583 /* fill in chain segments */ 2584 while (sges_in_segment) { 2585 if (sges_in_segment == 1) 2586 ioc->base_add_sg_single(sg_local, 2587 sgl_flags_last_element | 2588 sg_dma_len(sg_scmd), 2589 sg_dma_address(sg_scmd)); 2590 else 2591 ioc->base_add_sg_single(sg_local, sgl_flags | 2592 sg_dma_len(sg_scmd), 2593 sg_dma_address(sg_scmd)); 2594 sg_scmd = sg_next(sg_scmd); 2595 sg_local += ioc->sge_size; 2596 sges_left--; 2597 sges_in_segment--; 2598 } 2599 2600 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2601 if (!chain_req) 2602 return -1; 2603 chain = chain_req->chain_buffer; 2604 chain_dma = chain_req->chain_buffer_dma; 2605 } while (1); 2606 2607 2608 fill_in_last_segment: 2609 2610 /* fill the last segment */ 2611 while (sges_left) { 2612 if (sges_left == 1) 2613 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2614 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2615 else 2616 ioc->base_add_sg_single(sg_local, sgl_flags | 2617 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2618 sg_scmd = sg_next(sg_scmd); 2619 sg_local += ioc->sge_size; 2620 sges_left--; 2621 } 2622 2623 return 0; 2624 } 2625 2626 /** 2627 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2628 * @ioc: per adapter object 2629 * @scmd: scsi command 2630 * @smid: system request message index 2631 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2632 * constructed on need. 2633 * Context: none. 2634 * 2635 * The main routine that builds scatter gather table from a given 2636 * scsi request sent via the .queuecommand main handler. 2637 * 2638 * Return: 0 success, anything else error 2639 */ 2640 static int 2641 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2642 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2643 { 2644 Mpi25SCSIIORequest_t *mpi_request; 2645 dma_addr_t chain_dma; 2646 struct scatterlist *sg_scmd; 2647 void *sg_local, *chain; 2648 u32 chain_offset; 2649 u32 chain_length; 2650 int sges_left; 2651 u32 sges_in_segment; 2652 u8 simple_sgl_flags; 2653 u8 simple_sgl_flags_last; 2654 u8 chain_sgl_flags; 2655 struct chain_tracker *chain_req; 2656 2657 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2658 2659 /* init scatter gather flags */ 2660 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2661 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2662 simple_sgl_flags_last = simple_sgl_flags | 2663 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2664 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2665 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2666 2667 /* Check if we need to build a native SG list. */ 2668 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2669 smid, scmd, pcie_device) == 0)) { 2670 /* We built a native SG list, just return. */ 2671 return 0; 2672 } 2673 2674 sg_scmd = scsi_sglist(scmd); 2675 sges_left = scsi_dma_map(scmd); 2676 if (sges_left < 0) { 2677 sdev_printk(KERN_ERR, scmd->device, 2678 "scsi_dma_map failed: request for %d bytes!\n", 2679 scsi_bufflen(scmd)); 2680 return -ENOMEM; 2681 } 2682 2683 sg_local = &mpi_request->SGL; 2684 sges_in_segment = (ioc->request_sz - 2685 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2686 if (sges_left <= sges_in_segment) 2687 goto fill_in_last_segment; 2688 2689 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2690 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2691 2692 /* fill in main message segment when there is a chain following */ 2693 while (sges_in_segment > 1) { 2694 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2695 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2696 sg_scmd = sg_next(sg_scmd); 2697 sg_local += ioc->sge_size_ieee; 2698 sges_left--; 2699 sges_in_segment--; 2700 } 2701 2702 /* initializing the pointers */ 2703 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2704 if (!chain_req) 2705 return -1; 2706 chain = chain_req->chain_buffer; 2707 chain_dma = chain_req->chain_buffer_dma; 2708 do { 2709 sges_in_segment = (sges_left <= 2710 ioc->max_sges_in_chain_message) ? sges_left : 2711 ioc->max_sges_in_chain_message; 2712 chain_offset = (sges_left == sges_in_segment) ? 2713 0 : sges_in_segment; 2714 chain_length = sges_in_segment * ioc->sge_size_ieee; 2715 if (chain_offset) 2716 chain_length += ioc->sge_size_ieee; 2717 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2718 chain_offset, chain_length, chain_dma); 2719 2720 sg_local = chain; 2721 if (!chain_offset) 2722 goto fill_in_last_segment; 2723 2724 /* fill in chain segments */ 2725 while (sges_in_segment) { 2726 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2727 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2728 sg_scmd = sg_next(sg_scmd); 2729 sg_local += ioc->sge_size_ieee; 2730 sges_left--; 2731 sges_in_segment--; 2732 } 2733 2734 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2735 if (!chain_req) 2736 return -1; 2737 chain = chain_req->chain_buffer; 2738 chain_dma = chain_req->chain_buffer_dma; 2739 } while (1); 2740 2741 2742 fill_in_last_segment: 2743 2744 /* fill the last segment */ 2745 while (sges_left > 0) { 2746 if (sges_left == 1) 2747 _base_add_sg_single_ieee(sg_local, 2748 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2749 sg_dma_address(sg_scmd)); 2750 else 2751 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2752 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2753 sg_scmd = sg_next(sg_scmd); 2754 sg_local += ioc->sge_size_ieee; 2755 sges_left--; 2756 } 2757 2758 return 0; 2759 } 2760 2761 /** 2762 * _base_build_sg_ieee - build generic sg for IEEE format 2763 * @ioc: per adapter object 2764 * @psge: virtual address for SGE 2765 * @data_out_dma: physical address for WRITES 2766 * @data_out_sz: data xfer size for WRITES 2767 * @data_in_dma: physical address for READS 2768 * @data_in_sz: data xfer size for READS 2769 */ 2770 static void 2771 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2772 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2773 size_t data_in_sz) 2774 { 2775 u8 sgl_flags; 2776 2777 if (!data_out_sz && !data_in_sz) { 2778 _base_build_zero_len_sge_ieee(ioc, psge); 2779 return; 2780 } 2781 2782 if (data_out_sz && data_in_sz) { 2783 /* WRITE sgel first */ 2784 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2785 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2786 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2787 data_out_dma); 2788 2789 /* incr sgel */ 2790 psge += ioc->sge_size_ieee; 2791 2792 /* READ sgel last */ 2793 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2794 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2795 data_in_dma); 2796 } else if (data_out_sz) /* WRITE */ { 2797 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2798 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2799 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2800 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2801 data_out_dma); 2802 } else if (data_in_sz) /* READ */ { 2803 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2804 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2805 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2806 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2807 data_in_dma); 2808 } 2809 } 2810 2811 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2812 2813 /** 2814 * _base_config_dma_addressing - set dma addressing 2815 * @ioc: per adapter object 2816 * @pdev: PCI device struct 2817 * 2818 * Return: 0 for success, non-zero for failure. 2819 */ 2820 static int 2821 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2822 { 2823 struct sysinfo s; 2824 int dma_mask; 2825 2826 if (ioc->is_mcpu_endpoint || 2827 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2828 dma_get_required_mask(&pdev->dev) <= 32) 2829 dma_mask = 32; 2830 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2831 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2832 dma_mask = 63; 2833 else 2834 dma_mask = 64; 2835 2836 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2837 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) 2838 return -ENODEV; 2839 2840 if (dma_mask > 32) { 2841 ioc->base_add_sg_single = &_base_add_sg_single_64; 2842 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2843 } else { 2844 ioc->base_add_sg_single = &_base_add_sg_single_32; 2845 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2846 } 2847 2848 si_meminfo(&s); 2849 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2850 dma_mask, convert_to_kb(s.totalram)); 2851 2852 return 0; 2853 } 2854 2855 /** 2856 * _base_check_enable_msix - checks MSIX capabable. 2857 * @ioc: per adapter object 2858 * 2859 * Check to see if card is capable of MSIX, and set number 2860 * of available msix vectors 2861 */ 2862 static int 2863 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2864 { 2865 int base; 2866 u16 message_control; 2867 2868 /* Check whether controller SAS2008 B0 controller, 2869 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2870 */ 2871 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2872 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2873 return -EINVAL; 2874 } 2875 2876 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2877 if (!base) { 2878 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2879 return -EINVAL; 2880 } 2881 2882 /* get msix vector count */ 2883 /* NUMA_IO not supported for older controllers */ 2884 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2885 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2886 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2887 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2888 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2889 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2890 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2891 ioc->msix_vector_count = 1; 2892 else { 2893 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2894 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2895 } 2896 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2897 ioc->msix_vector_count)); 2898 return 0; 2899 } 2900 2901 /** 2902 * _base_free_irq - free irq 2903 * @ioc: per adapter object 2904 * 2905 * Freeing respective reply_queue from the list. 2906 */ 2907 static void 2908 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2909 { 2910 struct adapter_reply_queue *reply_q, *next; 2911 2912 if (list_empty(&ioc->reply_queue_list)) 2913 return; 2914 2915 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2916 list_del(&reply_q->list); 2917 if (ioc->smp_affinity_enable) 2918 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2919 reply_q->msix_index), NULL); 2920 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2921 reply_q); 2922 kfree(reply_q); 2923 } 2924 } 2925 2926 /** 2927 * _base_request_irq - request irq 2928 * @ioc: per adapter object 2929 * @index: msix index into vector table 2930 * 2931 * Inserting respective reply_queue into the list. 2932 */ 2933 static int 2934 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2935 { 2936 struct pci_dev *pdev = ioc->pdev; 2937 struct adapter_reply_queue *reply_q; 2938 int r; 2939 2940 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2941 if (!reply_q) { 2942 ioc_err(ioc, "unable to allocate memory %zu!\n", 2943 sizeof(struct adapter_reply_queue)); 2944 return -ENOMEM; 2945 } 2946 reply_q->ioc = ioc; 2947 reply_q->msix_index = index; 2948 2949 atomic_set(&reply_q->busy, 0); 2950 if (ioc->msix_enable) 2951 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2952 ioc->driver_name, ioc->id, index); 2953 else 2954 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2955 ioc->driver_name, ioc->id); 2956 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2957 IRQF_SHARED, reply_q->name, reply_q); 2958 if (r) { 2959 pr_err("%s: unable to allocate interrupt %d!\n", 2960 reply_q->name, pci_irq_vector(pdev, index)); 2961 kfree(reply_q); 2962 return -EBUSY; 2963 } 2964 2965 INIT_LIST_HEAD(&reply_q->list); 2966 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2967 return 0; 2968 } 2969 2970 /** 2971 * _base_assign_reply_queues - assigning msix index for each cpu 2972 * @ioc: per adapter object 2973 * 2974 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2975 * 2976 * It would nice if we could call irq_set_affinity, however it is not 2977 * an exported symbol 2978 */ 2979 static void 2980 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2981 { 2982 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2983 struct adapter_reply_queue *reply_q; 2984 int local_numa_node; 2985 2986 if (!_base_is_controller_msix_enabled(ioc)) 2987 return; 2988 2989 if (ioc->msix_load_balance) 2990 return; 2991 2992 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2993 2994 nr_cpus = num_online_cpus(); 2995 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2996 ioc->facts.MaxMSIxVectors); 2997 if (!nr_msix) 2998 return; 2999 3000 if (ioc->smp_affinity_enable) { 3001 3002 /* 3003 * set irq affinity to local numa node for those irqs 3004 * corresponding to high iops queues. 3005 */ 3006 if (ioc->high_iops_queues) { 3007 local_numa_node = dev_to_node(&ioc->pdev->dev); 3008 for (index = 0; index < ioc->high_iops_queues; 3009 index++) { 3010 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3011 index), cpumask_of_node(local_numa_node)); 3012 } 3013 } 3014 3015 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3016 const cpumask_t *mask; 3017 3018 if (reply_q->msix_index < ioc->high_iops_queues) 3019 continue; 3020 3021 mask = pci_irq_get_affinity(ioc->pdev, 3022 reply_q->msix_index); 3023 if (!mask) { 3024 ioc_warn(ioc, "no affinity for msi %x\n", 3025 reply_q->msix_index); 3026 goto fall_back; 3027 } 3028 3029 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3030 if (cpu >= ioc->cpu_msix_table_sz) 3031 break; 3032 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3033 } 3034 } 3035 return; 3036 } 3037 3038 fall_back: 3039 cpu = cpumask_first(cpu_online_mask); 3040 nr_msix -= ioc->high_iops_queues; 3041 index = 0; 3042 3043 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3044 unsigned int i, group = nr_cpus / nr_msix; 3045 3046 if (reply_q->msix_index < ioc->high_iops_queues) 3047 continue; 3048 3049 if (cpu >= nr_cpus) 3050 break; 3051 3052 if (index < nr_cpus % nr_msix) 3053 group++; 3054 3055 for (i = 0 ; i < group ; i++) { 3056 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3057 cpu = cpumask_next(cpu, cpu_online_mask); 3058 } 3059 index++; 3060 } 3061 } 3062 3063 /** 3064 * _base_check_and_enable_high_iops_queues - enable high iops mode 3065 * @ioc: per adapter object 3066 * @hba_msix_vector_count: msix vectors supported by HBA 3067 * 3068 * Enable high iops queues only if 3069 * - HBA is a SEA/AERO controller and 3070 * - MSI-Xs vector supported by the HBA is 128 and 3071 * - total CPU count in the system >=16 and 3072 * - loaded driver with default max_msix_vectors module parameter and 3073 * - system booted in non kdump mode 3074 * 3075 * returns nothing. 3076 */ 3077 static void 3078 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3079 int hba_msix_vector_count) 3080 { 3081 u16 lnksta, speed; 3082 3083 if (perf_mode == MPT_PERF_MODE_IOPS || 3084 perf_mode == MPT_PERF_MODE_LATENCY) { 3085 ioc->high_iops_queues = 0; 3086 return; 3087 } 3088 3089 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3090 3091 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3092 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3093 3094 if (speed < 0x4) { 3095 ioc->high_iops_queues = 0; 3096 return; 3097 } 3098 } 3099 3100 if (!reset_devices && ioc->is_aero_ioc && 3101 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3102 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3103 max_msix_vectors == -1) 3104 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3105 else 3106 ioc->high_iops_queues = 0; 3107 } 3108 3109 /** 3110 * _base_disable_msix - disables msix 3111 * @ioc: per adapter object 3112 * 3113 */ 3114 static void 3115 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3116 { 3117 if (!ioc->msix_enable) 3118 return; 3119 pci_free_irq_vectors(ioc->pdev); 3120 ioc->msix_enable = 0; 3121 } 3122 3123 /** 3124 * _base_alloc_irq_vectors - allocate msix vectors 3125 * @ioc: per adapter object 3126 * 3127 */ 3128 static int 3129 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3130 { 3131 int i, irq_flags = PCI_IRQ_MSIX; 3132 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3133 struct irq_affinity *descp = &desc; 3134 3135 if (ioc->smp_affinity_enable) 3136 irq_flags |= PCI_IRQ_AFFINITY; 3137 else 3138 descp = NULL; 3139 3140 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3141 ioc->reply_queue_count); 3142 3143 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3144 ioc->high_iops_queues, 3145 ioc->reply_queue_count, irq_flags, descp); 3146 3147 return i; 3148 } 3149 3150 /** 3151 * _base_enable_msix - enables msix, failback to io_apic 3152 * @ioc: per adapter object 3153 * 3154 */ 3155 static int 3156 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3157 { 3158 int r; 3159 int i, local_max_msix_vectors; 3160 u8 try_msix = 0; 3161 3162 ioc->msix_load_balance = false; 3163 3164 if (msix_disable == -1 || msix_disable == 0) 3165 try_msix = 1; 3166 3167 if (!try_msix) 3168 goto try_ioapic; 3169 3170 if (_base_check_enable_msix(ioc) != 0) 3171 goto try_ioapic; 3172 3173 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3174 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3175 ioc->cpu_count, max_msix_vectors); 3176 if (ioc->is_aero_ioc) 3177 _base_check_and_enable_high_iops_queues(ioc, 3178 ioc->msix_vector_count); 3179 ioc->reply_queue_count = 3180 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3181 ioc->msix_vector_count); 3182 3183 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3184 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3185 else 3186 local_max_msix_vectors = max_msix_vectors; 3187 3188 if (local_max_msix_vectors > 0) 3189 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3190 ioc->reply_queue_count); 3191 else if (local_max_msix_vectors == 0) 3192 goto try_ioapic; 3193 3194 /* 3195 * Enable msix_load_balance only if combined reply queue mode is 3196 * disabled on SAS3 & above generation HBA devices. 3197 */ 3198 if (!ioc->combined_reply_queue && 3199 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3200 ioc_info(ioc, 3201 "combined ReplyQueue is off, Enabling msix load balance\n"); 3202 ioc->msix_load_balance = true; 3203 } 3204 3205 /* 3206 * smp affinity setting is not need when msix load balance 3207 * is enabled. 3208 */ 3209 if (ioc->msix_load_balance) 3210 ioc->smp_affinity_enable = 0; 3211 3212 r = _base_alloc_irq_vectors(ioc); 3213 if (r < 0) { 3214 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3215 goto try_ioapic; 3216 } 3217 3218 ioc->msix_enable = 1; 3219 ioc->reply_queue_count = r; 3220 for (i = 0; i < ioc->reply_queue_count; i++) { 3221 r = _base_request_irq(ioc, i); 3222 if (r) { 3223 _base_free_irq(ioc); 3224 _base_disable_msix(ioc); 3225 goto try_ioapic; 3226 } 3227 } 3228 3229 ioc_info(ioc, "High IOPs queues : %s\n", 3230 ioc->high_iops_queues ? "enabled" : "disabled"); 3231 3232 return 0; 3233 3234 /* failback to io_apic interrupt routing */ 3235 try_ioapic: 3236 ioc->high_iops_queues = 0; 3237 ioc_info(ioc, "High IOPs queues : disabled\n"); 3238 ioc->reply_queue_count = 1; 3239 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3240 if (r < 0) { 3241 dfailprintk(ioc, 3242 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3243 r)); 3244 } else 3245 r = _base_request_irq(ioc, 0); 3246 3247 return r; 3248 } 3249 3250 /** 3251 * mpt3sas_base_unmap_resources - free controller resources 3252 * @ioc: per adapter object 3253 */ 3254 static void 3255 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3256 { 3257 struct pci_dev *pdev = ioc->pdev; 3258 3259 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3260 3261 _base_free_irq(ioc); 3262 _base_disable_msix(ioc); 3263 3264 kfree(ioc->replyPostRegisterIndex); 3265 ioc->replyPostRegisterIndex = NULL; 3266 3267 3268 if (ioc->chip_phys) { 3269 iounmap(ioc->chip); 3270 ioc->chip_phys = 0; 3271 } 3272 3273 if (pci_is_enabled(pdev)) { 3274 pci_release_selected_regions(ioc->pdev, ioc->bars); 3275 pci_disable_pcie_error_reporting(pdev); 3276 pci_disable_device(pdev); 3277 } 3278 } 3279 3280 static int 3281 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3282 3283 /** 3284 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3285 * and if it is in fault state then issue diag reset. 3286 * @ioc: per adapter object 3287 * 3288 * Returns: 0 for success, non-zero for failure. 3289 */ 3290 static int 3291 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3292 { 3293 u32 ioc_state; 3294 int rc = -EFAULT; 3295 3296 dinitprintk(ioc, pr_info("%s\n", __func__)); 3297 if (ioc->pci_error_recovery) 3298 return 0; 3299 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3300 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3301 3302 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3303 mpt3sas_print_fault_code(ioc, ioc_state & 3304 MPI2_DOORBELL_DATA_MASK); 3305 rc = _base_diag_reset(ioc); 3306 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3307 MPI2_IOC_STATE_COREDUMP) { 3308 mpt3sas_print_coredump_info(ioc, ioc_state & 3309 MPI2_DOORBELL_DATA_MASK); 3310 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3311 rc = _base_diag_reset(ioc); 3312 } 3313 3314 return rc; 3315 } 3316 3317 /** 3318 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3319 * @ioc: per adapter object 3320 * 3321 * Return: 0 for success, non-zero for failure. 3322 */ 3323 int 3324 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3325 { 3326 struct pci_dev *pdev = ioc->pdev; 3327 u32 memap_sz; 3328 u32 pio_sz; 3329 int i, r = 0, rc; 3330 u64 pio_chip = 0; 3331 phys_addr_t chip_phys = 0; 3332 struct adapter_reply_queue *reply_q; 3333 3334 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3335 3336 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3337 if (pci_enable_device_mem(pdev)) { 3338 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3339 ioc->bars = 0; 3340 return -ENODEV; 3341 } 3342 3343 3344 if (pci_request_selected_regions(pdev, ioc->bars, 3345 ioc->driver_name)) { 3346 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3347 ioc->bars = 0; 3348 r = -ENODEV; 3349 goto out_fail; 3350 } 3351 3352 /* AER (Advanced Error Reporting) hooks */ 3353 pci_enable_pcie_error_reporting(pdev); 3354 3355 pci_set_master(pdev); 3356 3357 3358 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3359 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3360 r = -ENODEV; 3361 goto out_fail; 3362 } 3363 3364 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3365 (!memap_sz || !pio_sz); i++) { 3366 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3367 if (pio_sz) 3368 continue; 3369 pio_chip = (u64)pci_resource_start(pdev, i); 3370 pio_sz = pci_resource_len(pdev, i); 3371 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3372 if (memap_sz) 3373 continue; 3374 ioc->chip_phys = pci_resource_start(pdev, i); 3375 chip_phys = ioc->chip_phys; 3376 memap_sz = pci_resource_len(pdev, i); 3377 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3378 } 3379 } 3380 3381 if (ioc->chip == NULL) { 3382 ioc_err(ioc, 3383 "unable to map adapter memory! or resource not found\n"); 3384 r = -EINVAL; 3385 goto out_fail; 3386 } 3387 3388 mpt3sas_base_mask_interrupts(ioc); 3389 3390 r = _base_get_ioc_facts(ioc); 3391 if (r) { 3392 rc = _base_check_for_fault_and_issue_reset(ioc); 3393 if (rc || (_base_get_ioc_facts(ioc))) 3394 goto out_fail; 3395 } 3396 3397 if (!ioc->rdpq_array_enable_assigned) { 3398 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3399 ioc->rdpq_array_enable_assigned = 1; 3400 } 3401 3402 r = _base_enable_msix(ioc); 3403 if (r) 3404 goto out_fail; 3405 3406 if (!ioc->is_driver_loading) 3407 _base_init_irqpolls(ioc); 3408 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3409 * revision HBAs and also only when reply queue count is greater than 8 3410 */ 3411 if (ioc->combined_reply_queue) { 3412 /* Determine the Supplemental Reply Post Host Index Registers 3413 * Addresse. Supplemental Reply Post Host Index Registers 3414 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3415 * each register is at offset bytes of 3416 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3417 */ 3418 ioc->replyPostRegisterIndex = kcalloc( 3419 ioc->combined_reply_index_count, 3420 sizeof(resource_size_t *), GFP_KERNEL); 3421 if (!ioc->replyPostRegisterIndex) { 3422 ioc_err(ioc, 3423 "allocation for replyPostRegisterIndex failed!\n"); 3424 r = -ENOMEM; 3425 goto out_fail; 3426 } 3427 3428 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3429 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3430 ((u8 __force *)&ioc->chip->Doorbell + 3431 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3432 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3433 } 3434 } 3435 3436 if (ioc->is_warpdrive) { 3437 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3438 &ioc->chip->ReplyPostHostIndex; 3439 3440 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3441 ioc->reply_post_host_index[i] = 3442 (resource_size_t __iomem *) 3443 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3444 * 4))); 3445 } 3446 3447 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3448 pr_info("%s: %s enabled: IRQ %d\n", 3449 reply_q->name, 3450 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3451 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3452 3453 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3454 &chip_phys, ioc->chip, memap_sz); 3455 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3456 (unsigned long long)pio_chip, pio_sz); 3457 3458 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3459 pci_save_state(pdev); 3460 return 0; 3461 3462 out_fail: 3463 mpt3sas_base_unmap_resources(ioc); 3464 return r; 3465 } 3466 3467 /** 3468 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3469 * @ioc: per adapter object 3470 * @smid: system request message index(smid zero is invalid) 3471 * 3472 * Return: virt pointer to message frame. 3473 */ 3474 void * 3475 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3476 { 3477 return (void *)(ioc->request + (smid * ioc->request_sz)); 3478 } 3479 3480 /** 3481 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3482 * @ioc: per adapter object 3483 * @smid: system request message index 3484 * 3485 * Return: virt pointer to sense buffer. 3486 */ 3487 void * 3488 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3489 { 3490 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3491 } 3492 3493 /** 3494 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3495 * @ioc: per adapter object 3496 * @smid: system request message index 3497 * 3498 * Return: phys pointer to the low 32bit address of the sense buffer. 3499 */ 3500 __le32 3501 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3502 { 3503 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3504 SCSI_SENSE_BUFFERSIZE)); 3505 } 3506 3507 /** 3508 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3509 * @ioc: per adapter object 3510 * @smid: system request message index 3511 * 3512 * Return: virt pointer to a PCIe SGL. 3513 */ 3514 void * 3515 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3516 { 3517 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3518 } 3519 3520 /** 3521 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3522 * @ioc: per adapter object 3523 * @smid: system request message index 3524 * 3525 * Return: phys pointer to the address of the PCIe buffer. 3526 */ 3527 dma_addr_t 3528 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3529 { 3530 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3531 } 3532 3533 /** 3534 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3535 * @ioc: per adapter object 3536 * @phys_addr: lower 32 physical addr of the reply 3537 * 3538 * Converts 32bit lower physical addr into a virt address. 3539 */ 3540 void * 3541 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3542 { 3543 if (!phys_addr) 3544 return NULL; 3545 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3546 } 3547 3548 /** 3549 * _base_get_msix_index - get the msix index 3550 * @ioc: per adapter object 3551 * @scmd: scsi_cmnd object 3552 * 3553 * returns msix index of general reply queues, 3554 * i.e. reply queue on which IO request's reply 3555 * should be posted by the HBA firmware. 3556 */ 3557 static inline u8 3558 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3559 struct scsi_cmnd *scmd) 3560 { 3561 /* Enables reply_queue load balancing */ 3562 if (ioc->msix_load_balance) 3563 return ioc->reply_queue_count ? 3564 base_mod64(atomic64_add_return(1, 3565 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3566 3567 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3568 } 3569 3570 /** 3571 * _base_sdev_nr_inflight_request -get number of inflight requests 3572 * of a request queue. 3573 * @q: request_queue object 3574 * 3575 * returns number of inflight request of a request queue. 3576 */ 3577 inline unsigned long 3578 _base_sdev_nr_inflight_request(struct request_queue *q) 3579 { 3580 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; 3581 3582 return atomic_read(&hctx->nr_active); 3583 } 3584 3585 3586 /** 3587 * _base_get_high_iops_msix_index - get the msix index of 3588 * high iops queues 3589 * @ioc: per adapter object 3590 * @scmd: scsi_cmnd object 3591 * 3592 * Returns: msix index of high iops reply queues. 3593 * i.e. high iops reply queue on which IO request's 3594 * reply should be posted by the HBA firmware. 3595 */ 3596 static inline u8 3597 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3598 struct scsi_cmnd *scmd) 3599 { 3600 /** 3601 * Round robin the IO interrupts among the high iops 3602 * reply queues in terms of batch count 16 when outstanding 3603 * IOs on the target device is >=8. 3604 */ 3605 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > 3606 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3607 return base_mod64(( 3608 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3609 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3610 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3611 3612 return _base_get_msix_index(ioc, scmd); 3613 } 3614 3615 /** 3616 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3617 * @ioc: per adapter object 3618 * @cb_idx: callback index 3619 * 3620 * Return: smid (zero is invalid) 3621 */ 3622 u16 3623 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3624 { 3625 unsigned long flags; 3626 struct request_tracker *request; 3627 u16 smid; 3628 3629 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3630 if (list_empty(&ioc->internal_free_list)) { 3631 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3632 ioc_err(ioc, "%s: smid not available\n", __func__); 3633 return 0; 3634 } 3635 3636 request = list_entry(ioc->internal_free_list.next, 3637 struct request_tracker, tracker_list); 3638 request->cb_idx = cb_idx; 3639 smid = request->smid; 3640 list_del(&request->tracker_list); 3641 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3642 return smid; 3643 } 3644 3645 /** 3646 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3647 * @ioc: per adapter object 3648 * @cb_idx: callback index 3649 * @scmd: pointer to scsi command object 3650 * 3651 * Return: smid (zero is invalid) 3652 */ 3653 u16 3654 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3655 struct scsi_cmnd *scmd) 3656 { 3657 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3658 unsigned int tag = scmd->request->tag; 3659 u16 smid; 3660 3661 smid = tag + 1; 3662 request->cb_idx = cb_idx; 3663 request->smid = smid; 3664 request->scmd = scmd; 3665 INIT_LIST_HEAD(&request->chain_list); 3666 return smid; 3667 } 3668 3669 /** 3670 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3671 * @ioc: per adapter object 3672 * @cb_idx: callback index 3673 * 3674 * Return: smid (zero is invalid) 3675 */ 3676 u16 3677 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3678 { 3679 unsigned long flags; 3680 struct request_tracker *request; 3681 u16 smid; 3682 3683 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3684 if (list_empty(&ioc->hpr_free_list)) { 3685 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3686 return 0; 3687 } 3688 3689 request = list_entry(ioc->hpr_free_list.next, 3690 struct request_tracker, tracker_list); 3691 request->cb_idx = cb_idx; 3692 smid = request->smid; 3693 list_del(&request->tracker_list); 3694 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3695 return smid; 3696 } 3697 3698 static void 3699 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3700 { 3701 /* 3702 * See _wait_for_commands_to_complete() call with regards to this code. 3703 */ 3704 if (ioc->shost_recovery && ioc->pending_io_count) { 3705 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3706 if (ioc->pending_io_count == 0) 3707 wake_up(&ioc->reset_wq); 3708 } 3709 } 3710 3711 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3712 struct scsiio_tracker *st) 3713 { 3714 if (WARN_ON(st->smid == 0)) 3715 return; 3716 st->cb_idx = 0xFF; 3717 st->direct_io = 0; 3718 st->scmd = NULL; 3719 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3720 st->smid = 0; 3721 } 3722 3723 /** 3724 * mpt3sas_base_free_smid - put smid back on free_list 3725 * @ioc: per adapter object 3726 * @smid: system request message index 3727 */ 3728 void 3729 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3730 { 3731 unsigned long flags; 3732 int i; 3733 3734 if (smid < ioc->hi_priority_smid) { 3735 struct scsiio_tracker *st; 3736 void *request; 3737 3738 st = _get_st_from_smid(ioc, smid); 3739 if (!st) { 3740 _base_recovery_check(ioc); 3741 return; 3742 } 3743 3744 /* Clear MPI request frame */ 3745 request = mpt3sas_base_get_msg_frame(ioc, smid); 3746 memset(request, 0, ioc->request_sz); 3747 3748 mpt3sas_base_clear_st(ioc, st); 3749 _base_recovery_check(ioc); 3750 return; 3751 } 3752 3753 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3754 if (smid < ioc->internal_smid) { 3755 /* hi-priority */ 3756 i = smid - ioc->hi_priority_smid; 3757 ioc->hpr_lookup[i].cb_idx = 0xFF; 3758 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3759 } else if (smid <= ioc->hba_queue_depth) { 3760 /* internal queue */ 3761 i = smid - ioc->internal_smid; 3762 ioc->internal_lookup[i].cb_idx = 0xFF; 3763 list_add(&ioc->internal_lookup[i].tracker_list, 3764 &ioc->internal_free_list); 3765 } 3766 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3767 } 3768 3769 /** 3770 * _base_mpi_ep_writeq - 32 bit write to MMIO 3771 * @b: data payload 3772 * @addr: address in MMIO space 3773 * @writeq_lock: spin lock 3774 * 3775 * This special handling for MPI EP to take care of 32 bit 3776 * environment where its not quarenteed to send the entire word 3777 * in one transfer. 3778 */ 3779 static inline void 3780 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3781 spinlock_t *writeq_lock) 3782 { 3783 unsigned long flags; 3784 3785 spin_lock_irqsave(writeq_lock, flags); 3786 __raw_writel((u32)(b), addr); 3787 __raw_writel((u32)(b >> 32), (addr + 4)); 3788 spin_unlock_irqrestore(writeq_lock, flags); 3789 } 3790 3791 /** 3792 * _base_writeq - 64 bit write to MMIO 3793 * @b: data payload 3794 * @addr: address in MMIO space 3795 * @writeq_lock: spin lock 3796 * 3797 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3798 * care of 32 bit environment where its not quarenteed to send the entire word 3799 * in one transfer. 3800 */ 3801 #if defined(writeq) && defined(CONFIG_64BIT) 3802 static inline void 3803 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3804 { 3805 wmb(); 3806 __raw_writeq(b, addr); 3807 barrier(); 3808 } 3809 #else 3810 static inline void 3811 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3812 { 3813 _base_mpi_ep_writeq(b, addr, writeq_lock); 3814 } 3815 #endif 3816 3817 /** 3818 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3819 * variable of scsi tracker 3820 * @ioc: per adapter object 3821 * @smid: system request message index 3822 * 3823 * returns msix index. 3824 */ 3825 static u8 3826 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3827 { 3828 struct scsiio_tracker *st = NULL; 3829 3830 if (smid < ioc->hi_priority_smid) 3831 st = _get_st_from_smid(ioc, smid); 3832 3833 if (st == NULL) 3834 return _base_get_msix_index(ioc, NULL); 3835 3836 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3837 return st->msix_io; 3838 } 3839 3840 /** 3841 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3842 * @ioc: per adapter object 3843 * @smid: system request message index 3844 * @handle: device handle 3845 */ 3846 static void 3847 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3848 u16 smid, u16 handle) 3849 { 3850 Mpi2RequestDescriptorUnion_t descriptor; 3851 u64 *request = (u64 *)&descriptor; 3852 void *mpi_req_iomem; 3853 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3854 3855 _clone_sg_entries(ioc, (void *) mfp, smid); 3856 mpi_req_iomem = (void __force *)ioc->chip + 3857 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3858 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3859 ioc->request_sz); 3860 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3861 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3862 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3863 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3864 descriptor.SCSIIO.LMID = 0; 3865 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3866 &ioc->scsi_lookup_lock); 3867 } 3868 3869 /** 3870 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3871 * @ioc: per adapter object 3872 * @smid: system request message index 3873 * @handle: device handle 3874 */ 3875 static void 3876 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3877 { 3878 Mpi2RequestDescriptorUnion_t descriptor; 3879 u64 *request = (u64 *)&descriptor; 3880 3881 3882 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3883 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3884 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3885 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3886 descriptor.SCSIIO.LMID = 0; 3887 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3888 &ioc->scsi_lookup_lock); 3889 } 3890 3891 /** 3892 * _base_put_smid_fast_path - send fast path request to firmware 3893 * @ioc: per adapter object 3894 * @smid: system request message index 3895 * @handle: device handle 3896 */ 3897 static void 3898 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3899 u16 handle) 3900 { 3901 Mpi2RequestDescriptorUnion_t descriptor; 3902 u64 *request = (u64 *)&descriptor; 3903 3904 descriptor.SCSIIO.RequestFlags = 3905 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3906 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3907 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3908 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3909 descriptor.SCSIIO.LMID = 0; 3910 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3911 &ioc->scsi_lookup_lock); 3912 } 3913 3914 /** 3915 * _base_put_smid_hi_priority - send Task Management request to firmware 3916 * @ioc: per adapter object 3917 * @smid: system request message index 3918 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3919 */ 3920 static void 3921 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3922 u16 msix_task) 3923 { 3924 Mpi2RequestDescriptorUnion_t descriptor; 3925 void *mpi_req_iomem; 3926 u64 *request; 3927 3928 if (ioc->is_mcpu_endpoint) { 3929 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3930 3931 /* TBD 256 is offset within sys register. */ 3932 mpi_req_iomem = (void __force *)ioc->chip 3933 + MPI_FRAME_START_OFFSET 3934 + (smid * ioc->request_sz); 3935 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3936 ioc->request_sz); 3937 } 3938 3939 request = (u64 *)&descriptor; 3940 3941 descriptor.HighPriority.RequestFlags = 3942 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3943 descriptor.HighPriority.MSIxIndex = msix_task; 3944 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3945 descriptor.HighPriority.LMID = 0; 3946 descriptor.HighPriority.Reserved1 = 0; 3947 if (ioc->is_mcpu_endpoint) 3948 _base_mpi_ep_writeq(*request, 3949 &ioc->chip->RequestDescriptorPostLow, 3950 &ioc->scsi_lookup_lock); 3951 else 3952 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3953 &ioc->scsi_lookup_lock); 3954 } 3955 3956 /** 3957 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3958 * firmware 3959 * @ioc: per adapter object 3960 * @smid: system request message index 3961 */ 3962 void 3963 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3964 { 3965 Mpi2RequestDescriptorUnion_t descriptor; 3966 u64 *request = (u64 *)&descriptor; 3967 3968 descriptor.Default.RequestFlags = 3969 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3970 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3971 descriptor.Default.SMID = cpu_to_le16(smid); 3972 descriptor.Default.LMID = 0; 3973 descriptor.Default.DescriptorTypeDependent = 0; 3974 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3975 &ioc->scsi_lookup_lock); 3976 } 3977 3978 /** 3979 * _base_put_smid_default - Default, primarily used for config pages 3980 * @ioc: per adapter object 3981 * @smid: system request message index 3982 */ 3983 static void 3984 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3985 { 3986 Mpi2RequestDescriptorUnion_t descriptor; 3987 void *mpi_req_iomem; 3988 u64 *request; 3989 3990 if (ioc->is_mcpu_endpoint) { 3991 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3992 3993 _clone_sg_entries(ioc, (void *) mfp, smid); 3994 /* TBD 256 is offset within sys register */ 3995 mpi_req_iomem = (void __force *)ioc->chip + 3996 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3997 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3998 ioc->request_sz); 3999 } 4000 request = (u64 *)&descriptor; 4001 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4002 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4003 descriptor.Default.SMID = cpu_to_le16(smid); 4004 descriptor.Default.LMID = 0; 4005 descriptor.Default.DescriptorTypeDependent = 0; 4006 if (ioc->is_mcpu_endpoint) 4007 _base_mpi_ep_writeq(*request, 4008 &ioc->chip->RequestDescriptorPostLow, 4009 &ioc->scsi_lookup_lock); 4010 else 4011 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4012 &ioc->scsi_lookup_lock); 4013 } 4014 4015 /** 4016 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4017 * Atomic Request Descriptor 4018 * @ioc: per adapter object 4019 * @smid: system request message index 4020 * @handle: device handle, unused in this function, for function type match 4021 * 4022 * Return nothing. 4023 */ 4024 static void 4025 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4026 u16 handle) 4027 { 4028 Mpi26AtomicRequestDescriptor_t descriptor; 4029 u32 *request = (u32 *)&descriptor; 4030 4031 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4032 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4033 descriptor.SMID = cpu_to_le16(smid); 4034 4035 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4036 } 4037 4038 /** 4039 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4040 * using Atomic Request Descriptor 4041 * @ioc: per adapter object 4042 * @smid: system request message index 4043 * @handle: device handle, unused in this function, for function type match 4044 * Return nothing 4045 */ 4046 static void 4047 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4048 u16 handle) 4049 { 4050 Mpi26AtomicRequestDescriptor_t descriptor; 4051 u32 *request = (u32 *)&descriptor; 4052 4053 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4054 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4055 descriptor.SMID = cpu_to_le16(smid); 4056 4057 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4058 } 4059 4060 /** 4061 * _base_put_smid_hi_priority_atomic - send Task Management request to 4062 * firmware using Atomic Request Descriptor 4063 * @ioc: per adapter object 4064 * @smid: system request message index 4065 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4066 * 4067 * Return nothing. 4068 */ 4069 static void 4070 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4071 u16 msix_task) 4072 { 4073 Mpi26AtomicRequestDescriptor_t descriptor; 4074 u32 *request = (u32 *)&descriptor; 4075 4076 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4077 descriptor.MSIxIndex = msix_task; 4078 descriptor.SMID = cpu_to_le16(smid); 4079 4080 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4081 } 4082 4083 /** 4084 * _base_put_smid_default - Default, primarily used for config pages 4085 * use Atomic Request Descriptor 4086 * @ioc: per adapter object 4087 * @smid: system request message index 4088 * 4089 * Return nothing. 4090 */ 4091 static void 4092 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4093 { 4094 Mpi26AtomicRequestDescriptor_t descriptor; 4095 u32 *request = (u32 *)&descriptor; 4096 4097 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4098 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4099 descriptor.SMID = cpu_to_le16(smid); 4100 4101 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4102 } 4103 4104 /** 4105 * _base_display_OEMs_branding - Display branding string 4106 * @ioc: per adapter object 4107 */ 4108 static void 4109 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4110 { 4111 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4112 return; 4113 4114 switch (ioc->pdev->subsystem_vendor) { 4115 case PCI_VENDOR_ID_INTEL: 4116 switch (ioc->pdev->device) { 4117 case MPI2_MFGPAGE_DEVID_SAS2008: 4118 switch (ioc->pdev->subsystem_device) { 4119 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4120 ioc_info(ioc, "%s\n", 4121 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4122 break; 4123 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4124 ioc_info(ioc, "%s\n", 4125 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4126 break; 4127 case MPT2SAS_INTEL_SSD910_SSDID: 4128 ioc_info(ioc, "%s\n", 4129 MPT2SAS_INTEL_SSD910_BRANDING); 4130 break; 4131 default: 4132 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4133 ioc->pdev->subsystem_device); 4134 break; 4135 } 4136 break; 4137 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4138 switch (ioc->pdev->subsystem_device) { 4139 case MPT2SAS_INTEL_RS25GB008_SSDID: 4140 ioc_info(ioc, "%s\n", 4141 MPT2SAS_INTEL_RS25GB008_BRANDING); 4142 break; 4143 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4144 ioc_info(ioc, "%s\n", 4145 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4146 break; 4147 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4148 ioc_info(ioc, "%s\n", 4149 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4150 break; 4151 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4152 ioc_info(ioc, "%s\n", 4153 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4154 break; 4155 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4156 ioc_info(ioc, "%s\n", 4157 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4158 break; 4159 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4160 ioc_info(ioc, "%s\n", 4161 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4162 break; 4163 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4164 ioc_info(ioc, "%s\n", 4165 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4166 break; 4167 default: 4168 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4169 ioc->pdev->subsystem_device); 4170 break; 4171 } 4172 break; 4173 case MPI25_MFGPAGE_DEVID_SAS3008: 4174 switch (ioc->pdev->subsystem_device) { 4175 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4176 ioc_info(ioc, "%s\n", 4177 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4178 break; 4179 4180 case MPT3SAS_INTEL_RS3GC008_SSDID: 4181 ioc_info(ioc, "%s\n", 4182 MPT3SAS_INTEL_RS3GC008_BRANDING); 4183 break; 4184 case MPT3SAS_INTEL_RS3FC044_SSDID: 4185 ioc_info(ioc, "%s\n", 4186 MPT3SAS_INTEL_RS3FC044_BRANDING); 4187 break; 4188 case MPT3SAS_INTEL_RS3UC080_SSDID: 4189 ioc_info(ioc, "%s\n", 4190 MPT3SAS_INTEL_RS3UC080_BRANDING); 4191 break; 4192 default: 4193 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4194 ioc->pdev->subsystem_device); 4195 break; 4196 } 4197 break; 4198 default: 4199 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4200 ioc->pdev->subsystem_device); 4201 break; 4202 } 4203 break; 4204 case PCI_VENDOR_ID_DELL: 4205 switch (ioc->pdev->device) { 4206 case MPI2_MFGPAGE_DEVID_SAS2008: 4207 switch (ioc->pdev->subsystem_device) { 4208 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4209 ioc_info(ioc, "%s\n", 4210 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4211 break; 4212 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4213 ioc_info(ioc, "%s\n", 4214 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4215 break; 4216 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4217 ioc_info(ioc, "%s\n", 4218 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4219 break; 4220 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4221 ioc_info(ioc, "%s\n", 4222 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4223 break; 4224 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4225 ioc_info(ioc, "%s\n", 4226 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4227 break; 4228 case MPT2SAS_DELL_PERC_H200_SSDID: 4229 ioc_info(ioc, "%s\n", 4230 MPT2SAS_DELL_PERC_H200_BRANDING); 4231 break; 4232 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4233 ioc_info(ioc, "%s\n", 4234 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4235 break; 4236 default: 4237 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4238 ioc->pdev->subsystem_device); 4239 break; 4240 } 4241 break; 4242 case MPI25_MFGPAGE_DEVID_SAS3008: 4243 switch (ioc->pdev->subsystem_device) { 4244 case MPT3SAS_DELL_12G_HBA_SSDID: 4245 ioc_info(ioc, "%s\n", 4246 MPT3SAS_DELL_12G_HBA_BRANDING); 4247 break; 4248 default: 4249 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4250 ioc->pdev->subsystem_device); 4251 break; 4252 } 4253 break; 4254 default: 4255 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4256 ioc->pdev->subsystem_device); 4257 break; 4258 } 4259 break; 4260 case PCI_VENDOR_ID_CISCO: 4261 switch (ioc->pdev->device) { 4262 case MPI25_MFGPAGE_DEVID_SAS3008: 4263 switch (ioc->pdev->subsystem_device) { 4264 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4265 ioc_info(ioc, "%s\n", 4266 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4267 break; 4268 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4269 ioc_info(ioc, "%s\n", 4270 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4271 break; 4272 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4273 ioc_info(ioc, "%s\n", 4274 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4275 break; 4276 default: 4277 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4278 ioc->pdev->subsystem_device); 4279 break; 4280 } 4281 break; 4282 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4283 switch (ioc->pdev->subsystem_device) { 4284 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4285 ioc_info(ioc, "%s\n", 4286 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4287 break; 4288 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4289 ioc_info(ioc, "%s\n", 4290 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4291 break; 4292 default: 4293 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4294 ioc->pdev->subsystem_device); 4295 break; 4296 } 4297 break; 4298 default: 4299 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4300 ioc->pdev->subsystem_device); 4301 break; 4302 } 4303 break; 4304 case MPT2SAS_HP_3PAR_SSVID: 4305 switch (ioc->pdev->device) { 4306 case MPI2_MFGPAGE_DEVID_SAS2004: 4307 switch (ioc->pdev->subsystem_device) { 4308 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4309 ioc_info(ioc, "%s\n", 4310 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4311 break; 4312 default: 4313 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4314 ioc->pdev->subsystem_device); 4315 break; 4316 } 4317 break; 4318 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4319 switch (ioc->pdev->subsystem_device) { 4320 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4321 ioc_info(ioc, "%s\n", 4322 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4323 break; 4324 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4325 ioc_info(ioc, "%s\n", 4326 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4327 break; 4328 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4329 ioc_info(ioc, "%s\n", 4330 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4331 break; 4332 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4333 ioc_info(ioc, "%s\n", 4334 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4335 break; 4336 default: 4337 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4338 ioc->pdev->subsystem_device); 4339 break; 4340 } 4341 break; 4342 default: 4343 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4344 ioc->pdev->subsystem_device); 4345 break; 4346 } 4347 default: 4348 break; 4349 } 4350 } 4351 4352 /** 4353 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4354 * version from FW Image Header. 4355 * @ioc: per adapter object 4356 * 4357 * Return: 0 for success, non-zero for failure. 4358 */ 4359 static int 4360 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4361 { 4362 Mpi2FWImageHeader_t *fw_img_hdr; 4363 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4364 Mpi25FWUploadRequest_t *mpi_request; 4365 Mpi2FWUploadReply_t mpi_reply; 4366 int r = 0; 4367 u32 package_version = 0; 4368 void *fwpkg_data = NULL; 4369 dma_addr_t fwpkg_data_dma; 4370 u16 smid, ioc_status; 4371 size_t data_length; 4372 4373 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4374 4375 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4376 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4377 return -EAGAIN; 4378 } 4379 4380 data_length = sizeof(Mpi2FWImageHeader_t); 4381 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4382 &fwpkg_data_dma, GFP_KERNEL); 4383 if (!fwpkg_data) { 4384 ioc_err(ioc, 4385 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4386 __FILE__, __LINE__, __func__); 4387 return -ENOMEM; 4388 } 4389 4390 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4391 if (!smid) { 4392 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4393 r = -EAGAIN; 4394 goto out; 4395 } 4396 4397 ioc->base_cmds.status = MPT3_CMD_PENDING; 4398 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4399 ioc->base_cmds.smid = smid; 4400 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4401 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4402 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4403 mpi_request->ImageSize = cpu_to_le32(data_length); 4404 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4405 data_length); 4406 init_completion(&ioc->base_cmds.done); 4407 ioc->put_smid_default(ioc, smid); 4408 /* Wait for 15 seconds */ 4409 wait_for_completion_timeout(&ioc->base_cmds.done, 4410 FW_IMG_HDR_READ_TIMEOUT*HZ); 4411 ioc_info(ioc, "%s: complete\n", __func__); 4412 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4413 ioc_err(ioc, "%s: timeout\n", __func__); 4414 _debug_dump_mf(mpi_request, 4415 sizeof(Mpi25FWUploadRequest_t)/4); 4416 r = -ETIME; 4417 } else { 4418 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4419 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4420 memcpy(&mpi_reply, ioc->base_cmds.reply, 4421 sizeof(Mpi2FWUploadReply_t)); 4422 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4423 MPI2_IOCSTATUS_MASK; 4424 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4425 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4426 if (le32_to_cpu(fw_img_hdr->Signature) == 4427 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4428 cmp_img_hdr = 4429 (Mpi26ComponentImageHeader_t *) 4430 (fwpkg_data); 4431 package_version = 4432 le32_to_cpu( 4433 cmp_img_hdr->ApplicationSpecific); 4434 } else 4435 package_version = 4436 le32_to_cpu( 4437 fw_img_hdr->PackageVersion.Word); 4438 if (package_version) 4439 ioc_info(ioc, 4440 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4441 ((package_version) & 0xFF000000) >> 24, 4442 ((package_version) & 0x00FF0000) >> 16, 4443 ((package_version) & 0x0000FF00) >> 8, 4444 (package_version) & 0x000000FF); 4445 } else { 4446 _debug_dump_mf(&mpi_reply, 4447 sizeof(Mpi2FWUploadReply_t)/4); 4448 } 4449 } 4450 } 4451 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4452 out: 4453 if (fwpkg_data) 4454 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4455 fwpkg_data_dma); 4456 return r; 4457 } 4458 4459 /** 4460 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4461 * @ioc: per adapter object 4462 */ 4463 static void 4464 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4465 { 4466 int i = 0; 4467 char desc[16]; 4468 u32 iounit_pg1_flags; 4469 u32 bios_version; 4470 4471 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4472 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4473 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4474 desc, 4475 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4476 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4477 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4478 ioc->facts.FWVersion.Word & 0x000000FF, 4479 ioc->pdev->revision, 4480 (bios_version & 0xFF000000) >> 24, 4481 (bios_version & 0x00FF0000) >> 16, 4482 (bios_version & 0x0000FF00) >> 8, 4483 bios_version & 0x000000FF); 4484 4485 _base_display_OEMs_branding(ioc); 4486 4487 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4488 pr_info("%sNVMe", i ? "," : ""); 4489 i++; 4490 } 4491 4492 ioc_info(ioc, "Protocol=("); 4493 4494 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4495 pr_cont("Initiator"); 4496 i++; 4497 } 4498 4499 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4500 pr_cont("%sTarget", i ? "," : ""); 4501 i++; 4502 } 4503 4504 i = 0; 4505 pr_cont("), Capabilities=("); 4506 4507 if (!ioc->hide_ir_msg) { 4508 if (ioc->facts.IOCCapabilities & 4509 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4510 pr_cont("Raid"); 4511 i++; 4512 } 4513 } 4514 4515 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4516 pr_cont("%sTLR", i ? "," : ""); 4517 i++; 4518 } 4519 4520 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4521 pr_cont("%sMulticast", i ? "," : ""); 4522 i++; 4523 } 4524 4525 if (ioc->facts.IOCCapabilities & 4526 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4527 pr_cont("%sBIDI Target", i ? "," : ""); 4528 i++; 4529 } 4530 4531 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4532 pr_cont("%sEEDP", i ? "," : ""); 4533 i++; 4534 } 4535 4536 if (ioc->facts.IOCCapabilities & 4537 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4538 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4539 i++; 4540 } 4541 4542 if (ioc->facts.IOCCapabilities & 4543 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4544 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4545 i++; 4546 } 4547 4548 if (ioc->facts.IOCCapabilities & 4549 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4550 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4551 i++; 4552 } 4553 4554 if (ioc->facts.IOCCapabilities & 4555 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4556 pr_cont("%sTask Set Full", i ? "," : ""); 4557 i++; 4558 } 4559 4560 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4561 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4562 pr_cont("%sNCQ", i ? "," : ""); 4563 i++; 4564 } 4565 4566 pr_cont(")\n"); 4567 } 4568 4569 /** 4570 * mpt3sas_base_update_missing_delay - change the missing delay timers 4571 * @ioc: per adapter object 4572 * @device_missing_delay: amount of time till device is reported missing 4573 * @io_missing_delay: interval IO is returned when there is a missing device 4574 * 4575 * Passed on the command line, this function will modify the device missing 4576 * delay, as well as the io missing delay. This should be called at driver 4577 * load time. 4578 */ 4579 void 4580 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4581 u16 device_missing_delay, u8 io_missing_delay) 4582 { 4583 u16 dmd, dmd_new, dmd_orignal; 4584 u8 io_missing_delay_original; 4585 u16 sz; 4586 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4587 Mpi2ConfigReply_t mpi_reply; 4588 u8 num_phys = 0; 4589 u16 ioc_status; 4590 4591 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4592 if (!num_phys) 4593 return; 4594 4595 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4596 sizeof(Mpi2SasIOUnit1PhyData_t)); 4597 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4598 if (!sas_iounit_pg1) { 4599 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4600 __FILE__, __LINE__, __func__); 4601 goto out; 4602 } 4603 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4604 sas_iounit_pg1, sz))) { 4605 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4606 __FILE__, __LINE__, __func__); 4607 goto out; 4608 } 4609 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4610 MPI2_IOCSTATUS_MASK; 4611 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4612 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4613 __FILE__, __LINE__, __func__); 4614 goto out; 4615 } 4616 4617 /* device missing delay */ 4618 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4619 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4620 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4621 else 4622 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4623 dmd_orignal = dmd; 4624 if (device_missing_delay > 0x7F) { 4625 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4626 device_missing_delay; 4627 dmd = dmd / 16; 4628 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4629 } else 4630 dmd = device_missing_delay; 4631 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4632 4633 /* io missing delay */ 4634 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4635 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4636 4637 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4638 sz)) { 4639 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4640 dmd_new = (dmd & 4641 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4642 else 4643 dmd_new = 4644 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4645 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4646 dmd_orignal, dmd_new); 4647 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4648 io_missing_delay_original, 4649 io_missing_delay); 4650 ioc->device_missing_delay = dmd_new; 4651 ioc->io_missing_delay = io_missing_delay; 4652 } 4653 4654 out: 4655 kfree(sas_iounit_pg1); 4656 } 4657 4658 /** 4659 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4660 * according to performance mode. 4661 * @ioc : per adapter object 4662 * 4663 * Return nothing. 4664 */ 4665 static void 4666 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4667 { 4668 Mpi2IOCPage1_t ioc_pg1; 4669 Mpi2ConfigReply_t mpi_reply; 4670 4671 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4672 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4673 4674 switch (perf_mode) { 4675 case MPT_PERF_MODE_DEFAULT: 4676 case MPT_PERF_MODE_BALANCED: 4677 if (ioc->high_iops_queues) { 4678 ioc_info(ioc, 4679 "Enable interrupt coalescing only for first\t" 4680 "%d reply queues\n", 4681 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4682 /* 4683 * If 31st bit is zero then interrupt coalescing is 4684 * enabled for all reply descriptor post queues. 4685 * If 31st bit is set to one then user can 4686 * enable/disable interrupt coalescing on per reply 4687 * descriptor post queue group(8) basis. So to enable 4688 * interrupt coalescing only on first reply descriptor 4689 * post queue group 31st bit and zero th bit is enabled. 4690 */ 4691 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4692 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4693 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4694 ioc_info(ioc, "performance mode: balanced\n"); 4695 return; 4696 } 4697 fallthrough; 4698 case MPT_PERF_MODE_LATENCY: 4699 /* 4700 * Enable interrupt coalescing on all reply queues 4701 * with timeout value 0xA 4702 */ 4703 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4704 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4705 ioc_pg1.ProductSpecific = 0; 4706 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4707 ioc_info(ioc, "performance mode: latency\n"); 4708 break; 4709 case MPT_PERF_MODE_IOPS: 4710 /* 4711 * Enable interrupt coalescing on all reply queues. 4712 */ 4713 ioc_info(ioc, 4714 "performance mode: iops with coalescing timeout: 0x%x\n", 4715 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4716 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4717 ioc_pg1.ProductSpecific = 0; 4718 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4719 break; 4720 } 4721 } 4722 4723 /** 4724 * _base_static_config_pages - static start of day config pages 4725 * @ioc: per adapter object 4726 */ 4727 static void 4728 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4729 { 4730 Mpi2ConfigReply_t mpi_reply; 4731 u32 iounit_pg1_flags; 4732 4733 ioc->nvme_abort_timeout = 30; 4734 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4735 if (ioc->ir_firmware) 4736 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4737 &ioc->manu_pg10); 4738 4739 /* 4740 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4741 * flag unset in NVDATA. 4742 */ 4743 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4744 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4745 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4746 ioc->name); 4747 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4748 ioc->manu_pg11.EEDPTagMode |= 0x1; 4749 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4750 &ioc->manu_pg11); 4751 } 4752 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4753 ioc->tm_custom_handling = 1; 4754 else { 4755 ioc->tm_custom_handling = 0; 4756 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4757 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4758 else if (ioc->manu_pg11.NVMeAbortTO > 4759 NVME_TASK_ABORT_MAX_TIMEOUT) 4760 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4761 else 4762 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4763 } 4764 4765 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4766 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4767 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4768 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4769 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4770 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4771 _base_display_ioc_capabilities(ioc); 4772 4773 /* 4774 * Enable task_set_full handling in iounit_pg1 when the 4775 * facts capabilities indicate that its supported. 4776 */ 4777 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4778 if ((ioc->facts.IOCCapabilities & 4779 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4780 iounit_pg1_flags &= 4781 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4782 else 4783 iounit_pg1_flags |= 4784 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4785 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4786 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4787 4788 if (ioc->iounit_pg8.NumSensors) 4789 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4790 if (ioc->is_aero_ioc) 4791 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4792 } 4793 4794 /** 4795 * mpt3sas_free_enclosure_list - release memory 4796 * @ioc: per adapter object 4797 * 4798 * Free memory allocated during encloure add. 4799 */ 4800 void 4801 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4802 { 4803 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4804 4805 /* Free enclosure list */ 4806 list_for_each_entry_safe(enclosure_dev, 4807 enclosure_dev_next, &ioc->enclosure_list, list) { 4808 list_del(&enclosure_dev->list); 4809 kfree(enclosure_dev); 4810 } 4811 } 4812 4813 /** 4814 * _base_release_memory_pools - release memory 4815 * @ioc: per adapter object 4816 * 4817 * Free memory allocated from _base_allocate_memory_pools. 4818 */ 4819 static void 4820 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4821 { 4822 int i = 0; 4823 int j = 0; 4824 int dma_alloc_count = 0; 4825 struct chain_tracker *ct; 4826 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4827 4828 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4829 4830 if (ioc->request) { 4831 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4832 ioc->request, ioc->request_dma); 4833 dexitprintk(ioc, 4834 ioc_info(ioc, "request_pool(0x%p): free\n", 4835 ioc->request)); 4836 ioc->request = NULL; 4837 } 4838 4839 if (ioc->sense) { 4840 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4841 dma_pool_destroy(ioc->sense_dma_pool); 4842 dexitprintk(ioc, 4843 ioc_info(ioc, "sense_pool(0x%p): free\n", 4844 ioc->sense)); 4845 ioc->sense = NULL; 4846 } 4847 4848 if (ioc->reply) { 4849 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4850 dma_pool_destroy(ioc->reply_dma_pool); 4851 dexitprintk(ioc, 4852 ioc_info(ioc, "reply_pool(0x%p): free\n", 4853 ioc->reply)); 4854 ioc->reply = NULL; 4855 } 4856 4857 if (ioc->reply_free) { 4858 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4859 ioc->reply_free_dma); 4860 dma_pool_destroy(ioc->reply_free_dma_pool); 4861 dexitprintk(ioc, 4862 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4863 ioc->reply_free)); 4864 ioc->reply_free = NULL; 4865 } 4866 4867 if (ioc->reply_post) { 4868 dma_alloc_count = DIV_ROUND_UP(count, 4869 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4870 for (i = 0; i < count; i++) { 4871 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 4872 && dma_alloc_count) { 4873 if (ioc->reply_post[i].reply_post_free) { 4874 dma_pool_free( 4875 ioc->reply_post_free_dma_pool, 4876 ioc->reply_post[i].reply_post_free, 4877 ioc->reply_post[i].reply_post_free_dma); 4878 dexitprintk(ioc, ioc_info(ioc, 4879 "reply_post_free_pool(0x%p): free\n", 4880 ioc->reply_post[i].reply_post_free)); 4881 ioc->reply_post[i].reply_post_free = 4882 NULL; 4883 } 4884 --dma_alloc_count; 4885 } 4886 } 4887 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4888 if (ioc->reply_post_free_array && 4889 ioc->rdpq_array_enable) { 4890 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4891 ioc->reply_post_free_array, 4892 ioc->reply_post_free_array_dma); 4893 ioc->reply_post_free_array = NULL; 4894 } 4895 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4896 kfree(ioc->reply_post); 4897 } 4898 4899 if (ioc->pcie_sgl_dma_pool) { 4900 for (i = 0; i < ioc->scsiio_depth; i++) { 4901 dma_pool_free(ioc->pcie_sgl_dma_pool, 4902 ioc->pcie_sg_lookup[i].pcie_sgl, 4903 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4904 } 4905 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4906 } 4907 4908 if (ioc->config_page) { 4909 dexitprintk(ioc, 4910 ioc_info(ioc, "config_page(0x%p): free\n", 4911 ioc->config_page)); 4912 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4913 ioc->config_page, ioc->config_page_dma); 4914 } 4915 4916 kfree(ioc->hpr_lookup); 4917 ioc->hpr_lookup = NULL; 4918 kfree(ioc->internal_lookup); 4919 ioc->internal_lookup = NULL; 4920 if (ioc->chain_lookup) { 4921 for (i = 0; i < ioc->scsiio_depth; i++) { 4922 for (j = ioc->chains_per_prp_buffer; 4923 j < ioc->chains_needed_per_io; j++) { 4924 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4925 if (ct && ct->chain_buffer) 4926 dma_pool_free(ioc->chain_dma_pool, 4927 ct->chain_buffer, 4928 ct->chain_buffer_dma); 4929 } 4930 kfree(ioc->chain_lookup[i].chains_per_smid); 4931 } 4932 dma_pool_destroy(ioc->chain_dma_pool); 4933 kfree(ioc->chain_lookup); 4934 ioc->chain_lookup = NULL; 4935 } 4936 } 4937 4938 /** 4939 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 4940 * having same upper 32bits in their base memory address. 4941 * @reply_pool_start_address: Base address of a reply queue set 4942 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4943 * 4944 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4945 * memory address, else 0. 4946 */ 4947 4948 static int 4949 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 4950 { 4951 long reply_pool_end_address; 4952 4953 reply_pool_end_address = reply_pool_start_address + pool_sz; 4954 4955 if (upper_32_bits(reply_pool_start_address) == 4956 upper_32_bits(reply_pool_end_address)) 4957 return 1; 4958 else 4959 return 0; 4960 } 4961 4962 /** 4963 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 4964 * for reply queues. 4965 * @ioc: per adapter object 4966 * @sz: DMA Pool size 4967 * Return: 0 for success, non-zero for failure. 4968 */ 4969 static int 4970 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 4971 { 4972 int i = 0; 4973 u32 dma_alloc_count = 0; 4974 int reply_post_free_sz = ioc->reply_post_queue_depth * 4975 sizeof(Mpi2DefaultReplyDescriptor_t); 4976 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4977 4978 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 4979 GFP_KERNEL); 4980 if (!ioc->reply_post) 4981 return -ENOMEM; 4982 /* 4983 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 4984 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 4985 * be within 4GB boundary i.e reply queues in a set must have same 4986 * upper 32-bits in their memory address. so here driver is allocating 4987 * the DMA'able memory for reply queues according. 4988 * Driver uses limitation of 4989 * VENTURA_SERIES to manage INVADER_SERIES as well. 4990 */ 4991 dma_alloc_count = DIV_ROUND_UP(count, 4992 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4993 ioc->reply_post_free_dma_pool = 4994 dma_pool_create("reply_post_free pool", 4995 &ioc->pdev->dev, sz, 16, 0); 4996 if (!ioc->reply_post_free_dma_pool) 4997 return -ENOMEM; 4998 for (i = 0; i < count; i++) { 4999 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 5000 ioc->reply_post[i].reply_post_free = 5001 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5002 GFP_KERNEL, 5003 &ioc->reply_post[i].reply_post_free_dma); 5004 if (!ioc->reply_post[i].reply_post_free) 5005 return -ENOMEM; 5006 /* 5007 * Each set of RDPQ pool must satisfy 4gb boundary 5008 * restriction. 5009 * 1) Check if allocated resources for RDPQ pool are in 5010 * the same 4GB range. 5011 * 2) If #1 is true, continue with 64 bit DMA. 5012 * 3) If #1 is false, return 1. which means free all the 5013 * resources and set DMA mask to 32 and allocate. 5014 */ 5015 if (!mpt3sas_check_same_4gb_region( 5016 (long)ioc->reply_post[i].reply_post_free, sz)) { 5017 dinitprintk(ioc, 5018 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5019 "reply_post_free_dma = (0x%llx)\n", 5020 ioc->reply_post[i].reply_post_free, 5021 (unsigned long long) 5022 ioc->reply_post[i].reply_post_free_dma)); 5023 return -EAGAIN; 5024 } 5025 dma_alloc_count--; 5026 5027 } else { 5028 ioc->reply_post[i].reply_post_free = 5029 (Mpi2ReplyDescriptorsUnion_t *) 5030 ((long)ioc->reply_post[i-1].reply_post_free 5031 + reply_post_free_sz); 5032 ioc->reply_post[i].reply_post_free_dma = 5033 (dma_addr_t) 5034 (ioc->reply_post[i-1].reply_post_free_dma + 5035 reply_post_free_sz); 5036 } 5037 } 5038 return 0; 5039 } 5040 5041 /** 5042 * _base_allocate_memory_pools - allocate start of day memory pools 5043 * @ioc: per adapter object 5044 * 5045 * Return: 0 success, anything else error. 5046 */ 5047 static int 5048 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5049 { 5050 struct mpt3sas_facts *facts; 5051 u16 max_sge_elements; 5052 u16 chains_needed_per_io; 5053 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5054 u32 retry_sz; 5055 u32 rdpq_sz = 0; 5056 u16 max_request_credit, nvme_blocks_needed; 5057 unsigned short sg_tablesize; 5058 u16 sge_size; 5059 int i, j; 5060 int ret = 0; 5061 struct chain_tracker *ct; 5062 5063 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5064 5065 5066 retry_sz = 0; 5067 facts = &ioc->facts; 5068 5069 /* command line tunables for max sgl entries */ 5070 if (max_sgl_entries != -1) 5071 sg_tablesize = max_sgl_entries; 5072 else { 5073 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5074 sg_tablesize = MPT2SAS_SG_DEPTH; 5075 else 5076 sg_tablesize = MPT3SAS_SG_DEPTH; 5077 } 5078 5079 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5080 if (reset_devices) 5081 sg_tablesize = min_t(unsigned short, sg_tablesize, 5082 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5083 5084 if (ioc->is_mcpu_endpoint) 5085 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5086 else { 5087 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5088 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5089 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5090 sg_tablesize = min_t(unsigned short, sg_tablesize, 5091 SG_MAX_SEGMENTS); 5092 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5093 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5094 } 5095 ioc->shost->sg_tablesize = sg_tablesize; 5096 } 5097 5098 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5099 (facts->RequestCredit / 4)); 5100 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5101 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5102 INTERNAL_SCSIIO_CMDS_COUNT)) { 5103 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5104 facts->RequestCredit); 5105 return -ENOMEM; 5106 } 5107 ioc->internal_depth = 10; 5108 } 5109 5110 ioc->hi_priority_depth = ioc->internal_depth - (5); 5111 /* command line tunables for max controller queue depth */ 5112 if (max_queue_depth != -1 && max_queue_depth != 0) { 5113 max_request_credit = min_t(u16, max_queue_depth + 5114 ioc->internal_depth, facts->RequestCredit); 5115 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5116 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5117 } else if (reset_devices) 5118 max_request_credit = min_t(u16, facts->RequestCredit, 5119 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5120 else 5121 max_request_credit = min_t(u16, facts->RequestCredit, 5122 MAX_HBA_QUEUE_DEPTH); 5123 5124 /* Firmware maintains additional facts->HighPriorityCredit number of 5125 * credits for HiPriprity Request messages, so hba queue depth will be 5126 * sum of max_request_credit and high priority queue depth. 5127 */ 5128 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5129 5130 /* request frame size */ 5131 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5132 5133 /* reply frame size */ 5134 ioc->reply_sz = facts->ReplyFrameSize * 4; 5135 5136 /* chain segment size */ 5137 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5138 if (facts->IOCMaxChainSegmentSize) 5139 ioc->chain_segment_sz = 5140 facts->IOCMaxChainSegmentSize * 5141 MAX_CHAIN_ELEMT_SZ; 5142 else 5143 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5144 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5145 MAX_CHAIN_ELEMT_SZ; 5146 } else 5147 ioc->chain_segment_sz = ioc->request_sz; 5148 5149 /* calculate the max scatter element size */ 5150 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5151 5152 retry_allocation: 5153 total_sz = 0; 5154 /* calculate number of sg elements left over in the 1st frame */ 5155 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5156 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5157 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5158 5159 /* now do the same for a chain buffer */ 5160 max_sge_elements = ioc->chain_segment_sz - sge_size; 5161 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5162 5163 /* 5164 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5165 */ 5166 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5167 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5168 + 1; 5169 if (chains_needed_per_io > facts->MaxChainDepth) { 5170 chains_needed_per_io = facts->MaxChainDepth; 5171 ioc->shost->sg_tablesize = min_t(u16, 5172 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5173 * chains_needed_per_io), ioc->shost->sg_tablesize); 5174 } 5175 ioc->chains_needed_per_io = chains_needed_per_io; 5176 5177 /* reply free queue sizing - taking into account for 64 FW events */ 5178 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5179 5180 /* mCPU manage single counters for simplicity */ 5181 if (ioc->is_mcpu_endpoint) 5182 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5183 else { 5184 /* calculate reply descriptor post queue depth */ 5185 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5186 ioc->reply_free_queue_depth + 1; 5187 /* align the reply post queue on the next 16 count boundary */ 5188 if (ioc->reply_post_queue_depth % 16) 5189 ioc->reply_post_queue_depth += 16 - 5190 (ioc->reply_post_queue_depth % 16); 5191 } 5192 5193 if (ioc->reply_post_queue_depth > 5194 facts->MaxReplyDescriptorPostQueueDepth) { 5195 ioc->reply_post_queue_depth = 5196 facts->MaxReplyDescriptorPostQueueDepth - 5197 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5198 ioc->hba_queue_depth = 5199 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5200 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5201 } 5202 5203 ioc_info(ioc, 5204 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5205 "sge_per_io(%d), chains_per_io(%d)\n", 5206 ioc->max_sges_in_main_message, 5207 ioc->max_sges_in_chain_message, 5208 ioc->shost->sg_tablesize, 5209 ioc->chains_needed_per_io); 5210 5211 /* reply post queue, 16 byte align */ 5212 reply_post_free_sz = ioc->reply_post_queue_depth * 5213 sizeof(Mpi2DefaultReplyDescriptor_t); 5214 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5215 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5216 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5217 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5218 if (ret == -EAGAIN) { 5219 /* 5220 * Free allocated bad RDPQ memory pools. 5221 * Change dma coherent mask to 32 bit and reallocate RDPQ 5222 */ 5223 _base_release_memory_pools(ioc); 5224 ioc->use_32bit_dma = true; 5225 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5226 ioc_err(ioc, 5227 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5228 return -ENODEV; 5229 } 5230 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5231 return -ENOMEM; 5232 } else if (ret == -ENOMEM) 5233 return -ENOMEM; 5234 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5235 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5236 ioc->scsiio_depth = ioc->hba_queue_depth - 5237 ioc->hi_priority_depth - ioc->internal_depth; 5238 5239 /* set the scsi host can_queue depth 5240 * with some internal commands that could be outstanding 5241 */ 5242 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5243 dinitprintk(ioc, 5244 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5245 ioc->shost->can_queue)); 5246 5247 /* contiguous pool for request and chains, 16 byte align, one extra " 5248 * "frame for smid=0 5249 */ 5250 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5251 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5252 5253 /* hi-priority queue */ 5254 sz += (ioc->hi_priority_depth * ioc->request_sz); 5255 5256 /* internal queue */ 5257 sz += (ioc->internal_depth * ioc->request_sz); 5258 5259 ioc->request_dma_sz = sz; 5260 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5261 &ioc->request_dma, GFP_KERNEL); 5262 if (!ioc->request) { 5263 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5264 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5265 ioc->request_sz, sz / 1024); 5266 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5267 goto out; 5268 retry_sz = 64; 5269 ioc->hba_queue_depth -= retry_sz; 5270 _base_release_memory_pools(ioc); 5271 goto retry_allocation; 5272 } 5273 5274 if (retry_sz) 5275 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5276 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5277 ioc->request_sz, sz / 1024); 5278 5279 /* hi-priority queue */ 5280 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5281 ioc->request_sz); 5282 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5283 ioc->request_sz); 5284 5285 /* internal queue */ 5286 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5287 ioc->request_sz); 5288 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5289 ioc->request_sz); 5290 5291 ioc_info(ioc, 5292 "request pool(0x%p) - dma(0x%llx): " 5293 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5294 ioc->request, (unsigned long long) ioc->request_dma, 5295 ioc->hba_queue_depth, ioc->request_sz, 5296 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5297 5298 total_sz += sz; 5299 5300 dinitprintk(ioc, 5301 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5302 ioc->request, ioc->scsiio_depth)); 5303 5304 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5305 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5306 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5307 if (!ioc->chain_lookup) { 5308 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5309 goto out; 5310 } 5311 5312 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5313 for (i = 0; i < ioc->scsiio_depth; i++) { 5314 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5315 if (!ioc->chain_lookup[i].chains_per_smid) { 5316 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5317 goto out; 5318 } 5319 } 5320 5321 /* initialize hi-priority queue smid's */ 5322 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5323 sizeof(struct request_tracker), GFP_KERNEL); 5324 if (!ioc->hpr_lookup) { 5325 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5326 goto out; 5327 } 5328 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5329 dinitprintk(ioc, 5330 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5331 ioc->hi_priority, 5332 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5333 5334 /* initialize internal queue smid's */ 5335 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5336 sizeof(struct request_tracker), GFP_KERNEL); 5337 if (!ioc->internal_lookup) { 5338 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5339 goto out; 5340 } 5341 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5342 dinitprintk(ioc, 5343 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5344 ioc->internal, 5345 ioc->internal_depth, ioc->internal_smid)); 5346 /* 5347 * The number of NVMe page sized blocks needed is: 5348 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5349 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5350 * that is placed in the main message frame. 8 is the size of each PRP 5351 * entry or PRP list pointer entry. 8 is subtracted from page_size 5352 * because of the PRP list pointer entry at the end of a page, so this 5353 * is not counted as a PRP entry. The 1 added page is a round up. 5354 * 5355 * To avoid allocation failures due to the amount of memory that could 5356 * be required for NVMe PRP's, only each set of NVMe blocks will be 5357 * contiguous, so a new set is allocated for each possible I/O. 5358 */ 5359 ioc->chains_per_prp_buffer = 0; 5360 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5361 nvme_blocks_needed = 5362 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5363 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5364 nvme_blocks_needed++; 5365 5366 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5367 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5368 if (!ioc->pcie_sg_lookup) { 5369 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5370 goto out; 5371 } 5372 sz = nvme_blocks_needed * ioc->page_size; 5373 ioc->pcie_sgl_dma_pool = 5374 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5375 if (!ioc->pcie_sgl_dma_pool) { 5376 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5377 goto out; 5378 } 5379 5380 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5381 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5382 ioc->chains_needed_per_io); 5383 5384 for (i = 0; i < ioc->scsiio_depth; i++) { 5385 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5386 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5387 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5388 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5389 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5390 goto out; 5391 } 5392 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5393 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5394 ct->chain_buffer = 5395 ioc->pcie_sg_lookup[i].pcie_sgl + 5396 (j * ioc->chain_segment_sz); 5397 ct->chain_buffer_dma = 5398 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5399 (j * ioc->chain_segment_sz); 5400 } 5401 } 5402 5403 dinitprintk(ioc, 5404 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5405 ioc->scsiio_depth, sz, 5406 (sz * ioc->scsiio_depth) / 1024)); 5407 dinitprintk(ioc, 5408 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5409 ioc->chains_per_prp_buffer)); 5410 total_sz += sz * ioc->scsiio_depth; 5411 } 5412 5413 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5414 ioc->chain_segment_sz, 16, 0); 5415 if (!ioc->chain_dma_pool) { 5416 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5417 goto out; 5418 } 5419 for (i = 0; i < ioc->scsiio_depth; i++) { 5420 for (j = ioc->chains_per_prp_buffer; 5421 j < ioc->chains_needed_per_io; j++) { 5422 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5423 ct->chain_buffer = dma_pool_alloc( 5424 ioc->chain_dma_pool, GFP_KERNEL, 5425 &ct->chain_buffer_dma); 5426 if (!ct->chain_buffer) { 5427 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5428 goto out; 5429 } 5430 } 5431 total_sz += ioc->chain_segment_sz; 5432 } 5433 5434 dinitprintk(ioc, 5435 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5436 ioc->chain_depth, ioc->chain_segment_sz, 5437 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5438 5439 /* sense buffers, 4 byte align */ 5440 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5441 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5442 4, 0); 5443 if (!ioc->sense_dma_pool) { 5444 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5445 goto out; 5446 } 5447 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5448 &ioc->sense_dma); 5449 if (!ioc->sense) { 5450 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5451 goto out; 5452 } 5453 /* sense buffer requires to be in same 4 gb region. 5454 * Below function will check the same. 5455 * In case of failure, new pci pool will be created with updated 5456 * alignment. Older allocation and pool will be destroyed. 5457 * Alignment will be used such a way that next allocation if 5458 * success, will always meet same 4gb region requirement. 5459 * Actual requirement is not alignment, but we need start and end of 5460 * DMA address must have same upper 32 bit address. 5461 */ 5462 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5463 //Release Sense pool & Reallocate 5464 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5465 dma_pool_destroy(ioc->sense_dma_pool); 5466 ioc->sense = NULL; 5467 5468 ioc->sense_dma_pool = 5469 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5470 roundup_pow_of_two(sz), 0); 5471 if (!ioc->sense_dma_pool) { 5472 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5473 goto out; 5474 } 5475 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5476 &ioc->sense_dma); 5477 if (!ioc->sense) { 5478 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5479 goto out; 5480 } 5481 } 5482 ioc_info(ioc, 5483 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5484 "element_size(%d), pool_size(%d kB)\n", 5485 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5486 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5487 5488 total_sz += sz; 5489 5490 /* reply pool, 4 byte align */ 5491 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5492 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5493 4, 0); 5494 if (!ioc->reply_dma_pool) { 5495 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5496 goto out; 5497 } 5498 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5499 &ioc->reply_dma); 5500 if (!ioc->reply) { 5501 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5502 goto out; 5503 } 5504 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5505 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5506 dinitprintk(ioc, 5507 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5508 ioc->reply, ioc->reply_free_queue_depth, 5509 ioc->reply_sz, sz / 1024)); 5510 dinitprintk(ioc, 5511 ioc_info(ioc, "reply_dma(0x%llx)\n", 5512 (unsigned long long)ioc->reply_dma)); 5513 total_sz += sz; 5514 5515 /* reply free queue, 16 byte align */ 5516 sz = ioc->reply_free_queue_depth * 4; 5517 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5518 &ioc->pdev->dev, sz, 16, 0); 5519 if (!ioc->reply_free_dma_pool) { 5520 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5521 goto out; 5522 } 5523 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5524 &ioc->reply_free_dma); 5525 if (!ioc->reply_free) { 5526 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5527 goto out; 5528 } 5529 dinitprintk(ioc, 5530 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5531 ioc->reply_free, ioc->reply_free_queue_depth, 5532 4, sz / 1024)); 5533 dinitprintk(ioc, 5534 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5535 (unsigned long long)ioc->reply_free_dma)); 5536 total_sz += sz; 5537 5538 if (ioc->rdpq_array_enable) { 5539 reply_post_free_array_sz = ioc->reply_queue_count * 5540 sizeof(Mpi2IOCInitRDPQArrayEntry); 5541 ioc->reply_post_free_array_dma_pool = 5542 dma_pool_create("reply_post_free_array pool", 5543 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5544 if (!ioc->reply_post_free_array_dma_pool) { 5545 dinitprintk(ioc, 5546 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5547 goto out; 5548 } 5549 ioc->reply_post_free_array = 5550 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5551 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5552 if (!ioc->reply_post_free_array) { 5553 dinitprintk(ioc, 5554 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5555 goto out; 5556 } 5557 } 5558 ioc->config_page_sz = 512; 5559 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5560 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5561 if (!ioc->config_page) { 5562 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5563 goto out; 5564 } 5565 5566 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 5567 ioc->config_page, (unsigned long long)ioc->config_page_dma, 5568 ioc->config_page_sz); 5569 total_sz += ioc->config_page_sz; 5570 5571 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5572 total_sz / 1024); 5573 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5574 ioc->shost->can_queue, facts->RequestCredit); 5575 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5576 ioc->shost->sg_tablesize); 5577 return 0; 5578 5579 out: 5580 return -ENOMEM; 5581 } 5582 5583 /** 5584 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5585 * @ioc: Pointer to MPT_ADAPTER structure 5586 * @cooked: Request raw or cooked IOC state 5587 * 5588 * Return: all IOC Doorbell register bits if cooked==0, else just the 5589 * Doorbell bits in MPI_IOC_STATE_MASK. 5590 */ 5591 u32 5592 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5593 { 5594 u32 s, sc; 5595 5596 s = ioc->base_readl(&ioc->chip->Doorbell); 5597 sc = s & MPI2_IOC_STATE_MASK; 5598 return cooked ? sc : s; 5599 } 5600 5601 /** 5602 * _base_wait_on_iocstate - waiting on a particular ioc state 5603 * @ioc: ? 5604 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5605 * @timeout: timeout in second 5606 * 5607 * Return: 0 for success, non-zero for failure. 5608 */ 5609 static int 5610 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5611 { 5612 u32 count, cntdn; 5613 u32 current_state; 5614 5615 count = 0; 5616 cntdn = 1000 * timeout; 5617 do { 5618 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5619 if (current_state == ioc_state) 5620 return 0; 5621 if (count && current_state == MPI2_IOC_STATE_FAULT) 5622 break; 5623 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 5624 break; 5625 5626 usleep_range(1000, 1500); 5627 count++; 5628 } while (--cntdn); 5629 5630 return current_state; 5631 } 5632 5633 /** 5634 * _base_dump_reg_set - This function will print hexdump of register set. 5635 * @ioc: per adapter object 5636 * 5637 * Returns nothing. 5638 */ 5639 static inline void 5640 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 5641 { 5642 unsigned int i, sz = 256; 5643 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 5644 5645 ioc_info(ioc, "System Register set:\n"); 5646 for (i = 0; i < (sz / sizeof(u32)); i++) 5647 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 5648 } 5649 5650 /** 5651 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5652 * a write to the doorbell) 5653 * @ioc: per adapter object 5654 * @timeout: timeout in seconds 5655 * 5656 * Return: 0 for success, non-zero for failure. 5657 * 5658 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5659 */ 5660 5661 static int 5662 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5663 { 5664 u32 cntdn, count; 5665 u32 int_status; 5666 5667 count = 0; 5668 cntdn = 1000 * timeout; 5669 do { 5670 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5671 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5672 dhsprintk(ioc, 5673 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5674 __func__, count, timeout)); 5675 return 0; 5676 } 5677 5678 usleep_range(1000, 1500); 5679 count++; 5680 } while (--cntdn); 5681 5682 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5683 __func__, count, int_status); 5684 return -EFAULT; 5685 } 5686 5687 static int 5688 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5689 { 5690 u32 cntdn, count; 5691 u32 int_status; 5692 5693 count = 0; 5694 cntdn = 2000 * timeout; 5695 do { 5696 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5697 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5698 dhsprintk(ioc, 5699 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5700 __func__, count, timeout)); 5701 return 0; 5702 } 5703 5704 udelay(500); 5705 count++; 5706 } while (--cntdn); 5707 5708 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5709 __func__, count, int_status); 5710 return -EFAULT; 5711 5712 } 5713 5714 /** 5715 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5716 * @ioc: per adapter object 5717 * @timeout: timeout in second 5718 * 5719 * Return: 0 for success, non-zero for failure. 5720 * 5721 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5722 * doorbell. 5723 */ 5724 static int 5725 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5726 { 5727 u32 cntdn, count; 5728 u32 int_status; 5729 u32 doorbell; 5730 5731 count = 0; 5732 cntdn = 1000 * timeout; 5733 do { 5734 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5735 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5736 dhsprintk(ioc, 5737 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5738 __func__, count, timeout)); 5739 return 0; 5740 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5741 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5742 if ((doorbell & MPI2_IOC_STATE_MASK) == 5743 MPI2_IOC_STATE_FAULT) { 5744 mpt3sas_print_fault_code(ioc, doorbell); 5745 return -EFAULT; 5746 } 5747 if ((doorbell & MPI2_IOC_STATE_MASK) == 5748 MPI2_IOC_STATE_COREDUMP) { 5749 mpt3sas_print_coredump_info(ioc, doorbell); 5750 return -EFAULT; 5751 } 5752 } else if (int_status == 0xFFFFFFFF) 5753 goto out; 5754 5755 usleep_range(1000, 1500); 5756 count++; 5757 } while (--cntdn); 5758 5759 out: 5760 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5761 __func__, count, int_status); 5762 return -EFAULT; 5763 } 5764 5765 /** 5766 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5767 * @ioc: per adapter object 5768 * @timeout: timeout in second 5769 * 5770 * Return: 0 for success, non-zero for failure. 5771 */ 5772 static int 5773 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5774 { 5775 u32 cntdn, count; 5776 u32 doorbell_reg; 5777 5778 count = 0; 5779 cntdn = 1000 * timeout; 5780 do { 5781 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5782 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5783 dhsprintk(ioc, 5784 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5785 __func__, count, timeout)); 5786 return 0; 5787 } 5788 5789 usleep_range(1000, 1500); 5790 count++; 5791 } while (--cntdn); 5792 5793 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5794 __func__, count, doorbell_reg); 5795 return -EFAULT; 5796 } 5797 5798 /** 5799 * _base_send_ioc_reset - send doorbell reset 5800 * @ioc: per adapter object 5801 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5802 * @timeout: timeout in second 5803 * 5804 * Return: 0 for success, non-zero for failure. 5805 */ 5806 static int 5807 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5808 { 5809 u32 ioc_state; 5810 int r = 0; 5811 unsigned long flags; 5812 5813 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5814 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5815 return -EFAULT; 5816 } 5817 5818 if (!(ioc->facts.IOCCapabilities & 5819 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5820 return -EFAULT; 5821 5822 ioc_info(ioc, "sending message unit reset !!\n"); 5823 5824 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5825 &ioc->chip->Doorbell); 5826 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5827 r = -EFAULT; 5828 goto out; 5829 } 5830 5831 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5832 if (ioc_state) { 5833 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5834 __func__, ioc_state); 5835 r = -EFAULT; 5836 goto out; 5837 } 5838 out: 5839 if (r != 0) { 5840 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5841 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5842 /* 5843 * Wait for IOC state CoreDump to clear only during 5844 * HBA initialization & release time. 5845 */ 5846 if ((ioc_state & MPI2_IOC_STATE_MASK) == 5847 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 5848 ioc->fault_reset_work_q == NULL)) { 5849 spin_unlock_irqrestore( 5850 &ioc->ioc_reset_in_progress_lock, flags); 5851 mpt3sas_print_coredump_info(ioc, ioc_state); 5852 mpt3sas_base_wait_for_coredump_completion(ioc, 5853 __func__); 5854 spin_lock_irqsave( 5855 &ioc->ioc_reset_in_progress_lock, flags); 5856 } 5857 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5858 } 5859 ioc_info(ioc, "message unit reset: %s\n", 5860 r == 0 ? "SUCCESS" : "FAILED"); 5861 return r; 5862 } 5863 5864 /** 5865 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5866 * @ioc: per adapter object 5867 * @timeout: timeout in seconds 5868 * 5869 * Return: Waits up to timeout seconds for the IOC to 5870 * become operational. Returns 0 if IOC is present 5871 * and operational; otherwise returns -EFAULT. 5872 */ 5873 5874 int 5875 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5876 { 5877 int wait_state_count = 0; 5878 u32 ioc_state; 5879 5880 do { 5881 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5882 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5883 break; 5884 ssleep(1); 5885 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5886 __func__, ++wait_state_count); 5887 } while (--timeout); 5888 if (!timeout) { 5889 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5890 return -EFAULT; 5891 } 5892 if (wait_state_count) 5893 ioc_info(ioc, "ioc is operational\n"); 5894 return 0; 5895 } 5896 5897 /** 5898 * _base_handshake_req_reply_wait - send request thru doorbell interface 5899 * @ioc: per adapter object 5900 * @request_bytes: request length 5901 * @request: pointer having request payload 5902 * @reply_bytes: reply length 5903 * @reply: pointer to reply payload 5904 * @timeout: timeout in second 5905 * 5906 * Return: 0 for success, non-zero for failure. 5907 */ 5908 static int 5909 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5910 u32 *request, int reply_bytes, u16 *reply, int timeout) 5911 { 5912 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5913 int i; 5914 u8 failed; 5915 __le32 *mfp; 5916 5917 /* make sure doorbell is not in use */ 5918 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5919 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5920 return -EFAULT; 5921 } 5922 5923 /* clear pending doorbell interrupts from previous state changes */ 5924 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5925 MPI2_HIS_IOC2SYS_DB_STATUS) 5926 writel(0, &ioc->chip->HostInterruptStatus); 5927 5928 /* send message to ioc */ 5929 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5930 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5931 &ioc->chip->Doorbell); 5932 5933 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5934 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5935 __LINE__); 5936 return -EFAULT; 5937 } 5938 writel(0, &ioc->chip->HostInterruptStatus); 5939 5940 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5941 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5942 __LINE__); 5943 return -EFAULT; 5944 } 5945 5946 /* send message 32-bits at a time */ 5947 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5948 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5949 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5950 failed = 1; 5951 } 5952 5953 if (failed) { 5954 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5955 __LINE__); 5956 return -EFAULT; 5957 } 5958 5959 /* now wait for the reply */ 5960 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5961 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5962 __LINE__); 5963 return -EFAULT; 5964 } 5965 5966 /* read the first two 16-bits, it gives the total length of the reply */ 5967 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5968 & MPI2_DOORBELL_DATA_MASK); 5969 writel(0, &ioc->chip->HostInterruptStatus); 5970 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5971 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5972 __LINE__); 5973 return -EFAULT; 5974 } 5975 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5976 & MPI2_DOORBELL_DATA_MASK); 5977 writel(0, &ioc->chip->HostInterruptStatus); 5978 5979 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5980 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5981 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5982 __LINE__); 5983 return -EFAULT; 5984 } 5985 if (i >= reply_bytes/2) /* overflow case */ 5986 ioc->base_readl(&ioc->chip->Doorbell); 5987 else 5988 reply[i] = le16_to_cpu( 5989 ioc->base_readl(&ioc->chip->Doorbell) 5990 & MPI2_DOORBELL_DATA_MASK); 5991 writel(0, &ioc->chip->HostInterruptStatus); 5992 } 5993 5994 _base_wait_for_doorbell_int(ioc, 5); 5995 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5996 dhsprintk(ioc, 5997 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5998 __LINE__)); 5999 } 6000 writel(0, &ioc->chip->HostInterruptStatus); 6001 6002 if (ioc->logging_level & MPT_DEBUG_INIT) { 6003 mfp = (__le32 *)reply; 6004 pr_info("\toffset:data\n"); 6005 for (i = 0; i < reply_bytes/4; i++) 6006 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6007 le32_to_cpu(mfp[i])); 6008 } 6009 return 0; 6010 } 6011 6012 /** 6013 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6014 * @ioc: per adapter object 6015 * @mpi_reply: the reply payload from FW 6016 * @mpi_request: the request payload sent to FW 6017 * 6018 * The SAS IO Unit Control Request message allows the host to perform low-level 6019 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6020 * to obtain the IOC assigned device handles for a device if it has other 6021 * identifying information about the device, in addition allows the host to 6022 * remove IOC resources associated with the device. 6023 * 6024 * Return: 0 for success, non-zero for failure. 6025 */ 6026 int 6027 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6028 Mpi2SasIoUnitControlReply_t *mpi_reply, 6029 Mpi2SasIoUnitControlRequest_t *mpi_request) 6030 { 6031 u16 smid; 6032 u8 issue_reset = 0; 6033 int rc; 6034 void *request; 6035 6036 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6037 6038 mutex_lock(&ioc->base_cmds.mutex); 6039 6040 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6041 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6042 rc = -EAGAIN; 6043 goto out; 6044 } 6045 6046 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6047 if (rc) 6048 goto out; 6049 6050 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6051 if (!smid) { 6052 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6053 rc = -EAGAIN; 6054 goto out; 6055 } 6056 6057 rc = 0; 6058 ioc->base_cmds.status = MPT3_CMD_PENDING; 6059 request = mpt3sas_base_get_msg_frame(ioc, smid); 6060 ioc->base_cmds.smid = smid; 6061 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6062 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6063 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6064 ioc->ioc_link_reset_in_progress = 1; 6065 init_completion(&ioc->base_cmds.done); 6066 ioc->put_smid_default(ioc, smid); 6067 wait_for_completion_timeout(&ioc->base_cmds.done, 6068 msecs_to_jiffies(10000)); 6069 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6070 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6071 ioc->ioc_link_reset_in_progress) 6072 ioc->ioc_link_reset_in_progress = 0; 6073 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6074 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6075 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6076 issue_reset); 6077 goto issue_host_reset; 6078 } 6079 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6080 memcpy(mpi_reply, ioc->base_cmds.reply, 6081 sizeof(Mpi2SasIoUnitControlReply_t)); 6082 else 6083 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6084 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6085 goto out; 6086 6087 issue_host_reset: 6088 if (issue_reset) 6089 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6090 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6091 rc = -EFAULT; 6092 out: 6093 mutex_unlock(&ioc->base_cmds.mutex); 6094 return rc; 6095 } 6096 6097 /** 6098 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6099 * @ioc: per adapter object 6100 * @mpi_reply: the reply payload from FW 6101 * @mpi_request: the request payload sent to FW 6102 * 6103 * The SCSI Enclosure Processor request message causes the IOC to 6104 * communicate with SES devices to control LED status signals. 6105 * 6106 * Return: 0 for success, non-zero for failure. 6107 */ 6108 int 6109 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6110 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6111 { 6112 u16 smid; 6113 u8 issue_reset = 0; 6114 int rc; 6115 void *request; 6116 6117 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6118 6119 mutex_lock(&ioc->base_cmds.mutex); 6120 6121 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6122 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6123 rc = -EAGAIN; 6124 goto out; 6125 } 6126 6127 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6128 if (rc) 6129 goto out; 6130 6131 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6132 if (!smid) { 6133 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6134 rc = -EAGAIN; 6135 goto out; 6136 } 6137 6138 rc = 0; 6139 ioc->base_cmds.status = MPT3_CMD_PENDING; 6140 request = mpt3sas_base_get_msg_frame(ioc, smid); 6141 ioc->base_cmds.smid = smid; 6142 memset(request, 0, ioc->request_sz); 6143 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6144 init_completion(&ioc->base_cmds.done); 6145 ioc->put_smid_default(ioc, smid); 6146 wait_for_completion_timeout(&ioc->base_cmds.done, 6147 msecs_to_jiffies(10000)); 6148 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6149 mpt3sas_check_cmd_timeout(ioc, 6150 ioc->base_cmds.status, mpi_request, 6151 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6152 goto issue_host_reset; 6153 } 6154 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6155 memcpy(mpi_reply, ioc->base_cmds.reply, 6156 sizeof(Mpi2SepReply_t)); 6157 else 6158 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6159 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6160 goto out; 6161 6162 issue_host_reset: 6163 if (issue_reset) 6164 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6165 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6166 rc = -EFAULT; 6167 out: 6168 mutex_unlock(&ioc->base_cmds.mutex); 6169 return rc; 6170 } 6171 6172 /** 6173 * _base_get_port_facts - obtain port facts reply and save in ioc 6174 * @ioc: per adapter object 6175 * @port: ? 6176 * 6177 * Return: 0 for success, non-zero for failure. 6178 */ 6179 static int 6180 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6181 { 6182 Mpi2PortFactsRequest_t mpi_request; 6183 Mpi2PortFactsReply_t mpi_reply; 6184 struct mpt3sas_port_facts *pfacts; 6185 int mpi_reply_sz, mpi_request_sz, r; 6186 6187 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6188 6189 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6190 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6191 memset(&mpi_request, 0, mpi_request_sz); 6192 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6193 mpi_request.PortNumber = port; 6194 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6195 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6196 6197 if (r != 0) { 6198 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6199 return r; 6200 } 6201 6202 pfacts = &ioc->pfacts[port]; 6203 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6204 pfacts->PortNumber = mpi_reply.PortNumber; 6205 pfacts->VP_ID = mpi_reply.VP_ID; 6206 pfacts->VF_ID = mpi_reply.VF_ID; 6207 pfacts->MaxPostedCmdBuffers = 6208 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6209 6210 return 0; 6211 } 6212 6213 /** 6214 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6215 * @ioc: per adapter object 6216 * @timeout: 6217 * 6218 * Return: 0 for success, non-zero for failure. 6219 */ 6220 static int 6221 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6222 { 6223 u32 ioc_state; 6224 int rc; 6225 6226 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6227 6228 if (ioc->pci_error_recovery) { 6229 dfailprintk(ioc, 6230 ioc_info(ioc, "%s: host in pci error recovery\n", 6231 __func__)); 6232 return -EFAULT; 6233 } 6234 6235 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6236 dhsprintk(ioc, 6237 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6238 __func__, ioc_state)); 6239 6240 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6241 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6242 return 0; 6243 6244 if (ioc_state & MPI2_DOORBELL_USED) { 6245 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6246 goto issue_diag_reset; 6247 } 6248 6249 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6250 mpt3sas_print_fault_code(ioc, ioc_state & 6251 MPI2_DOORBELL_DATA_MASK); 6252 goto issue_diag_reset; 6253 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6254 MPI2_IOC_STATE_COREDUMP) { 6255 ioc_info(ioc, 6256 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6257 __func__, ioc_state); 6258 return -EFAULT; 6259 } 6260 6261 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6262 if (ioc_state) { 6263 dfailprintk(ioc, 6264 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6265 __func__, ioc_state)); 6266 return -EFAULT; 6267 } 6268 6269 issue_diag_reset: 6270 rc = _base_diag_reset(ioc); 6271 return rc; 6272 } 6273 6274 /** 6275 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6276 * @ioc: per adapter object 6277 * 6278 * Return: 0 for success, non-zero for failure. 6279 */ 6280 static int 6281 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6282 { 6283 Mpi2IOCFactsRequest_t mpi_request; 6284 Mpi2IOCFactsReply_t mpi_reply; 6285 struct mpt3sas_facts *facts; 6286 int mpi_reply_sz, mpi_request_sz, r; 6287 6288 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6289 6290 r = _base_wait_for_iocstate(ioc, 10); 6291 if (r) { 6292 dfailprintk(ioc, 6293 ioc_info(ioc, "%s: failed getting to correct state\n", 6294 __func__)); 6295 return r; 6296 } 6297 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6298 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6299 memset(&mpi_request, 0, mpi_request_sz); 6300 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6301 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6302 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6303 6304 if (r != 0) { 6305 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6306 return r; 6307 } 6308 6309 facts = &ioc->facts; 6310 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6311 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6312 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6313 facts->VP_ID = mpi_reply.VP_ID; 6314 facts->VF_ID = mpi_reply.VF_ID; 6315 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6316 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6317 facts->WhoInit = mpi_reply.WhoInit; 6318 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6319 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6320 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6321 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6322 ioc->combined_reply_queue = 0; 6323 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6324 facts->MaxReplyDescriptorPostQueueDepth = 6325 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6326 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6327 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6328 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6329 ioc->ir_firmware = 1; 6330 if ((facts->IOCCapabilities & 6331 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6332 ioc->rdpq_array_capable = 1; 6333 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6334 && ioc->is_aero_ioc) 6335 ioc->atomic_desc_capable = 1; 6336 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6337 facts->IOCRequestFrameSize = 6338 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6339 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6340 facts->IOCMaxChainSegmentSize = 6341 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6342 } 6343 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6344 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6345 ioc->shost->max_id = -1; 6346 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6347 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6348 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6349 facts->HighPriorityCredit = 6350 le16_to_cpu(mpi_reply.HighPriorityCredit); 6351 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6352 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6353 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6354 6355 /* 6356 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6357 */ 6358 ioc->page_size = 1 << facts->CurrentHostPageSize; 6359 if (ioc->page_size == 1) { 6360 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6361 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6362 } 6363 dinitprintk(ioc, 6364 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6365 facts->CurrentHostPageSize)); 6366 6367 dinitprintk(ioc, 6368 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6369 facts->RequestCredit, facts->MaxChainDepth)); 6370 dinitprintk(ioc, 6371 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6372 facts->IOCRequestFrameSize * 4, 6373 facts->ReplyFrameSize * 4)); 6374 return 0; 6375 } 6376 6377 /** 6378 * _base_send_ioc_init - send ioc_init to firmware 6379 * @ioc: per adapter object 6380 * 6381 * Return: 0 for success, non-zero for failure. 6382 */ 6383 static int 6384 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6385 { 6386 Mpi2IOCInitRequest_t mpi_request; 6387 Mpi2IOCInitReply_t mpi_reply; 6388 int i, r = 0; 6389 ktime_t current_time; 6390 u16 ioc_status; 6391 u32 reply_post_free_array_sz = 0; 6392 6393 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6394 6395 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6396 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6397 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6398 mpi_request.VF_ID = 0; /* TODO */ 6399 mpi_request.VP_ID = 0; 6400 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6401 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6402 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6403 6404 if (_base_is_controller_msix_enabled(ioc)) 6405 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6406 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6407 mpi_request.ReplyDescriptorPostQueueDepth = 6408 cpu_to_le16(ioc->reply_post_queue_depth); 6409 mpi_request.ReplyFreeQueueDepth = 6410 cpu_to_le16(ioc->reply_free_queue_depth); 6411 6412 mpi_request.SenseBufferAddressHigh = 6413 cpu_to_le32((u64)ioc->sense_dma >> 32); 6414 mpi_request.SystemReplyAddressHigh = 6415 cpu_to_le32((u64)ioc->reply_dma >> 32); 6416 mpi_request.SystemRequestFrameBaseAddress = 6417 cpu_to_le64((u64)ioc->request_dma); 6418 mpi_request.ReplyFreeQueueAddress = 6419 cpu_to_le64((u64)ioc->reply_free_dma); 6420 6421 if (ioc->rdpq_array_enable) { 6422 reply_post_free_array_sz = ioc->reply_queue_count * 6423 sizeof(Mpi2IOCInitRDPQArrayEntry); 6424 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6425 for (i = 0; i < ioc->reply_queue_count; i++) 6426 ioc->reply_post_free_array[i].RDPQBaseAddress = 6427 cpu_to_le64( 6428 (u64)ioc->reply_post[i].reply_post_free_dma); 6429 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6430 mpi_request.ReplyDescriptorPostQueueAddress = 6431 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6432 } else { 6433 mpi_request.ReplyDescriptorPostQueueAddress = 6434 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6435 } 6436 6437 /* 6438 * Set the flag to enable CoreDump state feature in IOC firmware. 6439 */ 6440 mpi_request.ConfigurationFlags |= 6441 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6442 6443 /* This time stamp specifies number of milliseconds 6444 * since epoch ~ midnight January 1, 1970. 6445 */ 6446 current_time = ktime_get_real(); 6447 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6448 6449 if (ioc->logging_level & MPT_DEBUG_INIT) { 6450 __le32 *mfp; 6451 int i; 6452 6453 mfp = (__le32 *)&mpi_request; 6454 ioc_info(ioc, "\toffset:data\n"); 6455 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6456 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6457 le32_to_cpu(mfp[i])); 6458 } 6459 6460 r = _base_handshake_req_reply_wait(ioc, 6461 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6462 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6463 6464 if (r != 0) { 6465 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6466 return r; 6467 } 6468 6469 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6470 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6471 mpi_reply.IOCLogInfo) { 6472 ioc_err(ioc, "%s: failed\n", __func__); 6473 r = -EIO; 6474 } 6475 6476 return r; 6477 } 6478 6479 /** 6480 * mpt3sas_port_enable_done - command completion routine for port enable 6481 * @ioc: per adapter object 6482 * @smid: system request message index 6483 * @msix_index: MSIX table index supplied by the OS 6484 * @reply: reply message frame(lower 32bit addr) 6485 * 6486 * Return: 1 meaning mf should be freed from _base_interrupt 6487 * 0 means the mf is freed from this function. 6488 */ 6489 u8 6490 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6491 u32 reply) 6492 { 6493 MPI2DefaultReply_t *mpi_reply; 6494 u16 ioc_status; 6495 6496 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6497 return 1; 6498 6499 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6500 if (!mpi_reply) 6501 return 1; 6502 6503 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6504 return 1; 6505 6506 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6507 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6508 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6509 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6510 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6511 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6512 ioc->port_enable_failed = 1; 6513 6514 if (ioc->is_driver_loading) { 6515 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6516 mpt3sas_port_enable_complete(ioc); 6517 return 1; 6518 } else { 6519 ioc->start_scan_failed = ioc_status; 6520 ioc->start_scan = 0; 6521 return 1; 6522 } 6523 } 6524 complete(&ioc->port_enable_cmds.done); 6525 return 1; 6526 } 6527 6528 /** 6529 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6530 * @ioc: per adapter object 6531 * 6532 * Return: 0 for success, non-zero for failure. 6533 */ 6534 static int 6535 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6536 { 6537 Mpi2PortEnableRequest_t *mpi_request; 6538 Mpi2PortEnableReply_t *mpi_reply; 6539 int r = 0; 6540 u16 smid; 6541 u16 ioc_status; 6542 6543 ioc_info(ioc, "sending port enable !!\n"); 6544 6545 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6546 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6547 return -EAGAIN; 6548 } 6549 6550 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6551 if (!smid) { 6552 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6553 return -EAGAIN; 6554 } 6555 6556 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6557 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6558 ioc->port_enable_cmds.smid = smid; 6559 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6560 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6561 6562 init_completion(&ioc->port_enable_cmds.done); 6563 ioc->put_smid_default(ioc, smid); 6564 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6565 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6566 ioc_err(ioc, "%s: timeout\n", __func__); 6567 _debug_dump_mf(mpi_request, 6568 sizeof(Mpi2PortEnableRequest_t)/4); 6569 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6570 r = -EFAULT; 6571 else 6572 r = -ETIME; 6573 goto out; 6574 } 6575 6576 mpi_reply = ioc->port_enable_cmds.reply; 6577 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6578 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6579 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6580 __func__, ioc_status); 6581 r = -EFAULT; 6582 goto out; 6583 } 6584 6585 out: 6586 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6587 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6588 return r; 6589 } 6590 6591 /** 6592 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6593 * @ioc: per adapter object 6594 * 6595 * Return: 0 for success, non-zero for failure. 6596 */ 6597 int 6598 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6599 { 6600 Mpi2PortEnableRequest_t *mpi_request; 6601 u16 smid; 6602 6603 ioc_info(ioc, "sending port enable !!\n"); 6604 6605 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6606 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6607 return -EAGAIN; 6608 } 6609 6610 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6611 if (!smid) { 6612 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6613 return -EAGAIN; 6614 } 6615 6616 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6617 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6618 ioc->port_enable_cmds.smid = smid; 6619 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6620 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6621 6622 ioc->put_smid_default(ioc, smid); 6623 return 0; 6624 } 6625 6626 /** 6627 * _base_determine_wait_on_discovery - desposition 6628 * @ioc: per adapter object 6629 * 6630 * Decide whether to wait on discovery to complete. Used to either 6631 * locate boot device, or report volumes ahead of physical devices. 6632 * 6633 * Return: 1 for wait, 0 for don't wait. 6634 */ 6635 static int 6636 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6637 { 6638 /* We wait for discovery to complete if IR firmware is loaded. 6639 * The sas topology events arrive before PD events, so we need time to 6640 * turn on the bit in ioc->pd_handles to indicate PD 6641 * Also, it maybe required to report Volumes ahead of physical 6642 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6643 */ 6644 if (ioc->ir_firmware) 6645 return 1; 6646 6647 /* if no Bios, then we don't need to wait */ 6648 if (!ioc->bios_pg3.BiosVersion) 6649 return 0; 6650 6651 /* Bios is present, then we drop down here. 6652 * 6653 * If there any entries in the Bios Page 2, then we wait 6654 * for discovery to complete. 6655 */ 6656 6657 /* Current Boot Device */ 6658 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6659 MPI2_BIOSPAGE2_FORM_MASK) == 6660 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6661 /* Request Boot Device */ 6662 (ioc->bios_pg2.ReqBootDeviceForm & 6663 MPI2_BIOSPAGE2_FORM_MASK) == 6664 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6665 /* Alternate Request Boot Device */ 6666 (ioc->bios_pg2.ReqAltBootDeviceForm & 6667 MPI2_BIOSPAGE2_FORM_MASK) == 6668 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6669 return 0; 6670 6671 return 1; 6672 } 6673 6674 /** 6675 * _base_unmask_events - turn on notification for this event 6676 * @ioc: per adapter object 6677 * @event: firmware event 6678 * 6679 * The mask is stored in ioc->event_masks. 6680 */ 6681 static void 6682 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6683 { 6684 u32 desired_event; 6685 6686 if (event >= 128) 6687 return; 6688 6689 desired_event = (1 << (event % 32)); 6690 6691 if (event < 32) 6692 ioc->event_masks[0] &= ~desired_event; 6693 else if (event < 64) 6694 ioc->event_masks[1] &= ~desired_event; 6695 else if (event < 96) 6696 ioc->event_masks[2] &= ~desired_event; 6697 else if (event < 128) 6698 ioc->event_masks[3] &= ~desired_event; 6699 } 6700 6701 /** 6702 * _base_event_notification - send event notification 6703 * @ioc: per adapter object 6704 * 6705 * Return: 0 for success, non-zero for failure. 6706 */ 6707 static int 6708 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6709 { 6710 Mpi2EventNotificationRequest_t *mpi_request; 6711 u16 smid; 6712 int r = 0; 6713 int i; 6714 6715 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6716 6717 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6718 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6719 return -EAGAIN; 6720 } 6721 6722 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6723 if (!smid) { 6724 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6725 return -EAGAIN; 6726 } 6727 ioc->base_cmds.status = MPT3_CMD_PENDING; 6728 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6729 ioc->base_cmds.smid = smid; 6730 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6731 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6732 mpi_request->VF_ID = 0; /* TODO */ 6733 mpi_request->VP_ID = 0; 6734 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6735 mpi_request->EventMasks[i] = 6736 cpu_to_le32(ioc->event_masks[i]); 6737 init_completion(&ioc->base_cmds.done); 6738 ioc->put_smid_default(ioc, smid); 6739 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6740 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6741 ioc_err(ioc, "%s: timeout\n", __func__); 6742 _debug_dump_mf(mpi_request, 6743 sizeof(Mpi2EventNotificationRequest_t)/4); 6744 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6745 r = -EFAULT; 6746 else 6747 r = -ETIME; 6748 } else 6749 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6750 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6751 return r; 6752 } 6753 6754 /** 6755 * mpt3sas_base_validate_event_type - validating event types 6756 * @ioc: per adapter object 6757 * @event_type: firmware event 6758 * 6759 * This will turn on firmware event notification when application 6760 * ask for that event. We don't mask events that are already enabled. 6761 */ 6762 void 6763 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6764 { 6765 int i, j; 6766 u32 event_mask, desired_event; 6767 u8 send_update_to_fw; 6768 6769 for (i = 0, send_update_to_fw = 0; i < 6770 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6771 event_mask = ~event_type[i]; 6772 desired_event = 1; 6773 for (j = 0; j < 32; j++) { 6774 if (!(event_mask & desired_event) && 6775 (ioc->event_masks[i] & desired_event)) { 6776 ioc->event_masks[i] &= ~desired_event; 6777 send_update_to_fw = 1; 6778 } 6779 desired_event = (desired_event << 1); 6780 } 6781 } 6782 6783 if (!send_update_to_fw) 6784 return; 6785 6786 mutex_lock(&ioc->base_cmds.mutex); 6787 _base_event_notification(ioc); 6788 mutex_unlock(&ioc->base_cmds.mutex); 6789 } 6790 6791 /** 6792 * _base_diag_reset - the "big hammer" start of day reset 6793 * @ioc: per adapter object 6794 * 6795 * Return: 0 for success, non-zero for failure. 6796 */ 6797 static int 6798 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6799 { 6800 u32 host_diagnostic; 6801 u32 ioc_state; 6802 u32 count; 6803 u32 hcb_size; 6804 6805 ioc_info(ioc, "sending diag reset !!\n"); 6806 6807 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6808 6809 count = 0; 6810 do { 6811 /* Write magic sequence to WriteSequence register 6812 * Loop until in diagnostic mode 6813 */ 6814 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6815 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6816 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6817 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6818 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6819 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6820 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6821 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6822 6823 /* wait 100 msec */ 6824 msleep(100); 6825 6826 if (count++ > 20) { 6827 ioc_info(ioc, 6828 "Stop writing magic sequence after 20 retries\n"); 6829 _base_dump_reg_set(ioc); 6830 goto out; 6831 } 6832 6833 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6834 drsprintk(ioc, 6835 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6836 count, host_diagnostic)); 6837 6838 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6839 6840 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6841 6842 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6843 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6844 &ioc->chip->HostDiagnostic); 6845 6846 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6847 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6848 6849 /* Approximately 300 second max wait */ 6850 for (count = 0; count < (300000000 / 6851 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6852 6853 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6854 6855 if (host_diagnostic == 0xFFFFFFFF) { 6856 ioc_info(ioc, 6857 "Invalid host diagnostic register value\n"); 6858 _base_dump_reg_set(ioc); 6859 goto out; 6860 } 6861 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6862 break; 6863 6864 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6865 } 6866 6867 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6868 6869 drsprintk(ioc, 6870 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6871 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6872 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6873 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6874 6875 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6876 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6877 &ioc->chip->HCBSize); 6878 } 6879 6880 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6881 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6882 &ioc->chip->HostDiagnostic); 6883 6884 drsprintk(ioc, 6885 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6886 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6887 6888 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6889 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6890 if (ioc_state) { 6891 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6892 __func__, ioc_state); 6893 _base_dump_reg_set(ioc); 6894 goto out; 6895 } 6896 6897 ioc_info(ioc, "diag reset: SUCCESS\n"); 6898 return 0; 6899 6900 out: 6901 ioc_err(ioc, "diag reset: FAILED\n"); 6902 return -EFAULT; 6903 } 6904 6905 /** 6906 * _base_make_ioc_ready - put controller in READY state 6907 * @ioc: per adapter object 6908 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6909 * 6910 * Return: 0 for success, non-zero for failure. 6911 */ 6912 static int 6913 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6914 { 6915 u32 ioc_state; 6916 int rc; 6917 int count; 6918 6919 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6920 6921 if (ioc->pci_error_recovery) 6922 return 0; 6923 6924 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6925 dhsprintk(ioc, 6926 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6927 __func__, ioc_state)); 6928 6929 /* if in RESET state, it should move to READY state shortly */ 6930 count = 0; 6931 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6932 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6933 MPI2_IOC_STATE_READY) { 6934 if (count++ == 10) { 6935 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6936 __func__, ioc_state); 6937 return -EFAULT; 6938 } 6939 ssleep(1); 6940 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6941 } 6942 } 6943 6944 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6945 return 0; 6946 6947 if (ioc_state & MPI2_DOORBELL_USED) { 6948 ioc_info(ioc, "unexpected doorbell active!\n"); 6949 goto issue_diag_reset; 6950 } 6951 6952 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6953 mpt3sas_print_fault_code(ioc, ioc_state & 6954 MPI2_DOORBELL_DATA_MASK); 6955 goto issue_diag_reset; 6956 } 6957 6958 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 6959 /* 6960 * if host reset is invoked while watch dog thread is waiting 6961 * for IOC state to be changed to Fault state then driver has 6962 * to wait here for CoreDump state to clear otherwise reset 6963 * will be issued to the FW and FW move the IOC state to 6964 * reset state without copying the FW logs to coredump region. 6965 */ 6966 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 6967 mpt3sas_print_coredump_info(ioc, ioc_state & 6968 MPI2_DOORBELL_DATA_MASK); 6969 mpt3sas_base_wait_for_coredump_completion(ioc, 6970 __func__); 6971 } 6972 goto issue_diag_reset; 6973 } 6974 6975 if (type == FORCE_BIG_HAMMER) 6976 goto issue_diag_reset; 6977 6978 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6979 if (!(_base_send_ioc_reset(ioc, 6980 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6981 return 0; 6982 } 6983 6984 issue_diag_reset: 6985 rc = _base_diag_reset(ioc); 6986 return rc; 6987 } 6988 6989 /** 6990 * _base_make_ioc_operational - put controller in OPERATIONAL state 6991 * @ioc: per adapter object 6992 * 6993 * Return: 0 for success, non-zero for failure. 6994 */ 6995 static int 6996 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6997 { 6998 int r, i, index, rc; 6999 unsigned long flags; 7000 u32 reply_address; 7001 u16 smid; 7002 struct _tr_list *delayed_tr, *delayed_tr_next; 7003 struct _sc_list *delayed_sc, *delayed_sc_next; 7004 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 7005 u8 hide_flag; 7006 struct adapter_reply_queue *reply_q; 7007 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7008 7009 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7010 7011 /* clean the delayed target reset list */ 7012 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7013 &ioc->delayed_tr_list, list) { 7014 list_del(&delayed_tr->list); 7015 kfree(delayed_tr); 7016 } 7017 7018 7019 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7020 &ioc->delayed_tr_volume_list, list) { 7021 list_del(&delayed_tr->list); 7022 kfree(delayed_tr); 7023 } 7024 7025 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 7026 &ioc->delayed_sc_list, list) { 7027 list_del(&delayed_sc->list); 7028 kfree(delayed_sc); 7029 } 7030 7031 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7032 &ioc->delayed_event_ack_list, list) { 7033 list_del(&delayed_event_ack->list); 7034 kfree(delayed_event_ack); 7035 } 7036 7037 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7038 7039 /* hi-priority queue */ 7040 INIT_LIST_HEAD(&ioc->hpr_free_list); 7041 smid = ioc->hi_priority_smid; 7042 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7043 ioc->hpr_lookup[i].cb_idx = 0xFF; 7044 ioc->hpr_lookup[i].smid = smid; 7045 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7046 &ioc->hpr_free_list); 7047 } 7048 7049 /* internal queue */ 7050 INIT_LIST_HEAD(&ioc->internal_free_list); 7051 smid = ioc->internal_smid; 7052 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7053 ioc->internal_lookup[i].cb_idx = 0xFF; 7054 ioc->internal_lookup[i].smid = smid; 7055 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7056 &ioc->internal_free_list); 7057 } 7058 7059 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7060 7061 /* initialize Reply Free Queue */ 7062 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7063 i < ioc->reply_free_queue_depth ; i++, reply_address += 7064 ioc->reply_sz) { 7065 ioc->reply_free[i] = cpu_to_le32(reply_address); 7066 if (ioc->is_mcpu_endpoint) 7067 _base_clone_reply_to_sys_mem(ioc, 7068 reply_address, i); 7069 } 7070 7071 /* initialize reply queues */ 7072 if (ioc->is_driver_loading) 7073 _base_assign_reply_queues(ioc); 7074 7075 /* initialize Reply Post Free Queue */ 7076 index = 0; 7077 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7078 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7079 /* 7080 * If RDPQ is enabled, switch to the next allocation. 7081 * Otherwise advance within the contiguous region. 7082 */ 7083 if (ioc->rdpq_array_enable) { 7084 reply_q->reply_post_free = 7085 ioc->reply_post[index++].reply_post_free; 7086 } else { 7087 reply_q->reply_post_free = reply_post_free_contig; 7088 reply_post_free_contig += ioc->reply_post_queue_depth; 7089 } 7090 7091 reply_q->reply_post_host_index = 0; 7092 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7093 reply_q->reply_post_free[i].Words = 7094 cpu_to_le64(ULLONG_MAX); 7095 if (!_base_is_controller_msix_enabled(ioc)) 7096 goto skip_init_reply_post_free_queue; 7097 } 7098 skip_init_reply_post_free_queue: 7099 7100 r = _base_send_ioc_init(ioc); 7101 if (r) { 7102 /* 7103 * No need to check IOC state for fault state & issue 7104 * diag reset during host reset. This check is need 7105 * only during driver load time. 7106 */ 7107 if (!ioc->is_driver_loading) 7108 return r; 7109 7110 rc = _base_check_for_fault_and_issue_reset(ioc); 7111 if (rc || (_base_send_ioc_init(ioc))) 7112 return r; 7113 } 7114 7115 /* initialize reply free host index */ 7116 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7117 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7118 7119 /* initialize reply post host index */ 7120 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7121 if (ioc->combined_reply_queue) 7122 writel((reply_q->msix_index & 7)<< 7123 MPI2_RPHI_MSIX_INDEX_SHIFT, 7124 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7125 else 7126 writel(reply_q->msix_index << 7127 MPI2_RPHI_MSIX_INDEX_SHIFT, 7128 &ioc->chip->ReplyPostHostIndex); 7129 7130 if (!_base_is_controller_msix_enabled(ioc)) 7131 goto skip_init_reply_post_host_index; 7132 } 7133 7134 skip_init_reply_post_host_index: 7135 7136 mpt3sas_base_unmask_interrupts(ioc); 7137 7138 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7139 r = _base_display_fwpkg_version(ioc); 7140 if (r) 7141 return r; 7142 } 7143 7144 _base_static_config_pages(ioc); 7145 r = _base_event_notification(ioc); 7146 if (r) 7147 return r; 7148 7149 if (ioc->is_driver_loading) { 7150 7151 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7152 == 0x80) { 7153 hide_flag = (u8) ( 7154 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7155 MFG_PAGE10_HIDE_SSDS_MASK); 7156 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7157 ioc->mfg_pg10_hide_flag = hide_flag; 7158 } 7159 7160 ioc->wait_for_discovery_to_complete = 7161 _base_determine_wait_on_discovery(ioc); 7162 7163 return r; /* scan_start and scan_finished support */ 7164 } 7165 7166 r = _base_send_port_enable(ioc); 7167 if (r) 7168 return r; 7169 7170 return r; 7171 } 7172 7173 /** 7174 * mpt3sas_base_free_resources - free resources controller resources 7175 * @ioc: per adapter object 7176 */ 7177 void 7178 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7179 { 7180 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7181 7182 /* synchronizing freeing resource with pci_access_mutex lock */ 7183 mutex_lock(&ioc->pci_access_mutex); 7184 if (ioc->chip_phys && ioc->chip) { 7185 mpt3sas_base_mask_interrupts(ioc); 7186 ioc->shost_recovery = 1; 7187 _base_make_ioc_ready(ioc, SOFT_RESET); 7188 ioc->shost_recovery = 0; 7189 } 7190 7191 mpt3sas_base_unmap_resources(ioc); 7192 mutex_unlock(&ioc->pci_access_mutex); 7193 return; 7194 } 7195 7196 /** 7197 * mpt3sas_base_attach - attach controller instance 7198 * @ioc: per adapter object 7199 * 7200 * Return: 0 for success, non-zero for failure. 7201 */ 7202 int 7203 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7204 { 7205 int r, i, rc; 7206 int cpu_id, last_cpu_id = 0; 7207 7208 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7209 7210 /* setup cpu_msix_table */ 7211 ioc->cpu_count = num_online_cpus(); 7212 for_each_online_cpu(cpu_id) 7213 last_cpu_id = cpu_id; 7214 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7215 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7216 ioc->reply_queue_count = 1; 7217 if (!ioc->cpu_msix_table) { 7218 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7219 r = -ENOMEM; 7220 goto out_free_resources; 7221 } 7222 7223 if (ioc->is_warpdrive) { 7224 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7225 sizeof(resource_size_t *), GFP_KERNEL); 7226 if (!ioc->reply_post_host_index) { 7227 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7228 r = -ENOMEM; 7229 goto out_free_resources; 7230 } 7231 } 7232 7233 ioc->smp_affinity_enable = smp_affinity_enable; 7234 7235 ioc->rdpq_array_enable_assigned = 0; 7236 ioc->use_32bit_dma = false; 7237 if (ioc->is_aero_ioc) 7238 ioc->base_readl = &_base_readl_aero; 7239 else 7240 ioc->base_readl = &_base_readl; 7241 r = mpt3sas_base_map_resources(ioc); 7242 if (r) 7243 goto out_free_resources; 7244 7245 pci_set_drvdata(ioc->pdev, ioc->shost); 7246 r = _base_get_ioc_facts(ioc); 7247 if (r) { 7248 rc = _base_check_for_fault_and_issue_reset(ioc); 7249 if (rc || (_base_get_ioc_facts(ioc))) 7250 goto out_free_resources; 7251 } 7252 7253 switch (ioc->hba_mpi_version_belonged) { 7254 case MPI2_VERSION: 7255 ioc->build_sg_scmd = &_base_build_sg_scmd; 7256 ioc->build_sg = &_base_build_sg; 7257 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7258 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7259 break; 7260 case MPI25_VERSION: 7261 case MPI26_VERSION: 7262 /* 7263 * In SAS3.0, 7264 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7265 * Target Status - all require the IEEE formated scatter gather 7266 * elements. 7267 */ 7268 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7269 ioc->build_sg = &_base_build_sg_ieee; 7270 ioc->build_nvme_prp = &_base_build_nvme_prp; 7271 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7272 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7273 if (ioc->high_iops_queues) 7274 ioc->get_msix_index_for_smlio = 7275 &_base_get_high_iops_msix_index; 7276 else 7277 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7278 break; 7279 } 7280 if (ioc->atomic_desc_capable) { 7281 ioc->put_smid_default = &_base_put_smid_default_atomic; 7282 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7283 ioc->put_smid_fast_path = 7284 &_base_put_smid_fast_path_atomic; 7285 ioc->put_smid_hi_priority = 7286 &_base_put_smid_hi_priority_atomic; 7287 } else { 7288 ioc->put_smid_default = &_base_put_smid_default; 7289 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7290 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7291 if (ioc->is_mcpu_endpoint) 7292 ioc->put_smid_scsi_io = 7293 &_base_put_smid_mpi_ep_scsi_io; 7294 else 7295 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7296 } 7297 /* 7298 * These function pointers for other requests that don't 7299 * the require IEEE scatter gather elements. 7300 * 7301 * For example Configuration Pages and SAS IOUNIT Control don't. 7302 */ 7303 ioc->build_sg_mpi = &_base_build_sg; 7304 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7305 7306 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7307 if (r) 7308 goto out_free_resources; 7309 7310 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7311 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7312 if (!ioc->pfacts) { 7313 r = -ENOMEM; 7314 goto out_free_resources; 7315 } 7316 7317 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7318 r = _base_get_port_facts(ioc, i); 7319 if (r) { 7320 rc = _base_check_for_fault_and_issue_reset(ioc); 7321 if (rc || (_base_get_port_facts(ioc, i))) 7322 goto out_free_resources; 7323 } 7324 } 7325 7326 r = _base_allocate_memory_pools(ioc); 7327 if (r) 7328 goto out_free_resources; 7329 7330 if (irqpoll_weight > 0) 7331 ioc->thresh_hold = irqpoll_weight; 7332 else 7333 ioc->thresh_hold = ioc->hba_queue_depth/4; 7334 7335 _base_init_irqpolls(ioc); 7336 init_waitqueue_head(&ioc->reset_wq); 7337 7338 /* allocate memory pd handle bitmask list */ 7339 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7340 if (ioc->facts.MaxDevHandle % 8) 7341 ioc->pd_handles_sz++; 7342 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7343 GFP_KERNEL); 7344 if (!ioc->pd_handles) { 7345 r = -ENOMEM; 7346 goto out_free_resources; 7347 } 7348 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7349 GFP_KERNEL); 7350 if (!ioc->blocking_handles) { 7351 r = -ENOMEM; 7352 goto out_free_resources; 7353 } 7354 7355 /* allocate memory for pending OS device add list */ 7356 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7357 if (ioc->facts.MaxDevHandle % 8) 7358 ioc->pend_os_device_add_sz++; 7359 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7360 GFP_KERNEL); 7361 if (!ioc->pend_os_device_add) 7362 goto out_free_resources; 7363 7364 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7365 ioc->device_remove_in_progress = 7366 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7367 if (!ioc->device_remove_in_progress) 7368 goto out_free_resources; 7369 7370 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7371 7372 /* base internal command bits */ 7373 mutex_init(&ioc->base_cmds.mutex); 7374 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7375 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7376 7377 /* port_enable command bits */ 7378 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7379 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7380 7381 /* transport internal command bits */ 7382 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7383 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7384 mutex_init(&ioc->transport_cmds.mutex); 7385 7386 /* scsih internal command bits */ 7387 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7388 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7389 mutex_init(&ioc->scsih_cmds.mutex); 7390 7391 /* task management internal command bits */ 7392 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7393 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7394 mutex_init(&ioc->tm_cmds.mutex); 7395 7396 /* config page internal command bits */ 7397 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7398 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7399 mutex_init(&ioc->config_cmds.mutex); 7400 7401 /* ctl module internal command bits */ 7402 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7403 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7404 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7405 mutex_init(&ioc->ctl_cmds.mutex); 7406 7407 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7408 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7409 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7410 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7411 r = -ENOMEM; 7412 goto out_free_resources; 7413 } 7414 7415 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7416 ioc->event_masks[i] = -1; 7417 7418 /* here we enable the events we care about */ 7419 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7420 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7421 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7422 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7423 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7424 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7425 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7426 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7427 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7428 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7429 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7430 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7431 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7432 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7433 if (ioc->is_gen35_ioc) { 7434 _base_unmask_events(ioc, 7435 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7436 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7437 _base_unmask_events(ioc, 7438 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7439 } 7440 } 7441 r = _base_make_ioc_operational(ioc); 7442 if (r) 7443 goto out_free_resources; 7444 7445 /* 7446 * Copy current copy of IOCFacts in prev_fw_facts 7447 * and it will be used during online firmware upgrade. 7448 */ 7449 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7450 sizeof(struct mpt3sas_facts)); 7451 7452 ioc->non_operational_loop = 0; 7453 ioc->ioc_coredump_loop = 0; 7454 ioc->got_task_abort_from_ioctl = 0; 7455 return 0; 7456 7457 out_free_resources: 7458 7459 ioc->remove_host = 1; 7460 7461 mpt3sas_base_free_resources(ioc); 7462 _base_release_memory_pools(ioc); 7463 pci_set_drvdata(ioc->pdev, NULL); 7464 kfree(ioc->cpu_msix_table); 7465 if (ioc->is_warpdrive) 7466 kfree(ioc->reply_post_host_index); 7467 kfree(ioc->pd_handles); 7468 kfree(ioc->blocking_handles); 7469 kfree(ioc->device_remove_in_progress); 7470 kfree(ioc->pend_os_device_add); 7471 kfree(ioc->tm_cmds.reply); 7472 kfree(ioc->transport_cmds.reply); 7473 kfree(ioc->scsih_cmds.reply); 7474 kfree(ioc->config_cmds.reply); 7475 kfree(ioc->base_cmds.reply); 7476 kfree(ioc->port_enable_cmds.reply); 7477 kfree(ioc->ctl_cmds.reply); 7478 kfree(ioc->ctl_cmds.sense); 7479 kfree(ioc->pfacts); 7480 ioc->ctl_cmds.reply = NULL; 7481 ioc->base_cmds.reply = NULL; 7482 ioc->tm_cmds.reply = NULL; 7483 ioc->scsih_cmds.reply = NULL; 7484 ioc->transport_cmds.reply = NULL; 7485 ioc->config_cmds.reply = NULL; 7486 ioc->pfacts = NULL; 7487 return r; 7488 } 7489 7490 7491 /** 7492 * mpt3sas_base_detach - remove controller instance 7493 * @ioc: per adapter object 7494 */ 7495 void 7496 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7497 { 7498 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7499 7500 mpt3sas_base_stop_watchdog(ioc); 7501 mpt3sas_base_free_resources(ioc); 7502 _base_release_memory_pools(ioc); 7503 mpt3sas_free_enclosure_list(ioc); 7504 pci_set_drvdata(ioc->pdev, NULL); 7505 kfree(ioc->cpu_msix_table); 7506 if (ioc->is_warpdrive) 7507 kfree(ioc->reply_post_host_index); 7508 kfree(ioc->pd_handles); 7509 kfree(ioc->blocking_handles); 7510 kfree(ioc->device_remove_in_progress); 7511 kfree(ioc->pend_os_device_add); 7512 kfree(ioc->pfacts); 7513 kfree(ioc->ctl_cmds.reply); 7514 kfree(ioc->ctl_cmds.sense); 7515 kfree(ioc->base_cmds.reply); 7516 kfree(ioc->port_enable_cmds.reply); 7517 kfree(ioc->tm_cmds.reply); 7518 kfree(ioc->transport_cmds.reply); 7519 kfree(ioc->scsih_cmds.reply); 7520 kfree(ioc->config_cmds.reply); 7521 } 7522 7523 /** 7524 * _base_pre_reset_handler - pre reset handler 7525 * @ioc: per adapter object 7526 */ 7527 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7528 { 7529 mpt3sas_scsih_pre_reset_handler(ioc); 7530 mpt3sas_ctl_pre_reset_handler(ioc); 7531 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7532 } 7533 7534 /** 7535 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7536 * @ioc: per adapter object 7537 */ 7538 static void 7539 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7540 { 7541 dtmprintk(ioc, 7542 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7543 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7544 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7545 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7546 complete(&ioc->transport_cmds.done); 7547 } 7548 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7549 ioc->base_cmds.status |= MPT3_CMD_RESET; 7550 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7551 complete(&ioc->base_cmds.done); 7552 } 7553 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7554 ioc->port_enable_failed = 1; 7555 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7556 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7557 if (ioc->is_driver_loading) { 7558 ioc->start_scan_failed = 7559 MPI2_IOCSTATUS_INTERNAL_ERROR; 7560 ioc->start_scan = 0; 7561 ioc->port_enable_cmds.status = 7562 MPT3_CMD_NOT_USED; 7563 } else { 7564 complete(&ioc->port_enable_cmds.done); 7565 } 7566 } 7567 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7568 ioc->config_cmds.status |= MPT3_CMD_RESET; 7569 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7570 ioc->config_cmds.smid = USHRT_MAX; 7571 complete(&ioc->config_cmds.done); 7572 } 7573 } 7574 7575 /** 7576 * _base_clear_outstanding_commands - clear all outstanding commands 7577 * @ioc: per adapter object 7578 */ 7579 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 7580 { 7581 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 7582 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 7583 _base_clear_outstanding_mpt_commands(ioc); 7584 } 7585 7586 /** 7587 * _base_reset_done_handler - reset done handler 7588 * @ioc: per adapter object 7589 */ 7590 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7591 { 7592 mpt3sas_scsih_reset_done_handler(ioc); 7593 mpt3sas_ctl_reset_done_handler(ioc); 7594 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7595 } 7596 7597 /** 7598 * mpt3sas_wait_for_commands_to_complete - reset controller 7599 * @ioc: Pointer to MPT_ADAPTER structure 7600 * 7601 * This function is waiting 10s for all pending commands to complete 7602 * prior to putting controller in reset. 7603 */ 7604 void 7605 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7606 { 7607 u32 ioc_state; 7608 7609 ioc->pending_io_count = 0; 7610 7611 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7612 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7613 return; 7614 7615 /* pending command count */ 7616 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7617 7618 if (!ioc->pending_io_count) 7619 return; 7620 7621 /* wait for pending commands to complete */ 7622 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7623 } 7624 7625 /** 7626 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 7627 * attributes during online firmware upgrade and update the corresponding 7628 * IOC variables accordingly. 7629 * 7630 * @ioc: Pointer to MPT_ADAPTER structure 7631 */ 7632 static int 7633 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 7634 { 7635 u16 pd_handles_sz; 7636 void *pd_handles = NULL, *blocking_handles = NULL; 7637 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 7638 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 7639 7640 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 7641 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7642 if (ioc->facts.MaxDevHandle % 8) 7643 pd_handles_sz++; 7644 7645 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 7646 GFP_KERNEL); 7647 if (!pd_handles) { 7648 ioc_info(ioc, 7649 "Unable to allocate the memory for pd_handles of sz: %d\n", 7650 pd_handles_sz); 7651 return -ENOMEM; 7652 } 7653 memset(pd_handles + ioc->pd_handles_sz, 0, 7654 (pd_handles_sz - ioc->pd_handles_sz)); 7655 ioc->pd_handles = pd_handles; 7656 7657 blocking_handles = krealloc(ioc->blocking_handles, 7658 pd_handles_sz, GFP_KERNEL); 7659 if (!blocking_handles) { 7660 ioc_info(ioc, 7661 "Unable to allocate the memory for " 7662 "blocking_handles of sz: %d\n", 7663 pd_handles_sz); 7664 return -ENOMEM; 7665 } 7666 memset(blocking_handles + ioc->pd_handles_sz, 0, 7667 (pd_handles_sz - ioc->pd_handles_sz)); 7668 ioc->blocking_handles = blocking_handles; 7669 ioc->pd_handles_sz = pd_handles_sz; 7670 7671 pend_os_device_add = krealloc(ioc->pend_os_device_add, 7672 pd_handles_sz, GFP_KERNEL); 7673 if (!pend_os_device_add) { 7674 ioc_info(ioc, 7675 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 7676 pd_handles_sz); 7677 return -ENOMEM; 7678 } 7679 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 7680 (pd_handles_sz - ioc->pend_os_device_add_sz)); 7681 ioc->pend_os_device_add = pend_os_device_add; 7682 ioc->pend_os_device_add_sz = pd_handles_sz; 7683 7684 device_remove_in_progress = krealloc( 7685 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 7686 if (!device_remove_in_progress) { 7687 ioc_info(ioc, 7688 "Unable to allocate the memory for " 7689 "device_remove_in_progress of sz: %d\n " 7690 , pd_handles_sz); 7691 return -ENOMEM; 7692 } 7693 memset(device_remove_in_progress + 7694 ioc->device_remove_in_progress_sz, 0, 7695 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 7696 ioc->device_remove_in_progress = device_remove_in_progress; 7697 ioc->device_remove_in_progress_sz = pd_handles_sz; 7698 } 7699 7700 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 7701 return 0; 7702 } 7703 7704 /** 7705 * mpt3sas_base_hard_reset_handler - reset controller 7706 * @ioc: Pointer to MPT_ADAPTER structure 7707 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7708 * 7709 * Return: 0 for success, non-zero for failure. 7710 */ 7711 int 7712 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7713 enum reset_type type) 7714 { 7715 int r; 7716 unsigned long flags; 7717 u32 ioc_state; 7718 u8 is_fault = 0, is_trigger = 0; 7719 7720 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7721 7722 if (ioc->pci_error_recovery) { 7723 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7724 r = 0; 7725 goto out_unlocked; 7726 } 7727 7728 if (mpt3sas_fwfault_debug) 7729 mpt3sas_halt_firmware(ioc); 7730 7731 /* wait for an active reset in progress to complete */ 7732 mutex_lock(&ioc->reset_in_progress_mutex); 7733 7734 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7735 ioc->shost_recovery = 1; 7736 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7737 7738 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7739 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7740 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7741 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7742 is_trigger = 1; 7743 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7744 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 7745 (ioc_state & MPI2_IOC_STATE_MASK) == 7746 MPI2_IOC_STATE_COREDUMP) 7747 is_fault = 1; 7748 } 7749 _base_pre_reset_handler(ioc); 7750 mpt3sas_wait_for_commands_to_complete(ioc); 7751 mpt3sas_base_mask_interrupts(ioc); 7752 r = _base_make_ioc_ready(ioc, type); 7753 if (r) 7754 goto out; 7755 _base_clear_outstanding_commands(ioc); 7756 7757 /* If this hard reset is called while port enable is active, then 7758 * there is no reason to call make_ioc_operational 7759 */ 7760 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7761 ioc->remove_host = 1; 7762 r = -EFAULT; 7763 goto out; 7764 } 7765 r = _base_get_ioc_facts(ioc); 7766 if (r) 7767 goto out; 7768 7769 r = _base_check_ioc_facts_changes(ioc); 7770 if (r) { 7771 ioc_info(ioc, 7772 "Some of the parameters got changed in this new firmware" 7773 " image and it requires system reboot\n"); 7774 goto out; 7775 } 7776 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7777 panic("%s: Issue occurred with flashing controller firmware." 7778 "Please reboot the system and ensure that the correct" 7779 " firmware version is running\n", ioc->name); 7780 7781 r = _base_make_ioc_operational(ioc); 7782 if (!r) 7783 _base_reset_done_handler(ioc); 7784 7785 out: 7786 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 7787 7788 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7789 ioc->shost_recovery = 0; 7790 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7791 ioc->ioc_reset_count++; 7792 mutex_unlock(&ioc->reset_in_progress_mutex); 7793 7794 out_unlocked: 7795 if ((r == 0) && is_trigger) { 7796 if (is_fault) 7797 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7798 else 7799 mpt3sas_trigger_master(ioc, 7800 MASTER_TRIGGER_ADAPTER_RESET); 7801 } 7802 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7803 return r; 7804 } 7805