xref: /linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision ba2290b1b7505b28912092a0976e071a447ee18c)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 enum mpt3sas_perf_mode {
120 	MPT_PERF_MODE_DEFAULT	= -1,
121 	MPT_PERF_MODE_BALANCED	= 0,
122 	MPT_PERF_MODE_IOPS	= 1,
123 	MPT_PERF_MODE_LATENCY	= 2,
124 };
125 
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 		u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133 
134 /**
135  * mpt3sas_base_check_cmd_timeout - Function
136  *		to check timeout and command termination due
137  *		to Host reset.
138  *
139  * @ioc:	per adapter object.
140  * @status:	Status of issued command.
141  * @mpi_request:mf request pointer.
142  * @sz:		size of buffer.
143  *
144  * @Returns - 1/0 Reset to be done or Not
145  */
146 u8
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 		u8 status, void *mpi_request, int sz)
149 {
150 	u8 issue_reset = 0;
151 
152 	if (!(status & MPT3_CMD_RESET))
153 		issue_reset = 1;
154 
155 	ioc_err(ioc, "Command %s\n",
156 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 	_debug_dump_mf(mpi_request, sz);
158 
159 	return issue_reset;
160 }
161 
162 /**
163  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164  * @val: ?
165  * @kp: ?
166  *
167  * Return: ?
168  */
169 static int
170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172 	int ret = param_set_int(val, kp);
173 	struct MPT3SAS_ADAPTER *ioc;
174 
175 	if (ret)
176 		return ret;
177 
178 	/* global ioc spinlock to protect controller list on list operations */
179 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 	spin_lock(&gioc_lock);
181 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 	spin_unlock(&gioc_lock);
184 	return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 	param_get_int, &mpt3sas_fwfault_debug, 0644);
188 
189 /**
190  * _base_readl_aero - retry readl for max three times.
191  * @addr: MPT Fusion system interface register address
192  *
193  * Retry the readl() for max three times if it gets zero value
194  * while reading the system interface register.
195  */
196 static inline u32
197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199 	u32 i = 0, ret_val;
200 
201 	do {
202 		ret_val = readl(addr);
203 		i++;
204 	} while (ret_val == 0 && i < 3);
205 
206 	return ret_val;
207 }
208 
209 static inline u32
210 _base_readl(const volatile void __iomem *addr)
211 {
212 	return readl(addr);
213 }
214 
215 /**
216  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217  *				  in BAR0 space.
218  *
219  * @ioc: per adapter object
220  * @reply: reply message frame(lower 32bit addr)
221  * @index: System request message index.
222  */
223 static void
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 		u32 index)
226 {
227 	/*
228 	 * 256 is offset within sys register.
229 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231 	 */
232 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 			MPI_FRAME_START_OFFSET +
235 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236 
237 	writel(reply, reply_free_iomem);
238 }
239 
240 /**
241  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242  *				to system/BAR0 region.
243  *
244  * @dst_iomem: Pointer to the destination location in BAR0 space.
245  * @src: Pointer to the Source data.
246  * @size: Size of data to be copied.
247  */
248 static void
249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251 	int i;
252 	u32 *src_virt_mem = (u32 *)src;
253 
254 	for (i = 0; i < size/4; i++)
255 		writel((u32)src_virt_mem[i],
256 				(void __iomem *)dst_iomem + (i * 4));
257 }
258 
259 /**
260  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261  *
262  * @dst_iomem: Pointer to the destination location in BAR0 space.
263  * @src: Pointer to the Source data.
264  * @size: Size of data to be copied.
265  */
266 static void
267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269 	int i;
270 	u32 *src_virt_mem = (u32 *)(src);
271 
272 	for (i = 0; i < size/4; i++)
273 		writel((u32)src_virt_mem[i],
274 			(void __iomem *)dst_iomem + (i * 4));
275 }
276 
277 /**
278  * _base_get_chain - Calculates and Returns virtual chain address
279  *			 for the provided smid in BAR0 space.
280  *
281  * @ioc: per adapter object
282  * @smid: system request message index
283  * @sge_chain_count: Scatter gather chain count.
284  *
285  * Return: the chain address.
286  */
287 static inline void __iomem*
288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 		u8 sge_chain_count)
290 {
291 	void __iomem *base_chain, *chain_virt;
292 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
293 
294 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 		(cmd_credit * ioc->request_sz) +
296 		REPLY_FREE_POOL_SIZE;
297 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 	return chain_virt;
300 }
301 
302 /**
303  * _base_get_chain_phys - Calculates and Returns physical address
304  *			in BAR0 for scatter gather chains, for
305  *			the provided smid.
306  *
307  * @ioc: per adapter object
308  * @smid: system request message index
309  * @sge_chain_count: Scatter gather chain count.
310  *
311  * Return: Physical chain address.
312  */
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 		u8 sge_chain_count)
316 {
317 	phys_addr_t base_chain_phys, chain_phys;
318 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
319 
320 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 		(cmd_credit * ioc->request_sz) +
322 		REPLY_FREE_POOL_SIZE;
323 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 	return chain_phys;
326 }
327 
328 /**
329  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330  *			buffer address for the provided smid.
331  *			(Each smid can have 64K starts from 17024)
332  *
333  * @ioc: per adapter object
334  * @smid: system request message index
335  *
336  * Return: Pointer to buffer location in BAR0.
337  */
338 
339 static void __iomem *
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 	// Added extra 1 to reach end of chain.
344 	void __iomem *chain_end = _base_get_chain(ioc,
345 			cmd_credit + 1,
346 			ioc->facts.MaxChainDepth);
347 	return chain_end + (smid * 64 * 1024);
348 }
349 
350 /**
351  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352  *		Host buffer Physical address for the provided smid.
353  *		(Each smid can have 64K starts from 17024)
354  *
355  * @ioc: per adapter object
356  * @smid: system request message index
357  *
358  * Return: Pointer to buffer location in BAR0.
359  */
360 static phys_addr_t
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 			cmd_credit + 1,
366 			ioc->facts.MaxChainDepth);
367 	return chain_end_phys + (smid * 64 * 1024);
368 }
369 
370 /**
371  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372  *			lookup list and Provides chain_buffer
373  *			address for the matching dma address.
374  *			(Each smid can have 64K starts from 17024)
375  *
376  * @ioc: per adapter object
377  * @chain_buffer_dma: Chain buffer dma address.
378  *
379  * Return: Pointer to chain buffer. Or Null on Failure.
380  */
381 static void *
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 		dma_addr_t chain_buffer_dma)
384 {
385 	u16 index, j;
386 	struct chain_tracker *ct;
387 
388 	for (index = 0; index < ioc->scsiio_depth; index++) {
389 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 				return ct->chain_buffer;
393 		}
394 	}
395 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 	return NULL;
397 }
398 
399 /**
400  * _clone_sg_entries -	MPI EP's scsiio and config requests
401  *			are handled here. Base function for
402  *			double buffering, before submitting
403  *			the requests.
404  *
405  * @ioc: per adapter object.
406  * @mpi_request: mf request pointer.
407  * @smid: system request message index.
408  */
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 		void *mpi_request, u16 smid)
411 {
412 	Mpi2SGESimple32_t *sgel, *sgel_next;
413 	u32  sgl_flags, sge_chain_count = 0;
414 	bool is_write = false;
415 	u16 i = 0;
416 	void __iomem *buffer_iomem;
417 	phys_addr_t buffer_iomem_phys;
418 	void __iomem *buff_ptr;
419 	phys_addr_t buff_ptr_phys;
420 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 	phys_addr_t dst_addr_phys;
423 	MPI2RequestHeader_t *request_hdr;
424 	struct scsi_cmnd *scmd;
425 	struct scatterlist *sg_scmd = NULL;
426 	int is_scsiio_req = 0;
427 
428 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
429 
430 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 		Mpi25SCSIIORequest_t *scsiio_request =
432 			(Mpi25SCSIIORequest_t *)mpi_request;
433 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 		is_scsiio_req = 1;
435 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 		Mpi2ConfigRequest_t  *config_req =
437 			(Mpi2ConfigRequest_t *)mpi_request;
438 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 	} else
440 		return;
441 
442 	/* From smid we can get scsi_cmd, once we have sg_scmd,
443 	 * we just need to get sg_virt and sg_next to get virual
444 	 * address associated with sgel->Address.
445 	 */
446 
447 	if (is_scsiio_req) {
448 		/* Get scsi_cmd using smid */
449 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 		if (scmd == NULL) {
451 			ioc_err(ioc, "scmd is NULL\n");
452 			return;
453 		}
454 
455 		/* Get sg_scmd from scmd provided */
456 		sg_scmd = scsi_sglist(scmd);
457 	}
458 
459 	/*
460 	 * 0 - 255	System register
461 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
462 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
463 	 *		considering maxCredit 32. Reply need extra
464 	 *		room, for mCPU case kept four times of
465 	 *		maxCredit).
466 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
467 	 *		128 byte size = 12288)
468 	 * 17152 - x	Host buffer mapped with smid.
469 	 *		(Each smid can have 64K Max IO.)
470 	 * BAR0+Last 1K MSIX Addr and Data
471 	 * Total size in use 2113664 bytes of 4MB BAR0
472 	 */
473 
474 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476 
477 	buff_ptr = buffer_iomem;
478 	buff_ptr_phys = buffer_iomem_phys;
479 	WARN_ON(buff_ptr_phys > U32_MAX);
480 
481 	if (le32_to_cpu(sgel->FlagsLength) &
482 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 		is_write = true;
484 
485 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486 
487 		sgl_flags =
488 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489 
490 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492 			/*
493 			 * Helper function which on passing
494 			 * chain_buffer_dma returns chain_buffer. Get
495 			 * the virtual address for sgel->Address
496 			 */
497 			sgel_next =
498 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 						le32_to_cpu(sgel->Address));
500 			if (sgel_next == NULL)
501 				return;
502 			/*
503 			 * This is coping 128 byte chain
504 			 * frame (not a host buffer)
505 			 */
506 			dst_chain_addr[sge_chain_count] =
507 				_base_get_chain(ioc,
508 					smid, sge_chain_count);
509 			src_chain_addr[sge_chain_count] =
510 						(void *) sgel_next;
511 			dst_addr_phys = _base_get_chain_phys(ioc,
512 						smid, sge_chain_count);
513 			WARN_ON(dst_addr_phys > U32_MAX);
514 			sgel->Address =
515 				cpu_to_le32(lower_32_bits(dst_addr_phys));
516 			sgel = sgel_next;
517 			sge_chain_count++;
518 			break;
519 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 			if (is_write) {
521 				if (is_scsiio_req) {
522 					_base_clone_to_sys_mem(buff_ptr,
523 					    sg_virt(sg_scmd),
524 					    (le32_to_cpu(sgel->FlagsLength) &
525 					    0x00ffffff));
526 					/*
527 					 * FIXME: this relies on a a zero
528 					 * PCI mem_offset.
529 					 */
530 					sgel->Address =
531 					    cpu_to_le32((u32)buff_ptr_phys);
532 				} else {
533 					_base_clone_to_sys_mem(buff_ptr,
534 					    ioc->config_vaddr,
535 					    (le32_to_cpu(sgel->FlagsLength) &
536 					    0x00ffffff));
537 					sgel->Address =
538 					    cpu_to_le32((u32)buff_ptr_phys);
539 				}
540 			}
541 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 			    0x00ffffff);
543 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 			    0x00ffffff);
545 			if ((le32_to_cpu(sgel->FlagsLength) &
546 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
547 					<< MPI2_SGE_FLAGS_SHIFT)))
548 				goto eob_clone_chain;
549 			else {
550 				/*
551 				 * Every single element in MPT will have
552 				 * associated sg_next. Better to sanity that
553 				 * sg_next is not NULL, but it will be a bug
554 				 * if it is null.
555 				 */
556 				if (is_scsiio_req) {
557 					sg_scmd = sg_next(sg_scmd);
558 					if (sg_scmd)
559 						sgel++;
560 					else
561 						goto eob_clone_chain;
562 				}
563 			}
564 			break;
565 		}
566 	}
567 
568 eob_clone_chain:
569 	for (i = 0; i < sge_chain_count; i++) {
570 		if (is_scsiio_req)
571 			_base_clone_to_sys_mem(dst_chain_addr[i],
572 				src_chain_addr[i], ioc->request_sz);
573 	}
574 }
575 
576 /**
577  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578  * @arg: input argument, used to derive ioc
579  *
580  * Return:
581  * 0 if controller is removed from pci subsystem.
582  * -1 for other case.
583  */
584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 	struct pci_dev *pdev;
588 
589 	if (!ioc)
590 		return -1;
591 
592 	pdev = ioc->pdev;
593 	if (!pdev)
594 		return -1;
595 	pci_stop_and_remove_bus_device_locked(pdev);
596 	return 0;
597 }
598 
599 /**
600  * _base_fault_reset_work - workq handling ioc fault conditions
601  * @work: input argument, used to derive ioc
602  *
603  * Context: sleep.
604  */
605 static void
606 _base_fault_reset_work(struct work_struct *work)
607 {
608 	struct MPT3SAS_ADAPTER *ioc =
609 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
610 	unsigned long	 flags;
611 	u32 doorbell;
612 	int rc;
613 	struct task_struct *p;
614 
615 
616 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
617 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
618 			ioc->pci_error_recovery)
619 		goto rearm_timer;
620 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
621 
622 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
623 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
624 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
625 
626 		/* It may be possible that EEH recovery can resolve some of
627 		 * pci bus failure issues rather removing the dead ioc function
628 		 * by considering controller is in a non-operational state. So
629 		 * here priority is given to the EEH recovery. If it doesn't
630 		 * not resolve this issue, mpt3sas driver will consider this
631 		 * controller to non-operational state and remove the dead ioc
632 		 * function.
633 		 */
634 		if (ioc->non_operational_loop++ < 5) {
635 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
636 							 flags);
637 			goto rearm_timer;
638 		}
639 
640 		/*
641 		 * Call _scsih_flush_pending_cmds callback so that we flush all
642 		 * pending commands back to OS. This call is required to aovid
643 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
644 		 * and this call is safe since dead ioc will never return any
645 		 * command back from HW.
646 		 */
647 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
648 		/*
649 		 * Set remove_host flag early since kernel thread will
650 		 * take some time to execute.
651 		 */
652 		ioc->remove_host = 1;
653 		/*Remove the Dead Host */
654 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
655 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
656 		if (IS_ERR(p))
657 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
658 				__func__);
659 		else
660 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
661 				__func__);
662 		return; /* don't rearm timer */
663 	}
664 
665 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
666 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
667 		    ioc->manu_pg11.CoreDumpTOSec :
668 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
669 
670 		timeout /= (FAULT_POLLING_INTERVAL/1000);
671 
672 		if (ioc->ioc_coredump_loop == 0) {
673 			mpt3sas_print_coredump_info(ioc,
674 			    doorbell & MPI2_DOORBELL_DATA_MASK);
675 			/* do not accept any IOs and disable the interrupts */
676 			spin_lock_irqsave(
677 			    &ioc->ioc_reset_in_progress_lock, flags);
678 			ioc->shost_recovery = 1;
679 			spin_unlock_irqrestore(
680 			    &ioc->ioc_reset_in_progress_lock, flags);
681 			mpt3sas_base_mask_interrupts(ioc);
682 			_base_clear_outstanding_commands(ioc);
683 		}
684 
685 		ioc_info(ioc, "%s: CoreDump loop %d.",
686 		    __func__, ioc->ioc_coredump_loop);
687 
688 		/* Wait until CoreDump completes or times out */
689 		if (ioc->ioc_coredump_loop++ < timeout) {
690 			spin_lock_irqsave(
691 			    &ioc->ioc_reset_in_progress_lock, flags);
692 			goto rearm_timer;
693 		}
694 	}
695 
696 	if (ioc->ioc_coredump_loop) {
697 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
698 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
699 			    __func__, ioc->ioc_coredump_loop);
700 		else
701 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
702 			    __func__, ioc->ioc_coredump_loop);
703 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
704 	}
705 	ioc->non_operational_loop = 0;
706 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
707 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
708 		ioc_warn(ioc, "%s: hard reset: %s\n",
709 			 __func__, rc == 0 ? "success" : "failed");
710 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
711 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
712 			mpt3sas_print_fault_code(ioc, doorbell &
713 			    MPI2_DOORBELL_DATA_MASK);
714 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
715 		    MPI2_IOC_STATE_COREDUMP)
716 			mpt3sas_print_coredump_info(ioc, doorbell &
717 			    MPI2_DOORBELL_DATA_MASK);
718 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
719 		    MPI2_IOC_STATE_OPERATIONAL)
720 			return; /* don't rearm timer */
721 	}
722 	ioc->ioc_coredump_loop = 0;
723 
724 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
725  rearm_timer:
726 	if (ioc->fault_reset_work_q)
727 		queue_delayed_work(ioc->fault_reset_work_q,
728 		    &ioc->fault_reset_work,
729 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
730 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
731 }
732 
733 /**
734  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
735  * @ioc: per adapter object
736  *
737  * Context: sleep.
738  */
739 void
740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
741 {
742 	unsigned long	 flags;
743 
744 	if (ioc->fault_reset_work_q)
745 		return;
746 
747 	/* initialize fault polling */
748 
749 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
750 	snprintf(ioc->fault_reset_work_q_name,
751 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
752 	    ioc->driver_name, ioc->id);
753 	ioc->fault_reset_work_q =
754 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
755 	if (!ioc->fault_reset_work_q) {
756 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
757 		return;
758 	}
759 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
760 	if (ioc->fault_reset_work_q)
761 		queue_delayed_work(ioc->fault_reset_work_q,
762 		    &ioc->fault_reset_work,
763 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
764 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
765 }
766 
767 /**
768  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
769  * @ioc: per adapter object
770  *
771  * Context: sleep.
772  */
773 void
774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
775 {
776 	unsigned long flags;
777 	struct workqueue_struct *wq;
778 
779 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
780 	wq = ioc->fault_reset_work_q;
781 	ioc->fault_reset_work_q = NULL;
782 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
783 	if (wq) {
784 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
785 			flush_workqueue(wq);
786 		destroy_workqueue(wq);
787 	}
788 }
789 
790 /**
791  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
792  * @ioc: per adapter object
793  * @fault_code: fault code
794  */
795 void
796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
797 {
798 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
799 }
800 
801 /**
802  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
803  * @ioc: per adapter object
804  * @fault_code: fault code
805  *
806  * Return nothing.
807  */
808 void
809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
810 {
811 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
812 }
813 
814 /**
815  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
816  * completes or times out
817  * @ioc: per adapter object
818  * @caller: caller function name
819  *
820  * Returns 0 for success, non-zero for failure.
821  */
822 int
823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
824 		const char *caller)
825 {
826 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
827 			ioc->manu_pg11.CoreDumpTOSec :
828 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
829 
830 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
831 					timeout);
832 
833 	if (ioc_state)
834 		ioc_err(ioc,
835 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
836 		    caller, ioc_state);
837 	else
838 		ioc_info(ioc,
839 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
840 		    caller, ioc_state);
841 
842 	return ioc_state;
843 }
844 
845 /**
846  * mpt3sas_halt_firmware - halt's mpt controller firmware
847  * @ioc: per adapter object
848  *
849  * For debugging timeout related issues.  Writing 0xCOFFEE00
850  * to the doorbell register will halt controller firmware. With
851  * the purpose to stop both driver and firmware, the enduser can
852  * obtain a ring buffer from controller UART.
853  */
854 void
855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
856 {
857 	u32 doorbell;
858 
859 	if (!ioc->fwfault_debug)
860 		return;
861 
862 	dump_stack();
863 
864 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
865 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
866 		mpt3sas_print_fault_code(ioc, doorbell &
867 		    MPI2_DOORBELL_DATA_MASK);
868 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
869 	    MPI2_IOC_STATE_COREDUMP) {
870 		mpt3sas_print_coredump_info(ioc, doorbell &
871 		    MPI2_DOORBELL_DATA_MASK);
872 	} else {
873 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
874 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
875 	}
876 
877 	if (ioc->fwfault_debug == 2)
878 		for (;;)
879 			;
880 	else
881 		panic("panic in %s\n", __func__);
882 }
883 
884 /**
885  * _base_sas_ioc_info - verbose translation of the ioc status
886  * @ioc: per adapter object
887  * @mpi_reply: reply mf payload returned from firmware
888  * @request_hdr: request mf
889  */
890 static void
891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
892 	MPI2RequestHeader_t *request_hdr)
893 {
894 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
895 	    MPI2_IOCSTATUS_MASK;
896 	char *desc = NULL;
897 	u16 frame_sz;
898 	char *func_str = NULL;
899 
900 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
901 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
902 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
903 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
904 		return;
905 
906 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
907 		return;
908 
909 	switch (ioc_status) {
910 
911 /****************************************************************************
912 *  Common IOCStatus values for all replies
913 ****************************************************************************/
914 
915 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
916 		desc = "invalid function";
917 		break;
918 	case MPI2_IOCSTATUS_BUSY:
919 		desc = "busy";
920 		break;
921 	case MPI2_IOCSTATUS_INVALID_SGL:
922 		desc = "invalid sgl";
923 		break;
924 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
925 		desc = "internal error";
926 		break;
927 	case MPI2_IOCSTATUS_INVALID_VPID:
928 		desc = "invalid vpid";
929 		break;
930 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
931 		desc = "insufficient resources";
932 		break;
933 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
934 		desc = "insufficient power";
935 		break;
936 	case MPI2_IOCSTATUS_INVALID_FIELD:
937 		desc = "invalid field";
938 		break;
939 	case MPI2_IOCSTATUS_INVALID_STATE:
940 		desc = "invalid state";
941 		break;
942 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
943 		desc = "op state not supported";
944 		break;
945 
946 /****************************************************************************
947 *  Config IOCStatus values
948 ****************************************************************************/
949 
950 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
951 		desc = "config invalid action";
952 		break;
953 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
954 		desc = "config invalid type";
955 		break;
956 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
957 		desc = "config invalid page";
958 		break;
959 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
960 		desc = "config invalid data";
961 		break;
962 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
963 		desc = "config no defaults";
964 		break;
965 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
966 		desc = "config cant commit";
967 		break;
968 
969 /****************************************************************************
970 *  SCSI IO Reply
971 ****************************************************************************/
972 
973 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
974 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
975 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
976 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
977 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
978 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
979 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
980 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
981 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
982 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
983 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
984 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
985 		break;
986 
987 /****************************************************************************
988 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
989 ****************************************************************************/
990 
991 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
992 		desc = "eedp guard error";
993 		break;
994 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
995 		desc = "eedp ref tag error";
996 		break;
997 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
998 		desc = "eedp app tag error";
999 		break;
1000 
1001 /****************************************************************************
1002 *  SCSI Target values
1003 ****************************************************************************/
1004 
1005 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1006 		desc = "target invalid io index";
1007 		break;
1008 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1009 		desc = "target aborted";
1010 		break;
1011 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1012 		desc = "target no conn retryable";
1013 		break;
1014 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1015 		desc = "target no connection";
1016 		break;
1017 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1018 		desc = "target xfer count mismatch";
1019 		break;
1020 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1021 		desc = "target data offset error";
1022 		break;
1023 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1024 		desc = "target too much write data";
1025 		break;
1026 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1027 		desc = "target iu too short";
1028 		break;
1029 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1030 		desc = "target ack nak timeout";
1031 		break;
1032 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1033 		desc = "target nak received";
1034 		break;
1035 
1036 /****************************************************************************
1037 *  Serial Attached SCSI values
1038 ****************************************************************************/
1039 
1040 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1041 		desc = "smp request failed";
1042 		break;
1043 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1044 		desc = "smp data overrun";
1045 		break;
1046 
1047 /****************************************************************************
1048 *  Diagnostic Buffer Post / Diagnostic Release values
1049 ****************************************************************************/
1050 
1051 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1052 		desc = "diagnostic released";
1053 		break;
1054 	default:
1055 		break;
1056 	}
1057 
1058 	if (!desc)
1059 		return;
1060 
1061 	switch (request_hdr->Function) {
1062 	case MPI2_FUNCTION_CONFIG:
1063 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1064 		func_str = "config_page";
1065 		break;
1066 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1067 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1068 		func_str = "task_mgmt";
1069 		break;
1070 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1071 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1072 		func_str = "sas_iounit_ctl";
1073 		break;
1074 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1075 		frame_sz = sizeof(Mpi2SepRequest_t);
1076 		func_str = "enclosure";
1077 		break;
1078 	case MPI2_FUNCTION_IOC_INIT:
1079 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1080 		func_str = "ioc_init";
1081 		break;
1082 	case MPI2_FUNCTION_PORT_ENABLE:
1083 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1084 		func_str = "port_enable";
1085 		break;
1086 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1087 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1088 		func_str = "smp_passthru";
1089 		break;
1090 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1091 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1092 		    ioc->sge_size;
1093 		func_str = "nvme_encapsulated";
1094 		break;
1095 	default:
1096 		frame_sz = 32;
1097 		func_str = "unknown";
1098 		break;
1099 	}
1100 
1101 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1102 		 desc, ioc_status, request_hdr, func_str);
1103 
1104 	_debug_dump_mf(request_hdr, frame_sz/4);
1105 }
1106 
1107 /**
1108  * _base_display_event_data - verbose translation of firmware asyn events
1109  * @ioc: per adapter object
1110  * @mpi_reply: reply mf payload returned from firmware
1111  */
1112 static void
1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1114 	Mpi2EventNotificationReply_t *mpi_reply)
1115 {
1116 	char *desc = NULL;
1117 	u16 event;
1118 
1119 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1120 		return;
1121 
1122 	event = le16_to_cpu(mpi_reply->Event);
1123 
1124 	switch (event) {
1125 	case MPI2_EVENT_LOG_DATA:
1126 		desc = "Log Data";
1127 		break;
1128 	case MPI2_EVENT_STATE_CHANGE:
1129 		desc = "Status Change";
1130 		break;
1131 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1132 		desc = "Hard Reset Received";
1133 		break;
1134 	case MPI2_EVENT_EVENT_CHANGE:
1135 		desc = "Event Change";
1136 		break;
1137 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1138 		desc = "Device Status Change";
1139 		break;
1140 	case MPI2_EVENT_IR_OPERATION_STATUS:
1141 		if (!ioc->hide_ir_msg)
1142 			desc = "IR Operation Status";
1143 		break;
1144 	case MPI2_EVENT_SAS_DISCOVERY:
1145 	{
1146 		Mpi2EventDataSasDiscovery_t *event_data =
1147 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1148 		ioc_info(ioc, "Discovery: (%s)",
1149 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1150 			 "start" : "stop");
1151 		if (event_data->DiscoveryStatus)
1152 			pr_cont(" discovery_status(0x%08x)",
1153 			    le32_to_cpu(event_data->DiscoveryStatus));
1154 		pr_cont("\n");
1155 		return;
1156 	}
1157 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1158 		desc = "SAS Broadcast Primitive";
1159 		break;
1160 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1161 		desc = "SAS Init Device Status Change";
1162 		break;
1163 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1164 		desc = "SAS Init Table Overflow";
1165 		break;
1166 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1167 		desc = "SAS Topology Change List";
1168 		break;
1169 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1170 		desc = "SAS Enclosure Device Status Change";
1171 		break;
1172 	case MPI2_EVENT_IR_VOLUME:
1173 		if (!ioc->hide_ir_msg)
1174 			desc = "IR Volume";
1175 		break;
1176 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1177 		if (!ioc->hide_ir_msg)
1178 			desc = "IR Physical Disk";
1179 		break;
1180 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1181 		if (!ioc->hide_ir_msg)
1182 			desc = "IR Configuration Change List";
1183 		break;
1184 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1185 		if (!ioc->hide_ir_msg)
1186 			desc = "Log Entry Added";
1187 		break;
1188 	case MPI2_EVENT_TEMP_THRESHOLD:
1189 		desc = "Temperature Threshold";
1190 		break;
1191 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1192 		desc = "Cable Event";
1193 		break;
1194 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1195 		desc = "SAS Device Discovery Error";
1196 		break;
1197 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1198 		desc = "PCIE Device Status Change";
1199 		break;
1200 	case MPI2_EVENT_PCIE_ENUMERATION:
1201 	{
1202 		Mpi26EventDataPCIeEnumeration_t *event_data =
1203 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1204 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1205 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1206 			 "start" : "stop");
1207 		if (event_data->EnumerationStatus)
1208 			pr_cont("enumeration_status(0x%08x)",
1209 				le32_to_cpu(event_data->EnumerationStatus));
1210 		pr_cont("\n");
1211 		return;
1212 	}
1213 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1214 		desc = "PCIE Topology Change List";
1215 		break;
1216 	}
1217 
1218 	if (!desc)
1219 		return;
1220 
1221 	ioc_info(ioc, "%s\n", desc);
1222 }
1223 
1224 /**
1225  * _base_sas_log_info - verbose translation of firmware log info
1226  * @ioc: per adapter object
1227  * @log_info: log info
1228  */
1229 static void
1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1231 {
1232 	union loginfo_type {
1233 		u32	loginfo;
1234 		struct {
1235 			u32	subcode:16;
1236 			u32	code:8;
1237 			u32	originator:4;
1238 			u32	bus_type:4;
1239 		} dw;
1240 	};
1241 	union loginfo_type sas_loginfo;
1242 	char *originator_str = NULL;
1243 
1244 	sas_loginfo.loginfo = log_info;
1245 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1246 		return;
1247 
1248 	/* each nexus loss loginfo */
1249 	if (log_info == 0x31170000)
1250 		return;
1251 
1252 	/* eat the loginfos associated with task aborts */
1253 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1254 	    0x31140000 || log_info == 0x31130000))
1255 		return;
1256 
1257 	switch (sas_loginfo.dw.originator) {
1258 	case 0:
1259 		originator_str = "IOP";
1260 		break;
1261 	case 1:
1262 		originator_str = "PL";
1263 		break;
1264 	case 2:
1265 		if (!ioc->hide_ir_msg)
1266 			originator_str = "IR";
1267 		else
1268 			originator_str = "WarpDrive";
1269 		break;
1270 	}
1271 
1272 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1273 		 log_info,
1274 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1275 }
1276 
1277 /**
1278  * _base_display_reply_info -
1279  * @ioc: per adapter object
1280  * @smid: system request message index
1281  * @msix_index: MSIX table index supplied by the OS
1282  * @reply: reply message frame(lower 32bit addr)
1283  */
1284 static void
1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1286 	u32 reply)
1287 {
1288 	MPI2DefaultReply_t *mpi_reply;
1289 	u16 ioc_status;
1290 	u32 loginfo = 0;
1291 
1292 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1293 	if (unlikely(!mpi_reply)) {
1294 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1295 			__FILE__, __LINE__, __func__);
1296 		return;
1297 	}
1298 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1299 
1300 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1301 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1302 		_base_sas_ioc_info(ioc , mpi_reply,
1303 		   mpt3sas_base_get_msg_frame(ioc, smid));
1304 	}
1305 
1306 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1307 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1308 		_base_sas_log_info(ioc, loginfo);
1309 	}
1310 
1311 	if (ioc_status || loginfo) {
1312 		ioc_status &= MPI2_IOCSTATUS_MASK;
1313 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1314 	}
1315 }
1316 
1317 /**
1318  * mpt3sas_base_done - base internal command completion routine
1319  * @ioc: per adapter object
1320  * @smid: system request message index
1321  * @msix_index: MSIX table index supplied by the OS
1322  * @reply: reply message frame(lower 32bit addr)
1323  *
1324  * Return:
1325  * 1 meaning mf should be freed from _base_interrupt
1326  * 0 means the mf is freed from this function.
1327  */
1328 u8
1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1330 	u32 reply)
1331 {
1332 	MPI2DefaultReply_t *mpi_reply;
1333 
1334 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1335 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1336 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1337 
1338 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1339 		return 1;
1340 
1341 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1342 	if (mpi_reply) {
1343 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1344 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1345 	}
1346 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1347 
1348 	complete(&ioc->base_cmds.done);
1349 	return 1;
1350 }
1351 
1352 /**
1353  * _base_async_event - main callback handler for firmware asyn events
1354  * @ioc: per adapter object
1355  * @msix_index: MSIX table index supplied by the OS
1356  * @reply: reply message frame(lower 32bit addr)
1357  *
1358  * Return:
1359  * 1 meaning mf should be freed from _base_interrupt
1360  * 0 means the mf is freed from this function.
1361  */
1362 static u8
1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1364 {
1365 	Mpi2EventNotificationReply_t *mpi_reply;
1366 	Mpi2EventAckRequest_t *ack_request;
1367 	u16 smid;
1368 	struct _event_ack_list *delayed_event_ack;
1369 
1370 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1371 	if (!mpi_reply)
1372 		return 1;
1373 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1374 		return 1;
1375 
1376 	_base_display_event_data(ioc, mpi_reply);
1377 
1378 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1379 		goto out;
1380 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1381 	if (!smid) {
1382 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1383 					GFP_ATOMIC);
1384 		if (!delayed_event_ack)
1385 			goto out;
1386 		INIT_LIST_HEAD(&delayed_event_ack->list);
1387 		delayed_event_ack->Event = mpi_reply->Event;
1388 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1389 		list_add_tail(&delayed_event_ack->list,
1390 				&ioc->delayed_event_ack_list);
1391 		dewtprintk(ioc,
1392 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1393 				    le16_to_cpu(mpi_reply->Event)));
1394 		goto out;
1395 	}
1396 
1397 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1398 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1399 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1400 	ack_request->Event = mpi_reply->Event;
1401 	ack_request->EventContext = mpi_reply->EventContext;
1402 	ack_request->VF_ID = 0;  /* TODO */
1403 	ack_request->VP_ID = 0;
1404 	ioc->put_smid_default(ioc, smid);
1405 
1406  out:
1407 
1408 	/* scsih callback handler */
1409 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1410 
1411 	/* ctl callback handler */
1412 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1413 
1414 	return 1;
1415 }
1416 
1417 static struct scsiio_tracker *
1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1419 {
1420 	struct scsi_cmnd *cmd;
1421 
1422 	if (WARN_ON(!smid) ||
1423 	    WARN_ON(smid >= ioc->hi_priority_smid))
1424 		return NULL;
1425 
1426 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1427 	if (cmd)
1428 		return scsi_cmd_priv(cmd);
1429 
1430 	return NULL;
1431 }
1432 
1433 /**
1434  * _base_get_cb_idx - obtain the callback index
1435  * @ioc: per adapter object
1436  * @smid: system request message index
1437  *
1438  * Return: callback index.
1439  */
1440 static u8
1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1442 {
1443 	int i;
1444 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1445 	u8 cb_idx = 0xFF;
1446 
1447 	if (smid < ioc->hi_priority_smid) {
1448 		struct scsiio_tracker *st;
1449 
1450 		if (smid < ctl_smid) {
1451 			st = _get_st_from_smid(ioc, smid);
1452 			if (st)
1453 				cb_idx = st->cb_idx;
1454 		} else if (smid == ctl_smid)
1455 			cb_idx = ioc->ctl_cb_idx;
1456 	} else if (smid < ioc->internal_smid) {
1457 		i = smid - ioc->hi_priority_smid;
1458 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1459 	} else if (smid <= ioc->hba_queue_depth) {
1460 		i = smid - ioc->internal_smid;
1461 		cb_idx = ioc->internal_lookup[i].cb_idx;
1462 	}
1463 	return cb_idx;
1464 }
1465 
1466 /**
1467  * mpt3sas_base_mask_interrupts - disable interrupts
1468  * @ioc: per adapter object
1469  *
1470  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1471  */
1472 void
1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1474 {
1475 	u32 him_register;
1476 
1477 	ioc->mask_interrupts = 1;
1478 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1479 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1480 	writel(him_register, &ioc->chip->HostInterruptMask);
1481 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1482 }
1483 
1484 /**
1485  * mpt3sas_base_unmask_interrupts - enable interrupts
1486  * @ioc: per adapter object
1487  *
1488  * Enabling only Reply Interrupts
1489  */
1490 void
1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1492 {
1493 	u32 him_register;
1494 
1495 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496 	him_register &= ~MPI2_HIM_RIM;
1497 	writel(him_register, &ioc->chip->HostInterruptMask);
1498 	ioc->mask_interrupts = 0;
1499 }
1500 
1501 union reply_descriptor {
1502 	u64 word;
1503 	struct {
1504 		u32 low;
1505 		u32 high;
1506 	} u;
1507 };
1508 
1509 static u32 base_mod64(u64 dividend, u32 divisor)
1510 {
1511 	u32 remainder;
1512 
1513 	if (!divisor)
1514 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1515 	remainder = do_div(dividend, divisor);
1516 	return remainder;
1517 }
1518 
1519 /**
1520  * _base_process_reply_queue - Process reply descriptors from reply
1521  *		descriptor post queue.
1522  * @reply_q: per IRQ's reply queue object.
1523  *
1524  * Return: number of reply descriptors processed from reply
1525  *		descriptor queue.
1526  */
1527 static int
1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1529 {
1530 	union reply_descriptor rd;
1531 	u64 completed_cmds;
1532 	u8 request_descript_type;
1533 	u16 smid;
1534 	u8 cb_idx;
1535 	u32 reply;
1536 	u8 msix_index = reply_q->msix_index;
1537 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1538 	Mpi2ReplyDescriptorsUnion_t *rpf;
1539 	u8 rc;
1540 
1541 	completed_cmds = 0;
1542 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1543 		return completed_cmds;
1544 
1545 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1546 	request_descript_type = rpf->Default.ReplyFlags
1547 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1548 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1549 		atomic_dec(&reply_q->busy);
1550 		return completed_cmds;
1551 	}
1552 
1553 	cb_idx = 0xFF;
1554 	do {
1555 		rd.word = le64_to_cpu(rpf->Words);
1556 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1557 			goto out;
1558 		reply = 0;
1559 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1560 		if (request_descript_type ==
1561 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1562 		    request_descript_type ==
1563 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1564 		    request_descript_type ==
1565 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1566 			cb_idx = _base_get_cb_idx(ioc, smid);
1567 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1568 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1569 				rc = mpt_callbacks[cb_idx](ioc, smid,
1570 				    msix_index, 0);
1571 				if (rc)
1572 					mpt3sas_base_free_smid(ioc, smid);
1573 			}
1574 		} else if (request_descript_type ==
1575 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1576 			reply = le32_to_cpu(
1577 			    rpf->AddressReply.ReplyFrameAddress);
1578 			if (reply > ioc->reply_dma_max_address ||
1579 			    reply < ioc->reply_dma_min_address)
1580 				reply = 0;
1581 			if (smid) {
1582 				cb_idx = _base_get_cb_idx(ioc, smid);
1583 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1584 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1585 					rc = mpt_callbacks[cb_idx](ioc, smid,
1586 					    msix_index, reply);
1587 					if (reply)
1588 						_base_display_reply_info(ioc,
1589 						    smid, msix_index, reply);
1590 					if (rc)
1591 						mpt3sas_base_free_smid(ioc,
1592 						    smid);
1593 				}
1594 			} else {
1595 				_base_async_event(ioc, msix_index, reply);
1596 			}
1597 
1598 			/* reply free queue handling */
1599 			if (reply) {
1600 				ioc->reply_free_host_index =
1601 				    (ioc->reply_free_host_index ==
1602 				    (ioc->reply_free_queue_depth - 1)) ?
1603 				    0 : ioc->reply_free_host_index + 1;
1604 				ioc->reply_free[ioc->reply_free_host_index] =
1605 				    cpu_to_le32(reply);
1606 				if (ioc->is_mcpu_endpoint)
1607 					_base_clone_reply_to_sys_mem(ioc,
1608 						reply,
1609 						ioc->reply_free_host_index);
1610 				writel(ioc->reply_free_host_index,
1611 				    &ioc->chip->ReplyFreeHostIndex);
1612 			}
1613 		}
1614 
1615 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1616 		reply_q->reply_post_host_index =
1617 		    (reply_q->reply_post_host_index ==
1618 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1619 		    reply_q->reply_post_host_index + 1;
1620 		request_descript_type =
1621 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1622 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1623 		completed_cmds++;
1624 		/* Update the reply post host index after continuously
1625 		 * processing the threshold number of Reply Descriptors.
1626 		 * So that FW can find enough entries to post the Reply
1627 		 * Descriptors in the reply descriptor post queue.
1628 		 */
1629 		if (completed_cmds >= ioc->thresh_hold) {
1630 			if (ioc->combined_reply_queue) {
1631 				writel(reply_q->reply_post_host_index |
1632 						((msix_index  & 7) <<
1633 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1634 				    ioc->replyPostRegisterIndex[msix_index/8]);
1635 			} else {
1636 				writel(reply_q->reply_post_host_index |
1637 						(msix_index <<
1638 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1639 						&ioc->chip->ReplyPostHostIndex);
1640 			}
1641 			if (!reply_q->irq_poll_scheduled) {
1642 				reply_q->irq_poll_scheduled = true;
1643 				irq_poll_sched(&reply_q->irqpoll);
1644 			}
1645 			atomic_dec(&reply_q->busy);
1646 			return completed_cmds;
1647 		}
1648 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1649 			goto out;
1650 		if (!reply_q->reply_post_host_index)
1651 			rpf = reply_q->reply_post_free;
1652 		else
1653 			rpf++;
1654 	} while (1);
1655 
1656  out:
1657 
1658 	if (!completed_cmds) {
1659 		atomic_dec(&reply_q->busy);
1660 		return completed_cmds;
1661 	}
1662 
1663 	if (ioc->is_warpdrive) {
1664 		writel(reply_q->reply_post_host_index,
1665 		ioc->reply_post_host_index[msix_index]);
1666 		atomic_dec(&reply_q->busy);
1667 		return completed_cmds;
1668 	}
1669 
1670 	/* Update Reply Post Host Index.
1671 	 * For those HBA's which support combined reply queue feature
1672 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1673 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1674 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1675 	 * 2. Then update this register with new reply host index value
1676 	 *    in ReplyPostIndex field and the MSIxIndex field with
1677 	 *    msix_index value reduced to a value between 0 and 7,
1678 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1679 	 *    Host Index Register supports 8 MSI-X vectors.
1680 	 *
1681 	 * For other HBA's just update the Reply Post Host Index register with
1682 	 * new reply host index value in ReplyPostIndex Field and msix_index
1683 	 * value in MSIxIndex field.
1684 	 */
1685 	if (ioc->combined_reply_queue)
1686 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1687 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1688 			ioc->replyPostRegisterIndex[msix_index/8]);
1689 	else
1690 		writel(reply_q->reply_post_host_index | (msix_index <<
1691 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1692 			&ioc->chip->ReplyPostHostIndex);
1693 	atomic_dec(&reply_q->busy);
1694 	return completed_cmds;
1695 }
1696 
1697 /**
1698  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1699  * @irq: irq number (not used)
1700  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1701  *
1702  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1703  */
1704 static irqreturn_t
1705 _base_interrupt(int irq, void *bus_id)
1706 {
1707 	struct adapter_reply_queue *reply_q = bus_id;
1708 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1709 
1710 	if (ioc->mask_interrupts)
1711 		return IRQ_NONE;
1712 	if (reply_q->irq_poll_scheduled)
1713 		return IRQ_HANDLED;
1714 	return ((_base_process_reply_queue(reply_q) > 0) ?
1715 			IRQ_HANDLED : IRQ_NONE);
1716 }
1717 
1718 /**
1719  * _base_irqpoll - IRQ poll callback handler
1720  * @irqpoll: irq_poll object
1721  * @budget: irq poll weight
1722  *
1723  * returns number of reply descriptors processed
1724  */
1725 static int
1726 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1727 {
1728 	struct adapter_reply_queue *reply_q;
1729 	int num_entries = 0;
1730 
1731 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1732 			irqpoll);
1733 	if (reply_q->irq_line_enable) {
1734 		disable_irq_nosync(reply_q->os_irq);
1735 		reply_q->irq_line_enable = false;
1736 	}
1737 	num_entries = _base_process_reply_queue(reply_q);
1738 	if (num_entries < budget) {
1739 		irq_poll_complete(irqpoll);
1740 		reply_q->irq_poll_scheduled = false;
1741 		reply_q->irq_line_enable = true;
1742 		enable_irq(reply_q->os_irq);
1743 		/*
1744 		 * Go for one more round of processing the
1745 		 * reply descriptor post queue incase if HBA
1746 		 * Firmware has posted some reply descriptors
1747 		 * while reenabling the IRQ.
1748 		 */
1749 		_base_process_reply_queue(reply_q);
1750 	}
1751 
1752 	return num_entries;
1753 }
1754 
1755 /**
1756  * _base_init_irqpolls - initliaze IRQ polls
1757  * @ioc: per adapter object
1758  *
1759  * returns nothing
1760  */
1761 static void
1762 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1763 {
1764 	struct adapter_reply_queue *reply_q, *next;
1765 
1766 	if (list_empty(&ioc->reply_queue_list))
1767 		return;
1768 
1769 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1770 		irq_poll_init(&reply_q->irqpoll,
1771 			ioc->hba_queue_depth/4, _base_irqpoll);
1772 		reply_q->irq_poll_scheduled = false;
1773 		reply_q->irq_line_enable = true;
1774 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1775 		    reply_q->msix_index);
1776 	}
1777 }
1778 
1779 /**
1780  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1781  * @ioc: per adapter object
1782  *
1783  * Return: Whether or not MSI/X is enabled.
1784  */
1785 static inline int
1786 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1787 {
1788 	return (ioc->facts.IOCCapabilities &
1789 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1790 }
1791 
1792 /**
1793  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1794  * @ioc: per adapter object
1795  * @poll: poll over reply descriptor pools incase interrupt for
1796  *		timed-out SCSI command got delayed
1797  * Context: non ISR conext
1798  *
1799  * Called when a Task Management request has completed.
1800  */
1801 void
1802 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1803 {
1804 	struct adapter_reply_queue *reply_q;
1805 
1806 	/* If MSIX capability is turned off
1807 	 * then multi-queues are not enabled
1808 	 */
1809 	if (!_base_is_controller_msix_enabled(ioc))
1810 		return;
1811 
1812 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1813 		if (ioc->shost_recovery || ioc->remove_host ||
1814 				ioc->pci_error_recovery)
1815 			return;
1816 		/* TMs are on msix_index == 0 */
1817 		if (reply_q->msix_index == 0)
1818 			continue;
1819 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1820 		if (reply_q->irq_poll_scheduled) {
1821 			/* Calling irq_poll_disable will wait for any pending
1822 			 * callbacks to have completed.
1823 			 */
1824 			irq_poll_disable(&reply_q->irqpoll);
1825 			irq_poll_enable(&reply_q->irqpoll);
1826 			/* check how the scheduled poll has ended,
1827 			 * clean up only if necessary
1828 			 */
1829 			if (reply_q->irq_poll_scheduled) {
1830 				reply_q->irq_poll_scheduled = false;
1831 				reply_q->irq_line_enable = true;
1832 				enable_irq(reply_q->os_irq);
1833 			}
1834 		}
1835 	}
1836 	if (poll)
1837 		_base_process_reply_queue(reply_q);
1838 }
1839 
1840 /**
1841  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1842  * @cb_idx: callback index
1843  */
1844 void
1845 mpt3sas_base_release_callback_handler(u8 cb_idx)
1846 {
1847 	mpt_callbacks[cb_idx] = NULL;
1848 }
1849 
1850 /**
1851  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1852  * @cb_func: callback function
1853  *
1854  * Return: Index of @cb_func.
1855  */
1856 u8
1857 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1858 {
1859 	u8 cb_idx;
1860 
1861 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1862 		if (mpt_callbacks[cb_idx] == NULL)
1863 			break;
1864 
1865 	mpt_callbacks[cb_idx] = cb_func;
1866 	return cb_idx;
1867 }
1868 
1869 /**
1870  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1871  */
1872 void
1873 mpt3sas_base_initialize_callback_handler(void)
1874 {
1875 	u8 cb_idx;
1876 
1877 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1878 		mpt3sas_base_release_callback_handler(cb_idx);
1879 }
1880 
1881 
1882 /**
1883  * _base_build_zero_len_sge - build zero length sg entry
1884  * @ioc: per adapter object
1885  * @paddr: virtual address for SGE
1886  *
1887  * Create a zero length scatter gather entry to insure the IOCs hardware has
1888  * something to use if the target device goes brain dead and tries
1889  * to send data even when none is asked for.
1890  */
1891 static void
1892 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1893 {
1894 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1895 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1896 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1897 	    MPI2_SGE_FLAGS_SHIFT);
1898 	ioc->base_add_sg_single(paddr, flags_length, -1);
1899 }
1900 
1901 /**
1902  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1903  * @paddr: virtual address for SGE
1904  * @flags_length: SGE flags and data transfer length
1905  * @dma_addr: Physical address
1906  */
1907 static void
1908 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1909 {
1910 	Mpi2SGESimple32_t *sgel = paddr;
1911 
1912 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1913 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1914 	sgel->FlagsLength = cpu_to_le32(flags_length);
1915 	sgel->Address = cpu_to_le32(dma_addr);
1916 }
1917 
1918 
1919 /**
1920  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1921  * @paddr: virtual address for SGE
1922  * @flags_length: SGE flags and data transfer length
1923  * @dma_addr: Physical address
1924  */
1925 static void
1926 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1927 {
1928 	Mpi2SGESimple64_t *sgel = paddr;
1929 
1930 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1931 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1932 	sgel->FlagsLength = cpu_to_le32(flags_length);
1933 	sgel->Address = cpu_to_le64(dma_addr);
1934 }
1935 
1936 /**
1937  * _base_get_chain_buffer_tracker - obtain chain tracker
1938  * @ioc: per adapter object
1939  * @scmd: SCSI commands of the IO request
1940  *
1941  * Return: chain tracker from chain_lookup table using key as
1942  * smid and smid's chain_offset.
1943  */
1944 static struct chain_tracker *
1945 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1946 			       struct scsi_cmnd *scmd)
1947 {
1948 	struct chain_tracker *chain_req;
1949 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1950 	u16 smid = st->smid;
1951 	u8 chain_offset =
1952 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1953 
1954 	if (chain_offset == ioc->chains_needed_per_io)
1955 		return NULL;
1956 
1957 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1958 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1959 	return chain_req;
1960 }
1961 
1962 
1963 /**
1964  * _base_build_sg - build generic sg
1965  * @ioc: per adapter object
1966  * @psge: virtual address for SGE
1967  * @data_out_dma: physical address for WRITES
1968  * @data_out_sz: data xfer size for WRITES
1969  * @data_in_dma: physical address for READS
1970  * @data_in_sz: data xfer size for READS
1971  */
1972 static void
1973 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1974 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1975 	size_t data_in_sz)
1976 {
1977 	u32 sgl_flags;
1978 
1979 	if (!data_out_sz && !data_in_sz) {
1980 		_base_build_zero_len_sge(ioc, psge);
1981 		return;
1982 	}
1983 
1984 	if (data_out_sz && data_in_sz) {
1985 		/* WRITE sgel first */
1986 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1987 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1988 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1989 		ioc->base_add_sg_single(psge, sgl_flags |
1990 		    data_out_sz, data_out_dma);
1991 
1992 		/* incr sgel */
1993 		psge += ioc->sge_size;
1994 
1995 		/* READ sgel last */
1996 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1997 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1998 		    MPI2_SGE_FLAGS_END_OF_LIST);
1999 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2000 		ioc->base_add_sg_single(psge, sgl_flags |
2001 		    data_in_sz, data_in_dma);
2002 	} else if (data_out_sz) /* WRITE */ {
2003 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2004 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2005 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2006 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2007 		ioc->base_add_sg_single(psge, sgl_flags |
2008 		    data_out_sz, data_out_dma);
2009 	} else if (data_in_sz) /* READ */ {
2010 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2011 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2012 		    MPI2_SGE_FLAGS_END_OF_LIST);
2013 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2014 		ioc->base_add_sg_single(psge, sgl_flags |
2015 		    data_in_sz, data_in_dma);
2016 	}
2017 }
2018 
2019 /* IEEE format sgls */
2020 
2021 /**
2022  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2023  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2024  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2025  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2026  * used to describe a larger data buffer.  If the data buffer is too large to
2027  * describe using the two PRP entriess inside the NVMe message, then PRP1
2028  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2029  * list located elsewhere in memory to describe the remaining data memory
2030  * segments.  The PRP list will be contiguous.
2031  *
2032  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2033  * consists of a list of PRP entries to describe a number of noncontigous
2034  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2035  * however, that this function is only used by the IOCTL call, so the memory
2036  * given will be guaranteed to be contiguous.  There is no need to translate
2037  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2038  * contiguous space that is one page size each.
2039  *
2040  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2041  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2042  * contains the second PRP element if the memory being described fits within 2
2043  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2044  *
2045  * A PRP list pointer contains the address of a PRP list, structured as a linear
2046  * array of PRP entries.  Each PRP entry in this list describes a segment of
2047  * physical memory.
2048  *
2049  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2050  * always points at the beginning of a 4KB physical memory page, and the offset
2051  * describes where within that 4KB page the memory segment begins.  Only the
2052  * first element in a PRP list may contain a non-zero offest, implying that all
2053  * memory segments following the first begin at the start of a 4KB page.
2054  *
2055  * Each PRP element normally describes 4KB of physical memory, with exceptions
2056  * for the first and last elements in the list.  If the memory being described
2057  * by the list begins at a non-zero offset within the first 4KB page, then the
2058  * first PRP element will contain a non-zero offset indicating where the region
2059  * begins within the 4KB page.  The last memory segment may end before the end
2060  * of the 4KB segment, depending upon the overall size of the memory being
2061  * described by the PRP list.
2062  *
2063  * Since PRP entries lack any indication of size, the overall data buffer length
2064  * is used to determine where the end of the data memory buffer is located, and
2065  * how many PRP entries are required to describe it.
2066  *
2067  * @ioc: per adapter object
2068  * @smid: system request message index for getting asscociated SGL
2069  * @nvme_encap_request: the NVMe request msg frame pointer
2070  * @data_out_dma: physical address for WRITES
2071  * @data_out_sz: data xfer size for WRITES
2072  * @data_in_dma: physical address for READS
2073  * @data_in_sz: data xfer size for READS
2074  */
2075 static void
2076 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2077 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2078 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2079 	size_t data_in_sz)
2080 {
2081 	int		prp_size = NVME_PRP_SIZE;
2082 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2083 	__le64		*prp_page;
2084 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2085 	u32		offset, entry_len;
2086 	u32		page_mask_result, page_mask;
2087 	size_t		length;
2088 	struct mpt3sas_nvme_cmd *nvme_cmd =
2089 		(void *)nvme_encap_request->NVMe_Command;
2090 
2091 	/*
2092 	 * Not all commands require a data transfer. If no data, just return
2093 	 * without constructing any PRP.
2094 	 */
2095 	if (!data_in_sz && !data_out_sz)
2096 		return;
2097 	prp1_entry = &nvme_cmd->prp1;
2098 	prp2_entry = &nvme_cmd->prp2;
2099 	prp_entry = prp1_entry;
2100 	/*
2101 	 * For the PRP entries, use the specially allocated buffer of
2102 	 * contiguous memory.
2103 	 */
2104 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2105 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2106 
2107 	/*
2108 	 * Check if we are within 1 entry of a page boundary we don't
2109 	 * want our first entry to be a PRP List entry.
2110 	 */
2111 	page_mask = ioc->page_size - 1;
2112 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2113 	if (!page_mask_result) {
2114 		/* Bump up to next page boundary. */
2115 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2116 		prp_page_dma = prp_page_dma + prp_size;
2117 	}
2118 
2119 	/*
2120 	 * Set PRP physical pointer, which initially points to the current PRP
2121 	 * DMA memory page.
2122 	 */
2123 	prp_entry_dma = prp_page_dma;
2124 
2125 	/* Get physical address and length of the data buffer. */
2126 	if (data_in_sz) {
2127 		dma_addr = data_in_dma;
2128 		length = data_in_sz;
2129 	} else {
2130 		dma_addr = data_out_dma;
2131 		length = data_out_sz;
2132 	}
2133 
2134 	/* Loop while the length is not zero. */
2135 	while (length) {
2136 		/*
2137 		 * Check if we need to put a list pointer here if we are at
2138 		 * page boundary - prp_size (8 bytes).
2139 		 */
2140 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2141 		if (!page_mask_result) {
2142 			/*
2143 			 * This is the last entry in a PRP List, so we need to
2144 			 * put a PRP list pointer here.  What this does is:
2145 			 *   - bump the current memory pointer to the next
2146 			 *     address, which will be the next full page.
2147 			 *   - set the PRP Entry to point to that page.  This
2148 			 *     is now the PRP List pointer.
2149 			 *   - bump the PRP Entry pointer the start of the
2150 			 *     next page.  Since all of this PRP memory is
2151 			 *     contiguous, no need to get a new page - it's
2152 			 *     just the next address.
2153 			 */
2154 			prp_entry_dma++;
2155 			*prp_entry = cpu_to_le64(prp_entry_dma);
2156 			prp_entry++;
2157 		}
2158 
2159 		/* Need to handle if entry will be part of a page. */
2160 		offset = dma_addr & page_mask;
2161 		entry_len = ioc->page_size - offset;
2162 
2163 		if (prp_entry == prp1_entry) {
2164 			/*
2165 			 * Must fill in the first PRP pointer (PRP1) before
2166 			 * moving on.
2167 			 */
2168 			*prp1_entry = cpu_to_le64(dma_addr);
2169 
2170 			/*
2171 			 * Now point to the second PRP entry within the
2172 			 * command (PRP2).
2173 			 */
2174 			prp_entry = prp2_entry;
2175 		} else if (prp_entry == prp2_entry) {
2176 			/*
2177 			 * Should the PRP2 entry be a PRP List pointer or just
2178 			 * a regular PRP pointer?  If there is more than one
2179 			 * more page of data, must use a PRP List pointer.
2180 			 */
2181 			if (length > ioc->page_size) {
2182 				/*
2183 				 * PRP2 will contain a PRP List pointer because
2184 				 * more PRP's are needed with this command. The
2185 				 * list will start at the beginning of the
2186 				 * contiguous buffer.
2187 				 */
2188 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2189 
2190 				/*
2191 				 * The next PRP Entry will be the start of the
2192 				 * first PRP List.
2193 				 */
2194 				prp_entry = prp_page;
2195 			} else {
2196 				/*
2197 				 * After this, the PRP Entries are complete.
2198 				 * This command uses 2 PRP's and no PRP list.
2199 				 */
2200 				*prp2_entry = cpu_to_le64(dma_addr);
2201 			}
2202 		} else {
2203 			/*
2204 			 * Put entry in list and bump the addresses.
2205 			 *
2206 			 * After PRP1 and PRP2 are filled in, this will fill in
2207 			 * all remaining PRP entries in a PRP List, one per
2208 			 * each time through the loop.
2209 			 */
2210 			*prp_entry = cpu_to_le64(dma_addr);
2211 			prp_entry++;
2212 			prp_entry_dma++;
2213 		}
2214 
2215 		/*
2216 		 * Bump the phys address of the command's data buffer by the
2217 		 * entry_len.
2218 		 */
2219 		dma_addr += entry_len;
2220 
2221 		/* Decrement length accounting for last partial page. */
2222 		if (entry_len > length)
2223 			length = 0;
2224 		else
2225 			length -= entry_len;
2226 	}
2227 }
2228 
2229 /**
2230  * base_make_prp_nvme -
2231  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2232  *
2233  * @ioc:		per adapter object
2234  * @scmd:		SCSI command from the mid-layer
2235  * @mpi_request:	mpi request
2236  * @smid:		msg Index
2237  * @sge_count:		scatter gather element count.
2238  *
2239  * Return:		true: PRPs are built
2240  *			false: IEEE SGLs needs to be built
2241  */
2242 static void
2243 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2244 		struct scsi_cmnd *scmd,
2245 		Mpi25SCSIIORequest_t *mpi_request,
2246 		u16 smid, int sge_count)
2247 {
2248 	int sge_len, num_prp_in_chain = 0;
2249 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2250 	__le64 *curr_buff;
2251 	dma_addr_t msg_dma, sge_addr, offset;
2252 	u32 page_mask, page_mask_result;
2253 	struct scatterlist *sg_scmd;
2254 	u32 first_prp_len;
2255 	int data_len = scsi_bufflen(scmd);
2256 	u32 nvme_pg_size;
2257 
2258 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2259 	/*
2260 	 * Nvme has a very convoluted prp format.  One prp is required
2261 	 * for each page or partial page. Driver need to split up OS sg_list
2262 	 * entries if it is longer than one page or cross a page
2263 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2264 	 * the last entry in each physical page of the PRP list.
2265 	 *
2266 	 * NOTE: The first PRP "entry" is actually placed in the first
2267 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2268 	 * entry in the main message is the chain element, and the rest
2269 	 * of the PRP entries are built in the contiguous pcie buffer.
2270 	 */
2271 	page_mask = nvme_pg_size - 1;
2272 
2273 	/*
2274 	 * Native SGL is needed.
2275 	 * Put a chain element in main message frame that points to the first
2276 	 * chain buffer.
2277 	 *
2278 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2279 	 *        a native SGL.
2280 	 */
2281 
2282 	/* Set main message chain element pointer */
2283 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2284 	/*
2285 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2286 	 * message.
2287 	 */
2288 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2289 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2290 
2291 	/*
2292 	 * For the PRP entries, use the specially allocated buffer of
2293 	 * contiguous memory.  Normal chain buffers can't be used
2294 	 * because each chain buffer would need to be the size of an OS
2295 	 * page (4k).
2296 	 */
2297 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2298 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2299 
2300 	main_chain_element->Address = cpu_to_le64(msg_dma);
2301 	main_chain_element->NextChainOffset = 0;
2302 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2303 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2304 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2305 
2306 	/* Build first prp, sge need not to be page aligned*/
2307 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2308 	sg_scmd = scsi_sglist(scmd);
2309 	sge_addr = sg_dma_address(sg_scmd);
2310 	sge_len = sg_dma_len(sg_scmd);
2311 
2312 	offset = sge_addr & page_mask;
2313 	first_prp_len = nvme_pg_size - offset;
2314 
2315 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2316 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2317 
2318 	data_len -= first_prp_len;
2319 
2320 	if (sge_len > first_prp_len) {
2321 		sge_addr += first_prp_len;
2322 		sge_len -= first_prp_len;
2323 	} else if (data_len && (sge_len == first_prp_len)) {
2324 		sg_scmd = sg_next(sg_scmd);
2325 		sge_addr = sg_dma_address(sg_scmd);
2326 		sge_len = sg_dma_len(sg_scmd);
2327 	}
2328 
2329 	for (;;) {
2330 		offset = sge_addr & page_mask;
2331 
2332 		/* Put PRP pointer due to page boundary*/
2333 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2334 		if (unlikely(!page_mask_result)) {
2335 			scmd_printk(KERN_NOTICE,
2336 				scmd, "page boundary curr_buff: 0x%p\n",
2337 				curr_buff);
2338 			msg_dma += 8;
2339 			*curr_buff = cpu_to_le64(msg_dma);
2340 			curr_buff++;
2341 			num_prp_in_chain++;
2342 		}
2343 
2344 		*curr_buff = cpu_to_le64(sge_addr);
2345 		curr_buff++;
2346 		msg_dma += 8;
2347 		num_prp_in_chain++;
2348 
2349 		sge_addr += nvme_pg_size;
2350 		sge_len -= nvme_pg_size;
2351 		data_len -= nvme_pg_size;
2352 
2353 		if (data_len <= 0)
2354 			break;
2355 
2356 		if (sge_len > 0)
2357 			continue;
2358 
2359 		sg_scmd = sg_next(sg_scmd);
2360 		sge_addr = sg_dma_address(sg_scmd);
2361 		sge_len = sg_dma_len(sg_scmd);
2362 	}
2363 
2364 	main_chain_element->Length =
2365 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2366 	return;
2367 }
2368 
2369 static bool
2370 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2371 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2372 {
2373 	u32 data_length = 0;
2374 	bool build_prp = true;
2375 
2376 	data_length = scsi_bufflen(scmd);
2377 	if (pcie_device &&
2378 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2379 		build_prp = false;
2380 		return build_prp;
2381 	}
2382 
2383 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2384 	 * we built IEEE SGL
2385 	 */
2386 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2387 		build_prp = false;
2388 
2389 	return build_prp;
2390 }
2391 
2392 /**
2393  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2394  * determine if the driver needs to build a native SGL.  If so, that native
2395  * SGL is built in the special contiguous buffers allocated especially for
2396  * PCIe SGL creation.  If the driver will not build a native SGL, return
2397  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2398  * supports NVMe.
2399  * @ioc: per adapter object
2400  * @mpi_request: mf request pointer
2401  * @smid: system request message index
2402  * @scmd: scsi command
2403  * @pcie_device: points to the PCIe device's info
2404  *
2405  * Return: 0 if native SGL was built, 1 if no SGL was built
2406  */
2407 static int
2408 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2409 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2410 	struct _pcie_device *pcie_device)
2411 {
2412 	int sges_left;
2413 
2414 	/* Get the SG list pointer and info. */
2415 	sges_left = scsi_dma_map(scmd);
2416 	if (sges_left < 0) {
2417 		sdev_printk(KERN_ERR, scmd->device,
2418 			"scsi_dma_map failed: request for %d bytes!\n",
2419 			scsi_bufflen(scmd));
2420 		return 1;
2421 	}
2422 
2423 	/* Check if we need to build a native SG list. */
2424 	if (base_is_prp_possible(ioc, pcie_device,
2425 				scmd, sges_left) == 0) {
2426 		/* We built a native SG list, just return. */
2427 		goto out;
2428 	}
2429 
2430 	/*
2431 	 * Build native NVMe PRP.
2432 	 */
2433 	base_make_prp_nvme(ioc, scmd, mpi_request,
2434 			smid, sges_left);
2435 
2436 	return 0;
2437 out:
2438 	scsi_dma_unmap(scmd);
2439 	return 1;
2440 }
2441 
2442 /**
2443  * _base_add_sg_single_ieee - add sg element for IEEE format
2444  * @paddr: virtual address for SGE
2445  * @flags: SGE flags
2446  * @chain_offset: number of 128 byte elements from start of segment
2447  * @length: data transfer length
2448  * @dma_addr: Physical address
2449  */
2450 static void
2451 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2452 	dma_addr_t dma_addr)
2453 {
2454 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2455 
2456 	sgel->Flags = flags;
2457 	sgel->NextChainOffset = chain_offset;
2458 	sgel->Length = cpu_to_le32(length);
2459 	sgel->Address = cpu_to_le64(dma_addr);
2460 }
2461 
2462 /**
2463  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2464  * @ioc: per adapter object
2465  * @paddr: virtual address for SGE
2466  *
2467  * Create a zero length scatter gather entry to insure the IOCs hardware has
2468  * something to use if the target device goes brain dead and tries
2469  * to send data even when none is asked for.
2470  */
2471 static void
2472 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2473 {
2474 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2475 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2476 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2477 
2478 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2479 }
2480 
2481 /**
2482  * _base_build_sg_scmd - main sg creation routine
2483  *		pcie_device is unused here!
2484  * @ioc: per adapter object
2485  * @scmd: scsi command
2486  * @smid: system request message index
2487  * @unused: unused pcie_device pointer
2488  * Context: none.
2489  *
2490  * The main routine that builds scatter gather table from a given
2491  * scsi request sent via the .queuecommand main handler.
2492  *
2493  * Return: 0 success, anything else error
2494  */
2495 static int
2496 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2497 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2498 {
2499 	Mpi2SCSIIORequest_t *mpi_request;
2500 	dma_addr_t chain_dma;
2501 	struct scatterlist *sg_scmd;
2502 	void *sg_local, *chain;
2503 	u32 chain_offset;
2504 	u32 chain_length;
2505 	u32 chain_flags;
2506 	int sges_left;
2507 	u32 sges_in_segment;
2508 	u32 sgl_flags;
2509 	u32 sgl_flags_last_element;
2510 	u32 sgl_flags_end_buffer;
2511 	struct chain_tracker *chain_req;
2512 
2513 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2514 
2515 	/* init scatter gather flags */
2516 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2517 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2518 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2519 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2520 	    << MPI2_SGE_FLAGS_SHIFT;
2521 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2522 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2523 	    << MPI2_SGE_FLAGS_SHIFT;
2524 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2525 
2526 	sg_scmd = scsi_sglist(scmd);
2527 	sges_left = scsi_dma_map(scmd);
2528 	if (sges_left < 0) {
2529 		sdev_printk(KERN_ERR, scmd->device,
2530 		 "scsi_dma_map failed: request for %d bytes!\n",
2531 		 scsi_bufflen(scmd));
2532 		return -ENOMEM;
2533 	}
2534 
2535 	sg_local = &mpi_request->SGL;
2536 	sges_in_segment = ioc->max_sges_in_main_message;
2537 	if (sges_left <= sges_in_segment)
2538 		goto fill_in_last_segment;
2539 
2540 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2541 	    (sges_in_segment * ioc->sge_size))/4;
2542 
2543 	/* fill in main message segment when there is a chain following */
2544 	while (sges_in_segment) {
2545 		if (sges_in_segment == 1)
2546 			ioc->base_add_sg_single(sg_local,
2547 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2548 			    sg_dma_address(sg_scmd));
2549 		else
2550 			ioc->base_add_sg_single(sg_local, sgl_flags |
2551 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2552 		sg_scmd = sg_next(sg_scmd);
2553 		sg_local += ioc->sge_size;
2554 		sges_left--;
2555 		sges_in_segment--;
2556 	}
2557 
2558 	/* initializing the chain flags and pointers */
2559 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2560 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2561 	if (!chain_req)
2562 		return -1;
2563 	chain = chain_req->chain_buffer;
2564 	chain_dma = chain_req->chain_buffer_dma;
2565 	do {
2566 		sges_in_segment = (sges_left <=
2567 		    ioc->max_sges_in_chain_message) ? sges_left :
2568 		    ioc->max_sges_in_chain_message;
2569 		chain_offset = (sges_left == sges_in_segment) ?
2570 		    0 : (sges_in_segment * ioc->sge_size)/4;
2571 		chain_length = sges_in_segment * ioc->sge_size;
2572 		if (chain_offset) {
2573 			chain_offset = chain_offset <<
2574 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2575 			chain_length += ioc->sge_size;
2576 		}
2577 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2578 		    chain_length, chain_dma);
2579 		sg_local = chain;
2580 		if (!chain_offset)
2581 			goto fill_in_last_segment;
2582 
2583 		/* fill in chain segments */
2584 		while (sges_in_segment) {
2585 			if (sges_in_segment == 1)
2586 				ioc->base_add_sg_single(sg_local,
2587 				    sgl_flags_last_element |
2588 				    sg_dma_len(sg_scmd),
2589 				    sg_dma_address(sg_scmd));
2590 			else
2591 				ioc->base_add_sg_single(sg_local, sgl_flags |
2592 				    sg_dma_len(sg_scmd),
2593 				    sg_dma_address(sg_scmd));
2594 			sg_scmd = sg_next(sg_scmd);
2595 			sg_local += ioc->sge_size;
2596 			sges_left--;
2597 			sges_in_segment--;
2598 		}
2599 
2600 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2601 		if (!chain_req)
2602 			return -1;
2603 		chain = chain_req->chain_buffer;
2604 		chain_dma = chain_req->chain_buffer_dma;
2605 	} while (1);
2606 
2607 
2608  fill_in_last_segment:
2609 
2610 	/* fill the last segment */
2611 	while (sges_left) {
2612 		if (sges_left == 1)
2613 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2614 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2615 		else
2616 			ioc->base_add_sg_single(sg_local, sgl_flags |
2617 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2618 		sg_scmd = sg_next(sg_scmd);
2619 		sg_local += ioc->sge_size;
2620 		sges_left--;
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 /**
2627  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2628  * @ioc: per adapter object
2629  * @scmd: scsi command
2630  * @smid: system request message index
2631  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2632  * constructed on need.
2633  * Context: none.
2634  *
2635  * The main routine that builds scatter gather table from a given
2636  * scsi request sent via the .queuecommand main handler.
2637  *
2638  * Return: 0 success, anything else error
2639  */
2640 static int
2641 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2642 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2643 {
2644 	Mpi25SCSIIORequest_t *mpi_request;
2645 	dma_addr_t chain_dma;
2646 	struct scatterlist *sg_scmd;
2647 	void *sg_local, *chain;
2648 	u32 chain_offset;
2649 	u32 chain_length;
2650 	int sges_left;
2651 	u32 sges_in_segment;
2652 	u8 simple_sgl_flags;
2653 	u8 simple_sgl_flags_last;
2654 	u8 chain_sgl_flags;
2655 	struct chain_tracker *chain_req;
2656 
2657 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2658 
2659 	/* init scatter gather flags */
2660 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2661 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2662 	simple_sgl_flags_last = simple_sgl_flags |
2663 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2664 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2665 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2666 
2667 	/* Check if we need to build a native SG list. */
2668 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2669 			smid, scmd, pcie_device) == 0)) {
2670 		/* We built a native SG list, just return. */
2671 		return 0;
2672 	}
2673 
2674 	sg_scmd = scsi_sglist(scmd);
2675 	sges_left = scsi_dma_map(scmd);
2676 	if (sges_left < 0) {
2677 		sdev_printk(KERN_ERR, scmd->device,
2678 			"scsi_dma_map failed: request for %d bytes!\n",
2679 			scsi_bufflen(scmd));
2680 		return -ENOMEM;
2681 	}
2682 
2683 	sg_local = &mpi_request->SGL;
2684 	sges_in_segment = (ioc->request_sz -
2685 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2686 	if (sges_left <= sges_in_segment)
2687 		goto fill_in_last_segment;
2688 
2689 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2690 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2691 
2692 	/* fill in main message segment when there is a chain following */
2693 	while (sges_in_segment > 1) {
2694 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2695 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2696 		sg_scmd = sg_next(sg_scmd);
2697 		sg_local += ioc->sge_size_ieee;
2698 		sges_left--;
2699 		sges_in_segment--;
2700 	}
2701 
2702 	/* initializing the pointers */
2703 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2704 	if (!chain_req)
2705 		return -1;
2706 	chain = chain_req->chain_buffer;
2707 	chain_dma = chain_req->chain_buffer_dma;
2708 	do {
2709 		sges_in_segment = (sges_left <=
2710 		    ioc->max_sges_in_chain_message) ? sges_left :
2711 		    ioc->max_sges_in_chain_message;
2712 		chain_offset = (sges_left == sges_in_segment) ?
2713 		    0 : sges_in_segment;
2714 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2715 		if (chain_offset)
2716 			chain_length += ioc->sge_size_ieee;
2717 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2718 		    chain_offset, chain_length, chain_dma);
2719 
2720 		sg_local = chain;
2721 		if (!chain_offset)
2722 			goto fill_in_last_segment;
2723 
2724 		/* fill in chain segments */
2725 		while (sges_in_segment) {
2726 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2727 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2728 			sg_scmd = sg_next(sg_scmd);
2729 			sg_local += ioc->sge_size_ieee;
2730 			sges_left--;
2731 			sges_in_segment--;
2732 		}
2733 
2734 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2735 		if (!chain_req)
2736 			return -1;
2737 		chain = chain_req->chain_buffer;
2738 		chain_dma = chain_req->chain_buffer_dma;
2739 	} while (1);
2740 
2741 
2742  fill_in_last_segment:
2743 
2744 	/* fill the last segment */
2745 	while (sges_left > 0) {
2746 		if (sges_left == 1)
2747 			_base_add_sg_single_ieee(sg_local,
2748 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2749 			    sg_dma_address(sg_scmd));
2750 		else
2751 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2752 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2753 		sg_scmd = sg_next(sg_scmd);
2754 		sg_local += ioc->sge_size_ieee;
2755 		sges_left--;
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 /**
2762  * _base_build_sg_ieee - build generic sg for IEEE format
2763  * @ioc: per adapter object
2764  * @psge: virtual address for SGE
2765  * @data_out_dma: physical address for WRITES
2766  * @data_out_sz: data xfer size for WRITES
2767  * @data_in_dma: physical address for READS
2768  * @data_in_sz: data xfer size for READS
2769  */
2770 static void
2771 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2772 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2773 	size_t data_in_sz)
2774 {
2775 	u8 sgl_flags;
2776 
2777 	if (!data_out_sz && !data_in_sz) {
2778 		_base_build_zero_len_sge_ieee(ioc, psge);
2779 		return;
2780 	}
2781 
2782 	if (data_out_sz && data_in_sz) {
2783 		/* WRITE sgel first */
2784 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2785 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2786 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2787 		    data_out_dma);
2788 
2789 		/* incr sgel */
2790 		psge += ioc->sge_size_ieee;
2791 
2792 		/* READ sgel last */
2793 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2794 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2795 		    data_in_dma);
2796 	} else if (data_out_sz) /* WRITE */ {
2797 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2798 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2799 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2800 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2801 		    data_out_dma);
2802 	} else if (data_in_sz) /* READ */ {
2803 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2804 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2805 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2806 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2807 		    data_in_dma);
2808 	}
2809 }
2810 
2811 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2812 
2813 /**
2814  * _base_config_dma_addressing - set dma addressing
2815  * @ioc: per adapter object
2816  * @pdev: PCI device struct
2817  *
2818  * Return: 0 for success, non-zero for failure.
2819  */
2820 static int
2821 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2822 {
2823 	struct sysinfo s;
2824 	int dma_mask;
2825 
2826 	if (ioc->is_mcpu_endpoint ||
2827 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2828 	    dma_get_required_mask(&pdev->dev) <= 32)
2829 		dma_mask = 32;
2830 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2831 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2832 		dma_mask = 63;
2833 	else
2834 		dma_mask = 64;
2835 
2836 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2837 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2838 		return -ENODEV;
2839 
2840 	if (dma_mask > 32) {
2841 		ioc->base_add_sg_single = &_base_add_sg_single_64;
2842 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2843 	} else {
2844 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2845 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2846 	}
2847 
2848 	si_meminfo(&s);
2849 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2850 		dma_mask, convert_to_kb(s.totalram));
2851 
2852 	return 0;
2853 }
2854 
2855 /**
2856  * _base_check_enable_msix - checks MSIX capabable.
2857  * @ioc: per adapter object
2858  *
2859  * Check to see if card is capable of MSIX, and set number
2860  * of available msix vectors
2861  */
2862 static int
2863 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2864 {
2865 	int base;
2866 	u16 message_control;
2867 
2868 	/* Check whether controller SAS2008 B0 controller,
2869 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2870 	 */
2871 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2872 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2873 		return -EINVAL;
2874 	}
2875 
2876 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2877 	if (!base) {
2878 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2879 		return -EINVAL;
2880 	}
2881 
2882 	/* get msix vector count */
2883 	/* NUMA_IO not supported for older controllers */
2884 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2885 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2886 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2887 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2888 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2889 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2890 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2891 		ioc->msix_vector_count = 1;
2892 	else {
2893 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2894 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2895 	}
2896 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2897 				  ioc->msix_vector_count));
2898 	return 0;
2899 }
2900 
2901 /**
2902  * _base_free_irq - free irq
2903  * @ioc: per adapter object
2904  *
2905  * Freeing respective reply_queue from the list.
2906  */
2907 static void
2908 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2909 {
2910 	struct adapter_reply_queue *reply_q, *next;
2911 
2912 	if (list_empty(&ioc->reply_queue_list))
2913 		return;
2914 
2915 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2916 		list_del(&reply_q->list);
2917 		if (ioc->smp_affinity_enable)
2918 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2919 			    reply_q->msix_index), NULL);
2920 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2921 			 reply_q);
2922 		kfree(reply_q);
2923 	}
2924 }
2925 
2926 /**
2927  * _base_request_irq - request irq
2928  * @ioc: per adapter object
2929  * @index: msix index into vector table
2930  *
2931  * Inserting respective reply_queue into the list.
2932  */
2933 static int
2934 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2935 {
2936 	struct pci_dev *pdev = ioc->pdev;
2937 	struct adapter_reply_queue *reply_q;
2938 	int r;
2939 
2940 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2941 	if (!reply_q) {
2942 		ioc_err(ioc, "unable to allocate memory %zu!\n",
2943 			sizeof(struct adapter_reply_queue));
2944 		return -ENOMEM;
2945 	}
2946 	reply_q->ioc = ioc;
2947 	reply_q->msix_index = index;
2948 
2949 	atomic_set(&reply_q->busy, 0);
2950 	if (ioc->msix_enable)
2951 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2952 		    ioc->driver_name, ioc->id, index);
2953 	else
2954 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2955 		    ioc->driver_name, ioc->id);
2956 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2957 			IRQF_SHARED, reply_q->name, reply_q);
2958 	if (r) {
2959 		pr_err("%s: unable to allocate interrupt %d!\n",
2960 		       reply_q->name, pci_irq_vector(pdev, index));
2961 		kfree(reply_q);
2962 		return -EBUSY;
2963 	}
2964 
2965 	INIT_LIST_HEAD(&reply_q->list);
2966 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2967 	return 0;
2968 }
2969 
2970 /**
2971  * _base_assign_reply_queues - assigning msix index for each cpu
2972  * @ioc: per adapter object
2973  *
2974  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2975  *
2976  * It would nice if we could call irq_set_affinity, however it is not
2977  * an exported symbol
2978  */
2979 static void
2980 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2981 {
2982 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2983 	struct adapter_reply_queue *reply_q;
2984 	int local_numa_node;
2985 
2986 	if (!_base_is_controller_msix_enabled(ioc))
2987 		return;
2988 
2989 	if (ioc->msix_load_balance)
2990 		return;
2991 
2992 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2993 
2994 	nr_cpus = num_online_cpus();
2995 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2996 					       ioc->facts.MaxMSIxVectors);
2997 	if (!nr_msix)
2998 		return;
2999 
3000 	if (ioc->smp_affinity_enable) {
3001 
3002 		/*
3003 		 * set irq affinity to local numa node for those irqs
3004 		 * corresponding to high iops queues.
3005 		 */
3006 		if (ioc->high_iops_queues) {
3007 			local_numa_node = dev_to_node(&ioc->pdev->dev);
3008 			for (index = 0; index < ioc->high_iops_queues;
3009 			    index++) {
3010 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3011 				    index), cpumask_of_node(local_numa_node));
3012 			}
3013 		}
3014 
3015 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3016 			const cpumask_t *mask;
3017 
3018 			if (reply_q->msix_index < ioc->high_iops_queues)
3019 				continue;
3020 
3021 			mask = pci_irq_get_affinity(ioc->pdev,
3022 			    reply_q->msix_index);
3023 			if (!mask) {
3024 				ioc_warn(ioc, "no affinity for msi %x\n",
3025 					 reply_q->msix_index);
3026 				goto fall_back;
3027 			}
3028 
3029 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3030 				if (cpu >= ioc->cpu_msix_table_sz)
3031 					break;
3032 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3033 			}
3034 		}
3035 		return;
3036 	}
3037 
3038 fall_back:
3039 	cpu = cpumask_first(cpu_online_mask);
3040 	nr_msix -= ioc->high_iops_queues;
3041 	index = 0;
3042 
3043 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3044 		unsigned int i, group = nr_cpus / nr_msix;
3045 
3046 		if (reply_q->msix_index < ioc->high_iops_queues)
3047 			continue;
3048 
3049 		if (cpu >= nr_cpus)
3050 			break;
3051 
3052 		if (index < nr_cpus % nr_msix)
3053 			group++;
3054 
3055 		for (i = 0 ; i < group ; i++) {
3056 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3057 			cpu = cpumask_next(cpu, cpu_online_mask);
3058 		}
3059 		index++;
3060 	}
3061 }
3062 
3063 /**
3064  * _base_check_and_enable_high_iops_queues - enable high iops mode
3065  * @ioc: per adapter object
3066  * @hba_msix_vector_count: msix vectors supported by HBA
3067  *
3068  * Enable high iops queues only if
3069  *  - HBA is a SEA/AERO controller and
3070  *  - MSI-Xs vector supported by the HBA is 128 and
3071  *  - total CPU count in the system >=16 and
3072  *  - loaded driver with default max_msix_vectors module parameter and
3073  *  - system booted in non kdump mode
3074  *
3075  * returns nothing.
3076  */
3077 static void
3078 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3079 		int hba_msix_vector_count)
3080 {
3081 	u16 lnksta, speed;
3082 
3083 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3084 	    perf_mode == MPT_PERF_MODE_LATENCY) {
3085 		ioc->high_iops_queues = 0;
3086 		return;
3087 	}
3088 
3089 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3090 
3091 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3092 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3093 
3094 		if (speed < 0x4) {
3095 			ioc->high_iops_queues = 0;
3096 			return;
3097 		}
3098 	}
3099 
3100 	if (!reset_devices && ioc->is_aero_ioc &&
3101 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3102 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3103 	    max_msix_vectors == -1)
3104 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3105 	else
3106 		ioc->high_iops_queues = 0;
3107 }
3108 
3109 /**
3110  * _base_disable_msix - disables msix
3111  * @ioc: per adapter object
3112  *
3113  */
3114 static void
3115 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3116 {
3117 	if (!ioc->msix_enable)
3118 		return;
3119 	pci_free_irq_vectors(ioc->pdev);
3120 	ioc->msix_enable = 0;
3121 }
3122 
3123 /**
3124  * _base_alloc_irq_vectors - allocate msix vectors
3125  * @ioc: per adapter object
3126  *
3127  */
3128 static int
3129 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3130 {
3131 	int i, irq_flags = PCI_IRQ_MSIX;
3132 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3133 	struct irq_affinity *descp = &desc;
3134 
3135 	if (ioc->smp_affinity_enable)
3136 		irq_flags |= PCI_IRQ_AFFINITY;
3137 	else
3138 		descp = NULL;
3139 
3140 	ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3141 	    ioc->reply_queue_count);
3142 
3143 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3144 	    ioc->high_iops_queues,
3145 	    ioc->reply_queue_count, irq_flags, descp);
3146 
3147 	return i;
3148 }
3149 
3150 /**
3151  * _base_enable_msix - enables msix, failback to io_apic
3152  * @ioc: per adapter object
3153  *
3154  */
3155 static int
3156 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3157 {
3158 	int r;
3159 	int i, local_max_msix_vectors;
3160 	u8 try_msix = 0;
3161 
3162 	ioc->msix_load_balance = false;
3163 
3164 	if (msix_disable == -1 || msix_disable == 0)
3165 		try_msix = 1;
3166 
3167 	if (!try_msix)
3168 		goto try_ioapic;
3169 
3170 	if (_base_check_enable_msix(ioc) != 0)
3171 		goto try_ioapic;
3172 
3173 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3174 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3175 		ioc->cpu_count, max_msix_vectors);
3176 	if (ioc->is_aero_ioc)
3177 		_base_check_and_enable_high_iops_queues(ioc,
3178 			ioc->msix_vector_count);
3179 	ioc->reply_queue_count =
3180 		min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3181 		ioc->msix_vector_count);
3182 
3183 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3184 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3185 	else
3186 		local_max_msix_vectors = max_msix_vectors;
3187 
3188 	if (local_max_msix_vectors > 0)
3189 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3190 			ioc->reply_queue_count);
3191 	else if (local_max_msix_vectors == 0)
3192 		goto try_ioapic;
3193 
3194 	/*
3195 	 * Enable msix_load_balance only if combined reply queue mode is
3196 	 * disabled on SAS3 & above generation HBA devices.
3197 	 */
3198 	if (!ioc->combined_reply_queue &&
3199 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3200 		ioc_info(ioc,
3201 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3202 		ioc->msix_load_balance = true;
3203 	}
3204 
3205 	/*
3206 	 * smp affinity setting is not need when msix load balance
3207 	 * is enabled.
3208 	 */
3209 	if (ioc->msix_load_balance)
3210 		ioc->smp_affinity_enable = 0;
3211 
3212 	r = _base_alloc_irq_vectors(ioc);
3213 	if (r < 0) {
3214 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3215 		goto try_ioapic;
3216 	}
3217 
3218 	ioc->msix_enable = 1;
3219 	ioc->reply_queue_count = r;
3220 	for (i = 0; i < ioc->reply_queue_count; i++) {
3221 		r = _base_request_irq(ioc, i);
3222 		if (r) {
3223 			_base_free_irq(ioc);
3224 			_base_disable_msix(ioc);
3225 			goto try_ioapic;
3226 		}
3227 	}
3228 
3229 	ioc_info(ioc, "High IOPs queues : %s\n",
3230 			ioc->high_iops_queues ? "enabled" : "disabled");
3231 
3232 	return 0;
3233 
3234 /* failback to io_apic interrupt routing */
3235  try_ioapic:
3236 	ioc->high_iops_queues = 0;
3237 	ioc_info(ioc, "High IOPs queues : disabled\n");
3238 	ioc->reply_queue_count = 1;
3239 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3240 	if (r < 0) {
3241 		dfailprintk(ioc,
3242 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3243 				     r));
3244 	} else
3245 		r = _base_request_irq(ioc, 0);
3246 
3247 	return r;
3248 }
3249 
3250 /**
3251  * mpt3sas_base_unmap_resources - free controller resources
3252  * @ioc: per adapter object
3253  */
3254 static void
3255 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3256 {
3257 	struct pci_dev *pdev = ioc->pdev;
3258 
3259 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3260 
3261 	_base_free_irq(ioc);
3262 	_base_disable_msix(ioc);
3263 
3264 	kfree(ioc->replyPostRegisterIndex);
3265 	ioc->replyPostRegisterIndex = NULL;
3266 
3267 
3268 	if (ioc->chip_phys) {
3269 		iounmap(ioc->chip);
3270 		ioc->chip_phys = 0;
3271 	}
3272 
3273 	if (pci_is_enabled(pdev)) {
3274 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3275 		pci_disable_pcie_error_reporting(pdev);
3276 		pci_disable_device(pdev);
3277 	}
3278 }
3279 
3280 static int
3281 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3282 
3283 /**
3284  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3285  *     and if it is in fault state then issue diag reset.
3286  * @ioc: per adapter object
3287  *
3288  * Returns: 0 for success, non-zero for failure.
3289  */
3290 static int
3291 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3292 {
3293 	u32 ioc_state;
3294 	int rc = -EFAULT;
3295 
3296 	dinitprintk(ioc, pr_info("%s\n", __func__));
3297 	if (ioc->pci_error_recovery)
3298 		return 0;
3299 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3300 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3301 
3302 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3303 		mpt3sas_print_fault_code(ioc, ioc_state &
3304 		    MPI2_DOORBELL_DATA_MASK);
3305 		rc = _base_diag_reset(ioc);
3306 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3307 	    MPI2_IOC_STATE_COREDUMP) {
3308 		mpt3sas_print_coredump_info(ioc, ioc_state &
3309 		     MPI2_DOORBELL_DATA_MASK);
3310 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3311 		rc = _base_diag_reset(ioc);
3312 	}
3313 
3314 	return rc;
3315 }
3316 
3317 /**
3318  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3319  * @ioc: per adapter object
3320  *
3321  * Return: 0 for success, non-zero for failure.
3322  */
3323 int
3324 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3325 {
3326 	struct pci_dev *pdev = ioc->pdev;
3327 	u32 memap_sz;
3328 	u32 pio_sz;
3329 	int i, r = 0, rc;
3330 	u64 pio_chip = 0;
3331 	phys_addr_t chip_phys = 0;
3332 	struct adapter_reply_queue *reply_q;
3333 
3334 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3335 
3336 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3337 	if (pci_enable_device_mem(pdev)) {
3338 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3339 		ioc->bars = 0;
3340 		return -ENODEV;
3341 	}
3342 
3343 
3344 	if (pci_request_selected_regions(pdev, ioc->bars,
3345 	    ioc->driver_name)) {
3346 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3347 		ioc->bars = 0;
3348 		r = -ENODEV;
3349 		goto out_fail;
3350 	}
3351 
3352 /* AER (Advanced Error Reporting) hooks */
3353 	pci_enable_pcie_error_reporting(pdev);
3354 
3355 	pci_set_master(pdev);
3356 
3357 
3358 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3359 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3360 		r = -ENODEV;
3361 		goto out_fail;
3362 	}
3363 
3364 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3365 	     (!memap_sz || !pio_sz); i++) {
3366 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3367 			if (pio_sz)
3368 				continue;
3369 			pio_chip = (u64)pci_resource_start(pdev, i);
3370 			pio_sz = pci_resource_len(pdev, i);
3371 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3372 			if (memap_sz)
3373 				continue;
3374 			ioc->chip_phys = pci_resource_start(pdev, i);
3375 			chip_phys = ioc->chip_phys;
3376 			memap_sz = pci_resource_len(pdev, i);
3377 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3378 		}
3379 	}
3380 
3381 	if (ioc->chip == NULL) {
3382 		ioc_err(ioc,
3383 		    "unable to map adapter memory! or resource not found\n");
3384 		r = -EINVAL;
3385 		goto out_fail;
3386 	}
3387 
3388 	mpt3sas_base_mask_interrupts(ioc);
3389 
3390 	r = _base_get_ioc_facts(ioc);
3391 	if (r) {
3392 		rc = _base_check_for_fault_and_issue_reset(ioc);
3393 		if (rc || (_base_get_ioc_facts(ioc)))
3394 			goto out_fail;
3395 	}
3396 
3397 	if (!ioc->rdpq_array_enable_assigned) {
3398 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3399 		ioc->rdpq_array_enable_assigned = 1;
3400 	}
3401 
3402 	r = _base_enable_msix(ioc);
3403 	if (r)
3404 		goto out_fail;
3405 
3406 	if (!ioc->is_driver_loading)
3407 		_base_init_irqpolls(ioc);
3408 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3409 	 * revision HBAs and also only when reply queue count is greater than 8
3410 	 */
3411 	if (ioc->combined_reply_queue) {
3412 		/* Determine the Supplemental Reply Post Host Index Registers
3413 		 * Addresse. Supplemental Reply Post Host Index Registers
3414 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3415 		 * each register is at offset bytes of
3416 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3417 		 */
3418 		ioc->replyPostRegisterIndex = kcalloc(
3419 		     ioc->combined_reply_index_count,
3420 		     sizeof(resource_size_t *), GFP_KERNEL);
3421 		if (!ioc->replyPostRegisterIndex) {
3422 			ioc_err(ioc,
3423 			    "allocation for replyPostRegisterIndex failed!\n");
3424 			r = -ENOMEM;
3425 			goto out_fail;
3426 		}
3427 
3428 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3429 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3430 			     ((u8 __force *)&ioc->chip->Doorbell +
3431 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3432 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3433 		}
3434 	}
3435 
3436 	if (ioc->is_warpdrive) {
3437 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3438 		    &ioc->chip->ReplyPostHostIndex;
3439 
3440 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3441 			ioc->reply_post_host_index[i] =
3442 			(resource_size_t __iomem *)
3443 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3444 			* 4)));
3445 	}
3446 
3447 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3448 		pr_info("%s: %s enabled: IRQ %d\n",
3449 			reply_q->name,
3450 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3451 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3452 
3453 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3454 		 &chip_phys, ioc->chip, memap_sz);
3455 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3456 		 (unsigned long long)pio_chip, pio_sz);
3457 
3458 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3459 	pci_save_state(pdev);
3460 	return 0;
3461 
3462  out_fail:
3463 	mpt3sas_base_unmap_resources(ioc);
3464 	return r;
3465 }
3466 
3467 /**
3468  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3469  * @ioc: per adapter object
3470  * @smid: system request message index(smid zero is invalid)
3471  *
3472  * Return: virt pointer to message frame.
3473  */
3474 void *
3475 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3476 {
3477 	return (void *)(ioc->request + (smid * ioc->request_sz));
3478 }
3479 
3480 /**
3481  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3482  * @ioc: per adapter object
3483  * @smid: system request message index
3484  *
3485  * Return: virt pointer to sense buffer.
3486  */
3487 void *
3488 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3489 {
3490 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3491 }
3492 
3493 /**
3494  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3495  * @ioc: per adapter object
3496  * @smid: system request message index
3497  *
3498  * Return: phys pointer to the low 32bit address of the sense buffer.
3499  */
3500 __le32
3501 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3504 	    SCSI_SENSE_BUFFERSIZE));
3505 }
3506 
3507 /**
3508  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3509  * @ioc: per adapter object
3510  * @smid: system request message index
3511  *
3512  * Return: virt pointer to a PCIe SGL.
3513  */
3514 void *
3515 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3516 {
3517 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3518 }
3519 
3520 /**
3521  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3522  * @ioc: per adapter object
3523  * @smid: system request message index
3524  *
3525  * Return: phys pointer to the address of the PCIe buffer.
3526  */
3527 dma_addr_t
3528 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3529 {
3530 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3531 }
3532 
3533 /**
3534  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3535  * @ioc: per adapter object
3536  * @phys_addr: lower 32 physical addr of the reply
3537  *
3538  * Converts 32bit lower physical addr into a virt address.
3539  */
3540 void *
3541 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3542 {
3543 	if (!phys_addr)
3544 		return NULL;
3545 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3546 }
3547 
3548 /**
3549  * _base_get_msix_index - get the msix index
3550  * @ioc: per adapter object
3551  * @scmd: scsi_cmnd object
3552  *
3553  * returns msix index of general reply queues,
3554  * i.e. reply queue on which IO request's reply
3555  * should be posted by the HBA firmware.
3556  */
3557 static inline u8
3558 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3559 	struct scsi_cmnd *scmd)
3560 {
3561 	/* Enables reply_queue load balancing */
3562 	if (ioc->msix_load_balance)
3563 		return ioc->reply_queue_count ?
3564 		    base_mod64(atomic64_add_return(1,
3565 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3566 
3567 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3568 }
3569 
3570 /**
3571  * _base_sdev_nr_inflight_request -get number of inflight requests
3572  *				   of a request queue.
3573  * @q: request_queue object
3574  *
3575  * returns number of inflight request of a request queue.
3576  */
3577 inline unsigned long
3578 _base_sdev_nr_inflight_request(struct request_queue *q)
3579 {
3580 	struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3581 
3582 	return atomic_read(&hctx->nr_active);
3583 }
3584 
3585 
3586 /**
3587  * _base_get_high_iops_msix_index - get the msix index of
3588  *				high iops queues
3589  * @ioc: per adapter object
3590  * @scmd: scsi_cmnd object
3591  *
3592  * Returns: msix index of high iops reply queues.
3593  * i.e. high iops reply queue on which IO request's
3594  * reply should be posted by the HBA firmware.
3595  */
3596 static inline u8
3597 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3598 	struct scsi_cmnd *scmd)
3599 {
3600 	/**
3601 	 * Round robin the IO interrupts among the high iops
3602 	 * reply queues in terms of batch count 16 when outstanding
3603 	 * IOs on the target device is >=8.
3604 	 */
3605 	if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3606 	    MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3607 		return base_mod64((
3608 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3609 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3610 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3611 
3612 	return _base_get_msix_index(ioc, scmd);
3613 }
3614 
3615 /**
3616  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3617  * @ioc: per adapter object
3618  * @cb_idx: callback index
3619  *
3620  * Return: smid (zero is invalid)
3621  */
3622 u16
3623 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3624 {
3625 	unsigned long flags;
3626 	struct request_tracker *request;
3627 	u16 smid;
3628 
3629 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3630 	if (list_empty(&ioc->internal_free_list)) {
3631 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3632 		ioc_err(ioc, "%s: smid not available\n", __func__);
3633 		return 0;
3634 	}
3635 
3636 	request = list_entry(ioc->internal_free_list.next,
3637 	    struct request_tracker, tracker_list);
3638 	request->cb_idx = cb_idx;
3639 	smid = request->smid;
3640 	list_del(&request->tracker_list);
3641 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3642 	return smid;
3643 }
3644 
3645 /**
3646  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3647  * @ioc: per adapter object
3648  * @cb_idx: callback index
3649  * @scmd: pointer to scsi command object
3650  *
3651  * Return: smid (zero is invalid)
3652  */
3653 u16
3654 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3655 	struct scsi_cmnd *scmd)
3656 {
3657 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3658 	unsigned int tag = scmd->request->tag;
3659 	u16 smid;
3660 
3661 	smid = tag + 1;
3662 	request->cb_idx = cb_idx;
3663 	request->smid = smid;
3664 	request->scmd = scmd;
3665 	INIT_LIST_HEAD(&request->chain_list);
3666 	return smid;
3667 }
3668 
3669 /**
3670  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3671  * @ioc: per adapter object
3672  * @cb_idx: callback index
3673  *
3674  * Return: smid (zero is invalid)
3675  */
3676 u16
3677 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3678 {
3679 	unsigned long flags;
3680 	struct request_tracker *request;
3681 	u16 smid;
3682 
3683 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3684 	if (list_empty(&ioc->hpr_free_list)) {
3685 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3686 		return 0;
3687 	}
3688 
3689 	request = list_entry(ioc->hpr_free_list.next,
3690 	    struct request_tracker, tracker_list);
3691 	request->cb_idx = cb_idx;
3692 	smid = request->smid;
3693 	list_del(&request->tracker_list);
3694 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3695 	return smid;
3696 }
3697 
3698 static void
3699 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3700 {
3701 	/*
3702 	 * See _wait_for_commands_to_complete() call with regards to this code.
3703 	 */
3704 	if (ioc->shost_recovery && ioc->pending_io_count) {
3705 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3706 		if (ioc->pending_io_count == 0)
3707 			wake_up(&ioc->reset_wq);
3708 	}
3709 }
3710 
3711 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3712 			   struct scsiio_tracker *st)
3713 {
3714 	if (WARN_ON(st->smid == 0))
3715 		return;
3716 	st->cb_idx = 0xFF;
3717 	st->direct_io = 0;
3718 	st->scmd = NULL;
3719 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3720 	st->smid = 0;
3721 }
3722 
3723 /**
3724  * mpt3sas_base_free_smid - put smid back on free_list
3725  * @ioc: per adapter object
3726  * @smid: system request message index
3727  */
3728 void
3729 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3730 {
3731 	unsigned long flags;
3732 	int i;
3733 
3734 	if (smid < ioc->hi_priority_smid) {
3735 		struct scsiio_tracker *st;
3736 		void *request;
3737 
3738 		st = _get_st_from_smid(ioc, smid);
3739 		if (!st) {
3740 			_base_recovery_check(ioc);
3741 			return;
3742 		}
3743 
3744 		/* Clear MPI request frame */
3745 		request = mpt3sas_base_get_msg_frame(ioc, smid);
3746 		memset(request, 0, ioc->request_sz);
3747 
3748 		mpt3sas_base_clear_st(ioc, st);
3749 		_base_recovery_check(ioc);
3750 		return;
3751 	}
3752 
3753 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3754 	if (smid < ioc->internal_smid) {
3755 		/* hi-priority */
3756 		i = smid - ioc->hi_priority_smid;
3757 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3758 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3759 	} else if (smid <= ioc->hba_queue_depth) {
3760 		/* internal queue */
3761 		i = smid - ioc->internal_smid;
3762 		ioc->internal_lookup[i].cb_idx = 0xFF;
3763 		list_add(&ioc->internal_lookup[i].tracker_list,
3764 		    &ioc->internal_free_list);
3765 	}
3766 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3767 }
3768 
3769 /**
3770  * _base_mpi_ep_writeq - 32 bit write to MMIO
3771  * @b: data payload
3772  * @addr: address in MMIO space
3773  * @writeq_lock: spin lock
3774  *
3775  * This special handling for MPI EP to take care of 32 bit
3776  * environment where its not quarenteed to send the entire word
3777  * in one transfer.
3778  */
3779 static inline void
3780 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3781 					spinlock_t *writeq_lock)
3782 {
3783 	unsigned long flags;
3784 
3785 	spin_lock_irqsave(writeq_lock, flags);
3786 	__raw_writel((u32)(b), addr);
3787 	__raw_writel((u32)(b >> 32), (addr + 4));
3788 	spin_unlock_irqrestore(writeq_lock, flags);
3789 }
3790 
3791 /**
3792  * _base_writeq - 64 bit write to MMIO
3793  * @b: data payload
3794  * @addr: address in MMIO space
3795  * @writeq_lock: spin lock
3796  *
3797  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3798  * care of 32 bit environment where its not quarenteed to send the entire word
3799  * in one transfer.
3800  */
3801 #if defined(writeq) && defined(CONFIG_64BIT)
3802 static inline void
3803 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3804 {
3805 	wmb();
3806 	__raw_writeq(b, addr);
3807 	barrier();
3808 }
3809 #else
3810 static inline void
3811 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3812 {
3813 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3814 }
3815 #endif
3816 
3817 /**
3818  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3819  *                                variable of scsi tracker
3820  * @ioc: per adapter object
3821  * @smid: system request message index
3822  *
3823  * returns msix index.
3824  */
3825 static u8
3826 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3827 {
3828 	struct scsiio_tracker *st = NULL;
3829 
3830 	if (smid < ioc->hi_priority_smid)
3831 		st = _get_st_from_smid(ioc, smid);
3832 
3833 	if (st == NULL)
3834 		return  _base_get_msix_index(ioc, NULL);
3835 
3836 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3837 	return st->msix_io;
3838 }
3839 
3840 /**
3841  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3842  * @ioc: per adapter object
3843  * @smid: system request message index
3844  * @handle: device handle
3845  */
3846 static void
3847 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3848 	u16 smid, u16 handle)
3849 {
3850 	Mpi2RequestDescriptorUnion_t descriptor;
3851 	u64 *request = (u64 *)&descriptor;
3852 	void *mpi_req_iomem;
3853 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3854 
3855 	_clone_sg_entries(ioc, (void *) mfp, smid);
3856 	mpi_req_iomem = (void __force *)ioc->chip +
3857 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3858 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3859 					ioc->request_sz);
3860 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3861 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3862 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3863 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3864 	descriptor.SCSIIO.LMID = 0;
3865 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3866 	    &ioc->scsi_lookup_lock);
3867 }
3868 
3869 /**
3870  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3871  * @ioc: per adapter object
3872  * @smid: system request message index
3873  * @handle: device handle
3874  */
3875 static void
3876 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3877 {
3878 	Mpi2RequestDescriptorUnion_t descriptor;
3879 	u64 *request = (u64 *)&descriptor;
3880 
3881 
3882 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3883 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3884 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3885 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3886 	descriptor.SCSIIO.LMID = 0;
3887 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3888 	    &ioc->scsi_lookup_lock);
3889 }
3890 
3891 /**
3892  * _base_put_smid_fast_path - send fast path request to firmware
3893  * @ioc: per adapter object
3894  * @smid: system request message index
3895  * @handle: device handle
3896  */
3897 static void
3898 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3899 	u16 handle)
3900 {
3901 	Mpi2RequestDescriptorUnion_t descriptor;
3902 	u64 *request = (u64 *)&descriptor;
3903 
3904 	descriptor.SCSIIO.RequestFlags =
3905 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3906 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3907 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3908 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3909 	descriptor.SCSIIO.LMID = 0;
3910 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3911 	    &ioc->scsi_lookup_lock);
3912 }
3913 
3914 /**
3915  * _base_put_smid_hi_priority - send Task Management request to firmware
3916  * @ioc: per adapter object
3917  * @smid: system request message index
3918  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3919  */
3920 static void
3921 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3922 	u16 msix_task)
3923 {
3924 	Mpi2RequestDescriptorUnion_t descriptor;
3925 	void *mpi_req_iomem;
3926 	u64 *request;
3927 
3928 	if (ioc->is_mcpu_endpoint) {
3929 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3930 
3931 		/* TBD 256 is offset within sys register. */
3932 		mpi_req_iomem = (void __force *)ioc->chip
3933 					+ MPI_FRAME_START_OFFSET
3934 					+ (smid * ioc->request_sz);
3935 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3936 							ioc->request_sz);
3937 	}
3938 
3939 	request = (u64 *)&descriptor;
3940 
3941 	descriptor.HighPriority.RequestFlags =
3942 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3943 	descriptor.HighPriority.MSIxIndex =  msix_task;
3944 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3945 	descriptor.HighPriority.LMID = 0;
3946 	descriptor.HighPriority.Reserved1 = 0;
3947 	if (ioc->is_mcpu_endpoint)
3948 		_base_mpi_ep_writeq(*request,
3949 				&ioc->chip->RequestDescriptorPostLow,
3950 				&ioc->scsi_lookup_lock);
3951 	else
3952 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3953 		    &ioc->scsi_lookup_lock);
3954 }
3955 
3956 /**
3957  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3958  *  firmware
3959  * @ioc: per adapter object
3960  * @smid: system request message index
3961  */
3962 void
3963 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3964 {
3965 	Mpi2RequestDescriptorUnion_t descriptor;
3966 	u64 *request = (u64 *)&descriptor;
3967 
3968 	descriptor.Default.RequestFlags =
3969 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3970 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3971 	descriptor.Default.SMID = cpu_to_le16(smid);
3972 	descriptor.Default.LMID = 0;
3973 	descriptor.Default.DescriptorTypeDependent = 0;
3974 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3975 	    &ioc->scsi_lookup_lock);
3976 }
3977 
3978 /**
3979  * _base_put_smid_default - Default, primarily used for config pages
3980  * @ioc: per adapter object
3981  * @smid: system request message index
3982  */
3983 static void
3984 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3985 {
3986 	Mpi2RequestDescriptorUnion_t descriptor;
3987 	void *mpi_req_iomem;
3988 	u64 *request;
3989 
3990 	if (ioc->is_mcpu_endpoint) {
3991 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3992 
3993 		_clone_sg_entries(ioc, (void *) mfp, smid);
3994 		/* TBD 256 is offset within sys register */
3995 		mpi_req_iomem = (void __force *)ioc->chip +
3996 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3997 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3998 							ioc->request_sz);
3999 	}
4000 	request = (u64 *)&descriptor;
4001 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4002 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4003 	descriptor.Default.SMID = cpu_to_le16(smid);
4004 	descriptor.Default.LMID = 0;
4005 	descriptor.Default.DescriptorTypeDependent = 0;
4006 	if (ioc->is_mcpu_endpoint)
4007 		_base_mpi_ep_writeq(*request,
4008 				&ioc->chip->RequestDescriptorPostLow,
4009 				&ioc->scsi_lookup_lock);
4010 	else
4011 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4012 				&ioc->scsi_lookup_lock);
4013 }
4014 
4015 /**
4016  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4017  *   Atomic Request Descriptor
4018  * @ioc: per adapter object
4019  * @smid: system request message index
4020  * @handle: device handle, unused in this function, for function type match
4021  *
4022  * Return nothing.
4023  */
4024 static void
4025 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4026 	u16 handle)
4027 {
4028 	Mpi26AtomicRequestDescriptor_t descriptor;
4029 	u32 *request = (u32 *)&descriptor;
4030 
4031 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4032 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4033 	descriptor.SMID = cpu_to_le16(smid);
4034 
4035 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4036 }
4037 
4038 /**
4039  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4040  * using Atomic Request Descriptor
4041  * @ioc: per adapter object
4042  * @smid: system request message index
4043  * @handle: device handle, unused in this function, for function type match
4044  * Return nothing
4045  */
4046 static void
4047 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4048 	u16 handle)
4049 {
4050 	Mpi26AtomicRequestDescriptor_t descriptor;
4051 	u32 *request = (u32 *)&descriptor;
4052 
4053 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4054 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4055 	descriptor.SMID = cpu_to_le16(smid);
4056 
4057 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4058 }
4059 
4060 /**
4061  * _base_put_smid_hi_priority_atomic - send Task Management request to
4062  * firmware using Atomic Request Descriptor
4063  * @ioc: per adapter object
4064  * @smid: system request message index
4065  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4066  *
4067  * Return nothing.
4068  */
4069 static void
4070 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4071 	u16 msix_task)
4072 {
4073 	Mpi26AtomicRequestDescriptor_t descriptor;
4074 	u32 *request = (u32 *)&descriptor;
4075 
4076 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4077 	descriptor.MSIxIndex = msix_task;
4078 	descriptor.SMID = cpu_to_le16(smid);
4079 
4080 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4081 }
4082 
4083 /**
4084  * _base_put_smid_default - Default, primarily used for config pages
4085  * use Atomic Request Descriptor
4086  * @ioc: per adapter object
4087  * @smid: system request message index
4088  *
4089  * Return nothing.
4090  */
4091 static void
4092 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4093 {
4094 	Mpi26AtomicRequestDescriptor_t descriptor;
4095 	u32 *request = (u32 *)&descriptor;
4096 
4097 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4098 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4099 	descriptor.SMID = cpu_to_le16(smid);
4100 
4101 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4102 }
4103 
4104 /**
4105  * _base_display_OEMs_branding - Display branding string
4106  * @ioc: per adapter object
4107  */
4108 static void
4109 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4110 {
4111 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4112 		return;
4113 
4114 	switch (ioc->pdev->subsystem_vendor) {
4115 	case PCI_VENDOR_ID_INTEL:
4116 		switch (ioc->pdev->device) {
4117 		case MPI2_MFGPAGE_DEVID_SAS2008:
4118 			switch (ioc->pdev->subsystem_device) {
4119 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4120 				ioc_info(ioc, "%s\n",
4121 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4122 				break;
4123 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4124 				ioc_info(ioc, "%s\n",
4125 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4126 				break;
4127 			case MPT2SAS_INTEL_SSD910_SSDID:
4128 				ioc_info(ioc, "%s\n",
4129 					 MPT2SAS_INTEL_SSD910_BRANDING);
4130 				break;
4131 			default:
4132 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4133 					 ioc->pdev->subsystem_device);
4134 				break;
4135 			}
4136 			break;
4137 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4138 			switch (ioc->pdev->subsystem_device) {
4139 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4140 				ioc_info(ioc, "%s\n",
4141 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4142 				break;
4143 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4144 				ioc_info(ioc, "%s\n",
4145 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4146 				break;
4147 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4148 				ioc_info(ioc, "%s\n",
4149 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4150 				break;
4151 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4152 				ioc_info(ioc, "%s\n",
4153 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4154 				break;
4155 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4156 				ioc_info(ioc, "%s\n",
4157 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4158 				break;
4159 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4160 				ioc_info(ioc, "%s\n",
4161 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4162 				break;
4163 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4164 				ioc_info(ioc, "%s\n",
4165 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4166 				break;
4167 			default:
4168 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4169 					 ioc->pdev->subsystem_device);
4170 				break;
4171 			}
4172 			break;
4173 		case MPI25_MFGPAGE_DEVID_SAS3008:
4174 			switch (ioc->pdev->subsystem_device) {
4175 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4176 				ioc_info(ioc, "%s\n",
4177 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4178 				break;
4179 
4180 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4181 				ioc_info(ioc, "%s\n",
4182 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4183 				break;
4184 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4185 				ioc_info(ioc, "%s\n",
4186 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4187 				break;
4188 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4189 				ioc_info(ioc, "%s\n",
4190 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4191 				break;
4192 			default:
4193 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4194 					 ioc->pdev->subsystem_device);
4195 				break;
4196 			}
4197 			break;
4198 		default:
4199 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4200 				 ioc->pdev->subsystem_device);
4201 			break;
4202 		}
4203 		break;
4204 	case PCI_VENDOR_ID_DELL:
4205 		switch (ioc->pdev->device) {
4206 		case MPI2_MFGPAGE_DEVID_SAS2008:
4207 			switch (ioc->pdev->subsystem_device) {
4208 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4209 				ioc_info(ioc, "%s\n",
4210 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4211 				break;
4212 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4213 				ioc_info(ioc, "%s\n",
4214 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4215 				break;
4216 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4217 				ioc_info(ioc, "%s\n",
4218 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4219 				break;
4220 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4221 				ioc_info(ioc, "%s\n",
4222 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4223 				break;
4224 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4225 				ioc_info(ioc, "%s\n",
4226 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4227 				break;
4228 			case MPT2SAS_DELL_PERC_H200_SSDID:
4229 				ioc_info(ioc, "%s\n",
4230 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4231 				break;
4232 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4233 				ioc_info(ioc, "%s\n",
4234 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4235 				break;
4236 			default:
4237 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4238 					 ioc->pdev->subsystem_device);
4239 				break;
4240 			}
4241 			break;
4242 		case MPI25_MFGPAGE_DEVID_SAS3008:
4243 			switch (ioc->pdev->subsystem_device) {
4244 			case MPT3SAS_DELL_12G_HBA_SSDID:
4245 				ioc_info(ioc, "%s\n",
4246 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4247 				break;
4248 			default:
4249 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4250 					 ioc->pdev->subsystem_device);
4251 				break;
4252 			}
4253 			break;
4254 		default:
4255 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4256 				 ioc->pdev->subsystem_device);
4257 			break;
4258 		}
4259 		break;
4260 	case PCI_VENDOR_ID_CISCO:
4261 		switch (ioc->pdev->device) {
4262 		case MPI25_MFGPAGE_DEVID_SAS3008:
4263 			switch (ioc->pdev->subsystem_device) {
4264 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4265 				ioc_info(ioc, "%s\n",
4266 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4267 				break;
4268 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4269 				ioc_info(ioc, "%s\n",
4270 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4271 				break;
4272 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4273 				ioc_info(ioc, "%s\n",
4274 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4275 				break;
4276 			default:
4277 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4278 					 ioc->pdev->subsystem_device);
4279 				break;
4280 			}
4281 			break;
4282 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4283 			switch (ioc->pdev->subsystem_device) {
4284 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4285 				ioc_info(ioc, "%s\n",
4286 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4287 				break;
4288 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4289 				ioc_info(ioc, "%s\n",
4290 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4291 				break;
4292 			default:
4293 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4294 					 ioc->pdev->subsystem_device);
4295 				break;
4296 			}
4297 			break;
4298 		default:
4299 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4300 				 ioc->pdev->subsystem_device);
4301 			break;
4302 		}
4303 		break;
4304 	case MPT2SAS_HP_3PAR_SSVID:
4305 		switch (ioc->pdev->device) {
4306 		case MPI2_MFGPAGE_DEVID_SAS2004:
4307 			switch (ioc->pdev->subsystem_device) {
4308 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4309 				ioc_info(ioc, "%s\n",
4310 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4311 				break;
4312 			default:
4313 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4314 					 ioc->pdev->subsystem_device);
4315 				break;
4316 			}
4317 			break;
4318 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4319 			switch (ioc->pdev->subsystem_device) {
4320 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4321 				ioc_info(ioc, "%s\n",
4322 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4323 				break;
4324 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4325 				ioc_info(ioc, "%s\n",
4326 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4327 				break;
4328 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4329 				ioc_info(ioc, "%s\n",
4330 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4331 				break;
4332 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4333 				ioc_info(ioc, "%s\n",
4334 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4335 				break;
4336 			default:
4337 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4338 					 ioc->pdev->subsystem_device);
4339 				break;
4340 			}
4341 			break;
4342 		default:
4343 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4344 				 ioc->pdev->subsystem_device);
4345 			break;
4346 		}
4347 	default:
4348 		break;
4349 	}
4350 }
4351 
4352 /**
4353  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4354  *				version from FW Image Header.
4355  * @ioc: per adapter object
4356  *
4357  * Return: 0 for success, non-zero for failure.
4358  */
4359 	static int
4360 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4361 {
4362 	Mpi2FWImageHeader_t *fw_img_hdr;
4363 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4364 	Mpi25FWUploadRequest_t *mpi_request;
4365 	Mpi2FWUploadReply_t mpi_reply;
4366 	int r = 0;
4367 	u32  package_version = 0;
4368 	void *fwpkg_data = NULL;
4369 	dma_addr_t fwpkg_data_dma;
4370 	u16 smid, ioc_status;
4371 	size_t data_length;
4372 
4373 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4374 
4375 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4376 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4377 		return -EAGAIN;
4378 	}
4379 
4380 	data_length = sizeof(Mpi2FWImageHeader_t);
4381 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4382 			&fwpkg_data_dma, GFP_KERNEL);
4383 	if (!fwpkg_data) {
4384 		ioc_err(ioc,
4385 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4386 			__FILE__, __LINE__, __func__);
4387 		return -ENOMEM;
4388 	}
4389 
4390 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4391 	if (!smid) {
4392 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4393 		r = -EAGAIN;
4394 		goto out;
4395 	}
4396 
4397 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4398 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4399 	ioc->base_cmds.smid = smid;
4400 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4401 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4402 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4403 	mpi_request->ImageSize = cpu_to_le32(data_length);
4404 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4405 			data_length);
4406 	init_completion(&ioc->base_cmds.done);
4407 	ioc->put_smid_default(ioc, smid);
4408 	/* Wait for 15 seconds */
4409 	wait_for_completion_timeout(&ioc->base_cmds.done,
4410 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4411 	ioc_info(ioc, "%s: complete\n", __func__);
4412 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4413 		ioc_err(ioc, "%s: timeout\n", __func__);
4414 		_debug_dump_mf(mpi_request,
4415 				sizeof(Mpi25FWUploadRequest_t)/4);
4416 		r = -ETIME;
4417 	} else {
4418 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4419 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4420 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4421 					sizeof(Mpi2FWUploadReply_t));
4422 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4423 						MPI2_IOCSTATUS_MASK;
4424 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4425 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4426 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4427 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4428 					cmp_img_hdr =
4429 					    (Mpi26ComponentImageHeader_t *)
4430 					    (fwpkg_data);
4431 					package_version =
4432 					    le32_to_cpu(
4433 					    cmp_img_hdr->ApplicationSpecific);
4434 				} else
4435 					package_version =
4436 					    le32_to_cpu(
4437 					    fw_img_hdr->PackageVersion.Word);
4438 				if (package_version)
4439 					ioc_info(ioc,
4440 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4441 					((package_version) & 0xFF000000) >> 24,
4442 					((package_version) & 0x00FF0000) >> 16,
4443 					((package_version) & 0x0000FF00) >> 8,
4444 					(package_version) & 0x000000FF);
4445 			} else {
4446 				_debug_dump_mf(&mpi_reply,
4447 						sizeof(Mpi2FWUploadReply_t)/4);
4448 			}
4449 		}
4450 	}
4451 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4452 out:
4453 	if (fwpkg_data)
4454 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4455 				fwpkg_data_dma);
4456 	return r;
4457 }
4458 
4459 /**
4460  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4461  * @ioc: per adapter object
4462  */
4463 static void
4464 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4465 {
4466 	int i = 0;
4467 	char desc[16];
4468 	u32 iounit_pg1_flags;
4469 	u32 bios_version;
4470 
4471 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4472 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4473 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4474 		 desc,
4475 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4476 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4477 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4478 		 ioc->facts.FWVersion.Word & 0x000000FF,
4479 		 ioc->pdev->revision,
4480 		 (bios_version & 0xFF000000) >> 24,
4481 		 (bios_version & 0x00FF0000) >> 16,
4482 		 (bios_version & 0x0000FF00) >> 8,
4483 		 bios_version & 0x000000FF);
4484 
4485 	_base_display_OEMs_branding(ioc);
4486 
4487 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4488 		pr_info("%sNVMe", i ? "," : "");
4489 		i++;
4490 	}
4491 
4492 	ioc_info(ioc, "Protocol=(");
4493 
4494 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4495 		pr_cont("Initiator");
4496 		i++;
4497 	}
4498 
4499 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4500 		pr_cont("%sTarget", i ? "," : "");
4501 		i++;
4502 	}
4503 
4504 	i = 0;
4505 	pr_cont("), Capabilities=(");
4506 
4507 	if (!ioc->hide_ir_msg) {
4508 		if (ioc->facts.IOCCapabilities &
4509 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4510 			pr_cont("Raid");
4511 			i++;
4512 		}
4513 	}
4514 
4515 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4516 		pr_cont("%sTLR", i ? "," : "");
4517 		i++;
4518 	}
4519 
4520 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4521 		pr_cont("%sMulticast", i ? "," : "");
4522 		i++;
4523 	}
4524 
4525 	if (ioc->facts.IOCCapabilities &
4526 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4527 		pr_cont("%sBIDI Target", i ? "," : "");
4528 		i++;
4529 	}
4530 
4531 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4532 		pr_cont("%sEEDP", i ? "," : "");
4533 		i++;
4534 	}
4535 
4536 	if (ioc->facts.IOCCapabilities &
4537 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4538 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4539 		i++;
4540 	}
4541 
4542 	if (ioc->facts.IOCCapabilities &
4543 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4544 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4545 		i++;
4546 	}
4547 
4548 	if (ioc->facts.IOCCapabilities &
4549 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4550 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4551 		i++;
4552 	}
4553 
4554 	if (ioc->facts.IOCCapabilities &
4555 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4556 		pr_cont("%sTask Set Full", i ? "," : "");
4557 		i++;
4558 	}
4559 
4560 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4561 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4562 		pr_cont("%sNCQ", i ? "," : "");
4563 		i++;
4564 	}
4565 
4566 	pr_cont(")\n");
4567 }
4568 
4569 /**
4570  * mpt3sas_base_update_missing_delay - change the missing delay timers
4571  * @ioc: per adapter object
4572  * @device_missing_delay: amount of time till device is reported missing
4573  * @io_missing_delay: interval IO is returned when there is a missing device
4574  *
4575  * Passed on the command line, this function will modify the device missing
4576  * delay, as well as the io missing delay. This should be called at driver
4577  * load time.
4578  */
4579 void
4580 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4581 	u16 device_missing_delay, u8 io_missing_delay)
4582 {
4583 	u16 dmd, dmd_new, dmd_orignal;
4584 	u8 io_missing_delay_original;
4585 	u16 sz;
4586 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4587 	Mpi2ConfigReply_t mpi_reply;
4588 	u8 num_phys = 0;
4589 	u16 ioc_status;
4590 
4591 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4592 	if (!num_phys)
4593 		return;
4594 
4595 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4596 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4597 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4598 	if (!sas_iounit_pg1) {
4599 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4600 			__FILE__, __LINE__, __func__);
4601 		goto out;
4602 	}
4603 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4604 	    sas_iounit_pg1, sz))) {
4605 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606 			__FILE__, __LINE__, __func__);
4607 		goto out;
4608 	}
4609 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4610 	    MPI2_IOCSTATUS_MASK;
4611 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4612 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4613 			__FILE__, __LINE__, __func__);
4614 		goto out;
4615 	}
4616 
4617 	/* device missing delay */
4618 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4619 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4620 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4621 	else
4622 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4623 	dmd_orignal = dmd;
4624 	if (device_missing_delay > 0x7F) {
4625 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4626 		    device_missing_delay;
4627 		dmd = dmd / 16;
4628 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4629 	} else
4630 		dmd = device_missing_delay;
4631 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4632 
4633 	/* io missing delay */
4634 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4635 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4636 
4637 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4638 	    sz)) {
4639 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4640 			dmd_new = (dmd &
4641 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4642 		else
4643 			dmd_new =
4644 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4645 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4646 			 dmd_orignal, dmd_new);
4647 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4648 			 io_missing_delay_original,
4649 			 io_missing_delay);
4650 		ioc->device_missing_delay = dmd_new;
4651 		ioc->io_missing_delay = io_missing_delay;
4652 	}
4653 
4654 out:
4655 	kfree(sas_iounit_pg1);
4656 }
4657 
4658 /**
4659  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4660  *    according to performance mode.
4661  * @ioc : per adapter object
4662  *
4663  * Return nothing.
4664  */
4665 static void
4666 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4667 {
4668 	Mpi2IOCPage1_t ioc_pg1;
4669 	Mpi2ConfigReply_t mpi_reply;
4670 
4671 	mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4672 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4673 
4674 	switch (perf_mode) {
4675 	case MPT_PERF_MODE_DEFAULT:
4676 	case MPT_PERF_MODE_BALANCED:
4677 		if (ioc->high_iops_queues) {
4678 			ioc_info(ioc,
4679 				"Enable interrupt coalescing only for first\t"
4680 				"%d reply queues\n",
4681 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4682 			/*
4683 			 * If 31st bit is zero then interrupt coalescing is
4684 			 * enabled for all reply descriptor post queues.
4685 			 * If 31st bit is set to one then user can
4686 			 * enable/disable interrupt coalescing on per reply
4687 			 * descriptor post queue group(8) basis. So to enable
4688 			 * interrupt coalescing only on first reply descriptor
4689 			 * post queue group 31st bit and zero th bit is enabled.
4690 			 */
4691 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4692 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4693 			mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4694 			ioc_info(ioc, "performance mode: balanced\n");
4695 			return;
4696 		}
4697 		fallthrough;
4698 	case MPT_PERF_MODE_LATENCY:
4699 		/*
4700 		 * Enable interrupt coalescing on all reply queues
4701 		 * with timeout value 0xA
4702 		 */
4703 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4704 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4705 		ioc_pg1.ProductSpecific = 0;
4706 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4707 		ioc_info(ioc, "performance mode: latency\n");
4708 		break;
4709 	case MPT_PERF_MODE_IOPS:
4710 		/*
4711 		 * Enable interrupt coalescing on all reply queues.
4712 		 */
4713 		ioc_info(ioc,
4714 		    "performance mode: iops with coalescing timeout: 0x%x\n",
4715 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4716 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4717 		ioc_pg1.ProductSpecific = 0;
4718 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4719 		break;
4720 	}
4721 }
4722 
4723 /**
4724  * _base_static_config_pages - static start of day config pages
4725  * @ioc: per adapter object
4726  */
4727 static void
4728 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4729 {
4730 	Mpi2ConfigReply_t mpi_reply;
4731 	u32 iounit_pg1_flags;
4732 
4733 	ioc->nvme_abort_timeout = 30;
4734 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4735 	if (ioc->ir_firmware)
4736 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4737 		    &ioc->manu_pg10);
4738 
4739 	/*
4740 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4741 	 * flag unset in NVDATA.
4742 	 */
4743 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4744 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4745 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4746 		    ioc->name);
4747 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
4748 		ioc->manu_pg11.EEDPTagMode |= 0x1;
4749 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4750 		    &ioc->manu_pg11);
4751 	}
4752 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4753 		ioc->tm_custom_handling = 1;
4754 	else {
4755 		ioc->tm_custom_handling = 0;
4756 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4757 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4758 		else if (ioc->manu_pg11.NVMeAbortTO >
4759 					NVME_TASK_ABORT_MAX_TIMEOUT)
4760 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4761 		else
4762 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4763 	}
4764 
4765 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4766 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4767 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4768 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4769 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4770 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4771 	_base_display_ioc_capabilities(ioc);
4772 
4773 	/*
4774 	 * Enable task_set_full handling in iounit_pg1 when the
4775 	 * facts capabilities indicate that its supported.
4776 	 */
4777 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4778 	if ((ioc->facts.IOCCapabilities &
4779 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4780 		iounit_pg1_flags &=
4781 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4782 	else
4783 		iounit_pg1_flags |=
4784 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4785 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4786 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4787 
4788 	if (ioc->iounit_pg8.NumSensors)
4789 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4790 	if (ioc->is_aero_ioc)
4791 		_base_update_ioc_page1_inlinewith_perf_mode(ioc);
4792 }
4793 
4794 /**
4795  * mpt3sas_free_enclosure_list - release memory
4796  * @ioc: per adapter object
4797  *
4798  * Free memory allocated during encloure add.
4799  */
4800 void
4801 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4802 {
4803 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4804 
4805 	/* Free enclosure list */
4806 	list_for_each_entry_safe(enclosure_dev,
4807 			enclosure_dev_next, &ioc->enclosure_list, list) {
4808 		list_del(&enclosure_dev->list);
4809 		kfree(enclosure_dev);
4810 	}
4811 }
4812 
4813 /**
4814  * _base_release_memory_pools - release memory
4815  * @ioc: per adapter object
4816  *
4817  * Free memory allocated from _base_allocate_memory_pools.
4818  */
4819 static void
4820 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4821 {
4822 	int i = 0;
4823 	int j = 0;
4824 	int dma_alloc_count = 0;
4825 	struct chain_tracker *ct;
4826 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4827 
4828 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4829 
4830 	if (ioc->request) {
4831 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4832 		    ioc->request,  ioc->request_dma);
4833 		dexitprintk(ioc,
4834 			    ioc_info(ioc, "request_pool(0x%p): free\n",
4835 				     ioc->request));
4836 		ioc->request = NULL;
4837 	}
4838 
4839 	if (ioc->sense) {
4840 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4841 		dma_pool_destroy(ioc->sense_dma_pool);
4842 		dexitprintk(ioc,
4843 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
4844 				     ioc->sense));
4845 		ioc->sense = NULL;
4846 	}
4847 
4848 	if (ioc->reply) {
4849 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4850 		dma_pool_destroy(ioc->reply_dma_pool);
4851 		dexitprintk(ioc,
4852 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
4853 				     ioc->reply));
4854 		ioc->reply = NULL;
4855 	}
4856 
4857 	if (ioc->reply_free) {
4858 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4859 		    ioc->reply_free_dma);
4860 		dma_pool_destroy(ioc->reply_free_dma_pool);
4861 		dexitprintk(ioc,
4862 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4863 				     ioc->reply_free));
4864 		ioc->reply_free = NULL;
4865 	}
4866 
4867 	if (ioc->reply_post) {
4868 		dma_alloc_count = DIV_ROUND_UP(count,
4869 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4870 		for (i = 0; i < count; i++) {
4871 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4872 			    && dma_alloc_count) {
4873 				if (ioc->reply_post[i].reply_post_free) {
4874 					dma_pool_free(
4875 					    ioc->reply_post_free_dma_pool,
4876 					    ioc->reply_post[i].reply_post_free,
4877 					ioc->reply_post[i].reply_post_free_dma);
4878 					dexitprintk(ioc, ioc_info(ioc,
4879 					   "reply_post_free_pool(0x%p): free\n",
4880 					   ioc->reply_post[i].reply_post_free));
4881 					ioc->reply_post[i].reply_post_free =
4882 									NULL;
4883 				}
4884 				--dma_alloc_count;
4885 			}
4886 		}
4887 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
4888 		if (ioc->reply_post_free_array &&
4889 			ioc->rdpq_array_enable) {
4890 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
4891 			    ioc->reply_post_free_array,
4892 			    ioc->reply_post_free_array_dma);
4893 			ioc->reply_post_free_array = NULL;
4894 		}
4895 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4896 		kfree(ioc->reply_post);
4897 	}
4898 
4899 	if (ioc->pcie_sgl_dma_pool) {
4900 		for (i = 0; i < ioc->scsiio_depth; i++) {
4901 			dma_pool_free(ioc->pcie_sgl_dma_pool,
4902 					ioc->pcie_sg_lookup[i].pcie_sgl,
4903 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4904 		}
4905 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4906 	}
4907 
4908 	if (ioc->config_page) {
4909 		dexitprintk(ioc,
4910 			    ioc_info(ioc, "config_page(0x%p): free\n",
4911 				     ioc->config_page));
4912 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4913 		    ioc->config_page, ioc->config_page_dma);
4914 	}
4915 
4916 	kfree(ioc->hpr_lookup);
4917 	ioc->hpr_lookup = NULL;
4918 	kfree(ioc->internal_lookup);
4919 	ioc->internal_lookup = NULL;
4920 	if (ioc->chain_lookup) {
4921 		for (i = 0; i < ioc->scsiio_depth; i++) {
4922 			for (j = ioc->chains_per_prp_buffer;
4923 			    j < ioc->chains_needed_per_io; j++) {
4924 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4925 				if (ct && ct->chain_buffer)
4926 					dma_pool_free(ioc->chain_dma_pool,
4927 						ct->chain_buffer,
4928 						ct->chain_buffer_dma);
4929 			}
4930 			kfree(ioc->chain_lookup[i].chains_per_smid);
4931 		}
4932 		dma_pool_destroy(ioc->chain_dma_pool);
4933 		kfree(ioc->chain_lookup);
4934 		ioc->chain_lookup = NULL;
4935 	}
4936 }
4937 
4938 /**
4939  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4940  *	having same upper 32bits in their base memory address.
4941  * @reply_pool_start_address: Base address of a reply queue set
4942  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4943  *
4944  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4945  * memory address, else 0.
4946  */
4947 
4948 static int
4949 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4950 {
4951 	long reply_pool_end_address;
4952 
4953 	reply_pool_end_address = reply_pool_start_address + pool_sz;
4954 
4955 	if (upper_32_bits(reply_pool_start_address) ==
4956 		upper_32_bits(reply_pool_end_address))
4957 		return 1;
4958 	else
4959 		return 0;
4960 }
4961 
4962 /**
4963  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4964  *                     for reply queues.
4965  * @ioc: per adapter object
4966  * @sz: DMA Pool size
4967  * Return: 0 for success, non-zero for failure.
4968  */
4969 static int
4970 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4971 {
4972 	int i = 0;
4973 	u32 dma_alloc_count = 0;
4974 	int reply_post_free_sz = ioc->reply_post_queue_depth *
4975 		sizeof(Mpi2DefaultReplyDescriptor_t);
4976 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4977 
4978 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4979 			GFP_KERNEL);
4980 	if (!ioc->reply_post)
4981 		return -ENOMEM;
4982 	/*
4983 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4984 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4985 	 *  be within 4GB boundary i.e reply queues in a set must have same
4986 	 *  upper 32-bits in their memory address. so here driver is allocating
4987 	 *  the DMA'able memory for reply queues according.
4988 	 *  Driver uses limitation of
4989 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
4990 	 */
4991 	dma_alloc_count = DIV_ROUND_UP(count,
4992 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4993 	ioc->reply_post_free_dma_pool =
4994 		dma_pool_create("reply_post_free pool",
4995 		    &ioc->pdev->dev, sz, 16, 0);
4996 	if (!ioc->reply_post_free_dma_pool)
4997 		return -ENOMEM;
4998 	for (i = 0; i < count; i++) {
4999 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5000 			ioc->reply_post[i].reply_post_free =
5001 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5002 				GFP_KERNEL,
5003 				&ioc->reply_post[i].reply_post_free_dma);
5004 			if (!ioc->reply_post[i].reply_post_free)
5005 				return -ENOMEM;
5006 			/*
5007 			 * Each set of RDPQ pool must satisfy 4gb boundary
5008 			 * restriction.
5009 			 * 1) Check if allocated resources for RDPQ pool are in
5010 			 *	the same 4GB range.
5011 			 * 2) If #1 is true, continue with 64 bit DMA.
5012 			 * 3) If #1 is false, return 1. which means free all the
5013 			 * resources and set DMA mask to 32 and allocate.
5014 			 */
5015 			if (!mpt3sas_check_same_4gb_region(
5016 				(long)ioc->reply_post[i].reply_post_free, sz)) {
5017 				dinitprintk(ioc,
5018 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
5019 				    "reply_post_free_dma = (0x%llx)\n",
5020 				    ioc->reply_post[i].reply_post_free,
5021 				    (unsigned long long)
5022 				    ioc->reply_post[i].reply_post_free_dma));
5023 				return -EAGAIN;
5024 			}
5025 			dma_alloc_count--;
5026 
5027 		} else {
5028 			ioc->reply_post[i].reply_post_free =
5029 			    (Mpi2ReplyDescriptorsUnion_t *)
5030 			    ((long)ioc->reply_post[i-1].reply_post_free
5031 			    + reply_post_free_sz);
5032 			ioc->reply_post[i].reply_post_free_dma =
5033 			    (dma_addr_t)
5034 			    (ioc->reply_post[i-1].reply_post_free_dma +
5035 			    reply_post_free_sz);
5036 		}
5037 	}
5038 	return 0;
5039 }
5040 
5041 /**
5042  * _base_allocate_memory_pools - allocate start of day memory pools
5043  * @ioc: per adapter object
5044  *
5045  * Return: 0 success, anything else error.
5046  */
5047 static int
5048 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5049 {
5050 	struct mpt3sas_facts *facts;
5051 	u16 max_sge_elements;
5052 	u16 chains_needed_per_io;
5053 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5054 	u32 retry_sz;
5055 	u32 rdpq_sz = 0;
5056 	u16 max_request_credit, nvme_blocks_needed;
5057 	unsigned short sg_tablesize;
5058 	u16 sge_size;
5059 	int i, j;
5060 	int ret = 0;
5061 	struct chain_tracker *ct;
5062 
5063 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5064 
5065 
5066 	retry_sz = 0;
5067 	facts = &ioc->facts;
5068 
5069 	/* command line tunables for max sgl entries */
5070 	if (max_sgl_entries != -1)
5071 		sg_tablesize = max_sgl_entries;
5072 	else {
5073 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5074 			sg_tablesize = MPT2SAS_SG_DEPTH;
5075 		else
5076 			sg_tablesize = MPT3SAS_SG_DEPTH;
5077 	}
5078 
5079 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5080 	if (reset_devices)
5081 		sg_tablesize = min_t(unsigned short, sg_tablesize,
5082 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5083 
5084 	if (ioc->is_mcpu_endpoint)
5085 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5086 	else {
5087 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5088 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5089 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5090 			sg_tablesize = min_t(unsigned short, sg_tablesize,
5091 					SG_MAX_SEGMENTS);
5092 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5093 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5094 		}
5095 		ioc->shost->sg_tablesize = sg_tablesize;
5096 	}
5097 
5098 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5099 		(facts->RequestCredit / 4));
5100 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5101 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5102 				INTERNAL_SCSIIO_CMDS_COUNT)) {
5103 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5104 				facts->RequestCredit);
5105 			return -ENOMEM;
5106 		}
5107 		ioc->internal_depth = 10;
5108 	}
5109 
5110 	ioc->hi_priority_depth = ioc->internal_depth - (5);
5111 	/* command line tunables  for max controller queue depth */
5112 	if (max_queue_depth != -1 && max_queue_depth != 0) {
5113 		max_request_credit = min_t(u16, max_queue_depth +
5114 			ioc->internal_depth, facts->RequestCredit);
5115 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5116 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5117 	} else if (reset_devices)
5118 		max_request_credit = min_t(u16, facts->RequestCredit,
5119 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5120 	else
5121 		max_request_credit = min_t(u16, facts->RequestCredit,
5122 		    MAX_HBA_QUEUE_DEPTH);
5123 
5124 	/* Firmware maintains additional facts->HighPriorityCredit number of
5125 	 * credits for HiPriprity Request messages, so hba queue depth will be
5126 	 * sum of max_request_credit and high priority queue depth.
5127 	 */
5128 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5129 
5130 	/* request frame size */
5131 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
5132 
5133 	/* reply frame size */
5134 	ioc->reply_sz = facts->ReplyFrameSize * 4;
5135 
5136 	/* chain segment size */
5137 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5138 		if (facts->IOCMaxChainSegmentSize)
5139 			ioc->chain_segment_sz =
5140 					facts->IOCMaxChainSegmentSize *
5141 					MAX_CHAIN_ELEMT_SZ;
5142 		else
5143 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5144 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5145 						    MAX_CHAIN_ELEMT_SZ;
5146 	} else
5147 		ioc->chain_segment_sz = ioc->request_sz;
5148 
5149 	/* calculate the max scatter element size */
5150 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5151 
5152  retry_allocation:
5153 	total_sz = 0;
5154 	/* calculate number of sg elements left over in the 1st frame */
5155 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5156 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5157 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5158 
5159 	/* now do the same for a chain buffer */
5160 	max_sge_elements = ioc->chain_segment_sz - sge_size;
5161 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5162 
5163 	/*
5164 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5165 	 */
5166 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
5167 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5168 	    + 1;
5169 	if (chains_needed_per_io > facts->MaxChainDepth) {
5170 		chains_needed_per_io = facts->MaxChainDepth;
5171 		ioc->shost->sg_tablesize = min_t(u16,
5172 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5173 		* chains_needed_per_io), ioc->shost->sg_tablesize);
5174 	}
5175 	ioc->chains_needed_per_io = chains_needed_per_io;
5176 
5177 	/* reply free queue sizing - taking into account for 64 FW events */
5178 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5179 
5180 	/* mCPU manage single counters for simplicity */
5181 	if (ioc->is_mcpu_endpoint)
5182 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5183 	else {
5184 		/* calculate reply descriptor post queue depth */
5185 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5186 			ioc->reply_free_queue_depth +  1;
5187 		/* align the reply post queue on the next 16 count boundary */
5188 		if (ioc->reply_post_queue_depth % 16)
5189 			ioc->reply_post_queue_depth += 16 -
5190 				(ioc->reply_post_queue_depth % 16);
5191 	}
5192 
5193 	if (ioc->reply_post_queue_depth >
5194 	    facts->MaxReplyDescriptorPostQueueDepth) {
5195 		ioc->reply_post_queue_depth =
5196 				facts->MaxReplyDescriptorPostQueueDepth -
5197 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5198 		ioc->hba_queue_depth =
5199 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
5200 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5201 	}
5202 
5203 	ioc_info(ioc,
5204 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5205 	    "sge_per_io(%d), chains_per_io(%d)\n",
5206 	    ioc->max_sges_in_main_message,
5207 	    ioc->max_sges_in_chain_message,
5208 	    ioc->shost->sg_tablesize,
5209 	    ioc->chains_needed_per_io);
5210 
5211 	/* reply post queue, 16 byte align */
5212 	reply_post_free_sz = ioc->reply_post_queue_depth *
5213 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5214 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5215 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5216 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5217 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5218 	if (ret == -EAGAIN) {
5219 		/*
5220 		 * Free allocated bad RDPQ memory pools.
5221 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
5222 		 */
5223 		_base_release_memory_pools(ioc);
5224 		ioc->use_32bit_dma = true;
5225 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5226 			ioc_err(ioc,
5227 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5228 			return -ENODEV;
5229 		}
5230 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5231 			return -ENOMEM;
5232 	} else if (ret == -ENOMEM)
5233 		return -ENOMEM;
5234 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5235 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5236 	ioc->scsiio_depth = ioc->hba_queue_depth -
5237 	    ioc->hi_priority_depth - ioc->internal_depth;
5238 
5239 	/* set the scsi host can_queue depth
5240 	 * with some internal commands that could be outstanding
5241 	 */
5242 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5243 	dinitprintk(ioc,
5244 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5245 			     ioc->shost->can_queue));
5246 
5247 	/* contiguous pool for request and chains, 16 byte align, one extra "
5248 	 * "frame for smid=0
5249 	 */
5250 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5251 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5252 
5253 	/* hi-priority queue */
5254 	sz += (ioc->hi_priority_depth * ioc->request_sz);
5255 
5256 	/* internal queue */
5257 	sz += (ioc->internal_depth * ioc->request_sz);
5258 
5259 	ioc->request_dma_sz = sz;
5260 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5261 			&ioc->request_dma, GFP_KERNEL);
5262 	if (!ioc->request) {
5263 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5264 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5265 			ioc->request_sz, sz / 1024);
5266 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5267 			goto out;
5268 		retry_sz = 64;
5269 		ioc->hba_queue_depth -= retry_sz;
5270 		_base_release_memory_pools(ioc);
5271 		goto retry_allocation;
5272 	}
5273 
5274 	if (retry_sz)
5275 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5276 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5277 			ioc->request_sz, sz / 1024);
5278 
5279 	/* hi-priority queue */
5280 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5281 	    ioc->request_sz);
5282 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5283 	    ioc->request_sz);
5284 
5285 	/* internal queue */
5286 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5287 	    ioc->request_sz);
5288 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5289 	    ioc->request_sz);
5290 
5291 	ioc_info(ioc,
5292 	    "request pool(0x%p) - dma(0x%llx): "
5293 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5294 	    ioc->request, (unsigned long long) ioc->request_dma,
5295 	    ioc->hba_queue_depth, ioc->request_sz,
5296 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5297 
5298 	total_sz += sz;
5299 
5300 	dinitprintk(ioc,
5301 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5302 			     ioc->request, ioc->scsiio_depth));
5303 
5304 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5305 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5306 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5307 	if (!ioc->chain_lookup) {
5308 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5309 		goto out;
5310 	}
5311 
5312 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5313 	for (i = 0; i < ioc->scsiio_depth; i++) {
5314 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5315 		if (!ioc->chain_lookup[i].chains_per_smid) {
5316 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5317 			goto out;
5318 		}
5319 	}
5320 
5321 	/* initialize hi-priority queue smid's */
5322 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5323 	    sizeof(struct request_tracker), GFP_KERNEL);
5324 	if (!ioc->hpr_lookup) {
5325 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5326 		goto out;
5327 	}
5328 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5329 	dinitprintk(ioc,
5330 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5331 			     ioc->hi_priority,
5332 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
5333 
5334 	/* initialize internal queue smid's */
5335 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
5336 	    sizeof(struct request_tracker), GFP_KERNEL);
5337 	if (!ioc->internal_lookup) {
5338 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5339 		goto out;
5340 	}
5341 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5342 	dinitprintk(ioc,
5343 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5344 			     ioc->internal,
5345 			     ioc->internal_depth, ioc->internal_smid));
5346 	/*
5347 	 * The number of NVMe page sized blocks needed is:
5348 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5349 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5350 	 * that is placed in the main message frame.  8 is the size of each PRP
5351 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
5352 	 * because of the PRP list pointer entry at the end of a page, so this
5353 	 * is not counted as a PRP entry.  The 1 added page is a round up.
5354 	 *
5355 	 * To avoid allocation failures due to the amount of memory that could
5356 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
5357 	 * contiguous, so a new set is allocated for each possible I/O.
5358 	 */
5359 	ioc->chains_per_prp_buffer = 0;
5360 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5361 		nvme_blocks_needed =
5362 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5363 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5364 		nvme_blocks_needed++;
5365 
5366 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5367 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5368 		if (!ioc->pcie_sg_lookup) {
5369 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5370 			goto out;
5371 		}
5372 		sz = nvme_blocks_needed * ioc->page_size;
5373 		ioc->pcie_sgl_dma_pool =
5374 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5375 		if (!ioc->pcie_sgl_dma_pool) {
5376 			ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5377 			goto out;
5378 		}
5379 
5380 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5381 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5382 						ioc->chains_needed_per_io);
5383 
5384 		for (i = 0; i < ioc->scsiio_depth; i++) {
5385 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5386 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5387 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5388 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5389 				ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5390 				goto out;
5391 			}
5392 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5393 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5394 				ct->chain_buffer =
5395 				    ioc->pcie_sg_lookup[i].pcie_sgl +
5396 				    (j * ioc->chain_segment_sz);
5397 				ct->chain_buffer_dma =
5398 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5399 				    (j * ioc->chain_segment_sz);
5400 			}
5401 		}
5402 
5403 		dinitprintk(ioc,
5404 			    ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5405 				     ioc->scsiio_depth, sz,
5406 				     (sz * ioc->scsiio_depth) / 1024));
5407 		dinitprintk(ioc,
5408 			    ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5409 				     ioc->chains_per_prp_buffer));
5410 		total_sz += sz * ioc->scsiio_depth;
5411 	}
5412 
5413 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5414 	    ioc->chain_segment_sz, 16, 0);
5415 	if (!ioc->chain_dma_pool) {
5416 		ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5417 		goto out;
5418 	}
5419 	for (i = 0; i < ioc->scsiio_depth; i++) {
5420 		for (j = ioc->chains_per_prp_buffer;
5421 				j < ioc->chains_needed_per_io; j++) {
5422 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5423 			ct->chain_buffer = dma_pool_alloc(
5424 					ioc->chain_dma_pool, GFP_KERNEL,
5425 					&ct->chain_buffer_dma);
5426 			if (!ct->chain_buffer) {
5427 				ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5428 				goto out;
5429 			}
5430 		}
5431 		total_sz += ioc->chain_segment_sz;
5432 	}
5433 
5434 	dinitprintk(ioc,
5435 		    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5436 			     ioc->chain_depth, ioc->chain_segment_sz,
5437 			     (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5438 
5439 	/* sense buffers, 4 byte align */
5440 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5441 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5442 					      4, 0);
5443 	if (!ioc->sense_dma_pool) {
5444 		ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5445 		goto out;
5446 	}
5447 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5448 	    &ioc->sense_dma);
5449 	if (!ioc->sense) {
5450 		ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5451 		goto out;
5452 	}
5453 	/* sense buffer requires to be in same 4 gb region.
5454 	 * Below function will check the same.
5455 	 * In case of failure, new pci pool will be created with updated
5456 	 * alignment. Older allocation and pool will be destroyed.
5457 	 * Alignment will be used such a way that next allocation if
5458 	 * success, will always meet same 4gb region requirement.
5459 	 * Actual requirement is not alignment, but we need start and end of
5460 	 * DMA address must have same upper 32 bit address.
5461 	 */
5462 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5463 		//Release Sense pool & Reallocate
5464 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5465 		dma_pool_destroy(ioc->sense_dma_pool);
5466 		ioc->sense = NULL;
5467 
5468 		ioc->sense_dma_pool =
5469 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5470 						roundup_pow_of_two(sz), 0);
5471 		if (!ioc->sense_dma_pool) {
5472 			ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5473 			goto out;
5474 		}
5475 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5476 				&ioc->sense_dma);
5477 		if (!ioc->sense) {
5478 			ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5479 			goto out;
5480 		}
5481 	}
5482 	ioc_info(ioc,
5483 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5484 	    "element_size(%d), pool_size(%d kB)\n",
5485 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5486 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
5487 
5488 	total_sz += sz;
5489 
5490 	/* reply pool, 4 byte align */
5491 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5492 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5493 					      4, 0);
5494 	if (!ioc->reply_dma_pool) {
5495 		ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5496 		goto out;
5497 	}
5498 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5499 	    &ioc->reply_dma);
5500 	if (!ioc->reply) {
5501 		ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5502 		goto out;
5503 	}
5504 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5505 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5506 	dinitprintk(ioc,
5507 		    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5508 			     ioc->reply, ioc->reply_free_queue_depth,
5509 			     ioc->reply_sz, sz / 1024));
5510 	dinitprintk(ioc,
5511 		    ioc_info(ioc, "reply_dma(0x%llx)\n",
5512 			     (unsigned long long)ioc->reply_dma));
5513 	total_sz += sz;
5514 
5515 	/* reply free queue, 16 byte align */
5516 	sz = ioc->reply_free_queue_depth * 4;
5517 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5518 	    &ioc->pdev->dev, sz, 16, 0);
5519 	if (!ioc->reply_free_dma_pool) {
5520 		ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5521 		goto out;
5522 	}
5523 	ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5524 	    &ioc->reply_free_dma);
5525 	if (!ioc->reply_free) {
5526 		ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5527 		goto out;
5528 	}
5529 	dinitprintk(ioc,
5530 		    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5531 			     ioc->reply_free, ioc->reply_free_queue_depth,
5532 			     4, sz / 1024));
5533 	dinitprintk(ioc,
5534 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5535 			     (unsigned long long)ioc->reply_free_dma));
5536 	total_sz += sz;
5537 
5538 	if (ioc->rdpq_array_enable) {
5539 		reply_post_free_array_sz = ioc->reply_queue_count *
5540 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5541 		ioc->reply_post_free_array_dma_pool =
5542 		    dma_pool_create("reply_post_free_array pool",
5543 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5544 		if (!ioc->reply_post_free_array_dma_pool) {
5545 			dinitprintk(ioc,
5546 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5547 			goto out;
5548 		}
5549 		ioc->reply_post_free_array =
5550 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5551 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5552 		if (!ioc->reply_post_free_array) {
5553 			dinitprintk(ioc,
5554 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5555 			goto out;
5556 		}
5557 	}
5558 	ioc->config_page_sz = 512;
5559 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5560 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5561 	if (!ioc->config_page) {
5562 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5563 		goto out;
5564 	}
5565 
5566 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5567 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
5568 	    ioc->config_page_sz);
5569 	total_sz += ioc->config_page_sz;
5570 
5571 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5572 		 total_sz / 1024);
5573 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5574 		 ioc->shost->can_queue, facts->RequestCredit);
5575 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5576 		 ioc->shost->sg_tablesize);
5577 	return 0;
5578 
5579  out:
5580 	return -ENOMEM;
5581 }
5582 
5583 /**
5584  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5585  * @ioc: Pointer to MPT_ADAPTER structure
5586  * @cooked: Request raw or cooked IOC state
5587  *
5588  * Return: all IOC Doorbell register bits if cooked==0, else just the
5589  * Doorbell bits in MPI_IOC_STATE_MASK.
5590  */
5591 u32
5592 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5593 {
5594 	u32 s, sc;
5595 
5596 	s = ioc->base_readl(&ioc->chip->Doorbell);
5597 	sc = s & MPI2_IOC_STATE_MASK;
5598 	return cooked ? sc : s;
5599 }
5600 
5601 /**
5602  * _base_wait_on_iocstate - waiting on a particular ioc state
5603  * @ioc: ?
5604  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5605  * @timeout: timeout in second
5606  *
5607  * Return: 0 for success, non-zero for failure.
5608  */
5609 static int
5610 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5611 {
5612 	u32 count, cntdn;
5613 	u32 current_state;
5614 
5615 	count = 0;
5616 	cntdn = 1000 * timeout;
5617 	do {
5618 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
5619 		if (current_state == ioc_state)
5620 			return 0;
5621 		if (count && current_state == MPI2_IOC_STATE_FAULT)
5622 			break;
5623 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5624 			break;
5625 
5626 		usleep_range(1000, 1500);
5627 		count++;
5628 	} while (--cntdn);
5629 
5630 	return current_state;
5631 }
5632 
5633 /**
5634  * _base_dump_reg_set -	This function will print hexdump of register set.
5635  * @ioc: per adapter object
5636  *
5637  * Returns nothing.
5638  */
5639 static inline void
5640 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5641 {
5642 	unsigned int i, sz = 256;
5643 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5644 
5645 	ioc_info(ioc, "System Register set:\n");
5646 	for (i = 0; i < (sz / sizeof(u32)); i++)
5647 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
5648 }
5649 
5650 /**
5651  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5652  * a write to the doorbell)
5653  * @ioc: per adapter object
5654  * @timeout: timeout in seconds
5655  *
5656  * Return: 0 for success, non-zero for failure.
5657  *
5658  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5659  */
5660 
5661 static int
5662 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5663 {
5664 	u32 cntdn, count;
5665 	u32 int_status;
5666 
5667 	count = 0;
5668 	cntdn = 1000 * timeout;
5669 	do {
5670 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5671 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5672 			dhsprintk(ioc,
5673 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5674 					   __func__, count, timeout));
5675 			return 0;
5676 		}
5677 
5678 		usleep_range(1000, 1500);
5679 		count++;
5680 	} while (--cntdn);
5681 
5682 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5683 		__func__, count, int_status);
5684 	return -EFAULT;
5685 }
5686 
5687 static int
5688 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5689 {
5690 	u32 cntdn, count;
5691 	u32 int_status;
5692 
5693 	count = 0;
5694 	cntdn = 2000 * timeout;
5695 	do {
5696 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5697 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5698 			dhsprintk(ioc,
5699 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5700 					   __func__, count, timeout));
5701 			return 0;
5702 		}
5703 
5704 		udelay(500);
5705 		count++;
5706 	} while (--cntdn);
5707 
5708 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5709 		__func__, count, int_status);
5710 	return -EFAULT;
5711 
5712 }
5713 
5714 /**
5715  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5716  * @ioc: per adapter object
5717  * @timeout: timeout in second
5718  *
5719  * Return: 0 for success, non-zero for failure.
5720  *
5721  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5722  * doorbell.
5723  */
5724 static int
5725 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5726 {
5727 	u32 cntdn, count;
5728 	u32 int_status;
5729 	u32 doorbell;
5730 
5731 	count = 0;
5732 	cntdn = 1000 * timeout;
5733 	do {
5734 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5735 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5736 			dhsprintk(ioc,
5737 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5738 					   __func__, count, timeout));
5739 			return 0;
5740 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5741 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5742 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5743 			    MPI2_IOC_STATE_FAULT) {
5744 				mpt3sas_print_fault_code(ioc, doorbell);
5745 				return -EFAULT;
5746 			}
5747 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5748 			    MPI2_IOC_STATE_COREDUMP) {
5749 				mpt3sas_print_coredump_info(ioc, doorbell);
5750 				return -EFAULT;
5751 			}
5752 		} else if (int_status == 0xFFFFFFFF)
5753 			goto out;
5754 
5755 		usleep_range(1000, 1500);
5756 		count++;
5757 	} while (--cntdn);
5758 
5759  out:
5760 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5761 		__func__, count, int_status);
5762 	return -EFAULT;
5763 }
5764 
5765 /**
5766  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5767  * @ioc: per adapter object
5768  * @timeout: timeout in second
5769  *
5770  * Return: 0 for success, non-zero for failure.
5771  */
5772 static int
5773 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5774 {
5775 	u32 cntdn, count;
5776 	u32 doorbell_reg;
5777 
5778 	count = 0;
5779 	cntdn = 1000 * timeout;
5780 	do {
5781 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5782 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5783 			dhsprintk(ioc,
5784 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5785 					   __func__, count, timeout));
5786 			return 0;
5787 		}
5788 
5789 		usleep_range(1000, 1500);
5790 		count++;
5791 	} while (--cntdn);
5792 
5793 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5794 		__func__, count, doorbell_reg);
5795 	return -EFAULT;
5796 }
5797 
5798 /**
5799  * _base_send_ioc_reset - send doorbell reset
5800  * @ioc: per adapter object
5801  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5802  * @timeout: timeout in second
5803  *
5804  * Return: 0 for success, non-zero for failure.
5805  */
5806 static int
5807 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5808 {
5809 	u32 ioc_state;
5810 	int r = 0;
5811 	unsigned long flags;
5812 
5813 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5814 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5815 		return -EFAULT;
5816 	}
5817 
5818 	if (!(ioc->facts.IOCCapabilities &
5819 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5820 		return -EFAULT;
5821 
5822 	ioc_info(ioc, "sending message unit reset !!\n");
5823 
5824 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5825 	    &ioc->chip->Doorbell);
5826 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5827 		r = -EFAULT;
5828 		goto out;
5829 	}
5830 
5831 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5832 	if (ioc_state) {
5833 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5834 			__func__, ioc_state);
5835 		r = -EFAULT;
5836 		goto out;
5837 	}
5838  out:
5839 	if (r != 0) {
5840 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5841 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5842 		/*
5843 		 * Wait for IOC state CoreDump to clear only during
5844 		 * HBA initialization & release time.
5845 		 */
5846 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5847 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5848 		    ioc->fault_reset_work_q == NULL)) {
5849 			spin_unlock_irqrestore(
5850 			    &ioc->ioc_reset_in_progress_lock, flags);
5851 			mpt3sas_print_coredump_info(ioc, ioc_state);
5852 			mpt3sas_base_wait_for_coredump_completion(ioc,
5853 			    __func__);
5854 			spin_lock_irqsave(
5855 			    &ioc->ioc_reset_in_progress_lock, flags);
5856 		}
5857 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5858 	}
5859 	ioc_info(ioc, "message unit reset: %s\n",
5860 		 r == 0 ? "SUCCESS" : "FAILED");
5861 	return r;
5862 }
5863 
5864 /**
5865  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5866  * @ioc: per adapter object
5867  * @timeout: timeout in seconds
5868  *
5869  * Return: Waits up to timeout seconds for the IOC to
5870  * become operational. Returns 0 if IOC is present
5871  * and operational; otherwise returns -EFAULT.
5872  */
5873 
5874 int
5875 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5876 {
5877 	int wait_state_count = 0;
5878 	u32 ioc_state;
5879 
5880 	do {
5881 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5882 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5883 			break;
5884 		ssleep(1);
5885 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5886 				__func__, ++wait_state_count);
5887 	} while (--timeout);
5888 	if (!timeout) {
5889 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5890 		return -EFAULT;
5891 	}
5892 	if (wait_state_count)
5893 		ioc_info(ioc, "ioc is operational\n");
5894 	return 0;
5895 }
5896 
5897 /**
5898  * _base_handshake_req_reply_wait - send request thru doorbell interface
5899  * @ioc: per adapter object
5900  * @request_bytes: request length
5901  * @request: pointer having request payload
5902  * @reply_bytes: reply length
5903  * @reply: pointer to reply payload
5904  * @timeout: timeout in second
5905  *
5906  * Return: 0 for success, non-zero for failure.
5907  */
5908 static int
5909 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5910 	u32 *request, int reply_bytes, u16 *reply, int timeout)
5911 {
5912 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5913 	int i;
5914 	u8 failed;
5915 	__le32 *mfp;
5916 
5917 	/* make sure doorbell is not in use */
5918 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5919 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5920 		return -EFAULT;
5921 	}
5922 
5923 	/* clear pending doorbell interrupts from previous state changes */
5924 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5925 	    MPI2_HIS_IOC2SYS_DB_STATUS)
5926 		writel(0, &ioc->chip->HostInterruptStatus);
5927 
5928 	/* send message to ioc */
5929 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5930 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5931 	    &ioc->chip->Doorbell);
5932 
5933 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
5934 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5935 			__LINE__);
5936 		return -EFAULT;
5937 	}
5938 	writel(0, &ioc->chip->HostInterruptStatus);
5939 
5940 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5941 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5942 			__LINE__);
5943 		return -EFAULT;
5944 	}
5945 
5946 	/* send message 32-bits at a time */
5947 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5948 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5949 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
5950 			failed = 1;
5951 	}
5952 
5953 	if (failed) {
5954 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5955 			__LINE__);
5956 		return -EFAULT;
5957 	}
5958 
5959 	/* now wait for the reply */
5960 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5961 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5962 			__LINE__);
5963 		return -EFAULT;
5964 	}
5965 
5966 	/* read the first two 16-bits, it gives the total length of the reply */
5967 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5968 	    & MPI2_DOORBELL_DATA_MASK);
5969 	writel(0, &ioc->chip->HostInterruptStatus);
5970 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
5971 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5972 			__LINE__);
5973 		return -EFAULT;
5974 	}
5975 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5976 	    & MPI2_DOORBELL_DATA_MASK);
5977 	writel(0, &ioc->chip->HostInterruptStatus);
5978 
5979 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5980 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
5981 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5982 				__LINE__);
5983 			return -EFAULT;
5984 		}
5985 		if (i >=  reply_bytes/2) /* overflow case */
5986 			ioc->base_readl(&ioc->chip->Doorbell);
5987 		else
5988 			reply[i] = le16_to_cpu(
5989 			    ioc->base_readl(&ioc->chip->Doorbell)
5990 			    & MPI2_DOORBELL_DATA_MASK);
5991 		writel(0, &ioc->chip->HostInterruptStatus);
5992 	}
5993 
5994 	_base_wait_for_doorbell_int(ioc, 5);
5995 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5996 		dhsprintk(ioc,
5997 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
5998 				   __LINE__));
5999 	}
6000 	writel(0, &ioc->chip->HostInterruptStatus);
6001 
6002 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6003 		mfp = (__le32 *)reply;
6004 		pr_info("\toffset:data\n");
6005 		for (i = 0; i < reply_bytes/4; i++)
6006 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6007 			    le32_to_cpu(mfp[i]));
6008 	}
6009 	return 0;
6010 }
6011 
6012 /**
6013  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6014  * @ioc: per adapter object
6015  * @mpi_reply: the reply payload from FW
6016  * @mpi_request: the request payload sent to FW
6017  *
6018  * The SAS IO Unit Control Request message allows the host to perform low-level
6019  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6020  * to obtain the IOC assigned device handles for a device if it has other
6021  * identifying information about the device, in addition allows the host to
6022  * remove IOC resources associated with the device.
6023  *
6024  * Return: 0 for success, non-zero for failure.
6025  */
6026 int
6027 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6028 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6029 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6030 {
6031 	u16 smid;
6032 	u8 issue_reset = 0;
6033 	int rc;
6034 	void *request;
6035 
6036 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6037 
6038 	mutex_lock(&ioc->base_cmds.mutex);
6039 
6040 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6041 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6042 		rc = -EAGAIN;
6043 		goto out;
6044 	}
6045 
6046 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6047 	if (rc)
6048 		goto out;
6049 
6050 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6051 	if (!smid) {
6052 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6053 		rc = -EAGAIN;
6054 		goto out;
6055 	}
6056 
6057 	rc = 0;
6058 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6059 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6060 	ioc->base_cmds.smid = smid;
6061 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6062 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6063 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6064 		ioc->ioc_link_reset_in_progress = 1;
6065 	init_completion(&ioc->base_cmds.done);
6066 	ioc->put_smid_default(ioc, smid);
6067 	wait_for_completion_timeout(&ioc->base_cmds.done,
6068 	    msecs_to_jiffies(10000));
6069 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6070 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6071 	    ioc->ioc_link_reset_in_progress)
6072 		ioc->ioc_link_reset_in_progress = 0;
6073 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6074 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6075 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6076 		    issue_reset);
6077 		goto issue_host_reset;
6078 	}
6079 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6080 		memcpy(mpi_reply, ioc->base_cmds.reply,
6081 		    sizeof(Mpi2SasIoUnitControlReply_t));
6082 	else
6083 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6084 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6085 	goto out;
6086 
6087  issue_host_reset:
6088 	if (issue_reset)
6089 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6090 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6091 	rc = -EFAULT;
6092  out:
6093 	mutex_unlock(&ioc->base_cmds.mutex);
6094 	return rc;
6095 }
6096 
6097 /**
6098  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6099  * @ioc: per adapter object
6100  * @mpi_reply: the reply payload from FW
6101  * @mpi_request: the request payload sent to FW
6102  *
6103  * The SCSI Enclosure Processor request message causes the IOC to
6104  * communicate with SES devices to control LED status signals.
6105  *
6106  * Return: 0 for success, non-zero for failure.
6107  */
6108 int
6109 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6110 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6111 {
6112 	u16 smid;
6113 	u8 issue_reset = 0;
6114 	int rc;
6115 	void *request;
6116 
6117 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6118 
6119 	mutex_lock(&ioc->base_cmds.mutex);
6120 
6121 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6122 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6123 		rc = -EAGAIN;
6124 		goto out;
6125 	}
6126 
6127 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6128 	if (rc)
6129 		goto out;
6130 
6131 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6132 	if (!smid) {
6133 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6134 		rc = -EAGAIN;
6135 		goto out;
6136 	}
6137 
6138 	rc = 0;
6139 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6140 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6141 	ioc->base_cmds.smid = smid;
6142 	memset(request, 0, ioc->request_sz);
6143 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6144 	init_completion(&ioc->base_cmds.done);
6145 	ioc->put_smid_default(ioc, smid);
6146 	wait_for_completion_timeout(&ioc->base_cmds.done,
6147 	    msecs_to_jiffies(10000));
6148 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6149 		mpt3sas_check_cmd_timeout(ioc,
6150 		    ioc->base_cmds.status, mpi_request,
6151 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6152 		goto issue_host_reset;
6153 	}
6154 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6155 		memcpy(mpi_reply, ioc->base_cmds.reply,
6156 		    sizeof(Mpi2SepReply_t));
6157 	else
6158 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6159 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6160 	goto out;
6161 
6162  issue_host_reset:
6163 	if (issue_reset)
6164 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6165 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6166 	rc = -EFAULT;
6167  out:
6168 	mutex_unlock(&ioc->base_cmds.mutex);
6169 	return rc;
6170 }
6171 
6172 /**
6173  * _base_get_port_facts - obtain port facts reply and save in ioc
6174  * @ioc: per adapter object
6175  * @port: ?
6176  *
6177  * Return: 0 for success, non-zero for failure.
6178  */
6179 static int
6180 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6181 {
6182 	Mpi2PortFactsRequest_t mpi_request;
6183 	Mpi2PortFactsReply_t mpi_reply;
6184 	struct mpt3sas_port_facts *pfacts;
6185 	int mpi_reply_sz, mpi_request_sz, r;
6186 
6187 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6188 
6189 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6190 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6191 	memset(&mpi_request, 0, mpi_request_sz);
6192 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6193 	mpi_request.PortNumber = port;
6194 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6195 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6196 
6197 	if (r != 0) {
6198 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6199 		return r;
6200 	}
6201 
6202 	pfacts = &ioc->pfacts[port];
6203 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6204 	pfacts->PortNumber = mpi_reply.PortNumber;
6205 	pfacts->VP_ID = mpi_reply.VP_ID;
6206 	pfacts->VF_ID = mpi_reply.VF_ID;
6207 	pfacts->MaxPostedCmdBuffers =
6208 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6209 
6210 	return 0;
6211 }
6212 
6213 /**
6214  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6215  * @ioc: per adapter object
6216  * @timeout:
6217  *
6218  * Return: 0 for success, non-zero for failure.
6219  */
6220 static int
6221 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6222 {
6223 	u32 ioc_state;
6224 	int rc;
6225 
6226 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6227 
6228 	if (ioc->pci_error_recovery) {
6229 		dfailprintk(ioc,
6230 			    ioc_info(ioc, "%s: host in pci error recovery\n",
6231 				     __func__));
6232 		return -EFAULT;
6233 	}
6234 
6235 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6236 	dhsprintk(ioc,
6237 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6238 			   __func__, ioc_state));
6239 
6240 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6241 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6242 		return 0;
6243 
6244 	if (ioc_state & MPI2_DOORBELL_USED) {
6245 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6246 		goto issue_diag_reset;
6247 	}
6248 
6249 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6250 		mpt3sas_print_fault_code(ioc, ioc_state &
6251 		    MPI2_DOORBELL_DATA_MASK);
6252 		goto issue_diag_reset;
6253 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6254 	    MPI2_IOC_STATE_COREDUMP) {
6255 		ioc_info(ioc,
6256 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6257 		    __func__, ioc_state);
6258 		return -EFAULT;
6259 	}
6260 
6261 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6262 	if (ioc_state) {
6263 		dfailprintk(ioc,
6264 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6265 				     __func__, ioc_state));
6266 		return -EFAULT;
6267 	}
6268 
6269  issue_diag_reset:
6270 	rc = _base_diag_reset(ioc);
6271 	return rc;
6272 }
6273 
6274 /**
6275  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6276  * @ioc: per adapter object
6277  *
6278  * Return: 0 for success, non-zero for failure.
6279  */
6280 static int
6281 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6282 {
6283 	Mpi2IOCFactsRequest_t mpi_request;
6284 	Mpi2IOCFactsReply_t mpi_reply;
6285 	struct mpt3sas_facts *facts;
6286 	int mpi_reply_sz, mpi_request_sz, r;
6287 
6288 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6289 
6290 	r = _base_wait_for_iocstate(ioc, 10);
6291 	if (r) {
6292 		dfailprintk(ioc,
6293 			    ioc_info(ioc, "%s: failed getting to correct state\n",
6294 				     __func__));
6295 		return r;
6296 	}
6297 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6298 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6299 	memset(&mpi_request, 0, mpi_request_sz);
6300 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6301 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6302 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6303 
6304 	if (r != 0) {
6305 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6306 		return r;
6307 	}
6308 
6309 	facts = &ioc->facts;
6310 	memset(facts, 0, sizeof(struct mpt3sas_facts));
6311 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6312 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6313 	facts->VP_ID = mpi_reply.VP_ID;
6314 	facts->VF_ID = mpi_reply.VF_ID;
6315 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6316 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6317 	facts->WhoInit = mpi_reply.WhoInit;
6318 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6319 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6320 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6321 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6322 		ioc->combined_reply_queue = 0;
6323 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6324 	facts->MaxReplyDescriptorPostQueueDepth =
6325 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6326 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6327 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6328 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6329 		ioc->ir_firmware = 1;
6330 	if ((facts->IOCCapabilities &
6331 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6332 		ioc->rdpq_array_capable = 1;
6333 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6334 	    && ioc->is_aero_ioc)
6335 		ioc->atomic_desc_capable = 1;
6336 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6337 	facts->IOCRequestFrameSize =
6338 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6339 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6340 		facts->IOCMaxChainSegmentSize =
6341 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6342 	}
6343 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6344 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6345 	ioc->shost->max_id = -1;
6346 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6347 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6348 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6349 	facts->HighPriorityCredit =
6350 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
6351 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6352 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6353 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6354 
6355 	/*
6356 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6357 	 */
6358 	ioc->page_size = 1 << facts->CurrentHostPageSize;
6359 	if (ioc->page_size == 1) {
6360 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6361 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6362 	}
6363 	dinitprintk(ioc,
6364 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6365 			     facts->CurrentHostPageSize));
6366 
6367 	dinitprintk(ioc,
6368 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6369 			     facts->RequestCredit, facts->MaxChainDepth));
6370 	dinitprintk(ioc,
6371 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6372 			     facts->IOCRequestFrameSize * 4,
6373 			     facts->ReplyFrameSize * 4));
6374 	return 0;
6375 }
6376 
6377 /**
6378  * _base_send_ioc_init - send ioc_init to firmware
6379  * @ioc: per adapter object
6380  *
6381  * Return: 0 for success, non-zero for failure.
6382  */
6383 static int
6384 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6385 {
6386 	Mpi2IOCInitRequest_t mpi_request;
6387 	Mpi2IOCInitReply_t mpi_reply;
6388 	int i, r = 0;
6389 	ktime_t current_time;
6390 	u16 ioc_status;
6391 	u32 reply_post_free_array_sz = 0;
6392 
6393 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6394 
6395 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6396 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6397 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6398 	mpi_request.VF_ID = 0; /* TODO */
6399 	mpi_request.VP_ID = 0;
6400 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6401 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6402 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6403 
6404 	if (_base_is_controller_msix_enabled(ioc))
6405 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6406 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6407 	mpi_request.ReplyDescriptorPostQueueDepth =
6408 	    cpu_to_le16(ioc->reply_post_queue_depth);
6409 	mpi_request.ReplyFreeQueueDepth =
6410 	    cpu_to_le16(ioc->reply_free_queue_depth);
6411 
6412 	mpi_request.SenseBufferAddressHigh =
6413 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
6414 	mpi_request.SystemReplyAddressHigh =
6415 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
6416 	mpi_request.SystemRequestFrameBaseAddress =
6417 	    cpu_to_le64((u64)ioc->request_dma);
6418 	mpi_request.ReplyFreeQueueAddress =
6419 	    cpu_to_le64((u64)ioc->reply_free_dma);
6420 
6421 	if (ioc->rdpq_array_enable) {
6422 		reply_post_free_array_sz = ioc->reply_queue_count *
6423 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6424 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6425 		for (i = 0; i < ioc->reply_queue_count; i++)
6426 			ioc->reply_post_free_array[i].RDPQBaseAddress =
6427 			    cpu_to_le64(
6428 				(u64)ioc->reply_post[i].reply_post_free_dma);
6429 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6430 		mpi_request.ReplyDescriptorPostQueueAddress =
6431 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6432 	} else {
6433 		mpi_request.ReplyDescriptorPostQueueAddress =
6434 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6435 	}
6436 
6437 	/*
6438 	 * Set the flag to enable CoreDump state feature in IOC firmware.
6439 	 */
6440 	mpi_request.ConfigurationFlags |=
6441 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6442 
6443 	/* This time stamp specifies number of milliseconds
6444 	 * since epoch ~ midnight January 1, 1970.
6445 	 */
6446 	current_time = ktime_get_real();
6447 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6448 
6449 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6450 		__le32 *mfp;
6451 		int i;
6452 
6453 		mfp = (__le32 *)&mpi_request;
6454 		ioc_info(ioc, "\toffset:data\n");
6455 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6456 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6457 			    le32_to_cpu(mfp[i]));
6458 	}
6459 
6460 	r = _base_handshake_req_reply_wait(ioc,
6461 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6462 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6463 
6464 	if (r != 0) {
6465 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6466 		return r;
6467 	}
6468 
6469 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6470 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6471 	    mpi_reply.IOCLogInfo) {
6472 		ioc_err(ioc, "%s: failed\n", __func__);
6473 		r = -EIO;
6474 	}
6475 
6476 	return r;
6477 }
6478 
6479 /**
6480  * mpt3sas_port_enable_done - command completion routine for port enable
6481  * @ioc: per adapter object
6482  * @smid: system request message index
6483  * @msix_index: MSIX table index supplied by the OS
6484  * @reply: reply message frame(lower 32bit addr)
6485  *
6486  * Return: 1 meaning mf should be freed from _base_interrupt
6487  *          0 means the mf is freed from this function.
6488  */
6489 u8
6490 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6491 	u32 reply)
6492 {
6493 	MPI2DefaultReply_t *mpi_reply;
6494 	u16 ioc_status;
6495 
6496 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6497 		return 1;
6498 
6499 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6500 	if (!mpi_reply)
6501 		return 1;
6502 
6503 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6504 		return 1;
6505 
6506 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6507 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6508 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6509 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6510 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6511 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6512 		ioc->port_enable_failed = 1;
6513 
6514 	if (ioc->is_driver_loading) {
6515 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6516 			mpt3sas_port_enable_complete(ioc);
6517 			return 1;
6518 		} else {
6519 			ioc->start_scan_failed = ioc_status;
6520 			ioc->start_scan = 0;
6521 			return 1;
6522 		}
6523 	}
6524 	complete(&ioc->port_enable_cmds.done);
6525 	return 1;
6526 }
6527 
6528 /**
6529  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6530  * @ioc: per adapter object
6531  *
6532  * Return: 0 for success, non-zero for failure.
6533  */
6534 static int
6535 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6536 {
6537 	Mpi2PortEnableRequest_t *mpi_request;
6538 	Mpi2PortEnableReply_t *mpi_reply;
6539 	int r = 0;
6540 	u16 smid;
6541 	u16 ioc_status;
6542 
6543 	ioc_info(ioc, "sending port enable !!\n");
6544 
6545 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6546 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6547 		return -EAGAIN;
6548 	}
6549 
6550 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6551 	if (!smid) {
6552 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6553 		return -EAGAIN;
6554 	}
6555 
6556 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6557 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6558 	ioc->port_enable_cmds.smid = smid;
6559 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6560 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6561 
6562 	init_completion(&ioc->port_enable_cmds.done);
6563 	ioc->put_smid_default(ioc, smid);
6564 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6565 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6566 		ioc_err(ioc, "%s: timeout\n", __func__);
6567 		_debug_dump_mf(mpi_request,
6568 		    sizeof(Mpi2PortEnableRequest_t)/4);
6569 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6570 			r = -EFAULT;
6571 		else
6572 			r = -ETIME;
6573 		goto out;
6574 	}
6575 
6576 	mpi_reply = ioc->port_enable_cmds.reply;
6577 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6578 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6579 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6580 			__func__, ioc_status);
6581 		r = -EFAULT;
6582 		goto out;
6583 	}
6584 
6585  out:
6586 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6587 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6588 	return r;
6589 }
6590 
6591 /**
6592  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6593  * @ioc: per adapter object
6594  *
6595  * Return: 0 for success, non-zero for failure.
6596  */
6597 int
6598 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6599 {
6600 	Mpi2PortEnableRequest_t *mpi_request;
6601 	u16 smid;
6602 
6603 	ioc_info(ioc, "sending port enable !!\n");
6604 
6605 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6606 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6607 		return -EAGAIN;
6608 	}
6609 
6610 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6611 	if (!smid) {
6612 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6613 		return -EAGAIN;
6614 	}
6615 
6616 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6617 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6618 	ioc->port_enable_cmds.smid = smid;
6619 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6620 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6621 
6622 	ioc->put_smid_default(ioc, smid);
6623 	return 0;
6624 }
6625 
6626 /**
6627  * _base_determine_wait_on_discovery - desposition
6628  * @ioc: per adapter object
6629  *
6630  * Decide whether to wait on discovery to complete. Used to either
6631  * locate boot device, or report volumes ahead of physical devices.
6632  *
6633  * Return: 1 for wait, 0 for don't wait.
6634  */
6635 static int
6636 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6637 {
6638 	/* We wait for discovery to complete if IR firmware is loaded.
6639 	 * The sas topology events arrive before PD events, so we need time to
6640 	 * turn on the bit in ioc->pd_handles to indicate PD
6641 	 * Also, it maybe required to report Volumes ahead of physical
6642 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6643 	 */
6644 	if (ioc->ir_firmware)
6645 		return 1;
6646 
6647 	/* if no Bios, then we don't need to wait */
6648 	if (!ioc->bios_pg3.BiosVersion)
6649 		return 0;
6650 
6651 	/* Bios is present, then we drop down here.
6652 	 *
6653 	 * If there any entries in the Bios Page 2, then we wait
6654 	 * for discovery to complete.
6655 	 */
6656 
6657 	/* Current Boot Device */
6658 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
6659 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6660 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6661 	/* Request Boot Device */
6662 	   (ioc->bios_pg2.ReqBootDeviceForm &
6663 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6664 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6665 	/* Alternate Request Boot Device */
6666 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
6667 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6668 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6669 		return 0;
6670 
6671 	return 1;
6672 }
6673 
6674 /**
6675  * _base_unmask_events - turn on notification for this event
6676  * @ioc: per adapter object
6677  * @event: firmware event
6678  *
6679  * The mask is stored in ioc->event_masks.
6680  */
6681 static void
6682 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6683 {
6684 	u32 desired_event;
6685 
6686 	if (event >= 128)
6687 		return;
6688 
6689 	desired_event = (1 << (event % 32));
6690 
6691 	if (event < 32)
6692 		ioc->event_masks[0] &= ~desired_event;
6693 	else if (event < 64)
6694 		ioc->event_masks[1] &= ~desired_event;
6695 	else if (event < 96)
6696 		ioc->event_masks[2] &= ~desired_event;
6697 	else if (event < 128)
6698 		ioc->event_masks[3] &= ~desired_event;
6699 }
6700 
6701 /**
6702  * _base_event_notification - send event notification
6703  * @ioc: per adapter object
6704  *
6705  * Return: 0 for success, non-zero for failure.
6706  */
6707 static int
6708 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6709 {
6710 	Mpi2EventNotificationRequest_t *mpi_request;
6711 	u16 smid;
6712 	int r = 0;
6713 	int i;
6714 
6715 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6716 
6717 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6718 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6719 		return -EAGAIN;
6720 	}
6721 
6722 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6723 	if (!smid) {
6724 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6725 		return -EAGAIN;
6726 	}
6727 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6728 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6729 	ioc->base_cmds.smid = smid;
6730 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6731 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6732 	mpi_request->VF_ID = 0; /* TODO */
6733 	mpi_request->VP_ID = 0;
6734 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6735 		mpi_request->EventMasks[i] =
6736 		    cpu_to_le32(ioc->event_masks[i]);
6737 	init_completion(&ioc->base_cmds.done);
6738 	ioc->put_smid_default(ioc, smid);
6739 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6740 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6741 		ioc_err(ioc, "%s: timeout\n", __func__);
6742 		_debug_dump_mf(mpi_request,
6743 		    sizeof(Mpi2EventNotificationRequest_t)/4);
6744 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
6745 			r = -EFAULT;
6746 		else
6747 			r = -ETIME;
6748 	} else
6749 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6750 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6751 	return r;
6752 }
6753 
6754 /**
6755  * mpt3sas_base_validate_event_type - validating event types
6756  * @ioc: per adapter object
6757  * @event_type: firmware event
6758  *
6759  * This will turn on firmware event notification when application
6760  * ask for that event. We don't mask events that are already enabled.
6761  */
6762 void
6763 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6764 {
6765 	int i, j;
6766 	u32 event_mask, desired_event;
6767 	u8 send_update_to_fw;
6768 
6769 	for (i = 0, send_update_to_fw = 0; i <
6770 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6771 		event_mask = ~event_type[i];
6772 		desired_event = 1;
6773 		for (j = 0; j < 32; j++) {
6774 			if (!(event_mask & desired_event) &&
6775 			    (ioc->event_masks[i] & desired_event)) {
6776 				ioc->event_masks[i] &= ~desired_event;
6777 				send_update_to_fw = 1;
6778 			}
6779 			desired_event = (desired_event << 1);
6780 		}
6781 	}
6782 
6783 	if (!send_update_to_fw)
6784 		return;
6785 
6786 	mutex_lock(&ioc->base_cmds.mutex);
6787 	_base_event_notification(ioc);
6788 	mutex_unlock(&ioc->base_cmds.mutex);
6789 }
6790 
6791 /**
6792  * _base_diag_reset - the "big hammer" start of day reset
6793  * @ioc: per adapter object
6794  *
6795  * Return: 0 for success, non-zero for failure.
6796  */
6797 static int
6798 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6799 {
6800 	u32 host_diagnostic;
6801 	u32 ioc_state;
6802 	u32 count;
6803 	u32 hcb_size;
6804 
6805 	ioc_info(ioc, "sending diag reset !!\n");
6806 
6807 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6808 
6809 	count = 0;
6810 	do {
6811 		/* Write magic sequence to WriteSequence register
6812 		 * Loop until in diagnostic mode
6813 		 */
6814 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6815 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6816 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6817 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6818 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6819 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6820 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6821 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6822 
6823 		/* wait 100 msec */
6824 		msleep(100);
6825 
6826 		if (count++ > 20) {
6827 			ioc_info(ioc,
6828 			    "Stop writing magic sequence after 20 retries\n");
6829 			_base_dump_reg_set(ioc);
6830 			goto out;
6831 		}
6832 
6833 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6834 		drsprintk(ioc,
6835 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6836 				   count, host_diagnostic));
6837 
6838 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6839 
6840 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6841 
6842 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6843 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6844 	     &ioc->chip->HostDiagnostic);
6845 
6846 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
6847 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6848 
6849 	/* Approximately 300 second max wait */
6850 	for (count = 0; count < (300000000 /
6851 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6852 
6853 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6854 
6855 		if (host_diagnostic == 0xFFFFFFFF) {
6856 			ioc_info(ioc,
6857 			    "Invalid host diagnostic register value\n");
6858 			_base_dump_reg_set(ioc);
6859 			goto out;
6860 		}
6861 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6862 			break;
6863 
6864 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6865 	}
6866 
6867 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6868 
6869 		drsprintk(ioc,
6870 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6871 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6872 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6873 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6874 
6875 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6876 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6877 		    &ioc->chip->HCBSize);
6878 	}
6879 
6880 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6881 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6882 	    &ioc->chip->HostDiagnostic);
6883 
6884 	drsprintk(ioc,
6885 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
6886 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6887 
6888 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6889 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6890 	if (ioc_state) {
6891 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6892 			__func__, ioc_state);
6893 		_base_dump_reg_set(ioc);
6894 		goto out;
6895 	}
6896 
6897 	ioc_info(ioc, "diag reset: SUCCESS\n");
6898 	return 0;
6899 
6900  out:
6901 	ioc_err(ioc, "diag reset: FAILED\n");
6902 	return -EFAULT;
6903 }
6904 
6905 /**
6906  * _base_make_ioc_ready - put controller in READY state
6907  * @ioc: per adapter object
6908  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6909  *
6910  * Return: 0 for success, non-zero for failure.
6911  */
6912 static int
6913 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6914 {
6915 	u32 ioc_state;
6916 	int rc;
6917 	int count;
6918 
6919 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6920 
6921 	if (ioc->pci_error_recovery)
6922 		return 0;
6923 
6924 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6925 	dhsprintk(ioc,
6926 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6927 			   __func__, ioc_state));
6928 
6929 	/* if in RESET state, it should move to READY state shortly */
6930 	count = 0;
6931 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6932 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6933 		    MPI2_IOC_STATE_READY) {
6934 			if (count++ == 10) {
6935 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6936 					__func__, ioc_state);
6937 				return -EFAULT;
6938 			}
6939 			ssleep(1);
6940 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6941 		}
6942 	}
6943 
6944 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6945 		return 0;
6946 
6947 	if (ioc_state & MPI2_DOORBELL_USED) {
6948 		ioc_info(ioc, "unexpected doorbell active!\n");
6949 		goto issue_diag_reset;
6950 	}
6951 
6952 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6953 		mpt3sas_print_fault_code(ioc, ioc_state &
6954 		    MPI2_DOORBELL_DATA_MASK);
6955 		goto issue_diag_reset;
6956 	}
6957 
6958 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6959 		/*
6960 		 * if host reset is invoked while watch dog thread is waiting
6961 		 * for IOC state to be changed to Fault state then driver has
6962 		 * to wait here for CoreDump state to clear otherwise reset
6963 		 * will be issued to the FW and FW move the IOC state to
6964 		 * reset state without copying the FW logs to coredump region.
6965 		 */
6966 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6967 			mpt3sas_print_coredump_info(ioc, ioc_state &
6968 			    MPI2_DOORBELL_DATA_MASK);
6969 			mpt3sas_base_wait_for_coredump_completion(ioc,
6970 			    __func__);
6971 		}
6972 		goto issue_diag_reset;
6973 	}
6974 
6975 	if (type == FORCE_BIG_HAMMER)
6976 		goto issue_diag_reset;
6977 
6978 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6979 		if (!(_base_send_ioc_reset(ioc,
6980 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6981 			return 0;
6982 	}
6983 
6984  issue_diag_reset:
6985 	rc = _base_diag_reset(ioc);
6986 	return rc;
6987 }
6988 
6989 /**
6990  * _base_make_ioc_operational - put controller in OPERATIONAL state
6991  * @ioc: per adapter object
6992  *
6993  * Return: 0 for success, non-zero for failure.
6994  */
6995 static int
6996 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6997 {
6998 	int r, i, index, rc;
6999 	unsigned long	flags;
7000 	u32 reply_address;
7001 	u16 smid;
7002 	struct _tr_list *delayed_tr, *delayed_tr_next;
7003 	struct _sc_list *delayed_sc, *delayed_sc_next;
7004 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7005 	u8 hide_flag;
7006 	struct adapter_reply_queue *reply_q;
7007 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7008 
7009 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7010 
7011 	/* clean the delayed target reset list */
7012 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7013 	    &ioc->delayed_tr_list, list) {
7014 		list_del(&delayed_tr->list);
7015 		kfree(delayed_tr);
7016 	}
7017 
7018 
7019 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7020 	    &ioc->delayed_tr_volume_list, list) {
7021 		list_del(&delayed_tr->list);
7022 		kfree(delayed_tr);
7023 	}
7024 
7025 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7026 	    &ioc->delayed_sc_list, list) {
7027 		list_del(&delayed_sc->list);
7028 		kfree(delayed_sc);
7029 	}
7030 
7031 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7032 	    &ioc->delayed_event_ack_list, list) {
7033 		list_del(&delayed_event_ack->list);
7034 		kfree(delayed_event_ack);
7035 	}
7036 
7037 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7038 
7039 	/* hi-priority queue */
7040 	INIT_LIST_HEAD(&ioc->hpr_free_list);
7041 	smid = ioc->hi_priority_smid;
7042 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7043 		ioc->hpr_lookup[i].cb_idx = 0xFF;
7044 		ioc->hpr_lookup[i].smid = smid;
7045 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7046 		    &ioc->hpr_free_list);
7047 	}
7048 
7049 	/* internal queue */
7050 	INIT_LIST_HEAD(&ioc->internal_free_list);
7051 	smid = ioc->internal_smid;
7052 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
7053 		ioc->internal_lookup[i].cb_idx = 0xFF;
7054 		ioc->internal_lookup[i].smid = smid;
7055 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
7056 		    &ioc->internal_free_list);
7057 	}
7058 
7059 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7060 
7061 	/* initialize Reply Free Queue */
7062 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
7063 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
7064 	    ioc->reply_sz) {
7065 		ioc->reply_free[i] = cpu_to_le32(reply_address);
7066 		if (ioc->is_mcpu_endpoint)
7067 			_base_clone_reply_to_sys_mem(ioc,
7068 					reply_address, i);
7069 	}
7070 
7071 	/* initialize reply queues */
7072 	if (ioc->is_driver_loading)
7073 		_base_assign_reply_queues(ioc);
7074 
7075 	/* initialize Reply Post Free Queue */
7076 	index = 0;
7077 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7078 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7079 		/*
7080 		 * If RDPQ is enabled, switch to the next allocation.
7081 		 * Otherwise advance within the contiguous region.
7082 		 */
7083 		if (ioc->rdpq_array_enable) {
7084 			reply_q->reply_post_free =
7085 				ioc->reply_post[index++].reply_post_free;
7086 		} else {
7087 			reply_q->reply_post_free = reply_post_free_contig;
7088 			reply_post_free_contig += ioc->reply_post_queue_depth;
7089 		}
7090 
7091 		reply_q->reply_post_host_index = 0;
7092 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
7093 			reply_q->reply_post_free[i].Words =
7094 			    cpu_to_le64(ULLONG_MAX);
7095 		if (!_base_is_controller_msix_enabled(ioc))
7096 			goto skip_init_reply_post_free_queue;
7097 	}
7098  skip_init_reply_post_free_queue:
7099 
7100 	r = _base_send_ioc_init(ioc);
7101 	if (r) {
7102 		/*
7103 		 * No need to check IOC state for fault state & issue
7104 		 * diag reset during host reset. This check is need
7105 		 * only during driver load time.
7106 		 */
7107 		if (!ioc->is_driver_loading)
7108 			return r;
7109 
7110 		rc = _base_check_for_fault_and_issue_reset(ioc);
7111 		if (rc || (_base_send_ioc_init(ioc)))
7112 			return r;
7113 	}
7114 
7115 	/* initialize reply free host index */
7116 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7117 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7118 
7119 	/* initialize reply post host index */
7120 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7121 		if (ioc->combined_reply_queue)
7122 			writel((reply_q->msix_index & 7)<<
7123 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
7124 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7125 		else
7126 			writel(reply_q->msix_index <<
7127 				MPI2_RPHI_MSIX_INDEX_SHIFT,
7128 				&ioc->chip->ReplyPostHostIndex);
7129 
7130 		if (!_base_is_controller_msix_enabled(ioc))
7131 			goto skip_init_reply_post_host_index;
7132 	}
7133 
7134  skip_init_reply_post_host_index:
7135 
7136 	mpt3sas_base_unmask_interrupts(ioc);
7137 
7138 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7139 		r = _base_display_fwpkg_version(ioc);
7140 		if (r)
7141 			return r;
7142 	}
7143 
7144 	_base_static_config_pages(ioc);
7145 	r = _base_event_notification(ioc);
7146 	if (r)
7147 		return r;
7148 
7149 	if (ioc->is_driver_loading) {
7150 
7151 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7152 		    == 0x80) {
7153 			hide_flag = (u8) (
7154 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7155 			    MFG_PAGE10_HIDE_SSDS_MASK);
7156 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7157 				ioc->mfg_pg10_hide_flag = hide_flag;
7158 		}
7159 
7160 		ioc->wait_for_discovery_to_complete =
7161 		    _base_determine_wait_on_discovery(ioc);
7162 
7163 		return r; /* scan_start and scan_finished support */
7164 	}
7165 
7166 	r = _base_send_port_enable(ioc);
7167 	if (r)
7168 		return r;
7169 
7170 	return r;
7171 }
7172 
7173 /**
7174  * mpt3sas_base_free_resources - free resources controller resources
7175  * @ioc: per adapter object
7176  */
7177 void
7178 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7179 {
7180 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7181 
7182 	/* synchronizing freeing resource with pci_access_mutex lock */
7183 	mutex_lock(&ioc->pci_access_mutex);
7184 	if (ioc->chip_phys && ioc->chip) {
7185 		mpt3sas_base_mask_interrupts(ioc);
7186 		ioc->shost_recovery = 1;
7187 		_base_make_ioc_ready(ioc, SOFT_RESET);
7188 		ioc->shost_recovery = 0;
7189 	}
7190 
7191 	mpt3sas_base_unmap_resources(ioc);
7192 	mutex_unlock(&ioc->pci_access_mutex);
7193 	return;
7194 }
7195 
7196 /**
7197  * mpt3sas_base_attach - attach controller instance
7198  * @ioc: per adapter object
7199  *
7200  * Return: 0 for success, non-zero for failure.
7201  */
7202 int
7203 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7204 {
7205 	int r, i, rc;
7206 	int cpu_id, last_cpu_id = 0;
7207 
7208 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7209 
7210 	/* setup cpu_msix_table */
7211 	ioc->cpu_count = num_online_cpus();
7212 	for_each_online_cpu(cpu_id)
7213 		last_cpu_id = cpu_id;
7214 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
7215 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7216 	ioc->reply_queue_count = 1;
7217 	if (!ioc->cpu_msix_table) {
7218 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7219 		r = -ENOMEM;
7220 		goto out_free_resources;
7221 	}
7222 
7223 	if (ioc->is_warpdrive) {
7224 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7225 		    sizeof(resource_size_t *), GFP_KERNEL);
7226 		if (!ioc->reply_post_host_index) {
7227 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7228 			r = -ENOMEM;
7229 			goto out_free_resources;
7230 		}
7231 	}
7232 
7233 	ioc->smp_affinity_enable = smp_affinity_enable;
7234 
7235 	ioc->rdpq_array_enable_assigned = 0;
7236 	ioc->use_32bit_dma = false;
7237 	if (ioc->is_aero_ioc)
7238 		ioc->base_readl = &_base_readl_aero;
7239 	else
7240 		ioc->base_readl = &_base_readl;
7241 	r = mpt3sas_base_map_resources(ioc);
7242 	if (r)
7243 		goto out_free_resources;
7244 
7245 	pci_set_drvdata(ioc->pdev, ioc->shost);
7246 	r = _base_get_ioc_facts(ioc);
7247 	if (r) {
7248 		rc = _base_check_for_fault_and_issue_reset(ioc);
7249 		if (rc || (_base_get_ioc_facts(ioc)))
7250 			goto out_free_resources;
7251 	}
7252 
7253 	switch (ioc->hba_mpi_version_belonged) {
7254 	case MPI2_VERSION:
7255 		ioc->build_sg_scmd = &_base_build_sg_scmd;
7256 		ioc->build_sg = &_base_build_sg;
7257 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7258 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7259 		break;
7260 	case MPI25_VERSION:
7261 	case MPI26_VERSION:
7262 		/*
7263 		 * In SAS3.0,
7264 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7265 		 * Target Status - all require the IEEE formated scatter gather
7266 		 * elements.
7267 		 */
7268 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7269 		ioc->build_sg = &_base_build_sg_ieee;
7270 		ioc->build_nvme_prp = &_base_build_nvme_prp;
7271 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7272 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7273 		if (ioc->high_iops_queues)
7274 			ioc->get_msix_index_for_smlio =
7275 					&_base_get_high_iops_msix_index;
7276 		else
7277 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7278 		break;
7279 	}
7280 	if (ioc->atomic_desc_capable) {
7281 		ioc->put_smid_default = &_base_put_smid_default_atomic;
7282 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7283 		ioc->put_smid_fast_path =
7284 				&_base_put_smid_fast_path_atomic;
7285 		ioc->put_smid_hi_priority =
7286 				&_base_put_smid_hi_priority_atomic;
7287 	} else {
7288 		ioc->put_smid_default = &_base_put_smid_default;
7289 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7290 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7291 		if (ioc->is_mcpu_endpoint)
7292 			ioc->put_smid_scsi_io =
7293 				&_base_put_smid_mpi_ep_scsi_io;
7294 		else
7295 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7296 	}
7297 	/*
7298 	 * These function pointers for other requests that don't
7299 	 * the require IEEE scatter gather elements.
7300 	 *
7301 	 * For example Configuration Pages and SAS IOUNIT Control don't.
7302 	 */
7303 	ioc->build_sg_mpi = &_base_build_sg;
7304 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7305 
7306 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
7307 	if (r)
7308 		goto out_free_resources;
7309 
7310 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7311 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7312 	if (!ioc->pfacts) {
7313 		r = -ENOMEM;
7314 		goto out_free_resources;
7315 	}
7316 
7317 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7318 		r = _base_get_port_facts(ioc, i);
7319 		if (r) {
7320 			rc = _base_check_for_fault_and_issue_reset(ioc);
7321 			if (rc || (_base_get_port_facts(ioc, i)))
7322 				goto out_free_resources;
7323 		}
7324 	}
7325 
7326 	r = _base_allocate_memory_pools(ioc);
7327 	if (r)
7328 		goto out_free_resources;
7329 
7330 	if (irqpoll_weight > 0)
7331 		ioc->thresh_hold = irqpoll_weight;
7332 	else
7333 		ioc->thresh_hold = ioc->hba_queue_depth/4;
7334 
7335 	_base_init_irqpolls(ioc);
7336 	init_waitqueue_head(&ioc->reset_wq);
7337 
7338 	/* allocate memory pd handle bitmask list */
7339 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7340 	if (ioc->facts.MaxDevHandle % 8)
7341 		ioc->pd_handles_sz++;
7342 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7343 	    GFP_KERNEL);
7344 	if (!ioc->pd_handles) {
7345 		r = -ENOMEM;
7346 		goto out_free_resources;
7347 	}
7348 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7349 	    GFP_KERNEL);
7350 	if (!ioc->blocking_handles) {
7351 		r = -ENOMEM;
7352 		goto out_free_resources;
7353 	}
7354 
7355 	/* allocate memory for pending OS device add list */
7356 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7357 	if (ioc->facts.MaxDevHandle % 8)
7358 		ioc->pend_os_device_add_sz++;
7359 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7360 	    GFP_KERNEL);
7361 	if (!ioc->pend_os_device_add)
7362 		goto out_free_resources;
7363 
7364 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7365 	ioc->device_remove_in_progress =
7366 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7367 	if (!ioc->device_remove_in_progress)
7368 		goto out_free_resources;
7369 
7370 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
7371 
7372 	/* base internal command bits */
7373 	mutex_init(&ioc->base_cmds.mutex);
7374 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7375 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7376 
7377 	/* port_enable command bits */
7378 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7379 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7380 
7381 	/* transport internal command bits */
7382 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7383 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7384 	mutex_init(&ioc->transport_cmds.mutex);
7385 
7386 	/* scsih internal command bits */
7387 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7388 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7389 	mutex_init(&ioc->scsih_cmds.mutex);
7390 
7391 	/* task management internal command bits */
7392 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7393 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7394 	mutex_init(&ioc->tm_cmds.mutex);
7395 
7396 	/* config page internal command bits */
7397 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7398 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7399 	mutex_init(&ioc->config_cmds.mutex);
7400 
7401 	/* ctl module internal command bits */
7402 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7403 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7404 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7405 	mutex_init(&ioc->ctl_cmds.mutex);
7406 
7407 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7408 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7409 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7410 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7411 		r = -ENOMEM;
7412 		goto out_free_resources;
7413 	}
7414 
7415 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7416 		ioc->event_masks[i] = -1;
7417 
7418 	/* here we enable the events we care about */
7419 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7420 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7421 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7422 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7423 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7424 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7425 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7426 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7427 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7428 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7429 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7430 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7431 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7432 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7433 		if (ioc->is_gen35_ioc) {
7434 			_base_unmask_events(ioc,
7435 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7436 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7437 			_base_unmask_events(ioc,
7438 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7439 		}
7440 	}
7441 	r = _base_make_ioc_operational(ioc);
7442 	if (r)
7443 		goto out_free_resources;
7444 
7445 	/*
7446 	 * Copy current copy of IOCFacts in prev_fw_facts
7447 	 * and it will be used during online firmware upgrade.
7448 	 */
7449 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
7450 	    sizeof(struct mpt3sas_facts));
7451 
7452 	ioc->non_operational_loop = 0;
7453 	ioc->ioc_coredump_loop = 0;
7454 	ioc->got_task_abort_from_ioctl = 0;
7455 	return 0;
7456 
7457  out_free_resources:
7458 
7459 	ioc->remove_host = 1;
7460 
7461 	mpt3sas_base_free_resources(ioc);
7462 	_base_release_memory_pools(ioc);
7463 	pci_set_drvdata(ioc->pdev, NULL);
7464 	kfree(ioc->cpu_msix_table);
7465 	if (ioc->is_warpdrive)
7466 		kfree(ioc->reply_post_host_index);
7467 	kfree(ioc->pd_handles);
7468 	kfree(ioc->blocking_handles);
7469 	kfree(ioc->device_remove_in_progress);
7470 	kfree(ioc->pend_os_device_add);
7471 	kfree(ioc->tm_cmds.reply);
7472 	kfree(ioc->transport_cmds.reply);
7473 	kfree(ioc->scsih_cmds.reply);
7474 	kfree(ioc->config_cmds.reply);
7475 	kfree(ioc->base_cmds.reply);
7476 	kfree(ioc->port_enable_cmds.reply);
7477 	kfree(ioc->ctl_cmds.reply);
7478 	kfree(ioc->ctl_cmds.sense);
7479 	kfree(ioc->pfacts);
7480 	ioc->ctl_cmds.reply = NULL;
7481 	ioc->base_cmds.reply = NULL;
7482 	ioc->tm_cmds.reply = NULL;
7483 	ioc->scsih_cmds.reply = NULL;
7484 	ioc->transport_cmds.reply = NULL;
7485 	ioc->config_cmds.reply = NULL;
7486 	ioc->pfacts = NULL;
7487 	return r;
7488 }
7489 
7490 
7491 /**
7492  * mpt3sas_base_detach - remove controller instance
7493  * @ioc: per adapter object
7494  */
7495 void
7496 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7497 {
7498 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7499 
7500 	mpt3sas_base_stop_watchdog(ioc);
7501 	mpt3sas_base_free_resources(ioc);
7502 	_base_release_memory_pools(ioc);
7503 	mpt3sas_free_enclosure_list(ioc);
7504 	pci_set_drvdata(ioc->pdev, NULL);
7505 	kfree(ioc->cpu_msix_table);
7506 	if (ioc->is_warpdrive)
7507 		kfree(ioc->reply_post_host_index);
7508 	kfree(ioc->pd_handles);
7509 	kfree(ioc->blocking_handles);
7510 	kfree(ioc->device_remove_in_progress);
7511 	kfree(ioc->pend_os_device_add);
7512 	kfree(ioc->pfacts);
7513 	kfree(ioc->ctl_cmds.reply);
7514 	kfree(ioc->ctl_cmds.sense);
7515 	kfree(ioc->base_cmds.reply);
7516 	kfree(ioc->port_enable_cmds.reply);
7517 	kfree(ioc->tm_cmds.reply);
7518 	kfree(ioc->transport_cmds.reply);
7519 	kfree(ioc->scsih_cmds.reply);
7520 	kfree(ioc->config_cmds.reply);
7521 }
7522 
7523 /**
7524  * _base_pre_reset_handler - pre reset handler
7525  * @ioc: per adapter object
7526  */
7527 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7528 {
7529 	mpt3sas_scsih_pre_reset_handler(ioc);
7530 	mpt3sas_ctl_pre_reset_handler(ioc);
7531 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7532 }
7533 
7534 /**
7535  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7536  * @ioc: per adapter object
7537  */
7538 static void
7539 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7540 {
7541 	dtmprintk(ioc,
7542 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7543 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7544 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
7545 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7546 		complete(&ioc->transport_cmds.done);
7547 	}
7548 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7549 		ioc->base_cmds.status |= MPT3_CMD_RESET;
7550 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7551 		complete(&ioc->base_cmds.done);
7552 	}
7553 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7554 		ioc->port_enable_failed = 1;
7555 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7556 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7557 		if (ioc->is_driver_loading) {
7558 			ioc->start_scan_failed =
7559 				MPI2_IOCSTATUS_INTERNAL_ERROR;
7560 			ioc->start_scan = 0;
7561 			ioc->port_enable_cmds.status =
7562 				MPT3_CMD_NOT_USED;
7563 		} else {
7564 			complete(&ioc->port_enable_cmds.done);
7565 		}
7566 	}
7567 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7568 		ioc->config_cmds.status |= MPT3_CMD_RESET;
7569 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7570 		ioc->config_cmds.smid = USHRT_MAX;
7571 		complete(&ioc->config_cmds.done);
7572 	}
7573 }
7574 
7575 /**
7576  * _base_clear_outstanding_commands - clear all outstanding commands
7577  * @ioc: per adapter object
7578  */
7579 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7580 {
7581 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7582 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7583 	_base_clear_outstanding_mpt_commands(ioc);
7584 }
7585 
7586 /**
7587  * _base_reset_done_handler - reset done handler
7588  * @ioc: per adapter object
7589  */
7590 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7591 {
7592 	mpt3sas_scsih_reset_done_handler(ioc);
7593 	mpt3sas_ctl_reset_done_handler(ioc);
7594 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7595 }
7596 
7597 /**
7598  * mpt3sas_wait_for_commands_to_complete - reset controller
7599  * @ioc: Pointer to MPT_ADAPTER structure
7600  *
7601  * This function is waiting 10s for all pending commands to complete
7602  * prior to putting controller in reset.
7603  */
7604 void
7605 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7606 {
7607 	u32 ioc_state;
7608 
7609 	ioc->pending_io_count = 0;
7610 
7611 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7612 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7613 		return;
7614 
7615 	/* pending command count */
7616 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
7617 
7618 	if (!ioc->pending_io_count)
7619 		return;
7620 
7621 	/* wait for pending commands to complete */
7622 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7623 }
7624 
7625 /**
7626  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7627  *     attributes during online firmware upgrade and update the corresponding
7628  *     IOC variables accordingly.
7629  *
7630  * @ioc: Pointer to MPT_ADAPTER structure
7631  */
7632 static int
7633 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7634 {
7635 	u16 pd_handles_sz;
7636 	void *pd_handles = NULL, *blocking_handles = NULL;
7637 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7638 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7639 
7640 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7641 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7642 		if (ioc->facts.MaxDevHandle % 8)
7643 			pd_handles_sz++;
7644 
7645 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7646 		    GFP_KERNEL);
7647 		if (!pd_handles) {
7648 			ioc_info(ioc,
7649 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
7650 			    pd_handles_sz);
7651 			return -ENOMEM;
7652 		}
7653 		memset(pd_handles + ioc->pd_handles_sz, 0,
7654 		    (pd_handles_sz - ioc->pd_handles_sz));
7655 		ioc->pd_handles = pd_handles;
7656 
7657 		blocking_handles = krealloc(ioc->blocking_handles,
7658 		    pd_handles_sz, GFP_KERNEL);
7659 		if (!blocking_handles) {
7660 			ioc_info(ioc,
7661 			    "Unable to allocate the memory for "
7662 			    "blocking_handles of sz: %d\n",
7663 			    pd_handles_sz);
7664 			return -ENOMEM;
7665 		}
7666 		memset(blocking_handles + ioc->pd_handles_sz, 0,
7667 		    (pd_handles_sz - ioc->pd_handles_sz));
7668 		ioc->blocking_handles = blocking_handles;
7669 		ioc->pd_handles_sz = pd_handles_sz;
7670 
7671 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
7672 		    pd_handles_sz, GFP_KERNEL);
7673 		if (!pend_os_device_add) {
7674 			ioc_info(ioc,
7675 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7676 			    pd_handles_sz);
7677 			return -ENOMEM;
7678 		}
7679 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7680 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
7681 		ioc->pend_os_device_add = pend_os_device_add;
7682 		ioc->pend_os_device_add_sz = pd_handles_sz;
7683 
7684 		device_remove_in_progress = krealloc(
7685 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7686 		if (!device_remove_in_progress) {
7687 			ioc_info(ioc,
7688 			    "Unable to allocate the memory for "
7689 			    "device_remove_in_progress of sz: %d\n "
7690 			    , pd_handles_sz);
7691 			return -ENOMEM;
7692 		}
7693 		memset(device_remove_in_progress +
7694 		    ioc->device_remove_in_progress_sz, 0,
7695 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
7696 		ioc->device_remove_in_progress = device_remove_in_progress;
7697 		ioc->device_remove_in_progress_sz = pd_handles_sz;
7698 	}
7699 
7700 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7701 	return 0;
7702 }
7703 
7704 /**
7705  * mpt3sas_base_hard_reset_handler - reset controller
7706  * @ioc: Pointer to MPT_ADAPTER structure
7707  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7708  *
7709  * Return: 0 for success, non-zero for failure.
7710  */
7711 int
7712 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7713 	enum reset_type type)
7714 {
7715 	int r;
7716 	unsigned long flags;
7717 	u32 ioc_state;
7718 	u8 is_fault = 0, is_trigger = 0;
7719 
7720 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7721 
7722 	if (ioc->pci_error_recovery) {
7723 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7724 		r = 0;
7725 		goto out_unlocked;
7726 	}
7727 
7728 	if (mpt3sas_fwfault_debug)
7729 		mpt3sas_halt_firmware(ioc);
7730 
7731 	/* wait for an active reset in progress to complete */
7732 	mutex_lock(&ioc->reset_in_progress_mutex);
7733 
7734 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7735 	ioc->shost_recovery = 1;
7736 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7737 
7738 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7739 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7740 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7741 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
7742 		is_trigger = 1;
7743 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7744 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7745 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
7746 		    MPI2_IOC_STATE_COREDUMP)
7747 			is_fault = 1;
7748 	}
7749 	_base_pre_reset_handler(ioc);
7750 	mpt3sas_wait_for_commands_to_complete(ioc);
7751 	mpt3sas_base_mask_interrupts(ioc);
7752 	r = _base_make_ioc_ready(ioc, type);
7753 	if (r)
7754 		goto out;
7755 	_base_clear_outstanding_commands(ioc);
7756 
7757 	/* If this hard reset is called while port enable is active, then
7758 	 * there is no reason to call make_ioc_operational
7759 	 */
7760 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
7761 		ioc->remove_host = 1;
7762 		r = -EFAULT;
7763 		goto out;
7764 	}
7765 	r = _base_get_ioc_facts(ioc);
7766 	if (r)
7767 		goto out;
7768 
7769 	r = _base_check_ioc_facts_changes(ioc);
7770 	if (r) {
7771 		ioc_info(ioc,
7772 		    "Some of the parameters got changed in this new firmware"
7773 		    " image and it requires system reboot\n");
7774 		goto out;
7775 	}
7776 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7777 		panic("%s: Issue occurred with flashing controller firmware."
7778 		      "Please reboot the system and ensure that the correct"
7779 		      " firmware version is running\n", ioc->name);
7780 
7781 	r = _base_make_ioc_operational(ioc);
7782 	if (!r)
7783 		_base_reset_done_handler(ioc);
7784 
7785  out:
7786 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7787 
7788 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7789 	ioc->shost_recovery = 0;
7790 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7791 	ioc->ioc_reset_count++;
7792 	mutex_unlock(&ioc->reset_in_progress_mutex);
7793 
7794  out_unlocked:
7795 	if ((r == 0) && is_trigger) {
7796 		if (is_fault)
7797 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7798 		else
7799 			mpt3sas_trigger_master(ioc,
7800 			    MASTER_TRIGGER_ADAPTER_RESET);
7801 	}
7802 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7803 	return r;
7804 }
7805