xref: /linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 802fee26d8afd073c630a74dbe1a996970f3fd90)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 enum mpt3sas_perf_mode {
120 	MPT_PERF_MODE_DEFAULT	= -1,
121 	MPT_PERF_MODE_BALANCED	= 0,
122 	MPT_PERF_MODE_IOPS	= 1,
123 	MPT_PERF_MODE_LATENCY	= 2,
124 };
125 
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 		u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133 
134 /**
135  * mpt3sas_base_check_cmd_timeout - Function
136  *		to check timeout and command termination due
137  *		to Host reset.
138  *
139  * @ioc:	per adapter object.
140  * @status:	Status of issued command.
141  * @mpi_request:mf request pointer.
142  * @sz:		size of buffer.
143  *
144  * @Returns - 1/0 Reset to be done or Not
145  */
146 u8
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 		u8 status, void *mpi_request, int sz)
149 {
150 	u8 issue_reset = 0;
151 
152 	if (!(status & MPT3_CMD_RESET))
153 		issue_reset = 1;
154 
155 	ioc_err(ioc, "Command %s\n",
156 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 	_debug_dump_mf(mpi_request, sz);
158 
159 	return issue_reset;
160 }
161 
162 /**
163  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164  * @val: ?
165  * @kp: ?
166  *
167  * Return: ?
168  */
169 static int
170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172 	int ret = param_set_int(val, kp);
173 	struct MPT3SAS_ADAPTER *ioc;
174 
175 	if (ret)
176 		return ret;
177 
178 	/* global ioc spinlock to protect controller list on list operations */
179 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 	spin_lock(&gioc_lock);
181 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 	spin_unlock(&gioc_lock);
184 	return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 	param_get_int, &mpt3sas_fwfault_debug, 0644);
188 
189 /**
190  * _base_readl_aero - retry readl for max three times.
191  * @addr: MPT Fusion system interface register address
192  *
193  * Retry the readl() for max three times if it gets zero value
194  * while reading the system interface register.
195  */
196 static inline u32
197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199 	u32 i = 0, ret_val;
200 
201 	do {
202 		ret_val = readl(addr);
203 		i++;
204 	} while (ret_val == 0 && i < 3);
205 
206 	return ret_val;
207 }
208 
209 static inline u32
210 _base_readl(const volatile void __iomem *addr)
211 {
212 	return readl(addr);
213 }
214 
215 /**
216  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217  *				  in BAR0 space.
218  *
219  * @ioc: per adapter object
220  * @reply: reply message frame(lower 32bit addr)
221  * @index: System request message index.
222  */
223 static void
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 		u32 index)
226 {
227 	/*
228 	 * 256 is offset within sys register.
229 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231 	 */
232 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 			MPI_FRAME_START_OFFSET +
235 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236 
237 	writel(reply, reply_free_iomem);
238 }
239 
240 /**
241  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242  *				to system/BAR0 region.
243  *
244  * @dst_iomem: Pointer to the destination location in BAR0 space.
245  * @src: Pointer to the Source data.
246  * @size: Size of data to be copied.
247  */
248 static void
249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251 	int i;
252 	u32 *src_virt_mem = (u32 *)src;
253 
254 	for (i = 0; i < size/4; i++)
255 		writel((u32)src_virt_mem[i],
256 				(void __iomem *)dst_iomem + (i * 4));
257 }
258 
259 /**
260  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261  *
262  * @dst_iomem: Pointer to the destination location in BAR0 space.
263  * @src: Pointer to the Source data.
264  * @size: Size of data to be copied.
265  */
266 static void
267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269 	int i;
270 	u32 *src_virt_mem = (u32 *)(src);
271 
272 	for (i = 0; i < size/4; i++)
273 		writel((u32)src_virt_mem[i],
274 			(void __iomem *)dst_iomem + (i * 4));
275 }
276 
277 /**
278  * _base_get_chain - Calculates and Returns virtual chain address
279  *			 for the provided smid in BAR0 space.
280  *
281  * @ioc: per adapter object
282  * @smid: system request message index
283  * @sge_chain_count: Scatter gather chain count.
284  *
285  * Return: the chain address.
286  */
287 static inline void __iomem*
288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 		u8 sge_chain_count)
290 {
291 	void __iomem *base_chain, *chain_virt;
292 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
293 
294 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 		(cmd_credit * ioc->request_sz) +
296 		REPLY_FREE_POOL_SIZE;
297 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 	return chain_virt;
300 }
301 
302 /**
303  * _base_get_chain_phys - Calculates and Returns physical address
304  *			in BAR0 for scatter gather chains, for
305  *			the provided smid.
306  *
307  * @ioc: per adapter object
308  * @smid: system request message index
309  * @sge_chain_count: Scatter gather chain count.
310  *
311  * Return: Physical chain address.
312  */
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 		u8 sge_chain_count)
316 {
317 	phys_addr_t base_chain_phys, chain_phys;
318 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
319 
320 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 		(cmd_credit * ioc->request_sz) +
322 		REPLY_FREE_POOL_SIZE;
323 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 	return chain_phys;
326 }
327 
328 /**
329  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330  *			buffer address for the provided smid.
331  *			(Each smid can have 64K starts from 17024)
332  *
333  * @ioc: per adapter object
334  * @smid: system request message index
335  *
336  * Return: Pointer to buffer location in BAR0.
337  */
338 
339 static void __iomem *
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 	// Added extra 1 to reach end of chain.
344 	void __iomem *chain_end = _base_get_chain(ioc,
345 			cmd_credit + 1,
346 			ioc->facts.MaxChainDepth);
347 	return chain_end + (smid * 64 * 1024);
348 }
349 
350 /**
351  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352  *		Host buffer Physical address for the provided smid.
353  *		(Each smid can have 64K starts from 17024)
354  *
355  * @ioc: per adapter object
356  * @smid: system request message index
357  *
358  * Return: Pointer to buffer location in BAR0.
359  */
360 static phys_addr_t
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 			cmd_credit + 1,
366 			ioc->facts.MaxChainDepth);
367 	return chain_end_phys + (smid * 64 * 1024);
368 }
369 
370 /**
371  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372  *			lookup list and Provides chain_buffer
373  *			address for the matching dma address.
374  *			(Each smid can have 64K starts from 17024)
375  *
376  * @ioc: per adapter object
377  * @chain_buffer_dma: Chain buffer dma address.
378  *
379  * Return: Pointer to chain buffer. Or Null on Failure.
380  */
381 static void *
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 		dma_addr_t chain_buffer_dma)
384 {
385 	u16 index, j;
386 	struct chain_tracker *ct;
387 
388 	for (index = 0; index < ioc->scsiio_depth; index++) {
389 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 				return ct->chain_buffer;
393 		}
394 	}
395 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 	return NULL;
397 }
398 
399 /**
400  * _clone_sg_entries -	MPI EP's scsiio and config requests
401  *			are handled here. Base function for
402  *			double buffering, before submitting
403  *			the requests.
404  *
405  * @ioc: per adapter object.
406  * @mpi_request: mf request pointer.
407  * @smid: system request message index.
408  */
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 		void *mpi_request, u16 smid)
411 {
412 	Mpi2SGESimple32_t *sgel, *sgel_next;
413 	u32  sgl_flags, sge_chain_count = 0;
414 	bool is_write = false;
415 	u16 i = 0;
416 	void __iomem *buffer_iomem;
417 	phys_addr_t buffer_iomem_phys;
418 	void __iomem *buff_ptr;
419 	phys_addr_t buff_ptr_phys;
420 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 	phys_addr_t dst_addr_phys;
423 	MPI2RequestHeader_t *request_hdr;
424 	struct scsi_cmnd *scmd;
425 	struct scatterlist *sg_scmd = NULL;
426 	int is_scsiio_req = 0;
427 
428 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
429 
430 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 		Mpi25SCSIIORequest_t *scsiio_request =
432 			(Mpi25SCSIIORequest_t *)mpi_request;
433 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 		is_scsiio_req = 1;
435 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 		Mpi2ConfigRequest_t  *config_req =
437 			(Mpi2ConfigRequest_t *)mpi_request;
438 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 	} else
440 		return;
441 
442 	/* From smid we can get scsi_cmd, once we have sg_scmd,
443 	 * we just need to get sg_virt and sg_next to get virual
444 	 * address associated with sgel->Address.
445 	 */
446 
447 	if (is_scsiio_req) {
448 		/* Get scsi_cmd using smid */
449 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 		if (scmd == NULL) {
451 			ioc_err(ioc, "scmd is NULL\n");
452 			return;
453 		}
454 
455 		/* Get sg_scmd from scmd provided */
456 		sg_scmd = scsi_sglist(scmd);
457 	}
458 
459 	/*
460 	 * 0 - 255	System register
461 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
462 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
463 	 *		considering maxCredit 32. Reply need extra
464 	 *		room, for mCPU case kept four times of
465 	 *		maxCredit).
466 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
467 	 *		128 byte size = 12288)
468 	 * 17152 - x	Host buffer mapped with smid.
469 	 *		(Each smid can have 64K Max IO.)
470 	 * BAR0+Last 1K MSIX Addr and Data
471 	 * Total size in use 2113664 bytes of 4MB BAR0
472 	 */
473 
474 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476 
477 	buff_ptr = buffer_iomem;
478 	buff_ptr_phys = buffer_iomem_phys;
479 	WARN_ON(buff_ptr_phys > U32_MAX);
480 
481 	if (le32_to_cpu(sgel->FlagsLength) &
482 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 		is_write = true;
484 
485 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486 
487 		sgl_flags =
488 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489 
490 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492 			/*
493 			 * Helper function which on passing
494 			 * chain_buffer_dma returns chain_buffer. Get
495 			 * the virtual address for sgel->Address
496 			 */
497 			sgel_next =
498 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 						le32_to_cpu(sgel->Address));
500 			if (sgel_next == NULL)
501 				return;
502 			/*
503 			 * This is coping 128 byte chain
504 			 * frame (not a host buffer)
505 			 */
506 			dst_chain_addr[sge_chain_count] =
507 				_base_get_chain(ioc,
508 					smid, sge_chain_count);
509 			src_chain_addr[sge_chain_count] =
510 						(void *) sgel_next;
511 			dst_addr_phys = _base_get_chain_phys(ioc,
512 						smid, sge_chain_count);
513 			WARN_ON(dst_addr_phys > U32_MAX);
514 			sgel->Address =
515 				cpu_to_le32(lower_32_bits(dst_addr_phys));
516 			sgel = sgel_next;
517 			sge_chain_count++;
518 			break;
519 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 			if (is_write) {
521 				if (is_scsiio_req) {
522 					_base_clone_to_sys_mem(buff_ptr,
523 					    sg_virt(sg_scmd),
524 					    (le32_to_cpu(sgel->FlagsLength) &
525 					    0x00ffffff));
526 					/*
527 					 * FIXME: this relies on a a zero
528 					 * PCI mem_offset.
529 					 */
530 					sgel->Address =
531 					    cpu_to_le32((u32)buff_ptr_phys);
532 				} else {
533 					_base_clone_to_sys_mem(buff_ptr,
534 					    ioc->config_vaddr,
535 					    (le32_to_cpu(sgel->FlagsLength) &
536 					    0x00ffffff));
537 					sgel->Address =
538 					    cpu_to_le32((u32)buff_ptr_phys);
539 				}
540 			}
541 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 			    0x00ffffff);
543 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 			    0x00ffffff);
545 			if ((le32_to_cpu(sgel->FlagsLength) &
546 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
547 					<< MPI2_SGE_FLAGS_SHIFT)))
548 				goto eob_clone_chain;
549 			else {
550 				/*
551 				 * Every single element in MPT will have
552 				 * associated sg_next. Better to sanity that
553 				 * sg_next is not NULL, but it will be a bug
554 				 * if it is null.
555 				 */
556 				if (is_scsiio_req) {
557 					sg_scmd = sg_next(sg_scmd);
558 					if (sg_scmd)
559 						sgel++;
560 					else
561 						goto eob_clone_chain;
562 				}
563 			}
564 			break;
565 		}
566 	}
567 
568 eob_clone_chain:
569 	for (i = 0; i < sge_chain_count; i++) {
570 		if (is_scsiio_req)
571 			_base_clone_to_sys_mem(dst_chain_addr[i],
572 				src_chain_addr[i], ioc->request_sz);
573 	}
574 }
575 
576 /**
577  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578  * @arg: input argument, used to derive ioc
579  *
580  * Return:
581  * 0 if controller is removed from pci subsystem.
582  * -1 for other case.
583  */
584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 	struct pci_dev *pdev;
588 
589 	if (!ioc)
590 		return -1;
591 
592 	pdev = ioc->pdev;
593 	if (!pdev)
594 		return -1;
595 	pci_stop_and_remove_bus_device_locked(pdev);
596 	return 0;
597 }
598 
599 /**
600  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
601  * @ioc: Per Adapter Object
602  *
603  * Return nothing.
604  */
605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
606 {
607 	Mpi26IoUnitControlRequest_t *mpi_request;
608 	Mpi26IoUnitControlReply_t *mpi_reply;
609 	u16 smid;
610 	ktime_t current_time;
611 	u64 TimeStamp = 0;
612 	u8 issue_reset = 0;
613 
614 	mutex_lock(&ioc->scsih_cmds.mutex);
615 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
616 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
617 		goto out;
618 	}
619 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
620 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
621 	if (!smid) {
622 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
623 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
624 		goto out;
625 	}
626 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
627 	ioc->scsih_cmds.smid = smid;
628 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
629 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
630 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
631 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
632 	current_time = ktime_get_real();
633 	TimeStamp = ktime_to_ms(current_time);
634 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
635 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
636 	init_completion(&ioc->scsih_cmds.done);
637 	ioc->put_smid_default(ioc, smid);
638 	dinitprintk(ioc, ioc_info(ioc,
639 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
640 	    TimeStamp));
641 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
642 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
643 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
644 		mpt3sas_check_cmd_timeout(ioc,
645 		    ioc->scsih_cmds.status, mpi_request,
646 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
647 		goto issue_host_reset;
648 	}
649 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
650 		mpi_reply = ioc->scsih_cmds.reply;
651 		dinitprintk(ioc, ioc_info(ioc,
652 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
653 		    le16_to_cpu(mpi_reply->IOCStatus),
654 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
655 	}
656 issue_host_reset:
657 	if (issue_reset)
658 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
659 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
660 out:
661 	mutex_unlock(&ioc->scsih_cmds.mutex);
662 }
663 
664 /**
665  * _base_fault_reset_work - workq handling ioc fault conditions
666  * @work: input argument, used to derive ioc
667  *
668  * Context: sleep.
669  */
670 static void
671 _base_fault_reset_work(struct work_struct *work)
672 {
673 	struct MPT3SAS_ADAPTER *ioc =
674 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
675 	unsigned long	 flags;
676 	u32 doorbell;
677 	int rc;
678 	struct task_struct *p;
679 
680 
681 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
682 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
683 			ioc->pci_error_recovery)
684 		goto rearm_timer;
685 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
686 
687 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
688 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
689 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
690 
691 		/* It may be possible that EEH recovery can resolve some of
692 		 * pci bus failure issues rather removing the dead ioc function
693 		 * by considering controller is in a non-operational state. So
694 		 * here priority is given to the EEH recovery. If it doesn't
695 		 * not resolve this issue, mpt3sas driver will consider this
696 		 * controller to non-operational state and remove the dead ioc
697 		 * function.
698 		 */
699 		if (ioc->non_operational_loop++ < 5) {
700 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
701 							 flags);
702 			goto rearm_timer;
703 		}
704 
705 		/*
706 		 * Call _scsih_flush_pending_cmds callback so that we flush all
707 		 * pending commands back to OS. This call is required to aovid
708 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
709 		 * and this call is safe since dead ioc will never return any
710 		 * command back from HW.
711 		 */
712 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
713 		/*
714 		 * Set remove_host flag early since kernel thread will
715 		 * take some time to execute.
716 		 */
717 		ioc->remove_host = 1;
718 		/*Remove the Dead Host */
719 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
720 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
721 		if (IS_ERR(p))
722 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
723 				__func__);
724 		else
725 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
726 				__func__);
727 		return; /* don't rearm timer */
728 	}
729 
730 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
731 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
732 		    ioc->manu_pg11.CoreDumpTOSec :
733 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
734 
735 		timeout /= (FAULT_POLLING_INTERVAL/1000);
736 
737 		if (ioc->ioc_coredump_loop == 0) {
738 			mpt3sas_print_coredump_info(ioc,
739 			    doorbell & MPI2_DOORBELL_DATA_MASK);
740 			/* do not accept any IOs and disable the interrupts */
741 			spin_lock_irqsave(
742 			    &ioc->ioc_reset_in_progress_lock, flags);
743 			ioc->shost_recovery = 1;
744 			spin_unlock_irqrestore(
745 			    &ioc->ioc_reset_in_progress_lock, flags);
746 			mpt3sas_base_mask_interrupts(ioc);
747 			_base_clear_outstanding_commands(ioc);
748 		}
749 
750 		ioc_info(ioc, "%s: CoreDump loop %d.",
751 		    __func__, ioc->ioc_coredump_loop);
752 
753 		/* Wait until CoreDump completes or times out */
754 		if (ioc->ioc_coredump_loop++ < timeout) {
755 			spin_lock_irqsave(
756 			    &ioc->ioc_reset_in_progress_lock, flags);
757 			goto rearm_timer;
758 		}
759 	}
760 
761 	if (ioc->ioc_coredump_loop) {
762 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
763 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
764 			    __func__, ioc->ioc_coredump_loop);
765 		else
766 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
767 			    __func__, ioc->ioc_coredump_loop);
768 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
769 	}
770 	ioc->non_operational_loop = 0;
771 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
772 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
773 		ioc_warn(ioc, "%s: hard reset: %s\n",
774 			 __func__, rc == 0 ? "success" : "failed");
775 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
776 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
777 			mpt3sas_print_fault_code(ioc, doorbell &
778 			    MPI2_DOORBELL_DATA_MASK);
779 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
780 		    MPI2_IOC_STATE_COREDUMP)
781 			mpt3sas_print_coredump_info(ioc, doorbell &
782 			    MPI2_DOORBELL_DATA_MASK);
783 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
784 		    MPI2_IOC_STATE_OPERATIONAL)
785 			return; /* don't rearm timer */
786 	}
787 	ioc->ioc_coredump_loop = 0;
788 	if (ioc->time_sync_interval &&
789 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
790 		ioc->timestamp_update_count = 0;
791 		_base_sync_drv_fw_timestamp(ioc);
792 	}
793 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
794  rearm_timer:
795 	if (ioc->fault_reset_work_q)
796 		queue_delayed_work(ioc->fault_reset_work_q,
797 		    &ioc->fault_reset_work,
798 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
799 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
800 }
801 
802 /**
803  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
804  * @ioc: per adapter object
805  *
806  * Context: sleep.
807  */
808 void
809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
810 {
811 	unsigned long	 flags;
812 
813 	if (ioc->fault_reset_work_q)
814 		return;
815 
816 	ioc->timestamp_update_count = 0;
817 	/* initialize fault polling */
818 
819 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
820 	snprintf(ioc->fault_reset_work_q_name,
821 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
822 	    ioc->driver_name, ioc->id);
823 	ioc->fault_reset_work_q =
824 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
825 	if (!ioc->fault_reset_work_q) {
826 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
827 		return;
828 	}
829 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
830 	if (ioc->fault_reset_work_q)
831 		queue_delayed_work(ioc->fault_reset_work_q,
832 		    &ioc->fault_reset_work,
833 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
834 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
835 }
836 
837 /**
838  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
839  * @ioc: per adapter object
840  *
841  * Context: sleep.
842  */
843 void
844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
845 {
846 	unsigned long flags;
847 	struct workqueue_struct *wq;
848 
849 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
850 	wq = ioc->fault_reset_work_q;
851 	ioc->fault_reset_work_q = NULL;
852 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
853 	if (wq) {
854 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
855 			flush_workqueue(wq);
856 		destroy_workqueue(wq);
857 	}
858 }
859 
860 /**
861  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
862  * @ioc: per adapter object
863  * @fault_code: fault code
864  */
865 void
866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
867 {
868 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
869 }
870 
871 /**
872  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
873  * @ioc: per adapter object
874  * @fault_code: fault code
875  *
876  * Return nothing.
877  */
878 void
879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
880 {
881 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
882 }
883 
884 /**
885  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
886  * completes or times out
887  * @ioc: per adapter object
888  * @caller: caller function name
889  *
890  * Returns 0 for success, non-zero for failure.
891  */
892 int
893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
894 		const char *caller)
895 {
896 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
897 			ioc->manu_pg11.CoreDumpTOSec :
898 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
899 
900 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
901 					timeout);
902 
903 	if (ioc_state)
904 		ioc_err(ioc,
905 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
906 		    caller, ioc_state);
907 	else
908 		ioc_info(ioc,
909 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
910 		    caller, ioc_state);
911 
912 	return ioc_state;
913 }
914 
915 /**
916  * mpt3sas_halt_firmware - halt's mpt controller firmware
917  * @ioc: per adapter object
918  *
919  * For debugging timeout related issues.  Writing 0xCOFFEE00
920  * to the doorbell register will halt controller firmware. With
921  * the purpose to stop both driver and firmware, the enduser can
922  * obtain a ring buffer from controller UART.
923  */
924 void
925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
926 {
927 	u32 doorbell;
928 
929 	if (!ioc->fwfault_debug)
930 		return;
931 
932 	dump_stack();
933 
934 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
935 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
936 		mpt3sas_print_fault_code(ioc, doorbell &
937 		    MPI2_DOORBELL_DATA_MASK);
938 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
939 	    MPI2_IOC_STATE_COREDUMP) {
940 		mpt3sas_print_coredump_info(ioc, doorbell &
941 		    MPI2_DOORBELL_DATA_MASK);
942 	} else {
943 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
944 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
945 	}
946 
947 	if (ioc->fwfault_debug == 2)
948 		for (;;)
949 			;
950 	else
951 		panic("panic in %s\n", __func__);
952 }
953 
954 /**
955  * _base_sas_ioc_info - verbose translation of the ioc status
956  * @ioc: per adapter object
957  * @mpi_reply: reply mf payload returned from firmware
958  * @request_hdr: request mf
959  */
960 static void
961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
962 	MPI2RequestHeader_t *request_hdr)
963 {
964 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
965 	    MPI2_IOCSTATUS_MASK;
966 	char *desc = NULL;
967 	u16 frame_sz;
968 	char *func_str = NULL;
969 
970 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
971 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
972 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
973 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
974 		return;
975 
976 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
977 		return;
978 	/*
979 	 * Older Firmware version doesn't support driver trigger pages.
980 	 * So, skip displaying 'config invalid type' type
981 	 * of error message.
982 	 */
983 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
984 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
985 
986 		if ((rqst->ExtPageType ==
987 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
988 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
989 			return;
990 		}
991 	}
992 
993 	switch (ioc_status) {
994 
995 /****************************************************************************
996 *  Common IOCStatus values for all replies
997 ****************************************************************************/
998 
999 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1000 		desc = "invalid function";
1001 		break;
1002 	case MPI2_IOCSTATUS_BUSY:
1003 		desc = "busy";
1004 		break;
1005 	case MPI2_IOCSTATUS_INVALID_SGL:
1006 		desc = "invalid sgl";
1007 		break;
1008 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1009 		desc = "internal error";
1010 		break;
1011 	case MPI2_IOCSTATUS_INVALID_VPID:
1012 		desc = "invalid vpid";
1013 		break;
1014 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1015 		desc = "insufficient resources";
1016 		break;
1017 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1018 		desc = "insufficient power";
1019 		break;
1020 	case MPI2_IOCSTATUS_INVALID_FIELD:
1021 		desc = "invalid field";
1022 		break;
1023 	case MPI2_IOCSTATUS_INVALID_STATE:
1024 		desc = "invalid state";
1025 		break;
1026 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1027 		desc = "op state not supported";
1028 		break;
1029 
1030 /****************************************************************************
1031 *  Config IOCStatus values
1032 ****************************************************************************/
1033 
1034 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1035 		desc = "config invalid action";
1036 		break;
1037 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1038 		desc = "config invalid type";
1039 		break;
1040 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1041 		desc = "config invalid page";
1042 		break;
1043 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1044 		desc = "config invalid data";
1045 		break;
1046 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1047 		desc = "config no defaults";
1048 		break;
1049 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1050 		desc = "config cant commit";
1051 		break;
1052 
1053 /****************************************************************************
1054 *  SCSI IO Reply
1055 ****************************************************************************/
1056 
1057 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1058 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1059 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1060 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1061 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1062 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1063 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1064 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1065 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1066 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1067 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1068 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1069 		break;
1070 
1071 /****************************************************************************
1072 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1073 ****************************************************************************/
1074 
1075 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1076 		desc = "eedp guard error";
1077 		break;
1078 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1079 		desc = "eedp ref tag error";
1080 		break;
1081 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1082 		desc = "eedp app tag error";
1083 		break;
1084 
1085 /****************************************************************************
1086 *  SCSI Target values
1087 ****************************************************************************/
1088 
1089 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1090 		desc = "target invalid io index";
1091 		break;
1092 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1093 		desc = "target aborted";
1094 		break;
1095 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1096 		desc = "target no conn retryable";
1097 		break;
1098 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1099 		desc = "target no connection";
1100 		break;
1101 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1102 		desc = "target xfer count mismatch";
1103 		break;
1104 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1105 		desc = "target data offset error";
1106 		break;
1107 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1108 		desc = "target too much write data";
1109 		break;
1110 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1111 		desc = "target iu too short";
1112 		break;
1113 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1114 		desc = "target ack nak timeout";
1115 		break;
1116 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1117 		desc = "target nak received";
1118 		break;
1119 
1120 /****************************************************************************
1121 *  Serial Attached SCSI values
1122 ****************************************************************************/
1123 
1124 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1125 		desc = "smp request failed";
1126 		break;
1127 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1128 		desc = "smp data overrun";
1129 		break;
1130 
1131 /****************************************************************************
1132 *  Diagnostic Buffer Post / Diagnostic Release values
1133 ****************************************************************************/
1134 
1135 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1136 		desc = "diagnostic released";
1137 		break;
1138 	default:
1139 		break;
1140 	}
1141 
1142 	if (!desc)
1143 		return;
1144 
1145 	switch (request_hdr->Function) {
1146 	case MPI2_FUNCTION_CONFIG:
1147 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1148 		func_str = "config_page";
1149 		break;
1150 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1151 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1152 		func_str = "task_mgmt";
1153 		break;
1154 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1155 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1156 		func_str = "sas_iounit_ctl";
1157 		break;
1158 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1159 		frame_sz = sizeof(Mpi2SepRequest_t);
1160 		func_str = "enclosure";
1161 		break;
1162 	case MPI2_FUNCTION_IOC_INIT:
1163 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1164 		func_str = "ioc_init";
1165 		break;
1166 	case MPI2_FUNCTION_PORT_ENABLE:
1167 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1168 		func_str = "port_enable";
1169 		break;
1170 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1171 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1172 		func_str = "smp_passthru";
1173 		break;
1174 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1175 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1176 		    ioc->sge_size;
1177 		func_str = "nvme_encapsulated";
1178 		break;
1179 	default:
1180 		frame_sz = 32;
1181 		func_str = "unknown";
1182 		break;
1183 	}
1184 
1185 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1186 		 desc, ioc_status, request_hdr, func_str);
1187 
1188 	_debug_dump_mf(request_hdr, frame_sz/4);
1189 }
1190 
1191 /**
1192  * _base_display_event_data - verbose translation of firmware asyn events
1193  * @ioc: per adapter object
1194  * @mpi_reply: reply mf payload returned from firmware
1195  */
1196 static void
1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1198 	Mpi2EventNotificationReply_t *mpi_reply)
1199 {
1200 	char *desc = NULL;
1201 	u16 event;
1202 
1203 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1204 		return;
1205 
1206 	event = le16_to_cpu(mpi_reply->Event);
1207 
1208 	switch (event) {
1209 	case MPI2_EVENT_LOG_DATA:
1210 		desc = "Log Data";
1211 		break;
1212 	case MPI2_EVENT_STATE_CHANGE:
1213 		desc = "Status Change";
1214 		break;
1215 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1216 		desc = "Hard Reset Received";
1217 		break;
1218 	case MPI2_EVENT_EVENT_CHANGE:
1219 		desc = "Event Change";
1220 		break;
1221 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1222 		desc = "Device Status Change";
1223 		break;
1224 	case MPI2_EVENT_IR_OPERATION_STATUS:
1225 		if (!ioc->hide_ir_msg)
1226 			desc = "IR Operation Status";
1227 		break;
1228 	case MPI2_EVENT_SAS_DISCOVERY:
1229 	{
1230 		Mpi2EventDataSasDiscovery_t *event_data =
1231 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1232 		ioc_info(ioc, "Discovery: (%s)",
1233 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1234 			 "start" : "stop");
1235 		if (event_data->DiscoveryStatus)
1236 			pr_cont(" discovery_status(0x%08x)",
1237 			    le32_to_cpu(event_data->DiscoveryStatus));
1238 		pr_cont("\n");
1239 		return;
1240 	}
1241 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1242 		desc = "SAS Broadcast Primitive";
1243 		break;
1244 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1245 		desc = "SAS Init Device Status Change";
1246 		break;
1247 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1248 		desc = "SAS Init Table Overflow";
1249 		break;
1250 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1251 		desc = "SAS Topology Change List";
1252 		break;
1253 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1254 		desc = "SAS Enclosure Device Status Change";
1255 		break;
1256 	case MPI2_EVENT_IR_VOLUME:
1257 		if (!ioc->hide_ir_msg)
1258 			desc = "IR Volume";
1259 		break;
1260 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1261 		if (!ioc->hide_ir_msg)
1262 			desc = "IR Physical Disk";
1263 		break;
1264 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1265 		if (!ioc->hide_ir_msg)
1266 			desc = "IR Configuration Change List";
1267 		break;
1268 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1269 		if (!ioc->hide_ir_msg)
1270 			desc = "Log Entry Added";
1271 		break;
1272 	case MPI2_EVENT_TEMP_THRESHOLD:
1273 		desc = "Temperature Threshold";
1274 		break;
1275 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1276 		desc = "Cable Event";
1277 		break;
1278 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1279 		desc = "SAS Device Discovery Error";
1280 		break;
1281 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1282 		desc = "PCIE Device Status Change";
1283 		break;
1284 	case MPI2_EVENT_PCIE_ENUMERATION:
1285 	{
1286 		Mpi26EventDataPCIeEnumeration_t *event_data =
1287 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1288 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1289 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1290 			 "start" : "stop");
1291 		if (event_data->EnumerationStatus)
1292 			pr_cont("enumeration_status(0x%08x)",
1293 				le32_to_cpu(event_data->EnumerationStatus));
1294 		pr_cont("\n");
1295 		return;
1296 	}
1297 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1298 		desc = "PCIE Topology Change List";
1299 		break;
1300 	}
1301 
1302 	if (!desc)
1303 		return;
1304 
1305 	ioc_info(ioc, "%s\n", desc);
1306 }
1307 
1308 /**
1309  * _base_sas_log_info - verbose translation of firmware log info
1310  * @ioc: per adapter object
1311  * @log_info: log info
1312  */
1313 static void
1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1315 {
1316 	union loginfo_type {
1317 		u32	loginfo;
1318 		struct {
1319 			u32	subcode:16;
1320 			u32	code:8;
1321 			u32	originator:4;
1322 			u32	bus_type:4;
1323 		} dw;
1324 	};
1325 	union loginfo_type sas_loginfo;
1326 	char *originator_str = NULL;
1327 
1328 	sas_loginfo.loginfo = log_info;
1329 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1330 		return;
1331 
1332 	/* each nexus loss loginfo */
1333 	if (log_info == 0x31170000)
1334 		return;
1335 
1336 	/* eat the loginfos associated with task aborts */
1337 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1338 	    0x31140000 || log_info == 0x31130000))
1339 		return;
1340 
1341 	switch (sas_loginfo.dw.originator) {
1342 	case 0:
1343 		originator_str = "IOP";
1344 		break;
1345 	case 1:
1346 		originator_str = "PL";
1347 		break;
1348 	case 2:
1349 		if (!ioc->hide_ir_msg)
1350 			originator_str = "IR";
1351 		else
1352 			originator_str = "WarpDrive";
1353 		break;
1354 	}
1355 
1356 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1357 		 log_info,
1358 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1359 }
1360 
1361 /**
1362  * _base_display_reply_info -
1363  * @ioc: per adapter object
1364  * @smid: system request message index
1365  * @msix_index: MSIX table index supplied by the OS
1366  * @reply: reply message frame(lower 32bit addr)
1367  */
1368 static void
1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1370 	u32 reply)
1371 {
1372 	MPI2DefaultReply_t *mpi_reply;
1373 	u16 ioc_status;
1374 	u32 loginfo = 0;
1375 
1376 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1377 	if (unlikely(!mpi_reply)) {
1378 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1379 			__FILE__, __LINE__, __func__);
1380 		return;
1381 	}
1382 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1383 
1384 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1385 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1386 		_base_sas_ioc_info(ioc , mpi_reply,
1387 		   mpt3sas_base_get_msg_frame(ioc, smid));
1388 	}
1389 
1390 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1391 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1392 		_base_sas_log_info(ioc, loginfo);
1393 	}
1394 
1395 	if (ioc_status || loginfo) {
1396 		ioc_status &= MPI2_IOCSTATUS_MASK;
1397 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1398 	}
1399 }
1400 
1401 /**
1402  * mpt3sas_base_done - base internal command completion routine
1403  * @ioc: per adapter object
1404  * @smid: system request message index
1405  * @msix_index: MSIX table index supplied by the OS
1406  * @reply: reply message frame(lower 32bit addr)
1407  *
1408  * Return:
1409  * 1 meaning mf should be freed from _base_interrupt
1410  * 0 means the mf is freed from this function.
1411  */
1412 u8
1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1414 	u32 reply)
1415 {
1416 	MPI2DefaultReply_t *mpi_reply;
1417 
1418 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1419 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1420 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1421 
1422 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1423 		return 1;
1424 
1425 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1426 	if (mpi_reply) {
1427 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1428 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1429 	}
1430 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1431 
1432 	complete(&ioc->base_cmds.done);
1433 	return 1;
1434 }
1435 
1436 /**
1437  * _base_async_event - main callback handler for firmware asyn events
1438  * @ioc: per adapter object
1439  * @msix_index: MSIX table index supplied by the OS
1440  * @reply: reply message frame(lower 32bit addr)
1441  *
1442  * Return:
1443  * 1 meaning mf should be freed from _base_interrupt
1444  * 0 means the mf is freed from this function.
1445  */
1446 static u8
1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1448 {
1449 	Mpi2EventNotificationReply_t *mpi_reply;
1450 	Mpi2EventAckRequest_t *ack_request;
1451 	u16 smid;
1452 	struct _event_ack_list *delayed_event_ack;
1453 
1454 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1455 	if (!mpi_reply)
1456 		return 1;
1457 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1458 		return 1;
1459 
1460 	_base_display_event_data(ioc, mpi_reply);
1461 
1462 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1463 		goto out;
1464 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1465 	if (!smid) {
1466 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1467 					GFP_ATOMIC);
1468 		if (!delayed_event_ack)
1469 			goto out;
1470 		INIT_LIST_HEAD(&delayed_event_ack->list);
1471 		delayed_event_ack->Event = mpi_reply->Event;
1472 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1473 		list_add_tail(&delayed_event_ack->list,
1474 				&ioc->delayed_event_ack_list);
1475 		dewtprintk(ioc,
1476 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1477 				    le16_to_cpu(mpi_reply->Event)));
1478 		goto out;
1479 	}
1480 
1481 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1482 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1483 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1484 	ack_request->Event = mpi_reply->Event;
1485 	ack_request->EventContext = mpi_reply->EventContext;
1486 	ack_request->VF_ID = 0;  /* TODO */
1487 	ack_request->VP_ID = 0;
1488 	ioc->put_smid_default(ioc, smid);
1489 
1490  out:
1491 
1492 	/* scsih callback handler */
1493 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1494 
1495 	/* ctl callback handler */
1496 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1497 
1498 	return 1;
1499 }
1500 
1501 static struct scsiio_tracker *
1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1503 {
1504 	struct scsi_cmnd *cmd;
1505 
1506 	if (WARN_ON(!smid) ||
1507 	    WARN_ON(smid >= ioc->hi_priority_smid))
1508 		return NULL;
1509 
1510 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1511 	if (cmd)
1512 		return scsi_cmd_priv(cmd);
1513 
1514 	return NULL;
1515 }
1516 
1517 /**
1518  * _base_get_cb_idx - obtain the callback index
1519  * @ioc: per adapter object
1520  * @smid: system request message index
1521  *
1522  * Return: callback index.
1523  */
1524 static u8
1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1526 {
1527 	int i;
1528 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1529 	u8 cb_idx = 0xFF;
1530 
1531 	if (smid < ioc->hi_priority_smid) {
1532 		struct scsiio_tracker *st;
1533 
1534 		if (smid < ctl_smid) {
1535 			st = _get_st_from_smid(ioc, smid);
1536 			if (st)
1537 				cb_idx = st->cb_idx;
1538 		} else if (smid == ctl_smid)
1539 			cb_idx = ioc->ctl_cb_idx;
1540 	} else if (smid < ioc->internal_smid) {
1541 		i = smid - ioc->hi_priority_smid;
1542 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1543 	} else if (smid <= ioc->hba_queue_depth) {
1544 		i = smid - ioc->internal_smid;
1545 		cb_idx = ioc->internal_lookup[i].cb_idx;
1546 	}
1547 	return cb_idx;
1548 }
1549 
1550 /**
1551  * mpt3sas_base_mask_interrupts - disable interrupts
1552  * @ioc: per adapter object
1553  *
1554  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1555  */
1556 void
1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1558 {
1559 	u32 him_register;
1560 
1561 	ioc->mask_interrupts = 1;
1562 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1563 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1564 	writel(him_register, &ioc->chip->HostInterruptMask);
1565 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1566 }
1567 
1568 /**
1569  * mpt3sas_base_unmask_interrupts - enable interrupts
1570  * @ioc: per adapter object
1571  *
1572  * Enabling only Reply Interrupts
1573  */
1574 void
1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1576 {
1577 	u32 him_register;
1578 
1579 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1580 	him_register &= ~MPI2_HIM_RIM;
1581 	writel(him_register, &ioc->chip->HostInterruptMask);
1582 	ioc->mask_interrupts = 0;
1583 }
1584 
1585 union reply_descriptor {
1586 	u64 word;
1587 	struct {
1588 		u32 low;
1589 		u32 high;
1590 	} u;
1591 };
1592 
1593 static u32 base_mod64(u64 dividend, u32 divisor)
1594 {
1595 	u32 remainder;
1596 
1597 	if (!divisor)
1598 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1599 	remainder = do_div(dividend, divisor);
1600 	return remainder;
1601 }
1602 
1603 /**
1604  * _base_process_reply_queue - Process reply descriptors from reply
1605  *		descriptor post queue.
1606  * @reply_q: per IRQ's reply queue object.
1607  *
1608  * Return: number of reply descriptors processed from reply
1609  *		descriptor queue.
1610  */
1611 static int
1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1613 {
1614 	union reply_descriptor rd;
1615 	u64 completed_cmds;
1616 	u8 request_descript_type;
1617 	u16 smid;
1618 	u8 cb_idx;
1619 	u32 reply;
1620 	u8 msix_index = reply_q->msix_index;
1621 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1622 	Mpi2ReplyDescriptorsUnion_t *rpf;
1623 	u8 rc;
1624 
1625 	completed_cmds = 0;
1626 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1627 		return completed_cmds;
1628 
1629 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1630 	request_descript_type = rpf->Default.ReplyFlags
1631 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1632 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1633 		atomic_dec(&reply_q->busy);
1634 		return completed_cmds;
1635 	}
1636 
1637 	cb_idx = 0xFF;
1638 	do {
1639 		rd.word = le64_to_cpu(rpf->Words);
1640 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1641 			goto out;
1642 		reply = 0;
1643 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1644 		if (request_descript_type ==
1645 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1646 		    request_descript_type ==
1647 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1648 		    request_descript_type ==
1649 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1650 			cb_idx = _base_get_cb_idx(ioc, smid);
1651 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1652 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1653 				rc = mpt_callbacks[cb_idx](ioc, smid,
1654 				    msix_index, 0);
1655 				if (rc)
1656 					mpt3sas_base_free_smid(ioc, smid);
1657 			}
1658 		} else if (request_descript_type ==
1659 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1660 			reply = le32_to_cpu(
1661 			    rpf->AddressReply.ReplyFrameAddress);
1662 			if (reply > ioc->reply_dma_max_address ||
1663 			    reply < ioc->reply_dma_min_address)
1664 				reply = 0;
1665 			if (smid) {
1666 				cb_idx = _base_get_cb_idx(ioc, smid);
1667 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1668 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1669 					rc = mpt_callbacks[cb_idx](ioc, smid,
1670 					    msix_index, reply);
1671 					if (reply)
1672 						_base_display_reply_info(ioc,
1673 						    smid, msix_index, reply);
1674 					if (rc)
1675 						mpt3sas_base_free_smid(ioc,
1676 						    smid);
1677 				}
1678 			} else {
1679 				_base_async_event(ioc, msix_index, reply);
1680 			}
1681 
1682 			/* reply free queue handling */
1683 			if (reply) {
1684 				ioc->reply_free_host_index =
1685 				    (ioc->reply_free_host_index ==
1686 				    (ioc->reply_free_queue_depth - 1)) ?
1687 				    0 : ioc->reply_free_host_index + 1;
1688 				ioc->reply_free[ioc->reply_free_host_index] =
1689 				    cpu_to_le32(reply);
1690 				if (ioc->is_mcpu_endpoint)
1691 					_base_clone_reply_to_sys_mem(ioc,
1692 						reply,
1693 						ioc->reply_free_host_index);
1694 				writel(ioc->reply_free_host_index,
1695 				    &ioc->chip->ReplyFreeHostIndex);
1696 			}
1697 		}
1698 
1699 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1700 		reply_q->reply_post_host_index =
1701 		    (reply_q->reply_post_host_index ==
1702 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1703 		    reply_q->reply_post_host_index + 1;
1704 		request_descript_type =
1705 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1706 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 		completed_cmds++;
1708 		/* Update the reply post host index after continuously
1709 		 * processing the threshold number of Reply Descriptors.
1710 		 * So that FW can find enough entries to post the Reply
1711 		 * Descriptors in the reply descriptor post queue.
1712 		 */
1713 		if (completed_cmds >= ioc->thresh_hold) {
1714 			if (ioc->combined_reply_queue) {
1715 				writel(reply_q->reply_post_host_index |
1716 						((msix_index  & 7) <<
1717 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1718 				    ioc->replyPostRegisterIndex[msix_index/8]);
1719 			} else {
1720 				writel(reply_q->reply_post_host_index |
1721 						(msix_index <<
1722 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1723 						&ioc->chip->ReplyPostHostIndex);
1724 			}
1725 			if (!reply_q->irq_poll_scheduled) {
1726 				reply_q->irq_poll_scheduled = true;
1727 				irq_poll_sched(&reply_q->irqpoll);
1728 			}
1729 			atomic_dec(&reply_q->busy);
1730 			return completed_cmds;
1731 		}
1732 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1733 			goto out;
1734 		if (!reply_q->reply_post_host_index)
1735 			rpf = reply_q->reply_post_free;
1736 		else
1737 			rpf++;
1738 	} while (1);
1739 
1740  out:
1741 
1742 	if (!completed_cmds) {
1743 		atomic_dec(&reply_q->busy);
1744 		return completed_cmds;
1745 	}
1746 
1747 	if (ioc->is_warpdrive) {
1748 		writel(reply_q->reply_post_host_index,
1749 		ioc->reply_post_host_index[msix_index]);
1750 		atomic_dec(&reply_q->busy);
1751 		return completed_cmds;
1752 	}
1753 
1754 	/* Update Reply Post Host Index.
1755 	 * For those HBA's which support combined reply queue feature
1756 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1757 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1758 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1759 	 * 2. Then update this register with new reply host index value
1760 	 *    in ReplyPostIndex field and the MSIxIndex field with
1761 	 *    msix_index value reduced to a value between 0 and 7,
1762 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1763 	 *    Host Index Register supports 8 MSI-X vectors.
1764 	 *
1765 	 * For other HBA's just update the Reply Post Host Index register with
1766 	 * new reply host index value in ReplyPostIndex Field and msix_index
1767 	 * value in MSIxIndex field.
1768 	 */
1769 	if (ioc->combined_reply_queue)
1770 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1771 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1772 			ioc->replyPostRegisterIndex[msix_index/8]);
1773 	else
1774 		writel(reply_q->reply_post_host_index | (msix_index <<
1775 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1776 			&ioc->chip->ReplyPostHostIndex);
1777 	atomic_dec(&reply_q->busy);
1778 	return completed_cmds;
1779 }
1780 
1781 /**
1782  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1783  * @irq: irq number (not used)
1784  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1785  *
1786  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1787  */
1788 static irqreturn_t
1789 _base_interrupt(int irq, void *bus_id)
1790 {
1791 	struct adapter_reply_queue *reply_q = bus_id;
1792 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1793 
1794 	if (ioc->mask_interrupts)
1795 		return IRQ_NONE;
1796 	if (reply_q->irq_poll_scheduled)
1797 		return IRQ_HANDLED;
1798 	return ((_base_process_reply_queue(reply_q) > 0) ?
1799 			IRQ_HANDLED : IRQ_NONE);
1800 }
1801 
1802 /**
1803  * _base_irqpoll - IRQ poll callback handler
1804  * @irqpoll: irq_poll object
1805  * @budget: irq poll weight
1806  *
1807  * returns number of reply descriptors processed
1808  */
1809 static int
1810 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1811 {
1812 	struct adapter_reply_queue *reply_q;
1813 	int num_entries = 0;
1814 
1815 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1816 			irqpoll);
1817 	if (reply_q->irq_line_enable) {
1818 		disable_irq_nosync(reply_q->os_irq);
1819 		reply_q->irq_line_enable = false;
1820 	}
1821 	num_entries = _base_process_reply_queue(reply_q);
1822 	if (num_entries < budget) {
1823 		irq_poll_complete(irqpoll);
1824 		reply_q->irq_poll_scheduled = false;
1825 		reply_q->irq_line_enable = true;
1826 		enable_irq(reply_q->os_irq);
1827 		/*
1828 		 * Go for one more round of processing the
1829 		 * reply descriptor post queue incase if HBA
1830 		 * Firmware has posted some reply descriptors
1831 		 * while reenabling the IRQ.
1832 		 */
1833 		_base_process_reply_queue(reply_q);
1834 	}
1835 
1836 	return num_entries;
1837 }
1838 
1839 /**
1840  * _base_init_irqpolls - initliaze IRQ polls
1841  * @ioc: per adapter object
1842  *
1843  * returns nothing
1844  */
1845 static void
1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1847 {
1848 	struct adapter_reply_queue *reply_q, *next;
1849 
1850 	if (list_empty(&ioc->reply_queue_list))
1851 		return;
1852 
1853 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1854 		irq_poll_init(&reply_q->irqpoll,
1855 			ioc->hba_queue_depth/4, _base_irqpoll);
1856 		reply_q->irq_poll_scheduled = false;
1857 		reply_q->irq_line_enable = true;
1858 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1859 		    reply_q->msix_index);
1860 	}
1861 }
1862 
1863 /**
1864  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1865  * @ioc: per adapter object
1866  *
1867  * Return: Whether or not MSI/X is enabled.
1868  */
1869 static inline int
1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1871 {
1872 	return (ioc->facts.IOCCapabilities &
1873 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1874 }
1875 
1876 /**
1877  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1878  * @ioc: per adapter object
1879  * @poll: poll over reply descriptor pools incase interrupt for
1880  *		timed-out SCSI command got delayed
1881  * Context: non ISR conext
1882  *
1883  * Called when a Task Management request has completed.
1884  */
1885 void
1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1887 {
1888 	struct adapter_reply_queue *reply_q;
1889 
1890 	/* If MSIX capability is turned off
1891 	 * then multi-queues are not enabled
1892 	 */
1893 	if (!_base_is_controller_msix_enabled(ioc))
1894 		return;
1895 
1896 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1897 		if (ioc->shost_recovery || ioc->remove_host ||
1898 				ioc->pci_error_recovery)
1899 			return;
1900 		/* TMs are on msix_index == 0 */
1901 		if (reply_q->msix_index == 0)
1902 			continue;
1903 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1904 		if (reply_q->irq_poll_scheduled) {
1905 			/* Calling irq_poll_disable will wait for any pending
1906 			 * callbacks to have completed.
1907 			 */
1908 			irq_poll_disable(&reply_q->irqpoll);
1909 			irq_poll_enable(&reply_q->irqpoll);
1910 			/* check how the scheduled poll has ended,
1911 			 * clean up only if necessary
1912 			 */
1913 			if (reply_q->irq_poll_scheduled) {
1914 				reply_q->irq_poll_scheduled = false;
1915 				reply_q->irq_line_enable = true;
1916 				enable_irq(reply_q->os_irq);
1917 			}
1918 		}
1919 	}
1920 	if (poll)
1921 		_base_process_reply_queue(reply_q);
1922 }
1923 
1924 /**
1925  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1926  * @cb_idx: callback index
1927  */
1928 void
1929 mpt3sas_base_release_callback_handler(u8 cb_idx)
1930 {
1931 	mpt_callbacks[cb_idx] = NULL;
1932 }
1933 
1934 /**
1935  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1936  * @cb_func: callback function
1937  *
1938  * Return: Index of @cb_func.
1939  */
1940 u8
1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1942 {
1943 	u8 cb_idx;
1944 
1945 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1946 		if (mpt_callbacks[cb_idx] == NULL)
1947 			break;
1948 
1949 	mpt_callbacks[cb_idx] = cb_func;
1950 	return cb_idx;
1951 }
1952 
1953 /**
1954  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1955  */
1956 void
1957 mpt3sas_base_initialize_callback_handler(void)
1958 {
1959 	u8 cb_idx;
1960 
1961 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1962 		mpt3sas_base_release_callback_handler(cb_idx);
1963 }
1964 
1965 
1966 /**
1967  * _base_build_zero_len_sge - build zero length sg entry
1968  * @ioc: per adapter object
1969  * @paddr: virtual address for SGE
1970  *
1971  * Create a zero length scatter gather entry to insure the IOCs hardware has
1972  * something to use if the target device goes brain dead and tries
1973  * to send data even when none is asked for.
1974  */
1975 static void
1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1977 {
1978 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1979 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1980 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1981 	    MPI2_SGE_FLAGS_SHIFT);
1982 	ioc->base_add_sg_single(paddr, flags_length, -1);
1983 }
1984 
1985 /**
1986  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1987  * @paddr: virtual address for SGE
1988  * @flags_length: SGE flags and data transfer length
1989  * @dma_addr: Physical address
1990  */
1991 static void
1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1993 {
1994 	Mpi2SGESimple32_t *sgel = paddr;
1995 
1996 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1997 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1998 	sgel->FlagsLength = cpu_to_le32(flags_length);
1999 	sgel->Address = cpu_to_le32(dma_addr);
2000 }
2001 
2002 
2003 /**
2004  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2005  * @paddr: virtual address for SGE
2006  * @flags_length: SGE flags and data transfer length
2007  * @dma_addr: Physical address
2008  */
2009 static void
2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2011 {
2012 	Mpi2SGESimple64_t *sgel = paddr;
2013 
2014 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2015 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2016 	sgel->FlagsLength = cpu_to_le32(flags_length);
2017 	sgel->Address = cpu_to_le64(dma_addr);
2018 }
2019 
2020 /**
2021  * _base_get_chain_buffer_tracker - obtain chain tracker
2022  * @ioc: per adapter object
2023  * @scmd: SCSI commands of the IO request
2024  *
2025  * Return: chain tracker from chain_lookup table using key as
2026  * smid and smid's chain_offset.
2027  */
2028 static struct chain_tracker *
2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2030 			       struct scsi_cmnd *scmd)
2031 {
2032 	struct chain_tracker *chain_req;
2033 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2034 	u16 smid = st->smid;
2035 	u8 chain_offset =
2036 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2037 
2038 	if (chain_offset == ioc->chains_needed_per_io)
2039 		return NULL;
2040 
2041 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2042 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2043 	return chain_req;
2044 }
2045 
2046 
2047 /**
2048  * _base_build_sg - build generic sg
2049  * @ioc: per adapter object
2050  * @psge: virtual address for SGE
2051  * @data_out_dma: physical address for WRITES
2052  * @data_out_sz: data xfer size for WRITES
2053  * @data_in_dma: physical address for READS
2054  * @data_in_sz: data xfer size for READS
2055  */
2056 static void
2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2058 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2059 	size_t data_in_sz)
2060 {
2061 	u32 sgl_flags;
2062 
2063 	if (!data_out_sz && !data_in_sz) {
2064 		_base_build_zero_len_sge(ioc, psge);
2065 		return;
2066 	}
2067 
2068 	if (data_out_sz && data_in_sz) {
2069 		/* WRITE sgel first */
2070 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2071 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2072 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2073 		ioc->base_add_sg_single(psge, sgl_flags |
2074 		    data_out_sz, data_out_dma);
2075 
2076 		/* incr sgel */
2077 		psge += ioc->sge_size;
2078 
2079 		/* READ sgel last */
2080 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2081 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2082 		    MPI2_SGE_FLAGS_END_OF_LIST);
2083 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2084 		ioc->base_add_sg_single(psge, sgl_flags |
2085 		    data_in_sz, data_in_dma);
2086 	} else if (data_out_sz) /* WRITE */ {
2087 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2088 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2089 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2090 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2091 		ioc->base_add_sg_single(psge, sgl_flags |
2092 		    data_out_sz, data_out_dma);
2093 	} else if (data_in_sz) /* READ */ {
2094 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2095 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2096 		    MPI2_SGE_FLAGS_END_OF_LIST);
2097 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2098 		ioc->base_add_sg_single(psge, sgl_flags |
2099 		    data_in_sz, data_in_dma);
2100 	}
2101 }
2102 
2103 /* IEEE format sgls */
2104 
2105 /**
2106  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2107  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2108  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2109  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2110  * used to describe a larger data buffer.  If the data buffer is too large to
2111  * describe using the two PRP entriess inside the NVMe message, then PRP1
2112  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2113  * list located elsewhere in memory to describe the remaining data memory
2114  * segments.  The PRP list will be contiguous.
2115  *
2116  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2117  * consists of a list of PRP entries to describe a number of noncontigous
2118  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2119  * however, that this function is only used by the IOCTL call, so the memory
2120  * given will be guaranteed to be contiguous.  There is no need to translate
2121  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2122  * contiguous space that is one page size each.
2123  *
2124  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2125  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2126  * contains the second PRP element if the memory being described fits within 2
2127  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2128  *
2129  * A PRP list pointer contains the address of a PRP list, structured as a linear
2130  * array of PRP entries.  Each PRP entry in this list describes a segment of
2131  * physical memory.
2132  *
2133  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2134  * always points at the beginning of a 4KB physical memory page, and the offset
2135  * describes where within that 4KB page the memory segment begins.  Only the
2136  * first element in a PRP list may contain a non-zero offest, implying that all
2137  * memory segments following the first begin at the start of a 4KB page.
2138  *
2139  * Each PRP element normally describes 4KB of physical memory, with exceptions
2140  * for the first and last elements in the list.  If the memory being described
2141  * by the list begins at a non-zero offset within the first 4KB page, then the
2142  * first PRP element will contain a non-zero offset indicating where the region
2143  * begins within the 4KB page.  The last memory segment may end before the end
2144  * of the 4KB segment, depending upon the overall size of the memory being
2145  * described by the PRP list.
2146  *
2147  * Since PRP entries lack any indication of size, the overall data buffer length
2148  * is used to determine where the end of the data memory buffer is located, and
2149  * how many PRP entries are required to describe it.
2150  *
2151  * @ioc: per adapter object
2152  * @smid: system request message index for getting asscociated SGL
2153  * @nvme_encap_request: the NVMe request msg frame pointer
2154  * @data_out_dma: physical address for WRITES
2155  * @data_out_sz: data xfer size for WRITES
2156  * @data_in_dma: physical address for READS
2157  * @data_in_sz: data xfer size for READS
2158  */
2159 static void
2160 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2161 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2162 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2163 	size_t data_in_sz)
2164 {
2165 	int		prp_size = NVME_PRP_SIZE;
2166 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2167 	__le64		*prp_page;
2168 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2169 	u32		offset, entry_len;
2170 	u32		page_mask_result, page_mask;
2171 	size_t		length;
2172 	struct mpt3sas_nvme_cmd *nvme_cmd =
2173 		(void *)nvme_encap_request->NVMe_Command;
2174 
2175 	/*
2176 	 * Not all commands require a data transfer. If no data, just return
2177 	 * without constructing any PRP.
2178 	 */
2179 	if (!data_in_sz && !data_out_sz)
2180 		return;
2181 	prp1_entry = &nvme_cmd->prp1;
2182 	prp2_entry = &nvme_cmd->prp2;
2183 	prp_entry = prp1_entry;
2184 	/*
2185 	 * For the PRP entries, use the specially allocated buffer of
2186 	 * contiguous memory.
2187 	 */
2188 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2189 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2190 
2191 	/*
2192 	 * Check if we are within 1 entry of a page boundary we don't
2193 	 * want our first entry to be a PRP List entry.
2194 	 */
2195 	page_mask = ioc->page_size - 1;
2196 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2197 	if (!page_mask_result) {
2198 		/* Bump up to next page boundary. */
2199 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2200 		prp_page_dma = prp_page_dma + prp_size;
2201 	}
2202 
2203 	/*
2204 	 * Set PRP physical pointer, which initially points to the current PRP
2205 	 * DMA memory page.
2206 	 */
2207 	prp_entry_dma = prp_page_dma;
2208 
2209 	/* Get physical address and length of the data buffer. */
2210 	if (data_in_sz) {
2211 		dma_addr = data_in_dma;
2212 		length = data_in_sz;
2213 	} else {
2214 		dma_addr = data_out_dma;
2215 		length = data_out_sz;
2216 	}
2217 
2218 	/* Loop while the length is not zero. */
2219 	while (length) {
2220 		/*
2221 		 * Check if we need to put a list pointer here if we are at
2222 		 * page boundary - prp_size (8 bytes).
2223 		 */
2224 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2225 		if (!page_mask_result) {
2226 			/*
2227 			 * This is the last entry in a PRP List, so we need to
2228 			 * put a PRP list pointer here.  What this does is:
2229 			 *   - bump the current memory pointer to the next
2230 			 *     address, which will be the next full page.
2231 			 *   - set the PRP Entry to point to that page.  This
2232 			 *     is now the PRP List pointer.
2233 			 *   - bump the PRP Entry pointer the start of the
2234 			 *     next page.  Since all of this PRP memory is
2235 			 *     contiguous, no need to get a new page - it's
2236 			 *     just the next address.
2237 			 */
2238 			prp_entry_dma++;
2239 			*prp_entry = cpu_to_le64(prp_entry_dma);
2240 			prp_entry++;
2241 		}
2242 
2243 		/* Need to handle if entry will be part of a page. */
2244 		offset = dma_addr & page_mask;
2245 		entry_len = ioc->page_size - offset;
2246 
2247 		if (prp_entry == prp1_entry) {
2248 			/*
2249 			 * Must fill in the first PRP pointer (PRP1) before
2250 			 * moving on.
2251 			 */
2252 			*prp1_entry = cpu_to_le64(dma_addr);
2253 
2254 			/*
2255 			 * Now point to the second PRP entry within the
2256 			 * command (PRP2).
2257 			 */
2258 			prp_entry = prp2_entry;
2259 		} else if (prp_entry == prp2_entry) {
2260 			/*
2261 			 * Should the PRP2 entry be a PRP List pointer or just
2262 			 * a regular PRP pointer?  If there is more than one
2263 			 * more page of data, must use a PRP List pointer.
2264 			 */
2265 			if (length > ioc->page_size) {
2266 				/*
2267 				 * PRP2 will contain a PRP List pointer because
2268 				 * more PRP's are needed with this command. The
2269 				 * list will start at the beginning of the
2270 				 * contiguous buffer.
2271 				 */
2272 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2273 
2274 				/*
2275 				 * The next PRP Entry will be the start of the
2276 				 * first PRP List.
2277 				 */
2278 				prp_entry = prp_page;
2279 			} else {
2280 				/*
2281 				 * After this, the PRP Entries are complete.
2282 				 * This command uses 2 PRP's and no PRP list.
2283 				 */
2284 				*prp2_entry = cpu_to_le64(dma_addr);
2285 			}
2286 		} else {
2287 			/*
2288 			 * Put entry in list and bump the addresses.
2289 			 *
2290 			 * After PRP1 and PRP2 are filled in, this will fill in
2291 			 * all remaining PRP entries in a PRP List, one per
2292 			 * each time through the loop.
2293 			 */
2294 			*prp_entry = cpu_to_le64(dma_addr);
2295 			prp_entry++;
2296 			prp_entry_dma++;
2297 		}
2298 
2299 		/*
2300 		 * Bump the phys address of the command's data buffer by the
2301 		 * entry_len.
2302 		 */
2303 		dma_addr += entry_len;
2304 
2305 		/* Decrement length accounting for last partial page. */
2306 		if (entry_len > length)
2307 			length = 0;
2308 		else
2309 			length -= entry_len;
2310 	}
2311 }
2312 
2313 /**
2314  * base_make_prp_nvme -
2315  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2316  *
2317  * @ioc:		per adapter object
2318  * @scmd:		SCSI command from the mid-layer
2319  * @mpi_request:	mpi request
2320  * @smid:		msg Index
2321  * @sge_count:		scatter gather element count.
2322  *
2323  * Return:		true: PRPs are built
2324  *			false: IEEE SGLs needs to be built
2325  */
2326 static void
2327 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2328 		struct scsi_cmnd *scmd,
2329 		Mpi25SCSIIORequest_t *mpi_request,
2330 		u16 smid, int sge_count)
2331 {
2332 	int sge_len, num_prp_in_chain = 0;
2333 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2334 	__le64 *curr_buff;
2335 	dma_addr_t msg_dma, sge_addr, offset;
2336 	u32 page_mask, page_mask_result;
2337 	struct scatterlist *sg_scmd;
2338 	u32 first_prp_len;
2339 	int data_len = scsi_bufflen(scmd);
2340 	u32 nvme_pg_size;
2341 
2342 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2343 	/*
2344 	 * Nvme has a very convoluted prp format.  One prp is required
2345 	 * for each page or partial page. Driver need to split up OS sg_list
2346 	 * entries if it is longer than one page or cross a page
2347 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2348 	 * the last entry in each physical page of the PRP list.
2349 	 *
2350 	 * NOTE: The first PRP "entry" is actually placed in the first
2351 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2352 	 * entry in the main message is the chain element, and the rest
2353 	 * of the PRP entries are built in the contiguous pcie buffer.
2354 	 */
2355 	page_mask = nvme_pg_size - 1;
2356 
2357 	/*
2358 	 * Native SGL is needed.
2359 	 * Put a chain element in main message frame that points to the first
2360 	 * chain buffer.
2361 	 *
2362 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2363 	 *        a native SGL.
2364 	 */
2365 
2366 	/* Set main message chain element pointer */
2367 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2368 	/*
2369 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2370 	 * message.
2371 	 */
2372 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2373 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2374 
2375 	/*
2376 	 * For the PRP entries, use the specially allocated buffer of
2377 	 * contiguous memory.  Normal chain buffers can't be used
2378 	 * because each chain buffer would need to be the size of an OS
2379 	 * page (4k).
2380 	 */
2381 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2382 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2383 
2384 	main_chain_element->Address = cpu_to_le64(msg_dma);
2385 	main_chain_element->NextChainOffset = 0;
2386 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2387 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2388 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2389 
2390 	/* Build first prp, sge need not to be page aligned*/
2391 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2392 	sg_scmd = scsi_sglist(scmd);
2393 	sge_addr = sg_dma_address(sg_scmd);
2394 	sge_len = sg_dma_len(sg_scmd);
2395 
2396 	offset = sge_addr & page_mask;
2397 	first_prp_len = nvme_pg_size - offset;
2398 
2399 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2400 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2401 
2402 	data_len -= first_prp_len;
2403 
2404 	if (sge_len > first_prp_len) {
2405 		sge_addr += first_prp_len;
2406 		sge_len -= first_prp_len;
2407 	} else if (data_len && (sge_len == first_prp_len)) {
2408 		sg_scmd = sg_next(sg_scmd);
2409 		sge_addr = sg_dma_address(sg_scmd);
2410 		sge_len = sg_dma_len(sg_scmd);
2411 	}
2412 
2413 	for (;;) {
2414 		offset = sge_addr & page_mask;
2415 
2416 		/* Put PRP pointer due to page boundary*/
2417 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2418 		if (unlikely(!page_mask_result)) {
2419 			scmd_printk(KERN_NOTICE,
2420 				scmd, "page boundary curr_buff: 0x%p\n",
2421 				curr_buff);
2422 			msg_dma += 8;
2423 			*curr_buff = cpu_to_le64(msg_dma);
2424 			curr_buff++;
2425 			num_prp_in_chain++;
2426 		}
2427 
2428 		*curr_buff = cpu_to_le64(sge_addr);
2429 		curr_buff++;
2430 		msg_dma += 8;
2431 		num_prp_in_chain++;
2432 
2433 		sge_addr += nvme_pg_size;
2434 		sge_len -= nvme_pg_size;
2435 		data_len -= nvme_pg_size;
2436 
2437 		if (data_len <= 0)
2438 			break;
2439 
2440 		if (sge_len > 0)
2441 			continue;
2442 
2443 		sg_scmd = sg_next(sg_scmd);
2444 		sge_addr = sg_dma_address(sg_scmd);
2445 		sge_len = sg_dma_len(sg_scmd);
2446 	}
2447 
2448 	main_chain_element->Length =
2449 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2450 	return;
2451 }
2452 
2453 static bool
2454 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2455 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2456 {
2457 	u32 data_length = 0;
2458 	bool build_prp = true;
2459 
2460 	data_length = scsi_bufflen(scmd);
2461 	if (pcie_device &&
2462 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2463 		build_prp = false;
2464 		return build_prp;
2465 	}
2466 
2467 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2468 	 * we built IEEE SGL
2469 	 */
2470 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2471 		build_prp = false;
2472 
2473 	return build_prp;
2474 }
2475 
2476 /**
2477  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2478  * determine if the driver needs to build a native SGL.  If so, that native
2479  * SGL is built in the special contiguous buffers allocated especially for
2480  * PCIe SGL creation.  If the driver will not build a native SGL, return
2481  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2482  * supports NVMe.
2483  * @ioc: per adapter object
2484  * @mpi_request: mf request pointer
2485  * @smid: system request message index
2486  * @scmd: scsi command
2487  * @pcie_device: points to the PCIe device's info
2488  *
2489  * Return: 0 if native SGL was built, 1 if no SGL was built
2490  */
2491 static int
2492 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2493 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2494 	struct _pcie_device *pcie_device)
2495 {
2496 	int sges_left;
2497 
2498 	/* Get the SG list pointer and info. */
2499 	sges_left = scsi_dma_map(scmd);
2500 	if (sges_left < 0) {
2501 		sdev_printk(KERN_ERR, scmd->device,
2502 			"scsi_dma_map failed: request for %d bytes!\n",
2503 			scsi_bufflen(scmd));
2504 		return 1;
2505 	}
2506 
2507 	/* Check if we need to build a native SG list. */
2508 	if (base_is_prp_possible(ioc, pcie_device,
2509 				scmd, sges_left) == 0) {
2510 		/* We built a native SG list, just return. */
2511 		goto out;
2512 	}
2513 
2514 	/*
2515 	 * Build native NVMe PRP.
2516 	 */
2517 	base_make_prp_nvme(ioc, scmd, mpi_request,
2518 			smid, sges_left);
2519 
2520 	return 0;
2521 out:
2522 	scsi_dma_unmap(scmd);
2523 	return 1;
2524 }
2525 
2526 /**
2527  * _base_add_sg_single_ieee - add sg element for IEEE format
2528  * @paddr: virtual address for SGE
2529  * @flags: SGE flags
2530  * @chain_offset: number of 128 byte elements from start of segment
2531  * @length: data transfer length
2532  * @dma_addr: Physical address
2533  */
2534 static void
2535 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2536 	dma_addr_t dma_addr)
2537 {
2538 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2539 
2540 	sgel->Flags = flags;
2541 	sgel->NextChainOffset = chain_offset;
2542 	sgel->Length = cpu_to_le32(length);
2543 	sgel->Address = cpu_to_le64(dma_addr);
2544 }
2545 
2546 /**
2547  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2548  * @ioc: per adapter object
2549  * @paddr: virtual address for SGE
2550  *
2551  * Create a zero length scatter gather entry to insure the IOCs hardware has
2552  * something to use if the target device goes brain dead and tries
2553  * to send data even when none is asked for.
2554  */
2555 static void
2556 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2557 {
2558 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2559 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2560 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2561 
2562 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2563 }
2564 
2565 /**
2566  * _base_build_sg_scmd - main sg creation routine
2567  *		pcie_device is unused here!
2568  * @ioc: per adapter object
2569  * @scmd: scsi command
2570  * @smid: system request message index
2571  * @unused: unused pcie_device pointer
2572  * Context: none.
2573  *
2574  * The main routine that builds scatter gather table from a given
2575  * scsi request sent via the .queuecommand main handler.
2576  *
2577  * Return: 0 success, anything else error
2578  */
2579 static int
2580 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2581 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2582 {
2583 	Mpi2SCSIIORequest_t *mpi_request;
2584 	dma_addr_t chain_dma;
2585 	struct scatterlist *sg_scmd;
2586 	void *sg_local, *chain;
2587 	u32 chain_offset;
2588 	u32 chain_length;
2589 	u32 chain_flags;
2590 	int sges_left;
2591 	u32 sges_in_segment;
2592 	u32 sgl_flags;
2593 	u32 sgl_flags_last_element;
2594 	u32 sgl_flags_end_buffer;
2595 	struct chain_tracker *chain_req;
2596 
2597 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2598 
2599 	/* init scatter gather flags */
2600 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2601 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2602 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2603 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2604 	    << MPI2_SGE_FLAGS_SHIFT;
2605 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2606 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2607 	    << MPI2_SGE_FLAGS_SHIFT;
2608 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2609 
2610 	sg_scmd = scsi_sglist(scmd);
2611 	sges_left = scsi_dma_map(scmd);
2612 	if (sges_left < 0) {
2613 		sdev_printk(KERN_ERR, scmd->device,
2614 		 "scsi_dma_map failed: request for %d bytes!\n",
2615 		 scsi_bufflen(scmd));
2616 		return -ENOMEM;
2617 	}
2618 
2619 	sg_local = &mpi_request->SGL;
2620 	sges_in_segment = ioc->max_sges_in_main_message;
2621 	if (sges_left <= sges_in_segment)
2622 		goto fill_in_last_segment;
2623 
2624 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2625 	    (sges_in_segment * ioc->sge_size))/4;
2626 
2627 	/* fill in main message segment when there is a chain following */
2628 	while (sges_in_segment) {
2629 		if (sges_in_segment == 1)
2630 			ioc->base_add_sg_single(sg_local,
2631 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2632 			    sg_dma_address(sg_scmd));
2633 		else
2634 			ioc->base_add_sg_single(sg_local, sgl_flags |
2635 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2636 		sg_scmd = sg_next(sg_scmd);
2637 		sg_local += ioc->sge_size;
2638 		sges_left--;
2639 		sges_in_segment--;
2640 	}
2641 
2642 	/* initializing the chain flags and pointers */
2643 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2644 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2645 	if (!chain_req)
2646 		return -1;
2647 	chain = chain_req->chain_buffer;
2648 	chain_dma = chain_req->chain_buffer_dma;
2649 	do {
2650 		sges_in_segment = (sges_left <=
2651 		    ioc->max_sges_in_chain_message) ? sges_left :
2652 		    ioc->max_sges_in_chain_message;
2653 		chain_offset = (sges_left == sges_in_segment) ?
2654 		    0 : (sges_in_segment * ioc->sge_size)/4;
2655 		chain_length = sges_in_segment * ioc->sge_size;
2656 		if (chain_offset) {
2657 			chain_offset = chain_offset <<
2658 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2659 			chain_length += ioc->sge_size;
2660 		}
2661 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2662 		    chain_length, chain_dma);
2663 		sg_local = chain;
2664 		if (!chain_offset)
2665 			goto fill_in_last_segment;
2666 
2667 		/* fill in chain segments */
2668 		while (sges_in_segment) {
2669 			if (sges_in_segment == 1)
2670 				ioc->base_add_sg_single(sg_local,
2671 				    sgl_flags_last_element |
2672 				    sg_dma_len(sg_scmd),
2673 				    sg_dma_address(sg_scmd));
2674 			else
2675 				ioc->base_add_sg_single(sg_local, sgl_flags |
2676 				    sg_dma_len(sg_scmd),
2677 				    sg_dma_address(sg_scmd));
2678 			sg_scmd = sg_next(sg_scmd);
2679 			sg_local += ioc->sge_size;
2680 			sges_left--;
2681 			sges_in_segment--;
2682 		}
2683 
2684 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2685 		if (!chain_req)
2686 			return -1;
2687 		chain = chain_req->chain_buffer;
2688 		chain_dma = chain_req->chain_buffer_dma;
2689 	} while (1);
2690 
2691 
2692  fill_in_last_segment:
2693 
2694 	/* fill the last segment */
2695 	while (sges_left) {
2696 		if (sges_left == 1)
2697 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2698 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2699 		else
2700 			ioc->base_add_sg_single(sg_local, sgl_flags |
2701 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2702 		sg_scmd = sg_next(sg_scmd);
2703 		sg_local += ioc->sge_size;
2704 		sges_left--;
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 /**
2711  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2712  * @ioc: per adapter object
2713  * @scmd: scsi command
2714  * @smid: system request message index
2715  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2716  * constructed on need.
2717  * Context: none.
2718  *
2719  * The main routine that builds scatter gather table from a given
2720  * scsi request sent via the .queuecommand main handler.
2721  *
2722  * Return: 0 success, anything else error
2723  */
2724 static int
2725 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2726 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2727 {
2728 	Mpi25SCSIIORequest_t *mpi_request;
2729 	dma_addr_t chain_dma;
2730 	struct scatterlist *sg_scmd;
2731 	void *sg_local, *chain;
2732 	u32 chain_offset;
2733 	u32 chain_length;
2734 	int sges_left;
2735 	u32 sges_in_segment;
2736 	u8 simple_sgl_flags;
2737 	u8 simple_sgl_flags_last;
2738 	u8 chain_sgl_flags;
2739 	struct chain_tracker *chain_req;
2740 
2741 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2742 
2743 	/* init scatter gather flags */
2744 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2745 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2746 	simple_sgl_flags_last = simple_sgl_flags |
2747 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2748 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2749 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2750 
2751 	/* Check if we need to build a native SG list. */
2752 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2753 			smid, scmd, pcie_device) == 0)) {
2754 		/* We built a native SG list, just return. */
2755 		return 0;
2756 	}
2757 
2758 	sg_scmd = scsi_sglist(scmd);
2759 	sges_left = scsi_dma_map(scmd);
2760 	if (sges_left < 0) {
2761 		sdev_printk(KERN_ERR, scmd->device,
2762 			"scsi_dma_map failed: request for %d bytes!\n",
2763 			scsi_bufflen(scmd));
2764 		return -ENOMEM;
2765 	}
2766 
2767 	sg_local = &mpi_request->SGL;
2768 	sges_in_segment = (ioc->request_sz -
2769 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2770 	if (sges_left <= sges_in_segment)
2771 		goto fill_in_last_segment;
2772 
2773 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2774 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2775 
2776 	/* fill in main message segment when there is a chain following */
2777 	while (sges_in_segment > 1) {
2778 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2779 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2780 		sg_scmd = sg_next(sg_scmd);
2781 		sg_local += ioc->sge_size_ieee;
2782 		sges_left--;
2783 		sges_in_segment--;
2784 	}
2785 
2786 	/* initializing the pointers */
2787 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2788 	if (!chain_req)
2789 		return -1;
2790 	chain = chain_req->chain_buffer;
2791 	chain_dma = chain_req->chain_buffer_dma;
2792 	do {
2793 		sges_in_segment = (sges_left <=
2794 		    ioc->max_sges_in_chain_message) ? sges_left :
2795 		    ioc->max_sges_in_chain_message;
2796 		chain_offset = (sges_left == sges_in_segment) ?
2797 		    0 : sges_in_segment;
2798 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2799 		if (chain_offset)
2800 			chain_length += ioc->sge_size_ieee;
2801 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2802 		    chain_offset, chain_length, chain_dma);
2803 
2804 		sg_local = chain;
2805 		if (!chain_offset)
2806 			goto fill_in_last_segment;
2807 
2808 		/* fill in chain segments */
2809 		while (sges_in_segment) {
2810 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2811 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2812 			sg_scmd = sg_next(sg_scmd);
2813 			sg_local += ioc->sge_size_ieee;
2814 			sges_left--;
2815 			sges_in_segment--;
2816 		}
2817 
2818 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2819 		if (!chain_req)
2820 			return -1;
2821 		chain = chain_req->chain_buffer;
2822 		chain_dma = chain_req->chain_buffer_dma;
2823 	} while (1);
2824 
2825 
2826  fill_in_last_segment:
2827 
2828 	/* fill the last segment */
2829 	while (sges_left > 0) {
2830 		if (sges_left == 1)
2831 			_base_add_sg_single_ieee(sg_local,
2832 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2833 			    sg_dma_address(sg_scmd));
2834 		else
2835 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2836 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2837 		sg_scmd = sg_next(sg_scmd);
2838 		sg_local += ioc->sge_size_ieee;
2839 		sges_left--;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 /**
2846  * _base_build_sg_ieee - build generic sg for IEEE format
2847  * @ioc: per adapter object
2848  * @psge: virtual address for SGE
2849  * @data_out_dma: physical address for WRITES
2850  * @data_out_sz: data xfer size for WRITES
2851  * @data_in_dma: physical address for READS
2852  * @data_in_sz: data xfer size for READS
2853  */
2854 static void
2855 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2856 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2857 	size_t data_in_sz)
2858 {
2859 	u8 sgl_flags;
2860 
2861 	if (!data_out_sz && !data_in_sz) {
2862 		_base_build_zero_len_sge_ieee(ioc, psge);
2863 		return;
2864 	}
2865 
2866 	if (data_out_sz && data_in_sz) {
2867 		/* WRITE sgel first */
2868 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2869 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2870 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2871 		    data_out_dma);
2872 
2873 		/* incr sgel */
2874 		psge += ioc->sge_size_ieee;
2875 
2876 		/* READ sgel last */
2877 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2878 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2879 		    data_in_dma);
2880 	} else if (data_out_sz) /* WRITE */ {
2881 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2882 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2883 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2884 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2885 		    data_out_dma);
2886 	} else if (data_in_sz) /* READ */ {
2887 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2888 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2889 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2890 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2891 		    data_in_dma);
2892 	}
2893 }
2894 
2895 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2896 
2897 /**
2898  * _base_config_dma_addressing - set dma addressing
2899  * @ioc: per adapter object
2900  * @pdev: PCI device struct
2901  *
2902  * Return: 0 for success, non-zero for failure.
2903  */
2904 static int
2905 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2906 {
2907 	struct sysinfo s;
2908 	int dma_mask;
2909 
2910 	if (ioc->is_mcpu_endpoint ||
2911 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2912 	    dma_get_required_mask(&pdev->dev) <= 32)
2913 		dma_mask = 32;
2914 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2915 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2916 		dma_mask = 63;
2917 	else
2918 		dma_mask = 64;
2919 
2920 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2921 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2922 		return -ENODEV;
2923 
2924 	if (dma_mask > 32) {
2925 		ioc->base_add_sg_single = &_base_add_sg_single_64;
2926 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2927 	} else {
2928 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2929 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2930 	}
2931 
2932 	si_meminfo(&s);
2933 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2934 		dma_mask, convert_to_kb(s.totalram));
2935 
2936 	return 0;
2937 }
2938 
2939 /**
2940  * _base_check_enable_msix - checks MSIX capabable.
2941  * @ioc: per adapter object
2942  *
2943  * Check to see if card is capable of MSIX, and set number
2944  * of available msix vectors
2945  */
2946 static int
2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2948 {
2949 	int base;
2950 	u16 message_control;
2951 
2952 	/* Check whether controller SAS2008 B0 controller,
2953 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2954 	 */
2955 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2956 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2957 		return -EINVAL;
2958 	}
2959 
2960 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2961 	if (!base) {
2962 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2963 		return -EINVAL;
2964 	}
2965 
2966 	/* get msix vector count */
2967 	/* NUMA_IO not supported for older controllers */
2968 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2969 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2970 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2971 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2972 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2973 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2974 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2975 		ioc->msix_vector_count = 1;
2976 	else {
2977 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2978 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2979 	}
2980 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2981 				  ioc->msix_vector_count));
2982 	return 0;
2983 }
2984 
2985 /**
2986  * _base_free_irq - free irq
2987  * @ioc: per adapter object
2988  *
2989  * Freeing respective reply_queue from the list.
2990  */
2991 static void
2992 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2993 {
2994 	struct adapter_reply_queue *reply_q, *next;
2995 
2996 	if (list_empty(&ioc->reply_queue_list))
2997 		return;
2998 
2999 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3000 		list_del(&reply_q->list);
3001 		if (ioc->smp_affinity_enable)
3002 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3003 			    reply_q->msix_index), NULL);
3004 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3005 			 reply_q);
3006 		kfree(reply_q);
3007 	}
3008 }
3009 
3010 /**
3011  * _base_request_irq - request irq
3012  * @ioc: per adapter object
3013  * @index: msix index into vector table
3014  *
3015  * Inserting respective reply_queue into the list.
3016  */
3017 static int
3018 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3019 {
3020 	struct pci_dev *pdev = ioc->pdev;
3021 	struct adapter_reply_queue *reply_q;
3022 	int r;
3023 
3024 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3025 	if (!reply_q) {
3026 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3027 			sizeof(struct adapter_reply_queue));
3028 		return -ENOMEM;
3029 	}
3030 	reply_q->ioc = ioc;
3031 	reply_q->msix_index = index;
3032 
3033 	atomic_set(&reply_q->busy, 0);
3034 	if (ioc->msix_enable)
3035 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3036 		    ioc->driver_name, ioc->id, index);
3037 	else
3038 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3039 		    ioc->driver_name, ioc->id);
3040 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3041 			IRQF_SHARED, reply_q->name, reply_q);
3042 	if (r) {
3043 		pr_err("%s: unable to allocate interrupt %d!\n",
3044 		       reply_q->name, pci_irq_vector(pdev, index));
3045 		kfree(reply_q);
3046 		return -EBUSY;
3047 	}
3048 
3049 	INIT_LIST_HEAD(&reply_q->list);
3050 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3051 	return 0;
3052 }
3053 
3054 /**
3055  * _base_assign_reply_queues - assigning msix index for each cpu
3056  * @ioc: per adapter object
3057  *
3058  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3059  *
3060  * It would nice if we could call irq_set_affinity, however it is not
3061  * an exported symbol
3062  */
3063 static void
3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3065 {
3066 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
3067 	struct adapter_reply_queue *reply_q;
3068 	int local_numa_node;
3069 
3070 	if (!_base_is_controller_msix_enabled(ioc))
3071 		return;
3072 
3073 	if (ioc->msix_load_balance)
3074 		return;
3075 
3076 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3077 
3078 	nr_cpus = num_online_cpus();
3079 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3080 					       ioc->facts.MaxMSIxVectors);
3081 	if (!nr_msix)
3082 		return;
3083 
3084 	if (ioc->smp_affinity_enable) {
3085 
3086 		/*
3087 		 * set irq affinity to local numa node for those irqs
3088 		 * corresponding to high iops queues.
3089 		 */
3090 		if (ioc->high_iops_queues) {
3091 			local_numa_node = dev_to_node(&ioc->pdev->dev);
3092 			for (index = 0; index < ioc->high_iops_queues;
3093 			    index++) {
3094 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3095 				    index), cpumask_of_node(local_numa_node));
3096 			}
3097 		}
3098 
3099 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3100 			const cpumask_t *mask;
3101 
3102 			if (reply_q->msix_index < ioc->high_iops_queues)
3103 				continue;
3104 
3105 			mask = pci_irq_get_affinity(ioc->pdev,
3106 			    reply_q->msix_index);
3107 			if (!mask) {
3108 				ioc_warn(ioc, "no affinity for msi %x\n",
3109 					 reply_q->msix_index);
3110 				goto fall_back;
3111 			}
3112 
3113 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3114 				if (cpu >= ioc->cpu_msix_table_sz)
3115 					break;
3116 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3117 			}
3118 		}
3119 		return;
3120 	}
3121 
3122 fall_back:
3123 	cpu = cpumask_first(cpu_online_mask);
3124 	nr_msix -= ioc->high_iops_queues;
3125 	index = 0;
3126 
3127 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3128 		unsigned int i, group = nr_cpus / nr_msix;
3129 
3130 		if (reply_q->msix_index < ioc->high_iops_queues)
3131 			continue;
3132 
3133 		if (cpu >= nr_cpus)
3134 			break;
3135 
3136 		if (index < nr_cpus % nr_msix)
3137 			group++;
3138 
3139 		for (i = 0 ; i < group ; i++) {
3140 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3141 			cpu = cpumask_next(cpu, cpu_online_mask);
3142 		}
3143 		index++;
3144 	}
3145 }
3146 
3147 /**
3148  * _base_check_and_enable_high_iops_queues - enable high iops mode
3149  * @ioc: per adapter object
3150  * @hba_msix_vector_count: msix vectors supported by HBA
3151  *
3152  * Enable high iops queues only if
3153  *  - HBA is a SEA/AERO controller and
3154  *  - MSI-Xs vector supported by the HBA is 128 and
3155  *  - total CPU count in the system >=16 and
3156  *  - loaded driver with default max_msix_vectors module parameter and
3157  *  - system booted in non kdump mode
3158  *
3159  * returns nothing.
3160  */
3161 static void
3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3163 		int hba_msix_vector_count)
3164 {
3165 	u16 lnksta, speed;
3166 
3167 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3168 	    perf_mode == MPT_PERF_MODE_LATENCY) {
3169 		ioc->high_iops_queues = 0;
3170 		return;
3171 	}
3172 
3173 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3174 
3175 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3176 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3177 
3178 		if (speed < 0x4) {
3179 			ioc->high_iops_queues = 0;
3180 			return;
3181 		}
3182 	}
3183 
3184 	if (!reset_devices && ioc->is_aero_ioc &&
3185 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3186 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3187 	    max_msix_vectors == -1)
3188 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3189 	else
3190 		ioc->high_iops_queues = 0;
3191 }
3192 
3193 /**
3194  * _base_disable_msix - disables msix
3195  * @ioc: per adapter object
3196  *
3197  */
3198 static void
3199 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3200 {
3201 	if (!ioc->msix_enable)
3202 		return;
3203 	pci_free_irq_vectors(ioc->pdev);
3204 	ioc->msix_enable = 0;
3205 }
3206 
3207 /**
3208  * _base_alloc_irq_vectors - allocate msix vectors
3209  * @ioc: per adapter object
3210  *
3211  */
3212 static int
3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3214 {
3215 	int i, irq_flags = PCI_IRQ_MSIX;
3216 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3217 	struct irq_affinity *descp = &desc;
3218 
3219 	if (ioc->smp_affinity_enable)
3220 		irq_flags |= PCI_IRQ_AFFINITY;
3221 	else
3222 		descp = NULL;
3223 
3224 	ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3225 	    ioc->reply_queue_count);
3226 
3227 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3228 	    ioc->high_iops_queues,
3229 	    ioc->reply_queue_count, irq_flags, descp);
3230 
3231 	return i;
3232 }
3233 
3234 /**
3235  * _base_enable_msix - enables msix, failback to io_apic
3236  * @ioc: per adapter object
3237  *
3238  */
3239 static int
3240 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3241 {
3242 	int r;
3243 	int i, local_max_msix_vectors;
3244 	u8 try_msix = 0;
3245 
3246 	ioc->msix_load_balance = false;
3247 
3248 	if (msix_disable == -1 || msix_disable == 0)
3249 		try_msix = 1;
3250 
3251 	if (!try_msix)
3252 		goto try_ioapic;
3253 
3254 	if (_base_check_enable_msix(ioc) != 0)
3255 		goto try_ioapic;
3256 
3257 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3258 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3259 		ioc->cpu_count, max_msix_vectors);
3260 	if (ioc->is_aero_ioc)
3261 		_base_check_and_enable_high_iops_queues(ioc,
3262 			ioc->msix_vector_count);
3263 	ioc->reply_queue_count =
3264 		min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3265 		ioc->msix_vector_count);
3266 
3267 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3268 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3269 	else
3270 		local_max_msix_vectors = max_msix_vectors;
3271 
3272 	if (local_max_msix_vectors > 0)
3273 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3274 			ioc->reply_queue_count);
3275 	else if (local_max_msix_vectors == 0)
3276 		goto try_ioapic;
3277 
3278 	/*
3279 	 * Enable msix_load_balance only if combined reply queue mode is
3280 	 * disabled on SAS3 & above generation HBA devices.
3281 	 */
3282 	if (!ioc->combined_reply_queue &&
3283 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3284 		ioc_info(ioc,
3285 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3286 		ioc->msix_load_balance = true;
3287 	}
3288 
3289 	/*
3290 	 * smp affinity setting is not need when msix load balance
3291 	 * is enabled.
3292 	 */
3293 	if (ioc->msix_load_balance)
3294 		ioc->smp_affinity_enable = 0;
3295 
3296 	r = _base_alloc_irq_vectors(ioc);
3297 	if (r < 0) {
3298 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3299 		goto try_ioapic;
3300 	}
3301 
3302 	ioc->msix_enable = 1;
3303 	ioc->reply_queue_count = r;
3304 	for (i = 0; i < ioc->reply_queue_count; i++) {
3305 		r = _base_request_irq(ioc, i);
3306 		if (r) {
3307 			_base_free_irq(ioc);
3308 			_base_disable_msix(ioc);
3309 			goto try_ioapic;
3310 		}
3311 	}
3312 
3313 	ioc_info(ioc, "High IOPs queues : %s\n",
3314 			ioc->high_iops_queues ? "enabled" : "disabled");
3315 
3316 	return 0;
3317 
3318 /* failback to io_apic interrupt routing */
3319  try_ioapic:
3320 	ioc->high_iops_queues = 0;
3321 	ioc_info(ioc, "High IOPs queues : disabled\n");
3322 	ioc->reply_queue_count = 1;
3323 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3324 	if (r < 0) {
3325 		dfailprintk(ioc,
3326 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3327 				     r));
3328 	} else
3329 		r = _base_request_irq(ioc, 0);
3330 
3331 	return r;
3332 }
3333 
3334 /**
3335  * mpt3sas_base_unmap_resources - free controller resources
3336  * @ioc: per adapter object
3337  */
3338 static void
3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3340 {
3341 	struct pci_dev *pdev = ioc->pdev;
3342 
3343 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3344 
3345 	_base_free_irq(ioc);
3346 	_base_disable_msix(ioc);
3347 
3348 	kfree(ioc->replyPostRegisterIndex);
3349 	ioc->replyPostRegisterIndex = NULL;
3350 
3351 
3352 	if (ioc->chip_phys) {
3353 		iounmap(ioc->chip);
3354 		ioc->chip_phys = 0;
3355 	}
3356 
3357 	if (pci_is_enabled(pdev)) {
3358 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3359 		pci_disable_pcie_error_reporting(pdev);
3360 		pci_disable_device(pdev);
3361 	}
3362 }
3363 
3364 static int
3365 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3366 
3367 /**
3368  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3369  *     and if it is in fault state then issue diag reset.
3370  * @ioc: per adapter object
3371  *
3372  * Returns: 0 for success, non-zero for failure.
3373  */
3374 static int
3375 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3376 {
3377 	u32 ioc_state;
3378 	int rc = -EFAULT;
3379 
3380 	dinitprintk(ioc, pr_info("%s\n", __func__));
3381 	if (ioc->pci_error_recovery)
3382 		return 0;
3383 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3384 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3385 
3386 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3387 		mpt3sas_print_fault_code(ioc, ioc_state &
3388 		    MPI2_DOORBELL_DATA_MASK);
3389 		rc = _base_diag_reset(ioc);
3390 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3391 	    MPI2_IOC_STATE_COREDUMP) {
3392 		mpt3sas_print_coredump_info(ioc, ioc_state &
3393 		     MPI2_DOORBELL_DATA_MASK);
3394 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3395 		rc = _base_diag_reset(ioc);
3396 	}
3397 
3398 	return rc;
3399 }
3400 
3401 /**
3402  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3403  * @ioc: per adapter object
3404  *
3405  * Return: 0 for success, non-zero for failure.
3406  */
3407 int
3408 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3409 {
3410 	struct pci_dev *pdev = ioc->pdev;
3411 	u32 memap_sz;
3412 	u32 pio_sz;
3413 	int i, r = 0, rc;
3414 	u64 pio_chip = 0;
3415 	phys_addr_t chip_phys = 0;
3416 	struct adapter_reply_queue *reply_q;
3417 
3418 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3419 
3420 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3421 	if (pci_enable_device_mem(pdev)) {
3422 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3423 		ioc->bars = 0;
3424 		return -ENODEV;
3425 	}
3426 
3427 
3428 	if (pci_request_selected_regions(pdev, ioc->bars,
3429 	    ioc->driver_name)) {
3430 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3431 		ioc->bars = 0;
3432 		r = -ENODEV;
3433 		goto out_fail;
3434 	}
3435 
3436 /* AER (Advanced Error Reporting) hooks */
3437 	pci_enable_pcie_error_reporting(pdev);
3438 
3439 	pci_set_master(pdev);
3440 
3441 
3442 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3443 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3444 		r = -ENODEV;
3445 		goto out_fail;
3446 	}
3447 
3448 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3449 	     (!memap_sz || !pio_sz); i++) {
3450 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3451 			if (pio_sz)
3452 				continue;
3453 			pio_chip = (u64)pci_resource_start(pdev, i);
3454 			pio_sz = pci_resource_len(pdev, i);
3455 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3456 			if (memap_sz)
3457 				continue;
3458 			ioc->chip_phys = pci_resource_start(pdev, i);
3459 			chip_phys = ioc->chip_phys;
3460 			memap_sz = pci_resource_len(pdev, i);
3461 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3462 		}
3463 	}
3464 
3465 	if (ioc->chip == NULL) {
3466 		ioc_err(ioc,
3467 		    "unable to map adapter memory! or resource not found\n");
3468 		r = -EINVAL;
3469 		goto out_fail;
3470 	}
3471 
3472 	mpt3sas_base_mask_interrupts(ioc);
3473 
3474 	r = _base_get_ioc_facts(ioc);
3475 	if (r) {
3476 		rc = _base_check_for_fault_and_issue_reset(ioc);
3477 		if (rc || (_base_get_ioc_facts(ioc)))
3478 			goto out_fail;
3479 	}
3480 
3481 	if (!ioc->rdpq_array_enable_assigned) {
3482 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3483 		ioc->rdpq_array_enable_assigned = 1;
3484 	}
3485 
3486 	r = _base_enable_msix(ioc);
3487 	if (r)
3488 		goto out_fail;
3489 
3490 	if (!ioc->is_driver_loading)
3491 		_base_init_irqpolls(ioc);
3492 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3493 	 * revision HBAs and also only when reply queue count is greater than 8
3494 	 */
3495 	if (ioc->combined_reply_queue) {
3496 		/* Determine the Supplemental Reply Post Host Index Registers
3497 		 * Addresse. Supplemental Reply Post Host Index Registers
3498 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3499 		 * each register is at offset bytes of
3500 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3501 		 */
3502 		ioc->replyPostRegisterIndex = kcalloc(
3503 		     ioc->combined_reply_index_count,
3504 		     sizeof(resource_size_t *), GFP_KERNEL);
3505 		if (!ioc->replyPostRegisterIndex) {
3506 			ioc_err(ioc,
3507 			    "allocation for replyPostRegisterIndex failed!\n");
3508 			r = -ENOMEM;
3509 			goto out_fail;
3510 		}
3511 
3512 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3513 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3514 			     ((u8 __force *)&ioc->chip->Doorbell +
3515 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3516 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3517 		}
3518 	}
3519 
3520 	if (ioc->is_warpdrive) {
3521 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3522 		    &ioc->chip->ReplyPostHostIndex;
3523 
3524 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3525 			ioc->reply_post_host_index[i] =
3526 			(resource_size_t __iomem *)
3527 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3528 			* 4)));
3529 	}
3530 
3531 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3532 		pr_info("%s: %s enabled: IRQ %d\n",
3533 			reply_q->name,
3534 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3535 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3536 
3537 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3538 		 &chip_phys, ioc->chip, memap_sz);
3539 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3540 		 (unsigned long long)pio_chip, pio_sz);
3541 
3542 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3543 	pci_save_state(pdev);
3544 	return 0;
3545 
3546  out_fail:
3547 	mpt3sas_base_unmap_resources(ioc);
3548 	return r;
3549 }
3550 
3551 /**
3552  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3553  * @ioc: per adapter object
3554  * @smid: system request message index(smid zero is invalid)
3555  *
3556  * Return: virt pointer to message frame.
3557  */
3558 void *
3559 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3560 {
3561 	return (void *)(ioc->request + (smid * ioc->request_sz));
3562 }
3563 
3564 /**
3565  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3566  * @ioc: per adapter object
3567  * @smid: system request message index
3568  *
3569  * Return: virt pointer to sense buffer.
3570  */
3571 void *
3572 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3573 {
3574 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3575 }
3576 
3577 /**
3578  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3579  * @ioc: per adapter object
3580  * @smid: system request message index
3581  *
3582  * Return: phys pointer to the low 32bit address of the sense buffer.
3583  */
3584 __le32
3585 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3586 {
3587 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3588 	    SCSI_SENSE_BUFFERSIZE));
3589 }
3590 
3591 /**
3592  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3593  * @ioc: per adapter object
3594  * @smid: system request message index
3595  *
3596  * Return: virt pointer to a PCIe SGL.
3597  */
3598 void *
3599 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3600 {
3601 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3602 }
3603 
3604 /**
3605  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3606  * @ioc: per adapter object
3607  * @smid: system request message index
3608  *
3609  * Return: phys pointer to the address of the PCIe buffer.
3610  */
3611 dma_addr_t
3612 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3613 {
3614 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3615 }
3616 
3617 /**
3618  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3619  * @ioc: per adapter object
3620  * @phys_addr: lower 32 physical addr of the reply
3621  *
3622  * Converts 32bit lower physical addr into a virt address.
3623  */
3624 void *
3625 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3626 {
3627 	if (!phys_addr)
3628 		return NULL;
3629 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3630 }
3631 
3632 /**
3633  * _base_get_msix_index - get the msix index
3634  * @ioc: per adapter object
3635  * @scmd: scsi_cmnd object
3636  *
3637  * returns msix index of general reply queues,
3638  * i.e. reply queue on which IO request's reply
3639  * should be posted by the HBA firmware.
3640  */
3641 static inline u8
3642 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3643 	struct scsi_cmnd *scmd)
3644 {
3645 	/* Enables reply_queue load balancing */
3646 	if (ioc->msix_load_balance)
3647 		return ioc->reply_queue_count ?
3648 		    base_mod64(atomic64_add_return(1,
3649 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3650 
3651 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3652 }
3653 
3654 /**
3655  * _base_sdev_nr_inflight_request -get number of inflight requests
3656  *				   of a request queue.
3657  * @q: request_queue object
3658  *
3659  * returns number of inflight request of a request queue.
3660  */
3661 inline unsigned long
3662 _base_sdev_nr_inflight_request(struct request_queue *q)
3663 {
3664 	struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3665 
3666 	return atomic_read(&hctx->nr_active);
3667 }
3668 
3669 
3670 /**
3671  * _base_get_high_iops_msix_index - get the msix index of
3672  *				high iops queues
3673  * @ioc: per adapter object
3674  * @scmd: scsi_cmnd object
3675  *
3676  * Returns: msix index of high iops reply queues.
3677  * i.e. high iops reply queue on which IO request's
3678  * reply should be posted by the HBA firmware.
3679  */
3680 static inline u8
3681 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3682 	struct scsi_cmnd *scmd)
3683 {
3684 	/**
3685 	 * Round robin the IO interrupts among the high iops
3686 	 * reply queues in terms of batch count 16 when outstanding
3687 	 * IOs on the target device is >=8.
3688 	 */
3689 	if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3690 	    MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3691 		return base_mod64((
3692 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3693 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3694 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3695 
3696 	return _base_get_msix_index(ioc, scmd);
3697 }
3698 
3699 /**
3700  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3701  * @ioc: per adapter object
3702  * @cb_idx: callback index
3703  *
3704  * Return: smid (zero is invalid)
3705  */
3706 u16
3707 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3708 {
3709 	unsigned long flags;
3710 	struct request_tracker *request;
3711 	u16 smid;
3712 
3713 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3714 	if (list_empty(&ioc->internal_free_list)) {
3715 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3716 		ioc_err(ioc, "%s: smid not available\n", __func__);
3717 		return 0;
3718 	}
3719 
3720 	request = list_entry(ioc->internal_free_list.next,
3721 	    struct request_tracker, tracker_list);
3722 	request->cb_idx = cb_idx;
3723 	smid = request->smid;
3724 	list_del(&request->tracker_list);
3725 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3726 	return smid;
3727 }
3728 
3729 /**
3730  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3731  * @ioc: per adapter object
3732  * @cb_idx: callback index
3733  * @scmd: pointer to scsi command object
3734  *
3735  * Return: smid (zero is invalid)
3736  */
3737 u16
3738 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3739 	struct scsi_cmnd *scmd)
3740 {
3741 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3742 	unsigned int tag = scmd->request->tag;
3743 	u16 smid;
3744 
3745 	smid = tag + 1;
3746 	request->cb_idx = cb_idx;
3747 	request->smid = smid;
3748 	request->scmd = scmd;
3749 	INIT_LIST_HEAD(&request->chain_list);
3750 	return smid;
3751 }
3752 
3753 /**
3754  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3755  * @ioc: per adapter object
3756  * @cb_idx: callback index
3757  *
3758  * Return: smid (zero is invalid)
3759  */
3760 u16
3761 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3762 {
3763 	unsigned long flags;
3764 	struct request_tracker *request;
3765 	u16 smid;
3766 
3767 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3768 	if (list_empty(&ioc->hpr_free_list)) {
3769 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3770 		return 0;
3771 	}
3772 
3773 	request = list_entry(ioc->hpr_free_list.next,
3774 	    struct request_tracker, tracker_list);
3775 	request->cb_idx = cb_idx;
3776 	smid = request->smid;
3777 	list_del(&request->tracker_list);
3778 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3779 	return smid;
3780 }
3781 
3782 static void
3783 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3784 {
3785 	/*
3786 	 * See _wait_for_commands_to_complete() call with regards to this code.
3787 	 */
3788 	if (ioc->shost_recovery && ioc->pending_io_count) {
3789 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3790 		if (ioc->pending_io_count == 0)
3791 			wake_up(&ioc->reset_wq);
3792 	}
3793 }
3794 
3795 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3796 			   struct scsiio_tracker *st)
3797 {
3798 	if (WARN_ON(st->smid == 0))
3799 		return;
3800 	st->cb_idx = 0xFF;
3801 	st->direct_io = 0;
3802 	st->scmd = NULL;
3803 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3804 	st->smid = 0;
3805 }
3806 
3807 /**
3808  * mpt3sas_base_free_smid - put smid back on free_list
3809  * @ioc: per adapter object
3810  * @smid: system request message index
3811  */
3812 void
3813 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3814 {
3815 	unsigned long flags;
3816 	int i;
3817 
3818 	if (smid < ioc->hi_priority_smid) {
3819 		struct scsiio_tracker *st;
3820 		void *request;
3821 
3822 		st = _get_st_from_smid(ioc, smid);
3823 		if (!st) {
3824 			_base_recovery_check(ioc);
3825 			return;
3826 		}
3827 
3828 		/* Clear MPI request frame */
3829 		request = mpt3sas_base_get_msg_frame(ioc, smid);
3830 		memset(request, 0, ioc->request_sz);
3831 
3832 		mpt3sas_base_clear_st(ioc, st);
3833 		_base_recovery_check(ioc);
3834 		return;
3835 	}
3836 
3837 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3838 	if (smid < ioc->internal_smid) {
3839 		/* hi-priority */
3840 		i = smid - ioc->hi_priority_smid;
3841 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3842 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3843 	} else if (smid <= ioc->hba_queue_depth) {
3844 		/* internal queue */
3845 		i = smid - ioc->internal_smid;
3846 		ioc->internal_lookup[i].cb_idx = 0xFF;
3847 		list_add(&ioc->internal_lookup[i].tracker_list,
3848 		    &ioc->internal_free_list);
3849 	}
3850 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3851 }
3852 
3853 /**
3854  * _base_mpi_ep_writeq - 32 bit write to MMIO
3855  * @b: data payload
3856  * @addr: address in MMIO space
3857  * @writeq_lock: spin lock
3858  *
3859  * This special handling for MPI EP to take care of 32 bit
3860  * environment where its not quarenteed to send the entire word
3861  * in one transfer.
3862  */
3863 static inline void
3864 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3865 					spinlock_t *writeq_lock)
3866 {
3867 	unsigned long flags;
3868 
3869 	spin_lock_irqsave(writeq_lock, flags);
3870 	__raw_writel((u32)(b), addr);
3871 	__raw_writel((u32)(b >> 32), (addr + 4));
3872 	spin_unlock_irqrestore(writeq_lock, flags);
3873 }
3874 
3875 /**
3876  * _base_writeq - 64 bit write to MMIO
3877  * @b: data payload
3878  * @addr: address in MMIO space
3879  * @writeq_lock: spin lock
3880  *
3881  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3882  * care of 32 bit environment where its not quarenteed to send the entire word
3883  * in one transfer.
3884  */
3885 #if defined(writeq) && defined(CONFIG_64BIT)
3886 static inline void
3887 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3888 {
3889 	wmb();
3890 	__raw_writeq(b, addr);
3891 	barrier();
3892 }
3893 #else
3894 static inline void
3895 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3896 {
3897 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3898 }
3899 #endif
3900 
3901 /**
3902  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3903  *                                variable of scsi tracker
3904  * @ioc: per adapter object
3905  * @smid: system request message index
3906  *
3907  * returns msix index.
3908  */
3909 static u8
3910 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3911 {
3912 	struct scsiio_tracker *st = NULL;
3913 
3914 	if (smid < ioc->hi_priority_smid)
3915 		st = _get_st_from_smid(ioc, smid);
3916 
3917 	if (st == NULL)
3918 		return  _base_get_msix_index(ioc, NULL);
3919 
3920 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3921 	return st->msix_io;
3922 }
3923 
3924 /**
3925  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3926  * @ioc: per adapter object
3927  * @smid: system request message index
3928  * @handle: device handle
3929  */
3930 static void
3931 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3932 	u16 smid, u16 handle)
3933 {
3934 	Mpi2RequestDescriptorUnion_t descriptor;
3935 	u64 *request = (u64 *)&descriptor;
3936 	void *mpi_req_iomem;
3937 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3938 
3939 	_clone_sg_entries(ioc, (void *) mfp, smid);
3940 	mpi_req_iomem = (void __force *)ioc->chip +
3941 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3942 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3943 					ioc->request_sz);
3944 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3945 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3946 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3947 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3948 	descriptor.SCSIIO.LMID = 0;
3949 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3950 	    &ioc->scsi_lookup_lock);
3951 }
3952 
3953 /**
3954  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3955  * @ioc: per adapter object
3956  * @smid: system request message index
3957  * @handle: device handle
3958  */
3959 static void
3960 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3961 {
3962 	Mpi2RequestDescriptorUnion_t descriptor;
3963 	u64 *request = (u64 *)&descriptor;
3964 
3965 
3966 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3967 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3968 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3969 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3970 	descriptor.SCSIIO.LMID = 0;
3971 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3972 	    &ioc->scsi_lookup_lock);
3973 }
3974 
3975 /**
3976  * _base_put_smid_fast_path - send fast path request to firmware
3977  * @ioc: per adapter object
3978  * @smid: system request message index
3979  * @handle: device handle
3980  */
3981 static void
3982 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3983 	u16 handle)
3984 {
3985 	Mpi2RequestDescriptorUnion_t descriptor;
3986 	u64 *request = (u64 *)&descriptor;
3987 
3988 	descriptor.SCSIIO.RequestFlags =
3989 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3990 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3991 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3992 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3993 	descriptor.SCSIIO.LMID = 0;
3994 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3995 	    &ioc->scsi_lookup_lock);
3996 }
3997 
3998 /**
3999  * _base_put_smid_hi_priority - send Task Management request to firmware
4000  * @ioc: per adapter object
4001  * @smid: system request message index
4002  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
4003  */
4004 static void
4005 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4006 	u16 msix_task)
4007 {
4008 	Mpi2RequestDescriptorUnion_t descriptor;
4009 	void *mpi_req_iomem;
4010 	u64 *request;
4011 
4012 	if (ioc->is_mcpu_endpoint) {
4013 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4014 
4015 		/* TBD 256 is offset within sys register. */
4016 		mpi_req_iomem = (void __force *)ioc->chip
4017 					+ MPI_FRAME_START_OFFSET
4018 					+ (smid * ioc->request_sz);
4019 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4020 							ioc->request_sz);
4021 	}
4022 
4023 	request = (u64 *)&descriptor;
4024 
4025 	descriptor.HighPriority.RequestFlags =
4026 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4027 	descriptor.HighPriority.MSIxIndex =  msix_task;
4028 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4029 	descriptor.HighPriority.LMID = 0;
4030 	descriptor.HighPriority.Reserved1 = 0;
4031 	if (ioc->is_mcpu_endpoint)
4032 		_base_mpi_ep_writeq(*request,
4033 				&ioc->chip->RequestDescriptorPostLow,
4034 				&ioc->scsi_lookup_lock);
4035 	else
4036 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4037 		    &ioc->scsi_lookup_lock);
4038 }
4039 
4040 /**
4041  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4042  *  firmware
4043  * @ioc: per adapter object
4044  * @smid: system request message index
4045  */
4046 void
4047 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4048 {
4049 	Mpi2RequestDescriptorUnion_t descriptor;
4050 	u64 *request = (u64 *)&descriptor;
4051 
4052 	descriptor.Default.RequestFlags =
4053 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4054 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4055 	descriptor.Default.SMID = cpu_to_le16(smid);
4056 	descriptor.Default.LMID = 0;
4057 	descriptor.Default.DescriptorTypeDependent = 0;
4058 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4059 	    &ioc->scsi_lookup_lock);
4060 }
4061 
4062 /**
4063  * _base_put_smid_default - Default, primarily used for config pages
4064  * @ioc: per adapter object
4065  * @smid: system request message index
4066  */
4067 static void
4068 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4069 {
4070 	Mpi2RequestDescriptorUnion_t descriptor;
4071 	void *mpi_req_iomem;
4072 	u64 *request;
4073 
4074 	if (ioc->is_mcpu_endpoint) {
4075 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4076 
4077 		_clone_sg_entries(ioc, (void *) mfp, smid);
4078 		/* TBD 256 is offset within sys register */
4079 		mpi_req_iomem = (void __force *)ioc->chip +
4080 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4081 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4082 							ioc->request_sz);
4083 	}
4084 	request = (u64 *)&descriptor;
4085 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4086 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4087 	descriptor.Default.SMID = cpu_to_le16(smid);
4088 	descriptor.Default.LMID = 0;
4089 	descriptor.Default.DescriptorTypeDependent = 0;
4090 	if (ioc->is_mcpu_endpoint)
4091 		_base_mpi_ep_writeq(*request,
4092 				&ioc->chip->RequestDescriptorPostLow,
4093 				&ioc->scsi_lookup_lock);
4094 	else
4095 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4096 				&ioc->scsi_lookup_lock);
4097 }
4098 
4099 /**
4100  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4101  *   Atomic Request Descriptor
4102  * @ioc: per adapter object
4103  * @smid: system request message index
4104  * @handle: device handle, unused in this function, for function type match
4105  *
4106  * Return nothing.
4107  */
4108 static void
4109 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4110 	u16 handle)
4111 {
4112 	Mpi26AtomicRequestDescriptor_t descriptor;
4113 	u32 *request = (u32 *)&descriptor;
4114 
4115 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4116 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4117 	descriptor.SMID = cpu_to_le16(smid);
4118 
4119 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4120 }
4121 
4122 /**
4123  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4124  * using Atomic Request Descriptor
4125  * @ioc: per adapter object
4126  * @smid: system request message index
4127  * @handle: device handle, unused in this function, for function type match
4128  * Return nothing
4129  */
4130 static void
4131 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4132 	u16 handle)
4133 {
4134 	Mpi26AtomicRequestDescriptor_t descriptor;
4135 	u32 *request = (u32 *)&descriptor;
4136 
4137 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4138 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4139 	descriptor.SMID = cpu_to_le16(smid);
4140 
4141 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4142 }
4143 
4144 /**
4145  * _base_put_smid_hi_priority_atomic - send Task Management request to
4146  * firmware using Atomic Request Descriptor
4147  * @ioc: per adapter object
4148  * @smid: system request message index
4149  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4150  *
4151  * Return nothing.
4152  */
4153 static void
4154 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4155 	u16 msix_task)
4156 {
4157 	Mpi26AtomicRequestDescriptor_t descriptor;
4158 	u32 *request = (u32 *)&descriptor;
4159 
4160 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4161 	descriptor.MSIxIndex = msix_task;
4162 	descriptor.SMID = cpu_to_le16(smid);
4163 
4164 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4165 }
4166 
4167 /**
4168  * _base_put_smid_default - Default, primarily used for config pages
4169  * use Atomic Request Descriptor
4170  * @ioc: per adapter object
4171  * @smid: system request message index
4172  *
4173  * Return nothing.
4174  */
4175 static void
4176 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4177 {
4178 	Mpi26AtomicRequestDescriptor_t descriptor;
4179 	u32 *request = (u32 *)&descriptor;
4180 
4181 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4182 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183 	descriptor.SMID = cpu_to_le16(smid);
4184 
4185 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4186 }
4187 
4188 /**
4189  * _base_display_OEMs_branding - Display branding string
4190  * @ioc: per adapter object
4191  */
4192 static void
4193 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4194 {
4195 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4196 		return;
4197 
4198 	switch (ioc->pdev->subsystem_vendor) {
4199 	case PCI_VENDOR_ID_INTEL:
4200 		switch (ioc->pdev->device) {
4201 		case MPI2_MFGPAGE_DEVID_SAS2008:
4202 			switch (ioc->pdev->subsystem_device) {
4203 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4204 				ioc_info(ioc, "%s\n",
4205 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4206 				break;
4207 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4208 				ioc_info(ioc, "%s\n",
4209 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4210 				break;
4211 			case MPT2SAS_INTEL_SSD910_SSDID:
4212 				ioc_info(ioc, "%s\n",
4213 					 MPT2SAS_INTEL_SSD910_BRANDING);
4214 				break;
4215 			default:
4216 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4217 					 ioc->pdev->subsystem_device);
4218 				break;
4219 			}
4220 			break;
4221 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4222 			switch (ioc->pdev->subsystem_device) {
4223 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4224 				ioc_info(ioc, "%s\n",
4225 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4226 				break;
4227 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4228 				ioc_info(ioc, "%s\n",
4229 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4230 				break;
4231 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4232 				ioc_info(ioc, "%s\n",
4233 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4234 				break;
4235 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4236 				ioc_info(ioc, "%s\n",
4237 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4238 				break;
4239 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4240 				ioc_info(ioc, "%s\n",
4241 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4242 				break;
4243 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4244 				ioc_info(ioc, "%s\n",
4245 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4246 				break;
4247 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4248 				ioc_info(ioc, "%s\n",
4249 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4250 				break;
4251 			default:
4252 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4253 					 ioc->pdev->subsystem_device);
4254 				break;
4255 			}
4256 			break;
4257 		case MPI25_MFGPAGE_DEVID_SAS3008:
4258 			switch (ioc->pdev->subsystem_device) {
4259 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4260 				ioc_info(ioc, "%s\n",
4261 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4262 				break;
4263 
4264 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4265 				ioc_info(ioc, "%s\n",
4266 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4267 				break;
4268 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4269 				ioc_info(ioc, "%s\n",
4270 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4271 				break;
4272 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4273 				ioc_info(ioc, "%s\n",
4274 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4275 				break;
4276 			default:
4277 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4278 					 ioc->pdev->subsystem_device);
4279 				break;
4280 			}
4281 			break;
4282 		default:
4283 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4284 				 ioc->pdev->subsystem_device);
4285 			break;
4286 		}
4287 		break;
4288 	case PCI_VENDOR_ID_DELL:
4289 		switch (ioc->pdev->device) {
4290 		case MPI2_MFGPAGE_DEVID_SAS2008:
4291 			switch (ioc->pdev->subsystem_device) {
4292 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4293 				ioc_info(ioc, "%s\n",
4294 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4295 				break;
4296 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4297 				ioc_info(ioc, "%s\n",
4298 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4299 				break;
4300 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4301 				ioc_info(ioc, "%s\n",
4302 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4303 				break;
4304 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4305 				ioc_info(ioc, "%s\n",
4306 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4307 				break;
4308 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4309 				ioc_info(ioc, "%s\n",
4310 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4311 				break;
4312 			case MPT2SAS_DELL_PERC_H200_SSDID:
4313 				ioc_info(ioc, "%s\n",
4314 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4315 				break;
4316 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4317 				ioc_info(ioc, "%s\n",
4318 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4319 				break;
4320 			default:
4321 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4322 					 ioc->pdev->subsystem_device);
4323 				break;
4324 			}
4325 			break;
4326 		case MPI25_MFGPAGE_DEVID_SAS3008:
4327 			switch (ioc->pdev->subsystem_device) {
4328 			case MPT3SAS_DELL_12G_HBA_SSDID:
4329 				ioc_info(ioc, "%s\n",
4330 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4331 				break;
4332 			default:
4333 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4334 					 ioc->pdev->subsystem_device);
4335 				break;
4336 			}
4337 			break;
4338 		default:
4339 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4340 				 ioc->pdev->subsystem_device);
4341 			break;
4342 		}
4343 		break;
4344 	case PCI_VENDOR_ID_CISCO:
4345 		switch (ioc->pdev->device) {
4346 		case MPI25_MFGPAGE_DEVID_SAS3008:
4347 			switch (ioc->pdev->subsystem_device) {
4348 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4349 				ioc_info(ioc, "%s\n",
4350 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4351 				break;
4352 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4353 				ioc_info(ioc, "%s\n",
4354 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4355 				break;
4356 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4357 				ioc_info(ioc, "%s\n",
4358 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4359 				break;
4360 			default:
4361 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4362 					 ioc->pdev->subsystem_device);
4363 				break;
4364 			}
4365 			break;
4366 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4367 			switch (ioc->pdev->subsystem_device) {
4368 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4369 				ioc_info(ioc, "%s\n",
4370 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4371 				break;
4372 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4373 				ioc_info(ioc, "%s\n",
4374 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4375 				break;
4376 			default:
4377 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4378 					 ioc->pdev->subsystem_device);
4379 				break;
4380 			}
4381 			break;
4382 		default:
4383 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4384 				 ioc->pdev->subsystem_device);
4385 			break;
4386 		}
4387 		break;
4388 	case MPT2SAS_HP_3PAR_SSVID:
4389 		switch (ioc->pdev->device) {
4390 		case MPI2_MFGPAGE_DEVID_SAS2004:
4391 			switch (ioc->pdev->subsystem_device) {
4392 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4393 				ioc_info(ioc, "%s\n",
4394 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4395 				break;
4396 			default:
4397 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4398 					 ioc->pdev->subsystem_device);
4399 				break;
4400 			}
4401 			break;
4402 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4403 			switch (ioc->pdev->subsystem_device) {
4404 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4405 				ioc_info(ioc, "%s\n",
4406 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4407 				break;
4408 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4409 				ioc_info(ioc, "%s\n",
4410 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4411 				break;
4412 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4413 				ioc_info(ioc, "%s\n",
4414 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4415 				break;
4416 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4417 				ioc_info(ioc, "%s\n",
4418 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4419 				break;
4420 			default:
4421 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4422 					 ioc->pdev->subsystem_device);
4423 				break;
4424 			}
4425 			break;
4426 		default:
4427 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4428 				 ioc->pdev->subsystem_device);
4429 			break;
4430 		}
4431 	default:
4432 		break;
4433 	}
4434 }
4435 
4436 /**
4437  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4438  *				version from FW Image Header.
4439  * @ioc: per adapter object
4440  *
4441  * Return: 0 for success, non-zero for failure.
4442  */
4443 	static int
4444 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4445 {
4446 	Mpi2FWImageHeader_t *fw_img_hdr;
4447 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4448 	Mpi25FWUploadRequest_t *mpi_request;
4449 	Mpi2FWUploadReply_t mpi_reply;
4450 	int r = 0;
4451 	u32  package_version = 0;
4452 	void *fwpkg_data = NULL;
4453 	dma_addr_t fwpkg_data_dma;
4454 	u16 smid, ioc_status;
4455 	size_t data_length;
4456 
4457 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4458 
4459 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4460 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4461 		return -EAGAIN;
4462 	}
4463 
4464 	data_length = sizeof(Mpi2FWImageHeader_t);
4465 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4466 			&fwpkg_data_dma, GFP_KERNEL);
4467 	if (!fwpkg_data) {
4468 		ioc_err(ioc,
4469 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4470 			__FILE__, __LINE__, __func__);
4471 		return -ENOMEM;
4472 	}
4473 
4474 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4475 	if (!smid) {
4476 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4477 		r = -EAGAIN;
4478 		goto out;
4479 	}
4480 
4481 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4482 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4483 	ioc->base_cmds.smid = smid;
4484 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4485 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4486 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4487 	mpi_request->ImageSize = cpu_to_le32(data_length);
4488 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4489 			data_length);
4490 	init_completion(&ioc->base_cmds.done);
4491 	ioc->put_smid_default(ioc, smid);
4492 	/* Wait for 15 seconds */
4493 	wait_for_completion_timeout(&ioc->base_cmds.done,
4494 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4495 	ioc_info(ioc, "%s: complete\n", __func__);
4496 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4497 		ioc_err(ioc, "%s: timeout\n", __func__);
4498 		_debug_dump_mf(mpi_request,
4499 				sizeof(Mpi25FWUploadRequest_t)/4);
4500 		r = -ETIME;
4501 	} else {
4502 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4503 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4504 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4505 					sizeof(Mpi2FWUploadReply_t));
4506 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4507 						MPI2_IOCSTATUS_MASK;
4508 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4509 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4510 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4511 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4512 					cmp_img_hdr =
4513 					    (Mpi26ComponentImageHeader_t *)
4514 					    (fwpkg_data);
4515 					package_version =
4516 					    le32_to_cpu(
4517 					    cmp_img_hdr->ApplicationSpecific);
4518 				} else
4519 					package_version =
4520 					    le32_to_cpu(
4521 					    fw_img_hdr->PackageVersion.Word);
4522 				if (package_version)
4523 					ioc_info(ioc,
4524 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4525 					((package_version) & 0xFF000000) >> 24,
4526 					((package_version) & 0x00FF0000) >> 16,
4527 					((package_version) & 0x0000FF00) >> 8,
4528 					(package_version) & 0x000000FF);
4529 			} else {
4530 				_debug_dump_mf(&mpi_reply,
4531 						sizeof(Mpi2FWUploadReply_t)/4);
4532 			}
4533 		}
4534 	}
4535 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4536 out:
4537 	if (fwpkg_data)
4538 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4539 				fwpkg_data_dma);
4540 	return r;
4541 }
4542 
4543 /**
4544  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4545  * @ioc: per adapter object
4546  */
4547 static void
4548 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4549 {
4550 	int i = 0;
4551 	char desc[16];
4552 	u32 iounit_pg1_flags;
4553 	u32 bios_version;
4554 
4555 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4556 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4557 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4558 		 desc,
4559 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4560 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4561 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4562 		 ioc->facts.FWVersion.Word & 0x000000FF,
4563 		 ioc->pdev->revision,
4564 		 (bios_version & 0xFF000000) >> 24,
4565 		 (bios_version & 0x00FF0000) >> 16,
4566 		 (bios_version & 0x0000FF00) >> 8,
4567 		 bios_version & 0x000000FF);
4568 
4569 	_base_display_OEMs_branding(ioc);
4570 
4571 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4572 		pr_info("%sNVMe", i ? "," : "");
4573 		i++;
4574 	}
4575 
4576 	ioc_info(ioc, "Protocol=(");
4577 
4578 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4579 		pr_cont("Initiator");
4580 		i++;
4581 	}
4582 
4583 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4584 		pr_cont("%sTarget", i ? "," : "");
4585 		i++;
4586 	}
4587 
4588 	i = 0;
4589 	pr_cont("), Capabilities=(");
4590 
4591 	if (!ioc->hide_ir_msg) {
4592 		if (ioc->facts.IOCCapabilities &
4593 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4594 			pr_cont("Raid");
4595 			i++;
4596 		}
4597 	}
4598 
4599 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4600 		pr_cont("%sTLR", i ? "," : "");
4601 		i++;
4602 	}
4603 
4604 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4605 		pr_cont("%sMulticast", i ? "," : "");
4606 		i++;
4607 	}
4608 
4609 	if (ioc->facts.IOCCapabilities &
4610 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4611 		pr_cont("%sBIDI Target", i ? "," : "");
4612 		i++;
4613 	}
4614 
4615 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4616 		pr_cont("%sEEDP", i ? "," : "");
4617 		i++;
4618 	}
4619 
4620 	if (ioc->facts.IOCCapabilities &
4621 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4622 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4623 		i++;
4624 	}
4625 
4626 	if (ioc->facts.IOCCapabilities &
4627 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4628 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4629 		i++;
4630 	}
4631 
4632 	if (ioc->facts.IOCCapabilities &
4633 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4634 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4635 		i++;
4636 	}
4637 
4638 	if (ioc->facts.IOCCapabilities &
4639 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4640 		pr_cont("%sTask Set Full", i ? "," : "");
4641 		i++;
4642 	}
4643 
4644 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4645 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4646 		pr_cont("%sNCQ", i ? "," : "");
4647 		i++;
4648 	}
4649 
4650 	pr_cont(")\n");
4651 }
4652 
4653 /**
4654  * mpt3sas_base_update_missing_delay - change the missing delay timers
4655  * @ioc: per adapter object
4656  * @device_missing_delay: amount of time till device is reported missing
4657  * @io_missing_delay: interval IO is returned when there is a missing device
4658  *
4659  * Passed on the command line, this function will modify the device missing
4660  * delay, as well as the io missing delay. This should be called at driver
4661  * load time.
4662  */
4663 void
4664 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4665 	u16 device_missing_delay, u8 io_missing_delay)
4666 {
4667 	u16 dmd, dmd_new, dmd_orignal;
4668 	u8 io_missing_delay_original;
4669 	u16 sz;
4670 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4671 	Mpi2ConfigReply_t mpi_reply;
4672 	u8 num_phys = 0;
4673 	u16 ioc_status;
4674 
4675 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4676 	if (!num_phys)
4677 		return;
4678 
4679 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4680 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4681 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4682 	if (!sas_iounit_pg1) {
4683 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4684 			__FILE__, __LINE__, __func__);
4685 		goto out;
4686 	}
4687 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4688 	    sas_iounit_pg1, sz))) {
4689 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4690 			__FILE__, __LINE__, __func__);
4691 		goto out;
4692 	}
4693 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4694 	    MPI2_IOCSTATUS_MASK;
4695 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4696 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4697 			__FILE__, __LINE__, __func__);
4698 		goto out;
4699 	}
4700 
4701 	/* device missing delay */
4702 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4703 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4704 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4705 	else
4706 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4707 	dmd_orignal = dmd;
4708 	if (device_missing_delay > 0x7F) {
4709 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4710 		    device_missing_delay;
4711 		dmd = dmd / 16;
4712 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4713 	} else
4714 		dmd = device_missing_delay;
4715 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4716 
4717 	/* io missing delay */
4718 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4719 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4720 
4721 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4722 	    sz)) {
4723 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4724 			dmd_new = (dmd &
4725 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4726 		else
4727 			dmd_new =
4728 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4729 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4730 			 dmd_orignal, dmd_new);
4731 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4732 			 io_missing_delay_original,
4733 			 io_missing_delay);
4734 		ioc->device_missing_delay = dmd_new;
4735 		ioc->io_missing_delay = io_missing_delay;
4736 	}
4737 
4738 out:
4739 	kfree(sas_iounit_pg1);
4740 }
4741 
4742 /**
4743  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4744  *    according to performance mode.
4745  * @ioc : per adapter object
4746  *
4747  * Return nothing.
4748  */
4749 static void
4750 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4751 {
4752 	Mpi2IOCPage1_t ioc_pg1;
4753 	Mpi2ConfigReply_t mpi_reply;
4754 
4755 	mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4756 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4757 
4758 	switch (perf_mode) {
4759 	case MPT_PERF_MODE_DEFAULT:
4760 	case MPT_PERF_MODE_BALANCED:
4761 		if (ioc->high_iops_queues) {
4762 			ioc_info(ioc,
4763 				"Enable interrupt coalescing only for first\t"
4764 				"%d reply queues\n",
4765 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4766 			/*
4767 			 * If 31st bit is zero then interrupt coalescing is
4768 			 * enabled for all reply descriptor post queues.
4769 			 * If 31st bit is set to one then user can
4770 			 * enable/disable interrupt coalescing on per reply
4771 			 * descriptor post queue group(8) basis. So to enable
4772 			 * interrupt coalescing only on first reply descriptor
4773 			 * post queue group 31st bit and zero th bit is enabled.
4774 			 */
4775 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4776 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4777 			mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4778 			ioc_info(ioc, "performance mode: balanced\n");
4779 			return;
4780 		}
4781 		fallthrough;
4782 	case MPT_PERF_MODE_LATENCY:
4783 		/*
4784 		 * Enable interrupt coalescing on all reply queues
4785 		 * with timeout value 0xA
4786 		 */
4787 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4788 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4789 		ioc_pg1.ProductSpecific = 0;
4790 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4791 		ioc_info(ioc, "performance mode: latency\n");
4792 		break;
4793 	case MPT_PERF_MODE_IOPS:
4794 		/*
4795 		 * Enable interrupt coalescing on all reply queues.
4796 		 */
4797 		ioc_info(ioc,
4798 		    "performance mode: iops with coalescing timeout: 0x%x\n",
4799 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4800 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4801 		ioc_pg1.ProductSpecific = 0;
4802 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4803 		break;
4804 	}
4805 }
4806 
4807 /**
4808  * _base_get_event_diag_triggers - get event diag trigger values from
4809  *				persistent pages
4810  * @ioc : per adapter object
4811  *
4812  * Return nothing.
4813  */
4814 static void
4815 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4816 {
4817 	Mpi26DriverTriggerPage2_t trigger_pg2;
4818 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
4819 	MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
4820 	Mpi2ConfigReply_t mpi_reply;
4821 	int r = 0, i = 0;
4822 	u16 count = 0;
4823 	u16 ioc_status;
4824 
4825 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
4826 	    &trigger_pg2);
4827 	if (r)
4828 		return;
4829 
4830 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4831 	    MPI2_IOCSTATUS_MASK;
4832 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4833 		dinitprintk(ioc,
4834 		    ioc_err(ioc,
4835 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
4836 		   __func__, ioc_status));
4837 		return;
4838 	}
4839 
4840 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
4841 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
4842 		count = min_t(u16, NUM_VALID_ENTRIES, count);
4843 		ioc->diag_trigger_event.ValidEntries = count;
4844 
4845 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
4846 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
4847 		for (i = 0; i < count; i++) {
4848 			event_tg->EventValue = le16_to_cpu(
4849 			    mpi_event_tg->MPIEventCode);
4850 			event_tg->LogEntryQualifier = le16_to_cpu(
4851 			    mpi_event_tg->MPIEventCodeSpecific);
4852 			event_tg++;
4853 			mpi_event_tg++;
4854 		}
4855 	}
4856 }
4857 
4858 /**
4859  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
4860  *				persistent pages
4861  * @ioc : per adapter object
4862  *
4863  * Return nothing.
4864  */
4865 static void
4866 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4867 {
4868 	Mpi26DriverTriggerPage3_t trigger_pg3;
4869 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
4870 	MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
4871 	Mpi2ConfigReply_t mpi_reply;
4872 	int r = 0, i = 0;
4873 	u16 count = 0;
4874 	u16 ioc_status;
4875 
4876 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
4877 	    &trigger_pg3);
4878 	if (r)
4879 		return;
4880 
4881 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4882 	    MPI2_IOCSTATUS_MASK;
4883 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4884 		dinitprintk(ioc,
4885 		    ioc_err(ioc,
4886 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
4887 		    __func__, ioc_status));
4888 		return;
4889 	}
4890 
4891 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
4892 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
4893 		count = min_t(u16, NUM_VALID_ENTRIES, count);
4894 		ioc->diag_trigger_scsi.ValidEntries = count;
4895 
4896 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
4897 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
4898 		for (i = 0; i < count; i++) {
4899 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
4900 			scsi_tg->ASC = mpi_scsi_tg->ASC;
4901 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
4902 
4903 			scsi_tg++;
4904 			mpi_scsi_tg++;
4905 		}
4906 	}
4907 }
4908 
4909 /**
4910  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
4911  *				persistent pages
4912  * @ioc : per adapter object
4913  *
4914  * Return nothing.
4915  */
4916 static void
4917 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4918 {
4919 	Mpi26DriverTriggerPage4_t trigger_pg4;
4920 	struct SL_WH_MPI_TRIGGER_T *status_tg;
4921 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
4922 	Mpi2ConfigReply_t mpi_reply;
4923 	int r = 0, i = 0;
4924 	u16 count = 0;
4925 	u16 ioc_status;
4926 
4927 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
4928 	    &trigger_pg4);
4929 	if (r)
4930 		return;
4931 
4932 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4933 	    MPI2_IOCSTATUS_MASK;
4934 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4935 		dinitprintk(ioc,
4936 		    ioc_err(ioc,
4937 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
4938 		    __func__, ioc_status));
4939 		return;
4940 	}
4941 
4942 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
4943 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
4944 		count = min_t(u16, NUM_VALID_ENTRIES, count);
4945 		ioc->diag_trigger_mpi.ValidEntries = count;
4946 
4947 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
4948 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
4949 
4950 		for (i = 0; i < count; i++) {
4951 			status_tg->IOCStatus = le16_to_cpu(
4952 			    mpi_status_tg->IOCStatus);
4953 			status_tg->IocLogInfo = le32_to_cpu(
4954 			    mpi_status_tg->LogInfo);
4955 
4956 			status_tg++;
4957 			mpi_status_tg++;
4958 		}
4959 	}
4960 }
4961 
4962 /**
4963  * _base_get_master_diag_triggers - get master diag trigger values from
4964  *				persistent pages
4965  * @ioc : per adapter object
4966  *
4967  * Return nothing.
4968  */
4969 static void
4970 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4971 {
4972 	Mpi26DriverTriggerPage1_t trigger_pg1;
4973 	Mpi2ConfigReply_t mpi_reply;
4974 	int r;
4975 	u16 ioc_status;
4976 
4977 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
4978 	    &trigger_pg1);
4979 	if (r)
4980 		return;
4981 
4982 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4983 	    MPI2_IOCSTATUS_MASK;
4984 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4985 		dinitprintk(ioc,
4986 		    ioc_err(ioc,
4987 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
4988 		   __func__, ioc_status));
4989 		return;
4990 	}
4991 
4992 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
4993 		ioc->diag_trigger_master.MasterData |=
4994 		    le32_to_cpu(
4995 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
4996 }
4997 
4998 /**
4999  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5000  *					driver trigger pages or not
5001  * @ioc : per adapter object
5002  *
5003  * Returns trigger flags mask if HBA FW supports driver trigger pages,
5004  * otherwise returns EFAULT.
5005  */
5006 static int
5007 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc)
5008 {
5009 	Mpi26DriverTriggerPage0_t trigger_pg0;
5010 	int r = 0;
5011 	Mpi2ConfigReply_t mpi_reply;
5012 	u16 ioc_status;
5013 
5014 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5015 	    &trigger_pg0);
5016 	if (r)
5017 		return -EFAULT;
5018 
5019 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5020 	    MPI2_IOCSTATUS_MASK;
5021 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5022 		return -EFAULT;
5023 
5024 	return le16_to_cpu(trigger_pg0.TriggerFlags);
5025 }
5026 
5027 /**
5028  * _base_get_diag_triggers - Retrieve diag trigger values from
5029  *				persistent pages.
5030  * @ioc : per adapter object
5031  *
5032  * Return nothing.
5033  */
5034 static void
5035 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5036 {
5037 	int trigger_flags;
5038 
5039 	/*
5040 	 * Default setting of master trigger.
5041 	 */
5042 	ioc->diag_trigger_master.MasterData =
5043 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5044 
5045 	trigger_flags = _base_check_for_trigger_pages_support(ioc);
5046 	if (trigger_flags < 0)
5047 		return;
5048 
5049 	ioc->supports_trigger_pages = 1;
5050 
5051 	/*
5052 	 * Retrieve master diag trigger values from driver trigger pg1
5053 	 * if master trigger bit enabled in TriggerFlags.
5054 	 */
5055 	if ((u16)trigger_flags &
5056 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID)
5057 		_base_get_master_diag_triggers(ioc);
5058 
5059 	/*
5060 	 * Retrieve event diag trigger values from driver trigger pg2
5061 	 * if event trigger bit enabled in TriggerFlags.
5062 	 */
5063 	if ((u16)trigger_flags &
5064 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID)
5065 		_base_get_event_diag_triggers(ioc);
5066 
5067 	/*
5068 	 * Retrieve scsi diag trigger values from driver trigger pg3
5069 	 * if scsi trigger bit enabled in TriggerFlags.
5070 	 */
5071 	if ((u16)trigger_flags &
5072 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID)
5073 		_base_get_scsi_diag_triggers(ioc);
5074 	/*
5075 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5076 	 * if loginfo trigger bit enabled in TriggerFlags.
5077 	 */
5078 	if ((u16)trigger_flags &
5079 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID)
5080 		_base_get_mpi_diag_triggers(ioc);
5081 }
5082 
5083 /**
5084  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5085  *			online FW update, incase updated FW supports driver
5086  *			trigger pages.
5087  * @ioc : per adapter object
5088  *
5089  * Return nothing.
5090  */
5091 static void
5092 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5093 {
5094 
5095 	if (ioc->diag_trigger_master.MasterData)
5096 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5097 		    &ioc->diag_trigger_master, 1);
5098 
5099 	if (ioc->diag_trigger_event.ValidEntries)
5100 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5101 		    &ioc->diag_trigger_event, 1);
5102 
5103 	if (ioc->diag_trigger_scsi.ValidEntries)
5104 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5105 		    &ioc->diag_trigger_scsi, 1);
5106 
5107 	if (ioc->diag_trigger_mpi.ValidEntries)
5108 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5109 		    &ioc->diag_trigger_mpi, 1);
5110 }
5111 
5112 /**
5113  * _base_static_config_pages - static start of day config pages
5114  * @ioc: per adapter object
5115  */
5116 static void
5117 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5118 {
5119 	Mpi2ConfigReply_t mpi_reply;
5120 	u32 iounit_pg1_flags;
5121 	int tg_flags = 0;
5122 	ioc->nvme_abort_timeout = 30;
5123 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
5124 	if (ioc->ir_firmware)
5125 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5126 		    &ioc->manu_pg10);
5127 
5128 	/*
5129 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5130 	 * flag unset in NVDATA.
5131 	 */
5132 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
5133 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5134 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5135 		    ioc->name);
5136 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5137 		ioc->manu_pg11.EEDPTagMode |= 0x1;
5138 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5139 		    &ioc->manu_pg11);
5140 	}
5141 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5142 		ioc->tm_custom_handling = 1;
5143 	else {
5144 		ioc->tm_custom_handling = 0;
5145 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5146 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5147 		else if (ioc->manu_pg11.NVMeAbortTO >
5148 					NVME_TASK_ABORT_MAX_TIMEOUT)
5149 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5150 		else
5151 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5152 	}
5153 	ioc->time_sync_interval =
5154 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5155 	if (ioc->time_sync_interval) {
5156 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5157 			ioc->time_sync_interval =
5158 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5159 		else
5160 			ioc->time_sync_interval =
5161 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5162 		dinitprintk(ioc, ioc_info(ioc,
5163 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5164 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5165 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5166 	} else {
5167 		if (ioc->is_gen35_ioc)
5168 			ioc_warn(ioc,
5169 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5170 	}
5171 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5172 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5173 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5174 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5175 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5176 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5177 	_base_display_ioc_capabilities(ioc);
5178 
5179 	/*
5180 	 * Enable task_set_full handling in iounit_pg1 when the
5181 	 * facts capabilities indicate that its supported.
5182 	 */
5183 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5184 	if ((ioc->facts.IOCCapabilities &
5185 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5186 		iounit_pg1_flags &=
5187 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5188 	else
5189 		iounit_pg1_flags |=
5190 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5191 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5192 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5193 
5194 	if (ioc->iounit_pg8.NumSensors)
5195 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5196 	if (ioc->is_aero_ioc)
5197 		_base_update_ioc_page1_inlinewith_perf_mode(ioc);
5198 	if (ioc->is_gen35_ioc) {
5199 		if (ioc->is_driver_loading)
5200 			_base_get_diag_triggers(ioc);
5201 		else {
5202 			/*
5203 			 * In case of online HBA FW update operation,
5204 			 * check whether updated FW supports the driver trigger
5205 			 * pages or not.
5206 			 * - If previous FW has not supported driver trigger
5207 			 *   pages and newer FW supports them then update these
5208 			 *   pages with current diag trigger values.
5209 			 * - If previous FW has supported driver trigger pages
5210 			 *   and new FW doesn't support them then disable
5211 			 *   support_trigger_pages flag.
5212 			 */
5213 			tg_flags = _base_check_for_trigger_pages_support(ioc);
5214 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5215 				_base_update_diag_trigger_pages(ioc);
5216 			else if (ioc->supports_trigger_pages &&
5217 			    tg_flags == -EFAULT)
5218 				ioc->supports_trigger_pages = 0;
5219 		}
5220 	}
5221 }
5222 
5223 /**
5224  * mpt3sas_free_enclosure_list - release memory
5225  * @ioc: per adapter object
5226  *
5227  * Free memory allocated during encloure add.
5228  */
5229 void
5230 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5231 {
5232 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5233 
5234 	/* Free enclosure list */
5235 	list_for_each_entry_safe(enclosure_dev,
5236 			enclosure_dev_next, &ioc->enclosure_list, list) {
5237 		list_del(&enclosure_dev->list);
5238 		kfree(enclosure_dev);
5239 	}
5240 }
5241 
5242 /**
5243  * _base_release_memory_pools - release memory
5244  * @ioc: per adapter object
5245  *
5246  * Free memory allocated from _base_allocate_memory_pools.
5247  */
5248 static void
5249 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5250 {
5251 	int i = 0;
5252 	int j = 0;
5253 	int dma_alloc_count = 0;
5254 	struct chain_tracker *ct;
5255 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5256 
5257 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5258 
5259 	if (ioc->request) {
5260 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5261 		    ioc->request,  ioc->request_dma);
5262 		dexitprintk(ioc,
5263 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5264 				     ioc->request));
5265 		ioc->request = NULL;
5266 	}
5267 
5268 	if (ioc->sense) {
5269 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5270 		dma_pool_destroy(ioc->sense_dma_pool);
5271 		dexitprintk(ioc,
5272 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5273 				     ioc->sense));
5274 		ioc->sense = NULL;
5275 	}
5276 
5277 	if (ioc->reply) {
5278 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5279 		dma_pool_destroy(ioc->reply_dma_pool);
5280 		dexitprintk(ioc,
5281 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5282 				     ioc->reply));
5283 		ioc->reply = NULL;
5284 	}
5285 
5286 	if (ioc->reply_free) {
5287 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5288 		    ioc->reply_free_dma);
5289 		dma_pool_destroy(ioc->reply_free_dma_pool);
5290 		dexitprintk(ioc,
5291 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5292 				     ioc->reply_free));
5293 		ioc->reply_free = NULL;
5294 	}
5295 
5296 	if (ioc->reply_post) {
5297 		dma_alloc_count = DIV_ROUND_UP(count,
5298 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5299 		for (i = 0; i < count; i++) {
5300 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5301 			    && dma_alloc_count) {
5302 				if (ioc->reply_post[i].reply_post_free) {
5303 					dma_pool_free(
5304 					    ioc->reply_post_free_dma_pool,
5305 					    ioc->reply_post[i].reply_post_free,
5306 					ioc->reply_post[i].reply_post_free_dma);
5307 					dexitprintk(ioc, ioc_info(ioc,
5308 					   "reply_post_free_pool(0x%p): free\n",
5309 					   ioc->reply_post[i].reply_post_free));
5310 					ioc->reply_post[i].reply_post_free =
5311 									NULL;
5312 				}
5313 				--dma_alloc_count;
5314 			}
5315 		}
5316 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5317 		if (ioc->reply_post_free_array &&
5318 			ioc->rdpq_array_enable) {
5319 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5320 			    ioc->reply_post_free_array,
5321 			    ioc->reply_post_free_array_dma);
5322 			ioc->reply_post_free_array = NULL;
5323 		}
5324 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5325 		kfree(ioc->reply_post);
5326 	}
5327 
5328 	if (ioc->pcie_sgl_dma_pool) {
5329 		for (i = 0; i < ioc->scsiio_depth; i++) {
5330 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5331 					ioc->pcie_sg_lookup[i].pcie_sgl,
5332 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5333 		}
5334 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5335 	}
5336 
5337 	if (ioc->config_page) {
5338 		dexitprintk(ioc,
5339 			    ioc_info(ioc, "config_page(0x%p): free\n",
5340 				     ioc->config_page));
5341 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5342 		    ioc->config_page, ioc->config_page_dma);
5343 	}
5344 
5345 	kfree(ioc->hpr_lookup);
5346 	ioc->hpr_lookup = NULL;
5347 	kfree(ioc->internal_lookup);
5348 	ioc->internal_lookup = NULL;
5349 	if (ioc->chain_lookup) {
5350 		for (i = 0; i < ioc->scsiio_depth; i++) {
5351 			for (j = ioc->chains_per_prp_buffer;
5352 			    j < ioc->chains_needed_per_io; j++) {
5353 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5354 				if (ct && ct->chain_buffer)
5355 					dma_pool_free(ioc->chain_dma_pool,
5356 						ct->chain_buffer,
5357 						ct->chain_buffer_dma);
5358 			}
5359 			kfree(ioc->chain_lookup[i].chains_per_smid);
5360 		}
5361 		dma_pool_destroy(ioc->chain_dma_pool);
5362 		kfree(ioc->chain_lookup);
5363 		ioc->chain_lookup = NULL;
5364 	}
5365 }
5366 
5367 /**
5368  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5369  *	having same upper 32bits in their base memory address.
5370  * @reply_pool_start_address: Base address of a reply queue set
5371  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5372  *
5373  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5374  * memory address, else 0.
5375  */
5376 
5377 static int
5378 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5379 {
5380 	long reply_pool_end_address;
5381 
5382 	reply_pool_end_address = reply_pool_start_address + pool_sz;
5383 
5384 	if (upper_32_bits(reply_pool_start_address) ==
5385 		upper_32_bits(reply_pool_end_address))
5386 		return 1;
5387 	else
5388 		return 0;
5389 }
5390 
5391 /**
5392  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5393  *                     for reply queues.
5394  * @ioc: per adapter object
5395  * @sz: DMA Pool size
5396  * Return: 0 for success, non-zero for failure.
5397  */
5398 static int
5399 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5400 {
5401 	int i = 0;
5402 	u32 dma_alloc_count = 0;
5403 	int reply_post_free_sz = ioc->reply_post_queue_depth *
5404 		sizeof(Mpi2DefaultReplyDescriptor_t);
5405 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5406 
5407 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5408 			GFP_KERNEL);
5409 	if (!ioc->reply_post)
5410 		return -ENOMEM;
5411 	/*
5412 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5413 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5414 	 *  be within 4GB boundary i.e reply queues in a set must have same
5415 	 *  upper 32-bits in their memory address. so here driver is allocating
5416 	 *  the DMA'able memory for reply queues according.
5417 	 *  Driver uses limitation of
5418 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
5419 	 */
5420 	dma_alloc_count = DIV_ROUND_UP(count,
5421 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5422 	ioc->reply_post_free_dma_pool =
5423 		dma_pool_create("reply_post_free pool",
5424 		    &ioc->pdev->dev, sz, 16, 0);
5425 	if (!ioc->reply_post_free_dma_pool)
5426 		return -ENOMEM;
5427 	for (i = 0; i < count; i++) {
5428 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5429 			ioc->reply_post[i].reply_post_free =
5430 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5431 				GFP_KERNEL,
5432 				&ioc->reply_post[i].reply_post_free_dma);
5433 			if (!ioc->reply_post[i].reply_post_free)
5434 				return -ENOMEM;
5435 			/*
5436 			 * Each set of RDPQ pool must satisfy 4gb boundary
5437 			 * restriction.
5438 			 * 1) Check if allocated resources for RDPQ pool are in
5439 			 *	the same 4GB range.
5440 			 * 2) If #1 is true, continue with 64 bit DMA.
5441 			 * 3) If #1 is false, return 1. which means free all the
5442 			 * resources and set DMA mask to 32 and allocate.
5443 			 */
5444 			if (!mpt3sas_check_same_4gb_region(
5445 				(long)ioc->reply_post[i].reply_post_free, sz)) {
5446 				dinitprintk(ioc,
5447 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
5448 				    "reply_post_free_dma = (0x%llx)\n",
5449 				    ioc->reply_post[i].reply_post_free,
5450 				    (unsigned long long)
5451 				    ioc->reply_post[i].reply_post_free_dma));
5452 				return -EAGAIN;
5453 			}
5454 			dma_alloc_count--;
5455 
5456 		} else {
5457 			ioc->reply_post[i].reply_post_free =
5458 			    (Mpi2ReplyDescriptorsUnion_t *)
5459 			    ((long)ioc->reply_post[i-1].reply_post_free
5460 			    + reply_post_free_sz);
5461 			ioc->reply_post[i].reply_post_free_dma =
5462 			    (dma_addr_t)
5463 			    (ioc->reply_post[i-1].reply_post_free_dma +
5464 			    reply_post_free_sz);
5465 		}
5466 	}
5467 	return 0;
5468 }
5469 
5470 /**
5471  * _base_allocate_memory_pools - allocate start of day memory pools
5472  * @ioc: per adapter object
5473  *
5474  * Return: 0 success, anything else error.
5475  */
5476 static int
5477 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5478 {
5479 	struct mpt3sas_facts *facts;
5480 	u16 max_sge_elements;
5481 	u16 chains_needed_per_io;
5482 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5483 	u32 retry_sz;
5484 	u32 rdpq_sz = 0;
5485 	u16 max_request_credit, nvme_blocks_needed;
5486 	unsigned short sg_tablesize;
5487 	u16 sge_size;
5488 	int i, j;
5489 	int ret = 0;
5490 	struct chain_tracker *ct;
5491 
5492 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5493 
5494 
5495 	retry_sz = 0;
5496 	facts = &ioc->facts;
5497 
5498 	/* command line tunables for max sgl entries */
5499 	if (max_sgl_entries != -1)
5500 		sg_tablesize = max_sgl_entries;
5501 	else {
5502 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5503 			sg_tablesize = MPT2SAS_SG_DEPTH;
5504 		else
5505 			sg_tablesize = MPT3SAS_SG_DEPTH;
5506 	}
5507 
5508 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5509 	if (reset_devices)
5510 		sg_tablesize = min_t(unsigned short, sg_tablesize,
5511 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5512 
5513 	if (ioc->is_mcpu_endpoint)
5514 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5515 	else {
5516 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5517 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5518 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5519 			sg_tablesize = min_t(unsigned short, sg_tablesize,
5520 					SG_MAX_SEGMENTS);
5521 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5522 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5523 		}
5524 		ioc->shost->sg_tablesize = sg_tablesize;
5525 	}
5526 
5527 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5528 		(facts->RequestCredit / 4));
5529 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5530 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5531 				INTERNAL_SCSIIO_CMDS_COUNT)) {
5532 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5533 				facts->RequestCredit);
5534 			return -ENOMEM;
5535 		}
5536 		ioc->internal_depth = 10;
5537 	}
5538 
5539 	ioc->hi_priority_depth = ioc->internal_depth - (5);
5540 	/* command line tunables  for max controller queue depth */
5541 	if (max_queue_depth != -1 && max_queue_depth != 0) {
5542 		max_request_credit = min_t(u16, max_queue_depth +
5543 			ioc->internal_depth, facts->RequestCredit);
5544 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5545 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5546 	} else if (reset_devices)
5547 		max_request_credit = min_t(u16, facts->RequestCredit,
5548 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5549 	else
5550 		max_request_credit = min_t(u16, facts->RequestCredit,
5551 		    MAX_HBA_QUEUE_DEPTH);
5552 
5553 	/* Firmware maintains additional facts->HighPriorityCredit number of
5554 	 * credits for HiPriprity Request messages, so hba queue depth will be
5555 	 * sum of max_request_credit and high priority queue depth.
5556 	 */
5557 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5558 
5559 	/* request frame size */
5560 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
5561 
5562 	/* reply frame size */
5563 	ioc->reply_sz = facts->ReplyFrameSize * 4;
5564 
5565 	/* chain segment size */
5566 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5567 		if (facts->IOCMaxChainSegmentSize)
5568 			ioc->chain_segment_sz =
5569 					facts->IOCMaxChainSegmentSize *
5570 					MAX_CHAIN_ELEMT_SZ;
5571 		else
5572 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5573 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5574 						    MAX_CHAIN_ELEMT_SZ;
5575 	} else
5576 		ioc->chain_segment_sz = ioc->request_sz;
5577 
5578 	/* calculate the max scatter element size */
5579 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5580 
5581  retry_allocation:
5582 	total_sz = 0;
5583 	/* calculate number of sg elements left over in the 1st frame */
5584 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5585 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5586 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5587 
5588 	/* now do the same for a chain buffer */
5589 	max_sge_elements = ioc->chain_segment_sz - sge_size;
5590 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5591 
5592 	/*
5593 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5594 	 */
5595 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
5596 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5597 	    + 1;
5598 	if (chains_needed_per_io > facts->MaxChainDepth) {
5599 		chains_needed_per_io = facts->MaxChainDepth;
5600 		ioc->shost->sg_tablesize = min_t(u16,
5601 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5602 		* chains_needed_per_io), ioc->shost->sg_tablesize);
5603 	}
5604 	ioc->chains_needed_per_io = chains_needed_per_io;
5605 
5606 	/* reply free queue sizing - taking into account for 64 FW events */
5607 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5608 
5609 	/* mCPU manage single counters for simplicity */
5610 	if (ioc->is_mcpu_endpoint)
5611 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5612 	else {
5613 		/* calculate reply descriptor post queue depth */
5614 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5615 			ioc->reply_free_queue_depth +  1;
5616 		/* align the reply post queue on the next 16 count boundary */
5617 		if (ioc->reply_post_queue_depth % 16)
5618 			ioc->reply_post_queue_depth += 16 -
5619 				(ioc->reply_post_queue_depth % 16);
5620 	}
5621 
5622 	if (ioc->reply_post_queue_depth >
5623 	    facts->MaxReplyDescriptorPostQueueDepth) {
5624 		ioc->reply_post_queue_depth =
5625 				facts->MaxReplyDescriptorPostQueueDepth -
5626 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5627 		ioc->hba_queue_depth =
5628 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
5629 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5630 	}
5631 
5632 	ioc_info(ioc,
5633 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5634 	    "sge_per_io(%d), chains_per_io(%d)\n",
5635 	    ioc->max_sges_in_main_message,
5636 	    ioc->max_sges_in_chain_message,
5637 	    ioc->shost->sg_tablesize,
5638 	    ioc->chains_needed_per_io);
5639 
5640 	/* reply post queue, 16 byte align */
5641 	reply_post_free_sz = ioc->reply_post_queue_depth *
5642 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5643 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5644 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5645 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5646 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5647 	if (ret == -EAGAIN) {
5648 		/*
5649 		 * Free allocated bad RDPQ memory pools.
5650 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
5651 		 */
5652 		_base_release_memory_pools(ioc);
5653 		ioc->use_32bit_dma = true;
5654 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5655 			ioc_err(ioc,
5656 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5657 			return -ENODEV;
5658 		}
5659 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5660 			return -ENOMEM;
5661 	} else if (ret == -ENOMEM)
5662 		return -ENOMEM;
5663 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5664 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5665 	ioc->scsiio_depth = ioc->hba_queue_depth -
5666 	    ioc->hi_priority_depth - ioc->internal_depth;
5667 
5668 	/* set the scsi host can_queue depth
5669 	 * with some internal commands that could be outstanding
5670 	 */
5671 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5672 	dinitprintk(ioc,
5673 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5674 			     ioc->shost->can_queue));
5675 
5676 	/* contiguous pool for request and chains, 16 byte align, one extra "
5677 	 * "frame for smid=0
5678 	 */
5679 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5680 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5681 
5682 	/* hi-priority queue */
5683 	sz += (ioc->hi_priority_depth * ioc->request_sz);
5684 
5685 	/* internal queue */
5686 	sz += (ioc->internal_depth * ioc->request_sz);
5687 
5688 	ioc->request_dma_sz = sz;
5689 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5690 			&ioc->request_dma, GFP_KERNEL);
5691 	if (!ioc->request) {
5692 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5693 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5694 			ioc->request_sz, sz / 1024);
5695 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5696 			goto out;
5697 		retry_sz = 64;
5698 		ioc->hba_queue_depth -= retry_sz;
5699 		_base_release_memory_pools(ioc);
5700 		goto retry_allocation;
5701 	}
5702 
5703 	if (retry_sz)
5704 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5705 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5706 			ioc->request_sz, sz / 1024);
5707 
5708 	/* hi-priority queue */
5709 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5710 	    ioc->request_sz);
5711 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5712 	    ioc->request_sz);
5713 
5714 	/* internal queue */
5715 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5716 	    ioc->request_sz);
5717 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5718 	    ioc->request_sz);
5719 
5720 	ioc_info(ioc,
5721 	    "request pool(0x%p) - dma(0x%llx): "
5722 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5723 	    ioc->request, (unsigned long long) ioc->request_dma,
5724 	    ioc->hba_queue_depth, ioc->request_sz,
5725 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5726 
5727 	total_sz += sz;
5728 
5729 	dinitprintk(ioc,
5730 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5731 			     ioc->request, ioc->scsiio_depth));
5732 
5733 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5734 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5735 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5736 	if (!ioc->chain_lookup) {
5737 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5738 		goto out;
5739 	}
5740 
5741 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5742 	for (i = 0; i < ioc->scsiio_depth; i++) {
5743 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5744 		if (!ioc->chain_lookup[i].chains_per_smid) {
5745 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5746 			goto out;
5747 		}
5748 	}
5749 
5750 	/* initialize hi-priority queue smid's */
5751 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5752 	    sizeof(struct request_tracker), GFP_KERNEL);
5753 	if (!ioc->hpr_lookup) {
5754 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5755 		goto out;
5756 	}
5757 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5758 	dinitprintk(ioc,
5759 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5760 			     ioc->hi_priority,
5761 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
5762 
5763 	/* initialize internal queue smid's */
5764 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
5765 	    sizeof(struct request_tracker), GFP_KERNEL);
5766 	if (!ioc->internal_lookup) {
5767 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5768 		goto out;
5769 	}
5770 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5771 	dinitprintk(ioc,
5772 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5773 			     ioc->internal,
5774 			     ioc->internal_depth, ioc->internal_smid));
5775 	/*
5776 	 * The number of NVMe page sized blocks needed is:
5777 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5778 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5779 	 * that is placed in the main message frame.  8 is the size of each PRP
5780 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
5781 	 * because of the PRP list pointer entry at the end of a page, so this
5782 	 * is not counted as a PRP entry.  The 1 added page is a round up.
5783 	 *
5784 	 * To avoid allocation failures due to the amount of memory that could
5785 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
5786 	 * contiguous, so a new set is allocated for each possible I/O.
5787 	 */
5788 	ioc->chains_per_prp_buffer = 0;
5789 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5790 		nvme_blocks_needed =
5791 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5792 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5793 		nvme_blocks_needed++;
5794 
5795 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5796 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5797 		if (!ioc->pcie_sg_lookup) {
5798 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5799 			goto out;
5800 		}
5801 		sz = nvme_blocks_needed * ioc->page_size;
5802 		ioc->pcie_sgl_dma_pool =
5803 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5804 		if (!ioc->pcie_sgl_dma_pool) {
5805 			ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5806 			goto out;
5807 		}
5808 
5809 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5810 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5811 						ioc->chains_needed_per_io);
5812 
5813 		for (i = 0; i < ioc->scsiio_depth; i++) {
5814 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5815 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5816 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5817 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5818 				ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5819 				goto out;
5820 			}
5821 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5822 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5823 				ct->chain_buffer =
5824 				    ioc->pcie_sg_lookup[i].pcie_sgl +
5825 				    (j * ioc->chain_segment_sz);
5826 				ct->chain_buffer_dma =
5827 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5828 				    (j * ioc->chain_segment_sz);
5829 			}
5830 		}
5831 
5832 		dinitprintk(ioc,
5833 			    ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5834 				     ioc->scsiio_depth, sz,
5835 				     (sz * ioc->scsiio_depth) / 1024));
5836 		dinitprintk(ioc,
5837 			    ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5838 				     ioc->chains_per_prp_buffer));
5839 		total_sz += sz * ioc->scsiio_depth;
5840 	}
5841 
5842 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5843 	    ioc->chain_segment_sz, 16, 0);
5844 	if (!ioc->chain_dma_pool) {
5845 		ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5846 		goto out;
5847 	}
5848 	for (i = 0; i < ioc->scsiio_depth; i++) {
5849 		for (j = ioc->chains_per_prp_buffer;
5850 				j < ioc->chains_needed_per_io; j++) {
5851 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5852 			ct->chain_buffer = dma_pool_alloc(
5853 					ioc->chain_dma_pool, GFP_KERNEL,
5854 					&ct->chain_buffer_dma);
5855 			if (!ct->chain_buffer) {
5856 				ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5857 				goto out;
5858 			}
5859 		}
5860 		total_sz += ioc->chain_segment_sz;
5861 	}
5862 
5863 	dinitprintk(ioc,
5864 		    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5865 			     ioc->chain_depth, ioc->chain_segment_sz,
5866 			     (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5867 
5868 	/* sense buffers, 4 byte align */
5869 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5870 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5871 					      4, 0);
5872 	if (!ioc->sense_dma_pool) {
5873 		ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5874 		goto out;
5875 	}
5876 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5877 	    &ioc->sense_dma);
5878 	if (!ioc->sense) {
5879 		ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5880 		goto out;
5881 	}
5882 	/* sense buffer requires to be in same 4 gb region.
5883 	 * Below function will check the same.
5884 	 * In case of failure, new pci pool will be created with updated
5885 	 * alignment. Older allocation and pool will be destroyed.
5886 	 * Alignment will be used such a way that next allocation if
5887 	 * success, will always meet same 4gb region requirement.
5888 	 * Actual requirement is not alignment, but we need start and end of
5889 	 * DMA address must have same upper 32 bit address.
5890 	 */
5891 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5892 		//Release Sense pool & Reallocate
5893 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5894 		dma_pool_destroy(ioc->sense_dma_pool);
5895 		ioc->sense = NULL;
5896 
5897 		ioc->sense_dma_pool =
5898 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5899 						roundup_pow_of_two(sz), 0);
5900 		if (!ioc->sense_dma_pool) {
5901 			ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5902 			goto out;
5903 		}
5904 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5905 				&ioc->sense_dma);
5906 		if (!ioc->sense) {
5907 			ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5908 			goto out;
5909 		}
5910 	}
5911 	ioc_info(ioc,
5912 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5913 	    "element_size(%d), pool_size(%d kB)\n",
5914 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5915 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
5916 
5917 	total_sz += sz;
5918 
5919 	/* reply pool, 4 byte align */
5920 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5921 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5922 					      4, 0);
5923 	if (!ioc->reply_dma_pool) {
5924 		ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5925 		goto out;
5926 	}
5927 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5928 	    &ioc->reply_dma);
5929 	if (!ioc->reply) {
5930 		ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5931 		goto out;
5932 	}
5933 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5934 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5935 	dinitprintk(ioc,
5936 		    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5937 			     ioc->reply, ioc->reply_free_queue_depth,
5938 			     ioc->reply_sz, sz / 1024));
5939 	dinitprintk(ioc,
5940 		    ioc_info(ioc, "reply_dma(0x%llx)\n",
5941 			     (unsigned long long)ioc->reply_dma));
5942 	total_sz += sz;
5943 
5944 	/* reply free queue, 16 byte align */
5945 	sz = ioc->reply_free_queue_depth * 4;
5946 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5947 	    &ioc->pdev->dev, sz, 16, 0);
5948 	if (!ioc->reply_free_dma_pool) {
5949 		ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5950 		goto out;
5951 	}
5952 	ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5953 	    &ioc->reply_free_dma);
5954 	if (!ioc->reply_free) {
5955 		ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5956 		goto out;
5957 	}
5958 	dinitprintk(ioc,
5959 		    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5960 			     ioc->reply_free, ioc->reply_free_queue_depth,
5961 			     4, sz / 1024));
5962 	dinitprintk(ioc,
5963 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5964 			     (unsigned long long)ioc->reply_free_dma));
5965 	total_sz += sz;
5966 
5967 	if (ioc->rdpq_array_enable) {
5968 		reply_post_free_array_sz = ioc->reply_queue_count *
5969 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5970 		ioc->reply_post_free_array_dma_pool =
5971 		    dma_pool_create("reply_post_free_array pool",
5972 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5973 		if (!ioc->reply_post_free_array_dma_pool) {
5974 			dinitprintk(ioc,
5975 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5976 			goto out;
5977 		}
5978 		ioc->reply_post_free_array =
5979 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5980 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5981 		if (!ioc->reply_post_free_array) {
5982 			dinitprintk(ioc,
5983 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5984 			goto out;
5985 		}
5986 	}
5987 	ioc->config_page_sz = 512;
5988 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5989 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5990 	if (!ioc->config_page) {
5991 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5992 		goto out;
5993 	}
5994 
5995 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5996 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
5997 	    ioc->config_page_sz);
5998 	total_sz += ioc->config_page_sz;
5999 
6000 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6001 		 total_sz / 1024);
6002 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6003 		 ioc->shost->can_queue, facts->RequestCredit);
6004 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6005 		 ioc->shost->sg_tablesize);
6006 	return 0;
6007 
6008  out:
6009 	return -ENOMEM;
6010 }
6011 
6012 /**
6013  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6014  * @ioc: Pointer to MPT_ADAPTER structure
6015  * @cooked: Request raw or cooked IOC state
6016  *
6017  * Return: all IOC Doorbell register bits if cooked==0, else just the
6018  * Doorbell bits in MPI_IOC_STATE_MASK.
6019  */
6020 u32
6021 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6022 {
6023 	u32 s, sc;
6024 
6025 	s = ioc->base_readl(&ioc->chip->Doorbell);
6026 	sc = s & MPI2_IOC_STATE_MASK;
6027 	return cooked ? sc : s;
6028 }
6029 
6030 /**
6031  * _base_wait_on_iocstate - waiting on a particular ioc state
6032  * @ioc: ?
6033  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6034  * @timeout: timeout in second
6035  *
6036  * Return: 0 for success, non-zero for failure.
6037  */
6038 static int
6039 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6040 {
6041 	u32 count, cntdn;
6042 	u32 current_state;
6043 
6044 	count = 0;
6045 	cntdn = 1000 * timeout;
6046 	do {
6047 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6048 		if (current_state == ioc_state)
6049 			return 0;
6050 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6051 			break;
6052 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6053 			break;
6054 
6055 		usleep_range(1000, 1500);
6056 		count++;
6057 	} while (--cntdn);
6058 
6059 	return current_state;
6060 }
6061 
6062 /**
6063  * _base_dump_reg_set -	This function will print hexdump of register set.
6064  * @ioc: per adapter object
6065  *
6066  * Returns nothing.
6067  */
6068 static inline void
6069 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6070 {
6071 	unsigned int i, sz = 256;
6072 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6073 
6074 	ioc_info(ioc, "System Register set:\n");
6075 	for (i = 0; i < (sz / sizeof(u32)); i++)
6076 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6077 }
6078 
6079 /**
6080  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6081  * a write to the doorbell)
6082  * @ioc: per adapter object
6083  * @timeout: timeout in seconds
6084  *
6085  * Return: 0 for success, non-zero for failure.
6086  *
6087  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6088  */
6089 
6090 static int
6091 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6092 {
6093 	u32 cntdn, count;
6094 	u32 int_status;
6095 
6096 	count = 0;
6097 	cntdn = 1000 * timeout;
6098 	do {
6099 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6100 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6101 			dhsprintk(ioc,
6102 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6103 					   __func__, count, timeout));
6104 			return 0;
6105 		}
6106 
6107 		usleep_range(1000, 1500);
6108 		count++;
6109 	} while (--cntdn);
6110 
6111 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6112 		__func__, count, int_status);
6113 	return -EFAULT;
6114 }
6115 
6116 static int
6117 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6118 {
6119 	u32 cntdn, count;
6120 	u32 int_status;
6121 
6122 	count = 0;
6123 	cntdn = 2000 * timeout;
6124 	do {
6125 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6126 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6127 			dhsprintk(ioc,
6128 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6129 					   __func__, count, timeout));
6130 			return 0;
6131 		}
6132 
6133 		udelay(500);
6134 		count++;
6135 	} while (--cntdn);
6136 
6137 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6138 		__func__, count, int_status);
6139 	return -EFAULT;
6140 
6141 }
6142 
6143 /**
6144  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6145  * @ioc: per adapter object
6146  * @timeout: timeout in second
6147  *
6148  * Return: 0 for success, non-zero for failure.
6149  *
6150  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6151  * doorbell.
6152  */
6153 static int
6154 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6155 {
6156 	u32 cntdn, count;
6157 	u32 int_status;
6158 	u32 doorbell;
6159 
6160 	count = 0;
6161 	cntdn = 1000 * timeout;
6162 	do {
6163 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6164 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6165 			dhsprintk(ioc,
6166 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6167 					   __func__, count, timeout));
6168 			return 0;
6169 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6170 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6171 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6172 			    MPI2_IOC_STATE_FAULT) {
6173 				mpt3sas_print_fault_code(ioc, doorbell);
6174 				return -EFAULT;
6175 			}
6176 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6177 			    MPI2_IOC_STATE_COREDUMP) {
6178 				mpt3sas_print_coredump_info(ioc, doorbell);
6179 				return -EFAULT;
6180 			}
6181 		} else if (int_status == 0xFFFFFFFF)
6182 			goto out;
6183 
6184 		usleep_range(1000, 1500);
6185 		count++;
6186 	} while (--cntdn);
6187 
6188  out:
6189 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6190 		__func__, count, int_status);
6191 	return -EFAULT;
6192 }
6193 
6194 /**
6195  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6196  * @ioc: per adapter object
6197  * @timeout: timeout in second
6198  *
6199  * Return: 0 for success, non-zero for failure.
6200  */
6201 static int
6202 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6203 {
6204 	u32 cntdn, count;
6205 	u32 doorbell_reg;
6206 
6207 	count = 0;
6208 	cntdn = 1000 * timeout;
6209 	do {
6210 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6211 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6212 			dhsprintk(ioc,
6213 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6214 					   __func__, count, timeout));
6215 			return 0;
6216 		}
6217 
6218 		usleep_range(1000, 1500);
6219 		count++;
6220 	} while (--cntdn);
6221 
6222 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6223 		__func__, count, doorbell_reg);
6224 	return -EFAULT;
6225 }
6226 
6227 /**
6228  * _base_send_ioc_reset - send doorbell reset
6229  * @ioc: per adapter object
6230  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6231  * @timeout: timeout in second
6232  *
6233  * Return: 0 for success, non-zero for failure.
6234  */
6235 static int
6236 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6237 {
6238 	u32 ioc_state;
6239 	int r = 0;
6240 	unsigned long flags;
6241 
6242 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6243 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6244 		return -EFAULT;
6245 	}
6246 
6247 	if (!(ioc->facts.IOCCapabilities &
6248 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6249 		return -EFAULT;
6250 
6251 	ioc_info(ioc, "sending message unit reset !!\n");
6252 
6253 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6254 	    &ioc->chip->Doorbell);
6255 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6256 		r = -EFAULT;
6257 		goto out;
6258 	}
6259 
6260 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6261 	if (ioc_state) {
6262 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6263 			__func__, ioc_state);
6264 		r = -EFAULT;
6265 		goto out;
6266 	}
6267  out:
6268 	if (r != 0) {
6269 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6270 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6271 		/*
6272 		 * Wait for IOC state CoreDump to clear only during
6273 		 * HBA initialization & release time.
6274 		 */
6275 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6276 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6277 		    ioc->fault_reset_work_q == NULL)) {
6278 			spin_unlock_irqrestore(
6279 			    &ioc->ioc_reset_in_progress_lock, flags);
6280 			mpt3sas_print_coredump_info(ioc, ioc_state);
6281 			mpt3sas_base_wait_for_coredump_completion(ioc,
6282 			    __func__);
6283 			spin_lock_irqsave(
6284 			    &ioc->ioc_reset_in_progress_lock, flags);
6285 		}
6286 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6287 	}
6288 	ioc_info(ioc, "message unit reset: %s\n",
6289 		 r == 0 ? "SUCCESS" : "FAILED");
6290 	return r;
6291 }
6292 
6293 /**
6294  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6295  * @ioc: per adapter object
6296  * @timeout: timeout in seconds
6297  *
6298  * Return: Waits up to timeout seconds for the IOC to
6299  * become operational. Returns 0 if IOC is present
6300  * and operational; otherwise returns -EFAULT.
6301  */
6302 
6303 int
6304 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6305 {
6306 	int wait_state_count = 0;
6307 	u32 ioc_state;
6308 
6309 	do {
6310 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6311 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6312 			break;
6313 		ssleep(1);
6314 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6315 				__func__, ++wait_state_count);
6316 	} while (--timeout);
6317 	if (!timeout) {
6318 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6319 		return -EFAULT;
6320 	}
6321 	if (wait_state_count)
6322 		ioc_info(ioc, "ioc is operational\n");
6323 	return 0;
6324 }
6325 
6326 /**
6327  * _base_handshake_req_reply_wait - send request thru doorbell interface
6328  * @ioc: per adapter object
6329  * @request_bytes: request length
6330  * @request: pointer having request payload
6331  * @reply_bytes: reply length
6332  * @reply: pointer to reply payload
6333  * @timeout: timeout in second
6334  *
6335  * Return: 0 for success, non-zero for failure.
6336  */
6337 static int
6338 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6339 	u32 *request, int reply_bytes, u16 *reply, int timeout)
6340 {
6341 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6342 	int i;
6343 	u8 failed;
6344 	__le32 *mfp;
6345 
6346 	/* make sure doorbell is not in use */
6347 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6348 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6349 		return -EFAULT;
6350 	}
6351 
6352 	/* clear pending doorbell interrupts from previous state changes */
6353 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6354 	    MPI2_HIS_IOC2SYS_DB_STATUS)
6355 		writel(0, &ioc->chip->HostInterruptStatus);
6356 
6357 	/* send message to ioc */
6358 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6359 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6360 	    &ioc->chip->Doorbell);
6361 
6362 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
6363 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6364 			__LINE__);
6365 		return -EFAULT;
6366 	}
6367 	writel(0, &ioc->chip->HostInterruptStatus);
6368 
6369 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6370 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6371 			__LINE__);
6372 		return -EFAULT;
6373 	}
6374 
6375 	/* send message 32-bits at a time */
6376 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6377 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6378 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
6379 			failed = 1;
6380 	}
6381 
6382 	if (failed) {
6383 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6384 			__LINE__);
6385 		return -EFAULT;
6386 	}
6387 
6388 	/* now wait for the reply */
6389 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6390 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6391 			__LINE__);
6392 		return -EFAULT;
6393 	}
6394 
6395 	/* read the first two 16-bits, it gives the total length of the reply */
6396 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6397 	    & MPI2_DOORBELL_DATA_MASK);
6398 	writel(0, &ioc->chip->HostInterruptStatus);
6399 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
6400 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6401 			__LINE__);
6402 		return -EFAULT;
6403 	}
6404 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6405 	    & MPI2_DOORBELL_DATA_MASK);
6406 	writel(0, &ioc->chip->HostInterruptStatus);
6407 
6408 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6409 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
6410 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6411 				__LINE__);
6412 			return -EFAULT;
6413 		}
6414 		if (i >=  reply_bytes/2) /* overflow case */
6415 			ioc->base_readl(&ioc->chip->Doorbell);
6416 		else
6417 			reply[i] = le16_to_cpu(
6418 			    ioc->base_readl(&ioc->chip->Doorbell)
6419 			    & MPI2_DOORBELL_DATA_MASK);
6420 		writel(0, &ioc->chip->HostInterruptStatus);
6421 	}
6422 
6423 	_base_wait_for_doorbell_int(ioc, 5);
6424 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6425 		dhsprintk(ioc,
6426 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
6427 				   __LINE__));
6428 	}
6429 	writel(0, &ioc->chip->HostInterruptStatus);
6430 
6431 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6432 		mfp = (__le32 *)reply;
6433 		pr_info("\toffset:data\n");
6434 		for (i = 0; i < reply_bytes/4; i++)
6435 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6436 			    le32_to_cpu(mfp[i]));
6437 	}
6438 	return 0;
6439 }
6440 
6441 /**
6442  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6443  * @ioc: per adapter object
6444  * @mpi_reply: the reply payload from FW
6445  * @mpi_request: the request payload sent to FW
6446  *
6447  * The SAS IO Unit Control Request message allows the host to perform low-level
6448  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6449  * to obtain the IOC assigned device handles for a device if it has other
6450  * identifying information about the device, in addition allows the host to
6451  * remove IOC resources associated with the device.
6452  *
6453  * Return: 0 for success, non-zero for failure.
6454  */
6455 int
6456 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6457 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6458 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6459 {
6460 	u16 smid;
6461 	u8 issue_reset = 0;
6462 	int rc;
6463 	void *request;
6464 
6465 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6466 
6467 	mutex_lock(&ioc->base_cmds.mutex);
6468 
6469 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6470 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6471 		rc = -EAGAIN;
6472 		goto out;
6473 	}
6474 
6475 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6476 	if (rc)
6477 		goto out;
6478 
6479 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6480 	if (!smid) {
6481 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6482 		rc = -EAGAIN;
6483 		goto out;
6484 	}
6485 
6486 	rc = 0;
6487 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6488 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6489 	ioc->base_cmds.smid = smid;
6490 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6491 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6492 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6493 		ioc->ioc_link_reset_in_progress = 1;
6494 	init_completion(&ioc->base_cmds.done);
6495 	ioc->put_smid_default(ioc, smid);
6496 	wait_for_completion_timeout(&ioc->base_cmds.done,
6497 	    msecs_to_jiffies(10000));
6498 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6499 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6500 	    ioc->ioc_link_reset_in_progress)
6501 		ioc->ioc_link_reset_in_progress = 0;
6502 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6503 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6504 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6505 		    issue_reset);
6506 		goto issue_host_reset;
6507 	}
6508 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6509 		memcpy(mpi_reply, ioc->base_cmds.reply,
6510 		    sizeof(Mpi2SasIoUnitControlReply_t));
6511 	else
6512 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6513 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6514 	goto out;
6515 
6516  issue_host_reset:
6517 	if (issue_reset)
6518 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6519 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6520 	rc = -EFAULT;
6521  out:
6522 	mutex_unlock(&ioc->base_cmds.mutex);
6523 	return rc;
6524 }
6525 
6526 /**
6527  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6528  * @ioc: per adapter object
6529  * @mpi_reply: the reply payload from FW
6530  * @mpi_request: the request payload sent to FW
6531  *
6532  * The SCSI Enclosure Processor request message causes the IOC to
6533  * communicate with SES devices to control LED status signals.
6534  *
6535  * Return: 0 for success, non-zero for failure.
6536  */
6537 int
6538 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6539 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6540 {
6541 	u16 smid;
6542 	u8 issue_reset = 0;
6543 	int rc;
6544 	void *request;
6545 
6546 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6547 
6548 	mutex_lock(&ioc->base_cmds.mutex);
6549 
6550 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6551 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6552 		rc = -EAGAIN;
6553 		goto out;
6554 	}
6555 
6556 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6557 	if (rc)
6558 		goto out;
6559 
6560 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6561 	if (!smid) {
6562 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6563 		rc = -EAGAIN;
6564 		goto out;
6565 	}
6566 
6567 	rc = 0;
6568 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6569 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6570 	ioc->base_cmds.smid = smid;
6571 	memset(request, 0, ioc->request_sz);
6572 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6573 	init_completion(&ioc->base_cmds.done);
6574 	ioc->put_smid_default(ioc, smid);
6575 	wait_for_completion_timeout(&ioc->base_cmds.done,
6576 	    msecs_to_jiffies(10000));
6577 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6578 		mpt3sas_check_cmd_timeout(ioc,
6579 		    ioc->base_cmds.status, mpi_request,
6580 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6581 		goto issue_host_reset;
6582 	}
6583 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6584 		memcpy(mpi_reply, ioc->base_cmds.reply,
6585 		    sizeof(Mpi2SepReply_t));
6586 	else
6587 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6588 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6589 	goto out;
6590 
6591  issue_host_reset:
6592 	if (issue_reset)
6593 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6594 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6595 	rc = -EFAULT;
6596  out:
6597 	mutex_unlock(&ioc->base_cmds.mutex);
6598 	return rc;
6599 }
6600 
6601 /**
6602  * _base_get_port_facts - obtain port facts reply and save in ioc
6603  * @ioc: per adapter object
6604  * @port: ?
6605  *
6606  * Return: 0 for success, non-zero for failure.
6607  */
6608 static int
6609 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6610 {
6611 	Mpi2PortFactsRequest_t mpi_request;
6612 	Mpi2PortFactsReply_t mpi_reply;
6613 	struct mpt3sas_port_facts *pfacts;
6614 	int mpi_reply_sz, mpi_request_sz, r;
6615 
6616 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6617 
6618 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6619 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6620 	memset(&mpi_request, 0, mpi_request_sz);
6621 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6622 	mpi_request.PortNumber = port;
6623 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6624 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6625 
6626 	if (r != 0) {
6627 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6628 		return r;
6629 	}
6630 
6631 	pfacts = &ioc->pfacts[port];
6632 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6633 	pfacts->PortNumber = mpi_reply.PortNumber;
6634 	pfacts->VP_ID = mpi_reply.VP_ID;
6635 	pfacts->VF_ID = mpi_reply.VF_ID;
6636 	pfacts->MaxPostedCmdBuffers =
6637 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6638 
6639 	return 0;
6640 }
6641 
6642 /**
6643  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6644  * @ioc: per adapter object
6645  * @timeout:
6646  *
6647  * Return: 0 for success, non-zero for failure.
6648  */
6649 static int
6650 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6651 {
6652 	u32 ioc_state;
6653 	int rc;
6654 
6655 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6656 
6657 	if (ioc->pci_error_recovery) {
6658 		dfailprintk(ioc,
6659 			    ioc_info(ioc, "%s: host in pci error recovery\n",
6660 				     __func__));
6661 		return -EFAULT;
6662 	}
6663 
6664 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6665 	dhsprintk(ioc,
6666 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6667 			   __func__, ioc_state));
6668 
6669 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6670 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6671 		return 0;
6672 
6673 	if (ioc_state & MPI2_DOORBELL_USED) {
6674 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6675 		goto issue_diag_reset;
6676 	}
6677 
6678 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6679 		mpt3sas_print_fault_code(ioc, ioc_state &
6680 		    MPI2_DOORBELL_DATA_MASK);
6681 		goto issue_diag_reset;
6682 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6683 	    MPI2_IOC_STATE_COREDUMP) {
6684 		ioc_info(ioc,
6685 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6686 		    __func__, ioc_state);
6687 		return -EFAULT;
6688 	}
6689 
6690 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6691 	if (ioc_state) {
6692 		dfailprintk(ioc,
6693 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6694 				     __func__, ioc_state));
6695 		return -EFAULT;
6696 	}
6697 
6698  issue_diag_reset:
6699 	rc = _base_diag_reset(ioc);
6700 	return rc;
6701 }
6702 
6703 /**
6704  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6705  * @ioc: per adapter object
6706  *
6707  * Return: 0 for success, non-zero for failure.
6708  */
6709 static int
6710 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6711 {
6712 	Mpi2IOCFactsRequest_t mpi_request;
6713 	Mpi2IOCFactsReply_t mpi_reply;
6714 	struct mpt3sas_facts *facts;
6715 	int mpi_reply_sz, mpi_request_sz, r;
6716 
6717 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6718 
6719 	r = _base_wait_for_iocstate(ioc, 10);
6720 	if (r) {
6721 		dfailprintk(ioc,
6722 			    ioc_info(ioc, "%s: failed getting to correct state\n",
6723 				     __func__));
6724 		return r;
6725 	}
6726 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6727 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6728 	memset(&mpi_request, 0, mpi_request_sz);
6729 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6730 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6731 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6732 
6733 	if (r != 0) {
6734 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6735 		return r;
6736 	}
6737 
6738 	facts = &ioc->facts;
6739 	memset(facts, 0, sizeof(struct mpt3sas_facts));
6740 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6741 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6742 	facts->VP_ID = mpi_reply.VP_ID;
6743 	facts->VF_ID = mpi_reply.VF_ID;
6744 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6745 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6746 	facts->WhoInit = mpi_reply.WhoInit;
6747 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6748 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6749 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6750 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6751 		ioc->combined_reply_queue = 0;
6752 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6753 	facts->MaxReplyDescriptorPostQueueDepth =
6754 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6755 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6756 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6757 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6758 		ioc->ir_firmware = 1;
6759 	if ((facts->IOCCapabilities &
6760 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6761 		ioc->rdpq_array_capable = 1;
6762 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6763 	    && ioc->is_aero_ioc)
6764 		ioc->atomic_desc_capable = 1;
6765 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6766 	facts->IOCRequestFrameSize =
6767 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6768 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6769 		facts->IOCMaxChainSegmentSize =
6770 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6771 	}
6772 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6773 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6774 	ioc->shost->max_id = -1;
6775 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6776 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6777 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6778 	facts->HighPriorityCredit =
6779 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
6780 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6781 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6782 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6783 
6784 	/*
6785 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6786 	 */
6787 	ioc->page_size = 1 << facts->CurrentHostPageSize;
6788 	if (ioc->page_size == 1) {
6789 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6790 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6791 	}
6792 	dinitprintk(ioc,
6793 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6794 			     facts->CurrentHostPageSize));
6795 
6796 	dinitprintk(ioc,
6797 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6798 			     facts->RequestCredit, facts->MaxChainDepth));
6799 	dinitprintk(ioc,
6800 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6801 			     facts->IOCRequestFrameSize * 4,
6802 			     facts->ReplyFrameSize * 4));
6803 	return 0;
6804 }
6805 
6806 /**
6807  * _base_send_ioc_init - send ioc_init to firmware
6808  * @ioc: per adapter object
6809  *
6810  * Return: 0 for success, non-zero for failure.
6811  */
6812 static int
6813 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6814 {
6815 	Mpi2IOCInitRequest_t mpi_request;
6816 	Mpi2IOCInitReply_t mpi_reply;
6817 	int i, r = 0;
6818 	ktime_t current_time;
6819 	u16 ioc_status;
6820 	u32 reply_post_free_array_sz = 0;
6821 
6822 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6823 
6824 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6825 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6826 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6827 	mpi_request.VF_ID = 0; /* TODO */
6828 	mpi_request.VP_ID = 0;
6829 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6830 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6831 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6832 
6833 	if (_base_is_controller_msix_enabled(ioc))
6834 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6835 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6836 	mpi_request.ReplyDescriptorPostQueueDepth =
6837 	    cpu_to_le16(ioc->reply_post_queue_depth);
6838 	mpi_request.ReplyFreeQueueDepth =
6839 	    cpu_to_le16(ioc->reply_free_queue_depth);
6840 
6841 	mpi_request.SenseBufferAddressHigh =
6842 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
6843 	mpi_request.SystemReplyAddressHigh =
6844 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
6845 	mpi_request.SystemRequestFrameBaseAddress =
6846 	    cpu_to_le64((u64)ioc->request_dma);
6847 	mpi_request.ReplyFreeQueueAddress =
6848 	    cpu_to_le64((u64)ioc->reply_free_dma);
6849 
6850 	if (ioc->rdpq_array_enable) {
6851 		reply_post_free_array_sz = ioc->reply_queue_count *
6852 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6853 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6854 		for (i = 0; i < ioc->reply_queue_count; i++)
6855 			ioc->reply_post_free_array[i].RDPQBaseAddress =
6856 			    cpu_to_le64(
6857 				(u64)ioc->reply_post[i].reply_post_free_dma);
6858 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6859 		mpi_request.ReplyDescriptorPostQueueAddress =
6860 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6861 	} else {
6862 		mpi_request.ReplyDescriptorPostQueueAddress =
6863 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6864 	}
6865 
6866 	/*
6867 	 * Set the flag to enable CoreDump state feature in IOC firmware.
6868 	 */
6869 	mpi_request.ConfigurationFlags |=
6870 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6871 
6872 	/* This time stamp specifies number of milliseconds
6873 	 * since epoch ~ midnight January 1, 1970.
6874 	 */
6875 	current_time = ktime_get_real();
6876 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6877 
6878 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6879 		__le32 *mfp;
6880 		int i;
6881 
6882 		mfp = (__le32 *)&mpi_request;
6883 		ioc_info(ioc, "\toffset:data\n");
6884 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6885 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6886 			    le32_to_cpu(mfp[i]));
6887 	}
6888 
6889 	r = _base_handshake_req_reply_wait(ioc,
6890 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6891 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6892 
6893 	if (r != 0) {
6894 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6895 		return r;
6896 	}
6897 
6898 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6899 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6900 	    mpi_reply.IOCLogInfo) {
6901 		ioc_err(ioc, "%s: failed\n", __func__);
6902 		r = -EIO;
6903 	}
6904 
6905 	/* Reset TimeSync Counter*/
6906 	ioc->timestamp_update_count = 0;
6907 	return r;
6908 }
6909 
6910 /**
6911  * mpt3sas_port_enable_done - command completion routine for port enable
6912  * @ioc: per adapter object
6913  * @smid: system request message index
6914  * @msix_index: MSIX table index supplied by the OS
6915  * @reply: reply message frame(lower 32bit addr)
6916  *
6917  * Return: 1 meaning mf should be freed from _base_interrupt
6918  *          0 means the mf is freed from this function.
6919  */
6920 u8
6921 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6922 	u32 reply)
6923 {
6924 	MPI2DefaultReply_t *mpi_reply;
6925 	u16 ioc_status;
6926 
6927 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6928 		return 1;
6929 
6930 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6931 	if (!mpi_reply)
6932 		return 1;
6933 
6934 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6935 		return 1;
6936 
6937 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6938 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6939 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6940 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6941 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6942 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6943 		ioc->port_enable_failed = 1;
6944 
6945 	if (ioc->is_driver_loading) {
6946 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6947 			mpt3sas_port_enable_complete(ioc);
6948 			return 1;
6949 		} else {
6950 			ioc->start_scan_failed = ioc_status;
6951 			ioc->start_scan = 0;
6952 			return 1;
6953 		}
6954 	}
6955 	complete(&ioc->port_enable_cmds.done);
6956 	return 1;
6957 }
6958 
6959 /**
6960  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6961  * @ioc: per adapter object
6962  *
6963  * Return: 0 for success, non-zero for failure.
6964  */
6965 static int
6966 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6967 {
6968 	Mpi2PortEnableRequest_t *mpi_request;
6969 	Mpi2PortEnableReply_t *mpi_reply;
6970 	int r = 0;
6971 	u16 smid;
6972 	u16 ioc_status;
6973 
6974 	ioc_info(ioc, "sending port enable !!\n");
6975 
6976 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6977 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6978 		return -EAGAIN;
6979 	}
6980 
6981 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6982 	if (!smid) {
6983 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6984 		return -EAGAIN;
6985 	}
6986 
6987 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6988 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6989 	ioc->port_enable_cmds.smid = smid;
6990 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6991 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6992 
6993 	init_completion(&ioc->port_enable_cmds.done);
6994 	ioc->put_smid_default(ioc, smid);
6995 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6996 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6997 		ioc_err(ioc, "%s: timeout\n", __func__);
6998 		_debug_dump_mf(mpi_request,
6999 		    sizeof(Mpi2PortEnableRequest_t)/4);
7000 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7001 			r = -EFAULT;
7002 		else
7003 			r = -ETIME;
7004 		goto out;
7005 	}
7006 
7007 	mpi_reply = ioc->port_enable_cmds.reply;
7008 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7009 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7010 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7011 			__func__, ioc_status);
7012 		r = -EFAULT;
7013 		goto out;
7014 	}
7015 
7016  out:
7017 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7018 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7019 	return r;
7020 }
7021 
7022 /**
7023  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7024  * @ioc: per adapter object
7025  *
7026  * Return: 0 for success, non-zero for failure.
7027  */
7028 int
7029 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7030 {
7031 	Mpi2PortEnableRequest_t *mpi_request;
7032 	u16 smid;
7033 
7034 	ioc_info(ioc, "sending port enable !!\n");
7035 
7036 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7037 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7038 		return -EAGAIN;
7039 	}
7040 
7041 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7042 	if (!smid) {
7043 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7044 		return -EAGAIN;
7045 	}
7046 
7047 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7048 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7049 	ioc->port_enable_cmds.smid = smid;
7050 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7051 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7052 
7053 	ioc->put_smid_default(ioc, smid);
7054 	return 0;
7055 }
7056 
7057 /**
7058  * _base_determine_wait_on_discovery - desposition
7059  * @ioc: per adapter object
7060  *
7061  * Decide whether to wait on discovery to complete. Used to either
7062  * locate boot device, or report volumes ahead of physical devices.
7063  *
7064  * Return: 1 for wait, 0 for don't wait.
7065  */
7066 static int
7067 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7068 {
7069 	/* We wait for discovery to complete if IR firmware is loaded.
7070 	 * The sas topology events arrive before PD events, so we need time to
7071 	 * turn on the bit in ioc->pd_handles to indicate PD
7072 	 * Also, it maybe required to report Volumes ahead of physical
7073 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7074 	 */
7075 	if (ioc->ir_firmware)
7076 		return 1;
7077 
7078 	/* if no Bios, then we don't need to wait */
7079 	if (!ioc->bios_pg3.BiosVersion)
7080 		return 0;
7081 
7082 	/* Bios is present, then we drop down here.
7083 	 *
7084 	 * If there any entries in the Bios Page 2, then we wait
7085 	 * for discovery to complete.
7086 	 */
7087 
7088 	/* Current Boot Device */
7089 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7090 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7091 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7092 	/* Request Boot Device */
7093 	   (ioc->bios_pg2.ReqBootDeviceForm &
7094 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7095 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7096 	/* Alternate Request Boot Device */
7097 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7098 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7099 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7100 		return 0;
7101 
7102 	return 1;
7103 }
7104 
7105 /**
7106  * _base_unmask_events - turn on notification for this event
7107  * @ioc: per adapter object
7108  * @event: firmware event
7109  *
7110  * The mask is stored in ioc->event_masks.
7111  */
7112 static void
7113 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7114 {
7115 	u32 desired_event;
7116 
7117 	if (event >= 128)
7118 		return;
7119 
7120 	desired_event = (1 << (event % 32));
7121 
7122 	if (event < 32)
7123 		ioc->event_masks[0] &= ~desired_event;
7124 	else if (event < 64)
7125 		ioc->event_masks[1] &= ~desired_event;
7126 	else if (event < 96)
7127 		ioc->event_masks[2] &= ~desired_event;
7128 	else if (event < 128)
7129 		ioc->event_masks[3] &= ~desired_event;
7130 }
7131 
7132 /**
7133  * _base_event_notification - send event notification
7134  * @ioc: per adapter object
7135  *
7136  * Return: 0 for success, non-zero for failure.
7137  */
7138 static int
7139 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7140 {
7141 	Mpi2EventNotificationRequest_t *mpi_request;
7142 	u16 smid;
7143 	int r = 0;
7144 	int i;
7145 
7146 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7147 
7148 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7149 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7150 		return -EAGAIN;
7151 	}
7152 
7153 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7154 	if (!smid) {
7155 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7156 		return -EAGAIN;
7157 	}
7158 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7159 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7160 	ioc->base_cmds.smid = smid;
7161 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7162 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7163 	mpi_request->VF_ID = 0; /* TODO */
7164 	mpi_request->VP_ID = 0;
7165 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7166 		mpi_request->EventMasks[i] =
7167 		    cpu_to_le32(ioc->event_masks[i]);
7168 	init_completion(&ioc->base_cmds.done);
7169 	ioc->put_smid_default(ioc, smid);
7170 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7171 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7172 		ioc_err(ioc, "%s: timeout\n", __func__);
7173 		_debug_dump_mf(mpi_request,
7174 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7175 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7176 			r = -EFAULT;
7177 		else
7178 			r = -ETIME;
7179 	} else
7180 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7181 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7182 	return r;
7183 }
7184 
7185 /**
7186  * mpt3sas_base_validate_event_type - validating event types
7187  * @ioc: per adapter object
7188  * @event_type: firmware event
7189  *
7190  * This will turn on firmware event notification when application
7191  * ask for that event. We don't mask events that are already enabled.
7192  */
7193 void
7194 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7195 {
7196 	int i, j;
7197 	u32 event_mask, desired_event;
7198 	u8 send_update_to_fw;
7199 
7200 	for (i = 0, send_update_to_fw = 0; i <
7201 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7202 		event_mask = ~event_type[i];
7203 		desired_event = 1;
7204 		for (j = 0; j < 32; j++) {
7205 			if (!(event_mask & desired_event) &&
7206 			    (ioc->event_masks[i] & desired_event)) {
7207 				ioc->event_masks[i] &= ~desired_event;
7208 				send_update_to_fw = 1;
7209 			}
7210 			desired_event = (desired_event << 1);
7211 		}
7212 	}
7213 
7214 	if (!send_update_to_fw)
7215 		return;
7216 
7217 	mutex_lock(&ioc->base_cmds.mutex);
7218 	_base_event_notification(ioc);
7219 	mutex_unlock(&ioc->base_cmds.mutex);
7220 }
7221 
7222 /**
7223  * _base_diag_reset - the "big hammer" start of day reset
7224  * @ioc: per adapter object
7225  *
7226  * Return: 0 for success, non-zero for failure.
7227  */
7228 static int
7229 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7230 {
7231 	u32 host_diagnostic;
7232 	u32 ioc_state;
7233 	u32 count;
7234 	u32 hcb_size;
7235 
7236 	ioc_info(ioc, "sending diag reset !!\n");
7237 
7238 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7239 
7240 	count = 0;
7241 	do {
7242 		/* Write magic sequence to WriteSequence register
7243 		 * Loop until in diagnostic mode
7244 		 */
7245 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7246 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7247 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7248 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7249 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7250 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7251 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7252 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7253 
7254 		/* wait 100 msec */
7255 		msleep(100);
7256 
7257 		if (count++ > 20) {
7258 			ioc_info(ioc,
7259 			    "Stop writing magic sequence after 20 retries\n");
7260 			_base_dump_reg_set(ioc);
7261 			goto out;
7262 		}
7263 
7264 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7265 		drsprintk(ioc,
7266 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7267 				   count, host_diagnostic));
7268 
7269 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7270 
7271 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7272 
7273 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7274 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7275 	     &ioc->chip->HostDiagnostic);
7276 
7277 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
7278 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7279 
7280 	/* Approximately 300 second max wait */
7281 	for (count = 0; count < (300000000 /
7282 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7283 
7284 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7285 
7286 		if (host_diagnostic == 0xFFFFFFFF) {
7287 			ioc_info(ioc,
7288 			    "Invalid host diagnostic register value\n");
7289 			_base_dump_reg_set(ioc);
7290 			goto out;
7291 		}
7292 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7293 			break;
7294 
7295 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7296 	}
7297 
7298 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7299 
7300 		drsprintk(ioc,
7301 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7302 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7303 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7304 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7305 
7306 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7307 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7308 		    &ioc->chip->HCBSize);
7309 	}
7310 
7311 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7312 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7313 	    &ioc->chip->HostDiagnostic);
7314 
7315 	drsprintk(ioc,
7316 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
7317 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7318 
7319 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7320 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7321 	if (ioc_state) {
7322 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7323 			__func__, ioc_state);
7324 		_base_dump_reg_set(ioc);
7325 		goto out;
7326 	}
7327 
7328 	ioc_info(ioc, "diag reset: SUCCESS\n");
7329 	return 0;
7330 
7331  out:
7332 	ioc_err(ioc, "diag reset: FAILED\n");
7333 	return -EFAULT;
7334 }
7335 
7336 /**
7337  * _base_make_ioc_ready - put controller in READY state
7338  * @ioc: per adapter object
7339  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7340  *
7341  * Return: 0 for success, non-zero for failure.
7342  */
7343 static int
7344 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7345 {
7346 	u32 ioc_state;
7347 	int rc;
7348 	int count;
7349 
7350 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7351 
7352 	if (ioc->pci_error_recovery)
7353 		return 0;
7354 
7355 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7356 	dhsprintk(ioc,
7357 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7358 			   __func__, ioc_state));
7359 
7360 	/* if in RESET state, it should move to READY state shortly */
7361 	count = 0;
7362 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7363 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7364 		    MPI2_IOC_STATE_READY) {
7365 			if (count++ == 10) {
7366 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7367 					__func__, ioc_state);
7368 				return -EFAULT;
7369 			}
7370 			ssleep(1);
7371 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7372 		}
7373 	}
7374 
7375 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7376 		return 0;
7377 
7378 	if (ioc_state & MPI2_DOORBELL_USED) {
7379 		ioc_info(ioc, "unexpected doorbell active!\n");
7380 		goto issue_diag_reset;
7381 	}
7382 
7383 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7384 		mpt3sas_print_fault_code(ioc, ioc_state &
7385 		    MPI2_DOORBELL_DATA_MASK);
7386 		goto issue_diag_reset;
7387 	}
7388 
7389 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7390 		/*
7391 		 * if host reset is invoked while watch dog thread is waiting
7392 		 * for IOC state to be changed to Fault state then driver has
7393 		 * to wait here for CoreDump state to clear otherwise reset
7394 		 * will be issued to the FW and FW move the IOC state to
7395 		 * reset state without copying the FW logs to coredump region.
7396 		 */
7397 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7398 			mpt3sas_print_coredump_info(ioc, ioc_state &
7399 			    MPI2_DOORBELL_DATA_MASK);
7400 			mpt3sas_base_wait_for_coredump_completion(ioc,
7401 			    __func__);
7402 		}
7403 		goto issue_diag_reset;
7404 	}
7405 
7406 	if (type == FORCE_BIG_HAMMER)
7407 		goto issue_diag_reset;
7408 
7409 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7410 		if (!(_base_send_ioc_reset(ioc,
7411 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7412 			return 0;
7413 	}
7414 
7415  issue_diag_reset:
7416 	rc = _base_diag_reset(ioc);
7417 	return rc;
7418 }
7419 
7420 /**
7421  * _base_make_ioc_operational - put controller in OPERATIONAL state
7422  * @ioc: per adapter object
7423  *
7424  * Return: 0 for success, non-zero for failure.
7425  */
7426 static int
7427 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7428 {
7429 	int r, i, index, rc;
7430 	unsigned long	flags;
7431 	u32 reply_address;
7432 	u16 smid;
7433 	struct _tr_list *delayed_tr, *delayed_tr_next;
7434 	struct _sc_list *delayed_sc, *delayed_sc_next;
7435 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7436 	u8 hide_flag;
7437 	struct adapter_reply_queue *reply_q;
7438 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7439 
7440 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7441 
7442 	/* clean the delayed target reset list */
7443 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7444 	    &ioc->delayed_tr_list, list) {
7445 		list_del(&delayed_tr->list);
7446 		kfree(delayed_tr);
7447 	}
7448 
7449 
7450 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7451 	    &ioc->delayed_tr_volume_list, list) {
7452 		list_del(&delayed_tr->list);
7453 		kfree(delayed_tr);
7454 	}
7455 
7456 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7457 	    &ioc->delayed_sc_list, list) {
7458 		list_del(&delayed_sc->list);
7459 		kfree(delayed_sc);
7460 	}
7461 
7462 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7463 	    &ioc->delayed_event_ack_list, list) {
7464 		list_del(&delayed_event_ack->list);
7465 		kfree(delayed_event_ack);
7466 	}
7467 
7468 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7469 
7470 	/* hi-priority queue */
7471 	INIT_LIST_HEAD(&ioc->hpr_free_list);
7472 	smid = ioc->hi_priority_smid;
7473 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7474 		ioc->hpr_lookup[i].cb_idx = 0xFF;
7475 		ioc->hpr_lookup[i].smid = smid;
7476 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7477 		    &ioc->hpr_free_list);
7478 	}
7479 
7480 	/* internal queue */
7481 	INIT_LIST_HEAD(&ioc->internal_free_list);
7482 	smid = ioc->internal_smid;
7483 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
7484 		ioc->internal_lookup[i].cb_idx = 0xFF;
7485 		ioc->internal_lookup[i].smid = smid;
7486 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
7487 		    &ioc->internal_free_list);
7488 	}
7489 
7490 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7491 
7492 	/* initialize Reply Free Queue */
7493 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
7494 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
7495 	    ioc->reply_sz) {
7496 		ioc->reply_free[i] = cpu_to_le32(reply_address);
7497 		if (ioc->is_mcpu_endpoint)
7498 			_base_clone_reply_to_sys_mem(ioc,
7499 					reply_address, i);
7500 	}
7501 
7502 	/* initialize reply queues */
7503 	if (ioc->is_driver_loading)
7504 		_base_assign_reply_queues(ioc);
7505 
7506 	/* initialize Reply Post Free Queue */
7507 	index = 0;
7508 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7509 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7510 		/*
7511 		 * If RDPQ is enabled, switch to the next allocation.
7512 		 * Otherwise advance within the contiguous region.
7513 		 */
7514 		if (ioc->rdpq_array_enable) {
7515 			reply_q->reply_post_free =
7516 				ioc->reply_post[index++].reply_post_free;
7517 		} else {
7518 			reply_q->reply_post_free = reply_post_free_contig;
7519 			reply_post_free_contig += ioc->reply_post_queue_depth;
7520 		}
7521 
7522 		reply_q->reply_post_host_index = 0;
7523 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
7524 			reply_q->reply_post_free[i].Words =
7525 			    cpu_to_le64(ULLONG_MAX);
7526 		if (!_base_is_controller_msix_enabled(ioc))
7527 			goto skip_init_reply_post_free_queue;
7528 	}
7529  skip_init_reply_post_free_queue:
7530 
7531 	r = _base_send_ioc_init(ioc);
7532 	if (r) {
7533 		/*
7534 		 * No need to check IOC state for fault state & issue
7535 		 * diag reset during host reset. This check is need
7536 		 * only during driver load time.
7537 		 */
7538 		if (!ioc->is_driver_loading)
7539 			return r;
7540 
7541 		rc = _base_check_for_fault_and_issue_reset(ioc);
7542 		if (rc || (_base_send_ioc_init(ioc)))
7543 			return r;
7544 	}
7545 
7546 	/* initialize reply free host index */
7547 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7548 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7549 
7550 	/* initialize reply post host index */
7551 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7552 		if (ioc->combined_reply_queue)
7553 			writel((reply_q->msix_index & 7)<<
7554 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
7555 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7556 		else
7557 			writel(reply_q->msix_index <<
7558 				MPI2_RPHI_MSIX_INDEX_SHIFT,
7559 				&ioc->chip->ReplyPostHostIndex);
7560 
7561 		if (!_base_is_controller_msix_enabled(ioc))
7562 			goto skip_init_reply_post_host_index;
7563 	}
7564 
7565  skip_init_reply_post_host_index:
7566 
7567 	mpt3sas_base_unmask_interrupts(ioc);
7568 
7569 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7570 		r = _base_display_fwpkg_version(ioc);
7571 		if (r)
7572 			return r;
7573 	}
7574 
7575 	_base_static_config_pages(ioc);
7576 	r = _base_event_notification(ioc);
7577 	if (r)
7578 		return r;
7579 
7580 	if (ioc->is_driver_loading) {
7581 
7582 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7583 		    == 0x80) {
7584 			hide_flag = (u8) (
7585 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7586 			    MFG_PAGE10_HIDE_SSDS_MASK);
7587 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7588 				ioc->mfg_pg10_hide_flag = hide_flag;
7589 		}
7590 
7591 		ioc->wait_for_discovery_to_complete =
7592 		    _base_determine_wait_on_discovery(ioc);
7593 
7594 		return r; /* scan_start and scan_finished support */
7595 	}
7596 
7597 	r = _base_send_port_enable(ioc);
7598 	if (r)
7599 		return r;
7600 
7601 	return r;
7602 }
7603 
7604 /**
7605  * mpt3sas_base_free_resources - free resources controller resources
7606  * @ioc: per adapter object
7607  */
7608 void
7609 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7610 {
7611 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7612 
7613 	/* synchronizing freeing resource with pci_access_mutex lock */
7614 	mutex_lock(&ioc->pci_access_mutex);
7615 	if (ioc->chip_phys && ioc->chip) {
7616 		mpt3sas_base_mask_interrupts(ioc);
7617 		ioc->shost_recovery = 1;
7618 		_base_make_ioc_ready(ioc, SOFT_RESET);
7619 		ioc->shost_recovery = 0;
7620 	}
7621 
7622 	mpt3sas_base_unmap_resources(ioc);
7623 	mutex_unlock(&ioc->pci_access_mutex);
7624 	return;
7625 }
7626 
7627 /**
7628  * mpt3sas_base_attach - attach controller instance
7629  * @ioc: per adapter object
7630  *
7631  * Return: 0 for success, non-zero for failure.
7632  */
7633 int
7634 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7635 {
7636 	int r, i, rc;
7637 	int cpu_id, last_cpu_id = 0;
7638 
7639 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7640 
7641 	/* setup cpu_msix_table */
7642 	ioc->cpu_count = num_online_cpus();
7643 	for_each_online_cpu(cpu_id)
7644 		last_cpu_id = cpu_id;
7645 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
7646 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7647 	ioc->reply_queue_count = 1;
7648 	if (!ioc->cpu_msix_table) {
7649 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7650 		r = -ENOMEM;
7651 		goto out_free_resources;
7652 	}
7653 
7654 	if (ioc->is_warpdrive) {
7655 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7656 		    sizeof(resource_size_t *), GFP_KERNEL);
7657 		if (!ioc->reply_post_host_index) {
7658 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7659 			r = -ENOMEM;
7660 			goto out_free_resources;
7661 		}
7662 	}
7663 
7664 	ioc->smp_affinity_enable = smp_affinity_enable;
7665 
7666 	ioc->rdpq_array_enable_assigned = 0;
7667 	ioc->use_32bit_dma = false;
7668 	if (ioc->is_aero_ioc)
7669 		ioc->base_readl = &_base_readl_aero;
7670 	else
7671 		ioc->base_readl = &_base_readl;
7672 	r = mpt3sas_base_map_resources(ioc);
7673 	if (r)
7674 		goto out_free_resources;
7675 
7676 	pci_set_drvdata(ioc->pdev, ioc->shost);
7677 	r = _base_get_ioc_facts(ioc);
7678 	if (r) {
7679 		rc = _base_check_for_fault_and_issue_reset(ioc);
7680 		if (rc || (_base_get_ioc_facts(ioc)))
7681 			goto out_free_resources;
7682 	}
7683 
7684 	switch (ioc->hba_mpi_version_belonged) {
7685 	case MPI2_VERSION:
7686 		ioc->build_sg_scmd = &_base_build_sg_scmd;
7687 		ioc->build_sg = &_base_build_sg;
7688 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7689 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7690 		break;
7691 	case MPI25_VERSION:
7692 	case MPI26_VERSION:
7693 		/*
7694 		 * In SAS3.0,
7695 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7696 		 * Target Status - all require the IEEE formated scatter gather
7697 		 * elements.
7698 		 */
7699 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7700 		ioc->build_sg = &_base_build_sg_ieee;
7701 		ioc->build_nvme_prp = &_base_build_nvme_prp;
7702 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7703 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7704 		if (ioc->high_iops_queues)
7705 			ioc->get_msix_index_for_smlio =
7706 					&_base_get_high_iops_msix_index;
7707 		else
7708 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7709 		break;
7710 	}
7711 	if (ioc->atomic_desc_capable) {
7712 		ioc->put_smid_default = &_base_put_smid_default_atomic;
7713 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7714 		ioc->put_smid_fast_path =
7715 				&_base_put_smid_fast_path_atomic;
7716 		ioc->put_smid_hi_priority =
7717 				&_base_put_smid_hi_priority_atomic;
7718 	} else {
7719 		ioc->put_smid_default = &_base_put_smid_default;
7720 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7721 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7722 		if (ioc->is_mcpu_endpoint)
7723 			ioc->put_smid_scsi_io =
7724 				&_base_put_smid_mpi_ep_scsi_io;
7725 		else
7726 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7727 	}
7728 	/*
7729 	 * These function pointers for other requests that don't
7730 	 * the require IEEE scatter gather elements.
7731 	 *
7732 	 * For example Configuration Pages and SAS IOUNIT Control don't.
7733 	 */
7734 	ioc->build_sg_mpi = &_base_build_sg;
7735 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7736 
7737 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
7738 	if (r)
7739 		goto out_free_resources;
7740 
7741 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7742 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7743 	if (!ioc->pfacts) {
7744 		r = -ENOMEM;
7745 		goto out_free_resources;
7746 	}
7747 
7748 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7749 		r = _base_get_port_facts(ioc, i);
7750 		if (r) {
7751 			rc = _base_check_for_fault_and_issue_reset(ioc);
7752 			if (rc || (_base_get_port_facts(ioc, i)))
7753 				goto out_free_resources;
7754 		}
7755 	}
7756 
7757 	r = _base_allocate_memory_pools(ioc);
7758 	if (r)
7759 		goto out_free_resources;
7760 
7761 	if (irqpoll_weight > 0)
7762 		ioc->thresh_hold = irqpoll_weight;
7763 	else
7764 		ioc->thresh_hold = ioc->hba_queue_depth/4;
7765 
7766 	_base_init_irqpolls(ioc);
7767 	init_waitqueue_head(&ioc->reset_wq);
7768 
7769 	/* allocate memory pd handle bitmask list */
7770 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7771 	if (ioc->facts.MaxDevHandle % 8)
7772 		ioc->pd_handles_sz++;
7773 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7774 	    GFP_KERNEL);
7775 	if (!ioc->pd_handles) {
7776 		r = -ENOMEM;
7777 		goto out_free_resources;
7778 	}
7779 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7780 	    GFP_KERNEL);
7781 	if (!ioc->blocking_handles) {
7782 		r = -ENOMEM;
7783 		goto out_free_resources;
7784 	}
7785 
7786 	/* allocate memory for pending OS device add list */
7787 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7788 	if (ioc->facts.MaxDevHandle % 8)
7789 		ioc->pend_os_device_add_sz++;
7790 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7791 	    GFP_KERNEL);
7792 	if (!ioc->pend_os_device_add)
7793 		goto out_free_resources;
7794 
7795 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7796 	ioc->device_remove_in_progress =
7797 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7798 	if (!ioc->device_remove_in_progress)
7799 		goto out_free_resources;
7800 
7801 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
7802 
7803 	/* base internal command bits */
7804 	mutex_init(&ioc->base_cmds.mutex);
7805 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7806 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7807 
7808 	/* port_enable command bits */
7809 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7810 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7811 
7812 	/* transport internal command bits */
7813 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7814 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7815 	mutex_init(&ioc->transport_cmds.mutex);
7816 
7817 	/* scsih internal command bits */
7818 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7819 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7820 	mutex_init(&ioc->scsih_cmds.mutex);
7821 
7822 	/* task management internal command bits */
7823 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7824 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7825 	mutex_init(&ioc->tm_cmds.mutex);
7826 
7827 	/* config page internal command bits */
7828 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7829 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7830 	mutex_init(&ioc->config_cmds.mutex);
7831 
7832 	/* ctl module internal command bits */
7833 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7834 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7835 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7836 	mutex_init(&ioc->ctl_cmds.mutex);
7837 
7838 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7839 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7840 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7841 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7842 		r = -ENOMEM;
7843 		goto out_free_resources;
7844 	}
7845 
7846 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7847 		ioc->event_masks[i] = -1;
7848 
7849 	/* here we enable the events we care about */
7850 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7851 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7852 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7853 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7854 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7855 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7856 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7857 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7858 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7859 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7860 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7861 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7862 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7863 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7864 		if (ioc->is_gen35_ioc) {
7865 			_base_unmask_events(ioc,
7866 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7867 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7868 			_base_unmask_events(ioc,
7869 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7870 		}
7871 	}
7872 	r = _base_make_ioc_operational(ioc);
7873 	if (r)
7874 		goto out_free_resources;
7875 
7876 	/*
7877 	 * Copy current copy of IOCFacts in prev_fw_facts
7878 	 * and it will be used during online firmware upgrade.
7879 	 */
7880 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
7881 	    sizeof(struct mpt3sas_facts));
7882 
7883 	ioc->non_operational_loop = 0;
7884 	ioc->ioc_coredump_loop = 0;
7885 	ioc->got_task_abort_from_ioctl = 0;
7886 	return 0;
7887 
7888  out_free_resources:
7889 
7890 	ioc->remove_host = 1;
7891 
7892 	mpt3sas_base_free_resources(ioc);
7893 	_base_release_memory_pools(ioc);
7894 	pci_set_drvdata(ioc->pdev, NULL);
7895 	kfree(ioc->cpu_msix_table);
7896 	if (ioc->is_warpdrive)
7897 		kfree(ioc->reply_post_host_index);
7898 	kfree(ioc->pd_handles);
7899 	kfree(ioc->blocking_handles);
7900 	kfree(ioc->device_remove_in_progress);
7901 	kfree(ioc->pend_os_device_add);
7902 	kfree(ioc->tm_cmds.reply);
7903 	kfree(ioc->transport_cmds.reply);
7904 	kfree(ioc->scsih_cmds.reply);
7905 	kfree(ioc->config_cmds.reply);
7906 	kfree(ioc->base_cmds.reply);
7907 	kfree(ioc->port_enable_cmds.reply);
7908 	kfree(ioc->ctl_cmds.reply);
7909 	kfree(ioc->ctl_cmds.sense);
7910 	kfree(ioc->pfacts);
7911 	ioc->ctl_cmds.reply = NULL;
7912 	ioc->base_cmds.reply = NULL;
7913 	ioc->tm_cmds.reply = NULL;
7914 	ioc->scsih_cmds.reply = NULL;
7915 	ioc->transport_cmds.reply = NULL;
7916 	ioc->config_cmds.reply = NULL;
7917 	ioc->pfacts = NULL;
7918 	return r;
7919 }
7920 
7921 
7922 /**
7923  * mpt3sas_base_detach - remove controller instance
7924  * @ioc: per adapter object
7925  */
7926 void
7927 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7928 {
7929 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7930 
7931 	mpt3sas_base_stop_watchdog(ioc);
7932 	mpt3sas_base_free_resources(ioc);
7933 	_base_release_memory_pools(ioc);
7934 	mpt3sas_free_enclosure_list(ioc);
7935 	pci_set_drvdata(ioc->pdev, NULL);
7936 	kfree(ioc->cpu_msix_table);
7937 	if (ioc->is_warpdrive)
7938 		kfree(ioc->reply_post_host_index);
7939 	kfree(ioc->pd_handles);
7940 	kfree(ioc->blocking_handles);
7941 	kfree(ioc->device_remove_in_progress);
7942 	kfree(ioc->pend_os_device_add);
7943 	kfree(ioc->pfacts);
7944 	kfree(ioc->ctl_cmds.reply);
7945 	kfree(ioc->ctl_cmds.sense);
7946 	kfree(ioc->base_cmds.reply);
7947 	kfree(ioc->port_enable_cmds.reply);
7948 	kfree(ioc->tm_cmds.reply);
7949 	kfree(ioc->transport_cmds.reply);
7950 	kfree(ioc->scsih_cmds.reply);
7951 	kfree(ioc->config_cmds.reply);
7952 }
7953 
7954 /**
7955  * _base_pre_reset_handler - pre reset handler
7956  * @ioc: per adapter object
7957  */
7958 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7959 {
7960 	mpt3sas_scsih_pre_reset_handler(ioc);
7961 	mpt3sas_ctl_pre_reset_handler(ioc);
7962 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7963 }
7964 
7965 /**
7966  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7967  * @ioc: per adapter object
7968  */
7969 static void
7970 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7971 {
7972 	dtmprintk(ioc,
7973 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7974 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7975 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
7976 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7977 		complete(&ioc->transport_cmds.done);
7978 	}
7979 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7980 		ioc->base_cmds.status |= MPT3_CMD_RESET;
7981 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7982 		complete(&ioc->base_cmds.done);
7983 	}
7984 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7985 		ioc->port_enable_failed = 1;
7986 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7987 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7988 		if (ioc->is_driver_loading) {
7989 			ioc->start_scan_failed =
7990 				MPI2_IOCSTATUS_INTERNAL_ERROR;
7991 			ioc->start_scan = 0;
7992 			ioc->port_enable_cmds.status =
7993 				MPT3_CMD_NOT_USED;
7994 		} else {
7995 			complete(&ioc->port_enable_cmds.done);
7996 		}
7997 	}
7998 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7999 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8000 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8001 		ioc->config_cmds.smid = USHRT_MAX;
8002 		complete(&ioc->config_cmds.done);
8003 	}
8004 }
8005 
8006 /**
8007  * _base_clear_outstanding_commands - clear all outstanding commands
8008  * @ioc: per adapter object
8009  */
8010 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8011 {
8012 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8013 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8014 	_base_clear_outstanding_mpt_commands(ioc);
8015 }
8016 
8017 /**
8018  * _base_reset_done_handler - reset done handler
8019  * @ioc: per adapter object
8020  */
8021 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8022 {
8023 	mpt3sas_scsih_reset_done_handler(ioc);
8024 	mpt3sas_ctl_reset_done_handler(ioc);
8025 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8026 }
8027 
8028 /**
8029  * mpt3sas_wait_for_commands_to_complete - reset controller
8030  * @ioc: Pointer to MPT_ADAPTER structure
8031  *
8032  * This function is waiting 10s for all pending commands to complete
8033  * prior to putting controller in reset.
8034  */
8035 void
8036 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8037 {
8038 	u32 ioc_state;
8039 
8040 	ioc->pending_io_count = 0;
8041 
8042 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8043 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8044 		return;
8045 
8046 	/* pending command count */
8047 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8048 
8049 	if (!ioc->pending_io_count)
8050 		return;
8051 
8052 	/* wait for pending commands to complete */
8053 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8054 }
8055 
8056 /**
8057  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8058  *     attributes during online firmware upgrade and update the corresponding
8059  *     IOC variables accordingly.
8060  *
8061  * @ioc: Pointer to MPT_ADAPTER structure
8062  */
8063 static int
8064 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8065 {
8066 	u16 pd_handles_sz;
8067 	void *pd_handles = NULL, *blocking_handles = NULL;
8068 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8069 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8070 
8071 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8072 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8073 		if (ioc->facts.MaxDevHandle % 8)
8074 			pd_handles_sz++;
8075 
8076 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8077 		    GFP_KERNEL);
8078 		if (!pd_handles) {
8079 			ioc_info(ioc,
8080 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8081 			    pd_handles_sz);
8082 			return -ENOMEM;
8083 		}
8084 		memset(pd_handles + ioc->pd_handles_sz, 0,
8085 		    (pd_handles_sz - ioc->pd_handles_sz));
8086 		ioc->pd_handles = pd_handles;
8087 
8088 		blocking_handles = krealloc(ioc->blocking_handles,
8089 		    pd_handles_sz, GFP_KERNEL);
8090 		if (!blocking_handles) {
8091 			ioc_info(ioc,
8092 			    "Unable to allocate the memory for "
8093 			    "blocking_handles of sz: %d\n",
8094 			    pd_handles_sz);
8095 			return -ENOMEM;
8096 		}
8097 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8098 		    (pd_handles_sz - ioc->pd_handles_sz));
8099 		ioc->blocking_handles = blocking_handles;
8100 		ioc->pd_handles_sz = pd_handles_sz;
8101 
8102 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8103 		    pd_handles_sz, GFP_KERNEL);
8104 		if (!pend_os_device_add) {
8105 			ioc_info(ioc,
8106 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8107 			    pd_handles_sz);
8108 			return -ENOMEM;
8109 		}
8110 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8111 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8112 		ioc->pend_os_device_add = pend_os_device_add;
8113 		ioc->pend_os_device_add_sz = pd_handles_sz;
8114 
8115 		device_remove_in_progress = krealloc(
8116 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8117 		if (!device_remove_in_progress) {
8118 			ioc_info(ioc,
8119 			    "Unable to allocate the memory for "
8120 			    "device_remove_in_progress of sz: %d\n "
8121 			    , pd_handles_sz);
8122 			return -ENOMEM;
8123 		}
8124 		memset(device_remove_in_progress +
8125 		    ioc->device_remove_in_progress_sz, 0,
8126 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8127 		ioc->device_remove_in_progress = device_remove_in_progress;
8128 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8129 	}
8130 
8131 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8132 	return 0;
8133 }
8134 
8135 /**
8136  * mpt3sas_base_hard_reset_handler - reset controller
8137  * @ioc: Pointer to MPT_ADAPTER structure
8138  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8139  *
8140  * Return: 0 for success, non-zero for failure.
8141  */
8142 int
8143 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8144 	enum reset_type type)
8145 {
8146 	int r;
8147 	unsigned long flags;
8148 	u32 ioc_state;
8149 	u8 is_fault = 0, is_trigger = 0;
8150 
8151 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8152 
8153 	if (ioc->pci_error_recovery) {
8154 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8155 		r = 0;
8156 		goto out_unlocked;
8157 	}
8158 
8159 	if (mpt3sas_fwfault_debug)
8160 		mpt3sas_halt_firmware(ioc);
8161 
8162 	/* wait for an active reset in progress to complete */
8163 	mutex_lock(&ioc->reset_in_progress_mutex);
8164 
8165 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8166 	ioc->shost_recovery = 1;
8167 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8168 
8169 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8170 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8171 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8172 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8173 		is_trigger = 1;
8174 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8175 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8176 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8177 		    MPI2_IOC_STATE_COREDUMP)
8178 			is_fault = 1;
8179 	}
8180 	_base_pre_reset_handler(ioc);
8181 	mpt3sas_wait_for_commands_to_complete(ioc);
8182 	mpt3sas_base_mask_interrupts(ioc);
8183 	r = _base_make_ioc_ready(ioc, type);
8184 	if (r)
8185 		goto out;
8186 	_base_clear_outstanding_commands(ioc);
8187 
8188 	/* If this hard reset is called while port enable is active, then
8189 	 * there is no reason to call make_ioc_operational
8190 	 */
8191 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8192 		ioc->remove_host = 1;
8193 		r = -EFAULT;
8194 		goto out;
8195 	}
8196 	r = _base_get_ioc_facts(ioc);
8197 	if (r)
8198 		goto out;
8199 
8200 	r = _base_check_ioc_facts_changes(ioc);
8201 	if (r) {
8202 		ioc_info(ioc,
8203 		    "Some of the parameters got changed in this new firmware"
8204 		    " image and it requires system reboot\n");
8205 		goto out;
8206 	}
8207 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8208 		panic("%s: Issue occurred with flashing controller firmware."
8209 		      "Please reboot the system and ensure that the correct"
8210 		      " firmware version is running\n", ioc->name);
8211 
8212 	r = _base_make_ioc_operational(ioc);
8213 	if (!r)
8214 		_base_reset_done_handler(ioc);
8215 
8216  out:
8217 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8218 
8219 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8220 	ioc->shost_recovery = 0;
8221 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8222 	ioc->ioc_reset_count++;
8223 	mutex_unlock(&ioc->reset_in_progress_mutex);
8224 
8225  out_unlocked:
8226 	if ((r == 0) && is_trigger) {
8227 		if (is_fault)
8228 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8229 		else
8230 			mpt3sas_trigger_master(ioc,
8231 			    MASTER_TRIGGER_ADAPTER_RESET);
8232 	}
8233 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8234 	return r;
8235 }
8236