1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 64 65 #include "mpt3sas_base.h" 66 67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 68 69 70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 71 72 /* maximum controller queue depth */ 73 #define MAX_HBA_QUEUE_DEPTH 30000 74 #define MAX_CHAIN_DEPTH 100000 75 static int max_queue_depth = -1; 76 module_param(max_queue_depth, int, 0444); 77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 78 79 static int max_sgl_entries = -1; 80 module_param(max_sgl_entries, int, 0444); 81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 82 83 static int msix_disable = -1; 84 module_param(msix_disable, int, 0444); 85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 86 87 static int smp_affinity_enable = 1; 88 module_param(smp_affinity_enable, int, 0444); 89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 90 91 static int max_msix_vectors = -1; 92 module_param(max_msix_vectors, int, 0444); 93 MODULE_PARM_DESC(max_msix_vectors, 94 " max msix vectors"); 95 96 static int irqpoll_weight = -1; 97 module_param(irqpoll_weight, int, 0444); 98 MODULE_PARM_DESC(irqpoll_weight, 99 "irq poll weight (default= one fourth of HBA queue depth)"); 100 101 static int mpt3sas_fwfault_debug; 102 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 103 " enable detection of firmware fault and halt firmware - (default=0)"); 104 105 static int perf_mode = -1; 106 module_param(perf_mode, int, 0444); 107 MODULE_PARM_DESC(perf_mode, 108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 109 "0 - balanced: high iops mode is enabled &\n\t\t" 110 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 111 "1 - iops: high iops mode is disabled &\n\t\t" 112 "interrupt coalescing is enabled on all queues,\n\t\t" 113 "2 - latency: high iops mode is disabled &\n\t\t" 114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 115 "\t\tdefault - default perf_mode is 'balanced'" 116 ); 117 118 static int poll_queues; 119 module_param(poll_queues, int, 0444); 120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" 121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t" 122 "when poll_queues are enabled then &\n\t\t" 123 "perf_mode is set to latency mode. &\n\t\t" 124 ); 125 126 enum mpt3sas_perf_mode { 127 MPT_PERF_MODE_DEFAULT = -1, 128 MPT_PERF_MODE_BALANCED = 0, 129 MPT_PERF_MODE_IOPS = 1, 130 MPT_PERF_MODE_LATENCY = 2, 131 }; 132 133 static int 134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 135 u32 ioc_state, int timeout); 136 static int 137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 138 static void 139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 140 141 static u32 142 _base_readl_ext_retry(const void __iomem *addr); 143 144 /** 145 * mpt3sas_base_check_cmd_timeout - Function 146 * to check timeout and command termination due 147 * to Host reset. 148 * 149 * @ioc: per adapter object. 150 * @status: Status of issued command. 151 * @mpi_request:mf request pointer. 152 * @sz: size of buffer. 153 * 154 * Return: 1/0 Reset to be done or Not 155 */ 156 u8 157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 158 u8 status, void *mpi_request, int sz) 159 { 160 u8 issue_reset = 0; 161 162 if (!(status & MPT3_CMD_RESET)) 163 issue_reset = 1; 164 165 ioc_err(ioc, "Command %s\n", 166 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 167 _debug_dump_mf(mpi_request, sz); 168 169 return issue_reset; 170 } 171 172 /** 173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 174 * @val: ? 175 * @kp: ? 176 * 177 * Return: ? 178 */ 179 static int 180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 181 { 182 int ret = param_set_int(val, kp); 183 struct MPT3SAS_ADAPTER *ioc; 184 185 if (ret) 186 return ret; 187 188 /* global ioc spinlock to protect controller list on list operations */ 189 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 190 spin_lock(&gioc_lock); 191 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 192 ioc->fwfault_debug = mpt3sas_fwfault_debug; 193 spin_unlock(&gioc_lock); 194 return 0; 195 } 196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 197 param_get_int, &mpt3sas_fwfault_debug, 0644); 198 199 /** 200 * _base_readl_aero - retry readl for max three times. 201 * @addr: MPT Fusion system interface register address 202 * 203 * Retry the readl() for max three times if it gets zero value 204 * while reading the system interface register. 205 */ 206 static inline u32 207 _base_readl_aero(const void __iomem *addr) 208 { 209 u32 i = 0, ret_val; 210 211 do { 212 ret_val = readl(addr); 213 i++; 214 } while (ret_val == 0 && i < 3); 215 216 return ret_val; 217 } 218 219 static u32 220 _base_readl_ext_retry(const void __iomem *addr) 221 { 222 u32 i, ret_val; 223 224 for (i = 0 ; i < 30 ; i++) { 225 ret_val = readl(addr); 226 if (ret_val != 0) 227 break; 228 } 229 230 return ret_val; 231 } 232 233 static inline u32 234 _base_readl(const void __iomem *addr) 235 { 236 return readl(addr); 237 } 238 239 /** 240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 241 * in BAR0 space. 242 * 243 * @ioc: per adapter object 244 * @reply: reply message frame(lower 32bit addr) 245 * @index: System request message index. 246 */ 247 static void 248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 249 u32 index) 250 { 251 /* 252 * 256 is offset within sys register. 253 * 256 offset MPI frame starts. Max MPI frame supported is 32. 254 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 255 */ 256 u16 cmd_credit = ioc->facts.RequestCredit + 1; 257 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 258 MPI_FRAME_START_OFFSET + 259 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 260 261 writel(reply, reply_free_iomem); 262 } 263 264 /** 265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 266 * to system/BAR0 region. 267 * 268 * @dst_iomem: Pointer to the destination location in BAR0 space. 269 * @src: Pointer to the Source data. 270 * @size: Size of data to be copied. 271 */ 272 static void 273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 274 { 275 int i; 276 u32 *src_virt_mem = (u32 *)src; 277 278 for (i = 0; i < size/4; i++) 279 writel((u32)src_virt_mem[i], 280 (void __iomem *)dst_iomem + (i * 4)); 281 } 282 283 /** 284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 285 * 286 * @dst_iomem: Pointer to the destination location in BAR0 space. 287 * @src: Pointer to the Source data. 288 * @size: Size of data to be copied. 289 */ 290 static void 291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 292 { 293 int i; 294 u32 *src_virt_mem = (u32 *)(src); 295 296 for (i = 0; i < size/4; i++) 297 writel((u32)src_virt_mem[i], 298 (void __iomem *)dst_iomem + (i * 4)); 299 } 300 301 /** 302 * _base_get_chain - Calculates and Returns virtual chain address 303 * for the provided smid in BAR0 space. 304 * 305 * @ioc: per adapter object 306 * @smid: system request message index 307 * @sge_chain_count: Scatter gather chain count. 308 * 309 * Return: the chain address. 310 */ 311 static inline void __iomem* 312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 313 u8 sge_chain_count) 314 { 315 void __iomem *base_chain, *chain_virt; 316 u16 cmd_credit = ioc->facts.RequestCredit + 1; 317 318 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 319 (cmd_credit * ioc->request_sz) + 320 REPLY_FREE_POOL_SIZE; 321 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 322 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 323 return chain_virt; 324 } 325 326 /** 327 * _base_get_chain_phys - Calculates and Returns physical address 328 * in BAR0 for scatter gather chains, for 329 * the provided smid. 330 * 331 * @ioc: per adapter object 332 * @smid: system request message index 333 * @sge_chain_count: Scatter gather chain count. 334 * 335 * Return: Physical chain address. 336 */ 337 static inline phys_addr_t 338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 339 u8 sge_chain_count) 340 { 341 phys_addr_t base_chain_phys, chain_phys; 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 344 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 345 (cmd_credit * ioc->request_sz) + 346 REPLY_FREE_POOL_SIZE; 347 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 348 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 349 return chain_phys; 350 } 351 352 /** 353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 354 * buffer address for the provided smid. 355 * (Each smid can have 64K starts from 17024) 356 * 357 * @ioc: per adapter object 358 * @smid: system request message index 359 * 360 * Return: Pointer to buffer location in BAR0. 361 */ 362 363 static void __iomem * 364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 365 { 366 u16 cmd_credit = ioc->facts.RequestCredit + 1; 367 // Added extra 1 to reach end of chain. 368 void __iomem *chain_end = _base_get_chain(ioc, 369 cmd_credit + 1, 370 ioc->facts.MaxChainDepth); 371 return chain_end + (smid * 64 * 1024); 372 } 373 374 /** 375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 376 * Host buffer Physical address for the provided smid. 377 * (Each smid can have 64K starts from 17024) 378 * 379 * @ioc: per adapter object 380 * @smid: system request message index 381 * 382 * Return: Pointer to buffer location in BAR0. 383 */ 384 static phys_addr_t 385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 386 { 387 u16 cmd_credit = ioc->facts.RequestCredit + 1; 388 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 389 cmd_credit + 1, 390 ioc->facts.MaxChainDepth); 391 return chain_end_phys + (smid * 64 * 1024); 392 } 393 394 /** 395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 396 * lookup list and Provides chain_buffer 397 * address for the matching dma address. 398 * (Each smid can have 64K starts from 17024) 399 * 400 * @ioc: per adapter object 401 * @chain_buffer_dma: Chain buffer dma address. 402 * 403 * Return: Pointer to chain buffer. Or Null on Failure. 404 */ 405 static void * 406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 407 dma_addr_t chain_buffer_dma) 408 { 409 u16 index, j; 410 struct chain_tracker *ct; 411 412 for (index = 0; index < ioc->scsiio_depth; index++) { 413 for (j = 0; j < ioc->chains_needed_per_io; j++) { 414 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 415 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 416 return ct->chain_buffer; 417 } 418 } 419 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 420 return NULL; 421 } 422 423 /** 424 * _clone_sg_entries - MPI EP's scsiio and config requests 425 * are handled here. Base function for 426 * double buffering, before submitting 427 * the requests. 428 * 429 * @ioc: per adapter object. 430 * @mpi_request: mf request pointer. 431 * @smid: system request message index. 432 */ 433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 434 void *mpi_request, u16 smid) 435 { 436 Mpi2SGESimple32_t *sgel, *sgel_next; 437 u32 sgl_flags, sge_chain_count = 0; 438 bool is_write = false; 439 u16 i = 0; 440 void __iomem *buffer_iomem; 441 phys_addr_t buffer_iomem_phys; 442 void __iomem *buff_ptr; 443 phys_addr_t buff_ptr_phys; 444 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 445 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 446 phys_addr_t dst_addr_phys; 447 MPI2RequestHeader_t *request_hdr; 448 struct scsi_cmnd *scmd; 449 struct scatterlist *sg_scmd = NULL; 450 int is_scsiio_req = 0; 451 452 request_hdr = (MPI2RequestHeader_t *) mpi_request; 453 454 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 455 Mpi25SCSIIORequest_t *scsiio_request = 456 (Mpi25SCSIIORequest_t *)mpi_request; 457 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 458 is_scsiio_req = 1; 459 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 460 Mpi2ConfigRequest_t *config_req = 461 (Mpi2ConfigRequest_t *)mpi_request; 462 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 463 } else 464 return; 465 466 /* From smid we can get scsi_cmd, once we have sg_scmd, 467 * we just need to get sg_virt and sg_next to get virtual 468 * address associated with sgel->Address. 469 */ 470 471 if (is_scsiio_req) { 472 /* Get scsi_cmd using smid */ 473 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 474 if (scmd == NULL) { 475 ioc_err(ioc, "scmd is NULL\n"); 476 return; 477 } 478 479 /* Get sg_scmd from scmd provided */ 480 sg_scmd = scsi_sglist(scmd); 481 } 482 483 /* 484 * 0 - 255 System register 485 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 486 * 4352 - 4864 Reply_free pool (512 byte is reserved 487 * considering maxCredit 32. Reply need extra 488 * room, for mCPU case kept four times of 489 * maxCredit). 490 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 491 * 128 byte size = 12288) 492 * 17152 - x Host buffer mapped with smid. 493 * (Each smid can have 64K Max IO.) 494 * BAR0+Last 1K MSIX Addr and Data 495 * Total size in use 2113664 bytes of 4MB BAR0 496 */ 497 498 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 499 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 500 501 buff_ptr = buffer_iomem; 502 buff_ptr_phys = buffer_iomem_phys; 503 WARN_ON(buff_ptr_phys > U32_MAX); 504 505 if (le32_to_cpu(sgel->FlagsLength) & 506 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 507 is_write = true; 508 509 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 510 511 sgl_flags = 512 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 513 514 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 515 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 516 /* 517 * Helper function which on passing 518 * chain_buffer_dma returns chain_buffer. Get 519 * the virtual address for sgel->Address 520 */ 521 sgel_next = 522 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 523 le32_to_cpu(sgel->Address)); 524 if (sgel_next == NULL) 525 return; 526 /* 527 * This is coping 128 byte chain 528 * frame (not a host buffer) 529 */ 530 dst_chain_addr[sge_chain_count] = 531 _base_get_chain(ioc, 532 smid, sge_chain_count); 533 src_chain_addr[sge_chain_count] = 534 (void *) sgel_next; 535 dst_addr_phys = _base_get_chain_phys(ioc, 536 smid, sge_chain_count); 537 WARN_ON(dst_addr_phys > U32_MAX); 538 sgel->Address = 539 cpu_to_le32(lower_32_bits(dst_addr_phys)); 540 sgel = sgel_next; 541 sge_chain_count++; 542 break; 543 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 544 if (is_write) { 545 if (is_scsiio_req) { 546 _base_clone_to_sys_mem(buff_ptr, 547 sg_virt(sg_scmd), 548 (le32_to_cpu(sgel->FlagsLength) & 549 0x00ffffff)); 550 /* 551 * FIXME: this relies on a a zero 552 * PCI mem_offset. 553 */ 554 sgel->Address = 555 cpu_to_le32((u32)buff_ptr_phys); 556 } else { 557 _base_clone_to_sys_mem(buff_ptr, 558 ioc->config_vaddr, 559 (le32_to_cpu(sgel->FlagsLength) & 560 0x00ffffff)); 561 sgel->Address = 562 cpu_to_le32((u32)buff_ptr_phys); 563 } 564 } 565 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 566 0x00ffffff); 567 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 568 0x00ffffff); 569 if ((le32_to_cpu(sgel->FlagsLength) & 570 (MPI2_SGE_FLAGS_END_OF_BUFFER 571 << MPI2_SGE_FLAGS_SHIFT))) 572 goto eob_clone_chain; 573 else { 574 /* 575 * Every single element in MPT will have 576 * associated sg_next. Better to sanity that 577 * sg_next is not NULL, but it will be a bug 578 * if it is null. 579 */ 580 if (is_scsiio_req) { 581 sg_scmd = sg_next(sg_scmd); 582 if (sg_scmd) 583 sgel++; 584 else 585 goto eob_clone_chain; 586 } 587 } 588 break; 589 } 590 } 591 592 eob_clone_chain: 593 for (i = 0; i < sge_chain_count; i++) { 594 if (is_scsiio_req) 595 _base_clone_to_sys_mem(dst_chain_addr[i], 596 src_chain_addr[i], ioc->request_sz); 597 } 598 } 599 600 /** 601 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 602 * @arg: input argument, used to derive ioc 603 * 604 * Return: 605 * 0 if controller is removed from pci subsystem. 606 * -1 for other case. 607 */ 608 static int mpt3sas_remove_dead_ioc_func(void *arg) 609 { 610 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 611 struct pci_dev *pdev; 612 613 if (!ioc) 614 return -1; 615 616 pdev = ioc->pdev; 617 if (!pdev) 618 return -1; 619 pci_stop_and_remove_bus_device_locked(pdev); 620 return 0; 621 } 622 623 /** 624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 625 * @ioc: Per Adapter Object 626 * 627 * Return: nothing. 628 */ 629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 630 { 631 Mpi26IoUnitControlRequest_t *mpi_request; 632 Mpi26IoUnitControlReply_t *mpi_reply; 633 u16 smid; 634 ktime_t current_time; 635 u64 TimeStamp = 0; 636 u8 issue_reset = 0; 637 638 mutex_lock(&ioc->scsih_cmds.mutex); 639 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 640 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 641 goto out; 642 } 643 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 644 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 645 if (!smid) { 646 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 647 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 648 goto out; 649 } 650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 651 ioc->scsih_cmds.smid = smid; 652 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 653 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 654 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 655 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 656 current_time = ktime_get_real(); 657 TimeStamp = ktime_to_ms(current_time); 658 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32); 659 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 660 init_completion(&ioc->scsih_cmds.done); 661 ioc->put_smid_default(ioc, smid); 662 dinitprintk(ioc, ioc_info(ioc, 663 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 664 TimeStamp)); 665 wait_for_completion_timeout(&ioc->scsih_cmds.done, 666 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 667 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 668 mpt3sas_check_cmd_timeout(ioc, 669 ioc->scsih_cmds.status, mpi_request, 670 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 671 goto issue_host_reset; 672 } 673 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 674 mpi_reply = ioc->scsih_cmds.reply; 675 dinitprintk(ioc, ioc_info(ioc, 676 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 677 le16_to_cpu(mpi_reply->IOCStatus), 678 le32_to_cpu(mpi_reply->IOCLogInfo))); 679 } 680 issue_host_reset: 681 if (issue_reset) 682 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 684 out: 685 mutex_unlock(&ioc->scsih_cmds.mutex); 686 } 687 688 /** 689 * _base_fault_reset_work - workq handling ioc fault conditions 690 * @work: input argument, used to derive ioc 691 * 692 * Context: sleep. 693 */ 694 static void 695 _base_fault_reset_work(struct work_struct *work) 696 { 697 struct MPT3SAS_ADAPTER *ioc = 698 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 699 unsigned long flags; 700 u32 doorbell; 701 int rc; 702 struct task_struct *p; 703 704 705 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 706 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 707 ioc->pci_error_recovery) 708 goto rearm_timer; 709 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 710 711 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 712 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 713 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 714 715 /* It may be possible that EEH recovery can resolve some of 716 * pci bus failure issues rather removing the dead ioc function 717 * by considering controller is in a non-operational state. So 718 * here priority is given to the EEH recovery. If it doesn't 719 * not resolve this issue, mpt3sas driver will consider this 720 * controller to non-operational state and remove the dead ioc 721 * function. 722 */ 723 if (ioc->non_operational_loop++ < 5) { 724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 725 flags); 726 goto rearm_timer; 727 } 728 729 /* 730 * Call _scsih_flush_pending_cmds callback so that we flush all 731 * pending commands back to OS. This call is required to avoid 732 * deadlock at block layer. Dead IOC will fail to do diag reset, 733 * and this call is safe since dead ioc will never return any 734 * command back from HW. 735 */ 736 mpt3sas_base_pause_mq_polling(ioc); 737 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 738 /* 739 * Set remove_host flag early since kernel thread will 740 * take some time to execute. 741 */ 742 ioc->remove_host = 1; 743 /*Remove the Dead Host */ 744 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 745 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 746 if (IS_ERR(p)) 747 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 748 __func__); 749 else 750 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 751 __func__); 752 return; /* don't rearm timer */ 753 } 754 755 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 756 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 757 ioc->manu_pg11.CoreDumpTOSec : 758 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 759 760 timeout /= (FAULT_POLLING_INTERVAL/1000); 761 762 if (ioc->ioc_coredump_loop == 0) { 763 mpt3sas_print_coredump_info(ioc, 764 doorbell & MPI2_DOORBELL_DATA_MASK); 765 /* do not accept any IOs and disable the interrupts */ 766 spin_lock_irqsave( 767 &ioc->ioc_reset_in_progress_lock, flags); 768 ioc->shost_recovery = 1; 769 spin_unlock_irqrestore( 770 &ioc->ioc_reset_in_progress_lock, flags); 771 mpt3sas_base_mask_interrupts(ioc); 772 mpt3sas_base_pause_mq_polling(ioc); 773 _base_clear_outstanding_commands(ioc); 774 } 775 776 ioc_info(ioc, "%s: CoreDump loop %d.", 777 __func__, ioc->ioc_coredump_loop); 778 779 /* Wait until CoreDump completes or times out */ 780 if (ioc->ioc_coredump_loop++ < timeout) { 781 spin_lock_irqsave( 782 &ioc->ioc_reset_in_progress_lock, flags); 783 goto rearm_timer; 784 } 785 } 786 787 if (ioc->ioc_coredump_loop) { 788 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 789 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 790 __func__, ioc->ioc_coredump_loop); 791 else 792 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 793 __func__, ioc->ioc_coredump_loop); 794 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 795 } 796 ioc->non_operational_loop = 0; 797 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 798 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 799 ioc_warn(ioc, "%s: hard reset: %s\n", 800 __func__, rc == 0 ? "success" : "failed"); 801 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 802 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 803 mpt3sas_print_fault_code(ioc, doorbell & 804 MPI2_DOORBELL_DATA_MASK); 805 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 806 MPI2_IOC_STATE_COREDUMP) 807 mpt3sas_print_coredump_info(ioc, doorbell & 808 MPI2_DOORBELL_DATA_MASK); 809 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 810 MPI2_IOC_STATE_OPERATIONAL) 811 return; /* don't rearm timer */ 812 } 813 ioc->ioc_coredump_loop = 0; 814 if (ioc->time_sync_interval && 815 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 816 ioc->timestamp_update_count = 0; 817 _base_sync_drv_fw_timestamp(ioc); 818 } 819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 820 rearm_timer: 821 if (ioc->fault_reset_work_q) 822 queue_delayed_work(ioc->fault_reset_work_q, 823 &ioc->fault_reset_work, 824 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 825 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 826 } 827 828 /** 829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 830 * @ioc: per adapter object 831 * 832 * Context: sleep. 833 */ 834 void 835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 836 { 837 unsigned long flags; 838 839 if (ioc->fault_reset_work_q) 840 return; 841 842 ioc->timestamp_update_count = 0; 843 /* initialize fault polling */ 844 845 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 846 snprintf(ioc->fault_reset_work_q_name, 847 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 848 ioc->driver_name, ioc->id); 849 ioc->fault_reset_work_q = alloc_ordered_workqueue( 850 "%s", WQ_MEM_RECLAIM, ioc->fault_reset_work_q_name); 851 if (!ioc->fault_reset_work_q) { 852 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 853 return; 854 } 855 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 856 if (ioc->fault_reset_work_q) 857 queue_delayed_work(ioc->fault_reset_work_q, 858 &ioc->fault_reset_work, 859 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 860 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 861 } 862 863 /** 864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 865 * @ioc: per adapter object 866 * 867 * Context: sleep. 868 */ 869 void 870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 871 { 872 unsigned long flags; 873 struct workqueue_struct *wq; 874 875 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 876 wq = ioc->fault_reset_work_q; 877 ioc->fault_reset_work_q = NULL; 878 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 879 if (wq) { 880 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 881 flush_workqueue(wq); 882 destroy_workqueue(wq); 883 } 884 } 885 886 /** 887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 888 * @ioc: per adapter object 889 * @fault_code: fault code 890 */ 891 void 892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 893 { 894 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 895 } 896 897 /** 898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 899 * @ioc: per adapter object 900 * @fault_code: fault code 901 * 902 * Return: nothing. 903 */ 904 void 905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 906 { 907 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 908 } 909 910 /** 911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 912 * completes or times out 913 * @ioc: per adapter object 914 * @caller: caller function name 915 * 916 * Return: 0 for success, non-zero for failure. 917 */ 918 int 919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 920 const char *caller) 921 { 922 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 923 ioc->manu_pg11.CoreDumpTOSec : 924 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 925 926 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 927 timeout); 928 929 if (ioc_state) 930 ioc_err(ioc, 931 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 932 caller, ioc_state); 933 else 934 ioc_info(ioc, 935 "%s: CoreDump completed. (ioc_state=0x%x)\n", 936 caller, ioc_state); 937 938 return ioc_state; 939 } 940 941 /** 942 * mpt3sas_halt_firmware - halt's mpt controller firmware 943 * @ioc: per adapter object 944 * 945 * For debugging timeout related issues. Writing 0xCOFFEE00 946 * to the doorbell register will halt controller firmware. With 947 * the purpose to stop both driver and firmware, the enduser can 948 * obtain a ring buffer from controller UART. 949 */ 950 void 951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 952 { 953 u32 doorbell; 954 955 if (!ioc->fwfault_debug) 956 return; 957 958 dump_stack(); 959 960 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 961 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 962 mpt3sas_print_fault_code(ioc, doorbell & 963 MPI2_DOORBELL_DATA_MASK); 964 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 965 MPI2_IOC_STATE_COREDUMP) { 966 mpt3sas_print_coredump_info(ioc, doorbell & 967 MPI2_DOORBELL_DATA_MASK); 968 } else { 969 writel(0xC0FFEE00, &ioc->chip->Doorbell); 970 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 971 } 972 973 if (ioc->fwfault_debug == 2) 974 for (;;) 975 ; 976 else 977 panic("panic in %s\n", __func__); 978 } 979 980 /** 981 * _base_sas_ioc_info - verbose translation of the ioc status 982 * @ioc: per adapter object 983 * @mpi_reply: reply mf payload returned from firmware 984 * @request_hdr: request mf 985 */ 986 static void 987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 988 MPI2RequestHeader_t *request_hdr) 989 { 990 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 991 MPI2_IOCSTATUS_MASK; 992 char *desc = NULL; 993 u16 frame_sz; 994 char *func_str = NULL; 995 996 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 997 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 998 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 999 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 1000 return; 1001 1002 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 1003 return; 1004 /* 1005 * Older Firmware version doesn't support driver trigger pages. 1006 * So, skip displaying 'config invalid type' type 1007 * of error message. 1008 */ 1009 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 1010 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 1011 1012 if ((rqst->ExtPageType == 1013 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 1014 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 1015 return; 1016 } 1017 } 1018 1019 switch (ioc_status) { 1020 1021 /**************************************************************************** 1022 * Common IOCStatus values for all replies 1023 ****************************************************************************/ 1024 1025 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1026 desc = "invalid function"; 1027 break; 1028 case MPI2_IOCSTATUS_BUSY: 1029 desc = "busy"; 1030 break; 1031 case MPI2_IOCSTATUS_INVALID_SGL: 1032 desc = "invalid sgl"; 1033 break; 1034 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1035 desc = "internal error"; 1036 break; 1037 case MPI2_IOCSTATUS_INVALID_VPID: 1038 desc = "invalid vpid"; 1039 break; 1040 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1041 desc = "insufficient resources"; 1042 break; 1043 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1044 desc = "insufficient power"; 1045 break; 1046 case MPI2_IOCSTATUS_INVALID_FIELD: 1047 desc = "invalid field"; 1048 break; 1049 case MPI2_IOCSTATUS_INVALID_STATE: 1050 desc = "invalid state"; 1051 break; 1052 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1053 desc = "op state not supported"; 1054 break; 1055 1056 /**************************************************************************** 1057 * Config IOCStatus values 1058 ****************************************************************************/ 1059 1060 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1061 desc = "config invalid action"; 1062 break; 1063 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1064 desc = "config invalid type"; 1065 break; 1066 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1067 desc = "config invalid page"; 1068 break; 1069 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1070 desc = "config invalid data"; 1071 break; 1072 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1073 desc = "config no defaults"; 1074 break; 1075 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1076 desc = "config can't commit"; 1077 break; 1078 1079 /**************************************************************************** 1080 * SCSI IO Reply 1081 ****************************************************************************/ 1082 1083 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1084 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1085 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1086 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1087 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1088 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1089 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1090 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1091 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1092 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1093 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1094 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1095 break; 1096 1097 /**************************************************************************** 1098 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1099 ****************************************************************************/ 1100 1101 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1102 desc = "eedp guard error"; 1103 break; 1104 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1105 desc = "eedp ref tag error"; 1106 break; 1107 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1108 desc = "eedp app tag error"; 1109 break; 1110 1111 /**************************************************************************** 1112 * SCSI Target values 1113 ****************************************************************************/ 1114 1115 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1116 desc = "target invalid io index"; 1117 break; 1118 case MPI2_IOCSTATUS_TARGET_ABORTED: 1119 desc = "target aborted"; 1120 break; 1121 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1122 desc = "target no conn retryable"; 1123 break; 1124 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1125 desc = "target no connection"; 1126 break; 1127 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1128 desc = "target xfer count mismatch"; 1129 break; 1130 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1131 desc = "target data offset error"; 1132 break; 1133 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1134 desc = "target too much write data"; 1135 break; 1136 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1137 desc = "target iu too short"; 1138 break; 1139 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1140 desc = "target ack nak timeout"; 1141 break; 1142 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1143 desc = "target nak received"; 1144 break; 1145 1146 /**************************************************************************** 1147 * Serial Attached SCSI values 1148 ****************************************************************************/ 1149 1150 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1151 desc = "smp request failed"; 1152 break; 1153 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1154 desc = "smp data overrun"; 1155 break; 1156 1157 /**************************************************************************** 1158 * Diagnostic Buffer Post / Diagnostic Release values 1159 ****************************************************************************/ 1160 1161 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1162 desc = "diagnostic released"; 1163 break; 1164 default: 1165 break; 1166 } 1167 1168 if (!desc) 1169 return; 1170 1171 switch (request_hdr->Function) { 1172 case MPI2_FUNCTION_CONFIG: 1173 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1174 func_str = "config_page"; 1175 break; 1176 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1177 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1178 func_str = "task_mgmt"; 1179 break; 1180 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1181 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1182 func_str = "sas_iounit_ctl"; 1183 break; 1184 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1185 frame_sz = sizeof(Mpi2SepRequest_t); 1186 func_str = "enclosure"; 1187 break; 1188 case MPI2_FUNCTION_IOC_INIT: 1189 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1190 func_str = "ioc_init"; 1191 break; 1192 case MPI2_FUNCTION_PORT_ENABLE: 1193 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1194 func_str = "port_enable"; 1195 break; 1196 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1197 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1198 func_str = "smp_passthru"; 1199 break; 1200 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1201 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1202 ioc->sge_size; 1203 func_str = "nvme_encapsulated"; 1204 break; 1205 case MPI2_FUNCTION_MCTP_PASSTHROUGH: 1206 frame_sz = sizeof(Mpi26MctpPassthroughRequest_t) + 1207 ioc->sge_size; 1208 func_str = "mctp_passthru"; 1209 break; 1210 default: 1211 frame_sz = 32; 1212 func_str = "unknown"; 1213 break; 1214 } 1215 1216 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1217 desc, ioc_status, request_hdr, func_str); 1218 1219 _debug_dump_mf(request_hdr, frame_sz/4); 1220 } 1221 1222 /** 1223 * _base_display_event_data - verbose translation of firmware asyn events 1224 * @ioc: per adapter object 1225 * @mpi_reply: reply mf payload returned from firmware 1226 */ 1227 static void 1228 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1229 Mpi2EventNotificationReply_t *mpi_reply) 1230 { 1231 char *desc = NULL; 1232 u16 event; 1233 1234 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1235 return; 1236 1237 event = le16_to_cpu(mpi_reply->Event); 1238 1239 switch (event) { 1240 case MPI2_EVENT_LOG_DATA: 1241 desc = "Log Data"; 1242 break; 1243 case MPI2_EVENT_STATE_CHANGE: 1244 desc = "Status Change"; 1245 break; 1246 case MPI2_EVENT_HARD_RESET_RECEIVED: 1247 desc = "Hard Reset Received"; 1248 break; 1249 case MPI2_EVENT_EVENT_CHANGE: 1250 desc = "Event Change"; 1251 break; 1252 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1253 desc = "Device Status Change"; 1254 break; 1255 case MPI2_EVENT_IR_OPERATION_STATUS: 1256 if (!ioc->hide_ir_msg) 1257 desc = "IR Operation Status"; 1258 break; 1259 case MPI2_EVENT_SAS_DISCOVERY: 1260 { 1261 Mpi2EventDataSasDiscovery_t *event_data = 1262 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1263 ioc_info(ioc, "Discovery: (%s)", 1264 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1265 "start" : "stop"); 1266 if (event_data->DiscoveryStatus) 1267 pr_cont(" discovery_status(0x%08x)", 1268 le32_to_cpu(event_data->DiscoveryStatus)); 1269 pr_cont("\n"); 1270 return; 1271 } 1272 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1273 desc = "SAS Broadcast Primitive"; 1274 break; 1275 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1276 desc = "SAS Init Device Status Change"; 1277 break; 1278 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1279 desc = "SAS Init Table Overflow"; 1280 break; 1281 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1282 desc = "SAS Topology Change List"; 1283 break; 1284 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1285 desc = "SAS Enclosure Device Status Change"; 1286 break; 1287 case MPI2_EVENT_IR_VOLUME: 1288 if (!ioc->hide_ir_msg) 1289 desc = "IR Volume"; 1290 break; 1291 case MPI2_EVENT_IR_PHYSICAL_DISK: 1292 if (!ioc->hide_ir_msg) 1293 desc = "IR Physical Disk"; 1294 break; 1295 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1296 if (!ioc->hide_ir_msg) 1297 desc = "IR Configuration Change List"; 1298 break; 1299 case MPI2_EVENT_LOG_ENTRY_ADDED: 1300 if (!ioc->hide_ir_msg) 1301 desc = "Log Entry Added"; 1302 break; 1303 case MPI2_EVENT_TEMP_THRESHOLD: 1304 desc = "Temperature Threshold"; 1305 break; 1306 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1307 desc = "Cable Event"; 1308 break; 1309 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1310 desc = "SAS Device Discovery Error"; 1311 break; 1312 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1313 desc = "PCIE Device Status Change"; 1314 break; 1315 case MPI2_EVENT_PCIE_ENUMERATION: 1316 { 1317 Mpi26EventDataPCIeEnumeration_t *event_data = 1318 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1319 ioc_info(ioc, "PCIE Enumeration: (%s)", 1320 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1321 "start" : "stop"); 1322 if (event_data->EnumerationStatus) 1323 pr_cont("enumeration_status(0x%08x)", 1324 le32_to_cpu(event_data->EnumerationStatus)); 1325 pr_cont("\n"); 1326 return; 1327 } 1328 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1329 desc = "PCIE Topology Change List"; 1330 break; 1331 } 1332 1333 if (!desc) 1334 return; 1335 1336 ioc_info(ioc, "%s\n", desc); 1337 } 1338 1339 /** 1340 * _base_sas_log_info - verbose translation of firmware log info 1341 * @ioc: per adapter object 1342 * @log_info: log info 1343 */ 1344 static void 1345 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info) 1346 { 1347 union loginfo_type { 1348 u32 loginfo; 1349 struct { 1350 u32 subcode:16; 1351 u32 code:8; 1352 u32 originator:4; 1353 u32 bus_type:4; 1354 } dw; 1355 }; 1356 union loginfo_type sas_loginfo; 1357 char *originator_str = NULL; 1358 1359 sas_loginfo.loginfo = log_info; 1360 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1361 return; 1362 1363 /* each nexus loss loginfo */ 1364 if (log_info == 0x31170000) 1365 return; 1366 1367 /* eat the loginfos associated with task aborts */ 1368 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1369 0x31140000 || log_info == 0x31130000)) 1370 return; 1371 1372 switch (sas_loginfo.dw.originator) { 1373 case 0: 1374 originator_str = "IOP"; 1375 break; 1376 case 1: 1377 originator_str = "PL"; 1378 break; 1379 case 2: 1380 if (!ioc->hide_ir_msg) 1381 originator_str = "IR"; 1382 else 1383 originator_str = "WarpDrive"; 1384 break; 1385 } 1386 1387 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1388 log_info, 1389 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1390 } 1391 1392 /** 1393 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1394 * @ioc: per adapter object 1395 * @smid: system request message index 1396 * @msix_index: MSIX table index supplied by the OS 1397 * @reply: reply message frame (lower 32bit addr) 1398 */ 1399 static void 1400 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1401 u32 reply) 1402 { 1403 MPI2DefaultReply_t *mpi_reply; 1404 u16 ioc_status; 1405 u32 loginfo = 0; 1406 1407 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1408 if (unlikely(!mpi_reply)) { 1409 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1410 __FILE__, __LINE__, __func__); 1411 return; 1412 } 1413 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1414 1415 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1416 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1417 _base_sas_ioc_info(ioc, mpi_reply, 1418 mpt3sas_base_get_msg_frame(ioc, smid)); 1419 } 1420 1421 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1422 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1423 if (ioc->logging_level & MPT_DEBUG_REPLY) 1424 _base_sas_log_info(ioc, loginfo); 1425 else { 1426 if (!((ioc_status & MPI2_IOCSTATUS_MASK) & 1427 MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)) 1428 _base_sas_log_info(ioc, loginfo); 1429 } 1430 } 1431 1432 if (ioc_status || loginfo) { 1433 ioc_status &= MPI2_IOCSTATUS_MASK; 1434 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1435 } 1436 } 1437 1438 /** 1439 * mpt3sas_base_done - base internal command completion routine 1440 * @ioc: per adapter object 1441 * @smid: system request message index 1442 * @msix_index: MSIX table index supplied by the OS 1443 * @reply: reply message frame(lower 32bit addr) 1444 * 1445 * Return: 1446 * 1 meaning mf should be freed from _base_interrupt 1447 * 0 means the mf is freed from this function. 1448 */ 1449 u8 1450 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1451 u32 reply) 1452 { 1453 MPI2DefaultReply_t *mpi_reply; 1454 1455 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1456 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1457 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1458 1459 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1460 return 1; 1461 1462 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1463 if (mpi_reply) { 1464 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1465 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1466 } 1467 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1468 1469 complete(&ioc->base_cmds.done); 1470 return 1; 1471 } 1472 1473 /** 1474 * _base_async_event - main callback handler for firmware asyn events 1475 * @ioc: per adapter object 1476 * @msix_index: MSIX table index supplied by the OS 1477 * @reply: reply message frame(lower 32bit addr) 1478 * 1479 * Return: 1480 * 1 meaning mf should be freed from _base_interrupt 1481 * 0 means the mf is freed from this function. 1482 */ 1483 static u8 1484 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1485 { 1486 Mpi2EventNotificationReply_t *mpi_reply; 1487 Mpi2EventAckRequest_t *ack_request; 1488 u16 smid; 1489 struct _event_ack_list *delayed_event_ack; 1490 1491 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1492 if (!mpi_reply) 1493 return 1; 1494 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1495 return 1; 1496 1497 _base_display_event_data(ioc, mpi_reply); 1498 1499 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1500 goto out; 1501 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1502 if (!smid) { 1503 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1504 GFP_ATOMIC); 1505 if (!delayed_event_ack) 1506 goto out; 1507 INIT_LIST_HEAD(&delayed_event_ack->list); 1508 delayed_event_ack->Event = mpi_reply->Event; 1509 delayed_event_ack->EventContext = mpi_reply->EventContext; 1510 list_add_tail(&delayed_event_ack->list, 1511 &ioc->delayed_event_ack_list); 1512 dewtprintk(ioc, 1513 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1514 le16_to_cpu(mpi_reply->Event))); 1515 goto out; 1516 } 1517 1518 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1519 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1520 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1521 ack_request->Event = mpi_reply->Event; 1522 ack_request->EventContext = mpi_reply->EventContext; 1523 ack_request->VF_ID = 0; /* TODO */ 1524 ack_request->VP_ID = 0; 1525 ioc->put_smid_default(ioc, smid); 1526 1527 out: 1528 1529 /* scsih callback handler */ 1530 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1531 1532 /* ctl callback handler */ 1533 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1534 1535 return 1; 1536 } 1537 1538 static struct scsiio_tracker * 1539 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1540 { 1541 struct scsi_cmnd *cmd; 1542 1543 if (WARN_ON(!smid) || 1544 WARN_ON(smid >= ioc->hi_priority_smid)) 1545 return NULL; 1546 1547 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1548 if (cmd) 1549 return scsi_cmd_priv(cmd); 1550 1551 return NULL; 1552 } 1553 1554 /** 1555 * _base_get_cb_idx - obtain the callback index 1556 * @ioc: per adapter object 1557 * @smid: system request message index 1558 * 1559 * Return: callback index. 1560 */ 1561 static u8 1562 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1563 { 1564 int i; 1565 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1566 u8 cb_idx = 0xFF; 1567 1568 if (smid < ioc->hi_priority_smid) { 1569 struct scsiio_tracker *st; 1570 1571 if (smid < ctl_smid) { 1572 st = _get_st_from_smid(ioc, smid); 1573 if (st) 1574 cb_idx = st->cb_idx; 1575 } else if (smid == ctl_smid) 1576 cb_idx = ioc->ctl_cb_idx; 1577 } else if (smid < ioc->internal_smid) { 1578 i = smid - ioc->hi_priority_smid; 1579 cb_idx = ioc->hpr_lookup[i].cb_idx; 1580 } else if (smid <= ioc->hba_queue_depth) { 1581 i = smid - ioc->internal_smid; 1582 cb_idx = ioc->internal_lookup[i].cb_idx; 1583 } 1584 return cb_idx; 1585 } 1586 1587 /** 1588 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues 1589 * when driver is flushing out the IOs. 1590 * @ioc: per adapter object 1591 * 1592 * Pause polling on the mq poll (io uring) queues when driver is flushing 1593 * out the IOs. Otherwise we may see the race condition of completing the same 1594 * IO from two paths. 1595 * 1596 * Returns nothing. 1597 */ 1598 void 1599 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1600 { 1601 int iopoll_q_count = 1602 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1603 int qid; 1604 1605 for (qid = 0; qid < iopoll_q_count; qid++) 1606 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1); 1607 1608 /* 1609 * wait for current poll to complete. 1610 */ 1611 for (qid = 0; qid < iopoll_q_count; qid++) { 1612 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) { 1613 cpu_relax(); 1614 udelay(500); 1615 } 1616 } 1617 } 1618 1619 /** 1620 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues. 1621 * @ioc: per adapter object 1622 * 1623 * Returns nothing. 1624 */ 1625 void 1626 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1627 { 1628 int iopoll_q_count = 1629 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1630 int qid; 1631 1632 for (qid = 0; qid < iopoll_q_count; qid++) 1633 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0); 1634 } 1635 1636 /** 1637 * mpt3sas_base_mask_interrupts - disable interrupts 1638 * @ioc: per adapter object 1639 * 1640 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1641 */ 1642 void 1643 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1644 { 1645 u32 him_register; 1646 1647 ioc->mask_interrupts = 1; 1648 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1649 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1650 writel(him_register, &ioc->chip->HostInterruptMask); 1651 ioc->base_readl(&ioc->chip->HostInterruptMask); 1652 } 1653 1654 /** 1655 * mpt3sas_base_unmask_interrupts - enable interrupts 1656 * @ioc: per adapter object 1657 * 1658 * Enabling only Reply Interrupts 1659 */ 1660 void 1661 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1662 { 1663 u32 him_register; 1664 1665 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1666 him_register &= ~MPI2_HIM_RIM; 1667 writel(him_register, &ioc->chip->HostInterruptMask); 1668 ioc->mask_interrupts = 0; 1669 } 1670 1671 union reply_descriptor { 1672 u64 word; 1673 struct { 1674 u32 low; 1675 u32 high; 1676 } u; 1677 }; 1678 1679 static u32 base_mod64(u64 dividend, u32 divisor) 1680 { 1681 u32 remainder; 1682 1683 if (!divisor) 1684 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1685 remainder = do_div(dividend, divisor); 1686 return remainder; 1687 } 1688 1689 /** 1690 * _base_process_reply_queue - Process reply descriptors from reply 1691 * descriptor post queue. 1692 * @reply_q: per IRQ's reply queue object. 1693 * 1694 * Return: number of reply descriptors processed from reply 1695 * descriptor queue. 1696 */ 1697 static int 1698 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1699 { 1700 union reply_descriptor rd; 1701 u64 completed_cmds; 1702 u8 request_descript_type; 1703 u16 smid; 1704 u8 cb_idx; 1705 u32 reply; 1706 u8 msix_index = reply_q->msix_index; 1707 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1708 Mpi2ReplyDescriptorsUnion_t *rpf; 1709 u8 rc; 1710 1711 completed_cmds = 0; 1712 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1713 return completed_cmds; 1714 1715 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1716 request_descript_type = rpf->Default.ReplyFlags 1717 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1718 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1719 atomic_dec(&reply_q->busy); 1720 return completed_cmds; 1721 } 1722 1723 cb_idx = 0xFF; 1724 do { 1725 rd.word = le64_to_cpu(rpf->Words); 1726 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1727 goto out; 1728 reply = 0; 1729 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1730 if (request_descript_type == 1731 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1732 request_descript_type == 1733 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1734 request_descript_type == 1735 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1736 cb_idx = _base_get_cb_idx(ioc, smid); 1737 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1738 (likely(mpt_callbacks[cb_idx] != NULL))) { 1739 rc = mpt_callbacks[cb_idx](ioc, smid, 1740 msix_index, 0); 1741 if (rc) 1742 mpt3sas_base_free_smid(ioc, smid); 1743 } 1744 } else if (request_descript_type == 1745 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1746 reply = le32_to_cpu( 1747 rpf->AddressReply.ReplyFrameAddress); 1748 if (reply > ioc->reply_dma_max_address || 1749 reply < ioc->reply_dma_min_address) 1750 reply = 0; 1751 if (smid) { 1752 cb_idx = _base_get_cb_idx(ioc, smid); 1753 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1754 (likely(mpt_callbacks[cb_idx] != NULL))) { 1755 rc = mpt_callbacks[cb_idx](ioc, smid, 1756 msix_index, reply); 1757 if (reply) 1758 _base_display_reply_info(ioc, 1759 smid, msix_index, reply); 1760 if (rc) 1761 mpt3sas_base_free_smid(ioc, 1762 smid); 1763 } 1764 } else { 1765 _base_async_event(ioc, msix_index, reply); 1766 } 1767 1768 /* reply free queue handling */ 1769 if (reply) { 1770 ioc->reply_free_host_index = 1771 (ioc->reply_free_host_index == 1772 (ioc->reply_free_queue_depth - 1)) ? 1773 0 : ioc->reply_free_host_index + 1; 1774 ioc->reply_free[ioc->reply_free_host_index] = 1775 cpu_to_le32(reply); 1776 if (ioc->is_mcpu_endpoint) 1777 _base_clone_reply_to_sys_mem(ioc, 1778 reply, 1779 ioc->reply_free_host_index); 1780 writel(ioc->reply_free_host_index, 1781 &ioc->chip->ReplyFreeHostIndex); 1782 } 1783 } 1784 1785 rpf->Words = cpu_to_le64(ULLONG_MAX); 1786 reply_q->reply_post_host_index = 1787 (reply_q->reply_post_host_index == 1788 (ioc->reply_post_queue_depth - 1)) ? 0 : 1789 reply_q->reply_post_host_index + 1; 1790 request_descript_type = 1791 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1792 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1793 completed_cmds++; 1794 /* Update the reply post host index after continuously 1795 * processing the threshold number of Reply Descriptors. 1796 * So that FW can find enough entries to post the Reply 1797 * Descriptors in the reply descriptor post queue. 1798 */ 1799 if (completed_cmds >= ioc->thresh_hold) { 1800 if (ioc->combined_reply_queue) { 1801 writel(reply_q->reply_post_host_index | 1802 ((msix_index & 7) << 1803 MPI2_RPHI_MSIX_INDEX_SHIFT), 1804 ioc->replyPostRegisterIndex[msix_index/8]); 1805 } else { 1806 writel(reply_q->reply_post_host_index | 1807 (msix_index << 1808 MPI2_RPHI_MSIX_INDEX_SHIFT), 1809 &ioc->chip->ReplyPostHostIndex); 1810 } 1811 if (!reply_q->is_iouring_poll_q && 1812 !reply_q->irq_poll_scheduled) { 1813 reply_q->irq_poll_scheduled = true; 1814 irq_poll_sched(&reply_q->irqpoll); 1815 } 1816 atomic_dec(&reply_q->busy); 1817 return completed_cmds; 1818 } 1819 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1820 goto out; 1821 if (!reply_q->reply_post_host_index) 1822 rpf = reply_q->reply_post_free; 1823 else 1824 rpf++; 1825 } while (1); 1826 1827 out: 1828 1829 if (!completed_cmds) { 1830 atomic_dec(&reply_q->busy); 1831 return completed_cmds; 1832 } 1833 1834 if (ioc->is_warpdrive) { 1835 writel(reply_q->reply_post_host_index, 1836 ioc->reply_post_host_index[msix_index]); 1837 atomic_dec(&reply_q->busy); 1838 return completed_cmds; 1839 } 1840 1841 /* Update Reply Post Host Index. 1842 * For those HBA's which support combined reply queue feature 1843 * 1. Get the correct Supplemental Reply Post Host Index Register. 1844 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1845 * Index Register address bank i.e replyPostRegisterIndex[], 1846 * 2. Then update this register with new reply host index value 1847 * in ReplyPostIndex field and the MSIxIndex field with 1848 * msix_index value reduced to a value between 0 and 7, 1849 * using a modulo 8 operation. Since each Supplemental Reply Post 1850 * Host Index Register supports 8 MSI-X vectors. 1851 * 1852 * For other HBA's just update the Reply Post Host Index register with 1853 * new reply host index value in ReplyPostIndex Field and msix_index 1854 * value in MSIxIndex field. 1855 */ 1856 if (ioc->combined_reply_queue) 1857 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1858 MPI2_RPHI_MSIX_INDEX_SHIFT), 1859 ioc->replyPostRegisterIndex[msix_index/8]); 1860 else 1861 writel(reply_q->reply_post_host_index | (msix_index << 1862 MPI2_RPHI_MSIX_INDEX_SHIFT), 1863 &ioc->chip->ReplyPostHostIndex); 1864 atomic_dec(&reply_q->busy); 1865 return completed_cmds; 1866 } 1867 1868 /** 1869 * mpt3sas_blk_mq_poll - poll the blk mq poll queue 1870 * @shost: Scsi_Host object 1871 * @queue_num: hw ctx queue number 1872 * 1873 * Return number of entries that has been processed from poll queue. 1874 */ 1875 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) 1876 { 1877 struct MPT3SAS_ADAPTER *ioc = 1878 (struct MPT3SAS_ADAPTER *)shost->hostdata; 1879 struct adapter_reply_queue *reply_q; 1880 int num_entries = 0; 1881 int qid = queue_num - ioc->iopoll_q_start_index; 1882 1883 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) || 1884 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1)) 1885 return 0; 1886 1887 reply_q = ioc->io_uring_poll_queues[qid].reply_q; 1888 1889 num_entries = _base_process_reply_queue(reply_q); 1890 atomic_dec(&ioc->io_uring_poll_queues[qid].busy); 1891 1892 return num_entries; 1893 } 1894 1895 /** 1896 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1897 * @irq: irq number (not used) 1898 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1899 * 1900 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1901 */ 1902 static irqreturn_t 1903 _base_interrupt(int irq, void *bus_id) 1904 { 1905 struct adapter_reply_queue *reply_q = bus_id; 1906 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1907 1908 if (ioc->mask_interrupts) 1909 return IRQ_NONE; 1910 if (reply_q->irq_poll_scheduled) 1911 return IRQ_HANDLED; 1912 return ((_base_process_reply_queue(reply_q) > 0) ? 1913 IRQ_HANDLED : IRQ_NONE); 1914 } 1915 1916 /** 1917 * _base_irqpoll - IRQ poll callback handler 1918 * @irqpoll: irq_poll object 1919 * @budget: irq poll weight 1920 * 1921 * Return: number of reply descriptors processed 1922 */ 1923 static int 1924 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1925 { 1926 struct adapter_reply_queue *reply_q; 1927 int num_entries = 0; 1928 1929 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1930 irqpoll); 1931 if (reply_q->irq_line_enable) { 1932 disable_irq_nosync(reply_q->os_irq); 1933 reply_q->irq_line_enable = false; 1934 } 1935 num_entries = _base_process_reply_queue(reply_q); 1936 if (num_entries < budget) { 1937 irq_poll_complete(irqpoll); 1938 reply_q->irq_poll_scheduled = false; 1939 reply_q->irq_line_enable = true; 1940 enable_irq(reply_q->os_irq); 1941 /* 1942 * Go for one more round of processing the 1943 * reply descriptor post queue in case the HBA 1944 * Firmware has posted some reply descriptors 1945 * while reenabling the IRQ. 1946 */ 1947 _base_process_reply_queue(reply_q); 1948 } 1949 1950 return num_entries; 1951 } 1952 1953 /** 1954 * _base_init_irqpolls - initliaze IRQ polls 1955 * @ioc: per adapter object 1956 * 1957 * Return: nothing 1958 */ 1959 static void 1960 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1961 { 1962 struct adapter_reply_queue *reply_q, *next; 1963 1964 if (list_empty(&ioc->reply_queue_list)) 1965 return; 1966 1967 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1968 if (reply_q->is_iouring_poll_q) 1969 continue; 1970 irq_poll_init(&reply_q->irqpoll, 1971 ioc->hba_queue_depth/4, _base_irqpoll); 1972 reply_q->irq_poll_scheduled = false; 1973 reply_q->irq_line_enable = true; 1974 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1975 reply_q->msix_index); 1976 } 1977 } 1978 1979 /** 1980 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1981 * @ioc: per adapter object 1982 * 1983 * Return: Whether or not MSI/X is enabled. 1984 */ 1985 static inline int 1986 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1987 { 1988 return (ioc->facts.IOCCapabilities & 1989 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1990 } 1991 1992 /** 1993 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1994 * @ioc: per adapter object 1995 * @poll: poll over reply descriptor pools incase interrupt for 1996 * timed-out SCSI command got delayed 1997 * Context: non-ISR context 1998 * 1999 * Called when a Task Management request has completed. 2000 */ 2001 void 2002 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 2003 { 2004 struct adapter_reply_queue *reply_q; 2005 2006 /* If MSIX capability is turned off 2007 * then multi-queues are not enabled 2008 */ 2009 if (!_base_is_controller_msix_enabled(ioc)) 2010 return; 2011 2012 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2013 if (ioc->shost_recovery || ioc->remove_host || 2014 ioc->pci_error_recovery) 2015 return; 2016 /* TMs are on msix_index == 0 */ 2017 if (reply_q->msix_index == 0) 2018 continue; 2019 2020 if (reply_q->is_iouring_poll_q) { 2021 _base_process_reply_queue(reply_q); 2022 continue; 2023 } 2024 2025 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 2026 if (reply_q->irq_poll_scheduled) { 2027 /* Calling irq_poll_disable will wait for any pending 2028 * callbacks to have completed. 2029 */ 2030 irq_poll_disable(&reply_q->irqpoll); 2031 irq_poll_enable(&reply_q->irqpoll); 2032 /* check how the scheduled poll has ended, 2033 * clean up only if necessary 2034 */ 2035 if (reply_q->irq_poll_scheduled) { 2036 reply_q->irq_poll_scheduled = false; 2037 reply_q->irq_line_enable = true; 2038 enable_irq(reply_q->os_irq); 2039 } 2040 } 2041 2042 if (poll) 2043 _base_process_reply_queue(reply_q); 2044 } 2045 } 2046 2047 /** 2048 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 2049 * @cb_idx: callback index 2050 */ 2051 void 2052 mpt3sas_base_release_callback_handler(u8 cb_idx) 2053 { 2054 mpt_callbacks[cb_idx] = NULL; 2055 } 2056 2057 /** 2058 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 2059 * @cb_func: callback function 2060 * 2061 * Return: Index of @cb_func. 2062 */ 2063 u8 2064 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 2065 { 2066 u8 cb_idx; 2067 2068 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 2069 if (mpt_callbacks[cb_idx] == NULL) 2070 break; 2071 2072 mpt_callbacks[cb_idx] = cb_func; 2073 return cb_idx; 2074 } 2075 2076 /** 2077 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 2078 */ 2079 void 2080 mpt3sas_base_initialize_callback_handler(void) 2081 { 2082 u8 cb_idx; 2083 2084 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 2085 mpt3sas_base_release_callback_handler(cb_idx); 2086 } 2087 2088 2089 /** 2090 * _base_build_zero_len_sge - build zero length sg entry 2091 * @ioc: per adapter object 2092 * @paddr: virtual address for SGE 2093 * 2094 * Create a zero length scatter gather entry to insure the IOCs hardware has 2095 * something to use if the target device goes brain dead and tries 2096 * to send data even when none is asked for. 2097 */ 2098 static void 2099 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2100 { 2101 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 2102 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 2103 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 2104 MPI2_SGE_FLAGS_SHIFT); 2105 ioc->base_add_sg_single(paddr, flags_length, -1); 2106 } 2107 2108 /** 2109 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 2110 * @paddr: virtual address for SGE 2111 * @flags_length: SGE flags and data transfer length 2112 * @dma_addr: Physical address 2113 */ 2114 static void 2115 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2116 { 2117 Mpi2SGESimple32_t *sgel = paddr; 2118 2119 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 2120 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2121 sgel->FlagsLength = cpu_to_le32(flags_length); 2122 sgel->Address = cpu_to_le32(dma_addr); 2123 } 2124 2125 2126 /** 2127 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2128 * @paddr: virtual address for SGE 2129 * @flags_length: SGE flags and data transfer length 2130 * @dma_addr: Physical address 2131 */ 2132 static void 2133 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2134 { 2135 Mpi2SGESimple64_t *sgel = paddr; 2136 2137 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2138 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2139 sgel->FlagsLength = cpu_to_le32(flags_length); 2140 sgel->Address = cpu_to_le64(dma_addr); 2141 } 2142 2143 /** 2144 * _base_get_chain_buffer_tracker - obtain chain tracker 2145 * @ioc: per adapter object 2146 * @scmd: SCSI commands of the IO request 2147 * 2148 * Return: chain tracker from chain_lookup table using key as 2149 * smid and smid's chain_offset. 2150 */ 2151 static struct chain_tracker * 2152 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2153 struct scsi_cmnd *scmd) 2154 { 2155 struct chain_tracker *chain_req; 2156 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2157 u16 smid = st->smid; 2158 u8 chain_offset = 2159 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2160 2161 if (chain_offset == ioc->chains_needed_per_io) 2162 return NULL; 2163 2164 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2165 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2166 return chain_req; 2167 } 2168 2169 2170 /** 2171 * _base_build_sg - build generic sg 2172 * @ioc: per adapter object 2173 * @psge: virtual address for SGE 2174 * @data_out_dma: physical address for WRITES 2175 * @data_out_sz: data xfer size for WRITES 2176 * @data_in_dma: physical address for READS 2177 * @data_in_sz: data xfer size for READS 2178 */ 2179 static void 2180 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2181 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2182 size_t data_in_sz) 2183 { 2184 u32 sgl_flags; 2185 2186 if (!data_out_sz && !data_in_sz) { 2187 _base_build_zero_len_sge(ioc, psge); 2188 return; 2189 } 2190 2191 if (data_out_sz && data_in_sz) { 2192 /* WRITE sgel first */ 2193 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2194 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2195 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2196 ioc->base_add_sg_single(psge, sgl_flags | 2197 data_out_sz, data_out_dma); 2198 2199 /* incr sgel */ 2200 psge += ioc->sge_size; 2201 2202 /* READ sgel last */ 2203 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2204 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2205 MPI2_SGE_FLAGS_END_OF_LIST); 2206 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2207 ioc->base_add_sg_single(psge, sgl_flags | 2208 data_in_sz, data_in_dma); 2209 } else if (data_out_sz) /* WRITE */ { 2210 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2211 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2212 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2213 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2214 ioc->base_add_sg_single(psge, sgl_flags | 2215 data_out_sz, data_out_dma); 2216 } else if (data_in_sz) /* READ */ { 2217 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2218 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2219 MPI2_SGE_FLAGS_END_OF_LIST); 2220 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2221 ioc->base_add_sg_single(psge, sgl_flags | 2222 data_in_sz, data_in_dma); 2223 } 2224 } 2225 2226 /* IEEE format sgls */ 2227 2228 /** 2229 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2230 * a native SGL (NVMe PRP). 2231 * @ioc: per adapter object 2232 * @smid: system request message index for getting asscociated SGL 2233 * @nvme_encap_request: the NVMe request msg frame pointer 2234 * @data_out_dma: physical address for WRITES 2235 * @data_out_sz: data xfer size for WRITES 2236 * @data_in_dma: physical address for READS 2237 * @data_in_sz: data xfer size for READS 2238 * 2239 * The native SGL is built starting in the first PRP 2240 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2241 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2242 * used to describe a larger data buffer. If the data buffer is too large to 2243 * describe using the two PRP entriess inside the NVMe message, then PRP1 2244 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2245 * list located elsewhere in memory to describe the remaining data memory 2246 * segments. The PRP list will be contiguous. 2247 * 2248 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2249 * consists of a list of PRP entries to describe a number of noncontigous 2250 * physical memory segments as a single memory buffer, just as a SGL does. Note 2251 * however, that this function is only used by the IOCTL call, so the memory 2252 * given will be guaranteed to be contiguous. There is no need to translate 2253 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2254 * contiguous space that is one page size each. 2255 * 2256 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2257 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2258 * contains the second PRP element if the memory being described fits within 2 2259 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2260 * 2261 * A PRP list pointer contains the address of a PRP list, structured as a linear 2262 * array of PRP entries. Each PRP entry in this list describes a segment of 2263 * physical memory. 2264 * 2265 * Each 64-bit PRP entry comprises an address and an offset field. The address 2266 * always points at the beginning of a 4KB physical memory page, and the offset 2267 * describes where within that 4KB page the memory segment begins. Only the 2268 * first element in a PRP list may contain a non-zero offset, implying that all 2269 * memory segments following the first begin at the start of a 4KB page. 2270 * 2271 * Each PRP element normally describes 4KB of physical memory, with exceptions 2272 * for the first and last elements in the list. If the memory being described 2273 * by the list begins at a non-zero offset within the first 4KB page, then the 2274 * first PRP element will contain a non-zero offset indicating where the region 2275 * begins within the 4KB page. The last memory segment may end before the end 2276 * of the 4KB segment, depending upon the overall size of the memory being 2277 * described by the PRP list. 2278 * 2279 * Since PRP entries lack any indication of size, the overall data buffer length 2280 * is used to determine where the end of the data memory buffer is located, and 2281 * how many PRP entries are required to describe it. 2282 */ 2283 static void 2284 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2285 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2286 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2287 size_t data_in_sz) 2288 { 2289 int prp_size = NVME_PRP_SIZE; 2290 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2291 __le64 *prp_page; 2292 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2293 u32 offset, entry_len; 2294 u32 page_mask_result, page_mask; 2295 size_t length; 2296 struct mpt3sas_nvme_cmd *nvme_cmd = 2297 (void *)nvme_encap_request->NVMe_Command; 2298 2299 /* 2300 * Not all commands require a data transfer. If no data, just return 2301 * without constructing any PRP. 2302 */ 2303 if (!data_in_sz && !data_out_sz) 2304 return; 2305 prp1_entry = &nvme_cmd->prp1; 2306 prp2_entry = &nvme_cmd->prp2; 2307 prp_entry = prp1_entry; 2308 /* 2309 * For the PRP entries, use the specially allocated buffer of 2310 * contiguous memory. 2311 */ 2312 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2313 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2314 2315 /* 2316 * Check if we are within 1 entry of a page boundary we don't 2317 * want our first entry to be a PRP List entry. 2318 */ 2319 page_mask = ioc->page_size - 1; 2320 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2321 if (!page_mask_result) { 2322 /* Bump up to next page boundary. */ 2323 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2324 prp_page_dma = prp_page_dma + prp_size; 2325 } 2326 2327 /* 2328 * Set PRP physical pointer, which initially points to the current PRP 2329 * DMA memory page. 2330 */ 2331 prp_entry_dma = prp_page_dma; 2332 2333 /* Get physical address and length of the data buffer. */ 2334 if (data_in_sz) { 2335 dma_addr = data_in_dma; 2336 length = data_in_sz; 2337 } else { 2338 dma_addr = data_out_dma; 2339 length = data_out_sz; 2340 } 2341 2342 /* Loop while the length is not zero. */ 2343 while (length) { 2344 /* 2345 * Check if we need to put a list pointer here if we are at 2346 * page boundary - prp_size (8 bytes). 2347 */ 2348 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2349 if (!page_mask_result) { 2350 /* 2351 * This is the last entry in a PRP List, so we need to 2352 * put a PRP list pointer here. What this does is: 2353 * - bump the current memory pointer to the next 2354 * address, which will be the next full page. 2355 * - set the PRP Entry to point to that page. This 2356 * is now the PRP List pointer. 2357 * - bump the PRP Entry pointer the start of the 2358 * next page. Since all of this PRP memory is 2359 * contiguous, no need to get a new page - it's 2360 * just the next address. 2361 */ 2362 prp_entry_dma++; 2363 *prp_entry = cpu_to_le64(prp_entry_dma); 2364 prp_entry++; 2365 } 2366 2367 /* Need to handle if entry will be part of a page. */ 2368 offset = dma_addr & page_mask; 2369 entry_len = ioc->page_size - offset; 2370 2371 if (prp_entry == prp1_entry) { 2372 /* 2373 * Must fill in the first PRP pointer (PRP1) before 2374 * moving on. 2375 */ 2376 *prp1_entry = cpu_to_le64(dma_addr); 2377 2378 /* 2379 * Now point to the second PRP entry within the 2380 * command (PRP2). 2381 */ 2382 prp_entry = prp2_entry; 2383 } else if (prp_entry == prp2_entry) { 2384 /* 2385 * Should the PRP2 entry be a PRP List pointer or just 2386 * a regular PRP pointer? If there is more than one 2387 * more page of data, must use a PRP List pointer. 2388 */ 2389 if (length > ioc->page_size) { 2390 /* 2391 * PRP2 will contain a PRP List pointer because 2392 * more PRP's are needed with this command. The 2393 * list will start at the beginning of the 2394 * contiguous buffer. 2395 */ 2396 *prp2_entry = cpu_to_le64(prp_entry_dma); 2397 2398 /* 2399 * The next PRP Entry will be the start of the 2400 * first PRP List. 2401 */ 2402 prp_entry = prp_page; 2403 } else { 2404 /* 2405 * After this, the PRP Entries are complete. 2406 * This command uses 2 PRP's and no PRP list. 2407 */ 2408 *prp2_entry = cpu_to_le64(dma_addr); 2409 } 2410 } else { 2411 /* 2412 * Put entry in list and bump the addresses. 2413 * 2414 * After PRP1 and PRP2 are filled in, this will fill in 2415 * all remaining PRP entries in a PRP List, one per 2416 * each time through the loop. 2417 */ 2418 *prp_entry = cpu_to_le64(dma_addr); 2419 prp_entry++; 2420 prp_entry_dma++; 2421 } 2422 2423 /* 2424 * Bump the phys address of the command's data buffer by the 2425 * entry_len. 2426 */ 2427 dma_addr += entry_len; 2428 2429 /* Decrement length accounting for last partial page. */ 2430 if (entry_len > length) 2431 length = 0; 2432 else 2433 length -= entry_len; 2434 } 2435 } 2436 2437 /** 2438 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2439 * SGLs specific to NVMe drives only 2440 * 2441 * @ioc: per adapter object 2442 * @scmd: SCSI command from the mid-layer 2443 * @mpi_request: mpi request 2444 * @smid: msg Index 2445 * @sge_count: scatter gather element count. 2446 * 2447 * Return: true: PRPs are built 2448 * false: IEEE SGLs needs to be built 2449 */ 2450 static void 2451 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2452 struct scsi_cmnd *scmd, 2453 Mpi25SCSIIORequest_t *mpi_request, 2454 u16 smid, int sge_count) 2455 { 2456 int sge_len, num_prp_in_chain = 0; 2457 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2458 __le64 *curr_buff; 2459 dma_addr_t msg_dma, sge_addr, offset; 2460 u32 page_mask, page_mask_result; 2461 struct scatterlist *sg_scmd; 2462 u32 first_prp_len; 2463 int data_len = scsi_bufflen(scmd); 2464 u32 nvme_pg_size; 2465 2466 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2467 /* 2468 * Nvme has a very convoluted prp format. One prp is required 2469 * for each page or partial page. Driver need to split up OS sg_list 2470 * entries if it is longer than one page or cross a page 2471 * boundary. Driver also have to insert a PRP list pointer entry as 2472 * the last entry in each physical page of the PRP list. 2473 * 2474 * NOTE: The first PRP "entry" is actually placed in the first 2475 * SGL entry in the main message as IEEE 64 format. The 2nd 2476 * entry in the main message is the chain element, and the rest 2477 * of the PRP entries are built in the contiguous pcie buffer. 2478 */ 2479 page_mask = nvme_pg_size - 1; 2480 2481 /* 2482 * Native SGL is needed. 2483 * Put a chain element in main message frame that points to the first 2484 * chain buffer. 2485 * 2486 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2487 * a native SGL. 2488 */ 2489 2490 /* Set main message chain element pointer */ 2491 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2492 /* 2493 * For NVMe the chain element needs to be the 2nd SG entry in the main 2494 * message. 2495 */ 2496 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2497 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2498 2499 /* 2500 * For the PRP entries, use the specially allocated buffer of 2501 * contiguous memory. Normal chain buffers can't be used 2502 * because each chain buffer would need to be the size of an OS 2503 * page (4k). 2504 */ 2505 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2506 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2507 2508 main_chain_element->Address = cpu_to_le64(msg_dma); 2509 main_chain_element->NextChainOffset = 0; 2510 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2511 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2512 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2513 2514 /* Build first prp, sge need not to be page aligned*/ 2515 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2516 sg_scmd = scsi_sglist(scmd); 2517 sge_addr = sg_dma_address(sg_scmd); 2518 sge_len = sg_dma_len(sg_scmd); 2519 2520 offset = sge_addr & page_mask; 2521 first_prp_len = nvme_pg_size - offset; 2522 2523 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2524 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2525 2526 data_len -= first_prp_len; 2527 2528 if (sge_len > first_prp_len) { 2529 sge_addr += first_prp_len; 2530 sge_len -= first_prp_len; 2531 } else if (data_len && (sge_len == first_prp_len)) { 2532 sg_scmd = sg_next(sg_scmd); 2533 sge_addr = sg_dma_address(sg_scmd); 2534 sge_len = sg_dma_len(sg_scmd); 2535 } 2536 2537 for (;;) { 2538 offset = sge_addr & page_mask; 2539 2540 /* Put PRP pointer due to page boundary*/ 2541 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2542 if (unlikely(!page_mask_result)) { 2543 scmd_printk(KERN_NOTICE, 2544 scmd, "page boundary curr_buff: 0x%p\n", 2545 curr_buff); 2546 msg_dma += 8; 2547 *curr_buff = cpu_to_le64(msg_dma); 2548 curr_buff++; 2549 num_prp_in_chain++; 2550 } 2551 2552 *curr_buff = cpu_to_le64(sge_addr); 2553 curr_buff++; 2554 msg_dma += 8; 2555 num_prp_in_chain++; 2556 2557 sge_addr += nvme_pg_size; 2558 sge_len -= nvme_pg_size; 2559 data_len -= nvme_pg_size; 2560 2561 if (data_len <= 0) 2562 break; 2563 2564 if (sge_len > 0) 2565 continue; 2566 2567 sg_scmd = sg_next(sg_scmd); 2568 sge_addr = sg_dma_address(sg_scmd); 2569 sge_len = sg_dma_len(sg_scmd); 2570 } 2571 2572 main_chain_element->Length = 2573 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2574 return; 2575 } 2576 2577 static bool 2578 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2579 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2580 { 2581 u32 data_length = 0; 2582 bool build_prp = true; 2583 2584 data_length = scsi_bufflen(scmd); 2585 if (pcie_device && 2586 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2587 build_prp = false; 2588 return build_prp; 2589 } 2590 2591 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2592 * we built IEEE SGL 2593 */ 2594 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2595 build_prp = false; 2596 2597 return build_prp; 2598 } 2599 2600 /** 2601 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2602 * determine if the driver needs to build a native SGL. If so, that native 2603 * SGL is built in the special contiguous buffers allocated especially for 2604 * PCIe SGL creation. If the driver will not build a native SGL, return 2605 * TRUE and a normal IEEE SGL will be built. Currently this routine 2606 * supports NVMe. 2607 * @ioc: per adapter object 2608 * @mpi_request: mf request pointer 2609 * @smid: system request message index 2610 * @scmd: scsi command 2611 * @pcie_device: points to the PCIe device's info 2612 * 2613 * Return: 0 if native SGL was built, 1 if no SGL was built 2614 */ 2615 static int 2616 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2617 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2618 struct _pcie_device *pcie_device) 2619 { 2620 int sges_left; 2621 2622 /* Get the SG list pointer and info. */ 2623 sges_left = scsi_dma_map(scmd); 2624 if (sges_left < 0) 2625 return 1; 2626 2627 /* Check if we need to build a native SG list. */ 2628 if (!base_is_prp_possible(ioc, pcie_device, 2629 scmd, sges_left)) { 2630 /* We built a native SG list, just return. */ 2631 goto out; 2632 } 2633 2634 /* 2635 * Build native NVMe PRP. 2636 */ 2637 base_make_prp_nvme(ioc, scmd, mpi_request, 2638 smid, sges_left); 2639 2640 return 0; 2641 out: 2642 scsi_dma_unmap(scmd); 2643 return 1; 2644 } 2645 2646 /** 2647 * _base_add_sg_single_ieee - add sg element for IEEE format 2648 * @paddr: virtual address for SGE 2649 * @flags: SGE flags 2650 * @chain_offset: number of 128 byte elements from start of segment 2651 * @length: data transfer length 2652 * @dma_addr: Physical address 2653 */ 2654 static void 2655 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2656 dma_addr_t dma_addr) 2657 { 2658 Mpi25IeeeSgeChain64_t *sgel = paddr; 2659 2660 sgel->Flags = flags; 2661 sgel->NextChainOffset = chain_offset; 2662 sgel->Length = cpu_to_le32(length); 2663 sgel->Address = cpu_to_le64(dma_addr); 2664 } 2665 2666 /** 2667 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2668 * @ioc: per adapter object 2669 * @paddr: virtual address for SGE 2670 * 2671 * Create a zero length scatter gather entry to insure the IOCs hardware has 2672 * something to use if the target device goes brain dead and tries 2673 * to send data even when none is asked for. 2674 */ 2675 static void 2676 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2677 { 2678 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2679 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2680 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2681 2682 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2683 } 2684 2685 static inline int _base_scsi_dma_map(struct scsi_cmnd *cmd) 2686 { 2687 /* 2688 * Some firmware versions byte-swap the REPORT ZONES command reply from 2689 * ATA-ZAC devices by directly accessing in the host buffer. This does 2690 * not respect the default command DMA direction and causes IOMMU page 2691 * faults on some architectures with an IOMMU enforcing write mappings 2692 * (e.g. AMD hosts). Avoid such issue by making the report zones buffer 2693 * mapping bi-directional. 2694 */ 2695 if (cmd->cmnd[0] == ZBC_IN && cmd->cmnd[1] == ZI_REPORT_ZONES) 2696 cmd->sc_data_direction = DMA_BIDIRECTIONAL; 2697 2698 return scsi_dma_map(cmd); 2699 } 2700 2701 /** 2702 * _base_build_sg_scmd - main sg creation routine 2703 * pcie_device is unused here! 2704 * @ioc: per adapter object 2705 * @scmd: scsi command 2706 * @smid: system request message index 2707 * @unused: unused pcie_device pointer 2708 * Context: none. 2709 * 2710 * The main routine that builds scatter gather table from a given 2711 * scsi request sent via the .queuecommand main handler. 2712 * 2713 * Return: 0 success, anything else error 2714 */ 2715 static int 2716 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2717 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2718 { 2719 Mpi2SCSIIORequest_t *mpi_request; 2720 dma_addr_t chain_dma; 2721 struct scatterlist *sg_scmd; 2722 void *sg_local, *chain; 2723 u32 chain_offset; 2724 u32 chain_length; 2725 u32 chain_flags; 2726 int sges_left; 2727 u32 sges_in_segment; 2728 u32 sgl_flags; 2729 u32 sgl_flags_last_element; 2730 u32 sgl_flags_end_buffer; 2731 struct chain_tracker *chain_req; 2732 2733 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2734 2735 /* init scatter gather flags */ 2736 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2737 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2738 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2739 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2740 << MPI2_SGE_FLAGS_SHIFT; 2741 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2742 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2743 << MPI2_SGE_FLAGS_SHIFT; 2744 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2745 2746 sg_scmd = scsi_sglist(scmd); 2747 sges_left = _base_scsi_dma_map(scmd); 2748 if (sges_left < 0) 2749 return -ENOMEM; 2750 2751 sg_local = &mpi_request->SGL; 2752 sges_in_segment = ioc->max_sges_in_main_message; 2753 if (sges_left <= sges_in_segment) 2754 goto fill_in_last_segment; 2755 2756 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2757 (sges_in_segment * ioc->sge_size))/4; 2758 2759 /* fill in main message segment when there is a chain following */ 2760 while (sges_in_segment) { 2761 if (sges_in_segment == 1) 2762 ioc->base_add_sg_single(sg_local, 2763 sgl_flags_last_element | sg_dma_len(sg_scmd), 2764 sg_dma_address(sg_scmd)); 2765 else 2766 ioc->base_add_sg_single(sg_local, sgl_flags | 2767 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2768 sg_scmd = sg_next(sg_scmd); 2769 sg_local += ioc->sge_size; 2770 sges_left--; 2771 sges_in_segment--; 2772 } 2773 2774 /* initializing the chain flags and pointers */ 2775 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2776 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2777 if (!chain_req) 2778 return -1; 2779 chain = chain_req->chain_buffer; 2780 chain_dma = chain_req->chain_buffer_dma; 2781 do { 2782 sges_in_segment = (sges_left <= 2783 ioc->max_sges_in_chain_message) ? sges_left : 2784 ioc->max_sges_in_chain_message; 2785 chain_offset = (sges_left == sges_in_segment) ? 2786 0 : (sges_in_segment * ioc->sge_size)/4; 2787 chain_length = sges_in_segment * ioc->sge_size; 2788 if (chain_offset) { 2789 chain_offset = chain_offset << 2790 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2791 chain_length += ioc->sge_size; 2792 } 2793 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2794 chain_length, chain_dma); 2795 sg_local = chain; 2796 if (!chain_offset) 2797 goto fill_in_last_segment; 2798 2799 /* fill in chain segments */ 2800 while (sges_in_segment) { 2801 if (sges_in_segment == 1) 2802 ioc->base_add_sg_single(sg_local, 2803 sgl_flags_last_element | 2804 sg_dma_len(sg_scmd), 2805 sg_dma_address(sg_scmd)); 2806 else 2807 ioc->base_add_sg_single(sg_local, sgl_flags | 2808 sg_dma_len(sg_scmd), 2809 sg_dma_address(sg_scmd)); 2810 sg_scmd = sg_next(sg_scmd); 2811 sg_local += ioc->sge_size; 2812 sges_left--; 2813 sges_in_segment--; 2814 } 2815 2816 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2817 if (!chain_req) 2818 return -1; 2819 chain = chain_req->chain_buffer; 2820 chain_dma = chain_req->chain_buffer_dma; 2821 } while (1); 2822 2823 2824 fill_in_last_segment: 2825 2826 /* fill the last segment */ 2827 while (sges_left) { 2828 if (sges_left == 1) 2829 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2830 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2831 else 2832 ioc->base_add_sg_single(sg_local, sgl_flags | 2833 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2834 sg_scmd = sg_next(sg_scmd); 2835 sg_local += ioc->sge_size; 2836 sges_left--; 2837 } 2838 2839 return 0; 2840 } 2841 2842 /** 2843 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2844 * @ioc: per adapter object 2845 * @scmd: scsi command 2846 * @smid: system request message index 2847 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2848 * constructed on need. 2849 * Context: none. 2850 * 2851 * The main routine that builds scatter gather table from a given 2852 * scsi request sent via the .queuecommand main handler. 2853 * 2854 * Return: 0 success, anything else error 2855 */ 2856 static int 2857 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2858 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2859 { 2860 Mpi25SCSIIORequest_t *mpi_request; 2861 dma_addr_t chain_dma; 2862 struct scatterlist *sg_scmd; 2863 void *sg_local, *chain; 2864 u32 chain_offset; 2865 u32 chain_length; 2866 int sges_left; 2867 u32 sges_in_segment; 2868 u8 simple_sgl_flags; 2869 u8 simple_sgl_flags_last; 2870 u8 chain_sgl_flags; 2871 struct chain_tracker *chain_req; 2872 2873 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2874 2875 /* init scatter gather flags */ 2876 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2877 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2878 simple_sgl_flags_last = simple_sgl_flags | 2879 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2880 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2881 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2882 2883 /* Check if we need to build a native SG list. */ 2884 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2885 smid, scmd, pcie_device) == 0)) { 2886 /* We built a native SG list, just return. */ 2887 return 0; 2888 } 2889 2890 sg_scmd = scsi_sglist(scmd); 2891 sges_left = _base_scsi_dma_map(scmd); 2892 if (sges_left < 0) 2893 return -ENOMEM; 2894 2895 sg_local = &mpi_request->SGL; 2896 sges_in_segment = (ioc->request_sz - 2897 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2898 if (sges_left <= sges_in_segment) 2899 goto fill_in_last_segment; 2900 2901 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2902 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2903 2904 /* fill in main message segment when there is a chain following */ 2905 while (sges_in_segment > 1) { 2906 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2907 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2908 sg_scmd = sg_next(sg_scmd); 2909 sg_local += ioc->sge_size_ieee; 2910 sges_left--; 2911 sges_in_segment--; 2912 } 2913 2914 /* initializing the pointers */ 2915 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2916 if (!chain_req) 2917 return -1; 2918 chain = chain_req->chain_buffer; 2919 chain_dma = chain_req->chain_buffer_dma; 2920 do { 2921 sges_in_segment = (sges_left <= 2922 ioc->max_sges_in_chain_message) ? sges_left : 2923 ioc->max_sges_in_chain_message; 2924 chain_offset = (sges_left == sges_in_segment) ? 2925 0 : sges_in_segment; 2926 chain_length = sges_in_segment * ioc->sge_size_ieee; 2927 if (chain_offset) 2928 chain_length += ioc->sge_size_ieee; 2929 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2930 chain_offset, chain_length, chain_dma); 2931 2932 sg_local = chain; 2933 if (!chain_offset) 2934 goto fill_in_last_segment; 2935 2936 /* fill in chain segments */ 2937 while (sges_in_segment) { 2938 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2939 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2940 sg_scmd = sg_next(sg_scmd); 2941 sg_local += ioc->sge_size_ieee; 2942 sges_left--; 2943 sges_in_segment--; 2944 } 2945 2946 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2947 if (!chain_req) 2948 return -1; 2949 chain = chain_req->chain_buffer; 2950 chain_dma = chain_req->chain_buffer_dma; 2951 } while (1); 2952 2953 2954 fill_in_last_segment: 2955 2956 /* fill the last segment */ 2957 while (sges_left > 0) { 2958 if (sges_left == 1) 2959 _base_add_sg_single_ieee(sg_local, 2960 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2961 sg_dma_address(sg_scmd)); 2962 else 2963 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2964 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2965 sg_scmd = sg_next(sg_scmd); 2966 sg_local += ioc->sge_size_ieee; 2967 sges_left--; 2968 } 2969 2970 return 0; 2971 } 2972 2973 /** 2974 * _base_build_sg_ieee - build generic sg for IEEE format 2975 * @ioc: per adapter object 2976 * @psge: virtual address for SGE 2977 * @data_out_dma: physical address for WRITES 2978 * @data_out_sz: data xfer size for WRITES 2979 * @data_in_dma: physical address for READS 2980 * @data_in_sz: data xfer size for READS 2981 */ 2982 static void 2983 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2984 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2985 size_t data_in_sz) 2986 { 2987 u8 sgl_flags; 2988 2989 if (!data_out_sz && !data_in_sz) { 2990 _base_build_zero_len_sge_ieee(ioc, psge); 2991 return; 2992 } 2993 2994 if (data_out_sz && data_in_sz) { 2995 /* WRITE sgel first */ 2996 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2997 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2998 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2999 data_out_dma); 3000 3001 /* incr sgel */ 3002 psge += ioc->sge_size_ieee; 3003 3004 /* READ sgel last */ 3005 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 3006 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 3007 data_in_dma); 3008 } else if (data_out_sz) /* WRITE */ { 3009 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3010 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 3011 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 3012 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 3013 data_out_dma); 3014 } else if (data_in_sz) /* READ */ { 3015 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3016 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 3017 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 3018 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 3019 data_in_dma); 3020 } 3021 } 3022 3023 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 3024 3025 /** 3026 * _base_config_dma_addressing - set dma addressing 3027 * @ioc: per adapter object 3028 * @pdev: PCI device struct 3029 * 3030 * Return: 0 for success, non-zero for failure. 3031 */ 3032 static int 3033 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 3034 { 3035 struct sysinfo s; 3036 u64 coherent_dma_mask, dma_mask; 3037 3038 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) { 3039 ioc->dma_mask = 32; 3040 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32); 3041 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 3042 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) { 3043 ioc->dma_mask = 63; 3044 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63); 3045 } else { 3046 ioc->dma_mask = 64; 3047 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64); 3048 } 3049 3050 if (ioc->use_32bit_dma) 3051 coherent_dma_mask = DMA_BIT_MASK(32); 3052 3053 if (dma_set_mask(&pdev->dev, dma_mask) || 3054 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask)) 3055 return -ENODEV; 3056 3057 if (ioc->dma_mask > 32) { 3058 ioc->base_add_sg_single = &_base_add_sg_single_64; 3059 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 3060 } else { 3061 ioc->base_add_sg_single = &_base_add_sg_single_32; 3062 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 3063 } 3064 3065 si_meminfo(&s); 3066 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 3067 ioc->dma_mask, convert_to_kb(s.totalram)); 3068 3069 return 0; 3070 } 3071 3072 /** 3073 * _base_check_enable_msix - checks MSIX capabable. 3074 * @ioc: per adapter object 3075 * 3076 * Check to see if card is capable of MSIX, and set number 3077 * of available msix vectors 3078 */ 3079 static int 3080 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3081 { 3082 int base; 3083 u16 message_control; 3084 3085 /* Check whether controller SAS2008 B0 controller, 3086 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 3087 */ 3088 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 3089 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 3090 return -EINVAL; 3091 } 3092 3093 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 3094 if (!base) { 3095 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 3096 return -EINVAL; 3097 } 3098 3099 /* get msix vector count */ 3100 /* NUMA_IO not supported for older controllers */ 3101 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 3102 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 3103 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 3104 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 3105 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 3106 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 3107 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 3108 ioc->msix_vector_count = 1; 3109 else { 3110 pci_read_config_word(ioc->pdev, base + 2, &message_control); 3111 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 3112 } 3113 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 3114 ioc->msix_vector_count)); 3115 return 0; 3116 } 3117 3118 /** 3119 * mpt3sas_base_free_irq - free irq 3120 * @ioc: per adapter object 3121 * 3122 * Freeing respective reply_queue from the list. 3123 */ 3124 void 3125 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 3126 { 3127 unsigned int irq; 3128 struct adapter_reply_queue *reply_q, *next; 3129 3130 if (list_empty(&ioc->reply_queue_list)) 3131 return; 3132 3133 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3134 list_del(&reply_q->list); 3135 if (reply_q->is_iouring_poll_q) { 3136 kfree(reply_q); 3137 continue; 3138 } 3139 3140 if (ioc->smp_affinity_enable) { 3141 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index); 3142 irq_update_affinity_hint(irq, NULL); 3143 } 3144 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3145 reply_q); 3146 kfree(reply_q); 3147 } 3148 } 3149 3150 /** 3151 * _base_request_irq - request irq 3152 * @ioc: per adapter object 3153 * @index: msix index into vector table 3154 * 3155 * Inserting respective reply_queue into the list. 3156 */ 3157 static int 3158 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3159 { 3160 struct pci_dev *pdev = ioc->pdev; 3161 struct adapter_reply_queue *reply_q; 3162 int r, qid; 3163 3164 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3165 if (!reply_q) { 3166 ioc_err(ioc, "unable to allocate memory %zu!\n", 3167 sizeof(struct adapter_reply_queue)); 3168 return -ENOMEM; 3169 } 3170 reply_q->ioc = ioc; 3171 reply_q->msix_index = index; 3172 3173 atomic_set(&reply_q->busy, 0); 3174 3175 if (index >= ioc->iopoll_q_start_index) { 3176 qid = index - ioc->iopoll_q_start_index; 3177 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d", 3178 ioc->driver_name, ioc->id, qid); 3179 reply_q->is_iouring_poll_q = 1; 3180 ioc->io_uring_poll_queues[qid].reply_q = reply_q; 3181 goto out; 3182 } 3183 3184 3185 if (ioc->msix_enable) 3186 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3187 ioc->driver_name, ioc->id, index); 3188 else 3189 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3190 ioc->driver_name, ioc->id); 3191 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3192 IRQF_SHARED, reply_q->name, reply_q); 3193 if (r) { 3194 pr_err("%s: unable to allocate interrupt %d!\n", 3195 reply_q->name, pci_irq_vector(pdev, index)); 3196 kfree(reply_q); 3197 return -EBUSY; 3198 } 3199 out: 3200 INIT_LIST_HEAD(&reply_q->list); 3201 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3202 return 0; 3203 } 3204 3205 /** 3206 * _base_assign_reply_queues - assigning msix index for each cpu 3207 * @ioc: per adapter object 3208 * 3209 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3210 */ 3211 static void 3212 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3213 { 3214 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq; 3215 struct adapter_reply_queue *reply_q; 3216 int iopoll_q_count = ioc->reply_queue_count - 3217 ioc->iopoll_q_start_index; 3218 const struct cpumask *mask; 3219 3220 if (!_base_is_controller_msix_enabled(ioc)) 3221 return; 3222 3223 if (ioc->msix_load_balance) 3224 return; 3225 3226 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3227 3228 nr_cpus = num_online_cpus(); 3229 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3230 ioc->facts.MaxMSIxVectors); 3231 if (!nr_msix) 3232 return; 3233 3234 if (ioc->smp_affinity_enable) { 3235 3236 /* 3237 * set irq affinity to local numa node for those irqs 3238 * corresponding to high iops queues. 3239 */ 3240 if (ioc->high_iops_queues) { 3241 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev)); 3242 for (index = 0; index < ioc->high_iops_queues; 3243 index++) { 3244 irq = pci_irq_vector(ioc->pdev, index); 3245 irq_set_affinity_and_hint(irq, mask); 3246 } 3247 } 3248 3249 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3250 const cpumask_t *mask; 3251 3252 if (reply_q->msix_index < ioc->high_iops_queues || 3253 reply_q->msix_index >= ioc->iopoll_q_start_index) 3254 continue; 3255 3256 mask = pci_irq_get_affinity(ioc->pdev, 3257 reply_q->msix_index); 3258 if (!mask) { 3259 ioc_warn(ioc, "no affinity for msi %x\n", 3260 reply_q->msix_index); 3261 goto fall_back; 3262 } 3263 3264 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3265 if (cpu >= ioc->cpu_msix_table_sz) 3266 break; 3267 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3268 } 3269 } 3270 return; 3271 } 3272 3273 fall_back: 3274 cpu = cpumask_first(cpu_online_mask); 3275 nr_msix -= (ioc->high_iops_queues - iopoll_q_count); 3276 index = 0; 3277 3278 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3279 unsigned int i, group = nr_cpus / nr_msix; 3280 3281 if (reply_q->msix_index < ioc->high_iops_queues || 3282 reply_q->msix_index >= ioc->iopoll_q_start_index) 3283 continue; 3284 3285 if (cpu >= nr_cpus) 3286 break; 3287 3288 if (index < nr_cpus % nr_msix) 3289 group++; 3290 3291 for (i = 0 ; i < group ; i++) { 3292 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3293 cpu = cpumask_next(cpu, cpu_online_mask); 3294 } 3295 index++; 3296 } 3297 } 3298 3299 /** 3300 * _base_check_and_enable_high_iops_queues - enable high iops mode 3301 * @ioc: per adapter object 3302 * @hba_msix_vector_count: msix vectors supported by HBA 3303 * 3304 * Enable high iops queues only if 3305 * - HBA is a SEA/AERO controller and 3306 * - MSI-Xs vector supported by the HBA is 128 and 3307 * - total CPU count in the system >=16 and 3308 * - loaded driver with default max_msix_vectors module parameter and 3309 * - system booted in non kdump mode 3310 * 3311 * Return: nothing. 3312 */ 3313 static void 3314 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3315 int hba_msix_vector_count) 3316 { 3317 u16 lnksta, speed; 3318 3319 /* 3320 * Disable high iops queues if io uring poll queues are enabled. 3321 */ 3322 if (perf_mode == MPT_PERF_MODE_IOPS || 3323 perf_mode == MPT_PERF_MODE_LATENCY || 3324 ioc->io_uring_poll_queues) { 3325 ioc->high_iops_queues = 0; 3326 return; 3327 } 3328 3329 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3330 3331 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3332 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3333 3334 if (speed < 0x4) { 3335 ioc->high_iops_queues = 0; 3336 return; 3337 } 3338 } 3339 3340 if (!reset_devices && ioc->is_aero_ioc && 3341 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3342 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3343 max_msix_vectors == -1) 3344 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3345 else 3346 ioc->high_iops_queues = 0; 3347 } 3348 3349 /** 3350 * mpt3sas_base_disable_msix - disables msix 3351 * @ioc: per adapter object 3352 * 3353 */ 3354 void 3355 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3356 { 3357 if (!ioc->msix_enable) 3358 return; 3359 pci_free_irq_vectors(ioc->pdev); 3360 ioc->msix_enable = 0; 3361 kfree(ioc->io_uring_poll_queues); 3362 } 3363 3364 /** 3365 * _base_alloc_irq_vectors - allocate msix vectors 3366 * @ioc: per adapter object 3367 * 3368 */ 3369 static int 3370 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3371 { 3372 int i, irq_flags = PCI_IRQ_MSIX; 3373 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3374 struct irq_affinity *descp = &desc; 3375 /* 3376 * Don't allocate msix vectors for poll_queues. 3377 * msix_vectors is always within a range of FW supported reply queue. 3378 */ 3379 int nr_msix_vectors = ioc->iopoll_q_start_index; 3380 3381 3382 if (ioc->smp_affinity_enable) 3383 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; 3384 else 3385 descp = NULL; 3386 3387 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues, 3388 ioc->reply_queue_count, nr_msix_vectors); 3389 3390 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3391 ioc->high_iops_queues, 3392 nr_msix_vectors, irq_flags, descp); 3393 3394 return i; 3395 } 3396 3397 /** 3398 * _base_enable_msix - enables msix, failback to io_apic 3399 * @ioc: per adapter object 3400 * 3401 */ 3402 static int 3403 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3404 { 3405 int r; 3406 int i, local_max_msix_vectors; 3407 u8 try_msix = 0; 3408 int iopoll_q_count = 0; 3409 3410 ioc->msix_load_balance = false; 3411 3412 if (msix_disable == -1 || msix_disable == 0) 3413 try_msix = 1; 3414 3415 if (!try_msix) 3416 goto try_ioapic; 3417 3418 if (_base_check_enable_msix(ioc) != 0) 3419 goto try_ioapic; 3420 3421 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3422 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3423 ioc->cpu_count, max_msix_vectors); 3424 3425 ioc->reply_queue_count = 3426 min_t(int, ioc->cpu_count, ioc->msix_vector_count); 3427 3428 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3429 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3430 else 3431 local_max_msix_vectors = max_msix_vectors; 3432 3433 if (local_max_msix_vectors == 0) 3434 goto try_ioapic; 3435 3436 /* 3437 * Enable msix_load_balance only if combined reply queue mode is 3438 * disabled on SAS3 & above generation HBA devices. 3439 */ 3440 if (!ioc->combined_reply_queue && 3441 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3442 ioc_info(ioc, 3443 "combined ReplyQueue is off, Enabling msix load balance\n"); 3444 ioc->msix_load_balance = true; 3445 } 3446 3447 /* 3448 * smp affinity setting is not need when msix load balance 3449 * is enabled. 3450 */ 3451 if (ioc->msix_load_balance) 3452 ioc->smp_affinity_enable = 0; 3453 3454 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1) 3455 ioc->shost->host_tagset = 0; 3456 3457 /* 3458 * Enable io uring poll queues only if host_tagset is enabled. 3459 */ 3460 if (ioc->shost->host_tagset) 3461 iopoll_q_count = poll_queues; 3462 3463 if (iopoll_q_count) { 3464 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count, 3465 sizeof(struct io_uring_poll_queue), GFP_KERNEL); 3466 if (!ioc->io_uring_poll_queues) 3467 iopoll_q_count = 0; 3468 } 3469 3470 if (ioc->is_aero_ioc) 3471 _base_check_and_enable_high_iops_queues(ioc, 3472 ioc->msix_vector_count); 3473 3474 /* 3475 * Add high iops queues count to reply queue count if high iops queues 3476 * are enabled. 3477 */ 3478 ioc->reply_queue_count = min_t(int, 3479 ioc->reply_queue_count + ioc->high_iops_queues, 3480 ioc->msix_vector_count); 3481 3482 /* 3483 * Adjust the reply queue count incase reply queue count 3484 * exceeds the user provided MSIx vectors count. 3485 */ 3486 if (local_max_msix_vectors > 0) 3487 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3488 ioc->reply_queue_count); 3489 /* 3490 * Add io uring poll queues count to reply queues count 3491 * if io uring is enabled in driver. 3492 */ 3493 if (iopoll_q_count) { 3494 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS)) 3495 iopoll_q_count = 0; 3496 ioc->reply_queue_count = min_t(int, 3497 ioc->reply_queue_count + iopoll_q_count, 3498 ioc->msix_vector_count); 3499 } 3500 3501 /* 3502 * Starting index of io uring poll queues in reply queue list. 3503 */ 3504 ioc->iopoll_q_start_index = 3505 ioc->reply_queue_count - iopoll_q_count; 3506 3507 r = _base_alloc_irq_vectors(ioc); 3508 if (r < 0) { 3509 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3510 goto try_ioapic; 3511 } 3512 3513 /* 3514 * Adjust the reply queue count if the allocated 3515 * MSIx vectors is less then the requested number 3516 * of MSIx vectors. 3517 */ 3518 if (r < ioc->iopoll_q_start_index) { 3519 ioc->reply_queue_count = r + iopoll_q_count; 3520 ioc->iopoll_q_start_index = 3521 ioc->reply_queue_count - iopoll_q_count; 3522 } 3523 3524 ioc->msix_enable = 1; 3525 for (i = 0; i < ioc->reply_queue_count; i++) { 3526 r = _base_request_irq(ioc, i); 3527 if (r) { 3528 mpt3sas_base_free_irq(ioc); 3529 mpt3sas_base_disable_msix(ioc); 3530 goto try_ioapic; 3531 } 3532 } 3533 3534 ioc_info(ioc, "High IOPs queues : %s\n", 3535 ioc->high_iops_queues ? "enabled" : "disabled"); 3536 3537 return 0; 3538 3539 /* failback to io_apic interrupt routing */ 3540 try_ioapic: 3541 ioc->high_iops_queues = 0; 3542 ioc_info(ioc, "High IOPs queues : disabled\n"); 3543 ioc->reply_queue_count = 1; 3544 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0; 3545 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_INTX); 3546 if (r < 0) { 3547 dfailprintk(ioc, 3548 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3549 r)); 3550 } else 3551 r = _base_request_irq(ioc, 0); 3552 3553 return r; 3554 } 3555 3556 /** 3557 * mpt3sas_base_unmap_resources - free controller resources 3558 * @ioc: per adapter object 3559 */ 3560 static void 3561 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3562 { 3563 struct pci_dev *pdev = ioc->pdev; 3564 3565 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3566 3567 mpt3sas_base_free_irq(ioc); 3568 mpt3sas_base_disable_msix(ioc); 3569 3570 kfree(ioc->replyPostRegisterIndex); 3571 ioc->replyPostRegisterIndex = NULL; 3572 3573 3574 if (ioc->chip_phys) { 3575 iounmap(ioc->chip); 3576 ioc->chip_phys = 0; 3577 } 3578 3579 if (pci_is_enabled(pdev)) { 3580 pci_release_selected_regions(ioc->pdev, ioc->bars); 3581 pci_disable_device(pdev); 3582 } 3583 } 3584 3585 static int 3586 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3587 3588 /** 3589 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3590 * and if it is in fault state then issue diag reset. 3591 * @ioc: per adapter object 3592 * 3593 * Return: 0 for success, non-zero for failure. 3594 */ 3595 int 3596 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3597 { 3598 u32 ioc_state; 3599 int rc = -EFAULT; 3600 3601 dinitprintk(ioc, pr_info("%s\n", __func__)); 3602 if (ioc->pci_error_recovery) 3603 return 0; 3604 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3605 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3606 3607 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3608 mpt3sas_print_fault_code(ioc, ioc_state & 3609 MPI2_DOORBELL_DATA_MASK); 3610 mpt3sas_base_mask_interrupts(ioc); 3611 rc = _base_diag_reset(ioc); 3612 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3613 MPI2_IOC_STATE_COREDUMP) { 3614 mpt3sas_print_coredump_info(ioc, ioc_state & 3615 MPI2_DOORBELL_DATA_MASK); 3616 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3617 mpt3sas_base_mask_interrupts(ioc); 3618 rc = _base_diag_reset(ioc); 3619 } 3620 3621 return rc; 3622 } 3623 3624 /** 3625 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3626 * @ioc: per adapter object 3627 * 3628 * Return: 0 for success, non-zero for failure. 3629 */ 3630 int 3631 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3632 { 3633 struct pci_dev *pdev = ioc->pdev; 3634 u32 memap_sz; 3635 u32 pio_sz; 3636 int i, r = 0, rc; 3637 u64 pio_chip = 0; 3638 phys_addr_t chip_phys = 0; 3639 struct adapter_reply_queue *reply_q; 3640 int iopoll_q_count = 0; 3641 3642 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3643 3644 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3645 if (pci_enable_device_mem(pdev)) { 3646 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3647 ioc->bars = 0; 3648 return -ENODEV; 3649 } 3650 3651 3652 if (pci_request_selected_regions(pdev, ioc->bars, 3653 ioc->driver_name)) { 3654 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3655 ioc->bars = 0; 3656 r = -ENODEV; 3657 goto out_fail; 3658 } 3659 3660 pci_set_master(pdev); 3661 3662 3663 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3664 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3665 r = -ENODEV; 3666 goto out_fail; 3667 } 3668 3669 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3670 (!memap_sz || !pio_sz); i++) { 3671 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3672 if (pio_sz) 3673 continue; 3674 pio_chip = (u64)pci_resource_start(pdev, i); 3675 pio_sz = pci_resource_len(pdev, i); 3676 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3677 if (memap_sz) 3678 continue; 3679 ioc->chip_phys = pci_resource_start(pdev, i); 3680 chip_phys = ioc->chip_phys; 3681 memap_sz = pci_resource_len(pdev, i); 3682 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3683 } 3684 } 3685 3686 if (ioc->chip == NULL) { 3687 ioc_err(ioc, 3688 "unable to map adapter memory! or resource not found\n"); 3689 r = -EINVAL; 3690 goto out_fail; 3691 } 3692 3693 mpt3sas_base_mask_interrupts(ioc); 3694 3695 r = _base_get_ioc_facts(ioc); 3696 if (r) { 3697 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3698 if (rc || (_base_get_ioc_facts(ioc))) 3699 goto out_fail; 3700 } 3701 3702 if (!ioc->rdpq_array_enable_assigned) { 3703 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3704 ioc->rdpq_array_enable_assigned = 1; 3705 } 3706 3707 r = _base_enable_msix(ioc); 3708 if (r) 3709 goto out_fail; 3710 3711 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index; 3712 for (i = 0; i < iopoll_q_count; i++) { 3713 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0); 3714 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0); 3715 } 3716 3717 if (!ioc->is_driver_loading) 3718 _base_init_irqpolls(ioc); 3719 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3720 * revision HBAs and also only when reply queue count is greater than 8 3721 */ 3722 if (ioc->combined_reply_queue) { 3723 /* Determine the Supplemental Reply Post Host Index Registers 3724 * Addresse. Supplemental Reply Post Host Index Registers 3725 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3726 * each register is at offset bytes of 3727 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3728 */ 3729 ioc->replyPostRegisterIndex = kcalloc( 3730 ioc->combined_reply_index_count, 3731 sizeof(resource_size_t *), GFP_KERNEL); 3732 if (!ioc->replyPostRegisterIndex) { 3733 ioc_err(ioc, 3734 "allocation for replyPostRegisterIndex failed!\n"); 3735 r = -ENOMEM; 3736 goto out_fail; 3737 } 3738 3739 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3740 ioc->replyPostRegisterIndex[i] = 3741 (resource_size_t __iomem *) 3742 ((u8 __force *)&ioc->chip->Doorbell + 3743 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3744 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3745 } 3746 } 3747 3748 if (ioc->is_warpdrive) { 3749 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3750 &ioc->chip->ReplyPostHostIndex; 3751 3752 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3753 ioc->reply_post_host_index[i] = 3754 (resource_size_t __iomem *) 3755 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3756 * 4))); 3757 } 3758 3759 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3760 if (reply_q->msix_index >= ioc->iopoll_q_start_index) { 3761 pr_info("%s: enabled: index: %d\n", 3762 reply_q->name, reply_q->msix_index); 3763 continue; 3764 } 3765 3766 pr_info("%s: %s enabled: IRQ %d\n", 3767 reply_q->name, 3768 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3769 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3770 } 3771 3772 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3773 &chip_phys, ioc->chip, memap_sz); 3774 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3775 (unsigned long long)pio_chip, pio_sz); 3776 3777 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3778 pci_save_state(pdev); 3779 return 0; 3780 3781 out_fail: 3782 mpt3sas_base_unmap_resources(ioc); 3783 return r; 3784 } 3785 3786 /** 3787 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3788 * @ioc: per adapter object 3789 * @smid: system request message index(smid zero is invalid) 3790 * 3791 * Return: virt pointer to message frame. 3792 */ 3793 void * 3794 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3795 { 3796 return (void *)(ioc->request + (smid * ioc->request_sz)); 3797 } 3798 3799 /** 3800 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3801 * @ioc: per adapter object 3802 * @smid: system request message index 3803 * 3804 * Return: virt pointer to sense buffer. 3805 */ 3806 void * 3807 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3808 { 3809 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3810 } 3811 3812 /** 3813 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3814 * @ioc: per adapter object 3815 * @smid: system request message index 3816 * 3817 * Return: phys pointer to the low 32bit address of the sense buffer. 3818 */ 3819 __le32 3820 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3821 { 3822 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3823 SCSI_SENSE_BUFFERSIZE)); 3824 } 3825 3826 /** 3827 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3828 * @ioc: per adapter object 3829 * @smid: system request message index 3830 * 3831 * Return: virt pointer to a PCIe SGL. 3832 */ 3833 void * 3834 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3835 { 3836 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3837 } 3838 3839 /** 3840 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3841 * @ioc: per adapter object 3842 * @smid: system request message index 3843 * 3844 * Return: phys pointer to the address of the PCIe buffer. 3845 */ 3846 dma_addr_t 3847 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3848 { 3849 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3850 } 3851 3852 /** 3853 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3854 * @ioc: per adapter object 3855 * @phys_addr: lower 32 physical addr of the reply 3856 * 3857 * Converts 32bit lower physical addr into a virt address. 3858 */ 3859 void * 3860 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3861 { 3862 if (!phys_addr) 3863 return NULL; 3864 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3865 } 3866 3867 /** 3868 * _base_get_msix_index - get the msix index 3869 * @ioc: per adapter object 3870 * @scmd: scsi_cmnd object 3871 * 3872 * Return: msix index of general reply queues, 3873 * i.e. reply queue on which IO request's reply 3874 * should be posted by the HBA firmware. 3875 */ 3876 static inline u8 3877 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3878 struct scsi_cmnd *scmd) 3879 { 3880 /* Enables reply_queue load balancing */ 3881 if (ioc->msix_load_balance) 3882 return ioc->reply_queue_count ? 3883 base_mod64(atomic64_add_return(1, 3884 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3885 3886 if (scmd && ioc->shost->nr_hw_queues > 1) { 3887 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3888 3889 return blk_mq_unique_tag_to_hwq(tag) + 3890 ioc->high_iops_queues; 3891 } 3892 3893 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3894 } 3895 3896 /** 3897 * _base_get_high_iops_msix_index - get the msix index of 3898 * high iops queues 3899 * @ioc: per adapter object 3900 * @scmd: scsi_cmnd object 3901 * 3902 * Return: msix index of high iops reply queues. 3903 * i.e. high iops reply queue on which IO request's 3904 * reply should be posted by the HBA firmware. 3905 */ 3906 static inline u8 3907 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3908 struct scsi_cmnd *scmd) 3909 { 3910 /** 3911 * Round robin the IO interrupts among the high iops 3912 * reply queues in terms of batch count 16 when outstanding 3913 * IOs on the target device is >=8. 3914 */ 3915 3916 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3917 return base_mod64(( 3918 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3919 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3920 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3921 3922 return _base_get_msix_index(ioc, scmd); 3923 } 3924 3925 /** 3926 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3927 * @ioc: per adapter object 3928 * @cb_idx: callback index 3929 * 3930 * Return: smid (zero is invalid) 3931 */ 3932 u16 3933 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3934 { 3935 unsigned long flags; 3936 struct request_tracker *request; 3937 u16 smid; 3938 3939 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3940 if (list_empty(&ioc->internal_free_list)) { 3941 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3942 ioc_err(ioc, "%s: smid not available\n", __func__); 3943 return 0; 3944 } 3945 3946 request = list_entry(ioc->internal_free_list.next, 3947 struct request_tracker, tracker_list); 3948 request->cb_idx = cb_idx; 3949 smid = request->smid; 3950 list_del(&request->tracker_list); 3951 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3952 return smid; 3953 } 3954 3955 /** 3956 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3957 * @ioc: per adapter object 3958 * @cb_idx: callback index 3959 * @scmd: pointer to scsi command object 3960 * 3961 * Return: smid (zero is invalid) 3962 */ 3963 u16 3964 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3965 struct scsi_cmnd *scmd) 3966 { 3967 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3968 u16 smid; 3969 u32 tag, unique_tag; 3970 3971 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3972 tag = blk_mq_unique_tag_to_tag(unique_tag); 3973 3974 /* 3975 * Store hw queue number corresponding to the tag. 3976 * This hw queue number is used later to determine 3977 * the unique_tag using the logic below. This unique_tag 3978 * is used to retrieve the scmd pointer corresponding 3979 * to tag using scsi_host_find_tag() API. 3980 * 3981 * tag = smid - 1; 3982 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3983 */ 3984 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3985 3986 smid = tag + 1; 3987 request->cb_idx = cb_idx; 3988 request->smid = smid; 3989 request->scmd = scmd; 3990 INIT_LIST_HEAD(&request->chain_list); 3991 return smid; 3992 } 3993 3994 /** 3995 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3996 * @ioc: per adapter object 3997 * @cb_idx: callback index 3998 * 3999 * Return: smid (zero is invalid) 4000 */ 4001 u16 4002 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 4003 { 4004 unsigned long flags; 4005 struct request_tracker *request; 4006 u16 smid; 4007 4008 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4009 if (list_empty(&ioc->hpr_free_list)) { 4010 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4011 return 0; 4012 } 4013 4014 request = list_entry(ioc->hpr_free_list.next, 4015 struct request_tracker, tracker_list); 4016 request->cb_idx = cb_idx; 4017 smid = request->smid; 4018 list_del(&request->tracker_list); 4019 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4020 return smid; 4021 } 4022 4023 static void 4024 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 4025 { 4026 /* 4027 * See _wait_for_commands_to_complete() call with regards to this code. 4028 */ 4029 if (ioc->shost_recovery && ioc->pending_io_count) { 4030 ioc->pending_io_count = scsi_host_busy(ioc->shost); 4031 if (ioc->pending_io_count == 0) 4032 wake_up(&ioc->reset_wq); 4033 } 4034 } 4035 4036 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 4037 struct scsiio_tracker *st) 4038 { 4039 if (WARN_ON(st->smid == 0)) 4040 return; 4041 st->cb_idx = 0xFF; 4042 st->direct_io = 0; 4043 st->scmd = NULL; 4044 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 4045 st->smid = 0; 4046 } 4047 4048 /** 4049 * mpt3sas_base_free_smid - put smid back on free_list 4050 * @ioc: per adapter object 4051 * @smid: system request message index 4052 */ 4053 void 4054 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4055 { 4056 unsigned long flags; 4057 int i; 4058 4059 if (smid < ioc->hi_priority_smid) { 4060 struct scsiio_tracker *st; 4061 void *request; 4062 4063 st = _get_st_from_smid(ioc, smid); 4064 if (!st) { 4065 _base_recovery_check(ioc); 4066 return; 4067 } 4068 4069 /* Clear MPI request frame */ 4070 request = mpt3sas_base_get_msg_frame(ioc, smid); 4071 memset(request, 0, ioc->request_sz); 4072 4073 mpt3sas_base_clear_st(ioc, st); 4074 _base_recovery_check(ioc); 4075 ioc->io_queue_num[smid - 1] = 0; 4076 return; 4077 } 4078 4079 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4080 if (smid < ioc->internal_smid) { 4081 /* hi-priority */ 4082 i = smid - ioc->hi_priority_smid; 4083 ioc->hpr_lookup[i].cb_idx = 0xFF; 4084 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 4085 } else if (smid <= ioc->hba_queue_depth) { 4086 /* internal queue */ 4087 i = smid - ioc->internal_smid; 4088 ioc->internal_lookup[i].cb_idx = 0xFF; 4089 list_add(&ioc->internal_lookup[i].tracker_list, 4090 &ioc->internal_free_list); 4091 } 4092 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4093 } 4094 4095 /** 4096 * _base_mpi_ep_writeq - 32 bit write to MMIO 4097 * @b: data payload 4098 * @addr: address in MMIO space 4099 * @writeq_lock: spin lock 4100 * 4101 * This special handling for MPI EP to take care of 32 bit 4102 * environment where its not quarenteed to send the entire word 4103 * in one transfer. 4104 */ 4105 static inline void 4106 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 4107 spinlock_t *writeq_lock) 4108 { 4109 unsigned long flags; 4110 4111 spin_lock_irqsave(writeq_lock, flags); 4112 __raw_writel((u32)(b), addr); 4113 __raw_writel((u32)(b >> 32), (addr + 4)); 4114 spin_unlock_irqrestore(writeq_lock, flags); 4115 } 4116 4117 /** 4118 * _base_writeq - 64 bit write to MMIO 4119 * @b: data payload 4120 * @addr: address in MMIO space 4121 * @writeq_lock: spin lock 4122 * 4123 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 4124 * care of 32 bit environment where its not quarenteed to send the entire word 4125 * in one transfer. 4126 */ 4127 #if defined(writeq) && defined(CONFIG_64BIT) 4128 static inline void 4129 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4130 { 4131 wmb(); 4132 __raw_writeq(b, addr); 4133 barrier(); 4134 } 4135 #else 4136 static inline void 4137 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4138 { 4139 _base_mpi_ep_writeq(b, addr, writeq_lock); 4140 } 4141 #endif 4142 4143 /** 4144 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 4145 * variable of scsi tracker 4146 * @ioc: per adapter object 4147 * @smid: system request message index 4148 * 4149 * Return: msix index. 4150 */ 4151 static u8 4152 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4153 { 4154 struct scsiio_tracker *st = NULL; 4155 4156 if (smid < ioc->hi_priority_smid) 4157 st = _get_st_from_smid(ioc, smid); 4158 4159 if (st == NULL) 4160 return _base_get_msix_index(ioc, NULL); 4161 4162 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 4163 return st->msix_io; 4164 } 4165 4166 /** 4167 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 4168 * @ioc: per adapter object 4169 * @smid: system request message index 4170 * @handle: device handle 4171 */ 4172 static void 4173 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 4174 u16 smid, u16 handle) 4175 { 4176 Mpi2RequestDescriptorUnion_t descriptor; 4177 u64 *request = (u64 *)&descriptor; 4178 void *mpi_req_iomem; 4179 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4180 4181 _clone_sg_entries(ioc, (void *) mfp, smid); 4182 mpi_req_iomem = (void __force *)ioc->chip + 4183 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4184 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4185 ioc->request_sz); 4186 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4187 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4188 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4189 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4190 descriptor.SCSIIO.LMID = 0; 4191 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4192 &ioc->scsi_lookup_lock); 4193 } 4194 4195 /** 4196 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 4197 * @ioc: per adapter object 4198 * @smid: system request message index 4199 * @handle: device handle 4200 */ 4201 static void 4202 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 4203 { 4204 Mpi2RequestDescriptorUnion_t descriptor; 4205 u64 *request = (u64 *)&descriptor; 4206 4207 4208 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4209 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4210 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4211 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4212 descriptor.SCSIIO.LMID = 0; 4213 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4214 &ioc->scsi_lookup_lock); 4215 } 4216 4217 /** 4218 * _base_put_smid_fast_path - send fast path request to firmware 4219 * @ioc: per adapter object 4220 * @smid: system request message index 4221 * @handle: device handle 4222 */ 4223 static void 4224 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4225 u16 handle) 4226 { 4227 Mpi2RequestDescriptorUnion_t descriptor; 4228 u64 *request = (u64 *)&descriptor; 4229 4230 descriptor.SCSIIO.RequestFlags = 4231 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4232 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4233 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4234 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4235 descriptor.SCSIIO.LMID = 0; 4236 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4237 &ioc->scsi_lookup_lock); 4238 } 4239 4240 /** 4241 * _base_put_smid_hi_priority - send Task Management request to firmware 4242 * @ioc: per adapter object 4243 * @smid: system request message index 4244 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4245 */ 4246 static void 4247 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4248 u16 msix_task) 4249 { 4250 Mpi2RequestDescriptorUnion_t descriptor; 4251 void *mpi_req_iomem; 4252 u64 *request; 4253 4254 if (ioc->is_mcpu_endpoint) { 4255 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4256 4257 /* TBD 256 is offset within sys register. */ 4258 mpi_req_iomem = (void __force *)ioc->chip 4259 + MPI_FRAME_START_OFFSET 4260 + (smid * ioc->request_sz); 4261 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4262 ioc->request_sz); 4263 } 4264 4265 request = (u64 *)&descriptor; 4266 4267 descriptor.HighPriority.RequestFlags = 4268 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4269 descriptor.HighPriority.MSIxIndex = msix_task; 4270 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4271 descriptor.HighPriority.LMID = 0; 4272 descriptor.HighPriority.Reserved1 = 0; 4273 if (ioc->is_mcpu_endpoint) 4274 _base_mpi_ep_writeq(*request, 4275 &ioc->chip->RequestDescriptorPostLow, 4276 &ioc->scsi_lookup_lock); 4277 else 4278 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4279 &ioc->scsi_lookup_lock); 4280 } 4281 4282 /** 4283 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4284 * firmware 4285 * @ioc: per adapter object 4286 * @smid: system request message index 4287 */ 4288 void 4289 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4290 { 4291 Mpi2RequestDescriptorUnion_t descriptor; 4292 u64 *request = (u64 *)&descriptor; 4293 4294 descriptor.Default.RequestFlags = 4295 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4296 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4297 descriptor.Default.SMID = cpu_to_le16(smid); 4298 descriptor.Default.LMID = 0; 4299 descriptor.Default.DescriptorTypeDependent = 0; 4300 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4301 &ioc->scsi_lookup_lock); 4302 } 4303 4304 /** 4305 * _base_put_smid_default - Default, primarily used for config pages 4306 * @ioc: per adapter object 4307 * @smid: system request message index 4308 */ 4309 static void 4310 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4311 { 4312 Mpi2RequestDescriptorUnion_t descriptor; 4313 void *mpi_req_iomem; 4314 u64 *request; 4315 4316 if (ioc->is_mcpu_endpoint) { 4317 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4318 4319 _clone_sg_entries(ioc, (void *) mfp, smid); 4320 /* TBD 256 is offset within sys register */ 4321 mpi_req_iomem = (void __force *)ioc->chip + 4322 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4323 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4324 ioc->request_sz); 4325 } 4326 request = (u64 *)&descriptor; 4327 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4328 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4329 descriptor.Default.SMID = cpu_to_le16(smid); 4330 descriptor.Default.LMID = 0; 4331 descriptor.Default.DescriptorTypeDependent = 0; 4332 if (ioc->is_mcpu_endpoint) 4333 _base_mpi_ep_writeq(*request, 4334 &ioc->chip->RequestDescriptorPostLow, 4335 &ioc->scsi_lookup_lock); 4336 else 4337 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4338 &ioc->scsi_lookup_lock); 4339 } 4340 4341 /** 4342 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4343 * Atomic Request Descriptor 4344 * @ioc: per adapter object 4345 * @smid: system request message index 4346 * @handle: device handle, unused in this function, for function type match 4347 * 4348 * Return: nothing. 4349 */ 4350 static void 4351 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4352 u16 handle) 4353 { 4354 Mpi26AtomicRequestDescriptor_t descriptor; 4355 u32 *request = (u32 *)&descriptor; 4356 4357 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4358 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4359 descriptor.SMID = cpu_to_le16(smid); 4360 4361 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4362 } 4363 4364 /** 4365 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4366 * using Atomic Request Descriptor 4367 * @ioc: per adapter object 4368 * @smid: system request message index 4369 * @handle: device handle, unused in this function, for function type match 4370 * Return: nothing 4371 */ 4372 static void 4373 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4374 u16 handle) 4375 { 4376 Mpi26AtomicRequestDescriptor_t descriptor; 4377 u32 *request = (u32 *)&descriptor; 4378 4379 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4380 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4381 descriptor.SMID = cpu_to_le16(smid); 4382 4383 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4384 } 4385 4386 /** 4387 * _base_put_smid_hi_priority_atomic - send Task Management request to 4388 * firmware using Atomic Request Descriptor 4389 * @ioc: per adapter object 4390 * @smid: system request message index 4391 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4392 * 4393 * Return: nothing. 4394 */ 4395 static void 4396 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4397 u16 msix_task) 4398 { 4399 Mpi26AtomicRequestDescriptor_t descriptor; 4400 u32 *request = (u32 *)&descriptor; 4401 4402 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4403 descriptor.MSIxIndex = msix_task; 4404 descriptor.SMID = cpu_to_le16(smid); 4405 4406 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4407 } 4408 4409 /** 4410 * _base_put_smid_default_atomic - Default, primarily used for config pages 4411 * use Atomic Request Descriptor 4412 * @ioc: per adapter object 4413 * @smid: system request message index 4414 * 4415 * Return: nothing. 4416 */ 4417 static void 4418 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4419 { 4420 Mpi26AtomicRequestDescriptor_t descriptor; 4421 u32 *request = (u32 *)&descriptor; 4422 4423 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4424 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4425 descriptor.SMID = cpu_to_le16(smid); 4426 4427 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4428 } 4429 4430 /** 4431 * _base_display_OEMs_branding - Display branding string 4432 * @ioc: per adapter object 4433 */ 4434 static void 4435 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4436 { 4437 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4438 return; 4439 4440 switch (ioc->pdev->subsystem_vendor) { 4441 case PCI_VENDOR_ID_INTEL: 4442 switch (ioc->pdev->device) { 4443 case MPI2_MFGPAGE_DEVID_SAS2008: 4444 switch (ioc->pdev->subsystem_device) { 4445 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4446 ioc_info(ioc, "%s\n", 4447 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4448 break; 4449 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4450 ioc_info(ioc, "%s\n", 4451 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4452 break; 4453 case MPT2SAS_INTEL_SSD910_SSDID: 4454 ioc_info(ioc, "%s\n", 4455 MPT2SAS_INTEL_SSD910_BRANDING); 4456 break; 4457 default: 4458 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4459 ioc->pdev->subsystem_device); 4460 break; 4461 } 4462 break; 4463 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4464 switch (ioc->pdev->subsystem_device) { 4465 case MPT2SAS_INTEL_RS25GB008_SSDID: 4466 ioc_info(ioc, "%s\n", 4467 MPT2SAS_INTEL_RS25GB008_BRANDING); 4468 break; 4469 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4470 ioc_info(ioc, "%s\n", 4471 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4472 break; 4473 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4474 ioc_info(ioc, "%s\n", 4475 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4476 break; 4477 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4478 ioc_info(ioc, "%s\n", 4479 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4480 break; 4481 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4482 ioc_info(ioc, "%s\n", 4483 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4484 break; 4485 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4486 ioc_info(ioc, "%s\n", 4487 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4488 break; 4489 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4490 ioc_info(ioc, "%s\n", 4491 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4492 break; 4493 default: 4494 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4495 ioc->pdev->subsystem_device); 4496 break; 4497 } 4498 break; 4499 case MPI25_MFGPAGE_DEVID_SAS3008: 4500 switch (ioc->pdev->subsystem_device) { 4501 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4502 ioc_info(ioc, "%s\n", 4503 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4504 break; 4505 4506 case MPT3SAS_INTEL_RS3GC008_SSDID: 4507 ioc_info(ioc, "%s\n", 4508 MPT3SAS_INTEL_RS3GC008_BRANDING); 4509 break; 4510 case MPT3SAS_INTEL_RS3FC044_SSDID: 4511 ioc_info(ioc, "%s\n", 4512 MPT3SAS_INTEL_RS3FC044_BRANDING); 4513 break; 4514 case MPT3SAS_INTEL_RS3UC080_SSDID: 4515 ioc_info(ioc, "%s\n", 4516 MPT3SAS_INTEL_RS3UC080_BRANDING); 4517 break; 4518 default: 4519 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4520 ioc->pdev->subsystem_device); 4521 break; 4522 } 4523 break; 4524 default: 4525 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4526 ioc->pdev->subsystem_device); 4527 break; 4528 } 4529 break; 4530 case PCI_VENDOR_ID_DELL: 4531 switch (ioc->pdev->device) { 4532 case MPI2_MFGPAGE_DEVID_SAS2008: 4533 switch (ioc->pdev->subsystem_device) { 4534 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4535 ioc_info(ioc, "%s\n", 4536 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4537 break; 4538 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4539 ioc_info(ioc, "%s\n", 4540 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4541 break; 4542 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4543 ioc_info(ioc, "%s\n", 4544 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4545 break; 4546 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4547 ioc_info(ioc, "%s\n", 4548 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4549 break; 4550 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4551 ioc_info(ioc, "%s\n", 4552 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4553 break; 4554 case MPT2SAS_DELL_PERC_H200_SSDID: 4555 ioc_info(ioc, "%s\n", 4556 MPT2SAS_DELL_PERC_H200_BRANDING); 4557 break; 4558 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4559 ioc_info(ioc, "%s\n", 4560 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4561 break; 4562 default: 4563 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4564 ioc->pdev->subsystem_device); 4565 break; 4566 } 4567 break; 4568 case MPI25_MFGPAGE_DEVID_SAS3008: 4569 switch (ioc->pdev->subsystem_device) { 4570 case MPT3SAS_DELL_12G_HBA_SSDID: 4571 ioc_info(ioc, "%s\n", 4572 MPT3SAS_DELL_12G_HBA_BRANDING); 4573 break; 4574 default: 4575 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4576 ioc->pdev->subsystem_device); 4577 break; 4578 } 4579 break; 4580 default: 4581 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4582 ioc->pdev->subsystem_device); 4583 break; 4584 } 4585 break; 4586 case PCI_VENDOR_ID_CISCO: 4587 switch (ioc->pdev->device) { 4588 case MPI25_MFGPAGE_DEVID_SAS3008: 4589 switch (ioc->pdev->subsystem_device) { 4590 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4591 ioc_info(ioc, "%s\n", 4592 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4593 break; 4594 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4595 ioc_info(ioc, "%s\n", 4596 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4597 break; 4598 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4599 ioc_info(ioc, "%s\n", 4600 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4601 break; 4602 default: 4603 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4604 ioc->pdev->subsystem_device); 4605 break; 4606 } 4607 break; 4608 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4609 switch (ioc->pdev->subsystem_device) { 4610 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4611 ioc_info(ioc, "%s\n", 4612 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4613 break; 4614 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4615 ioc_info(ioc, "%s\n", 4616 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4617 break; 4618 default: 4619 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4620 ioc->pdev->subsystem_device); 4621 break; 4622 } 4623 break; 4624 default: 4625 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4626 ioc->pdev->subsystem_device); 4627 break; 4628 } 4629 break; 4630 case MPT2SAS_HP_3PAR_SSVID: 4631 switch (ioc->pdev->device) { 4632 case MPI2_MFGPAGE_DEVID_SAS2004: 4633 switch (ioc->pdev->subsystem_device) { 4634 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4635 ioc_info(ioc, "%s\n", 4636 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4637 break; 4638 default: 4639 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4640 ioc->pdev->subsystem_device); 4641 break; 4642 } 4643 break; 4644 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4645 switch (ioc->pdev->subsystem_device) { 4646 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4647 ioc_info(ioc, "%s\n", 4648 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4649 break; 4650 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4651 ioc_info(ioc, "%s\n", 4652 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4653 break; 4654 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4655 ioc_info(ioc, "%s\n", 4656 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4657 break; 4658 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4659 ioc_info(ioc, "%s\n", 4660 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4661 break; 4662 default: 4663 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4664 ioc->pdev->subsystem_device); 4665 break; 4666 } 4667 break; 4668 default: 4669 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4670 ioc->pdev->subsystem_device); 4671 break; 4672 } 4673 break; 4674 default: 4675 break; 4676 } 4677 } 4678 4679 /** 4680 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4681 * version from FW Image Header. 4682 * @ioc: per adapter object 4683 * 4684 * Return: 0 for success, non-zero for failure. 4685 */ 4686 static int 4687 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4688 { 4689 Mpi2FWImageHeader_t *fw_img_hdr; 4690 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4691 Mpi25FWUploadRequest_t *mpi_request; 4692 Mpi2FWUploadReply_t mpi_reply; 4693 int r = 0, issue_diag_reset = 0; 4694 u32 package_version = 0; 4695 void *fwpkg_data = NULL; 4696 dma_addr_t fwpkg_data_dma; 4697 u16 smid, ioc_status; 4698 size_t data_length; 4699 4700 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4701 4702 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4703 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4704 return -EAGAIN; 4705 } 4706 4707 data_length = sizeof(Mpi2FWImageHeader_t); 4708 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4709 &fwpkg_data_dma, GFP_KERNEL); 4710 if (!fwpkg_data) { 4711 ioc_err(ioc, 4712 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4713 __FILE__, __LINE__, __func__); 4714 return -ENOMEM; 4715 } 4716 4717 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4718 if (!smid) { 4719 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4720 r = -EAGAIN; 4721 goto out; 4722 } 4723 4724 ioc->base_cmds.status = MPT3_CMD_PENDING; 4725 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4726 ioc->base_cmds.smid = smid; 4727 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4728 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4729 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4730 mpi_request->ImageSize = cpu_to_le32(data_length); 4731 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4732 data_length); 4733 init_completion(&ioc->base_cmds.done); 4734 ioc->put_smid_default(ioc, smid); 4735 /* Wait for 15 seconds */ 4736 wait_for_completion_timeout(&ioc->base_cmds.done, 4737 FW_IMG_HDR_READ_TIMEOUT*HZ); 4738 ioc_info(ioc, "%s: complete\n", __func__); 4739 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4740 ioc_err(ioc, "%s: timeout\n", __func__); 4741 _debug_dump_mf(mpi_request, 4742 sizeof(Mpi25FWUploadRequest_t)/4); 4743 issue_diag_reset = 1; 4744 } else { 4745 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4746 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4747 memcpy(&mpi_reply, ioc->base_cmds.reply, 4748 sizeof(Mpi2FWUploadReply_t)); 4749 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4750 MPI2_IOCSTATUS_MASK; 4751 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4752 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4753 if (le32_to_cpu(fw_img_hdr->Signature) == 4754 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4755 cmp_img_hdr = 4756 (Mpi26ComponentImageHeader_t *) 4757 (fwpkg_data); 4758 package_version = 4759 le32_to_cpu( 4760 cmp_img_hdr->ApplicationSpecific); 4761 } else 4762 package_version = 4763 le32_to_cpu( 4764 fw_img_hdr->PackageVersion.Word); 4765 if (package_version) 4766 ioc_info(ioc, 4767 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4768 ((package_version) & 0xFF000000) >> 24, 4769 ((package_version) & 0x00FF0000) >> 16, 4770 ((package_version) & 0x0000FF00) >> 8, 4771 (package_version) & 0x000000FF); 4772 } else { 4773 _debug_dump_mf(&mpi_reply, 4774 sizeof(Mpi2FWUploadReply_t)/4); 4775 } 4776 } 4777 } 4778 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4779 out: 4780 if (fwpkg_data) 4781 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4782 fwpkg_data_dma); 4783 if (issue_diag_reset) { 4784 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4785 return -EFAULT; 4786 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4787 return -EFAULT; 4788 r = -EAGAIN; 4789 } 4790 return r; 4791 } 4792 4793 /** 4794 * _base_display_ioc_capabilities - Display IOC's capabilities. 4795 * @ioc: per adapter object 4796 */ 4797 static void 4798 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4799 { 4800 int i = 0; 4801 char desc[17] = {0}; 4802 u32 iounit_pg1_flags; 4803 4804 memtostr(desc, ioc->manu_pg0.ChipName); 4805 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n", 4806 desc, 4807 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4808 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4809 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4810 ioc->facts.FWVersion.Word & 0x000000FF, 4811 ioc->pdev->revision); 4812 4813 _base_display_OEMs_branding(ioc); 4814 4815 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4816 pr_info("%sNVMe", i ? "," : ""); 4817 i++; 4818 } 4819 4820 ioc_info(ioc, "Protocol=("); 4821 4822 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4823 pr_cont("Initiator"); 4824 i++; 4825 } 4826 4827 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4828 pr_cont("%sTarget", i ? "," : ""); 4829 i++; 4830 } 4831 4832 i = 0; 4833 pr_cont("), Capabilities=("); 4834 4835 if (!ioc->hide_ir_msg) { 4836 if (ioc->facts.IOCCapabilities & 4837 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4838 pr_cont("Raid"); 4839 i++; 4840 } 4841 } 4842 4843 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4844 pr_cont("%sTLR", i ? "," : ""); 4845 i++; 4846 } 4847 4848 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4849 pr_cont("%sMulticast", i ? "," : ""); 4850 i++; 4851 } 4852 4853 if (ioc->facts.IOCCapabilities & 4854 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4855 pr_cont("%sBIDI Target", i ? "," : ""); 4856 i++; 4857 } 4858 4859 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4860 pr_cont("%sEEDP", i ? "," : ""); 4861 i++; 4862 } 4863 4864 if (ioc->facts.IOCCapabilities & 4865 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4866 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4867 i++; 4868 } 4869 4870 if (ioc->facts.IOCCapabilities & 4871 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4872 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4873 i++; 4874 } 4875 4876 if (ioc->facts.IOCCapabilities & 4877 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4878 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4879 i++; 4880 } 4881 4882 if (ioc->facts.IOCCapabilities & 4883 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4884 pr_cont("%sTask Set Full", i ? "," : ""); 4885 i++; 4886 } 4887 4888 if (ioc->facts.IOCCapabilities & 4889 MPI26_IOCFACTS_CAPABILITY_MCTP_PASSTHRU) { 4890 pr_cont("%sMCTP Passthru", i ? "," : ""); 4891 i++; 4892 } 4893 4894 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4895 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4896 pr_cont("%sNCQ", i ? "," : ""); 4897 i++; 4898 } 4899 4900 pr_cont(")\n"); 4901 } 4902 4903 /** 4904 * mpt3sas_base_update_missing_delay - change the missing delay timers 4905 * @ioc: per adapter object 4906 * @device_missing_delay: amount of time till device is reported missing 4907 * @io_missing_delay: interval IO is returned when there is a missing device 4908 * 4909 * Passed on the command line, this function will modify the device missing 4910 * delay, as well as the io missing delay. This should be called at driver 4911 * load time. 4912 */ 4913 void 4914 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4915 u16 device_missing_delay, u8 io_missing_delay) 4916 { 4917 u16 dmd, dmd_new, dmd_orignal; 4918 u8 io_missing_delay_original; 4919 u16 sz; 4920 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4921 Mpi2ConfigReply_t mpi_reply; 4922 u8 num_phys = 0; 4923 u16 ioc_status; 4924 4925 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4926 if (!num_phys) 4927 return; 4928 4929 sz = struct_size(sas_iounit_pg1, PhyData, num_phys); 4930 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4931 if (!sas_iounit_pg1) { 4932 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4933 __FILE__, __LINE__, __func__); 4934 goto out; 4935 } 4936 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4937 sas_iounit_pg1, sz))) { 4938 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4939 __FILE__, __LINE__, __func__); 4940 goto out; 4941 } 4942 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4943 MPI2_IOCSTATUS_MASK; 4944 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4945 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4946 __FILE__, __LINE__, __func__); 4947 goto out; 4948 } 4949 4950 /* device missing delay */ 4951 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4952 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4953 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4954 else 4955 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4956 dmd_orignal = dmd; 4957 if (device_missing_delay > 0x7F) { 4958 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4959 device_missing_delay; 4960 dmd = dmd / 16; 4961 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4962 } else 4963 dmd = device_missing_delay; 4964 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4965 4966 /* io missing delay */ 4967 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4968 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4969 4970 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4971 sz)) { 4972 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4973 dmd_new = (dmd & 4974 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4975 else 4976 dmd_new = 4977 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4978 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4979 dmd_orignal, dmd_new); 4980 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4981 io_missing_delay_original, 4982 io_missing_delay); 4983 ioc->device_missing_delay = dmd_new; 4984 ioc->io_missing_delay = io_missing_delay; 4985 } 4986 4987 out: 4988 kfree(sas_iounit_pg1); 4989 } 4990 4991 /** 4992 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4993 * according to performance mode. 4994 * @ioc : per adapter object 4995 * 4996 * Return: zero on success; otherwise return EAGAIN error code asking the 4997 * caller to retry. 4998 */ 4999 static int 5000 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 5001 { 5002 Mpi2IOCPage1_t ioc_pg1; 5003 Mpi2ConfigReply_t mpi_reply; 5004 int rc; 5005 5006 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 5007 if (rc) 5008 return rc; 5009 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 5010 5011 switch (perf_mode) { 5012 case MPT_PERF_MODE_DEFAULT: 5013 case MPT_PERF_MODE_BALANCED: 5014 if (ioc->high_iops_queues) { 5015 ioc_info(ioc, 5016 "Enable interrupt coalescing only for first\t" 5017 "%d reply queues\n", 5018 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 5019 /* 5020 * If 31st bit is zero then interrupt coalescing is 5021 * enabled for all reply descriptor post queues. 5022 * If 31st bit is set to one then user can 5023 * enable/disable interrupt coalescing on per reply 5024 * descriptor post queue group(8) basis. So to enable 5025 * interrupt coalescing only on first reply descriptor 5026 * post queue group 31st bit and zero th bit is enabled. 5027 */ 5028 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 5029 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 5030 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5031 if (rc) 5032 return rc; 5033 ioc_info(ioc, "performance mode: balanced\n"); 5034 return 0; 5035 } 5036 fallthrough; 5037 case MPT_PERF_MODE_LATENCY: 5038 /* 5039 * Enable interrupt coalescing on all reply queues 5040 * with timeout value 0xA 5041 */ 5042 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 5043 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5044 ioc_pg1.ProductSpecific = 0; 5045 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5046 if (rc) 5047 return rc; 5048 ioc_info(ioc, "performance mode: latency\n"); 5049 break; 5050 case MPT_PERF_MODE_IOPS: 5051 /* 5052 * Enable interrupt coalescing on all reply queues. 5053 */ 5054 ioc_info(ioc, 5055 "performance mode: iops with coalescing timeout: 0x%x\n", 5056 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 5057 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5058 ioc_pg1.ProductSpecific = 0; 5059 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5060 if (rc) 5061 return rc; 5062 break; 5063 } 5064 return 0; 5065 } 5066 5067 /** 5068 * _base_get_event_diag_triggers - get event diag trigger values from 5069 * persistent pages 5070 * @ioc : per adapter object 5071 * 5072 * Return: nothing. 5073 */ 5074 static int 5075 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5076 { 5077 Mpi26DriverTriggerPage2_t trigger_pg2; 5078 struct SL_WH_EVENT_TRIGGER_T *event_tg; 5079 MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg; 5080 Mpi2ConfigReply_t mpi_reply; 5081 int r = 0, i = 0; 5082 u16 count = 0; 5083 u16 ioc_status; 5084 5085 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 5086 &trigger_pg2); 5087 if (r) 5088 return r; 5089 5090 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5091 MPI2_IOCSTATUS_MASK; 5092 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5093 dinitprintk(ioc, 5094 ioc_err(ioc, 5095 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 5096 __func__, ioc_status)); 5097 return 0; 5098 } 5099 5100 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 5101 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 5102 count = min_t(u16, NUM_VALID_ENTRIES, count); 5103 ioc->diag_trigger_event.ValidEntries = count; 5104 5105 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 5106 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 5107 for (i = 0; i < count; i++) { 5108 event_tg->EventValue = le16_to_cpu( 5109 mpi_event_tg->MPIEventCode); 5110 event_tg->LogEntryQualifier = le16_to_cpu( 5111 mpi_event_tg->MPIEventCodeSpecific); 5112 event_tg++; 5113 mpi_event_tg++; 5114 } 5115 } 5116 return 0; 5117 } 5118 5119 /** 5120 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 5121 * persistent pages 5122 * @ioc : per adapter object 5123 * 5124 * Return: 0 on success; otherwise return failure status. 5125 */ 5126 static int 5127 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5128 { 5129 Mpi26DriverTriggerPage3_t trigger_pg3; 5130 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 5131 MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg; 5132 Mpi2ConfigReply_t mpi_reply; 5133 int r = 0, i = 0; 5134 u16 count = 0; 5135 u16 ioc_status; 5136 5137 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 5138 &trigger_pg3); 5139 if (r) 5140 return r; 5141 5142 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5143 MPI2_IOCSTATUS_MASK; 5144 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5145 dinitprintk(ioc, 5146 ioc_err(ioc, 5147 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 5148 __func__, ioc_status)); 5149 return 0; 5150 } 5151 5152 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 5153 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 5154 count = min_t(u16, NUM_VALID_ENTRIES, count); 5155 ioc->diag_trigger_scsi.ValidEntries = count; 5156 5157 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 5158 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 5159 for (i = 0; i < count; i++) { 5160 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 5161 scsi_tg->ASC = mpi_scsi_tg->ASC; 5162 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 5163 5164 scsi_tg++; 5165 mpi_scsi_tg++; 5166 } 5167 } 5168 return 0; 5169 } 5170 5171 /** 5172 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 5173 * persistent pages 5174 * @ioc : per adapter object 5175 * 5176 * Return: 0 on success; otherwise return failure status. 5177 */ 5178 static int 5179 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5180 { 5181 Mpi26DriverTriggerPage4_t trigger_pg4; 5182 struct SL_WH_MPI_TRIGGER_T *status_tg; 5183 MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg; 5184 Mpi2ConfigReply_t mpi_reply; 5185 int r = 0, i = 0; 5186 u16 count = 0; 5187 u16 ioc_status; 5188 5189 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 5190 &trigger_pg4); 5191 if (r) 5192 return r; 5193 5194 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5195 MPI2_IOCSTATUS_MASK; 5196 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5197 dinitprintk(ioc, 5198 ioc_err(ioc, 5199 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 5200 __func__, ioc_status)); 5201 return 0; 5202 } 5203 5204 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 5205 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 5206 count = min_t(u16, NUM_VALID_ENTRIES, count); 5207 ioc->diag_trigger_mpi.ValidEntries = count; 5208 5209 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 5210 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 5211 5212 for (i = 0; i < count; i++) { 5213 status_tg->IOCStatus = le16_to_cpu( 5214 mpi_status_tg->IOCStatus); 5215 status_tg->IocLogInfo = le32_to_cpu( 5216 mpi_status_tg->LogInfo); 5217 5218 status_tg++; 5219 mpi_status_tg++; 5220 } 5221 } 5222 return 0; 5223 } 5224 5225 /** 5226 * _base_get_master_diag_triggers - get master diag trigger values from 5227 * persistent pages 5228 * @ioc : per adapter object 5229 * 5230 * Return: nothing. 5231 */ 5232 static int 5233 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5234 { 5235 Mpi26DriverTriggerPage1_t trigger_pg1; 5236 Mpi2ConfigReply_t mpi_reply; 5237 int r; 5238 u16 ioc_status; 5239 5240 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5241 &trigger_pg1); 5242 if (r) 5243 return r; 5244 5245 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5246 MPI2_IOCSTATUS_MASK; 5247 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5248 dinitprintk(ioc, 5249 ioc_err(ioc, 5250 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5251 __func__, ioc_status)); 5252 return 0; 5253 } 5254 5255 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5256 ioc->diag_trigger_master.MasterData |= 5257 le32_to_cpu( 5258 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5259 return 0; 5260 } 5261 5262 /** 5263 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5264 * driver trigger pages or not 5265 * @ioc : per adapter object 5266 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5267 * 5268 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5269 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5270 * return EAGAIN if diag reset occurred due to FW fault and asking the 5271 * caller to retry the command. 5272 * 5273 */ 5274 static int 5275 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5276 { 5277 Mpi26DriverTriggerPage0_t trigger_pg0; 5278 int r = 0; 5279 Mpi2ConfigReply_t mpi_reply; 5280 u16 ioc_status; 5281 5282 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5283 &trigger_pg0); 5284 if (r) 5285 return r; 5286 5287 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5288 MPI2_IOCSTATUS_MASK; 5289 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5290 return -EFAULT; 5291 5292 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5293 return 0; 5294 } 5295 5296 /** 5297 * _base_get_diag_triggers - Retrieve diag trigger values from 5298 * persistent pages. 5299 * @ioc : per adapter object 5300 * 5301 * Return: zero on success; otherwise return EAGAIN error codes 5302 * asking the caller to retry. 5303 */ 5304 static int 5305 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5306 { 5307 int trigger_flags; 5308 int r; 5309 5310 /* 5311 * Default setting of master trigger. 5312 */ 5313 ioc->diag_trigger_master.MasterData = 5314 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5315 5316 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5317 if (r) { 5318 if (r == -EAGAIN) 5319 return r; 5320 /* 5321 * Don't go for error handling when FW doesn't support 5322 * driver trigger pages. 5323 */ 5324 return 0; 5325 } 5326 5327 ioc->supports_trigger_pages = 1; 5328 5329 /* 5330 * Retrieve master diag trigger values from driver trigger pg1 5331 * if master trigger bit enabled in TriggerFlags. 5332 */ 5333 if ((u16)trigger_flags & 5334 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5335 r = _base_get_master_diag_triggers(ioc); 5336 if (r) 5337 return r; 5338 } 5339 5340 /* 5341 * Retrieve event diag trigger values from driver trigger pg2 5342 * if event trigger bit enabled in TriggerFlags. 5343 */ 5344 if ((u16)trigger_flags & 5345 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5346 r = _base_get_event_diag_triggers(ioc); 5347 if (r) 5348 return r; 5349 } 5350 5351 /* 5352 * Retrieve scsi diag trigger values from driver trigger pg3 5353 * if scsi trigger bit enabled in TriggerFlags. 5354 */ 5355 if ((u16)trigger_flags & 5356 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5357 r = _base_get_scsi_diag_triggers(ioc); 5358 if (r) 5359 return r; 5360 } 5361 /* 5362 * Retrieve mpi error diag trigger values from driver trigger pg4 5363 * if loginfo trigger bit enabled in TriggerFlags. 5364 */ 5365 if ((u16)trigger_flags & 5366 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5367 r = _base_get_mpi_diag_triggers(ioc); 5368 if (r) 5369 return r; 5370 } 5371 return 0; 5372 } 5373 5374 /** 5375 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5376 * online FW update, in case updated FW supports driver 5377 * trigger pages. 5378 * @ioc : per adapter object 5379 * 5380 * Return: nothing. 5381 */ 5382 static void 5383 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5384 { 5385 5386 if (ioc->diag_trigger_master.MasterData) 5387 mpt3sas_config_update_driver_trigger_pg1(ioc, 5388 &ioc->diag_trigger_master, 1); 5389 5390 if (ioc->diag_trigger_event.ValidEntries) 5391 mpt3sas_config_update_driver_trigger_pg2(ioc, 5392 &ioc->diag_trigger_event, 1); 5393 5394 if (ioc->diag_trigger_scsi.ValidEntries) 5395 mpt3sas_config_update_driver_trigger_pg3(ioc, 5396 &ioc->diag_trigger_scsi, 1); 5397 5398 if (ioc->diag_trigger_mpi.ValidEntries) 5399 mpt3sas_config_update_driver_trigger_pg4(ioc, 5400 &ioc->diag_trigger_mpi, 1); 5401 } 5402 5403 /** 5404 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices. 5405 * - On failure set default QD values. 5406 * @ioc : per adapter object 5407 * 5408 * Returns 0 for success, non-zero for failure. 5409 * 5410 */ 5411 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc) 5412 { 5413 Mpi2ConfigReply_t mpi_reply; 5414 Mpi2SasIOUnitPage1_t sas_iounit_pg1; 5415 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1; 5416 u16 depth; 5417 int rc = 0; 5418 5419 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5420 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5421 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH; 5422 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH; 5423 if (!ioc->is_gen35_ioc) 5424 goto out; 5425 /* sas iounit page 1 */ 5426 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 5427 &sas_iounit_pg1, sizeof(Mpi2SasIOUnitPage1_t)); 5428 if (rc) { 5429 pr_err("%s: failure at %s:%d/%s()!\n", 5430 ioc->name, __FILE__, __LINE__, __func__); 5431 goto out; 5432 } 5433 5434 depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth); 5435 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5436 5437 depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth); 5438 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5439 5440 depth = sas_iounit_pg1.SATAMaxQDepth; 5441 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH); 5442 5443 /* pcie iounit page 1 */ 5444 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply, 5445 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t)); 5446 if (rc) { 5447 pr_err("%s: failure at %s:%d/%s()!\n", 5448 ioc->name, __FILE__, __LINE__, __func__); 5449 goto out; 5450 } 5451 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ? 5452 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) : 5453 MPT3SAS_NVME_QUEUE_DEPTH; 5454 out: 5455 dinitprintk(ioc, pr_err( 5456 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n", 5457 ioc->max_wideport_qd, ioc->max_narrowport_qd, 5458 ioc->max_sata_qd, ioc->max_nvme_qd)); 5459 return rc; 5460 } 5461 5462 /** 5463 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1 5464 * 5465 * @ioc : per adapter object 5466 * @n : ptr to the ATTO nvram structure 5467 * Return: 0 for success, non-zero for failure. 5468 */ 5469 static int 5470 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc, 5471 struct ATTO_SAS_NVRAM *n) 5472 { 5473 int r = -EINVAL; 5474 union ATTO_SAS_ADDRESS *s1; 5475 u32 len; 5476 u8 *pb; 5477 u8 ckSum; 5478 5479 /* validate nvram checksum */ 5480 pb = (u8 *) n; 5481 ckSum = ATTO_SASNVR_CKSUM_SEED; 5482 len = sizeof(struct ATTO_SAS_NVRAM); 5483 5484 while (len--) 5485 ckSum = ckSum + pb[len]; 5486 5487 if (ckSum) { 5488 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n"); 5489 return r; 5490 } 5491 5492 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr; 5493 5494 if (n->Signature[0] != 'E' 5495 || n->Signature[1] != 'S' 5496 || n->Signature[2] != 'A' 5497 || n->Signature[3] != 'S') 5498 ioc_err(ioc, "Invalid ATTO NVRAM signature\n"); 5499 else if (n->Version > ATTO_SASNVR_VERSION) 5500 ioc_info(ioc, "Invalid ATTO NVRAM version"); 5501 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1)) 5502 || s1->b[0] != 0x50 5503 || s1->b[1] != 0x01 5504 || s1->b[2] != 0x08 5505 || (s1->b[3] & 0xF0) != 0x60 5506 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) { 5507 ioc_err(ioc, "Invalid ATTO SAS address\n"); 5508 } else 5509 r = 0; 5510 return r; 5511 } 5512 5513 /** 5514 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1 5515 * 5516 * @ioc : per adapter object 5517 * @sas_addr : return sas address 5518 * Return: 0 for success, non-zero for failure. 5519 */ 5520 static int 5521 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr) 5522 { 5523 Mpi2ManufacturingPage1_t mfg_pg1; 5524 Mpi2ConfigReply_t mpi_reply; 5525 struct ATTO_SAS_NVRAM *nvram; 5526 int r; 5527 __be64 addr; 5528 5529 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1); 5530 if (r) { 5531 ioc_err(ioc, "Failed to read manufacturing page 1\n"); 5532 return r; 5533 } 5534 5535 /* validate nvram */ 5536 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD; 5537 r = mpt3sas_atto_validate_nvram(ioc, nvram); 5538 if (r) 5539 return r; 5540 5541 addr = *((__be64 *) nvram->SasAddr); 5542 sas_addr->q = cpu_to_le64(be64_to_cpu(addr)); 5543 return r; 5544 } 5545 5546 /** 5547 * mpt3sas_atto_init - perform initializaion for ATTO branded 5548 * adapter. 5549 * @ioc : per adapter object 5550 *5 5551 * Return: 0 for success, non-zero for failure. 5552 */ 5553 static int 5554 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc) 5555 { 5556 int sz = 0; 5557 Mpi2BiosPage4_t *bios_pg4 = NULL; 5558 Mpi2ConfigReply_t mpi_reply; 5559 int r; 5560 int ix; 5561 union ATTO_SAS_ADDRESS sas_addr; 5562 union ATTO_SAS_ADDRESS temp; 5563 union ATTO_SAS_ADDRESS bias; 5564 5565 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr); 5566 if (r) 5567 return r; 5568 5569 /* get header first to get size */ 5570 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0); 5571 if (r) { 5572 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n"); 5573 return r; 5574 } 5575 5576 sz = mpi_reply.Header.PageLength * sizeof(u32); 5577 bios_pg4 = kzalloc(sz, GFP_KERNEL); 5578 if (!bios_pg4) { 5579 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n"); 5580 return -ENOMEM; 5581 } 5582 5583 /* read bios page 4 */ 5584 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5585 if (r) { 5586 ioc_err(ioc, "Failed to read ATTO bios page 4\n"); 5587 goto out; 5588 } 5589 5590 /* Update bios page 4 with the ATTO WWID */ 5591 bias.q = sas_addr.q; 5592 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS; 5593 5594 for (ix = 0; ix < bios_pg4->NumPhys; ix++) { 5595 temp.q = sas_addr.q; 5596 temp.b[7] += ix; 5597 bios_pg4->Phy[ix].ReassignmentWWID = temp.q; 5598 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q; 5599 } 5600 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5601 5602 out: 5603 kfree(bios_pg4); 5604 return r; 5605 } 5606 5607 /** 5608 * _base_static_config_pages - static start of day config pages 5609 * @ioc: per adapter object 5610 */ 5611 static int 5612 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5613 { 5614 Mpi2IOUnitPage8_t iounit_pg8; 5615 Mpi2ConfigReply_t mpi_reply; 5616 u32 iounit_pg1_flags; 5617 int tg_flags = 0; 5618 int rc; 5619 ioc->nvme_abort_timeout = 30; 5620 5621 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5622 &ioc->manu_pg0); 5623 if (rc) 5624 return rc; 5625 if (ioc->ir_firmware) { 5626 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5627 &ioc->manu_pg10); 5628 if (rc) 5629 return rc; 5630 } 5631 5632 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) { 5633 rc = mpt3sas_atto_init(ioc); 5634 if (rc) 5635 return rc; 5636 } 5637 5638 /* 5639 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5640 * flag unset in NVDATA. 5641 */ 5642 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5643 &ioc->manu_pg11); 5644 if (rc) 5645 return rc; 5646 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5647 pr_err("%s: overriding NVDATA EEDPTagMode setting from 0 to 1\n", 5648 ioc->name); 5649 ioc->manu_pg11.EEDPTagMode = 0x1; 5650 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5651 &ioc->manu_pg11); 5652 } 5653 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5654 ioc->tm_custom_handling = 1; 5655 else { 5656 ioc->tm_custom_handling = 0; 5657 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5658 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5659 else if (ioc->manu_pg11.NVMeAbortTO > 5660 NVME_TASK_ABORT_MAX_TIMEOUT) 5661 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5662 else 5663 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5664 } 5665 ioc->time_sync_interval = 5666 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5667 if (ioc->time_sync_interval) { 5668 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5669 ioc->time_sync_interval = 5670 ioc->time_sync_interval * SECONDS_PER_HOUR; 5671 else 5672 ioc->time_sync_interval = 5673 ioc->time_sync_interval * SECONDS_PER_MIN; 5674 dinitprintk(ioc, ioc_info(ioc, 5675 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5676 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5677 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5678 } else { 5679 if (ioc->is_gen35_ioc) 5680 ioc_warn(ioc, 5681 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5682 } 5683 rc = _base_assign_fw_reported_qd(ioc); 5684 if (rc) 5685 return rc; 5686 5687 /* 5688 * ATTO doesn't use bios page 2 and 3 for bios settings. 5689 */ 5690 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) 5691 ioc->bios_pg3.BiosVersion = 0; 5692 else { 5693 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5694 if (rc) 5695 return rc; 5696 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5697 if (rc) 5698 return rc; 5699 } 5700 5701 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5702 if (rc) 5703 return rc; 5704 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5705 if (rc) 5706 return rc; 5707 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5708 if (rc) 5709 return rc; 5710 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &iounit_pg8); 5711 if (rc) 5712 return rc; 5713 _base_display_ioc_capabilities(ioc); 5714 5715 /* 5716 * Enable task_set_full handling in iounit_pg1 when the 5717 * facts capabilities indicate that its supported. 5718 */ 5719 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5720 if ((ioc->facts.IOCCapabilities & 5721 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5722 iounit_pg1_flags &= 5723 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5724 else 5725 iounit_pg1_flags |= 5726 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5727 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5728 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5729 if (rc) 5730 return rc; 5731 5732 if (iounit_pg8.NumSensors) 5733 ioc->temp_sensors_count = iounit_pg8.NumSensors; 5734 if (ioc->is_aero_ioc) { 5735 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5736 if (rc) 5737 return rc; 5738 } 5739 if (ioc->is_gen35_ioc) { 5740 if (ioc->is_driver_loading) { 5741 rc = _base_get_diag_triggers(ioc); 5742 if (rc) 5743 return rc; 5744 } else { 5745 /* 5746 * In case of online HBA FW update operation, 5747 * check whether updated FW supports the driver trigger 5748 * pages or not. 5749 * - If previous FW has not supported driver trigger 5750 * pages and newer FW supports them then update these 5751 * pages with current diag trigger values. 5752 * - If previous FW has supported driver trigger pages 5753 * and new FW doesn't support them then disable 5754 * support_trigger_pages flag. 5755 */ 5756 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5757 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5758 _base_update_diag_trigger_pages(ioc); 5759 else if (ioc->supports_trigger_pages && 5760 tg_flags == -EFAULT) 5761 ioc->supports_trigger_pages = 0; 5762 } 5763 } 5764 return 0; 5765 } 5766 5767 /** 5768 * mpt3sas_free_enclosure_list - release memory 5769 * @ioc: per adapter object 5770 * 5771 * Free memory allocated during enclosure add. 5772 */ 5773 void 5774 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5775 { 5776 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5777 5778 /* Free enclosure list */ 5779 list_for_each_entry_safe(enclosure_dev, 5780 enclosure_dev_next, &ioc->enclosure_list, list) { 5781 list_del(&enclosure_dev->list); 5782 kfree(enclosure_dev); 5783 } 5784 } 5785 5786 /** 5787 * _base_release_memory_pools - release memory 5788 * @ioc: per adapter object 5789 * 5790 * Free memory allocated from _base_allocate_memory_pools. 5791 */ 5792 static void 5793 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5794 { 5795 int i = 0; 5796 int j = 0; 5797 int dma_alloc_count = 0; 5798 struct chain_tracker *ct; 5799 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5800 5801 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5802 5803 if (ioc->request) { 5804 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5805 ioc->request, ioc->request_dma); 5806 dexitprintk(ioc, 5807 ioc_info(ioc, "request_pool(0x%p): free\n", 5808 ioc->request)); 5809 ioc->request = NULL; 5810 } 5811 5812 if (ioc->sense) { 5813 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5814 dma_pool_destroy(ioc->sense_dma_pool); 5815 dexitprintk(ioc, 5816 ioc_info(ioc, "sense_pool(0x%p): free\n", 5817 ioc->sense)); 5818 ioc->sense = NULL; 5819 } 5820 5821 if (ioc->reply) { 5822 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5823 dma_pool_destroy(ioc->reply_dma_pool); 5824 dexitprintk(ioc, 5825 ioc_info(ioc, "reply_pool(0x%p): free\n", 5826 ioc->reply)); 5827 ioc->reply = NULL; 5828 } 5829 5830 if (ioc->reply_free) { 5831 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5832 ioc->reply_free_dma); 5833 dma_pool_destroy(ioc->reply_free_dma_pool); 5834 dexitprintk(ioc, 5835 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5836 ioc->reply_free)); 5837 ioc->reply_free = NULL; 5838 } 5839 5840 if (ioc->reply_post) { 5841 dma_alloc_count = DIV_ROUND_UP(count, 5842 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5843 for (i = 0; i < count; i++) { 5844 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5845 && dma_alloc_count) { 5846 if (ioc->reply_post[i].reply_post_free) { 5847 dma_pool_free( 5848 ioc->reply_post_free_dma_pool, 5849 ioc->reply_post[i].reply_post_free, 5850 ioc->reply_post[i].reply_post_free_dma); 5851 dexitprintk(ioc, ioc_info(ioc, 5852 "reply_post_free_pool(0x%p): free\n", 5853 ioc->reply_post[i].reply_post_free)); 5854 ioc->reply_post[i].reply_post_free = 5855 NULL; 5856 } 5857 --dma_alloc_count; 5858 } 5859 } 5860 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5861 if (ioc->reply_post_free_array && 5862 ioc->rdpq_array_enable) { 5863 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5864 ioc->reply_post_free_array, 5865 ioc->reply_post_free_array_dma); 5866 ioc->reply_post_free_array = NULL; 5867 } 5868 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5869 kfree(ioc->reply_post); 5870 } 5871 5872 if (ioc->pcie_sgl_dma_pool) { 5873 for (i = 0; i < ioc->scsiio_depth; i++) { 5874 dma_pool_free(ioc->pcie_sgl_dma_pool, 5875 ioc->pcie_sg_lookup[i].pcie_sgl, 5876 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5877 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5878 } 5879 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5880 } 5881 kfree(ioc->pcie_sg_lookup); 5882 ioc->pcie_sg_lookup = NULL; 5883 5884 if (ioc->config_page) { 5885 dexitprintk(ioc, 5886 ioc_info(ioc, "config_page(0x%p): free\n", 5887 ioc->config_page)); 5888 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5889 ioc->config_page, ioc->config_page_dma); 5890 } 5891 5892 kfree(ioc->hpr_lookup); 5893 ioc->hpr_lookup = NULL; 5894 kfree(ioc->internal_lookup); 5895 ioc->internal_lookup = NULL; 5896 if (ioc->chain_lookup) { 5897 for (i = 0; i < ioc->scsiio_depth; i++) { 5898 for (j = ioc->chains_per_prp_buffer; 5899 j < ioc->chains_needed_per_io; j++) { 5900 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5901 if (ct && ct->chain_buffer) 5902 dma_pool_free(ioc->chain_dma_pool, 5903 ct->chain_buffer, 5904 ct->chain_buffer_dma); 5905 } 5906 kfree(ioc->chain_lookup[i].chains_per_smid); 5907 } 5908 dma_pool_destroy(ioc->chain_dma_pool); 5909 kfree(ioc->chain_lookup); 5910 ioc->chain_lookup = NULL; 5911 } 5912 5913 kfree(ioc->io_queue_num); 5914 ioc->io_queue_num = NULL; 5915 } 5916 5917 /** 5918 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5919 * having same upper 32bits in their base memory address. 5920 * @start_address: Base address of a reply queue set 5921 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5922 * 5923 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5924 * memory address, else 0. 5925 */ 5926 static int 5927 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz) 5928 { 5929 dma_addr_t end_address; 5930 5931 end_address = start_address + pool_sz - 1; 5932 5933 if (upper_32_bits(start_address) == upper_32_bits(end_address)) 5934 return 1; 5935 else 5936 return 0; 5937 } 5938 5939 /** 5940 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5941 * @ioc: Adapter object 5942 * 5943 * Return: 0 for success, non-zero for failure. 5944 **/ 5945 static inline int 5946 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5947 { 5948 int reduce_sz = 64; 5949 5950 if ((ioc->hba_queue_depth - reduce_sz) > 5951 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5952 ioc->hba_queue_depth -= reduce_sz; 5953 return 0; 5954 } else 5955 return -ENOMEM; 5956 } 5957 5958 /** 5959 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5960 * for pcie sgl pools. 5961 * @ioc: Adapter object 5962 * @sz: DMA Pool size 5963 * 5964 * Return: 0 for success, non-zero for failure. 5965 */ 5966 5967 static int 5968 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5969 { 5970 int i = 0, j = 0; 5971 struct chain_tracker *ct; 5972 5973 ioc->pcie_sgl_dma_pool = 5974 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5975 ioc->page_size, 0); 5976 if (!ioc->pcie_sgl_dma_pool) { 5977 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5978 return -ENOMEM; 5979 } 5980 5981 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5982 ioc->chains_per_prp_buffer = 5983 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5984 for (i = 0; i < ioc->scsiio_depth; i++) { 5985 ioc->pcie_sg_lookup[i].pcie_sgl = 5986 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5987 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5988 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5989 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5990 return -EAGAIN; 5991 } 5992 5993 if (!mpt3sas_check_same_4gb_region( 5994 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) { 5995 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5996 ioc->pcie_sg_lookup[i].pcie_sgl, 5997 (unsigned long long) 5998 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5999 ioc->use_32bit_dma = true; 6000 return -EAGAIN; 6001 } 6002 6003 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 6004 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 6005 ct->chain_buffer = 6006 ioc->pcie_sg_lookup[i].pcie_sgl + 6007 (j * ioc->chain_segment_sz); 6008 ct->chain_buffer_dma = 6009 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 6010 (j * ioc->chain_segment_sz); 6011 } 6012 } 6013 dinitprintk(ioc, ioc_info(ioc, 6014 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 6015 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 6016 dinitprintk(ioc, ioc_info(ioc, 6017 "Number of chains can fit in a PRP page(%d)\n", 6018 ioc->chains_per_prp_buffer)); 6019 return 0; 6020 } 6021 6022 /** 6023 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 6024 * for chain dma pool. 6025 * @ioc: Adapter object 6026 * @sz: DMA Pool size 6027 * 6028 * Return: 0 for success, non-zero for failure. 6029 */ 6030 static int 6031 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6032 { 6033 int i = 0, j = 0; 6034 struct chain_tracker *ctr; 6035 6036 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 6037 ioc->chain_segment_sz, 16, 0); 6038 if (!ioc->chain_dma_pool) 6039 return -ENOMEM; 6040 6041 for (i = 0; i < ioc->scsiio_depth; i++) { 6042 for (j = ioc->chains_per_prp_buffer; 6043 j < ioc->chains_needed_per_io; j++) { 6044 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 6045 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 6046 GFP_KERNEL, &ctr->chain_buffer_dma); 6047 if (!ctr->chain_buffer) 6048 return -EAGAIN; 6049 if (!mpt3sas_check_same_4gb_region( 6050 ctr->chain_buffer_dma, ioc->chain_segment_sz)) { 6051 ioc_err(ioc, 6052 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 6053 ctr->chain_buffer, 6054 (unsigned long long)ctr->chain_buffer_dma); 6055 ioc->use_32bit_dma = true; 6056 return -EAGAIN; 6057 } 6058 } 6059 } 6060 dinitprintk(ioc, ioc_info(ioc, 6061 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 6062 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 6063 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 6064 ioc->chain_segment_sz))/1024)); 6065 return 0; 6066 } 6067 6068 /** 6069 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 6070 * for sense dma pool. 6071 * @ioc: Adapter object 6072 * @sz: DMA Pool size 6073 * Return: 0 for success, non-zero for failure. 6074 */ 6075 static int 6076 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6077 { 6078 ioc->sense_dma_pool = 6079 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 6080 if (!ioc->sense_dma_pool) 6081 return -ENOMEM; 6082 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 6083 GFP_KERNEL, &ioc->sense_dma); 6084 if (!ioc->sense) 6085 return -EAGAIN; 6086 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) { 6087 dinitprintk(ioc, pr_err( 6088 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 6089 ioc->sense, (unsigned long long) ioc->sense_dma)); 6090 ioc->use_32bit_dma = true; 6091 return -EAGAIN; 6092 } 6093 ioc_info(ioc, 6094 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 6095 ioc->sense, (unsigned long long)ioc->sense_dma, 6096 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 6097 return 0; 6098 } 6099 6100 /** 6101 * _base_allocate_reply_pool - Allocating DMA'able memory 6102 * for reply pool. 6103 * @ioc: Adapter object 6104 * @sz: DMA Pool size 6105 * Return: 0 for success, non-zero for failure. 6106 */ 6107 static int 6108 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6109 { 6110 /* reply pool, 4 byte align */ 6111 ioc->reply_dma_pool = dma_pool_create("reply pool", 6112 &ioc->pdev->dev, sz, 4, 0); 6113 if (!ioc->reply_dma_pool) 6114 return -ENOMEM; 6115 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 6116 &ioc->reply_dma); 6117 if (!ioc->reply) 6118 return -EAGAIN; 6119 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) { 6120 dinitprintk(ioc, pr_err( 6121 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 6122 ioc->reply, (unsigned long long) ioc->reply_dma)); 6123 ioc->use_32bit_dma = true; 6124 return -EAGAIN; 6125 } 6126 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 6127 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 6128 ioc_info(ioc, 6129 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 6130 ioc->reply, (unsigned long long)ioc->reply_dma, 6131 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 6132 return 0; 6133 } 6134 6135 /** 6136 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 6137 * for reply free dma pool. 6138 * @ioc: Adapter object 6139 * @sz: DMA Pool size 6140 * Return: 0 for success, non-zero for failure. 6141 */ 6142 static int 6143 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6144 { 6145 /* reply free queue, 16 byte align */ 6146 ioc->reply_free_dma_pool = dma_pool_create( 6147 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 6148 if (!ioc->reply_free_dma_pool) 6149 return -ENOMEM; 6150 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 6151 GFP_KERNEL, &ioc->reply_free_dma); 6152 if (!ioc->reply_free) 6153 return -EAGAIN; 6154 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) { 6155 dinitprintk(ioc, 6156 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6157 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 6158 ioc->use_32bit_dma = true; 6159 return -EAGAIN; 6160 } 6161 memset(ioc->reply_free, 0, sz); 6162 dinitprintk(ioc, ioc_info(ioc, 6163 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 6164 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 6165 dinitprintk(ioc, ioc_info(ioc, 6166 "reply_free_dma (0x%llx)\n", 6167 (unsigned long long)ioc->reply_free_dma)); 6168 return 0; 6169 } 6170 6171 /** 6172 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 6173 * for reply post free array. 6174 * @ioc: Adapter object 6175 * @reply_post_free_array_sz: DMA Pool size 6176 * Return: 0 for success, non-zero for failure. 6177 */ 6178 6179 static int 6180 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 6181 u32 reply_post_free_array_sz) 6182 { 6183 ioc->reply_post_free_array_dma_pool = 6184 dma_pool_create("reply_post_free_array pool", 6185 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 6186 if (!ioc->reply_post_free_array_dma_pool) 6187 return -ENOMEM; 6188 ioc->reply_post_free_array = 6189 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 6190 GFP_KERNEL, &ioc->reply_post_free_array_dma); 6191 if (!ioc->reply_post_free_array) 6192 return -EAGAIN; 6193 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma, 6194 reply_post_free_array_sz)) { 6195 dinitprintk(ioc, pr_err( 6196 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6197 ioc->reply_free, 6198 (unsigned long long) ioc->reply_free_dma)); 6199 ioc->use_32bit_dma = true; 6200 return -EAGAIN; 6201 } 6202 return 0; 6203 } 6204 /** 6205 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 6206 * for reply queues. 6207 * @ioc: per adapter object 6208 * @sz: DMA Pool size 6209 * Return: 0 for success, non-zero for failure. 6210 */ 6211 static int 6212 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 6213 { 6214 int i = 0; 6215 u32 dma_alloc_count = 0; 6216 int reply_post_free_sz = ioc->reply_post_queue_depth * 6217 sizeof(Mpi2DefaultReplyDescriptor_t); 6218 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 6219 6220 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 6221 GFP_KERNEL); 6222 if (!ioc->reply_post) 6223 return -ENOMEM; 6224 /* 6225 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 6226 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 6227 * be within 4GB boundary i.e reply queues in a set must have same 6228 * upper 32-bits in their memory address. so here driver is allocating 6229 * the DMA'able memory for reply queues according. 6230 * Driver uses limitation of 6231 * VENTURA_SERIES to manage INVADER_SERIES as well. 6232 */ 6233 dma_alloc_count = DIV_ROUND_UP(count, 6234 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 6235 ioc->reply_post_free_dma_pool = 6236 dma_pool_create("reply_post_free pool", 6237 &ioc->pdev->dev, sz, 16, 0); 6238 if (!ioc->reply_post_free_dma_pool) 6239 return -ENOMEM; 6240 for (i = 0; i < count; i++) { 6241 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 6242 ioc->reply_post[i].reply_post_free = 6243 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 6244 GFP_KERNEL, 6245 &ioc->reply_post[i].reply_post_free_dma); 6246 if (!ioc->reply_post[i].reply_post_free) 6247 return -ENOMEM; 6248 /* 6249 * Each set of RDPQ pool must satisfy 4gb boundary 6250 * restriction. 6251 * 1) Check if allocated resources for RDPQ pool are in 6252 * the same 4GB range. 6253 * 2) If #1 is true, continue with 64 bit DMA. 6254 * 3) If #1 is false, return 1. which means free all the 6255 * resources and set DMA mask to 32 and allocate. 6256 */ 6257 if (!mpt3sas_check_same_4gb_region( 6258 ioc->reply_post[i].reply_post_free_dma, sz)) { 6259 dinitprintk(ioc, 6260 ioc_err(ioc, "bad Replypost free pool(0x%p)" 6261 "reply_post_free_dma = (0x%llx)\n", 6262 ioc->reply_post[i].reply_post_free, 6263 (unsigned long long) 6264 ioc->reply_post[i].reply_post_free_dma)); 6265 return -EAGAIN; 6266 } 6267 dma_alloc_count--; 6268 6269 } else { 6270 ioc->reply_post[i].reply_post_free = 6271 (Mpi2ReplyDescriptorsUnion_t *) 6272 ((long)ioc->reply_post[i-1].reply_post_free 6273 + reply_post_free_sz); 6274 ioc->reply_post[i].reply_post_free_dma = 6275 (dma_addr_t) 6276 (ioc->reply_post[i-1].reply_post_free_dma + 6277 reply_post_free_sz); 6278 } 6279 } 6280 return 0; 6281 } 6282 6283 /** 6284 * _base_allocate_memory_pools - allocate start of day memory pools 6285 * @ioc: per adapter object 6286 * 6287 * Return: 0 success, anything else error. 6288 */ 6289 static int 6290 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 6291 { 6292 struct mpt3sas_facts *facts; 6293 u16 max_sge_elements; 6294 u16 chains_needed_per_io; 6295 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 6296 u32 retry_sz; 6297 u32 rdpq_sz = 0, sense_sz = 0; 6298 u16 max_request_credit, nvme_blocks_needed; 6299 unsigned short sg_tablesize; 6300 u16 sge_size; 6301 int i; 6302 int ret = 0, rc = 0; 6303 6304 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6305 6306 6307 retry_sz = 0; 6308 facts = &ioc->facts; 6309 6310 /* command line tunables for max sgl entries */ 6311 if (max_sgl_entries != -1) 6312 sg_tablesize = max_sgl_entries; 6313 else { 6314 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 6315 sg_tablesize = MPT2SAS_SG_DEPTH; 6316 else 6317 sg_tablesize = MPT3SAS_SG_DEPTH; 6318 } 6319 6320 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 6321 if (reset_devices) 6322 sg_tablesize = min_t(unsigned short, sg_tablesize, 6323 MPT_KDUMP_MIN_PHYS_SEGMENTS); 6324 6325 if (ioc->is_mcpu_endpoint) 6326 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6327 else { 6328 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 6329 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6330 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 6331 sg_tablesize = min_t(unsigned short, sg_tablesize, 6332 SG_MAX_SEGMENTS); 6333 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 6334 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 6335 } 6336 ioc->shost->sg_tablesize = sg_tablesize; 6337 } 6338 6339 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 6340 (facts->RequestCredit / 4)); 6341 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 6342 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 6343 INTERNAL_SCSIIO_CMDS_COUNT)) { 6344 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 6345 facts->RequestCredit); 6346 return -ENOMEM; 6347 } 6348 ioc->internal_depth = 10; 6349 } 6350 6351 ioc->hi_priority_depth = ioc->internal_depth - (5); 6352 /* command line tunables for max controller queue depth */ 6353 if (max_queue_depth != -1 && max_queue_depth != 0) { 6354 max_request_credit = min_t(u16, max_queue_depth + 6355 ioc->internal_depth, facts->RequestCredit); 6356 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 6357 max_request_credit = MAX_HBA_QUEUE_DEPTH; 6358 } else if (reset_devices) 6359 max_request_credit = min_t(u16, facts->RequestCredit, 6360 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 6361 else 6362 max_request_credit = min_t(u16, facts->RequestCredit, 6363 MAX_HBA_QUEUE_DEPTH); 6364 6365 /* Firmware maintains additional facts->HighPriorityCredit number of 6366 * credits for HiPriprity Request messages, so hba queue depth will be 6367 * sum of max_request_credit and high priority queue depth. 6368 */ 6369 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 6370 6371 /* request frame size */ 6372 ioc->request_sz = facts->IOCRequestFrameSize * 4; 6373 6374 /* reply frame size */ 6375 ioc->reply_sz = facts->ReplyFrameSize * 4; 6376 6377 /* chain segment size */ 6378 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6379 if (facts->IOCMaxChainSegmentSize) 6380 ioc->chain_segment_sz = 6381 facts->IOCMaxChainSegmentSize * 6382 MAX_CHAIN_ELEMT_SZ; 6383 else 6384 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 6385 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 6386 MAX_CHAIN_ELEMT_SZ; 6387 } else 6388 ioc->chain_segment_sz = ioc->request_sz; 6389 6390 /* calculate the max scatter element size */ 6391 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 6392 6393 retry_allocation: 6394 total_sz = 0; 6395 /* calculate number of sg elements left over in the 1st frame */ 6396 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 6397 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 6398 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 6399 6400 /* now do the same for a chain buffer */ 6401 max_sge_elements = ioc->chain_segment_sz - sge_size; 6402 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 6403 6404 /* 6405 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 6406 */ 6407 chains_needed_per_io = ((ioc->shost->sg_tablesize - 6408 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 6409 + 1; 6410 if (chains_needed_per_io > facts->MaxChainDepth) { 6411 chains_needed_per_io = facts->MaxChainDepth; 6412 ioc->shost->sg_tablesize = min_t(u16, 6413 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 6414 * chains_needed_per_io), ioc->shost->sg_tablesize); 6415 } 6416 ioc->chains_needed_per_io = chains_needed_per_io; 6417 6418 /* reply free queue sizing - taking into account for 64 FW events */ 6419 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6420 6421 /* mCPU manage single counters for simplicity */ 6422 if (ioc->is_mcpu_endpoint) 6423 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 6424 else { 6425 /* calculate reply descriptor post queue depth */ 6426 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 6427 ioc->reply_free_queue_depth + 1; 6428 /* align the reply post queue on the next 16 count boundary */ 6429 if (ioc->reply_post_queue_depth % 16) 6430 ioc->reply_post_queue_depth += 16 - 6431 (ioc->reply_post_queue_depth % 16); 6432 } 6433 6434 if (ioc->reply_post_queue_depth > 6435 facts->MaxReplyDescriptorPostQueueDepth) { 6436 ioc->reply_post_queue_depth = 6437 facts->MaxReplyDescriptorPostQueueDepth - 6438 (facts->MaxReplyDescriptorPostQueueDepth % 16); 6439 ioc->hba_queue_depth = 6440 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 6441 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6442 } 6443 6444 ioc_info(ioc, 6445 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 6446 "sge_per_io(%d), chains_per_io(%d)\n", 6447 ioc->max_sges_in_main_message, 6448 ioc->max_sges_in_chain_message, 6449 ioc->shost->sg_tablesize, 6450 ioc->chains_needed_per_io); 6451 6452 /* reply post queue, 16 byte align */ 6453 reply_post_free_sz = ioc->reply_post_queue_depth * 6454 sizeof(Mpi2DefaultReplyDescriptor_t); 6455 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6456 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6457 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6458 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6459 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6460 if (ret == -EAGAIN) { 6461 /* 6462 * Free allocated bad RDPQ memory pools. 6463 * Change dma coherent mask to 32 bit and reallocate RDPQ 6464 */ 6465 _base_release_memory_pools(ioc); 6466 ioc->use_32bit_dma = true; 6467 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6468 ioc_err(ioc, 6469 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6470 return -ENODEV; 6471 } 6472 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6473 return -ENOMEM; 6474 } else if (ret == -ENOMEM) 6475 return -ENOMEM; 6476 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6477 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6478 ioc->scsiio_depth = ioc->hba_queue_depth - 6479 ioc->hi_priority_depth - ioc->internal_depth; 6480 6481 /* set the scsi host can_queue depth 6482 * with some internal commands that could be outstanding 6483 */ 6484 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6485 dinitprintk(ioc, 6486 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6487 ioc->shost->can_queue)); 6488 6489 /* contiguous pool for request and chains, 16 byte align, one extra " 6490 * "frame for smid=0 6491 */ 6492 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6493 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6494 6495 /* hi-priority queue */ 6496 sz += (ioc->hi_priority_depth * ioc->request_sz); 6497 6498 /* internal queue */ 6499 sz += (ioc->internal_depth * ioc->request_sz); 6500 6501 ioc->request_dma_sz = sz; 6502 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6503 &ioc->request_dma, GFP_KERNEL); 6504 if (!ioc->request) { 6505 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6506 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6507 ioc->request_sz, sz / 1024); 6508 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6509 goto out; 6510 retry_sz = 64; 6511 ioc->hba_queue_depth -= retry_sz; 6512 _base_release_memory_pools(ioc); 6513 goto retry_allocation; 6514 } 6515 6516 if (retry_sz) 6517 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6518 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6519 ioc->request_sz, sz / 1024); 6520 6521 /* hi-priority queue */ 6522 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6523 ioc->request_sz); 6524 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6525 ioc->request_sz); 6526 6527 /* internal queue */ 6528 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6529 ioc->request_sz); 6530 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6531 ioc->request_sz); 6532 6533 ioc_info(ioc, 6534 "request pool(0x%p) - dma(0x%llx): " 6535 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6536 ioc->request, (unsigned long long) ioc->request_dma, 6537 ioc->hba_queue_depth, ioc->request_sz, 6538 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6539 6540 total_sz += sz; 6541 6542 dinitprintk(ioc, 6543 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6544 ioc->request, ioc->scsiio_depth)); 6545 6546 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6547 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6548 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6549 if (!ioc->chain_lookup) { 6550 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6551 goto out; 6552 } 6553 6554 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6555 for (i = 0; i < ioc->scsiio_depth; i++) { 6556 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6557 if (!ioc->chain_lookup[i].chains_per_smid) { 6558 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6559 goto out; 6560 } 6561 } 6562 6563 /* initialize hi-priority queue smid's */ 6564 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6565 sizeof(struct request_tracker), GFP_KERNEL); 6566 if (!ioc->hpr_lookup) { 6567 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6568 goto out; 6569 } 6570 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6571 dinitprintk(ioc, 6572 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6573 ioc->hi_priority, 6574 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6575 6576 /* initialize internal queue smid's */ 6577 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6578 sizeof(struct request_tracker), GFP_KERNEL); 6579 if (!ioc->internal_lookup) { 6580 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6581 goto out; 6582 } 6583 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6584 dinitprintk(ioc, 6585 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6586 ioc->internal, 6587 ioc->internal_depth, ioc->internal_smid)); 6588 6589 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6590 sizeof(u16), GFP_KERNEL); 6591 if (!ioc->io_queue_num) 6592 goto out; 6593 /* 6594 * The number of NVMe page sized blocks needed is: 6595 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6596 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6597 * that is placed in the main message frame. 8 is the size of each PRP 6598 * entry or PRP list pointer entry. 8 is subtracted from page_size 6599 * because of the PRP list pointer entry at the end of a page, so this 6600 * is not counted as a PRP entry. The 1 added page is a round up. 6601 * 6602 * To avoid allocation failures due to the amount of memory that could 6603 * be required for NVMe PRP's, only each set of NVMe blocks will be 6604 * contiguous, so a new set is allocated for each possible I/O. 6605 */ 6606 6607 ioc->chains_per_prp_buffer = 0; 6608 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6609 nvme_blocks_needed = 6610 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6611 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6612 nvme_blocks_needed++; 6613 6614 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6615 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6616 if (!ioc->pcie_sg_lookup) { 6617 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6618 goto out; 6619 } 6620 sz = nvme_blocks_needed * ioc->page_size; 6621 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6622 if (rc == -ENOMEM) 6623 return -ENOMEM; 6624 else if (rc == -EAGAIN) 6625 goto try_32bit_dma; 6626 total_sz += sz * ioc->scsiio_depth; 6627 } 6628 6629 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6630 if (rc == -ENOMEM) 6631 return -ENOMEM; 6632 else if (rc == -EAGAIN) 6633 goto try_32bit_dma; 6634 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6635 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6636 dinitprintk(ioc, 6637 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6638 ioc->chain_depth, ioc->chain_segment_sz, 6639 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6640 /* sense buffers, 4 byte align */ 6641 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6642 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6643 if (rc == -ENOMEM) 6644 return -ENOMEM; 6645 else if (rc == -EAGAIN) 6646 goto try_32bit_dma; 6647 total_sz += sense_sz; 6648 /* reply pool, 4 byte align */ 6649 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6650 rc = _base_allocate_reply_pool(ioc, sz); 6651 if (rc == -ENOMEM) 6652 return -ENOMEM; 6653 else if (rc == -EAGAIN) 6654 goto try_32bit_dma; 6655 total_sz += sz; 6656 6657 /* reply free queue, 16 byte align */ 6658 sz = ioc->reply_free_queue_depth * 4; 6659 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6660 if (rc == -ENOMEM) 6661 return -ENOMEM; 6662 else if (rc == -EAGAIN) 6663 goto try_32bit_dma; 6664 dinitprintk(ioc, 6665 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6666 (unsigned long long)ioc->reply_free_dma)); 6667 total_sz += sz; 6668 if (ioc->rdpq_array_enable) { 6669 reply_post_free_array_sz = ioc->reply_queue_count * 6670 sizeof(Mpi2IOCInitRDPQArrayEntry); 6671 rc = _base_allocate_reply_post_free_array(ioc, 6672 reply_post_free_array_sz); 6673 if (rc == -ENOMEM) 6674 return -ENOMEM; 6675 else if (rc == -EAGAIN) 6676 goto try_32bit_dma; 6677 } 6678 ioc->config_page_sz = 512; 6679 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6680 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6681 if (!ioc->config_page) { 6682 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6683 goto out; 6684 } 6685 6686 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6687 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6688 ioc->config_page_sz); 6689 total_sz += ioc->config_page_sz; 6690 6691 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6692 total_sz / 1024); 6693 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6694 ioc->shost->can_queue, facts->RequestCredit); 6695 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6696 ioc->shost->sg_tablesize); 6697 return 0; 6698 6699 try_32bit_dma: 6700 _base_release_memory_pools(ioc); 6701 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6702 /* Change dma coherent mask to 32 bit and reallocate */ 6703 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6704 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6705 pci_name(ioc->pdev)); 6706 return -ENODEV; 6707 } 6708 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6709 return -ENOMEM; 6710 goto retry_allocation; 6711 6712 out: 6713 return -ENOMEM; 6714 } 6715 6716 /** 6717 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6718 * @ioc: Pointer to MPT_ADAPTER structure 6719 * @cooked: Request raw or cooked IOC state 6720 * 6721 * Return: all IOC Doorbell register bits if cooked==0, else just the 6722 * Doorbell bits in MPI_IOC_STATE_MASK. 6723 */ 6724 u32 6725 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6726 { 6727 u32 s, sc; 6728 6729 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6730 sc = s & MPI2_IOC_STATE_MASK; 6731 return cooked ? sc : s; 6732 } 6733 6734 /** 6735 * _base_wait_on_iocstate - waiting on a particular ioc state 6736 * @ioc: ? 6737 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6738 * @timeout: timeout in second 6739 * 6740 * Return: 0 for success, non-zero for failure. 6741 */ 6742 static int 6743 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6744 { 6745 u32 count, cntdn; 6746 u32 current_state; 6747 6748 count = 0; 6749 cntdn = 1000 * timeout; 6750 do { 6751 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6752 if (current_state == ioc_state) 6753 return 0; 6754 if (count && current_state == MPI2_IOC_STATE_FAULT) 6755 break; 6756 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6757 break; 6758 6759 usleep_range(1000, 1500); 6760 count++; 6761 } while (--cntdn); 6762 6763 return current_state; 6764 } 6765 6766 /** 6767 * _base_dump_reg_set - This function will print hexdump of register set. 6768 * @ioc: per adapter object 6769 * 6770 * Return: nothing. 6771 */ 6772 static inline void 6773 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6774 { 6775 unsigned int i, sz = 256; 6776 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6777 6778 ioc_info(ioc, "System Register set:\n"); 6779 for (i = 0; i < (sz / sizeof(u32)); i++) 6780 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6781 } 6782 6783 /** 6784 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6785 * a write to the doorbell) 6786 * @ioc: per adapter object 6787 * @timeout: timeout in seconds 6788 * 6789 * Return: 0 for success, non-zero for failure. 6790 * 6791 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6792 */ 6793 6794 static int 6795 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6796 { 6797 u32 cntdn, count; 6798 u32 int_status; 6799 6800 count = 0; 6801 cntdn = 1000 * timeout; 6802 do { 6803 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6804 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6805 dhsprintk(ioc, 6806 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6807 __func__, count, timeout)); 6808 return 0; 6809 } 6810 6811 usleep_range(1000, 1500); 6812 count++; 6813 } while (--cntdn); 6814 6815 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6816 __func__, count, int_status); 6817 return -EFAULT; 6818 } 6819 6820 static int 6821 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6822 { 6823 u32 cntdn, count; 6824 u32 int_status; 6825 6826 count = 0; 6827 cntdn = 2000 * timeout; 6828 do { 6829 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6830 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6831 dhsprintk(ioc, 6832 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6833 __func__, count, timeout)); 6834 return 0; 6835 } 6836 6837 udelay(500); 6838 count++; 6839 } while (--cntdn); 6840 6841 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6842 __func__, count, int_status); 6843 return -EFAULT; 6844 6845 } 6846 6847 /** 6848 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6849 * @ioc: per adapter object 6850 * @timeout: timeout in second 6851 * 6852 * Return: 0 for success, non-zero for failure. 6853 * 6854 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6855 * doorbell. 6856 */ 6857 static int 6858 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6859 { 6860 u32 cntdn, count; 6861 u32 int_status; 6862 u32 doorbell; 6863 6864 count = 0; 6865 cntdn = 1000 * timeout; 6866 do { 6867 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6868 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6869 dhsprintk(ioc, 6870 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6871 __func__, count, timeout)); 6872 return 0; 6873 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6874 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6875 if ((doorbell & MPI2_IOC_STATE_MASK) == 6876 MPI2_IOC_STATE_FAULT) { 6877 mpt3sas_print_fault_code(ioc, doorbell); 6878 return -EFAULT; 6879 } 6880 if ((doorbell & MPI2_IOC_STATE_MASK) == 6881 MPI2_IOC_STATE_COREDUMP) { 6882 mpt3sas_print_coredump_info(ioc, doorbell); 6883 return -EFAULT; 6884 } 6885 } else if (int_status == 0xFFFFFFFF) 6886 goto out; 6887 6888 usleep_range(1000, 1500); 6889 count++; 6890 } while (--cntdn); 6891 6892 out: 6893 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6894 __func__, count, int_status); 6895 return -EFAULT; 6896 } 6897 6898 /** 6899 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6900 * @ioc: per adapter object 6901 * @timeout: timeout in second 6902 * 6903 * Return: 0 for success, non-zero for failure. 6904 */ 6905 static int 6906 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6907 { 6908 u32 cntdn, count; 6909 u32 doorbell_reg; 6910 6911 count = 0; 6912 cntdn = 1000 * timeout; 6913 do { 6914 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6915 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6916 dhsprintk(ioc, 6917 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6918 __func__, count, timeout)); 6919 return 0; 6920 } 6921 6922 usleep_range(1000, 1500); 6923 count++; 6924 } while (--cntdn); 6925 6926 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6927 __func__, count, doorbell_reg); 6928 return -EFAULT; 6929 } 6930 6931 /** 6932 * _base_send_ioc_reset - send doorbell reset 6933 * @ioc: per adapter object 6934 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6935 * @timeout: timeout in second 6936 * 6937 * Return: 0 for success, non-zero for failure. 6938 */ 6939 static int 6940 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6941 { 6942 u32 ioc_state; 6943 int r = 0; 6944 unsigned long flags; 6945 6946 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6947 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6948 return -EFAULT; 6949 } 6950 6951 if (!(ioc->facts.IOCCapabilities & 6952 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6953 return -EFAULT; 6954 6955 ioc_info(ioc, "sending message unit reset !!\n"); 6956 6957 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6958 &ioc->chip->Doorbell); 6959 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6960 r = -EFAULT; 6961 goto out; 6962 } 6963 6964 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6965 if (ioc_state) { 6966 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6967 __func__, ioc_state); 6968 r = -EFAULT; 6969 goto out; 6970 } 6971 out: 6972 if (r != 0) { 6973 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6974 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6975 /* 6976 * Wait for IOC state CoreDump to clear only during 6977 * HBA initialization & release time. 6978 */ 6979 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6980 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6981 ioc->fault_reset_work_q == NULL)) { 6982 spin_unlock_irqrestore( 6983 &ioc->ioc_reset_in_progress_lock, flags); 6984 mpt3sas_print_coredump_info(ioc, ioc_state); 6985 mpt3sas_base_wait_for_coredump_completion(ioc, 6986 __func__); 6987 spin_lock_irqsave( 6988 &ioc->ioc_reset_in_progress_lock, flags); 6989 } 6990 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6991 } 6992 ioc_info(ioc, "message unit reset: %s\n", 6993 r == 0 ? "SUCCESS" : "FAILED"); 6994 return r; 6995 } 6996 6997 /** 6998 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6999 * @ioc: per adapter object 7000 * @timeout: timeout in seconds 7001 * 7002 * Return: Waits up to timeout seconds for the IOC to 7003 * become operational. Returns 0 if IOC is present 7004 * and operational; otherwise returns %-EFAULT. 7005 */ 7006 7007 int 7008 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 7009 { 7010 int wait_state_count = 0; 7011 u32 ioc_state; 7012 7013 do { 7014 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 7015 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 7016 break; 7017 7018 /* 7019 * Watchdog thread will be started after IOC Initialization, so 7020 * no need to wait here for IOC state to become operational 7021 * when IOC Initialization is on. Instead the driver will 7022 * return ETIME status, so that calling function can issue 7023 * diag reset operation and retry the command. 7024 */ 7025 if (ioc->is_driver_loading) 7026 return -ETIME; 7027 7028 ssleep(1); 7029 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 7030 __func__, ++wait_state_count); 7031 } while (--timeout); 7032 if (!timeout) { 7033 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 7034 return -EFAULT; 7035 } 7036 if (wait_state_count) 7037 ioc_info(ioc, "ioc is operational\n"); 7038 return 0; 7039 } 7040 7041 /** 7042 * _base_handshake_req_reply_wait - send request thru doorbell interface 7043 * @ioc: per adapter object 7044 * @request_bytes: request length 7045 * @request: pointer having request payload 7046 * @reply_bytes: reply length 7047 * @reply: pointer to reply payload 7048 * @timeout: timeout in second 7049 * 7050 * Return: 0 for success, non-zero for failure. 7051 */ 7052 static int 7053 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 7054 u32 *request, int reply_bytes, u16 *reply, int timeout) 7055 { 7056 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 7057 int i; 7058 u8 failed; 7059 __le32 *mfp; 7060 int ret_val; 7061 7062 /* make sure doorbell is not in use */ 7063 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 7064 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 7065 goto doorbell_diag_reset; 7066 } 7067 7068 /* clear pending doorbell interrupts from previous state changes */ 7069 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 7070 MPI2_HIS_IOC2SYS_DB_STATUS) 7071 writel(0, &ioc->chip->HostInterruptStatus); 7072 7073 /* send message to ioc */ 7074 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 7075 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 7076 &ioc->chip->Doorbell); 7077 7078 if ((_base_spin_on_doorbell_int(ioc, 5))) { 7079 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7080 __LINE__); 7081 return -EFAULT; 7082 } 7083 writel(0, &ioc->chip->HostInterruptStatus); 7084 7085 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 7086 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 7087 __LINE__); 7088 return -EFAULT; 7089 } 7090 7091 /* send message 32-bits at a time */ 7092 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 7093 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 7094 if ((_base_wait_for_doorbell_ack(ioc, 5))) 7095 failed = 1; 7096 } 7097 7098 if (failed) { 7099 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 7100 __LINE__); 7101 return -EFAULT; 7102 } 7103 7104 /* now wait for the reply */ 7105 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 7106 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7107 __LINE__); 7108 return -EFAULT; 7109 } 7110 7111 /* read the first two 16-bits, it gives the total length of the reply */ 7112 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7113 & MPI2_DOORBELL_DATA_MASK); 7114 writel(0, &ioc->chip->HostInterruptStatus); 7115 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7116 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7117 __LINE__); 7118 return -EFAULT; 7119 } 7120 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7121 & MPI2_DOORBELL_DATA_MASK); 7122 writel(0, &ioc->chip->HostInterruptStatus); 7123 7124 for (i = 2; i < default_reply->MsgLength * 2; i++) { 7125 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7126 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7127 __LINE__); 7128 return -EFAULT; 7129 } 7130 if (i >= reply_bytes/2) /* overflow case */ 7131 ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 7132 else 7133 reply[i] = le16_to_cpu( 7134 ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7135 & MPI2_DOORBELL_DATA_MASK); 7136 writel(0, &ioc->chip->HostInterruptStatus); 7137 } 7138 7139 _base_wait_for_doorbell_int(ioc, 5); 7140 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 7141 dhsprintk(ioc, 7142 ioc_info(ioc, "doorbell is in use (line=%d)\n", 7143 __LINE__)); 7144 } 7145 writel(0, &ioc->chip->HostInterruptStatus); 7146 7147 if (ioc->logging_level & MPT_DEBUG_INIT) { 7148 mfp = (__le32 *)reply; 7149 pr_info("\toffset:data\n"); 7150 for (i = 0; i < reply_bytes/4; i++) 7151 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7152 le32_to_cpu(mfp[i])); 7153 } 7154 return 0; 7155 7156 doorbell_diag_reset: 7157 ret_val = _base_diag_reset(ioc); 7158 return ret_val; 7159 } 7160 7161 /** 7162 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 7163 * @ioc: per adapter object 7164 * @mpi_reply: the reply payload from FW 7165 * @mpi_request: the request payload sent to FW 7166 * 7167 * The SAS IO Unit Control Request message allows the host to perform low-level 7168 * operations, such as resets on the PHYs of the IO Unit, also allows the host 7169 * to obtain the IOC assigned device handles for a device if it has other 7170 * identifying information about the device, in addition allows the host to 7171 * remove IOC resources associated with the device. 7172 * 7173 * Return: 0 for success, non-zero for failure. 7174 */ 7175 int 7176 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 7177 Mpi2SasIoUnitControlReply_t *mpi_reply, 7178 Mpi2SasIoUnitControlRequest_t *mpi_request) 7179 { 7180 u16 smid; 7181 u8 issue_reset = 0; 7182 int rc; 7183 void *request; 7184 7185 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7186 7187 mutex_lock(&ioc->base_cmds.mutex); 7188 7189 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7190 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7191 rc = -EAGAIN; 7192 goto out; 7193 } 7194 7195 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7196 if (rc) 7197 goto out; 7198 7199 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7200 if (!smid) { 7201 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7202 rc = -EAGAIN; 7203 goto out; 7204 } 7205 7206 rc = 0; 7207 ioc->base_cmds.status = MPT3_CMD_PENDING; 7208 request = mpt3sas_base_get_msg_frame(ioc, smid); 7209 ioc->base_cmds.smid = smid; 7210 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 7211 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7212 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 7213 ioc->ioc_link_reset_in_progress = 1; 7214 init_completion(&ioc->base_cmds.done); 7215 ioc->put_smid_default(ioc, smid); 7216 wait_for_completion_timeout(&ioc->base_cmds.done, 7217 msecs_to_jiffies(10000)); 7218 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7219 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 7220 ioc->ioc_link_reset_in_progress) 7221 ioc->ioc_link_reset_in_progress = 0; 7222 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7223 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 7224 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 7225 issue_reset); 7226 goto issue_host_reset; 7227 } 7228 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7229 memcpy(mpi_reply, ioc->base_cmds.reply, 7230 sizeof(Mpi2SasIoUnitControlReply_t)); 7231 else 7232 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 7233 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7234 goto out; 7235 7236 issue_host_reset: 7237 if (issue_reset) 7238 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7239 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7240 rc = -EFAULT; 7241 out: 7242 mutex_unlock(&ioc->base_cmds.mutex); 7243 return rc; 7244 } 7245 7246 /** 7247 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 7248 * @ioc: per adapter object 7249 * @mpi_reply: the reply payload from FW 7250 * @mpi_request: the request payload sent to FW 7251 * 7252 * The SCSI Enclosure Processor request message causes the IOC to 7253 * communicate with SES devices to control LED status signals. 7254 * 7255 * Return: 0 for success, non-zero for failure. 7256 */ 7257 int 7258 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 7259 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 7260 { 7261 u16 smid; 7262 u8 issue_reset = 0; 7263 int rc; 7264 void *request; 7265 7266 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7267 7268 mutex_lock(&ioc->base_cmds.mutex); 7269 7270 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7271 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7272 rc = -EAGAIN; 7273 goto out; 7274 } 7275 7276 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7277 if (rc) 7278 goto out; 7279 7280 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7281 if (!smid) { 7282 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7283 rc = -EAGAIN; 7284 goto out; 7285 } 7286 7287 rc = 0; 7288 ioc->base_cmds.status = MPT3_CMD_PENDING; 7289 request = mpt3sas_base_get_msg_frame(ioc, smid); 7290 ioc->base_cmds.smid = smid; 7291 memset(request, 0, ioc->request_sz); 7292 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 7293 init_completion(&ioc->base_cmds.done); 7294 ioc->put_smid_default(ioc, smid); 7295 wait_for_completion_timeout(&ioc->base_cmds.done, 7296 msecs_to_jiffies(10000)); 7297 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7298 mpt3sas_check_cmd_timeout(ioc, 7299 ioc->base_cmds.status, mpi_request, 7300 sizeof(Mpi2SepRequest_t)/4, issue_reset); 7301 goto issue_host_reset; 7302 } 7303 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7304 memcpy(mpi_reply, ioc->base_cmds.reply, 7305 sizeof(Mpi2SepReply_t)); 7306 else 7307 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 7308 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7309 goto out; 7310 7311 issue_host_reset: 7312 if (issue_reset) 7313 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7314 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7315 rc = -EFAULT; 7316 out: 7317 mutex_unlock(&ioc->base_cmds.mutex); 7318 return rc; 7319 } 7320 7321 /** 7322 * _base_get_port_facts - obtain port facts reply and save in ioc 7323 * @ioc: per adapter object 7324 * @port: ? 7325 * 7326 * Return: 0 for success, non-zero for failure. 7327 */ 7328 static int 7329 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 7330 { 7331 Mpi2PortFactsRequest_t mpi_request; 7332 Mpi2PortFactsReply_t mpi_reply; 7333 struct mpt3sas_port_facts *pfacts; 7334 int mpi_reply_sz, mpi_request_sz, r; 7335 7336 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7337 7338 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 7339 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 7340 memset(&mpi_request, 0, mpi_request_sz); 7341 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 7342 mpi_request.PortNumber = port; 7343 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7344 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7345 7346 if (r != 0) { 7347 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7348 return r; 7349 } 7350 7351 pfacts = &ioc->pfacts[port]; 7352 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 7353 pfacts->PortNumber = mpi_reply.PortNumber; 7354 pfacts->VP_ID = mpi_reply.VP_ID; 7355 pfacts->VF_ID = mpi_reply.VF_ID; 7356 pfacts->MaxPostedCmdBuffers = 7357 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 7358 7359 return 0; 7360 } 7361 7362 /** 7363 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 7364 * @ioc: per adapter object 7365 * @timeout: 7366 * 7367 * Return: 0 for success, non-zero for failure. 7368 */ 7369 static int 7370 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 7371 { 7372 u32 ioc_state; 7373 int rc; 7374 7375 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7376 7377 if (ioc->pci_error_recovery) { 7378 dfailprintk(ioc, 7379 ioc_info(ioc, "%s: host in pci error recovery\n", 7380 __func__)); 7381 return -EFAULT; 7382 } 7383 7384 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7385 dhsprintk(ioc, 7386 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7387 __func__, ioc_state)); 7388 7389 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 7390 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7391 return 0; 7392 7393 if (ioc_state & MPI2_DOORBELL_USED) { 7394 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 7395 goto issue_diag_reset; 7396 } 7397 7398 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7399 mpt3sas_print_fault_code(ioc, ioc_state & 7400 MPI2_DOORBELL_DATA_MASK); 7401 goto issue_diag_reset; 7402 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 7403 MPI2_IOC_STATE_COREDUMP) { 7404 ioc_info(ioc, 7405 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 7406 __func__, ioc_state); 7407 return -EFAULT; 7408 } 7409 7410 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 7411 if (ioc_state) { 7412 dfailprintk(ioc, 7413 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7414 __func__, ioc_state)); 7415 return -EFAULT; 7416 } 7417 7418 return 0; 7419 7420 issue_diag_reset: 7421 rc = _base_diag_reset(ioc); 7422 return rc; 7423 } 7424 7425 /** 7426 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 7427 * @ioc: per adapter object 7428 * 7429 * Return: 0 for success, non-zero for failure. 7430 */ 7431 static int 7432 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 7433 { 7434 Mpi2IOCFactsRequest_t mpi_request; 7435 Mpi2IOCFactsReply_t mpi_reply; 7436 struct mpt3sas_facts *facts; 7437 int mpi_reply_sz, mpi_request_sz, r; 7438 7439 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7440 7441 r = _base_wait_for_iocstate(ioc, 10); 7442 if (r) { 7443 dfailprintk(ioc, 7444 ioc_info(ioc, "%s: failed getting to correct state\n", 7445 __func__)); 7446 return r; 7447 } 7448 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 7449 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 7450 memset(&mpi_request, 0, mpi_request_sz); 7451 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 7452 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7453 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7454 7455 if (r != 0) { 7456 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7457 return r; 7458 } 7459 7460 facts = &ioc->facts; 7461 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7462 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7463 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7464 facts->VP_ID = mpi_reply.VP_ID; 7465 facts->VF_ID = mpi_reply.VF_ID; 7466 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7467 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7468 facts->WhoInit = mpi_reply.WhoInit; 7469 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7470 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7471 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7472 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7473 ioc->combined_reply_queue = 0; 7474 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7475 facts->MaxReplyDescriptorPostQueueDepth = 7476 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7477 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7478 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7479 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7480 ioc->ir_firmware = 1; 7481 if ((facts->IOCCapabilities & 7482 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7483 ioc->rdpq_array_capable = 1; 7484 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7485 && ioc->is_aero_ioc) 7486 ioc->atomic_desc_capable = 1; 7487 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7488 facts->IOCRequestFrameSize = 7489 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7490 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7491 facts->IOCMaxChainSegmentSize = 7492 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7493 } 7494 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7495 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7496 ioc->shost->max_id = -1; 7497 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7498 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7499 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7500 facts->HighPriorityCredit = 7501 le16_to_cpu(mpi_reply.HighPriorityCredit); 7502 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7503 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7504 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7505 7506 /* 7507 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7508 */ 7509 ioc->page_size = 1 << facts->CurrentHostPageSize; 7510 if (ioc->page_size == 1) { 7511 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7512 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7513 } 7514 dinitprintk(ioc, 7515 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7516 facts->CurrentHostPageSize)); 7517 7518 dinitprintk(ioc, 7519 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7520 facts->RequestCredit, facts->MaxChainDepth)); 7521 dinitprintk(ioc, 7522 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7523 facts->IOCRequestFrameSize * 4, 7524 facts->ReplyFrameSize * 4)); 7525 return 0; 7526 } 7527 7528 /** 7529 * _base_send_ioc_init - send ioc_init to firmware 7530 * @ioc: per adapter object 7531 * 7532 * Return: 0 for success, non-zero for failure. 7533 */ 7534 static int 7535 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7536 { 7537 Mpi2IOCInitRequest_t mpi_request; 7538 Mpi2IOCInitReply_t mpi_reply; 7539 int i, r = 0; 7540 ktime_t current_time; 7541 u16 ioc_status; 7542 u32 reply_post_free_array_sz = 0; 7543 7544 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7545 7546 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7547 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7548 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7549 mpi_request.VF_ID = 0; /* TODO */ 7550 mpi_request.VP_ID = 0; 7551 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7552 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7553 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7554 7555 if (_base_is_controller_msix_enabled(ioc)) 7556 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7557 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7558 mpi_request.ReplyDescriptorPostQueueDepth = 7559 cpu_to_le16(ioc->reply_post_queue_depth); 7560 mpi_request.ReplyFreeQueueDepth = 7561 cpu_to_le16(ioc->reply_free_queue_depth); 7562 7563 mpi_request.SenseBufferAddressHigh = 7564 cpu_to_le32((u64)ioc->sense_dma >> 32); 7565 mpi_request.SystemReplyAddressHigh = 7566 cpu_to_le32((u64)ioc->reply_dma >> 32); 7567 mpi_request.SystemRequestFrameBaseAddress = 7568 cpu_to_le64((u64)ioc->request_dma); 7569 mpi_request.ReplyFreeQueueAddress = 7570 cpu_to_le64((u64)ioc->reply_free_dma); 7571 7572 if (ioc->rdpq_array_enable) { 7573 reply_post_free_array_sz = ioc->reply_queue_count * 7574 sizeof(Mpi2IOCInitRDPQArrayEntry); 7575 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7576 for (i = 0; i < ioc->reply_queue_count; i++) 7577 ioc->reply_post_free_array[i].RDPQBaseAddress = 7578 cpu_to_le64( 7579 (u64)ioc->reply_post[i].reply_post_free_dma); 7580 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7581 mpi_request.ReplyDescriptorPostQueueAddress = 7582 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7583 } else { 7584 mpi_request.ReplyDescriptorPostQueueAddress = 7585 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7586 } 7587 7588 /* 7589 * Set the flag to enable CoreDump state feature in IOC firmware. 7590 */ 7591 mpi_request.ConfigurationFlags |= 7592 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7593 7594 /* This time stamp specifies number of milliseconds 7595 * since epoch ~ midnight January 1, 1970. 7596 */ 7597 current_time = ktime_get_real(); 7598 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7599 7600 if (ioc->logging_level & MPT_DEBUG_INIT) { 7601 __le32 *mfp; 7602 int i; 7603 7604 mfp = (__le32 *)&mpi_request; 7605 ioc_info(ioc, "\toffset:data\n"); 7606 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7607 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7608 le32_to_cpu(mfp[i])); 7609 } 7610 7611 r = _base_handshake_req_reply_wait(ioc, 7612 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7613 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7614 7615 if (r != 0) { 7616 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7617 return r; 7618 } 7619 7620 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7621 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7622 mpi_reply.IOCLogInfo) { 7623 ioc_err(ioc, "%s: failed\n", __func__); 7624 r = -EIO; 7625 } 7626 7627 /* Reset TimeSync Counter*/ 7628 ioc->timestamp_update_count = 0; 7629 return r; 7630 } 7631 7632 /** 7633 * mpt3sas_port_enable_done - command completion routine for port enable 7634 * @ioc: per adapter object 7635 * @smid: system request message index 7636 * @msix_index: MSIX table index supplied by the OS 7637 * @reply: reply message frame(lower 32bit addr) 7638 * 7639 * Return: 1 meaning mf should be freed from _base_interrupt 7640 * 0 means the mf is freed from this function. 7641 */ 7642 u8 7643 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7644 u32 reply) 7645 { 7646 MPI2DefaultReply_t *mpi_reply; 7647 u16 ioc_status; 7648 7649 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7650 return 1; 7651 7652 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7653 if (!mpi_reply) 7654 return 1; 7655 7656 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7657 return 1; 7658 7659 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7660 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7661 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7662 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7663 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7664 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7665 ioc->port_enable_failed = 1; 7666 7667 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7668 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7669 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7670 mpt3sas_port_enable_complete(ioc); 7671 return 1; 7672 } else { 7673 ioc->start_scan_failed = ioc_status; 7674 ioc->start_scan = 0; 7675 return 1; 7676 } 7677 } 7678 complete(&ioc->port_enable_cmds.done); 7679 return 1; 7680 } 7681 7682 /** 7683 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7684 * @ioc: per adapter object 7685 * 7686 * Return: 0 for success, non-zero for failure. 7687 */ 7688 static int 7689 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7690 { 7691 Mpi2PortEnableRequest_t *mpi_request; 7692 Mpi2PortEnableReply_t *mpi_reply; 7693 int r = 0; 7694 u16 smid; 7695 u16 ioc_status; 7696 7697 ioc_info(ioc, "sending port enable !!\n"); 7698 7699 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7700 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7701 return -EAGAIN; 7702 } 7703 7704 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7705 if (!smid) { 7706 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7707 return -EAGAIN; 7708 } 7709 7710 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7711 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7712 ioc->port_enable_cmds.smid = smid; 7713 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7714 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7715 7716 init_completion(&ioc->port_enable_cmds.done); 7717 ioc->put_smid_default(ioc, smid); 7718 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7719 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7720 ioc_err(ioc, "%s: timeout\n", __func__); 7721 _debug_dump_mf(mpi_request, 7722 sizeof(Mpi2PortEnableRequest_t)/4); 7723 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7724 r = -EFAULT; 7725 else 7726 r = -ETIME; 7727 goto out; 7728 } 7729 7730 mpi_reply = ioc->port_enable_cmds.reply; 7731 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7732 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7733 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7734 __func__, ioc_status); 7735 r = -EFAULT; 7736 goto out; 7737 } 7738 7739 out: 7740 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7741 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7742 return r; 7743 } 7744 7745 /** 7746 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7747 * @ioc: per adapter object 7748 * 7749 * Return: 0 for success, non-zero for failure. 7750 */ 7751 int 7752 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7753 { 7754 Mpi2PortEnableRequest_t *mpi_request; 7755 u16 smid; 7756 7757 ioc_info(ioc, "sending port enable !!\n"); 7758 7759 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7760 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7761 return -EAGAIN; 7762 } 7763 7764 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7765 if (!smid) { 7766 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7767 return -EAGAIN; 7768 } 7769 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7770 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7771 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7772 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7773 ioc->port_enable_cmds.smid = smid; 7774 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7775 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7776 7777 ioc->put_smid_default(ioc, smid); 7778 return 0; 7779 } 7780 7781 /** 7782 * _base_determine_wait_on_discovery - desposition 7783 * @ioc: per adapter object 7784 * 7785 * Decide whether to wait on discovery to complete. Used to either 7786 * locate boot device, or report volumes ahead of physical devices. 7787 * 7788 * Return: 1 for wait, 0 for don't wait. 7789 */ 7790 static int 7791 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7792 { 7793 /* We wait for discovery to complete if IR firmware is loaded. 7794 * The sas topology events arrive before PD events, so we need time to 7795 * turn on the bit in ioc->pd_handles to indicate PD 7796 * Also, it maybe required to report Volumes ahead of physical 7797 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7798 */ 7799 if (ioc->ir_firmware) 7800 return 1; 7801 7802 /* if no Bios, then we don't need to wait */ 7803 if (!ioc->bios_pg3.BiosVersion) 7804 return 0; 7805 7806 /* Bios is present, then we drop down here. 7807 * 7808 * If there any entries in the Bios Page 2, then we wait 7809 * for discovery to complete. 7810 */ 7811 7812 /* Current Boot Device */ 7813 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7814 MPI2_BIOSPAGE2_FORM_MASK) == 7815 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7816 /* Request Boot Device */ 7817 (ioc->bios_pg2.ReqBootDeviceForm & 7818 MPI2_BIOSPAGE2_FORM_MASK) == 7819 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7820 /* Alternate Request Boot Device */ 7821 (ioc->bios_pg2.ReqAltBootDeviceForm & 7822 MPI2_BIOSPAGE2_FORM_MASK) == 7823 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7824 return 0; 7825 7826 return 1; 7827 } 7828 7829 /** 7830 * _base_unmask_events - turn on notification for this event 7831 * @ioc: per adapter object 7832 * @event: firmware event 7833 * 7834 * The mask is stored in ioc->event_masks. 7835 */ 7836 static void 7837 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7838 { 7839 u32 desired_event; 7840 7841 if (event >= 128) 7842 return; 7843 7844 desired_event = (1 << (event % 32)); 7845 7846 if (event < 32) 7847 ioc->event_masks[0] &= ~desired_event; 7848 else if (event < 64) 7849 ioc->event_masks[1] &= ~desired_event; 7850 else if (event < 96) 7851 ioc->event_masks[2] &= ~desired_event; 7852 else if (event < 128) 7853 ioc->event_masks[3] &= ~desired_event; 7854 } 7855 7856 /** 7857 * _base_event_notification - send event notification 7858 * @ioc: per adapter object 7859 * 7860 * Return: 0 for success, non-zero for failure. 7861 */ 7862 static int 7863 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7864 { 7865 Mpi2EventNotificationRequest_t *mpi_request; 7866 u16 smid; 7867 int r = 0; 7868 int i, issue_diag_reset = 0; 7869 7870 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7871 7872 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7873 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7874 return -EAGAIN; 7875 } 7876 7877 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7878 if (!smid) { 7879 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7880 return -EAGAIN; 7881 } 7882 ioc->base_cmds.status = MPT3_CMD_PENDING; 7883 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7884 ioc->base_cmds.smid = smid; 7885 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7886 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7887 mpi_request->VF_ID = 0; /* TODO */ 7888 mpi_request->VP_ID = 0; 7889 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7890 mpi_request->EventMasks[i] = 7891 cpu_to_le32(ioc->event_masks[i]); 7892 init_completion(&ioc->base_cmds.done); 7893 ioc->put_smid_default(ioc, smid); 7894 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7895 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7896 ioc_err(ioc, "%s: timeout\n", __func__); 7897 _debug_dump_mf(mpi_request, 7898 sizeof(Mpi2EventNotificationRequest_t)/4); 7899 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7900 r = -EFAULT; 7901 else 7902 issue_diag_reset = 1; 7903 7904 } else 7905 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7906 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7907 7908 if (issue_diag_reset) { 7909 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7910 return -EFAULT; 7911 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7912 return -EFAULT; 7913 r = -EAGAIN; 7914 } 7915 return r; 7916 } 7917 7918 /** 7919 * mpt3sas_base_validate_event_type - validating event types 7920 * @ioc: per adapter object 7921 * @event_type: firmware event 7922 * 7923 * This will turn on firmware event notification when application 7924 * ask for that event. We don't mask events that are already enabled. 7925 */ 7926 void 7927 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7928 { 7929 int i, j; 7930 u32 event_mask, desired_event; 7931 u8 send_update_to_fw; 7932 7933 for (i = 0, send_update_to_fw = 0; i < 7934 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7935 event_mask = ~event_type[i]; 7936 desired_event = 1; 7937 for (j = 0; j < 32; j++) { 7938 if (!(event_mask & desired_event) && 7939 (ioc->event_masks[i] & desired_event)) { 7940 ioc->event_masks[i] &= ~desired_event; 7941 send_update_to_fw = 1; 7942 } 7943 desired_event = (desired_event << 1); 7944 } 7945 } 7946 7947 if (!send_update_to_fw) 7948 return; 7949 7950 mutex_lock(&ioc->base_cmds.mutex); 7951 _base_event_notification(ioc); 7952 mutex_unlock(&ioc->base_cmds.mutex); 7953 } 7954 7955 /** 7956 * mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes 7957 * @ioc: per adapter object 7958 * @host_diagnostic: host diagnostic register content 7959 * 7960 * Return: 0 for success, non-zero for failure. 7961 */ 7962 7963 int 7964 mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc, 7965 u32 *host_diagnostic) 7966 { 7967 7968 u32 count; 7969 *host_diagnostic = 0; 7970 count = 0; 7971 7972 do { 7973 /* Write magic sequence to WriteSequence register 7974 * Loop until in diagnostic mode 7975 */ 7976 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7977 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7978 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7979 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7980 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7981 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7982 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7983 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7984 7985 /* wait 100 msec */ 7986 msleep(100); 7987 7988 if (count++ > 20) { 7989 ioc_info(ioc, 7990 "Stop writing magic sequence after 20 retries\n"); 7991 _base_dump_reg_set(ioc); 7992 return -EFAULT; 7993 } 7994 7995 *host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic); 7996 drsprintk(ioc, 7997 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7998 count, *host_diagnostic)); 7999 8000 } while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 8001 return 0; 8002 } 8003 8004 /** 8005 * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes 8006 * @ioc: per adapter object 8007 */ 8008 8009 void 8010 mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc) 8011 { 8012 drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n")); 8013 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 8014 } 8015 8016 /** 8017 * _base_diag_reset - the "big hammer" start of day reset 8018 * @ioc: per adapter object 8019 * 8020 * Return: 0 for success, non-zero for failure. 8021 */ 8022 static int 8023 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 8024 { 8025 u32 host_diagnostic; 8026 u32 ioc_state; 8027 u32 count; 8028 u32 hcb_size; 8029 8030 ioc_info(ioc, "sending diag reset !!\n"); 8031 8032 pci_cfg_access_lock(ioc->pdev); 8033 8034 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 8035 8036 mutex_lock(&ioc->hostdiag_unlock_mutex); 8037 if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, &host_diagnostic)) 8038 goto unlock; 8039 8040 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 8041 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 8042 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 8043 &ioc->chip->HostDiagnostic); 8044 8045 /* This delay allows the chip PCIe hardware time to finish reset tasks */ 8046 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 8047 8048 /* Approximately 300 second max wait */ 8049 for (count = 0; count < (300000000 / 8050 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 8051 8052 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic); 8053 8054 if (host_diagnostic == 0xFFFFFFFF) { 8055 ioc_info(ioc, 8056 "Invalid host diagnostic register value\n"); 8057 _base_dump_reg_set(ioc); 8058 goto unlock; 8059 } 8060 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 8061 break; 8062 8063 /* Wait to pass the second read delay window */ 8064 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000); 8065 } 8066 8067 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 8068 8069 drsprintk(ioc, 8070 ioc_info(ioc, "restart the adapter assuming the\n" 8071 "HCB Address points to good F/W\n")); 8072 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 8073 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 8074 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 8075 8076 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 8077 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 8078 &ioc->chip->HCBSize); 8079 } 8080 8081 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 8082 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 8083 &ioc->chip->HostDiagnostic); 8084 8085 mpt3sas_base_lock_host_diagnostic(ioc); 8086 mutex_unlock(&ioc->hostdiag_unlock_mutex); 8087 8088 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 8089 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 8090 if (ioc_state) { 8091 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8092 __func__, ioc_state); 8093 _base_dump_reg_set(ioc); 8094 goto fail; 8095 } 8096 8097 pci_cfg_access_unlock(ioc->pdev); 8098 ioc_info(ioc, "diag reset: SUCCESS\n"); 8099 return 0; 8100 8101 unlock: 8102 mutex_unlock(&ioc->hostdiag_unlock_mutex); 8103 8104 fail: 8105 pci_cfg_access_unlock(ioc->pdev); 8106 ioc_err(ioc, "diag reset: FAILED\n"); 8107 return -EFAULT; 8108 } 8109 8110 /** 8111 * mpt3sas_base_make_ioc_ready - put controller in READY state 8112 * @ioc: per adapter object 8113 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8114 * 8115 * Return: 0 for success, non-zero for failure. 8116 */ 8117 int 8118 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 8119 { 8120 u32 ioc_state; 8121 int rc; 8122 int count; 8123 8124 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8125 8126 if (ioc->pci_error_recovery) 8127 return 0; 8128 8129 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8130 dhsprintk(ioc, 8131 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 8132 __func__, ioc_state)); 8133 8134 /* if in RESET state, it should move to READY state shortly */ 8135 count = 0; 8136 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 8137 while ((ioc_state & MPI2_IOC_STATE_MASK) != 8138 MPI2_IOC_STATE_READY) { 8139 if (count++ == 10) { 8140 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8141 __func__, ioc_state); 8142 return -EFAULT; 8143 } 8144 ssleep(1); 8145 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8146 } 8147 } 8148 8149 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 8150 return 0; 8151 8152 if (ioc_state & MPI2_DOORBELL_USED) { 8153 ioc_info(ioc, "unexpected doorbell active!\n"); 8154 goto issue_diag_reset; 8155 } 8156 8157 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 8158 mpt3sas_print_fault_code(ioc, ioc_state & 8159 MPI2_DOORBELL_DATA_MASK); 8160 goto issue_diag_reset; 8161 } 8162 8163 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 8164 /* 8165 * if host reset is invoked while watch dog thread is waiting 8166 * for IOC state to be changed to Fault state then driver has 8167 * to wait here for CoreDump state to clear otherwise reset 8168 * will be issued to the FW and FW move the IOC state to 8169 * reset state without copying the FW logs to coredump region. 8170 */ 8171 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 8172 mpt3sas_print_coredump_info(ioc, ioc_state & 8173 MPI2_DOORBELL_DATA_MASK); 8174 mpt3sas_base_wait_for_coredump_completion(ioc, 8175 __func__); 8176 } 8177 goto issue_diag_reset; 8178 } 8179 8180 if (type == FORCE_BIG_HAMMER) 8181 goto issue_diag_reset; 8182 8183 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 8184 if (!(_base_send_ioc_reset(ioc, 8185 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 8186 return 0; 8187 } 8188 8189 issue_diag_reset: 8190 rc = _base_diag_reset(ioc); 8191 return rc; 8192 } 8193 8194 /** 8195 * _base_make_ioc_operational - put controller in OPERATIONAL state 8196 * @ioc: per adapter object 8197 * 8198 * Return: 0 for success, non-zero for failure. 8199 */ 8200 static int 8201 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 8202 { 8203 int r, i, index, rc; 8204 unsigned long flags; 8205 u32 reply_address; 8206 u16 smid; 8207 struct _tr_list *delayed_tr, *delayed_tr_next; 8208 struct _sc_list *delayed_sc, *delayed_sc_next; 8209 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 8210 u8 hide_flag; 8211 struct adapter_reply_queue *reply_q; 8212 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 8213 8214 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8215 8216 /* clean the delayed target reset list */ 8217 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8218 &ioc->delayed_tr_list, list) { 8219 list_del(&delayed_tr->list); 8220 kfree(delayed_tr); 8221 } 8222 8223 8224 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8225 &ioc->delayed_tr_volume_list, list) { 8226 list_del(&delayed_tr->list); 8227 kfree(delayed_tr); 8228 } 8229 8230 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 8231 &ioc->delayed_sc_list, list) { 8232 list_del(&delayed_sc->list); 8233 kfree(delayed_sc); 8234 } 8235 8236 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 8237 &ioc->delayed_event_ack_list, list) { 8238 list_del(&delayed_event_ack->list); 8239 kfree(delayed_event_ack); 8240 } 8241 8242 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 8243 8244 /* hi-priority queue */ 8245 INIT_LIST_HEAD(&ioc->hpr_free_list); 8246 smid = ioc->hi_priority_smid; 8247 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 8248 ioc->hpr_lookup[i].cb_idx = 0xFF; 8249 ioc->hpr_lookup[i].smid = smid; 8250 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 8251 &ioc->hpr_free_list); 8252 } 8253 8254 /* internal queue */ 8255 INIT_LIST_HEAD(&ioc->internal_free_list); 8256 smid = ioc->internal_smid; 8257 for (i = 0; i < ioc->internal_depth; i++, smid++) { 8258 ioc->internal_lookup[i].cb_idx = 0xFF; 8259 ioc->internal_lookup[i].smid = smid; 8260 list_add_tail(&ioc->internal_lookup[i].tracker_list, 8261 &ioc->internal_free_list); 8262 } 8263 8264 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 8265 8266 /* initialize Reply Free Queue */ 8267 for (i = 0, reply_address = (u32)ioc->reply_dma ; 8268 i < ioc->reply_free_queue_depth ; i++, reply_address += 8269 ioc->reply_sz) { 8270 ioc->reply_free[i] = cpu_to_le32(reply_address); 8271 if (ioc->is_mcpu_endpoint) 8272 _base_clone_reply_to_sys_mem(ioc, 8273 reply_address, i); 8274 } 8275 8276 /* initialize reply queues */ 8277 if (ioc->is_driver_loading) 8278 _base_assign_reply_queues(ioc); 8279 8280 /* initialize Reply Post Free Queue */ 8281 index = 0; 8282 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 8283 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8284 /* 8285 * If RDPQ is enabled, switch to the next allocation. 8286 * Otherwise advance within the contiguous region. 8287 */ 8288 if (ioc->rdpq_array_enable) { 8289 reply_q->reply_post_free = 8290 ioc->reply_post[index++].reply_post_free; 8291 } else { 8292 reply_q->reply_post_free = reply_post_free_contig; 8293 reply_post_free_contig += ioc->reply_post_queue_depth; 8294 } 8295 8296 reply_q->reply_post_host_index = 0; 8297 for (i = 0; i < ioc->reply_post_queue_depth; i++) 8298 reply_q->reply_post_free[i].Words = 8299 cpu_to_le64(ULLONG_MAX); 8300 if (!_base_is_controller_msix_enabled(ioc)) 8301 goto skip_init_reply_post_free_queue; 8302 } 8303 skip_init_reply_post_free_queue: 8304 8305 r = _base_send_ioc_init(ioc); 8306 if (r) { 8307 /* 8308 * No need to check IOC state for fault state & issue 8309 * diag reset during host reset. This check is need 8310 * only during driver load time. 8311 */ 8312 if (!ioc->is_driver_loading) 8313 return r; 8314 8315 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8316 if (rc || (_base_send_ioc_init(ioc))) 8317 return r; 8318 } 8319 8320 /* initialize reply free host index */ 8321 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 8322 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 8323 8324 /* initialize reply post host index */ 8325 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8326 if (ioc->combined_reply_queue) 8327 writel((reply_q->msix_index & 7)<< 8328 MPI2_RPHI_MSIX_INDEX_SHIFT, 8329 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 8330 else 8331 writel(reply_q->msix_index << 8332 MPI2_RPHI_MSIX_INDEX_SHIFT, 8333 &ioc->chip->ReplyPostHostIndex); 8334 8335 if (!_base_is_controller_msix_enabled(ioc)) 8336 goto skip_init_reply_post_host_index; 8337 } 8338 8339 skip_init_reply_post_host_index: 8340 8341 mpt3sas_base_unmask_interrupts(ioc); 8342 8343 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 8344 r = _base_display_fwpkg_version(ioc); 8345 if (r) 8346 return r; 8347 } 8348 8349 r = _base_static_config_pages(ioc); 8350 if (r) 8351 return r; 8352 8353 r = _base_event_notification(ioc); 8354 if (r) 8355 return r; 8356 8357 if (!ioc->shost_recovery) { 8358 8359 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 8360 == 0x80) { 8361 hide_flag = (u8) ( 8362 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 8363 MFG_PAGE10_HIDE_SSDS_MASK); 8364 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 8365 ioc->mfg_pg10_hide_flag = hide_flag; 8366 } 8367 8368 ioc->wait_for_discovery_to_complete = 8369 _base_determine_wait_on_discovery(ioc); 8370 8371 return r; /* scan_start and scan_finished support */ 8372 } 8373 8374 r = _base_send_port_enable(ioc); 8375 if (r) 8376 return r; 8377 8378 return r; 8379 } 8380 8381 /** 8382 * mpt3sas_base_free_resources - free resources controller resources 8383 * @ioc: per adapter object 8384 */ 8385 void 8386 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 8387 { 8388 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8389 8390 /* synchronizing freeing resource with pci_access_mutex lock */ 8391 mutex_lock(&ioc->pci_access_mutex); 8392 if (ioc->chip_phys && ioc->chip) { 8393 mpt3sas_base_mask_interrupts(ioc); 8394 ioc->shost_recovery = 1; 8395 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8396 ioc->shost_recovery = 0; 8397 } 8398 8399 mpt3sas_base_unmap_resources(ioc); 8400 mutex_unlock(&ioc->pci_access_mutex); 8401 return; 8402 } 8403 8404 /** 8405 * mpt3sas_base_attach - attach controller instance 8406 * @ioc: per adapter object 8407 * 8408 * Return: 0 for success, non-zero for failure. 8409 */ 8410 int 8411 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 8412 { 8413 int r, i, rc; 8414 int cpu_id, last_cpu_id = 0; 8415 8416 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8417 8418 /* setup cpu_msix_table */ 8419 ioc->cpu_count = num_online_cpus(); 8420 for_each_online_cpu(cpu_id) 8421 last_cpu_id = cpu_id; 8422 ioc->cpu_msix_table_sz = last_cpu_id + 1; 8423 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 8424 ioc->reply_queue_count = 1; 8425 if (!ioc->cpu_msix_table) { 8426 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 8427 r = -ENOMEM; 8428 goto out_free_resources; 8429 } 8430 8431 if (ioc->is_warpdrive) { 8432 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 8433 sizeof(resource_size_t *), GFP_KERNEL); 8434 if (!ioc->reply_post_host_index) { 8435 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 8436 r = -ENOMEM; 8437 goto out_free_resources; 8438 } 8439 } 8440 8441 ioc->smp_affinity_enable = smp_affinity_enable; 8442 8443 ioc->rdpq_array_enable_assigned = 0; 8444 ioc->use_32bit_dma = false; 8445 ioc->dma_mask = 64; 8446 if (ioc->is_aero_ioc) { 8447 ioc->base_readl = &_base_readl_aero; 8448 ioc->base_readl_ext_retry = &_base_readl_ext_retry; 8449 } else { 8450 ioc->base_readl = &_base_readl; 8451 ioc->base_readl_ext_retry = &_base_readl; 8452 } 8453 r = mpt3sas_base_map_resources(ioc); 8454 if (r) 8455 goto out_free_resources; 8456 8457 pci_set_drvdata(ioc->pdev, ioc->shost); 8458 r = _base_get_ioc_facts(ioc); 8459 if (r) { 8460 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8461 if (rc || (_base_get_ioc_facts(ioc))) 8462 goto out_free_resources; 8463 } 8464 8465 switch (ioc->hba_mpi_version_belonged) { 8466 case MPI2_VERSION: 8467 ioc->build_sg_scmd = &_base_build_sg_scmd; 8468 ioc->build_sg = &_base_build_sg; 8469 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 8470 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8471 break; 8472 case MPI25_VERSION: 8473 case MPI26_VERSION: 8474 /* 8475 * In SAS3.0, 8476 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 8477 * Target Status - all require the IEEE formatted scatter gather 8478 * elements. 8479 */ 8480 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 8481 ioc->build_sg = &_base_build_sg_ieee; 8482 ioc->build_nvme_prp = &_base_build_nvme_prp; 8483 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 8484 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 8485 if (ioc->high_iops_queues) 8486 ioc->get_msix_index_for_smlio = 8487 &_base_get_high_iops_msix_index; 8488 else 8489 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8490 break; 8491 } 8492 if (ioc->atomic_desc_capable) { 8493 ioc->put_smid_default = &_base_put_smid_default_atomic; 8494 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 8495 ioc->put_smid_fast_path = 8496 &_base_put_smid_fast_path_atomic; 8497 ioc->put_smid_hi_priority = 8498 &_base_put_smid_hi_priority_atomic; 8499 } else { 8500 ioc->put_smid_default = &_base_put_smid_default; 8501 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8502 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8503 if (ioc->is_mcpu_endpoint) 8504 ioc->put_smid_scsi_io = 8505 &_base_put_smid_mpi_ep_scsi_io; 8506 else 8507 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8508 } 8509 /* 8510 * These function pointers for other requests that don't 8511 * the require IEEE scatter gather elements. 8512 * 8513 * For example Configuration Pages and SAS IOUNIT Control don't. 8514 */ 8515 ioc->build_sg_mpi = &_base_build_sg; 8516 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8517 8518 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8519 if (r) 8520 goto out_free_resources; 8521 8522 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8523 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8524 if (!ioc->pfacts) { 8525 r = -ENOMEM; 8526 goto out_free_resources; 8527 } 8528 8529 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8530 r = _base_get_port_facts(ioc, i); 8531 if (r) { 8532 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8533 if (rc || (_base_get_port_facts(ioc, i))) 8534 goto out_free_resources; 8535 } 8536 } 8537 8538 r = _base_allocate_memory_pools(ioc); 8539 if (r) 8540 goto out_free_resources; 8541 8542 if (irqpoll_weight > 0) 8543 ioc->thresh_hold = irqpoll_weight; 8544 else 8545 ioc->thresh_hold = ioc->hba_queue_depth/4; 8546 8547 _base_init_irqpolls(ioc); 8548 init_waitqueue_head(&ioc->reset_wq); 8549 8550 /* allocate memory pd handle bitmask list */ 8551 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8552 if (ioc->facts.MaxDevHandle % 8) 8553 ioc->pd_handles_sz++; 8554 /* 8555 * pd_handles_sz should have, at least, the minimal room for 8556 * set_bit()/test_bit(), otherwise out-of-memory touch may occur. 8557 */ 8558 ioc->pd_handles_sz = ALIGN(ioc->pd_handles_sz, sizeof(unsigned long)); 8559 8560 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8561 GFP_KERNEL); 8562 if (!ioc->pd_handles) { 8563 r = -ENOMEM; 8564 goto out_free_resources; 8565 } 8566 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8567 GFP_KERNEL); 8568 if (!ioc->blocking_handles) { 8569 r = -ENOMEM; 8570 goto out_free_resources; 8571 } 8572 8573 /* allocate memory for pending OS device add list */ 8574 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8575 if (ioc->facts.MaxDevHandle % 8) 8576 ioc->pend_os_device_add_sz++; 8577 8578 /* 8579 * pend_os_device_add_sz should have, at least, the minimal room for 8580 * set_bit()/test_bit(), otherwise out-of-memory may occur. 8581 */ 8582 ioc->pend_os_device_add_sz = ALIGN(ioc->pend_os_device_add_sz, 8583 sizeof(unsigned long)); 8584 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8585 GFP_KERNEL); 8586 if (!ioc->pend_os_device_add) { 8587 r = -ENOMEM; 8588 goto out_free_resources; 8589 } 8590 8591 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8592 ioc->device_remove_in_progress = 8593 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8594 if (!ioc->device_remove_in_progress) { 8595 r = -ENOMEM; 8596 goto out_free_resources; 8597 } 8598 8599 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8600 8601 /* base internal command bits */ 8602 mutex_init(&ioc->base_cmds.mutex); 8603 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8604 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8605 8606 /* port_enable command bits */ 8607 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8608 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8609 8610 /* transport internal command bits */ 8611 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8612 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8613 mutex_init(&ioc->transport_cmds.mutex); 8614 8615 /* scsih internal command bits */ 8616 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8617 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8618 mutex_init(&ioc->scsih_cmds.mutex); 8619 8620 /* task management internal command bits */ 8621 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8622 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8623 mutex_init(&ioc->tm_cmds.mutex); 8624 8625 /* config page internal command bits */ 8626 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8627 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8628 mutex_init(&ioc->config_cmds.mutex); 8629 8630 /* ctl module internal command bits */ 8631 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8632 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8633 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8634 mutex_init(&ioc->ctl_cmds.mutex); 8635 8636 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8637 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8638 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8639 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8640 r = -ENOMEM; 8641 goto out_free_resources; 8642 } 8643 8644 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8645 ioc->event_masks[i] = -1; 8646 8647 /* here we enable the events we care about */ 8648 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8649 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8650 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8651 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8652 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8653 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8654 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8655 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8656 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8657 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8658 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8659 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8660 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8661 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8662 if (ioc->is_gen35_ioc) { 8663 _base_unmask_events(ioc, 8664 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8665 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8666 _base_unmask_events(ioc, 8667 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8668 } 8669 } 8670 r = _base_make_ioc_operational(ioc); 8671 if (r == -EAGAIN) { 8672 r = _base_make_ioc_operational(ioc); 8673 if (r) 8674 goto out_free_resources; 8675 } 8676 8677 /* 8678 * Copy current copy of IOCFacts in prev_fw_facts 8679 * and it will be used during online firmware upgrade. 8680 */ 8681 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8682 sizeof(struct mpt3sas_facts)); 8683 8684 ioc->non_operational_loop = 0; 8685 ioc->ioc_coredump_loop = 0; 8686 ioc->got_task_abort_from_ioctl = 0; 8687 return 0; 8688 8689 out_free_resources: 8690 8691 ioc->remove_host = 1; 8692 8693 mpt3sas_base_free_resources(ioc); 8694 _base_release_memory_pools(ioc); 8695 pci_set_drvdata(ioc->pdev, NULL); 8696 kfree(ioc->cpu_msix_table); 8697 if (ioc->is_warpdrive) 8698 kfree(ioc->reply_post_host_index); 8699 kfree(ioc->pd_handles); 8700 kfree(ioc->blocking_handles); 8701 kfree(ioc->device_remove_in_progress); 8702 kfree(ioc->pend_os_device_add); 8703 kfree(ioc->tm_cmds.reply); 8704 kfree(ioc->transport_cmds.reply); 8705 kfree(ioc->scsih_cmds.reply); 8706 kfree(ioc->config_cmds.reply); 8707 kfree(ioc->base_cmds.reply); 8708 kfree(ioc->port_enable_cmds.reply); 8709 kfree(ioc->ctl_cmds.reply); 8710 kfree(ioc->ctl_cmds.sense); 8711 kfree(ioc->pfacts); 8712 ioc->ctl_cmds.reply = NULL; 8713 ioc->base_cmds.reply = NULL; 8714 ioc->tm_cmds.reply = NULL; 8715 ioc->scsih_cmds.reply = NULL; 8716 ioc->transport_cmds.reply = NULL; 8717 ioc->config_cmds.reply = NULL; 8718 ioc->pfacts = NULL; 8719 return r; 8720 } 8721 8722 8723 /** 8724 * mpt3sas_base_detach - remove controller instance 8725 * @ioc: per adapter object 8726 */ 8727 void 8728 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8729 { 8730 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8731 8732 mpt3sas_base_stop_watchdog(ioc); 8733 mpt3sas_base_free_resources(ioc); 8734 _base_release_memory_pools(ioc); 8735 mpt3sas_free_enclosure_list(ioc); 8736 pci_set_drvdata(ioc->pdev, NULL); 8737 kfree(ioc->cpu_msix_table); 8738 if (ioc->is_warpdrive) 8739 kfree(ioc->reply_post_host_index); 8740 kfree(ioc->pd_handles); 8741 kfree(ioc->blocking_handles); 8742 kfree(ioc->device_remove_in_progress); 8743 kfree(ioc->pend_os_device_add); 8744 kfree(ioc->pfacts); 8745 kfree(ioc->ctl_cmds.reply); 8746 kfree(ioc->ctl_cmds.sense); 8747 kfree(ioc->base_cmds.reply); 8748 kfree(ioc->port_enable_cmds.reply); 8749 kfree(ioc->tm_cmds.reply); 8750 kfree(ioc->transport_cmds.reply); 8751 kfree(ioc->scsih_cmds.reply); 8752 kfree(ioc->config_cmds.reply); 8753 } 8754 8755 /** 8756 * _base_pre_reset_handler - pre reset handler 8757 * @ioc: per adapter object 8758 */ 8759 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8760 { 8761 mpt3sas_scsih_pre_reset_handler(ioc); 8762 mpt3sas_ctl_pre_reset_handler(ioc); 8763 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8764 } 8765 8766 /** 8767 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8768 * @ioc: per adapter object 8769 */ 8770 static void 8771 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8772 { 8773 dtmprintk(ioc, 8774 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8775 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8776 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8777 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8778 complete(&ioc->transport_cmds.done); 8779 } 8780 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8781 ioc->base_cmds.status |= MPT3_CMD_RESET; 8782 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8783 complete(&ioc->base_cmds.done); 8784 } 8785 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8786 ioc->port_enable_failed = 1; 8787 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8788 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8789 if (ioc->is_driver_loading) { 8790 ioc->start_scan_failed = 8791 MPI2_IOCSTATUS_INTERNAL_ERROR; 8792 ioc->start_scan = 0; 8793 } else { 8794 complete(&ioc->port_enable_cmds.done); 8795 } 8796 } 8797 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8798 ioc->config_cmds.status |= MPT3_CMD_RESET; 8799 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8800 ioc->config_cmds.smid = USHRT_MAX; 8801 complete(&ioc->config_cmds.done); 8802 } 8803 } 8804 8805 /** 8806 * _base_clear_outstanding_commands - clear all outstanding commands 8807 * @ioc: per adapter object 8808 */ 8809 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8810 { 8811 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8812 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8813 _base_clear_outstanding_mpt_commands(ioc); 8814 } 8815 8816 /** 8817 * _base_reset_done_handler - reset done handler 8818 * @ioc: per adapter object 8819 */ 8820 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8821 { 8822 mpt3sas_scsih_reset_done_handler(ioc); 8823 mpt3sas_ctl_reset_done_handler(ioc); 8824 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8825 } 8826 8827 /** 8828 * mpt3sas_wait_for_commands_to_complete - reset controller 8829 * @ioc: Pointer to MPT_ADAPTER structure 8830 * 8831 * This function is waiting 10s for all pending commands to complete 8832 * prior to putting controller in reset. 8833 */ 8834 void 8835 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8836 { 8837 u32 ioc_state; 8838 8839 ioc->pending_io_count = 0; 8840 8841 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8842 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8843 return; 8844 8845 /* pending command count */ 8846 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8847 8848 if (!ioc->pending_io_count) 8849 return; 8850 8851 /* wait for pending commands to complete */ 8852 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8853 } 8854 8855 /** 8856 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8857 * attributes during online firmware upgrade and update the corresponding 8858 * IOC variables accordingly. 8859 * 8860 * @ioc: Pointer to MPT_ADAPTER structure 8861 */ 8862 static int 8863 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8864 { 8865 u16 pd_handles_sz; 8866 void *pd_handles = NULL, *blocking_handles = NULL; 8867 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8868 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8869 8870 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8871 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8872 if (ioc->facts.MaxDevHandle % 8) 8873 pd_handles_sz++; 8874 8875 /* 8876 * pd_handles should have, at least, the minimal room for 8877 * set_bit()/test_bit(), otherwise out-of-memory touch may 8878 * occur. 8879 */ 8880 pd_handles_sz = ALIGN(pd_handles_sz, sizeof(unsigned long)); 8881 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8882 GFP_KERNEL); 8883 if (!pd_handles) { 8884 ioc_info(ioc, 8885 "Unable to allocate the memory for pd_handles of sz: %d\n", 8886 pd_handles_sz); 8887 return -ENOMEM; 8888 } 8889 memset(pd_handles + ioc->pd_handles_sz, 0, 8890 (pd_handles_sz - ioc->pd_handles_sz)); 8891 ioc->pd_handles = pd_handles; 8892 8893 blocking_handles = krealloc(ioc->blocking_handles, 8894 pd_handles_sz, GFP_KERNEL); 8895 if (!blocking_handles) { 8896 ioc_info(ioc, 8897 "Unable to allocate the memory for " 8898 "blocking_handles of sz: %d\n", 8899 pd_handles_sz); 8900 return -ENOMEM; 8901 } 8902 memset(blocking_handles + ioc->pd_handles_sz, 0, 8903 (pd_handles_sz - ioc->pd_handles_sz)); 8904 ioc->blocking_handles = blocking_handles; 8905 ioc->pd_handles_sz = pd_handles_sz; 8906 8907 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8908 pd_handles_sz, GFP_KERNEL); 8909 if (!pend_os_device_add) { 8910 ioc_info(ioc, 8911 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8912 pd_handles_sz); 8913 return -ENOMEM; 8914 } 8915 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8916 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8917 ioc->pend_os_device_add = pend_os_device_add; 8918 ioc->pend_os_device_add_sz = pd_handles_sz; 8919 8920 device_remove_in_progress = krealloc( 8921 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8922 if (!device_remove_in_progress) { 8923 ioc_info(ioc, 8924 "Unable to allocate the memory for device_remove_in_progress of sz: %d\n", 8925 pd_handles_sz); 8926 return -ENOMEM; 8927 } 8928 memset(device_remove_in_progress + 8929 ioc->device_remove_in_progress_sz, 0, 8930 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8931 ioc->device_remove_in_progress = device_remove_in_progress; 8932 ioc->device_remove_in_progress_sz = pd_handles_sz; 8933 } 8934 8935 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8936 return 0; 8937 } 8938 8939 /** 8940 * mpt3sas_base_hard_reset_handler - reset controller 8941 * @ioc: Pointer to MPT_ADAPTER structure 8942 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8943 * 8944 * Return: 0 for success, non-zero for failure. 8945 */ 8946 int 8947 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8948 enum reset_type type) 8949 { 8950 int r; 8951 unsigned long flags; 8952 u32 ioc_state; 8953 u8 is_fault = 0, is_trigger = 0; 8954 8955 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8956 8957 if (ioc->pci_error_recovery) { 8958 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8959 r = 0; 8960 goto out_unlocked; 8961 } 8962 8963 if (mpt3sas_fwfault_debug) 8964 mpt3sas_halt_firmware(ioc); 8965 8966 /* wait for an active reset in progress to complete */ 8967 mutex_lock(&ioc->reset_in_progress_mutex); 8968 8969 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8970 ioc->shost_recovery = 1; 8971 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8972 8973 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8974 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8975 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8976 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8977 is_trigger = 1; 8978 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8979 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8980 (ioc_state & MPI2_IOC_STATE_MASK) == 8981 MPI2_IOC_STATE_COREDUMP) { 8982 is_fault = 1; 8983 ioc->htb_rel.trigger_info_dwords[1] = 8984 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8985 } 8986 } 8987 _base_pre_reset_handler(ioc); 8988 mpt3sas_wait_for_commands_to_complete(ioc); 8989 mpt3sas_base_mask_interrupts(ioc); 8990 mpt3sas_base_pause_mq_polling(ioc); 8991 r = mpt3sas_base_make_ioc_ready(ioc, type); 8992 if (r) 8993 goto out; 8994 _base_clear_outstanding_commands(ioc); 8995 8996 /* If this hard reset is called while port enable is active, then 8997 * there is no reason to call make_ioc_operational 8998 */ 8999 if (ioc->is_driver_loading && ioc->port_enable_failed) { 9000 ioc->remove_host = 1; 9001 r = -EFAULT; 9002 goto out; 9003 } 9004 r = _base_get_ioc_facts(ioc); 9005 if (r) 9006 goto out; 9007 9008 r = _base_check_ioc_facts_changes(ioc); 9009 if (r) { 9010 ioc_info(ioc, 9011 "Some of the parameters got changed in this new firmware" 9012 " image and it requires system reboot\n"); 9013 goto out; 9014 } 9015 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 9016 panic("%s: Issue occurred with flashing controller firmware." 9017 "Please reboot the system and ensure that the correct" 9018 " firmware version is running\n", ioc->name); 9019 9020 r = _base_make_ioc_operational(ioc); 9021 if (!r) 9022 _base_reset_done_handler(ioc); 9023 9024 out: 9025 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 9026 9027 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 9028 ioc->shost_recovery = 0; 9029 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 9030 ioc->ioc_reset_count++; 9031 mutex_unlock(&ioc->reset_in_progress_mutex); 9032 mpt3sas_base_resume_mq_polling(ioc); 9033 9034 out_unlocked: 9035 if ((r == 0) && is_trigger) { 9036 if (is_fault) 9037 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 9038 else 9039 mpt3sas_trigger_master(ioc, 9040 MASTER_TRIGGER_ADAPTER_RESET); 9041 } 9042 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 9043 return r; 9044 } 9045