1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 133 134 /** 135 * mpt3sas_base_check_cmd_timeout - Function 136 * to check timeout and command termination due 137 * to Host reset. 138 * 139 * @ioc: per adapter object. 140 * @status: Status of issued command. 141 * @mpi_request:mf request pointer. 142 * @sz: size of buffer. 143 * 144 * @Returns - 1/0 Reset to be done or Not 145 */ 146 u8 147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 148 u8 status, void *mpi_request, int sz) 149 { 150 u8 issue_reset = 0; 151 152 if (!(status & MPT3_CMD_RESET)) 153 issue_reset = 1; 154 155 ioc_err(ioc, "Command %s\n", 156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 157 _debug_dump_mf(mpi_request, sz); 158 159 return issue_reset; 160 } 161 162 /** 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 164 * @val: ? 165 * @kp: ? 166 * 167 * Return: ? 168 */ 169 static int 170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 171 { 172 int ret = param_set_int(val, kp); 173 struct MPT3SAS_ADAPTER *ioc; 174 175 if (ret) 176 return ret; 177 178 /* global ioc spinlock to protect controller list on list operations */ 179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 180 spin_lock(&gioc_lock); 181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 182 ioc->fwfault_debug = mpt3sas_fwfault_debug; 183 spin_unlock(&gioc_lock); 184 return 0; 185 } 186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 187 param_get_int, &mpt3sas_fwfault_debug, 0644); 188 189 /** 190 * _base_readl_aero - retry readl for max three times. 191 * @addr: MPT Fusion system interface register address 192 * 193 * Retry the readl() for max three times if it gets zero value 194 * while reading the system interface register. 195 */ 196 static inline u32 197 _base_readl_aero(const volatile void __iomem *addr) 198 { 199 u32 i = 0, ret_val; 200 201 do { 202 ret_val = readl(addr); 203 i++; 204 } while (ret_val == 0 && i < 3); 205 206 return ret_val; 207 } 208 209 static inline u32 210 _base_readl(const volatile void __iomem *addr) 211 { 212 return readl(addr); 213 } 214 215 /** 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 217 * in BAR0 space. 218 * 219 * @ioc: per adapter object 220 * @reply: reply message frame(lower 32bit addr) 221 * @index: System request message index. 222 */ 223 static void 224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 225 u32 index) 226 { 227 /* 228 * 256 is offset within sys register. 229 * 256 offset MPI frame starts. Max MPI frame supported is 32. 230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 231 */ 232 u16 cmd_credit = ioc->facts.RequestCredit + 1; 233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 234 MPI_FRAME_START_OFFSET + 235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 236 237 writel(reply, reply_free_iomem); 238 } 239 240 /** 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 242 * to system/BAR0 region. 243 * 244 * @dst_iomem: Pointer to the destination location in BAR0 space. 245 * @src: Pointer to the Source data. 246 * @size: Size of data to be copied. 247 */ 248 static void 249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 250 { 251 int i; 252 u32 *src_virt_mem = (u32 *)src; 253 254 for (i = 0; i < size/4; i++) 255 writel((u32)src_virt_mem[i], 256 (void __iomem *)dst_iomem + (i * 4)); 257 } 258 259 /** 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 261 * 262 * @dst_iomem: Pointer to the destination location in BAR0 space. 263 * @src: Pointer to the Source data. 264 * @size: Size of data to be copied. 265 */ 266 static void 267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 268 { 269 int i; 270 u32 *src_virt_mem = (u32 *)(src); 271 272 for (i = 0; i < size/4; i++) 273 writel((u32)src_virt_mem[i], 274 (void __iomem *)dst_iomem + (i * 4)); 275 } 276 277 /** 278 * _base_get_chain - Calculates and Returns virtual chain address 279 * for the provided smid in BAR0 space. 280 * 281 * @ioc: per adapter object 282 * @smid: system request message index 283 * @sge_chain_count: Scatter gather chain count. 284 * 285 * Return: the chain address. 286 */ 287 static inline void __iomem* 288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 289 u8 sge_chain_count) 290 { 291 void __iomem *base_chain, *chain_virt; 292 u16 cmd_credit = ioc->facts.RequestCredit + 1; 293 294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 295 (cmd_credit * ioc->request_sz) + 296 REPLY_FREE_POOL_SIZE; 297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 298 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 299 return chain_virt; 300 } 301 302 /** 303 * _base_get_chain_phys - Calculates and Returns physical address 304 * in BAR0 for scatter gather chains, for 305 * the provided smid. 306 * 307 * @ioc: per adapter object 308 * @smid: system request message index 309 * @sge_chain_count: Scatter gather chain count. 310 * 311 * Return: Physical chain address. 312 */ 313 static inline phys_addr_t 314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 315 u8 sge_chain_count) 316 { 317 phys_addr_t base_chain_phys, chain_phys; 318 u16 cmd_credit = ioc->facts.RequestCredit + 1; 319 320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 321 (cmd_credit * ioc->request_sz) + 322 REPLY_FREE_POOL_SIZE; 323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 324 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 325 return chain_phys; 326 } 327 328 /** 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 330 * buffer address for the provided smid. 331 * (Each smid can have 64K starts from 17024) 332 * 333 * @ioc: per adapter object 334 * @smid: system request message index 335 * 336 * Return: Pointer to buffer location in BAR0. 337 */ 338 339 static void __iomem * 340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 341 { 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 // Added extra 1 to reach end of chain. 344 void __iomem *chain_end = _base_get_chain(ioc, 345 cmd_credit + 1, 346 ioc->facts.MaxChainDepth); 347 return chain_end + (smid * 64 * 1024); 348 } 349 350 /** 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 352 * Host buffer Physical address for the provided smid. 353 * (Each smid can have 64K starts from 17024) 354 * 355 * @ioc: per adapter object 356 * @smid: system request message index 357 * 358 * Return: Pointer to buffer location in BAR0. 359 */ 360 static phys_addr_t 361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 362 { 363 u16 cmd_credit = ioc->facts.RequestCredit + 1; 364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 365 cmd_credit + 1, 366 ioc->facts.MaxChainDepth); 367 return chain_end_phys + (smid * 64 * 1024); 368 } 369 370 /** 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 372 * lookup list and Provides chain_buffer 373 * address for the matching dma address. 374 * (Each smid can have 64K starts from 17024) 375 * 376 * @ioc: per adapter object 377 * @chain_buffer_dma: Chain buffer dma address. 378 * 379 * Return: Pointer to chain buffer. Or Null on Failure. 380 */ 381 static void * 382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 383 dma_addr_t chain_buffer_dma) 384 { 385 u16 index, j; 386 struct chain_tracker *ct; 387 388 for (index = 0; index < ioc->scsiio_depth; index++) { 389 for (j = 0; j < ioc->chains_needed_per_io; j++) { 390 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 391 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 392 return ct->chain_buffer; 393 } 394 } 395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 396 return NULL; 397 } 398 399 /** 400 * _clone_sg_entries - MPI EP's scsiio and config requests 401 * are handled here. Base function for 402 * double buffering, before submitting 403 * the requests. 404 * 405 * @ioc: per adapter object. 406 * @mpi_request: mf request pointer. 407 * @smid: system request message index. 408 */ 409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 410 void *mpi_request, u16 smid) 411 { 412 Mpi2SGESimple32_t *sgel, *sgel_next; 413 u32 sgl_flags, sge_chain_count = 0; 414 bool is_write = false; 415 u16 i = 0; 416 void __iomem *buffer_iomem; 417 phys_addr_t buffer_iomem_phys; 418 void __iomem *buff_ptr; 419 phys_addr_t buff_ptr_phys; 420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 422 phys_addr_t dst_addr_phys; 423 MPI2RequestHeader_t *request_hdr; 424 struct scsi_cmnd *scmd; 425 struct scatterlist *sg_scmd = NULL; 426 int is_scsiio_req = 0; 427 428 request_hdr = (MPI2RequestHeader_t *) mpi_request; 429 430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 431 Mpi25SCSIIORequest_t *scsiio_request = 432 (Mpi25SCSIIORequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 434 is_scsiio_req = 1; 435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 436 Mpi2ConfigRequest_t *config_req = 437 (Mpi2ConfigRequest_t *)mpi_request; 438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 439 } else 440 return; 441 442 /* From smid we can get scsi_cmd, once we have sg_scmd, 443 * we just need to get sg_virt and sg_next to get virual 444 * address associated with sgel->Address. 445 */ 446 447 if (is_scsiio_req) { 448 /* Get scsi_cmd using smid */ 449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 450 if (scmd == NULL) { 451 ioc_err(ioc, "scmd is NULL\n"); 452 return; 453 } 454 455 /* Get sg_scmd from scmd provided */ 456 sg_scmd = scsi_sglist(scmd); 457 } 458 459 /* 460 * 0 - 255 System register 461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 462 * 4352 - 4864 Reply_free pool (512 byte is reserved 463 * considering maxCredit 32. Reply need extra 464 * room, for mCPU case kept four times of 465 * maxCredit). 466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 467 * 128 byte size = 12288) 468 * 17152 - x Host buffer mapped with smid. 469 * (Each smid can have 64K Max IO.) 470 * BAR0+Last 1K MSIX Addr and Data 471 * Total size in use 2113664 bytes of 4MB BAR0 472 */ 473 474 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 476 477 buff_ptr = buffer_iomem; 478 buff_ptr_phys = buffer_iomem_phys; 479 WARN_ON(buff_ptr_phys > U32_MAX); 480 481 if (le32_to_cpu(sgel->FlagsLength) & 482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 483 is_write = true; 484 485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 486 487 sgl_flags = 488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 489 490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 492 /* 493 * Helper function which on passing 494 * chain_buffer_dma returns chain_buffer. Get 495 * the virtual address for sgel->Address 496 */ 497 sgel_next = 498 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 499 le32_to_cpu(sgel->Address)); 500 if (sgel_next == NULL) 501 return; 502 /* 503 * This is coping 128 byte chain 504 * frame (not a host buffer) 505 */ 506 dst_chain_addr[sge_chain_count] = 507 _base_get_chain(ioc, 508 smid, sge_chain_count); 509 src_chain_addr[sge_chain_count] = 510 (void *) sgel_next; 511 dst_addr_phys = _base_get_chain_phys(ioc, 512 smid, sge_chain_count); 513 WARN_ON(dst_addr_phys > U32_MAX); 514 sgel->Address = 515 cpu_to_le32(lower_32_bits(dst_addr_phys)); 516 sgel = sgel_next; 517 sge_chain_count++; 518 break; 519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 520 if (is_write) { 521 if (is_scsiio_req) { 522 _base_clone_to_sys_mem(buff_ptr, 523 sg_virt(sg_scmd), 524 (le32_to_cpu(sgel->FlagsLength) & 525 0x00ffffff)); 526 /* 527 * FIXME: this relies on a a zero 528 * PCI mem_offset. 529 */ 530 sgel->Address = 531 cpu_to_le32((u32)buff_ptr_phys); 532 } else { 533 _base_clone_to_sys_mem(buff_ptr, 534 ioc->config_vaddr, 535 (le32_to_cpu(sgel->FlagsLength) & 536 0x00ffffff)); 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } 540 } 541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 542 0x00ffffff); 543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 if ((le32_to_cpu(sgel->FlagsLength) & 546 (MPI2_SGE_FLAGS_END_OF_BUFFER 547 << MPI2_SGE_FLAGS_SHIFT))) 548 goto eob_clone_chain; 549 else { 550 /* 551 * Every single element in MPT will have 552 * associated sg_next. Better to sanity that 553 * sg_next is not NULL, but it will be a bug 554 * if it is null. 555 */ 556 if (is_scsiio_req) { 557 sg_scmd = sg_next(sg_scmd); 558 if (sg_scmd) 559 sgel++; 560 else 561 goto eob_clone_chain; 562 } 563 } 564 break; 565 } 566 } 567 568 eob_clone_chain: 569 for (i = 0; i < sge_chain_count; i++) { 570 if (is_scsiio_req) 571 _base_clone_to_sys_mem(dst_chain_addr[i], 572 src_chain_addr[i], ioc->request_sz); 573 } 574 } 575 576 /** 577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 578 * @arg: input argument, used to derive ioc 579 * 580 * Return: 581 * 0 if controller is removed from pci subsystem. 582 * -1 for other case. 583 */ 584 static int mpt3sas_remove_dead_ioc_func(void *arg) 585 { 586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 587 struct pci_dev *pdev; 588 589 if (!ioc) 590 return -1; 591 592 pdev = ioc->pdev; 593 if (!pdev) 594 return -1; 595 pci_stop_and_remove_bus_device_locked(pdev); 596 return 0; 597 } 598 599 /** 600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 601 * @ioc: Per Adapter Object 602 * 603 * Return nothing. 604 */ 605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 606 { 607 Mpi26IoUnitControlRequest_t *mpi_request; 608 Mpi26IoUnitControlReply_t *mpi_reply; 609 u16 smid; 610 ktime_t current_time; 611 u64 TimeStamp = 0; 612 u8 issue_reset = 0; 613 614 mutex_lock(&ioc->scsih_cmds.mutex); 615 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 616 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 617 goto out; 618 } 619 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 620 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 621 if (!smid) { 622 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 623 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 624 goto out; 625 } 626 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 627 ioc->scsih_cmds.smid = smid; 628 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 629 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 630 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 631 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 632 current_time = ktime_get_real(); 633 TimeStamp = ktime_to_ms(current_time); 634 mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 635 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32); 636 init_completion(&ioc->scsih_cmds.done); 637 ioc->put_smid_default(ioc, smid); 638 dinitprintk(ioc, ioc_info(ioc, 639 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 640 TimeStamp)); 641 wait_for_completion_timeout(&ioc->scsih_cmds.done, 642 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 643 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 644 mpt3sas_check_cmd_timeout(ioc, 645 ioc->scsih_cmds.status, mpi_request, 646 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 647 goto issue_host_reset; 648 } 649 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 650 mpi_reply = ioc->scsih_cmds.reply; 651 dinitprintk(ioc, ioc_info(ioc, 652 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 653 le16_to_cpu(mpi_reply->IOCStatus), 654 le32_to_cpu(mpi_reply->IOCLogInfo))); 655 } 656 issue_host_reset: 657 if (issue_reset) 658 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 659 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 660 out: 661 mutex_unlock(&ioc->scsih_cmds.mutex); 662 } 663 664 /** 665 * _base_fault_reset_work - workq handling ioc fault conditions 666 * @work: input argument, used to derive ioc 667 * 668 * Context: sleep. 669 */ 670 static void 671 _base_fault_reset_work(struct work_struct *work) 672 { 673 struct MPT3SAS_ADAPTER *ioc = 674 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 675 unsigned long flags; 676 u32 doorbell; 677 int rc; 678 struct task_struct *p; 679 680 681 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 682 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 683 ioc->pci_error_recovery) 684 goto rearm_timer; 685 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 686 687 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 688 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 689 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 690 691 /* It may be possible that EEH recovery can resolve some of 692 * pci bus failure issues rather removing the dead ioc function 693 * by considering controller is in a non-operational state. So 694 * here priority is given to the EEH recovery. If it doesn't 695 * not resolve this issue, mpt3sas driver will consider this 696 * controller to non-operational state and remove the dead ioc 697 * function. 698 */ 699 if (ioc->non_operational_loop++ < 5) { 700 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 701 flags); 702 goto rearm_timer; 703 } 704 705 /* 706 * Call _scsih_flush_pending_cmds callback so that we flush all 707 * pending commands back to OS. This call is required to aovid 708 * deadlock at block layer. Dead IOC will fail to do diag reset, 709 * and this call is safe since dead ioc will never return any 710 * command back from HW. 711 */ 712 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 713 /* 714 * Set remove_host flag early since kernel thread will 715 * take some time to execute. 716 */ 717 ioc->remove_host = 1; 718 /*Remove the Dead Host */ 719 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 720 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 721 if (IS_ERR(p)) 722 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 723 __func__); 724 else 725 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 726 __func__); 727 return; /* don't rearm timer */ 728 } 729 730 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 731 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 732 ioc->manu_pg11.CoreDumpTOSec : 733 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 734 735 timeout /= (FAULT_POLLING_INTERVAL/1000); 736 737 if (ioc->ioc_coredump_loop == 0) { 738 mpt3sas_print_coredump_info(ioc, 739 doorbell & MPI2_DOORBELL_DATA_MASK); 740 /* do not accept any IOs and disable the interrupts */ 741 spin_lock_irqsave( 742 &ioc->ioc_reset_in_progress_lock, flags); 743 ioc->shost_recovery = 1; 744 spin_unlock_irqrestore( 745 &ioc->ioc_reset_in_progress_lock, flags); 746 mpt3sas_base_mask_interrupts(ioc); 747 _base_clear_outstanding_commands(ioc); 748 } 749 750 ioc_info(ioc, "%s: CoreDump loop %d.", 751 __func__, ioc->ioc_coredump_loop); 752 753 /* Wait until CoreDump completes or times out */ 754 if (ioc->ioc_coredump_loop++ < timeout) { 755 spin_lock_irqsave( 756 &ioc->ioc_reset_in_progress_lock, flags); 757 goto rearm_timer; 758 } 759 } 760 761 if (ioc->ioc_coredump_loop) { 762 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 763 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 764 __func__, ioc->ioc_coredump_loop); 765 else 766 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 767 __func__, ioc->ioc_coredump_loop); 768 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 769 } 770 ioc->non_operational_loop = 0; 771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 772 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 773 ioc_warn(ioc, "%s: hard reset: %s\n", 774 __func__, rc == 0 ? "success" : "failed"); 775 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 776 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 777 mpt3sas_print_fault_code(ioc, doorbell & 778 MPI2_DOORBELL_DATA_MASK); 779 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 780 MPI2_IOC_STATE_COREDUMP) 781 mpt3sas_print_coredump_info(ioc, doorbell & 782 MPI2_DOORBELL_DATA_MASK); 783 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 784 MPI2_IOC_STATE_OPERATIONAL) 785 return; /* don't rearm timer */ 786 } 787 ioc->ioc_coredump_loop = 0; 788 if (ioc->time_sync_interval && 789 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 790 ioc->timestamp_update_count = 0; 791 _base_sync_drv_fw_timestamp(ioc); 792 } 793 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 794 rearm_timer: 795 if (ioc->fault_reset_work_q) 796 queue_delayed_work(ioc->fault_reset_work_q, 797 &ioc->fault_reset_work, 798 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 799 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 800 } 801 802 /** 803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 804 * @ioc: per adapter object 805 * 806 * Context: sleep. 807 */ 808 void 809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 810 { 811 unsigned long flags; 812 813 if (ioc->fault_reset_work_q) 814 return; 815 816 ioc->timestamp_update_count = 0; 817 /* initialize fault polling */ 818 819 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 820 snprintf(ioc->fault_reset_work_q_name, 821 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 822 ioc->driver_name, ioc->id); 823 ioc->fault_reset_work_q = 824 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 825 if (!ioc->fault_reset_work_q) { 826 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 827 return; 828 } 829 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 830 if (ioc->fault_reset_work_q) 831 queue_delayed_work(ioc->fault_reset_work_q, 832 &ioc->fault_reset_work, 833 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 834 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 835 } 836 837 /** 838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 839 * @ioc: per adapter object 840 * 841 * Context: sleep. 842 */ 843 void 844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 845 { 846 unsigned long flags; 847 struct workqueue_struct *wq; 848 849 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 850 wq = ioc->fault_reset_work_q; 851 ioc->fault_reset_work_q = NULL; 852 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 853 if (wq) { 854 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 855 flush_workqueue(wq); 856 destroy_workqueue(wq); 857 } 858 } 859 860 /** 861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 862 * @ioc: per adapter object 863 * @fault_code: fault code 864 */ 865 void 866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 867 { 868 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 869 } 870 871 /** 872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 873 * @ioc: per adapter object 874 * @fault_code: fault code 875 * 876 * Return nothing. 877 */ 878 void 879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 880 { 881 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 882 } 883 884 /** 885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 886 * completes or times out 887 * @ioc: per adapter object 888 * @caller: caller function name 889 * 890 * Returns 0 for success, non-zero for failure. 891 */ 892 int 893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 894 const char *caller) 895 { 896 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 897 ioc->manu_pg11.CoreDumpTOSec : 898 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 899 900 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 901 timeout); 902 903 if (ioc_state) 904 ioc_err(ioc, 905 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 906 caller, ioc_state); 907 else 908 ioc_info(ioc, 909 "%s: CoreDump completed. (ioc_state=0x%x)\n", 910 caller, ioc_state); 911 912 return ioc_state; 913 } 914 915 /** 916 * mpt3sas_halt_firmware - halt's mpt controller firmware 917 * @ioc: per adapter object 918 * 919 * For debugging timeout related issues. Writing 0xCOFFEE00 920 * to the doorbell register will halt controller firmware. With 921 * the purpose to stop both driver and firmware, the enduser can 922 * obtain a ring buffer from controller UART. 923 */ 924 void 925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 926 { 927 u32 doorbell; 928 929 if (!ioc->fwfault_debug) 930 return; 931 932 dump_stack(); 933 934 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 935 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 936 mpt3sas_print_fault_code(ioc, doorbell & 937 MPI2_DOORBELL_DATA_MASK); 938 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 939 MPI2_IOC_STATE_COREDUMP) { 940 mpt3sas_print_coredump_info(ioc, doorbell & 941 MPI2_DOORBELL_DATA_MASK); 942 } else { 943 writel(0xC0FFEE00, &ioc->chip->Doorbell); 944 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 945 } 946 947 if (ioc->fwfault_debug == 2) 948 for (;;) 949 ; 950 else 951 panic("panic in %s\n", __func__); 952 } 953 954 /** 955 * _base_sas_ioc_info - verbose translation of the ioc status 956 * @ioc: per adapter object 957 * @mpi_reply: reply mf payload returned from firmware 958 * @request_hdr: request mf 959 */ 960 static void 961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 962 MPI2RequestHeader_t *request_hdr) 963 { 964 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 965 MPI2_IOCSTATUS_MASK; 966 char *desc = NULL; 967 u16 frame_sz; 968 char *func_str = NULL; 969 970 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 971 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 972 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 973 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 974 return; 975 976 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 977 return; 978 /* 979 * Older Firmware version doesn't support driver trigger pages. 980 * So, skip displaying 'config invalid type' type 981 * of error message. 982 */ 983 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 984 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 985 986 if ((rqst->ExtPageType == 987 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 988 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 989 return; 990 } 991 } 992 993 switch (ioc_status) { 994 995 /**************************************************************************** 996 * Common IOCStatus values for all replies 997 ****************************************************************************/ 998 999 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1000 desc = "invalid function"; 1001 break; 1002 case MPI2_IOCSTATUS_BUSY: 1003 desc = "busy"; 1004 break; 1005 case MPI2_IOCSTATUS_INVALID_SGL: 1006 desc = "invalid sgl"; 1007 break; 1008 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1009 desc = "internal error"; 1010 break; 1011 case MPI2_IOCSTATUS_INVALID_VPID: 1012 desc = "invalid vpid"; 1013 break; 1014 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1015 desc = "insufficient resources"; 1016 break; 1017 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1018 desc = "insufficient power"; 1019 break; 1020 case MPI2_IOCSTATUS_INVALID_FIELD: 1021 desc = "invalid field"; 1022 break; 1023 case MPI2_IOCSTATUS_INVALID_STATE: 1024 desc = "invalid state"; 1025 break; 1026 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1027 desc = "op state not supported"; 1028 break; 1029 1030 /**************************************************************************** 1031 * Config IOCStatus values 1032 ****************************************************************************/ 1033 1034 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1035 desc = "config invalid action"; 1036 break; 1037 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1038 desc = "config invalid type"; 1039 break; 1040 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1041 desc = "config invalid page"; 1042 break; 1043 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1044 desc = "config invalid data"; 1045 break; 1046 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1047 desc = "config no defaults"; 1048 break; 1049 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1050 desc = "config cant commit"; 1051 break; 1052 1053 /**************************************************************************** 1054 * SCSI IO Reply 1055 ****************************************************************************/ 1056 1057 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1058 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1059 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1060 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1061 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1062 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1063 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1064 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1065 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1066 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1067 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1068 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1069 break; 1070 1071 /**************************************************************************** 1072 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1073 ****************************************************************************/ 1074 1075 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1076 desc = "eedp guard error"; 1077 break; 1078 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1079 desc = "eedp ref tag error"; 1080 break; 1081 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1082 desc = "eedp app tag error"; 1083 break; 1084 1085 /**************************************************************************** 1086 * SCSI Target values 1087 ****************************************************************************/ 1088 1089 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1090 desc = "target invalid io index"; 1091 break; 1092 case MPI2_IOCSTATUS_TARGET_ABORTED: 1093 desc = "target aborted"; 1094 break; 1095 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1096 desc = "target no conn retryable"; 1097 break; 1098 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1099 desc = "target no connection"; 1100 break; 1101 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1102 desc = "target xfer count mismatch"; 1103 break; 1104 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1105 desc = "target data offset error"; 1106 break; 1107 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1108 desc = "target too much write data"; 1109 break; 1110 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1111 desc = "target iu too short"; 1112 break; 1113 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1114 desc = "target ack nak timeout"; 1115 break; 1116 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1117 desc = "target nak received"; 1118 break; 1119 1120 /**************************************************************************** 1121 * Serial Attached SCSI values 1122 ****************************************************************************/ 1123 1124 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1125 desc = "smp request failed"; 1126 break; 1127 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1128 desc = "smp data overrun"; 1129 break; 1130 1131 /**************************************************************************** 1132 * Diagnostic Buffer Post / Diagnostic Release values 1133 ****************************************************************************/ 1134 1135 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1136 desc = "diagnostic released"; 1137 break; 1138 default: 1139 break; 1140 } 1141 1142 if (!desc) 1143 return; 1144 1145 switch (request_hdr->Function) { 1146 case MPI2_FUNCTION_CONFIG: 1147 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1148 func_str = "config_page"; 1149 break; 1150 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1151 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1152 func_str = "task_mgmt"; 1153 break; 1154 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1155 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1156 func_str = "sas_iounit_ctl"; 1157 break; 1158 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1159 frame_sz = sizeof(Mpi2SepRequest_t); 1160 func_str = "enclosure"; 1161 break; 1162 case MPI2_FUNCTION_IOC_INIT: 1163 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1164 func_str = "ioc_init"; 1165 break; 1166 case MPI2_FUNCTION_PORT_ENABLE: 1167 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1168 func_str = "port_enable"; 1169 break; 1170 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1171 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1172 func_str = "smp_passthru"; 1173 break; 1174 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1175 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1176 ioc->sge_size; 1177 func_str = "nvme_encapsulated"; 1178 break; 1179 default: 1180 frame_sz = 32; 1181 func_str = "unknown"; 1182 break; 1183 } 1184 1185 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1186 desc, ioc_status, request_hdr, func_str); 1187 1188 _debug_dump_mf(request_hdr, frame_sz/4); 1189 } 1190 1191 /** 1192 * _base_display_event_data - verbose translation of firmware asyn events 1193 * @ioc: per adapter object 1194 * @mpi_reply: reply mf payload returned from firmware 1195 */ 1196 static void 1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1198 Mpi2EventNotificationReply_t *mpi_reply) 1199 { 1200 char *desc = NULL; 1201 u16 event; 1202 1203 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1204 return; 1205 1206 event = le16_to_cpu(mpi_reply->Event); 1207 1208 switch (event) { 1209 case MPI2_EVENT_LOG_DATA: 1210 desc = "Log Data"; 1211 break; 1212 case MPI2_EVENT_STATE_CHANGE: 1213 desc = "Status Change"; 1214 break; 1215 case MPI2_EVENT_HARD_RESET_RECEIVED: 1216 desc = "Hard Reset Received"; 1217 break; 1218 case MPI2_EVENT_EVENT_CHANGE: 1219 desc = "Event Change"; 1220 break; 1221 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1222 desc = "Device Status Change"; 1223 break; 1224 case MPI2_EVENT_IR_OPERATION_STATUS: 1225 if (!ioc->hide_ir_msg) 1226 desc = "IR Operation Status"; 1227 break; 1228 case MPI2_EVENT_SAS_DISCOVERY: 1229 { 1230 Mpi2EventDataSasDiscovery_t *event_data = 1231 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1232 ioc_info(ioc, "Discovery: (%s)", 1233 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1234 "start" : "stop"); 1235 if (event_data->DiscoveryStatus) 1236 pr_cont(" discovery_status(0x%08x)", 1237 le32_to_cpu(event_data->DiscoveryStatus)); 1238 pr_cont("\n"); 1239 return; 1240 } 1241 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1242 desc = "SAS Broadcast Primitive"; 1243 break; 1244 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1245 desc = "SAS Init Device Status Change"; 1246 break; 1247 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1248 desc = "SAS Init Table Overflow"; 1249 break; 1250 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1251 desc = "SAS Topology Change List"; 1252 break; 1253 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1254 desc = "SAS Enclosure Device Status Change"; 1255 break; 1256 case MPI2_EVENT_IR_VOLUME: 1257 if (!ioc->hide_ir_msg) 1258 desc = "IR Volume"; 1259 break; 1260 case MPI2_EVENT_IR_PHYSICAL_DISK: 1261 if (!ioc->hide_ir_msg) 1262 desc = "IR Physical Disk"; 1263 break; 1264 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1265 if (!ioc->hide_ir_msg) 1266 desc = "IR Configuration Change List"; 1267 break; 1268 case MPI2_EVENT_LOG_ENTRY_ADDED: 1269 if (!ioc->hide_ir_msg) 1270 desc = "Log Entry Added"; 1271 break; 1272 case MPI2_EVENT_TEMP_THRESHOLD: 1273 desc = "Temperature Threshold"; 1274 break; 1275 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1276 desc = "Cable Event"; 1277 break; 1278 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1279 desc = "SAS Device Discovery Error"; 1280 break; 1281 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1282 desc = "PCIE Device Status Change"; 1283 break; 1284 case MPI2_EVENT_PCIE_ENUMERATION: 1285 { 1286 Mpi26EventDataPCIeEnumeration_t *event_data = 1287 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1288 ioc_info(ioc, "PCIE Enumeration: (%s)", 1289 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1290 "start" : "stop"); 1291 if (event_data->EnumerationStatus) 1292 pr_cont("enumeration_status(0x%08x)", 1293 le32_to_cpu(event_data->EnumerationStatus)); 1294 pr_cont("\n"); 1295 return; 1296 } 1297 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1298 desc = "PCIE Topology Change List"; 1299 break; 1300 } 1301 1302 if (!desc) 1303 return; 1304 1305 ioc_info(ioc, "%s\n", desc); 1306 } 1307 1308 /** 1309 * _base_sas_log_info - verbose translation of firmware log info 1310 * @ioc: per adapter object 1311 * @log_info: log info 1312 */ 1313 static void 1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1315 { 1316 union loginfo_type { 1317 u32 loginfo; 1318 struct { 1319 u32 subcode:16; 1320 u32 code:8; 1321 u32 originator:4; 1322 u32 bus_type:4; 1323 } dw; 1324 }; 1325 union loginfo_type sas_loginfo; 1326 char *originator_str = NULL; 1327 1328 sas_loginfo.loginfo = log_info; 1329 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1330 return; 1331 1332 /* each nexus loss loginfo */ 1333 if (log_info == 0x31170000) 1334 return; 1335 1336 /* eat the loginfos associated with task aborts */ 1337 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1338 0x31140000 || log_info == 0x31130000)) 1339 return; 1340 1341 switch (sas_loginfo.dw.originator) { 1342 case 0: 1343 originator_str = "IOP"; 1344 break; 1345 case 1: 1346 originator_str = "PL"; 1347 break; 1348 case 2: 1349 if (!ioc->hide_ir_msg) 1350 originator_str = "IR"; 1351 else 1352 originator_str = "WarpDrive"; 1353 break; 1354 } 1355 1356 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1357 log_info, 1358 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1359 } 1360 1361 /** 1362 * _base_display_reply_info - 1363 * @ioc: per adapter object 1364 * @smid: system request message index 1365 * @msix_index: MSIX table index supplied by the OS 1366 * @reply: reply message frame(lower 32bit addr) 1367 */ 1368 static void 1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1370 u32 reply) 1371 { 1372 MPI2DefaultReply_t *mpi_reply; 1373 u16 ioc_status; 1374 u32 loginfo = 0; 1375 1376 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1377 if (unlikely(!mpi_reply)) { 1378 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1379 __FILE__, __LINE__, __func__); 1380 return; 1381 } 1382 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1383 1384 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1385 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1386 _base_sas_ioc_info(ioc , mpi_reply, 1387 mpt3sas_base_get_msg_frame(ioc, smid)); 1388 } 1389 1390 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1391 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1392 _base_sas_log_info(ioc, loginfo); 1393 } 1394 1395 if (ioc_status || loginfo) { 1396 ioc_status &= MPI2_IOCSTATUS_MASK; 1397 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1398 } 1399 } 1400 1401 /** 1402 * mpt3sas_base_done - base internal command completion routine 1403 * @ioc: per adapter object 1404 * @smid: system request message index 1405 * @msix_index: MSIX table index supplied by the OS 1406 * @reply: reply message frame(lower 32bit addr) 1407 * 1408 * Return: 1409 * 1 meaning mf should be freed from _base_interrupt 1410 * 0 means the mf is freed from this function. 1411 */ 1412 u8 1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1414 u32 reply) 1415 { 1416 MPI2DefaultReply_t *mpi_reply; 1417 1418 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1419 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1420 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1421 1422 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1423 return 1; 1424 1425 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1426 if (mpi_reply) { 1427 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1428 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1429 } 1430 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1431 1432 complete(&ioc->base_cmds.done); 1433 return 1; 1434 } 1435 1436 /** 1437 * _base_async_event - main callback handler for firmware asyn events 1438 * @ioc: per adapter object 1439 * @msix_index: MSIX table index supplied by the OS 1440 * @reply: reply message frame(lower 32bit addr) 1441 * 1442 * Return: 1443 * 1 meaning mf should be freed from _base_interrupt 1444 * 0 means the mf is freed from this function. 1445 */ 1446 static u8 1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1448 { 1449 Mpi2EventNotificationReply_t *mpi_reply; 1450 Mpi2EventAckRequest_t *ack_request; 1451 u16 smid; 1452 struct _event_ack_list *delayed_event_ack; 1453 1454 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1455 if (!mpi_reply) 1456 return 1; 1457 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1458 return 1; 1459 1460 _base_display_event_data(ioc, mpi_reply); 1461 1462 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1463 goto out; 1464 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1465 if (!smid) { 1466 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1467 GFP_ATOMIC); 1468 if (!delayed_event_ack) 1469 goto out; 1470 INIT_LIST_HEAD(&delayed_event_ack->list); 1471 delayed_event_ack->Event = mpi_reply->Event; 1472 delayed_event_ack->EventContext = mpi_reply->EventContext; 1473 list_add_tail(&delayed_event_ack->list, 1474 &ioc->delayed_event_ack_list); 1475 dewtprintk(ioc, 1476 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1477 le16_to_cpu(mpi_reply->Event))); 1478 goto out; 1479 } 1480 1481 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1482 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1483 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1484 ack_request->Event = mpi_reply->Event; 1485 ack_request->EventContext = mpi_reply->EventContext; 1486 ack_request->VF_ID = 0; /* TODO */ 1487 ack_request->VP_ID = 0; 1488 ioc->put_smid_default(ioc, smid); 1489 1490 out: 1491 1492 /* scsih callback handler */ 1493 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1494 1495 /* ctl callback handler */ 1496 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1497 1498 return 1; 1499 } 1500 1501 static struct scsiio_tracker * 1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1503 { 1504 struct scsi_cmnd *cmd; 1505 1506 if (WARN_ON(!smid) || 1507 WARN_ON(smid >= ioc->hi_priority_smid)) 1508 return NULL; 1509 1510 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1511 if (cmd) 1512 return scsi_cmd_priv(cmd); 1513 1514 return NULL; 1515 } 1516 1517 /** 1518 * _base_get_cb_idx - obtain the callback index 1519 * @ioc: per adapter object 1520 * @smid: system request message index 1521 * 1522 * Return: callback index. 1523 */ 1524 static u8 1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1526 { 1527 int i; 1528 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1529 u8 cb_idx = 0xFF; 1530 1531 if (smid < ioc->hi_priority_smid) { 1532 struct scsiio_tracker *st; 1533 1534 if (smid < ctl_smid) { 1535 st = _get_st_from_smid(ioc, smid); 1536 if (st) 1537 cb_idx = st->cb_idx; 1538 } else if (smid == ctl_smid) 1539 cb_idx = ioc->ctl_cb_idx; 1540 } else if (smid < ioc->internal_smid) { 1541 i = smid - ioc->hi_priority_smid; 1542 cb_idx = ioc->hpr_lookup[i].cb_idx; 1543 } else if (smid <= ioc->hba_queue_depth) { 1544 i = smid - ioc->internal_smid; 1545 cb_idx = ioc->internal_lookup[i].cb_idx; 1546 } 1547 return cb_idx; 1548 } 1549 1550 /** 1551 * mpt3sas_base_mask_interrupts - disable interrupts 1552 * @ioc: per adapter object 1553 * 1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1555 */ 1556 void 1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1558 { 1559 u32 him_register; 1560 1561 ioc->mask_interrupts = 1; 1562 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1563 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1564 writel(him_register, &ioc->chip->HostInterruptMask); 1565 ioc->base_readl(&ioc->chip->HostInterruptMask); 1566 } 1567 1568 /** 1569 * mpt3sas_base_unmask_interrupts - enable interrupts 1570 * @ioc: per adapter object 1571 * 1572 * Enabling only Reply Interrupts 1573 */ 1574 void 1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1576 { 1577 u32 him_register; 1578 1579 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1580 him_register &= ~MPI2_HIM_RIM; 1581 writel(him_register, &ioc->chip->HostInterruptMask); 1582 ioc->mask_interrupts = 0; 1583 } 1584 1585 union reply_descriptor { 1586 u64 word; 1587 struct { 1588 u32 low; 1589 u32 high; 1590 } u; 1591 }; 1592 1593 static u32 base_mod64(u64 dividend, u32 divisor) 1594 { 1595 u32 remainder; 1596 1597 if (!divisor) 1598 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1599 remainder = do_div(dividend, divisor); 1600 return remainder; 1601 } 1602 1603 /** 1604 * _base_process_reply_queue - Process reply descriptors from reply 1605 * descriptor post queue. 1606 * @reply_q: per IRQ's reply queue object. 1607 * 1608 * Return: number of reply descriptors processed from reply 1609 * descriptor queue. 1610 */ 1611 static int 1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1613 { 1614 union reply_descriptor rd; 1615 u64 completed_cmds; 1616 u8 request_descript_type; 1617 u16 smid; 1618 u8 cb_idx; 1619 u32 reply; 1620 u8 msix_index = reply_q->msix_index; 1621 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1622 Mpi2ReplyDescriptorsUnion_t *rpf; 1623 u8 rc; 1624 1625 completed_cmds = 0; 1626 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1627 return completed_cmds; 1628 1629 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1630 request_descript_type = rpf->Default.ReplyFlags 1631 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1632 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1633 atomic_dec(&reply_q->busy); 1634 return completed_cmds; 1635 } 1636 1637 cb_idx = 0xFF; 1638 do { 1639 rd.word = le64_to_cpu(rpf->Words); 1640 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1641 goto out; 1642 reply = 0; 1643 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1644 if (request_descript_type == 1645 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1646 request_descript_type == 1647 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1648 request_descript_type == 1649 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1650 cb_idx = _base_get_cb_idx(ioc, smid); 1651 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1652 (likely(mpt_callbacks[cb_idx] != NULL))) { 1653 rc = mpt_callbacks[cb_idx](ioc, smid, 1654 msix_index, 0); 1655 if (rc) 1656 mpt3sas_base_free_smid(ioc, smid); 1657 } 1658 } else if (request_descript_type == 1659 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1660 reply = le32_to_cpu( 1661 rpf->AddressReply.ReplyFrameAddress); 1662 if (reply > ioc->reply_dma_max_address || 1663 reply < ioc->reply_dma_min_address) 1664 reply = 0; 1665 if (smid) { 1666 cb_idx = _base_get_cb_idx(ioc, smid); 1667 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1668 (likely(mpt_callbacks[cb_idx] != NULL))) { 1669 rc = mpt_callbacks[cb_idx](ioc, smid, 1670 msix_index, reply); 1671 if (reply) 1672 _base_display_reply_info(ioc, 1673 smid, msix_index, reply); 1674 if (rc) 1675 mpt3sas_base_free_smid(ioc, 1676 smid); 1677 } 1678 } else { 1679 _base_async_event(ioc, msix_index, reply); 1680 } 1681 1682 /* reply free queue handling */ 1683 if (reply) { 1684 ioc->reply_free_host_index = 1685 (ioc->reply_free_host_index == 1686 (ioc->reply_free_queue_depth - 1)) ? 1687 0 : ioc->reply_free_host_index + 1; 1688 ioc->reply_free[ioc->reply_free_host_index] = 1689 cpu_to_le32(reply); 1690 if (ioc->is_mcpu_endpoint) 1691 _base_clone_reply_to_sys_mem(ioc, 1692 reply, 1693 ioc->reply_free_host_index); 1694 writel(ioc->reply_free_host_index, 1695 &ioc->chip->ReplyFreeHostIndex); 1696 } 1697 } 1698 1699 rpf->Words = cpu_to_le64(ULLONG_MAX); 1700 reply_q->reply_post_host_index = 1701 (reply_q->reply_post_host_index == 1702 (ioc->reply_post_queue_depth - 1)) ? 0 : 1703 reply_q->reply_post_host_index + 1; 1704 request_descript_type = 1705 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1706 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1707 completed_cmds++; 1708 /* Update the reply post host index after continuously 1709 * processing the threshold number of Reply Descriptors. 1710 * So that FW can find enough entries to post the Reply 1711 * Descriptors in the reply descriptor post queue. 1712 */ 1713 if (completed_cmds >= ioc->thresh_hold) { 1714 if (ioc->combined_reply_queue) { 1715 writel(reply_q->reply_post_host_index | 1716 ((msix_index & 7) << 1717 MPI2_RPHI_MSIX_INDEX_SHIFT), 1718 ioc->replyPostRegisterIndex[msix_index/8]); 1719 } else { 1720 writel(reply_q->reply_post_host_index | 1721 (msix_index << 1722 MPI2_RPHI_MSIX_INDEX_SHIFT), 1723 &ioc->chip->ReplyPostHostIndex); 1724 } 1725 if (!reply_q->irq_poll_scheduled) { 1726 reply_q->irq_poll_scheduled = true; 1727 irq_poll_sched(&reply_q->irqpoll); 1728 } 1729 atomic_dec(&reply_q->busy); 1730 return completed_cmds; 1731 } 1732 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1733 goto out; 1734 if (!reply_q->reply_post_host_index) 1735 rpf = reply_q->reply_post_free; 1736 else 1737 rpf++; 1738 } while (1); 1739 1740 out: 1741 1742 if (!completed_cmds) { 1743 atomic_dec(&reply_q->busy); 1744 return completed_cmds; 1745 } 1746 1747 if (ioc->is_warpdrive) { 1748 writel(reply_q->reply_post_host_index, 1749 ioc->reply_post_host_index[msix_index]); 1750 atomic_dec(&reply_q->busy); 1751 return completed_cmds; 1752 } 1753 1754 /* Update Reply Post Host Index. 1755 * For those HBA's which support combined reply queue feature 1756 * 1. Get the correct Supplemental Reply Post Host Index Register. 1757 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1758 * Index Register address bank i.e replyPostRegisterIndex[], 1759 * 2. Then update this register with new reply host index value 1760 * in ReplyPostIndex field and the MSIxIndex field with 1761 * msix_index value reduced to a value between 0 and 7, 1762 * using a modulo 8 operation. Since each Supplemental Reply Post 1763 * Host Index Register supports 8 MSI-X vectors. 1764 * 1765 * For other HBA's just update the Reply Post Host Index register with 1766 * new reply host index value in ReplyPostIndex Field and msix_index 1767 * value in MSIxIndex field. 1768 */ 1769 if (ioc->combined_reply_queue) 1770 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1771 MPI2_RPHI_MSIX_INDEX_SHIFT), 1772 ioc->replyPostRegisterIndex[msix_index/8]); 1773 else 1774 writel(reply_q->reply_post_host_index | (msix_index << 1775 MPI2_RPHI_MSIX_INDEX_SHIFT), 1776 &ioc->chip->ReplyPostHostIndex); 1777 atomic_dec(&reply_q->busy); 1778 return completed_cmds; 1779 } 1780 1781 /** 1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1783 * @irq: irq number (not used) 1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1785 * 1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1787 */ 1788 static irqreturn_t 1789 _base_interrupt(int irq, void *bus_id) 1790 { 1791 struct adapter_reply_queue *reply_q = bus_id; 1792 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1793 1794 if (ioc->mask_interrupts) 1795 return IRQ_NONE; 1796 if (reply_q->irq_poll_scheduled) 1797 return IRQ_HANDLED; 1798 return ((_base_process_reply_queue(reply_q) > 0) ? 1799 IRQ_HANDLED : IRQ_NONE); 1800 } 1801 1802 /** 1803 * _base_irqpoll - IRQ poll callback handler 1804 * @irqpoll: irq_poll object 1805 * @budget: irq poll weight 1806 * 1807 * returns number of reply descriptors processed 1808 */ 1809 static int 1810 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1811 { 1812 struct adapter_reply_queue *reply_q; 1813 int num_entries = 0; 1814 1815 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1816 irqpoll); 1817 if (reply_q->irq_line_enable) { 1818 disable_irq_nosync(reply_q->os_irq); 1819 reply_q->irq_line_enable = false; 1820 } 1821 num_entries = _base_process_reply_queue(reply_q); 1822 if (num_entries < budget) { 1823 irq_poll_complete(irqpoll); 1824 reply_q->irq_poll_scheduled = false; 1825 reply_q->irq_line_enable = true; 1826 enable_irq(reply_q->os_irq); 1827 /* 1828 * Go for one more round of processing the 1829 * reply descriptor post queue incase if HBA 1830 * Firmware has posted some reply descriptors 1831 * while reenabling the IRQ. 1832 */ 1833 _base_process_reply_queue(reply_q); 1834 } 1835 1836 return num_entries; 1837 } 1838 1839 /** 1840 * _base_init_irqpolls - initliaze IRQ polls 1841 * @ioc: per adapter object 1842 * 1843 * returns nothing 1844 */ 1845 static void 1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1847 { 1848 struct adapter_reply_queue *reply_q, *next; 1849 1850 if (list_empty(&ioc->reply_queue_list)) 1851 return; 1852 1853 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1854 irq_poll_init(&reply_q->irqpoll, 1855 ioc->hba_queue_depth/4, _base_irqpoll); 1856 reply_q->irq_poll_scheduled = false; 1857 reply_q->irq_line_enable = true; 1858 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1859 reply_q->msix_index); 1860 } 1861 } 1862 1863 /** 1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1865 * @ioc: per adapter object 1866 * 1867 * Return: Whether or not MSI/X is enabled. 1868 */ 1869 static inline int 1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1871 { 1872 return (ioc->facts.IOCCapabilities & 1873 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1874 } 1875 1876 /** 1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1878 * @ioc: per adapter object 1879 * @poll: poll over reply descriptor pools incase interrupt for 1880 * timed-out SCSI command got delayed 1881 * Context: non ISR conext 1882 * 1883 * Called when a Task Management request has completed. 1884 */ 1885 void 1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1887 { 1888 struct adapter_reply_queue *reply_q; 1889 1890 /* If MSIX capability is turned off 1891 * then multi-queues are not enabled 1892 */ 1893 if (!_base_is_controller_msix_enabled(ioc)) 1894 return; 1895 1896 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1897 if (ioc->shost_recovery || ioc->remove_host || 1898 ioc->pci_error_recovery) 1899 return; 1900 /* TMs are on msix_index == 0 */ 1901 if (reply_q->msix_index == 0) 1902 continue; 1903 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1904 if (reply_q->irq_poll_scheduled) { 1905 /* Calling irq_poll_disable will wait for any pending 1906 * callbacks to have completed. 1907 */ 1908 irq_poll_disable(&reply_q->irqpoll); 1909 irq_poll_enable(&reply_q->irqpoll); 1910 /* check how the scheduled poll has ended, 1911 * clean up only if necessary 1912 */ 1913 if (reply_q->irq_poll_scheduled) { 1914 reply_q->irq_poll_scheduled = false; 1915 reply_q->irq_line_enable = true; 1916 enable_irq(reply_q->os_irq); 1917 } 1918 } 1919 } 1920 if (poll) 1921 _base_process_reply_queue(reply_q); 1922 } 1923 1924 /** 1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1926 * @cb_idx: callback index 1927 */ 1928 void 1929 mpt3sas_base_release_callback_handler(u8 cb_idx) 1930 { 1931 mpt_callbacks[cb_idx] = NULL; 1932 } 1933 1934 /** 1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1936 * @cb_func: callback function 1937 * 1938 * Return: Index of @cb_func. 1939 */ 1940 u8 1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1942 { 1943 u8 cb_idx; 1944 1945 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1946 if (mpt_callbacks[cb_idx] == NULL) 1947 break; 1948 1949 mpt_callbacks[cb_idx] = cb_func; 1950 return cb_idx; 1951 } 1952 1953 /** 1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1955 */ 1956 void 1957 mpt3sas_base_initialize_callback_handler(void) 1958 { 1959 u8 cb_idx; 1960 1961 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1962 mpt3sas_base_release_callback_handler(cb_idx); 1963 } 1964 1965 1966 /** 1967 * _base_build_zero_len_sge - build zero length sg entry 1968 * @ioc: per adapter object 1969 * @paddr: virtual address for SGE 1970 * 1971 * Create a zero length scatter gather entry to insure the IOCs hardware has 1972 * something to use if the target device goes brain dead and tries 1973 * to send data even when none is asked for. 1974 */ 1975 static void 1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1977 { 1978 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1979 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1980 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1981 MPI2_SGE_FLAGS_SHIFT); 1982 ioc->base_add_sg_single(paddr, flags_length, -1); 1983 } 1984 1985 /** 1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1987 * @paddr: virtual address for SGE 1988 * @flags_length: SGE flags and data transfer length 1989 * @dma_addr: Physical address 1990 */ 1991 static void 1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1993 { 1994 Mpi2SGESimple32_t *sgel = paddr; 1995 1996 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1997 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1998 sgel->FlagsLength = cpu_to_le32(flags_length); 1999 sgel->Address = cpu_to_le32(dma_addr); 2000 } 2001 2002 2003 /** 2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2005 * @paddr: virtual address for SGE 2006 * @flags_length: SGE flags and data transfer length 2007 * @dma_addr: Physical address 2008 */ 2009 static void 2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2011 { 2012 Mpi2SGESimple64_t *sgel = paddr; 2013 2014 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2015 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2016 sgel->FlagsLength = cpu_to_le32(flags_length); 2017 sgel->Address = cpu_to_le64(dma_addr); 2018 } 2019 2020 /** 2021 * _base_get_chain_buffer_tracker - obtain chain tracker 2022 * @ioc: per adapter object 2023 * @scmd: SCSI commands of the IO request 2024 * 2025 * Return: chain tracker from chain_lookup table using key as 2026 * smid and smid's chain_offset. 2027 */ 2028 static struct chain_tracker * 2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2030 struct scsi_cmnd *scmd) 2031 { 2032 struct chain_tracker *chain_req; 2033 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2034 u16 smid = st->smid; 2035 u8 chain_offset = 2036 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2037 2038 if (chain_offset == ioc->chains_needed_per_io) 2039 return NULL; 2040 2041 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2042 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2043 return chain_req; 2044 } 2045 2046 2047 /** 2048 * _base_build_sg - build generic sg 2049 * @ioc: per adapter object 2050 * @psge: virtual address for SGE 2051 * @data_out_dma: physical address for WRITES 2052 * @data_out_sz: data xfer size for WRITES 2053 * @data_in_dma: physical address for READS 2054 * @data_in_sz: data xfer size for READS 2055 */ 2056 static void 2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2058 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2059 size_t data_in_sz) 2060 { 2061 u32 sgl_flags; 2062 2063 if (!data_out_sz && !data_in_sz) { 2064 _base_build_zero_len_sge(ioc, psge); 2065 return; 2066 } 2067 2068 if (data_out_sz && data_in_sz) { 2069 /* WRITE sgel first */ 2070 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2071 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2072 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2073 ioc->base_add_sg_single(psge, sgl_flags | 2074 data_out_sz, data_out_dma); 2075 2076 /* incr sgel */ 2077 psge += ioc->sge_size; 2078 2079 /* READ sgel last */ 2080 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2081 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2082 MPI2_SGE_FLAGS_END_OF_LIST); 2083 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2084 ioc->base_add_sg_single(psge, sgl_flags | 2085 data_in_sz, data_in_dma); 2086 } else if (data_out_sz) /* WRITE */ { 2087 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2088 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2089 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2090 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2091 ioc->base_add_sg_single(psge, sgl_flags | 2092 data_out_sz, data_out_dma); 2093 } else if (data_in_sz) /* READ */ { 2094 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2095 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2096 MPI2_SGE_FLAGS_END_OF_LIST); 2097 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2098 ioc->base_add_sg_single(psge, sgl_flags | 2099 data_in_sz, data_in_dma); 2100 } 2101 } 2102 2103 /* IEEE format sgls */ 2104 2105 /** 2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2107 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2108 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2109 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2110 * used to describe a larger data buffer. If the data buffer is too large to 2111 * describe using the two PRP entriess inside the NVMe message, then PRP1 2112 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2113 * list located elsewhere in memory to describe the remaining data memory 2114 * segments. The PRP list will be contiguous. 2115 * 2116 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2117 * consists of a list of PRP entries to describe a number of noncontigous 2118 * physical memory segments as a single memory buffer, just as a SGL does. Note 2119 * however, that this function is only used by the IOCTL call, so the memory 2120 * given will be guaranteed to be contiguous. There is no need to translate 2121 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2122 * contiguous space that is one page size each. 2123 * 2124 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2125 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2126 * contains the second PRP element if the memory being described fits within 2 2127 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2128 * 2129 * A PRP list pointer contains the address of a PRP list, structured as a linear 2130 * array of PRP entries. Each PRP entry in this list describes a segment of 2131 * physical memory. 2132 * 2133 * Each 64-bit PRP entry comprises an address and an offset field. The address 2134 * always points at the beginning of a 4KB physical memory page, and the offset 2135 * describes where within that 4KB page the memory segment begins. Only the 2136 * first element in a PRP list may contain a non-zero offest, implying that all 2137 * memory segments following the first begin at the start of a 4KB page. 2138 * 2139 * Each PRP element normally describes 4KB of physical memory, with exceptions 2140 * for the first and last elements in the list. If the memory being described 2141 * by the list begins at a non-zero offset within the first 4KB page, then the 2142 * first PRP element will contain a non-zero offset indicating where the region 2143 * begins within the 4KB page. The last memory segment may end before the end 2144 * of the 4KB segment, depending upon the overall size of the memory being 2145 * described by the PRP list. 2146 * 2147 * Since PRP entries lack any indication of size, the overall data buffer length 2148 * is used to determine where the end of the data memory buffer is located, and 2149 * how many PRP entries are required to describe it. 2150 * 2151 * @ioc: per adapter object 2152 * @smid: system request message index for getting asscociated SGL 2153 * @nvme_encap_request: the NVMe request msg frame pointer 2154 * @data_out_dma: physical address for WRITES 2155 * @data_out_sz: data xfer size for WRITES 2156 * @data_in_dma: physical address for READS 2157 * @data_in_sz: data xfer size for READS 2158 */ 2159 static void 2160 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2161 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2162 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2163 size_t data_in_sz) 2164 { 2165 int prp_size = NVME_PRP_SIZE; 2166 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2167 __le64 *prp_page; 2168 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2169 u32 offset, entry_len; 2170 u32 page_mask_result, page_mask; 2171 size_t length; 2172 struct mpt3sas_nvme_cmd *nvme_cmd = 2173 (void *)nvme_encap_request->NVMe_Command; 2174 2175 /* 2176 * Not all commands require a data transfer. If no data, just return 2177 * without constructing any PRP. 2178 */ 2179 if (!data_in_sz && !data_out_sz) 2180 return; 2181 prp1_entry = &nvme_cmd->prp1; 2182 prp2_entry = &nvme_cmd->prp2; 2183 prp_entry = prp1_entry; 2184 /* 2185 * For the PRP entries, use the specially allocated buffer of 2186 * contiguous memory. 2187 */ 2188 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2189 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2190 2191 /* 2192 * Check if we are within 1 entry of a page boundary we don't 2193 * want our first entry to be a PRP List entry. 2194 */ 2195 page_mask = ioc->page_size - 1; 2196 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2197 if (!page_mask_result) { 2198 /* Bump up to next page boundary. */ 2199 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2200 prp_page_dma = prp_page_dma + prp_size; 2201 } 2202 2203 /* 2204 * Set PRP physical pointer, which initially points to the current PRP 2205 * DMA memory page. 2206 */ 2207 prp_entry_dma = prp_page_dma; 2208 2209 /* Get physical address and length of the data buffer. */ 2210 if (data_in_sz) { 2211 dma_addr = data_in_dma; 2212 length = data_in_sz; 2213 } else { 2214 dma_addr = data_out_dma; 2215 length = data_out_sz; 2216 } 2217 2218 /* Loop while the length is not zero. */ 2219 while (length) { 2220 /* 2221 * Check if we need to put a list pointer here if we are at 2222 * page boundary - prp_size (8 bytes). 2223 */ 2224 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2225 if (!page_mask_result) { 2226 /* 2227 * This is the last entry in a PRP List, so we need to 2228 * put a PRP list pointer here. What this does is: 2229 * - bump the current memory pointer to the next 2230 * address, which will be the next full page. 2231 * - set the PRP Entry to point to that page. This 2232 * is now the PRP List pointer. 2233 * - bump the PRP Entry pointer the start of the 2234 * next page. Since all of this PRP memory is 2235 * contiguous, no need to get a new page - it's 2236 * just the next address. 2237 */ 2238 prp_entry_dma++; 2239 *prp_entry = cpu_to_le64(prp_entry_dma); 2240 prp_entry++; 2241 } 2242 2243 /* Need to handle if entry will be part of a page. */ 2244 offset = dma_addr & page_mask; 2245 entry_len = ioc->page_size - offset; 2246 2247 if (prp_entry == prp1_entry) { 2248 /* 2249 * Must fill in the first PRP pointer (PRP1) before 2250 * moving on. 2251 */ 2252 *prp1_entry = cpu_to_le64(dma_addr); 2253 2254 /* 2255 * Now point to the second PRP entry within the 2256 * command (PRP2). 2257 */ 2258 prp_entry = prp2_entry; 2259 } else if (prp_entry == prp2_entry) { 2260 /* 2261 * Should the PRP2 entry be a PRP List pointer or just 2262 * a regular PRP pointer? If there is more than one 2263 * more page of data, must use a PRP List pointer. 2264 */ 2265 if (length > ioc->page_size) { 2266 /* 2267 * PRP2 will contain a PRP List pointer because 2268 * more PRP's are needed with this command. The 2269 * list will start at the beginning of the 2270 * contiguous buffer. 2271 */ 2272 *prp2_entry = cpu_to_le64(prp_entry_dma); 2273 2274 /* 2275 * The next PRP Entry will be the start of the 2276 * first PRP List. 2277 */ 2278 prp_entry = prp_page; 2279 } else { 2280 /* 2281 * After this, the PRP Entries are complete. 2282 * This command uses 2 PRP's and no PRP list. 2283 */ 2284 *prp2_entry = cpu_to_le64(dma_addr); 2285 } 2286 } else { 2287 /* 2288 * Put entry in list and bump the addresses. 2289 * 2290 * After PRP1 and PRP2 are filled in, this will fill in 2291 * all remaining PRP entries in a PRP List, one per 2292 * each time through the loop. 2293 */ 2294 *prp_entry = cpu_to_le64(dma_addr); 2295 prp_entry++; 2296 prp_entry_dma++; 2297 } 2298 2299 /* 2300 * Bump the phys address of the command's data buffer by the 2301 * entry_len. 2302 */ 2303 dma_addr += entry_len; 2304 2305 /* Decrement length accounting for last partial page. */ 2306 if (entry_len > length) 2307 length = 0; 2308 else 2309 length -= entry_len; 2310 } 2311 } 2312 2313 /** 2314 * base_make_prp_nvme - 2315 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2316 * 2317 * @ioc: per adapter object 2318 * @scmd: SCSI command from the mid-layer 2319 * @mpi_request: mpi request 2320 * @smid: msg Index 2321 * @sge_count: scatter gather element count. 2322 * 2323 * Return: true: PRPs are built 2324 * false: IEEE SGLs needs to be built 2325 */ 2326 static void 2327 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2328 struct scsi_cmnd *scmd, 2329 Mpi25SCSIIORequest_t *mpi_request, 2330 u16 smid, int sge_count) 2331 { 2332 int sge_len, num_prp_in_chain = 0; 2333 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2334 __le64 *curr_buff; 2335 dma_addr_t msg_dma, sge_addr, offset; 2336 u32 page_mask, page_mask_result; 2337 struct scatterlist *sg_scmd; 2338 u32 first_prp_len; 2339 int data_len = scsi_bufflen(scmd); 2340 u32 nvme_pg_size; 2341 2342 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2343 /* 2344 * Nvme has a very convoluted prp format. One prp is required 2345 * for each page or partial page. Driver need to split up OS sg_list 2346 * entries if it is longer than one page or cross a page 2347 * boundary. Driver also have to insert a PRP list pointer entry as 2348 * the last entry in each physical page of the PRP list. 2349 * 2350 * NOTE: The first PRP "entry" is actually placed in the first 2351 * SGL entry in the main message as IEEE 64 format. The 2nd 2352 * entry in the main message is the chain element, and the rest 2353 * of the PRP entries are built in the contiguous pcie buffer. 2354 */ 2355 page_mask = nvme_pg_size - 1; 2356 2357 /* 2358 * Native SGL is needed. 2359 * Put a chain element in main message frame that points to the first 2360 * chain buffer. 2361 * 2362 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2363 * a native SGL. 2364 */ 2365 2366 /* Set main message chain element pointer */ 2367 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2368 /* 2369 * For NVMe the chain element needs to be the 2nd SG entry in the main 2370 * message. 2371 */ 2372 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2373 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2374 2375 /* 2376 * For the PRP entries, use the specially allocated buffer of 2377 * contiguous memory. Normal chain buffers can't be used 2378 * because each chain buffer would need to be the size of an OS 2379 * page (4k). 2380 */ 2381 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2382 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2383 2384 main_chain_element->Address = cpu_to_le64(msg_dma); 2385 main_chain_element->NextChainOffset = 0; 2386 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2387 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2388 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2389 2390 /* Build first prp, sge need not to be page aligned*/ 2391 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2392 sg_scmd = scsi_sglist(scmd); 2393 sge_addr = sg_dma_address(sg_scmd); 2394 sge_len = sg_dma_len(sg_scmd); 2395 2396 offset = sge_addr & page_mask; 2397 first_prp_len = nvme_pg_size - offset; 2398 2399 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2400 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2401 2402 data_len -= first_prp_len; 2403 2404 if (sge_len > first_prp_len) { 2405 sge_addr += first_prp_len; 2406 sge_len -= first_prp_len; 2407 } else if (data_len && (sge_len == first_prp_len)) { 2408 sg_scmd = sg_next(sg_scmd); 2409 sge_addr = sg_dma_address(sg_scmd); 2410 sge_len = sg_dma_len(sg_scmd); 2411 } 2412 2413 for (;;) { 2414 offset = sge_addr & page_mask; 2415 2416 /* Put PRP pointer due to page boundary*/ 2417 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2418 if (unlikely(!page_mask_result)) { 2419 scmd_printk(KERN_NOTICE, 2420 scmd, "page boundary curr_buff: 0x%p\n", 2421 curr_buff); 2422 msg_dma += 8; 2423 *curr_buff = cpu_to_le64(msg_dma); 2424 curr_buff++; 2425 num_prp_in_chain++; 2426 } 2427 2428 *curr_buff = cpu_to_le64(sge_addr); 2429 curr_buff++; 2430 msg_dma += 8; 2431 num_prp_in_chain++; 2432 2433 sge_addr += nvme_pg_size; 2434 sge_len -= nvme_pg_size; 2435 data_len -= nvme_pg_size; 2436 2437 if (data_len <= 0) 2438 break; 2439 2440 if (sge_len > 0) 2441 continue; 2442 2443 sg_scmd = sg_next(sg_scmd); 2444 sge_addr = sg_dma_address(sg_scmd); 2445 sge_len = sg_dma_len(sg_scmd); 2446 } 2447 2448 main_chain_element->Length = 2449 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2450 return; 2451 } 2452 2453 static bool 2454 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2455 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2456 { 2457 u32 data_length = 0; 2458 bool build_prp = true; 2459 2460 data_length = scsi_bufflen(scmd); 2461 if (pcie_device && 2462 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2463 build_prp = false; 2464 return build_prp; 2465 } 2466 2467 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2468 * we built IEEE SGL 2469 */ 2470 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2471 build_prp = false; 2472 2473 return build_prp; 2474 } 2475 2476 /** 2477 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2478 * determine if the driver needs to build a native SGL. If so, that native 2479 * SGL is built in the special contiguous buffers allocated especially for 2480 * PCIe SGL creation. If the driver will not build a native SGL, return 2481 * TRUE and a normal IEEE SGL will be built. Currently this routine 2482 * supports NVMe. 2483 * @ioc: per adapter object 2484 * @mpi_request: mf request pointer 2485 * @smid: system request message index 2486 * @scmd: scsi command 2487 * @pcie_device: points to the PCIe device's info 2488 * 2489 * Return: 0 if native SGL was built, 1 if no SGL was built 2490 */ 2491 static int 2492 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2493 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2494 struct _pcie_device *pcie_device) 2495 { 2496 int sges_left; 2497 2498 /* Get the SG list pointer and info. */ 2499 sges_left = scsi_dma_map(scmd); 2500 if (sges_left < 0) { 2501 sdev_printk(KERN_ERR, scmd->device, 2502 "scsi_dma_map failed: request for %d bytes!\n", 2503 scsi_bufflen(scmd)); 2504 return 1; 2505 } 2506 2507 /* Check if we need to build a native SG list. */ 2508 if (base_is_prp_possible(ioc, pcie_device, 2509 scmd, sges_left) == 0) { 2510 /* We built a native SG list, just return. */ 2511 goto out; 2512 } 2513 2514 /* 2515 * Build native NVMe PRP. 2516 */ 2517 base_make_prp_nvme(ioc, scmd, mpi_request, 2518 smid, sges_left); 2519 2520 return 0; 2521 out: 2522 scsi_dma_unmap(scmd); 2523 return 1; 2524 } 2525 2526 /** 2527 * _base_add_sg_single_ieee - add sg element for IEEE format 2528 * @paddr: virtual address for SGE 2529 * @flags: SGE flags 2530 * @chain_offset: number of 128 byte elements from start of segment 2531 * @length: data transfer length 2532 * @dma_addr: Physical address 2533 */ 2534 static void 2535 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2536 dma_addr_t dma_addr) 2537 { 2538 Mpi25IeeeSgeChain64_t *sgel = paddr; 2539 2540 sgel->Flags = flags; 2541 sgel->NextChainOffset = chain_offset; 2542 sgel->Length = cpu_to_le32(length); 2543 sgel->Address = cpu_to_le64(dma_addr); 2544 } 2545 2546 /** 2547 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2548 * @ioc: per adapter object 2549 * @paddr: virtual address for SGE 2550 * 2551 * Create a zero length scatter gather entry to insure the IOCs hardware has 2552 * something to use if the target device goes brain dead and tries 2553 * to send data even when none is asked for. 2554 */ 2555 static void 2556 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2557 { 2558 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2559 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2560 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2561 2562 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2563 } 2564 2565 /** 2566 * _base_build_sg_scmd - main sg creation routine 2567 * pcie_device is unused here! 2568 * @ioc: per adapter object 2569 * @scmd: scsi command 2570 * @smid: system request message index 2571 * @unused: unused pcie_device pointer 2572 * Context: none. 2573 * 2574 * The main routine that builds scatter gather table from a given 2575 * scsi request sent via the .queuecommand main handler. 2576 * 2577 * Return: 0 success, anything else error 2578 */ 2579 static int 2580 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2581 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2582 { 2583 Mpi2SCSIIORequest_t *mpi_request; 2584 dma_addr_t chain_dma; 2585 struct scatterlist *sg_scmd; 2586 void *sg_local, *chain; 2587 u32 chain_offset; 2588 u32 chain_length; 2589 u32 chain_flags; 2590 int sges_left; 2591 u32 sges_in_segment; 2592 u32 sgl_flags; 2593 u32 sgl_flags_last_element; 2594 u32 sgl_flags_end_buffer; 2595 struct chain_tracker *chain_req; 2596 2597 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2598 2599 /* init scatter gather flags */ 2600 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2601 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2602 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2603 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2604 << MPI2_SGE_FLAGS_SHIFT; 2605 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2606 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2607 << MPI2_SGE_FLAGS_SHIFT; 2608 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2609 2610 sg_scmd = scsi_sglist(scmd); 2611 sges_left = scsi_dma_map(scmd); 2612 if (sges_left < 0) { 2613 sdev_printk(KERN_ERR, scmd->device, 2614 "scsi_dma_map failed: request for %d bytes!\n", 2615 scsi_bufflen(scmd)); 2616 return -ENOMEM; 2617 } 2618 2619 sg_local = &mpi_request->SGL; 2620 sges_in_segment = ioc->max_sges_in_main_message; 2621 if (sges_left <= sges_in_segment) 2622 goto fill_in_last_segment; 2623 2624 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2625 (sges_in_segment * ioc->sge_size))/4; 2626 2627 /* fill in main message segment when there is a chain following */ 2628 while (sges_in_segment) { 2629 if (sges_in_segment == 1) 2630 ioc->base_add_sg_single(sg_local, 2631 sgl_flags_last_element | sg_dma_len(sg_scmd), 2632 sg_dma_address(sg_scmd)); 2633 else 2634 ioc->base_add_sg_single(sg_local, sgl_flags | 2635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2636 sg_scmd = sg_next(sg_scmd); 2637 sg_local += ioc->sge_size; 2638 sges_left--; 2639 sges_in_segment--; 2640 } 2641 2642 /* initializing the chain flags and pointers */ 2643 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2644 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2645 if (!chain_req) 2646 return -1; 2647 chain = chain_req->chain_buffer; 2648 chain_dma = chain_req->chain_buffer_dma; 2649 do { 2650 sges_in_segment = (sges_left <= 2651 ioc->max_sges_in_chain_message) ? sges_left : 2652 ioc->max_sges_in_chain_message; 2653 chain_offset = (sges_left == sges_in_segment) ? 2654 0 : (sges_in_segment * ioc->sge_size)/4; 2655 chain_length = sges_in_segment * ioc->sge_size; 2656 if (chain_offset) { 2657 chain_offset = chain_offset << 2658 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2659 chain_length += ioc->sge_size; 2660 } 2661 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2662 chain_length, chain_dma); 2663 sg_local = chain; 2664 if (!chain_offset) 2665 goto fill_in_last_segment; 2666 2667 /* fill in chain segments */ 2668 while (sges_in_segment) { 2669 if (sges_in_segment == 1) 2670 ioc->base_add_sg_single(sg_local, 2671 sgl_flags_last_element | 2672 sg_dma_len(sg_scmd), 2673 sg_dma_address(sg_scmd)); 2674 else 2675 ioc->base_add_sg_single(sg_local, sgl_flags | 2676 sg_dma_len(sg_scmd), 2677 sg_dma_address(sg_scmd)); 2678 sg_scmd = sg_next(sg_scmd); 2679 sg_local += ioc->sge_size; 2680 sges_left--; 2681 sges_in_segment--; 2682 } 2683 2684 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2685 if (!chain_req) 2686 return -1; 2687 chain = chain_req->chain_buffer; 2688 chain_dma = chain_req->chain_buffer_dma; 2689 } while (1); 2690 2691 2692 fill_in_last_segment: 2693 2694 /* fill the last segment */ 2695 while (sges_left) { 2696 if (sges_left == 1) 2697 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2698 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2699 else 2700 ioc->base_add_sg_single(sg_local, sgl_flags | 2701 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2702 sg_scmd = sg_next(sg_scmd); 2703 sg_local += ioc->sge_size; 2704 sges_left--; 2705 } 2706 2707 return 0; 2708 } 2709 2710 /** 2711 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2712 * @ioc: per adapter object 2713 * @scmd: scsi command 2714 * @smid: system request message index 2715 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2716 * constructed on need. 2717 * Context: none. 2718 * 2719 * The main routine that builds scatter gather table from a given 2720 * scsi request sent via the .queuecommand main handler. 2721 * 2722 * Return: 0 success, anything else error 2723 */ 2724 static int 2725 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2726 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2727 { 2728 Mpi25SCSIIORequest_t *mpi_request; 2729 dma_addr_t chain_dma; 2730 struct scatterlist *sg_scmd; 2731 void *sg_local, *chain; 2732 u32 chain_offset; 2733 u32 chain_length; 2734 int sges_left; 2735 u32 sges_in_segment; 2736 u8 simple_sgl_flags; 2737 u8 simple_sgl_flags_last; 2738 u8 chain_sgl_flags; 2739 struct chain_tracker *chain_req; 2740 2741 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2742 2743 /* init scatter gather flags */ 2744 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2745 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2746 simple_sgl_flags_last = simple_sgl_flags | 2747 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2748 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2749 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2750 2751 /* Check if we need to build a native SG list. */ 2752 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2753 smid, scmd, pcie_device) == 0)) { 2754 /* We built a native SG list, just return. */ 2755 return 0; 2756 } 2757 2758 sg_scmd = scsi_sglist(scmd); 2759 sges_left = scsi_dma_map(scmd); 2760 if (sges_left < 0) { 2761 sdev_printk(KERN_ERR, scmd->device, 2762 "scsi_dma_map failed: request for %d bytes!\n", 2763 scsi_bufflen(scmd)); 2764 return -ENOMEM; 2765 } 2766 2767 sg_local = &mpi_request->SGL; 2768 sges_in_segment = (ioc->request_sz - 2769 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2770 if (sges_left <= sges_in_segment) 2771 goto fill_in_last_segment; 2772 2773 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2774 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2775 2776 /* fill in main message segment when there is a chain following */ 2777 while (sges_in_segment > 1) { 2778 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2779 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2780 sg_scmd = sg_next(sg_scmd); 2781 sg_local += ioc->sge_size_ieee; 2782 sges_left--; 2783 sges_in_segment--; 2784 } 2785 2786 /* initializing the pointers */ 2787 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2788 if (!chain_req) 2789 return -1; 2790 chain = chain_req->chain_buffer; 2791 chain_dma = chain_req->chain_buffer_dma; 2792 do { 2793 sges_in_segment = (sges_left <= 2794 ioc->max_sges_in_chain_message) ? sges_left : 2795 ioc->max_sges_in_chain_message; 2796 chain_offset = (sges_left == sges_in_segment) ? 2797 0 : sges_in_segment; 2798 chain_length = sges_in_segment * ioc->sge_size_ieee; 2799 if (chain_offset) 2800 chain_length += ioc->sge_size_ieee; 2801 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2802 chain_offset, chain_length, chain_dma); 2803 2804 sg_local = chain; 2805 if (!chain_offset) 2806 goto fill_in_last_segment; 2807 2808 /* fill in chain segments */ 2809 while (sges_in_segment) { 2810 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2811 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2812 sg_scmd = sg_next(sg_scmd); 2813 sg_local += ioc->sge_size_ieee; 2814 sges_left--; 2815 sges_in_segment--; 2816 } 2817 2818 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2819 if (!chain_req) 2820 return -1; 2821 chain = chain_req->chain_buffer; 2822 chain_dma = chain_req->chain_buffer_dma; 2823 } while (1); 2824 2825 2826 fill_in_last_segment: 2827 2828 /* fill the last segment */ 2829 while (sges_left > 0) { 2830 if (sges_left == 1) 2831 _base_add_sg_single_ieee(sg_local, 2832 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2833 sg_dma_address(sg_scmd)); 2834 else 2835 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2836 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2837 sg_scmd = sg_next(sg_scmd); 2838 sg_local += ioc->sge_size_ieee; 2839 sges_left--; 2840 } 2841 2842 return 0; 2843 } 2844 2845 /** 2846 * _base_build_sg_ieee - build generic sg for IEEE format 2847 * @ioc: per adapter object 2848 * @psge: virtual address for SGE 2849 * @data_out_dma: physical address for WRITES 2850 * @data_out_sz: data xfer size for WRITES 2851 * @data_in_dma: physical address for READS 2852 * @data_in_sz: data xfer size for READS 2853 */ 2854 static void 2855 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2856 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2857 size_t data_in_sz) 2858 { 2859 u8 sgl_flags; 2860 2861 if (!data_out_sz && !data_in_sz) { 2862 _base_build_zero_len_sge_ieee(ioc, psge); 2863 return; 2864 } 2865 2866 if (data_out_sz && data_in_sz) { 2867 /* WRITE sgel first */ 2868 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2869 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2870 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2871 data_out_dma); 2872 2873 /* incr sgel */ 2874 psge += ioc->sge_size_ieee; 2875 2876 /* READ sgel last */ 2877 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2878 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2879 data_in_dma); 2880 } else if (data_out_sz) /* WRITE */ { 2881 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2882 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2883 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2884 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2885 data_out_dma); 2886 } else if (data_in_sz) /* READ */ { 2887 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2888 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2889 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2890 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2891 data_in_dma); 2892 } 2893 } 2894 2895 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2896 2897 /** 2898 * _base_config_dma_addressing - set dma addressing 2899 * @ioc: per adapter object 2900 * @pdev: PCI device struct 2901 * 2902 * Return: 0 for success, non-zero for failure. 2903 */ 2904 static int 2905 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2906 { 2907 struct sysinfo s; 2908 int dma_mask; 2909 2910 if (ioc->is_mcpu_endpoint || 2911 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2912 dma_get_required_mask(&pdev->dev) <= 32) 2913 dma_mask = 32; 2914 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2915 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2916 dma_mask = 63; 2917 else 2918 dma_mask = 64; 2919 2920 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2921 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) 2922 return -ENODEV; 2923 2924 if (dma_mask > 32) { 2925 ioc->base_add_sg_single = &_base_add_sg_single_64; 2926 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2927 } else { 2928 ioc->base_add_sg_single = &_base_add_sg_single_32; 2929 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2930 } 2931 2932 si_meminfo(&s); 2933 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2934 dma_mask, convert_to_kb(s.totalram)); 2935 2936 return 0; 2937 } 2938 2939 /** 2940 * _base_check_enable_msix - checks MSIX capabable. 2941 * @ioc: per adapter object 2942 * 2943 * Check to see if card is capable of MSIX, and set number 2944 * of available msix vectors 2945 */ 2946 static int 2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2948 { 2949 int base; 2950 u16 message_control; 2951 2952 /* Check whether controller SAS2008 B0 controller, 2953 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2954 */ 2955 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2956 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2957 return -EINVAL; 2958 } 2959 2960 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2961 if (!base) { 2962 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2963 return -EINVAL; 2964 } 2965 2966 /* get msix vector count */ 2967 /* NUMA_IO not supported for older controllers */ 2968 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2969 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2970 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2971 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2972 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2973 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2974 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2975 ioc->msix_vector_count = 1; 2976 else { 2977 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2978 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2979 } 2980 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2981 ioc->msix_vector_count)); 2982 return 0; 2983 } 2984 2985 /** 2986 * _base_free_irq - free irq 2987 * @ioc: per adapter object 2988 * 2989 * Freeing respective reply_queue from the list. 2990 */ 2991 static void 2992 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2993 { 2994 struct adapter_reply_queue *reply_q, *next; 2995 2996 if (list_empty(&ioc->reply_queue_list)) 2997 return; 2998 2999 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3000 list_del(&reply_q->list); 3001 if (ioc->smp_affinity_enable) 3002 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3003 reply_q->msix_index), NULL); 3004 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3005 reply_q); 3006 kfree(reply_q); 3007 } 3008 } 3009 3010 /** 3011 * _base_request_irq - request irq 3012 * @ioc: per adapter object 3013 * @index: msix index into vector table 3014 * 3015 * Inserting respective reply_queue into the list. 3016 */ 3017 static int 3018 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3019 { 3020 struct pci_dev *pdev = ioc->pdev; 3021 struct adapter_reply_queue *reply_q; 3022 int r; 3023 3024 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3025 if (!reply_q) { 3026 ioc_err(ioc, "unable to allocate memory %zu!\n", 3027 sizeof(struct adapter_reply_queue)); 3028 return -ENOMEM; 3029 } 3030 reply_q->ioc = ioc; 3031 reply_q->msix_index = index; 3032 3033 atomic_set(&reply_q->busy, 0); 3034 if (ioc->msix_enable) 3035 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3036 ioc->driver_name, ioc->id, index); 3037 else 3038 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3039 ioc->driver_name, ioc->id); 3040 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3041 IRQF_SHARED, reply_q->name, reply_q); 3042 if (r) { 3043 pr_err("%s: unable to allocate interrupt %d!\n", 3044 reply_q->name, pci_irq_vector(pdev, index)); 3045 kfree(reply_q); 3046 return -EBUSY; 3047 } 3048 3049 INIT_LIST_HEAD(&reply_q->list); 3050 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3051 return 0; 3052 } 3053 3054 /** 3055 * _base_assign_reply_queues - assigning msix index for each cpu 3056 * @ioc: per adapter object 3057 * 3058 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3059 * 3060 * It would nice if we could call irq_set_affinity, however it is not 3061 * an exported symbol 3062 */ 3063 static void 3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3065 { 3066 unsigned int cpu, nr_cpus, nr_msix, index = 0; 3067 struct adapter_reply_queue *reply_q; 3068 int local_numa_node; 3069 3070 if (!_base_is_controller_msix_enabled(ioc)) 3071 return; 3072 3073 if (ioc->msix_load_balance) 3074 return; 3075 3076 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3077 3078 nr_cpus = num_online_cpus(); 3079 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3080 ioc->facts.MaxMSIxVectors); 3081 if (!nr_msix) 3082 return; 3083 3084 if (ioc->smp_affinity_enable) { 3085 3086 /* 3087 * set irq affinity to local numa node for those irqs 3088 * corresponding to high iops queues. 3089 */ 3090 if (ioc->high_iops_queues) { 3091 local_numa_node = dev_to_node(&ioc->pdev->dev); 3092 for (index = 0; index < ioc->high_iops_queues; 3093 index++) { 3094 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3095 index), cpumask_of_node(local_numa_node)); 3096 } 3097 } 3098 3099 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3100 const cpumask_t *mask; 3101 3102 if (reply_q->msix_index < ioc->high_iops_queues) 3103 continue; 3104 3105 mask = pci_irq_get_affinity(ioc->pdev, 3106 reply_q->msix_index); 3107 if (!mask) { 3108 ioc_warn(ioc, "no affinity for msi %x\n", 3109 reply_q->msix_index); 3110 goto fall_back; 3111 } 3112 3113 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3114 if (cpu >= ioc->cpu_msix_table_sz) 3115 break; 3116 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3117 } 3118 } 3119 return; 3120 } 3121 3122 fall_back: 3123 cpu = cpumask_first(cpu_online_mask); 3124 nr_msix -= ioc->high_iops_queues; 3125 index = 0; 3126 3127 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3128 unsigned int i, group = nr_cpus / nr_msix; 3129 3130 if (reply_q->msix_index < ioc->high_iops_queues) 3131 continue; 3132 3133 if (cpu >= nr_cpus) 3134 break; 3135 3136 if (index < nr_cpus % nr_msix) 3137 group++; 3138 3139 for (i = 0 ; i < group ; i++) { 3140 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3141 cpu = cpumask_next(cpu, cpu_online_mask); 3142 } 3143 index++; 3144 } 3145 } 3146 3147 /** 3148 * _base_check_and_enable_high_iops_queues - enable high iops mode 3149 * @ioc: per adapter object 3150 * @hba_msix_vector_count: msix vectors supported by HBA 3151 * 3152 * Enable high iops queues only if 3153 * - HBA is a SEA/AERO controller and 3154 * - MSI-Xs vector supported by the HBA is 128 and 3155 * - total CPU count in the system >=16 and 3156 * - loaded driver with default max_msix_vectors module parameter and 3157 * - system booted in non kdump mode 3158 * 3159 * returns nothing. 3160 */ 3161 static void 3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3163 int hba_msix_vector_count) 3164 { 3165 u16 lnksta, speed; 3166 3167 if (perf_mode == MPT_PERF_MODE_IOPS || 3168 perf_mode == MPT_PERF_MODE_LATENCY) { 3169 ioc->high_iops_queues = 0; 3170 return; 3171 } 3172 3173 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3174 3175 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3176 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3177 3178 if (speed < 0x4) { 3179 ioc->high_iops_queues = 0; 3180 return; 3181 } 3182 } 3183 3184 if (!reset_devices && ioc->is_aero_ioc && 3185 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3186 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3187 max_msix_vectors == -1) 3188 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3189 else 3190 ioc->high_iops_queues = 0; 3191 } 3192 3193 /** 3194 * _base_disable_msix - disables msix 3195 * @ioc: per adapter object 3196 * 3197 */ 3198 static void 3199 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3200 { 3201 if (!ioc->msix_enable) 3202 return; 3203 pci_free_irq_vectors(ioc->pdev); 3204 ioc->msix_enable = 0; 3205 } 3206 3207 /** 3208 * _base_alloc_irq_vectors - allocate msix vectors 3209 * @ioc: per adapter object 3210 * 3211 */ 3212 static int 3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3214 { 3215 int i, irq_flags = PCI_IRQ_MSIX; 3216 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3217 struct irq_affinity *descp = &desc; 3218 3219 if (ioc->smp_affinity_enable) 3220 irq_flags |= PCI_IRQ_AFFINITY; 3221 else 3222 descp = NULL; 3223 3224 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3225 ioc->reply_queue_count); 3226 3227 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3228 ioc->high_iops_queues, 3229 ioc->reply_queue_count, irq_flags, descp); 3230 3231 return i; 3232 } 3233 3234 /** 3235 * _base_enable_msix - enables msix, failback to io_apic 3236 * @ioc: per adapter object 3237 * 3238 */ 3239 static int 3240 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3241 { 3242 int r; 3243 int i, local_max_msix_vectors; 3244 u8 try_msix = 0; 3245 3246 ioc->msix_load_balance = false; 3247 3248 if (msix_disable == -1 || msix_disable == 0) 3249 try_msix = 1; 3250 3251 if (!try_msix) 3252 goto try_ioapic; 3253 3254 if (_base_check_enable_msix(ioc) != 0) 3255 goto try_ioapic; 3256 3257 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3258 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3259 ioc->cpu_count, max_msix_vectors); 3260 if (ioc->is_aero_ioc) 3261 _base_check_and_enable_high_iops_queues(ioc, 3262 ioc->msix_vector_count); 3263 ioc->reply_queue_count = 3264 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3265 ioc->msix_vector_count); 3266 3267 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3268 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3269 else 3270 local_max_msix_vectors = max_msix_vectors; 3271 3272 if (local_max_msix_vectors > 0) 3273 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3274 ioc->reply_queue_count); 3275 else if (local_max_msix_vectors == 0) 3276 goto try_ioapic; 3277 3278 /* 3279 * Enable msix_load_balance only if combined reply queue mode is 3280 * disabled on SAS3 & above generation HBA devices. 3281 */ 3282 if (!ioc->combined_reply_queue && 3283 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3284 ioc_info(ioc, 3285 "combined ReplyQueue is off, Enabling msix load balance\n"); 3286 ioc->msix_load_balance = true; 3287 } 3288 3289 /* 3290 * smp affinity setting is not need when msix load balance 3291 * is enabled. 3292 */ 3293 if (ioc->msix_load_balance) 3294 ioc->smp_affinity_enable = 0; 3295 3296 r = _base_alloc_irq_vectors(ioc); 3297 if (r < 0) { 3298 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3299 goto try_ioapic; 3300 } 3301 3302 ioc->msix_enable = 1; 3303 ioc->reply_queue_count = r; 3304 for (i = 0; i < ioc->reply_queue_count; i++) { 3305 r = _base_request_irq(ioc, i); 3306 if (r) { 3307 _base_free_irq(ioc); 3308 _base_disable_msix(ioc); 3309 goto try_ioapic; 3310 } 3311 } 3312 3313 ioc_info(ioc, "High IOPs queues : %s\n", 3314 ioc->high_iops_queues ? "enabled" : "disabled"); 3315 3316 return 0; 3317 3318 /* failback to io_apic interrupt routing */ 3319 try_ioapic: 3320 ioc->high_iops_queues = 0; 3321 ioc_info(ioc, "High IOPs queues : disabled\n"); 3322 ioc->reply_queue_count = 1; 3323 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3324 if (r < 0) { 3325 dfailprintk(ioc, 3326 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3327 r)); 3328 } else 3329 r = _base_request_irq(ioc, 0); 3330 3331 return r; 3332 } 3333 3334 /** 3335 * mpt3sas_base_unmap_resources - free controller resources 3336 * @ioc: per adapter object 3337 */ 3338 static void 3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3340 { 3341 struct pci_dev *pdev = ioc->pdev; 3342 3343 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3344 3345 _base_free_irq(ioc); 3346 _base_disable_msix(ioc); 3347 3348 kfree(ioc->replyPostRegisterIndex); 3349 ioc->replyPostRegisterIndex = NULL; 3350 3351 3352 if (ioc->chip_phys) { 3353 iounmap(ioc->chip); 3354 ioc->chip_phys = 0; 3355 } 3356 3357 if (pci_is_enabled(pdev)) { 3358 pci_release_selected_regions(ioc->pdev, ioc->bars); 3359 pci_disable_pcie_error_reporting(pdev); 3360 pci_disable_device(pdev); 3361 } 3362 } 3363 3364 static int 3365 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3366 3367 /** 3368 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3369 * and if it is in fault state then issue diag reset. 3370 * @ioc: per adapter object 3371 * 3372 * Returns: 0 for success, non-zero for failure. 3373 */ 3374 static int 3375 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3376 { 3377 u32 ioc_state; 3378 int rc = -EFAULT; 3379 3380 dinitprintk(ioc, pr_info("%s\n", __func__)); 3381 if (ioc->pci_error_recovery) 3382 return 0; 3383 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3384 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3385 3386 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3387 mpt3sas_print_fault_code(ioc, ioc_state & 3388 MPI2_DOORBELL_DATA_MASK); 3389 rc = _base_diag_reset(ioc); 3390 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3391 MPI2_IOC_STATE_COREDUMP) { 3392 mpt3sas_print_coredump_info(ioc, ioc_state & 3393 MPI2_DOORBELL_DATA_MASK); 3394 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3395 rc = _base_diag_reset(ioc); 3396 } 3397 3398 return rc; 3399 } 3400 3401 /** 3402 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3403 * @ioc: per adapter object 3404 * 3405 * Return: 0 for success, non-zero for failure. 3406 */ 3407 int 3408 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3409 { 3410 struct pci_dev *pdev = ioc->pdev; 3411 u32 memap_sz; 3412 u32 pio_sz; 3413 int i, r = 0, rc; 3414 u64 pio_chip = 0; 3415 phys_addr_t chip_phys = 0; 3416 struct adapter_reply_queue *reply_q; 3417 3418 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3419 3420 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3421 if (pci_enable_device_mem(pdev)) { 3422 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3423 ioc->bars = 0; 3424 return -ENODEV; 3425 } 3426 3427 3428 if (pci_request_selected_regions(pdev, ioc->bars, 3429 ioc->driver_name)) { 3430 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3431 ioc->bars = 0; 3432 r = -ENODEV; 3433 goto out_fail; 3434 } 3435 3436 /* AER (Advanced Error Reporting) hooks */ 3437 pci_enable_pcie_error_reporting(pdev); 3438 3439 pci_set_master(pdev); 3440 3441 3442 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3443 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3444 r = -ENODEV; 3445 goto out_fail; 3446 } 3447 3448 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3449 (!memap_sz || !pio_sz); i++) { 3450 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3451 if (pio_sz) 3452 continue; 3453 pio_chip = (u64)pci_resource_start(pdev, i); 3454 pio_sz = pci_resource_len(pdev, i); 3455 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3456 if (memap_sz) 3457 continue; 3458 ioc->chip_phys = pci_resource_start(pdev, i); 3459 chip_phys = ioc->chip_phys; 3460 memap_sz = pci_resource_len(pdev, i); 3461 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3462 } 3463 } 3464 3465 if (ioc->chip == NULL) { 3466 ioc_err(ioc, 3467 "unable to map adapter memory! or resource not found\n"); 3468 r = -EINVAL; 3469 goto out_fail; 3470 } 3471 3472 mpt3sas_base_mask_interrupts(ioc); 3473 3474 r = _base_get_ioc_facts(ioc); 3475 if (r) { 3476 rc = _base_check_for_fault_and_issue_reset(ioc); 3477 if (rc || (_base_get_ioc_facts(ioc))) 3478 goto out_fail; 3479 } 3480 3481 if (!ioc->rdpq_array_enable_assigned) { 3482 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3483 ioc->rdpq_array_enable_assigned = 1; 3484 } 3485 3486 r = _base_enable_msix(ioc); 3487 if (r) 3488 goto out_fail; 3489 3490 if (!ioc->is_driver_loading) 3491 _base_init_irqpolls(ioc); 3492 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3493 * revision HBAs and also only when reply queue count is greater than 8 3494 */ 3495 if (ioc->combined_reply_queue) { 3496 /* Determine the Supplemental Reply Post Host Index Registers 3497 * Addresse. Supplemental Reply Post Host Index Registers 3498 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3499 * each register is at offset bytes of 3500 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3501 */ 3502 ioc->replyPostRegisterIndex = kcalloc( 3503 ioc->combined_reply_index_count, 3504 sizeof(resource_size_t *), GFP_KERNEL); 3505 if (!ioc->replyPostRegisterIndex) { 3506 ioc_err(ioc, 3507 "allocation for replyPostRegisterIndex failed!\n"); 3508 r = -ENOMEM; 3509 goto out_fail; 3510 } 3511 3512 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3513 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3514 ((u8 __force *)&ioc->chip->Doorbell + 3515 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3516 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3517 } 3518 } 3519 3520 if (ioc->is_warpdrive) { 3521 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3522 &ioc->chip->ReplyPostHostIndex; 3523 3524 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3525 ioc->reply_post_host_index[i] = 3526 (resource_size_t __iomem *) 3527 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3528 * 4))); 3529 } 3530 3531 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3532 pr_info("%s: %s enabled: IRQ %d\n", 3533 reply_q->name, 3534 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3535 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3536 3537 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3538 &chip_phys, ioc->chip, memap_sz); 3539 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3540 (unsigned long long)pio_chip, pio_sz); 3541 3542 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3543 pci_save_state(pdev); 3544 return 0; 3545 3546 out_fail: 3547 mpt3sas_base_unmap_resources(ioc); 3548 return r; 3549 } 3550 3551 /** 3552 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3553 * @ioc: per adapter object 3554 * @smid: system request message index(smid zero is invalid) 3555 * 3556 * Return: virt pointer to message frame. 3557 */ 3558 void * 3559 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3560 { 3561 return (void *)(ioc->request + (smid * ioc->request_sz)); 3562 } 3563 3564 /** 3565 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3566 * @ioc: per adapter object 3567 * @smid: system request message index 3568 * 3569 * Return: virt pointer to sense buffer. 3570 */ 3571 void * 3572 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3573 { 3574 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3575 } 3576 3577 /** 3578 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3579 * @ioc: per adapter object 3580 * @smid: system request message index 3581 * 3582 * Return: phys pointer to the low 32bit address of the sense buffer. 3583 */ 3584 __le32 3585 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3586 { 3587 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3588 SCSI_SENSE_BUFFERSIZE)); 3589 } 3590 3591 /** 3592 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3593 * @ioc: per adapter object 3594 * @smid: system request message index 3595 * 3596 * Return: virt pointer to a PCIe SGL. 3597 */ 3598 void * 3599 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3600 { 3601 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3602 } 3603 3604 /** 3605 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3606 * @ioc: per adapter object 3607 * @smid: system request message index 3608 * 3609 * Return: phys pointer to the address of the PCIe buffer. 3610 */ 3611 dma_addr_t 3612 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3613 { 3614 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3615 } 3616 3617 /** 3618 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3619 * @ioc: per adapter object 3620 * @phys_addr: lower 32 physical addr of the reply 3621 * 3622 * Converts 32bit lower physical addr into a virt address. 3623 */ 3624 void * 3625 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3626 { 3627 if (!phys_addr) 3628 return NULL; 3629 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3630 } 3631 3632 /** 3633 * _base_get_msix_index - get the msix index 3634 * @ioc: per adapter object 3635 * @scmd: scsi_cmnd object 3636 * 3637 * returns msix index of general reply queues, 3638 * i.e. reply queue on which IO request's reply 3639 * should be posted by the HBA firmware. 3640 */ 3641 static inline u8 3642 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3643 struct scsi_cmnd *scmd) 3644 { 3645 /* Enables reply_queue load balancing */ 3646 if (ioc->msix_load_balance) 3647 return ioc->reply_queue_count ? 3648 base_mod64(atomic64_add_return(1, 3649 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3650 3651 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3652 } 3653 3654 /** 3655 * _base_sdev_nr_inflight_request -get number of inflight requests 3656 * of a request queue. 3657 * @q: request_queue object 3658 * 3659 * returns number of inflight request of a request queue. 3660 */ 3661 inline unsigned long 3662 _base_sdev_nr_inflight_request(struct request_queue *q) 3663 { 3664 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; 3665 3666 return atomic_read(&hctx->nr_active); 3667 } 3668 3669 3670 /** 3671 * _base_get_high_iops_msix_index - get the msix index of 3672 * high iops queues 3673 * @ioc: per adapter object 3674 * @scmd: scsi_cmnd object 3675 * 3676 * Returns: msix index of high iops reply queues. 3677 * i.e. high iops reply queue on which IO request's 3678 * reply should be posted by the HBA firmware. 3679 */ 3680 static inline u8 3681 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3682 struct scsi_cmnd *scmd) 3683 { 3684 /** 3685 * Round robin the IO interrupts among the high iops 3686 * reply queues in terms of batch count 16 when outstanding 3687 * IOs on the target device is >=8. 3688 */ 3689 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > 3690 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3691 return base_mod64(( 3692 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3693 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3694 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3695 3696 return _base_get_msix_index(ioc, scmd); 3697 } 3698 3699 /** 3700 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3701 * @ioc: per adapter object 3702 * @cb_idx: callback index 3703 * 3704 * Return: smid (zero is invalid) 3705 */ 3706 u16 3707 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3708 { 3709 unsigned long flags; 3710 struct request_tracker *request; 3711 u16 smid; 3712 3713 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3714 if (list_empty(&ioc->internal_free_list)) { 3715 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3716 ioc_err(ioc, "%s: smid not available\n", __func__); 3717 return 0; 3718 } 3719 3720 request = list_entry(ioc->internal_free_list.next, 3721 struct request_tracker, tracker_list); 3722 request->cb_idx = cb_idx; 3723 smid = request->smid; 3724 list_del(&request->tracker_list); 3725 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3726 return smid; 3727 } 3728 3729 /** 3730 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3731 * @ioc: per adapter object 3732 * @cb_idx: callback index 3733 * @scmd: pointer to scsi command object 3734 * 3735 * Return: smid (zero is invalid) 3736 */ 3737 u16 3738 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3739 struct scsi_cmnd *scmd) 3740 { 3741 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3742 unsigned int tag = scmd->request->tag; 3743 u16 smid; 3744 3745 smid = tag + 1; 3746 request->cb_idx = cb_idx; 3747 request->smid = smid; 3748 request->scmd = scmd; 3749 INIT_LIST_HEAD(&request->chain_list); 3750 return smid; 3751 } 3752 3753 /** 3754 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3755 * @ioc: per adapter object 3756 * @cb_idx: callback index 3757 * 3758 * Return: smid (zero is invalid) 3759 */ 3760 u16 3761 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3762 { 3763 unsigned long flags; 3764 struct request_tracker *request; 3765 u16 smid; 3766 3767 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3768 if (list_empty(&ioc->hpr_free_list)) { 3769 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3770 return 0; 3771 } 3772 3773 request = list_entry(ioc->hpr_free_list.next, 3774 struct request_tracker, tracker_list); 3775 request->cb_idx = cb_idx; 3776 smid = request->smid; 3777 list_del(&request->tracker_list); 3778 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3779 return smid; 3780 } 3781 3782 static void 3783 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3784 { 3785 /* 3786 * See _wait_for_commands_to_complete() call with regards to this code. 3787 */ 3788 if (ioc->shost_recovery && ioc->pending_io_count) { 3789 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3790 if (ioc->pending_io_count == 0) 3791 wake_up(&ioc->reset_wq); 3792 } 3793 } 3794 3795 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3796 struct scsiio_tracker *st) 3797 { 3798 if (WARN_ON(st->smid == 0)) 3799 return; 3800 st->cb_idx = 0xFF; 3801 st->direct_io = 0; 3802 st->scmd = NULL; 3803 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3804 st->smid = 0; 3805 } 3806 3807 /** 3808 * mpt3sas_base_free_smid - put smid back on free_list 3809 * @ioc: per adapter object 3810 * @smid: system request message index 3811 */ 3812 void 3813 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3814 { 3815 unsigned long flags; 3816 int i; 3817 3818 if (smid < ioc->hi_priority_smid) { 3819 struct scsiio_tracker *st; 3820 void *request; 3821 3822 st = _get_st_from_smid(ioc, smid); 3823 if (!st) { 3824 _base_recovery_check(ioc); 3825 return; 3826 } 3827 3828 /* Clear MPI request frame */ 3829 request = mpt3sas_base_get_msg_frame(ioc, smid); 3830 memset(request, 0, ioc->request_sz); 3831 3832 mpt3sas_base_clear_st(ioc, st); 3833 _base_recovery_check(ioc); 3834 return; 3835 } 3836 3837 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3838 if (smid < ioc->internal_smid) { 3839 /* hi-priority */ 3840 i = smid - ioc->hi_priority_smid; 3841 ioc->hpr_lookup[i].cb_idx = 0xFF; 3842 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3843 } else if (smid <= ioc->hba_queue_depth) { 3844 /* internal queue */ 3845 i = smid - ioc->internal_smid; 3846 ioc->internal_lookup[i].cb_idx = 0xFF; 3847 list_add(&ioc->internal_lookup[i].tracker_list, 3848 &ioc->internal_free_list); 3849 } 3850 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3851 } 3852 3853 /** 3854 * _base_mpi_ep_writeq - 32 bit write to MMIO 3855 * @b: data payload 3856 * @addr: address in MMIO space 3857 * @writeq_lock: spin lock 3858 * 3859 * This special handling for MPI EP to take care of 32 bit 3860 * environment where its not quarenteed to send the entire word 3861 * in one transfer. 3862 */ 3863 static inline void 3864 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3865 spinlock_t *writeq_lock) 3866 { 3867 unsigned long flags; 3868 3869 spin_lock_irqsave(writeq_lock, flags); 3870 __raw_writel((u32)(b), addr); 3871 __raw_writel((u32)(b >> 32), (addr + 4)); 3872 spin_unlock_irqrestore(writeq_lock, flags); 3873 } 3874 3875 /** 3876 * _base_writeq - 64 bit write to MMIO 3877 * @b: data payload 3878 * @addr: address in MMIO space 3879 * @writeq_lock: spin lock 3880 * 3881 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3882 * care of 32 bit environment where its not quarenteed to send the entire word 3883 * in one transfer. 3884 */ 3885 #if defined(writeq) && defined(CONFIG_64BIT) 3886 static inline void 3887 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3888 { 3889 wmb(); 3890 __raw_writeq(b, addr); 3891 barrier(); 3892 } 3893 #else 3894 static inline void 3895 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3896 { 3897 _base_mpi_ep_writeq(b, addr, writeq_lock); 3898 } 3899 #endif 3900 3901 /** 3902 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3903 * variable of scsi tracker 3904 * @ioc: per adapter object 3905 * @smid: system request message index 3906 * 3907 * returns msix index. 3908 */ 3909 static u8 3910 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3911 { 3912 struct scsiio_tracker *st = NULL; 3913 3914 if (smid < ioc->hi_priority_smid) 3915 st = _get_st_from_smid(ioc, smid); 3916 3917 if (st == NULL) 3918 return _base_get_msix_index(ioc, NULL); 3919 3920 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3921 return st->msix_io; 3922 } 3923 3924 /** 3925 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3926 * @ioc: per adapter object 3927 * @smid: system request message index 3928 * @handle: device handle 3929 */ 3930 static void 3931 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3932 u16 smid, u16 handle) 3933 { 3934 Mpi2RequestDescriptorUnion_t descriptor; 3935 u64 *request = (u64 *)&descriptor; 3936 void *mpi_req_iomem; 3937 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3938 3939 _clone_sg_entries(ioc, (void *) mfp, smid); 3940 mpi_req_iomem = (void __force *)ioc->chip + 3941 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3942 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3943 ioc->request_sz); 3944 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3945 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3946 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3947 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3948 descriptor.SCSIIO.LMID = 0; 3949 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3950 &ioc->scsi_lookup_lock); 3951 } 3952 3953 /** 3954 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3955 * @ioc: per adapter object 3956 * @smid: system request message index 3957 * @handle: device handle 3958 */ 3959 static void 3960 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3961 { 3962 Mpi2RequestDescriptorUnion_t descriptor; 3963 u64 *request = (u64 *)&descriptor; 3964 3965 3966 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3967 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3968 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3969 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3970 descriptor.SCSIIO.LMID = 0; 3971 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3972 &ioc->scsi_lookup_lock); 3973 } 3974 3975 /** 3976 * _base_put_smid_fast_path - send fast path request to firmware 3977 * @ioc: per adapter object 3978 * @smid: system request message index 3979 * @handle: device handle 3980 */ 3981 static void 3982 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3983 u16 handle) 3984 { 3985 Mpi2RequestDescriptorUnion_t descriptor; 3986 u64 *request = (u64 *)&descriptor; 3987 3988 descriptor.SCSIIO.RequestFlags = 3989 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3990 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3991 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3992 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3993 descriptor.SCSIIO.LMID = 0; 3994 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3995 &ioc->scsi_lookup_lock); 3996 } 3997 3998 /** 3999 * _base_put_smid_hi_priority - send Task Management request to firmware 4000 * @ioc: per adapter object 4001 * @smid: system request message index 4002 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 4003 */ 4004 static void 4005 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4006 u16 msix_task) 4007 { 4008 Mpi2RequestDescriptorUnion_t descriptor; 4009 void *mpi_req_iomem; 4010 u64 *request; 4011 4012 if (ioc->is_mcpu_endpoint) { 4013 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4014 4015 /* TBD 256 is offset within sys register. */ 4016 mpi_req_iomem = (void __force *)ioc->chip 4017 + MPI_FRAME_START_OFFSET 4018 + (smid * ioc->request_sz); 4019 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4020 ioc->request_sz); 4021 } 4022 4023 request = (u64 *)&descriptor; 4024 4025 descriptor.HighPriority.RequestFlags = 4026 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4027 descriptor.HighPriority.MSIxIndex = msix_task; 4028 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4029 descriptor.HighPriority.LMID = 0; 4030 descriptor.HighPriority.Reserved1 = 0; 4031 if (ioc->is_mcpu_endpoint) 4032 _base_mpi_ep_writeq(*request, 4033 &ioc->chip->RequestDescriptorPostLow, 4034 &ioc->scsi_lookup_lock); 4035 else 4036 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4037 &ioc->scsi_lookup_lock); 4038 } 4039 4040 /** 4041 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4042 * firmware 4043 * @ioc: per adapter object 4044 * @smid: system request message index 4045 */ 4046 void 4047 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4048 { 4049 Mpi2RequestDescriptorUnion_t descriptor; 4050 u64 *request = (u64 *)&descriptor; 4051 4052 descriptor.Default.RequestFlags = 4053 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4054 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4055 descriptor.Default.SMID = cpu_to_le16(smid); 4056 descriptor.Default.LMID = 0; 4057 descriptor.Default.DescriptorTypeDependent = 0; 4058 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4059 &ioc->scsi_lookup_lock); 4060 } 4061 4062 /** 4063 * _base_put_smid_default - Default, primarily used for config pages 4064 * @ioc: per adapter object 4065 * @smid: system request message index 4066 */ 4067 static void 4068 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4069 { 4070 Mpi2RequestDescriptorUnion_t descriptor; 4071 void *mpi_req_iomem; 4072 u64 *request; 4073 4074 if (ioc->is_mcpu_endpoint) { 4075 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4076 4077 _clone_sg_entries(ioc, (void *) mfp, smid); 4078 /* TBD 256 is offset within sys register */ 4079 mpi_req_iomem = (void __force *)ioc->chip + 4080 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4081 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4082 ioc->request_sz); 4083 } 4084 request = (u64 *)&descriptor; 4085 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4086 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4087 descriptor.Default.SMID = cpu_to_le16(smid); 4088 descriptor.Default.LMID = 0; 4089 descriptor.Default.DescriptorTypeDependent = 0; 4090 if (ioc->is_mcpu_endpoint) 4091 _base_mpi_ep_writeq(*request, 4092 &ioc->chip->RequestDescriptorPostLow, 4093 &ioc->scsi_lookup_lock); 4094 else 4095 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4096 &ioc->scsi_lookup_lock); 4097 } 4098 4099 /** 4100 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4101 * Atomic Request Descriptor 4102 * @ioc: per adapter object 4103 * @smid: system request message index 4104 * @handle: device handle, unused in this function, for function type match 4105 * 4106 * Return nothing. 4107 */ 4108 static void 4109 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4110 u16 handle) 4111 { 4112 Mpi26AtomicRequestDescriptor_t descriptor; 4113 u32 *request = (u32 *)&descriptor; 4114 4115 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4116 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4117 descriptor.SMID = cpu_to_le16(smid); 4118 4119 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4120 } 4121 4122 /** 4123 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4124 * using Atomic Request Descriptor 4125 * @ioc: per adapter object 4126 * @smid: system request message index 4127 * @handle: device handle, unused in this function, for function type match 4128 * Return nothing 4129 */ 4130 static void 4131 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4132 u16 handle) 4133 { 4134 Mpi26AtomicRequestDescriptor_t descriptor; 4135 u32 *request = (u32 *)&descriptor; 4136 4137 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4138 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4139 descriptor.SMID = cpu_to_le16(smid); 4140 4141 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4142 } 4143 4144 /** 4145 * _base_put_smid_hi_priority_atomic - send Task Management request to 4146 * firmware using Atomic Request Descriptor 4147 * @ioc: per adapter object 4148 * @smid: system request message index 4149 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4150 * 4151 * Return nothing. 4152 */ 4153 static void 4154 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4155 u16 msix_task) 4156 { 4157 Mpi26AtomicRequestDescriptor_t descriptor; 4158 u32 *request = (u32 *)&descriptor; 4159 4160 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4161 descriptor.MSIxIndex = msix_task; 4162 descriptor.SMID = cpu_to_le16(smid); 4163 4164 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4165 } 4166 4167 /** 4168 * _base_put_smid_default - Default, primarily used for config pages 4169 * use Atomic Request Descriptor 4170 * @ioc: per adapter object 4171 * @smid: system request message index 4172 * 4173 * Return nothing. 4174 */ 4175 static void 4176 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4177 { 4178 Mpi26AtomicRequestDescriptor_t descriptor; 4179 u32 *request = (u32 *)&descriptor; 4180 4181 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4182 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4183 descriptor.SMID = cpu_to_le16(smid); 4184 4185 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4186 } 4187 4188 /** 4189 * _base_display_OEMs_branding - Display branding string 4190 * @ioc: per adapter object 4191 */ 4192 static void 4193 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4194 { 4195 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4196 return; 4197 4198 switch (ioc->pdev->subsystem_vendor) { 4199 case PCI_VENDOR_ID_INTEL: 4200 switch (ioc->pdev->device) { 4201 case MPI2_MFGPAGE_DEVID_SAS2008: 4202 switch (ioc->pdev->subsystem_device) { 4203 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4204 ioc_info(ioc, "%s\n", 4205 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4206 break; 4207 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4208 ioc_info(ioc, "%s\n", 4209 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4210 break; 4211 case MPT2SAS_INTEL_SSD910_SSDID: 4212 ioc_info(ioc, "%s\n", 4213 MPT2SAS_INTEL_SSD910_BRANDING); 4214 break; 4215 default: 4216 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4217 ioc->pdev->subsystem_device); 4218 break; 4219 } 4220 break; 4221 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4222 switch (ioc->pdev->subsystem_device) { 4223 case MPT2SAS_INTEL_RS25GB008_SSDID: 4224 ioc_info(ioc, "%s\n", 4225 MPT2SAS_INTEL_RS25GB008_BRANDING); 4226 break; 4227 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4228 ioc_info(ioc, "%s\n", 4229 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4230 break; 4231 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4232 ioc_info(ioc, "%s\n", 4233 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4234 break; 4235 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4236 ioc_info(ioc, "%s\n", 4237 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4238 break; 4239 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4240 ioc_info(ioc, "%s\n", 4241 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4242 break; 4243 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4244 ioc_info(ioc, "%s\n", 4245 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4246 break; 4247 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4248 ioc_info(ioc, "%s\n", 4249 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4250 break; 4251 default: 4252 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4253 ioc->pdev->subsystem_device); 4254 break; 4255 } 4256 break; 4257 case MPI25_MFGPAGE_DEVID_SAS3008: 4258 switch (ioc->pdev->subsystem_device) { 4259 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4260 ioc_info(ioc, "%s\n", 4261 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4262 break; 4263 4264 case MPT3SAS_INTEL_RS3GC008_SSDID: 4265 ioc_info(ioc, "%s\n", 4266 MPT3SAS_INTEL_RS3GC008_BRANDING); 4267 break; 4268 case MPT3SAS_INTEL_RS3FC044_SSDID: 4269 ioc_info(ioc, "%s\n", 4270 MPT3SAS_INTEL_RS3FC044_BRANDING); 4271 break; 4272 case MPT3SAS_INTEL_RS3UC080_SSDID: 4273 ioc_info(ioc, "%s\n", 4274 MPT3SAS_INTEL_RS3UC080_BRANDING); 4275 break; 4276 default: 4277 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4278 ioc->pdev->subsystem_device); 4279 break; 4280 } 4281 break; 4282 default: 4283 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4284 ioc->pdev->subsystem_device); 4285 break; 4286 } 4287 break; 4288 case PCI_VENDOR_ID_DELL: 4289 switch (ioc->pdev->device) { 4290 case MPI2_MFGPAGE_DEVID_SAS2008: 4291 switch (ioc->pdev->subsystem_device) { 4292 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4293 ioc_info(ioc, "%s\n", 4294 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4295 break; 4296 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4297 ioc_info(ioc, "%s\n", 4298 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4299 break; 4300 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4301 ioc_info(ioc, "%s\n", 4302 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4303 break; 4304 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4305 ioc_info(ioc, "%s\n", 4306 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4307 break; 4308 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4309 ioc_info(ioc, "%s\n", 4310 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4311 break; 4312 case MPT2SAS_DELL_PERC_H200_SSDID: 4313 ioc_info(ioc, "%s\n", 4314 MPT2SAS_DELL_PERC_H200_BRANDING); 4315 break; 4316 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4317 ioc_info(ioc, "%s\n", 4318 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4319 break; 4320 default: 4321 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4322 ioc->pdev->subsystem_device); 4323 break; 4324 } 4325 break; 4326 case MPI25_MFGPAGE_DEVID_SAS3008: 4327 switch (ioc->pdev->subsystem_device) { 4328 case MPT3SAS_DELL_12G_HBA_SSDID: 4329 ioc_info(ioc, "%s\n", 4330 MPT3SAS_DELL_12G_HBA_BRANDING); 4331 break; 4332 default: 4333 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4334 ioc->pdev->subsystem_device); 4335 break; 4336 } 4337 break; 4338 default: 4339 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4340 ioc->pdev->subsystem_device); 4341 break; 4342 } 4343 break; 4344 case PCI_VENDOR_ID_CISCO: 4345 switch (ioc->pdev->device) { 4346 case MPI25_MFGPAGE_DEVID_SAS3008: 4347 switch (ioc->pdev->subsystem_device) { 4348 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4349 ioc_info(ioc, "%s\n", 4350 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4351 break; 4352 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4353 ioc_info(ioc, "%s\n", 4354 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4355 break; 4356 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4357 ioc_info(ioc, "%s\n", 4358 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4359 break; 4360 default: 4361 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4362 ioc->pdev->subsystem_device); 4363 break; 4364 } 4365 break; 4366 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4367 switch (ioc->pdev->subsystem_device) { 4368 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4369 ioc_info(ioc, "%s\n", 4370 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4371 break; 4372 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4373 ioc_info(ioc, "%s\n", 4374 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4375 break; 4376 default: 4377 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4378 ioc->pdev->subsystem_device); 4379 break; 4380 } 4381 break; 4382 default: 4383 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4384 ioc->pdev->subsystem_device); 4385 break; 4386 } 4387 break; 4388 case MPT2SAS_HP_3PAR_SSVID: 4389 switch (ioc->pdev->device) { 4390 case MPI2_MFGPAGE_DEVID_SAS2004: 4391 switch (ioc->pdev->subsystem_device) { 4392 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4393 ioc_info(ioc, "%s\n", 4394 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4395 break; 4396 default: 4397 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4398 ioc->pdev->subsystem_device); 4399 break; 4400 } 4401 break; 4402 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4403 switch (ioc->pdev->subsystem_device) { 4404 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4405 ioc_info(ioc, "%s\n", 4406 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4407 break; 4408 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4409 ioc_info(ioc, "%s\n", 4410 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4411 break; 4412 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4413 ioc_info(ioc, "%s\n", 4414 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4415 break; 4416 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4417 ioc_info(ioc, "%s\n", 4418 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4419 break; 4420 default: 4421 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4422 ioc->pdev->subsystem_device); 4423 break; 4424 } 4425 break; 4426 default: 4427 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4428 ioc->pdev->subsystem_device); 4429 break; 4430 } 4431 default: 4432 break; 4433 } 4434 } 4435 4436 /** 4437 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4438 * version from FW Image Header. 4439 * @ioc: per adapter object 4440 * 4441 * Return: 0 for success, non-zero for failure. 4442 */ 4443 static int 4444 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4445 { 4446 Mpi2FWImageHeader_t *fw_img_hdr; 4447 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4448 Mpi25FWUploadRequest_t *mpi_request; 4449 Mpi2FWUploadReply_t mpi_reply; 4450 int r = 0; 4451 u32 package_version = 0; 4452 void *fwpkg_data = NULL; 4453 dma_addr_t fwpkg_data_dma; 4454 u16 smid, ioc_status; 4455 size_t data_length; 4456 4457 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4458 4459 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4460 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4461 return -EAGAIN; 4462 } 4463 4464 data_length = sizeof(Mpi2FWImageHeader_t); 4465 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4466 &fwpkg_data_dma, GFP_KERNEL); 4467 if (!fwpkg_data) { 4468 ioc_err(ioc, 4469 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4470 __FILE__, __LINE__, __func__); 4471 return -ENOMEM; 4472 } 4473 4474 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4475 if (!smid) { 4476 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4477 r = -EAGAIN; 4478 goto out; 4479 } 4480 4481 ioc->base_cmds.status = MPT3_CMD_PENDING; 4482 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4483 ioc->base_cmds.smid = smid; 4484 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4485 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4486 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4487 mpi_request->ImageSize = cpu_to_le32(data_length); 4488 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4489 data_length); 4490 init_completion(&ioc->base_cmds.done); 4491 ioc->put_smid_default(ioc, smid); 4492 /* Wait for 15 seconds */ 4493 wait_for_completion_timeout(&ioc->base_cmds.done, 4494 FW_IMG_HDR_READ_TIMEOUT*HZ); 4495 ioc_info(ioc, "%s: complete\n", __func__); 4496 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4497 ioc_err(ioc, "%s: timeout\n", __func__); 4498 _debug_dump_mf(mpi_request, 4499 sizeof(Mpi25FWUploadRequest_t)/4); 4500 r = -ETIME; 4501 } else { 4502 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4503 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4504 memcpy(&mpi_reply, ioc->base_cmds.reply, 4505 sizeof(Mpi2FWUploadReply_t)); 4506 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4507 MPI2_IOCSTATUS_MASK; 4508 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4509 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4510 if (le32_to_cpu(fw_img_hdr->Signature) == 4511 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4512 cmp_img_hdr = 4513 (Mpi26ComponentImageHeader_t *) 4514 (fwpkg_data); 4515 package_version = 4516 le32_to_cpu( 4517 cmp_img_hdr->ApplicationSpecific); 4518 } else 4519 package_version = 4520 le32_to_cpu( 4521 fw_img_hdr->PackageVersion.Word); 4522 if (package_version) 4523 ioc_info(ioc, 4524 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4525 ((package_version) & 0xFF000000) >> 24, 4526 ((package_version) & 0x00FF0000) >> 16, 4527 ((package_version) & 0x0000FF00) >> 8, 4528 (package_version) & 0x000000FF); 4529 } else { 4530 _debug_dump_mf(&mpi_reply, 4531 sizeof(Mpi2FWUploadReply_t)/4); 4532 } 4533 } 4534 } 4535 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4536 out: 4537 if (fwpkg_data) 4538 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4539 fwpkg_data_dma); 4540 return r; 4541 } 4542 4543 /** 4544 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4545 * @ioc: per adapter object 4546 */ 4547 static void 4548 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4549 { 4550 int i = 0; 4551 char desc[16]; 4552 u32 iounit_pg1_flags; 4553 u32 bios_version; 4554 4555 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4556 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4557 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4558 desc, 4559 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4560 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4561 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4562 ioc->facts.FWVersion.Word & 0x000000FF, 4563 ioc->pdev->revision, 4564 (bios_version & 0xFF000000) >> 24, 4565 (bios_version & 0x00FF0000) >> 16, 4566 (bios_version & 0x0000FF00) >> 8, 4567 bios_version & 0x000000FF); 4568 4569 _base_display_OEMs_branding(ioc); 4570 4571 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4572 pr_info("%sNVMe", i ? "," : ""); 4573 i++; 4574 } 4575 4576 ioc_info(ioc, "Protocol=("); 4577 4578 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4579 pr_cont("Initiator"); 4580 i++; 4581 } 4582 4583 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4584 pr_cont("%sTarget", i ? "," : ""); 4585 i++; 4586 } 4587 4588 i = 0; 4589 pr_cont("), Capabilities=("); 4590 4591 if (!ioc->hide_ir_msg) { 4592 if (ioc->facts.IOCCapabilities & 4593 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4594 pr_cont("Raid"); 4595 i++; 4596 } 4597 } 4598 4599 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4600 pr_cont("%sTLR", i ? "," : ""); 4601 i++; 4602 } 4603 4604 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4605 pr_cont("%sMulticast", i ? "," : ""); 4606 i++; 4607 } 4608 4609 if (ioc->facts.IOCCapabilities & 4610 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4611 pr_cont("%sBIDI Target", i ? "," : ""); 4612 i++; 4613 } 4614 4615 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4616 pr_cont("%sEEDP", i ? "," : ""); 4617 i++; 4618 } 4619 4620 if (ioc->facts.IOCCapabilities & 4621 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4622 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4623 i++; 4624 } 4625 4626 if (ioc->facts.IOCCapabilities & 4627 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4628 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4629 i++; 4630 } 4631 4632 if (ioc->facts.IOCCapabilities & 4633 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4634 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4635 i++; 4636 } 4637 4638 if (ioc->facts.IOCCapabilities & 4639 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4640 pr_cont("%sTask Set Full", i ? "," : ""); 4641 i++; 4642 } 4643 4644 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4645 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4646 pr_cont("%sNCQ", i ? "," : ""); 4647 i++; 4648 } 4649 4650 pr_cont(")\n"); 4651 } 4652 4653 /** 4654 * mpt3sas_base_update_missing_delay - change the missing delay timers 4655 * @ioc: per adapter object 4656 * @device_missing_delay: amount of time till device is reported missing 4657 * @io_missing_delay: interval IO is returned when there is a missing device 4658 * 4659 * Passed on the command line, this function will modify the device missing 4660 * delay, as well as the io missing delay. This should be called at driver 4661 * load time. 4662 */ 4663 void 4664 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4665 u16 device_missing_delay, u8 io_missing_delay) 4666 { 4667 u16 dmd, dmd_new, dmd_orignal; 4668 u8 io_missing_delay_original; 4669 u16 sz; 4670 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4671 Mpi2ConfigReply_t mpi_reply; 4672 u8 num_phys = 0; 4673 u16 ioc_status; 4674 4675 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4676 if (!num_phys) 4677 return; 4678 4679 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4680 sizeof(Mpi2SasIOUnit1PhyData_t)); 4681 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4682 if (!sas_iounit_pg1) { 4683 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4684 __FILE__, __LINE__, __func__); 4685 goto out; 4686 } 4687 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4688 sas_iounit_pg1, sz))) { 4689 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4690 __FILE__, __LINE__, __func__); 4691 goto out; 4692 } 4693 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4694 MPI2_IOCSTATUS_MASK; 4695 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4696 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4697 __FILE__, __LINE__, __func__); 4698 goto out; 4699 } 4700 4701 /* device missing delay */ 4702 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4703 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4704 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4705 else 4706 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4707 dmd_orignal = dmd; 4708 if (device_missing_delay > 0x7F) { 4709 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4710 device_missing_delay; 4711 dmd = dmd / 16; 4712 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4713 } else 4714 dmd = device_missing_delay; 4715 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4716 4717 /* io missing delay */ 4718 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4719 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4720 4721 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4722 sz)) { 4723 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4724 dmd_new = (dmd & 4725 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4726 else 4727 dmd_new = 4728 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4729 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4730 dmd_orignal, dmd_new); 4731 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4732 io_missing_delay_original, 4733 io_missing_delay); 4734 ioc->device_missing_delay = dmd_new; 4735 ioc->io_missing_delay = io_missing_delay; 4736 } 4737 4738 out: 4739 kfree(sas_iounit_pg1); 4740 } 4741 4742 /** 4743 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4744 * according to performance mode. 4745 * @ioc : per adapter object 4746 * 4747 * Return nothing. 4748 */ 4749 static void 4750 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4751 { 4752 Mpi2IOCPage1_t ioc_pg1; 4753 Mpi2ConfigReply_t mpi_reply; 4754 4755 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4756 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4757 4758 switch (perf_mode) { 4759 case MPT_PERF_MODE_DEFAULT: 4760 case MPT_PERF_MODE_BALANCED: 4761 if (ioc->high_iops_queues) { 4762 ioc_info(ioc, 4763 "Enable interrupt coalescing only for first\t" 4764 "%d reply queues\n", 4765 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4766 /* 4767 * If 31st bit is zero then interrupt coalescing is 4768 * enabled for all reply descriptor post queues. 4769 * If 31st bit is set to one then user can 4770 * enable/disable interrupt coalescing on per reply 4771 * descriptor post queue group(8) basis. So to enable 4772 * interrupt coalescing only on first reply descriptor 4773 * post queue group 31st bit and zero th bit is enabled. 4774 */ 4775 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4776 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4777 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4778 ioc_info(ioc, "performance mode: balanced\n"); 4779 return; 4780 } 4781 fallthrough; 4782 case MPT_PERF_MODE_LATENCY: 4783 /* 4784 * Enable interrupt coalescing on all reply queues 4785 * with timeout value 0xA 4786 */ 4787 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4788 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4789 ioc_pg1.ProductSpecific = 0; 4790 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4791 ioc_info(ioc, "performance mode: latency\n"); 4792 break; 4793 case MPT_PERF_MODE_IOPS: 4794 /* 4795 * Enable interrupt coalescing on all reply queues. 4796 */ 4797 ioc_info(ioc, 4798 "performance mode: iops with coalescing timeout: 0x%x\n", 4799 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4800 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4801 ioc_pg1.ProductSpecific = 0; 4802 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4803 break; 4804 } 4805 } 4806 4807 /** 4808 * _base_get_event_diag_triggers - get event diag trigger values from 4809 * persistent pages 4810 * @ioc : per adapter object 4811 * 4812 * Return nothing. 4813 */ 4814 static void 4815 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4816 { 4817 Mpi26DriverTriggerPage2_t trigger_pg2; 4818 struct SL_WH_EVENT_TRIGGER_T *event_tg; 4819 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 4820 Mpi2ConfigReply_t mpi_reply; 4821 int r = 0, i = 0; 4822 u16 count = 0; 4823 u16 ioc_status; 4824 4825 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 4826 &trigger_pg2); 4827 if (r) 4828 return; 4829 4830 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4831 MPI2_IOCSTATUS_MASK; 4832 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4833 dinitprintk(ioc, 4834 ioc_err(ioc, 4835 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 4836 __func__, ioc_status)); 4837 return; 4838 } 4839 4840 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 4841 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 4842 count = min_t(u16, NUM_VALID_ENTRIES, count); 4843 ioc->diag_trigger_event.ValidEntries = count; 4844 4845 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 4846 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 4847 for (i = 0; i < count; i++) { 4848 event_tg->EventValue = le16_to_cpu( 4849 mpi_event_tg->MPIEventCode); 4850 event_tg->LogEntryQualifier = le16_to_cpu( 4851 mpi_event_tg->MPIEventCodeSpecific); 4852 event_tg++; 4853 mpi_event_tg++; 4854 } 4855 } 4856 } 4857 4858 /** 4859 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 4860 * persistent pages 4861 * @ioc : per adapter object 4862 * 4863 * Return nothing. 4864 */ 4865 static void 4866 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4867 { 4868 Mpi26DriverTriggerPage3_t trigger_pg3; 4869 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 4870 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 4871 Mpi2ConfigReply_t mpi_reply; 4872 int r = 0, i = 0; 4873 u16 count = 0; 4874 u16 ioc_status; 4875 4876 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 4877 &trigger_pg3); 4878 if (r) 4879 return; 4880 4881 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4882 MPI2_IOCSTATUS_MASK; 4883 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4884 dinitprintk(ioc, 4885 ioc_err(ioc, 4886 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 4887 __func__, ioc_status)); 4888 return; 4889 } 4890 4891 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 4892 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 4893 count = min_t(u16, NUM_VALID_ENTRIES, count); 4894 ioc->diag_trigger_scsi.ValidEntries = count; 4895 4896 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 4897 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 4898 for (i = 0; i < count; i++) { 4899 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 4900 scsi_tg->ASC = mpi_scsi_tg->ASC; 4901 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 4902 4903 scsi_tg++; 4904 mpi_scsi_tg++; 4905 } 4906 } 4907 } 4908 4909 /** 4910 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 4911 * persistent pages 4912 * @ioc : per adapter object 4913 * 4914 * Return nothing. 4915 */ 4916 static void 4917 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4918 { 4919 Mpi26DriverTriggerPage4_t trigger_pg4; 4920 struct SL_WH_MPI_TRIGGER_T *status_tg; 4921 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 4922 Mpi2ConfigReply_t mpi_reply; 4923 int r = 0, i = 0; 4924 u16 count = 0; 4925 u16 ioc_status; 4926 4927 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 4928 &trigger_pg4); 4929 if (r) 4930 return; 4931 4932 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4933 MPI2_IOCSTATUS_MASK; 4934 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4935 dinitprintk(ioc, 4936 ioc_err(ioc, 4937 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 4938 __func__, ioc_status)); 4939 return; 4940 } 4941 4942 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 4943 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 4944 count = min_t(u16, NUM_VALID_ENTRIES, count); 4945 ioc->diag_trigger_mpi.ValidEntries = count; 4946 4947 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 4948 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 4949 4950 for (i = 0; i < count; i++) { 4951 status_tg->IOCStatus = le16_to_cpu( 4952 mpi_status_tg->IOCStatus); 4953 status_tg->IocLogInfo = le32_to_cpu( 4954 mpi_status_tg->LogInfo); 4955 4956 status_tg++; 4957 mpi_status_tg++; 4958 } 4959 } 4960 } 4961 4962 /** 4963 * _base_get_master_diag_triggers - get master diag trigger values from 4964 * persistent pages 4965 * @ioc : per adapter object 4966 * 4967 * Return nothing. 4968 */ 4969 static void 4970 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4971 { 4972 Mpi26DriverTriggerPage1_t trigger_pg1; 4973 Mpi2ConfigReply_t mpi_reply; 4974 int r; 4975 u16 ioc_status; 4976 4977 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 4978 &trigger_pg1); 4979 if (r) 4980 return; 4981 4982 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4983 MPI2_IOCSTATUS_MASK; 4984 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4985 dinitprintk(ioc, 4986 ioc_err(ioc, 4987 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 4988 __func__, ioc_status)); 4989 return; 4990 } 4991 4992 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 4993 ioc->diag_trigger_master.MasterData |= 4994 le32_to_cpu( 4995 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 4996 } 4997 4998 /** 4999 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5000 * driver trigger pages or not 5001 * @ioc : per adapter object 5002 * 5003 * Returns trigger flags mask if HBA FW supports driver trigger pages, 5004 * otherwise returns EFAULT. 5005 */ 5006 static int 5007 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc) 5008 { 5009 Mpi26DriverTriggerPage0_t trigger_pg0; 5010 int r = 0; 5011 Mpi2ConfigReply_t mpi_reply; 5012 u16 ioc_status; 5013 5014 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5015 &trigger_pg0); 5016 if (r) 5017 return -EFAULT; 5018 5019 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5020 MPI2_IOCSTATUS_MASK; 5021 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5022 return -EFAULT; 5023 5024 return le16_to_cpu(trigger_pg0.TriggerFlags); 5025 } 5026 5027 /** 5028 * _base_get_diag_triggers - Retrieve diag trigger values from 5029 * persistent pages. 5030 * @ioc : per adapter object 5031 * 5032 * Return nothing. 5033 */ 5034 static void 5035 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5036 { 5037 u16 trigger_flags; 5038 5039 /* 5040 * Default setting of master trigger. 5041 */ 5042 ioc->diag_trigger_master.MasterData = 5043 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5044 5045 trigger_flags = _base_check_for_trigger_pages_support(ioc); 5046 if (trigger_flags < 0) 5047 return; 5048 5049 ioc->supports_trigger_pages = 1; 5050 5051 /* 5052 * Retrieve master diag trigger values from driver trigger pg1 5053 * if master trigger bit enabled in TriggerFlags. 5054 */ 5055 if ((u16)trigger_flags & 5056 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) 5057 _base_get_master_diag_triggers(ioc); 5058 5059 /* 5060 * Retrieve event diag trigger values from driver trigger pg2 5061 * if event trigger bit enabled in TriggerFlags. 5062 */ 5063 if ((u16)trigger_flags & 5064 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) 5065 _base_get_event_diag_triggers(ioc); 5066 5067 /* 5068 * Retrieve scsi diag trigger values from driver trigger pg3 5069 * if scsi trigger bit enabled in TriggerFlags. 5070 */ 5071 if ((u16)trigger_flags & 5072 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) 5073 _base_get_scsi_diag_triggers(ioc); 5074 /* 5075 * Retrieve mpi error diag trigger values from driver trigger pg4 5076 * if loginfo trigger bit enabled in TriggerFlags. 5077 */ 5078 if ((u16)trigger_flags & 5079 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) 5080 _base_get_mpi_diag_triggers(ioc); 5081 } 5082 5083 /** 5084 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5085 * online FW update, incase updated FW supports driver 5086 * trigger pages. 5087 * @ioc : per adapter object 5088 * 5089 * Return nothing. 5090 */ 5091 static void 5092 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5093 { 5094 5095 if (ioc->diag_trigger_master.MasterData) 5096 mpt3sas_config_update_driver_trigger_pg1(ioc, 5097 &ioc->diag_trigger_master, 1); 5098 5099 if (ioc->diag_trigger_event.ValidEntries) 5100 mpt3sas_config_update_driver_trigger_pg2(ioc, 5101 &ioc->diag_trigger_event, 1); 5102 5103 if (ioc->diag_trigger_scsi.ValidEntries) 5104 mpt3sas_config_update_driver_trigger_pg3(ioc, 5105 &ioc->diag_trigger_scsi, 1); 5106 5107 if (ioc->diag_trigger_mpi.ValidEntries) 5108 mpt3sas_config_update_driver_trigger_pg4(ioc, 5109 &ioc->diag_trigger_mpi, 1); 5110 } 5111 5112 /** 5113 * _base_static_config_pages - static start of day config pages 5114 * @ioc: per adapter object 5115 */ 5116 static void 5117 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5118 { 5119 Mpi2ConfigReply_t mpi_reply; 5120 u32 iounit_pg1_flags; 5121 int tg_flags = 0; 5122 ioc->nvme_abort_timeout = 30; 5123 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 5124 if (ioc->ir_firmware) 5125 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5126 &ioc->manu_pg10); 5127 5128 /* 5129 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5130 * flag unset in NVDATA. 5131 */ 5132 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 5133 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5134 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5135 ioc->name); 5136 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5137 ioc->manu_pg11.EEDPTagMode |= 0x1; 5138 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5139 &ioc->manu_pg11); 5140 } 5141 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5142 ioc->tm_custom_handling = 1; 5143 else { 5144 ioc->tm_custom_handling = 0; 5145 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5146 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5147 else if (ioc->manu_pg11.NVMeAbortTO > 5148 NVME_TASK_ABORT_MAX_TIMEOUT) 5149 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5150 else 5151 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5152 } 5153 ioc->time_sync_interval = 5154 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5155 if (ioc->time_sync_interval) { 5156 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5157 ioc->time_sync_interval = 5158 ioc->time_sync_interval * SECONDS_PER_HOUR; 5159 else 5160 ioc->time_sync_interval = 5161 ioc->time_sync_interval * SECONDS_PER_MIN; 5162 dinitprintk(ioc, ioc_info(ioc, 5163 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5164 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5165 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5166 } else { 5167 if (ioc->is_gen35_ioc) 5168 ioc_warn(ioc, 5169 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5170 } 5171 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5172 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5173 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5174 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5175 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5176 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5177 _base_display_ioc_capabilities(ioc); 5178 5179 /* 5180 * Enable task_set_full handling in iounit_pg1 when the 5181 * facts capabilities indicate that its supported. 5182 */ 5183 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5184 if ((ioc->facts.IOCCapabilities & 5185 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5186 iounit_pg1_flags &= 5187 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5188 else 5189 iounit_pg1_flags |= 5190 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5191 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5192 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5193 5194 if (ioc->iounit_pg8.NumSensors) 5195 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5196 if (ioc->is_aero_ioc) 5197 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5198 if (ioc->is_gen35_ioc) { 5199 if (ioc->is_driver_loading) 5200 _base_get_diag_triggers(ioc); 5201 else { 5202 /* 5203 * In case of online HBA FW update operation, 5204 * check whether updated FW supports the driver trigger 5205 * pages or not. 5206 * - If previous FW has not supported driver trigger 5207 * pages and newer FW supports them then update these 5208 * pages with current diag trigger values. 5209 * - If previous FW has supported driver trigger pages 5210 * and new FW doesn't support them then disable 5211 * support_trigger_pages flag. 5212 */ 5213 tg_flags = _base_check_for_trigger_pages_support(ioc); 5214 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5215 _base_update_diag_trigger_pages(ioc); 5216 else if (ioc->supports_trigger_pages && 5217 tg_flags == -EFAULT) 5218 ioc->supports_trigger_pages = 0; 5219 } 5220 } 5221 } 5222 5223 /** 5224 * mpt3sas_free_enclosure_list - release memory 5225 * @ioc: per adapter object 5226 * 5227 * Free memory allocated during encloure add. 5228 */ 5229 void 5230 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5231 { 5232 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5233 5234 /* Free enclosure list */ 5235 list_for_each_entry_safe(enclosure_dev, 5236 enclosure_dev_next, &ioc->enclosure_list, list) { 5237 list_del(&enclosure_dev->list); 5238 kfree(enclosure_dev); 5239 } 5240 } 5241 5242 /** 5243 * _base_release_memory_pools - release memory 5244 * @ioc: per adapter object 5245 * 5246 * Free memory allocated from _base_allocate_memory_pools. 5247 */ 5248 static void 5249 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5250 { 5251 int i = 0; 5252 int j = 0; 5253 int dma_alloc_count = 0; 5254 struct chain_tracker *ct; 5255 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5256 5257 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5258 5259 if (ioc->request) { 5260 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5261 ioc->request, ioc->request_dma); 5262 dexitprintk(ioc, 5263 ioc_info(ioc, "request_pool(0x%p): free\n", 5264 ioc->request)); 5265 ioc->request = NULL; 5266 } 5267 5268 if (ioc->sense) { 5269 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5270 dma_pool_destroy(ioc->sense_dma_pool); 5271 dexitprintk(ioc, 5272 ioc_info(ioc, "sense_pool(0x%p): free\n", 5273 ioc->sense)); 5274 ioc->sense = NULL; 5275 } 5276 5277 if (ioc->reply) { 5278 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5279 dma_pool_destroy(ioc->reply_dma_pool); 5280 dexitprintk(ioc, 5281 ioc_info(ioc, "reply_pool(0x%p): free\n", 5282 ioc->reply)); 5283 ioc->reply = NULL; 5284 } 5285 5286 if (ioc->reply_free) { 5287 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5288 ioc->reply_free_dma); 5289 dma_pool_destroy(ioc->reply_free_dma_pool); 5290 dexitprintk(ioc, 5291 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5292 ioc->reply_free)); 5293 ioc->reply_free = NULL; 5294 } 5295 5296 if (ioc->reply_post) { 5297 dma_alloc_count = DIV_ROUND_UP(count, 5298 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5299 for (i = 0; i < count; i++) { 5300 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5301 && dma_alloc_count) { 5302 if (ioc->reply_post[i].reply_post_free) { 5303 dma_pool_free( 5304 ioc->reply_post_free_dma_pool, 5305 ioc->reply_post[i].reply_post_free, 5306 ioc->reply_post[i].reply_post_free_dma); 5307 dexitprintk(ioc, ioc_info(ioc, 5308 "reply_post_free_pool(0x%p): free\n", 5309 ioc->reply_post[i].reply_post_free)); 5310 ioc->reply_post[i].reply_post_free = 5311 NULL; 5312 } 5313 --dma_alloc_count; 5314 } 5315 } 5316 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5317 if (ioc->reply_post_free_array && 5318 ioc->rdpq_array_enable) { 5319 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5320 ioc->reply_post_free_array, 5321 ioc->reply_post_free_array_dma); 5322 ioc->reply_post_free_array = NULL; 5323 } 5324 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5325 kfree(ioc->reply_post); 5326 } 5327 5328 if (ioc->pcie_sgl_dma_pool) { 5329 for (i = 0; i < ioc->scsiio_depth; i++) { 5330 dma_pool_free(ioc->pcie_sgl_dma_pool, 5331 ioc->pcie_sg_lookup[i].pcie_sgl, 5332 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5333 } 5334 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5335 } 5336 5337 if (ioc->config_page) { 5338 dexitprintk(ioc, 5339 ioc_info(ioc, "config_page(0x%p): free\n", 5340 ioc->config_page)); 5341 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5342 ioc->config_page, ioc->config_page_dma); 5343 } 5344 5345 kfree(ioc->hpr_lookup); 5346 ioc->hpr_lookup = NULL; 5347 kfree(ioc->internal_lookup); 5348 ioc->internal_lookup = NULL; 5349 if (ioc->chain_lookup) { 5350 for (i = 0; i < ioc->scsiio_depth; i++) { 5351 for (j = ioc->chains_per_prp_buffer; 5352 j < ioc->chains_needed_per_io; j++) { 5353 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5354 if (ct && ct->chain_buffer) 5355 dma_pool_free(ioc->chain_dma_pool, 5356 ct->chain_buffer, 5357 ct->chain_buffer_dma); 5358 } 5359 kfree(ioc->chain_lookup[i].chains_per_smid); 5360 } 5361 dma_pool_destroy(ioc->chain_dma_pool); 5362 kfree(ioc->chain_lookup); 5363 ioc->chain_lookup = NULL; 5364 } 5365 } 5366 5367 /** 5368 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5369 * having same upper 32bits in their base memory address. 5370 * @reply_pool_start_address: Base address of a reply queue set 5371 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5372 * 5373 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5374 * memory address, else 0. 5375 */ 5376 5377 static int 5378 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 5379 { 5380 long reply_pool_end_address; 5381 5382 reply_pool_end_address = reply_pool_start_address + pool_sz; 5383 5384 if (upper_32_bits(reply_pool_start_address) == 5385 upper_32_bits(reply_pool_end_address)) 5386 return 1; 5387 else 5388 return 0; 5389 } 5390 5391 /** 5392 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 5393 * for reply queues. 5394 * @ioc: per adapter object 5395 * @sz: DMA Pool size 5396 * Return: 0 for success, non-zero for failure. 5397 */ 5398 static int 5399 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 5400 { 5401 int i = 0; 5402 u32 dma_alloc_count = 0; 5403 int reply_post_free_sz = ioc->reply_post_queue_depth * 5404 sizeof(Mpi2DefaultReplyDescriptor_t); 5405 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5406 5407 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 5408 GFP_KERNEL); 5409 if (!ioc->reply_post) 5410 return -ENOMEM; 5411 /* 5412 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 5413 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 5414 * be within 4GB boundary i.e reply queues in a set must have same 5415 * upper 32-bits in their memory address. so here driver is allocating 5416 * the DMA'able memory for reply queues according. 5417 * Driver uses limitation of 5418 * VENTURA_SERIES to manage INVADER_SERIES as well. 5419 */ 5420 dma_alloc_count = DIV_ROUND_UP(count, 5421 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5422 ioc->reply_post_free_dma_pool = 5423 dma_pool_create("reply_post_free pool", 5424 &ioc->pdev->dev, sz, 16, 0); 5425 if (!ioc->reply_post_free_dma_pool) 5426 return -ENOMEM; 5427 for (i = 0; i < count; i++) { 5428 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 5429 ioc->reply_post[i].reply_post_free = 5430 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5431 GFP_KERNEL, 5432 &ioc->reply_post[i].reply_post_free_dma); 5433 if (!ioc->reply_post[i].reply_post_free) 5434 return -ENOMEM; 5435 /* 5436 * Each set of RDPQ pool must satisfy 4gb boundary 5437 * restriction. 5438 * 1) Check if allocated resources for RDPQ pool are in 5439 * the same 4GB range. 5440 * 2) If #1 is true, continue with 64 bit DMA. 5441 * 3) If #1 is false, return 1. which means free all the 5442 * resources and set DMA mask to 32 and allocate. 5443 */ 5444 if (!mpt3sas_check_same_4gb_region( 5445 (long)ioc->reply_post[i].reply_post_free, sz)) { 5446 dinitprintk(ioc, 5447 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5448 "reply_post_free_dma = (0x%llx)\n", 5449 ioc->reply_post[i].reply_post_free, 5450 (unsigned long long) 5451 ioc->reply_post[i].reply_post_free_dma)); 5452 return -EAGAIN; 5453 } 5454 dma_alloc_count--; 5455 5456 } else { 5457 ioc->reply_post[i].reply_post_free = 5458 (Mpi2ReplyDescriptorsUnion_t *) 5459 ((long)ioc->reply_post[i-1].reply_post_free 5460 + reply_post_free_sz); 5461 ioc->reply_post[i].reply_post_free_dma = 5462 (dma_addr_t) 5463 (ioc->reply_post[i-1].reply_post_free_dma + 5464 reply_post_free_sz); 5465 } 5466 } 5467 return 0; 5468 } 5469 5470 /** 5471 * _base_allocate_memory_pools - allocate start of day memory pools 5472 * @ioc: per adapter object 5473 * 5474 * Return: 0 success, anything else error. 5475 */ 5476 static int 5477 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5478 { 5479 struct mpt3sas_facts *facts; 5480 u16 max_sge_elements; 5481 u16 chains_needed_per_io; 5482 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5483 u32 retry_sz; 5484 u32 rdpq_sz = 0; 5485 u16 max_request_credit, nvme_blocks_needed; 5486 unsigned short sg_tablesize; 5487 u16 sge_size; 5488 int i, j; 5489 int ret = 0; 5490 struct chain_tracker *ct; 5491 5492 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5493 5494 5495 retry_sz = 0; 5496 facts = &ioc->facts; 5497 5498 /* command line tunables for max sgl entries */ 5499 if (max_sgl_entries != -1) 5500 sg_tablesize = max_sgl_entries; 5501 else { 5502 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5503 sg_tablesize = MPT2SAS_SG_DEPTH; 5504 else 5505 sg_tablesize = MPT3SAS_SG_DEPTH; 5506 } 5507 5508 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5509 if (reset_devices) 5510 sg_tablesize = min_t(unsigned short, sg_tablesize, 5511 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5512 5513 if (ioc->is_mcpu_endpoint) 5514 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5515 else { 5516 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5517 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5518 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5519 sg_tablesize = min_t(unsigned short, sg_tablesize, 5520 SG_MAX_SEGMENTS); 5521 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5522 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5523 } 5524 ioc->shost->sg_tablesize = sg_tablesize; 5525 } 5526 5527 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5528 (facts->RequestCredit / 4)); 5529 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5530 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5531 INTERNAL_SCSIIO_CMDS_COUNT)) { 5532 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5533 facts->RequestCredit); 5534 return -ENOMEM; 5535 } 5536 ioc->internal_depth = 10; 5537 } 5538 5539 ioc->hi_priority_depth = ioc->internal_depth - (5); 5540 /* command line tunables for max controller queue depth */ 5541 if (max_queue_depth != -1 && max_queue_depth != 0) { 5542 max_request_credit = min_t(u16, max_queue_depth + 5543 ioc->internal_depth, facts->RequestCredit); 5544 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5545 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5546 } else if (reset_devices) 5547 max_request_credit = min_t(u16, facts->RequestCredit, 5548 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5549 else 5550 max_request_credit = min_t(u16, facts->RequestCredit, 5551 MAX_HBA_QUEUE_DEPTH); 5552 5553 /* Firmware maintains additional facts->HighPriorityCredit number of 5554 * credits for HiPriprity Request messages, so hba queue depth will be 5555 * sum of max_request_credit and high priority queue depth. 5556 */ 5557 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5558 5559 /* request frame size */ 5560 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5561 5562 /* reply frame size */ 5563 ioc->reply_sz = facts->ReplyFrameSize * 4; 5564 5565 /* chain segment size */ 5566 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5567 if (facts->IOCMaxChainSegmentSize) 5568 ioc->chain_segment_sz = 5569 facts->IOCMaxChainSegmentSize * 5570 MAX_CHAIN_ELEMT_SZ; 5571 else 5572 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5573 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5574 MAX_CHAIN_ELEMT_SZ; 5575 } else 5576 ioc->chain_segment_sz = ioc->request_sz; 5577 5578 /* calculate the max scatter element size */ 5579 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5580 5581 retry_allocation: 5582 total_sz = 0; 5583 /* calculate number of sg elements left over in the 1st frame */ 5584 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5585 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5586 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5587 5588 /* now do the same for a chain buffer */ 5589 max_sge_elements = ioc->chain_segment_sz - sge_size; 5590 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5591 5592 /* 5593 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5594 */ 5595 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5596 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5597 + 1; 5598 if (chains_needed_per_io > facts->MaxChainDepth) { 5599 chains_needed_per_io = facts->MaxChainDepth; 5600 ioc->shost->sg_tablesize = min_t(u16, 5601 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5602 * chains_needed_per_io), ioc->shost->sg_tablesize); 5603 } 5604 ioc->chains_needed_per_io = chains_needed_per_io; 5605 5606 /* reply free queue sizing - taking into account for 64 FW events */ 5607 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5608 5609 /* mCPU manage single counters for simplicity */ 5610 if (ioc->is_mcpu_endpoint) 5611 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5612 else { 5613 /* calculate reply descriptor post queue depth */ 5614 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5615 ioc->reply_free_queue_depth + 1; 5616 /* align the reply post queue on the next 16 count boundary */ 5617 if (ioc->reply_post_queue_depth % 16) 5618 ioc->reply_post_queue_depth += 16 - 5619 (ioc->reply_post_queue_depth % 16); 5620 } 5621 5622 if (ioc->reply_post_queue_depth > 5623 facts->MaxReplyDescriptorPostQueueDepth) { 5624 ioc->reply_post_queue_depth = 5625 facts->MaxReplyDescriptorPostQueueDepth - 5626 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5627 ioc->hba_queue_depth = 5628 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5629 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5630 } 5631 5632 ioc_info(ioc, 5633 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5634 "sge_per_io(%d), chains_per_io(%d)\n", 5635 ioc->max_sges_in_main_message, 5636 ioc->max_sges_in_chain_message, 5637 ioc->shost->sg_tablesize, 5638 ioc->chains_needed_per_io); 5639 5640 /* reply post queue, 16 byte align */ 5641 reply_post_free_sz = ioc->reply_post_queue_depth * 5642 sizeof(Mpi2DefaultReplyDescriptor_t); 5643 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5644 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5645 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5646 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5647 if (ret == -EAGAIN) { 5648 /* 5649 * Free allocated bad RDPQ memory pools. 5650 * Change dma coherent mask to 32 bit and reallocate RDPQ 5651 */ 5652 _base_release_memory_pools(ioc); 5653 ioc->use_32bit_dma = true; 5654 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5655 ioc_err(ioc, 5656 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5657 return -ENODEV; 5658 } 5659 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5660 return -ENOMEM; 5661 } else if (ret == -ENOMEM) 5662 return -ENOMEM; 5663 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5664 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5665 ioc->scsiio_depth = ioc->hba_queue_depth - 5666 ioc->hi_priority_depth - ioc->internal_depth; 5667 5668 /* set the scsi host can_queue depth 5669 * with some internal commands that could be outstanding 5670 */ 5671 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5672 dinitprintk(ioc, 5673 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5674 ioc->shost->can_queue)); 5675 5676 /* contiguous pool for request and chains, 16 byte align, one extra " 5677 * "frame for smid=0 5678 */ 5679 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5680 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5681 5682 /* hi-priority queue */ 5683 sz += (ioc->hi_priority_depth * ioc->request_sz); 5684 5685 /* internal queue */ 5686 sz += (ioc->internal_depth * ioc->request_sz); 5687 5688 ioc->request_dma_sz = sz; 5689 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5690 &ioc->request_dma, GFP_KERNEL); 5691 if (!ioc->request) { 5692 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5693 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5694 ioc->request_sz, sz / 1024); 5695 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5696 goto out; 5697 retry_sz = 64; 5698 ioc->hba_queue_depth -= retry_sz; 5699 _base_release_memory_pools(ioc); 5700 goto retry_allocation; 5701 } 5702 5703 if (retry_sz) 5704 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5705 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5706 ioc->request_sz, sz / 1024); 5707 5708 /* hi-priority queue */ 5709 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5710 ioc->request_sz); 5711 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5712 ioc->request_sz); 5713 5714 /* internal queue */ 5715 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5716 ioc->request_sz); 5717 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5718 ioc->request_sz); 5719 5720 ioc_info(ioc, 5721 "request pool(0x%p) - dma(0x%llx): " 5722 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5723 ioc->request, (unsigned long long) ioc->request_dma, 5724 ioc->hba_queue_depth, ioc->request_sz, 5725 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5726 5727 total_sz += sz; 5728 5729 dinitprintk(ioc, 5730 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5731 ioc->request, ioc->scsiio_depth)); 5732 5733 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5734 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5735 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5736 if (!ioc->chain_lookup) { 5737 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5738 goto out; 5739 } 5740 5741 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5742 for (i = 0; i < ioc->scsiio_depth; i++) { 5743 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5744 if (!ioc->chain_lookup[i].chains_per_smid) { 5745 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5746 goto out; 5747 } 5748 } 5749 5750 /* initialize hi-priority queue smid's */ 5751 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5752 sizeof(struct request_tracker), GFP_KERNEL); 5753 if (!ioc->hpr_lookup) { 5754 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5755 goto out; 5756 } 5757 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5758 dinitprintk(ioc, 5759 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5760 ioc->hi_priority, 5761 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5762 5763 /* initialize internal queue smid's */ 5764 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5765 sizeof(struct request_tracker), GFP_KERNEL); 5766 if (!ioc->internal_lookup) { 5767 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5768 goto out; 5769 } 5770 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5771 dinitprintk(ioc, 5772 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5773 ioc->internal, 5774 ioc->internal_depth, ioc->internal_smid)); 5775 /* 5776 * The number of NVMe page sized blocks needed is: 5777 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5778 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5779 * that is placed in the main message frame. 8 is the size of each PRP 5780 * entry or PRP list pointer entry. 8 is subtracted from page_size 5781 * because of the PRP list pointer entry at the end of a page, so this 5782 * is not counted as a PRP entry. The 1 added page is a round up. 5783 * 5784 * To avoid allocation failures due to the amount of memory that could 5785 * be required for NVMe PRP's, only each set of NVMe blocks will be 5786 * contiguous, so a new set is allocated for each possible I/O. 5787 */ 5788 ioc->chains_per_prp_buffer = 0; 5789 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5790 nvme_blocks_needed = 5791 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5792 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5793 nvme_blocks_needed++; 5794 5795 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5796 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5797 if (!ioc->pcie_sg_lookup) { 5798 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5799 goto out; 5800 } 5801 sz = nvme_blocks_needed * ioc->page_size; 5802 ioc->pcie_sgl_dma_pool = 5803 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5804 if (!ioc->pcie_sgl_dma_pool) { 5805 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5806 goto out; 5807 } 5808 5809 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5810 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5811 ioc->chains_needed_per_io); 5812 5813 for (i = 0; i < ioc->scsiio_depth; i++) { 5814 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5815 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5816 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5817 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5818 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5819 goto out; 5820 } 5821 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5822 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5823 ct->chain_buffer = 5824 ioc->pcie_sg_lookup[i].pcie_sgl + 5825 (j * ioc->chain_segment_sz); 5826 ct->chain_buffer_dma = 5827 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5828 (j * ioc->chain_segment_sz); 5829 } 5830 } 5831 5832 dinitprintk(ioc, 5833 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5834 ioc->scsiio_depth, sz, 5835 (sz * ioc->scsiio_depth) / 1024)); 5836 dinitprintk(ioc, 5837 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5838 ioc->chains_per_prp_buffer)); 5839 total_sz += sz * ioc->scsiio_depth; 5840 } 5841 5842 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5843 ioc->chain_segment_sz, 16, 0); 5844 if (!ioc->chain_dma_pool) { 5845 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5846 goto out; 5847 } 5848 for (i = 0; i < ioc->scsiio_depth; i++) { 5849 for (j = ioc->chains_per_prp_buffer; 5850 j < ioc->chains_needed_per_io; j++) { 5851 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5852 ct->chain_buffer = dma_pool_alloc( 5853 ioc->chain_dma_pool, GFP_KERNEL, 5854 &ct->chain_buffer_dma); 5855 if (!ct->chain_buffer) { 5856 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5857 goto out; 5858 } 5859 } 5860 total_sz += ioc->chain_segment_sz; 5861 } 5862 5863 dinitprintk(ioc, 5864 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5865 ioc->chain_depth, ioc->chain_segment_sz, 5866 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5867 5868 /* sense buffers, 4 byte align */ 5869 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5870 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5871 4, 0); 5872 if (!ioc->sense_dma_pool) { 5873 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5874 goto out; 5875 } 5876 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5877 &ioc->sense_dma); 5878 if (!ioc->sense) { 5879 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5880 goto out; 5881 } 5882 /* sense buffer requires to be in same 4 gb region. 5883 * Below function will check the same. 5884 * In case of failure, new pci pool will be created with updated 5885 * alignment. Older allocation and pool will be destroyed. 5886 * Alignment will be used such a way that next allocation if 5887 * success, will always meet same 4gb region requirement. 5888 * Actual requirement is not alignment, but we need start and end of 5889 * DMA address must have same upper 32 bit address. 5890 */ 5891 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5892 //Release Sense pool & Reallocate 5893 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5894 dma_pool_destroy(ioc->sense_dma_pool); 5895 ioc->sense = NULL; 5896 5897 ioc->sense_dma_pool = 5898 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5899 roundup_pow_of_two(sz), 0); 5900 if (!ioc->sense_dma_pool) { 5901 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5902 goto out; 5903 } 5904 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5905 &ioc->sense_dma); 5906 if (!ioc->sense) { 5907 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5908 goto out; 5909 } 5910 } 5911 ioc_info(ioc, 5912 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5913 "element_size(%d), pool_size(%d kB)\n", 5914 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5915 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5916 5917 total_sz += sz; 5918 5919 /* reply pool, 4 byte align */ 5920 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5921 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5922 4, 0); 5923 if (!ioc->reply_dma_pool) { 5924 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5925 goto out; 5926 } 5927 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5928 &ioc->reply_dma); 5929 if (!ioc->reply) { 5930 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5931 goto out; 5932 } 5933 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5934 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5935 dinitprintk(ioc, 5936 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5937 ioc->reply, ioc->reply_free_queue_depth, 5938 ioc->reply_sz, sz / 1024)); 5939 dinitprintk(ioc, 5940 ioc_info(ioc, "reply_dma(0x%llx)\n", 5941 (unsigned long long)ioc->reply_dma)); 5942 total_sz += sz; 5943 5944 /* reply free queue, 16 byte align */ 5945 sz = ioc->reply_free_queue_depth * 4; 5946 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5947 &ioc->pdev->dev, sz, 16, 0); 5948 if (!ioc->reply_free_dma_pool) { 5949 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5950 goto out; 5951 } 5952 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5953 &ioc->reply_free_dma); 5954 if (!ioc->reply_free) { 5955 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5956 goto out; 5957 } 5958 dinitprintk(ioc, 5959 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5960 ioc->reply_free, ioc->reply_free_queue_depth, 5961 4, sz / 1024)); 5962 dinitprintk(ioc, 5963 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5964 (unsigned long long)ioc->reply_free_dma)); 5965 total_sz += sz; 5966 5967 if (ioc->rdpq_array_enable) { 5968 reply_post_free_array_sz = ioc->reply_queue_count * 5969 sizeof(Mpi2IOCInitRDPQArrayEntry); 5970 ioc->reply_post_free_array_dma_pool = 5971 dma_pool_create("reply_post_free_array pool", 5972 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5973 if (!ioc->reply_post_free_array_dma_pool) { 5974 dinitprintk(ioc, 5975 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5976 goto out; 5977 } 5978 ioc->reply_post_free_array = 5979 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5980 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5981 if (!ioc->reply_post_free_array) { 5982 dinitprintk(ioc, 5983 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5984 goto out; 5985 } 5986 } 5987 ioc->config_page_sz = 512; 5988 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5989 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5990 if (!ioc->config_page) { 5991 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5992 goto out; 5993 } 5994 5995 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 5996 ioc->config_page, (unsigned long long)ioc->config_page_dma, 5997 ioc->config_page_sz); 5998 total_sz += ioc->config_page_sz; 5999 6000 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6001 total_sz / 1024); 6002 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6003 ioc->shost->can_queue, facts->RequestCredit); 6004 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6005 ioc->shost->sg_tablesize); 6006 return 0; 6007 6008 out: 6009 return -ENOMEM; 6010 } 6011 6012 /** 6013 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6014 * @ioc: Pointer to MPT_ADAPTER structure 6015 * @cooked: Request raw or cooked IOC state 6016 * 6017 * Return: all IOC Doorbell register bits if cooked==0, else just the 6018 * Doorbell bits in MPI_IOC_STATE_MASK. 6019 */ 6020 u32 6021 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6022 { 6023 u32 s, sc; 6024 6025 s = ioc->base_readl(&ioc->chip->Doorbell); 6026 sc = s & MPI2_IOC_STATE_MASK; 6027 return cooked ? sc : s; 6028 } 6029 6030 /** 6031 * _base_wait_on_iocstate - waiting on a particular ioc state 6032 * @ioc: ? 6033 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6034 * @timeout: timeout in second 6035 * 6036 * Return: 0 for success, non-zero for failure. 6037 */ 6038 static int 6039 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6040 { 6041 u32 count, cntdn; 6042 u32 current_state; 6043 6044 count = 0; 6045 cntdn = 1000 * timeout; 6046 do { 6047 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6048 if (current_state == ioc_state) 6049 return 0; 6050 if (count && current_state == MPI2_IOC_STATE_FAULT) 6051 break; 6052 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6053 break; 6054 6055 usleep_range(1000, 1500); 6056 count++; 6057 } while (--cntdn); 6058 6059 return current_state; 6060 } 6061 6062 /** 6063 * _base_dump_reg_set - This function will print hexdump of register set. 6064 * @ioc: per adapter object 6065 * 6066 * Returns nothing. 6067 */ 6068 static inline void 6069 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6070 { 6071 unsigned int i, sz = 256; 6072 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6073 6074 ioc_info(ioc, "System Register set:\n"); 6075 for (i = 0; i < (sz / sizeof(u32)); i++) 6076 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6077 } 6078 6079 /** 6080 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6081 * a write to the doorbell) 6082 * @ioc: per adapter object 6083 * @timeout: timeout in seconds 6084 * 6085 * Return: 0 for success, non-zero for failure. 6086 * 6087 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6088 */ 6089 6090 static int 6091 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6092 { 6093 u32 cntdn, count; 6094 u32 int_status; 6095 6096 count = 0; 6097 cntdn = 1000 * timeout; 6098 do { 6099 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6100 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6101 dhsprintk(ioc, 6102 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6103 __func__, count, timeout)); 6104 return 0; 6105 } 6106 6107 usleep_range(1000, 1500); 6108 count++; 6109 } while (--cntdn); 6110 6111 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6112 __func__, count, int_status); 6113 return -EFAULT; 6114 } 6115 6116 static int 6117 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6118 { 6119 u32 cntdn, count; 6120 u32 int_status; 6121 6122 count = 0; 6123 cntdn = 2000 * timeout; 6124 do { 6125 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6126 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6127 dhsprintk(ioc, 6128 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6129 __func__, count, timeout)); 6130 return 0; 6131 } 6132 6133 udelay(500); 6134 count++; 6135 } while (--cntdn); 6136 6137 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6138 __func__, count, int_status); 6139 return -EFAULT; 6140 6141 } 6142 6143 /** 6144 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6145 * @ioc: per adapter object 6146 * @timeout: timeout in second 6147 * 6148 * Return: 0 for success, non-zero for failure. 6149 * 6150 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6151 * doorbell. 6152 */ 6153 static int 6154 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6155 { 6156 u32 cntdn, count; 6157 u32 int_status; 6158 u32 doorbell; 6159 6160 count = 0; 6161 cntdn = 1000 * timeout; 6162 do { 6163 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6164 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6165 dhsprintk(ioc, 6166 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6167 __func__, count, timeout)); 6168 return 0; 6169 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6170 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6171 if ((doorbell & MPI2_IOC_STATE_MASK) == 6172 MPI2_IOC_STATE_FAULT) { 6173 mpt3sas_print_fault_code(ioc, doorbell); 6174 return -EFAULT; 6175 } 6176 if ((doorbell & MPI2_IOC_STATE_MASK) == 6177 MPI2_IOC_STATE_COREDUMP) { 6178 mpt3sas_print_coredump_info(ioc, doorbell); 6179 return -EFAULT; 6180 } 6181 } else if (int_status == 0xFFFFFFFF) 6182 goto out; 6183 6184 usleep_range(1000, 1500); 6185 count++; 6186 } while (--cntdn); 6187 6188 out: 6189 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6190 __func__, count, int_status); 6191 return -EFAULT; 6192 } 6193 6194 /** 6195 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6196 * @ioc: per adapter object 6197 * @timeout: timeout in second 6198 * 6199 * Return: 0 for success, non-zero for failure. 6200 */ 6201 static int 6202 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6203 { 6204 u32 cntdn, count; 6205 u32 doorbell_reg; 6206 6207 count = 0; 6208 cntdn = 1000 * timeout; 6209 do { 6210 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6211 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6212 dhsprintk(ioc, 6213 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6214 __func__, count, timeout)); 6215 return 0; 6216 } 6217 6218 usleep_range(1000, 1500); 6219 count++; 6220 } while (--cntdn); 6221 6222 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6223 __func__, count, doorbell_reg); 6224 return -EFAULT; 6225 } 6226 6227 /** 6228 * _base_send_ioc_reset - send doorbell reset 6229 * @ioc: per adapter object 6230 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6231 * @timeout: timeout in second 6232 * 6233 * Return: 0 for success, non-zero for failure. 6234 */ 6235 static int 6236 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6237 { 6238 u32 ioc_state; 6239 int r = 0; 6240 unsigned long flags; 6241 6242 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6243 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6244 return -EFAULT; 6245 } 6246 6247 if (!(ioc->facts.IOCCapabilities & 6248 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6249 return -EFAULT; 6250 6251 ioc_info(ioc, "sending message unit reset !!\n"); 6252 6253 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6254 &ioc->chip->Doorbell); 6255 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6256 r = -EFAULT; 6257 goto out; 6258 } 6259 6260 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6261 if (ioc_state) { 6262 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6263 __func__, ioc_state); 6264 r = -EFAULT; 6265 goto out; 6266 } 6267 out: 6268 if (r != 0) { 6269 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6270 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6271 /* 6272 * Wait for IOC state CoreDump to clear only during 6273 * HBA initialization & release time. 6274 */ 6275 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6276 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6277 ioc->fault_reset_work_q == NULL)) { 6278 spin_unlock_irqrestore( 6279 &ioc->ioc_reset_in_progress_lock, flags); 6280 mpt3sas_print_coredump_info(ioc, ioc_state); 6281 mpt3sas_base_wait_for_coredump_completion(ioc, 6282 __func__); 6283 spin_lock_irqsave( 6284 &ioc->ioc_reset_in_progress_lock, flags); 6285 } 6286 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6287 } 6288 ioc_info(ioc, "message unit reset: %s\n", 6289 r == 0 ? "SUCCESS" : "FAILED"); 6290 return r; 6291 } 6292 6293 /** 6294 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6295 * @ioc: per adapter object 6296 * @timeout: timeout in seconds 6297 * 6298 * Return: Waits up to timeout seconds for the IOC to 6299 * become operational. Returns 0 if IOC is present 6300 * and operational; otherwise returns -EFAULT. 6301 */ 6302 6303 int 6304 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6305 { 6306 int wait_state_count = 0; 6307 u32 ioc_state; 6308 6309 do { 6310 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6311 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6312 break; 6313 ssleep(1); 6314 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 6315 __func__, ++wait_state_count); 6316 } while (--timeout); 6317 if (!timeout) { 6318 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 6319 return -EFAULT; 6320 } 6321 if (wait_state_count) 6322 ioc_info(ioc, "ioc is operational\n"); 6323 return 0; 6324 } 6325 6326 /** 6327 * _base_handshake_req_reply_wait - send request thru doorbell interface 6328 * @ioc: per adapter object 6329 * @request_bytes: request length 6330 * @request: pointer having request payload 6331 * @reply_bytes: reply length 6332 * @reply: pointer to reply payload 6333 * @timeout: timeout in second 6334 * 6335 * Return: 0 for success, non-zero for failure. 6336 */ 6337 static int 6338 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 6339 u32 *request, int reply_bytes, u16 *reply, int timeout) 6340 { 6341 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 6342 int i; 6343 u8 failed; 6344 __le32 *mfp; 6345 6346 /* make sure doorbell is not in use */ 6347 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 6348 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 6349 return -EFAULT; 6350 } 6351 6352 /* clear pending doorbell interrupts from previous state changes */ 6353 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 6354 MPI2_HIS_IOC2SYS_DB_STATUS) 6355 writel(0, &ioc->chip->HostInterruptStatus); 6356 6357 /* send message to ioc */ 6358 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 6359 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 6360 &ioc->chip->Doorbell); 6361 6362 if ((_base_spin_on_doorbell_int(ioc, 5))) { 6363 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6364 __LINE__); 6365 return -EFAULT; 6366 } 6367 writel(0, &ioc->chip->HostInterruptStatus); 6368 6369 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 6370 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 6371 __LINE__); 6372 return -EFAULT; 6373 } 6374 6375 /* send message 32-bits at a time */ 6376 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 6377 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 6378 if ((_base_wait_for_doorbell_ack(ioc, 5))) 6379 failed = 1; 6380 } 6381 6382 if (failed) { 6383 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 6384 __LINE__); 6385 return -EFAULT; 6386 } 6387 6388 /* now wait for the reply */ 6389 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 6390 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6391 __LINE__); 6392 return -EFAULT; 6393 } 6394 6395 /* read the first two 16-bits, it gives the total length of the reply */ 6396 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6397 & MPI2_DOORBELL_DATA_MASK); 6398 writel(0, &ioc->chip->HostInterruptStatus); 6399 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6400 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6401 __LINE__); 6402 return -EFAULT; 6403 } 6404 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6405 & MPI2_DOORBELL_DATA_MASK); 6406 writel(0, &ioc->chip->HostInterruptStatus); 6407 6408 for (i = 2; i < default_reply->MsgLength * 2; i++) { 6409 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6410 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6411 __LINE__); 6412 return -EFAULT; 6413 } 6414 if (i >= reply_bytes/2) /* overflow case */ 6415 ioc->base_readl(&ioc->chip->Doorbell); 6416 else 6417 reply[i] = le16_to_cpu( 6418 ioc->base_readl(&ioc->chip->Doorbell) 6419 & MPI2_DOORBELL_DATA_MASK); 6420 writel(0, &ioc->chip->HostInterruptStatus); 6421 } 6422 6423 _base_wait_for_doorbell_int(ioc, 5); 6424 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 6425 dhsprintk(ioc, 6426 ioc_info(ioc, "doorbell is in use (line=%d)\n", 6427 __LINE__)); 6428 } 6429 writel(0, &ioc->chip->HostInterruptStatus); 6430 6431 if (ioc->logging_level & MPT_DEBUG_INIT) { 6432 mfp = (__le32 *)reply; 6433 pr_info("\toffset:data\n"); 6434 for (i = 0; i < reply_bytes/4; i++) 6435 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6436 le32_to_cpu(mfp[i])); 6437 } 6438 return 0; 6439 } 6440 6441 /** 6442 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6443 * @ioc: per adapter object 6444 * @mpi_reply: the reply payload from FW 6445 * @mpi_request: the request payload sent to FW 6446 * 6447 * The SAS IO Unit Control Request message allows the host to perform low-level 6448 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6449 * to obtain the IOC assigned device handles for a device if it has other 6450 * identifying information about the device, in addition allows the host to 6451 * remove IOC resources associated with the device. 6452 * 6453 * Return: 0 for success, non-zero for failure. 6454 */ 6455 int 6456 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6457 Mpi2SasIoUnitControlReply_t *mpi_reply, 6458 Mpi2SasIoUnitControlRequest_t *mpi_request) 6459 { 6460 u16 smid; 6461 u8 issue_reset = 0; 6462 int rc; 6463 void *request; 6464 6465 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6466 6467 mutex_lock(&ioc->base_cmds.mutex); 6468 6469 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6470 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6471 rc = -EAGAIN; 6472 goto out; 6473 } 6474 6475 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6476 if (rc) 6477 goto out; 6478 6479 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6480 if (!smid) { 6481 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6482 rc = -EAGAIN; 6483 goto out; 6484 } 6485 6486 rc = 0; 6487 ioc->base_cmds.status = MPT3_CMD_PENDING; 6488 request = mpt3sas_base_get_msg_frame(ioc, smid); 6489 ioc->base_cmds.smid = smid; 6490 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6491 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6492 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6493 ioc->ioc_link_reset_in_progress = 1; 6494 init_completion(&ioc->base_cmds.done); 6495 ioc->put_smid_default(ioc, smid); 6496 wait_for_completion_timeout(&ioc->base_cmds.done, 6497 msecs_to_jiffies(10000)); 6498 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6499 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6500 ioc->ioc_link_reset_in_progress) 6501 ioc->ioc_link_reset_in_progress = 0; 6502 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6503 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6504 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6505 issue_reset); 6506 goto issue_host_reset; 6507 } 6508 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6509 memcpy(mpi_reply, ioc->base_cmds.reply, 6510 sizeof(Mpi2SasIoUnitControlReply_t)); 6511 else 6512 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6513 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6514 goto out; 6515 6516 issue_host_reset: 6517 if (issue_reset) 6518 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6519 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6520 rc = -EFAULT; 6521 out: 6522 mutex_unlock(&ioc->base_cmds.mutex); 6523 return rc; 6524 } 6525 6526 /** 6527 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6528 * @ioc: per adapter object 6529 * @mpi_reply: the reply payload from FW 6530 * @mpi_request: the request payload sent to FW 6531 * 6532 * The SCSI Enclosure Processor request message causes the IOC to 6533 * communicate with SES devices to control LED status signals. 6534 * 6535 * Return: 0 for success, non-zero for failure. 6536 */ 6537 int 6538 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6539 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6540 { 6541 u16 smid; 6542 u8 issue_reset = 0; 6543 int rc; 6544 void *request; 6545 6546 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6547 6548 mutex_lock(&ioc->base_cmds.mutex); 6549 6550 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6551 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6552 rc = -EAGAIN; 6553 goto out; 6554 } 6555 6556 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6557 if (rc) 6558 goto out; 6559 6560 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6561 if (!smid) { 6562 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6563 rc = -EAGAIN; 6564 goto out; 6565 } 6566 6567 rc = 0; 6568 ioc->base_cmds.status = MPT3_CMD_PENDING; 6569 request = mpt3sas_base_get_msg_frame(ioc, smid); 6570 ioc->base_cmds.smid = smid; 6571 memset(request, 0, ioc->request_sz); 6572 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6573 init_completion(&ioc->base_cmds.done); 6574 ioc->put_smid_default(ioc, smid); 6575 wait_for_completion_timeout(&ioc->base_cmds.done, 6576 msecs_to_jiffies(10000)); 6577 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6578 mpt3sas_check_cmd_timeout(ioc, 6579 ioc->base_cmds.status, mpi_request, 6580 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6581 goto issue_host_reset; 6582 } 6583 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6584 memcpy(mpi_reply, ioc->base_cmds.reply, 6585 sizeof(Mpi2SepReply_t)); 6586 else 6587 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6588 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6589 goto out; 6590 6591 issue_host_reset: 6592 if (issue_reset) 6593 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6594 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6595 rc = -EFAULT; 6596 out: 6597 mutex_unlock(&ioc->base_cmds.mutex); 6598 return rc; 6599 } 6600 6601 /** 6602 * _base_get_port_facts - obtain port facts reply and save in ioc 6603 * @ioc: per adapter object 6604 * @port: ? 6605 * 6606 * Return: 0 for success, non-zero for failure. 6607 */ 6608 static int 6609 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6610 { 6611 Mpi2PortFactsRequest_t mpi_request; 6612 Mpi2PortFactsReply_t mpi_reply; 6613 struct mpt3sas_port_facts *pfacts; 6614 int mpi_reply_sz, mpi_request_sz, r; 6615 6616 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6617 6618 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6619 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6620 memset(&mpi_request, 0, mpi_request_sz); 6621 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6622 mpi_request.PortNumber = port; 6623 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6624 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6625 6626 if (r != 0) { 6627 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6628 return r; 6629 } 6630 6631 pfacts = &ioc->pfacts[port]; 6632 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6633 pfacts->PortNumber = mpi_reply.PortNumber; 6634 pfacts->VP_ID = mpi_reply.VP_ID; 6635 pfacts->VF_ID = mpi_reply.VF_ID; 6636 pfacts->MaxPostedCmdBuffers = 6637 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6638 6639 return 0; 6640 } 6641 6642 /** 6643 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6644 * @ioc: per adapter object 6645 * @timeout: 6646 * 6647 * Return: 0 for success, non-zero for failure. 6648 */ 6649 static int 6650 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6651 { 6652 u32 ioc_state; 6653 int rc; 6654 6655 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6656 6657 if (ioc->pci_error_recovery) { 6658 dfailprintk(ioc, 6659 ioc_info(ioc, "%s: host in pci error recovery\n", 6660 __func__)); 6661 return -EFAULT; 6662 } 6663 6664 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6665 dhsprintk(ioc, 6666 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6667 __func__, ioc_state)); 6668 6669 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6670 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6671 return 0; 6672 6673 if (ioc_state & MPI2_DOORBELL_USED) { 6674 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6675 goto issue_diag_reset; 6676 } 6677 6678 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6679 mpt3sas_print_fault_code(ioc, ioc_state & 6680 MPI2_DOORBELL_DATA_MASK); 6681 goto issue_diag_reset; 6682 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6683 MPI2_IOC_STATE_COREDUMP) { 6684 ioc_info(ioc, 6685 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6686 __func__, ioc_state); 6687 return -EFAULT; 6688 } 6689 6690 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6691 if (ioc_state) { 6692 dfailprintk(ioc, 6693 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6694 __func__, ioc_state)); 6695 return -EFAULT; 6696 } 6697 6698 issue_diag_reset: 6699 rc = _base_diag_reset(ioc); 6700 return rc; 6701 } 6702 6703 /** 6704 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6705 * @ioc: per adapter object 6706 * 6707 * Return: 0 for success, non-zero for failure. 6708 */ 6709 static int 6710 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6711 { 6712 Mpi2IOCFactsRequest_t mpi_request; 6713 Mpi2IOCFactsReply_t mpi_reply; 6714 struct mpt3sas_facts *facts; 6715 int mpi_reply_sz, mpi_request_sz, r; 6716 6717 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6718 6719 r = _base_wait_for_iocstate(ioc, 10); 6720 if (r) { 6721 dfailprintk(ioc, 6722 ioc_info(ioc, "%s: failed getting to correct state\n", 6723 __func__)); 6724 return r; 6725 } 6726 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6727 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6728 memset(&mpi_request, 0, mpi_request_sz); 6729 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6730 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6731 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6732 6733 if (r != 0) { 6734 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6735 return r; 6736 } 6737 6738 facts = &ioc->facts; 6739 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6740 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6741 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6742 facts->VP_ID = mpi_reply.VP_ID; 6743 facts->VF_ID = mpi_reply.VF_ID; 6744 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6745 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6746 facts->WhoInit = mpi_reply.WhoInit; 6747 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6748 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6749 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6750 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6751 ioc->combined_reply_queue = 0; 6752 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6753 facts->MaxReplyDescriptorPostQueueDepth = 6754 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6755 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6756 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6757 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6758 ioc->ir_firmware = 1; 6759 if ((facts->IOCCapabilities & 6760 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6761 ioc->rdpq_array_capable = 1; 6762 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6763 && ioc->is_aero_ioc) 6764 ioc->atomic_desc_capable = 1; 6765 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6766 facts->IOCRequestFrameSize = 6767 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6768 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6769 facts->IOCMaxChainSegmentSize = 6770 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6771 } 6772 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6773 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6774 ioc->shost->max_id = -1; 6775 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6776 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6777 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6778 facts->HighPriorityCredit = 6779 le16_to_cpu(mpi_reply.HighPriorityCredit); 6780 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6781 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6782 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6783 6784 /* 6785 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6786 */ 6787 ioc->page_size = 1 << facts->CurrentHostPageSize; 6788 if (ioc->page_size == 1) { 6789 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6790 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6791 } 6792 dinitprintk(ioc, 6793 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6794 facts->CurrentHostPageSize)); 6795 6796 dinitprintk(ioc, 6797 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6798 facts->RequestCredit, facts->MaxChainDepth)); 6799 dinitprintk(ioc, 6800 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6801 facts->IOCRequestFrameSize * 4, 6802 facts->ReplyFrameSize * 4)); 6803 return 0; 6804 } 6805 6806 /** 6807 * _base_send_ioc_init - send ioc_init to firmware 6808 * @ioc: per adapter object 6809 * 6810 * Return: 0 for success, non-zero for failure. 6811 */ 6812 static int 6813 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6814 { 6815 Mpi2IOCInitRequest_t mpi_request; 6816 Mpi2IOCInitReply_t mpi_reply; 6817 int i, r = 0; 6818 ktime_t current_time; 6819 u16 ioc_status; 6820 u32 reply_post_free_array_sz = 0; 6821 6822 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6823 6824 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6825 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6826 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6827 mpi_request.VF_ID = 0; /* TODO */ 6828 mpi_request.VP_ID = 0; 6829 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6830 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6831 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6832 6833 if (_base_is_controller_msix_enabled(ioc)) 6834 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6835 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6836 mpi_request.ReplyDescriptorPostQueueDepth = 6837 cpu_to_le16(ioc->reply_post_queue_depth); 6838 mpi_request.ReplyFreeQueueDepth = 6839 cpu_to_le16(ioc->reply_free_queue_depth); 6840 6841 mpi_request.SenseBufferAddressHigh = 6842 cpu_to_le32((u64)ioc->sense_dma >> 32); 6843 mpi_request.SystemReplyAddressHigh = 6844 cpu_to_le32((u64)ioc->reply_dma >> 32); 6845 mpi_request.SystemRequestFrameBaseAddress = 6846 cpu_to_le64((u64)ioc->request_dma); 6847 mpi_request.ReplyFreeQueueAddress = 6848 cpu_to_le64((u64)ioc->reply_free_dma); 6849 6850 if (ioc->rdpq_array_enable) { 6851 reply_post_free_array_sz = ioc->reply_queue_count * 6852 sizeof(Mpi2IOCInitRDPQArrayEntry); 6853 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6854 for (i = 0; i < ioc->reply_queue_count; i++) 6855 ioc->reply_post_free_array[i].RDPQBaseAddress = 6856 cpu_to_le64( 6857 (u64)ioc->reply_post[i].reply_post_free_dma); 6858 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6859 mpi_request.ReplyDescriptorPostQueueAddress = 6860 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6861 } else { 6862 mpi_request.ReplyDescriptorPostQueueAddress = 6863 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6864 } 6865 6866 /* 6867 * Set the flag to enable CoreDump state feature in IOC firmware. 6868 */ 6869 mpi_request.ConfigurationFlags |= 6870 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6871 6872 /* This time stamp specifies number of milliseconds 6873 * since epoch ~ midnight January 1, 1970. 6874 */ 6875 current_time = ktime_get_real(); 6876 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6877 6878 if (ioc->logging_level & MPT_DEBUG_INIT) { 6879 __le32 *mfp; 6880 int i; 6881 6882 mfp = (__le32 *)&mpi_request; 6883 ioc_info(ioc, "\toffset:data\n"); 6884 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6885 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6886 le32_to_cpu(mfp[i])); 6887 } 6888 6889 r = _base_handshake_req_reply_wait(ioc, 6890 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6891 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 6892 6893 if (r != 0) { 6894 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6895 return r; 6896 } 6897 6898 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6899 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6900 mpi_reply.IOCLogInfo) { 6901 ioc_err(ioc, "%s: failed\n", __func__); 6902 r = -EIO; 6903 } 6904 6905 /* Reset TimeSync Counter*/ 6906 ioc->timestamp_update_count = 0; 6907 return r; 6908 } 6909 6910 /** 6911 * mpt3sas_port_enable_done - command completion routine for port enable 6912 * @ioc: per adapter object 6913 * @smid: system request message index 6914 * @msix_index: MSIX table index supplied by the OS 6915 * @reply: reply message frame(lower 32bit addr) 6916 * 6917 * Return: 1 meaning mf should be freed from _base_interrupt 6918 * 0 means the mf is freed from this function. 6919 */ 6920 u8 6921 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6922 u32 reply) 6923 { 6924 MPI2DefaultReply_t *mpi_reply; 6925 u16 ioc_status; 6926 6927 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6928 return 1; 6929 6930 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6931 if (!mpi_reply) 6932 return 1; 6933 6934 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6935 return 1; 6936 6937 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6938 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6939 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6940 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6941 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6942 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6943 ioc->port_enable_failed = 1; 6944 6945 if (ioc->is_driver_loading) { 6946 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6947 mpt3sas_port_enable_complete(ioc); 6948 return 1; 6949 } else { 6950 ioc->start_scan_failed = ioc_status; 6951 ioc->start_scan = 0; 6952 return 1; 6953 } 6954 } 6955 complete(&ioc->port_enable_cmds.done); 6956 return 1; 6957 } 6958 6959 /** 6960 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6961 * @ioc: per adapter object 6962 * 6963 * Return: 0 for success, non-zero for failure. 6964 */ 6965 static int 6966 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6967 { 6968 Mpi2PortEnableRequest_t *mpi_request; 6969 Mpi2PortEnableReply_t *mpi_reply; 6970 int r = 0; 6971 u16 smid; 6972 u16 ioc_status; 6973 6974 ioc_info(ioc, "sending port enable !!\n"); 6975 6976 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6977 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6978 return -EAGAIN; 6979 } 6980 6981 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6982 if (!smid) { 6983 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6984 return -EAGAIN; 6985 } 6986 6987 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6988 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6989 ioc->port_enable_cmds.smid = smid; 6990 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6991 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6992 6993 init_completion(&ioc->port_enable_cmds.done); 6994 ioc->put_smid_default(ioc, smid); 6995 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6996 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6997 ioc_err(ioc, "%s: timeout\n", __func__); 6998 _debug_dump_mf(mpi_request, 6999 sizeof(Mpi2PortEnableRequest_t)/4); 7000 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7001 r = -EFAULT; 7002 else 7003 r = -ETIME; 7004 goto out; 7005 } 7006 7007 mpi_reply = ioc->port_enable_cmds.reply; 7008 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7009 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7010 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7011 __func__, ioc_status); 7012 r = -EFAULT; 7013 goto out; 7014 } 7015 7016 out: 7017 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7018 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7019 return r; 7020 } 7021 7022 /** 7023 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7024 * @ioc: per adapter object 7025 * 7026 * Return: 0 for success, non-zero for failure. 7027 */ 7028 int 7029 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7030 { 7031 Mpi2PortEnableRequest_t *mpi_request; 7032 u16 smid; 7033 7034 ioc_info(ioc, "sending port enable !!\n"); 7035 7036 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7037 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7038 return -EAGAIN; 7039 } 7040 7041 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7042 if (!smid) { 7043 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7044 return -EAGAIN; 7045 } 7046 7047 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7048 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7049 ioc->port_enable_cmds.smid = smid; 7050 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7051 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7052 7053 ioc->put_smid_default(ioc, smid); 7054 return 0; 7055 } 7056 7057 /** 7058 * _base_determine_wait_on_discovery - desposition 7059 * @ioc: per adapter object 7060 * 7061 * Decide whether to wait on discovery to complete. Used to either 7062 * locate boot device, or report volumes ahead of physical devices. 7063 * 7064 * Return: 1 for wait, 0 for don't wait. 7065 */ 7066 static int 7067 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7068 { 7069 /* We wait for discovery to complete if IR firmware is loaded. 7070 * The sas topology events arrive before PD events, so we need time to 7071 * turn on the bit in ioc->pd_handles to indicate PD 7072 * Also, it maybe required to report Volumes ahead of physical 7073 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7074 */ 7075 if (ioc->ir_firmware) 7076 return 1; 7077 7078 /* if no Bios, then we don't need to wait */ 7079 if (!ioc->bios_pg3.BiosVersion) 7080 return 0; 7081 7082 /* Bios is present, then we drop down here. 7083 * 7084 * If there any entries in the Bios Page 2, then we wait 7085 * for discovery to complete. 7086 */ 7087 7088 /* Current Boot Device */ 7089 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7090 MPI2_BIOSPAGE2_FORM_MASK) == 7091 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7092 /* Request Boot Device */ 7093 (ioc->bios_pg2.ReqBootDeviceForm & 7094 MPI2_BIOSPAGE2_FORM_MASK) == 7095 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7096 /* Alternate Request Boot Device */ 7097 (ioc->bios_pg2.ReqAltBootDeviceForm & 7098 MPI2_BIOSPAGE2_FORM_MASK) == 7099 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7100 return 0; 7101 7102 return 1; 7103 } 7104 7105 /** 7106 * _base_unmask_events - turn on notification for this event 7107 * @ioc: per adapter object 7108 * @event: firmware event 7109 * 7110 * The mask is stored in ioc->event_masks. 7111 */ 7112 static void 7113 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7114 { 7115 u32 desired_event; 7116 7117 if (event >= 128) 7118 return; 7119 7120 desired_event = (1 << (event % 32)); 7121 7122 if (event < 32) 7123 ioc->event_masks[0] &= ~desired_event; 7124 else if (event < 64) 7125 ioc->event_masks[1] &= ~desired_event; 7126 else if (event < 96) 7127 ioc->event_masks[2] &= ~desired_event; 7128 else if (event < 128) 7129 ioc->event_masks[3] &= ~desired_event; 7130 } 7131 7132 /** 7133 * _base_event_notification - send event notification 7134 * @ioc: per adapter object 7135 * 7136 * Return: 0 for success, non-zero for failure. 7137 */ 7138 static int 7139 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7140 { 7141 Mpi2EventNotificationRequest_t *mpi_request; 7142 u16 smid; 7143 int r = 0; 7144 int i; 7145 7146 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7147 7148 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7149 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7150 return -EAGAIN; 7151 } 7152 7153 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7154 if (!smid) { 7155 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7156 return -EAGAIN; 7157 } 7158 ioc->base_cmds.status = MPT3_CMD_PENDING; 7159 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7160 ioc->base_cmds.smid = smid; 7161 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7162 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7163 mpi_request->VF_ID = 0; /* TODO */ 7164 mpi_request->VP_ID = 0; 7165 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7166 mpi_request->EventMasks[i] = 7167 cpu_to_le32(ioc->event_masks[i]); 7168 init_completion(&ioc->base_cmds.done); 7169 ioc->put_smid_default(ioc, smid); 7170 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7171 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7172 ioc_err(ioc, "%s: timeout\n", __func__); 7173 _debug_dump_mf(mpi_request, 7174 sizeof(Mpi2EventNotificationRequest_t)/4); 7175 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7176 r = -EFAULT; 7177 else 7178 r = -ETIME; 7179 } else 7180 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7181 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7182 return r; 7183 } 7184 7185 /** 7186 * mpt3sas_base_validate_event_type - validating event types 7187 * @ioc: per adapter object 7188 * @event_type: firmware event 7189 * 7190 * This will turn on firmware event notification when application 7191 * ask for that event. We don't mask events that are already enabled. 7192 */ 7193 void 7194 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7195 { 7196 int i, j; 7197 u32 event_mask, desired_event; 7198 u8 send_update_to_fw; 7199 7200 for (i = 0, send_update_to_fw = 0; i < 7201 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7202 event_mask = ~event_type[i]; 7203 desired_event = 1; 7204 for (j = 0; j < 32; j++) { 7205 if (!(event_mask & desired_event) && 7206 (ioc->event_masks[i] & desired_event)) { 7207 ioc->event_masks[i] &= ~desired_event; 7208 send_update_to_fw = 1; 7209 } 7210 desired_event = (desired_event << 1); 7211 } 7212 } 7213 7214 if (!send_update_to_fw) 7215 return; 7216 7217 mutex_lock(&ioc->base_cmds.mutex); 7218 _base_event_notification(ioc); 7219 mutex_unlock(&ioc->base_cmds.mutex); 7220 } 7221 7222 /** 7223 * _base_diag_reset - the "big hammer" start of day reset 7224 * @ioc: per adapter object 7225 * 7226 * Return: 0 for success, non-zero for failure. 7227 */ 7228 static int 7229 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7230 { 7231 u32 host_diagnostic; 7232 u32 ioc_state; 7233 u32 count; 7234 u32 hcb_size; 7235 7236 ioc_info(ioc, "sending diag reset !!\n"); 7237 7238 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7239 7240 count = 0; 7241 do { 7242 /* Write magic sequence to WriteSequence register 7243 * Loop until in diagnostic mode 7244 */ 7245 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7246 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7247 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7248 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7249 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7250 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7251 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7252 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7253 7254 /* wait 100 msec */ 7255 msleep(100); 7256 7257 if (count++ > 20) { 7258 ioc_info(ioc, 7259 "Stop writing magic sequence after 20 retries\n"); 7260 _base_dump_reg_set(ioc); 7261 goto out; 7262 } 7263 7264 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7265 drsprintk(ioc, 7266 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7267 count, host_diagnostic)); 7268 7269 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7270 7271 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7272 7273 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7274 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7275 &ioc->chip->HostDiagnostic); 7276 7277 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7278 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7279 7280 /* Approximately 300 second max wait */ 7281 for (count = 0; count < (300000000 / 7282 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7283 7284 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7285 7286 if (host_diagnostic == 0xFFFFFFFF) { 7287 ioc_info(ioc, 7288 "Invalid host diagnostic register value\n"); 7289 _base_dump_reg_set(ioc); 7290 goto out; 7291 } 7292 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7293 break; 7294 7295 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7296 } 7297 7298 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 7299 7300 drsprintk(ioc, 7301 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 7302 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 7303 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 7304 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 7305 7306 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 7307 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 7308 &ioc->chip->HCBSize); 7309 } 7310 7311 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 7312 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 7313 &ioc->chip->HostDiagnostic); 7314 7315 drsprintk(ioc, 7316 ioc_info(ioc, "disable writes to the diagnostic register\n")); 7317 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7318 7319 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 7320 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 7321 if (ioc_state) { 7322 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7323 __func__, ioc_state); 7324 _base_dump_reg_set(ioc); 7325 goto out; 7326 } 7327 7328 ioc_info(ioc, "diag reset: SUCCESS\n"); 7329 return 0; 7330 7331 out: 7332 ioc_err(ioc, "diag reset: FAILED\n"); 7333 return -EFAULT; 7334 } 7335 7336 /** 7337 * _base_make_ioc_ready - put controller in READY state 7338 * @ioc: per adapter object 7339 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7340 * 7341 * Return: 0 for success, non-zero for failure. 7342 */ 7343 static int 7344 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 7345 { 7346 u32 ioc_state; 7347 int rc; 7348 int count; 7349 7350 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7351 7352 if (ioc->pci_error_recovery) 7353 return 0; 7354 7355 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7356 dhsprintk(ioc, 7357 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7358 __func__, ioc_state)); 7359 7360 /* if in RESET state, it should move to READY state shortly */ 7361 count = 0; 7362 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 7363 while ((ioc_state & MPI2_IOC_STATE_MASK) != 7364 MPI2_IOC_STATE_READY) { 7365 if (count++ == 10) { 7366 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7367 __func__, ioc_state); 7368 return -EFAULT; 7369 } 7370 ssleep(1); 7371 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7372 } 7373 } 7374 7375 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 7376 return 0; 7377 7378 if (ioc_state & MPI2_DOORBELL_USED) { 7379 ioc_info(ioc, "unexpected doorbell active!\n"); 7380 goto issue_diag_reset; 7381 } 7382 7383 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7384 mpt3sas_print_fault_code(ioc, ioc_state & 7385 MPI2_DOORBELL_DATA_MASK); 7386 goto issue_diag_reset; 7387 } 7388 7389 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 7390 /* 7391 * if host reset is invoked while watch dog thread is waiting 7392 * for IOC state to be changed to Fault state then driver has 7393 * to wait here for CoreDump state to clear otherwise reset 7394 * will be issued to the FW and FW move the IOC state to 7395 * reset state without copying the FW logs to coredump region. 7396 */ 7397 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 7398 mpt3sas_print_coredump_info(ioc, ioc_state & 7399 MPI2_DOORBELL_DATA_MASK); 7400 mpt3sas_base_wait_for_coredump_completion(ioc, 7401 __func__); 7402 } 7403 goto issue_diag_reset; 7404 } 7405 7406 if (type == FORCE_BIG_HAMMER) 7407 goto issue_diag_reset; 7408 7409 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7410 if (!(_base_send_ioc_reset(ioc, 7411 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 7412 return 0; 7413 } 7414 7415 issue_diag_reset: 7416 rc = _base_diag_reset(ioc); 7417 return rc; 7418 } 7419 7420 /** 7421 * _base_make_ioc_operational - put controller in OPERATIONAL state 7422 * @ioc: per adapter object 7423 * 7424 * Return: 0 for success, non-zero for failure. 7425 */ 7426 static int 7427 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 7428 { 7429 int r, i, index, rc; 7430 unsigned long flags; 7431 u32 reply_address; 7432 u16 smid; 7433 struct _tr_list *delayed_tr, *delayed_tr_next; 7434 struct _sc_list *delayed_sc, *delayed_sc_next; 7435 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 7436 u8 hide_flag; 7437 struct adapter_reply_queue *reply_q; 7438 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7439 7440 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7441 7442 /* clean the delayed target reset list */ 7443 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7444 &ioc->delayed_tr_list, list) { 7445 list_del(&delayed_tr->list); 7446 kfree(delayed_tr); 7447 } 7448 7449 7450 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7451 &ioc->delayed_tr_volume_list, list) { 7452 list_del(&delayed_tr->list); 7453 kfree(delayed_tr); 7454 } 7455 7456 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 7457 &ioc->delayed_sc_list, list) { 7458 list_del(&delayed_sc->list); 7459 kfree(delayed_sc); 7460 } 7461 7462 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7463 &ioc->delayed_event_ack_list, list) { 7464 list_del(&delayed_event_ack->list); 7465 kfree(delayed_event_ack); 7466 } 7467 7468 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7469 7470 /* hi-priority queue */ 7471 INIT_LIST_HEAD(&ioc->hpr_free_list); 7472 smid = ioc->hi_priority_smid; 7473 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7474 ioc->hpr_lookup[i].cb_idx = 0xFF; 7475 ioc->hpr_lookup[i].smid = smid; 7476 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7477 &ioc->hpr_free_list); 7478 } 7479 7480 /* internal queue */ 7481 INIT_LIST_HEAD(&ioc->internal_free_list); 7482 smid = ioc->internal_smid; 7483 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7484 ioc->internal_lookup[i].cb_idx = 0xFF; 7485 ioc->internal_lookup[i].smid = smid; 7486 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7487 &ioc->internal_free_list); 7488 } 7489 7490 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7491 7492 /* initialize Reply Free Queue */ 7493 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7494 i < ioc->reply_free_queue_depth ; i++, reply_address += 7495 ioc->reply_sz) { 7496 ioc->reply_free[i] = cpu_to_le32(reply_address); 7497 if (ioc->is_mcpu_endpoint) 7498 _base_clone_reply_to_sys_mem(ioc, 7499 reply_address, i); 7500 } 7501 7502 /* initialize reply queues */ 7503 if (ioc->is_driver_loading) 7504 _base_assign_reply_queues(ioc); 7505 7506 /* initialize Reply Post Free Queue */ 7507 index = 0; 7508 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7509 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7510 /* 7511 * If RDPQ is enabled, switch to the next allocation. 7512 * Otherwise advance within the contiguous region. 7513 */ 7514 if (ioc->rdpq_array_enable) { 7515 reply_q->reply_post_free = 7516 ioc->reply_post[index++].reply_post_free; 7517 } else { 7518 reply_q->reply_post_free = reply_post_free_contig; 7519 reply_post_free_contig += ioc->reply_post_queue_depth; 7520 } 7521 7522 reply_q->reply_post_host_index = 0; 7523 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7524 reply_q->reply_post_free[i].Words = 7525 cpu_to_le64(ULLONG_MAX); 7526 if (!_base_is_controller_msix_enabled(ioc)) 7527 goto skip_init_reply_post_free_queue; 7528 } 7529 skip_init_reply_post_free_queue: 7530 7531 r = _base_send_ioc_init(ioc); 7532 if (r) { 7533 /* 7534 * No need to check IOC state for fault state & issue 7535 * diag reset during host reset. This check is need 7536 * only during driver load time. 7537 */ 7538 if (!ioc->is_driver_loading) 7539 return r; 7540 7541 rc = _base_check_for_fault_and_issue_reset(ioc); 7542 if (rc || (_base_send_ioc_init(ioc))) 7543 return r; 7544 } 7545 7546 /* initialize reply free host index */ 7547 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7548 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7549 7550 /* initialize reply post host index */ 7551 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7552 if (ioc->combined_reply_queue) 7553 writel((reply_q->msix_index & 7)<< 7554 MPI2_RPHI_MSIX_INDEX_SHIFT, 7555 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7556 else 7557 writel(reply_q->msix_index << 7558 MPI2_RPHI_MSIX_INDEX_SHIFT, 7559 &ioc->chip->ReplyPostHostIndex); 7560 7561 if (!_base_is_controller_msix_enabled(ioc)) 7562 goto skip_init_reply_post_host_index; 7563 } 7564 7565 skip_init_reply_post_host_index: 7566 7567 mpt3sas_base_unmask_interrupts(ioc); 7568 7569 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7570 r = _base_display_fwpkg_version(ioc); 7571 if (r) 7572 return r; 7573 } 7574 7575 _base_static_config_pages(ioc); 7576 r = _base_event_notification(ioc); 7577 if (r) 7578 return r; 7579 7580 if (ioc->is_driver_loading) { 7581 7582 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7583 == 0x80) { 7584 hide_flag = (u8) ( 7585 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7586 MFG_PAGE10_HIDE_SSDS_MASK); 7587 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7588 ioc->mfg_pg10_hide_flag = hide_flag; 7589 } 7590 7591 ioc->wait_for_discovery_to_complete = 7592 _base_determine_wait_on_discovery(ioc); 7593 7594 return r; /* scan_start and scan_finished support */ 7595 } 7596 7597 r = _base_send_port_enable(ioc); 7598 if (r) 7599 return r; 7600 7601 return r; 7602 } 7603 7604 /** 7605 * mpt3sas_base_free_resources - free resources controller resources 7606 * @ioc: per adapter object 7607 */ 7608 void 7609 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7610 { 7611 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7612 7613 /* synchronizing freeing resource with pci_access_mutex lock */ 7614 mutex_lock(&ioc->pci_access_mutex); 7615 if (ioc->chip_phys && ioc->chip) { 7616 mpt3sas_base_mask_interrupts(ioc); 7617 ioc->shost_recovery = 1; 7618 _base_make_ioc_ready(ioc, SOFT_RESET); 7619 ioc->shost_recovery = 0; 7620 } 7621 7622 mpt3sas_base_unmap_resources(ioc); 7623 mutex_unlock(&ioc->pci_access_mutex); 7624 return; 7625 } 7626 7627 /** 7628 * mpt3sas_base_attach - attach controller instance 7629 * @ioc: per adapter object 7630 * 7631 * Return: 0 for success, non-zero for failure. 7632 */ 7633 int 7634 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7635 { 7636 int r, i, rc; 7637 int cpu_id, last_cpu_id = 0; 7638 7639 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7640 7641 /* setup cpu_msix_table */ 7642 ioc->cpu_count = num_online_cpus(); 7643 for_each_online_cpu(cpu_id) 7644 last_cpu_id = cpu_id; 7645 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7646 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7647 ioc->reply_queue_count = 1; 7648 if (!ioc->cpu_msix_table) { 7649 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7650 r = -ENOMEM; 7651 goto out_free_resources; 7652 } 7653 7654 if (ioc->is_warpdrive) { 7655 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7656 sizeof(resource_size_t *), GFP_KERNEL); 7657 if (!ioc->reply_post_host_index) { 7658 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7659 r = -ENOMEM; 7660 goto out_free_resources; 7661 } 7662 } 7663 7664 ioc->smp_affinity_enable = smp_affinity_enable; 7665 7666 ioc->rdpq_array_enable_assigned = 0; 7667 ioc->use_32bit_dma = false; 7668 if (ioc->is_aero_ioc) 7669 ioc->base_readl = &_base_readl_aero; 7670 else 7671 ioc->base_readl = &_base_readl; 7672 r = mpt3sas_base_map_resources(ioc); 7673 if (r) 7674 goto out_free_resources; 7675 7676 pci_set_drvdata(ioc->pdev, ioc->shost); 7677 r = _base_get_ioc_facts(ioc); 7678 if (r) { 7679 rc = _base_check_for_fault_and_issue_reset(ioc); 7680 if (rc || (_base_get_ioc_facts(ioc))) 7681 goto out_free_resources; 7682 } 7683 7684 switch (ioc->hba_mpi_version_belonged) { 7685 case MPI2_VERSION: 7686 ioc->build_sg_scmd = &_base_build_sg_scmd; 7687 ioc->build_sg = &_base_build_sg; 7688 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7689 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7690 break; 7691 case MPI25_VERSION: 7692 case MPI26_VERSION: 7693 /* 7694 * In SAS3.0, 7695 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7696 * Target Status - all require the IEEE formated scatter gather 7697 * elements. 7698 */ 7699 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7700 ioc->build_sg = &_base_build_sg_ieee; 7701 ioc->build_nvme_prp = &_base_build_nvme_prp; 7702 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7703 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7704 if (ioc->high_iops_queues) 7705 ioc->get_msix_index_for_smlio = 7706 &_base_get_high_iops_msix_index; 7707 else 7708 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7709 break; 7710 } 7711 if (ioc->atomic_desc_capable) { 7712 ioc->put_smid_default = &_base_put_smid_default_atomic; 7713 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7714 ioc->put_smid_fast_path = 7715 &_base_put_smid_fast_path_atomic; 7716 ioc->put_smid_hi_priority = 7717 &_base_put_smid_hi_priority_atomic; 7718 } else { 7719 ioc->put_smid_default = &_base_put_smid_default; 7720 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7721 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7722 if (ioc->is_mcpu_endpoint) 7723 ioc->put_smid_scsi_io = 7724 &_base_put_smid_mpi_ep_scsi_io; 7725 else 7726 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7727 } 7728 /* 7729 * These function pointers for other requests that don't 7730 * the require IEEE scatter gather elements. 7731 * 7732 * For example Configuration Pages and SAS IOUNIT Control don't. 7733 */ 7734 ioc->build_sg_mpi = &_base_build_sg; 7735 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7736 7737 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7738 if (r) 7739 goto out_free_resources; 7740 7741 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7742 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7743 if (!ioc->pfacts) { 7744 r = -ENOMEM; 7745 goto out_free_resources; 7746 } 7747 7748 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7749 r = _base_get_port_facts(ioc, i); 7750 if (r) { 7751 rc = _base_check_for_fault_and_issue_reset(ioc); 7752 if (rc || (_base_get_port_facts(ioc, i))) 7753 goto out_free_resources; 7754 } 7755 } 7756 7757 r = _base_allocate_memory_pools(ioc); 7758 if (r) 7759 goto out_free_resources; 7760 7761 if (irqpoll_weight > 0) 7762 ioc->thresh_hold = irqpoll_weight; 7763 else 7764 ioc->thresh_hold = ioc->hba_queue_depth/4; 7765 7766 _base_init_irqpolls(ioc); 7767 init_waitqueue_head(&ioc->reset_wq); 7768 7769 /* allocate memory pd handle bitmask list */ 7770 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7771 if (ioc->facts.MaxDevHandle % 8) 7772 ioc->pd_handles_sz++; 7773 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7774 GFP_KERNEL); 7775 if (!ioc->pd_handles) { 7776 r = -ENOMEM; 7777 goto out_free_resources; 7778 } 7779 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7780 GFP_KERNEL); 7781 if (!ioc->blocking_handles) { 7782 r = -ENOMEM; 7783 goto out_free_resources; 7784 } 7785 7786 /* allocate memory for pending OS device add list */ 7787 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7788 if (ioc->facts.MaxDevHandle % 8) 7789 ioc->pend_os_device_add_sz++; 7790 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7791 GFP_KERNEL); 7792 if (!ioc->pend_os_device_add) 7793 goto out_free_resources; 7794 7795 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7796 ioc->device_remove_in_progress = 7797 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7798 if (!ioc->device_remove_in_progress) 7799 goto out_free_resources; 7800 7801 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7802 7803 /* base internal command bits */ 7804 mutex_init(&ioc->base_cmds.mutex); 7805 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7806 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7807 7808 /* port_enable command bits */ 7809 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7810 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7811 7812 /* transport internal command bits */ 7813 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7814 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7815 mutex_init(&ioc->transport_cmds.mutex); 7816 7817 /* scsih internal command bits */ 7818 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7819 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7820 mutex_init(&ioc->scsih_cmds.mutex); 7821 7822 /* task management internal command bits */ 7823 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7824 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7825 mutex_init(&ioc->tm_cmds.mutex); 7826 7827 /* config page internal command bits */ 7828 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7829 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7830 mutex_init(&ioc->config_cmds.mutex); 7831 7832 /* ctl module internal command bits */ 7833 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7834 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7835 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7836 mutex_init(&ioc->ctl_cmds.mutex); 7837 7838 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7839 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7840 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7841 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7842 r = -ENOMEM; 7843 goto out_free_resources; 7844 } 7845 7846 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7847 ioc->event_masks[i] = -1; 7848 7849 /* here we enable the events we care about */ 7850 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7851 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7852 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7853 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7854 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7855 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7856 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7857 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7858 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7859 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7860 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7861 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7862 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7863 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7864 if (ioc->is_gen35_ioc) { 7865 _base_unmask_events(ioc, 7866 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7867 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7868 _base_unmask_events(ioc, 7869 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7870 } 7871 } 7872 r = _base_make_ioc_operational(ioc); 7873 if (r) 7874 goto out_free_resources; 7875 7876 /* 7877 * Copy current copy of IOCFacts in prev_fw_facts 7878 * and it will be used during online firmware upgrade. 7879 */ 7880 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7881 sizeof(struct mpt3sas_facts)); 7882 7883 ioc->non_operational_loop = 0; 7884 ioc->ioc_coredump_loop = 0; 7885 ioc->got_task_abort_from_ioctl = 0; 7886 return 0; 7887 7888 out_free_resources: 7889 7890 ioc->remove_host = 1; 7891 7892 mpt3sas_base_free_resources(ioc); 7893 _base_release_memory_pools(ioc); 7894 pci_set_drvdata(ioc->pdev, NULL); 7895 kfree(ioc->cpu_msix_table); 7896 if (ioc->is_warpdrive) 7897 kfree(ioc->reply_post_host_index); 7898 kfree(ioc->pd_handles); 7899 kfree(ioc->blocking_handles); 7900 kfree(ioc->device_remove_in_progress); 7901 kfree(ioc->pend_os_device_add); 7902 kfree(ioc->tm_cmds.reply); 7903 kfree(ioc->transport_cmds.reply); 7904 kfree(ioc->scsih_cmds.reply); 7905 kfree(ioc->config_cmds.reply); 7906 kfree(ioc->base_cmds.reply); 7907 kfree(ioc->port_enable_cmds.reply); 7908 kfree(ioc->ctl_cmds.reply); 7909 kfree(ioc->ctl_cmds.sense); 7910 kfree(ioc->pfacts); 7911 ioc->ctl_cmds.reply = NULL; 7912 ioc->base_cmds.reply = NULL; 7913 ioc->tm_cmds.reply = NULL; 7914 ioc->scsih_cmds.reply = NULL; 7915 ioc->transport_cmds.reply = NULL; 7916 ioc->config_cmds.reply = NULL; 7917 ioc->pfacts = NULL; 7918 return r; 7919 } 7920 7921 7922 /** 7923 * mpt3sas_base_detach - remove controller instance 7924 * @ioc: per adapter object 7925 */ 7926 void 7927 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7928 { 7929 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7930 7931 mpt3sas_base_stop_watchdog(ioc); 7932 mpt3sas_base_free_resources(ioc); 7933 _base_release_memory_pools(ioc); 7934 mpt3sas_free_enclosure_list(ioc); 7935 pci_set_drvdata(ioc->pdev, NULL); 7936 kfree(ioc->cpu_msix_table); 7937 if (ioc->is_warpdrive) 7938 kfree(ioc->reply_post_host_index); 7939 kfree(ioc->pd_handles); 7940 kfree(ioc->blocking_handles); 7941 kfree(ioc->device_remove_in_progress); 7942 kfree(ioc->pend_os_device_add); 7943 kfree(ioc->pfacts); 7944 kfree(ioc->ctl_cmds.reply); 7945 kfree(ioc->ctl_cmds.sense); 7946 kfree(ioc->base_cmds.reply); 7947 kfree(ioc->port_enable_cmds.reply); 7948 kfree(ioc->tm_cmds.reply); 7949 kfree(ioc->transport_cmds.reply); 7950 kfree(ioc->scsih_cmds.reply); 7951 kfree(ioc->config_cmds.reply); 7952 } 7953 7954 /** 7955 * _base_pre_reset_handler - pre reset handler 7956 * @ioc: per adapter object 7957 */ 7958 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7959 { 7960 mpt3sas_scsih_pre_reset_handler(ioc); 7961 mpt3sas_ctl_pre_reset_handler(ioc); 7962 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7963 } 7964 7965 /** 7966 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7967 * @ioc: per adapter object 7968 */ 7969 static void 7970 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7971 { 7972 dtmprintk(ioc, 7973 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7974 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7975 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7976 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7977 complete(&ioc->transport_cmds.done); 7978 } 7979 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7980 ioc->base_cmds.status |= MPT3_CMD_RESET; 7981 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7982 complete(&ioc->base_cmds.done); 7983 } 7984 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7985 ioc->port_enable_failed = 1; 7986 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7987 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7988 if (ioc->is_driver_loading) { 7989 ioc->start_scan_failed = 7990 MPI2_IOCSTATUS_INTERNAL_ERROR; 7991 ioc->start_scan = 0; 7992 ioc->port_enable_cmds.status = 7993 MPT3_CMD_NOT_USED; 7994 } else { 7995 complete(&ioc->port_enable_cmds.done); 7996 } 7997 } 7998 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7999 ioc->config_cmds.status |= MPT3_CMD_RESET; 8000 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8001 ioc->config_cmds.smid = USHRT_MAX; 8002 complete(&ioc->config_cmds.done); 8003 } 8004 } 8005 8006 /** 8007 * _base_clear_outstanding_commands - clear all outstanding commands 8008 * @ioc: per adapter object 8009 */ 8010 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8011 { 8012 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8013 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8014 _base_clear_outstanding_mpt_commands(ioc); 8015 } 8016 8017 /** 8018 * _base_reset_done_handler - reset done handler 8019 * @ioc: per adapter object 8020 */ 8021 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8022 { 8023 mpt3sas_scsih_reset_done_handler(ioc); 8024 mpt3sas_ctl_reset_done_handler(ioc); 8025 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8026 } 8027 8028 /** 8029 * mpt3sas_wait_for_commands_to_complete - reset controller 8030 * @ioc: Pointer to MPT_ADAPTER structure 8031 * 8032 * This function is waiting 10s for all pending commands to complete 8033 * prior to putting controller in reset. 8034 */ 8035 void 8036 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8037 { 8038 u32 ioc_state; 8039 8040 ioc->pending_io_count = 0; 8041 8042 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8043 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8044 return; 8045 8046 /* pending command count */ 8047 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8048 8049 if (!ioc->pending_io_count) 8050 return; 8051 8052 /* wait for pending commands to complete */ 8053 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8054 } 8055 8056 /** 8057 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8058 * attributes during online firmware upgrade and update the corresponding 8059 * IOC variables accordingly. 8060 * 8061 * @ioc: Pointer to MPT_ADAPTER structure 8062 */ 8063 static int 8064 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8065 { 8066 u16 pd_handles_sz; 8067 void *pd_handles = NULL, *blocking_handles = NULL; 8068 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8069 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8070 8071 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8072 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8073 if (ioc->facts.MaxDevHandle % 8) 8074 pd_handles_sz++; 8075 8076 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8077 GFP_KERNEL); 8078 if (!pd_handles) { 8079 ioc_info(ioc, 8080 "Unable to allocate the memory for pd_handles of sz: %d\n", 8081 pd_handles_sz); 8082 return -ENOMEM; 8083 } 8084 memset(pd_handles + ioc->pd_handles_sz, 0, 8085 (pd_handles_sz - ioc->pd_handles_sz)); 8086 ioc->pd_handles = pd_handles; 8087 8088 blocking_handles = krealloc(ioc->blocking_handles, 8089 pd_handles_sz, GFP_KERNEL); 8090 if (!blocking_handles) { 8091 ioc_info(ioc, 8092 "Unable to allocate the memory for " 8093 "blocking_handles of sz: %d\n", 8094 pd_handles_sz); 8095 return -ENOMEM; 8096 } 8097 memset(blocking_handles + ioc->pd_handles_sz, 0, 8098 (pd_handles_sz - ioc->pd_handles_sz)); 8099 ioc->blocking_handles = blocking_handles; 8100 ioc->pd_handles_sz = pd_handles_sz; 8101 8102 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8103 pd_handles_sz, GFP_KERNEL); 8104 if (!pend_os_device_add) { 8105 ioc_info(ioc, 8106 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8107 pd_handles_sz); 8108 return -ENOMEM; 8109 } 8110 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8111 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8112 ioc->pend_os_device_add = pend_os_device_add; 8113 ioc->pend_os_device_add_sz = pd_handles_sz; 8114 8115 device_remove_in_progress = krealloc( 8116 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8117 if (!device_remove_in_progress) { 8118 ioc_info(ioc, 8119 "Unable to allocate the memory for " 8120 "device_remove_in_progress of sz: %d\n " 8121 , pd_handles_sz); 8122 return -ENOMEM; 8123 } 8124 memset(device_remove_in_progress + 8125 ioc->device_remove_in_progress_sz, 0, 8126 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8127 ioc->device_remove_in_progress = device_remove_in_progress; 8128 ioc->device_remove_in_progress_sz = pd_handles_sz; 8129 } 8130 8131 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8132 return 0; 8133 } 8134 8135 /** 8136 * mpt3sas_base_hard_reset_handler - reset controller 8137 * @ioc: Pointer to MPT_ADAPTER structure 8138 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8139 * 8140 * Return: 0 for success, non-zero for failure. 8141 */ 8142 int 8143 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8144 enum reset_type type) 8145 { 8146 int r; 8147 unsigned long flags; 8148 u32 ioc_state; 8149 u8 is_fault = 0, is_trigger = 0; 8150 8151 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8152 8153 if (ioc->pci_error_recovery) { 8154 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8155 r = 0; 8156 goto out_unlocked; 8157 } 8158 8159 if (mpt3sas_fwfault_debug) 8160 mpt3sas_halt_firmware(ioc); 8161 8162 /* wait for an active reset in progress to complete */ 8163 mutex_lock(&ioc->reset_in_progress_mutex); 8164 8165 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8166 ioc->shost_recovery = 1; 8167 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8168 8169 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8170 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8171 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8172 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8173 is_trigger = 1; 8174 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8175 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8176 (ioc_state & MPI2_IOC_STATE_MASK) == 8177 MPI2_IOC_STATE_COREDUMP) 8178 is_fault = 1; 8179 } 8180 _base_pre_reset_handler(ioc); 8181 mpt3sas_wait_for_commands_to_complete(ioc); 8182 mpt3sas_base_mask_interrupts(ioc); 8183 r = _base_make_ioc_ready(ioc, type); 8184 if (r) 8185 goto out; 8186 _base_clear_outstanding_commands(ioc); 8187 8188 /* If this hard reset is called while port enable is active, then 8189 * there is no reason to call make_ioc_operational 8190 */ 8191 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8192 ioc->remove_host = 1; 8193 r = -EFAULT; 8194 goto out; 8195 } 8196 r = _base_get_ioc_facts(ioc); 8197 if (r) 8198 goto out; 8199 8200 r = _base_check_ioc_facts_changes(ioc); 8201 if (r) { 8202 ioc_info(ioc, 8203 "Some of the parameters got changed in this new firmware" 8204 " image and it requires system reboot\n"); 8205 goto out; 8206 } 8207 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8208 panic("%s: Issue occurred with flashing controller firmware." 8209 "Please reboot the system and ensure that the correct" 8210 " firmware version is running\n", ioc->name); 8211 8212 r = _base_make_ioc_operational(ioc); 8213 if (!r) 8214 _base_reset_done_handler(ioc); 8215 8216 out: 8217 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8218 8219 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8220 ioc->shost_recovery = 0; 8221 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8222 ioc->ioc_reset_count++; 8223 mutex_unlock(&ioc->reset_in_progress_mutex); 8224 8225 out_unlocked: 8226 if ((r == 0) && is_trigger) { 8227 if (is_fault) 8228 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8229 else 8230 mpt3sas_trigger_master(ioc, 8231 MASTER_TRIGGER_ADAPTER_RESET); 8232 } 8233 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8234 return r; 8235 } 8236