xref: /linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99 	"irq poll weight (default= one fourth of HBA queue depth)");
100 
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 	" enable detection of firmware fault and halt firmware - (default=0)");
104 
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 	"0 - balanced: high iops mode is enabled &\n\t\t"
110 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 	"1 - iops: high iops mode is disabled &\n\t\t"
112 	"interrupt coalescing is enabled on all queues,\n\t\t"
113 	"2 - latency: high iops mode is disabled &\n\t\t"
114 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 	"\t\tdefault - default perf_mode is 'balanced'"
116 	);
117 
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 	"when poll_queues are enabled then &\n\t\t"
123 	"perf_mode is set to latency mode. &\n\t\t"
124 	);
125 
126 enum mpt3sas_perf_mode {
127 	MPT_PERF_MODE_DEFAULT	= -1,
128 	MPT_PERF_MODE_BALANCED	= 0,
129 	MPT_PERF_MODE_IOPS	= 1,
130 	MPT_PERF_MODE_LATENCY	= 2,
131 };
132 
133 static int
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 		u32 ioc_state, int timeout);
136 static int
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138 static void
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140 
141 static u32
142 _base_readl_ext_retry(const void __iomem *addr);
143 
144 /**
145  * mpt3sas_base_check_cmd_timeout - Function
146  *		to check timeout and command termination due
147  *		to Host reset.
148  *
149  * @ioc:	per adapter object.
150  * @status:	Status of issued command.
151  * @mpi_request:mf request pointer.
152  * @sz:		size of buffer.
153  *
154  * Return: 1/0 Reset to be done or Not
155  */
156 u8
157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158 		u8 status, void *mpi_request, int sz)
159 {
160 	u8 issue_reset = 0;
161 
162 	if (!(status & MPT3_CMD_RESET))
163 		issue_reset = 1;
164 
165 	ioc_err(ioc, "Command %s\n",
166 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167 	_debug_dump_mf(mpi_request, sz);
168 
169 	return issue_reset;
170 }
171 
172 /**
173  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174  * @val: ?
175  * @kp: ?
176  *
177  * Return: ?
178  */
179 static int
180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181 {
182 	int ret = param_set_int(val, kp);
183 	struct MPT3SAS_ADAPTER *ioc;
184 
185 	if (ret)
186 		return ret;
187 
188 	/* global ioc spinlock to protect controller list on list operations */
189 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190 	spin_lock(&gioc_lock);
191 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
193 	spin_unlock(&gioc_lock);
194 	return 0;
195 }
196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197 	param_get_int, &mpt3sas_fwfault_debug, 0644);
198 
199 /**
200  * _base_readl_aero - retry readl for max three times.
201  * @addr: MPT Fusion system interface register address
202  *
203  * Retry the readl() for max three times if it gets zero value
204  * while reading the system interface register.
205  */
206 static inline u32
207 _base_readl_aero(const void __iomem *addr)
208 {
209 	u32 i = 0, ret_val;
210 
211 	do {
212 		ret_val = readl(addr);
213 		i++;
214 	} while (ret_val == 0 && i < 3);
215 
216 	return ret_val;
217 }
218 
219 static u32
220 _base_readl_ext_retry(const void __iomem *addr)
221 {
222 	u32 i, ret_val;
223 
224 	for (i = 0 ; i < 30 ; i++) {
225 		ret_val = readl(addr);
226 		if (ret_val != 0)
227 			break;
228 	}
229 
230 	return ret_val;
231 }
232 
233 static inline u32
234 _base_readl(const void __iomem *addr)
235 {
236 	return readl(addr);
237 }
238 
239 /**
240  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241  *				  in BAR0 space.
242  *
243  * @ioc: per adapter object
244  * @reply: reply message frame(lower 32bit addr)
245  * @index: System request message index.
246  */
247 static void
248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249 		u32 index)
250 {
251 	/*
252 	 * 256 is offset within sys register.
253 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255 	 */
256 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
257 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258 			MPI_FRAME_START_OFFSET +
259 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260 
261 	writel(reply, reply_free_iomem);
262 }
263 
264 /**
265  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266  *				to system/BAR0 region.
267  *
268  * @dst_iomem: Pointer to the destination location in BAR0 space.
269  * @src: Pointer to the Source data.
270  * @size: Size of data to be copied.
271  */
272 static void
273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274 {
275 	int i;
276 	u32 *src_virt_mem = (u32 *)src;
277 
278 	for (i = 0; i < size/4; i++)
279 		writel((u32)src_virt_mem[i],
280 				(void __iomem *)dst_iomem + (i * 4));
281 }
282 
283 /**
284  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285  *
286  * @dst_iomem: Pointer to the destination location in BAR0 space.
287  * @src: Pointer to the Source data.
288  * @size: Size of data to be copied.
289  */
290 static void
291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292 {
293 	int i;
294 	u32 *src_virt_mem = (u32 *)(src);
295 
296 	for (i = 0; i < size/4; i++)
297 		writel((u32)src_virt_mem[i],
298 			(void __iomem *)dst_iomem + (i * 4));
299 }
300 
301 /**
302  * _base_get_chain - Calculates and Returns virtual chain address
303  *			 for the provided smid in BAR0 space.
304  *
305  * @ioc: per adapter object
306  * @smid: system request message index
307  * @sge_chain_count: Scatter gather chain count.
308  *
309  * Return: the chain address.
310  */
311 static inline void __iomem*
312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313 		u8 sge_chain_count)
314 {
315 	void __iomem *base_chain, *chain_virt;
316 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
317 
318 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319 		(cmd_credit * ioc->request_sz) +
320 		REPLY_FREE_POOL_SIZE;
321 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323 	return chain_virt;
324 }
325 
326 /**
327  * _base_get_chain_phys - Calculates and Returns physical address
328  *			in BAR0 for scatter gather chains, for
329  *			the provided smid.
330  *
331  * @ioc: per adapter object
332  * @smid: system request message index
333  * @sge_chain_count: Scatter gather chain count.
334  *
335  * Return: Physical chain address.
336  */
337 static inline phys_addr_t
338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339 		u8 sge_chain_count)
340 {
341 	phys_addr_t base_chain_phys, chain_phys;
342 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 
344 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345 		(cmd_credit * ioc->request_sz) +
346 		REPLY_FREE_POOL_SIZE;
347 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349 	return chain_phys;
350 }
351 
352 /**
353  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354  *			buffer address for the provided smid.
355  *			(Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362 
363 static void __iomem *
364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 {
366 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
367 	// Added extra 1 to reach end of chain.
368 	void __iomem *chain_end = _base_get_chain(ioc,
369 			cmd_credit + 1,
370 			ioc->facts.MaxChainDepth);
371 	return chain_end + (smid * 64 * 1024);
372 }
373 
374 /**
375  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376  *		Host buffer Physical address for the provided smid.
377  *		(Each smid can have 64K starts from 17024)
378  *
379  * @ioc: per adapter object
380  * @smid: system request message index
381  *
382  * Return: Pointer to buffer location in BAR0.
383  */
384 static phys_addr_t
385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386 {
387 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
388 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389 			cmd_credit + 1,
390 			ioc->facts.MaxChainDepth);
391 	return chain_end_phys + (smid * 64 * 1024);
392 }
393 
394 /**
395  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396  *			lookup list and Provides chain_buffer
397  *			address for the matching dma address.
398  *			(Each smid can have 64K starts from 17024)
399  *
400  * @ioc: per adapter object
401  * @chain_buffer_dma: Chain buffer dma address.
402  *
403  * Return: Pointer to chain buffer. Or Null on Failure.
404  */
405 static void *
406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407 		dma_addr_t chain_buffer_dma)
408 {
409 	u16 index, j;
410 	struct chain_tracker *ct;
411 
412 	for (index = 0; index < ioc->scsiio_depth; index++) {
413 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
414 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
415 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416 				return ct->chain_buffer;
417 		}
418 	}
419 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420 	return NULL;
421 }
422 
423 /**
424  * _clone_sg_entries -	MPI EP's scsiio and config requests
425  *			are handled here. Base function for
426  *			double buffering, before submitting
427  *			the requests.
428  *
429  * @ioc: per adapter object.
430  * @mpi_request: mf request pointer.
431  * @smid: system request message index.
432  */
433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434 		void *mpi_request, u16 smid)
435 {
436 	Mpi2SGESimple32_t *sgel, *sgel_next;
437 	u32  sgl_flags, sge_chain_count = 0;
438 	bool is_write = false;
439 	u16 i = 0;
440 	void __iomem *buffer_iomem;
441 	phys_addr_t buffer_iomem_phys;
442 	void __iomem *buff_ptr;
443 	phys_addr_t buff_ptr_phys;
444 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 	phys_addr_t dst_addr_phys;
447 	MPI2RequestHeader_t *request_hdr;
448 	struct scsi_cmnd *scmd;
449 	struct scatterlist *sg_scmd = NULL;
450 	int is_scsiio_req = 0;
451 
452 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
453 
454 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455 		Mpi25SCSIIORequest_t *scsiio_request =
456 			(Mpi25SCSIIORequest_t *)mpi_request;
457 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458 		is_scsiio_req = 1;
459 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460 		Mpi2ConfigRequest_t  *config_req =
461 			(Mpi2ConfigRequest_t *)mpi_request;
462 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463 	} else
464 		return;
465 
466 	/* From smid we can get scsi_cmd, once we have sg_scmd,
467 	 * we just need to get sg_virt and sg_next to get virtual
468 	 * address associated with sgel->Address.
469 	 */
470 
471 	if (is_scsiio_req) {
472 		/* Get scsi_cmd using smid */
473 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474 		if (scmd == NULL) {
475 			ioc_err(ioc, "scmd is NULL\n");
476 			return;
477 		}
478 
479 		/* Get sg_scmd from scmd provided */
480 		sg_scmd = scsi_sglist(scmd);
481 	}
482 
483 	/*
484 	 * 0 - 255	System register
485 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
486 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
487 	 *		considering maxCredit 32. Reply need extra
488 	 *		room, for mCPU case kept four times of
489 	 *		maxCredit).
490 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
491 	 *		128 byte size = 12288)
492 	 * 17152 - x	Host buffer mapped with smid.
493 	 *		(Each smid can have 64K Max IO.)
494 	 * BAR0+Last 1K MSIX Addr and Data
495 	 * Total size in use 2113664 bytes of 4MB BAR0
496 	 */
497 
498 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500 
501 	buff_ptr = buffer_iomem;
502 	buff_ptr_phys = buffer_iomem_phys;
503 	WARN_ON(buff_ptr_phys > U32_MAX);
504 
505 	if (le32_to_cpu(sgel->FlagsLength) &
506 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507 		is_write = true;
508 
509 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510 
511 		sgl_flags =
512 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513 
514 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516 			/*
517 			 * Helper function which on passing
518 			 * chain_buffer_dma returns chain_buffer. Get
519 			 * the virtual address for sgel->Address
520 			 */
521 			sgel_next =
522 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
523 						le32_to_cpu(sgel->Address));
524 			if (sgel_next == NULL)
525 				return;
526 			/*
527 			 * This is coping 128 byte chain
528 			 * frame (not a host buffer)
529 			 */
530 			dst_chain_addr[sge_chain_count] =
531 				_base_get_chain(ioc,
532 					smid, sge_chain_count);
533 			src_chain_addr[sge_chain_count] =
534 						(void *) sgel_next;
535 			dst_addr_phys = _base_get_chain_phys(ioc,
536 						smid, sge_chain_count);
537 			WARN_ON(dst_addr_phys > U32_MAX);
538 			sgel->Address =
539 				cpu_to_le32(lower_32_bits(dst_addr_phys));
540 			sgel = sgel_next;
541 			sge_chain_count++;
542 			break;
543 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544 			if (is_write) {
545 				if (is_scsiio_req) {
546 					_base_clone_to_sys_mem(buff_ptr,
547 					    sg_virt(sg_scmd),
548 					    (le32_to_cpu(sgel->FlagsLength) &
549 					    0x00ffffff));
550 					/*
551 					 * FIXME: this relies on a a zero
552 					 * PCI mem_offset.
553 					 */
554 					sgel->Address =
555 					    cpu_to_le32((u32)buff_ptr_phys);
556 				} else {
557 					_base_clone_to_sys_mem(buff_ptr,
558 					    ioc->config_vaddr,
559 					    (le32_to_cpu(sgel->FlagsLength) &
560 					    0x00ffffff));
561 					sgel->Address =
562 					    cpu_to_le32((u32)buff_ptr_phys);
563 				}
564 			}
565 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566 			    0x00ffffff);
567 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568 			    0x00ffffff);
569 			if ((le32_to_cpu(sgel->FlagsLength) &
570 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
571 					<< MPI2_SGE_FLAGS_SHIFT)))
572 				goto eob_clone_chain;
573 			else {
574 				/*
575 				 * Every single element in MPT will have
576 				 * associated sg_next. Better to sanity that
577 				 * sg_next is not NULL, but it will be a bug
578 				 * if it is null.
579 				 */
580 				if (is_scsiio_req) {
581 					sg_scmd = sg_next(sg_scmd);
582 					if (sg_scmd)
583 						sgel++;
584 					else
585 						goto eob_clone_chain;
586 				}
587 			}
588 			break;
589 		}
590 	}
591 
592 eob_clone_chain:
593 	for (i = 0; i < sge_chain_count; i++) {
594 		if (is_scsiio_req)
595 			_base_clone_to_sys_mem(dst_chain_addr[i],
596 				src_chain_addr[i], ioc->request_sz);
597 	}
598 }
599 
600 /**
601  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602  * @arg: input argument, used to derive ioc
603  *
604  * Return:
605  * 0 if controller is removed from pci subsystem.
606  * -1 for other case.
607  */
608 static int mpt3sas_remove_dead_ioc_func(void *arg)
609 {
610 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611 	struct pci_dev *pdev;
612 
613 	if (!ioc)
614 		return -1;
615 
616 	pdev = ioc->pdev;
617 	if (!pdev)
618 		return -1;
619 	pci_stop_and_remove_bus_device_locked(pdev);
620 	return 0;
621 }
622 
623 /**
624  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625  * @ioc: Per Adapter Object
626  *
627  * Return: nothing.
628  */
629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630 {
631 	Mpi26IoUnitControlRequest_t *mpi_request;
632 	Mpi26IoUnitControlReply_t *mpi_reply;
633 	u16 smid;
634 	ktime_t current_time;
635 	u64 TimeStamp = 0;
636 	u8 issue_reset = 0;
637 
638 	mutex_lock(&ioc->scsih_cmds.mutex);
639 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641 		goto out;
642 	}
643 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645 	if (!smid) {
646 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648 		goto out;
649 	}
650 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651 	ioc->scsih_cmds.smid = smid;
652 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656 	current_time = ktime_get_real();
657 	TimeStamp = ktime_to_ms(current_time);
658 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660 	init_completion(&ioc->scsih_cmds.done);
661 	ioc->put_smid_default(ioc, smid);
662 	dinitprintk(ioc, ioc_info(ioc,
663 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664 	    TimeStamp));
665 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
666 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668 		mpt3sas_check_cmd_timeout(ioc,
669 		    ioc->scsih_cmds.status, mpi_request,
670 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671 		goto issue_host_reset;
672 	}
673 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674 		mpi_reply = ioc->scsih_cmds.reply;
675 		dinitprintk(ioc, ioc_info(ioc,
676 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677 		    le16_to_cpu(mpi_reply->IOCStatus),
678 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
679 	}
680 issue_host_reset:
681 	if (issue_reset)
682 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684 out:
685 	mutex_unlock(&ioc->scsih_cmds.mutex);
686 }
687 
688 /**
689  * _base_fault_reset_work - workq handling ioc fault conditions
690  * @work: input argument, used to derive ioc
691  *
692  * Context: sleep.
693  */
694 static void
695 _base_fault_reset_work(struct work_struct *work)
696 {
697 	struct MPT3SAS_ADAPTER *ioc =
698 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699 	unsigned long	 flags;
700 	u32 doorbell;
701 	int rc;
702 	struct task_struct *p;
703 
704 
705 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707 			ioc->pci_error_recovery)
708 		goto rearm_timer;
709 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710 
711 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
714 
715 		/* It may be possible that EEH recovery can resolve some of
716 		 * pci bus failure issues rather removing the dead ioc function
717 		 * by considering controller is in a non-operational state. So
718 		 * here priority is given to the EEH recovery. If it doesn't
719 		 * not resolve this issue, mpt3sas driver will consider this
720 		 * controller to non-operational state and remove the dead ioc
721 		 * function.
722 		 */
723 		if (ioc->non_operational_loop++ < 5) {
724 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725 							 flags);
726 			goto rearm_timer;
727 		}
728 
729 		/*
730 		 * Call _scsih_flush_pending_cmds callback so that we flush all
731 		 * pending commands back to OS. This call is required to avoid
732 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
733 		 * and this call is safe since dead ioc will never return any
734 		 * command back from HW.
735 		 */
736 		mpt3sas_base_pause_mq_polling(ioc);
737 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738 		/*
739 		 * Set remove_host flag early since kernel thread will
740 		 * take some time to execute.
741 		 */
742 		ioc->remove_host = 1;
743 		/*Remove the Dead Host */
744 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746 		if (IS_ERR(p))
747 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748 				__func__);
749 		else
750 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751 				__func__);
752 		return; /* don't rearm timer */
753 	}
754 
755 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757 		    ioc->manu_pg11.CoreDumpTOSec :
758 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759 
760 		timeout /= (FAULT_POLLING_INTERVAL/1000);
761 
762 		if (ioc->ioc_coredump_loop == 0) {
763 			mpt3sas_print_coredump_info(ioc,
764 			    doorbell & MPI2_DOORBELL_DATA_MASK);
765 			/* do not accept any IOs and disable the interrupts */
766 			spin_lock_irqsave(
767 			    &ioc->ioc_reset_in_progress_lock, flags);
768 			ioc->shost_recovery = 1;
769 			spin_unlock_irqrestore(
770 			    &ioc->ioc_reset_in_progress_lock, flags);
771 			mpt3sas_base_mask_interrupts(ioc);
772 			mpt3sas_base_pause_mq_polling(ioc);
773 			_base_clear_outstanding_commands(ioc);
774 		}
775 
776 		ioc_info(ioc, "%s: CoreDump loop %d.",
777 		    __func__, ioc->ioc_coredump_loop);
778 
779 		/* Wait until CoreDump completes or times out */
780 		if (ioc->ioc_coredump_loop++ < timeout) {
781 			spin_lock_irqsave(
782 			    &ioc->ioc_reset_in_progress_lock, flags);
783 			goto rearm_timer;
784 		}
785 	}
786 
787 	if (ioc->ioc_coredump_loop) {
788 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790 			    __func__, ioc->ioc_coredump_loop);
791 		else
792 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793 			    __func__, ioc->ioc_coredump_loop);
794 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795 	}
796 	ioc->non_operational_loop = 0;
797 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799 		ioc_warn(ioc, "%s: hard reset: %s\n",
800 			 __func__, rc == 0 ? "success" : "failed");
801 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803 			mpt3sas_print_fault_code(ioc, doorbell &
804 			    MPI2_DOORBELL_DATA_MASK);
805 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806 		    MPI2_IOC_STATE_COREDUMP)
807 			mpt3sas_print_coredump_info(ioc, doorbell &
808 			    MPI2_DOORBELL_DATA_MASK);
809 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810 		    MPI2_IOC_STATE_OPERATIONAL)
811 			return; /* don't rearm timer */
812 	}
813 	ioc->ioc_coredump_loop = 0;
814 	if (ioc->time_sync_interval &&
815 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816 		ioc->timestamp_update_count = 0;
817 		_base_sync_drv_fw_timestamp(ioc);
818 	}
819 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820  rearm_timer:
821 	if (ioc->fault_reset_work_q)
822 		queue_delayed_work(ioc->fault_reset_work_q,
823 		    &ioc->fault_reset_work,
824 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826 }
827 
828 /**
829  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830  * @ioc: per adapter object
831  *
832  * Context: sleep.
833  */
834 void
835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836 {
837 	unsigned long	 flags;
838 
839 	if (ioc->fault_reset_work_q)
840 		return;
841 
842 	ioc->timestamp_update_count = 0;
843 	/* initialize fault polling */
844 
845 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846 	snprintf(ioc->fault_reset_work_q_name,
847 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848 	    ioc->driver_name, ioc->id);
849 	ioc->fault_reset_work_q =
850 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
851 	if (!ioc->fault_reset_work_q) {
852 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853 		return;
854 	}
855 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856 	if (ioc->fault_reset_work_q)
857 		queue_delayed_work(ioc->fault_reset_work_q,
858 		    &ioc->fault_reset_work,
859 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861 }
862 
863 /**
864  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865  * @ioc: per adapter object
866  *
867  * Context: sleep.
868  */
869 void
870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871 {
872 	unsigned long flags;
873 	struct workqueue_struct *wq;
874 
875 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876 	wq = ioc->fault_reset_work_q;
877 	ioc->fault_reset_work_q = NULL;
878 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879 	if (wq) {
880 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881 			flush_workqueue(wq);
882 		destroy_workqueue(wq);
883 	}
884 }
885 
886 /**
887  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888  * @ioc: per adapter object
889  * @fault_code: fault code
890  */
891 void
892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893 {
894 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895 }
896 
897 /**
898  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899  * @ioc: per adapter object
900  * @fault_code: fault code
901  *
902  * Return: nothing.
903  */
904 void
905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906 {
907 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908 }
909 
910 /**
911  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912  * completes or times out
913  * @ioc: per adapter object
914  * @caller: caller function name
915  *
916  * Return: 0 for success, non-zero for failure.
917  */
918 int
919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920 		const char *caller)
921 {
922 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923 			ioc->manu_pg11.CoreDumpTOSec :
924 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925 
926 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927 					timeout);
928 
929 	if (ioc_state)
930 		ioc_err(ioc,
931 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932 		    caller, ioc_state);
933 	else
934 		ioc_info(ioc,
935 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
936 		    caller, ioc_state);
937 
938 	return ioc_state;
939 }
940 
941 /**
942  * mpt3sas_halt_firmware - halt's mpt controller firmware
943  * @ioc: per adapter object
944  *
945  * For debugging timeout related issues.  Writing 0xCOFFEE00
946  * to the doorbell register will halt controller firmware. With
947  * the purpose to stop both driver and firmware, the enduser can
948  * obtain a ring buffer from controller UART.
949  */
950 void
951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952 {
953 	u32 doorbell;
954 
955 	if (!ioc->fwfault_debug)
956 		return;
957 
958 	dump_stack();
959 
960 	doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962 		mpt3sas_print_fault_code(ioc, doorbell &
963 		    MPI2_DOORBELL_DATA_MASK);
964 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965 	    MPI2_IOC_STATE_COREDUMP) {
966 		mpt3sas_print_coredump_info(ioc, doorbell &
967 		    MPI2_DOORBELL_DATA_MASK);
968 	} else {
969 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
970 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
971 	}
972 
973 	if (ioc->fwfault_debug == 2)
974 		for (;;)
975 			;
976 	else
977 		panic("panic in %s\n", __func__);
978 }
979 
980 /**
981  * _base_sas_ioc_info - verbose translation of the ioc status
982  * @ioc: per adapter object
983  * @mpi_reply: reply mf payload returned from firmware
984  * @request_hdr: request mf
985  */
986 static void
987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988 	MPI2RequestHeader_t *request_hdr)
989 {
990 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991 	    MPI2_IOCSTATUS_MASK;
992 	char *desc = NULL;
993 	u16 frame_sz;
994 	char *func_str = NULL;
995 
996 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000 		return;
1001 
1002 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003 		return;
1004 	/*
1005 	 * Older Firmware version doesn't support driver trigger pages.
1006 	 * So, skip displaying 'config invalid type' type
1007 	 * of error message.
1008 	 */
1009 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011 
1012 		if ((rqst->ExtPageType ==
1013 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015 			return;
1016 		}
1017 	}
1018 
1019 	switch (ioc_status) {
1020 
1021 /****************************************************************************
1022 *  Common IOCStatus values for all replies
1023 ****************************************************************************/
1024 
1025 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026 		desc = "invalid function";
1027 		break;
1028 	case MPI2_IOCSTATUS_BUSY:
1029 		desc = "busy";
1030 		break;
1031 	case MPI2_IOCSTATUS_INVALID_SGL:
1032 		desc = "invalid sgl";
1033 		break;
1034 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035 		desc = "internal error";
1036 		break;
1037 	case MPI2_IOCSTATUS_INVALID_VPID:
1038 		desc = "invalid vpid";
1039 		break;
1040 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041 		desc = "insufficient resources";
1042 		break;
1043 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044 		desc = "insufficient power";
1045 		break;
1046 	case MPI2_IOCSTATUS_INVALID_FIELD:
1047 		desc = "invalid field";
1048 		break;
1049 	case MPI2_IOCSTATUS_INVALID_STATE:
1050 		desc = "invalid state";
1051 		break;
1052 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053 		desc = "op state not supported";
1054 		break;
1055 
1056 /****************************************************************************
1057 *  Config IOCStatus values
1058 ****************************************************************************/
1059 
1060 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061 		desc = "config invalid action";
1062 		break;
1063 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064 		desc = "config invalid type";
1065 		break;
1066 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067 		desc = "config invalid page";
1068 		break;
1069 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070 		desc = "config invalid data";
1071 		break;
1072 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073 		desc = "config no defaults";
1074 		break;
1075 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076 		desc = "config can't commit";
1077 		break;
1078 
1079 /****************************************************************************
1080 *  SCSI IO Reply
1081 ****************************************************************************/
1082 
1083 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095 		break;
1096 
1097 /****************************************************************************
1098 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1099 ****************************************************************************/
1100 
1101 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102 		desc = "eedp guard error";
1103 		break;
1104 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105 		desc = "eedp ref tag error";
1106 		break;
1107 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108 		desc = "eedp app tag error";
1109 		break;
1110 
1111 /****************************************************************************
1112 *  SCSI Target values
1113 ****************************************************************************/
1114 
1115 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116 		desc = "target invalid io index";
1117 		break;
1118 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1119 		desc = "target aborted";
1120 		break;
1121 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122 		desc = "target no conn retryable";
1123 		break;
1124 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125 		desc = "target no connection";
1126 		break;
1127 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128 		desc = "target xfer count mismatch";
1129 		break;
1130 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131 		desc = "target data offset error";
1132 		break;
1133 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134 		desc = "target too much write data";
1135 		break;
1136 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137 		desc = "target iu too short";
1138 		break;
1139 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140 		desc = "target ack nak timeout";
1141 		break;
1142 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143 		desc = "target nak received";
1144 		break;
1145 
1146 /****************************************************************************
1147 *  Serial Attached SCSI values
1148 ****************************************************************************/
1149 
1150 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151 		desc = "smp request failed";
1152 		break;
1153 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154 		desc = "smp data overrun";
1155 		break;
1156 
1157 /****************************************************************************
1158 *  Diagnostic Buffer Post / Diagnostic Release values
1159 ****************************************************************************/
1160 
1161 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162 		desc = "diagnostic released";
1163 		break;
1164 	default:
1165 		break;
1166 	}
1167 
1168 	if (!desc)
1169 		return;
1170 
1171 	switch (request_hdr->Function) {
1172 	case MPI2_FUNCTION_CONFIG:
1173 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174 		func_str = "config_page";
1175 		break;
1176 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178 		func_str = "task_mgmt";
1179 		break;
1180 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182 		func_str = "sas_iounit_ctl";
1183 		break;
1184 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185 		frame_sz = sizeof(Mpi2SepRequest_t);
1186 		func_str = "enclosure";
1187 		break;
1188 	case MPI2_FUNCTION_IOC_INIT:
1189 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190 		func_str = "ioc_init";
1191 		break;
1192 	case MPI2_FUNCTION_PORT_ENABLE:
1193 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194 		func_str = "port_enable";
1195 		break;
1196 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198 		func_str = "smp_passthru";
1199 		break;
1200 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202 		    ioc->sge_size;
1203 		func_str = "nvme_encapsulated";
1204 		break;
1205 	default:
1206 		frame_sz = 32;
1207 		func_str = "unknown";
1208 		break;
1209 	}
1210 
1211 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212 		 desc, ioc_status, request_hdr, func_str);
1213 
1214 	_debug_dump_mf(request_hdr, frame_sz/4);
1215 }
1216 
1217 /**
1218  * _base_display_event_data - verbose translation of firmware asyn events
1219  * @ioc: per adapter object
1220  * @mpi_reply: reply mf payload returned from firmware
1221  */
1222 static void
1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224 	Mpi2EventNotificationReply_t *mpi_reply)
1225 {
1226 	char *desc = NULL;
1227 	u16 event;
1228 
1229 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230 		return;
1231 
1232 	event = le16_to_cpu(mpi_reply->Event);
1233 
1234 	switch (event) {
1235 	case MPI2_EVENT_LOG_DATA:
1236 		desc = "Log Data";
1237 		break;
1238 	case MPI2_EVENT_STATE_CHANGE:
1239 		desc = "Status Change";
1240 		break;
1241 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1242 		desc = "Hard Reset Received";
1243 		break;
1244 	case MPI2_EVENT_EVENT_CHANGE:
1245 		desc = "Event Change";
1246 		break;
1247 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248 		desc = "Device Status Change";
1249 		break;
1250 	case MPI2_EVENT_IR_OPERATION_STATUS:
1251 		if (!ioc->hide_ir_msg)
1252 			desc = "IR Operation Status";
1253 		break;
1254 	case MPI2_EVENT_SAS_DISCOVERY:
1255 	{
1256 		Mpi2EventDataSasDiscovery_t *event_data =
1257 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258 		ioc_info(ioc, "Discovery: (%s)",
1259 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260 			 "start" : "stop");
1261 		if (event_data->DiscoveryStatus)
1262 			pr_cont(" discovery_status(0x%08x)",
1263 			    le32_to_cpu(event_data->DiscoveryStatus));
1264 		pr_cont("\n");
1265 		return;
1266 	}
1267 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268 		desc = "SAS Broadcast Primitive";
1269 		break;
1270 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271 		desc = "SAS Init Device Status Change";
1272 		break;
1273 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274 		desc = "SAS Init Table Overflow";
1275 		break;
1276 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277 		desc = "SAS Topology Change List";
1278 		break;
1279 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280 		desc = "SAS Enclosure Device Status Change";
1281 		break;
1282 	case MPI2_EVENT_IR_VOLUME:
1283 		if (!ioc->hide_ir_msg)
1284 			desc = "IR Volume";
1285 		break;
1286 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1287 		if (!ioc->hide_ir_msg)
1288 			desc = "IR Physical Disk";
1289 		break;
1290 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291 		if (!ioc->hide_ir_msg)
1292 			desc = "IR Configuration Change List";
1293 		break;
1294 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1295 		if (!ioc->hide_ir_msg)
1296 			desc = "Log Entry Added";
1297 		break;
1298 	case MPI2_EVENT_TEMP_THRESHOLD:
1299 		desc = "Temperature Threshold";
1300 		break;
1301 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302 		desc = "Cable Event";
1303 		break;
1304 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305 		desc = "SAS Device Discovery Error";
1306 		break;
1307 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308 		desc = "PCIE Device Status Change";
1309 		break;
1310 	case MPI2_EVENT_PCIE_ENUMERATION:
1311 	{
1312 		Mpi26EventDataPCIeEnumeration_t *event_data =
1313 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1315 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316 			 "start" : "stop");
1317 		if (event_data->EnumerationStatus)
1318 			pr_cont("enumeration_status(0x%08x)",
1319 				le32_to_cpu(event_data->EnumerationStatus));
1320 		pr_cont("\n");
1321 		return;
1322 	}
1323 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324 		desc = "PCIE Topology Change List";
1325 		break;
1326 	}
1327 
1328 	if (!desc)
1329 		return;
1330 
1331 	ioc_info(ioc, "%s\n", desc);
1332 }
1333 
1334 /**
1335  * _base_sas_log_info - verbose translation of firmware log info
1336  * @ioc: per adapter object
1337  * @log_info: log info
1338  */
1339 static void
1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341 {
1342 	union loginfo_type {
1343 		u32	loginfo;
1344 		struct {
1345 			u32	subcode:16;
1346 			u32	code:8;
1347 			u32	originator:4;
1348 			u32	bus_type:4;
1349 		} dw;
1350 	};
1351 	union loginfo_type sas_loginfo;
1352 	char *originator_str = NULL;
1353 
1354 	sas_loginfo.loginfo = log_info;
1355 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356 		return;
1357 
1358 	/* each nexus loss loginfo */
1359 	if (log_info == 0x31170000)
1360 		return;
1361 
1362 	/* eat the loginfos associated with task aborts */
1363 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364 	    0x31140000 || log_info == 0x31130000))
1365 		return;
1366 
1367 	switch (sas_loginfo.dw.originator) {
1368 	case 0:
1369 		originator_str = "IOP";
1370 		break;
1371 	case 1:
1372 		originator_str = "PL";
1373 		break;
1374 	case 2:
1375 		if (!ioc->hide_ir_msg)
1376 			originator_str = "IR";
1377 		else
1378 			originator_str = "WarpDrive";
1379 		break;
1380 	}
1381 
1382 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383 		 log_info,
1384 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385 }
1386 
1387 /**
1388  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389  * @ioc: per adapter object
1390  * @smid: system request message index
1391  * @msix_index: MSIX table index supplied by the OS
1392  * @reply: reply message frame (lower 32bit addr)
1393  */
1394 static void
1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396 	u32 reply)
1397 {
1398 	MPI2DefaultReply_t *mpi_reply;
1399 	u16 ioc_status;
1400 	u32 loginfo = 0;
1401 
1402 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1403 	if (unlikely(!mpi_reply)) {
1404 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405 			__FILE__, __LINE__, __func__);
1406 		return;
1407 	}
1408 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409 
1410 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412 		_base_sas_ioc_info(ioc, mpi_reply,
1413 		   mpt3sas_base_get_msg_frame(ioc, smid));
1414 	}
1415 
1416 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418 		_base_sas_log_info(ioc, loginfo);
1419 	}
1420 
1421 	if (ioc_status || loginfo) {
1422 		ioc_status &= MPI2_IOCSTATUS_MASK;
1423 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424 	}
1425 }
1426 
1427 /**
1428  * mpt3sas_base_done - base internal command completion routine
1429  * @ioc: per adapter object
1430  * @smid: system request message index
1431  * @msix_index: MSIX table index supplied by the OS
1432  * @reply: reply message frame(lower 32bit addr)
1433  *
1434  * Return:
1435  * 1 meaning mf should be freed from _base_interrupt
1436  * 0 means the mf is freed from this function.
1437  */
1438 u8
1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440 	u32 reply)
1441 {
1442 	MPI2DefaultReply_t *mpi_reply;
1443 
1444 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1445 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447 
1448 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449 		return 1;
1450 
1451 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452 	if (mpi_reply) {
1453 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455 	}
1456 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457 
1458 	complete(&ioc->base_cmds.done);
1459 	return 1;
1460 }
1461 
1462 /**
1463  * _base_async_event - main callback handler for firmware asyn events
1464  * @ioc: per adapter object
1465  * @msix_index: MSIX table index supplied by the OS
1466  * @reply: reply message frame(lower 32bit addr)
1467  *
1468  * Return:
1469  * 1 meaning mf should be freed from _base_interrupt
1470  * 0 means the mf is freed from this function.
1471  */
1472 static u8
1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474 {
1475 	Mpi2EventNotificationReply_t *mpi_reply;
1476 	Mpi2EventAckRequest_t *ack_request;
1477 	u16 smid;
1478 	struct _event_ack_list *delayed_event_ack;
1479 
1480 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1481 	if (!mpi_reply)
1482 		return 1;
1483 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484 		return 1;
1485 
1486 	_base_display_event_data(ioc, mpi_reply);
1487 
1488 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489 		goto out;
1490 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1491 	if (!smid) {
1492 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1493 					GFP_ATOMIC);
1494 		if (!delayed_event_ack)
1495 			goto out;
1496 		INIT_LIST_HEAD(&delayed_event_ack->list);
1497 		delayed_event_ack->Event = mpi_reply->Event;
1498 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1499 		list_add_tail(&delayed_event_ack->list,
1500 				&ioc->delayed_event_ack_list);
1501 		dewtprintk(ioc,
1502 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503 				    le16_to_cpu(mpi_reply->Event)));
1504 		goto out;
1505 	}
1506 
1507 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510 	ack_request->Event = mpi_reply->Event;
1511 	ack_request->EventContext = mpi_reply->EventContext;
1512 	ack_request->VF_ID = 0;  /* TODO */
1513 	ack_request->VP_ID = 0;
1514 	ioc->put_smid_default(ioc, smid);
1515 
1516  out:
1517 
1518 	/* scsih callback handler */
1519 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520 
1521 	/* ctl callback handler */
1522 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523 
1524 	return 1;
1525 }
1526 
1527 static struct scsiio_tracker *
1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529 {
1530 	struct scsi_cmnd *cmd;
1531 
1532 	if (WARN_ON(!smid) ||
1533 	    WARN_ON(smid >= ioc->hi_priority_smid))
1534 		return NULL;
1535 
1536 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537 	if (cmd)
1538 		return scsi_cmd_priv(cmd);
1539 
1540 	return NULL;
1541 }
1542 
1543 /**
1544  * _base_get_cb_idx - obtain the callback index
1545  * @ioc: per adapter object
1546  * @smid: system request message index
1547  *
1548  * Return: callback index.
1549  */
1550 static u8
1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552 {
1553 	int i;
1554 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555 	u8 cb_idx = 0xFF;
1556 
1557 	if (smid < ioc->hi_priority_smid) {
1558 		struct scsiio_tracker *st;
1559 
1560 		if (smid < ctl_smid) {
1561 			st = _get_st_from_smid(ioc, smid);
1562 			if (st)
1563 				cb_idx = st->cb_idx;
1564 		} else if (smid == ctl_smid)
1565 			cb_idx = ioc->ctl_cb_idx;
1566 	} else if (smid < ioc->internal_smid) {
1567 		i = smid - ioc->hi_priority_smid;
1568 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1569 	} else if (smid <= ioc->hba_queue_depth) {
1570 		i = smid - ioc->internal_smid;
1571 		cb_idx = ioc->internal_lookup[i].cb_idx;
1572 	}
1573 	return cb_idx;
1574 }
1575 
1576 /**
1577  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578  *				when driver is flushing out the IOs.
1579  * @ioc: per adapter object
1580  *
1581  * Pause polling on the mq poll (io uring) queues when driver is flushing
1582  * out the IOs. Otherwise we may see the race condition of completing the same
1583  * IO from two paths.
1584  *
1585  * Returns nothing.
1586  */
1587 void
1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589 {
1590 	int iopoll_q_count =
1591 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592 	int qid;
1593 
1594 	for (qid = 0; qid < iopoll_q_count; qid++)
1595 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1596 
1597 	/*
1598 	 * wait for current poll to complete.
1599 	 */
1600 	for (qid = 0; qid < iopoll_q_count; qid++) {
1601 		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1602 			cpu_relax();
1603 			udelay(500);
1604 		}
1605 	}
1606 }
1607 
1608 /**
1609  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610  * @ioc: per adapter object
1611  *
1612  * Returns nothing.
1613  */
1614 void
1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616 {
1617 	int iopoll_q_count =
1618 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619 	int qid;
1620 
1621 	for (qid = 0; qid < iopoll_q_count; qid++)
1622 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1623 }
1624 
1625 /**
1626  * mpt3sas_base_mask_interrupts - disable interrupts
1627  * @ioc: per adapter object
1628  *
1629  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630  */
1631 void
1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634 	u32 him_register;
1635 
1636 	ioc->mask_interrupts = 1;
1637 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639 	writel(him_register, &ioc->chip->HostInterruptMask);
1640 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1641 }
1642 
1643 /**
1644  * mpt3sas_base_unmask_interrupts - enable interrupts
1645  * @ioc: per adapter object
1646  *
1647  * Enabling only Reply Interrupts
1648  */
1649 void
1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651 {
1652 	u32 him_register;
1653 
1654 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655 	him_register &= ~MPI2_HIM_RIM;
1656 	writel(him_register, &ioc->chip->HostInterruptMask);
1657 	ioc->mask_interrupts = 0;
1658 }
1659 
1660 union reply_descriptor {
1661 	u64 word;
1662 	struct {
1663 		u32 low;
1664 		u32 high;
1665 	} u;
1666 };
1667 
1668 static u32 base_mod64(u64 dividend, u32 divisor)
1669 {
1670 	u32 remainder;
1671 
1672 	if (!divisor)
1673 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674 	remainder = do_div(dividend, divisor);
1675 	return remainder;
1676 }
1677 
1678 /**
1679  * _base_process_reply_queue - Process reply descriptors from reply
1680  *		descriptor post queue.
1681  * @reply_q: per IRQ's reply queue object.
1682  *
1683  * Return: number of reply descriptors processed from reply
1684  *		descriptor queue.
1685  */
1686 static int
1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688 {
1689 	union reply_descriptor rd;
1690 	u64 completed_cmds;
1691 	u8 request_descript_type;
1692 	u16 smid;
1693 	u8 cb_idx;
1694 	u32 reply;
1695 	u8 msix_index = reply_q->msix_index;
1696 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697 	Mpi2ReplyDescriptorsUnion_t *rpf;
1698 	u8 rc;
1699 
1700 	completed_cmds = 0;
1701 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1702 		return completed_cmds;
1703 
1704 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705 	request_descript_type = rpf->Default.ReplyFlags
1706 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708 		atomic_dec(&reply_q->busy);
1709 		return completed_cmds;
1710 	}
1711 
1712 	cb_idx = 0xFF;
1713 	do {
1714 		rd.word = le64_to_cpu(rpf->Words);
1715 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716 			goto out;
1717 		reply = 0;
1718 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719 		if (request_descript_type ==
1720 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721 		    request_descript_type ==
1722 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723 		    request_descript_type ==
1724 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725 			cb_idx = _base_get_cb_idx(ioc, smid);
1726 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 				rc = mpt_callbacks[cb_idx](ioc, smid,
1729 				    msix_index, 0);
1730 				if (rc)
1731 					mpt3sas_base_free_smid(ioc, smid);
1732 			}
1733 		} else if (request_descript_type ==
1734 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735 			reply = le32_to_cpu(
1736 			    rpf->AddressReply.ReplyFrameAddress);
1737 			if (reply > ioc->reply_dma_max_address ||
1738 			    reply < ioc->reply_dma_min_address)
1739 				reply = 0;
1740 			if (smid) {
1741 				cb_idx = _base_get_cb_idx(ioc, smid);
1742 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1744 					rc = mpt_callbacks[cb_idx](ioc, smid,
1745 					    msix_index, reply);
1746 					if (reply)
1747 						_base_display_reply_info(ioc,
1748 						    smid, msix_index, reply);
1749 					if (rc)
1750 						mpt3sas_base_free_smid(ioc,
1751 						    smid);
1752 				}
1753 			} else {
1754 				_base_async_event(ioc, msix_index, reply);
1755 			}
1756 
1757 			/* reply free queue handling */
1758 			if (reply) {
1759 				ioc->reply_free_host_index =
1760 				    (ioc->reply_free_host_index ==
1761 				    (ioc->reply_free_queue_depth - 1)) ?
1762 				    0 : ioc->reply_free_host_index + 1;
1763 				ioc->reply_free[ioc->reply_free_host_index] =
1764 				    cpu_to_le32(reply);
1765 				if (ioc->is_mcpu_endpoint)
1766 					_base_clone_reply_to_sys_mem(ioc,
1767 						reply,
1768 						ioc->reply_free_host_index);
1769 				writel(ioc->reply_free_host_index,
1770 				    &ioc->chip->ReplyFreeHostIndex);
1771 			}
1772 		}
1773 
1774 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1775 		reply_q->reply_post_host_index =
1776 		    (reply_q->reply_post_host_index ==
1777 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1778 		    reply_q->reply_post_host_index + 1;
1779 		request_descript_type =
1780 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1781 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782 		completed_cmds++;
1783 		/* Update the reply post host index after continuously
1784 		 * processing the threshold number of Reply Descriptors.
1785 		 * So that FW can find enough entries to post the Reply
1786 		 * Descriptors in the reply descriptor post queue.
1787 		 */
1788 		if (completed_cmds >= ioc->thresh_hold) {
1789 			if (ioc->combined_reply_queue) {
1790 				writel(reply_q->reply_post_host_index |
1791 						((msix_index  & 7) <<
1792 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1793 				    ioc->replyPostRegisterIndex[msix_index/8]);
1794 			} else {
1795 				writel(reply_q->reply_post_host_index |
1796 						(msix_index <<
1797 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798 						&ioc->chip->ReplyPostHostIndex);
1799 			}
1800 			if (!reply_q->is_iouring_poll_q &&
1801 			    !reply_q->irq_poll_scheduled) {
1802 				reply_q->irq_poll_scheduled = true;
1803 				irq_poll_sched(&reply_q->irqpoll);
1804 			}
1805 			atomic_dec(&reply_q->busy);
1806 			return completed_cmds;
1807 		}
1808 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809 			goto out;
1810 		if (!reply_q->reply_post_host_index)
1811 			rpf = reply_q->reply_post_free;
1812 		else
1813 			rpf++;
1814 	} while (1);
1815 
1816  out:
1817 
1818 	if (!completed_cmds) {
1819 		atomic_dec(&reply_q->busy);
1820 		return completed_cmds;
1821 	}
1822 
1823 	if (ioc->is_warpdrive) {
1824 		writel(reply_q->reply_post_host_index,
1825 		ioc->reply_post_host_index[msix_index]);
1826 		atomic_dec(&reply_q->busy);
1827 		return completed_cmds;
1828 	}
1829 
1830 	/* Update Reply Post Host Index.
1831 	 * For those HBA's which support combined reply queue feature
1832 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1833 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1835 	 * 2. Then update this register with new reply host index value
1836 	 *    in ReplyPostIndex field and the MSIxIndex field with
1837 	 *    msix_index value reduced to a value between 0 and 7,
1838 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1839 	 *    Host Index Register supports 8 MSI-X vectors.
1840 	 *
1841 	 * For other HBA's just update the Reply Post Host Index register with
1842 	 * new reply host index value in ReplyPostIndex Field and msix_index
1843 	 * value in MSIxIndex field.
1844 	 */
1845 	if (ioc->combined_reply_queue)
1846 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1847 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1848 			ioc->replyPostRegisterIndex[msix_index/8]);
1849 	else
1850 		writel(reply_q->reply_post_host_index | (msix_index <<
1851 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1852 			&ioc->chip->ReplyPostHostIndex);
1853 	atomic_dec(&reply_q->busy);
1854 	return completed_cmds;
1855 }
1856 
1857 /**
1858  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859  * @shost: Scsi_Host object
1860  * @queue_num: hw ctx queue number
1861  *
1862  * Return number of entries that has been processed from poll queue.
1863  */
1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865 {
1866 	struct MPT3SAS_ADAPTER *ioc =
1867 	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868 	struct adapter_reply_queue *reply_q;
1869 	int num_entries = 0;
1870 	int qid = queue_num - ioc->iopoll_q_start_index;
1871 
1872 	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1873 	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1874 		return 0;
1875 
1876 	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877 
1878 	num_entries = _base_process_reply_queue(reply_q);
1879 	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1880 
1881 	return num_entries;
1882 }
1883 
1884 /**
1885  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886  * @irq: irq number (not used)
1887  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888  *
1889  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890  */
1891 static irqreturn_t
1892 _base_interrupt(int irq, void *bus_id)
1893 {
1894 	struct adapter_reply_queue *reply_q = bus_id;
1895 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896 
1897 	if (ioc->mask_interrupts)
1898 		return IRQ_NONE;
1899 	if (reply_q->irq_poll_scheduled)
1900 		return IRQ_HANDLED;
1901 	return ((_base_process_reply_queue(reply_q) > 0) ?
1902 			IRQ_HANDLED : IRQ_NONE);
1903 }
1904 
1905 /**
1906  * _base_irqpoll - IRQ poll callback handler
1907  * @irqpoll: irq_poll object
1908  * @budget: irq poll weight
1909  *
1910  * Return: number of reply descriptors processed
1911  */
1912 static int
1913 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1914 {
1915 	struct adapter_reply_queue *reply_q;
1916 	int num_entries = 0;
1917 
1918 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919 			irqpoll);
1920 	if (reply_q->irq_line_enable) {
1921 		disable_irq_nosync(reply_q->os_irq);
1922 		reply_q->irq_line_enable = false;
1923 	}
1924 	num_entries = _base_process_reply_queue(reply_q);
1925 	if (num_entries < budget) {
1926 		irq_poll_complete(irqpoll);
1927 		reply_q->irq_poll_scheduled = false;
1928 		reply_q->irq_line_enable = true;
1929 		enable_irq(reply_q->os_irq);
1930 		/*
1931 		 * Go for one more round of processing the
1932 		 * reply descriptor post queue in case the HBA
1933 		 * Firmware has posted some reply descriptors
1934 		 * while reenabling the IRQ.
1935 		 */
1936 		_base_process_reply_queue(reply_q);
1937 	}
1938 
1939 	return num_entries;
1940 }
1941 
1942 /**
1943  * _base_init_irqpolls - initliaze IRQ polls
1944  * @ioc: per adapter object
1945  *
1946  * Return: nothing
1947  */
1948 static void
1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950 {
1951 	struct adapter_reply_queue *reply_q, *next;
1952 
1953 	if (list_empty(&ioc->reply_queue_list))
1954 		return;
1955 
1956 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957 		if (reply_q->is_iouring_poll_q)
1958 			continue;
1959 		irq_poll_init(&reply_q->irqpoll,
1960 			ioc->hba_queue_depth/4, _base_irqpoll);
1961 		reply_q->irq_poll_scheduled = false;
1962 		reply_q->irq_line_enable = true;
1963 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1964 		    reply_q->msix_index);
1965 	}
1966 }
1967 
1968 /**
1969  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970  * @ioc: per adapter object
1971  *
1972  * Return: Whether or not MSI/X is enabled.
1973  */
1974 static inline int
1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976 {
1977 	return (ioc->facts.IOCCapabilities &
1978 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979 }
1980 
1981 /**
1982  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983  * @ioc: per adapter object
1984  * @poll: poll over reply descriptor pools incase interrupt for
1985  *		timed-out SCSI command got delayed
1986  * Context: non-ISR context
1987  *
1988  * Called when a Task Management request has completed.
1989  */
1990 void
1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992 {
1993 	struct adapter_reply_queue *reply_q;
1994 
1995 	/* If MSIX capability is turned off
1996 	 * then multi-queues are not enabled
1997 	 */
1998 	if (!_base_is_controller_msix_enabled(ioc))
1999 		return;
2000 
2001 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002 		if (ioc->shost_recovery || ioc->remove_host ||
2003 				ioc->pci_error_recovery)
2004 			return;
2005 		/* TMs are on msix_index == 0 */
2006 		if (reply_q->msix_index == 0)
2007 			continue;
2008 
2009 		if (reply_q->is_iouring_poll_q) {
2010 			_base_process_reply_queue(reply_q);
2011 			continue;
2012 		}
2013 
2014 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2015 		if (reply_q->irq_poll_scheduled) {
2016 			/* Calling irq_poll_disable will wait for any pending
2017 			 * callbacks to have completed.
2018 			 */
2019 			irq_poll_disable(&reply_q->irqpoll);
2020 			irq_poll_enable(&reply_q->irqpoll);
2021 			/* check how the scheduled poll has ended,
2022 			 * clean up only if necessary
2023 			 */
2024 			if (reply_q->irq_poll_scheduled) {
2025 				reply_q->irq_poll_scheduled = false;
2026 				reply_q->irq_line_enable = true;
2027 				enable_irq(reply_q->os_irq);
2028 			}
2029 		}
2030 
2031 		if (poll)
2032 			_base_process_reply_queue(reply_q);
2033 	}
2034 }
2035 
2036 /**
2037  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038  * @cb_idx: callback index
2039  */
2040 void
2041 mpt3sas_base_release_callback_handler(u8 cb_idx)
2042 {
2043 	mpt_callbacks[cb_idx] = NULL;
2044 }
2045 
2046 /**
2047  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048  * @cb_func: callback function
2049  *
2050  * Return: Index of @cb_func.
2051  */
2052 u8
2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054 {
2055 	u8 cb_idx;
2056 
2057 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058 		if (mpt_callbacks[cb_idx] == NULL)
2059 			break;
2060 
2061 	mpt_callbacks[cb_idx] = cb_func;
2062 	return cb_idx;
2063 }
2064 
2065 /**
2066  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067  */
2068 void
2069 mpt3sas_base_initialize_callback_handler(void)
2070 {
2071 	u8 cb_idx;
2072 
2073 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074 		mpt3sas_base_release_callback_handler(cb_idx);
2075 }
2076 
2077 
2078 /**
2079  * _base_build_zero_len_sge - build zero length sg entry
2080  * @ioc: per adapter object
2081  * @paddr: virtual address for SGE
2082  *
2083  * Create a zero length scatter gather entry to insure the IOCs hardware has
2084  * something to use if the target device goes brain dead and tries
2085  * to send data even when none is asked for.
2086  */
2087 static void
2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089 {
2090 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093 	    MPI2_SGE_FLAGS_SHIFT);
2094 	ioc->base_add_sg_single(paddr, flags_length, -1);
2095 }
2096 
2097 /**
2098  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099  * @paddr: virtual address for SGE
2100  * @flags_length: SGE flags and data transfer length
2101  * @dma_addr: Physical address
2102  */
2103 static void
2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105 {
2106 	Mpi2SGESimple32_t *sgel = paddr;
2107 
2108 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110 	sgel->FlagsLength = cpu_to_le32(flags_length);
2111 	sgel->Address = cpu_to_le32(dma_addr);
2112 }
2113 
2114 
2115 /**
2116  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117  * @paddr: virtual address for SGE
2118  * @flags_length: SGE flags and data transfer length
2119  * @dma_addr: Physical address
2120  */
2121 static void
2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123 {
2124 	Mpi2SGESimple64_t *sgel = paddr;
2125 
2126 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128 	sgel->FlagsLength = cpu_to_le32(flags_length);
2129 	sgel->Address = cpu_to_le64(dma_addr);
2130 }
2131 
2132 /**
2133  * _base_get_chain_buffer_tracker - obtain chain tracker
2134  * @ioc: per adapter object
2135  * @scmd: SCSI commands of the IO request
2136  *
2137  * Return: chain tracker from chain_lookup table using key as
2138  * smid and smid's chain_offset.
2139  */
2140 static struct chain_tracker *
2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142 			       struct scsi_cmnd *scmd)
2143 {
2144 	struct chain_tracker *chain_req;
2145 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2146 	u16 smid = st->smid;
2147 	u8 chain_offset =
2148 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2149 
2150 	if (chain_offset == ioc->chains_needed_per_io)
2151 		return NULL;
2152 
2153 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2155 	return chain_req;
2156 }
2157 
2158 
2159 /**
2160  * _base_build_sg - build generic sg
2161  * @ioc: per adapter object
2162  * @psge: virtual address for SGE
2163  * @data_out_dma: physical address for WRITES
2164  * @data_out_sz: data xfer size for WRITES
2165  * @data_in_dma: physical address for READS
2166  * @data_in_sz: data xfer size for READS
2167  */
2168 static void
2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171 	size_t data_in_sz)
2172 {
2173 	u32 sgl_flags;
2174 
2175 	if (!data_out_sz && !data_in_sz) {
2176 		_base_build_zero_len_sge(ioc, psge);
2177 		return;
2178 	}
2179 
2180 	if (data_out_sz && data_in_sz) {
2181 		/* WRITE sgel first */
2182 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185 		ioc->base_add_sg_single(psge, sgl_flags |
2186 		    data_out_sz, data_out_dma);
2187 
2188 		/* incr sgel */
2189 		psge += ioc->sge_size;
2190 
2191 		/* READ sgel last */
2192 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194 		    MPI2_SGE_FLAGS_END_OF_LIST);
2195 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196 		ioc->base_add_sg_single(psge, sgl_flags |
2197 		    data_in_sz, data_in_dma);
2198 	} else if (data_out_sz) /* WRITE */ {
2199 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203 		ioc->base_add_sg_single(psge, sgl_flags |
2204 		    data_out_sz, data_out_dma);
2205 	} else if (data_in_sz) /* READ */ {
2206 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208 		    MPI2_SGE_FLAGS_END_OF_LIST);
2209 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210 		ioc->base_add_sg_single(psge, sgl_flags |
2211 		    data_in_sz, data_in_dma);
2212 	}
2213 }
2214 
2215 /* IEEE format sgls */
2216 
2217 /**
2218  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219  *                        a native SGL (NVMe PRP).
2220  * @ioc: per adapter object
2221  * @smid: system request message index for getting asscociated SGL
2222  * @nvme_encap_request: the NVMe request msg frame pointer
2223  * @data_out_dma: physical address for WRITES
2224  * @data_out_sz: data xfer size for WRITES
2225  * @data_in_dma: physical address for READS
2226  * @data_in_sz: data xfer size for READS
2227  *
2228  * The native SGL is built starting in the first PRP
2229  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2230  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2231  * used to describe a larger data buffer.  If the data buffer is too large to
2232  * describe using the two PRP entriess inside the NVMe message, then PRP1
2233  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234  * list located elsewhere in memory to describe the remaining data memory
2235  * segments.  The PRP list will be contiguous.
2236  *
2237  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2238  * consists of a list of PRP entries to describe a number of noncontigous
2239  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2240  * however, that this function is only used by the IOCTL call, so the memory
2241  * given will be guaranteed to be contiguous.  There is no need to translate
2242  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2243  * contiguous space that is one page size each.
2244  *
2245  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2246  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2247  * contains the second PRP element if the memory being described fits within 2
2248  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249  *
2250  * A PRP list pointer contains the address of a PRP list, structured as a linear
2251  * array of PRP entries.  Each PRP entry in this list describes a segment of
2252  * physical memory.
2253  *
2254  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2255  * always points at the beginning of a 4KB physical memory page, and the offset
2256  * describes where within that 4KB page the memory segment begins.  Only the
2257  * first element in a PRP list may contain a non-zero offset, implying that all
2258  * memory segments following the first begin at the start of a 4KB page.
2259  *
2260  * Each PRP element normally describes 4KB of physical memory, with exceptions
2261  * for the first and last elements in the list.  If the memory being described
2262  * by the list begins at a non-zero offset within the first 4KB page, then the
2263  * first PRP element will contain a non-zero offset indicating where the region
2264  * begins within the 4KB page.  The last memory segment may end before the end
2265  * of the 4KB segment, depending upon the overall size of the memory being
2266  * described by the PRP list.
2267  *
2268  * Since PRP entries lack any indication of size, the overall data buffer length
2269  * is used to determine where the end of the data memory buffer is located, and
2270  * how many PRP entries are required to describe it.
2271  */
2272 static void
2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276 	size_t data_in_sz)
2277 {
2278 	int		prp_size = NVME_PRP_SIZE;
2279 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2280 	__le64		*prp_page;
2281 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2282 	u32		offset, entry_len;
2283 	u32		page_mask_result, page_mask;
2284 	size_t		length;
2285 	struct mpt3sas_nvme_cmd *nvme_cmd =
2286 		(void *)nvme_encap_request->NVMe_Command;
2287 
2288 	/*
2289 	 * Not all commands require a data transfer. If no data, just return
2290 	 * without constructing any PRP.
2291 	 */
2292 	if (!data_in_sz && !data_out_sz)
2293 		return;
2294 	prp1_entry = &nvme_cmd->prp1;
2295 	prp2_entry = &nvme_cmd->prp2;
2296 	prp_entry = prp1_entry;
2297 	/*
2298 	 * For the PRP entries, use the specially allocated buffer of
2299 	 * contiguous memory.
2300 	 */
2301 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303 
2304 	/*
2305 	 * Check if we are within 1 entry of a page boundary we don't
2306 	 * want our first entry to be a PRP List entry.
2307 	 */
2308 	page_mask = ioc->page_size - 1;
2309 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310 	if (!page_mask_result) {
2311 		/* Bump up to next page boundary. */
2312 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313 		prp_page_dma = prp_page_dma + prp_size;
2314 	}
2315 
2316 	/*
2317 	 * Set PRP physical pointer, which initially points to the current PRP
2318 	 * DMA memory page.
2319 	 */
2320 	prp_entry_dma = prp_page_dma;
2321 
2322 	/* Get physical address and length of the data buffer. */
2323 	if (data_in_sz) {
2324 		dma_addr = data_in_dma;
2325 		length = data_in_sz;
2326 	} else {
2327 		dma_addr = data_out_dma;
2328 		length = data_out_sz;
2329 	}
2330 
2331 	/* Loop while the length is not zero. */
2332 	while (length) {
2333 		/*
2334 		 * Check if we need to put a list pointer here if we are at
2335 		 * page boundary - prp_size (8 bytes).
2336 		 */
2337 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338 		if (!page_mask_result) {
2339 			/*
2340 			 * This is the last entry in a PRP List, so we need to
2341 			 * put a PRP list pointer here.  What this does is:
2342 			 *   - bump the current memory pointer to the next
2343 			 *     address, which will be the next full page.
2344 			 *   - set the PRP Entry to point to that page.  This
2345 			 *     is now the PRP List pointer.
2346 			 *   - bump the PRP Entry pointer the start of the
2347 			 *     next page.  Since all of this PRP memory is
2348 			 *     contiguous, no need to get a new page - it's
2349 			 *     just the next address.
2350 			 */
2351 			prp_entry_dma++;
2352 			*prp_entry = cpu_to_le64(prp_entry_dma);
2353 			prp_entry++;
2354 		}
2355 
2356 		/* Need to handle if entry will be part of a page. */
2357 		offset = dma_addr & page_mask;
2358 		entry_len = ioc->page_size - offset;
2359 
2360 		if (prp_entry == prp1_entry) {
2361 			/*
2362 			 * Must fill in the first PRP pointer (PRP1) before
2363 			 * moving on.
2364 			 */
2365 			*prp1_entry = cpu_to_le64(dma_addr);
2366 
2367 			/*
2368 			 * Now point to the second PRP entry within the
2369 			 * command (PRP2).
2370 			 */
2371 			prp_entry = prp2_entry;
2372 		} else if (prp_entry == prp2_entry) {
2373 			/*
2374 			 * Should the PRP2 entry be a PRP List pointer or just
2375 			 * a regular PRP pointer?  If there is more than one
2376 			 * more page of data, must use a PRP List pointer.
2377 			 */
2378 			if (length > ioc->page_size) {
2379 				/*
2380 				 * PRP2 will contain a PRP List pointer because
2381 				 * more PRP's are needed with this command. The
2382 				 * list will start at the beginning of the
2383 				 * contiguous buffer.
2384 				 */
2385 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2386 
2387 				/*
2388 				 * The next PRP Entry will be the start of the
2389 				 * first PRP List.
2390 				 */
2391 				prp_entry = prp_page;
2392 			} else {
2393 				/*
2394 				 * After this, the PRP Entries are complete.
2395 				 * This command uses 2 PRP's and no PRP list.
2396 				 */
2397 				*prp2_entry = cpu_to_le64(dma_addr);
2398 			}
2399 		} else {
2400 			/*
2401 			 * Put entry in list and bump the addresses.
2402 			 *
2403 			 * After PRP1 and PRP2 are filled in, this will fill in
2404 			 * all remaining PRP entries in a PRP List, one per
2405 			 * each time through the loop.
2406 			 */
2407 			*prp_entry = cpu_to_le64(dma_addr);
2408 			prp_entry++;
2409 			prp_entry_dma++;
2410 		}
2411 
2412 		/*
2413 		 * Bump the phys address of the command's data buffer by the
2414 		 * entry_len.
2415 		 */
2416 		dma_addr += entry_len;
2417 
2418 		/* Decrement length accounting for last partial page. */
2419 		if (entry_len > length)
2420 			length = 0;
2421 		else
2422 			length -= entry_len;
2423 	}
2424 }
2425 
2426 /**
2427  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428  *			SGLs specific to NVMe drives only
2429  *
2430  * @ioc:		per adapter object
2431  * @scmd:		SCSI command from the mid-layer
2432  * @mpi_request:	mpi request
2433  * @smid:		msg Index
2434  * @sge_count:		scatter gather element count.
2435  *
2436  * Return:		true: PRPs are built
2437  *			false: IEEE SGLs needs to be built
2438  */
2439 static void
2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441 		struct scsi_cmnd *scmd,
2442 		Mpi25SCSIIORequest_t *mpi_request,
2443 		u16 smid, int sge_count)
2444 {
2445 	int sge_len, num_prp_in_chain = 0;
2446 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447 	__le64 *curr_buff;
2448 	dma_addr_t msg_dma, sge_addr, offset;
2449 	u32 page_mask, page_mask_result;
2450 	struct scatterlist *sg_scmd;
2451 	u32 first_prp_len;
2452 	int data_len = scsi_bufflen(scmd);
2453 	u32 nvme_pg_size;
2454 
2455 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456 	/*
2457 	 * Nvme has a very convoluted prp format.  One prp is required
2458 	 * for each page or partial page. Driver need to split up OS sg_list
2459 	 * entries if it is longer than one page or cross a page
2460 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2461 	 * the last entry in each physical page of the PRP list.
2462 	 *
2463 	 * NOTE: The first PRP "entry" is actually placed in the first
2464 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2465 	 * entry in the main message is the chain element, and the rest
2466 	 * of the PRP entries are built in the contiguous pcie buffer.
2467 	 */
2468 	page_mask = nvme_pg_size - 1;
2469 
2470 	/*
2471 	 * Native SGL is needed.
2472 	 * Put a chain element in main message frame that points to the first
2473 	 * chain buffer.
2474 	 *
2475 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2476 	 *        a native SGL.
2477 	 */
2478 
2479 	/* Set main message chain element pointer */
2480 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481 	/*
2482 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2483 	 * message.
2484 	 */
2485 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487 
2488 	/*
2489 	 * For the PRP entries, use the specially allocated buffer of
2490 	 * contiguous memory.  Normal chain buffers can't be used
2491 	 * because each chain buffer would need to be the size of an OS
2492 	 * page (4k).
2493 	 */
2494 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496 
2497 	main_chain_element->Address = cpu_to_le64(msg_dma);
2498 	main_chain_element->NextChainOffset = 0;
2499 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502 
2503 	/* Build first prp, sge need not to be page aligned*/
2504 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505 	sg_scmd = scsi_sglist(scmd);
2506 	sge_addr = sg_dma_address(sg_scmd);
2507 	sge_len = sg_dma_len(sg_scmd);
2508 
2509 	offset = sge_addr & page_mask;
2510 	first_prp_len = nvme_pg_size - offset;
2511 
2512 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514 
2515 	data_len -= first_prp_len;
2516 
2517 	if (sge_len > first_prp_len) {
2518 		sge_addr += first_prp_len;
2519 		sge_len -= first_prp_len;
2520 	} else if (data_len && (sge_len == first_prp_len)) {
2521 		sg_scmd = sg_next(sg_scmd);
2522 		sge_addr = sg_dma_address(sg_scmd);
2523 		sge_len = sg_dma_len(sg_scmd);
2524 	}
2525 
2526 	for (;;) {
2527 		offset = sge_addr & page_mask;
2528 
2529 		/* Put PRP pointer due to page boundary*/
2530 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531 		if (unlikely(!page_mask_result)) {
2532 			scmd_printk(KERN_NOTICE,
2533 				scmd, "page boundary curr_buff: 0x%p\n",
2534 				curr_buff);
2535 			msg_dma += 8;
2536 			*curr_buff = cpu_to_le64(msg_dma);
2537 			curr_buff++;
2538 			num_prp_in_chain++;
2539 		}
2540 
2541 		*curr_buff = cpu_to_le64(sge_addr);
2542 		curr_buff++;
2543 		msg_dma += 8;
2544 		num_prp_in_chain++;
2545 
2546 		sge_addr += nvme_pg_size;
2547 		sge_len -= nvme_pg_size;
2548 		data_len -= nvme_pg_size;
2549 
2550 		if (data_len <= 0)
2551 			break;
2552 
2553 		if (sge_len > 0)
2554 			continue;
2555 
2556 		sg_scmd = sg_next(sg_scmd);
2557 		sge_addr = sg_dma_address(sg_scmd);
2558 		sge_len = sg_dma_len(sg_scmd);
2559 	}
2560 
2561 	main_chain_element->Length =
2562 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563 	return;
2564 }
2565 
2566 static bool
2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569 {
2570 	u32 data_length = 0;
2571 	bool build_prp = true;
2572 
2573 	data_length = scsi_bufflen(scmd);
2574 	if (pcie_device &&
2575 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2576 		build_prp = false;
2577 		return build_prp;
2578 	}
2579 
2580 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2581 	 * we built IEEE SGL
2582 	 */
2583 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584 		build_prp = false;
2585 
2586 	return build_prp;
2587 }
2588 
2589 /**
2590  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591  * determine if the driver needs to build a native SGL.  If so, that native
2592  * SGL is built in the special contiguous buffers allocated especially for
2593  * PCIe SGL creation.  If the driver will not build a native SGL, return
2594  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2595  * supports NVMe.
2596  * @ioc: per adapter object
2597  * @mpi_request: mf request pointer
2598  * @smid: system request message index
2599  * @scmd: scsi command
2600  * @pcie_device: points to the PCIe device's info
2601  *
2602  * Return: 0 if native SGL was built, 1 if no SGL was built
2603  */
2604 static int
2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607 	struct _pcie_device *pcie_device)
2608 {
2609 	int sges_left;
2610 
2611 	/* Get the SG list pointer and info. */
2612 	sges_left = scsi_dma_map(scmd);
2613 	if (sges_left < 0)
2614 		return 1;
2615 
2616 	/* Check if we need to build a native SG list. */
2617 	if (!base_is_prp_possible(ioc, pcie_device,
2618 				scmd, sges_left)) {
2619 		/* We built a native SG list, just return. */
2620 		goto out;
2621 	}
2622 
2623 	/*
2624 	 * Build native NVMe PRP.
2625 	 */
2626 	base_make_prp_nvme(ioc, scmd, mpi_request,
2627 			smid, sges_left);
2628 
2629 	return 0;
2630 out:
2631 	scsi_dma_unmap(scmd);
2632 	return 1;
2633 }
2634 
2635 /**
2636  * _base_add_sg_single_ieee - add sg element for IEEE format
2637  * @paddr: virtual address for SGE
2638  * @flags: SGE flags
2639  * @chain_offset: number of 128 byte elements from start of segment
2640  * @length: data transfer length
2641  * @dma_addr: Physical address
2642  */
2643 static void
2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645 	dma_addr_t dma_addr)
2646 {
2647 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2648 
2649 	sgel->Flags = flags;
2650 	sgel->NextChainOffset = chain_offset;
2651 	sgel->Length = cpu_to_le32(length);
2652 	sgel->Address = cpu_to_le64(dma_addr);
2653 }
2654 
2655 /**
2656  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657  * @ioc: per adapter object
2658  * @paddr: virtual address for SGE
2659  *
2660  * Create a zero length scatter gather entry to insure the IOCs hardware has
2661  * something to use if the target device goes brain dead and tries
2662  * to send data even when none is asked for.
2663  */
2664 static void
2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666 {
2667 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670 
2671 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2672 }
2673 
2674 /**
2675  * _base_build_sg_scmd - main sg creation routine
2676  *		pcie_device is unused here!
2677  * @ioc: per adapter object
2678  * @scmd: scsi command
2679  * @smid: system request message index
2680  * @unused: unused pcie_device pointer
2681  * Context: none.
2682  *
2683  * The main routine that builds scatter gather table from a given
2684  * scsi request sent via the .queuecommand main handler.
2685  *
2686  * Return: 0 success, anything else error
2687  */
2688 static int
2689 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2690 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2691 {
2692 	Mpi2SCSIIORequest_t *mpi_request;
2693 	dma_addr_t chain_dma;
2694 	struct scatterlist *sg_scmd;
2695 	void *sg_local, *chain;
2696 	u32 chain_offset;
2697 	u32 chain_length;
2698 	u32 chain_flags;
2699 	int sges_left;
2700 	u32 sges_in_segment;
2701 	u32 sgl_flags;
2702 	u32 sgl_flags_last_element;
2703 	u32 sgl_flags_end_buffer;
2704 	struct chain_tracker *chain_req;
2705 
2706 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2707 
2708 	/* init scatter gather flags */
2709 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2710 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2711 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2712 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2713 	    << MPI2_SGE_FLAGS_SHIFT;
2714 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2715 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2716 	    << MPI2_SGE_FLAGS_SHIFT;
2717 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2718 
2719 	sg_scmd = scsi_sglist(scmd);
2720 	sges_left = scsi_dma_map(scmd);
2721 	if (sges_left < 0)
2722 		return -ENOMEM;
2723 
2724 	sg_local = &mpi_request->SGL;
2725 	sges_in_segment = ioc->max_sges_in_main_message;
2726 	if (sges_left <= sges_in_segment)
2727 		goto fill_in_last_segment;
2728 
2729 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2730 	    (sges_in_segment * ioc->sge_size))/4;
2731 
2732 	/* fill in main message segment when there is a chain following */
2733 	while (sges_in_segment) {
2734 		if (sges_in_segment == 1)
2735 			ioc->base_add_sg_single(sg_local,
2736 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2737 			    sg_dma_address(sg_scmd));
2738 		else
2739 			ioc->base_add_sg_single(sg_local, sgl_flags |
2740 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2741 		sg_scmd = sg_next(sg_scmd);
2742 		sg_local += ioc->sge_size;
2743 		sges_left--;
2744 		sges_in_segment--;
2745 	}
2746 
2747 	/* initializing the chain flags and pointers */
2748 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2749 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2750 	if (!chain_req)
2751 		return -1;
2752 	chain = chain_req->chain_buffer;
2753 	chain_dma = chain_req->chain_buffer_dma;
2754 	do {
2755 		sges_in_segment = (sges_left <=
2756 		    ioc->max_sges_in_chain_message) ? sges_left :
2757 		    ioc->max_sges_in_chain_message;
2758 		chain_offset = (sges_left == sges_in_segment) ?
2759 		    0 : (sges_in_segment * ioc->sge_size)/4;
2760 		chain_length = sges_in_segment * ioc->sge_size;
2761 		if (chain_offset) {
2762 			chain_offset = chain_offset <<
2763 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2764 			chain_length += ioc->sge_size;
2765 		}
2766 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2767 		    chain_length, chain_dma);
2768 		sg_local = chain;
2769 		if (!chain_offset)
2770 			goto fill_in_last_segment;
2771 
2772 		/* fill in chain segments */
2773 		while (sges_in_segment) {
2774 			if (sges_in_segment == 1)
2775 				ioc->base_add_sg_single(sg_local,
2776 				    sgl_flags_last_element |
2777 				    sg_dma_len(sg_scmd),
2778 				    sg_dma_address(sg_scmd));
2779 			else
2780 				ioc->base_add_sg_single(sg_local, sgl_flags |
2781 				    sg_dma_len(sg_scmd),
2782 				    sg_dma_address(sg_scmd));
2783 			sg_scmd = sg_next(sg_scmd);
2784 			sg_local += ioc->sge_size;
2785 			sges_left--;
2786 			sges_in_segment--;
2787 		}
2788 
2789 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2790 		if (!chain_req)
2791 			return -1;
2792 		chain = chain_req->chain_buffer;
2793 		chain_dma = chain_req->chain_buffer_dma;
2794 	} while (1);
2795 
2796 
2797  fill_in_last_segment:
2798 
2799 	/* fill the last segment */
2800 	while (sges_left) {
2801 		if (sges_left == 1)
2802 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2803 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2804 		else
2805 			ioc->base_add_sg_single(sg_local, sgl_flags |
2806 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2807 		sg_scmd = sg_next(sg_scmd);
2808 		sg_local += ioc->sge_size;
2809 		sges_left--;
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2817  * @ioc: per adapter object
2818  * @scmd: scsi command
2819  * @smid: system request message index
2820  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2821  * constructed on need.
2822  * Context: none.
2823  *
2824  * The main routine that builds scatter gather table from a given
2825  * scsi request sent via the .queuecommand main handler.
2826  *
2827  * Return: 0 success, anything else error
2828  */
2829 static int
2830 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2831 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2832 {
2833 	Mpi25SCSIIORequest_t *mpi_request;
2834 	dma_addr_t chain_dma;
2835 	struct scatterlist *sg_scmd;
2836 	void *sg_local, *chain;
2837 	u32 chain_offset;
2838 	u32 chain_length;
2839 	int sges_left;
2840 	u32 sges_in_segment;
2841 	u8 simple_sgl_flags;
2842 	u8 simple_sgl_flags_last;
2843 	u8 chain_sgl_flags;
2844 	struct chain_tracker *chain_req;
2845 
2846 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2847 
2848 	/* init scatter gather flags */
2849 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2850 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2851 	simple_sgl_flags_last = simple_sgl_flags |
2852 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2853 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2854 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2855 
2856 	/* Check if we need to build a native SG list. */
2857 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2858 			smid, scmd, pcie_device) == 0)) {
2859 		/* We built a native SG list, just return. */
2860 		return 0;
2861 	}
2862 
2863 	sg_scmd = scsi_sglist(scmd);
2864 	sges_left = scsi_dma_map(scmd);
2865 	if (sges_left < 0)
2866 		return -ENOMEM;
2867 
2868 	sg_local = &mpi_request->SGL;
2869 	sges_in_segment = (ioc->request_sz -
2870 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2871 	if (sges_left <= sges_in_segment)
2872 		goto fill_in_last_segment;
2873 
2874 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2875 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2876 
2877 	/* fill in main message segment when there is a chain following */
2878 	while (sges_in_segment > 1) {
2879 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2880 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2881 		sg_scmd = sg_next(sg_scmd);
2882 		sg_local += ioc->sge_size_ieee;
2883 		sges_left--;
2884 		sges_in_segment--;
2885 	}
2886 
2887 	/* initializing the pointers */
2888 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2889 	if (!chain_req)
2890 		return -1;
2891 	chain = chain_req->chain_buffer;
2892 	chain_dma = chain_req->chain_buffer_dma;
2893 	do {
2894 		sges_in_segment = (sges_left <=
2895 		    ioc->max_sges_in_chain_message) ? sges_left :
2896 		    ioc->max_sges_in_chain_message;
2897 		chain_offset = (sges_left == sges_in_segment) ?
2898 		    0 : sges_in_segment;
2899 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2900 		if (chain_offset)
2901 			chain_length += ioc->sge_size_ieee;
2902 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2903 		    chain_offset, chain_length, chain_dma);
2904 
2905 		sg_local = chain;
2906 		if (!chain_offset)
2907 			goto fill_in_last_segment;
2908 
2909 		/* fill in chain segments */
2910 		while (sges_in_segment) {
2911 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2912 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2913 			sg_scmd = sg_next(sg_scmd);
2914 			sg_local += ioc->sge_size_ieee;
2915 			sges_left--;
2916 			sges_in_segment--;
2917 		}
2918 
2919 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2920 		if (!chain_req)
2921 			return -1;
2922 		chain = chain_req->chain_buffer;
2923 		chain_dma = chain_req->chain_buffer_dma;
2924 	} while (1);
2925 
2926 
2927  fill_in_last_segment:
2928 
2929 	/* fill the last segment */
2930 	while (sges_left > 0) {
2931 		if (sges_left == 1)
2932 			_base_add_sg_single_ieee(sg_local,
2933 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2934 			    sg_dma_address(sg_scmd));
2935 		else
2936 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2937 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2938 		sg_scmd = sg_next(sg_scmd);
2939 		sg_local += ioc->sge_size_ieee;
2940 		sges_left--;
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 /**
2947  * _base_build_sg_ieee - build generic sg for IEEE format
2948  * @ioc: per adapter object
2949  * @psge: virtual address for SGE
2950  * @data_out_dma: physical address for WRITES
2951  * @data_out_sz: data xfer size for WRITES
2952  * @data_in_dma: physical address for READS
2953  * @data_in_sz: data xfer size for READS
2954  */
2955 static void
2956 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2957 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2958 	size_t data_in_sz)
2959 {
2960 	u8 sgl_flags;
2961 
2962 	if (!data_out_sz && !data_in_sz) {
2963 		_base_build_zero_len_sge_ieee(ioc, psge);
2964 		return;
2965 	}
2966 
2967 	if (data_out_sz && data_in_sz) {
2968 		/* WRITE sgel first */
2969 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2970 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2971 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2972 		    data_out_dma);
2973 
2974 		/* incr sgel */
2975 		psge += ioc->sge_size_ieee;
2976 
2977 		/* READ sgel last */
2978 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2979 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2980 		    data_in_dma);
2981 	} else if (data_out_sz) /* WRITE */ {
2982 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2983 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2984 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2985 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2986 		    data_out_dma);
2987 	} else if (data_in_sz) /* READ */ {
2988 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2989 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2990 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2991 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2992 		    data_in_dma);
2993 	}
2994 }
2995 
2996 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2997 
2998 /**
2999  * _base_config_dma_addressing - set dma addressing
3000  * @ioc: per adapter object
3001  * @pdev: PCI device struct
3002  *
3003  * Return: 0 for success, non-zero for failure.
3004  */
3005 static int
3006 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3007 {
3008 	struct sysinfo s;
3009 	u64 coherent_dma_mask, dma_mask;
3010 
3011 	if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3012 		ioc->dma_mask = 32;
3013 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3014 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3015 	} else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3016 		ioc->dma_mask = 63;
3017 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3018 	} else {
3019 		ioc->dma_mask = 64;
3020 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3021 	}
3022 
3023 	if (ioc->use_32bit_dma)
3024 		coherent_dma_mask = DMA_BIT_MASK(32);
3025 
3026 	if (dma_set_mask(&pdev->dev, dma_mask) ||
3027 	    dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3028 		return -ENODEV;
3029 
3030 	if (ioc->dma_mask > 32) {
3031 		ioc->base_add_sg_single = &_base_add_sg_single_64;
3032 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3033 	} else {
3034 		ioc->base_add_sg_single = &_base_add_sg_single_32;
3035 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3036 	}
3037 
3038 	si_meminfo(&s);
3039 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3040 		ioc->dma_mask, convert_to_kb(s.totalram));
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  * _base_check_enable_msix - checks MSIX capabable.
3047  * @ioc: per adapter object
3048  *
3049  * Check to see if card is capable of MSIX, and set number
3050  * of available msix vectors
3051  */
3052 static int
3053 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3054 {
3055 	int base;
3056 	u16 message_control;
3057 
3058 	/* Check whether controller SAS2008 B0 controller,
3059 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3060 	 */
3061 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3062 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3063 		return -EINVAL;
3064 	}
3065 
3066 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3067 	if (!base) {
3068 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3069 		return -EINVAL;
3070 	}
3071 
3072 	/* get msix vector count */
3073 	/* NUMA_IO not supported for older controllers */
3074 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3075 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3076 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3077 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3078 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3079 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3080 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3081 		ioc->msix_vector_count = 1;
3082 	else {
3083 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3084 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3085 	}
3086 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3087 				  ioc->msix_vector_count));
3088 	return 0;
3089 }
3090 
3091 /**
3092  * mpt3sas_base_free_irq - free irq
3093  * @ioc: per adapter object
3094  *
3095  * Freeing respective reply_queue from the list.
3096  */
3097 void
3098 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3099 {
3100 	unsigned int irq;
3101 	struct adapter_reply_queue *reply_q, *next;
3102 
3103 	if (list_empty(&ioc->reply_queue_list))
3104 		return;
3105 
3106 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3107 		list_del(&reply_q->list);
3108 		if (reply_q->is_iouring_poll_q) {
3109 			kfree(reply_q);
3110 			continue;
3111 		}
3112 
3113 		if (ioc->smp_affinity_enable) {
3114 			irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3115 			irq_update_affinity_hint(irq, NULL);
3116 		}
3117 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3118 			 reply_q);
3119 		kfree(reply_q);
3120 	}
3121 }
3122 
3123 /**
3124  * _base_request_irq - request irq
3125  * @ioc: per adapter object
3126  * @index: msix index into vector table
3127  *
3128  * Inserting respective reply_queue into the list.
3129  */
3130 static int
3131 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3132 {
3133 	struct pci_dev *pdev = ioc->pdev;
3134 	struct adapter_reply_queue *reply_q;
3135 	int r, qid;
3136 
3137 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3138 	if (!reply_q) {
3139 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3140 			sizeof(struct adapter_reply_queue));
3141 		return -ENOMEM;
3142 	}
3143 	reply_q->ioc = ioc;
3144 	reply_q->msix_index = index;
3145 
3146 	atomic_set(&reply_q->busy, 0);
3147 
3148 	if (index >= ioc->iopoll_q_start_index) {
3149 		qid = index - ioc->iopoll_q_start_index;
3150 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3151 		    ioc->driver_name, ioc->id, qid);
3152 		reply_q->is_iouring_poll_q = 1;
3153 		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3154 		goto out;
3155 	}
3156 
3157 
3158 	if (ioc->msix_enable)
3159 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3160 		    ioc->driver_name, ioc->id, index);
3161 	else
3162 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3163 		    ioc->driver_name, ioc->id);
3164 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3165 			IRQF_SHARED, reply_q->name, reply_q);
3166 	if (r) {
3167 		pr_err("%s: unable to allocate interrupt %d!\n",
3168 		       reply_q->name, pci_irq_vector(pdev, index));
3169 		kfree(reply_q);
3170 		return -EBUSY;
3171 	}
3172 out:
3173 	INIT_LIST_HEAD(&reply_q->list);
3174 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3175 	return 0;
3176 }
3177 
3178 /**
3179  * _base_assign_reply_queues - assigning msix index for each cpu
3180  * @ioc: per adapter object
3181  *
3182  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3183  */
3184 static void
3185 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3186 {
3187 	unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3188 	struct adapter_reply_queue *reply_q;
3189 	int iopoll_q_count = ioc->reply_queue_count -
3190 	    ioc->iopoll_q_start_index;
3191 	const struct cpumask *mask;
3192 
3193 	if (!_base_is_controller_msix_enabled(ioc))
3194 		return;
3195 
3196 	if (ioc->msix_load_balance)
3197 		return;
3198 
3199 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3200 
3201 	nr_cpus = num_online_cpus();
3202 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3203 					       ioc->facts.MaxMSIxVectors);
3204 	if (!nr_msix)
3205 		return;
3206 
3207 	if (ioc->smp_affinity_enable) {
3208 
3209 		/*
3210 		 * set irq affinity to local numa node for those irqs
3211 		 * corresponding to high iops queues.
3212 		 */
3213 		if (ioc->high_iops_queues) {
3214 			mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3215 			for (index = 0; index < ioc->high_iops_queues;
3216 			    index++) {
3217 				irq = pci_irq_vector(ioc->pdev, index);
3218 				irq_set_affinity_and_hint(irq, mask);
3219 			}
3220 		}
3221 
3222 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3223 			const cpumask_t *mask;
3224 
3225 			if (reply_q->msix_index < ioc->high_iops_queues ||
3226 			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3227 				continue;
3228 
3229 			mask = pci_irq_get_affinity(ioc->pdev,
3230 			    reply_q->msix_index);
3231 			if (!mask) {
3232 				ioc_warn(ioc, "no affinity for msi %x\n",
3233 					 reply_q->msix_index);
3234 				goto fall_back;
3235 			}
3236 
3237 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3238 				if (cpu >= ioc->cpu_msix_table_sz)
3239 					break;
3240 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3241 			}
3242 		}
3243 		return;
3244 	}
3245 
3246 fall_back:
3247 	cpu = cpumask_first(cpu_online_mask);
3248 	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3249 	index = 0;
3250 
3251 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3252 		unsigned int i, group = nr_cpus / nr_msix;
3253 
3254 		if (reply_q->msix_index < ioc->high_iops_queues ||
3255 		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3256 			continue;
3257 
3258 		if (cpu >= nr_cpus)
3259 			break;
3260 
3261 		if (index < nr_cpus % nr_msix)
3262 			group++;
3263 
3264 		for (i = 0 ; i < group ; i++) {
3265 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3266 			cpu = cpumask_next(cpu, cpu_online_mask);
3267 		}
3268 		index++;
3269 	}
3270 }
3271 
3272 /**
3273  * _base_check_and_enable_high_iops_queues - enable high iops mode
3274  * @ioc: per adapter object
3275  * @hba_msix_vector_count: msix vectors supported by HBA
3276  *
3277  * Enable high iops queues only if
3278  *  - HBA is a SEA/AERO controller and
3279  *  - MSI-Xs vector supported by the HBA is 128 and
3280  *  - total CPU count in the system >=16 and
3281  *  - loaded driver with default max_msix_vectors module parameter and
3282  *  - system booted in non kdump mode
3283  *
3284  * Return: nothing.
3285  */
3286 static void
3287 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3288 		int hba_msix_vector_count)
3289 {
3290 	u16 lnksta, speed;
3291 
3292 	/*
3293 	 * Disable high iops queues if io uring poll queues are enabled.
3294 	 */
3295 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3296 	    perf_mode == MPT_PERF_MODE_LATENCY ||
3297 	    ioc->io_uring_poll_queues) {
3298 		ioc->high_iops_queues = 0;
3299 		return;
3300 	}
3301 
3302 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3303 
3304 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3305 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3306 
3307 		if (speed < 0x4) {
3308 			ioc->high_iops_queues = 0;
3309 			return;
3310 		}
3311 	}
3312 
3313 	if (!reset_devices && ioc->is_aero_ioc &&
3314 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3315 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3316 	    max_msix_vectors == -1)
3317 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3318 	else
3319 		ioc->high_iops_queues = 0;
3320 }
3321 
3322 /**
3323  * mpt3sas_base_disable_msix - disables msix
3324  * @ioc: per adapter object
3325  *
3326  */
3327 void
3328 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3329 {
3330 	if (!ioc->msix_enable)
3331 		return;
3332 	pci_free_irq_vectors(ioc->pdev);
3333 	ioc->msix_enable = 0;
3334 	kfree(ioc->io_uring_poll_queues);
3335 }
3336 
3337 /**
3338  * _base_alloc_irq_vectors - allocate msix vectors
3339  * @ioc: per adapter object
3340  *
3341  */
3342 static int
3343 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3344 {
3345 	int i, irq_flags = PCI_IRQ_MSIX;
3346 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3347 	struct irq_affinity *descp = &desc;
3348 	/*
3349 	 * Don't allocate msix vectors for poll_queues.
3350 	 * msix_vectors is always within a range of FW supported reply queue.
3351 	 */
3352 	int nr_msix_vectors = ioc->iopoll_q_start_index;
3353 
3354 
3355 	if (ioc->smp_affinity_enable)
3356 		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3357 	else
3358 		descp = NULL;
3359 
3360 	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3361 	    ioc->reply_queue_count, nr_msix_vectors);
3362 
3363 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3364 	    ioc->high_iops_queues,
3365 	    nr_msix_vectors, irq_flags, descp);
3366 
3367 	return i;
3368 }
3369 
3370 /**
3371  * _base_enable_msix - enables msix, failback to io_apic
3372  * @ioc: per adapter object
3373  *
3374  */
3375 static int
3376 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3377 {
3378 	int r;
3379 	int i, local_max_msix_vectors;
3380 	u8 try_msix = 0;
3381 	int iopoll_q_count = 0;
3382 
3383 	ioc->msix_load_balance = false;
3384 
3385 	if (msix_disable == -1 || msix_disable == 0)
3386 		try_msix = 1;
3387 
3388 	if (!try_msix)
3389 		goto try_ioapic;
3390 
3391 	if (_base_check_enable_msix(ioc) != 0)
3392 		goto try_ioapic;
3393 
3394 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3395 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3396 		ioc->cpu_count, max_msix_vectors);
3397 
3398 	ioc->reply_queue_count =
3399 		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3400 
3401 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3402 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3403 	else
3404 		local_max_msix_vectors = max_msix_vectors;
3405 
3406 	if (local_max_msix_vectors == 0)
3407 		goto try_ioapic;
3408 
3409 	/*
3410 	 * Enable msix_load_balance only if combined reply queue mode is
3411 	 * disabled on SAS3 & above generation HBA devices.
3412 	 */
3413 	if (!ioc->combined_reply_queue &&
3414 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3415 		ioc_info(ioc,
3416 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3417 		ioc->msix_load_balance = true;
3418 	}
3419 
3420 	/*
3421 	 * smp affinity setting is not need when msix load balance
3422 	 * is enabled.
3423 	 */
3424 	if (ioc->msix_load_balance)
3425 		ioc->smp_affinity_enable = 0;
3426 
3427 	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3428 		ioc->shost->host_tagset = 0;
3429 
3430 	/*
3431 	 * Enable io uring poll queues only if host_tagset is enabled.
3432 	 */
3433 	if (ioc->shost->host_tagset)
3434 		iopoll_q_count = poll_queues;
3435 
3436 	if (iopoll_q_count) {
3437 		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3438 		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3439 		if (!ioc->io_uring_poll_queues)
3440 			iopoll_q_count = 0;
3441 	}
3442 
3443 	if (ioc->is_aero_ioc)
3444 		_base_check_and_enable_high_iops_queues(ioc,
3445 		    ioc->msix_vector_count);
3446 
3447 	/*
3448 	 * Add high iops queues count to reply queue count if high iops queues
3449 	 * are enabled.
3450 	 */
3451 	ioc->reply_queue_count = min_t(int,
3452 	    ioc->reply_queue_count + ioc->high_iops_queues,
3453 	    ioc->msix_vector_count);
3454 
3455 	/*
3456 	 * Adjust the reply queue count incase reply queue count
3457 	 * exceeds the user provided MSIx vectors count.
3458 	 */
3459 	if (local_max_msix_vectors > 0)
3460 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3461 		    ioc->reply_queue_count);
3462 	/*
3463 	 * Add io uring poll queues count to reply queues count
3464 	 * if io uring is enabled in driver.
3465 	 */
3466 	if (iopoll_q_count) {
3467 		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3468 			iopoll_q_count = 0;
3469 		ioc->reply_queue_count = min_t(int,
3470 		    ioc->reply_queue_count + iopoll_q_count,
3471 		    ioc->msix_vector_count);
3472 	}
3473 
3474 	/*
3475 	 * Starting index of io uring poll queues in reply queue list.
3476 	 */
3477 	ioc->iopoll_q_start_index =
3478 	    ioc->reply_queue_count - iopoll_q_count;
3479 
3480 	r = _base_alloc_irq_vectors(ioc);
3481 	if (r < 0) {
3482 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3483 		goto try_ioapic;
3484 	}
3485 
3486 	/*
3487 	 * Adjust the reply queue count if the allocated
3488 	 * MSIx vectors is less then the requested number
3489 	 * of MSIx vectors.
3490 	 */
3491 	if (r < ioc->iopoll_q_start_index) {
3492 		ioc->reply_queue_count = r + iopoll_q_count;
3493 		ioc->iopoll_q_start_index =
3494 		    ioc->reply_queue_count - iopoll_q_count;
3495 	}
3496 
3497 	ioc->msix_enable = 1;
3498 	for (i = 0; i < ioc->reply_queue_count; i++) {
3499 		r = _base_request_irq(ioc, i);
3500 		if (r) {
3501 			mpt3sas_base_free_irq(ioc);
3502 			mpt3sas_base_disable_msix(ioc);
3503 			goto try_ioapic;
3504 		}
3505 	}
3506 
3507 	ioc_info(ioc, "High IOPs queues : %s\n",
3508 			ioc->high_iops_queues ? "enabled" : "disabled");
3509 
3510 	return 0;
3511 
3512 /* failback to io_apic interrupt routing */
3513  try_ioapic:
3514 	ioc->high_iops_queues = 0;
3515 	ioc_info(ioc, "High IOPs queues : disabled\n");
3516 	ioc->reply_queue_count = 1;
3517 	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3518 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_INTX);
3519 	if (r < 0) {
3520 		dfailprintk(ioc,
3521 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3522 				     r));
3523 	} else
3524 		r = _base_request_irq(ioc, 0);
3525 
3526 	return r;
3527 }
3528 
3529 /**
3530  * mpt3sas_base_unmap_resources - free controller resources
3531  * @ioc: per adapter object
3532  */
3533 static void
3534 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3535 {
3536 	struct pci_dev *pdev = ioc->pdev;
3537 
3538 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3539 
3540 	mpt3sas_base_free_irq(ioc);
3541 	mpt3sas_base_disable_msix(ioc);
3542 
3543 	kfree(ioc->replyPostRegisterIndex);
3544 	ioc->replyPostRegisterIndex = NULL;
3545 
3546 
3547 	if (ioc->chip_phys) {
3548 		iounmap(ioc->chip);
3549 		ioc->chip_phys = 0;
3550 	}
3551 
3552 	if (pci_is_enabled(pdev)) {
3553 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3554 		pci_disable_device(pdev);
3555 	}
3556 }
3557 
3558 static int
3559 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3560 
3561 /**
3562  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3563  *     and if it is in fault state then issue diag reset.
3564  * @ioc: per adapter object
3565  *
3566  * Return: 0 for success, non-zero for failure.
3567  */
3568 int
3569 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3570 {
3571 	u32 ioc_state;
3572 	int rc = -EFAULT;
3573 
3574 	dinitprintk(ioc, pr_info("%s\n", __func__));
3575 	if (ioc->pci_error_recovery)
3576 		return 0;
3577 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3578 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3579 
3580 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3581 		mpt3sas_print_fault_code(ioc, ioc_state &
3582 		    MPI2_DOORBELL_DATA_MASK);
3583 		mpt3sas_base_mask_interrupts(ioc);
3584 		rc = _base_diag_reset(ioc);
3585 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3586 	    MPI2_IOC_STATE_COREDUMP) {
3587 		mpt3sas_print_coredump_info(ioc, ioc_state &
3588 		     MPI2_DOORBELL_DATA_MASK);
3589 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3590 		mpt3sas_base_mask_interrupts(ioc);
3591 		rc = _base_diag_reset(ioc);
3592 	}
3593 
3594 	return rc;
3595 }
3596 
3597 /**
3598  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3599  * @ioc: per adapter object
3600  *
3601  * Return: 0 for success, non-zero for failure.
3602  */
3603 int
3604 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3605 {
3606 	struct pci_dev *pdev = ioc->pdev;
3607 	u32 memap_sz;
3608 	u32 pio_sz;
3609 	int i, r = 0, rc;
3610 	u64 pio_chip = 0;
3611 	phys_addr_t chip_phys = 0;
3612 	struct adapter_reply_queue *reply_q;
3613 	int iopoll_q_count = 0;
3614 
3615 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3616 
3617 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3618 	if (pci_enable_device_mem(pdev)) {
3619 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3620 		ioc->bars = 0;
3621 		return -ENODEV;
3622 	}
3623 
3624 
3625 	if (pci_request_selected_regions(pdev, ioc->bars,
3626 	    ioc->driver_name)) {
3627 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3628 		ioc->bars = 0;
3629 		r = -ENODEV;
3630 		goto out_fail;
3631 	}
3632 
3633 	pci_set_master(pdev);
3634 
3635 
3636 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3637 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3638 		r = -ENODEV;
3639 		goto out_fail;
3640 	}
3641 
3642 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3643 	     (!memap_sz || !pio_sz); i++) {
3644 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3645 			if (pio_sz)
3646 				continue;
3647 			pio_chip = (u64)pci_resource_start(pdev, i);
3648 			pio_sz = pci_resource_len(pdev, i);
3649 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650 			if (memap_sz)
3651 				continue;
3652 			ioc->chip_phys = pci_resource_start(pdev, i);
3653 			chip_phys = ioc->chip_phys;
3654 			memap_sz = pci_resource_len(pdev, i);
3655 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3656 		}
3657 	}
3658 
3659 	if (ioc->chip == NULL) {
3660 		ioc_err(ioc,
3661 		    "unable to map adapter memory! or resource not found\n");
3662 		r = -EINVAL;
3663 		goto out_fail;
3664 	}
3665 
3666 	mpt3sas_base_mask_interrupts(ioc);
3667 
3668 	r = _base_get_ioc_facts(ioc);
3669 	if (r) {
3670 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3671 		if (rc || (_base_get_ioc_facts(ioc)))
3672 			goto out_fail;
3673 	}
3674 
3675 	if (!ioc->rdpq_array_enable_assigned) {
3676 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3677 		ioc->rdpq_array_enable_assigned = 1;
3678 	}
3679 
3680 	r = _base_enable_msix(ioc);
3681 	if (r)
3682 		goto out_fail;
3683 
3684 	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3685 	for (i = 0; i < iopoll_q_count; i++) {
3686 		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3687 		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3688 	}
3689 
3690 	if (!ioc->is_driver_loading)
3691 		_base_init_irqpolls(ioc);
3692 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3693 	 * revision HBAs and also only when reply queue count is greater than 8
3694 	 */
3695 	if (ioc->combined_reply_queue) {
3696 		/* Determine the Supplemental Reply Post Host Index Registers
3697 		 * Addresse. Supplemental Reply Post Host Index Registers
3698 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3699 		 * each register is at offset bytes of
3700 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3701 		 */
3702 		ioc->replyPostRegisterIndex = kcalloc(
3703 		     ioc->combined_reply_index_count,
3704 		     sizeof(resource_size_t *), GFP_KERNEL);
3705 		if (!ioc->replyPostRegisterIndex) {
3706 			ioc_err(ioc,
3707 			    "allocation for replyPostRegisterIndex failed!\n");
3708 			r = -ENOMEM;
3709 			goto out_fail;
3710 		}
3711 
3712 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3713 			ioc->replyPostRegisterIndex[i] =
3714 				(resource_size_t __iomem *)
3715 				((u8 __force *)&ioc->chip->Doorbell +
3716 				 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3717 				 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3718 		}
3719 	}
3720 
3721 	if (ioc->is_warpdrive) {
3722 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3723 		    &ioc->chip->ReplyPostHostIndex;
3724 
3725 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3726 			ioc->reply_post_host_index[i] =
3727 			(resource_size_t __iomem *)
3728 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3729 			* 4)));
3730 	}
3731 
3732 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3733 		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3734 			pr_info("%s: enabled: index: %d\n",
3735 			    reply_q->name, reply_q->msix_index);
3736 			continue;
3737 		}
3738 
3739 		pr_info("%s: %s enabled: IRQ %d\n",
3740 			reply_q->name,
3741 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3742 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3743 	}
3744 
3745 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3746 		 &chip_phys, ioc->chip, memap_sz);
3747 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3748 		 (unsigned long long)pio_chip, pio_sz);
3749 
3750 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3751 	pci_save_state(pdev);
3752 	return 0;
3753 
3754  out_fail:
3755 	mpt3sas_base_unmap_resources(ioc);
3756 	return r;
3757 }
3758 
3759 /**
3760  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3761  * @ioc: per adapter object
3762  * @smid: system request message index(smid zero is invalid)
3763  *
3764  * Return: virt pointer to message frame.
3765  */
3766 void *
3767 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3768 {
3769 	return (void *)(ioc->request + (smid * ioc->request_sz));
3770 }
3771 
3772 /**
3773  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3774  * @ioc: per adapter object
3775  * @smid: system request message index
3776  *
3777  * Return: virt pointer to sense buffer.
3778  */
3779 void *
3780 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3781 {
3782 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3783 }
3784 
3785 /**
3786  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3787  * @ioc: per adapter object
3788  * @smid: system request message index
3789  *
3790  * Return: phys pointer to the low 32bit address of the sense buffer.
3791  */
3792 __le32
3793 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3794 {
3795 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3796 	    SCSI_SENSE_BUFFERSIZE));
3797 }
3798 
3799 /**
3800  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3801  * @ioc: per adapter object
3802  * @smid: system request message index
3803  *
3804  * Return: virt pointer to a PCIe SGL.
3805  */
3806 void *
3807 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3808 {
3809 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3810 }
3811 
3812 /**
3813  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3814  * @ioc: per adapter object
3815  * @smid: system request message index
3816  *
3817  * Return: phys pointer to the address of the PCIe buffer.
3818  */
3819 dma_addr_t
3820 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3821 {
3822 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3823 }
3824 
3825 /**
3826  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3827  * @ioc: per adapter object
3828  * @phys_addr: lower 32 physical addr of the reply
3829  *
3830  * Converts 32bit lower physical addr into a virt address.
3831  */
3832 void *
3833 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3834 {
3835 	if (!phys_addr)
3836 		return NULL;
3837 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3838 }
3839 
3840 /**
3841  * _base_get_msix_index - get the msix index
3842  * @ioc: per adapter object
3843  * @scmd: scsi_cmnd object
3844  *
3845  * Return: msix index of general reply queues,
3846  * i.e. reply queue on which IO request's reply
3847  * should be posted by the HBA firmware.
3848  */
3849 static inline u8
3850 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3851 	struct scsi_cmnd *scmd)
3852 {
3853 	/* Enables reply_queue load balancing */
3854 	if (ioc->msix_load_balance)
3855 		return ioc->reply_queue_count ?
3856 		    base_mod64(atomic64_add_return(1,
3857 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3858 
3859 	if (scmd && ioc->shost->nr_hw_queues > 1) {
3860 		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3861 
3862 		return blk_mq_unique_tag_to_hwq(tag) +
3863 			ioc->high_iops_queues;
3864 	}
3865 
3866 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3867 }
3868 
3869 /**
3870  * _base_get_high_iops_msix_index - get the msix index of
3871  *				high iops queues
3872  * @ioc: per adapter object
3873  * @scmd: scsi_cmnd object
3874  *
3875  * Return: msix index of high iops reply queues.
3876  * i.e. high iops reply queue on which IO request's
3877  * reply should be posted by the HBA firmware.
3878  */
3879 static inline u8
3880 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3881 	struct scsi_cmnd *scmd)
3882 {
3883 	/**
3884 	 * Round robin the IO interrupts among the high iops
3885 	 * reply queues in terms of batch count 16 when outstanding
3886 	 * IOs on the target device is >=8.
3887 	 */
3888 
3889 	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3890 		return base_mod64((
3891 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3892 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3893 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3894 
3895 	return _base_get_msix_index(ioc, scmd);
3896 }
3897 
3898 /**
3899  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3900  * @ioc: per adapter object
3901  * @cb_idx: callback index
3902  *
3903  * Return: smid (zero is invalid)
3904  */
3905 u16
3906 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3907 {
3908 	unsigned long flags;
3909 	struct request_tracker *request;
3910 	u16 smid;
3911 
3912 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3913 	if (list_empty(&ioc->internal_free_list)) {
3914 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3915 		ioc_err(ioc, "%s: smid not available\n", __func__);
3916 		return 0;
3917 	}
3918 
3919 	request = list_entry(ioc->internal_free_list.next,
3920 	    struct request_tracker, tracker_list);
3921 	request->cb_idx = cb_idx;
3922 	smid = request->smid;
3923 	list_del(&request->tracker_list);
3924 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3925 	return smid;
3926 }
3927 
3928 /**
3929  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3930  * @ioc: per adapter object
3931  * @cb_idx: callback index
3932  * @scmd: pointer to scsi command object
3933  *
3934  * Return: smid (zero is invalid)
3935  */
3936 u16
3937 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3938 	struct scsi_cmnd *scmd)
3939 {
3940 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3941 	u16 smid;
3942 	u32 tag, unique_tag;
3943 
3944 	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3945 	tag = blk_mq_unique_tag_to_tag(unique_tag);
3946 
3947 	/*
3948 	 * Store hw queue number corresponding to the tag.
3949 	 * This hw queue number is used later to determine
3950 	 * the unique_tag using the logic below. This unique_tag
3951 	 * is used to retrieve the scmd pointer corresponding
3952 	 * to tag using scsi_host_find_tag() API.
3953 	 *
3954 	 * tag = smid - 1;
3955 	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3956 	 */
3957 	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3958 
3959 	smid = tag + 1;
3960 	request->cb_idx = cb_idx;
3961 	request->smid = smid;
3962 	request->scmd = scmd;
3963 	INIT_LIST_HEAD(&request->chain_list);
3964 	return smid;
3965 }
3966 
3967 /**
3968  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3969  * @ioc: per adapter object
3970  * @cb_idx: callback index
3971  *
3972  * Return: smid (zero is invalid)
3973  */
3974 u16
3975 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3976 {
3977 	unsigned long flags;
3978 	struct request_tracker *request;
3979 	u16 smid;
3980 
3981 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3982 	if (list_empty(&ioc->hpr_free_list)) {
3983 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3984 		return 0;
3985 	}
3986 
3987 	request = list_entry(ioc->hpr_free_list.next,
3988 	    struct request_tracker, tracker_list);
3989 	request->cb_idx = cb_idx;
3990 	smid = request->smid;
3991 	list_del(&request->tracker_list);
3992 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3993 	return smid;
3994 }
3995 
3996 static void
3997 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3998 {
3999 	/*
4000 	 * See _wait_for_commands_to_complete() call with regards to this code.
4001 	 */
4002 	if (ioc->shost_recovery && ioc->pending_io_count) {
4003 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
4004 		if (ioc->pending_io_count == 0)
4005 			wake_up(&ioc->reset_wq);
4006 	}
4007 }
4008 
4009 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4010 			   struct scsiio_tracker *st)
4011 {
4012 	if (WARN_ON(st->smid == 0))
4013 		return;
4014 	st->cb_idx = 0xFF;
4015 	st->direct_io = 0;
4016 	st->scmd = NULL;
4017 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4018 	st->smid = 0;
4019 }
4020 
4021 /**
4022  * mpt3sas_base_free_smid - put smid back on free_list
4023  * @ioc: per adapter object
4024  * @smid: system request message index
4025  */
4026 void
4027 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4028 {
4029 	unsigned long flags;
4030 	int i;
4031 
4032 	if (smid < ioc->hi_priority_smid) {
4033 		struct scsiio_tracker *st;
4034 		void *request;
4035 
4036 		st = _get_st_from_smid(ioc, smid);
4037 		if (!st) {
4038 			_base_recovery_check(ioc);
4039 			return;
4040 		}
4041 
4042 		/* Clear MPI request frame */
4043 		request = mpt3sas_base_get_msg_frame(ioc, smid);
4044 		memset(request, 0, ioc->request_sz);
4045 
4046 		mpt3sas_base_clear_st(ioc, st);
4047 		_base_recovery_check(ioc);
4048 		ioc->io_queue_num[smid - 1] = 0;
4049 		return;
4050 	}
4051 
4052 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4053 	if (smid < ioc->internal_smid) {
4054 		/* hi-priority */
4055 		i = smid - ioc->hi_priority_smid;
4056 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4057 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4058 	} else if (smid <= ioc->hba_queue_depth) {
4059 		/* internal queue */
4060 		i = smid - ioc->internal_smid;
4061 		ioc->internal_lookup[i].cb_idx = 0xFF;
4062 		list_add(&ioc->internal_lookup[i].tracker_list,
4063 		    &ioc->internal_free_list);
4064 	}
4065 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4066 }
4067 
4068 /**
4069  * _base_mpi_ep_writeq - 32 bit write to MMIO
4070  * @b: data payload
4071  * @addr: address in MMIO space
4072  * @writeq_lock: spin lock
4073  *
4074  * This special handling for MPI EP to take care of 32 bit
4075  * environment where its not quarenteed to send the entire word
4076  * in one transfer.
4077  */
4078 static inline void
4079 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4080 					spinlock_t *writeq_lock)
4081 {
4082 	unsigned long flags;
4083 
4084 	spin_lock_irqsave(writeq_lock, flags);
4085 	__raw_writel((u32)(b), addr);
4086 	__raw_writel((u32)(b >> 32), (addr + 4));
4087 	spin_unlock_irqrestore(writeq_lock, flags);
4088 }
4089 
4090 /**
4091  * _base_writeq - 64 bit write to MMIO
4092  * @b: data payload
4093  * @addr: address in MMIO space
4094  * @writeq_lock: spin lock
4095  *
4096  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4097  * care of 32 bit environment where its not quarenteed to send the entire word
4098  * in one transfer.
4099  */
4100 #if defined(writeq) && defined(CONFIG_64BIT)
4101 static inline void
4102 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103 {
4104 	wmb();
4105 	__raw_writeq(b, addr);
4106 	barrier();
4107 }
4108 #else
4109 static inline void
4110 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4111 {
4112 	_base_mpi_ep_writeq(b, addr, writeq_lock);
4113 }
4114 #endif
4115 
4116 /**
4117  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4118  *                                variable of scsi tracker
4119  * @ioc: per adapter object
4120  * @smid: system request message index
4121  *
4122  * Return: msix index.
4123  */
4124 static u8
4125 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4126 {
4127 	struct scsiio_tracker *st = NULL;
4128 
4129 	if (smid < ioc->hi_priority_smid)
4130 		st = _get_st_from_smid(ioc, smid);
4131 
4132 	if (st == NULL)
4133 		return  _base_get_msix_index(ioc, NULL);
4134 
4135 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4136 	return st->msix_io;
4137 }
4138 
4139 /**
4140  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4141  * @ioc: per adapter object
4142  * @smid: system request message index
4143  * @handle: device handle
4144  */
4145 static void
4146 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4147 	u16 smid, u16 handle)
4148 {
4149 	Mpi2RequestDescriptorUnion_t descriptor;
4150 	u64 *request = (u64 *)&descriptor;
4151 	void *mpi_req_iomem;
4152 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4153 
4154 	_clone_sg_entries(ioc, (void *) mfp, smid);
4155 	mpi_req_iomem = (void __force *)ioc->chip +
4156 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4157 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4158 					ioc->request_sz);
4159 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4160 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4161 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4162 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4163 	descriptor.SCSIIO.LMID = 0;
4164 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4165 	    &ioc->scsi_lookup_lock);
4166 }
4167 
4168 /**
4169  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4170  * @ioc: per adapter object
4171  * @smid: system request message index
4172  * @handle: device handle
4173  */
4174 static void
4175 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4176 {
4177 	Mpi2RequestDescriptorUnion_t descriptor;
4178 	u64 *request = (u64 *)&descriptor;
4179 
4180 
4181 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4182 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4184 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4185 	descriptor.SCSIIO.LMID = 0;
4186 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4187 	    &ioc->scsi_lookup_lock);
4188 }
4189 
4190 /**
4191  * _base_put_smid_fast_path - send fast path request to firmware
4192  * @ioc: per adapter object
4193  * @smid: system request message index
4194  * @handle: device handle
4195  */
4196 static void
4197 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4198 	u16 handle)
4199 {
4200 	Mpi2RequestDescriptorUnion_t descriptor;
4201 	u64 *request = (u64 *)&descriptor;
4202 
4203 	descriptor.SCSIIO.RequestFlags =
4204 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4205 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4206 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4207 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4208 	descriptor.SCSIIO.LMID = 0;
4209 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4210 	    &ioc->scsi_lookup_lock);
4211 }
4212 
4213 /**
4214  * _base_put_smid_hi_priority - send Task Management request to firmware
4215  * @ioc: per adapter object
4216  * @smid: system request message index
4217  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4218  */
4219 static void
4220 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4221 	u16 msix_task)
4222 {
4223 	Mpi2RequestDescriptorUnion_t descriptor;
4224 	void *mpi_req_iomem;
4225 	u64 *request;
4226 
4227 	if (ioc->is_mcpu_endpoint) {
4228 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4229 
4230 		/* TBD 256 is offset within sys register. */
4231 		mpi_req_iomem = (void __force *)ioc->chip
4232 					+ MPI_FRAME_START_OFFSET
4233 					+ (smid * ioc->request_sz);
4234 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4235 							ioc->request_sz);
4236 	}
4237 
4238 	request = (u64 *)&descriptor;
4239 
4240 	descriptor.HighPriority.RequestFlags =
4241 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4242 	descriptor.HighPriority.MSIxIndex =  msix_task;
4243 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4244 	descriptor.HighPriority.LMID = 0;
4245 	descriptor.HighPriority.Reserved1 = 0;
4246 	if (ioc->is_mcpu_endpoint)
4247 		_base_mpi_ep_writeq(*request,
4248 				&ioc->chip->RequestDescriptorPostLow,
4249 				&ioc->scsi_lookup_lock);
4250 	else
4251 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4252 		    &ioc->scsi_lookup_lock);
4253 }
4254 
4255 /**
4256  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4257  *  firmware
4258  * @ioc: per adapter object
4259  * @smid: system request message index
4260  */
4261 void
4262 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4263 {
4264 	Mpi2RequestDescriptorUnion_t descriptor;
4265 	u64 *request = (u64 *)&descriptor;
4266 
4267 	descriptor.Default.RequestFlags =
4268 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4269 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4270 	descriptor.Default.SMID = cpu_to_le16(smid);
4271 	descriptor.Default.LMID = 0;
4272 	descriptor.Default.DescriptorTypeDependent = 0;
4273 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4274 	    &ioc->scsi_lookup_lock);
4275 }
4276 
4277 /**
4278  * _base_put_smid_default - Default, primarily used for config pages
4279  * @ioc: per adapter object
4280  * @smid: system request message index
4281  */
4282 static void
4283 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4284 {
4285 	Mpi2RequestDescriptorUnion_t descriptor;
4286 	void *mpi_req_iomem;
4287 	u64 *request;
4288 
4289 	if (ioc->is_mcpu_endpoint) {
4290 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4291 
4292 		_clone_sg_entries(ioc, (void *) mfp, smid);
4293 		/* TBD 256 is offset within sys register */
4294 		mpi_req_iomem = (void __force *)ioc->chip +
4295 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4296 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4297 							ioc->request_sz);
4298 	}
4299 	request = (u64 *)&descriptor;
4300 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4301 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4302 	descriptor.Default.SMID = cpu_to_le16(smid);
4303 	descriptor.Default.LMID = 0;
4304 	descriptor.Default.DescriptorTypeDependent = 0;
4305 	if (ioc->is_mcpu_endpoint)
4306 		_base_mpi_ep_writeq(*request,
4307 				&ioc->chip->RequestDescriptorPostLow,
4308 				&ioc->scsi_lookup_lock);
4309 	else
4310 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4311 				&ioc->scsi_lookup_lock);
4312 }
4313 
4314 /**
4315  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4316  *   Atomic Request Descriptor
4317  * @ioc: per adapter object
4318  * @smid: system request message index
4319  * @handle: device handle, unused in this function, for function type match
4320  *
4321  * Return: nothing.
4322  */
4323 static void
4324 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4325 	u16 handle)
4326 {
4327 	Mpi26AtomicRequestDescriptor_t descriptor;
4328 	u32 *request = (u32 *)&descriptor;
4329 
4330 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4331 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4332 	descriptor.SMID = cpu_to_le16(smid);
4333 
4334 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4335 }
4336 
4337 /**
4338  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4339  * using Atomic Request Descriptor
4340  * @ioc: per adapter object
4341  * @smid: system request message index
4342  * @handle: device handle, unused in this function, for function type match
4343  * Return: nothing
4344  */
4345 static void
4346 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4347 	u16 handle)
4348 {
4349 	Mpi26AtomicRequestDescriptor_t descriptor;
4350 	u32 *request = (u32 *)&descriptor;
4351 
4352 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4353 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4354 	descriptor.SMID = cpu_to_le16(smid);
4355 
4356 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4357 }
4358 
4359 /**
4360  * _base_put_smid_hi_priority_atomic - send Task Management request to
4361  * firmware using Atomic Request Descriptor
4362  * @ioc: per adapter object
4363  * @smid: system request message index
4364  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4365  *
4366  * Return: nothing.
4367  */
4368 static void
4369 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4370 	u16 msix_task)
4371 {
4372 	Mpi26AtomicRequestDescriptor_t descriptor;
4373 	u32 *request = (u32 *)&descriptor;
4374 
4375 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4376 	descriptor.MSIxIndex = msix_task;
4377 	descriptor.SMID = cpu_to_le16(smid);
4378 
4379 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4380 }
4381 
4382 /**
4383  * _base_put_smid_default_atomic - Default, primarily used for config pages
4384  * use Atomic Request Descriptor
4385  * @ioc: per adapter object
4386  * @smid: system request message index
4387  *
4388  * Return: nothing.
4389  */
4390 static void
4391 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4392 {
4393 	Mpi26AtomicRequestDescriptor_t descriptor;
4394 	u32 *request = (u32 *)&descriptor;
4395 
4396 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4397 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4398 	descriptor.SMID = cpu_to_le16(smid);
4399 
4400 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4401 }
4402 
4403 /**
4404  * _base_display_OEMs_branding - Display branding string
4405  * @ioc: per adapter object
4406  */
4407 static void
4408 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4409 {
4410 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4411 		return;
4412 
4413 	switch (ioc->pdev->subsystem_vendor) {
4414 	case PCI_VENDOR_ID_INTEL:
4415 		switch (ioc->pdev->device) {
4416 		case MPI2_MFGPAGE_DEVID_SAS2008:
4417 			switch (ioc->pdev->subsystem_device) {
4418 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4419 				ioc_info(ioc, "%s\n",
4420 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4421 				break;
4422 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4423 				ioc_info(ioc, "%s\n",
4424 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4425 				break;
4426 			case MPT2SAS_INTEL_SSD910_SSDID:
4427 				ioc_info(ioc, "%s\n",
4428 					 MPT2SAS_INTEL_SSD910_BRANDING);
4429 				break;
4430 			default:
4431 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4432 					 ioc->pdev->subsystem_device);
4433 				break;
4434 			}
4435 			break;
4436 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4437 			switch (ioc->pdev->subsystem_device) {
4438 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4439 				ioc_info(ioc, "%s\n",
4440 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4441 				break;
4442 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4443 				ioc_info(ioc, "%s\n",
4444 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4445 				break;
4446 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4447 				ioc_info(ioc, "%s\n",
4448 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4449 				break;
4450 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4451 				ioc_info(ioc, "%s\n",
4452 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4453 				break;
4454 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4455 				ioc_info(ioc, "%s\n",
4456 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4457 				break;
4458 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4459 				ioc_info(ioc, "%s\n",
4460 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4461 				break;
4462 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4463 				ioc_info(ioc, "%s\n",
4464 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4465 				break;
4466 			default:
4467 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4468 					 ioc->pdev->subsystem_device);
4469 				break;
4470 			}
4471 			break;
4472 		case MPI25_MFGPAGE_DEVID_SAS3008:
4473 			switch (ioc->pdev->subsystem_device) {
4474 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4475 				ioc_info(ioc, "%s\n",
4476 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4477 				break;
4478 
4479 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4480 				ioc_info(ioc, "%s\n",
4481 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4482 				break;
4483 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4484 				ioc_info(ioc, "%s\n",
4485 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4486 				break;
4487 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4488 				ioc_info(ioc, "%s\n",
4489 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4490 				break;
4491 			default:
4492 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4493 					 ioc->pdev->subsystem_device);
4494 				break;
4495 			}
4496 			break;
4497 		default:
4498 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4499 				 ioc->pdev->subsystem_device);
4500 			break;
4501 		}
4502 		break;
4503 	case PCI_VENDOR_ID_DELL:
4504 		switch (ioc->pdev->device) {
4505 		case MPI2_MFGPAGE_DEVID_SAS2008:
4506 			switch (ioc->pdev->subsystem_device) {
4507 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4508 				ioc_info(ioc, "%s\n",
4509 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4510 				break;
4511 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4512 				ioc_info(ioc, "%s\n",
4513 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4514 				break;
4515 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4516 				ioc_info(ioc, "%s\n",
4517 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4518 				break;
4519 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4520 				ioc_info(ioc, "%s\n",
4521 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4522 				break;
4523 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4524 				ioc_info(ioc, "%s\n",
4525 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4526 				break;
4527 			case MPT2SAS_DELL_PERC_H200_SSDID:
4528 				ioc_info(ioc, "%s\n",
4529 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4530 				break;
4531 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4532 				ioc_info(ioc, "%s\n",
4533 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4534 				break;
4535 			default:
4536 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4537 					 ioc->pdev->subsystem_device);
4538 				break;
4539 			}
4540 			break;
4541 		case MPI25_MFGPAGE_DEVID_SAS3008:
4542 			switch (ioc->pdev->subsystem_device) {
4543 			case MPT3SAS_DELL_12G_HBA_SSDID:
4544 				ioc_info(ioc, "%s\n",
4545 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4546 				break;
4547 			default:
4548 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4549 					 ioc->pdev->subsystem_device);
4550 				break;
4551 			}
4552 			break;
4553 		default:
4554 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4555 				 ioc->pdev->subsystem_device);
4556 			break;
4557 		}
4558 		break;
4559 	case PCI_VENDOR_ID_CISCO:
4560 		switch (ioc->pdev->device) {
4561 		case MPI25_MFGPAGE_DEVID_SAS3008:
4562 			switch (ioc->pdev->subsystem_device) {
4563 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4564 				ioc_info(ioc, "%s\n",
4565 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4566 				break;
4567 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4568 				ioc_info(ioc, "%s\n",
4569 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4570 				break;
4571 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4572 				ioc_info(ioc, "%s\n",
4573 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4574 				break;
4575 			default:
4576 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4577 					 ioc->pdev->subsystem_device);
4578 				break;
4579 			}
4580 			break;
4581 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4582 			switch (ioc->pdev->subsystem_device) {
4583 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4584 				ioc_info(ioc, "%s\n",
4585 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4586 				break;
4587 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4588 				ioc_info(ioc, "%s\n",
4589 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4590 				break;
4591 			default:
4592 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593 					 ioc->pdev->subsystem_device);
4594 				break;
4595 			}
4596 			break;
4597 		default:
4598 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4599 				 ioc->pdev->subsystem_device);
4600 			break;
4601 		}
4602 		break;
4603 	case MPT2SAS_HP_3PAR_SSVID:
4604 		switch (ioc->pdev->device) {
4605 		case MPI2_MFGPAGE_DEVID_SAS2004:
4606 			switch (ioc->pdev->subsystem_device) {
4607 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4608 				ioc_info(ioc, "%s\n",
4609 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4610 				break;
4611 			default:
4612 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4613 					 ioc->pdev->subsystem_device);
4614 				break;
4615 			}
4616 			break;
4617 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4618 			switch (ioc->pdev->subsystem_device) {
4619 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4620 				ioc_info(ioc, "%s\n",
4621 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4622 				break;
4623 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4624 				ioc_info(ioc, "%s\n",
4625 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4626 				break;
4627 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4628 				ioc_info(ioc, "%s\n",
4629 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4630 				break;
4631 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4632 				ioc_info(ioc, "%s\n",
4633 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4634 				break;
4635 			default:
4636 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4637 					 ioc->pdev->subsystem_device);
4638 				break;
4639 			}
4640 			break;
4641 		default:
4642 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4643 				 ioc->pdev->subsystem_device);
4644 			break;
4645 		}
4646 		break;
4647 	default:
4648 		break;
4649 	}
4650 }
4651 
4652 /**
4653  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4654  *				version from FW Image Header.
4655  * @ioc: per adapter object
4656  *
4657  * Return: 0 for success, non-zero for failure.
4658  */
4659 	static int
4660 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4661 {
4662 	Mpi2FWImageHeader_t *fw_img_hdr;
4663 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4664 	Mpi25FWUploadRequest_t *mpi_request;
4665 	Mpi2FWUploadReply_t mpi_reply;
4666 	int r = 0, issue_diag_reset = 0;
4667 	u32  package_version = 0;
4668 	void *fwpkg_data = NULL;
4669 	dma_addr_t fwpkg_data_dma;
4670 	u16 smid, ioc_status;
4671 	size_t data_length;
4672 
4673 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4674 
4675 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4676 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4677 		return -EAGAIN;
4678 	}
4679 
4680 	data_length = sizeof(Mpi2FWImageHeader_t);
4681 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4682 			&fwpkg_data_dma, GFP_KERNEL);
4683 	if (!fwpkg_data) {
4684 		ioc_err(ioc,
4685 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4686 			__FILE__, __LINE__, __func__);
4687 		return -ENOMEM;
4688 	}
4689 
4690 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4691 	if (!smid) {
4692 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4693 		r = -EAGAIN;
4694 		goto out;
4695 	}
4696 
4697 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4698 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4699 	ioc->base_cmds.smid = smid;
4700 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4701 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4702 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4703 	mpi_request->ImageSize = cpu_to_le32(data_length);
4704 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4705 			data_length);
4706 	init_completion(&ioc->base_cmds.done);
4707 	ioc->put_smid_default(ioc, smid);
4708 	/* Wait for 15 seconds */
4709 	wait_for_completion_timeout(&ioc->base_cmds.done,
4710 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4711 	ioc_info(ioc, "%s: complete\n", __func__);
4712 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4713 		ioc_err(ioc, "%s: timeout\n", __func__);
4714 		_debug_dump_mf(mpi_request,
4715 				sizeof(Mpi25FWUploadRequest_t)/4);
4716 		issue_diag_reset = 1;
4717 	} else {
4718 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4719 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4720 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4721 					sizeof(Mpi2FWUploadReply_t));
4722 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4723 						MPI2_IOCSTATUS_MASK;
4724 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4725 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4726 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4727 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4728 					cmp_img_hdr =
4729 					    (Mpi26ComponentImageHeader_t *)
4730 					    (fwpkg_data);
4731 					package_version =
4732 					    le32_to_cpu(
4733 					    cmp_img_hdr->ApplicationSpecific);
4734 				} else
4735 					package_version =
4736 					    le32_to_cpu(
4737 					    fw_img_hdr->PackageVersion.Word);
4738 				if (package_version)
4739 					ioc_info(ioc,
4740 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4741 					((package_version) & 0xFF000000) >> 24,
4742 					((package_version) & 0x00FF0000) >> 16,
4743 					((package_version) & 0x0000FF00) >> 8,
4744 					(package_version) & 0x000000FF);
4745 			} else {
4746 				_debug_dump_mf(&mpi_reply,
4747 						sizeof(Mpi2FWUploadReply_t)/4);
4748 			}
4749 		}
4750 	}
4751 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4752 out:
4753 	if (fwpkg_data)
4754 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4755 				fwpkg_data_dma);
4756 	if (issue_diag_reset) {
4757 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4758 			return -EFAULT;
4759 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4760 			return -EFAULT;
4761 		r = -EAGAIN;
4762 	}
4763 	return r;
4764 }
4765 
4766 /**
4767  * _base_display_ioc_capabilities - Display IOC's capabilities.
4768  * @ioc: per adapter object
4769  */
4770 static void
4771 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4772 {
4773 	int i = 0;
4774 	char desc[17] = {0};
4775 	u32 iounit_pg1_flags;
4776 
4777 	strscpy(desc, ioc->manu_pg0.ChipName, sizeof(desc));
4778 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4779 		 desc,
4780 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4781 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4782 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4783 		 ioc->facts.FWVersion.Word & 0x000000FF,
4784 		 ioc->pdev->revision);
4785 
4786 	_base_display_OEMs_branding(ioc);
4787 
4788 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4789 		pr_info("%sNVMe", i ? "," : "");
4790 		i++;
4791 	}
4792 
4793 	ioc_info(ioc, "Protocol=(");
4794 
4795 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4796 		pr_cont("Initiator");
4797 		i++;
4798 	}
4799 
4800 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4801 		pr_cont("%sTarget", i ? "," : "");
4802 		i++;
4803 	}
4804 
4805 	i = 0;
4806 	pr_cont("), Capabilities=(");
4807 
4808 	if (!ioc->hide_ir_msg) {
4809 		if (ioc->facts.IOCCapabilities &
4810 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4811 			pr_cont("Raid");
4812 			i++;
4813 		}
4814 	}
4815 
4816 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4817 		pr_cont("%sTLR", i ? "," : "");
4818 		i++;
4819 	}
4820 
4821 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4822 		pr_cont("%sMulticast", i ? "," : "");
4823 		i++;
4824 	}
4825 
4826 	if (ioc->facts.IOCCapabilities &
4827 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4828 		pr_cont("%sBIDI Target", i ? "," : "");
4829 		i++;
4830 	}
4831 
4832 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4833 		pr_cont("%sEEDP", i ? "," : "");
4834 		i++;
4835 	}
4836 
4837 	if (ioc->facts.IOCCapabilities &
4838 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4839 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4840 		i++;
4841 	}
4842 
4843 	if (ioc->facts.IOCCapabilities &
4844 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4845 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4846 		i++;
4847 	}
4848 
4849 	if (ioc->facts.IOCCapabilities &
4850 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4851 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4852 		i++;
4853 	}
4854 
4855 	if (ioc->facts.IOCCapabilities &
4856 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4857 		pr_cont("%sTask Set Full", i ? "," : "");
4858 		i++;
4859 	}
4860 
4861 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4862 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4863 		pr_cont("%sNCQ", i ? "," : "");
4864 		i++;
4865 	}
4866 
4867 	pr_cont(")\n");
4868 }
4869 
4870 /**
4871  * mpt3sas_base_update_missing_delay - change the missing delay timers
4872  * @ioc: per adapter object
4873  * @device_missing_delay: amount of time till device is reported missing
4874  * @io_missing_delay: interval IO is returned when there is a missing device
4875  *
4876  * Passed on the command line, this function will modify the device missing
4877  * delay, as well as the io missing delay. This should be called at driver
4878  * load time.
4879  */
4880 void
4881 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4882 	u16 device_missing_delay, u8 io_missing_delay)
4883 {
4884 	u16 dmd, dmd_new, dmd_orignal;
4885 	u8 io_missing_delay_original;
4886 	u16 sz;
4887 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4888 	Mpi2ConfigReply_t mpi_reply;
4889 	u8 num_phys = 0;
4890 	u16 ioc_status;
4891 
4892 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4893 	if (!num_phys)
4894 		return;
4895 
4896 	sz = struct_size(sas_iounit_pg1, PhyData, num_phys);
4897 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4898 	if (!sas_iounit_pg1) {
4899 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4900 			__FILE__, __LINE__, __func__);
4901 		goto out;
4902 	}
4903 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4904 	    sas_iounit_pg1, sz))) {
4905 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4906 			__FILE__, __LINE__, __func__);
4907 		goto out;
4908 	}
4909 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4910 	    MPI2_IOCSTATUS_MASK;
4911 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4912 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4913 			__FILE__, __LINE__, __func__);
4914 		goto out;
4915 	}
4916 
4917 	/* device missing delay */
4918 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4919 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4920 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4921 	else
4922 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4923 	dmd_orignal = dmd;
4924 	if (device_missing_delay > 0x7F) {
4925 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4926 		    device_missing_delay;
4927 		dmd = dmd / 16;
4928 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4929 	} else
4930 		dmd = device_missing_delay;
4931 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4932 
4933 	/* io missing delay */
4934 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4935 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4936 
4937 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4938 	    sz)) {
4939 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4940 			dmd_new = (dmd &
4941 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4942 		else
4943 			dmd_new =
4944 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4945 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4946 			 dmd_orignal, dmd_new);
4947 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4948 			 io_missing_delay_original,
4949 			 io_missing_delay);
4950 		ioc->device_missing_delay = dmd_new;
4951 		ioc->io_missing_delay = io_missing_delay;
4952 	}
4953 
4954 out:
4955 	kfree(sas_iounit_pg1);
4956 }
4957 
4958 /**
4959  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4960  *    according to performance mode.
4961  * @ioc : per adapter object
4962  *
4963  * Return: zero on success; otherwise return EAGAIN error code asking the
4964  * caller to retry.
4965  */
4966 static int
4967 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4968 {
4969 	Mpi2IOCPage1_t ioc_pg1;
4970 	Mpi2ConfigReply_t mpi_reply;
4971 	int rc;
4972 
4973 	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4974 	if (rc)
4975 		return rc;
4976 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4977 
4978 	switch (perf_mode) {
4979 	case MPT_PERF_MODE_DEFAULT:
4980 	case MPT_PERF_MODE_BALANCED:
4981 		if (ioc->high_iops_queues) {
4982 			ioc_info(ioc,
4983 				"Enable interrupt coalescing only for first\t"
4984 				"%d reply queues\n",
4985 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4986 			/*
4987 			 * If 31st bit is zero then interrupt coalescing is
4988 			 * enabled for all reply descriptor post queues.
4989 			 * If 31st bit is set to one then user can
4990 			 * enable/disable interrupt coalescing on per reply
4991 			 * descriptor post queue group(8) basis. So to enable
4992 			 * interrupt coalescing only on first reply descriptor
4993 			 * post queue group 31st bit and zero th bit is enabled.
4994 			 */
4995 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4996 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4997 			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4998 			if (rc)
4999 				return rc;
5000 			ioc_info(ioc, "performance mode: balanced\n");
5001 			return 0;
5002 		}
5003 		fallthrough;
5004 	case MPT_PERF_MODE_LATENCY:
5005 		/*
5006 		 * Enable interrupt coalescing on all reply queues
5007 		 * with timeout value 0xA
5008 		 */
5009 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5010 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5011 		ioc_pg1.ProductSpecific = 0;
5012 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5013 		if (rc)
5014 			return rc;
5015 		ioc_info(ioc, "performance mode: latency\n");
5016 		break;
5017 	case MPT_PERF_MODE_IOPS:
5018 		/*
5019 		 * Enable interrupt coalescing on all reply queues.
5020 		 */
5021 		ioc_info(ioc,
5022 		    "performance mode: iops with coalescing timeout: 0x%x\n",
5023 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5024 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5025 		ioc_pg1.ProductSpecific = 0;
5026 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5027 		if (rc)
5028 			return rc;
5029 		break;
5030 	}
5031 	return 0;
5032 }
5033 
5034 /**
5035  * _base_get_event_diag_triggers - get event diag trigger values from
5036  *				persistent pages
5037  * @ioc : per adapter object
5038  *
5039  * Return: nothing.
5040  */
5041 static int
5042 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5043 {
5044 	Mpi26DriverTriggerPage2_t trigger_pg2;
5045 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5046 	MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg;
5047 	Mpi2ConfigReply_t mpi_reply;
5048 	int r = 0, i = 0;
5049 	u16 count = 0;
5050 	u16 ioc_status;
5051 
5052 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5053 	    &trigger_pg2);
5054 	if (r)
5055 		return r;
5056 
5057 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5058 	    MPI2_IOCSTATUS_MASK;
5059 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5060 		dinitprintk(ioc,
5061 		    ioc_err(ioc,
5062 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5063 		   __func__, ioc_status));
5064 		return 0;
5065 	}
5066 
5067 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5068 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5069 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5070 		ioc->diag_trigger_event.ValidEntries = count;
5071 
5072 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5073 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5074 		for (i = 0; i < count; i++) {
5075 			event_tg->EventValue = le16_to_cpu(
5076 			    mpi_event_tg->MPIEventCode);
5077 			event_tg->LogEntryQualifier = le16_to_cpu(
5078 			    mpi_event_tg->MPIEventCodeSpecific);
5079 			event_tg++;
5080 			mpi_event_tg++;
5081 		}
5082 	}
5083 	return 0;
5084 }
5085 
5086 /**
5087  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5088  *				persistent pages
5089  * @ioc : per adapter object
5090  *
5091  * Return: 0 on success; otherwise return failure status.
5092  */
5093 static int
5094 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5095 {
5096 	Mpi26DriverTriggerPage3_t trigger_pg3;
5097 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5098 	MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg;
5099 	Mpi2ConfigReply_t mpi_reply;
5100 	int r = 0, i = 0;
5101 	u16 count = 0;
5102 	u16 ioc_status;
5103 
5104 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5105 	    &trigger_pg3);
5106 	if (r)
5107 		return r;
5108 
5109 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5110 	    MPI2_IOCSTATUS_MASK;
5111 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5112 		dinitprintk(ioc,
5113 		    ioc_err(ioc,
5114 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5115 		    __func__, ioc_status));
5116 		return 0;
5117 	}
5118 
5119 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5120 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5121 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5122 		ioc->diag_trigger_scsi.ValidEntries = count;
5123 
5124 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5125 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5126 		for (i = 0; i < count; i++) {
5127 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5128 			scsi_tg->ASC = mpi_scsi_tg->ASC;
5129 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5130 
5131 			scsi_tg++;
5132 			mpi_scsi_tg++;
5133 		}
5134 	}
5135 	return 0;
5136 }
5137 
5138 /**
5139  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5140  *				persistent pages
5141  * @ioc : per adapter object
5142  *
5143  * Return: 0 on success; otherwise return failure status.
5144  */
5145 static int
5146 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5147 {
5148 	Mpi26DriverTriggerPage4_t trigger_pg4;
5149 	struct SL_WH_MPI_TRIGGER_T *status_tg;
5150 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg;
5151 	Mpi2ConfigReply_t mpi_reply;
5152 	int r = 0, i = 0;
5153 	u16 count = 0;
5154 	u16 ioc_status;
5155 
5156 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5157 	    &trigger_pg4);
5158 	if (r)
5159 		return r;
5160 
5161 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5162 	    MPI2_IOCSTATUS_MASK;
5163 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5164 		dinitprintk(ioc,
5165 		    ioc_err(ioc,
5166 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5167 		    __func__, ioc_status));
5168 		return 0;
5169 	}
5170 
5171 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5172 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5173 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5174 		ioc->diag_trigger_mpi.ValidEntries = count;
5175 
5176 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5177 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5178 
5179 		for (i = 0; i < count; i++) {
5180 			status_tg->IOCStatus = le16_to_cpu(
5181 			    mpi_status_tg->IOCStatus);
5182 			status_tg->IocLogInfo = le32_to_cpu(
5183 			    mpi_status_tg->LogInfo);
5184 
5185 			status_tg++;
5186 			mpi_status_tg++;
5187 		}
5188 	}
5189 	return 0;
5190 }
5191 
5192 /**
5193  * _base_get_master_diag_triggers - get master diag trigger values from
5194  *				persistent pages
5195  * @ioc : per adapter object
5196  *
5197  * Return: nothing.
5198  */
5199 static int
5200 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5201 {
5202 	Mpi26DriverTriggerPage1_t trigger_pg1;
5203 	Mpi2ConfigReply_t mpi_reply;
5204 	int r;
5205 	u16 ioc_status;
5206 
5207 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5208 	    &trigger_pg1);
5209 	if (r)
5210 		return r;
5211 
5212 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5213 	    MPI2_IOCSTATUS_MASK;
5214 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5215 		dinitprintk(ioc,
5216 		    ioc_err(ioc,
5217 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5218 		   __func__, ioc_status));
5219 		return 0;
5220 	}
5221 
5222 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5223 		ioc->diag_trigger_master.MasterData |=
5224 		    le32_to_cpu(
5225 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5226 	return 0;
5227 }
5228 
5229 /**
5230  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5231  *					driver trigger pages or not
5232  * @ioc : per adapter object
5233  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5234  *
5235  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5236  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5237  * return EAGAIN if diag reset occurred due to FW fault and asking the
5238  * caller to retry the command.
5239  *
5240  */
5241 static int
5242 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5243 {
5244 	Mpi26DriverTriggerPage0_t trigger_pg0;
5245 	int r = 0;
5246 	Mpi2ConfigReply_t mpi_reply;
5247 	u16 ioc_status;
5248 
5249 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5250 	    &trigger_pg0);
5251 	if (r)
5252 		return r;
5253 
5254 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5255 	    MPI2_IOCSTATUS_MASK;
5256 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5257 		return -EFAULT;
5258 
5259 	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5260 	return 0;
5261 }
5262 
5263 /**
5264  * _base_get_diag_triggers - Retrieve diag trigger values from
5265  *				persistent pages.
5266  * @ioc : per adapter object
5267  *
5268  * Return: zero on success; otherwise return EAGAIN error codes
5269  * asking the caller to retry.
5270  */
5271 static int
5272 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5273 {
5274 	int trigger_flags;
5275 	int r;
5276 
5277 	/*
5278 	 * Default setting of master trigger.
5279 	 */
5280 	ioc->diag_trigger_master.MasterData =
5281 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5282 
5283 	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5284 	if (r) {
5285 		if (r == -EAGAIN)
5286 			return r;
5287 		/*
5288 		 * Don't go for error handling when FW doesn't support
5289 		 * driver trigger pages.
5290 		 */
5291 		return 0;
5292 	}
5293 
5294 	ioc->supports_trigger_pages = 1;
5295 
5296 	/*
5297 	 * Retrieve master diag trigger values from driver trigger pg1
5298 	 * if master trigger bit enabled in TriggerFlags.
5299 	 */
5300 	if ((u16)trigger_flags &
5301 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5302 		r = _base_get_master_diag_triggers(ioc);
5303 		if (r)
5304 			return r;
5305 	}
5306 
5307 	/*
5308 	 * Retrieve event diag trigger values from driver trigger pg2
5309 	 * if event trigger bit enabled in TriggerFlags.
5310 	 */
5311 	if ((u16)trigger_flags &
5312 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5313 		r = _base_get_event_diag_triggers(ioc);
5314 		if (r)
5315 			return r;
5316 	}
5317 
5318 	/*
5319 	 * Retrieve scsi diag trigger values from driver trigger pg3
5320 	 * if scsi trigger bit enabled in TriggerFlags.
5321 	 */
5322 	if ((u16)trigger_flags &
5323 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5324 		r = _base_get_scsi_diag_triggers(ioc);
5325 		if (r)
5326 			return r;
5327 	}
5328 	/*
5329 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5330 	 * if loginfo trigger bit enabled in TriggerFlags.
5331 	 */
5332 	if ((u16)trigger_flags &
5333 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5334 		r = _base_get_mpi_diag_triggers(ioc);
5335 		if (r)
5336 			return r;
5337 	}
5338 	return 0;
5339 }
5340 
5341 /**
5342  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5343  *			online FW update, in case updated FW supports driver
5344  *			trigger pages.
5345  * @ioc : per adapter object
5346  *
5347  * Return: nothing.
5348  */
5349 static void
5350 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5351 {
5352 
5353 	if (ioc->diag_trigger_master.MasterData)
5354 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5355 		    &ioc->diag_trigger_master, 1);
5356 
5357 	if (ioc->diag_trigger_event.ValidEntries)
5358 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5359 		    &ioc->diag_trigger_event, 1);
5360 
5361 	if (ioc->diag_trigger_scsi.ValidEntries)
5362 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5363 		    &ioc->diag_trigger_scsi, 1);
5364 
5365 	if (ioc->diag_trigger_mpi.ValidEntries)
5366 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5367 		    &ioc->diag_trigger_mpi, 1);
5368 }
5369 
5370 /**
5371  * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5372  *				- On failure set default QD values.
5373  * @ioc : per adapter object
5374  *
5375  * Returns 0 for success, non-zero for failure.
5376  *
5377  */
5378 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5379 {
5380 	Mpi2ConfigReply_t mpi_reply;
5381 	Mpi2SasIOUnitPage1_t sas_iounit_pg1;
5382 	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5383 	u16 depth;
5384 	int rc = 0;
5385 
5386 	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387 	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5388 	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5389 	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5390 	if (!ioc->is_gen35_ioc)
5391 		goto out;
5392 	/* sas iounit page 1 */
5393 	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5394 	    &sas_iounit_pg1, sizeof(Mpi2SasIOUnitPage1_t));
5395 	if (rc) {
5396 		pr_err("%s: failure at %s:%d/%s()!\n",
5397 		    ioc->name, __FILE__, __LINE__, __func__);
5398 		goto out;
5399 	}
5400 
5401 	depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth);
5402 	ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403 
5404 	depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth);
5405 	ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5406 
5407 	depth = sas_iounit_pg1.SATAMaxQDepth;
5408 	ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5409 
5410 	/* pcie iounit page 1 */
5411 	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5412 	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5413 	if (rc) {
5414 		pr_err("%s: failure at %s:%d/%s()!\n",
5415 		    ioc->name, __FILE__, __LINE__, __func__);
5416 		goto out;
5417 	}
5418 	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5419 	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5420 	    MPT3SAS_NVME_QUEUE_DEPTH;
5421 out:
5422 	dinitprintk(ioc, pr_err(
5423 	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5424 	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5425 	    ioc->max_sata_qd, ioc->max_nvme_qd));
5426 	return rc;
5427 }
5428 
5429 /**
5430  * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5431  *
5432  * @ioc : per adapter object
5433  * @n   : ptr to the ATTO nvram structure
5434  * Return: 0 for success, non-zero for failure.
5435  */
5436 static int
5437 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5438 			    struct ATTO_SAS_NVRAM *n)
5439 {
5440 	int r = -EINVAL;
5441 	union ATTO_SAS_ADDRESS *s1;
5442 	u32 len;
5443 	u8 *pb;
5444 	u8 ckSum;
5445 
5446 	/* validate nvram checksum */
5447 	pb = (u8 *) n;
5448 	ckSum = ATTO_SASNVR_CKSUM_SEED;
5449 	len = sizeof(struct ATTO_SAS_NVRAM);
5450 
5451 	while (len--)
5452 		ckSum = ckSum + pb[len];
5453 
5454 	if (ckSum) {
5455 		ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5456 		return r;
5457 	}
5458 
5459 	s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5460 
5461 	if (n->Signature[0] != 'E'
5462 	|| n->Signature[1] != 'S'
5463 	|| n->Signature[2] != 'A'
5464 	|| n->Signature[3] != 'S')
5465 		ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5466 	else if (n->Version > ATTO_SASNVR_VERSION)
5467 		ioc_info(ioc, "Invalid ATTO NVRAM version");
5468 	else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5469 			|| s1->b[0] != 0x50
5470 			|| s1->b[1] != 0x01
5471 			|| s1->b[2] != 0x08
5472 			|| (s1->b[3] & 0xF0) != 0x60
5473 			|| ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5474 		ioc_err(ioc, "Invalid ATTO SAS address\n");
5475 	} else
5476 		r = 0;
5477 	return r;
5478 }
5479 
5480 /**
5481  * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5482  *
5483  * @ioc : per adapter object
5484  * @sas_addr : return sas address
5485  * Return: 0 for success, non-zero for failure.
5486  */
5487 static int
5488 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5489 {
5490 	Mpi2ManufacturingPage1_t mfg_pg1;
5491 	Mpi2ConfigReply_t mpi_reply;
5492 	struct ATTO_SAS_NVRAM *nvram;
5493 	int r;
5494 	__be64 addr;
5495 
5496 	r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5497 	if (r) {
5498 		ioc_err(ioc, "Failed to read manufacturing page 1\n");
5499 		return r;
5500 	}
5501 
5502 	/* validate nvram */
5503 	nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5504 	r = mpt3sas_atto_validate_nvram(ioc, nvram);
5505 	if (r)
5506 		return r;
5507 
5508 	addr = *((__be64 *) nvram->SasAddr);
5509 	sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5510 	return r;
5511 }
5512 
5513 /**
5514  * mpt3sas_atto_init - perform initializaion for ATTO branded
5515  *					adapter.
5516  * @ioc : per adapter object
5517  *5
5518  * Return: 0 for success, non-zero for failure.
5519  */
5520 static int
5521 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5522 {
5523 	int sz = 0;
5524 	Mpi2BiosPage4_t *bios_pg4 = NULL;
5525 	Mpi2ConfigReply_t mpi_reply;
5526 	int r;
5527 	int ix;
5528 	union ATTO_SAS_ADDRESS sas_addr;
5529 	union ATTO_SAS_ADDRESS temp;
5530 	union ATTO_SAS_ADDRESS bias;
5531 
5532 	r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5533 	if (r)
5534 		return r;
5535 
5536 	/* get header first to get size */
5537 	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5538 	if (r) {
5539 		ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5540 		return r;
5541 	}
5542 
5543 	sz = mpi_reply.Header.PageLength * sizeof(u32);
5544 	bios_pg4 = kzalloc(sz, GFP_KERNEL);
5545 	if (!bios_pg4) {
5546 		ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5547 		return -ENOMEM;
5548 	}
5549 
5550 	/* read bios page 4 */
5551 	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5552 	if (r) {
5553 		ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5554 		goto out;
5555 	}
5556 
5557 	/* Update bios page 4 with the ATTO WWID */
5558 	bias.q = sas_addr.q;
5559 	bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5560 
5561 	for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5562 		temp.q = sas_addr.q;
5563 		temp.b[7] += ix;
5564 		bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5565 		bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5566 	}
5567 	r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5568 
5569 out:
5570 	kfree(bios_pg4);
5571 	return r;
5572 }
5573 
5574 /**
5575  * _base_static_config_pages - static start of day config pages
5576  * @ioc: per adapter object
5577  */
5578 static int
5579 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5580 {
5581 	Mpi2IOUnitPage8_t iounit_pg8;
5582 	Mpi2ConfigReply_t mpi_reply;
5583 	u32 iounit_pg1_flags;
5584 	int tg_flags = 0;
5585 	int rc;
5586 	ioc->nvme_abort_timeout = 30;
5587 
5588 	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5589 	    &ioc->manu_pg0);
5590 	if (rc)
5591 		return rc;
5592 	if (ioc->ir_firmware) {
5593 		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5594 		    &ioc->manu_pg10);
5595 		if (rc)
5596 			return rc;
5597 	}
5598 
5599 	if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5600 		rc = mpt3sas_atto_init(ioc);
5601 		if (rc)
5602 			return rc;
5603 	}
5604 
5605 	/*
5606 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5607 	 * flag unset in NVDATA.
5608 	 */
5609 	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5610 	    &ioc->manu_pg11);
5611 	if (rc)
5612 		return rc;
5613 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5614 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5615 		    ioc->name);
5616 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5617 		ioc->manu_pg11.EEDPTagMode |= 0x1;
5618 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5619 		    &ioc->manu_pg11);
5620 	}
5621 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5622 		ioc->tm_custom_handling = 1;
5623 	else {
5624 		ioc->tm_custom_handling = 0;
5625 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5626 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5627 		else if (ioc->manu_pg11.NVMeAbortTO >
5628 					NVME_TASK_ABORT_MAX_TIMEOUT)
5629 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5630 		else
5631 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5632 	}
5633 	ioc->time_sync_interval =
5634 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5635 	if (ioc->time_sync_interval) {
5636 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5637 			ioc->time_sync_interval =
5638 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5639 		else
5640 			ioc->time_sync_interval =
5641 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5642 		dinitprintk(ioc, ioc_info(ioc,
5643 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5644 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5645 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5646 	} else {
5647 		if (ioc->is_gen35_ioc)
5648 			ioc_warn(ioc,
5649 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5650 	}
5651 	rc = _base_assign_fw_reported_qd(ioc);
5652 	if (rc)
5653 		return rc;
5654 
5655 	/*
5656 	 * ATTO doesn't use bios page 2 and 3 for bios settings.
5657 	 */
5658 	if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5659 		ioc->bios_pg3.BiosVersion = 0;
5660 	else {
5661 		rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5662 		if (rc)
5663 			return rc;
5664 		rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5665 		if (rc)
5666 			return rc;
5667 	}
5668 
5669 	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5670 	if (rc)
5671 		return rc;
5672 	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5673 	if (rc)
5674 		return rc;
5675 	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5676 	if (rc)
5677 		return rc;
5678 	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &iounit_pg8);
5679 	if (rc)
5680 		return rc;
5681 	_base_display_ioc_capabilities(ioc);
5682 
5683 	/*
5684 	 * Enable task_set_full handling in iounit_pg1 when the
5685 	 * facts capabilities indicate that its supported.
5686 	 */
5687 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5688 	if ((ioc->facts.IOCCapabilities &
5689 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5690 		iounit_pg1_flags &=
5691 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5692 	else
5693 		iounit_pg1_flags |=
5694 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5695 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5696 	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5697 	if (rc)
5698 		return rc;
5699 
5700 	if (iounit_pg8.NumSensors)
5701 		ioc->temp_sensors_count = iounit_pg8.NumSensors;
5702 	if (ioc->is_aero_ioc) {
5703 		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5704 		if (rc)
5705 			return rc;
5706 	}
5707 	if (ioc->is_gen35_ioc) {
5708 		if (ioc->is_driver_loading) {
5709 			rc = _base_get_diag_triggers(ioc);
5710 			if (rc)
5711 				return rc;
5712 		} else {
5713 			/*
5714 			 * In case of online HBA FW update operation,
5715 			 * check whether updated FW supports the driver trigger
5716 			 * pages or not.
5717 			 * - If previous FW has not supported driver trigger
5718 			 *   pages and newer FW supports them then update these
5719 			 *   pages with current diag trigger values.
5720 			 * - If previous FW has supported driver trigger pages
5721 			 *   and new FW doesn't support them then disable
5722 			 *   support_trigger_pages flag.
5723 			 */
5724 			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5725 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5726 				_base_update_diag_trigger_pages(ioc);
5727 			else if (ioc->supports_trigger_pages &&
5728 			    tg_flags == -EFAULT)
5729 				ioc->supports_trigger_pages = 0;
5730 		}
5731 	}
5732 	return 0;
5733 }
5734 
5735 /**
5736  * mpt3sas_free_enclosure_list - release memory
5737  * @ioc: per adapter object
5738  *
5739  * Free memory allocated during enclosure add.
5740  */
5741 void
5742 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5743 {
5744 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5745 
5746 	/* Free enclosure list */
5747 	list_for_each_entry_safe(enclosure_dev,
5748 			enclosure_dev_next, &ioc->enclosure_list, list) {
5749 		list_del(&enclosure_dev->list);
5750 		kfree(enclosure_dev);
5751 	}
5752 }
5753 
5754 /**
5755  * _base_release_memory_pools - release memory
5756  * @ioc: per adapter object
5757  *
5758  * Free memory allocated from _base_allocate_memory_pools.
5759  */
5760 static void
5761 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5762 {
5763 	int i = 0;
5764 	int j = 0;
5765 	int dma_alloc_count = 0;
5766 	struct chain_tracker *ct;
5767 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5768 
5769 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5770 
5771 	if (ioc->request) {
5772 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5773 		    ioc->request,  ioc->request_dma);
5774 		dexitprintk(ioc,
5775 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5776 				     ioc->request));
5777 		ioc->request = NULL;
5778 	}
5779 
5780 	if (ioc->sense) {
5781 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5782 		dma_pool_destroy(ioc->sense_dma_pool);
5783 		dexitprintk(ioc,
5784 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5785 				     ioc->sense));
5786 		ioc->sense = NULL;
5787 	}
5788 
5789 	if (ioc->reply) {
5790 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5791 		dma_pool_destroy(ioc->reply_dma_pool);
5792 		dexitprintk(ioc,
5793 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5794 				     ioc->reply));
5795 		ioc->reply = NULL;
5796 	}
5797 
5798 	if (ioc->reply_free) {
5799 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5800 		    ioc->reply_free_dma);
5801 		dma_pool_destroy(ioc->reply_free_dma_pool);
5802 		dexitprintk(ioc,
5803 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5804 				     ioc->reply_free));
5805 		ioc->reply_free = NULL;
5806 	}
5807 
5808 	if (ioc->reply_post) {
5809 		dma_alloc_count = DIV_ROUND_UP(count,
5810 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5811 		for (i = 0; i < count; i++) {
5812 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5813 			    && dma_alloc_count) {
5814 				if (ioc->reply_post[i].reply_post_free) {
5815 					dma_pool_free(
5816 					    ioc->reply_post_free_dma_pool,
5817 					    ioc->reply_post[i].reply_post_free,
5818 					ioc->reply_post[i].reply_post_free_dma);
5819 					dexitprintk(ioc, ioc_info(ioc,
5820 					   "reply_post_free_pool(0x%p): free\n",
5821 					   ioc->reply_post[i].reply_post_free));
5822 					ioc->reply_post[i].reply_post_free =
5823 									NULL;
5824 				}
5825 				--dma_alloc_count;
5826 			}
5827 		}
5828 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5829 		if (ioc->reply_post_free_array &&
5830 			ioc->rdpq_array_enable) {
5831 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5832 			    ioc->reply_post_free_array,
5833 			    ioc->reply_post_free_array_dma);
5834 			ioc->reply_post_free_array = NULL;
5835 		}
5836 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5837 		kfree(ioc->reply_post);
5838 	}
5839 
5840 	if (ioc->pcie_sgl_dma_pool) {
5841 		for (i = 0; i < ioc->scsiio_depth; i++) {
5842 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5843 					ioc->pcie_sg_lookup[i].pcie_sgl,
5844 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5845 			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5846 		}
5847 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5848 	}
5849 	kfree(ioc->pcie_sg_lookup);
5850 	ioc->pcie_sg_lookup = NULL;
5851 
5852 	if (ioc->config_page) {
5853 		dexitprintk(ioc,
5854 			    ioc_info(ioc, "config_page(0x%p): free\n",
5855 				     ioc->config_page));
5856 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5857 		    ioc->config_page, ioc->config_page_dma);
5858 	}
5859 
5860 	kfree(ioc->hpr_lookup);
5861 	ioc->hpr_lookup = NULL;
5862 	kfree(ioc->internal_lookup);
5863 	ioc->internal_lookup = NULL;
5864 	if (ioc->chain_lookup) {
5865 		for (i = 0; i < ioc->scsiio_depth; i++) {
5866 			for (j = ioc->chains_per_prp_buffer;
5867 			    j < ioc->chains_needed_per_io; j++) {
5868 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5869 				if (ct && ct->chain_buffer)
5870 					dma_pool_free(ioc->chain_dma_pool,
5871 						ct->chain_buffer,
5872 						ct->chain_buffer_dma);
5873 			}
5874 			kfree(ioc->chain_lookup[i].chains_per_smid);
5875 		}
5876 		dma_pool_destroy(ioc->chain_dma_pool);
5877 		kfree(ioc->chain_lookup);
5878 		ioc->chain_lookup = NULL;
5879 	}
5880 
5881 	kfree(ioc->io_queue_num);
5882 	ioc->io_queue_num = NULL;
5883 }
5884 
5885 /**
5886  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5887  *	having same upper 32bits in their base memory address.
5888  * @start_address: Base address of a reply queue set
5889  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5890  *
5891  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5892  * memory address, else 0.
5893  */
5894 static int
5895 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5896 {
5897 	dma_addr_t end_address;
5898 
5899 	end_address = start_address + pool_sz - 1;
5900 
5901 	if (upper_32_bits(start_address) == upper_32_bits(end_address))
5902 		return 1;
5903 	else
5904 		return 0;
5905 }
5906 
5907 /**
5908  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5909  * @ioc: Adapter object
5910  *
5911  * Return: 0 for success, non-zero for failure.
5912  **/
5913 static inline int
5914 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5915 {
5916 	int reduce_sz = 64;
5917 
5918 	if ((ioc->hba_queue_depth - reduce_sz) >
5919 	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5920 		ioc->hba_queue_depth -= reduce_sz;
5921 		return 0;
5922 	} else
5923 		return -ENOMEM;
5924 }
5925 
5926 /**
5927  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5928  *			for pcie sgl pools.
5929  * @ioc: Adapter object
5930  * @sz: DMA Pool size
5931  *
5932  * Return: 0 for success, non-zero for failure.
5933  */
5934 
5935 static int
5936 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5937 {
5938 	int i = 0, j = 0;
5939 	struct chain_tracker *ct;
5940 
5941 	ioc->pcie_sgl_dma_pool =
5942 	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5943 	    ioc->page_size, 0);
5944 	if (!ioc->pcie_sgl_dma_pool) {
5945 		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5946 		return -ENOMEM;
5947 	}
5948 
5949 	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5950 	ioc->chains_per_prp_buffer =
5951 	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5952 	for (i = 0; i < ioc->scsiio_depth; i++) {
5953 		ioc->pcie_sg_lookup[i].pcie_sgl =
5954 		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5955 		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5956 		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5957 			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5958 			return -EAGAIN;
5959 		}
5960 
5961 		if (!mpt3sas_check_same_4gb_region(
5962 		    ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5963 			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5964 			    ioc->pcie_sg_lookup[i].pcie_sgl,
5965 			    (unsigned long long)
5966 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5967 			ioc->use_32bit_dma = true;
5968 			return -EAGAIN;
5969 		}
5970 
5971 		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5972 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5973 			ct->chain_buffer =
5974 			    ioc->pcie_sg_lookup[i].pcie_sgl +
5975 			    (j * ioc->chain_segment_sz);
5976 			ct->chain_buffer_dma =
5977 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5978 			    (j * ioc->chain_segment_sz);
5979 		}
5980 	}
5981 	dinitprintk(ioc, ioc_info(ioc,
5982 	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5983 	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5984 	dinitprintk(ioc, ioc_info(ioc,
5985 	    "Number of chains can fit in a PRP page(%d)\n",
5986 	    ioc->chains_per_prp_buffer));
5987 	return 0;
5988 }
5989 
5990 /**
5991  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5992  *			for chain dma pool.
5993  * @ioc: Adapter object
5994  * @sz: DMA Pool size
5995  *
5996  * Return: 0 for success, non-zero for failure.
5997  */
5998 static int
5999 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6000 {
6001 	int i = 0, j = 0;
6002 	struct chain_tracker *ctr;
6003 
6004 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6005 	    ioc->chain_segment_sz, 16, 0);
6006 	if (!ioc->chain_dma_pool)
6007 		return -ENOMEM;
6008 
6009 	for (i = 0; i < ioc->scsiio_depth; i++) {
6010 		for (j = ioc->chains_per_prp_buffer;
6011 		    j < ioc->chains_needed_per_io; j++) {
6012 			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6013 			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6014 			    GFP_KERNEL, &ctr->chain_buffer_dma);
6015 			if (!ctr->chain_buffer)
6016 				return -EAGAIN;
6017 			if (!mpt3sas_check_same_4gb_region(
6018 			    ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6019 				ioc_err(ioc,
6020 				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6021 				    ctr->chain_buffer,
6022 				    (unsigned long long)ctr->chain_buffer_dma);
6023 				ioc->use_32bit_dma = true;
6024 				return -EAGAIN;
6025 			}
6026 		}
6027 	}
6028 	dinitprintk(ioc, ioc_info(ioc,
6029 	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6030 	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6031 	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6032 	    ioc->chain_segment_sz))/1024));
6033 	return 0;
6034 }
6035 
6036 /**
6037  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6038  *			for sense dma pool.
6039  * @ioc: Adapter object
6040  * @sz: DMA Pool size
6041  * Return: 0 for success, non-zero for failure.
6042  */
6043 static int
6044 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6045 {
6046 	ioc->sense_dma_pool =
6047 	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6048 	if (!ioc->sense_dma_pool)
6049 		return -ENOMEM;
6050 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6051 	    GFP_KERNEL, &ioc->sense_dma);
6052 	if (!ioc->sense)
6053 		return -EAGAIN;
6054 	if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6055 		dinitprintk(ioc, pr_err(
6056 		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6057 		    ioc->sense, (unsigned long long) ioc->sense_dma));
6058 		ioc->use_32bit_dma = true;
6059 		return -EAGAIN;
6060 	}
6061 	ioc_info(ioc,
6062 	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6063 	    ioc->sense, (unsigned long long)ioc->sense_dma,
6064 	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6065 	return 0;
6066 }
6067 
6068 /**
6069  * _base_allocate_reply_pool - Allocating DMA'able memory
6070  *			for reply pool.
6071  * @ioc: Adapter object
6072  * @sz: DMA Pool size
6073  * Return: 0 for success, non-zero for failure.
6074  */
6075 static int
6076 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6077 {
6078 	/* reply pool, 4 byte align */
6079 	ioc->reply_dma_pool = dma_pool_create("reply pool",
6080 	    &ioc->pdev->dev, sz, 4, 0);
6081 	if (!ioc->reply_dma_pool)
6082 		return -ENOMEM;
6083 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6084 	    &ioc->reply_dma);
6085 	if (!ioc->reply)
6086 		return -EAGAIN;
6087 	if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6088 		dinitprintk(ioc, pr_err(
6089 		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6090 		    ioc->reply, (unsigned long long) ioc->reply_dma));
6091 		ioc->use_32bit_dma = true;
6092 		return -EAGAIN;
6093 	}
6094 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6095 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6096 	ioc_info(ioc,
6097 	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6098 	    ioc->reply, (unsigned long long)ioc->reply_dma,
6099 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6100 	return 0;
6101 }
6102 
6103 /**
6104  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6105  *			for reply free dma pool.
6106  * @ioc: Adapter object
6107  * @sz: DMA Pool size
6108  * Return: 0 for success, non-zero for failure.
6109  */
6110 static int
6111 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6112 {
6113 	/* reply free queue, 16 byte align */
6114 	ioc->reply_free_dma_pool = dma_pool_create(
6115 	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6116 	if (!ioc->reply_free_dma_pool)
6117 		return -ENOMEM;
6118 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6119 	    GFP_KERNEL, &ioc->reply_free_dma);
6120 	if (!ioc->reply_free)
6121 		return -EAGAIN;
6122 	if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6123 		dinitprintk(ioc,
6124 		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6125 		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6126 		ioc->use_32bit_dma = true;
6127 		return -EAGAIN;
6128 	}
6129 	memset(ioc->reply_free, 0, sz);
6130 	dinitprintk(ioc, ioc_info(ioc,
6131 	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6132 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6133 	dinitprintk(ioc, ioc_info(ioc,
6134 	    "reply_free_dma (0x%llx)\n",
6135 	    (unsigned long long)ioc->reply_free_dma));
6136 	return 0;
6137 }
6138 
6139 /**
6140  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6141  *			for reply post free array.
6142  * @ioc: Adapter object
6143  * @reply_post_free_array_sz: DMA Pool size
6144  * Return: 0 for success, non-zero for failure.
6145  */
6146 
6147 static int
6148 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6149 	u32 reply_post_free_array_sz)
6150 {
6151 	ioc->reply_post_free_array_dma_pool =
6152 	    dma_pool_create("reply_post_free_array pool",
6153 	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6154 	if (!ioc->reply_post_free_array_dma_pool)
6155 		return -ENOMEM;
6156 	ioc->reply_post_free_array =
6157 	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6158 	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
6159 	if (!ioc->reply_post_free_array)
6160 		return -EAGAIN;
6161 	if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6162 	    reply_post_free_array_sz)) {
6163 		dinitprintk(ioc, pr_err(
6164 		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6165 		    ioc->reply_free,
6166 		    (unsigned long long) ioc->reply_free_dma));
6167 		ioc->use_32bit_dma = true;
6168 		return -EAGAIN;
6169 	}
6170 	return 0;
6171 }
6172 /**
6173  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6174  *                     for reply queues.
6175  * @ioc: per adapter object
6176  * @sz: DMA Pool size
6177  * Return: 0 for success, non-zero for failure.
6178  */
6179 static int
6180 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6181 {
6182 	int i = 0;
6183 	u32 dma_alloc_count = 0;
6184 	int reply_post_free_sz = ioc->reply_post_queue_depth *
6185 		sizeof(Mpi2DefaultReplyDescriptor_t);
6186 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6187 
6188 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6189 			GFP_KERNEL);
6190 	if (!ioc->reply_post)
6191 		return -ENOMEM;
6192 	/*
6193 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6194 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6195 	 *  be within 4GB boundary i.e reply queues in a set must have same
6196 	 *  upper 32-bits in their memory address. so here driver is allocating
6197 	 *  the DMA'able memory for reply queues according.
6198 	 *  Driver uses limitation of
6199 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6200 	 */
6201 	dma_alloc_count = DIV_ROUND_UP(count,
6202 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6203 	ioc->reply_post_free_dma_pool =
6204 		dma_pool_create("reply_post_free pool",
6205 		    &ioc->pdev->dev, sz, 16, 0);
6206 	if (!ioc->reply_post_free_dma_pool)
6207 		return -ENOMEM;
6208 	for (i = 0; i < count; i++) {
6209 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6210 			ioc->reply_post[i].reply_post_free =
6211 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6212 				GFP_KERNEL,
6213 				&ioc->reply_post[i].reply_post_free_dma);
6214 			if (!ioc->reply_post[i].reply_post_free)
6215 				return -ENOMEM;
6216 			/*
6217 			 * Each set of RDPQ pool must satisfy 4gb boundary
6218 			 * restriction.
6219 			 * 1) Check if allocated resources for RDPQ pool are in
6220 			 *	the same 4GB range.
6221 			 * 2) If #1 is true, continue with 64 bit DMA.
6222 			 * 3) If #1 is false, return 1. which means free all the
6223 			 * resources and set DMA mask to 32 and allocate.
6224 			 */
6225 			if (!mpt3sas_check_same_4gb_region(
6226 				ioc->reply_post[i].reply_post_free_dma, sz)) {
6227 				dinitprintk(ioc,
6228 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6229 				    "reply_post_free_dma = (0x%llx)\n",
6230 				    ioc->reply_post[i].reply_post_free,
6231 				    (unsigned long long)
6232 				    ioc->reply_post[i].reply_post_free_dma));
6233 				return -EAGAIN;
6234 			}
6235 			dma_alloc_count--;
6236 
6237 		} else {
6238 			ioc->reply_post[i].reply_post_free =
6239 			    (Mpi2ReplyDescriptorsUnion_t *)
6240 			    ((long)ioc->reply_post[i-1].reply_post_free
6241 			    + reply_post_free_sz);
6242 			ioc->reply_post[i].reply_post_free_dma =
6243 			    (dma_addr_t)
6244 			    (ioc->reply_post[i-1].reply_post_free_dma +
6245 			    reply_post_free_sz);
6246 		}
6247 	}
6248 	return 0;
6249 }
6250 
6251 /**
6252  * _base_allocate_memory_pools - allocate start of day memory pools
6253  * @ioc: per adapter object
6254  *
6255  * Return: 0 success, anything else error.
6256  */
6257 static int
6258 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6259 {
6260 	struct mpt3sas_facts *facts;
6261 	u16 max_sge_elements;
6262 	u16 chains_needed_per_io;
6263 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6264 	u32 retry_sz;
6265 	u32 rdpq_sz = 0, sense_sz = 0;
6266 	u16 max_request_credit, nvme_blocks_needed;
6267 	unsigned short sg_tablesize;
6268 	u16 sge_size;
6269 	int i;
6270 	int ret = 0, rc = 0;
6271 
6272 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6273 
6274 
6275 	retry_sz = 0;
6276 	facts = &ioc->facts;
6277 
6278 	/* command line tunables for max sgl entries */
6279 	if (max_sgl_entries != -1)
6280 		sg_tablesize = max_sgl_entries;
6281 	else {
6282 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6283 			sg_tablesize = MPT2SAS_SG_DEPTH;
6284 		else
6285 			sg_tablesize = MPT3SAS_SG_DEPTH;
6286 	}
6287 
6288 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6289 	if (reset_devices)
6290 		sg_tablesize = min_t(unsigned short, sg_tablesize,
6291 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6292 
6293 	if (ioc->is_mcpu_endpoint)
6294 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6295 	else {
6296 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6297 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6298 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6299 			sg_tablesize = min_t(unsigned short, sg_tablesize,
6300 					SG_MAX_SEGMENTS);
6301 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6302 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6303 		}
6304 		ioc->shost->sg_tablesize = sg_tablesize;
6305 	}
6306 
6307 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6308 		(facts->RequestCredit / 4));
6309 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6310 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6311 				INTERNAL_SCSIIO_CMDS_COUNT)) {
6312 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6313 				facts->RequestCredit);
6314 			return -ENOMEM;
6315 		}
6316 		ioc->internal_depth = 10;
6317 	}
6318 
6319 	ioc->hi_priority_depth = ioc->internal_depth - (5);
6320 	/* command line tunables  for max controller queue depth */
6321 	if (max_queue_depth != -1 && max_queue_depth != 0) {
6322 		max_request_credit = min_t(u16, max_queue_depth +
6323 			ioc->internal_depth, facts->RequestCredit);
6324 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6325 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6326 	} else if (reset_devices)
6327 		max_request_credit = min_t(u16, facts->RequestCredit,
6328 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6329 	else
6330 		max_request_credit = min_t(u16, facts->RequestCredit,
6331 		    MAX_HBA_QUEUE_DEPTH);
6332 
6333 	/* Firmware maintains additional facts->HighPriorityCredit number of
6334 	 * credits for HiPriprity Request messages, so hba queue depth will be
6335 	 * sum of max_request_credit and high priority queue depth.
6336 	 */
6337 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6338 
6339 	/* request frame size */
6340 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6341 
6342 	/* reply frame size */
6343 	ioc->reply_sz = facts->ReplyFrameSize * 4;
6344 
6345 	/* chain segment size */
6346 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6347 		if (facts->IOCMaxChainSegmentSize)
6348 			ioc->chain_segment_sz =
6349 					facts->IOCMaxChainSegmentSize *
6350 					MAX_CHAIN_ELEMT_SZ;
6351 		else
6352 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6353 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6354 						    MAX_CHAIN_ELEMT_SZ;
6355 	} else
6356 		ioc->chain_segment_sz = ioc->request_sz;
6357 
6358 	/* calculate the max scatter element size */
6359 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6360 
6361  retry_allocation:
6362 	total_sz = 0;
6363 	/* calculate number of sg elements left over in the 1st frame */
6364 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6365 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6366 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6367 
6368 	/* now do the same for a chain buffer */
6369 	max_sge_elements = ioc->chain_segment_sz - sge_size;
6370 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6371 
6372 	/*
6373 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6374 	 */
6375 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6376 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6377 	    + 1;
6378 	if (chains_needed_per_io > facts->MaxChainDepth) {
6379 		chains_needed_per_io = facts->MaxChainDepth;
6380 		ioc->shost->sg_tablesize = min_t(u16,
6381 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6382 		* chains_needed_per_io), ioc->shost->sg_tablesize);
6383 	}
6384 	ioc->chains_needed_per_io = chains_needed_per_io;
6385 
6386 	/* reply free queue sizing - taking into account for 64 FW events */
6387 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6388 
6389 	/* mCPU manage single counters for simplicity */
6390 	if (ioc->is_mcpu_endpoint)
6391 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6392 	else {
6393 		/* calculate reply descriptor post queue depth */
6394 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6395 			ioc->reply_free_queue_depth +  1;
6396 		/* align the reply post queue on the next 16 count boundary */
6397 		if (ioc->reply_post_queue_depth % 16)
6398 			ioc->reply_post_queue_depth += 16 -
6399 				(ioc->reply_post_queue_depth % 16);
6400 	}
6401 
6402 	if (ioc->reply_post_queue_depth >
6403 	    facts->MaxReplyDescriptorPostQueueDepth) {
6404 		ioc->reply_post_queue_depth =
6405 				facts->MaxReplyDescriptorPostQueueDepth -
6406 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6407 		ioc->hba_queue_depth =
6408 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6409 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6410 	}
6411 
6412 	ioc_info(ioc,
6413 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6414 	    "sge_per_io(%d), chains_per_io(%d)\n",
6415 	    ioc->max_sges_in_main_message,
6416 	    ioc->max_sges_in_chain_message,
6417 	    ioc->shost->sg_tablesize,
6418 	    ioc->chains_needed_per_io);
6419 
6420 	/* reply post queue, 16 byte align */
6421 	reply_post_free_sz = ioc->reply_post_queue_depth *
6422 	    sizeof(Mpi2DefaultReplyDescriptor_t);
6423 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6424 	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6425 	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6426 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6427 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6428 	if (ret == -EAGAIN) {
6429 		/*
6430 		 * Free allocated bad RDPQ memory pools.
6431 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6432 		 */
6433 		_base_release_memory_pools(ioc);
6434 		ioc->use_32bit_dma = true;
6435 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6436 			ioc_err(ioc,
6437 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6438 			return -ENODEV;
6439 		}
6440 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6441 			return -ENOMEM;
6442 	} else if (ret == -ENOMEM)
6443 		return -ENOMEM;
6444 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6445 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6446 	ioc->scsiio_depth = ioc->hba_queue_depth -
6447 	    ioc->hi_priority_depth - ioc->internal_depth;
6448 
6449 	/* set the scsi host can_queue depth
6450 	 * with some internal commands that could be outstanding
6451 	 */
6452 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6453 	dinitprintk(ioc,
6454 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6455 			     ioc->shost->can_queue));
6456 
6457 	/* contiguous pool for request and chains, 16 byte align, one extra "
6458 	 * "frame for smid=0
6459 	 */
6460 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6461 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6462 
6463 	/* hi-priority queue */
6464 	sz += (ioc->hi_priority_depth * ioc->request_sz);
6465 
6466 	/* internal queue */
6467 	sz += (ioc->internal_depth * ioc->request_sz);
6468 
6469 	ioc->request_dma_sz = sz;
6470 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6471 			&ioc->request_dma, GFP_KERNEL);
6472 	if (!ioc->request) {
6473 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6474 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6475 			ioc->request_sz, sz / 1024);
6476 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6477 			goto out;
6478 		retry_sz = 64;
6479 		ioc->hba_queue_depth -= retry_sz;
6480 		_base_release_memory_pools(ioc);
6481 		goto retry_allocation;
6482 	}
6483 
6484 	if (retry_sz)
6485 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6486 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6487 			ioc->request_sz, sz / 1024);
6488 
6489 	/* hi-priority queue */
6490 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6491 	    ioc->request_sz);
6492 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6493 	    ioc->request_sz);
6494 
6495 	/* internal queue */
6496 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6497 	    ioc->request_sz);
6498 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6499 	    ioc->request_sz);
6500 
6501 	ioc_info(ioc,
6502 	    "request pool(0x%p) - dma(0x%llx): "
6503 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6504 	    ioc->request, (unsigned long long) ioc->request_dma,
6505 	    ioc->hba_queue_depth, ioc->request_sz,
6506 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6507 
6508 	total_sz += sz;
6509 
6510 	dinitprintk(ioc,
6511 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6512 			     ioc->request, ioc->scsiio_depth));
6513 
6514 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6515 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6516 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6517 	if (!ioc->chain_lookup) {
6518 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6519 		goto out;
6520 	}
6521 
6522 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6523 	for (i = 0; i < ioc->scsiio_depth; i++) {
6524 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6525 		if (!ioc->chain_lookup[i].chains_per_smid) {
6526 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6527 			goto out;
6528 		}
6529 	}
6530 
6531 	/* initialize hi-priority queue smid's */
6532 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6533 	    sizeof(struct request_tracker), GFP_KERNEL);
6534 	if (!ioc->hpr_lookup) {
6535 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6536 		goto out;
6537 	}
6538 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6539 	dinitprintk(ioc,
6540 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6541 			     ioc->hi_priority,
6542 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6543 
6544 	/* initialize internal queue smid's */
6545 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6546 	    sizeof(struct request_tracker), GFP_KERNEL);
6547 	if (!ioc->internal_lookup) {
6548 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6549 		goto out;
6550 	}
6551 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6552 	dinitprintk(ioc,
6553 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6554 			     ioc->internal,
6555 			     ioc->internal_depth, ioc->internal_smid));
6556 
6557 	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6558 	    sizeof(u16), GFP_KERNEL);
6559 	if (!ioc->io_queue_num)
6560 		goto out;
6561 	/*
6562 	 * The number of NVMe page sized blocks needed is:
6563 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6564 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6565 	 * that is placed in the main message frame.  8 is the size of each PRP
6566 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6567 	 * because of the PRP list pointer entry at the end of a page, so this
6568 	 * is not counted as a PRP entry.  The 1 added page is a round up.
6569 	 *
6570 	 * To avoid allocation failures due to the amount of memory that could
6571 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6572 	 * contiguous, so a new set is allocated for each possible I/O.
6573 	 */
6574 
6575 	ioc->chains_per_prp_buffer = 0;
6576 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6577 		nvme_blocks_needed =
6578 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6579 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6580 		nvme_blocks_needed++;
6581 
6582 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6583 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6584 		if (!ioc->pcie_sg_lookup) {
6585 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6586 			goto out;
6587 		}
6588 		sz = nvme_blocks_needed * ioc->page_size;
6589 		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6590 		if (rc == -ENOMEM)
6591 			return -ENOMEM;
6592 		else if (rc == -EAGAIN)
6593 			goto try_32bit_dma;
6594 		total_sz += sz * ioc->scsiio_depth;
6595 	}
6596 
6597 	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6598 	if (rc == -ENOMEM)
6599 		return -ENOMEM;
6600 	else if (rc == -EAGAIN)
6601 		goto try_32bit_dma;
6602 	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6603 		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6604 	dinitprintk(ioc,
6605 	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6606 	    ioc->chain_depth, ioc->chain_segment_sz,
6607 	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6608 	/* sense buffers, 4 byte align */
6609 	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6610 	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6611 	if (rc  == -ENOMEM)
6612 		return -ENOMEM;
6613 	else if (rc == -EAGAIN)
6614 		goto try_32bit_dma;
6615 	total_sz += sense_sz;
6616 	/* reply pool, 4 byte align */
6617 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6618 	rc = _base_allocate_reply_pool(ioc, sz);
6619 	if (rc == -ENOMEM)
6620 		return -ENOMEM;
6621 	else if (rc == -EAGAIN)
6622 		goto try_32bit_dma;
6623 	total_sz += sz;
6624 
6625 	/* reply free queue, 16 byte align */
6626 	sz = ioc->reply_free_queue_depth * 4;
6627 	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6628 	if (rc  == -ENOMEM)
6629 		return -ENOMEM;
6630 	else if (rc == -EAGAIN)
6631 		goto try_32bit_dma;
6632 	dinitprintk(ioc,
6633 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6634 			     (unsigned long long)ioc->reply_free_dma));
6635 	total_sz += sz;
6636 	if (ioc->rdpq_array_enable) {
6637 		reply_post_free_array_sz = ioc->reply_queue_count *
6638 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6639 		rc = _base_allocate_reply_post_free_array(ioc,
6640 		    reply_post_free_array_sz);
6641 		if (rc == -ENOMEM)
6642 			return -ENOMEM;
6643 		else if (rc == -EAGAIN)
6644 			goto try_32bit_dma;
6645 	}
6646 	ioc->config_page_sz = 512;
6647 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6648 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6649 	if (!ioc->config_page) {
6650 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6651 		goto out;
6652 	}
6653 
6654 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6655 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6656 	    ioc->config_page_sz);
6657 	total_sz += ioc->config_page_sz;
6658 
6659 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6660 		 total_sz / 1024);
6661 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6662 		 ioc->shost->can_queue, facts->RequestCredit);
6663 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6664 		 ioc->shost->sg_tablesize);
6665 	return 0;
6666 
6667 try_32bit_dma:
6668 	_base_release_memory_pools(ioc);
6669 	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6670 		/* Change dma coherent mask to 32 bit and reallocate */
6671 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6672 			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6673 			    pci_name(ioc->pdev));
6674 			return -ENODEV;
6675 		}
6676 	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6677 		return -ENOMEM;
6678 	goto retry_allocation;
6679 
6680  out:
6681 	return -ENOMEM;
6682 }
6683 
6684 /**
6685  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6686  * @ioc: Pointer to MPT_ADAPTER structure
6687  * @cooked: Request raw or cooked IOC state
6688  *
6689  * Return: all IOC Doorbell register bits if cooked==0, else just the
6690  * Doorbell bits in MPI_IOC_STATE_MASK.
6691  */
6692 u32
6693 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6694 {
6695 	u32 s, sc;
6696 
6697 	s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6698 	sc = s & MPI2_IOC_STATE_MASK;
6699 	return cooked ? sc : s;
6700 }
6701 
6702 /**
6703  * _base_wait_on_iocstate - waiting on a particular ioc state
6704  * @ioc: ?
6705  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6706  * @timeout: timeout in second
6707  *
6708  * Return: 0 for success, non-zero for failure.
6709  */
6710 static int
6711 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6712 {
6713 	u32 count, cntdn;
6714 	u32 current_state;
6715 
6716 	count = 0;
6717 	cntdn = 1000 * timeout;
6718 	do {
6719 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6720 		if (current_state == ioc_state)
6721 			return 0;
6722 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6723 			break;
6724 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6725 			break;
6726 
6727 		usleep_range(1000, 1500);
6728 		count++;
6729 	} while (--cntdn);
6730 
6731 	return current_state;
6732 }
6733 
6734 /**
6735  * _base_dump_reg_set -	This function will print hexdump of register set.
6736  * @ioc: per adapter object
6737  *
6738  * Return: nothing.
6739  */
6740 static inline void
6741 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6742 {
6743 	unsigned int i, sz = 256;
6744 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6745 
6746 	ioc_info(ioc, "System Register set:\n");
6747 	for (i = 0; i < (sz / sizeof(u32)); i++)
6748 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6749 }
6750 
6751 /**
6752  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6753  * a write to the doorbell)
6754  * @ioc: per adapter object
6755  * @timeout: timeout in seconds
6756  *
6757  * Return: 0 for success, non-zero for failure.
6758  *
6759  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6760  */
6761 
6762 static int
6763 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6764 {
6765 	u32 cntdn, count;
6766 	u32 int_status;
6767 
6768 	count = 0;
6769 	cntdn = 1000 * timeout;
6770 	do {
6771 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6772 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6773 			dhsprintk(ioc,
6774 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6775 					   __func__, count, timeout));
6776 			return 0;
6777 		}
6778 
6779 		usleep_range(1000, 1500);
6780 		count++;
6781 	} while (--cntdn);
6782 
6783 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6784 		__func__, count, int_status);
6785 	return -EFAULT;
6786 }
6787 
6788 static int
6789 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6790 {
6791 	u32 cntdn, count;
6792 	u32 int_status;
6793 
6794 	count = 0;
6795 	cntdn = 2000 * timeout;
6796 	do {
6797 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6798 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6799 			dhsprintk(ioc,
6800 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6801 					   __func__, count, timeout));
6802 			return 0;
6803 		}
6804 
6805 		udelay(500);
6806 		count++;
6807 	} while (--cntdn);
6808 
6809 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6810 		__func__, count, int_status);
6811 	return -EFAULT;
6812 
6813 }
6814 
6815 /**
6816  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6817  * @ioc: per adapter object
6818  * @timeout: timeout in second
6819  *
6820  * Return: 0 for success, non-zero for failure.
6821  *
6822  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6823  * doorbell.
6824  */
6825 static int
6826 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6827 {
6828 	u32 cntdn, count;
6829 	u32 int_status;
6830 	u32 doorbell;
6831 
6832 	count = 0;
6833 	cntdn = 1000 * timeout;
6834 	do {
6835 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6836 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6837 			dhsprintk(ioc,
6838 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6839 					   __func__, count, timeout));
6840 			return 0;
6841 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6842 			doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6843 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6844 			    MPI2_IOC_STATE_FAULT) {
6845 				mpt3sas_print_fault_code(ioc, doorbell);
6846 				return -EFAULT;
6847 			}
6848 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6849 			    MPI2_IOC_STATE_COREDUMP) {
6850 				mpt3sas_print_coredump_info(ioc, doorbell);
6851 				return -EFAULT;
6852 			}
6853 		} else if (int_status == 0xFFFFFFFF)
6854 			goto out;
6855 
6856 		usleep_range(1000, 1500);
6857 		count++;
6858 	} while (--cntdn);
6859 
6860  out:
6861 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6862 		__func__, count, int_status);
6863 	return -EFAULT;
6864 }
6865 
6866 /**
6867  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6868  * @ioc: per adapter object
6869  * @timeout: timeout in second
6870  *
6871  * Return: 0 for success, non-zero for failure.
6872  */
6873 static int
6874 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6875 {
6876 	u32 cntdn, count;
6877 	u32 doorbell_reg;
6878 
6879 	count = 0;
6880 	cntdn = 1000 * timeout;
6881 	do {
6882 		doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6883 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6884 			dhsprintk(ioc,
6885 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6886 					   __func__, count, timeout));
6887 			return 0;
6888 		}
6889 
6890 		usleep_range(1000, 1500);
6891 		count++;
6892 	} while (--cntdn);
6893 
6894 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6895 		__func__, count, doorbell_reg);
6896 	return -EFAULT;
6897 }
6898 
6899 /**
6900  * _base_send_ioc_reset - send doorbell reset
6901  * @ioc: per adapter object
6902  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6903  * @timeout: timeout in second
6904  *
6905  * Return: 0 for success, non-zero for failure.
6906  */
6907 static int
6908 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6909 {
6910 	u32 ioc_state;
6911 	int r = 0;
6912 	unsigned long flags;
6913 
6914 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6915 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6916 		return -EFAULT;
6917 	}
6918 
6919 	if (!(ioc->facts.IOCCapabilities &
6920 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6921 		return -EFAULT;
6922 
6923 	ioc_info(ioc, "sending message unit reset !!\n");
6924 
6925 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6926 	    &ioc->chip->Doorbell);
6927 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6928 		r = -EFAULT;
6929 		goto out;
6930 	}
6931 
6932 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6933 	if (ioc_state) {
6934 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6935 			__func__, ioc_state);
6936 		r = -EFAULT;
6937 		goto out;
6938 	}
6939  out:
6940 	if (r != 0) {
6941 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6942 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6943 		/*
6944 		 * Wait for IOC state CoreDump to clear only during
6945 		 * HBA initialization & release time.
6946 		 */
6947 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6948 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6949 		    ioc->fault_reset_work_q == NULL)) {
6950 			spin_unlock_irqrestore(
6951 			    &ioc->ioc_reset_in_progress_lock, flags);
6952 			mpt3sas_print_coredump_info(ioc, ioc_state);
6953 			mpt3sas_base_wait_for_coredump_completion(ioc,
6954 			    __func__);
6955 			spin_lock_irqsave(
6956 			    &ioc->ioc_reset_in_progress_lock, flags);
6957 		}
6958 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6959 	}
6960 	ioc_info(ioc, "message unit reset: %s\n",
6961 		 r == 0 ? "SUCCESS" : "FAILED");
6962 	return r;
6963 }
6964 
6965 /**
6966  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6967  * @ioc: per adapter object
6968  * @timeout: timeout in seconds
6969  *
6970  * Return: Waits up to timeout seconds for the IOC to
6971  * become operational. Returns 0 if IOC is present
6972  * and operational; otherwise returns %-EFAULT.
6973  */
6974 
6975 int
6976 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6977 {
6978 	int wait_state_count = 0;
6979 	u32 ioc_state;
6980 
6981 	do {
6982 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6983 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6984 			break;
6985 
6986 		/*
6987 		 * Watchdog thread will be started after IOC Initialization, so
6988 		 * no need to wait here for IOC state to become operational
6989 		 * when IOC Initialization is on. Instead the driver will
6990 		 * return ETIME status, so that calling function can issue
6991 		 * diag reset operation and retry the command.
6992 		 */
6993 		if (ioc->is_driver_loading)
6994 			return -ETIME;
6995 
6996 		ssleep(1);
6997 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6998 				__func__, ++wait_state_count);
6999 	} while (--timeout);
7000 	if (!timeout) {
7001 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7002 		return -EFAULT;
7003 	}
7004 	if (wait_state_count)
7005 		ioc_info(ioc, "ioc is operational\n");
7006 	return 0;
7007 }
7008 
7009 /**
7010  * _base_handshake_req_reply_wait - send request thru doorbell interface
7011  * @ioc: per adapter object
7012  * @request_bytes: request length
7013  * @request: pointer having request payload
7014  * @reply_bytes: reply length
7015  * @reply: pointer to reply payload
7016  * @timeout: timeout in second
7017  *
7018  * Return: 0 for success, non-zero for failure.
7019  */
7020 static int
7021 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7022 	u32 *request, int reply_bytes, u16 *reply, int timeout)
7023 {
7024 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7025 	int i;
7026 	u8 failed;
7027 	__le32 *mfp;
7028 
7029 	/* make sure doorbell is not in use */
7030 	if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7031 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7032 		return -EFAULT;
7033 	}
7034 
7035 	/* clear pending doorbell interrupts from previous state changes */
7036 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7037 	    MPI2_HIS_IOC2SYS_DB_STATUS)
7038 		writel(0, &ioc->chip->HostInterruptStatus);
7039 
7040 	/* send message to ioc */
7041 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7042 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7043 	    &ioc->chip->Doorbell);
7044 
7045 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
7046 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7047 			__LINE__);
7048 		return -EFAULT;
7049 	}
7050 	writel(0, &ioc->chip->HostInterruptStatus);
7051 
7052 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7053 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7054 			__LINE__);
7055 		return -EFAULT;
7056 	}
7057 
7058 	/* send message 32-bits at a time */
7059 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7060 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7061 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
7062 			failed = 1;
7063 	}
7064 
7065 	if (failed) {
7066 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7067 			__LINE__);
7068 		return -EFAULT;
7069 	}
7070 
7071 	/* now wait for the reply */
7072 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7073 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7074 			__LINE__);
7075 		return -EFAULT;
7076 	}
7077 
7078 	/* read the first two 16-bits, it gives the total length of the reply */
7079 	reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7080 	    & MPI2_DOORBELL_DATA_MASK);
7081 	writel(0, &ioc->chip->HostInterruptStatus);
7082 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
7083 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7084 			__LINE__);
7085 		return -EFAULT;
7086 	}
7087 	reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7088 	    & MPI2_DOORBELL_DATA_MASK);
7089 	writel(0, &ioc->chip->HostInterruptStatus);
7090 
7091 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7092 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
7093 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7094 				__LINE__);
7095 			return -EFAULT;
7096 		}
7097 		if (i >=  reply_bytes/2) /* overflow case */
7098 			ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7099 		else
7100 			reply[i] = le16_to_cpu(
7101 			    ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7102 			    & MPI2_DOORBELL_DATA_MASK);
7103 		writel(0, &ioc->chip->HostInterruptStatus);
7104 	}
7105 
7106 	_base_wait_for_doorbell_int(ioc, 5);
7107 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7108 		dhsprintk(ioc,
7109 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
7110 				   __LINE__));
7111 	}
7112 	writel(0, &ioc->chip->HostInterruptStatus);
7113 
7114 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7115 		mfp = (__le32 *)reply;
7116 		pr_info("\toffset:data\n");
7117 		for (i = 0; i < reply_bytes/4; i++)
7118 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7119 			    le32_to_cpu(mfp[i]));
7120 	}
7121 	return 0;
7122 }
7123 
7124 /**
7125  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7126  * @ioc: per adapter object
7127  * @mpi_reply: the reply payload from FW
7128  * @mpi_request: the request payload sent to FW
7129  *
7130  * The SAS IO Unit Control Request message allows the host to perform low-level
7131  * operations, such as resets on the PHYs of the IO Unit, also allows the host
7132  * to obtain the IOC assigned device handles for a device if it has other
7133  * identifying information about the device, in addition allows the host to
7134  * remove IOC resources associated with the device.
7135  *
7136  * Return: 0 for success, non-zero for failure.
7137  */
7138 int
7139 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7140 	Mpi2SasIoUnitControlReply_t *mpi_reply,
7141 	Mpi2SasIoUnitControlRequest_t *mpi_request)
7142 {
7143 	u16 smid;
7144 	u8 issue_reset = 0;
7145 	int rc;
7146 	void *request;
7147 
7148 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7149 
7150 	mutex_lock(&ioc->base_cmds.mutex);
7151 
7152 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7153 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7154 		rc = -EAGAIN;
7155 		goto out;
7156 	}
7157 
7158 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7159 	if (rc)
7160 		goto out;
7161 
7162 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7163 	if (!smid) {
7164 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7165 		rc = -EAGAIN;
7166 		goto out;
7167 	}
7168 
7169 	rc = 0;
7170 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7171 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7172 	ioc->base_cmds.smid = smid;
7173 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7174 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7175 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7176 		ioc->ioc_link_reset_in_progress = 1;
7177 	init_completion(&ioc->base_cmds.done);
7178 	ioc->put_smid_default(ioc, smid);
7179 	wait_for_completion_timeout(&ioc->base_cmds.done,
7180 	    msecs_to_jiffies(10000));
7181 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7182 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7183 	    ioc->ioc_link_reset_in_progress)
7184 		ioc->ioc_link_reset_in_progress = 0;
7185 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7186 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7187 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7188 		    issue_reset);
7189 		goto issue_host_reset;
7190 	}
7191 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7192 		memcpy(mpi_reply, ioc->base_cmds.reply,
7193 		    sizeof(Mpi2SasIoUnitControlReply_t));
7194 	else
7195 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7196 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7197 	goto out;
7198 
7199  issue_host_reset:
7200 	if (issue_reset)
7201 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7202 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7203 	rc = -EFAULT;
7204  out:
7205 	mutex_unlock(&ioc->base_cmds.mutex);
7206 	return rc;
7207 }
7208 
7209 /**
7210  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7211  * @ioc: per adapter object
7212  * @mpi_reply: the reply payload from FW
7213  * @mpi_request: the request payload sent to FW
7214  *
7215  * The SCSI Enclosure Processor request message causes the IOC to
7216  * communicate with SES devices to control LED status signals.
7217  *
7218  * Return: 0 for success, non-zero for failure.
7219  */
7220 int
7221 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7222 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7223 {
7224 	u16 smid;
7225 	u8 issue_reset = 0;
7226 	int rc;
7227 	void *request;
7228 
7229 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7230 
7231 	mutex_lock(&ioc->base_cmds.mutex);
7232 
7233 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7234 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7235 		rc = -EAGAIN;
7236 		goto out;
7237 	}
7238 
7239 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7240 	if (rc)
7241 		goto out;
7242 
7243 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7244 	if (!smid) {
7245 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7246 		rc = -EAGAIN;
7247 		goto out;
7248 	}
7249 
7250 	rc = 0;
7251 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7252 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7253 	ioc->base_cmds.smid = smid;
7254 	memset(request, 0, ioc->request_sz);
7255 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7256 	init_completion(&ioc->base_cmds.done);
7257 	ioc->put_smid_default(ioc, smid);
7258 	wait_for_completion_timeout(&ioc->base_cmds.done,
7259 	    msecs_to_jiffies(10000));
7260 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7261 		mpt3sas_check_cmd_timeout(ioc,
7262 		    ioc->base_cmds.status, mpi_request,
7263 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7264 		goto issue_host_reset;
7265 	}
7266 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7267 		memcpy(mpi_reply, ioc->base_cmds.reply,
7268 		    sizeof(Mpi2SepReply_t));
7269 	else
7270 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7271 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7272 	goto out;
7273 
7274  issue_host_reset:
7275 	if (issue_reset)
7276 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7277 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7278 	rc = -EFAULT;
7279  out:
7280 	mutex_unlock(&ioc->base_cmds.mutex);
7281 	return rc;
7282 }
7283 
7284 /**
7285  * _base_get_port_facts - obtain port facts reply and save in ioc
7286  * @ioc: per adapter object
7287  * @port: ?
7288  *
7289  * Return: 0 for success, non-zero for failure.
7290  */
7291 static int
7292 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7293 {
7294 	Mpi2PortFactsRequest_t mpi_request;
7295 	Mpi2PortFactsReply_t mpi_reply;
7296 	struct mpt3sas_port_facts *pfacts;
7297 	int mpi_reply_sz, mpi_request_sz, r;
7298 
7299 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7300 
7301 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7302 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7303 	memset(&mpi_request, 0, mpi_request_sz);
7304 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7305 	mpi_request.PortNumber = port;
7306 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7307 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7308 
7309 	if (r != 0) {
7310 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7311 		return r;
7312 	}
7313 
7314 	pfacts = &ioc->pfacts[port];
7315 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7316 	pfacts->PortNumber = mpi_reply.PortNumber;
7317 	pfacts->VP_ID = mpi_reply.VP_ID;
7318 	pfacts->VF_ID = mpi_reply.VF_ID;
7319 	pfacts->MaxPostedCmdBuffers =
7320 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7321 
7322 	return 0;
7323 }
7324 
7325 /**
7326  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7327  * @ioc: per adapter object
7328  * @timeout:
7329  *
7330  * Return: 0 for success, non-zero for failure.
7331  */
7332 static int
7333 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7334 {
7335 	u32 ioc_state;
7336 	int rc;
7337 
7338 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7339 
7340 	if (ioc->pci_error_recovery) {
7341 		dfailprintk(ioc,
7342 			    ioc_info(ioc, "%s: host in pci error recovery\n",
7343 				     __func__));
7344 		return -EFAULT;
7345 	}
7346 
7347 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7348 	dhsprintk(ioc,
7349 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7350 			   __func__, ioc_state));
7351 
7352 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7353 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7354 		return 0;
7355 
7356 	if (ioc_state & MPI2_DOORBELL_USED) {
7357 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7358 		goto issue_diag_reset;
7359 	}
7360 
7361 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7362 		mpt3sas_print_fault_code(ioc, ioc_state &
7363 		    MPI2_DOORBELL_DATA_MASK);
7364 		goto issue_diag_reset;
7365 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7366 	    MPI2_IOC_STATE_COREDUMP) {
7367 		ioc_info(ioc,
7368 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7369 		    __func__, ioc_state);
7370 		return -EFAULT;
7371 	}
7372 
7373 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7374 	if (ioc_state) {
7375 		dfailprintk(ioc,
7376 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7377 				     __func__, ioc_state));
7378 		return -EFAULT;
7379 	}
7380 
7381 	return 0;
7382 
7383 issue_diag_reset:
7384 	rc = _base_diag_reset(ioc);
7385 	return rc;
7386 }
7387 
7388 /**
7389  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7390  * @ioc: per adapter object
7391  *
7392  * Return: 0 for success, non-zero for failure.
7393  */
7394 static int
7395 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7396 {
7397 	Mpi2IOCFactsRequest_t mpi_request;
7398 	Mpi2IOCFactsReply_t mpi_reply;
7399 	struct mpt3sas_facts *facts;
7400 	int mpi_reply_sz, mpi_request_sz, r;
7401 
7402 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7403 
7404 	r = _base_wait_for_iocstate(ioc, 10);
7405 	if (r) {
7406 		dfailprintk(ioc,
7407 			    ioc_info(ioc, "%s: failed getting to correct state\n",
7408 				     __func__));
7409 		return r;
7410 	}
7411 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7412 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7413 	memset(&mpi_request, 0, mpi_request_sz);
7414 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7415 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7416 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7417 
7418 	if (r != 0) {
7419 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7420 		return r;
7421 	}
7422 
7423 	facts = &ioc->facts;
7424 	memset(facts, 0, sizeof(struct mpt3sas_facts));
7425 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7426 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7427 	facts->VP_ID = mpi_reply.VP_ID;
7428 	facts->VF_ID = mpi_reply.VF_ID;
7429 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7430 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7431 	facts->WhoInit = mpi_reply.WhoInit;
7432 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7433 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7434 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7435 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7436 		ioc->combined_reply_queue = 0;
7437 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7438 	facts->MaxReplyDescriptorPostQueueDepth =
7439 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7440 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7441 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7442 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7443 		ioc->ir_firmware = 1;
7444 	if ((facts->IOCCapabilities &
7445 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7446 		ioc->rdpq_array_capable = 1;
7447 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7448 	    && ioc->is_aero_ioc)
7449 		ioc->atomic_desc_capable = 1;
7450 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7451 	facts->IOCRequestFrameSize =
7452 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7453 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7454 		facts->IOCMaxChainSegmentSize =
7455 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7456 	}
7457 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7458 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7459 	ioc->shost->max_id = -1;
7460 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7461 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7462 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7463 	facts->HighPriorityCredit =
7464 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7465 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7466 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7467 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7468 
7469 	/*
7470 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7471 	 */
7472 	ioc->page_size = 1 << facts->CurrentHostPageSize;
7473 	if (ioc->page_size == 1) {
7474 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7475 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7476 	}
7477 	dinitprintk(ioc,
7478 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7479 			     facts->CurrentHostPageSize));
7480 
7481 	dinitprintk(ioc,
7482 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7483 			     facts->RequestCredit, facts->MaxChainDepth));
7484 	dinitprintk(ioc,
7485 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7486 			     facts->IOCRequestFrameSize * 4,
7487 			     facts->ReplyFrameSize * 4));
7488 	return 0;
7489 }
7490 
7491 /**
7492  * _base_send_ioc_init - send ioc_init to firmware
7493  * @ioc: per adapter object
7494  *
7495  * Return: 0 for success, non-zero for failure.
7496  */
7497 static int
7498 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7499 {
7500 	Mpi2IOCInitRequest_t mpi_request;
7501 	Mpi2IOCInitReply_t mpi_reply;
7502 	int i, r = 0;
7503 	ktime_t current_time;
7504 	u16 ioc_status;
7505 	u32 reply_post_free_array_sz = 0;
7506 
7507 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7508 
7509 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7510 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7511 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7512 	mpi_request.VF_ID = 0; /* TODO */
7513 	mpi_request.VP_ID = 0;
7514 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7515 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7516 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7517 
7518 	if (_base_is_controller_msix_enabled(ioc))
7519 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7520 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7521 	mpi_request.ReplyDescriptorPostQueueDepth =
7522 	    cpu_to_le16(ioc->reply_post_queue_depth);
7523 	mpi_request.ReplyFreeQueueDepth =
7524 	    cpu_to_le16(ioc->reply_free_queue_depth);
7525 
7526 	mpi_request.SenseBufferAddressHigh =
7527 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7528 	mpi_request.SystemReplyAddressHigh =
7529 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7530 	mpi_request.SystemRequestFrameBaseAddress =
7531 	    cpu_to_le64((u64)ioc->request_dma);
7532 	mpi_request.ReplyFreeQueueAddress =
7533 	    cpu_to_le64((u64)ioc->reply_free_dma);
7534 
7535 	if (ioc->rdpq_array_enable) {
7536 		reply_post_free_array_sz = ioc->reply_queue_count *
7537 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7538 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7539 		for (i = 0; i < ioc->reply_queue_count; i++)
7540 			ioc->reply_post_free_array[i].RDPQBaseAddress =
7541 			    cpu_to_le64(
7542 				(u64)ioc->reply_post[i].reply_post_free_dma);
7543 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7544 		mpi_request.ReplyDescriptorPostQueueAddress =
7545 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7546 	} else {
7547 		mpi_request.ReplyDescriptorPostQueueAddress =
7548 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7549 	}
7550 
7551 	/*
7552 	 * Set the flag to enable CoreDump state feature in IOC firmware.
7553 	 */
7554 	mpi_request.ConfigurationFlags |=
7555 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7556 
7557 	/* This time stamp specifies number of milliseconds
7558 	 * since epoch ~ midnight January 1, 1970.
7559 	 */
7560 	current_time = ktime_get_real();
7561 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7562 
7563 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7564 		__le32 *mfp;
7565 		int i;
7566 
7567 		mfp = (__le32 *)&mpi_request;
7568 		ioc_info(ioc, "\toffset:data\n");
7569 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7570 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7571 			    le32_to_cpu(mfp[i]));
7572 	}
7573 
7574 	r = _base_handshake_req_reply_wait(ioc,
7575 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7576 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7577 
7578 	if (r != 0) {
7579 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7580 		return r;
7581 	}
7582 
7583 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7584 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7585 	    mpi_reply.IOCLogInfo) {
7586 		ioc_err(ioc, "%s: failed\n", __func__);
7587 		r = -EIO;
7588 	}
7589 
7590 	/* Reset TimeSync Counter*/
7591 	ioc->timestamp_update_count = 0;
7592 	return r;
7593 }
7594 
7595 /**
7596  * mpt3sas_port_enable_done - command completion routine for port enable
7597  * @ioc: per adapter object
7598  * @smid: system request message index
7599  * @msix_index: MSIX table index supplied by the OS
7600  * @reply: reply message frame(lower 32bit addr)
7601  *
7602  * Return: 1 meaning mf should be freed from _base_interrupt
7603  *          0 means the mf is freed from this function.
7604  */
7605 u8
7606 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7607 	u32 reply)
7608 {
7609 	MPI2DefaultReply_t *mpi_reply;
7610 	u16 ioc_status;
7611 
7612 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7613 		return 1;
7614 
7615 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7616 	if (!mpi_reply)
7617 		return 1;
7618 
7619 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7620 		return 1;
7621 
7622 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7623 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7624 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7625 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7626 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7627 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7628 		ioc->port_enable_failed = 1;
7629 
7630 	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7631 		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7632 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7633 			mpt3sas_port_enable_complete(ioc);
7634 			return 1;
7635 		} else {
7636 			ioc->start_scan_failed = ioc_status;
7637 			ioc->start_scan = 0;
7638 			return 1;
7639 		}
7640 	}
7641 	complete(&ioc->port_enable_cmds.done);
7642 	return 1;
7643 }
7644 
7645 /**
7646  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7647  * @ioc: per adapter object
7648  *
7649  * Return: 0 for success, non-zero for failure.
7650  */
7651 static int
7652 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7653 {
7654 	Mpi2PortEnableRequest_t *mpi_request;
7655 	Mpi2PortEnableReply_t *mpi_reply;
7656 	int r = 0;
7657 	u16 smid;
7658 	u16 ioc_status;
7659 
7660 	ioc_info(ioc, "sending port enable !!\n");
7661 
7662 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7663 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7664 		return -EAGAIN;
7665 	}
7666 
7667 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7668 	if (!smid) {
7669 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7670 		return -EAGAIN;
7671 	}
7672 
7673 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7674 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7675 	ioc->port_enable_cmds.smid = smid;
7676 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7677 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7678 
7679 	init_completion(&ioc->port_enable_cmds.done);
7680 	ioc->put_smid_default(ioc, smid);
7681 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7682 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7683 		ioc_err(ioc, "%s: timeout\n", __func__);
7684 		_debug_dump_mf(mpi_request,
7685 		    sizeof(Mpi2PortEnableRequest_t)/4);
7686 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7687 			r = -EFAULT;
7688 		else
7689 			r = -ETIME;
7690 		goto out;
7691 	}
7692 
7693 	mpi_reply = ioc->port_enable_cmds.reply;
7694 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7695 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7696 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7697 			__func__, ioc_status);
7698 		r = -EFAULT;
7699 		goto out;
7700 	}
7701 
7702  out:
7703 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7704 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7705 	return r;
7706 }
7707 
7708 /**
7709  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7710  * @ioc: per adapter object
7711  *
7712  * Return: 0 for success, non-zero for failure.
7713  */
7714 int
7715 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7716 {
7717 	Mpi2PortEnableRequest_t *mpi_request;
7718 	u16 smid;
7719 
7720 	ioc_info(ioc, "sending port enable !!\n");
7721 
7722 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7723 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7724 		return -EAGAIN;
7725 	}
7726 
7727 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7728 	if (!smid) {
7729 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7730 		return -EAGAIN;
7731 	}
7732 	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7733 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7734 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7735 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7736 	ioc->port_enable_cmds.smid = smid;
7737 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7738 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7739 
7740 	ioc->put_smid_default(ioc, smid);
7741 	return 0;
7742 }
7743 
7744 /**
7745  * _base_determine_wait_on_discovery - desposition
7746  * @ioc: per adapter object
7747  *
7748  * Decide whether to wait on discovery to complete. Used to either
7749  * locate boot device, or report volumes ahead of physical devices.
7750  *
7751  * Return: 1 for wait, 0 for don't wait.
7752  */
7753 static int
7754 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7755 {
7756 	/* We wait for discovery to complete if IR firmware is loaded.
7757 	 * The sas topology events arrive before PD events, so we need time to
7758 	 * turn on the bit in ioc->pd_handles to indicate PD
7759 	 * Also, it maybe required to report Volumes ahead of physical
7760 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7761 	 */
7762 	if (ioc->ir_firmware)
7763 		return 1;
7764 
7765 	/* if no Bios, then we don't need to wait */
7766 	if (!ioc->bios_pg3.BiosVersion)
7767 		return 0;
7768 
7769 	/* Bios is present, then we drop down here.
7770 	 *
7771 	 * If there any entries in the Bios Page 2, then we wait
7772 	 * for discovery to complete.
7773 	 */
7774 
7775 	/* Current Boot Device */
7776 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7777 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7778 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7779 	/* Request Boot Device */
7780 	   (ioc->bios_pg2.ReqBootDeviceForm &
7781 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7782 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7783 	/* Alternate Request Boot Device */
7784 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7785 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7786 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7787 		return 0;
7788 
7789 	return 1;
7790 }
7791 
7792 /**
7793  * _base_unmask_events - turn on notification for this event
7794  * @ioc: per adapter object
7795  * @event: firmware event
7796  *
7797  * The mask is stored in ioc->event_masks.
7798  */
7799 static void
7800 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7801 {
7802 	u32 desired_event;
7803 
7804 	if (event >= 128)
7805 		return;
7806 
7807 	desired_event = (1 << (event % 32));
7808 
7809 	if (event < 32)
7810 		ioc->event_masks[0] &= ~desired_event;
7811 	else if (event < 64)
7812 		ioc->event_masks[1] &= ~desired_event;
7813 	else if (event < 96)
7814 		ioc->event_masks[2] &= ~desired_event;
7815 	else if (event < 128)
7816 		ioc->event_masks[3] &= ~desired_event;
7817 }
7818 
7819 /**
7820  * _base_event_notification - send event notification
7821  * @ioc: per adapter object
7822  *
7823  * Return: 0 for success, non-zero for failure.
7824  */
7825 static int
7826 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7827 {
7828 	Mpi2EventNotificationRequest_t *mpi_request;
7829 	u16 smid;
7830 	int r = 0;
7831 	int i, issue_diag_reset = 0;
7832 
7833 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7834 
7835 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7836 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7837 		return -EAGAIN;
7838 	}
7839 
7840 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7841 	if (!smid) {
7842 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7843 		return -EAGAIN;
7844 	}
7845 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7846 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7847 	ioc->base_cmds.smid = smid;
7848 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7849 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7850 	mpi_request->VF_ID = 0; /* TODO */
7851 	mpi_request->VP_ID = 0;
7852 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7853 		mpi_request->EventMasks[i] =
7854 		    cpu_to_le32(ioc->event_masks[i]);
7855 	init_completion(&ioc->base_cmds.done);
7856 	ioc->put_smid_default(ioc, smid);
7857 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7858 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7859 		ioc_err(ioc, "%s: timeout\n", __func__);
7860 		_debug_dump_mf(mpi_request,
7861 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7862 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7863 			r = -EFAULT;
7864 		else
7865 			issue_diag_reset = 1;
7866 
7867 	} else
7868 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7869 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7870 
7871 	if (issue_diag_reset) {
7872 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7873 			return -EFAULT;
7874 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7875 			return -EFAULT;
7876 		r = -EAGAIN;
7877 	}
7878 	return r;
7879 }
7880 
7881 /**
7882  * mpt3sas_base_validate_event_type - validating event types
7883  * @ioc: per adapter object
7884  * @event_type: firmware event
7885  *
7886  * This will turn on firmware event notification when application
7887  * ask for that event. We don't mask events that are already enabled.
7888  */
7889 void
7890 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7891 {
7892 	int i, j;
7893 	u32 event_mask, desired_event;
7894 	u8 send_update_to_fw;
7895 
7896 	for (i = 0, send_update_to_fw = 0; i <
7897 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7898 		event_mask = ~event_type[i];
7899 		desired_event = 1;
7900 		for (j = 0; j < 32; j++) {
7901 			if (!(event_mask & desired_event) &&
7902 			    (ioc->event_masks[i] & desired_event)) {
7903 				ioc->event_masks[i] &= ~desired_event;
7904 				send_update_to_fw = 1;
7905 			}
7906 			desired_event = (desired_event << 1);
7907 		}
7908 	}
7909 
7910 	if (!send_update_to_fw)
7911 		return;
7912 
7913 	mutex_lock(&ioc->base_cmds.mutex);
7914 	_base_event_notification(ioc);
7915 	mutex_unlock(&ioc->base_cmds.mutex);
7916 }
7917 
7918 /**
7919 * mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes
7920 * @ioc: per adapter object
7921 * @host_diagnostic: host diagnostic register content
7922 *
7923 * Return: 0 for success, non-zero for failure.
7924 */
7925 
7926 int
7927 mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc,
7928 	u32 *host_diagnostic)
7929 {
7930 
7931 	u32 count;
7932 	*host_diagnostic = 0;
7933 	count = 0;
7934 
7935 	do {
7936 		/* Write magic sequence to WriteSequence register
7937 		 * Loop until in diagnostic mode
7938 		 */
7939 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7940 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7941 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7942 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7943 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7944 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7945 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7946 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7947 
7948 		/* wait 100 msec */
7949 		msleep(100);
7950 
7951 		if (count++ > 20) {
7952 			ioc_info(ioc,
7953 				    "Stop writing magic sequence after 20 retries\n");
7954 			_base_dump_reg_set(ioc);
7955 			return -EFAULT;
7956 		}
7957 
7958 		*host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7959 		drsprintk(ioc,
7960 			     ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7961 				     count, *host_diagnostic));
7962 
7963 	} while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7964 	return 0;
7965 }
7966 
7967 /**
7968  * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes
7969  * @ioc: per adapter object
7970  */
7971 
7972 void
7973 mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc)
7974 {
7975 	drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n"));
7976 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7977 }
7978 
7979 /**
7980  * _base_diag_reset - the "big hammer" start of day reset
7981  * @ioc: per adapter object
7982  *
7983  * Return: 0 for success, non-zero for failure.
7984  */
7985 static int
7986 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7987 {
7988 	u32 host_diagnostic;
7989 	u32 ioc_state;
7990 	u32 count;
7991 	u32 hcb_size;
7992 
7993 	ioc_info(ioc, "sending diag reset !!\n");
7994 
7995 	pci_cfg_access_lock(ioc->pdev);
7996 
7997 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7998 
7999 	mutex_lock(&ioc->hostdiag_unlock_mutex);
8000 	if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, &host_diagnostic))
8001 		goto out;
8002 
8003 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
8004 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
8005 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
8006 	     &ioc->chip->HostDiagnostic);
8007 
8008 	/* This delay allows the chip PCIe hardware time to finish reset tasks */
8009 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
8010 
8011 	/* Approximately 300 second max wait */
8012 	for (count = 0; count < (300000000 /
8013 	    MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
8014 
8015 		host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
8016 
8017 		if (host_diagnostic == 0xFFFFFFFF) {
8018 			ioc_info(ioc,
8019 			    "Invalid host diagnostic register value\n");
8020 			_base_dump_reg_set(ioc);
8021 			goto out;
8022 		}
8023 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
8024 			break;
8025 
8026 		/* Wait to pass the second read delay window */
8027 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000);
8028 	}
8029 
8030 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8031 
8032 		drsprintk(ioc,
8033 			ioc_info(ioc, "restart the adapter assuming the\n"
8034 					"HCB Address points to good F/W\n"));
8035 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8036 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8037 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8038 
8039 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8040 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8041 		    &ioc->chip->HCBSize);
8042 	}
8043 
8044 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8045 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8046 	    &ioc->chip->HostDiagnostic);
8047 
8048 	mpt3sas_base_lock_host_diagnostic(ioc);
8049 	mutex_unlock(&ioc->hostdiag_unlock_mutex);
8050 
8051 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8052 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8053 	if (ioc_state) {
8054 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8055 			__func__, ioc_state);
8056 		_base_dump_reg_set(ioc);
8057 		goto out;
8058 	}
8059 
8060 	pci_cfg_access_unlock(ioc->pdev);
8061 	ioc_info(ioc, "diag reset: SUCCESS\n");
8062 	return 0;
8063 
8064  out:
8065 	pci_cfg_access_unlock(ioc->pdev);
8066 	ioc_err(ioc, "diag reset: FAILED\n");
8067 	mutex_unlock(&ioc->hostdiag_unlock_mutex);
8068 	return -EFAULT;
8069 }
8070 
8071 /**
8072  * mpt3sas_base_make_ioc_ready - put controller in READY state
8073  * @ioc: per adapter object
8074  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8075  *
8076  * Return: 0 for success, non-zero for failure.
8077  */
8078 int
8079 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8080 {
8081 	u32 ioc_state;
8082 	int rc;
8083 	int count;
8084 
8085 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8086 
8087 	if (ioc->pci_error_recovery)
8088 		return 0;
8089 
8090 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8091 	dhsprintk(ioc,
8092 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8093 			   __func__, ioc_state));
8094 
8095 	/* if in RESET state, it should move to READY state shortly */
8096 	count = 0;
8097 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8098 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8099 		    MPI2_IOC_STATE_READY) {
8100 			if (count++ == 10) {
8101 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8102 					__func__, ioc_state);
8103 				return -EFAULT;
8104 			}
8105 			ssleep(1);
8106 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8107 		}
8108 	}
8109 
8110 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8111 		return 0;
8112 
8113 	if (ioc_state & MPI2_DOORBELL_USED) {
8114 		ioc_info(ioc, "unexpected doorbell active!\n");
8115 		goto issue_diag_reset;
8116 	}
8117 
8118 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8119 		mpt3sas_print_fault_code(ioc, ioc_state &
8120 		    MPI2_DOORBELL_DATA_MASK);
8121 		goto issue_diag_reset;
8122 	}
8123 
8124 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8125 		/*
8126 		 * if host reset is invoked while watch dog thread is waiting
8127 		 * for IOC state to be changed to Fault state then driver has
8128 		 * to wait here for CoreDump state to clear otherwise reset
8129 		 * will be issued to the FW and FW move the IOC state to
8130 		 * reset state without copying the FW logs to coredump region.
8131 		 */
8132 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8133 			mpt3sas_print_coredump_info(ioc, ioc_state &
8134 			    MPI2_DOORBELL_DATA_MASK);
8135 			mpt3sas_base_wait_for_coredump_completion(ioc,
8136 			    __func__);
8137 		}
8138 		goto issue_diag_reset;
8139 	}
8140 
8141 	if (type == FORCE_BIG_HAMMER)
8142 		goto issue_diag_reset;
8143 
8144 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8145 		if (!(_base_send_ioc_reset(ioc,
8146 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8147 			return 0;
8148 	}
8149 
8150  issue_diag_reset:
8151 	rc = _base_diag_reset(ioc);
8152 	return rc;
8153 }
8154 
8155 /**
8156  * _base_make_ioc_operational - put controller in OPERATIONAL state
8157  * @ioc: per adapter object
8158  *
8159  * Return: 0 for success, non-zero for failure.
8160  */
8161 static int
8162 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8163 {
8164 	int r, i, index, rc;
8165 	unsigned long	flags;
8166 	u32 reply_address;
8167 	u16 smid;
8168 	struct _tr_list *delayed_tr, *delayed_tr_next;
8169 	struct _sc_list *delayed_sc, *delayed_sc_next;
8170 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8171 	u8 hide_flag;
8172 	struct adapter_reply_queue *reply_q;
8173 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8174 
8175 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8176 
8177 	/* clean the delayed target reset list */
8178 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8179 	    &ioc->delayed_tr_list, list) {
8180 		list_del(&delayed_tr->list);
8181 		kfree(delayed_tr);
8182 	}
8183 
8184 
8185 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8186 	    &ioc->delayed_tr_volume_list, list) {
8187 		list_del(&delayed_tr->list);
8188 		kfree(delayed_tr);
8189 	}
8190 
8191 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8192 	    &ioc->delayed_sc_list, list) {
8193 		list_del(&delayed_sc->list);
8194 		kfree(delayed_sc);
8195 	}
8196 
8197 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8198 	    &ioc->delayed_event_ack_list, list) {
8199 		list_del(&delayed_event_ack->list);
8200 		kfree(delayed_event_ack);
8201 	}
8202 
8203 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8204 
8205 	/* hi-priority queue */
8206 	INIT_LIST_HEAD(&ioc->hpr_free_list);
8207 	smid = ioc->hi_priority_smid;
8208 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8209 		ioc->hpr_lookup[i].cb_idx = 0xFF;
8210 		ioc->hpr_lookup[i].smid = smid;
8211 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8212 		    &ioc->hpr_free_list);
8213 	}
8214 
8215 	/* internal queue */
8216 	INIT_LIST_HEAD(&ioc->internal_free_list);
8217 	smid = ioc->internal_smid;
8218 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8219 		ioc->internal_lookup[i].cb_idx = 0xFF;
8220 		ioc->internal_lookup[i].smid = smid;
8221 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8222 		    &ioc->internal_free_list);
8223 	}
8224 
8225 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8226 
8227 	/* initialize Reply Free Queue */
8228 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8229 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8230 	    ioc->reply_sz) {
8231 		ioc->reply_free[i] = cpu_to_le32(reply_address);
8232 		if (ioc->is_mcpu_endpoint)
8233 			_base_clone_reply_to_sys_mem(ioc,
8234 					reply_address, i);
8235 	}
8236 
8237 	/* initialize reply queues */
8238 	if (ioc->is_driver_loading)
8239 		_base_assign_reply_queues(ioc);
8240 
8241 	/* initialize Reply Post Free Queue */
8242 	index = 0;
8243 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8244 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8245 		/*
8246 		 * If RDPQ is enabled, switch to the next allocation.
8247 		 * Otherwise advance within the contiguous region.
8248 		 */
8249 		if (ioc->rdpq_array_enable) {
8250 			reply_q->reply_post_free =
8251 				ioc->reply_post[index++].reply_post_free;
8252 		} else {
8253 			reply_q->reply_post_free = reply_post_free_contig;
8254 			reply_post_free_contig += ioc->reply_post_queue_depth;
8255 		}
8256 
8257 		reply_q->reply_post_host_index = 0;
8258 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8259 			reply_q->reply_post_free[i].Words =
8260 			    cpu_to_le64(ULLONG_MAX);
8261 		if (!_base_is_controller_msix_enabled(ioc))
8262 			goto skip_init_reply_post_free_queue;
8263 	}
8264  skip_init_reply_post_free_queue:
8265 
8266 	r = _base_send_ioc_init(ioc);
8267 	if (r) {
8268 		/*
8269 		 * No need to check IOC state for fault state & issue
8270 		 * diag reset during host reset. This check is need
8271 		 * only during driver load time.
8272 		 */
8273 		if (!ioc->is_driver_loading)
8274 			return r;
8275 
8276 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8277 		if (rc || (_base_send_ioc_init(ioc)))
8278 			return r;
8279 	}
8280 
8281 	/* initialize reply free host index */
8282 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8283 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8284 
8285 	/* initialize reply post host index */
8286 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8287 		if (ioc->combined_reply_queue)
8288 			writel((reply_q->msix_index & 7)<<
8289 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8290 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8291 		else
8292 			writel(reply_q->msix_index <<
8293 				MPI2_RPHI_MSIX_INDEX_SHIFT,
8294 				&ioc->chip->ReplyPostHostIndex);
8295 
8296 		if (!_base_is_controller_msix_enabled(ioc))
8297 			goto skip_init_reply_post_host_index;
8298 	}
8299 
8300  skip_init_reply_post_host_index:
8301 
8302 	mpt3sas_base_unmask_interrupts(ioc);
8303 
8304 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8305 		r = _base_display_fwpkg_version(ioc);
8306 		if (r)
8307 			return r;
8308 	}
8309 
8310 	r = _base_static_config_pages(ioc);
8311 	if (r)
8312 		return r;
8313 
8314 	r = _base_event_notification(ioc);
8315 	if (r)
8316 		return r;
8317 
8318 	if (!ioc->shost_recovery) {
8319 
8320 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8321 		    == 0x80) {
8322 			hide_flag = (u8) (
8323 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8324 			    MFG_PAGE10_HIDE_SSDS_MASK);
8325 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8326 				ioc->mfg_pg10_hide_flag = hide_flag;
8327 		}
8328 
8329 		ioc->wait_for_discovery_to_complete =
8330 		    _base_determine_wait_on_discovery(ioc);
8331 
8332 		return r; /* scan_start and scan_finished support */
8333 	}
8334 
8335 	r = _base_send_port_enable(ioc);
8336 	if (r)
8337 		return r;
8338 
8339 	return r;
8340 }
8341 
8342 /**
8343  * mpt3sas_base_free_resources - free resources controller resources
8344  * @ioc: per adapter object
8345  */
8346 void
8347 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8348 {
8349 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8350 
8351 	/* synchronizing freeing resource with pci_access_mutex lock */
8352 	mutex_lock(&ioc->pci_access_mutex);
8353 	if (ioc->chip_phys && ioc->chip) {
8354 		mpt3sas_base_mask_interrupts(ioc);
8355 		ioc->shost_recovery = 1;
8356 		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8357 		ioc->shost_recovery = 0;
8358 	}
8359 
8360 	mpt3sas_base_unmap_resources(ioc);
8361 	mutex_unlock(&ioc->pci_access_mutex);
8362 	return;
8363 }
8364 
8365 /**
8366  * mpt3sas_base_attach - attach controller instance
8367  * @ioc: per adapter object
8368  *
8369  * Return: 0 for success, non-zero for failure.
8370  */
8371 int
8372 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8373 {
8374 	int r, i, rc;
8375 	int cpu_id, last_cpu_id = 0;
8376 
8377 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8378 
8379 	/* setup cpu_msix_table */
8380 	ioc->cpu_count = num_online_cpus();
8381 	for_each_online_cpu(cpu_id)
8382 		last_cpu_id = cpu_id;
8383 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8384 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8385 	ioc->reply_queue_count = 1;
8386 	if (!ioc->cpu_msix_table) {
8387 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8388 		r = -ENOMEM;
8389 		goto out_free_resources;
8390 	}
8391 
8392 	if (ioc->is_warpdrive) {
8393 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8394 		    sizeof(resource_size_t *), GFP_KERNEL);
8395 		if (!ioc->reply_post_host_index) {
8396 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8397 			r = -ENOMEM;
8398 			goto out_free_resources;
8399 		}
8400 	}
8401 
8402 	ioc->smp_affinity_enable = smp_affinity_enable;
8403 
8404 	ioc->rdpq_array_enable_assigned = 0;
8405 	ioc->use_32bit_dma = false;
8406 	ioc->dma_mask = 64;
8407 	if (ioc->is_aero_ioc) {
8408 		ioc->base_readl = &_base_readl_aero;
8409 		ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8410 	} else {
8411 		ioc->base_readl = &_base_readl;
8412 		ioc->base_readl_ext_retry = &_base_readl;
8413 	}
8414 	r = mpt3sas_base_map_resources(ioc);
8415 	if (r)
8416 		goto out_free_resources;
8417 
8418 	pci_set_drvdata(ioc->pdev, ioc->shost);
8419 	r = _base_get_ioc_facts(ioc);
8420 	if (r) {
8421 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8422 		if (rc || (_base_get_ioc_facts(ioc)))
8423 			goto out_free_resources;
8424 	}
8425 
8426 	switch (ioc->hba_mpi_version_belonged) {
8427 	case MPI2_VERSION:
8428 		ioc->build_sg_scmd = &_base_build_sg_scmd;
8429 		ioc->build_sg = &_base_build_sg;
8430 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8431 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8432 		break;
8433 	case MPI25_VERSION:
8434 	case MPI26_VERSION:
8435 		/*
8436 		 * In SAS3.0,
8437 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8438 		 * Target Status - all require the IEEE formatted scatter gather
8439 		 * elements.
8440 		 */
8441 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8442 		ioc->build_sg = &_base_build_sg_ieee;
8443 		ioc->build_nvme_prp = &_base_build_nvme_prp;
8444 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8445 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8446 		if (ioc->high_iops_queues)
8447 			ioc->get_msix_index_for_smlio =
8448 					&_base_get_high_iops_msix_index;
8449 		else
8450 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8451 		break;
8452 	}
8453 	if (ioc->atomic_desc_capable) {
8454 		ioc->put_smid_default = &_base_put_smid_default_atomic;
8455 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8456 		ioc->put_smid_fast_path =
8457 				&_base_put_smid_fast_path_atomic;
8458 		ioc->put_smid_hi_priority =
8459 				&_base_put_smid_hi_priority_atomic;
8460 	} else {
8461 		ioc->put_smid_default = &_base_put_smid_default;
8462 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8463 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8464 		if (ioc->is_mcpu_endpoint)
8465 			ioc->put_smid_scsi_io =
8466 				&_base_put_smid_mpi_ep_scsi_io;
8467 		else
8468 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8469 	}
8470 	/*
8471 	 * These function pointers for other requests that don't
8472 	 * the require IEEE scatter gather elements.
8473 	 *
8474 	 * For example Configuration Pages and SAS IOUNIT Control don't.
8475 	 */
8476 	ioc->build_sg_mpi = &_base_build_sg;
8477 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8478 
8479 	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8480 	if (r)
8481 		goto out_free_resources;
8482 
8483 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8484 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8485 	if (!ioc->pfacts) {
8486 		r = -ENOMEM;
8487 		goto out_free_resources;
8488 	}
8489 
8490 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8491 		r = _base_get_port_facts(ioc, i);
8492 		if (r) {
8493 			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8494 			if (rc || (_base_get_port_facts(ioc, i)))
8495 				goto out_free_resources;
8496 		}
8497 	}
8498 
8499 	r = _base_allocate_memory_pools(ioc);
8500 	if (r)
8501 		goto out_free_resources;
8502 
8503 	if (irqpoll_weight > 0)
8504 		ioc->thresh_hold = irqpoll_weight;
8505 	else
8506 		ioc->thresh_hold = ioc->hba_queue_depth/4;
8507 
8508 	_base_init_irqpolls(ioc);
8509 	init_waitqueue_head(&ioc->reset_wq);
8510 
8511 	/* allocate memory pd handle bitmask list */
8512 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8513 	if (ioc->facts.MaxDevHandle % 8)
8514 		ioc->pd_handles_sz++;
8515 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8516 	    GFP_KERNEL);
8517 	if (!ioc->pd_handles) {
8518 		r = -ENOMEM;
8519 		goto out_free_resources;
8520 	}
8521 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8522 	    GFP_KERNEL);
8523 	if (!ioc->blocking_handles) {
8524 		r = -ENOMEM;
8525 		goto out_free_resources;
8526 	}
8527 
8528 	/* allocate memory for pending OS device add list */
8529 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8530 	if (ioc->facts.MaxDevHandle % 8)
8531 		ioc->pend_os_device_add_sz++;
8532 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8533 	    GFP_KERNEL);
8534 	if (!ioc->pend_os_device_add) {
8535 		r = -ENOMEM;
8536 		goto out_free_resources;
8537 	}
8538 
8539 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8540 	ioc->device_remove_in_progress =
8541 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8542 	if (!ioc->device_remove_in_progress) {
8543 		r = -ENOMEM;
8544 		goto out_free_resources;
8545 	}
8546 
8547 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8548 
8549 	/* base internal command bits */
8550 	mutex_init(&ioc->base_cmds.mutex);
8551 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8552 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8553 
8554 	/* port_enable command bits */
8555 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8556 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8557 
8558 	/* transport internal command bits */
8559 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8560 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8561 	mutex_init(&ioc->transport_cmds.mutex);
8562 
8563 	/* scsih internal command bits */
8564 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8565 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8566 	mutex_init(&ioc->scsih_cmds.mutex);
8567 
8568 	/* task management internal command bits */
8569 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8570 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8571 	mutex_init(&ioc->tm_cmds.mutex);
8572 
8573 	/* config page internal command bits */
8574 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8575 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8576 	mutex_init(&ioc->config_cmds.mutex);
8577 
8578 	/* ctl module internal command bits */
8579 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8580 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8581 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8582 	mutex_init(&ioc->ctl_cmds.mutex);
8583 
8584 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8585 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8586 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8587 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8588 		r = -ENOMEM;
8589 		goto out_free_resources;
8590 	}
8591 
8592 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8593 		ioc->event_masks[i] = -1;
8594 
8595 	/* here we enable the events we care about */
8596 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8597 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8598 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8599 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8600 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8601 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8602 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8603 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8604 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8605 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8606 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8607 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8608 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8609 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8610 		if (ioc->is_gen35_ioc) {
8611 			_base_unmask_events(ioc,
8612 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8613 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8614 			_base_unmask_events(ioc,
8615 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8616 		}
8617 	}
8618 	r = _base_make_ioc_operational(ioc);
8619 	if (r == -EAGAIN) {
8620 		r = _base_make_ioc_operational(ioc);
8621 		if (r)
8622 			goto out_free_resources;
8623 	}
8624 
8625 	/*
8626 	 * Copy current copy of IOCFacts in prev_fw_facts
8627 	 * and it will be used during online firmware upgrade.
8628 	 */
8629 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8630 	    sizeof(struct mpt3sas_facts));
8631 
8632 	ioc->non_operational_loop = 0;
8633 	ioc->ioc_coredump_loop = 0;
8634 	ioc->got_task_abort_from_ioctl = 0;
8635 	return 0;
8636 
8637  out_free_resources:
8638 
8639 	ioc->remove_host = 1;
8640 
8641 	mpt3sas_base_free_resources(ioc);
8642 	_base_release_memory_pools(ioc);
8643 	pci_set_drvdata(ioc->pdev, NULL);
8644 	kfree(ioc->cpu_msix_table);
8645 	if (ioc->is_warpdrive)
8646 		kfree(ioc->reply_post_host_index);
8647 	kfree(ioc->pd_handles);
8648 	kfree(ioc->blocking_handles);
8649 	kfree(ioc->device_remove_in_progress);
8650 	kfree(ioc->pend_os_device_add);
8651 	kfree(ioc->tm_cmds.reply);
8652 	kfree(ioc->transport_cmds.reply);
8653 	kfree(ioc->scsih_cmds.reply);
8654 	kfree(ioc->config_cmds.reply);
8655 	kfree(ioc->base_cmds.reply);
8656 	kfree(ioc->port_enable_cmds.reply);
8657 	kfree(ioc->ctl_cmds.reply);
8658 	kfree(ioc->ctl_cmds.sense);
8659 	kfree(ioc->pfacts);
8660 	ioc->ctl_cmds.reply = NULL;
8661 	ioc->base_cmds.reply = NULL;
8662 	ioc->tm_cmds.reply = NULL;
8663 	ioc->scsih_cmds.reply = NULL;
8664 	ioc->transport_cmds.reply = NULL;
8665 	ioc->config_cmds.reply = NULL;
8666 	ioc->pfacts = NULL;
8667 	return r;
8668 }
8669 
8670 
8671 /**
8672  * mpt3sas_base_detach - remove controller instance
8673  * @ioc: per adapter object
8674  */
8675 void
8676 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8677 {
8678 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8679 
8680 	mpt3sas_base_stop_watchdog(ioc);
8681 	mpt3sas_base_free_resources(ioc);
8682 	_base_release_memory_pools(ioc);
8683 	mpt3sas_free_enclosure_list(ioc);
8684 	pci_set_drvdata(ioc->pdev, NULL);
8685 	kfree(ioc->cpu_msix_table);
8686 	if (ioc->is_warpdrive)
8687 		kfree(ioc->reply_post_host_index);
8688 	kfree(ioc->pd_handles);
8689 	kfree(ioc->blocking_handles);
8690 	kfree(ioc->device_remove_in_progress);
8691 	kfree(ioc->pend_os_device_add);
8692 	kfree(ioc->pfacts);
8693 	kfree(ioc->ctl_cmds.reply);
8694 	kfree(ioc->ctl_cmds.sense);
8695 	kfree(ioc->base_cmds.reply);
8696 	kfree(ioc->port_enable_cmds.reply);
8697 	kfree(ioc->tm_cmds.reply);
8698 	kfree(ioc->transport_cmds.reply);
8699 	kfree(ioc->scsih_cmds.reply);
8700 	kfree(ioc->config_cmds.reply);
8701 }
8702 
8703 /**
8704  * _base_pre_reset_handler - pre reset handler
8705  * @ioc: per adapter object
8706  */
8707 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8708 {
8709 	mpt3sas_scsih_pre_reset_handler(ioc);
8710 	mpt3sas_ctl_pre_reset_handler(ioc);
8711 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8712 }
8713 
8714 /**
8715  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8716  * @ioc: per adapter object
8717  */
8718 static void
8719 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8720 {
8721 	dtmprintk(ioc,
8722 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8723 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8724 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8725 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8726 		complete(&ioc->transport_cmds.done);
8727 	}
8728 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8729 		ioc->base_cmds.status |= MPT3_CMD_RESET;
8730 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8731 		complete(&ioc->base_cmds.done);
8732 	}
8733 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8734 		ioc->port_enable_failed = 1;
8735 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8736 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8737 		if (ioc->is_driver_loading) {
8738 			ioc->start_scan_failed =
8739 				MPI2_IOCSTATUS_INTERNAL_ERROR;
8740 			ioc->start_scan = 0;
8741 		} else {
8742 			complete(&ioc->port_enable_cmds.done);
8743 		}
8744 	}
8745 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8746 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8747 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8748 		ioc->config_cmds.smid = USHRT_MAX;
8749 		complete(&ioc->config_cmds.done);
8750 	}
8751 }
8752 
8753 /**
8754  * _base_clear_outstanding_commands - clear all outstanding commands
8755  * @ioc: per adapter object
8756  */
8757 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8758 {
8759 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8760 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8761 	_base_clear_outstanding_mpt_commands(ioc);
8762 }
8763 
8764 /**
8765  * _base_reset_done_handler - reset done handler
8766  * @ioc: per adapter object
8767  */
8768 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8769 {
8770 	mpt3sas_scsih_reset_done_handler(ioc);
8771 	mpt3sas_ctl_reset_done_handler(ioc);
8772 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8773 }
8774 
8775 /**
8776  * mpt3sas_wait_for_commands_to_complete - reset controller
8777  * @ioc: Pointer to MPT_ADAPTER structure
8778  *
8779  * This function is waiting 10s for all pending commands to complete
8780  * prior to putting controller in reset.
8781  */
8782 void
8783 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8784 {
8785 	u32 ioc_state;
8786 
8787 	ioc->pending_io_count = 0;
8788 
8789 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8790 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8791 		return;
8792 
8793 	/* pending command count */
8794 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8795 
8796 	if (!ioc->pending_io_count)
8797 		return;
8798 
8799 	/* wait for pending commands to complete */
8800 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8801 }
8802 
8803 /**
8804  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8805  *     attributes during online firmware upgrade and update the corresponding
8806  *     IOC variables accordingly.
8807  *
8808  * @ioc: Pointer to MPT_ADAPTER structure
8809  */
8810 static int
8811 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8812 {
8813 	u16 pd_handles_sz;
8814 	void *pd_handles = NULL, *blocking_handles = NULL;
8815 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8816 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8817 
8818 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8819 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8820 		if (ioc->facts.MaxDevHandle % 8)
8821 			pd_handles_sz++;
8822 
8823 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8824 		    GFP_KERNEL);
8825 		if (!pd_handles) {
8826 			ioc_info(ioc,
8827 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8828 			    pd_handles_sz);
8829 			return -ENOMEM;
8830 		}
8831 		memset(pd_handles + ioc->pd_handles_sz, 0,
8832 		    (pd_handles_sz - ioc->pd_handles_sz));
8833 		ioc->pd_handles = pd_handles;
8834 
8835 		blocking_handles = krealloc(ioc->blocking_handles,
8836 		    pd_handles_sz, GFP_KERNEL);
8837 		if (!blocking_handles) {
8838 			ioc_info(ioc,
8839 			    "Unable to allocate the memory for "
8840 			    "blocking_handles of sz: %d\n",
8841 			    pd_handles_sz);
8842 			return -ENOMEM;
8843 		}
8844 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8845 		    (pd_handles_sz - ioc->pd_handles_sz));
8846 		ioc->blocking_handles = blocking_handles;
8847 		ioc->pd_handles_sz = pd_handles_sz;
8848 
8849 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8850 		    pd_handles_sz, GFP_KERNEL);
8851 		if (!pend_os_device_add) {
8852 			ioc_info(ioc,
8853 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8854 			    pd_handles_sz);
8855 			return -ENOMEM;
8856 		}
8857 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8858 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8859 		ioc->pend_os_device_add = pend_os_device_add;
8860 		ioc->pend_os_device_add_sz = pd_handles_sz;
8861 
8862 		device_remove_in_progress = krealloc(
8863 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8864 		if (!device_remove_in_progress) {
8865 			ioc_info(ioc,
8866 			    "Unable to allocate the memory for "
8867 			    "device_remove_in_progress of sz: %d\n "
8868 			    , pd_handles_sz);
8869 			return -ENOMEM;
8870 		}
8871 		memset(device_remove_in_progress +
8872 		    ioc->device_remove_in_progress_sz, 0,
8873 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8874 		ioc->device_remove_in_progress = device_remove_in_progress;
8875 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8876 	}
8877 
8878 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8879 	return 0;
8880 }
8881 
8882 /**
8883  * mpt3sas_base_hard_reset_handler - reset controller
8884  * @ioc: Pointer to MPT_ADAPTER structure
8885  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8886  *
8887  * Return: 0 for success, non-zero for failure.
8888  */
8889 int
8890 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8891 	enum reset_type type)
8892 {
8893 	int r;
8894 	unsigned long flags;
8895 	u32 ioc_state;
8896 	u8 is_fault = 0, is_trigger = 0;
8897 
8898 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8899 
8900 	if (ioc->pci_error_recovery) {
8901 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8902 		r = 0;
8903 		goto out_unlocked;
8904 	}
8905 
8906 	if (mpt3sas_fwfault_debug)
8907 		mpt3sas_halt_firmware(ioc);
8908 
8909 	/* wait for an active reset in progress to complete */
8910 	mutex_lock(&ioc->reset_in_progress_mutex);
8911 
8912 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8913 	ioc->shost_recovery = 1;
8914 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8915 
8916 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8917 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8918 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8919 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8920 		is_trigger = 1;
8921 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8922 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8923 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8924 		    MPI2_IOC_STATE_COREDUMP) {
8925 			is_fault = 1;
8926 			ioc->htb_rel.trigger_info_dwords[1] =
8927 			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8928 		}
8929 	}
8930 	_base_pre_reset_handler(ioc);
8931 	mpt3sas_wait_for_commands_to_complete(ioc);
8932 	mpt3sas_base_mask_interrupts(ioc);
8933 	mpt3sas_base_pause_mq_polling(ioc);
8934 	r = mpt3sas_base_make_ioc_ready(ioc, type);
8935 	if (r)
8936 		goto out;
8937 	_base_clear_outstanding_commands(ioc);
8938 
8939 	/* If this hard reset is called while port enable is active, then
8940 	 * there is no reason to call make_ioc_operational
8941 	 */
8942 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8943 		ioc->remove_host = 1;
8944 		r = -EFAULT;
8945 		goto out;
8946 	}
8947 	r = _base_get_ioc_facts(ioc);
8948 	if (r)
8949 		goto out;
8950 
8951 	r = _base_check_ioc_facts_changes(ioc);
8952 	if (r) {
8953 		ioc_info(ioc,
8954 		    "Some of the parameters got changed in this new firmware"
8955 		    " image and it requires system reboot\n");
8956 		goto out;
8957 	}
8958 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8959 		panic("%s: Issue occurred with flashing controller firmware."
8960 		      "Please reboot the system and ensure that the correct"
8961 		      " firmware version is running\n", ioc->name);
8962 
8963 	r = _base_make_ioc_operational(ioc);
8964 	if (!r)
8965 		_base_reset_done_handler(ioc);
8966 
8967  out:
8968 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8969 
8970 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8971 	ioc->shost_recovery = 0;
8972 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8973 	ioc->ioc_reset_count++;
8974 	mutex_unlock(&ioc->reset_in_progress_mutex);
8975 	mpt3sas_base_resume_mq_polling(ioc);
8976 
8977  out_unlocked:
8978 	if ((r == 0) && is_trigger) {
8979 		if (is_fault)
8980 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8981 		else
8982 			mpt3sas_trigger_master(ioc,
8983 			    MASTER_TRIGGER_ADAPTER_RESET);
8984 	}
8985 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8986 	return r;
8987 }
8988