xref: /linux/drivers/scsi/mpi3mr/mpi3mr_app.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom MPI3 Storage Controllers
4  *
5  * Copyright (C) 2017-2023 Broadcom Inc.
6  *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7  *
8  */
9 
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13 
14 /**
15  * mpi3mr_alloc_trace_buffer:	Allocate trace buffer
16  * @mrioc: Adapter instance reference
17  * @trace_size: Trace buffer size
18  *
19  * Allocate trace buffer
20  * Return: 0 on success, non-zero on failure.
21  */
22 static int mpi3mr_alloc_trace_buffer(struct mpi3mr_ioc *mrioc, u32 trace_size)
23 {
24 	struct diag_buffer_desc *diag_buffer = &mrioc->diag_buffers[0];
25 
26 	diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
27 	    trace_size, &diag_buffer->dma_addr, GFP_KERNEL);
28 	if (diag_buffer->addr) {
29 		dprint_init(mrioc, "trace diag buffer is allocated successfully\n");
30 		return 0;
31 	}
32 	return -1;
33 }
34 
35 /**
36  * mpi3mr_alloc_diag_bufs - Allocate memory for diag buffers
37  * @mrioc: Adapter instance reference
38  *
39  * This functions checks whether the driver defined buffer sizes
40  * are greater than IOCFacts provided controller local buffer
41  * sizes and if the driver defined sizes are more then the
42  * driver allocates the specific buffer by reading driver page1
43  *
44  * Return: Nothing.
45  */
46 void mpi3mr_alloc_diag_bufs(struct mpi3mr_ioc *mrioc)
47 {
48 	struct diag_buffer_desc *diag_buffer;
49 	struct mpi3_driver_page1 driver_pg1;
50 	u32 trace_dec_size, trace_min_size, fw_dec_size, fw_min_size,
51 		trace_size, fw_size;
52 	u16 pg_sz = sizeof(driver_pg1);
53 	int retval = 0;
54 	bool retry = false;
55 
56 	if (mrioc->diag_buffers[0].addr || mrioc->diag_buffers[1].addr)
57 		return;
58 
59 	retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz);
60 	if (retval) {
61 		ioc_warn(mrioc,
62 		    "%s: driver page 1 read failed, allocating trace\n"
63 		    "and firmware diag buffers of default size\n", __func__);
64 		trace_size = fw_size = MPI3MR_DEFAULT_HDB_MAX_SZ;
65 		trace_dec_size = fw_dec_size = MPI3MR_DEFAULT_HDB_DEC_SZ;
66 		trace_min_size = fw_min_size = MPI3MR_DEFAULT_HDB_MIN_SZ;
67 
68 	} else {
69 		trace_size = driver_pg1.host_diag_trace_max_size * 1024;
70 		trace_dec_size = driver_pg1.host_diag_trace_decrement_size
71 			 * 1024;
72 		trace_min_size = driver_pg1.host_diag_trace_min_size * 1024;
73 		fw_size = driver_pg1.host_diag_fw_max_size * 1024;
74 		fw_dec_size = driver_pg1.host_diag_fw_decrement_size * 1024;
75 		fw_min_size = driver_pg1.host_diag_fw_min_size * 1024;
76 		dprint_init(mrioc,
77 		    "%s:trace diag buffer sizes read from driver\n"
78 		    "page1: maximum size = %dKB, decrement size = %dKB\n"
79 		    ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_trace_max_size,
80 		    driver_pg1.host_diag_trace_decrement_size,
81 		    driver_pg1.host_diag_trace_min_size);
82 		dprint_init(mrioc,
83 		    "%s:firmware diag buffer sizes read from driver\n"
84 		    "page1: maximum size = %dKB, decrement size = %dKB\n"
85 		    ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_fw_max_size,
86 		    driver_pg1.host_diag_fw_decrement_size,
87 		    driver_pg1.host_diag_fw_min_size);
88 		if ((trace_size == 0) && (fw_size == 0))
89 			return;
90 	}
91 
92 
93 retry_trace:
94 	diag_buffer = &mrioc->diag_buffers[0];
95 	diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_TRACE;
96 	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
97 	if ((mrioc->facts.diag_trace_sz < trace_size) && (trace_size >=
98 		trace_min_size)) {
99 		if (!retry)
100 			dprint_init(mrioc,
101 			    "trying to allocate trace diag buffer of size = %dKB\n",
102 			    trace_size / 1024);
103 		if (mpi3mr_alloc_trace_buffer(mrioc, trace_size)) {
104 			retry = true;
105 			trace_size -= trace_dec_size;
106 			dprint_init(mrioc, "trace diag buffer allocation failed\n"
107 			"retrying smaller size %dKB\n", trace_size / 1024);
108 			goto retry_trace;
109 		} else
110 			diag_buffer->size = trace_size;
111 	}
112 
113 	retry = false;
114 retry_fw:
115 
116 	diag_buffer = &mrioc->diag_buffers[1];
117 
118 	diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_FW;
119 	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
120 	if ((mrioc->facts.diag_fw_sz < fw_size) && (fw_size >= fw_min_size)) {
121 		diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
122 		    fw_size, &diag_buffer->dma_addr, GFP_KERNEL);
123 		if (!retry)
124 			dprint_init(mrioc,
125 			    "%s:trying to allocate firmware diag buffer of size = %dKB\n",
126 			    __func__, fw_size / 1024);
127 		if (diag_buffer->addr) {
128 			dprint_init(mrioc, "%s:firmware diag buffer allocated successfully\n",
129 			    __func__);
130 			diag_buffer->size = fw_size;
131 		} else {
132 			retry = true;
133 			fw_size -= fw_dec_size;
134 			dprint_init(mrioc, "%s:trace diag buffer allocation failed,\n"
135 					"retrying smaller size %dKB\n",
136 					__func__, fw_size / 1024);
137 			goto retry_fw;
138 		}
139 	}
140 }
141 
142 /**
143  * mpi3mr_issue_diag_buf_post - Send diag buffer post req
144  * @mrioc: Adapter instance reference
145  * @diag_buffer: Diagnostic buffer descriptor
146  *
147  * Issue diagnostic buffer post MPI request through admin queue
148  * and wait for the completion of it or time out.
149  *
150  * Return: 0 on success, non-zero on failures.
151  */
152 int mpi3mr_issue_diag_buf_post(struct mpi3mr_ioc *mrioc,
153 	struct diag_buffer_desc *diag_buffer)
154 {
155 	struct mpi3_diag_buffer_post_request diag_buf_post_req;
156 	u8 prev_status;
157 	int retval = 0;
158 
159 	memset(&diag_buf_post_req, 0, sizeof(diag_buf_post_req));
160 	mutex_lock(&mrioc->init_cmds.mutex);
161 	if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
162 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
163 		mutex_unlock(&mrioc->init_cmds.mutex);
164 		return -1;
165 	}
166 	mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
167 	mrioc->init_cmds.is_waiting = 1;
168 	mrioc->init_cmds.callback = NULL;
169 	diag_buf_post_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
170 	diag_buf_post_req.function = MPI3_FUNCTION_DIAG_BUFFER_POST;
171 	diag_buf_post_req.type = diag_buffer->type;
172 	diag_buf_post_req.address = le64_to_cpu(diag_buffer->dma_addr);
173 	diag_buf_post_req.length = le32_to_cpu(diag_buffer->size);
174 
175 	dprint_bsg_info(mrioc, "%s: posting diag buffer type %d\n", __func__,
176 	    diag_buffer->type);
177 	prev_status = diag_buffer->status;
178 	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
179 	init_completion(&mrioc->init_cmds.done);
180 	retval = mpi3mr_admin_request_post(mrioc, &diag_buf_post_req,
181 	    sizeof(diag_buf_post_req), 1);
182 	if (retval) {
183 		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
184 		    __func__);
185 		goto out_unlock;
186 	}
187 	wait_for_completion_timeout(&mrioc->init_cmds.done,
188 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
189 	if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
190 		mrioc->init_cmds.is_waiting = 0;
191 		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
192 		mpi3mr_check_rh_fault_ioc(mrioc,
193 		    MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT);
194 		retval = -1;
195 		goto out_unlock;
196 	}
197 	if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
198 	    != MPI3_IOCSTATUS_SUCCESS) {
199 		dprint_bsg_err(mrioc,
200 		    "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
201 		    __func__, diag_buffer->type,
202 		    (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
203 		    mrioc->init_cmds.ioc_loginfo);
204 		retval = -1;
205 		goto out_unlock;
206 	}
207 	dprint_bsg_info(mrioc, "%s: diag buffer type %d posted successfully\n",
208 	    __func__, diag_buffer->type);
209 
210 out_unlock:
211 	if (retval)
212 		diag_buffer->status = prev_status;
213 	mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
214 	mutex_unlock(&mrioc->init_cmds.mutex);
215 	return retval;
216 }
217 
218 /**
219  * mpi3mr_post_diag_bufs - Post diag buffers to the controller
220  * @mrioc: Adapter instance reference
221  *
222  * This function calls helper function to post both trace and
223  * firmware buffers to the controller.
224  *
225  * Return: None
226  */
227 int mpi3mr_post_diag_bufs(struct mpi3mr_ioc *mrioc)
228 {
229 	u8 i;
230 	struct diag_buffer_desc *diag_buffer;
231 
232 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
233 		diag_buffer = &mrioc->diag_buffers[i];
234 		if (!(diag_buffer->addr))
235 			continue;
236 		if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer))
237 			return -1;
238 	}
239 	return 0;
240 }
241 
242 /**
243  * mpi3mr_issue_diag_buf_release - Send diag buffer release req
244  * @mrioc: Adapter instance reference
245  * @diag_buffer: Diagnostic buffer descriptor
246  *
247  * Issue diagnostic buffer manage MPI request with release
248  * action request through admin queue and wait for the
249  * completion of it or time out.
250  *
251  * Return: 0 on success, non-zero on failures.
252  */
253 int mpi3mr_issue_diag_buf_release(struct mpi3mr_ioc *mrioc,
254 	struct diag_buffer_desc *diag_buffer)
255 {
256 	struct mpi3_diag_buffer_manage_request diag_buf_manage_req;
257 	int retval = 0;
258 
259 	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
260 	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
261 		return retval;
262 
263 	memset(&diag_buf_manage_req, 0, sizeof(diag_buf_manage_req));
264 	mutex_lock(&mrioc->init_cmds.mutex);
265 	if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
266 		dprint_reset(mrioc, "%s: command is in use\n", __func__);
267 		mutex_unlock(&mrioc->init_cmds.mutex);
268 		return -1;
269 	}
270 	mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
271 	mrioc->init_cmds.is_waiting = 1;
272 	mrioc->init_cmds.callback = NULL;
273 	diag_buf_manage_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
274 	diag_buf_manage_req.function = MPI3_FUNCTION_DIAG_BUFFER_MANAGE;
275 	diag_buf_manage_req.type = diag_buffer->type;
276 	diag_buf_manage_req.action = MPI3_DIAG_BUFFER_ACTION_RELEASE;
277 
278 
279 	dprint_reset(mrioc, "%s: releasing diag buffer type %d\n", __func__,
280 	    diag_buffer->type);
281 	init_completion(&mrioc->init_cmds.done);
282 	retval = mpi3mr_admin_request_post(mrioc, &diag_buf_manage_req,
283 	    sizeof(diag_buf_manage_req), 1);
284 	if (retval) {
285 		dprint_reset(mrioc, "%s: admin request post failed\n", __func__);
286 		mpi3mr_set_trigger_data_in_hdb(diag_buffer,
287 		    MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
288 		goto out_unlock;
289 	}
290 	wait_for_completion_timeout(&mrioc->init_cmds.done,
291 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
292 	if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
293 		mrioc->init_cmds.is_waiting = 0;
294 		dprint_reset(mrioc, "%s: command timedout\n", __func__);
295 		mpi3mr_check_rh_fault_ioc(mrioc,
296 		    MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT);
297 		retval = -1;
298 		goto out_unlock;
299 	}
300 	if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
301 	    != MPI3_IOCSTATUS_SUCCESS) {
302 		dprint_reset(mrioc,
303 		    "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
304 		    __func__, diag_buffer->type,
305 		    (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
306 		    mrioc->init_cmds.ioc_loginfo);
307 		retval = -1;
308 		goto out_unlock;
309 	}
310 	dprint_reset(mrioc, "%s: diag buffer type %d released successfully\n",
311 	    __func__, diag_buffer->type);
312 
313 out_unlock:
314 	mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
315 	mutex_unlock(&mrioc->init_cmds.mutex);
316 	return retval;
317 }
318 
319 /**
320  * mpi3mr_process_trigger - Generic HDB Trigger handler
321  * @mrioc: Adapter instance reference
322  * @trigger_type: Trigger type
323  * @trigger_data: Trigger data
324  * @trigger_flags: Trigger flags
325  *
326  * This function checks validity of HDB, triggers and based on
327  * trigger information, creates an event to be processed in the
328  * firmware event worker thread .
329  *
330  * This function should be called with trigger spinlock held
331  *
332  * Return: Nothing
333  */
334 static void mpi3mr_process_trigger(struct mpi3mr_ioc *mrioc, u8 trigger_type,
335 	union mpi3mr_trigger_data *trigger_data, u8 trigger_flags)
336 {
337 	struct trigger_event_data event_data;
338 	struct diag_buffer_desc *trace_hdb = NULL;
339 	struct diag_buffer_desc *fw_hdb = NULL;
340 	u64 global_trigger;
341 
342 	trace_hdb = mpi3mr_diag_buffer_for_type(mrioc,
343 	    MPI3_DIAG_BUFFER_TYPE_TRACE);
344 	if (trace_hdb &&
345 	    (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
346 	    (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
347 		trace_hdb =  NULL;
348 
349 	fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
350 
351 	if (fw_hdb &&
352 	    (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
353 	    (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
354 		fw_hdb = NULL;
355 
356 	if (mrioc->snapdump_trigger_active || (mrioc->fw_release_trigger_active
357 	    && mrioc->trace_release_trigger_active) ||
358 	    (!trace_hdb && !fw_hdb) || (!mrioc->driver_pg2) ||
359 	    ((trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
360 	     && (!mrioc->driver_pg2->num_triggers)))
361 		return;
362 
363 	memset(&event_data, 0, sizeof(event_data));
364 	event_data.trigger_type = trigger_type;
365 	memcpy(&event_data.trigger_specific_data, trigger_data,
366 	    sizeof(*trigger_data));
367 	global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger);
368 
369 	if (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_SNAPDUMP_ENABLED) {
370 		event_data.snapdump = true;
371 		event_data.trace_hdb = trace_hdb;
372 		event_data.fw_hdb = fw_hdb;
373 		mrioc->snapdump_trigger_active = true;
374 	} else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_GLOBAL) {
375 		if ((trace_hdb) && (global_trigger &
376 		    MPI3_DRIVER2_GLOBALTRIGGER_DIAG_TRACE_RELEASE) &&
377 		    (!mrioc->trace_release_trigger_active)) {
378 			event_data.trace_hdb = trace_hdb;
379 			mrioc->trace_release_trigger_active = true;
380 		}
381 		if ((fw_hdb) && (global_trigger &
382 		    MPI3_DRIVER2_GLOBALTRIGGER_DIAG_FW_RELEASE) &&
383 		    (!mrioc->fw_release_trigger_active)) {
384 			event_data.fw_hdb = fw_hdb;
385 			mrioc->fw_release_trigger_active = true;
386 		}
387 	} else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) {
388 		if ((trace_hdb) && (trigger_flags &
389 		    MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_TRACE_RELEASE) &&
390 		    (!mrioc->trace_release_trigger_active)) {
391 			event_data.trace_hdb = trace_hdb;
392 			mrioc->trace_release_trigger_active = true;
393 		}
394 		if ((fw_hdb) && (trigger_flags &
395 		    MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_FW_RELEASE) &&
396 		    (!mrioc->fw_release_trigger_active)) {
397 			event_data.fw_hdb = fw_hdb;
398 			mrioc->fw_release_trigger_active = true;
399 		}
400 	}
401 
402 	if (event_data.trace_hdb || event_data.fw_hdb)
403 		mpi3mr_hdb_trigger_data_event(mrioc, &event_data);
404 }
405 
406 /**
407  * mpi3mr_global_trigger - Global HDB trigger handler
408  * @mrioc: Adapter instance reference
409  * @trigger_data: Trigger data
410  *
411  * This function checks whether the given global trigger is
412  * enabled in the driver page 2 and if so calls generic trigger
413  * handler to queue event for HDB release.
414  *
415  * Return: Nothing
416  */
417 void mpi3mr_global_trigger(struct mpi3mr_ioc *mrioc, u64 trigger_data)
418 {
419 	unsigned long flags;
420 	union mpi3mr_trigger_data trigger_specific_data;
421 
422 	spin_lock_irqsave(&mrioc->trigger_lock, flags);
423 	if (le64_to_cpu(mrioc->driver_pg2->global_trigger) & trigger_data) {
424 		memset(&trigger_specific_data, 0,
425 		    sizeof(trigger_specific_data));
426 		trigger_specific_data.global = trigger_data;
427 		mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_GLOBAL,
428 		    &trigger_specific_data, 0);
429 	}
430 	spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
431 }
432 
433 /**
434  * mpi3mr_scsisense_trigger - SCSI sense HDB trigger handler
435  * @mrioc: Adapter instance reference
436  * @sensekey: Sense Key
437  * @asc: Additional Sense Code
438  * @ascq: Additional Sense Code Qualifier
439  *
440  * This function compares SCSI sense trigger values with driver
441  * page 2 values and calls generic trigger handler to release
442  * HDBs if match found
443  *
444  * Return: Nothing
445  */
446 void mpi3mr_scsisense_trigger(struct mpi3mr_ioc *mrioc, u8 sensekey, u8 asc,
447 	u8 ascq)
448 {
449 	struct mpi3_driver2_trigger_scsi_sense *scsi_sense_trigger = NULL;
450 	u64 i = 0;
451 	unsigned long flags;
452 	u8 num_triggers, trigger_flags;
453 
454 	if (mrioc->scsisense_trigger_present) {
455 		spin_lock_irqsave(&mrioc->trigger_lock, flags);
456 		scsi_sense_trigger = (struct mpi3_driver2_trigger_scsi_sense *)
457 			mrioc->driver_pg2->trigger;
458 		num_triggers = mrioc->driver_pg2->num_triggers;
459 		for (i = 0; i < num_triggers; i++, scsi_sense_trigger++) {
460 			if (scsi_sense_trigger->type !=
461 			    MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE)
462 				continue;
463 			if (!(scsi_sense_trigger->sense_key ==
464 			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_SENSE_KEY_MATCH_ALL
465 			      || scsi_sense_trigger->sense_key == sensekey))
466 				continue;
467 			if (!(scsi_sense_trigger->asc ==
468 			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASC_MATCH_ALL ||
469 			    scsi_sense_trigger->asc == asc))
470 				continue;
471 			if (!(scsi_sense_trigger->ascq ==
472 			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASCQ_MATCH_ALL ||
473 			    scsi_sense_trigger->ascq == ascq))
474 				continue;
475 			trigger_flags = scsi_sense_trigger->flags;
476 			mpi3mr_process_trigger(mrioc,
477 			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
478 			    (union mpi3mr_trigger_data *)scsi_sense_trigger,
479 			    trigger_flags);
480 			break;
481 		}
482 		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
483 	}
484 }
485 
486 /**
487  * mpi3mr_event_trigger - MPI event HDB trigger handler
488  * @mrioc: Adapter instance reference
489  * @event: MPI Event
490  *
491  * This function compares event trigger values with driver page
492  * 2 values and calls generic trigger handler to release
493  * HDBs if match found.
494  *
495  * Return: Nothing
496  */
497 void mpi3mr_event_trigger(struct mpi3mr_ioc *mrioc, u8 event)
498 {
499 	struct mpi3_driver2_trigger_event *event_trigger = NULL;
500 	u64 i = 0;
501 	unsigned long flags;
502 	u8 num_triggers, trigger_flags;
503 
504 	if (mrioc->event_trigger_present) {
505 		spin_lock_irqsave(&mrioc->trigger_lock, flags);
506 		event_trigger = (struct mpi3_driver2_trigger_event *)
507 			mrioc->driver_pg2->trigger;
508 		num_triggers = mrioc->driver_pg2->num_triggers;
509 
510 		for (i = 0; i < num_triggers; i++, event_trigger++) {
511 			if (event_trigger->type !=
512 			    MPI3_DRIVER2_TRIGGER_TYPE_EVENT)
513 				continue;
514 			if (event_trigger->event != event)
515 				continue;
516 			trigger_flags = event_trigger->flags;
517 			mpi3mr_process_trigger(mrioc,
518 			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
519 			    (union mpi3mr_trigger_data *)event_trigger,
520 			    trigger_flags);
521 			break;
522 		}
523 		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
524 	}
525 }
526 
527 /**
528  * mpi3mr_reply_trigger - MPI Reply HDB trigger handler
529  * @mrioc: Adapter instance reference
530  * @ioc_status: Masked value of IOC Status from MPI Reply
531  * @ioc_loginfo: IOC Log Info from MPI Reply
532  *
533  * This function compares IOC status and IOC log info trigger
534  * values with driver page 2 values and calls generic trigger
535  * handler to release HDBs if match found.
536  *
537  * Return: Nothing
538  */
539 void mpi3mr_reply_trigger(struct mpi3mr_ioc *mrioc, u16 ioc_status,
540 	u32 ioc_loginfo)
541 {
542 	struct mpi3_driver2_trigger_reply *reply_trigger = NULL;
543 	u64 i = 0;
544 	unsigned long flags;
545 	u8 num_triggers, trigger_flags;
546 
547 	if (mrioc->reply_trigger_present) {
548 		spin_lock_irqsave(&mrioc->trigger_lock, flags);
549 		reply_trigger = (struct mpi3_driver2_trigger_reply *)
550 			mrioc->driver_pg2->trigger;
551 		num_triggers = mrioc->driver_pg2->num_triggers;
552 		for (i = 0; i < num_triggers; i++, reply_trigger++) {
553 			if (reply_trigger->type !=
554 			    MPI3_DRIVER2_TRIGGER_TYPE_REPLY)
555 				continue;
556 			if ((le16_to_cpu(reply_trigger->ioc_status) !=
557 			     ioc_status)
558 			    && (le16_to_cpu(reply_trigger->ioc_status) !=
559 			    MPI3_DRIVER2_TRIGGER_REPLY_IOCSTATUS_MATCH_ALL))
560 				continue;
561 			if ((le32_to_cpu(reply_trigger->ioc_log_info) !=
562 			    (le32_to_cpu(reply_trigger->ioc_log_info_mask) &
563 			     ioc_loginfo)))
564 				continue;
565 			trigger_flags = reply_trigger->flags;
566 			mpi3mr_process_trigger(mrioc,
567 			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
568 			    (union mpi3mr_trigger_data *)reply_trigger,
569 			    trigger_flags);
570 			break;
571 		}
572 		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
573 	}
574 }
575 
576 /**
577  * mpi3mr_get_num_trigger - Gets number of HDB triggers
578  * @mrioc: Adapter instance reference
579  * @num_triggers: Number of triggers
580  * @page_action: Page action
581  *
582  * This function reads number of triggers by reading driver page
583  * 2
584  *
585  * Return: 0 on success and proper error codes on failure
586  */
587 static int mpi3mr_get_num_trigger(struct mpi3mr_ioc *mrioc, u8 *num_triggers,
588 	u8 page_action)
589 {
590 	struct mpi3_driver_page2 drvr_page2;
591 	int retval = 0;
592 
593 	*num_triggers = 0;
594 
595 	retval = mpi3mr_cfg_get_driver_pg2(mrioc, &drvr_page2,
596 	    sizeof(struct mpi3_driver_page2), page_action);
597 
598 	if (retval) {
599 		dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
600 		return retval;
601 	}
602 	*num_triggers = drvr_page2.num_triggers;
603 	return retval;
604 }
605 
606 /**
607  * mpi3mr_refresh_trigger - Handler for Refresh trigger BSG
608  * @mrioc: Adapter instance reference
609  * @page_action: Page action
610  *
611  * This function caches the driver page 2 in the driver's memory
612  * by reading driver page 2 from the controller for a given page
613  * type and updates the HDB trigger values
614  *
615  * Return: 0 on success and proper error codes on failure
616  */
617 int mpi3mr_refresh_trigger(struct mpi3mr_ioc *mrioc, u8 page_action)
618 {
619 	u16 pg_sz = sizeof(struct mpi3_driver_page2);
620 	struct mpi3_driver_page2 *drvr_page2 = NULL;
621 	u8 trigger_type, num_triggers;
622 	int retval;
623 	int i = 0;
624 	unsigned long flags;
625 
626 	retval = mpi3mr_get_num_trigger(mrioc, &num_triggers, page_action);
627 
628 	if (retval)
629 		goto out;
630 
631 	pg_sz = offsetof(struct mpi3_driver_page2, trigger) +
632 		(num_triggers * sizeof(union mpi3_driver2_trigger_element));
633 	drvr_page2 = kzalloc(pg_sz, GFP_KERNEL);
634 	if (!drvr_page2) {
635 		retval = -ENOMEM;
636 		goto out;
637 	}
638 
639 	retval = mpi3mr_cfg_get_driver_pg2(mrioc, drvr_page2, pg_sz, page_action);
640 	if (retval) {
641 		dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
642 		kfree(drvr_page2);
643 		goto out;
644 	}
645 	spin_lock_irqsave(&mrioc->trigger_lock, flags);
646 	kfree(mrioc->driver_pg2);
647 	mrioc->driver_pg2 = drvr_page2;
648 	mrioc->reply_trigger_present = false;
649 	mrioc->event_trigger_present = false;
650 	mrioc->scsisense_trigger_present = false;
651 
652 	for (i = 0; (i < mrioc->driver_pg2->num_triggers); i++) {
653 		trigger_type = mrioc->driver_pg2->trigger[i].event.type;
654 		switch (trigger_type) {
655 		case MPI3_DRIVER2_TRIGGER_TYPE_REPLY:
656 			mrioc->reply_trigger_present = true;
657 			break;
658 		case MPI3_DRIVER2_TRIGGER_TYPE_EVENT:
659 			mrioc->event_trigger_present = true;
660 			break;
661 		case MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE:
662 			mrioc->scsisense_trigger_present = true;
663 			break;
664 		default:
665 			break;
666 		}
667 	}
668 	spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
669 out:
670 	return retval;
671 }
672 
673 /**
674  * mpi3mr_release_diag_bufs - Release diag buffers
675  * @mrioc: Adapter instance reference
676  * @skip_rel_action: Skip release action and set buffer state
677  *
678  * This function calls helper function to release both trace and
679  * firmware buffers from the controller.
680  *
681  * Return: None
682  */
683 void mpi3mr_release_diag_bufs(struct mpi3mr_ioc *mrioc, u8 skip_rel_action)
684 {
685 	u8 i;
686 	struct diag_buffer_desc *diag_buffer;
687 
688 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
689 		diag_buffer = &mrioc->diag_buffers[i];
690 		if (!(diag_buffer->addr))
691 			continue;
692 		if (diag_buffer->status == MPI3MR_HDB_BUFSTATUS_RELEASED)
693 			continue;
694 		if (!skip_rel_action)
695 			mpi3mr_issue_diag_buf_release(mrioc, diag_buffer);
696 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
697 		atomic64_inc(&event_counter);
698 	}
699 }
700 
701 /**
702  * mpi3mr_set_trigger_data_in_hdb - Updates HDB trigger type and
703  * trigger data
704  *
705  * @hdb: HDB pointer
706  * @type: Trigger type
707  * @data: Trigger data
708  * @force: Trigger overwrite flag
709  * @trigger_data: Pointer to trigger data information
710  *
711  * Updates trigger type and trigger data based on parameter
712  * passed to this function
713  *
714  * Return: Nothing
715  */
716 void mpi3mr_set_trigger_data_in_hdb(struct diag_buffer_desc *hdb,
717 	u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
718 {
719 	if ((!force) && (hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN))
720 		return;
721 	hdb->trigger_type = type;
722 	if (!trigger_data)
723 		memset(&hdb->trigger_data, 0, sizeof(*trigger_data));
724 	else
725 		memcpy(&hdb->trigger_data, trigger_data, sizeof(*trigger_data));
726 }
727 
728 /**
729  * mpi3mr_set_trigger_data_in_all_hdb - Updates HDB trigger type
730  * and trigger data for all HDB
731  *
732  * @mrioc: Adapter instance reference
733  * @type: Trigger type
734  * @data: Trigger data
735  * @force: Trigger overwrite flag
736  * @trigger_data: Pointer to trigger data information
737  *
738  * Updates trigger type and trigger data based on parameter
739  * passed to this function
740  *
741  * Return: Nothing
742  */
743 void mpi3mr_set_trigger_data_in_all_hdb(struct mpi3mr_ioc *mrioc,
744 	u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
745 {
746 	struct diag_buffer_desc *hdb = NULL;
747 
748 	hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE);
749 	if (hdb)
750 		mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
751 	hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
752 	if (hdb)
753 		mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
754 }
755 
756 /**
757  * mpi3mr_hdbstatuschg_evt_th - HDB status change evt tophalf
758  * @mrioc: Adapter instance reference
759  * @event_reply: event data
760  *
761  * Modifies the status of the applicable diag buffer descriptors
762  *
763  * Return: Nothing
764  */
765 void mpi3mr_hdbstatuschg_evt_th(struct mpi3mr_ioc *mrioc,
766 	struct mpi3_event_notification_reply *event_reply)
767 {
768 	struct mpi3_event_data_diag_buffer_status_change *evtdata;
769 	struct diag_buffer_desc *diag_buffer;
770 
771 	evtdata = (struct mpi3_event_data_diag_buffer_status_change *)
772 	    event_reply->event_data;
773 
774 	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, evtdata->type);
775 	if (!diag_buffer)
776 		return;
777 	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
778 	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
779 		return;
780 	switch (evtdata->reason_code) {
781 	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RELEASED:
782 	{
783 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
784 		mpi3mr_set_trigger_data_in_hdb(diag_buffer,
785 		    MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
786 		atomic64_inc(&event_counter);
787 		break;
788 	}
789 	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RESUMED:
790 	{
791 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
792 		break;
793 	}
794 	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_PAUSED:
795 	{
796 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED;
797 		break;
798 	}
799 	default:
800 		dprint_event_th(mrioc, "%s: unknown reason_code(%d)\n",
801 		    __func__, evtdata->reason_code);
802 		break;
803 	}
804 }
805 
806 /**
807  * mpi3mr_diag_buffer_for_type - returns buffer desc for type
808  * @mrioc: Adapter instance reference
809  * @buf_type: Diagnostic buffer type
810  *
811  * Identifies matching diag descriptor from mrioc for given diag
812  * buffer type.
813  *
814  * Return: diag buffer descriptor on success, NULL on failures.
815  */
816 
817 struct diag_buffer_desc *
818 mpi3mr_diag_buffer_for_type(struct mpi3mr_ioc *mrioc, u8 buf_type)
819 {
820 	u8 i;
821 
822 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
823 		if (mrioc->diag_buffers[i].type == buf_type)
824 			return &mrioc->diag_buffers[i];
825 	}
826 	return NULL;
827 }
828 
829 /**
830  * mpi3mr_bsg_pel_abort - sends PEL abort request
831  * @mrioc: Adapter instance reference
832  *
833  * This function sends PEL abort request to the firmware through
834  * admin request queue.
835  *
836  * Return: 0 on success, -1 on failure
837  */
838 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
839 {
840 	struct mpi3_pel_req_action_abort pel_abort_req;
841 	struct mpi3_pel_reply *pel_reply;
842 	int retval = 0;
843 	u16 pe_log_status;
844 
845 	if (mrioc->reset_in_progress) {
846 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
847 		return -1;
848 	}
849 	if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
850 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
851 		return -1;
852 	}
853 
854 	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
855 	mutex_lock(&mrioc->pel_abort_cmd.mutex);
856 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
857 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
858 		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
859 		return -1;
860 	}
861 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
862 	mrioc->pel_abort_cmd.is_waiting = 1;
863 	mrioc->pel_abort_cmd.callback = NULL;
864 	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
865 	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
866 	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
867 	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
868 
869 	mrioc->pel_abort_requested = 1;
870 	init_completion(&mrioc->pel_abort_cmd.done);
871 	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
872 	    sizeof(pel_abort_req), 0);
873 	if (retval) {
874 		retval = -1;
875 		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
876 		    __func__);
877 		mrioc->pel_abort_requested = 0;
878 		goto out_unlock;
879 	}
880 
881 	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
882 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
883 	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
884 		mrioc->pel_abort_cmd.is_waiting = 0;
885 		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
886 		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
887 			mpi3mr_soft_reset_handler(mrioc,
888 			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
889 		retval = -1;
890 		goto out_unlock;
891 	}
892 	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
893 	     != MPI3_IOCSTATUS_SUCCESS) {
894 		dprint_bsg_err(mrioc,
895 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
896 		    __func__, (mrioc->pel_abort_cmd.ioc_status &
897 		    MPI3_IOCSTATUS_STATUS_MASK),
898 		    mrioc->pel_abort_cmd.ioc_loginfo);
899 		retval = -1;
900 		goto out_unlock;
901 	}
902 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
903 		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
904 		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
905 		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
906 			dprint_bsg_err(mrioc,
907 			    "%s: command failed, pel_status(0x%04x)\n",
908 			    __func__, pe_log_status);
909 			retval = -1;
910 		}
911 	}
912 
913 out_unlock:
914 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
915 	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
916 	return retval;
917 }
918 /**
919  * mpi3mr_bsg_verify_adapter - verify adapter number is valid
920  * @ioc_number: Adapter number
921  *
922  * This function returns the adapter instance pointer of given
923  * adapter number. If adapter number does not match with the
924  * driver's adapter list, driver returns NULL.
925  *
926  * Return: adapter instance reference
927  */
928 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
929 {
930 	struct mpi3mr_ioc *mrioc = NULL;
931 
932 	spin_lock(&mrioc_list_lock);
933 	list_for_each_entry(mrioc, &mrioc_list, list) {
934 		if (mrioc->id == ioc_number) {
935 			spin_unlock(&mrioc_list_lock);
936 			return mrioc;
937 		}
938 	}
939 	spin_unlock(&mrioc_list_lock);
940 	return NULL;
941 }
942 
943 /**
944  * mpi3mr_bsg_refresh_hdb_triggers - Refresh HDB trigger data
945  * @mrioc: Adapter instance reference
946  * @job: BSG Job pointer
947  *
948  * This function reads the controller trigger config page as
949  * defined by the input page type and refreshes the driver's
950  * local trigger information structures with the controller's
951  * config page data.
952  *
953  * Return: 0 on success and proper error codes on failure
954  */
955 static long
956 mpi3mr_bsg_refresh_hdb_triggers(struct mpi3mr_ioc *mrioc,
957 				struct bsg_job *job)
958 {
959 	struct mpi3mr_bsg_out_refresh_hdb_triggers refresh_triggers;
960 	uint32_t data_out_sz;
961 	u8 page_action;
962 	long rval = -EINVAL;
963 
964 	data_out_sz = job->request_payload.payload_len;
965 
966 	if (data_out_sz != sizeof(refresh_triggers)) {
967 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
968 		    __func__);
969 		return rval;
970 	}
971 
972 	if (mrioc->unrecoverable) {
973 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
974 		    __func__);
975 		return -EFAULT;
976 	}
977 	if (mrioc->reset_in_progress) {
978 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
979 		return -EAGAIN;
980 	}
981 
982 	sg_copy_to_buffer(job->request_payload.sg_list,
983 	    job->request_payload.sg_cnt,
984 	    &refresh_triggers, sizeof(refresh_triggers));
985 
986 	switch (refresh_triggers.page_type) {
987 	case MPI3MR_HDB_REFRESH_TYPE_CURRENT:
988 		page_action = MPI3_CONFIG_ACTION_READ_CURRENT;
989 		break;
990 	case MPI3MR_HDB_REFRESH_TYPE_DEFAULT:
991 		page_action = MPI3_CONFIG_ACTION_READ_DEFAULT;
992 		break;
993 	case MPI3MR_HDB_HDB_REFRESH_TYPE_PERSISTENT:
994 		page_action = MPI3_CONFIG_ACTION_READ_PERSISTENT;
995 		break;
996 	default:
997 		dprint_bsg_err(mrioc,
998 		    "%s: unsupported refresh trigger, page_type %d\n",
999 		    __func__, refresh_triggers.page_type);
1000 		return rval;
1001 	}
1002 	rval = mpi3mr_refresh_trigger(mrioc, page_action);
1003 
1004 	return rval;
1005 }
1006 
1007 /**
1008  * mpi3mr_bsg_upload_hdb - Upload a specific HDB to user space
1009  * @mrioc: Adapter instance reference
1010  * @job: BSG Job pointer
1011  *
1012  * Return: 0 on success and proper error codes on failure
1013  */
1014 static long mpi3mr_bsg_upload_hdb(struct mpi3mr_ioc *mrioc,
1015 				  struct bsg_job *job)
1016 {
1017 	struct mpi3mr_bsg_out_upload_hdb upload_hdb;
1018 	struct diag_buffer_desc *diag_buffer;
1019 	uint32_t data_out_size;
1020 	uint32_t data_in_size;
1021 
1022 	data_out_size = job->request_payload.payload_len;
1023 	data_in_size = job->reply_payload.payload_len;
1024 
1025 	if (data_out_size != sizeof(upload_hdb)) {
1026 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1027 		    __func__);
1028 		return -EINVAL;
1029 	}
1030 
1031 	sg_copy_to_buffer(job->request_payload.sg_list,
1032 			  job->request_payload.sg_cnt,
1033 			  &upload_hdb, sizeof(upload_hdb));
1034 
1035 	if ((!upload_hdb.length) || (data_in_size != upload_hdb.length)) {
1036 		dprint_bsg_err(mrioc, "%s: invalid length argument\n",
1037 		    __func__);
1038 		return -EINVAL;
1039 	}
1040 	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, upload_hdb.buf_type);
1041 	if ((!diag_buffer) || (!diag_buffer->addr)) {
1042 		dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1043 		    __func__, upload_hdb.buf_type);
1044 		return -EINVAL;
1045 	}
1046 
1047 	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) &&
1048 	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) {
1049 		dprint_bsg_err(mrioc,
1050 		    "%s: invalid buffer status %d for type %d\n",
1051 		    __func__, diag_buffer->status, upload_hdb.buf_type);
1052 		return -EINVAL;
1053 	}
1054 
1055 	if ((upload_hdb.start_offset + upload_hdb.length) > diag_buffer->size) {
1056 		dprint_bsg_err(mrioc,
1057 		    "%s: invalid start offset %d, length %d for type %d\n",
1058 		    __func__, upload_hdb.start_offset, upload_hdb.length,
1059 		    upload_hdb.buf_type);
1060 		return -EINVAL;
1061 	}
1062 	sg_copy_from_buffer(job->reply_payload.sg_list,
1063 			    job->reply_payload.sg_cnt,
1064 	    (diag_buffer->addr + upload_hdb.start_offset),
1065 	    data_in_size);
1066 	return 0;
1067 }
1068 
1069 /**
1070  * mpi3mr_bsg_repost_hdb - Re-post HDB
1071  * @mrioc: Adapter instance reference
1072  * @job: BSG job pointer
1073  *
1074  * This function retrieves the HDB descriptor corresponding to a
1075  * given buffer type and if the HDB is in released status then
1076  * posts the HDB with the firmware.
1077  *
1078  * Return: 0 on success and proper error codes on failure
1079  */
1080 static long mpi3mr_bsg_repost_hdb(struct mpi3mr_ioc *mrioc,
1081 				  struct bsg_job *job)
1082 {
1083 	struct mpi3mr_bsg_out_repost_hdb repost_hdb;
1084 	struct diag_buffer_desc *diag_buffer;
1085 	uint32_t data_out_sz;
1086 
1087 	data_out_sz = job->request_payload.payload_len;
1088 
1089 	if (data_out_sz != sizeof(repost_hdb)) {
1090 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1091 		    __func__);
1092 		return -EINVAL;
1093 	}
1094 	if (mrioc->unrecoverable) {
1095 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1096 		    __func__);
1097 		return -EFAULT;
1098 	}
1099 	if (mrioc->reset_in_progress) {
1100 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1101 		return -EAGAIN;
1102 	}
1103 
1104 	sg_copy_to_buffer(job->request_payload.sg_list,
1105 			  job->request_payload.sg_cnt,
1106 			  &repost_hdb, sizeof(repost_hdb));
1107 
1108 	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, repost_hdb.buf_type);
1109 	if ((!diag_buffer) || (!diag_buffer->addr)) {
1110 		dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1111 		    __func__, repost_hdb.buf_type);
1112 		return -EINVAL;
1113 	}
1114 
1115 	if (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) {
1116 		dprint_bsg_err(mrioc,
1117 		    "%s: invalid buffer status %d for type %d\n",
1118 		    __func__, diag_buffer->status, repost_hdb.buf_type);
1119 		return -EINVAL;
1120 	}
1121 
1122 	if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) {
1123 		dprint_bsg_err(mrioc, "%s: post failed for type %d\n",
1124 		    __func__, repost_hdb.buf_type);
1125 		return -EFAULT;
1126 	}
1127 	mpi3mr_set_trigger_data_in_hdb(diag_buffer,
1128 	    MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  * mpi3mr_bsg_query_hdb - Handler for query HDB command
1135  * @mrioc: Adapter instance reference
1136  * @job: BSG job pointer
1137  *
1138  * This function prepares and copies the host diagnostic buffer
1139  * entries to the user buffer.
1140  *
1141  * Return: 0 on success and proper error codes on failure
1142  */
1143 static long mpi3mr_bsg_query_hdb(struct mpi3mr_ioc *mrioc,
1144 				 struct bsg_job *job)
1145 {
1146 	long rval = 0;
1147 	struct mpi3mr_bsg_in_hdb_status *hbd_status;
1148 	struct mpi3mr_hdb_entry *hbd_status_entry;
1149 	u32 length, min_length;
1150 	u8 i;
1151 	struct diag_buffer_desc *diag_buffer;
1152 	uint32_t data_in_sz = 0;
1153 
1154 	data_in_sz = job->request_payload.payload_len;
1155 
1156 	length = (sizeof(*hbd_status) + ((MPI3MR_MAX_NUM_HDB - 1) *
1157 		    sizeof(*hbd_status_entry)));
1158 	hbd_status = kmalloc(length, GFP_KERNEL);
1159 	if (!hbd_status)
1160 		return -ENOMEM;
1161 	hbd_status_entry = &hbd_status->entry[0];
1162 
1163 	hbd_status->num_hdb_types = MPI3MR_MAX_NUM_HDB;
1164 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
1165 		diag_buffer = &mrioc->diag_buffers[i];
1166 		hbd_status_entry->buf_type = diag_buffer->type;
1167 		hbd_status_entry->status = diag_buffer->status;
1168 		hbd_status_entry->trigger_type = diag_buffer->trigger_type;
1169 		memcpy(&hbd_status_entry->trigger_data,
1170 		    &diag_buffer->trigger_data,
1171 		    sizeof(hbd_status_entry->trigger_data));
1172 		hbd_status_entry->size = (diag_buffer->size / 1024);
1173 		hbd_status_entry++;
1174 	}
1175 	hbd_status->element_trigger_format =
1176 		MPI3MR_HDB_QUERY_ELEMENT_TRIGGER_FORMAT_DATA;
1177 
1178 	if (data_in_sz < 4) {
1179 		dprint_bsg_err(mrioc, "%s: invalid size passed\n", __func__);
1180 		rval = -EINVAL;
1181 		goto out;
1182 	}
1183 	min_length = min(data_in_sz, length);
1184 	if (job->request_payload.payload_len >= min_length) {
1185 		sg_copy_from_buffer(job->request_payload.sg_list,
1186 				    job->request_payload.sg_cnt,
1187 				    hbd_status, min_length);
1188 		rval = 0;
1189 	}
1190 out:
1191 	kfree(hbd_status);
1192 	return rval;
1193 }
1194 
1195 
1196 /**
1197  * mpi3mr_enable_logdata - Handler for log data enable
1198  * @mrioc: Adapter instance reference
1199  * @job: BSG job reference
1200  *
1201  * This function enables log data caching in the driver if not
1202  * already enabled and return the maximum number of log data
1203  * entries that can be cached in the driver.
1204  *
1205  * Return: 0 on success and proper error codes on failure
1206  */
1207 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
1208 	struct bsg_job *job)
1209 {
1210 	struct mpi3mr_logdata_enable logdata_enable;
1211 
1212 	if (!mrioc->logdata_buf) {
1213 		mrioc->logdata_entry_sz =
1214 		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
1215 		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
1216 		mrioc->logdata_buf_idx = 0;
1217 		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
1218 		    mrioc->logdata_entry_sz, GFP_KERNEL);
1219 
1220 		if (!mrioc->logdata_buf)
1221 			return -ENOMEM;
1222 	}
1223 
1224 	memset(&logdata_enable, 0, sizeof(logdata_enable));
1225 	logdata_enable.max_entries =
1226 	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1227 	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
1228 		sg_copy_from_buffer(job->request_payload.sg_list,
1229 				    job->request_payload.sg_cnt,
1230 				    &logdata_enable, sizeof(logdata_enable));
1231 		return 0;
1232 	}
1233 
1234 	return -EINVAL;
1235 }
1236 /**
1237  * mpi3mr_get_logdata - Handler for get log data
1238  * @mrioc: Adapter instance reference
1239  * @job: BSG job pointer
1240  * This function copies the log data entries to the user buffer
1241  * when log caching is enabled in the driver.
1242  *
1243  * Return: 0 on success and proper error codes on failure
1244  */
1245 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
1246 	struct bsg_job *job)
1247 {
1248 	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
1249 
1250 	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
1251 		return -EINVAL;
1252 
1253 	num_entries = job->request_payload.payload_len / entry_sz;
1254 	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
1255 		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1256 	sz = num_entries * entry_sz;
1257 
1258 	if (job->request_payload.payload_len >= sz) {
1259 		sg_copy_from_buffer(job->request_payload.sg_list,
1260 				    job->request_payload.sg_cnt,
1261 				    mrioc->logdata_buf, sz);
1262 		return 0;
1263 	}
1264 	return -EINVAL;
1265 }
1266 
1267 /**
1268  * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
1269  * @mrioc: Adapter instance reference
1270  * @job: BSG job pointer
1271  *
1272  * This function is the handler for PEL enable driver.
1273  * Validates the application given class and locale and if
1274  * requires aborts the existing PEL wait request and/or issues
1275  * new PEL wait request to the firmware and returns.
1276  *
1277  * Return: 0 on success and proper error codes on failure.
1278  */
1279 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
1280 				  struct bsg_job *job)
1281 {
1282 	long rval = -EINVAL;
1283 	struct mpi3mr_bsg_out_pel_enable pel_enable;
1284 	u8 issue_pel_wait;
1285 	u8 tmp_class;
1286 	u16 tmp_locale;
1287 
1288 	if (job->request_payload.payload_len != sizeof(pel_enable)) {
1289 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1290 		    __func__);
1291 		return rval;
1292 	}
1293 
1294 	if (mrioc->unrecoverable) {
1295 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1296 			       __func__);
1297 		return -EFAULT;
1298 	}
1299 
1300 	if (mrioc->reset_in_progress) {
1301 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	if (mrioc->stop_bsgs) {
1306 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1307 		return -EAGAIN;
1308 	}
1309 
1310 	sg_copy_to_buffer(job->request_payload.sg_list,
1311 			  job->request_payload.sg_cnt,
1312 			  &pel_enable, sizeof(pel_enable));
1313 
1314 	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
1315 		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
1316 			__func__, pel_enable.pel_class);
1317 		rval = 0;
1318 		goto out;
1319 	}
1320 	if (!mrioc->pel_enabled)
1321 		issue_pel_wait = 1;
1322 	else {
1323 		if ((mrioc->pel_class <= pel_enable.pel_class) &&
1324 		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
1325 		      pel_enable.pel_locale)) {
1326 			issue_pel_wait = 0;
1327 			rval = 0;
1328 		} else {
1329 			pel_enable.pel_locale |= mrioc->pel_locale;
1330 
1331 			if (mrioc->pel_class < pel_enable.pel_class)
1332 				pel_enable.pel_class = mrioc->pel_class;
1333 
1334 			rval = mpi3mr_bsg_pel_abort(mrioc);
1335 			if (rval) {
1336 				dprint_bsg_err(mrioc,
1337 				    "%s: pel_abort failed, status(%ld)\n",
1338 				    __func__, rval);
1339 				goto out;
1340 			}
1341 			issue_pel_wait = 1;
1342 		}
1343 	}
1344 	if (issue_pel_wait) {
1345 		tmp_class = mrioc->pel_class;
1346 		tmp_locale = mrioc->pel_locale;
1347 		mrioc->pel_class = pel_enable.pel_class;
1348 		mrioc->pel_locale = pel_enable.pel_locale;
1349 		mrioc->pel_enabled = 1;
1350 		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
1351 		if (rval) {
1352 			mrioc->pel_class = tmp_class;
1353 			mrioc->pel_locale = tmp_locale;
1354 			mrioc->pel_enabled = 0;
1355 			dprint_bsg_err(mrioc,
1356 			    "%s: pel get sequence number failed, status(%ld)\n",
1357 			    __func__, rval);
1358 		}
1359 	}
1360 
1361 out:
1362 	return rval;
1363 }
1364 /**
1365  * mpi3mr_get_all_tgt_info - Get all target information
1366  * @mrioc: Adapter instance reference
1367  * @job: BSG job reference
1368  *
1369  * This function copies the driver managed target devices device
1370  * handle, persistent ID, bus ID and taret ID to the user
1371  * provided buffer for the specific controller. This function
1372  * also provides the number of devices managed by the driver for
1373  * the specific controller.
1374  *
1375  * Return: 0 on success and proper error codes on failure
1376  */
1377 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
1378 	struct bsg_job *job)
1379 {
1380 	u16 num_devices = 0, i = 0, size;
1381 	unsigned long flags;
1382 	struct mpi3mr_tgt_dev *tgtdev;
1383 	struct mpi3mr_device_map_info *devmap_info = NULL;
1384 	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
1385 	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
1386 
1387 	if (job->request_payload.payload_len < sizeof(u32)) {
1388 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1389 		    __func__);
1390 		return -EINVAL;
1391 	}
1392 
1393 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1394 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
1395 		num_devices++;
1396 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1397 
1398 	if ((job->request_payload.payload_len <= sizeof(u64)) ||
1399 		list_empty(&mrioc->tgtdev_list)) {
1400 		sg_copy_from_buffer(job->request_payload.sg_list,
1401 				    job->request_payload.sg_cnt,
1402 				    &num_devices, sizeof(num_devices));
1403 		return 0;
1404 	}
1405 
1406 	kern_entrylen = num_devices * sizeof(*devmap_info);
1407 	size = sizeof(u64) + kern_entrylen;
1408 	alltgt_info = kzalloc(size, GFP_KERNEL);
1409 	if (!alltgt_info)
1410 		return -ENOMEM;
1411 
1412 	devmap_info = alltgt_info->dmi;
1413 	memset((u8 *)devmap_info, 0xFF, kern_entrylen);
1414 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1415 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
1416 		if (i < num_devices) {
1417 			devmap_info[i].handle = tgtdev->dev_handle;
1418 			devmap_info[i].perst_id = tgtdev->perst_id;
1419 			if (tgtdev->host_exposed && tgtdev->starget) {
1420 				devmap_info[i].target_id = tgtdev->starget->id;
1421 				devmap_info[i].bus_id =
1422 				    tgtdev->starget->channel;
1423 			}
1424 			i++;
1425 		}
1426 	}
1427 	num_devices = i;
1428 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1429 
1430 	alltgt_info->num_devices = num_devices;
1431 
1432 	usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
1433 		sizeof(*devmap_info);
1434 	usr_entrylen *= sizeof(*devmap_info);
1435 	min_entrylen = min(usr_entrylen, kern_entrylen);
1436 
1437 	sg_copy_from_buffer(job->request_payload.sg_list,
1438 			    job->request_payload.sg_cnt,
1439 			    alltgt_info, (min_entrylen + sizeof(u64)));
1440 	kfree(alltgt_info);
1441 	return 0;
1442 }
1443 /**
1444  * mpi3mr_get_change_count - Get topology change count
1445  * @mrioc: Adapter instance reference
1446  * @job: BSG job reference
1447  *
1448  * This function copies the toplogy change count provided by the
1449  * driver in events and cached in the driver to the user
1450  * provided buffer for the specific controller.
1451  *
1452  * Return: 0 on success and proper error codes on failure
1453  */
1454 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
1455 	struct bsg_job *job)
1456 {
1457 	struct mpi3mr_change_count chgcnt;
1458 
1459 	memset(&chgcnt, 0, sizeof(chgcnt));
1460 	chgcnt.change_count = mrioc->change_count;
1461 	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
1462 		sg_copy_from_buffer(job->request_payload.sg_list,
1463 				    job->request_payload.sg_cnt,
1464 				    &chgcnt, sizeof(chgcnt));
1465 		return 0;
1466 	}
1467 	return -EINVAL;
1468 }
1469 
1470 /**
1471  * mpi3mr_bsg_adp_reset - Issue controller reset
1472  * @mrioc: Adapter instance reference
1473  * @job: BSG job reference
1474  *
1475  * This function identifies the user provided reset type and
1476  * issues approporiate reset to the controller and wait for that
1477  * to complete and reinitialize the controller and then returns
1478  *
1479  * Return: 0 on success and proper error codes on failure
1480  */
1481 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
1482 	struct bsg_job *job)
1483 {
1484 	long rval = -EINVAL;
1485 	u8 save_snapdump;
1486 	struct mpi3mr_bsg_adp_reset adpreset;
1487 
1488 	if (job->request_payload.payload_len !=
1489 			sizeof(adpreset)) {
1490 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1491 		    __func__);
1492 		goto out;
1493 	}
1494 
1495 	if (mrioc->unrecoverable || mrioc->block_on_pci_err)
1496 		return -EINVAL;
1497 
1498 	sg_copy_to_buffer(job->request_payload.sg_list,
1499 			  job->request_payload.sg_cnt,
1500 			  &adpreset, sizeof(adpreset));
1501 
1502 	switch (adpreset.reset_type) {
1503 	case MPI3MR_BSG_ADPRESET_SOFT:
1504 		save_snapdump = 0;
1505 		break;
1506 	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
1507 		save_snapdump = 1;
1508 		break;
1509 	default:
1510 		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
1511 		    __func__, adpreset.reset_type);
1512 		goto out;
1513 	}
1514 
1515 	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
1516 	    save_snapdump);
1517 
1518 	if (rval)
1519 		dprint_bsg_err(mrioc,
1520 		    "%s: reset handler returned error(%ld) for reset type %d\n",
1521 		    __func__, rval, adpreset.reset_type);
1522 out:
1523 	return rval;
1524 }
1525 
1526 /**
1527  * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
1528  * @mrioc: Adapter instance reference
1529  * @job: BSG job reference
1530  *
1531  * This function provides adapter information for the given
1532  * controller
1533  *
1534  * Return: 0 on success and proper error codes on failure
1535  */
1536 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
1537 	struct bsg_job *job)
1538 {
1539 	enum mpi3mr_iocstate ioc_state;
1540 	struct mpi3mr_bsg_in_adpinfo adpinfo;
1541 
1542 	memset(&adpinfo, 0, sizeof(adpinfo));
1543 	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
1544 	adpinfo.pci_dev_id = mrioc->pdev->device;
1545 	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
1546 	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
1547 	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
1548 	adpinfo.pci_bus = mrioc->pdev->bus->number;
1549 	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
1550 	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
1551 	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
1552 	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
1553 
1554 	ioc_state = mpi3mr_get_iocstate(mrioc);
1555 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1556 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1557 	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1558 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1559 	else if (ioc_state == MRIOC_STATE_FAULT)
1560 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1561 	else
1562 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1563 
1564 	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
1565 	    sizeof(adpinfo.driver_info));
1566 
1567 	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
1568 		sg_copy_from_buffer(job->request_payload.sg_list,
1569 				    job->request_payload.sg_cnt,
1570 				    &adpinfo, sizeof(adpinfo));
1571 		return 0;
1572 	}
1573 	return -EINVAL;
1574 }
1575 
1576 /**
1577  * mpi3mr_bsg_process_drv_cmds - Driver Command handler
1578  * @job: BSG job reference
1579  *
1580  * This function is the top level handler for driver commands,
1581  * this does basic validation of the buffer and identifies the
1582  * opcode and switches to correct sub handler.
1583  *
1584  * Return: 0 on success and proper error codes on failure
1585  */
1586 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
1587 {
1588 	long rval = -EINVAL;
1589 	struct mpi3mr_ioc *mrioc = NULL;
1590 	struct mpi3mr_bsg_packet *bsg_req = NULL;
1591 	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
1592 
1593 	bsg_req = job->request;
1594 	drvrcmd = &bsg_req->cmd.drvrcmd;
1595 
1596 	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
1597 	if (!mrioc)
1598 		return -ENODEV;
1599 
1600 	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
1601 		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
1602 		return rval;
1603 	}
1604 
1605 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
1606 		return -ERESTARTSYS;
1607 
1608 	switch (drvrcmd->opcode) {
1609 	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
1610 		rval = mpi3mr_bsg_adp_reset(mrioc, job);
1611 		break;
1612 	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
1613 		rval = mpi3mr_get_all_tgt_info(mrioc, job);
1614 		break;
1615 	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
1616 		rval = mpi3mr_get_change_count(mrioc, job);
1617 		break;
1618 	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
1619 		rval = mpi3mr_enable_logdata(mrioc, job);
1620 		break;
1621 	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
1622 		rval = mpi3mr_get_logdata(mrioc, job);
1623 		break;
1624 	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
1625 		rval = mpi3mr_bsg_pel_enable(mrioc, job);
1626 		break;
1627 	case MPI3MR_DRVBSG_OPCODE_QUERY_HDB:
1628 		rval = mpi3mr_bsg_query_hdb(mrioc, job);
1629 		break;
1630 	case MPI3MR_DRVBSG_OPCODE_REPOST_HDB:
1631 		rval = mpi3mr_bsg_repost_hdb(mrioc, job);
1632 		break;
1633 	case MPI3MR_DRVBSG_OPCODE_UPLOAD_HDB:
1634 		rval = mpi3mr_bsg_upload_hdb(mrioc, job);
1635 		break;
1636 	case MPI3MR_DRVBSG_OPCODE_REFRESH_HDB_TRIGGERS:
1637 		rval = mpi3mr_bsg_refresh_hdb_triggers(mrioc, job);
1638 		break;
1639 	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
1640 	default:
1641 		pr_err("%s: unsupported driver command opcode %d\n",
1642 		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
1643 		break;
1644 	}
1645 	mutex_unlock(&mrioc->bsg_cmds.mutex);
1646 	return rval;
1647 }
1648 
1649 /**
1650  * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
1651  * @drv_bufs: DMA address of the buffers to be placed in sgl
1652  * @bufcnt: Number of DMA buffers
1653  *
1654  * This function returns total number of data SGEs required
1655  * including zero length SGEs and excluding management request
1656  * and response buffer for the given list of data buffer
1657  * descriptors
1658  *
1659  * Return: Number of SGE elements needed
1660  */
1661 static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
1662 					      u8 bufcnt)
1663 {
1664 	u16 i, sge_count = 0;
1665 
1666 	for (i = 0; i < bufcnt; i++, drv_bufs++) {
1667 		if (drv_bufs->data_dir == DMA_NONE ||
1668 		    drv_bufs->kern_buf)
1669 			continue;
1670 		sge_count += drv_bufs->num_dma_desc;
1671 		if (!drv_bufs->num_dma_desc)
1672 			sge_count++;
1673 	}
1674 	return sge_count;
1675 }
1676 
1677 /**
1678  * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
1679  * @mrioc: Adapter instance reference
1680  * @mpi_req: MPI request
1681  * @sgl_offset: offset to start sgl in the MPI request
1682  * @drv_bufs: DMA address of the buffers to be placed in sgl
1683  * @bufcnt: Number of DMA buffers
1684  * @is_rmc: Does the buffer list has management command buffer
1685  * @is_rmr: Does the buffer list has management response buffer
1686  * @num_datasges: Number of data buffers in the list
1687  *
1688  * This function places the DMA address of the given buffers in
1689  * proper format as SGEs in the given MPI request.
1690  *
1691  * Return: 0 on success,-1 on failure
1692  */
1693 static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
1694 				u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
1695 				u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
1696 {
1697 	struct mpi3_request_header *mpi_header =
1698 		(struct mpi3_request_header *)mpi_req;
1699 	u8 *sgl = (mpi_req + sgl_offset), count = 0;
1700 	struct mpi3_mgmt_passthrough_request *rmgmt_req =
1701 	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
1702 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1703 	u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
1704 	u16 available_sges, i, sges_needed;
1705 	u32 sge_element_size = sizeof(struct mpi3_sge_common);
1706 	bool chain_used = false;
1707 
1708 	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
1709 		MPI3_SGE_FLAGS_DLAS_SYSTEM;
1710 	sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
1711 	sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
1712 	last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
1713 	    MPI3_SGE_FLAGS_DLAS_SYSTEM;
1714 
1715 	sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
1716 
1717 	if (is_rmc) {
1718 		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
1719 		    sgl_flags_last, drv_buf_iter->kern_buf_len,
1720 		    drv_buf_iter->kern_buf_dma);
1721 		sgl = (u8 *)drv_buf_iter->kern_buf +
1722 			drv_buf_iter->bsg_buf_len;
1723 		available_sges = (drv_buf_iter->kern_buf_len -
1724 		    drv_buf_iter->bsg_buf_len) / sge_element_size;
1725 
1726 		if (sges_needed > available_sges)
1727 			return -1;
1728 
1729 		chain_used = true;
1730 		drv_buf_iter++;
1731 		count++;
1732 		if (is_rmr) {
1733 			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
1734 			    sgl_flags_last, drv_buf_iter->kern_buf_len,
1735 			    drv_buf_iter->kern_buf_dma);
1736 			drv_buf_iter++;
1737 			count++;
1738 		} else
1739 			mpi3mr_build_zero_len_sge(
1740 			    &rmgmt_req->response_sgl);
1741 		if (num_datasges) {
1742 			i = 0;
1743 			goto build_sges;
1744 		}
1745 	} else {
1746 		if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
1747 			return -1;
1748 		available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
1749 		sge_element_size;
1750 		if (!available_sges)
1751 			return -1;
1752 	}
1753 	if (!num_datasges) {
1754 		mpi3mr_build_zero_len_sge(sgl);
1755 		return 0;
1756 	}
1757 	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1758 		if ((sges_needed > 2) || (sges_needed > available_sges))
1759 			return -1;
1760 		for (; count < bufcnt; count++, drv_buf_iter++) {
1761 			if (drv_buf_iter->data_dir == DMA_NONE ||
1762 			    !drv_buf_iter->num_dma_desc)
1763 				continue;
1764 			mpi3mr_add_sg_single(sgl, sgl_flags_last,
1765 					     drv_buf_iter->dma_desc[0].size,
1766 					     drv_buf_iter->dma_desc[0].dma_addr);
1767 			sgl += sge_element_size;
1768 		}
1769 		return 0;
1770 	}
1771 	i = 0;
1772 
1773 build_sges:
1774 	for (; count < bufcnt; count++, drv_buf_iter++) {
1775 		if (drv_buf_iter->data_dir == DMA_NONE)
1776 			continue;
1777 		if (!drv_buf_iter->num_dma_desc) {
1778 			if (chain_used && !available_sges)
1779 				return -1;
1780 			if (!chain_used && (available_sges == 1) &&
1781 			    (sges_needed > 1))
1782 				goto setup_chain;
1783 			flag = sgl_flag_eob;
1784 			if (num_datasges == 1)
1785 				flag = sgl_flags_last;
1786 			mpi3mr_add_sg_single(sgl, flag, 0, 0);
1787 			sgl += sge_element_size;
1788 			sges_needed--;
1789 			available_sges--;
1790 			num_datasges--;
1791 			continue;
1792 		}
1793 		for (; i < drv_buf_iter->num_dma_desc; i++) {
1794 			if (chain_used && !available_sges)
1795 				return -1;
1796 			if (!chain_used && (available_sges == 1) &&
1797 			    (sges_needed > 1))
1798 				goto setup_chain;
1799 			flag = sgl_flags;
1800 			if (i == (drv_buf_iter->num_dma_desc - 1)) {
1801 				if (num_datasges == 1)
1802 					flag = sgl_flags_last;
1803 				else
1804 					flag = sgl_flag_eob;
1805 			}
1806 
1807 			mpi3mr_add_sg_single(sgl, flag,
1808 					     drv_buf_iter->dma_desc[i].size,
1809 					     drv_buf_iter->dma_desc[i].dma_addr);
1810 			sgl += sge_element_size;
1811 			available_sges--;
1812 			sges_needed--;
1813 		}
1814 		num_datasges--;
1815 		i = 0;
1816 	}
1817 	return 0;
1818 
1819 setup_chain:
1820 	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1821 	if (sges_needed > available_sges)
1822 		return -1;
1823 	mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
1824 			     (sges_needed * sge_element_size),
1825 			     mrioc->ioctl_chain_sge.dma_addr);
1826 	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1827 	sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
1828 	chain_used = true;
1829 	goto build_sges;
1830 }
1831 
1832 /**
1833  * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
1834  * @nvme_encap_request: NVMe encapsulated MPI request
1835  *
1836  * This function returns the type of the data format specified
1837  * in user provided NVMe command in NVMe encapsulated request.
1838  *
1839  * Return: Data format of the NVMe command (PRP/SGL etc)
1840  */
1841 static unsigned int mpi3mr_get_nvme_data_fmt(
1842 	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
1843 {
1844 	u8 format = 0;
1845 
1846 	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
1847 	return format;
1848 
1849 }
1850 
1851 /**
1852  * mpi3mr_build_nvme_sgl - SGL constructor for NVME
1853  *				   encapsulated request
1854  * @mrioc: Adapter instance reference
1855  * @nvme_encap_request: NVMe encapsulated MPI request
1856  * @drv_bufs: DMA address of the buffers to be placed in sgl
1857  * @bufcnt: Number of DMA buffers
1858  *
1859  * This function places the DMA address of the given buffers in
1860  * proper format as SGEs in the given NVMe encapsulated request.
1861  *
1862  * Return: 0 on success, -1 on failure
1863  */
1864 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
1865 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1866 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1867 {
1868 	struct mpi3mr_nvme_pt_sge *nvme_sgl;
1869 	__le64 sgl_dma;
1870 	u8 count;
1871 	size_t length = 0;
1872 	u16 available_sges = 0, i;
1873 	u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
1874 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1875 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1876 			    mrioc->facts.sge_mod_shift) << 32);
1877 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1878 			  mrioc->facts.sge_mod_shift) << 32;
1879 	u32 size;
1880 
1881 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
1882 	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
1883 
1884 	/*
1885 	 * Not all commands require a data transfer. If no data, just return
1886 	 * without constructing any sgl.
1887 	 */
1888 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1889 		if (drv_buf_iter->data_dir == DMA_NONE)
1890 			continue;
1891 		length = drv_buf_iter->kern_buf_len;
1892 		break;
1893 	}
1894 	if (!length || !drv_buf_iter->num_dma_desc)
1895 		return 0;
1896 
1897 	if (drv_buf_iter->num_dma_desc == 1) {
1898 		available_sges = 1;
1899 		goto build_sges;
1900 	}
1901 
1902 	sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
1903 	if (sgl_dma & sgemod_mask) {
1904 		dprint_bsg_err(mrioc,
1905 		    "%s: SGL chain address collides with SGE modifier\n",
1906 		    __func__);
1907 		return -1;
1908 	}
1909 
1910 	sgl_dma &= ~sgemod_mask;
1911 	sgl_dma |= sgemod_val;
1912 
1913 	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1914 	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1915 	if (available_sges < drv_buf_iter->num_dma_desc)
1916 		return -1;
1917 	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
1918 	nvme_sgl->base_addr = sgl_dma;
1919 	size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
1920 	nvme_sgl->length = cpu_to_le32(size);
1921 	nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
1922 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
1923 
1924 build_sges:
1925 	for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
1926 		sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
1927 		if (sgl_dma & sgemod_mask) {
1928 			dprint_bsg_err(mrioc,
1929 				       "%s: SGL address collides with SGE modifier\n",
1930 				       __func__);
1931 		return -1;
1932 		}
1933 
1934 		sgl_dma &= ~sgemod_mask;
1935 		sgl_dma |= sgemod_val;
1936 
1937 		nvme_sgl->base_addr = sgl_dma;
1938 		nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
1939 		nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
1940 		nvme_sgl++;
1941 		available_sges--;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 /**
1948  * mpi3mr_build_nvme_prp - PRP constructor for NVME
1949  *			       encapsulated request
1950  * @mrioc: Adapter instance reference
1951  * @nvme_encap_request: NVMe encapsulated MPI request
1952  * @drv_bufs: DMA address of the buffers to be placed in SGL
1953  * @bufcnt: Number of DMA buffers
1954  *
1955  * This function places the DMA address of the given buffers in
1956  * proper format as PRP entries in the given NVMe encapsulated
1957  * request.
1958  *
1959  * Return: 0 on success, -1 on failure
1960  */
1961 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
1962 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1963 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1964 {
1965 	int prp_size = MPI3MR_NVME_PRP_SIZE;
1966 	__le64 *prp_entry, *prp1_entry, *prp2_entry;
1967 	__le64 *prp_page;
1968 	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1969 	u32 offset, entry_len, dev_pgsz;
1970 	u32 page_mask_result, page_mask;
1971 	size_t length = 0, desc_len;
1972 	u8 count;
1973 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1974 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1975 			    mrioc->facts.sge_mod_shift) << 32);
1976 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1977 			  mrioc->facts.sge_mod_shift) << 32;
1978 	u16 dev_handle = nvme_encap_request->dev_handle;
1979 	struct mpi3mr_tgt_dev *tgtdev;
1980 	u16 desc_count = 0;
1981 
1982 	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1983 	if (!tgtdev) {
1984 		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
1985 			__func__, dev_handle);
1986 		return -1;
1987 	}
1988 
1989 	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
1990 		dprint_bsg_err(mrioc,
1991 		    "%s: NVMe device page size is zero for handle 0x%04x\n",
1992 		    __func__, dev_handle);
1993 		mpi3mr_tgtdev_put(tgtdev);
1994 		return -1;
1995 	}
1996 
1997 	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
1998 	mpi3mr_tgtdev_put(tgtdev);
1999 	page_mask = dev_pgsz - 1;
2000 
2001 	if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
2002 		dprint_bsg_err(mrioc,
2003 			       "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
2004 			       __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
2005 		return -1;
2006 	}
2007 
2008 	if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
2009 		dprint_bsg_err(mrioc,
2010 			       "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
2011 			       __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
2012 		return -1;
2013 	}
2014 
2015 	/*
2016 	 * Not all commands require a data transfer. If no data, just return
2017 	 * without constructing any PRP.
2018 	 */
2019 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2020 		if (drv_buf_iter->data_dir == DMA_NONE)
2021 			continue;
2022 		length = drv_buf_iter->kern_buf_len;
2023 		break;
2024 	}
2025 
2026 	if (!length || !drv_buf_iter->num_dma_desc)
2027 		return 0;
2028 
2029 	for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
2030 		dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
2031 		if (dma_addr & page_mask) {
2032 			dprint_bsg_err(mrioc,
2033 				       "%s:dma_addr %pad is not aligned with page size 0x%x\n",
2034 				       __func__,  &dma_addr, dev_pgsz);
2035 			return -1;
2036 		}
2037 	}
2038 
2039 	dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
2040 	desc_len = drv_buf_iter->dma_desc[0].size;
2041 
2042 	mrioc->prp_sz = 0;
2043 	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
2044 	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
2045 
2046 	if (!mrioc->prp_list_virt)
2047 		return -1;
2048 	mrioc->prp_sz = dev_pgsz;
2049 
2050 	/*
2051 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
2052 	 * PRP1 is located at a 24 byte offset from the start of the NVMe
2053 	 * command.  Then set the current PRP entry pointer to PRP1.
2054 	 */
2055 	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2056 	    MPI3MR_NVME_CMD_PRP1_OFFSET);
2057 	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2058 	    MPI3MR_NVME_CMD_PRP2_OFFSET);
2059 	prp_entry = prp1_entry;
2060 	/*
2061 	 * For the PRP entries, use the specially allocated buffer of
2062 	 * contiguous memory.
2063 	 */
2064 	prp_page = (__le64 *)mrioc->prp_list_virt;
2065 	prp_page_dma = mrioc->prp_list_dma;
2066 
2067 	/*
2068 	 * Check if we are within 1 entry of a page boundary we don't
2069 	 * want our first entry to be a PRP List entry.
2070 	 */
2071 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2072 	if (!page_mask_result) {
2073 		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
2074 		    __func__);
2075 		goto err_out;
2076 	}
2077 
2078 	/*
2079 	 * Set PRP physical pointer, which initially points to the current PRP
2080 	 * DMA memory page.
2081 	 */
2082 	prp_entry_dma = prp_page_dma;
2083 
2084 
2085 	/* Loop while the length is not zero. */
2086 	while (length) {
2087 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2088 		if (!page_mask_result && (length >  dev_pgsz)) {
2089 			dprint_bsg_err(mrioc,
2090 			    "%s: single PRP page is not sufficient\n",
2091 			    __func__);
2092 			goto err_out;
2093 		}
2094 
2095 		/* Need to handle if entry will be part of a page. */
2096 		offset = dma_addr & page_mask;
2097 		entry_len = dev_pgsz - offset;
2098 
2099 		if (prp_entry == prp1_entry) {
2100 			/*
2101 			 * Must fill in the first PRP pointer (PRP1) before
2102 			 * moving on.
2103 			 */
2104 			*prp1_entry = cpu_to_le64(dma_addr);
2105 			if (*prp1_entry & sgemod_mask) {
2106 				dprint_bsg_err(mrioc,
2107 				    "%s: PRP1 address collides with SGE modifier\n",
2108 				    __func__);
2109 				goto err_out;
2110 			}
2111 			*prp1_entry &= ~sgemod_mask;
2112 			*prp1_entry |= sgemod_val;
2113 
2114 			/*
2115 			 * Now point to the second PRP entry within the
2116 			 * command (PRP2).
2117 			 */
2118 			prp_entry = prp2_entry;
2119 		} else if (prp_entry == prp2_entry) {
2120 			/*
2121 			 * Should the PRP2 entry be a PRP List pointer or just
2122 			 * a regular PRP pointer?  If there is more than one
2123 			 * more page of data, must use a PRP List pointer.
2124 			 */
2125 			if (length > dev_pgsz) {
2126 				/*
2127 				 * PRP2 will contain a PRP List pointer because
2128 				 * more PRP's are needed with this command. The
2129 				 * list will start at the beginning of the
2130 				 * contiguous buffer.
2131 				 */
2132 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2133 				if (*prp2_entry & sgemod_mask) {
2134 					dprint_bsg_err(mrioc,
2135 					    "%s: PRP list address collides with SGE modifier\n",
2136 					    __func__);
2137 					goto err_out;
2138 				}
2139 				*prp2_entry &= ~sgemod_mask;
2140 				*prp2_entry |= sgemod_val;
2141 
2142 				/*
2143 				 * The next PRP Entry will be the start of the
2144 				 * first PRP List.
2145 				 */
2146 				prp_entry = prp_page;
2147 				continue;
2148 			} else {
2149 				/*
2150 				 * After this, the PRP Entries are complete.
2151 				 * This command uses 2 PRP's and no PRP list.
2152 				 */
2153 				*prp2_entry = cpu_to_le64(dma_addr);
2154 				if (*prp2_entry & sgemod_mask) {
2155 					dprint_bsg_err(mrioc,
2156 					    "%s: PRP2 collides with SGE modifier\n",
2157 					    __func__);
2158 					goto err_out;
2159 				}
2160 				*prp2_entry &= ~sgemod_mask;
2161 				*prp2_entry |= sgemod_val;
2162 			}
2163 		} else {
2164 			/*
2165 			 * Put entry in list and bump the addresses.
2166 			 *
2167 			 * After PRP1 and PRP2 are filled in, this will fill in
2168 			 * all remaining PRP entries in a PRP List, one per
2169 			 * each time through the loop.
2170 			 */
2171 			*prp_entry = cpu_to_le64(dma_addr);
2172 			if (*prp_entry & sgemod_mask) {
2173 				dprint_bsg_err(mrioc,
2174 				    "%s: PRP address collides with SGE modifier\n",
2175 				    __func__);
2176 				goto err_out;
2177 			}
2178 			*prp_entry &= ~sgemod_mask;
2179 			*prp_entry |= sgemod_val;
2180 			prp_entry++;
2181 			prp_entry_dma += prp_size;
2182 		}
2183 
2184 		/* decrement length accounting for last partial page. */
2185 		if (entry_len >= length) {
2186 			length = 0;
2187 		} else {
2188 			if (entry_len <= desc_len) {
2189 				dma_addr += entry_len;
2190 				desc_len -= entry_len;
2191 			}
2192 			if (!desc_len) {
2193 				if ((++desc_count) >=
2194 				   drv_buf_iter->num_dma_desc) {
2195 					dprint_bsg_err(mrioc,
2196 						       "%s: Invalid len %zd while building PRP\n",
2197 						       __func__, length);
2198 					goto err_out;
2199 				}
2200 				dma_addr =
2201 				    drv_buf_iter->dma_desc[desc_count].dma_addr;
2202 				desc_len =
2203 				    drv_buf_iter->dma_desc[desc_count].size;
2204 			}
2205 			length -= entry_len;
2206 		}
2207 	}
2208 
2209 	return 0;
2210 err_out:
2211 	if (mrioc->prp_list_virt) {
2212 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2213 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
2214 		mrioc->prp_list_virt = NULL;
2215 	}
2216 	return -1;
2217 }
2218 
2219 /**
2220  * mpi3mr_map_data_buffer_dma - build dma descriptors for data
2221  *                              buffers
2222  * @mrioc: Adapter instance reference
2223  * @drv_buf: buffer map descriptor
2224  * @desc_count: Number of already consumed dma descriptors
2225  *
2226  * This function computes how many pre-allocated DMA descriptors
2227  * are required for the given data buffer and if those number of
2228  * descriptors are free, then setup the mapping of the scattered
2229  * DMA address to the given data buffer, if the data direction
2230  * of the buffer is DMA_TO_DEVICE then the actual data is copied to
2231  * the DMA buffers
2232  *
2233  * Return: 0 on success, -1 on failure
2234  */
2235 static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
2236 				      struct mpi3mr_buf_map *drv_buf,
2237 				      u16 desc_count)
2238 {
2239 	u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
2240 	u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
2241 
2242 	if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
2243 		needed_desc++;
2244 	if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
2245 		dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
2246 			       __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
2247 		return -1;
2248 	}
2249 	drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
2250 				    GFP_KERNEL);
2251 	if (!drv_buf->dma_desc)
2252 		return -1;
2253 	for (i = 0; i < needed_desc; i++, desc_count++) {
2254 		drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
2255 		drv_buf->dma_desc[i].dma_addr =
2256 		    mrioc->ioctl_sge[desc_count].dma_addr;
2257 		if (buf_len < mrioc->ioctl_sge[desc_count].size)
2258 			drv_buf->dma_desc[i].size = buf_len;
2259 		else
2260 			drv_buf->dma_desc[i].size =
2261 			    mrioc->ioctl_sge[desc_count].size;
2262 		buf_len -= drv_buf->dma_desc[i].size;
2263 		memset(drv_buf->dma_desc[i].addr, 0,
2264 		       mrioc->ioctl_sge[desc_count].size);
2265 		if (drv_buf->data_dir == DMA_TO_DEVICE) {
2266 			memcpy(drv_buf->dma_desc[i].addr,
2267 			       drv_buf->bsg_buf + copied_len,
2268 			       drv_buf->dma_desc[i].size);
2269 			copied_len += drv_buf->dma_desc[i].size;
2270 		}
2271 	}
2272 	drv_buf->num_dma_desc = needed_desc;
2273 	return 0;
2274 }
2275 /**
2276  * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
2277  * @job: BSG job reference
2278  *
2279  * This function is the top level handler for MPI Pass through
2280  * command, this does basic validation of the input data buffers,
2281  * identifies the given buffer types and MPI command, allocates
2282  * DMAable memory for user given buffers, construstcs SGL
2283  * properly and passes the command to the firmware.
2284  *
2285  * Once the MPI command is completed the driver copies the data
2286  * if any and reply, sense information to user provided buffers.
2287  * If the command is timed out then issues controller reset
2288  * prior to returning.
2289  *
2290  * Return: 0 on success and proper error codes on failure
2291  */
2292 
2293 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
2294 {
2295 	long rval = -EINVAL;
2296 	struct mpi3mr_ioc *mrioc = NULL;
2297 	u8 *mpi_req = NULL, *sense_buff_k = NULL;
2298 	u8 mpi_msg_size = 0;
2299 	struct mpi3mr_bsg_packet *bsg_req = NULL;
2300 	struct mpi3mr_bsg_mptcmd *karg;
2301 	struct mpi3mr_buf_entry *buf_entries = NULL;
2302 	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
2303 	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
2304 	u8 din_cnt = 0, dout_cnt = 0;
2305 	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
2306 	u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
2307 	struct mpi3_request_header *mpi_header = NULL;
2308 	struct mpi3_status_reply_descriptor *status_desc;
2309 	struct mpi3_scsi_task_mgmt_request *tm_req;
2310 	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
2311 	u16 dev_handle;
2312 	struct mpi3mr_tgt_dev *tgtdev;
2313 	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
2314 	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
2315 	u32 din_size = 0, dout_size = 0;
2316 	u8 *din_buf = NULL, *dout_buf = NULL;
2317 	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
2318 	u16 rmc_size  = 0, desc_count = 0;
2319 
2320 	bsg_req = job->request;
2321 	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
2322 
2323 	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
2324 	if (!mrioc)
2325 		return -ENODEV;
2326 
2327 	if (!mrioc->ioctl_sges_allocated) {
2328 		dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
2329 			       __func__);
2330 		return -ENOMEM;
2331 	}
2332 
2333 	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
2334 		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
2335 
2336 	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
2337 	if (!mpi_req)
2338 		return -ENOMEM;
2339 	mpi_header = (struct mpi3_request_header *)mpi_req;
2340 
2341 	bufcnt = karg->buf_entry_list.num_of_entries;
2342 	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
2343 	if (!drv_bufs) {
2344 		rval = -ENOMEM;
2345 		goto out;
2346 	}
2347 
2348 	dout_buf = kzalloc(job->request_payload.payload_len,
2349 				      GFP_KERNEL);
2350 	if (!dout_buf) {
2351 		rval = -ENOMEM;
2352 		goto out;
2353 	}
2354 
2355 	din_buf = kzalloc(job->reply_payload.payload_len,
2356 				     GFP_KERNEL);
2357 	if (!din_buf) {
2358 		rval = -ENOMEM;
2359 		goto out;
2360 	}
2361 
2362 	sg_copy_to_buffer(job->request_payload.sg_list,
2363 			  job->request_payload.sg_cnt,
2364 			  dout_buf, job->request_payload.payload_len);
2365 
2366 	buf_entries = karg->buf_entry_list.buf_entry;
2367 	sgl_din_iter = din_buf;
2368 	sgl_dout_iter = dout_buf;
2369 	drv_buf_iter = drv_bufs;
2370 
2371 	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
2372 
2373 		switch (buf_entries->buf_type) {
2374 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
2375 			sgl_iter = sgl_dout_iter;
2376 			sgl_dout_iter += buf_entries->buf_len;
2377 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
2378 			is_rmcb = 1;
2379 			if ((count != 0) || !buf_entries->buf_len)
2380 				invalid_be = 1;
2381 			break;
2382 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
2383 			sgl_iter = sgl_din_iter;
2384 			sgl_din_iter += buf_entries->buf_len;
2385 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2386 			is_rmrb = 1;
2387 			if (count != 1 || !is_rmcb || !buf_entries->buf_len)
2388 				invalid_be = 1;
2389 			break;
2390 		case MPI3MR_BSG_BUFTYPE_DATA_IN:
2391 			sgl_iter = sgl_din_iter;
2392 			sgl_din_iter += buf_entries->buf_len;
2393 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2394 			din_cnt++;
2395 			din_size += buf_entries->buf_len;
2396 			if ((din_cnt > 1) && !is_rmcb)
2397 				invalid_be = 1;
2398 			break;
2399 		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
2400 			sgl_iter = sgl_dout_iter;
2401 			sgl_dout_iter += buf_entries->buf_len;
2402 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
2403 			dout_cnt++;
2404 			dout_size += buf_entries->buf_len;
2405 			if ((dout_cnt > 1) && !is_rmcb)
2406 				invalid_be = 1;
2407 			break;
2408 		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
2409 			sgl_iter = sgl_din_iter;
2410 			sgl_din_iter += buf_entries->buf_len;
2411 			drv_buf_iter->data_dir = DMA_NONE;
2412 			mpirep_offset = count;
2413 			if (!buf_entries->buf_len)
2414 				invalid_be = 1;
2415 			break;
2416 		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
2417 			sgl_iter = sgl_din_iter;
2418 			sgl_din_iter += buf_entries->buf_len;
2419 			drv_buf_iter->data_dir = DMA_NONE;
2420 			erb_offset = count;
2421 			if (!buf_entries->buf_len)
2422 				invalid_be = 1;
2423 			break;
2424 		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
2425 			sgl_iter = sgl_dout_iter;
2426 			sgl_dout_iter += buf_entries->buf_len;
2427 			drv_buf_iter->data_dir = DMA_NONE;
2428 			mpi_msg_size = buf_entries->buf_len;
2429 			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
2430 					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
2431 				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
2432 					__func__);
2433 				rval = -EINVAL;
2434 				goto out;
2435 			}
2436 			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
2437 			break;
2438 		default:
2439 			invalid_be = 1;
2440 			break;
2441 		}
2442 		if (invalid_be) {
2443 			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
2444 				__func__);
2445 			rval = -EINVAL;
2446 			goto out;
2447 		}
2448 
2449 		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
2450 			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
2451 				       __func__);
2452 			rval = -EINVAL;
2453 			goto out;
2454 		}
2455 		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
2456 			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
2457 				       __func__);
2458 			rval = -EINVAL;
2459 			goto out;
2460 		}
2461 
2462 		drv_buf_iter->bsg_buf = sgl_iter;
2463 		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
2464 	}
2465 
2466 	if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
2467 		dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
2468 			       __func__, __LINE__, mpi_header->function, din_size,
2469 			       dout_size);
2470 		rval = -EINVAL;
2471 		goto out;
2472 	}
2473 
2474 	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
2475 		dprint_bsg_err(mrioc,
2476 		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
2477 		    __func__, __LINE__, mpi_header->function, din_size);
2478 		rval = -EINVAL;
2479 		goto out;
2480 	}
2481 	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
2482 		dprint_bsg_err(mrioc,
2483 		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
2484 		    __func__, __LINE__, mpi_header->function, dout_size);
2485 		rval = -EINVAL;
2486 		goto out;
2487 	}
2488 
2489 	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
2490 		if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
2491 		    dout_size > MPI3MR_IOCTL_SGE_SIZE) {
2492 			dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
2493 				       __func__, __LINE__, din_cnt, dout_cnt, din_size,
2494 			    dout_size);
2495 			rval = -EINVAL;
2496 			goto out;
2497 		}
2498 	}
2499 
2500 	drv_buf_iter = drv_bufs;
2501 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2502 		if (drv_buf_iter->data_dir == DMA_NONE)
2503 			continue;
2504 
2505 		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
2506 		if (is_rmcb && !count) {
2507 			drv_buf_iter->kern_buf_len =
2508 			    mrioc->ioctl_chain_sge.size;
2509 			drv_buf_iter->kern_buf =
2510 			    mrioc->ioctl_chain_sge.addr;
2511 			drv_buf_iter->kern_buf_dma =
2512 			    mrioc->ioctl_chain_sge.dma_addr;
2513 			drv_buf_iter->dma_desc = NULL;
2514 			drv_buf_iter->num_dma_desc = 0;
2515 			memset(drv_buf_iter->kern_buf, 0,
2516 			       drv_buf_iter->kern_buf_len);
2517 			tmplen = min(drv_buf_iter->kern_buf_len,
2518 				     drv_buf_iter->bsg_buf_len);
2519 			rmc_size = tmplen;
2520 			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
2521 		} else if (is_rmrb && (count == 1)) {
2522 			drv_buf_iter->kern_buf_len =
2523 			    mrioc->ioctl_resp_sge.size;
2524 			drv_buf_iter->kern_buf =
2525 			    mrioc->ioctl_resp_sge.addr;
2526 			drv_buf_iter->kern_buf_dma =
2527 			    mrioc->ioctl_resp_sge.dma_addr;
2528 			drv_buf_iter->dma_desc = NULL;
2529 			drv_buf_iter->num_dma_desc = 0;
2530 			memset(drv_buf_iter->kern_buf, 0,
2531 			       drv_buf_iter->kern_buf_len);
2532 			tmplen = min(drv_buf_iter->kern_buf_len,
2533 				     drv_buf_iter->bsg_buf_len);
2534 			drv_buf_iter->kern_buf_len = tmplen;
2535 			memset(drv_buf_iter->bsg_buf, 0,
2536 			       drv_buf_iter->bsg_buf_len);
2537 		} else {
2538 			if (!drv_buf_iter->kern_buf_len)
2539 				continue;
2540 			if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
2541 				rval = -ENOMEM;
2542 				dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
2543 					       __func__, __LINE__);
2544 			goto out;
2545 		}
2546 			desc_count += drv_buf_iter->num_dma_desc;
2547 		}
2548 	}
2549 
2550 	if (erb_offset != 0xFF) {
2551 		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
2552 		if (!sense_buff_k) {
2553 			rval = -ENOMEM;
2554 			goto out;
2555 		}
2556 	}
2557 
2558 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
2559 		rval = -ERESTARTSYS;
2560 		goto out;
2561 	}
2562 	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
2563 		rval = -EAGAIN;
2564 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
2565 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2566 		goto out;
2567 	}
2568 	if (mrioc->unrecoverable) {
2569 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
2570 		    __func__);
2571 		rval = -EFAULT;
2572 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2573 		goto out;
2574 	}
2575 	if (mrioc->reset_in_progress) {
2576 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
2577 		rval = -EAGAIN;
2578 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2579 		goto out;
2580 	}
2581 	if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
2582 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
2583 		rval = -EAGAIN;
2584 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2585 		goto out;
2586 	}
2587 
2588 	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
2589 		nvme_fmt = mpi3mr_get_nvme_data_fmt(
2590 			(struct mpi3_nvme_encapsulated_request *)mpi_req);
2591 		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
2592 			if (mpi3mr_build_nvme_prp(mrioc,
2593 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
2594 			    drv_bufs, bufcnt)) {
2595 				rval = -ENOMEM;
2596 				mutex_unlock(&mrioc->bsg_cmds.mutex);
2597 				goto out;
2598 			}
2599 		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
2600 			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
2601 			if (mpi3mr_build_nvme_sgl(mrioc,
2602 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
2603 			    drv_bufs, bufcnt)) {
2604 				rval = -EINVAL;
2605 				mutex_unlock(&mrioc->bsg_cmds.mutex);
2606 				goto out;
2607 			}
2608 		} else {
2609 			dprint_bsg_err(mrioc,
2610 			    "%s:invalid NVMe command format\n", __func__);
2611 			rval = -EINVAL;
2612 			mutex_unlock(&mrioc->bsg_cmds.mutex);
2613 			goto out;
2614 		}
2615 	} else {
2616 		if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
2617 					 drv_bufs, bufcnt, is_rmcb, is_rmrb,
2618 					 (dout_cnt + din_cnt))) {
2619 			dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
2620 			rval = -EAGAIN;
2621 			mutex_unlock(&mrioc->bsg_cmds.mutex);
2622 			goto out;
2623 		}
2624 	}
2625 
2626 	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
2627 		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
2628 		if (tm_req->task_type !=
2629 		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
2630 			dev_handle = tm_req->dev_handle;
2631 			block_io = 1;
2632 		}
2633 	}
2634 	if (block_io) {
2635 		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
2636 		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
2637 			stgt_priv = (struct mpi3mr_stgt_priv_data *)
2638 			    tgtdev->starget->hostdata;
2639 			atomic_inc(&stgt_priv->block_io);
2640 			mpi3mr_tgtdev_put(tgtdev);
2641 		}
2642 	}
2643 
2644 	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
2645 	mrioc->bsg_cmds.is_waiting = 1;
2646 	mrioc->bsg_cmds.callback = NULL;
2647 	mrioc->bsg_cmds.is_sense = 0;
2648 	mrioc->bsg_cmds.sensebuf = sense_buff_k;
2649 	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
2650 	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
2651 	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
2652 		dprint_bsg_info(mrioc,
2653 		    "%s: posting bsg request to the controller\n", __func__);
2654 		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2655 		    "bsg_mpi3_req");
2656 		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
2657 			drv_buf_iter = &drv_bufs[0];
2658 			dprint_dump(drv_buf_iter->kern_buf,
2659 			    rmc_size, "mpi3_mgmt_req");
2660 		}
2661 	}
2662 
2663 	init_completion(&mrioc->bsg_cmds.done);
2664 	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
2665 	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
2666 
2667 
2668 	if (rval) {
2669 		mrioc->bsg_cmds.is_waiting = 0;
2670 		dprint_bsg_err(mrioc,
2671 		    "%s: posting bsg request is failed\n", __func__);
2672 		rval = -EAGAIN;
2673 		goto out_unlock;
2674 	}
2675 	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
2676 	    (karg->timeout * HZ));
2677 	if (block_io && stgt_priv)
2678 		atomic_dec(&stgt_priv->block_io);
2679 	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
2680 		mrioc->bsg_cmds.is_waiting = 0;
2681 		rval = -EAGAIN;
2682 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
2683 			goto out_unlock;
2684 		if (((mpi_header->function != MPI3_FUNCTION_SCSI_IO) &&
2685 		    (mpi_header->function != MPI3_FUNCTION_NVME_ENCAPSULATED))
2686 		    || (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR)) {
2687 			ioc_info(mrioc, "%s: bsg request timedout after %d seconds\n",
2688 			    __func__, karg->timeout);
2689 			if (!(mrioc->logging_level & MPI3_DEBUG_BSG_INFO)) {
2690 				dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2691 			    "bsg_mpi3_req");
2692 			if (mpi_header->function ==
2693 			    MPI3_FUNCTION_MGMT_PASSTHROUGH) {
2694 				drv_buf_iter = &drv_bufs[0];
2695 				dprint_dump(drv_buf_iter->kern_buf,
2696 				    rmc_size, "mpi3_mgmt_req");
2697 				}
2698 			}
2699 		}
2700 		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
2701 			(mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) {
2702 			dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds,\n"
2703 				"issuing target reset to (0x%04x)\n", __func__,
2704 				karg->timeout, mpi_header->function_dependent);
2705 			mpi3mr_issue_tm(mrioc,
2706 			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
2707 			    mpi_header->function_dependent, 0,
2708 			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
2709 			    &mrioc->host_tm_cmds, &resp_code, NULL);
2710 		}
2711 		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
2712 		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
2713 			mpi3mr_soft_reset_handler(mrioc,
2714 			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
2715 		goto out_unlock;
2716 	}
2717 	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
2718 
2719 	if (mrioc->prp_list_virt) {
2720 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2721 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
2722 		mrioc->prp_list_virt = NULL;
2723 	}
2724 
2725 	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
2726 	     != MPI3_IOCSTATUS_SUCCESS) {
2727 		dprint_bsg_info(mrioc,
2728 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
2729 		    __func__,
2730 		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
2731 		    mrioc->bsg_cmds.ioc_loginfo);
2732 	}
2733 
2734 	if ((mpirep_offset != 0xFF) &&
2735 	    drv_bufs[mpirep_offset].bsg_buf_len) {
2736 		drv_buf_iter = &drv_bufs[mpirep_offset];
2737 		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
2738 					   mrioc->reply_sz);
2739 		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
2740 
2741 		if (!bsg_reply_buf) {
2742 			rval = -ENOMEM;
2743 			goto out_unlock;
2744 		}
2745 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
2746 			bsg_reply_buf->mpi_reply_type =
2747 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
2748 			memcpy(bsg_reply_buf->reply_buf,
2749 			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
2750 		} else {
2751 			bsg_reply_buf->mpi_reply_type =
2752 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
2753 			status_desc = (struct mpi3_status_reply_descriptor *)
2754 			    bsg_reply_buf->reply_buf;
2755 			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
2756 			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
2757 		}
2758 		tmplen = min(drv_buf_iter->kern_buf_len,
2759 			drv_buf_iter->bsg_buf_len);
2760 		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
2761 	}
2762 
2763 	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
2764 	    mrioc->bsg_cmds.is_sense) {
2765 		drv_buf_iter = &drv_bufs[erb_offset];
2766 		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
2767 		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
2768 	}
2769 
2770 	drv_buf_iter = drv_bufs;
2771 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2772 		if (drv_buf_iter->data_dir == DMA_NONE)
2773 			continue;
2774 		if ((count == 1) && is_rmrb) {
2775 			memcpy(drv_buf_iter->bsg_buf,
2776 			    drv_buf_iter->kern_buf,
2777 			    drv_buf_iter->kern_buf_len);
2778 		} else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
2779 			tmplen = 0;
2780 			for (desc_count = 0;
2781 			    desc_count < drv_buf_iter->num_dma_desc;
2782 			    desc_count++) {
2783 				memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
2784 				       drv_buf_iter->dma_desc[desc_count].addr,
2785 				       drv_buf_iter->dma_desc[desc_count].size);
2786 				tmplen +=
2787 				    drv_buf_iter->dma_desc[desc_count].size;
2788 		}
2789 	}
2790 	}
2791 
2792 out_unlock:
2793 	if (din_buf) {
2794 		job->reply_payload_rcv_len =
2795 			sg_copy_from_buffer(job->reply_payload.sg_list,
2796 					    job->reply_payload.sg_cnt,
2797 					    din_buf, job->reply_payload.payload_len);
2798 	}
2799 	mrioc->bsg_cmds.is_sense = 0;
2800 	mrioc->bsg_cmds.sensebuf = NULL;
2801 	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
2802 	mutex_unlock(&mrioc->bsg_cmds.mutex);
2803 out:
2804 	kfree(sense_buff_k);
2805 	kfree(dout_buf);
2806 	kfree(din_buf);
2807 	kfree(mpi_req);
2808 	if (drv_bufs) {
2809 		drv_buf_iter = drv_bufs;
2810 		for (count = 0; count < bufcnt; count++, drv_buf_iter++)
2811 			kfree(drv_buf_iter->dma_desc);
2812 		kfree(drv_bufs);
2813 	}
2814 	kfree(bsg_reply_buf);
2815 	return rval;
2816 }
2817 
2818 /**
2819  * mpi3mr_app_save_logdata - Save Log Data events
2820  * @mrioc: Adapter instance reference
2821  * @event_data: event data associated with log data event
2822  * @event_data_size: event data size to copy
2823  *
2824  * If log data event caching is enabled by the applicatiobns,
2825  * then this function saves the log data in the circular queue
2826  * and Sends async signal SIGIO to indicate there is an async
2827  * event from the firmware to the event monitoring applications.
2828  *
2829  * Return:Nothing
2830  */
2831 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
2832 	u16 event_data_size)
2833 {
2834 	u32 index = mrioc->logdata_buf_idx, sz;
2835 	struct mpi3mr_logdata_entry *entry;
2836 
2837 	if (!(mrioc->logdata_buf))
2838 		return;
2839 
2840 	entry = (struct mpi3mr_logdata_entry *)
2841 		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
2842 	entry->valid_entry = 1;
2843 	sz = min(mrioc->logdata_entry_sz, event_data_size);
2844 	memcpy(entry->data, event_data, sz);
2845 	mrioc->logdata_buf_idx =
2846 		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
2847 	atomic64_inc(&event_counter);
2848 }
2849 
2850 /**
2851  * mpi3mr_bsg_request - bsg request entry point
2852  * @job: BSG job reference
2853  *
2854  * This is driver's entry point for bsg requests
2855  *
2856  * Return: 0 on success and proper error codes on failure
2857  */
2858 static int mpi3mr_bsg_request(struct bsg_job *job)
2859 {
2860 	long rval = -EINVAL;
2861 	unsigned int reply_payload_rcv_len = 0;
2862 
2863 	struct mpi3mr_bsg_packet *bsg_req = job->request;
2864 
2865 	switch (bsg_req->cmd_type) {
2866 	case MPI3MR_DRV_CMD:
2867 		rval = mpi3mr_bsg_process_drv_cmds(job);
2868 		break;
2869 	case MPI3MR_MPT_CMD:
2870 		rval = mpi3mr_bsg_process_mpt_cmds(job);
2871 		break;
2872 	default:
2873 		pr_err("%s: unsupported BSG command(0x%08x)\n",
2874 		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
2875 		break;
2876 	}
2877 
2878 	bsg_job_done(job, rval, reply_payload_rcv_len);
2879 
2880 	return 0;
2881 }
2882 
2883 /**
2884  * mpi3mr_bsg_exit - de-registration from bsg layer
2885  * @mrioc: Adapter instance reference
2886  *
2887  * This will be called during driver unload and all
2888  * bsg resources allocated during load will be freed.
2889  *
2890  * Return:Nothing
2891  */
2892 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
2893 {
2894 	struct device *bsg_dev = &mrioc->bsg_dev;
2895 	if (!mrioc->bsg_queue)
2896 		return;
2897 
2898 	bsg_remove_queue(mrioc->bsg_queue);
2899 	mrioc->bsg_queue = NULL;
2900 
2901 	device_del(bsg_dev);
2902 	put_device(bsg_dev);
2903 }
2904 
2905 /**
2906  * mpi3mr_bsg_node_release -release bsg device node
2907  * @dev: bsg device node
2908  *
2909  * decrements bsg dev parent reference count
2910  *
2911  * Return:Nothing
2912  */
2913 static void mpi3mr_bsg_node_release(struct device *dev)
2914 {
2915 	put_device(dev->parent);
2916 }
2917 
2918 /**
2919  * mpi3mr_bsg_init -  registration with bsg layer
2920  * @mrioc: Adapter instance reference
2921  *
2922  * This will be called during driver load and it will
2923  * register driver with bsg layer
2924  *
2925  * Return:Nothing
2926  */
2927 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
2928 {
2929 	struct device *bsg_dev = &mrioc->bsg_dev;
2930 	struct device *parent = &mrioc->shost->shost_gendev;
2931 	struct queue_limits lim = {
2932 		.max_hw_sectors		= MPI3MR_MAX_APP_XFER_SECTORS,
2933 		.max_segments		= MPI3MR_MAX_APP_XFER_SEGMENTS,
2934 	};
2935 
2936 	device_initialize(bsg_dev);
2937 
2938 	bsg_dev->parent = get_device(parent);
2939 	bsg_dev->release = mpi3mr_bsg_node_release;
2940 
2941 	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
2942 
2943 	if (device_add(bsg_dev)) {
2944 		ioc_err(mrioc, "%s: bsg device add failed\n",
2945 		    dev_name(bsg_dev));
2946 		put_device(bsg_dev);
2947 		return;
2948 	}
2949 
2950 	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), &lim,
2951 			mpi3mr_bsg_request, NULL, 0);
2952 	if (IS_ERR(mrioc->bsg_queue)) {
2953 		ioc_err(mrioc, "%s: bsg registration failed\n",
2954 		    dev_name(bsg_dev));
2955 		device_del(bsg_dev);
2956 		put_device(bsg_dev);
2957 	}
2958 }
2959 
2960 /**
2961  * version_fw_show - SysFS callback for firmware version read
2962  * @dev: class device
2963  * @attr: Device attributes
2964  * @buf: Buffer to copy
2965  *
2966  * Return: sysfs_emit() return after copying firmware version
2967  */
2968 static ssize_t
2969 version_fw_show(struct device *dev, struct device_attribute *attr,
2970 	char *buf)
2971 {
2972 	struct Scsi_Host *shost = class_to_shost(dev);
2973 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
2974 	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
2975 
2976 	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
2977 	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
2978 	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
2979 }
2980 static DEVICE_ATTR_RO(version_fw);
2981 
2982 /**
2983  * fw_queue_depth_show - SysFS callback for firmware max cmds
2984  * @dev: class device
2985  * @attr: Device attributes
2986  * @buf: Buffer to copy
2987  *
2988  * Return: sysfs_emit() return after copying firmware max commands
2989  */
2990 static ssize_t
2991 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
2992 			char *buf)
2993 {
2994 	struct Scsi_Host *shost = class_to_shost(dev);
2995 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
2996 
2997 	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
2998 }
2999 static DEVICE_ATTR_RO(fw_queue_depth);
3000 
3001 /**
3002  * op_req_q_count_show - SysFS callback for request queue count
3003  * @dev: class device
3004  * @attr: Device attributes
3005  * @buf: Buffer to copy
3006  *
3007  * Return: sysfs_emit() return after copying request queue count
3008  */
3009 static ssize_t
3010 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
3011 			char *buf)
3012 {
3013 	struct Scsi_Host *shost = class_to_shost(dev);
3014 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3015 
3016 	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
3017 }
3018 static DEVICE_ATTR_RO(op_req_q_count);
3019 
3020 /**
3021  * reply_queue_count_show - SysFS callback for reply queue count
3022  * @dev: class device
3023  * @attr: Device attributes
3024  * @buf: Buffer to copy
3025  *
3026  * Return: sysfs_emit() return after copying reply queue count
3027  */
3028 static ssize_t
3029 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
3030 			char *buf)
3031 {
3032 	struct Scsi_Host *shost = class_to_shost(dev);
3033 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3034 
3035 	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
3036 }
3037 
3038 static DEVICE_ATTR_RO(reply_queue_count);
3039 
3040 /**
3041  * logging_level_show - Show controller debug level
3042  * @dev: class device
3043  * @attr: Device attributes
3044  * @buf: Buffer to copy
3045  *
3046  * A sysfs 'read/write' shost attribute, to show the current
3047  * debug log level used by the driver for the specific
3048  * controller.
3049  *
3050  * Return: sysfs_emit() return
3051  */
3052 static ssize_t
3053 logging_level_show(struct device *dev,
3054 	struct device_attribute *attr, char *buf)
3055 
3056 {
3057 	struct Scsi_Host *shost = class_to_shost(dev);
3058 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3059 
3060 	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
3061 }
3062 
3063 /**
3064  * logging_level_store- Change controller debug level
3065  * @dev: class device
3066  * @attr: Device attributes
3067  * @buf: Buffer to copy
3068  * @count: size of the buffer
3069  *
3070  * A sysfs 'read/write' shost attribute, to change the current
3071  * debug log level used by the driver for the specific
3072  * controller.
3073  *
3074  * Return: strlen() return
3075  */
3076 static ssize_t
3077 logging_level_store(struct device *dev,
3078 	struct device_attribute *attr,
3079 	const char *buf, size_t count)
3080 {
3081 	struct Scsi_Host *shost = class_to_shost(dev);
3082 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3083 	int val = 0;
3084 
3085 	if (kstrtoint(buf, 0, &val) != 0)
3086 		return -EINVAL;
3087 
3088 	mrioc->logging_level = val;
3089 	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
3090 	return strlen(buf);
3091 }
3092 static DEVICE_ATTR_RW(logging_level);
3093 
3094 /**
3095  * adp_state_show() - SysFS callback for adapter state show
3096  * @dev: class device
3097  * @attr: Device attributes
3098  * @buf: Buffer to copy
3099  *
3100  * Return: sysfs_emit() return after copying adapter state
3101  */
3102 static ssize_t
3103 adp_state_show(struct device *dev, struct device_attribute *attr,
3104 	char *buf)
3105 {
3106 	struct Scsi_Host *shost = class_to_shost(dev);
3107 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3108 	enum mpi3mr_iocstate ioc_state;
3109 	uint8_t adp_state;
3110 
3111 	ioc_state = mpi3mr_get_iocstate(mrioc);
3112 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
3113 		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
3114 	else if (mrioc->reset_in_progress || mrioc->stop_bsgs ||
3115 		 mrioc->block_on_pci_err)
3116 		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
3117 	else if (ioc_state == MRIOC_STATE_FAULT)
3118 		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
3119 	else
3120 		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
3121 
3122 	return sysfs_emit(buf, "%u\n", adp_state);
3123 }
3124 
3125 static DEVICE_ATTR_RO(adp_state);
3126 
3127 static struct attribute *mpi3mr_host_attrs[] = {
3128 	&dev_attr_version_fw.attr,
3129 	&dev_attr_fw_queue_depth.attr,
3130 	&dev_attr_op_req_q_count.attr,
3131 	&dev_attr_reply_queue_count.attr,
3132 	&dev_attr_logging_level.attr,
3133 	&dev_attr_adp_state.attr,
3134 	NULL,
3135 };
3136 
3137 static const struct attribute_group mpi3mr_host_attr_group = {
3138 	.attrs = mpi3mr_host_attrs
3139 };
3140 
3141 const struct attribute_group *mpi3mr_host_groups[] = {
3142 	&mpi3mr_host_attr_group,
3143 	NULL,
3144 };
3145 
3146 
3147 /*
3148  * SCSI Device attributes under sysfs
3149  */
3150 
3151 /**
3152  * sas_address_show - SysFS callback for dev SASaddress display
3153  * @dev: class device
3154  * @attr: Device attributes
3155  * @buf: Buffer to copy
3156  *
3157  * Return: sysfs_emit() return after copying SAS address of the
3158  * specific SAS/SATA end device.
3159  */
3160 static ssize_t
3161 sas_address_show(struct device *dev, struct device_attribute *attr,
3162 			char *buf)
3163 {
3164 	struct scsi_device *sdev = to_scsi_device(dev);
3165 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3166 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3167 	struct mpi3mr_tgt_dev *tgtdev;
3168 
3169 	sdev_priv_data = sdev->hostdata;
3170 	if (!sdev_priv_data)
3171 		return 0;
3172 
3173 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3174 	if (!tgt_priv_data)
3175 		return 0;
3176 	tgtdev = tgt_priv_data->tgt_dev;
3177 	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
3178 		return 0;
3179 	return sysfs_emit(buf, "0x%016llx\n",
3180 	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
3181 }
3182 
3183 static DEVICE_ATTR_RO(sas_address);
3184 
3185 /**
3186  * device_handle_show - SysFS callback for device handle display
3187  * @dev: class device
3188  * @attr: Device attributes
3189  * @buf: Buffer to copy
3190  *
3191  * Return: sysfs_emit() return after copying firmware internal
3192  * device handle of the specific device.
3193  */
3194 static ssize_t
3195 device_handle_show(struct device *dev, struct device_attribute *attr,
3196 			char *buf)
3197 {
3198 	struct scsi_device *sdev = to_scsi_device(dev);
3199 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3200 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3201 	struct mpi3mr_tgt_dev *tgtdev;
3202 
3203 	sdev_priv_data = sdev->hostdata;
3204 	if (!sdev_priv_data)
3205 		return 0;
3206 
3207 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3208 	if (!tgt_priv_data)
3209 		return 0;
3210 	tgtdev = tgt_priv_data->tgt_dev;
3211 	if (!tgtdev)
3212 		return 0;
3213 	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
3214 }
3215 
3216 static DEVICE_ATTR_RO(device_handle);
3217 
3218 /**
3219  * persistent_id_show - SysFS callback for persisten ID display
3220  * @dev: class device
3221  * @attr: Device attributes
3222  * @buf: Buffer to copy
3223  *
3224  * Return: sysfs_emit() return after copying persistent ID of the
3225  * of the specific device.
3226  */
3227 static ssize_t
3228 persistent_id_show(struct device *dev, struct device_attribute *attr,
3229 			char *buf)
3230 {
3231 	struct scsi_device *sdev = to_scsi_device(dev);
3232 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3233 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3234 	struct mpi3mr_tgt_dev *tgtdev;
3235 
3236 	sdev_priv_data = sdev->hostdata;
3237 	if (!sdev_priv_data)
3238 		return 0;
3239 
3240 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3241 	if (!tgt_priv_data)
3242 		return 0;
3243 	tgtdev = tgt_priv_data->tgt_dev;
3244 	if (!tgtdev)
3245 		return 0;
3246 	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
3247 }
3248 static DEVICE_ATTR_RO(persistent_id);
3249 
3250 /**
3251  * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority
3252  * @dev: pointer to embedded device
3253  * @attr: sas_ncq_prio_supported attribute descriptor
3254  * @buf: the buffer returned
3255  *
3256  * A sysfs 'read-only' sdev attribute, only works with SATA devices
3257  */
3258 static ssize_t
3259 sas_ncq_prio_supported_show(struct device *dev,
3260 			    struct device_attribute *attr, char *buf)
3261 {
3262 	struct scsi_device *sdev = to_scsi_device(dev);
3263 
3264 	return sysfs_emit(buf, "%d\n", sas_ata_ncq_prio_supported(sdev));
3265 }
3266 static DEVICE_ATTR_RO(sas_ncq_prio_supported);
3267 
3268 /**
3269  * sas_ncq_prio_enable_show - send prioritized io commands to device
3270  * @dev: pointer to embedded device
3271  * @attr: sas_ncq_prio_enable attribute descriptor
3272  * @buf: the buffer returned
3273  *
3274  * A sysfs 'read/write' sdev attribute, only works with SATA devices
3275  */
3276 static ssize_t
3277 sas_ncq_prio_enable_show(struct device *dev,
3278 				 struct device_attribute *attr, char *buf)
3279 {
3280 	struct scsi_device *sdev = to_scsi_device(dev);
3281 	struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3282 
3283 	if (!sdev_priv_data)
3284 		return 0;
3285 
3286 	return sysfs_emit(buf, "%d\n", sdev_priv_data->ncq_prio_enable);
3287 }
3288 
3289 static ssize_t
3290 sas_ncq_prio_enable_store(struct device *dev,
3291 				  struct device_attribute *attr,
3292 				  const char *buf, size_t count)
3293 {
3294 	struct scsi_device *sdev = to_scsi_device(dev);
3295 	struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3296 	bool ncq_prio_enable = 0;
3297 
3298 	if (kstrtobool(buf, &ncq_prio_enable))
3299 		return -EINVAL;
3300 
3301 	if (!sas_ata_ncq_prio_supported(sdev))
3302 		return -EINVAL;
3303 
3304 	sdev_priv_data->ncq_prio_enable = ncq_prio_enable;
3305 
3306 	return strlen(buf);
3307 }
3308 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3309 
3310 static struct attribute *mpi3mr_dev_attrs[] = {
3311 	&dev_attr_sas_address.attr,
3312 	&dev_attr_device_handle.attr,
3313 	&dev_attr_persistent_id.attr,
3314 	&dev_attr_sas_ncq_prio_supported.attr,
3315 	&dev_attr_sas_ncq_prio_enable.attr,
3316 	NULL,
3317 };
3318 
3319 static const struct attribute_group mpi3mr_dev_attr_group = {
3320 	.attrs = mpi3mr_dev_attrs
3321 };
3322 
3323 const struct attribute_group *mpi3mr_dev_groups[] = {
3324 	&mpi3mr_dev_attr_group,
3325 	NULL,
3326 };
3327