xref: /linux/drivers/scsi/mpi3mr/mpi3mr_app.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom MPI3 Storage Controllers
4  *
5  * Copyright (C) 2017-2023 Broadcom Inc.
6  *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7  *
8  */
9 
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13 
14 /**
15  * mpi3mr_bsg_pel_abort - sends PEL abort request
16  * @mrioc: Adapter instance reference
17  *
18  * This function sends PEL abort request to the firmware through
19  * admin request queue.
20  *
21  * Return: 0 on success, -1 on failure
22  */
23 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
24 {
25 	struct mpi3_pel_req_action_abort pel_abort_req;
26 	struct mpi3_pel_reply *pel_reply;
27 	int retval = 0;
28 	u16 pe_log_status;
29 
30 	if (mrioc->reset_in_progress) {
31 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
32 		return -1;
33 	}
34 	if (mrioc->stop_bsgs) {
35 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
36 		return -1;
37 	}
38 
39 	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
40 	mutex_lock(&mrioc->pel_abort_cmd.mutex);
41 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
42 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
43 		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
44 		return -1;
45 	}
46 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
47 	mrioc->pel_abort_cmd.is_waiting = 1;
48 	mrioc->pel_abort_cmd.callback = NULL;
49 	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
50 	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
51 	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
52 	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
53 
54 	mrioc->pel_abort_requested = 1;
55 	init_completion(&mrioc->pel_abort_cmd.done);
56 	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
57 	    sizeof(pel_abort_req), 0);
58 	if (retval) {
59 		retval = -1;
60 		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
61 		    __func__);
62 		mrioc->pel_abort_requested = 0;
63 		goto out_unlock;
64 	}
65 
66 	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
67 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
68 	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
69 		mrioc->pel_abort_cmd.is_waiting = 0;
70 		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
71 		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
72 			mpi3mr_soft_reset_handler(mrioc,
73 			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
74 		retval = -1;
75 		goto out_unlock;
76 	}
77 	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
78 	     != MPI3_IOCSTATUS_SUCCESS) {
79 		dprint_bsg_err(mrioc,
80 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
81 		    __func__, (mrioc->pel_abort_cmd.ioc_status &
82 		    MPI3_IOCSTATUS_STATUS_MASK),
83 		    mrioc->pel_abort_cmd.ioc_loginfo);
84 		retval = -1;
85 		goto out_unlock;
86 	}
87 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
88 		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
89 		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
90 		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
91 			dprint_bsg_err(mrioc,
92 			    "%s: command failed, pel_status(0x%04x)\n",
93 			    __func__, pe_log_status);
94 			retval = -1;
95 		}
96 	}
97 
98 out_unlock:
99 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
100 	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
101 	return retval;
102 }
103 /**
104  * mpi3mr_bsg_verify_adapter - verify adapter number is valid
105  * @ioc_number: Adapter number
106  *
107  * This function returns the adapter instance pointer of given
108  * adapter number. If adapter number does not match with the
109  * driver's adapter list, driver returns NULL.
110  *
111  * Return: adapter instance reference
112  */
113 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
114 {
115 	struct mpi3mr_ioc *mrioc = NULL;
116 
117 	spin_lock(&mrioc_list_lock);
118 	list_for_each_entry(mrioc, &mrioc_list, list) {
119 		if (mrioc->id == ioc_number) {
120 			spin_unlock(&mrioc_list_lock);
121 			return mrioc;
122 		}
123 	}
124 	spin_unlock(&mrioc_list_lock);
125 	return NULL;
126 }
127 
128 /**
129  * mpi3mr_enable_logdata - Handler for log data enable
130  * @mrioc: Adapter instance reference
131  * @job: BSG job reference
132  *
133  * This function enables log data caching in the driver if not
134  * already enabled and return the maximum number of log data
135  * entries that can be cached in the driver.
136  *
137  * Return: 0 on success and proper error codes on failure
138  */
139 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
140 	struct bsg_job *job)
141 {
142 	struct mpi3mr_logdata_enable logdata_enable;
143 
144 	if (!mrioc->logdata_buf) {
145 		mrioc->logdata_entry_sz =
146 		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
147 		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
148 		mrioc->logdata_buf_idx = 0;
149 		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
150 		    mrioc->logdata_entry_sz, GFP_KERNEL);
151 
152 		if (!mrioc->logdata_buf)
153 			return -ENOMEM;
154 	}
155 
156 	memset(&logdata_enable, 0, sizeof(logdata_enable));
157 	logdata_enable.max_entries =
158 	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
159 	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
160 		sg_copy_from_buffer(job->request_payload.sg_list,
161 				    job->request_payload.sg_cnt,
162 				    &logdata_enable, sizeof(logdata_enable));
163 		return 0;
164 	}
165 
166 	return -EINVAL;
167 }
168 /**
169  * mpi3mr_get_logdata - Handler for get log data
170  * @mrioc: Adapter instance reference
171  * @job: BSG job pointer
172  * This function copies the log data entries to the user buffer
173  * when log caching is enabled in the driver.
174  *
175  * Return: 0 on success and proper error codes on failure
176  */
177 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
178 	struct bsg_job *job)
179 {
180 	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
181 
182 	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
183 		return -EINVAL;
184 
185 	num_entries = job->request_payload.payload_len / entry_sz;
186 	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
187 		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
188 	sz = num_entries * entry_sz;
189 
190 	if (job->request_payload.payload_len >= sz) {
191 		sg_copy_from_buffer(job->request_payload.sg_list,
192 				    job->request_payload.sg_cnt,
193 				    mrioc->logdata_buf, sz);
194 		return 0;
195 	}
196 	return -EINVAL;
197 }
198 
199 /**
200  * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
201  * @mrioc: Adapter instance reference
202  * @job: BSG job pointer
203  *
204  * This function is the handler for PEL enable driver.
205  * Validates the application given class and locale and if
206  * requires aborts the existing PEL wait request and/or issues
207  * new PEL wait request to the firmware and returns.
208  *
209  * Return: 0 on success and proper error codes on failure.
210  */
211 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
212 				  struct bsg_job *job)
213 {
214 	long rval = -EINVAL;
215 	struct mpi3mr_bsg_out_pel_enable pel_enable;
216 	u8 issue_pel_wait;
217 	u8 tmp_class;
218 	u16 tmp_locale;
219 
220 	if (job->request_payload.payload_len != sizeof(pel_enable)) {
221 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
222 		    __func__);
223 		return rval;
224 	}
225 
226 	if (mrioc->unrecoverable) {
227 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
228 			       __func__);
229 		return -EFAULT;
230 	}
231 
232 	if (mrioc->reset_in_progress) {
233 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
234 		return -EAGAIN;
235 	}
236 
237 	if (mrioc->stop_bsgs) {
238 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
239 		return -EAGAIN;
240 	}
241 
242 	sg_copy_to_buffer(job->request_payload.sg_list,
243 			  job->request_payload.sg_cnt,
244 			  &pel_enable, sizeof(pel_enable));
245 
246 	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
247 		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
248 			__func__, pel_enable.pel_class);
249 		rval = 0;
250 		goto out;
251 	}
252 	if (!mrioc->pel_enabled)
253 		issue_pel_wait = 1;
254 	else {
255 		if ((mrioc->pel_class <= pel_enable.pel_class) &&
256 		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
257 		      pel_enable.pel_locale)) {
258 			issue_pel_wait = 0;
259 			rval = 0;
260 		} else {
261 			pel_enable.pel_locale |= mrioc->pel_locale;
262 
263 			if (mrioc->pel_class < pel_enable.pel_class)
264 				pel_enable.pel_class = mrioc->pel_class;
265 
266 			rval = mpi3mr_bsg_pel_abort(mrioc);
267 			if (rval) {
268 				dprint_bsg_err(mrioc,
269 				    "%s: pel_abort failed, status(%ld)\n",
270 				    __func__, rval);
271 				goto out;
272 			}
273 			issue_pel_wait = 1;
274 		}
275 	}
276 	if (issue_pel_wait) {
277 		tmp_class = mrioc->pel_class;
278 		tmp_locale = mrioc->pel_locale;
279 		mrioc->pel_class = pel_enable.pel_class;
280 		mrioc->pel_locale = pel_enable.pel_locale;
281 		mrioc->pel_enabled = 1;
282 		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
283 		if (rval) {
284 			mrioc->pel_class = tmp_class;
285 			mrioc->pel_locale = tmp_locale;
286 			mrioc->pel_enabled = 0;
287 			dprint_bsg_err(mrioc,
288 			    "%s: pel get sequence number failed, status(%ld)\n",
289 			    __func__, rval);
290 		}
291 	}
292 
293 out:
294 	return rval;
295 }
296 /**
297  * mpi3mr_get_all_tgt_info - Get all target information
298  * @mrioc: Adapter instance reference
299  * @job: BSG job reference
300  *
301  * This function copies the driver managed target devices device
302  * handle, persistent ID, bus ID and taret ID to the user
303  * provided buffer for the specific controller. This function
304  * also provides the number of devices managed by the driver for
305  * the specific controller.
306  *
307  * Return: 0 on success and proper error codes on failure
308  */
309 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
310 	struct bsg_job *job)
311 {
312 	u16 num_devices = 0, i = 0, size;
313 	unsigned long flags;
314 	struct mpi3mr_tgt_dev *tgtdev;
315 	struct mpi3mr_device_map_info *devmap_info = NULL;
316 	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
317 	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
318 
319 	if (job->request_payload.payload_len < sizeof(u32)) {
320 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
321 		    __func__);
322 		return -EINVAL;
323 	}
324 
325 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
326 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
327 		num_devices++;
328 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
329 
330 	if ((job->request_payload.payload_len <= sizeof(u64)) ||
331 		list_empty(&mrioc->tgtdev_list)) {
332 		sg_copy_from_buffer(job->request_payload.sg_list,
333 				    job->request_payload.sg_cnt,
334 				    &num_devices, sizeof(num_devices));
335 		return 0;
336 	}
337 
338 	kern_entrylen = num_devices * sizeof(*devmap_info);
339 	size = sizeof(u64) + kern_entrylen;
340 	alltgt_info = kzalloc(size, GFP_KERNEL);
341 	if (!alltgt_info)
342 		return -ENOMEM;
343 
344 	devmap_info = alltgt_info->dmi;
345 	memset((u8 *)devmap_info, 0xFF, kern_entrylen);
346 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
347 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
348 		if (i < num_devices) {
349 			devmap_info[i].handle = tgtdev->dev_handle;
350 			devmap_info[i].perst_id = tgtdev->perst_id;
351 			if (tgtdev->host_exposed && tgtdev->starget) {
352 				devmap_info[i].target_id = tgtdev->starget->id;
353 				devmap_info[i].bus_id =
354 				    tgtdev->starget->channel;
355 			}
356 			i++;
357 		}
358 	}
359 	num_devices = i;
360 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
361 
362 	alltgt_info->num_devices = num_devices;
363 
364 	usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
365 		sizeof(*devmap_info);
366 	usr_entrylen *= sizeof(*devmap_info);
367 	min_entrylen = min(usr_entrylen, kern_entrylen);
368 
369 	sg_copy_from_buffer(job->request_payload.sg_list,
370 			    job->request_payload.sg_cnt,
371 			    alltgt_info, (min_entrylen + sizeof(u64)));
372 	kfree(alltgt_info);
373 	return 0;
374 }
375 /**
376  * mpi3mr_get_change_count - Get topology change count
377  * @mrioc: Adapter instance reference
378  * @job: BSG job reference
379  *
380  * This function copies the toplogy change count provided by the
381  * driver in events and cached in the driver to the user
382  * provided buffer for the specific controller.
383  *
384  * Return: 0 on success and proper error codes on failure
385  */
386 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
387 	struct bsg_job *job)
388 {
389 	struct mpi3mr_change_count chgcnt;
390 
391 	memset(&chgcnt, 0, sizeof(chgcnt));
392 	chgcnt.change_count = mrioc->change_count;
393 	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
394 		sg_copy_from_buffer(job->request_payload.sg_list,
395 				    job->request_payload.sg_cnt,
396 				    &chgcnt, sizeof(chgcnt));
397 		return 0;
398 	}
399 	return -EINVAL;
400 }
401 
402 /**
403  * mpi3mr_bsg_adp_reset - Issue controller reset
404  * @mrioc: Adapter instance reference
405  * @job: BSG job reference
406  *
407  * This function identifies the user provided reset type and
408  * issues approporiate reset to the controller and wait for that
409  * to complete and reinitialize the controller and then returns
410  *
411  * Return: 0 on success and proper error codes on failure
412  */
413 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
414 	struct bsg_job *job)
415 {
416 	long rval = -EINVAL;
417 	u8 save_snapdump;
418 	struct mpi3mr_bsg_adp_reset adpreset;
419 
420 	if (job->request_payload.payload_len !=
421 			sizeof(adpreset)) {
422 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
423 		    __func__);
424 		goto out;
425 	}
426 
427 	sg_copy_to_buffer(job->request_payload.sg_list,
428 			  job->request_payload.sg_cnt,
429 			  &adpreset, sizeof(adpreset));
430 
431 	switch (adpreset.reset_type) {
432 	case MPI3MR_BSG_ADPRESET_SOFT:
433 		save_snapdump = 0;
434 		break;
435 	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
436 		save_snapdump = 1;
437 		break;
438 	default:
439 		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
440 		    __func__, adpreset.reset_type);
441 		goto out;
442 	}
443 
444 	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
445 	    save_snapdump);
446 
447 	if (rval)
448 		dprint_bsg_err(mrioc,
449 		    "%s: reset handler returned error(%ld) for reset type %d\n",
450 		    __func__, rval, adpreset.reset_type);
451 out:
452 	return rval;
453 }
454 
455 /**
456  * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
457  * @mrioc: Adapter instance reference
458  * @job: BSG job reference
459  *
460  * This function provides adapter information for the given
461  * controller
462  *
463  * Return: 0 on success and proper error codes on failure
464  */
465 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
466 	struct bsg_job *job)
467 {
468 	enum mpi3mr_iocstate ioc_state;
469 	struct mpi3mr_bsg_in_adpinfo adpinfo;
470 
471 	memset(&adpinfo, 0, sizeof(adpinfo));
472 	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
473 	adpinfo.pci_dev_id = mrioc->pdev->device;
474 	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
475 	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
476 	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
477 	adpinfo.pci_bus = mrioc->pdev->bus->number;
478 	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
479 	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
480 	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
481 	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
482 
483 	ioc_state = mpi3mr_get_iocstate(mrioc);
484 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
485 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
486 	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
487 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
488 	else if (ioc_state == MRIOC_STATE_FAULT)
489 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
490 	else
491 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
492 
493 	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
494 	    sizeof(adpinfo.driver_info));
495 
496 	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
497 		sg_copy_from_buffer(job->request_payload.sg_list,
498 				    job->request_payload.sg_cnt,
499 				    &adpinfo, sizeof(adpinfo));
500 		return 0;
501 	}
502 	return -EINVAL;
503 }
504 
505 /**
506  * mpi3mr_bsg_process_drv_cmds - Driver Command handler
507  * @job: BSG job reference
508  *
509  * This function is the top level handler for driver commands,
510  * this does basic validation of the buffer and identifies the
511  * opcode and switches to correct sub handler.
512  *
513  * Return: 0 on success and proper error codes on failure
514  */
515 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
516 {
517 	long rval = -EINVAL;
518 	struct mpi3mr_ioc *mrioc = NULL;
519 	struct mpi3mr_bsg_packet *bsg_req = NULL;
520 	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
521 
522 	bsg_req = job->request;
523 	drvrcmd = &bsg_req->cmd.drvrcmd;
524 
525 	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
526 	if (!mrioc)
527 		return -ENODEV;
528 
529 	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
530 		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
531 		return rval;
532 	}
533 
534 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
535 		return -ERESTARTSYS;
536 
537 	switch (drvrcmd->opcode) {
538 	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
539 		rval = mpi3mr_bsg_adp_reset(mrioc, job);
540 		break;
541 	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
542 		rval = mpi3mr_get_all_tgt_info(mrioc, job);
543 		break;
544 	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
545 		rval = mpi3mr_get_change_count(mrioc, job);
546 		break;
547 	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
548 		rval = mpi3mr_enable_logdata(mrioc, job);
549 		break;
550 	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
551 		rval = mpi3mr_get_logdata(mrioc, job);
552 		break;
553 	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
554 		rval = mpi3mr_bsg_pel_enable(mrioc, job);
555 		break;
556 	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
557 	default:
558 		pr_err("%s: unsupported driver command opcode %d\n",
559 		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
560 		break;
561 	}
562 	mutex_unlock(&mrioc->bsg_cmds.mutex);
563 	return rval;
564 }
565 
566 /**
567  * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
568  * @drv_bufs: DMA address of the buffers to be placed in sgl
569  * @bufcnt: Number of DMA buffers
570  *
571  * This function returns total number of data SGEs required
572  * including zero length SGEs and excluding management request
573  * and response buffer for the given list of data buffer
574  * descriptors
575  *
576  * Return: Number of SGE elements needed
577  */
578 static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
579 					      u8 bufcnt)
580 {
581 	u16 i, sge_count = 0;
582 
583 	for (i = 0; i < bufcnt; i++, drv_bufs++) {
584 		if (drv_bufs->data_dir == DMA_NONE ||
585 		    drv_bufs->kern_buf)
586 			continue;
587 		sge_count += drv_bufs->num_dma_desc;
588 		if (!drv_bufs->num_dma_desc)
589 			sge_count++;
590 	}
591 	return sge_count;
592 }
593 
594 /**
595  * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
596  * @mrioc: Adapter instance reference
597  * @mpi_req: MPI request
598  * @sgl_offset: offset to start sgl in the MPI request
599  * @drv_bufs: DMA address of the buffers to be placed in sgl
600  * @bufcnt: Number of DMA buffers
601  * @is_rmc: Does the buffer list has management command buffer
602  * @is_rmr: Does the buffer list has management response buffer
603  * @num_datasges: Number of data buffers in the list
604  *
605  * This function places the DMA address of the given buffers in
606  * proper format as SGEs in the given MPI request.
607  *
608  * Return: 0 on success,-1 on failure
609  */
610 static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
611 				u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
612 				u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
613 {
614 	struct mpi3_request_header *mpi_header =
615 		(struct mpi3_request_header *)mpi_req;
616 	u8 *sgl = (mpi_req + sgl_offset), count = 0;
617 	struct mpi3_mgmt_passthrough_request *rmgmt_req =
618 	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
619 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
620 	u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
621 	u16 available_sges, i, sges_needed;
622 	u32 sge_element_size = sizeof(struct mpi3_sge_common);
623 	bool chain_used = false;
624 
625 	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
626 		MPI3_SGE_FLAGS_DLAS_SYSTEM;
627 	sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
628 	sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
629 	last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
630 	    MPI3_SGE_FLAGS_DLAS_SYSTEM;
631 
632 	sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
633 
634 	if (is_rmc) {
635 		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
636 		    sgl_flags_last, drv_buf_iter->kern_buf_len,
637 		    drv_buf_iter->kern_buf_dma);
638 		sgl = (u8 *)drv_buf_iter->kern_buf +
639 			drv_buf_iter->bsg_buf_len;
640 		available_sges = (drv_buf_iter->kern_buf_len -
641 		    drv_buf_iter->bsg_buf_len) / sge_element_size;
642 
643 		if (sges_needed > available_sges)
644 			return -1;
645 
646 		chain_used = true;
647 		drv_buf_iter++;
648 		count++;
649 		if (is_rmr) {
650 			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
651 			    sgl_flags_last, drv_buf_iter->kern_buf_len,
652 			    drv_buf_iter->kern_buf_dma);
653 			drv_buf_iter++;
654 			count++;
655 		} else
656 			mpi3mr_build_zero_len_sge(
657 			    &rmgmt_req->response_sgl);
658 		if (num_datasges) {
659 			i = 0;
660 			goto build_sges;
661 		}
662 	} else {
663 		if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
664 			return -1;
665 		available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
666 		sge_element_size;
667 		if (!available_sges)
668 			return -1;
669 	}
670 	if (!num_datasges) {
671 		mpi3mr_build_zero_len_sge(sgl);
672 		return 0;
673 	}
674 	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
675 		if ((sges_needed > 2) || (sges_needed > available_sges))
676 			return -1;
677 		for (; count < bufcnt; count++, drv_buf_iter++) {
678 			if (drv_buf_iter->data_dir == DMA_NONE ||
679 			    !drv_buf_iter->num_dma_desc)
680 				continue;
681 			mpi3mr_add_sg_single(sgl, sgl_flags_last,
682 					     drv_buf_iter->dma_desc[0].size,
683 					     drv_buf_iter->dma_desc[0].dma_addr);
684 			sgl += sge_element_size;
685 		}
686 		return 0;
687 	}
688 	i = 0;
689 
690 build_sges:
691 	for (; count < bufcnt; count++, drv_buf_iter++) {
692 		if (drv_buf_iter->data_dir == DMA_NONE)
693 			continue;
694 		if (!drv_buf_iter->num_dma_desc) {
695 			if (chain_used && !available_sges)
696 				return -1;
697 			if (!chain_used && (available_sges == 1) &&
698 			    (sges_needed > 1))
699 				goto setup_chain;
700 			flag = sgl_flag_eob;
701 			if (num_datasges == 1)
702 				flag = sgl_flags_last;
703 			mpi3mr_add_sg_single(sgl, flag, 0, 0);
704 			sgl += sge_element_size;
705 			sges_needed--;
706 			available_sges--;
707 			num_datasges--;
708 			continue;
709 		}
710 		for (; i < drv_buf_iter->num_dma_desc; i++) {
711 			if (chain_used && !available_sges)
712 				return -1;
713 			if (!chain_used && (available_sges == 1) &&
714 			    (sges_needed > 1))
715 				goto setup_chain;
716 			flag = sgl_flags;
717 			if (i == (drv_buf_iter->num_dma_desc - 1)) {
718 				if (num_datasges == 1)
719 					flag = sgl_flags_last;
720 				else
721 					flag = sgl_flag_eob;
722 			}
723 
724 			mpi3mr_add_sg_single(sgl, flag,
725 					     drv_buf_iter->dma_desc[i].size,
726 					     drv_buf_iter->dma_desc[i].dma_addr);
727 			sgl += sge_element_size;
728 			available_sges--;
729 			sges_needed--;
730 		}
731 		num_datasges--;
732 		i = 0;
733 	}
734 	return 0;
735 
736 setup_chain:
737 	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
738 	if (sges_needed > available_sges)
739 		return -1;
740 	mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
741 			     (sges_needed * sge_element_size),
742 			     mrioc->ioctl_chain_sge.dma_addr);
743 	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
744 	sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
745 	chain_used = true;
746 	goto build_sges;
747 }
748 
749 /**
750  * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
751  * @nvme_encap_request: NVMe encapsulated MPI request
752  *
753  * This function returns the type of the data format specified
754  * in user provided NVMe command in NVMe encapsulated request.
755  *
756  * Return: Data format of the NVMe command (PRP/SGL etc)
757  */
758 static unsigned int mpi3mr_get_nvme_data_fmt(
759 	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
760 {
761 	u8 format = 0;
762 
763 	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
764 	return format;
765 
766 }
767 
768 /**
769  * mpi3mr_build_nvme_sgl - SGL constructor for NVME
770  *				   encapsulated request
771  * @mrioc: Adapter instance reference
772  * @nvme_encap_request: NVMe encapsulated MPI request
773  * @drv_bufs: DMA address of the buffers to be placed in sgl
774  * @bufcnt: Number of DMA buffers
775  *
776  * This function places the DMA address of the given buffers in
777  * proper format as SGEs in the given NVMe encapsulated request.
778  *
779  * Return: 0 on success, -1 on failure
780  */
781 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
782 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
783 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
784 {
785 	struct mpi3mr_nvme_pt_sge *nvme_sgl;
786 	__le64 sgl_dma;
787 	u8 count;
788 	size_t length = 0;
789 	u16 available_sges = 0, i;
790 	u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
791 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
792 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
793 			    mrioc->facts.sge_mod_shift) << 32);
794 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
795 			  mrioc->facts.sge_mod_shift) << 32;
796 	u32 size;
797 
798 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
799 	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
800 
801 	/*
802 	 * Not all commands require a data transfer. If no data, just return
803 	 * without constructing any sgl.
804 	 */
805 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
806 		if (drv_buf_iter->data_dir == DMA_NONE)
807 			continue;
808 		length = drv_buf_iter->kern_buf_len;
809 		break;
810 	}
811 	if (!length || !drv_buf_iter->num_dma_desc)
812 		return 0;
813 
814 	if (drv_buf_iter->num_dma_desc == 1) {
815 		available_sges = 1;
816 		goto build_sges;
817 	}
818 
819 	sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
820 	if (sgl_dma & sgemod_mask) {
821 		dprint_bsg_err(mrioc,
822 		    "%s: SGL chain address collides with SGE modifier\n",
823 		    __func__);
824 		return -1;
825 	}
826 
827 	sgl_dma &= ~sgemod_mask;
828 	sgl_dma |= sgemod_val;
829 
830 	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
831 	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
832 	if (available_sges < drv_buf_iter->num_dma_desc)
833 		return -1;
834 	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
835 	nvme_sgl->base_addr = sgl_dma;
836 	size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
837 	nvme_sgl->length = cpu_to_le32(size);
838 	nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
839 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
840 
841 build_sges:
842 	for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
843 		sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
844 		if (sgl_dma & sgemod_mask) {
845 			dprint_bsg_err(mrioc,
846 				       "%s: SGL address collides with SGE modifier\n",
847 				       __func__);
848 		return -1;
849 		}
850 
851 		sgl_dma &= ~sgemod_mask;
852 		sgl_dma |= sgemod_val;
853 
854 		nvme_sgl->base_addr = sgl_dma;
855 		nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
856 		nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
857 		nvme_sgl++;
858 		available_sges--;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  * mpi3mr_build_nvme_prp - PRP constructor for NVME
866  *			       encapsulated request
867  * @mrioc: Adapter instance reference
868  * @nvme_encap_request: NVMe encapsulated MPI request
869  * @drv_bufs: DMA address of the buffers to be placed in SGL
870  * @bufcnt: Number of DMA buffers
871  *
872  * This function places the DMA address of the given buffers in
873  * proper format as PRP entries in the given NVMe encapsulated
874  * request.
875  *
876  * Return: 0 on success, -1 on failure
877  */
878 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
879 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
880 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
881 {
882 	int prp_size = MPI3MR_NVME_PRP_SIZE;
883 	__le64 *prp_entry, *prp1_entry, *prp2_entry;
884 	__le64 *prp_page;
885 	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
886 	u32 offset, entry_len, dev_pgsz;
887 	u32 page_mask_result, page_mask;
888 	size_t length = 0, desc_len;
889 	u8 count;
890 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
891 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
892 			    mrioc->facts.sge_mod_shift) << 32);
893 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
894 			  mrioc->facts.sge_mod_shift) << 32;
895 	u16 dev_handle = nvme_encap_request->dev_handle;
896 	struct mpi3mr_tgt_dev *tgtdev;
897 	u16 desc_count = 0;
898 
899 	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
900 	if (!tgtdev) {
901 		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
902 			__func__, dev_handle);
903 		return -1;
904 	}
905 
906 	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
907 		dprint_bsg_err(mrioc,
908 		    "%s: NVMe device page size is zero for handle 0x%04x\n",
909 		    __func__, dev_handle);
910 		mpi3mr_tgtdev_put(tgtdev);
911 		return -1;
912 	}
913 
914 	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
915 	mpi3mr_tgtdev_put(tgtdev);
916 	page_mask = dev_pgsz - 1;
917 
918 	if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
919 		dprint_bsg_err(mrioc,
920 			       "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
921 			       __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
922 		return -1;
923 	}
924 
925 	if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
926 		dprint_bsg_err(mrioc,
927 			       "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
928 			       __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
929 		return -1;
930 	}
931 
932 	/*
933 	 * Not all commands require a data transfer. If no data, just return
934 	 * without constructing any PRP.
935 	 */
936 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
937 		if (drv_buf_iter->data_dir == DMA_NONE)
938 			continue;
939 		length = drv_buf_iter->kern_buf_len;
940 		break;
941 	}
942 
943 	if (!length || !drv_buf_iter->num_dma_desc)
944 		return 0;
945 
946 	for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
947 		dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
948 		if (dma_addr & page_mask) {
949 			dprint_bsg_err(mrioc,
950 				       "%s:dma_addr %pad is not aligned with page size 0x%x\n",
951 				       __func__,  &dma_addr, dev_pgsz);
952 			return -1;
953 		}
954 	}
955 
956 	dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
957 	desc_len = drv_buf_iter->dma_desc[0].size;
958 
959 	mrioc->prp_sz = 0;
960 	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
961 	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
962 
963 	if (!mrioc->prp_list_virt)
964 		return -1;
965 	mrioc->prp_sz = dev_pgsz;
966 
967 	/*
968 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
969 	 * PRP1 is located at a 24 byte offset from the start of the NVMe
970 	 * command.  Then set the current PRP entry pointer to PRP1.
971 	 */
972 	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
973 	    MPI3MR_NVME_CMD_PRP1_OFFSET);
974 	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
975 	    MPI3MR_NVME_CMD_PRP2_OFFSET);
976 	prp_entry = prp1_entry;
977 	/*
978 	 * For the PRP entries, use the specially allocated buffer of
979 	 * contiguous memory.
980 	 */
981 	prp_page = (__le64 *)mrioc->prp_list_virt;
982 	prp_page_dma = mrioc->prp_list_dma;
983 
984 	/*
985 	 * Check if we are within 1 entry of a page boundary we don't
986 	 * want our first entry to be a PRP List entry.
987 	 */
988 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
989 	if (!page_mask_result) {
990 		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
991 		    __func__);
992 		goto err_out;
993 	}
994 
995 	/*
996 	 * Set PRP physical pointer, which initially points to the current PRP
997 	 * DMA memory page.
998 	 */
999 	prp_entry_dma = prp_page_dma;
1000 
1001 
1002 	/* Loop while the length is not zero. */
1003 	while (length) {
1004 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1005 		if (!page_mask_result && (length >  dev_pgsz)) {
1006 			dprint_bsg_err(mrioc,
1007 			    "%s: single PRP page is not sufficient\n",
1008 			    __func__);
1009 			goto err_out;
1010 		}
1011 
1012 		/* Need to handle if entry will be part of a page. */
1013 		offset = dma_addr & page_mask;
1014 		entry_len = dev_pgsz - offset;
1015 
1016 		if (prp_entry == prp1_entry) {
1017 			/*
1018 			 * Must fill in the first PRP pointer (PRP1) before
1019 			 * moving on.
1020 			 */
1021 			*prp1_entry = cpu_to_le64(dma_addr);
1022 			if (*prp1_entry & sgemod_mask) {
1023 				dprint_bsg_err(mrioc,
1024 				    "%s: PRP1 address collides with SGE modifier\n",
1025 				    __func__);
1026 				goto err_out;
1027 			}
1028 			*prp1_entry &= ~sgemod_mask;
1029 			*prp1_entry |= sgemod_val;
1030 
1031 			/*
1032 			 * Now point to the second PRP entry within the
1033 			 * command (PRP2).
1034 			 */
1035 			prp_entry = prp2_entry;
1036 		} else if (prp_entry == prp2_entry) {
1037 			/*
1038 			 * Should the PRP2 entry be a PRP List pointer or just
1039 			 * a regular PRP pointer?  If there is more than one
1040 			 * more page of data, must use a PRP List pointer.
1041 			 */
1042 			if (length > dev_pgsz) {
1043 				/*
1044 				 * PRP2 will contain a PRP List pointer because
1045 				 * more PRP's are needed with this command. The
1046 				 * list will start at the beginning of the
1047 				 * contiguous buffer.
1048 				 */
1049 				*prp2_entry = cpu_to_le64(prp_entry_dma);
1050 				if (*prp2_entry & sgemod_mask) {
1051 					dprint_bsg_err(mrioc,
1052 					    "%s: PRP list address collides with SGE modifier\n",
1053 					    __func__);
1054 					goto err_out;
1055 				}
1056 				*prp2_entry &= ~sgemod_mask;
1057 				*prp2_entry |= sgemod_val;
1058 
1059 				/*
1060 				 * The next PRP Entry will be the start of the
1061 				 * first PRP List.
1062 				 */
1063 				prp_entry = prp_page;
1064 				continue;
1065 			} else {
1066 				/*
1067 				 * After this, the PRP Entries are complete.
1068 				 * This command uses 2 PRP's and no PRP list.
1069 				 */
1070 				*prp2_entry = cpu_to_le64(dma_addr);
1071 				if (*prp2_entry & sgemod_mask) {
1072 					dprint_bsg_err(mrioc,
1073 					    "%s: PRP2 collides with SGE modifier\n",
1074 					    __func__);
1075 					goto err_out;
1076 				}
1077 				*prp2_entry &= ~sgemod_mask;
1078 				*prp2_entry |= sgemod_val;
1079 			}
1080 		} else {
1081 			/*
1082 			 * Put entry in list and bump the addresses.
1083 			 *
1084 			 * After PRP1 and PRP2 are filled in, this will fill in
1085 			 * all remaining PRP entries in a PRP List, one per
1086 			 * each time through the loop.
1087 			 */
1088 			*prp_entry = cpu_to_le64(dma_addr);
1089 			if (*prp_entry & sgemod_mask) {
1090 				dprint_bsg_err(mrioc,
1091 				    "%s: PRP address collides with SGE modifier\n",
1092 				    __func__);
1093 				goto err_out;
1094 			}
1095 			*prp_entry &= ~sgemod_mask;
1096 			*prp_entry |= sgemod_val;
1097 			prp_entry++;
1098 			prp_entry_dma += prp_size;
1099 		}
1100 
1101 		/* decrement length accounting for last partial page. */
1102 		if (entry_len >= length) {
1103 			length = 0;
1104 		} else {
1105 			if (entry_len <= desc_len) {
1106 				dma_addr += entry_len;
1107 				desc_len -= entry_len;
1108 			}
1109 			if (!desc_len) {
1110 				if ((++desc_count) >=
1111 				   drv_buf_iter->num_dma_desc) {
1112 					dprint_bsg_err(mrioc,
1113 						       "%s: Invalid len %zd while building PRP\n",
1114 						       __func__, length);
1115 					goto err_out;
1116 				}
1117 				dma_addr =
1118 				    drv_buf_iter->dma_desc[desc_count].dma_addr;
1119 				desc_len =
1120 				    drv_buf_iter->dma_desc[desc_count].size;
1121 			}
1122 			length -= entry_len;
1123 		}
1124 	}
1125 
1126 	return 0;
1127 err_out:
1128 	if (mrioc->prp_list_virt) {
1129 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1130 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1131 		mrioc->prp_list_virt = NULL;
1132 	}
1133 	return -1;
1134 }
1135 
1136 /**
1137  * mpi3mr_map_data_buffer_dma - build dma descriptors for data
1138  *                              buffers
1139  * @mrioc: Adapter instance reference
1140  * @drv_buf: buffer map descriptor
1141  * @desc_count: Number of already consumed dma descriptors
1142  *
1143  * This function computes how many pre-allocated DMA descriptors
1144  * are required for the given data buffer and if those number of
1145  * descriptors are free, then setup the mapping of the scattered
1146  * DMA address to the given data buffer, if the data direction
1147  * of the buffer is DMA_TO_DEVICE then the actual data is copied to
1148  * the DMA buffers
1149  *
1150  * Return: 0 on success, -1 on failure
1151  */
1152 static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
1153 				      struct mpi3mr_buf_map *drv_buf,
1154 				      u16 desc_count)
1155 {
1156 	u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
1157 	u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
1158 
1159 	if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
1160 		needed_desc++;
1161 	if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
1162 		dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
1163 			       __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
1164 		return -1;
1165 	}
1166 	drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
1167 				    GFP_KERNEL);
1168 	if (!drv_buf->dma_desc)
1169 		return -1;
1170 	for (i = 0; i < needed_desc; i++, desc_count++) {
1171 		drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
1172 		drv_buf->dma_desc[i].dma_addr =
1173 		    mrioc->ioctl_sge[desc_count].dma_addr;
1174 		if (buf_len < mrioc->ioctl_sge[desc_count].size)
1175 			drv_buf->dma_desc[i].size = buf_len;
1176 		else
1177 			drv_buf->dma_desc[i].size =
1178 			    mrioc->ioctl_sge[desc_count].size;
1179 		buf_len -= drv_buf->dma_desc[i].size;
1180 		memset(drv_buf->dma_desc[i].addr, 0,
1181 		       mrioc->ioctl_sge[desc_count].size);
1182 		if (drv_buf->data_dir == DMA_TO_DEVICE) {
1183 			memcpy(drv_buf->dma_desc[i].addr,
1184 			       drv_buf->bsg_buf + copied_len,
1185 			       drv_buf->dma_desc[i].size);
1186 			copied_len += drv_buf->dma_desc[i].size;
1187 		}
1188 	}
1189 	drv_buf->num_dma_desc = needed_desc;
1190 	return 0;
1191 }
1192 /**
1193  * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
1194  * @job: BSG job reference
1195  *
1196  * This function is the top level handler for MPI Pass through
1197  * command, this does basic validation of the input data buffers,
1198  * identifies the given buffer types and MPI command, allocates
1199  * DMAable memory for user given buffers, construstcs SGL
1200  * properly and passes the command to the firmware.
1201  *
1202  * Once the MPI command is completed the driver copies the data
1203  * if any and reply, sense information to user provided buffers.
1204  * If the command is timed out then issues controller reset
1205  * prior to returning.
1206  *
1207  * Return: 0 on success and proper error codes on failure
1208  */
1209 
1210 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
1211 {
1212 	long rval = -EINVAL;
1213 	struct mpi3mr_ioc *mrioc = NULL;
1214 	u8 *mpi_req = NULL, *sense_buff_k = NULL;
1215 	u8 mpi_msg_size = 0;
1216 	struct mpi3mr_bsg_packet *bsg_req = NULL;
1217 	struct mpi3mr_bsg_mptcmd *karg;
1218 	struct mpi3mr_buf_entry *buf_entries = NULL;
1219 	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
1220 	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
1221 	u8 din_cnt = 0, dout_cnt = 0;
1222 	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
1223 	u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
1224 	struct mpi3_request_header *mpi_header = NULL;
1225 	struct mpi3_status_reply_descriptor *status_desc;
1226 	struct mpi3_scsi_task_mgmt_request *tm_req;
1227 	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
1228 	u16 dev_handle;
1229 	struct mpi3mr_tgt_dev *tgtdev;
1230 	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
1231 	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
1232 	u32 din_size = 0, dout_size = 0;
1233 	u8 *din_buf = NULL, *dout_buf = NULL;
1234 	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
1235 	u16 rmc_size  = 0, desc_count = 0;
1236 
1237 	bsg_req = job->request;
1238 	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
1239 
1240 	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
1241 	if (!mrioc)
1242 		return -ENODEV;
1243 
1244 	if (!mrioc->ioctl_sges_allocated) {
1245 		dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
1246 			       __func__);
1247 		return -ENOMEM;
1248 	}
1249 
1250 	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
1251 		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
1252 
1253 	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
1254 	if (!mpi_req)
1255 		return -ENOMEM;
1256 	mpi_header = (struct mpi3_request_header *)mpi_req;
1257 
1258 	bufcnt = karg->buf_entry_list.num_of_entries;
1259 	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
1260 	if (!drv_bufs) {
1261 		rval = -ENOMEM;
1262 		goto out;
1263 	}
1264 
1265 	dout_buf = kzalloc(job->request_payload.payload_len,
1266 				      GFP_KERNEL);
1267 	if (!dout_buf) {
1268 		rval = -ENOMEM;
1269 		goto out;
1270 	}
1271 
1272 	din_buf = kzalloc(job->reply_payload.payload_len,
1273 				     GFP_KERNEL);
1274 	if (!din_buf) {
1275 		rval = -ENOMEM;
1276 		goto out;
1277 	}
1278 
1279 	sg_copy_to_buffer(job->request_payload.sg_list,
1280 			  job->request_payload.sg_cnt,
1281 			  dout_buf, job->request_payload.payload_len);
1282 
1283 	buf_entries = karg->buf_entry_list.buf_entry;
1284 	sgl_din_iter = din_buf;
1285 	sgl_dout_iter = dout_buf;
1286 	drv_buf_iter = drv_bufs;
1287 
1288 	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1289 
1290 		switch (buf_entries->buf_type) {
1291 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1292 			sgl_iter = sgl_dout_iter;
1293 			sgl_dout_iter += buf_entries->buf_len;
1294 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1295 			is_rmcb = 1;
1296 			if ((count != 0) || !buf_entries->buf_len)
1297 				invalid_be = 1;
1298 			break;
1299 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1300 			sgl_iter = sgl_din_iter;
1301 			sgl_din_iter += buf_entries->buf_len;
1302 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1303 			is_rmrb = 1;
1304 			if (count != 1 || !is_rmcb || !buf_entries->buf_len)
1305 				invalid_be = 1;
1306 			break;
1307 		case MPI3MR_BSG_BUFTYPE_DATA_IN:
1308 			sgl_iter = sgl_din_iter;
1309 			sgl_din_iter += buf_entries->buf_len;
1310 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1311 			din_cnt++;
1312 			din_size += buf_entries->buf_len;
1313 			if ((din_cnt > 1) && !is_rmcb)
1314 				invalid_be = 1;
1315 			break;
1316 		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1317 			sgl_iter = sgl_dout_iter;
1318 			sgl_dout_iter += buf_entries->buf_len;
1319 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1320 			dout_cnt++;
1321 			dout_size += buf_entries->buf_len;
1322 			if ((dout_cnt > 1) && !is_rmcb)
1323 				invalid_be = 1;
1324 			break;
1325 		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1326 			sgl_iter = sgl_din_iter;
1327 			sgl_din_iter += buf_entries->buf_len;
1328 			drv_buf_iter->data_dir = DMA_NONE;
1329 			mpirep_offset = count;
1330 			if (!buf_entries->buf_len)
1331 				invalid_be = 1;
1332 			break;
1333 		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1334 			sgl_iter = sgl_din_iter;
1335 			sgl_din_iter += buf_entries->buf_len;
1336 			drv_buf_iter->data_dir = DMA_NONE;
1337 			erb_offset = count;
1338 			if (!buf_entries->buf_len)
1339 				invalid_be = 1;
1340 			break;
1341 		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1342 			sgl_iter = sgl_dout_iter;
1343 			sgl_dout_iter += buf_entries->buf_len;
1344 			drv_buf_iter->data_dir = DMA_NONE;
1345 			mpi_msg_size = buf_entries->buf_len;
1346 			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1347 					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1348 				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1349 					__func__);
1350 				rval = -EINVAL;
1351 				goto out;
1352 			}
1353 			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1354 			break;
1355 		default:
1356 			invalid_be = 1;
1357 			break;
1358 		}
1359 		if (invalid_be) {
1360 			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1361 				__func__);
1362 			rval = -EINVAL;
1363 			goto out;
1364 		}
1365 
1366 		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1367 			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1368 				       __func__);
1369 			rval = -EINVAL;
1370 			goto out;
1371 		}
1372 		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1373 			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1374 				       __func__);
1375 			rval = -EINVAL;
1376 			goto out;
1377 		}
1378 
1379 		drv_buf_iter->bsg_buf = sgl_iter;
1380 		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1381 	}
1382 
1383 	if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
1384 		dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
1385 			       __func__, __LINE__, mpi_header->function, din_size,
1386 			       dout_size);
1387 		rval = -EINVAL;
1388 		goto out;
1389 	}
1390 
1391 	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1392 		dprint_bsg_err(mrioc,
1393 		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1394 		    __func__, __LINE__, mpi_header->function, din_size);
1395 		rval = -EINVAL;
1396 		goto out;
1397 	}
1398 	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1399 		dprint_bsg_err(mrioc,
1400 		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1401 		    __func__, __LINE__, mpi_header->function, dout_size);
1402 		rval = -EINVAL;
1403 		goto out;
1404 	}
1405 
1406 	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1407 		if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
1408 		    dout_size > MPI3MR_IOCTL_SGE_SIZE) {
1409 			dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
1410 				       __func__, __LINE__, din_cnt, dout_cnt, din_size,
1411 			    dout_size);
1412 			rval = -EINVAL;
1413 			goto out;
1414 		}
1415 	}
1416 
1417 	drv_buf_iter = drv_bufs;
1418 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1419 		if (drv_buf_iter->data_dir == DMA_NONE)
1420 			continue;
1421 
1422 		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1423 		if (is_rmcb && !count) {
1424 			drv_buf_iter->kern_buf_len =
1425 			    mrioc->ioctl_chain_sge.size;
1426 			drv_buf_iter->kern_buf =
1427 			    mrioc->ioctl_chain_sge.addr;
1428 			drv_buf_iter->kern_buf_dma =
1429 			    mrioc->ioctl_chain_sge.dma_addr;
1430 			drv_buf_iter->dma_desc = NULL;
1431 			drv_buf_iter->num_dma_desc = 0;
1432 			memset(drv_buf_iter->kern_buf, 0,
1433 			       drv_buf_iter->kern_buf_len);
1434 			tmplen = min(drv_buf_iter->kern_buf_len,
1435 				     drv_buf_iter->bsg_buf_len);
1436 			rmc_size = tmplen;
1437 			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1438 		} else if (is_rmrb && (count == 1)) {
1439 			drv_buf_iter->kern_buf_len =
1440 			    mrioc->ioctl_resp_sge.size;
1441 			drv_buf_iter->kern_buf =
1442 			    mrioc->ioctl_resp_sge.addr;
1443 			drv_buf_iter->kern_buf_dma =
1444 			    mrioc->ioctl_resp_sge.dma_addr;
1445 			drv_buf_iter->dma_desc = NULL;
1446 			drv_buf_iter->num_dma_desc = 0;
1447 			memset(drv_buf_iter->kern_buf, 0,
1448 			       drv_buf_iter->kern_buf_len);
1449 			tmplen = min(drv_buf_iter->kern_buf_len,
1450 				     drv_buf_iter->bsg_buf_len);
1451 			drv_buf_iter->kern_buf_len = tmplen;
1452 			memset(drv_buf_iter->bsg_buf, 0,
1453 			       drv_buf_iter->bsg_buf_len);
1454 		} else {
1455 			if (!drv_buf_iter->kern_buf_len)
1456 				continue;
1457 			if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
1458 				rval = -ENOMEM;
1459 				dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
1460 					       __func__, __LINE__);
1461 			goto out;
1462 		}
1463 			desc_count += drv_buf_iter->num_dma_desc;
1464 		}
1465 	}
1466 
1467 	if (erb_offset != 0xFF) {
1468 		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1469 		if (!sense_buff_k) {
1470 			rval = -ENOMEM;
1471 			goto out;
1472 		}
1473 	}
1474 
1475 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1476 		rval = -ERESTARTSYS;
1477 		goto out;
1478 	}
1479 	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1480 		rval = -EAGAIN;
1481 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1482 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1483 		goto out;
1484 	}
1485 	if (mrioc->unrecoverable) {
1486 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1487 		    __func__);
1488 		rval = -EFAULT;
1489 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1490 		goto out;
1491 	}
1492 	if (mrioc->reset_in_progress) {
1493 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1494 		rval = -EAGAIN;
1495 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1496 		goto out;
1497 	}
1498 	if (mrioc->stop_bsgs) {
1499 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1500 		rval = -EAGAIN;
1501 		mutex_unlock(&mrioc->bsg_cmds.mutex);
1502 		goto out;
1503 	}
1504 
1505 	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1506 		nvme_fmt = mpi3mr_get_nvme_data_fmt(
1507 			(struct mpi3_nvme_encapsulated_request *)mpi_req);
1508 		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1509 			if (mpi3mr_build_nvme_prp(mrioc,
1510 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1511 			    drv_bufs, bufcnt)) {
1512 				rval = -ENOMEM;
1513 				mutex_unlock(&mrioc->bsg_cmds.mutex);
1514 				goto out;
1515 			}
1516 		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1517 			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1518 			if (mpi3mr_build_nvme_sgl(mrioc,
1519 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1520 			    drv_bufs, bufcnt)) {
1521 				rval = -EINVAL;
1522 				mutex_unlock(&mrioc->bsg_cmds.mutex);
1523 				goto out;
1524 			}
1525 		} else {
1526 			dprint_bsg_err(mrioc,
1527 			    "%s:invalid NVMe command format\n", __func__);
1528 			rval = -EINVAL;
1529 			mutex_unlock(&mrioc->bsg_cmds.mutex);
1530 			goto out;
1531 		}
1532 	} else {
1533 		if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
1534 					 drv_bufs, bufcnt, is_rmcb, is_rmrb,
1535 					 (dout_cnt + din_cnt))) {
1536 			dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
1537 			rval = -EAGAIN;
1538 			mutex_unlock(&mrioc->bsg_cmds.mutex);
1539 			goto out;
1540 		}
1541 	}
1542 
1543 	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1544 		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1545 		if (tm_req->task_type !=
1546 		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1547 			dev_handle = tm_req->dev_handle;
1548 			block_io = 1;
1549 		}
1550 	}
1551 	if (block_io) {
1552 		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1553 		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1554 			stgt_priv = (struct mpi3mr_stgt_priv_data *)
1555 			    tgtdev->starget->hostdata;
1556 			atomic_inc(&stgt_priv->block_io);
1557 			mpi3mr_tgtdev_put(tgtdev);
1558 		}
1559 	}
1560 
1561 	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1562 	mrioc->bsg_cmds.is_waiting = 1;
1563 	mrioc->bsg_cmds.callback = NULL;
1564 	mrioc->bsg_cmds.is_sense = 0;
1565 	mrioc->bsg_cmds.sensebuf = sense_buff_k;
1566 	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1567 	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1568 	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1569 		dprint_bsg_info(mrioc,
1570 		    "%s: posting bsg request to the controller\n", __func__);
1571 		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1572 		    "bsg_mpi3_req");
1573 		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1574 			drv_buf_iter = &drv_bufs[0];
1575 			dprint_dump(drv_buf_iter->kern_buf,
1576 			    rmc_size, "mpi3_mgmt_req");
1577 		}
1578 	}
1579 
1580 	init_completion(&mrioc->bsg_cmds.done);
1581 	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1582 	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1583 
1584 
1585 	if (rval) {
1586 		mrioc->bsg_cmds.is_waiting = 0;
1587 		dprint_bsg_err(mrioc,
1588 		    "%s: posting bsg request is failed\n", __func__);
1589 		rval = -EAGAIN;
1590 		goto out_unlock;
1591 	}
1592 	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1593 	    (karg->timeout * HZ));
1594 	if (block_io && stgt_priv)
1595 		atomic_dec(&stgt_priv->block_io);
1596 	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1597 		mrioc->bsg_cmds.is_waiting = 0;
1598 		rval = -EAGAIN;
1599 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1600 			goto out_unlock;
1601 		dprint_bsg_err(mrioc,
1602 		    "%s: bsg request timedout after %d seconds\n", __func__,
1603 		    karg->timeout);
1604 		if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1605 			dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1606 			    "bsg_mpi3_req");
1607 			if (mpi_header->function ==
1608 			    MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1609 				drv_buf_iter = &drv_bufs[0];
1610 				dprint_dump(drv_buf_iter->kern_buf,
1611 				    rmc_size, "mpi3_mgmt_req");
1612 			}
1613 		}
1614 		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1615 		    (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1616 			mpi3mr_issue_tm(mrioc,
1617 			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1618 			    mpi_header->function_dependent, 0,
1619 			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1620 			    &mrioc->host_tm_cmds, &resp_code, NULL);
1621 		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1622 		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1623 			mpi3mr_soft_reset_handler(mrioc,
1624 			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1625 		goto out_unlock;
1626 	}
1627 	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1628 
1629 	if (mrioc->prp_list_virt) {
1630 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1631 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1632 		mrioc->prp_list_virt = NULL;
1633 	}
1634 
1635 	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1636 	     != MPI3_IOCSTATUS_SUCCESS) {
1637 		dprint_bsg_info(mrioc,
1638 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1639 		    __func__,
1640 		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1641 		    mrioc->bsg_cmds.ioc_loginfo);
1642 	}
1643 
1644 	if ((mpirep_offset != 0xFF) &&
1645 	    drv_bufs[mpirep_offset].bsg_buf_len) {
1646 		drv_buf_iter = &drv_bufs[mpirep_offset];
1647 		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
1648 					   mrioc->reply_sz);
1649 		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1650 
1651 		if (!bsg_reply_buf) {
1652 			rval = -ENOMEM;
1653 			goto out_unlock;
1654 		}
1655 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1656 			bsg_reply_buf->mpi_reply_type =
1657 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1658 			memcpy(bsg_reply_buf->reply_buf,
1659 			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
1660 		} else {
1661 			bsg_reply_buf->mpi_reply_type =
1662 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1663 			status_desc = (struct mpi3_status_reply_descriptor *)
1664 			    bsg_reply_buf->reply_buf;
1665 			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1666 			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1667 		}
1668 		tmplen = min(drv_buf_iter->kern_buf_len,
1669 			drv_buf_iter->bsg_buf_len);
1670 		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1671 	}
1672 
1673 	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1674 	    mrioc->bsg_cmds.is_sense) {
1675 		drv_buf_iter = &drv_bufs[erb_offset];
1676 		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1677 		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1678 	}
1679 
1680 	drv_buf_iter = drv_bufs;
1681 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1682 		if (drv_buf_iter->data_dir == DMA_NONE)
1683 			continue;
1684 		if ((count == 1) && is_rmrb) {
1685 			memcpy(drv_buf_iter->bsg_buf,
1686 			    drv_buf_iter->kern_buf,
1687 			    drv_buf_iter->kern_buf_len);
1688 		} else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1689 			tmplen = 0;
1690 			for (desc_count = 0;
1691 			    desc_count < drv_buf_iter->num_dma_desc;
1692 			    desc_count++) {
1693 				memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
1694 				       drv_buf_iter->dma_desc[desc_count].addr,
1695 				       drv_buf_iter->dma_desc[desc_count].size);
1696 				tmplen +=
1697 				    drv_buf_iter->dma_desc[desc_count].size;
1698 		}
1699 	}
1700 	}
1701 
1702 out_unlock:
1703 	if (din_buf) {
1704 		job->reply_payload_rcv_len =
1705 			sg_copy_from_buffer(job->reply_payload.sg_list,
1706 					    job->reply_payload.sg_cnt,
1707 					    din_buf, job->reply_payload.payload_len);
1708 	}
1709 	mrioc->bsg_cmds.is_sense = 0;
1710 	mrioc->bsg_cmds.sensebuf = NULL;
1711 	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1712 	mutex_unlock(&mrioc->bsg_cmds.mutex);
1713 out:
1714 	kfree(sense_buff_k);
1715 	kfree(dout_buf);
1716 	kfree(din_buf);
1717 	kfree(mpi_req);
1718 	if (drv_bufs) {
1719 		drv_buf_iter = drv_bufs;
1720 		for (count = 0; count < bufcnt; count++, drv_buf_iter++)
1721 			kfree(drv_buf_iter->dma_desc);
1722 		kfree(drv_bufs);
1723 	}
1724 	kfree(bsg_reply_buf);
1725 	return rval;
1726 }
1727 
1728 /**
1729  * mpi3mr_app_save_logdata - Save Log Data events
1730  * @mrioc: Adapter instance reference
1731  * @event_data: event data associated with log data event
1732  * @event_data_size: event data size to copy
1733  *
1734  * If log data event caching is enabled by the applicatiobns,
1735  * then this function saves the log data in the circular queue
1736  * and Sends async signal SIGIO to indicate there is an async
1737  * event from the firmware to the event monitoring applications.
1738  *
1739  * Return:Nothing
1740  */
1741 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1742 	u16 event_data_size)
1743 {
1744 	u32 index = mrioc->logdata_buf_idx, sz;
1745 	struct mpi3mr_logdata_entry *entry;
1746 
1747 	if (!(mrioc->logdata_buf))
1748 		return;
1749 
1750 	entry = (struct mpi3mr_logdata_entry *)
1751 		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1752 	entry->valid_entry = 1;
1753 	sz = min(mrioc->logdata_entry_sz, event_data_size);
1754 	memcpy(entry->data, event_data, sz);
1755 	mrioc->logdata_buf_idx =
1756 		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1757 	atomic64_inc(&event_counter);
1758 }
1759 
1760 /**
1761  * mpi3mr_bsg_request - bsg request entry point
1762  * @job: BSG job reference
1763  *
1764  * This is driver's entry point for bsg requests
1765  *
1766  * Return: 0 on success and proper error codes on failure
1767  */
1768 static int mpi3mr_bsg_request(struct bsg_job *job)
1769 {
1770 	long rval = -EINVAL;
1771 	unsigned int reply_payload_rcv_len = 0;
1772 
1773 	struct mpi3mr_bsg_packet *bsg_req = job->request;
1774 
1775 	switch (bsg_req->cmd_type) {
1776 	case MPI3MR_DRV_CMD:
1777 		rval = mpi3mr_bsg_process_drv_cmds(job);
1778 		break;
1779 	case MPI3MR_MPT_CMD:
1780 		rval = mpi3mr_bsg_process_mpt_cmds(job);
1781 		break;
1782 	default:
1783 		pr_err("%s: unsupported BSG command(0x%08x)\n",
1784 		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1785 		break;
1786 	}
1787 
1788 	bsg_job_done(job, rval, reply_payload_rcv_len);
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * mpi3mr_bsg_exit - de-registration from bsg layer
1795  * @mrioc: Adapter instance reference
1796  *
1797  * This will be called during driver unload and all
1798  * bsg resources allocated during load will be freed.
1799  *
1800  * Return:Nothing
1801  */
1802 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1803 {
1804 	struct device *bsg_dev = &mrioc->bsg_dev;
1805 	if (!mrioc->bsg_queue)
1806 		return;
1807 
1808 	bsg_remove_queue(mrioc->bsg_queue);
1809 	mrioc->bsg_queue = NULL;
1810 
1811 	device_del(bsg_dev);
1812 	put_device(bsg_dev);
1813 }
1814 
1815 /**
1816  * mpi3mr_bsg_node_release -release bsg device node
1817  * @dev: bsg device node
1818  *
1819  * decrements bsg dev parent reference count
1820  *
1821  * Return:Nothing
1822  */
1823 static void mpi3mr_bsg_node_release(struct device *dev)
1824 {
1825 	put_device(dev->parent);
1826 }
1827 
1828 /**
1829  * mpi3mr_bsg_init -  registration with bsg layer
1830  * @mrioc: Adapter instance reference
1831  *
1832  * This will be called during driver load and it will
1833  * register driver with bsg layer
1834  *
1835  * Return:Nothing
1836  */
1837 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1838 {
1839 	struct device *bsg_dev = &mrioc->bsg_dev;
1840 	struct device *parent = &mrioc->shost->shost_gendev;
1841 
1842 	device_initialize(bsg_dev);
1843 
1844 	bsg_dev->parent = get_device(parent);
1845 	bsg_dev->release = mpi3mr_bsg_node_release;
1846 
1847 	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1848 
1849 	if (device_add(bsg_dev)) {
1850 		ioc_err(mrioc, "%s: bsg device add failed\n",
1851 		    dev_name(bsg_dev));
1852 		put_device(bsg_dev);
1853 		return;
1854 	}
1855 
1856 	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1857 			mpi3mr_bsg_request, NULL, 0);
1858 	if (IS_ERR(mrioc->bsg_queue)) {
1859 		ioc_err(mrioc, "%s: bsg registration failed\n",
1860 		    dev_name(bsg_dev));
1861 		device_del(bsg_dev);
1862 		put_device(bsg_dev);
1863 		return;
1864 	}
1865 
1866 	blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1867 	blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1868 
1869 	return;
1870 }
1871 
1872 /**
1873  * version_fw_show - SysFS callback for firmware version read
1874  * @dev: class device
1875  * @attr: Device attributes
1876  * @buf: Buffer to copy
1877  *
1878  * Return: sysfs_emit() return after copying firmware version
1879  */
1880 static ssize_t
1881 version_fw_show(struct device *dev, struct device_attribute *attr,
1882 	char *buf)
1883 {
1884 	struct Scsi_Host *shost = class_to_shost(dev);
1885 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1886 	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1887 
1888 	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1889 	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1890 	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
1891 }
1892 static DEVICE_ATTR_RO(version_fw);
1893 
1894 /**
1895  * fw_queue_depth_show - SysFS callback for firmware max cmds
1896  * @dev: class device
1897  * @attr: Device attributes
1898  * @buf: Buffer to copy
1899  *
1900  * Return: sysfs_emit() return after copying firmware max commands
1901  */
1902 static ssize_t
1903 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1904 			char *buf)
1905 {
1906 	struct Scsi_Host *shost = class_to_shost(dev);
1907 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1908 
1909 	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1910 }
1911 static DEVICE_ATTR_RO(fw_queue_depth);
1912 
1913 /**
1914  * op_req_q_count_show - SysFS callback for request queue count
1915  * @dev: class device
1916  * @attr: Device attributes
1917  * @buf: Buffer to copy
1918  *
1919  * Return: sysfs_emit() return after copying request queue count
1920  */
1921 static ssize_t
1922 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1923 			char *buf)
1924 {
1925 	struct Scsi_Host *shost = class_to_shost(dev);
1926 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1927 
1928 	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1929 }
1930 static DEVICE_ATTR_RO(op_req_q_count);
1931 
1932 /**
1933  * reply_queue_count_show - SysFS callback for reply queue count
1934  * @dev: class device
1935  * @attr: Device attributes
1936  * @buf: Buffer to copy
1937  *
1938  * Return: sysfs_emit() return after copying reply queue count
1939  */
1940 static ssize_t
1941 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1942 			char *buf)
1943 {
1944 	struct Scsi_Host *shost = class_to_shost(dev);
1945 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1946 
1947 	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1948 }
1949 
1950 static DEVICE_ATTR_RO(reply_queue_count);
1951 
1952 /**
1953  * logging_level_show - Show controller debug level
1954  * @dev: class device
1955  * @attr: Device attributes
1956  * @buf: Buffer to copy
1957  *
1958  * A sysfs 'read/write' shost attribute, to show the current
1959  * debug log level used by the driver for the specific
1960  * controller.
1961  *
1962  * Return: sysfs_emit() return
1963  */
1964 static ssize_t
1965 logging_level_show(struct device *dev,
1966 	struct device_attribute *attr, char *buf)
1967 
1968 {
1969 	struct Scsi_Host *shost = class_to_shost(dev);
1970 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1971 
1972 	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1973 }
1974 
1975 /**
1976  * logging_level_store- Change controller debug level
1977  * @dev: class device
1978  * @attr: Device attributes
1979  * @buf: Buffer to copy
1980  * @count: size of the buffer
1981  *
1982  * A sysfs 'read/write' shost attribute, to change the current
1983  * debug log level used by the driver for the specific
1984  * controller.
1985  *
1986  * Return: strlen() return
1987  */
1988 static ssize_t
1989 logging_level_store(struct device *dev,
1990 	struct device_attribute *attr,
1991 	const char *buf, size_t count)
1992 {
1993 	struct Scsi_Host *shost = class_to_shost(dev);
1994 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1995 	int val = 0;
1996 
1997 	if (kstrtoint(buf, 0, &val) != 0)
1998 		return -EINVAL;
1999 
2000 	mrioc->logging_level = val;
2001 	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
2002 	return strlen(buf);
2003 }
2004 static DEVICE_ATTR_RW(logging_level);
2005 
2006 /**
2007  * adp_state_show() - SysFS callback for adapter state show
2008  * @dev: class device
2009  * @attr: Device attributes
2010  * @buf: Buffer to copy
2011  *
2012  * Return: sysfs_emit() return after copying adapter state
2013  */
2014 static ssize_t
2015 adp_state_show(struct device *dev, struct device_attribute *attr,
2016 	char *buf)
2017 {
2018 	struct Scsi_Host *shost = class_to_shost(dev);
2019 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
2020 	enum mpi3mr_iocstate ioc_state;
2021 	uint8_t adp_state;
2022 
2023 	ioc_state = mpi3mr_get_iocstate(mrioc);
2024 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
2025 		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
2026 	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
2027 		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
2028 	else if (ioc_state == MRIOC_STATE_FAULT)
2029 		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
2030 	else
2031 		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
2032 
2033 	return sysfs_emit(buf, "%u\n", adp_state);
2034 }
2035 
2036 static DEVICE_ATTR_RO(adp_state);
2037 
2038 static struct attribute *mpi3mr_host_attrs[] = {
2039 	&dev_attr_version_fw.attr,
2040 	&dev_attr_fw_queue_depth.attr,
2041 	&dev_attr_op_req_q_count.attr,
2042 	&dev_attr_reply_queue_count.attr,
2043 	&dev_attr_logging_level.attr,
2044 	&dev_attr_adp_state.attr,
2045 	NULL,
2046 };
2047 
2048 static const struct attribute_group mpi3mr_host_attr_group = {
2049 	.attrs = mpi3mr_host_attrs
2050 };
2051 
2052 const struct attribute_group *mpi3mr_host_groups[] = {
2053 	&mpi3mr_host_attr_group,
2054 	NULL,
2055 };
2056 
2057 
2058 /*
2059  * SCSI Device attributes under sysfs
2060  */
2061 
2062 /**
2063  * sas_address_show - SysFS callback for dev SASaddress display
2064  * @dev: class device
2065  * @attr: Device attributes
2066  * @buf: Buffer to copy
2067  *
2068  * Return: sysfs_emit() return after copying SAS address of the
2069  * specific SAS/SATA end device.
2070  */
2071 static ssize_t
2072 sas_address_show(struct device *dev, struct device_attribute *attr,
2073 			char *buf)
2074 {
2075 	struct scsi_device *sdev = to_scsi_device(dev);
2076 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
2077 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
2078 	struct mpi3mr_tgt_dev *tgtdev;
2079 
2080 	sdev_priv_data = sdev->hostdata;
2081 	if (!sdev_priv_data)
2082 		return 0;
2083 
2084 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
2085 	if (!tgt_priv_data)
2086 		return 0;
2087 	tgtdev = tgt_priv_data->tgt_dev;
2088 	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
2089 		return 0;
2090 	return sysfs_emit(buf, "0x%016llx\n",
2091 	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
2092 }
2093 
2094 static DEVICE_ATTR_RO(sas_address);
2095 
2096 /**
2097  * device_handle_show - SysFS callback for device handle display
2098  * @dev: class device
2099  * @attr: Device attributes
2100  * @buf: Buffer to copy
2101  *
2102  * Return: sysfs_emit() return after copying firmware internal
2103  * device handle of the specific device.
2104  */
2105 static ssize_t
2106 device_handle_show(struct device *dev, struct device_attribute *attr,
2107 			char *buf)
2108 {
2109 	struct scsi_device *sdev = to_scsi_device(dev);
2110 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
2111 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
2112 	struct mpi3mr_tgt_dev *tgtdev;
2113 
2114 	sdev_priv_data = sdev->hostdata;
2115 	if (!sdev_priv_data)
2116 		return 0;
2117 
2118 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
2119 	if (!tgt_priv_data)
2120 		return 0;
2121 	tgtdev = tgt_priv_data->tgt_dev;
2122 	if (!tgtdev)
2123 		return 0;
2124 	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
2125 }
2126 
2127 static DEVICE_ATTR_RO(device_handle);
2128 
2129 /**
2130  * persistent_id_show - SysFS callback for persisten ID display
2131  * @dev: class device
2132  * @attr: Device attributes
2133  * @buf: Buffer to copy
2134  *
2135  * Return: sysfs_emit() return after copying persistent ID of the
2136  * of the specific device.
2137  */
2138 static ssize_t
2139 persistent_id_show(struct device *dev, struct device_attribute *attr,
2140 			char *buf)
2141 {
2142 	struct scsi_device *sdev = to_scsi_device(dev);
2143 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
2144 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
2145 	struct mpi3mr_tgt_dev *tgtdev;
2146 
2147 	sdev_priv_data = sdev->hostdata;
2148 	if (!sdev_priv_data)
2149 		return 0;
2150 
2151 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
2152 	if (!tgt_priv_data)
2153 		return 0;
2154 	tgtdev = tgt_priv_data->tgt_dev;
2155 	if (!tgtdev)
2156 		return 0;
2157 	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
2158 }
2159 static DEVICE_ATTR_RO(persistent_id);
2160 
2161 static struct attribute *mpi3mr_dev_attrs[] = {
2162 	&dev_attr_sas_address.attr,
2163 	&dev_attr_device_handle.attr,
2164 	&dev_attr_persistent_id.attr,
2165 	NULL,
2166 };
2167 
2168 static const struct attribute_group mpi3mr_dev_attr_group = {
2169 	.attrs = mpi3mr_dev_attrs
2170 };
2171 
2172 const struct attribute_group *mpi3mr_dev_groups[] = {
2173 	&mpi3mr_dev_attr_group,
2174 	NULL,
2175 };
2176