xref: /linux/drivers/scsi/mpi3mr/mpi3mr_app.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom MPI3 Storage Controllers
4  *
5  * Copyright (C) 2017-2023 Broadcom Inc.
6  *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7  *
8  */
9 
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13 
14 /**
15  * mpi3mr_alloc_trace_buffer:	Allocate trace buffer
16  * @mrioc: Adapter instance reference
17  * @trace_size: Trace buffer size
18  *
19  * Allocate trace buffer
20  * Return: 0 on success, non-zero on failure.
21  */
22 static int mpi3mr_alloc_trace_buffer(struct mpi3mr_ioc *mrioc, u32 trace_size)
23 {
24 	struct diag_buffer_desc *diag_buffer = &mrioc->diag_buffers[0];
25 
26 	diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
27 	    trace_size, &diag_buffer->dma_addr, GFP_KERNEL);
28 	if (diag_buffer->addr) {
29 		dprint_init(mrioc, "trace diag buffer is allocated successfully\n");
30 		return 0;
31 	}
32 	return -1;
33 }
34 
35 /**
36  * mpi3mr_alloc_diag_bufs - Allocate memory for diag buffers
37  * @mrioc: Adapter instance reference
38  *
39  * This functions checks whether the driver defined buffer sizes
40  * are greater than IOCFacts provided controller local buffer
41  * sizes and if the driver defined sizes are more then the
42  * driver allocates the specific buffer by reading driver page1
43  *
44  * Return: Nothing.
45  */
46 void mpi3mr_alloc_diag_bufs(struct mpi3mr_ioc *mrioc)
47 {
48 	struct diag_buffer_desc *diag_buffer;
49 	struct mpi3_driver_page1 driver_pg1;
50 	u32 trace_dec_size, trace_min_size, fw_dec_size, fw_min_size,
51 		trace_size, fw_size;
52 	u16 pg_sz = sizeof(driver_pg1);
53 	int retval = 0;
54 	bool retry = false;
55 
56 	if (mrioc->diag_buffers[0].addr || mrioc->diag_buffers[1].addr)
57 		return;
58 
59 	retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz);
60 	if (retval) {
61 		ioc_warn(mrioc,
62 		    "%s: driver page 1 read failed, allocating trace\n"
63 		    "and firmware diag buffers of default size\n", __func__);
64 		trace_size = fw_size = MPI3MR_DEFAULT_HDB_MAX_SZ;
65 		trace_dec_size = fw_dec_size = MPI3MR_DEFAULT_HDB_DEC_SZ;
66 		trace_min_size = fw_min_size = MPI3MR_DEFAULT_HDB_MIN_SZ;
67 
68 	} else {
69 		trace_size = driver_pg1.host_diag_trace_max_size * 1024;
70 		trace_dec_size = driver_pg1.host_diag_trace_decrement_size
71 			 * 1024;
72 		trace_min_size = driver_pg1.host_diag_trace_min_size * 1024;
73 		fw_size = driver_pg1.host_diag_fw_max_size * 1024;
74 		fw_dec_size = driver_pg1.host_diag_fw_decrement_size * 1024;
75 		fw_min_size = driver_pg1.host_diag_fw_min_size * 1024;
76 		dprint_init(mrioc,
77 		    "%s:trace diag buffer sizes read from driver\n"
78 		    "page1: maximum size = %dKB, decrement size = %dKB\n"
79 		    ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_trace_max_size,
80 		    driver_pg1.host_diag_trace_decrement_size,
81 		    driver_pg1.host_diag_trace_min_size);
82 		dprint_init(mrioc,
83 		    "%s:firmware diag buffer sizes read from driver\n"
84 		    "page1: maximum size = %dKB, decrement size = %dKB\n"
85 		    ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_fw_max_size,
86 		    driver_pg1.host_diag_fw_decrement_size,
87 		    driver_pg1.host_diag_fw_min_size);
88 		if ((trace_size == 0) && (fw_size == 0))
89 			return;
90 	}
91 
92 
93 retry_trace:
94 	diag_buffer = &mrioc->diag_buffers[0];
95 	diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_TRACE;
96 	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
97 	if ((mrioc->facts.diag_trace_sz < trace_size) && (trace_size >=
98 		trace_min_size)) {
99 		if (!retry)
100 			dprint_init(mrioc,
101 			    "trying to allocate trace diag buffer of size = %dKB\n",
102 			    trace_size / 1024);
103 		if (get_order(trace_size) > MAX_PAGE_ORDER ||
104 		    mpi3mr_alloc_trace_buffer(mrioc, trace_size)) {
105 			retry = true;
106 			trace_size -= trace_dec_size;
107 			dprint_init(mrioc, "trace diag buffer allocation failed\n"
108 			"retrying smaller size %dKB\n", trace_size / 1024);
109 			goto retry_trace;
110 		} else
111 			diag_buffer->size = trace_size;
112 	}
113 
114 	retry = false;
115 retry_fw:
116 
117 	diag_buffer = &mrioc->diag_buffers[1];
118 
119 	diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_FW;
120 	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
121 	if ((mrioc->facts.diag_fw_sz < fw_size) && (fw_size >= fw_min_size)) {
122 		if (get_order(fw_size) <= MAX_PAGE_ORDER) {
123 			diag_buffer->addr
124 				= dma_alloc_coherent(&mrioc->pdev->dev, fw_size,
125 						     &diag_buffer->dma_addr,
126 						     GFP_KERNEL);
127 		}
128 		if (!retry)
129 			dprint_init(mrioc,
130 			    "%s:trying to allocate firmware diag buffer of size = %dKB\n",
131 			    __func__, fw_size / 1024);
132 		if (diag_buffer->addr) {
133 			dprint_init(mrioc, "%s:firmware diag buffer allocated successfully\n",
134 			    __func__);
135 			diag_buffer->size = fw_size;
136 		} else {
137 			retry = true;
138 			fw_size -= fw_dec_size;
139 			dprint_init(mrioc, "%s:trace diag buffer allocation failed,\n"
140 					"retrying smaller size %dKB\n",
141 					__func__, fw_size / 1024);
142 			goto retry_fw;
143 		}
144 	}
145 }
146 
147 /**
148  * mpi3mr_issue_diag_buf_post - Send diag buffer post req
149  * @mrioc: Adapter instance reference
150  * @diag_buffer: Diagnostic buffer descriptor
151  *
152  * Issue diagnostic buffer post MPI request through admin queue
153  * and wait for the completion of it or time out.
154  *
155  * Return: 0 on success, non-zero on failures.
156  */
157 int mpi3mr_issue_diag_buf_post(struct mpi3mr_ioc *mrioc,
158 	struct diag_buffer_desc *diag_buffer)
159 {
160 	struct mpi3_diag_buffer_post_request diag_buf_post_req;
161 	u8 prev_status;
162 	int retval = 0;
163 
164 	memset(&diag_buf_post_req, 0, sizeof(diag_buf_post_req));
165 	mutex_lock(&mrioc->init_cmds.mutex);
166 	if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
167 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
168 		mutex_unlock(&mrioc->init_cmds.mutex);
169 		return -1;
170 	}
171 	mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
172 	mrioc->init_cmds.is_waiting = 1;
173 	mrioc->init_cmds.callback = NULL;
174 	diag_buf_post_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
175 	diag_buf_post_req.function = MPI3_FUNCTION_DIAG_BUFFER_POST;
176 	diag_buf_post_req.type = diag_buffer->type;
177 	diag_buf_post_req.address = le64_to_cpu(diag_buffer->dma_addr);
178 	diag_buf_post_req.length = le32_to_cpu(diag_buffer->size);
179 
180 	dprint_bsg_info(mrioc, "%s: posting diag buffer type %d\n", __func__,
181 	    diag_buffer->type);
182 	prev_status = diag_buffer->status;
183 	diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
184 	init_completion(&mrioc->init_cmds.done);
185 	retval = mpi3mr_admin_request_post(mrioc, &diag_buf_post_req,
186 	    sizeof(diag_buf_post_req), 1);
187 	if (retval) {
188 		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
189 		    __func__);
190 		goto out_unlock;
191 	}
192 	wait_for_completion_timeout(&mrioc->init_cmds.done,
193 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
194 	if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
195 		mrioc->init_cmds.is_waiting = 0;
196 		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
197 		mpi3mr_check_rh_fault_ioc(mrioc,
198 		    MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT);
199 		retval = -1;
200 		goto out_unlock;
201 	}
202 	if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
203 	    != MPI3_IOCSTATUS_SUCCESS) {
204 		dprint_bsg_err(mrioc,
205 		    "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
206 		    __func__, diag_buffer->type,
207 		    (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
208 		    mrioc->init_cmds.ioc_loginfo);
209 		retval = -1;
210 		goto out_unlock;
211 	}
212 	dprint_bsg_info(mrioc, "%s: diag buffer type %d posted successfully\n",
213 	    __func__, diag_buffer->type);
214 
215 out_unlock:
216 	if (retval)
217 		diag_buffer->status = prev_status;
218 	mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
219 	mutex_unlock(&mrioc->init_cmds.mutex);
220 	return retval;
221 }
222 
223 /**
224  * mpi3mr_post_diag_bufs - Post diag buffers to the controller
225  * @mrioc: Adapter instance reference
226  *
227  * This function calls helper function to post both trace and
228  * firmware buffers to the controller.
229  *
230  * Return: None
231  */
232 int mpi3mr_post_diag_bufs(struct mpi3mr_ioc *mrioc)
233 {
234 	u8 i;
235 	struct diag_buffer_desc *diag_buffer;
236 
237 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
238 		diag_buffer = &mrioc->diag_buffers[i];
239 		if (!(diag_buffer->addr))
240 			continue;
241 		if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer))
242 			return -1;
243 	}
244 	return 0;
245 }
246 
247 /**
248  * mpi3mr_issue_diag_buf_release - Send diag buffer release req
249  * @mrioc: Adapter instance reference
250  * @diag_buffer: Diagnostic buffer descriptor
251  *
252  * Issue diagnostic buffer manage MPI request with release
253  * action request through admin queue and wait for the
254  * completion of it or time out.
255  *
256  * Return: 0 on success, non-zero on failures.
257  */
258 int mpi3mr_issue_diag_buf_release(struct mpi3mr_ioc *mrioc,
259 	struct diag_buffer_desc *diag_buffer)
260 {
261 	struct mpi3_diag_buffer_manage_request diag_buf_manage_req;
262 	int retval = 0;
263 
264 	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
265 	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
266 		return retval;
267 
268 	memset(&diag_buf_manage_req, 0, sizeof(diag_buf_manage_req));
269 	mutex_lock(&mrioc->init_cmds.mutex);
270 	if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
271 		dprint_reset(mrioc, "%s: command is in use\n", __func__);
272 		mutex_unlock(&mrioc->init_cmds.mutex);
273 		return -1;
274 	}
275 	mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
276 	mrioc->init_cmds.is_waiting = 1;
277 	mrioc->init_cmds.callback = NULL;
278 	diag_buf_manage_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
279 	diag_buf_manage_req.function = MPI3_FUNCTION_DIAG_BUFFER_MANAGE;
280 	diag_buf_manage_req.type = diag_buffer->type;
281 	diag_buf_manage_req.action = MPI3_DIAG_BUFFER_ACTION_RELEASE;
282 
283 
284 	dprint_reset(mrioc, "%s: releasing diag buffer type %d\n", __func__,
285 	    diag_buffer->type);
286 	init_completion(&mrioc->init_cmds.done);
287 	retval = mpi3mr_admin_request_post(mrioc, &diag_buf_manage_req,
288 	    sizeof(diag_buf_manage_req), 1);
289 	if (retval) {
290 		dprint_reset(mrioc, "%s: admin request post failed\n", __func__);
291 		mpi3mr_set_trigger_data_in_hdb(diag_buffer,
292 		    MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
293 		goto out_unlock;
294 	}
295 	wait_for_completion_timeout(&mrioc->init_cmds.done,
296 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
297 	if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
298 		mrioc->init_cmds.is_waiting = 0;
299 		dprint_reset(mrioc, "%s: command timedout\n", __func__);
300 		mpi3mr_check_rh_fault_ioc(mrioc,
301 		    MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT);
302 		retval = -1;
303 		goto out_unlock;
304 	}
305 	if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
306 	    != MPI3_IOCSTATUS_SUCCESS) {
307 		dprint_reset(mrioc,
308 		    "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
309 		    __func__, diag_buffer->type,
310 		    (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
311 		    mrioc->init_cmds.ioc_loginfo);
312 		retval = -1;
313 		goto out_unlock;
314 	}
315 	dprint_reset(mrioc, "%s: diag buffer type %d released successfully\n",
316 	    __func__, diag_buffer->type);
317 
318 out_unlock:
319 	mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
320 	mutex_unlock(&mrioc->init_cmds.mutex);
321 	return retval;
322 }
323 
324 /**
325  * mpi3mr_process_trigger - Generic HDB Trigger handler
326  * @mrioc: Adapter instance reference
327  * @trigger_type: Trigger type
328  * @trigger_data: Trigger data
329  * @trigger_flags: Trigger flags
330  *
331  * This function checks validity of HDB, triggers and based on
332  * trigger information, creates an event to be processed in the
333  * firmware event worker thread .
334  *
335  * This function should be called with trigger spinlock held
336  *
337  * Return: Nothing
338  */
339 static void mpi3mr_process_trigger(struct mpi3mr_ioc *mrioc, u8 trigger_type,
340 	union mpi3mr_trigger_data *trigger_data, u8 trigger_flags)
341 {
342 	struct trigger_event_data event_data;
343 	struct diag_buffer_desc *trace_hdb = NULL;
344 	struct diag_buffer_desc *fw_hdb = NULL;
345 	u64 global_trigger;
346 
347 	trace_hdb = mpi3mr_diag_buffer_for_type(mrioc,
348 	    MPI3_DIAG_BUFFER_TYPE_TRACE);
349 	if (trace_hdb &&
350 	    (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
351 	    (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
352 		trace_hdb =  NULL;
353 
354 	fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
355 
356 	if (fw_hdb &&
357 	    (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
358 	    (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
359 		fw_hdb = NULL;
360 
361 	if (mrioc->snapdump_trigger_active || (mrioc->fw_release_trigger_active
362 	    && mrioc->trace_release_trigger_active) ||
363 	    (!trace_hdb && !fw_hdb) || (!mrioc->driver_pg2) ||
364 	    ((trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
365 	     && (!mrioc->driver_pg2->num_triggers)))
366 		return;
367 
368 	memset(&event_data, 0, sizeof(event_data));
369 	event_data.trigger_type = trigger_type;
370 	memcpy(&event_data.trigger_specific_data, trigger_data,
371 	    sizeof(*trigger_data));
372 	global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger);
373 
374 	if (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_SNAPDUMP_ENABLED) {
375 		event_data.snapdump = true;
376 		event_data.trace_hdb = trace_hdb;
377 		event_data.fw_hdb = fw_hdb;
378 		mrioc->snapdump_trigger_active = true;
379 	} else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_GLOBAL) {
380 		if ((trace_hdb) && (global_trigger &
381 		    MPI3_DRIVER2_GLOBALTRIGGER_DIAG_TRACE_RELEASE) &&
382 		    (!mrioc->trace_release_trigger_active)) {
383 			event_data.trace_hdb = trace_hdb;
384 			mrioc->trace_release_trigger_active = true;
385 		}
386 		if ((fw_hdb) && (global_trigger &
387 		    MPI3_DRIVER2_GLOBALTRIGGER_DIAG_FW_RELEASE) &&
388 		    (!mrioc->fw_release_trigger_active)) {
389 			event_data.fw_hdb = fw_hdb;
390 			mrioc->fw_release_trigger_active = true;
391 		}
392 	} else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) {
393 		if ((trace_hdb) && (trigger_flags &
394 		    MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_TRACE_RELEASE) &&
395 		    (!mrioc->trace_release_trigger_active)) {
396 			event_data.trace_hdb = trace_hdb;
397 			mrioc->trace_release_trigger_active = true;
398 		}
399 		if ((fw_hdb) && (trigger_flags &
400 		    MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_FW_RELEASE) &&
401 		    (!mrioc->fw_release_trigger_active)) {
402 			event_data.fw_hdb = fw_hdb;
403 			mrioc->fw_release_trigger_active = true;
404 		}
405 	}
406 
407 	if (event_data.trace_hdb || event_data.fw_hdb)
408 		mpi3mr_hdb_trigger_data_event(mrioc, &event_data);
409 }
410 
411 /**
412  * mpi3mr_global_trigger - Global HDB trigger handler
413  * @mrioc: Adapter instance reference
414  * @trigger_data: Trigger data
415  *
416  * This function checks whether the given global trigger is
417  * enabled in the driver page 2 and if so calls generic trigger
418  * handler to queue event for HDB release.
419  *
420  * Return: Nothing
421  */
422 void mpi3mr_global_trigger(struct mpi3mr_ioc *mrioc, u64 trigger_data)
423 {
424 	unsigned long flags;
425 	union mpi3mr_trigger_data trigger_specific_data;
426 
427 	spin_lock_irqsave(&mrioc->trigger_lock, flags);
428 	if (le64_to_cpu(mrioc->driver_pg2->global_trigger) & trigger_data) {
429 		memset(&trigger_specific_data, 0,
430 		    sizeof(trigger_specific_data));
431 		trigger_specific_data.global = trigger_data;
432 		mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_GLOBAL,
433 		    &trigger_specific_data, 0);
434 	}
435 	spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
436 }
437 
438 /**
439  * mpi3mr_scsisense_trigger - SCSI sense HDB trigger handler
440  * @mrioc: Adapter instance reference
441  * @sensekey: Sense Key
442  * @asc: Additional Sense Code
443  * @ascq: Additional Sense Code Qualifier
444  *
445  * This function compares SCSI sense trigger values with driver
446  * page 2 values and calls generic trigger handler to release
447  * HDBs if match found
448  *
449  * Return: Nothing
450  */
451 void mpi3mr_scsisense_trigger(struct mpi3mr_ioc *mrioc, u8 sensekey, u8 asc,
452 	u8 ascq)
453 {
454 	struct mpi3_driver2_trigger_scsi_sense *scsi_sense_trigger = NULL;
455 	u64 i = 0;
456 	unsigned long flags;
457 	u8 num_triggers, trigger_flags;
458 
459 	if (mrioc->scsisense_trigger_present) {
460 		spin_lock_irqsave(&mrioc->trigger_lock, flags);
461 		scsi_sense_trigger = (struct mpi3_driver2_trigger_scsi_sense *)
462 			mrioc->driver_pg2->trigger;
463 		num_triggers = mrioc->driver_pg2->num_triggers;
464 		for (i = 0; i < num_triggers; i++, scsi_sense_trigger++) {
465 			if (scsi_sense_trigger->type !=
466 			    MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE)
467 				continue;
468 			if (!(scsi_sense_trigger->sense_key ==
469 			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_SENSE_KEY_MATCH_ALL
470 			      || scsi_sense_trigger->sense_key == sensekey))
471 				continue;
472 			if (!(scsi_sense_trigger->asc ==
473 			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASC_MATCH_ALL ||
474 			    scsi_sense_trigger->asc == asc))
475 				continue;
476 			if (!(scsi_sense_trigger->ascq ==
477 			    MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASCQ_MATCH_ALL ||
478 			    scsi_sense_trigger->ascq == ascq))
479 				continue;
480 			trigger_flags = scsi_sense_trigger->flags;
481 			mpi3mr_process_trigger(mrioc,
482 			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
483 			    (union mpi3mr_trigger_data *)scsi_sense_trigger,
484 			    trigger_flags);
485 			break;
486 		}
487 		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
488 	}
489 }
490 
491 /**
492  * mpi3mr_event_trigger - MPI event HDB trigger handler
493  * @mrioc: Adapter instance reference
494  * @event: MPI Event
495  *
496  * This function compares event trigger values with driver page
497  * 2 values and calls generic trigger handler to release
498  * HDBs if match found.
499  *
500  * Return: Nothing
501  */
502 void mpi3mr_event_trigger(struct mpi3mr_ioc *mrioc, u8 event)
503 {
504 	struct mpi3_driver2_trigger_event *event_trigger = NULL;
505 	u64 i = 0;
506 	unsigned long flags;
507 	u8 num_triggers, trigger_flags;
508 
509 	if (mrioc->event_trigger_present) {
510 		spin_lock_irqsave(&mrioc->trigger_lock, flags);
511 		event_trigger = (struct mpi3_driver2_trigger_event *)
512 			mrioc->driver_pg2->trigger;
513 		num_triggers = mrioc->driver_pg2->num_triggers;
514 
515 		for (i = 0; i < num_triggers; i++, event_trigger++) {
516 			if (event_trigger->type !=
517 			    MPI3_DRIVER2_TRIGGER_TYPE_EVENT)
518 				continue;
519 			if (event_trigger->event != event)
520 				continue;
521 			trigger_flags = event_trigger->flags;
522 			mpi3mr_process_trigger(mrioc,
523 			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
524 			    (union mpi3mr_trigger_data *)event_trigger,
525 			    trigger_flags);
526 			break;
527 		}
528 		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
529 	}
530 }
531 
532 /**
533  * mpi3mr_reply_trigger - MPI Reply HDB trigger handler
534  * @mrioc: Adapter instance reference
535  * @ioc_status: Masked value of IOC Status from MPI Reply
536  * @ioc_loginfo: IOC Log Info from MPI Reply
537  *
538  * This function compares IOC status and IOC log info trigger
539  * values with driver page 2 values and calls generic trigger
540  * handler to release HDBs if match found.
541  *
542  * Return: Nothing
543  */
544 void mpi3mr_reply_trigger(struct mpi3mr_ioc *mrioc, u16 ioc_status,
545 	u32 ioc_loginfo)
546 {
547 	struct mpi3_driver2_trigger_reply *reply_trigger = NULL;
548 	u64 i = 0;
549 	unsigned long flags;
550 	u8 num_triggers, trigger_flags;
551 
552 	if (mrioc->reply_trigger_present) {
553 		spin_lock_irqsave(&mrioc->trigger_lock, flags);
554 		reply_trigger = (struct mpi3_driver2_trigger_reply *)
555 			mrioc->driver_pg2->trigger;
556 		num_triggers = mrioc->driver_pg2->num_triggers;
557 		for (i = 0; i < num_triggers; i++, reply_trigger++) {
558 			if (reply_trigger->type !=
559 			    MPI3_DRIVER2_TRIGGER_TYPE_REPLY)
560 				continue;
561 			if ((le16_to_cpu(reply_trigger->ioc_status) !=
562 			     ioc_status)
563 			    && (le16_to_cpu(reply_trigger->ioc_status) !=
564 			    MPI3_DRIVER2_TRIGGER_REPLY_IOCSTATUS_MATCH_ALL))
565 				continue;
566 			if ((le32_to_cpu(reply_trigger->ioc_log_info) !=
567 			    (le32_to_cpu(reply_trigger->ioc_log_info_mask) &
568 			     ioc_loginfo)))
569 				continue;
570 			trigger_flags = reply_trigger->flags;
571 			mpi3mr_process_trigger(mrioc,
572 			    MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
573 			    (union mpi3mr_trigger_data *)reply_trigger,
574 			    trigger_flags);
575 			break;
576 		}
577 		spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
578 	}
579 }
580 
581 /**
582  * mpi3mr_get_num_trigger - Gets number of HDB triggers
583  * @mrioc: Adapter instance reference
584  * @num_triggers: Number of triggers
585  * @page_action: Page action
586  *
587  * This function reads number of triggers by reading driver page
588  * 2
589  *
590  * Return: 0 on success and proper error codes on failure
591  */
592 static int mpi3mr_get_num_trigger(struct mpi3mr_ioc *mrioc, u8 *num_triggers,
593 	u8 page_action)
594 {
595 	struct mpi3_driver_page2 drvr_page2;
596 	int retval = 0;
597 
598 	*num_triggers = 0;
599 
600 	retval = mpi3mr_cfg_get_driver_pg2(mrioc, &drvr_page2,
601 	    sizeof(struct mpi3_driver_page2), page_action);
602 
603 	if (retval) {
604 		dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
605 		return retval;
606 	}
607 	*num_triggers = drvr_page2.num_triggers;
608 	return retval;
609 }
610 
611 /**
612  * mpi3mr_refresh_trigger - Handler for Refresh trigger BSG
613  * @mrioc: Adapter instance reference
614  * @page_action: Page action
615  *
616  * This function caches the driver page 2 in the driver's memory
617  * by reading driver page 2 from the controller for a given page
618  * type and updates the HDB trigger values
619  *
620  * Return: 0 on success and proper error codes on failure
621  */
622 int mpi3mr_refresh_trigger(struct mpi3mr_ioc *mrioc, u8 page_action)
623 {
624 	u16 pg_sz = sizeof(struct mpi3_driver_page2);
625 	struct mpi3_driver_page2 *drvr_page2 = NULL;
626 	u8 trigger_type, num_triggers;
627 	int retval;
628 	int i = 0;
629 	unsigned long flags;
630 
631 	retval = mpi3mr_get_num_trigger(mrioc, &num_triggers, page_action);
632 
633 	if (retval)
634 		goto out;
635 
636 	pg_sz = offsetof(struct mpi3_driver_page2, trigger) +
637 		(num_triggers * sizeof(union mpi3_driver2_trigger_element));
638 	drvr_page2 = kzalloc(pg_sz, GFP_KERNEL);
639 	if (!drvr_page2) {
640 		retval = -ENOMEM;
641 		goto out;
642 	}
643 
644 	retval = mpi3mr_cfg_get_driver_pg2(mrioc, drvr_page2, pg_sz, page_action);
645 	if (retval) {
646 		dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
647 		kfree(drvr_page2);
648 		goto out;
649 	}
650 	spin_lock_irqsave(&mrioc->trigger_lock, flags);
651 	kfree(mrioc->driver_pg2);
652 	mrioc->driver_pg2 = drvr_page2;
653 	mrioc->reply_trigger_present = false;
654 	mrioc->event_trigger_present = false;
655 	mrioc->scsisense_trigger_present = false;
656 
657 	for (i = 0; (i < mrioc->driver_pg2->num_triggers); i++) {
658 		trigger_type = mrioc->driver_pg2->trigger[i].event.type;
659 		switch (trigger_type) {
660 		case MPI3_DRIVER2_TRIGGER_TYPE_REPLY:
661 			mrioc->reply_trigger_present = true;
662 			break;
663 		case MPI3_DRIVER2_TRIGGER_TYPE_EVENT:
664 			mrioc->event_trigger_present = true;
665 			break;
666 		case MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE:
667 			mrioc->scsisense_trigger_present = true;
668 			break;
669 		default:
670 			break;
671 		}
672 	}
673 	spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
674 out:
675 	return retval;
676 }
677 
678 /**
679  * mpi3mr_release_diag_bufs - Release diag buffers
680  * @mrioc: Adapter instance reference
681  * @skip_rel_action: Skip release action and set buffer state
682  *
683  * This function calls helper function to release both trace and
684  * firmware buffers from the controller.
685  *
686  * Return: None
687  */
688 void mpi3mr_release_diag_bufs(struct mpi3mr_ioc *mrioc, u8 skip_rel_action)
689 {
690 	u8 i;
691 	struct diag_buffer_desc *diag_buffer;
692 
693 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
694 		diag_buffer = &mrioc->diag_buffers[i];
695 		if (!(diag_buffer->addr))
696 			continue;
697 		if (diag_buffer->status == MPI3MR_HDB_BUFSTATUS_RELEASED)
698 			continue;
699 		if (!skip_rel_action)
700 			mpi3mr_issue_diag_buf_release(mrioc, diag_buffer);
701 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
702 		atomic64_inc(&event_counter);
703 	}
704 }
705 
706 /**
707  * mpi3mr_set_trigger_data_in_hdb - Updates HDB trigger type and
708  * trigger data
709  *
710  * @hdb: HDB pointer
711  * @type: Trigger type
712  * @data: Trigger data
713  * @force: Trigger overwrite flag
714  * @trigger_data: Pointer to trigger data information
715  *
716  * Updates trigger type and trigger data based on parameter
717  * passed to this function
718  *
719  * Return: Nothing
720  */
721 void mpi3mr_set_trigger_data_in_hdb(struct diag_buffer_desc *hdb,
722 	u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
723 {
724 	if ((!force) && (hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN))
725 		return;
726 	hdb->trigger_type = type;
727 	if (!trigger_data)
728 		memset(&hdb->trigger_data, 0, sizeof(*trigger_data));
729 	else
730 		memcpy(&hdb->trigger_data, trigger_data, sizeof(*trigger_data));
731 }
732 
733 /**
734  * mpi3mr_set_trigger_data_in_all_hdb - Updates HDB trigger type
735  * and trigger data for all HDB
736  *
737  * @mrioc: Adapter instance reference
738  * @type: Trigger type
739  * @data: Trigger data
740  * @force: Trigger overwrite flag
741  * @trigger_data: Pointer to trigger data information
742  *
743  * Updates trigger type and trigger data based on parameter
744  * passed to this function
745  *
746  * Return: Nothing
747  */
748 void mpi3mr_set_trigger_data_in_all_hdb(struct mpi3mr_ioc *mrioc,
749 	u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
750 {
751 	struct diag_buffer_desc *hdb = NULL;
752 
753 	hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE);
754 	if (hdb)
755 		mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
756 	hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
757 	if (hdb)
758 		mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
759 }
760 
761 /**
762  * mpi3mr_hdbstatuschg_evt_th - HDB status change evt tophalf
763  * @mrioc: Adapter instance reference
764  * @event_reply: event data
765  *
766  * Modifies the status of the applicable diag buffer descriptors
767  *
768  * Return: Nothing
769  */
770 void mpi3mr_hdbstatuschg_evt_th(struct mpi3mr_ioc *mrioc,
771 	struct mpi3_event_notification_reply *event_reply)
772 {
773 	struct mpi3_event_data_diag_buffer_status_change *evtdata;
774 	struct diag_buffer_desc *diag_buffer;
775 
776 	evtdata = (struct mpi3_event_data_diag_buffer_status_change *)
777 	    event_reply->event_data;
778 
779 	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, evtdata->type);
780 	if (!diag_buffer)
781 		return;
782 	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
783 	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
784 		return;
785 	switch (evtdata->reason_code) {
786 	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RELEASED:
787 	{
788 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
789 		mpi3mr_set_trigger_data_in_hdb(diag_buffer,
790 		    MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
791 		atomic64_inc(&event_counter);
792 		break;
793 	}
794 	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RESUMED:
795 	{
796 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
797 		break;
798 	}
799 	case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_PAUSED:
800 	{
801 		diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED;
802 		break;
803 	}
804 	default:
805 		dprint_event_th(mrioc, "%s: unknown reason_code(%d)\n",
806 		    __func__, evtdata->reason_code);
807 		break;
808 	}
809 }
810 
811 /**
812  * mpi3mr_diag_buffer_for_type - returns buffer desc for type
813  * @mrioc: Adapter instance reference
814  * @buf_type: Diagnostic buffer type
815  *
816  * Identifies matching diag descriptor from mrioc for given diag
817  * buffer type.
818  *
819  * Return: diag buffer descriptor on success, NULL on failures.
820  */
821 
822 struct diag_buffer_desc *
823 mpi3mr_diag_buffer_for_type(struct mpi3mr_ioc *mrioc, u8 buf_type)
824 {
825 	u8 i;
826 
827 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
828 		if (mrioc->diag_buffers[i].type == buf_type)
829 			return &mrioc->diag_buffers[i];
830 	}
831 	return NULL;
832 }
833 
834 /**
835  * mpi3mr_bsg_pel_abort - sends PEL abort request
836  * @mrioc: Adapter instance reference
837  *
838  * This function sends PEL abort request to the firmware through
839  * admin request queue.
840  *
841  * Return: 0 on success, -1 on failure
842  */
843 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
844 {
845 	struct mpi3_pel_req_action_abort pel_abort_req;
846 	struct mpi3_pel_reply *pel_reply;
847 	int retval = 0;
848 	u16 pe_log_status;
849 
850 	if (mrioc->reset_in_progress) {
851 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
852 		return -1;
853 	}
854 	if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
855 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
856 		return -1;
857 	}
858 
859 	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
860 	mutex_lock(&mrioc->pel_abort_cmd.mutex);
861 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
862 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
863 		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
864 		return -1;
865 	}
866 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
867 	mrioc->pel_abort_cmd.is_waiting = 1;
868 	mrioc->pel_abort_cmd.callback = NULL;
869 	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
870 	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
871 	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
872 	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
873 
874 	mrioc->pel_abort_requested = 1;
875 	init_completion(&mrioc->pel_abort_cmd.done);
876 	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
877 	    sizeof(pel_abort_req), 0);
878 	if (retval) {
879 		retval = -1;
880 		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
881 		    __func__);
882 		mrioc->pel_abort_requested = 0;
883 		goto out_unlock;
884 	}
885 
886 	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
887 	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
888 	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
889 		mrioc->pel_abort_cmd.is_waiting = 0;
890 		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
891 		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
892 			mpi3mr_soft_reset_handler(mrioc,
893 			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
894 		retval = -1;
895 		goto out_unlock;
896 	}
897 	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
898 	     != MPI3_IOCSTATUS_SUCCESS) {
899 		dprint_bsg_err(mrioc,
900 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
901 		    __func__, (mrioc->pel_abort_cmd.ioc_status &
902 		    MPI3_IOCSTATUS_STATUS_MASK),
903 		    mrioc->pel_abort_cmd.ioc_loginfo);
904 		retval = -1;
905 		goto out_unlock;
906 	}
907 	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
908 		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
909 		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
910 		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
911 			dprint_bsg_err(mrioc,
912 			    "%s: command failed, pel_status(0x%04x)\n",
913 			    __func__, pe_log_status);
914 			retval = -1;
915 		}
916 	}
917 
918 out_unlock:
919 	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
920 	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
921 	return retval;
922 }
923 /**
924  * mpi3mr_bsg_verify_adapter - verify adapter number is valid
925  * @ioc_number: Adapter number
926  *
927  * This function returns the adapter instance pointer of given
928  * adapter number. If adapter number does not match with the
929  * driver's adapter list, driver returns NULL.
930  *
931  * Return: adapter instance reference
932  */
933 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
934 {
935 	struct mpi3mr_ioc *mrioc = NULL;
936 
937 	spin_lock(&mrioc_list_lock);
938 	list_for_each_entry(mrioc, &mrioc_list, list) {
939 		if (mrioc->id == ioc_number) {
940 			spin_unlock(&mrioc_list_lock);
941 			return mrioc;
942 		}
943 	}
944 	spin_unlock(&mrioc_list_lock);
945 	return NULL;
946 }
947 
948 /**
949  * mpi3mr_bsg_refresh_hdb_triggers - Refresh HDB trigger data
950  * @mrioc: Adapter instance reference
951  * @job: BSG Job pointer
952  *
953  * This function reads the controller trigger config page as
954  * defined by the input page type and refreshes the driver's
955  * local trigger information structures with the controller's
956  * config page data.
957  *
958  * Return: 0 on success and proper error codes on failure
959  */
960 static long
961 mpi3mr_bsg_refresh_hdb_triggers(struct mpi3mr_ioc *mrioc,
962 				struct bsg_job *job)
963 {
964 	struct mpi3mr_bsg_out_refresh_hdb_triggers refresh_triggers;
965 	uint32_t data_out_sz;
966 	u8 page_action;
967 	long rval = -EINVAL;
968 
969 	data_out_sz = job->request_payload.payload_len;
970 
971 	if (data_out_sz != sizeof(refresh_triggers)) {
972 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
973 		    __func__);
974 		return rval;
975 	}
976 
977 	if (mrioc->unrecoverable) {
978 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
979 		    __func__);
980 		return -EFAULT;
981 	}
982 	if (mrioc->reset_in_progress) {
983 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
984 		return -EAGAIN;
985 	}
986 
987 	sg_copy_to_buffer(job->request_payload.sg_list,
988 	    job->request_payload.sg_cnt,
989 	    &refresh_triggers, sizeof(refresh_triggers));
990 
991 	switch (refresh_triggers.page_type) {
992 	case MPI3MR_HDB_REFRESH_TYPE_CURRENT:
993 		page_action = MPI3_CONFIG_ACTION_READ_CURRENT;
994 		break;
995 	case MPI3MR_HDB_REFRESH_TYPE_DEFAULT:
996 		page_action = MPI3_CONFIG_ACTION_READ_DEFAULT;
997 		break;
998 	case MPI3MR_HDB_HDB_REFRESH_TYPE_PERSISTENT:
999 		page_action = MPI3_CONFIG_ACTION_READ_PERSISTENT;
1000 		break;
1001 	default:
1002 		dprint_bsg_err(mrioc,
1003 		    "%s: unsupported refresh trigger, page_type %d\n",
1004 		    __func__, refresh_triggers.page_type);
1005 		return rval;
1006 	}
1007 	rval = mpi3mr_refresh_trigger(mrioc, page_action);
1008 
1009 	return rval;
1010 }
1011 
1012 /**
1013  * mpi3mr_bsg_upload_hdb - Upload a specific HDB to user space
1014  * @mrioc: Adapter instance reference
1015  * @job: BSG Job pointer
1016  *
1017  * Return: 0 on success and proper error codes on failure
1018  */
1019 static long mpi3mr_bsg_upload_hdb(struct mpi3mr_ioc *mrioc,
1020 				  struct bsg_job *job)
1021 {
1022 	struct mpi3mr_bsg_out_upload_hdb upload_hdb;
1023 	struct diag_buffer_desc *diag_buffer;
1024 	uint32_t data_out_size;
1025 	uint32_t data_in_size;
1026 
1027 	data_out_size = job->request_payload.payload_len;
1028 	data_in_size = job->reply_payload.payload_len;
1029 
1030 	if (data_out_size != sizeof(upload_hdb)) {
1031 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1032 		    __func__);
1033 		return -EINVAL;
1034 	}
1035 
1036 	sg_copy_to_buffer(job->request_payload.sg_list,
1037 			  job->request_payload.sg_cnt,
1038 			  &upload_hdb, sizeof(upload_hdb));
1039 
1040 	if ((!upload_hdb.length) || (data_in_size != upload_hdb.length)) {
1041 		dprint_bsg_err(mrioc, "%s: invalid length argument\n",
1042 		    __func__);
1043 		return -EINVAL;
1044 	}
1045 	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, upload_hdb.buf_type);
1046 	if ((!diag_buffer) || (!diag_buffer->addr)) {
1047 		dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1048 		    __func__, upload_hdb.buf_type);
1049 		return -EINVAL;
1050 	}
1051 
1052 	if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) &&
1053 	    (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) {
1054 		dprint_bsg_err(mrioc,
1055 		    "%s: invalid buffer status %d for type %d\n",
1056 		    __func__, diag_buffer->status, upload_hdb.buf_type);
1057 		return -EINVAL;
1058 	}
1059 
1060 	if ((upload_hdb.start_offset + upload_hdb.length) > diag_buffer->size) {
1061 		dprint_bsg_err(mrioc,
1062 		    "%s: invalid start offset %d, length %d for type %d\n",
1063 		    __func__, upload_hdb.start_offset, upload_hdb.length,
1064 		    upload_hdb.buf_type);
1065 		return -EINVAL;
1066 	}
1067 	sg_copy_from_buffer(job->reply_payload.sg_list,
1068 			    job->reply_payload.sg_cnt,
1069 	    (diag_buffer->addr + upload_hdb.start_offset),
1070 	    data_in_size);
1071 	return 0;
1072 }
1073 
1074 /**
1075  * mpi3mr_bsg_repost_hdb - Re-post HDB
1076  * @mrioc: Adapter instance reference
1077  * @job: BSG job pointer
1078  *
1079  * This function retrieves the HDB descriptor corresponding to a
1080  * given buffer type and if the HDB is in released status then
1081  * posts the HDB with the firmware.
1082  *
1083  * Return: 0 on success and proper error codes on failure
1084  */
1085 static long mpi3mr_bsg_repost_hdb(struct mpi3mr_ioc *mrioc,
1086 				  struct bsg_job *job)
1087 {
1088 	struct mpi3mr_bsg_out_repost_hdb repost_hdb;
1089 	struct diag_buffer_desc *diag_buffer;
1090 	uint32_t data_out_sz;
1091 
1092 	data_out_sz = job->request_payload.payload_len;
1093 
1094 	if (data_out_sz != sizeof(repost_hdb)) {
1095 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1096 		    __func__);
1097 		return -EINVAL;
1098 	}
1099 	if (mrioc->unrecoverable) {
1100 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1101 		    __func__);
1102 		return -EFAULT;
1103 	}
1104 	if (mrioc->reset_in_progress) {
1105 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1106 		return -EAGAIN;
1107 	}
1108 
1109 	sg_copy_to_buffer(job->request_payload.sg_list,
1110 			  job->request_payload.sg_cnt,
1111 			  &repost_hdb, sizeof(repost_hdb));
1112 
1113 	diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, repost_hdb.buf_type);
1114 	if ((!diag_buffer) || (!diag_buffer->addr)) {
1115 		dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1116 		    __func__, repost_hdb.buf_type);
1117 		return -EINVAL;
1118 	}
1119 
1120 	if (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) {
1121 		dprint_bsg_err(mrioc,
1122 		    "%s: invalid buffer status %d for type %d\n",
1123 		    __func__, diag_buffer->status, repost_hdb.buf_type);
1124 		return -EINVAL;
1125 	}
1126 
1127 	if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) {
1128 		dprint_bsg_err(mrioc, "%s: post failed for type %d\n",
1129 		    __func__, repost_hdb.buf_type);
1130 		return -EFAULT;
1131 	}
1132 	mpi3mr_set_trigger_data_in_hdb(diag_buffer,
1133 	    MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  * mpi3mr_bsg_query_hdb - Handler for query HDB command
1140  * @mrioc: Adapter instance reference
1141  * @job: BSG job pointer
1142  *
1143  * This function prepares and copies the host diagnostic buffer
1144  * entries to the user buffer.
1145  *
1146  * Return: 0 on success and proper error codes on failure
1147  */
1148 static long mpi3mr_bsg_query_hdb(struct mpi3mr_ioc *mrioc,
1149 				 struct bsg_job *job)
1150 {
1151 	long rval = 0;
1152 	struct mpi3mr_bsg_in_hdb_status *hbd_status;
1153 	struct mpi3mr_hdb_entry *hbd_status_entry;
1154 	u32 length, min_length;
1155 	u8 i;
1156 	struct diag_buffer_desc *diag_buffer;
1157 	uint32_t data_in_sz = 0;
1158 
1159 	data_in_sz = job->request_payload.payload_len;
1160 
1161 	length = (sizeof(*hbd_status) + ((MPI3MR_MAX_NUM_HDB - 1) *
1162 		    sizeof(*hbd_status_entry)));
1163 	hbd_status = kmalloc(length, GFP_KERNEL);
1164 	if (!hbd_status)
1165 		return -ENOMEM;
1166 	hbd_status_entry = &hbd_status->entry[0];
1167 
1168 	hbd_status->num_hdb_types = MPI3MR_MAX_NUM_HDB;
1169 	for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
1170 		diag_buffer = &mrioc->diag_buffers[i];
1171 		hbd_status_entry->buf_type = diag_buffer->type;
1172 		hbd_status_entry->status = diag_buffer->status;
1173 		hbd_status_entry->trigger_type = diag_buffer->trigger_type;
1174 		memcpy(&hbd_status_entry->trigger_data,
1175 		    &diag_buffer->trigger_data,
1176 		    sizeof(hbd_status_entry->trigger_data));
1177 		hbd_status_entry->size = (diag_buffer->size / 1024);
1178 		hbd_status_entry++;
1179 	}
1180 	hbd_status->element_trigger_format =
1181 		MPI3MR_HDB_QUERY_ELEMENT_TRIGGER_FORMAT_DATA;
1182 
1183 	if (data_in_sz < 4) {
1184 		dprint_bsg_err(mrioc, "%s: invalid size passed\n", __func__);
1185 		rval = -EINVAL;
1186 		goto out;
1187 	}
1188 	min_length = min(data_in_sz, length);
1189 	if (job->request_payload.payload_len >= min_length) {
1190 		sg_copy_from_buffer(job->request_payload.sg_list,
1191 				    job->request_payload.sg_cnt,
1192 				    hbd_status, min_length);
1193 		rval = 0;
1194 	}
1195 out:
1196 	kfree(hbd_status);
1197 	return rval;
1198 }
1199 
1200 
1201 /**
1202  * mpi3mr_enable_logdata - Handler for log data enable
1203  * @mrioc: Adapter instance reference
1204  * @job: BSG job reference
1205  *
1206  * This function enables log data caching in the driver if not
1207  * already enabled and return the maximum number of log data
1208  * entries that can be cached in the driver.
1209  *
1210  * Return: 0 on success and proper error codes on failure
1211  */
1212 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
1213 	struct bsg_job *job)
1214 {
1215 	struct mpi3mr_logdata_enable logdata_enable;
1216 
1217 	if (!mrioc->logdata_buf) {
1218 		mrioc->logdata_entry_sz =
1219 		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
1220 		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
1221 		mrioc->logdata_buf_idx = 0;
1222 		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
1223 		    mrioc->logdata_entry_sz, GFP_KERNEL);
1224 
1225 		if (!mrioc->logdata_buf)
1226 			return -ENOMEM;
1227 	}
1228 
1229 	memset(&logdata_enable, 0, sizeof(logdata_enable));
1230 	logdata_enable.max_entries =
1231 	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1232 	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
1233 		sg_copy_from_buffer(job->request_payload.sg_list,
1234 				    job->request_payload.sg_cnt,
1235 				    &logdata_enable, sizeof(logdata_enable));
1236 		return 0;
1237 	}
1238 
1239 	return -EINVAL;
1240 }
1241 /**
1242  * mpi3mr_get_logdata - Handler for get log data
1243  * @mrioc: Adapter instance reference
1244  * @job: BSG job pointer
1245  * This function copies the log data entries to the user buffer
1246  * when log caching is enabled in the driver.
1247  *
1248  * Return: 0 on success and proper error codes on failure
1249  */
1250 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
1251 	struct bsg_job *job)
1252 {
1253 	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
1254 
1255 	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
1256 		return -EINVAL;
1257 
1258 	num_entries = job->request_payload.payload_len / entry_sz;
1259 	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
1260 		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1261 	sz = num_entries * entry_sz;
1262 
1263 	if (job->request_payload.payload_len >= sz) {
1264 		sg_copy_from_buffer(job->request_payload.sg_list,
1265 				    job->request_payload.sg_cnt,
1266 				    mrioc->logdata_buf, sz);
1267 		return 0;
1268 	}
1269 	return -EINVAL;
1270 }
1271 
1272 /**
1273  * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
1274  * @mrioc: Adapter instance reference
1275  * @job: BSG job pointer
1276  *
1277  * This function is the handler for PEL enable driver.
1278  * Validates the application given class and locale and if
1279  * requires aborts the existing PEL wait request and/or issues
1280  * new PEL wait request to the firmware and returns.
1281  *
1282  * Return: 0 on success and proper error codes on failure.
1283  */
1284 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
1285 				  struct bsg_job *job)
1286 {
1287 	long rval = -EINVAL;
1288 	struct mpi3mr_bsg_out_pel_enable pel_enable;
1289 	u8 issue_pel_wait;
1290 	u8 tmp_class;
1291 	u16 tmp_locale;
1292 
1293 	if (job->request_payload.payload_len != sizeof(pel_enable)) {
1294 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1295 		    __func__);
1296 		return rval;
1297 	}
1298 
1299 	if (mrioc->unrecoverable) {
1300 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1301 			       __func__);
1302 		return -EFAULT;
1303 	}
1304 
1305 	if (mrioc->reset_in_progress) {
1306 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1307 		return -EAGAIN;
1308 	}
1309 
1310 	if (mrioc->stop_bsgs) {
1311 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1312 		return -EAGAIN;
1313 	}
1314 
1315 	sg_copy_to_buffer(job->request_payload.sg_list,
1316 			  job->request_payload.sg_cnt,
1317 			  &pel_enable, sizeof(pel_enable));
1318 
1319 	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
1320 		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
1321 			__func__, pel_enable.pel_class);
1322 		rval = 0;
1323 		goto out;
1324 	}
1325 	if (!mrioc->pel_enabled)
1326 		issue_pel_wait = 1;
1327 	else {
1328 		if ((mrioc->pel_class <= pel_enable.pel_class) &&
1329 		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
1330 		      pel_enable.pel_locale)) {
1331 			issue_pel_wait = 0;
1332 			rval = 0;
1333 		} else {
1334 			pel_enable.pel_locale |= mrioc->pel_locale;
1335 
1336 			if (mrioc->pel_class < pel_enable.pel_class)
1337 				pel_enable.pel_class = mrioc->pel_class;
1338 
1339 			rval = mpi3mr_bsg_pel_abort(mrioc);
1340 			if (rval) {
1341 				dprint_bsg_err(mrioc,
1342 				    "%s: pel_abort failed, status(%ld)\n",
1343 				    __func__, rval);
1344 				goto out;
1345 			}
1346 			issue_pel_wait = 1;
1347 		}
1348 	}
1349 	if (issue_pel_wait) {
1350 		tmp_class = mrioc->pel_class;
1351 		tmp_locale = mrioc->pel_locale;
1352 		mrioc->pel_class = pel_enable.pel_class;
1353 		mrioc->pel_locale = pel_enable.pel_locale;
1354 		mrioc->pel_enabled = 1;
1355 		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
1356 		if (rval) {
1357 			mrioc->pel_class = tmp_class;
1358 			mrioc->pel_locale = tmp_locale;
1359 			mrioc->pel_enabled = 0;
1360 			dprint_bsg_err(mrioc,
1361 			    "%s: pel get sequence number failed, status(%ld)\n",
1362 			    __func__, rval);
1363 		}
1364 	}
1365 
1366 out:
1367 	return rval;
1368 }
1369 /**
1370  * mpi3mr_get_all_tgt_info - Get all target information
1371  * @mrioc: Adapter instance reference
1372  * @job: BSG job reference
1373  *
1374  * This function copies the driver managed target devices device
1375  * handle, persistent ID, bus ID and taret ID to the user
1376  * provided buffer for the specific controller. This function
1377  * also provides the number of devices managed by the driver for
1378  * the specific controller.
1379  *
1380  * Return: 0 on success and proper error codes on failure
1381  */
1382 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
1383 	struct bsg_job *job)
1384 {
1385 	u16 num_devices = 0, i = 0, size;
1386 	unsigned long flags;
1387 	struct mpi3mr_tgt_dev *tgtdev;
1388 	struct mpi3mr_device_map_info *devmap_info = NULL;
1389 	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
1390 	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
1391 
1392 	if (job->request_payload.payload_len < sizeof(u32)) {
1393 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1394 		    __func__);
1395 		return -EINVAL;
1396 	}
1397 
1398 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1399 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
1400 		num_devices++;
1401 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1402 
1403 	if ((job->request_payload.payload_len <= sizeof(u64)) ||
1404 		list_empty(&mrioc->tgtdev_list)) {
1405 		sg_copy_from_buffer(job->request_payload.sg_list,
1406 				    job->request_payload.sg_cnt,
1407 				    &num_devices, sizeof(num_devices));
1408 		return 0;
1409 	}
1410 
1411 	kern_entrylen = num_devices * sizeof(*devmap_info);
1412 	size = sizeof(u64) + kern_entrylen;
1413 	alltgt_info = kzalloc(size, GFP_KERNEL);
1414 	if (!alltgt_info)
1415 		return -ENOMEM;
1416 
1417 	devmap_info = alltgt_info->dmi;
1418 	memset((u8 *)devmap_info, 0xFF, kern_entrylen);
1419 	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1420 	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
1421 		if (i < num_devices) {
1422 			devmap_info[i].handle = tgtdev->dev_handle;
1423 			devmap_info[i].perst_id = tgtdev->perst_id;
1424 			if (tgtdev->host_exposed && tgtdev->starget) {
1425 				devmap_info[i].target_id = tgtdev->starget->id;
1426 				devmap_info[i].bus_id =
1427 				    tgtdev->starget->channel;
1428 			}
1429 			i++;
1430 		}
1431 	}
1432 	num_devices = i;
1433 	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1434 
1435 	alltgt_info->num_devices = num_devices;
1436 
1437 	usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
1438 		sizeof(*devmap_info);
1439 	usr_entrylen *= sizeof(*devmap_info);
1440 	min_entrylen = min(usr_entrylen, kern_entrylen);
1441 
1442 	sg_copy_from_buffer(job->request_payload.sg_list,
1443 			    job->request_payload.sg_cnt,
1444 			    alltgt_info, (min_entrylen + sizeof(u64)));
1445 	kfree(alltgt_info);
1446 	return 0;
1447 }
1448 /**
1449  * mpi3mr_get_change_count - Get topology change count
1450  * @mrioc: Adapter instance reference
1451  * @job: BSG job reference
1452  *
1453  * This function copies the toplogy change count provided by the
1454  * driver in events and cached in the driver to the user
1455  * provided buffer for the specific controller.
1456  *
1457  * Return: 0 on success and proper error codes on failure
1458  */
1459 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
1460 	struct bsg_job *job)
1461 {
1462 	struct mpi3mr_change_count chgcnt;
1463 
1464 	memset(&chgcnt, 0, sizeof(chgcnt));
1465 	chgcnt.change_count = mrioc->change_count;
1466 	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
1467 		sg_copy_from_buffer(job->request_payload.sg_list,
1468 				    job->request_payload.sg_cnt,
1469 				    &chgcnt, sizeof(chgcnt));
1470 		return 0;
1471 	}
1472 	return -EINVAL;
1473 }
1474 
1475 /**
1476  * mpi3mr_bsg_adp_reset - Issue controller reset
1477  * @mrioc: Adapter instance reference
1478  * @job: BSG job reference
1479  *
1480  * This function identifies the user provided reset type and
1481  * issues approporiate reset to the controller and wait for that
1482  * to complete and reinitialize the controller and then returns
1483  *
1484  * Return: 0 on success and proper error codes on failure
1485  */
1486 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
1487 	struct bsg_job *job)
1488 {
1489 	long rval = -EINVAL;
1490 	u8 save_snapdump;
1491 	struct mpi3mr_bsg_adp_reset adpreset;
1492 
1493 	if (job->request_payload.payload_len !=
1494 			sizeof(adpreset)) {
1495 		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1496 		    __func__);
1497 		goto out;
1498 	}
1499 
1500 	if (mrioc->unrecoverable || mrioc->block_on_pci_err)
1501 		return -EINVAL;
1502 
1503 	sg_copy_to_buffer(job->request_payload.sg_list,
1504 			  job->request_payload.sg_cnt,
1505 			  &adpreset, sizeof(adpreset));
1506 
1507 	switch (adpreset.reset_type) {
1508 	case MPI3MR_BSG_ADPRESET_SOFT:
1509 		save_snapdump = 0;
1510 		break;
1511 	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
1512 		save_snapdump = 1;
1513 		break;
1514 	default:
1515 		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
1516 		    __func__, adpreset.reset_type);
1517 		goto out;
1518 	}
1519 
1520 	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
1521 	    save_snapdump);
1522 
1523 	if (rval)
1524 		dprint_bsg_err(mrioc,
1525 		    "%s: reset handler returned error(%ld) for reset type %d\n",
1526 		    __func__, rval, adpreset.reset_type);
1527 out:
1528 	return rval;
1529 }
1530 
1531 /**
1532  * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
1533  * @mrioc: Adapter instance reference
1534  * @job: BSG job reference
1535  *
1536  * This function provides adapter information for the given
1537  * controller
1538  *
1539  * Return: 0 on success and proper error codes on failure
1540  */
1541 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
1542 	struct bsg_job *job)
1543 {
1544 	enum mpi3mr_iocstate ioc_state;
1545 	struct mpi3mr_bsg_in_adpinfo adpinfo;
1546 
1547 	memset(&adpinfo, 0, sizeof(adpinfo));
1548 	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
1549 	adpinfo.pci_dev_id = mrioc->pdev->device;
1550 	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
1551 	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
1552 	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
1553 	adpinfo.pci_bus = mrioc->pdev->bus->number;
1554 	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
1555 	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
1556 	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
1557 	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
1558 
1559 	ioc_state = mpi3mr_get_iocstate(mrioc);
1560 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1561 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1562 	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1563 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1564 	else if (ioc_state == MRIOC_STATE_FAULT)
1565 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1566 	else
1567 		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1568 
1569 	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
1570 	    sizeof(adpinfo.driver_info));
1571 
1572 	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
1573 		sg_copy_from_buffer(job->request_payload.sg_list,
1574 				    job->request_payload.sg_cnt,
1575 				    &adpinfo, sizeof(adpinfo));
1576 		return 0;
1577 	}
1578 	return -EINVAL;
1579 }
1580 
1581 /**
1582  * mpi3mr_bsg_process_drv_cmds - Driver Command handler
1583  * @job: BSG job reference
1584  *
1585  * This function is the top level handler for driver commands,
1586  * this does basic validation of the buffer and identifies the
1587  * opcode and switches to correct sub handler.
1588  *
1589  * Return: 0 on success and proper error codes on failure
1590  */
1591 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
1592 {
1593 	long rval = -EINVAL;
1594 	struct mpi3mr_ioc *mrioc = NULL;
1595 	struct mpi3mr_bsg_packet *bsg_req = NULL;
1596 	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
1597 
1598 	bsg_req = job->request;
1599 	drvrcmd = &bsg_req->cmd.drvrcmd;
1600 
1601 	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
1602 	if (!mrioc)
1603 		return -ENODEV;
1604 
1605 	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
1606 		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
1607 		return rval;
1608 	}
1609 
1610 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
1611 		return -ERESTARTSYS;
1612 
1613 	switch (drvrcmd->opcode) {
1614 	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
1615 		rval = mpi3mr_bsg_adp_reset(mrioc, job);
1616 		break;
1617 	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
1618 		rval = mpi3mr_get_all_tgt_info(mrioc, job);
1619 		break;
1620 	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
1621 		rval = mpi3mr_get_change_count(mrioc, job);
1622 		break;
1623 	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
1624 		rval = mpi3mr_enable_logdata(mrioc, job);
1625 		break;
1626 	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
1627 		rval = mpi3mr_get_logdata(mrioc, job);
1628 		break;
1629 	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
1630 		rval = mpi3mr_bsg_pel_enable(mrioc, job);
1631 		break;
1632 	case MPI3MR_DRVBSG_OPCODE_QUERY_HDB:
1633 		rval = mpi3mr_bsg_query_hdb(mrioc, job);
1634 		break;
1635 	case MPI3MR_DRVBSG_OPCODE_REPOST_HDB:
1636 		rval = mpi3mr_bsg_repost_hdb(mrioc, job);
1637 		break;
1638 	case MPI3MR_DRVBSG_OPCODE_UPLOAD_HDB:
1639 		rval = mpi3mr_bsg_upload_hdb(mrioc, job);
1640 		break;
1641 	case MPI3MR_DRVBSG_OPCODE_REFRESH_HDB_TRIGGERS:
1642 		rval = mpi3mr_bsg_refresh_hdb_triggers(mrioc, job);
1643 		break;
1644 	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
1645 	default:
1646 		pr_err("%s: unsupported driver command opcode %d\n",
1647 		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
1648 		break;
1649 	}
1650 	mutex_unlock(&mrioc->bsg_cmds.mutex);
1651 	return rval;
1652 }
1653 
1654 /**
1655  * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
1656  * @drv_bufs: DMA address of the buffers to be placed in sgl
1657  * @bufcnt: Number of DMA buffers
1658  *
1659  * This function returns total number of data SGEs required
1660  * including zero length SGEs and excluding management request
1661  * and response buffer for the given list of data buffer
1662  * descriptors
1663  *
1664  * Return: Number of SGE elements needed
1665  */
1666 static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
1667 					      u8 bufcnt)
1668 {
1669 	u16 i, sge_count = 0;
1670 
1671 	for (i = 0; i < bufcnt; i++, drv_bufs++) {
1672 		if (drv_bufs->data_dir == DMA_NONE ||
1673 		    drv_bufs->kern_buf)
1674 			continue;
1675 		sge_count += drv_bufs->num_dma_desc;
1676 		if (!drv_bufs->num_dma_desc)
1677 			sge_count++;
1678 	}
1679 	return sge_count;
1680 }
1681 
1682 /**
1683  * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
1684  * @mrioc: Adapter instance reference
1685  * @mpi_req: MPI request
1686  * @sgl_offset: offset to start sgl in the MPI request
1687  * @drv_bufs: DMA address of the buffers to be placed in sgl
1688  * @bufcnt: Number of DMA buffers
1689  * @is_rmc: Does the buffer list has management command buffer
1690  * @is_rmr: Does the buffer list has management response buffer
1691  * @num_datasges: Number of data buffers in the list
1692  *
1693  * This function places the DMA address of the given buffers in
1694  * proper format as SGEs in the given MPI request.
1695  *
1696  * Return: 0 on success,-1 on failure
1697  */
1698 static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
1699 				u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
1700 				u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
1701 {
1702 	struct mpi3_request_header *mpi_header =
1703 		(struct mpi3_request_header *)mpi_req;
1704 	u8 *sgl = (mpi_req + sgl_offset), count = 0;
1705 	struct mpi3_mgmt_passthrough_request *rmgmt_req =
1706 	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
1707 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1708 	u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
1709 	u16 available_sges, i, sges_needed;
1710 	u32 sge_element_size = sizeof(struct mpi3_sge_common);
1711 	bool chain_used = false;
1712 
1713 	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
1714 		MPI3_SGE_FLAGS_DLAS_SYSTEM;
1715 	sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
1716 	sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
1717 	last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
1718 	    MPI3_SGE_FLAGS_DLAS_SYSTEM;
1719 
1720 	sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
1721 
1722 	if (is_rmc) {
1723 		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
1724 		    sgl_flags_last, drv_buf_iter->kern_buf_len,
1725 		    drv_buf_iter->kern_buf_dma);
1726 		sgl = (u8 *)drv_buf_iter->kern_buf +
1727 			drv_buf_iter->bsg_buf_len;
1728 		available_sges = (drv_buf_iter->kern_buf_len -
1729 		    drv_buf_iter->bsg_buf_len) / sge_element_size;
1730 
1731 		if (sges_needed > available_sges)
1732 			return -1;
1733 
1734 		chain_used = true;
1735 		drv_buf_iter++;
1736 		count++;
1737 		if (is_rmr) {
1738 			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
1739 			    sgl_flags_last, drv_buf_iter->kern_buf_len,
1740 			    drv_buf_iter->kern_buf_dma);
1741 			drv_buf_iter++;
1742 			count++;
1743 		} else
1744 			mpi3mr_build_zero_len_sge(
1745 			    &rmgmt_req->response_sgl);
1746 		if (num_datasges) {
1747 			i = 0;
1748 			goto build_sges;
1749 		}
1750 	} else {
1751 		if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
1752 			return -1;
1753 		available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
1754 		sge_element_size;
1755 		if (!available_sges)
1756 			return -1;
1757 	}
1758 	if (!num_datasges) {
1759 		mpi3mr_build_zero_len_sge(sgl);
1760 		return 0;
1761 	}
1762 	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1763 		if ((sges_needed > 2) || (sges_needed > available_sges))
1764 			return -1;
1765 		for (; count < bufcnt; count++, drv_buf_iter++) {
1766 			if (drv_buf_iter->data_dir == DMA_NONE ||
1767 			    !drv_buf_iter->num_dma_desc)
1768 				continue;
1769 			mpi3mr_add_sg_single(sgl, sgl_flags_last,
1770 					     drv_buf_iter->dma_desc[0].size,
1771 					     drv_buf_iter->dma_desc[0].dma_addr);
1772 			sgl += sge_element_size;
1773 		}
1774 		return 0;
1775 	}
1776 	i = 0;
1777 
1778 build_sges:
1779 	for (; count < bufcnt; count++, drv_buf_iter++) {
1780 		if (drv_buf_iter->data_dir == DMA_NONE)
1781 			continue;
1782 		if (!drv_buf_iter->num_dma_desc) {
1783 			if (chain_used && !available_sges)
1784 				return -1;
1785 			if (!chain_used && (available_sges == 1) &&
1786 			    (sges_needed > 1))
1787 				goto setup_chain;
1788 			flag = sgl_flag_eob;
1789 			if (num_datasges == 1)
1790 				flag = sgl_flags_last;
1791 			mpi3mr_add_sg_single(sgl, flag, 0, 0);
1792 			sgl += sge_element_size;
1793 			sges_needed--;
1794 			available_sges--;
1795 			num_datasges--;
1796 			continue;
1797 		}
1798 		for (; i < drv_buf_iter->num_dma_desc; i++) {
1799 			if (chain_used && !available_sges)
1800 				return -1;
1801 			if (!chain_used && (available_sges == 1) &&
1802 			    (sges_needed > 1))
1803 				goto setup_chain;
1804 			flag = sgl_flags;
1805 			if (i == (drv_buf_iter->num_dma_desc - 1)) {
1806 				if (num_datasges == 1)
1807 					flag = sgl_flags_last;
1808 				else
1809 					flag = sgl_flag_eob;
1810 			}
1811 
1812 			mpi3mr_add_sg_single(sgl, flag,
1813 					     drv_buf_iter->dma_desc[i].size,
1814 					     drv_buf_iter->dma_desc[i].dma_addr);
1815 			sgl += sge_element_size;
1816 			available_sges--;
1817 			sges_needed--;
1818 		}
1819 		num_datasges--;
1820 		i = 0;
1821 	}
1822 	return 0;
1823 
1824 setup_chain:
1825 	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1826 	if (sges_needed > available_sges)
1827 		return -1;
1828 	mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
1829 			     (sges_needed * sge_element_size),
1830 			     mrioc->ioctl_chain_sge.dma_addr);
1831 	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1832 	sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
1833 	chain_used = true;
1834 	goto build_sges;
1835 }
1836 
1837 /**
1838  * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
1839  * @nvme_encap_request: NVMe encapsulated MPI request
1840  *
1841  * This function returns the type of the data format specified
1842  * in user provided NVMe command in NVMe encapsulated request.
1843  *
1844  * Return: Data format of the NVMe command (PRP/SGL etc)
1845  */
1846 static unsigned int mpi3mr_get_nvme_data_fmt(
1847 	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
1848 {
1849 	u8 format = 0;
1850 
1851 	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
1852 	return format;
1853 
1854 }
1855 
1856 /**
1857  * mpi3mr_build_nvme_sgl - SGL constructor for NVME
1858  *				   encapsulated request
1859  * @mrioc: Adapter instance reference
1860  * @nvme_encap_request: NVMe encapsulated MPI request
1861  * @drv_bufs: DMA address of the buffers to be placed in sgl
1862  * @bufcnt: Number of DMA buffers
1863  *
1864  * This function places the DMA address of the given buffers in
1865  * proper format as SGEs in the given NVMe encapsulated request.
1866  *
1867  * Return: 0 on success, -1 on failure
1868  */
1869 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
1870 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1871 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1872 {
1873 	struct mpi3mr_nvme_pt_sge *nvme_sgl;
1874 	__le64 sgl_dma;
1875 	u8 count;
1876 	size_t length = 0;
1877 	u16 available_sges = 0, i;
1878 	u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
1879 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1880 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1881 			    mrioc->facts.sge_mod_shift) << 32);
1882 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1883 			  mrioc->facts.sge_mod_shift) << 32;
1884 	u32 size;
1885 
1886 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
1887 	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
1888 
1889 	/*
1890 	 * Not all commands require a data transfer. If no data, just return
1891 	 * without constructing any sgl.
1892 	 */
1893 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1894 		if (drv_buf_iter->data_dir == DMA_NONE)
1895 			continue;
1896 		length = drv_buf_iter->kern_buf_len;
1897 		break;
1898 	}
1899 	if (!length || !drv_buf_iter->num_dma_desc)
1900 		return 0;
1901 
1902 	if (drv_buf_iter->num_dma_desc == 1) {
1903 		available_sges = 1;
1904 		goto build_sges;
1905 	}
1906 
1907 	sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
1908 	if (sgl_dma & sgemod_mask) {
1909 		dprint_bsg_err(mrioc,
1910 		    "%s: SGL chain address collides with SGE modifier\n",
1911 		    __func__);
1912 		return -1;
1913 	}
1914 
1915 	sgl_dma &= ~sgemod_mask;
1916 	sgl_dma |= sgemod_val;
1917 
1918 	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1919 	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1920 	if (available_sges < drv_buf_iter->num_dma_desc)
1921 		return -1;
1922 	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
1923 	nvme_sgl->base_addr = sgl_dma;
1924 	size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
1925 	nvme_sgl->length = cpu_to_le32(size);
1926 	nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
1927 	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
1928 
1929 build_sges:
1930 	for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
1931 		sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
1932 		if (sgl_dma & sgemod_mask) {
1933 			dprint_bsg_err(mrioc,
1934 				       "%s: SGL address collides with SGE modifier\n",
1935 				       __func__);
1936 		return -1;
1937 		}
1938 
1939 		sgl_dma &= ~sgemod_mask;
1940 		sgl_dma |= sgemod_val;
1941 
1942 		nvme_sgl->base_addr = sgl_dma;
1943 		nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
1944 		nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
1945 		nvme_sgl++;
1946 		available_sges--;
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 /**
1953  * mpi3mr_build_nvme_prp - PRP constructor for NVME
1954  *			       encapsulated request
1955  * @mrioc: Adapter instance reference
1956  * @nvme_encap_request: NVMe encapsulated MPI request
1957  * @drv_bufs: DMA address of the buffers to be placed in SGL
1958  * @bufcnt: Number of DMA buffers
1959  *
1960  * This function places the DMA address of the given buffers in
1961  * proper format as PRP entries in the given NVMe encapsulated
1962  * request.
1963  *
1964  * Return: 0 on success, -1 on failure
1965  */
1966 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
1967 	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1968 	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1969 {
1970 	int prp_size = MPI3MR_NVME_PRP_SIZE;
1971 	__le64 *prp_entry, *prp1_entry, *prp2_entry;
1972 	__le64 *prp_page;
1973 	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1974 	u32 offset, entry_len, dev_pgsz;
1975 	u32 page_mask_result, page_mask;
1976 	size_t length = 0, desc_len;
1977 	u8 count;
1978 	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1979 	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1980 			    mrioc->facts.sge_mod_shift) << 32);
1981 	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1982 			  mrioc->facts.sge_mod_shift) << 32;
1983 	u16 dev_handle = nvme_encap_request->dev_handle;
1984 	struct mpi3mr_tgt_dev *tgtdev;
1985 	u16 desc_count = 0;
1986 
1987 	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1988 	if (!tgtdev) {
1989 		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
1990 			__func__, dev_handle);
1991 		return -1;
1992 	}
1993 
1994 	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
1995 		dprint_bsg_err(mrioc,
1996 		    "%s: NVMe device page size is zero for handle 0x%04x\n",
1997 		    __func__, dev_handle);
1998 		mpi3mr_tgtdev_put(tgtdev);
1999 		return -1;
2000 	}
2001 
2002 	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
2003 	mpi3mr_tgtdev_put(tgtdev);
2004 	page_mask = dev_pgsz - 1;
2005 
2006 	if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
2007 		dprint_bsg_err(mrioc,
2008 			       "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
2009 			       __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
2010 		return -1;
2011 	}
2012 
2013 	if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
2014 		dprint_bsg_err(mrioc,
2015 			       "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
2016 			       __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
2017 		return -1;
2018 	}
2019 
2020 	/*
2021 	 * Not all commands require a data transfer. If no data, just return
2022 	 * without constructing any PRP.
2023 	 */
2024 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2025 		if (drv_buf_iter->data_dir == DMA_NONE)
2026 			continue;
2027 		length = drv_buf_iter->kern_buf_len;
2028 		break;
2029 	}
2030 
2031 	if (!length || !drv_buf_iter->num_dma_desc)
2032 		return 0;
2033 
2034 	for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
2035 		dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
2036 		if (dma_addr & page_mask) {
2037 			dprint_bsg_err(mrioc,
2038 				       "%s:dma_addr %pad is not aligned with page size 0x%x\n",
2039 				       __func__,  &dma_addr, dev_pgsz);
2040 			return -1;
2041 		}
2042 	}
2043 
2044 	dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
2045 	desc_len = drv_buf_iter->dma_desc[0].size;
2046 
2047 	mrioc->prp_sz = 0;
2048 	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
2049 	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
2050 
2051 	if (!mrioc->prp_list_virt)
2052 		return -1;
2053 	mrioc->prp_sz = dev_pgsz;
2054 
2055 	/*
2056 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
2057 	 * PRP1 is located at a 24 byte offset from the start of the NVMe
2058 	 * command.  Then set the current PRP entry pointer to PRP1.
2059 	 */
2060 	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2061 	    MPI3MR_NVME_CMD_PRP1_OFFSET);
2062 	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2063 	    MPI3MR_NVME_CMD_PRP2_OFFSET);
2064 	prp_entry = prp1_entry;
2065 	/*
2066 	 * For the PRP entries, use the specially allocated buffer of
2067 	 * contiguous memory.
2068 	 */
2069 	prp_page = (__le64 *)mrioc->prp_list_virt;
2070 	prp_page_dma = mrioc->prp_list_dma;
2071 
2072 	/*
2073 	 * Check if we are within 1 entry of a page boundary we don't
2074 	 * want our first entry to be a PRP List entry.
2075 	 */
2076 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2077 	if (!page_mask_result) {
2078 		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
2079 		    __func__);
2080 		goto err_out;
2081 	}
2082 
2083 	/*
2084 	 * Set PRP physical pointer, which initially points to the current PRP
2085 	 * DMA memory page.
2086 	 */
2087 	prp_entry_dma = prp_page_dma;
2088 
2089 
2090 	/* Loop while the length is not zero. */
2091 	while (length) {
2092 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2093 		if (!page_mask_result && (length >  dev_pgsz)) {
2094 			dprint_bsg_err(mrioc,
2095 			    "%s: single PRP page is not sufficient\n",
2096 			    __func__);
2097 			goto err_out;
2098 		}
2099 
2100 		/* Need to handle if entry will be part of a page. */
2101 		offset = dma_addr & page_mask;
2102 		entry_len = dev_pgsz - offset;
2103 
2104 		if (prp_entry == prp1_entry) {
2105 			/*
2106 			 * Must fill in the first PRP pointer (PRP1) before
2107 			 * moving on.
2108 			 */
2109 			*prp1_entry = cpu_to_le64(dma_addr);
2110 			if (*prp1_entry & sgemod_mask) {
2111 				dprint_bsg_err(mrioc,
2112 				    "%s: PRP1 address collides with SGE modifier\n",
2113 				    __func__);
2114 				goto err_out;
2115 			}
2116 			*prp1_entry &= ~sgemod_mask;
2117 			*prp1_entry |= sgemod_val;
2118 
2119 			/*
2120 			 * Now point to the second PRP entry within the
2121 			 * command (PRP2).
2122 			 */
2123 			prp_entry = prp2_entry;
2124 		} else if (prp_entry == prp2_entry) {
2125 			/*
2126 			 * Should the PRP2 entry be a PRP List pointer or just
2127 			 * a regular PRP pointer?  If there is more than one
2128 			 * more page of data, must use a PRP List pointer.
2129 			 */
2130 			if (length > dev_pgsz) {
2131 				/*
2132 				 * PRP2 will contain a PRP List pointer because
2133 				 * more PRP's are needed with this command. The
2134 				 * list will start at the beginning of the
2135 				 * contiguous buffer.
2136 				 */
2137 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2138 				if (*prp2_entry & sgemod_mask) {
2139 					dprint_bsg_err(mrioc,
2140 					    "%s: PRP list address collides with SGE modifier\n",
2141 					    __func__);
2142 					goto err_out;
2143 				}
2144 				*prp2_entry &= ~sgemod_mask;
2145 				*prp2_entry |= sgemod_val;
2146 
2147 				/*
2148 				 * The next PRP Entry will be the start of the
2149 				 * first PRP List.
2150 				 */
2151 				prp_entry = prp_page;
2152 				continue;
2153 			} else {
2154 				/*
2155 				 * After this, the PRP Entries are complete.
2156 				 * This command uses 2 PRP's and no PRP list.
2157 				 */
2158 				*prp2_entry = cpu_to_le64(dma_addr);
2159 				if (*prp2_entry & sgemod_mask) {
2160 					dprint_bsg_err(mrioc,
2161 					    "%s: PRP2 collides with SGE modifier\n",
2162 					    __func__);
2163 					goto err_out;
2164 				}
2165 				*prp2_entry &= ~sgemod_mask;
2166 				*prp2_entry |= sgemod_val;
2167 			}
2168 		} else {
2169 			/*
2170 			 * Put entry in list and bump the addresses.
2171 			 *
2172 			 * After PRP1 and PRP2 are filled in, this will fill in
2173 			 * all remaining PRP entries in a PRP List, one per
2174 			 * each time through the loop.
2175 			 */
2176 			*prp_entry = cpu_to_le64(dma_addr);
2177 			if (*prp_entry & sgemod_mask) {
2178 				dprint_bsg_err(mrioc,
2179 				    "%s: PRP address collides with SGE modifier\n",
2180 				    __func__);
2181 				goto err_out;
2182 			}
2183 			*prp_entry &= ~sgemod_mask;
2184 			*prp_entry |= sgemod_val;
2185 			prp_entry++;
2186 			prp_entry_dma += prp_size;
2187 		}
2188 
2189 		/* decrement length accounting for last partial page. */
2190 		if (entry_len >= length) {
2191 			length = 0;
2192 		} else {
2193 			if (entry_len <= desc_len) {
2194 				dma_addr += entry_len;
2195 				desc_len -= entry_len;
2196 			}
2197 			if (!desc_len) {
2198 				if ((++desc_count) >=
2199 				   drv_buf_iter->num_dma_desc) {
2200 					dprint_bsg_err(mrioc,
2201 						       "%s: Invalid len %zd while building PRP\n",
2202 						       __func__, length);
2203 					goto err_out;
2204 				}
2205 				dma_addr =
2206 				    drv_buf_iter->dma_desc[desc_count].dma_addr;
2207 				desc_len =
2208 				    drv_buf_iter->dma_desc[desc_count].size;
2209 			}
2210 			length -= entry_len;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 err_out:
2216 	if (mrioc->prp_list_virt) {
2217 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2218 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
2219 		mrioc->prp_list_virt = NULL;
2220 	}
2221 	return -1;
2222 }
2223 
2224 /**
2225  * mpi3mr_map_data_buffer_dma - build dma descriptors for data
2226  *                              buffers
2227  * @mrioc: Adapter instance reference
2228  * @drv_buf: buffer map descriptor
2229  * @desc_count: Number of already consumed dma descriptors
2230  *
2231  * This function computes how many pre-allocated DMA descriptors
2232  * are required for the given data buffer and if those number of
2233  * descriptors are free, then setup the mapping of the scattered
2234  * DMA address to the given data buffer, if the data direction
2235  * of the buffer is DMA_TO_DEVICE then the actual data is copied to
2236  * the DMA buffers
2237  *
2238  * Return: 0 on success, -1 on failure
2239  */
2240 static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
2241 				      struct mpi3mr_buf_map *drv_buf,
2242 				      u16 desc_count)
2243 {
2244 	u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
2245 	u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
2246 
2247 	if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
2248 		needed_desc++;
2249 	if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
2250 		dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
2251 			       __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
2252 		return -1;
2253 	}
2254 	drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
2255 				    GFP_KERNEL);
2256 	if (!drv_buf->dma_desc)
2257 		return -1;
2258 	for (i = 0; i < needed_desc; i++, desc_count++) {
2259 		drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
2260 		drv_buf->dma_desc[i].dma_addr =
2261 		    mrioc->ioctl_sge[desc_count].dma_addr;
2262 		if (buf_len < mrioc->ioctl_sge[desc_count].size)
2263 			drv_buf->dma_desc[i].size = buf_len;
2264 		else
2265 			drv_buf->dma_desc[i].size =
2266 			    mrioc->ioctl_sge[desc_count].size;
2267 		buf_len -= drv_buf->dma_desc[i].size;
2268 		memset(drv_buf->dma_desc[i].addr, 0,
2269 		       mrioc->ioctl_sge[desc_count].size);
2270 		if (drv_buf->data_dir == DMA_TO_DEVICE) {
2271 			memcpy(drv_buf->dma_desc[i].addr,
2272 			       drv_buf->bsg_buf + copied_len,
2273 			       drv_buf->dma_desc[i].size);
2274 			copied_len += drv_buf->dma_desc[i].size;
2275 		}
2276 	}
2277 	drv_buf->num_dma_desc = needed_desc;
2278 	return 0;
2279 }
2280 /**
2281  * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
2282  * @job: BSG job reference
2283  *
2284  * This function is the top level handler for MPI Pass through
2285  * command, this does basic validation of the input data buffers,
2286  * identifies the given buffer types and MPI command, allocates
2287  * DMAable memory for user given buffers, construstcs SGL
2288  * properly and passes the command to the firmware.
2289  *
2290  * Once the MPI command is completed the driver copies the data
2291  * if any and reply, sense information to user provided buffers.
2292  * If the command is timed out then issues controller reset
2293  * prior to returning.
2294  *
2295  * Return: 0 on success and proper error codes on failure
2296  */
2297 
2298 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
2299 {
2300 	long rval = -EINVAL;
2301 	struct mpi3mr_ioc *mrioc = NULL;
2302 	u8 *mpi_req = NULL, *sense_buff_k = NULL;
2303 	u8 mpi_msg_size = 0;
2304 	struct mpi3mr_bsg_packet *bsg_req = NULL;
2305 	struct mpi3mr_bsg_mptcmd *karg;
2306 	struct mpi3mr_buf_entry *buf_entries = NULL;
2307 	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
2308 	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
2309 	u8 din_cnt = 0, dout_cnt = 0;
2310 	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
2311 	u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
2312 	struct mpi3_request_header *mpi_header = NULL;
2313 	struct mpi3_status_reply_descriptor *status_desc;
2314 	struct mpi3_scsi_task_mgmt_request *tm_req;
2315 	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
2316 	u16 dev_handle;
2317 	struct mpi3mr_tgt_dev *tgtdev;
2318 	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
2319 	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
2320 	u32 din_size = 0, dout_size = 0;
2321 	u8 *din_buf = NULL, *dout_buf = NULL;
2322 	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
2323 	u16 rmc_size  = 0, desc_count = 0;
2324 
2325 	bsg_req = job->request;
2326 	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
2327 
2328 	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
2329 	if (!mrioc)
2330 		return -ENODEV;
2331 
2332 	if (!mrioc->ioctl_sges_allocated) {
2333 		dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
2334 			       __func__);
2335 		return -ENOMEM;
2336 	}
2337 
2338 	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
2339 		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
2340 
2341 	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
2342 	if (!mpi_req)
2343 		return -ENOMEM;
2344 	mpi_header = (struct mpi3_request_header *)mpi_req;
2345 
2346 	bufcnt = karg->buf_entry_list.num_of_entries;
2347 	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
2348 	if (!drv_bufs) {
2349 		rval = -ENOMEM;
2350 		goto out;
2351 	}
2352 
2353 	dout_buf = kzalloc(job->request_payload.payload_len,
2354 				      GFP_KERNEL);
2355 	if (!dout_buf) {
2356 		rval = -ENOMEM;
2357 		goto out;
2358 	}
2359 
2360 	din_buf = kzalloc(job->reply_payload.payload_len,
2361 				     GFP_KERNEL);
2362 	if (!din_buf) {
2363 		rval = -ENOMEM;
2364 		goto out;
2365 	}
2366 
2367 	sg_copy_to_buffer(job->request_payload.sg_list,
2368 			  job->request_payload.sg_cnt,
2369 			  dout_buf, job->request_payload.payload_len);
2370 
2371 	buf_entries = karg->buf_entry_list.buf_entry;
2372 	sgl_din_iter = din_buf;
2373 	sgl_dout_iter = dout_buf;
2374 	drv_buf_iter = drv_bufs;
2375 
2376 	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
2377 
2378 		switch (buf_entries->buf_type) {
2379 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
2380 			sgl_iter = sgl_dout_iter;
2381 			sgl_dout_iter += buf_entries->buf_len;
2382 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
2383 			is_rmcb = 1;
2384 			if ((count != 0) || !buf_entries->buf_len)
2385 				invalid_be = 1;
2386 			break;
2387 		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
2388 			sgl_iter = sgl_din_iter;
2389 			sgl_din_iter += buf_entries->buf_len;
2390 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2391 			is_rmrb = 1;
2392 			if (count != 1 || !is_rmcb || !buf_entries->buf_len)
2393 				invalid_be = 1;
2394 			break;
2395 		case MPI3MR_BSG_BUFTYPE_DATA_IN:
2396 			sgl_iter = sgl_din_iter;
2397 			sgl_din_iter += buf_entries->buf_len;
2398 			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2399 			din_cnt++;
2400 			din_size += buf_entries->buf_len;
2401 			if ((din_cnt > 1) && !is_rmcb)
2402 				invalid_be = 1;
2403 			break;
2404 		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
2405 			sgl_iter = sgl_dout_iter;
2406 			sgl_dout_iter += buf_entries->buf_len;
2407 			drv_buf_iter->data_dir = DMA_TO_DEVICE;
2408 			dout_cnt++;
2409 			dout_size += buf_entries->buf_len;
2410 			if ((dout_cnt > 1) && !is_rmcb)
2411 				invalid_be = 1;
2412 			break;
2413 		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
2414 			sgl_iter = sgl_din_iter;
2415 			sgl_din_iter += buf_entries->buf_len;
2416 			drv_buf_iter->data_dir = DMA_NONE;
2417 			mpirep_offset = count;
2418 			if (!buf_entries->buf_len)
2419 				invalid_be = 1;
2420 			break;
2421 		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
2422 			sgl_iter = sgl_din_iter;
2423 			sgl_din_iter += buf_entries->buf_len;
2424 			drv_buf_iter->data_dir = DMA_NONE;
2425 			erb_offset = count;
2426 			if (!buf_entries->buf_len)
2427 				invalid_be = 1;
2428 			break;
2429 		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
2430 			sgl_iter = sgl_dout_iter;
2431 			sgl_dout_iter += buf_entries->buf_len;
2432 			drv_buf_iter->data_dir = DMA_NONE;
2433 			mpi_msg_size = buf_entries->buf_len;
2434 			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
2435 					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
2436 				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
2437 					__func__);
2438 				rval = -EINVAL;
2439 				goto out;
2440 			}
2441 			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
2442 			break;
2443 		default:
2444 			invalid_be = 1;
2445 			break;
2446 		}
2447 		if (invalid_be) {
2448 			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
2449 				__func__);
2450 			rval = -EINVAL;
2451 			goto out;
2452 		}
2453 
2454 		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
2455 			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
2456 				       __func__);
2457 			rval = -EINVAL;
2458 			goto out;
2459 		}
2460 		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
2461 			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
2462 				       __func__);
2463 			rval = -EINVAL;
2464 			goto out;
2465 		}
2466 
2467 		drv_buf_iter->bsg_buf = sgl_iter;
2468 		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
2469 	}
2470 
2471 	if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
2472 		dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
2473 			       __func__, __LINE__, mpi_header->function, din_size,
2474 			       dout_size);
2475 		rval = -EINVAL;
2476 		goto out;
2477 	}
2478 
2479 	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
2480 		dprint_bsg_err(mrioc,
2481 		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
2482 		    __func__, __LINE__, mpi_header->function, din_size);
2483 		rval = -EINVAL;
2484 		goto out;
2485 	}
2486 	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
2487 		dprint_bsg_err(mrioc,
2488 		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
2489 		    __func__, __LINE__, mpi_header->function, dout_size);
2490 		rval = -EINVAL;
2491 		goto out;
2492 	}
2493 
2494 	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
2495 		if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
2496 		    dout_size > MPI3MR_IOCTL_SGE_SIZE) {
2497 			dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
2498 				       __func__, __LINE__, din_cnt, dout_cnt, din_size,
2499 			    dout_size);
2500 			rval = -EINVAL;
2501 			goto out;
2502 		}
2503 	}
2504 
2505 	drv_buf_iter = drv_bufs;
2506 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2507 		if (drv_buf_iter->data_dir == DMA_NONE)
2508 			continue;
2509 
2510 		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
2511 		if (is_rmcb && !count) {
2512 			drv_buf_iter->kern_buf_len =
2513 			    mrioc->ioctl_chain_sge.size;
2514 			drv_buf_iter->kern_buf =
2515 			    mrioc->ioctl_chain_sge.addr;
2516 			drv_buf_iter->kern_buf_dma =
2517 			    mrioc->ioctl_chain_sge.dma_addr;
2518 			drv_buf_iter->dma_desc = NULL;
2519 			drv_buf_iter->num_dma_desc = 0;
2520 			memset(drv_buf_iter->kern_buf, 0,
2521 			       drv_buf_iter->kern_buf_len);
2522 			tmplen = min(drv_buf_iter->kern_buf_len,
2523 				     drv_buf_iter->bsg_buf_len);
2524 			rmc_size = tmplen;
2525 			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
2526 		} else if (is_rmrb && (count == 1)) {
2527 			drv_buf_iter->kern_buf_len =
2528 			    mrioc->ioctl_resp_sge.size;
2529 			drv_buf_iter->kern_buf =
2530 			    mrioc->ioctl_resp_sge.addr;
2531 			drv_buf_iter->kern_buf_dma =
2532 			    mrioc->ioctl_resp_sge.dma_addr;
2533 			drv_buf_iter->dma_desc = NULL;
2534 			drv_buf_iter->num_dma_desc = 0;
2535 			memset(drv_buf_iter->kern_buf, 0,
2536 			       drv_buf_iter->kern_buf_len);
2537 			tmplen = min(drv_buf_iter->kern_buf_len,
2538 				     drv_buf_iter->bsg_buf_len);
2539 			drv_buf_iter->kern_buf_len = tmplen;
2540 			memset(drv_buf_iter->bsg_buf, 0,
2541 			       drv_buf_iter->bsg_buf_len);
2542 		} else {
2543 			if (!drv_buf_iter->kern_buf_len)
2544 				continue;
2545 			if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
2546 				rval = -ENOMEM;
2547 				dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
2548 					       __func__, __LINE__);
2549 			goto out;
2550 		}
2551 			desc_count += drv_buf_iter->num_dma_desc;
2552 		}
2553 	}
2554 
2555 	if (erb_offset != 0xFF) {
2556 		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
2557 		if (!sense_buff_k) {
2558 			rval = -ENOMEM;
2559 			goto out;
2560 		}
2561 	}
2562 
2563 	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
2564 		rval = -ERESTARTSYS;
2565 		goto out;
2566 	}
2567 	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
2568 		rval = -EAGAIN;
2569 		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
2570 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2571 		goto out;
2572 	}
2573 	if (mrioc->unrecoverable) {
2574 		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
2575 		    __func__);
2576 		rval = -EFAULT;
2577 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2578 		goto out;
2579 	}
2580 	if (mrioc->reset_in_progress) {
2581 		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
2582 		rval = -EAGAIN;
2583 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2584 		goto out;
2585 	}
2586 	if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
2587 		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
2588 		rval = -EAGAIN;
2589 		mutex_unlock(&mrioc->bsg_cmds.mutex);
2590 		goto out;
2591 	}
2592 
2593 	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
2594 		nvme_fmt = mpi3mr_get_nvme_data_fmt(
2595 			(struct mpi3_nvme_encapsulated_request *)mpi_req);
2596 		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
2597 			if (mpi3mr_build_nvme_prp(mrioc,
2598 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
2599 			    drv_bufs, bufcnt)) {
2600 				rval = -ENOMEM;
2601 				mutex_unlock(&mrioc->bsg_cmds.mutex);
2602 				goto out;
2603 			}
2604 		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
2605 			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
2606 			if (mpi3mr_build_nvme_sgl(mrioc,
2607 			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
2608 			    drv_bufs, bufcnt)) {
2609 				rval = -EINVAL;
2610 				mutex_unlock(&mrioc->bsg_cmds.mutex);
2611 				goto out;
2612 			}
2613 		} else {
2614 			dprint_bsg_err(mrioc,
2615 			    "%s:invalid NVMe command format\n", __func__);
2616 			rval = -EINVAL;
2617 			mutex_unlock(&mrioc->bsg_cmds.mutex);
2618 			goto out;
2619 		}
2620 	} else {
2621 		if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
2622 					 drv_bufs, bufcnt, is_rmcb, is_rmrb,
2623 					 (dout_cnt + din_cnt))) {
2624 			dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
2625 			rval = -EAGAIN;
2626 			mutex_unlock(&mrioc->bsg_cmds.mutex);
2627 			goto out;
2628 		}
2629 	}
2630 
2631 	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
2632 		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
2633 		if (tm_req->task_type !=
2634 		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
2635 			dev_handle = tm_req->dev_handle;
2636 			block_io = 1;
2637 		}
2638 	}
2639 	if (block_io) {
2640 		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
2641 		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
2642 			stgt_priv = (struct mpi3mr_stgt_priv_data *)
2643 			    tgtdev->starget->hostdata;
2644 			atomic_inc(&stgt_priv->block_io);
2645 			mpi3mr_tgtdev_put(tgtdev);
2646 		}
2647 	}
2648 
2649 	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
2650 	mrioc->bsg_cmds.is_waiting = 1;
2651 	mrioc->bsg_cmds.callback = NULL;
2652 	mrioc->bsg_cmds.is_sense = 0;
2653 	mrioc->bsg_cmds.sensebuf = sense_buff_k;
2654 	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
2655 	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
2656 	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
2657 		dprint_bsg_info(mrioc,
2658 		    "%s: posting bsg request to the controller\n", __func__);
2659 		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2660 		    "bsg_mpi3_req");
2661 		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
2662 			drv_buf_iter = &drv_bufs[0];
2663 			dprint_dump(drv_buf_iter->kern_buf,
2664 			    rmc_size, "mpi3_mgmt_req");
2665 		}
2666 	}
2667 
2668 	init_completion(&mrioc->bsg_cmds.done);
2669 	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
2670 	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
2671 
2672 
2673 	if (rval) {
2674 		mrioc->bsg_cmds.is_waiting = 0;
2675 		dprint_bsg_err(mrioc,
2676 		    "%s: posting bsg request is failed\n", __func__);
2677 		rval = -EAGAIN;
2678 		goto out_unlock;
2679 	}
2680 	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
2681 	    (karg->timeout * HZ));
2682 	if (block_io && stgt_priv)
2683 		atomic_dec(&stgt_priv->block_io);
2684 	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
2685 		mrioc->bsg_cmds.is_waiting = 0;
2686 		rval = -EAGAIN;
2687 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
2688 			goto out_unlock;
2689 		if (((mpi_header->function != MPI3_FUNCTION_SCSI_IO) &&
2690 		    (mpi_header->function != MPI3_FUNCTION_NVME_ENCAPSULATED))
2691 		    || (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR)) {
2692 			ioc_info(mrioc, "%s: bsg request timedout after %d seconds\n",
2693 			    __func__, karg->timeout);
2694 			if (!(mrioc->logging_level & MPI3_DEBUG_BSG_INFO)) {
2695 				dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2696 			    "bsg_mpi3_req");
2697 			if (mpi_header->function ==
2698 			    MPI3_FUNCTION_MGMT_PASSTHROUGH) {
2699 				drv_buf_iter = &drv_bufs[0];
2700 				dprint_dump(drv_buf_iter->kern_buf,
2701 				    rmc_size, "mpi3_mgmt_req");
2702 				}
2703 			}
2704 		}
2705 		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
2706 			(mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) {
2707 			dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds,\n"
2708 				"issuing target reset to (0x%04x)\n", __func__,
2709 				karg->timeout, mpi_header->function_dependent);
2710 			mpi3mr_issue_tm(mrioc,
2711 			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
2712 			    mpi_header->function_dependent, 0,
2713 			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
2714 			    &mrioc->host_tm_cmds, &resp_code, NULL);
2715 		}
2716 		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
2717 		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
2718 			mpi3mr_soft_reset_handler(mrioc,
2719 			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
2720 		goto out_unlock;
2721 	}
2722 	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
2723 
2724 	if (mrioc->prp_list_virt) {
2725 		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2726 		    mrioc->prp_list_virt, mrioc->prp_list_dma);
2727 		mrioc->prp_list_virt = NULL;
2728 	}
2729 
2730 	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
2731 	     != MPI3_IOCSTATUS_SUCCESS) {
2732 		dprint_bsg_info(mrioc,
2733 		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
2734 		    __func__,
2735 		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
2736 		    mrioc->bsg_cmds.ioc_loginfo);
2737 	}
2738 
2739 	if ((mpirep_offset != 0xFF) &&
2740 	    drv_bufs[mpirep_offset].bsg_buf_len) {
2741 		drv_buf_iter = &drv_bufs[mpirep_offset];
2742 		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
2743 					   mrioc->reply_sz);
2744 		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
2745 
2746 		if (!bsg_reply_buf) {
2747 			rval = -ENOMEM;
2748 			goto out_unlock;
2749 		}
2750 		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
2751 			bsg_reply_buf->mpi_reply_type =
2752 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
2753 			memcpy(bsg_reply_buf->reply_buf,
2754 			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
2755 		} else {
2756 			bsg_reply_buf->mpi_reply_type =
2757 				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
2758 			status_desc = (struct mpi3_status_reply_descriptor *)
2759 			    bsg_reply_buf->reply_buf;
2760 			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
2761 			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
2762 		}
2763 		tmplen = min(drv_buf_iter->kern_buf_len,
2764 			drv_buf_iter->bsg_buf_len);
2765 		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
2766 	}
2767 
2768 	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
2769 	    mrioc->bsg_cmds.is_sense) {
2770 		drv_buf_iter = &drv_bufs[erb_offset];
2771 		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
2772 		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
2773 	}
2774 
2775 	drv_buf_iter = drv_bufs;
2776 	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2777 		if (drv_buf_iter->data_dir == DMA_NONE)
2778 			continue;
2779 		if ((count == 1) && is_rmrb) {
2780 			memcpy(drv_buf_iter->bsg_buf,
2781 			    drv_buf_iter->kern_buf,
2782 			    drv_buf_iter->kern_buf_len);
2783 		} else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
2784 			tmplen = 0;
2785 			for (desc_count = 0;
2786 			    desc_count < drv_buf_iter->num_dma_desc;
2787 			    desc_count++) {
2788 				memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
2789 				       drv_buf_iter->dma_desc[desc_count].addr,
2790 				       drv_buf_iter->dma_desc[desc_count].size);
2791 				tmplen +=
2792 				    drv_buf_iter->dma_desc[desc_count].size;
2793 		}
2794 	}
2795 	}
2796 
2797 out_unlock:
2798 	if (din_buf) {
2799 		job->reply_payload_rcv_len =
2800 			sg_copy_from_buffer(job->reply_payload.sg_list,
2801 					    job->reply_payload.sg_cnt,
2802 					    din_buf, job->reply_payload.payload_len);
2803 	}
2804 	mrioc->bsg_cmds.is_sense = 0;
2805 	mrioc->bsg_cmds.sensebuf = NULL;
2806 	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
2807 	mutex_unlock(&mrioc->bsg_cmds.mutex);
2808 out:
2809 	kfree(sense_buff_k);
2810 	kfree(dout_buf);
2811 	kfree(din_buf);
2812 	kfree(mpi_req);
2813 	if (drv_bufs) {
2814 		drv_buf_iter = drv_bufs;
2815 		for (count = 0; count < bufcnt; count++, drv_buf_iter++)
2816 			kfree(drv_buf_iter->dma_desc);
2817 		kfree(drv_bufs);
2818 	}
2819 	kfree(bsg_reply_buf);
2820 	return rval;
2821 }
2822 
2823 /**
2824  * mpi3mr_app_save_logdata - Save Log Data events
2825  * @mrioc: Adapter instance reference
2826  * @event_data: event data associated with log data event
2827  * @event_data_size: event data size to copy
2828  *
2829  * If log data event caching is enabled by the applicatiobns,
2830  * then this function saves the log data in the circular queue
2831  * and Sends async signal SIGIO to indicate there is an async
2832  * event from the firmware to the event monitoring applications.
2833  *
2834  * Return:Nothing
2835  */
2836 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
2837 	u16 event_data_size)
2838 {
2839 	u32 index = mrioc->logdata_buf_idx, sz;
2840 	struct mpi3mr_logdata_entry *entry;
2841 
2842 	if (!(mrioc->logdata_buf))
2843 		return;
2844 
2845 	entry = (struct mpi3mr_logdata_entry *)
2846 		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
2847 	entry->valid_entry = 1;
2848 	sz = min(mrioc->logdata_entry_sz, event_data_size);
2849 	memcpy(entry->data, event_data, sz);
2850 	mrioc->logdata_buf_idx =
2851 		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
2852 	atomic64_inc(&event_counter);
2853 }
2854 
2855 /**
2856  * mpi3mr_bsg_request - bsg request entry point
2857  * @job: BSG job reference
2858  *
2859  * This is driver's entry point for bsg requests
2860  *
2861  * Return: 0 on success and proper error codes on failure
2862  */
2863 static int mpi3mr_bsg_request(struct bsg_job *job)
2864 {
2865 	long rval = -EINVAL;
2866 	unsigned int reply_payload_rcv_len = 0;
2867 
2868 	struct mpi3mr_bsg_packet *bsg_req = job->request;
2869 
2870 	switch (bsg_req->cmd_type) {
2871 	case MPI3MR_DRV_CMD:
2872 		rval = mpi3mr_bsg_process_drv_cmds(job);
2873 		break;
2874 	case MPI3MR_MPT_CMD:
2875 		rval = mpi3mr_bsg_process_mpt_cmds(job);
2876 		break;
2877 	default:
2878 		pr_err("%s: unsupported BSG command(0x%08x)\n",
2879 		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
2880 		break;
2881 	}
2882 
2883 	bsg_job_done(job, rval, reply_payload_rcv_len);
2884 
2885 	return 0;
2886 }
2887 
2888 /**
2889  * mpi3mr_bsg_exit - de-registration from bsg layer
2890  * @mrioc: Adapter instance reference
2891  *
2892  * This will be called during driver unload and all
2893  * bsg resources allocated during load will be freed.
2894  *
2895  * Return:Nothing
2896  */
2897 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
2898 {
2899 	struct device *bsg_dev = &mrioc->bsg_dev;
2900 	if (!mrioc->bsg_queue)
2901 		return;
2902 
2903 	bsg_remove_queue(mrioc->bsg_queue);
2904 	mrioc->bsg_queue = NULL;
2905 
2906 	device_del(bsg_dev);
2907 	put_device(bsg_dev);
2908 }
2909 
2910 /**
2911  * mpi3mr_bsg_node_release -release bsg device node
2912  * @dev: bsg device node
2913  *
2914  * decrements bsg dev parent reference count
2915  *
2916  * Return:Nothing
2917  */
2918 static void mpi3mr_bsg_node_release(struct device *dev)
2919 {
2920 	put_device(dev->parent);
2921 }
2922 
2923 /**
2924  * mpi3mr_bsg_init -  registration with bsg layer
2925  * @mrioc: Adapter instance reference
2926  *
2927  * This will be called during driver load and it will
2928  * register driver with bsg layer
2929  *
2930  * Return:Nothing
2931  */
2932 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
2933 {
2934 	struct device *bsg_dev = &mrioc->bsg_dev;
2935 	struct device *parent = &mrioc->shost->shost_gendev;
2936 	struct queue_limits lim = {
2937 		.max_hw_sectors		= MPI3MR_MAX_APP_XFER_SECTORS,
2938 		.max_segments		= MPI3MR_MAX_APP_XFER_SEGMENTS,
2939 	};
2940 
2941 	device_initialize(bsg_dev);
2942 
2943 	bsg_dev->parent = get_device(parent);
2944 	bsg_dev->release = mpi3mr_bsg_node_release;
2945 
2946 	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
2947 
2948 	if (device_add(bsg_dev)) {
2949 		ioc_err(mrioc, "%s: bsg device add failed\n",
2950 		    dev_name(bsg_dev));
2951 		put_device(bsg_dev);
2952 		return;
2953 	}
2954 
2955 	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), &lim,
2956 			mpi3mr_bsg_request, NULL, 0);
2957 	if (IS_ERR(mrioc->bsg_queue)) {
2958 		ioc_err(mrioc, "%s: bsg registration failed\n",
2959 		    dev_name(bsg_dev));
2960 		device_del(bsg_dev);
2961 		put_device(bsg_dev);
2962 	}
2963 }
2964 
2965 /**
2966  * version_fw_show - SysFS callback for firmware version read
2967  * @dev: class device
2968  * @attr: Device attributes
2969  * @buf: Buffer to copy
2970  *
2971  * Return: sysfs_emit() return after copying firmware version
2972  */
2973 static ssize_t
2974 version_fw_show(struct device *dev, struct device_attribute *attr,
2975 	char *buf)
2976 {
2977 	struct Scsi_Host *shost = class_to_shost(dev);
2978 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
2979 	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
2980 
2981 	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
2982 	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
2983 	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
2984 }
2985 static DEVICE_ATTR_RO(version_fw);
2986 
2987 /**
2988  * fw_queue_depth_show - SysFS callback for firmware max cmds
2989  * @dev: class device
2990  * @attr: Device attributes
2991  * @buf: Buffer to copy
2992  *
2993  * Return: sysfs_emit() return after copying firmware max commands
2994  */
2995 static ssize_t
2996 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
2997 			char *buf)
2998 {
2999 	struct Scsi_Host *shost = class_to_shost(dev);
3000 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3001 
3002 	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
3003 }
3004 static DEVICE_ATTR_RO(fw_queue_depth);
3005 
3006 /**
3007  * op_req_q_count_show - SysFS callback for request queue count
3008  * @dev: class device
3009  * @attr: Device attributes
3010  * @buf: Buffer to copy
3011  *
3012  * Return: sysfs_emit() return after copying request queue count
3013  */
3014 static ssize_t
3015 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
3016 			char *buf)
3017 {
3018 	struct Scsi_Host *shost = class_to_shost(dev);
3019 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3020 
3021 	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
3022 }
3023 static DEVICE_ATTR_RO(op_req_q_count);
3024 
3025 /**
3026  * reply_queue_count_show - SysFS callback for reply queue count
3027  * @dev: class device
3028  * @attr: Device attributes
3029  * @buf: Buffer to copy
3030  *
3031  * Return: sysfs_emit() return after copying reply queue count
3032  */
3033 static ssize_t
3034 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
3035 			char *buf)
3036 {
3037 	struct Scsi_Host *shost = class_to_shost(dev);
3038 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3039 
3040 	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
3041 }
3042 
3043 static DEVICE_ATTR_RO(reply_queue_count);
3044 
3045 /**
3046  * logging_level_show - Show controller debug level
3047  * @dev: class device
3048  * @attr: Device attributes
3049  * @buf: Buffer to copy
3050  *
3051  * A sysfs 'read/write' shost attribute, to show the current
3052  * debug log level used by the driver for the specific
3053  * controller.
3054  *
3055  * Return: sysfs_emit() return
3056  */
3057 static ssize_t
3058 logging_level_show(struct device *dev,
3059 	struct device_attribute *attr, char *buf)
3060 
3061 {
3062 	struct Scsi_Host *shost = class_to_shost(dev);
3063 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3064 
3065 	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
3066 }
3067 
3068 /**
3069  * logging_level_store- Change controller debug level
3070  * @dev: class device
3071  * @attr: Device attributes
3072  * @buf: Buffer to copy
3073  * @count: size of the buffer
3074  *
3075  * A sysfs 'read/write' shost attribute, to change the current
3076  * debug log level used by the driver for the specific
3077  * controller.
3078  *
3079  * Return: strlen() return
3080  */
3081 static ssize_t
3082 logging_level_store(struct device *dev,
3083 	struct device_attribute *attr,
3084 	const char *buf, size_t count)
3085 {
3086 	struct Scsi_Host *shost = class_to_shost(dev);
3087 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3088 	int val = 0;
3089 
3090 	if (kstrtoint(buf, 0, &val) != 0)
3091 		return -EINVAL;
3092 
3093 	mrioc->logging_level = val;
3094 	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
3095 	return strlen(buf);
3096 }
3097 static DEVICE_ATTR_RW(logging_level);
3098 
3099 /**
3100  * adp_state_show() - SysFS callback for adapter state show
3101  * @dev: class device
3102  * @attr: Device attributes
3103  * @buf: Buffer to copy
3104  *
3105  * Return: sysfs_emit() return after copying adapter state
3106  */
3107 static ssize_t
3108 adp_state_show(struct device *dev, struct device_attribute *attr,
3109 	char *buf)
3110 {
3111 	struct Scsi_Host *shost = class_to_shost(dev);
3112 	struct mpi3mr_ioc *mrioc = shost_priv(shost);
3113 	enum mpi3mr_iocstate ioc_state;
3114 	uint8_t adp_state;
3115 
3116 	ioc_state = mpi3mr_get_iocstate(mrioc);
3117 	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
3118 		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
3119 	else if (mrioc->reset_in_progress || mrioc->stop_bsgs ||
3120 		 mrioc->block_on_pci_err)
3121 		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
3122 	else if (ioc_state == MRIOC_STATE_FAULT)
3123 		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
3124 	else
3125 		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
3126 
3127 	return sysfs_emit(buf, "%u\n", adp_state);
3128 }
3129 
3130 static DEVICE_ATTR_RO(adp_state);
3131 
3132 static struct attribute *mpi3mr_host_attrs[] = {
3133 	&dev_attr_version_fw.attr,
3134 	&dev_attr_fw_queue_depth.attr,
3135 	&dev_attr_op_req_q_count.attr,
3136 	&dev_attr_reply_queue_count.attr,
3137 	&dev_attr_logging_level.attr,
3138 	&dev_attr_adp_state.attr,
3139 	NULL,
3140 };
3141 
3142 static const struct attribute_group mpi3mr_host_attr_group = {
3143 	.attrs = mpi3mr_host_attrs
3144 };
3145 
3146 const struct attribute_group *mpi3mr_host_groups[] = {
3147 	&mpi3mr_host_attr_group,
3148 	NULL,
3149 };
3150 
3151 
3152 /*
3153  * SCSI Device attributes under sysfs
3154  */
3155 
3156 /**
3157  * sas_address_show - SysFS callback for dev SASaddress display
3158  * @dev: class device
3159  * @attr: Device attributes
3160  * @buf: Buffer to copy
3161  *
3162  * Return: sysfs_emit() return after copying SAS address of the
3163  * specific SAS/SATA end device.
3164  */
3165 static ssize_t
3166 sas_address_show(struct device *dev, struct device_attribute *attr,
3167 			char *buf)
3168 {
3169 	struct scsi_device *sdev = to_scsi_device(dev);
3170 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3171 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3172 	struct mpi3mr_tgt_dev *tgtdev;
3173 
3174 	sdev_priv_data = sdev->hostdata;
3175 	if (!sdev_priv_data)
3176 		return 0;
3177 
3178 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3179 	if (!tgt_priv_data)
3180 		return 0;
3181 	tgtdev = tgt_priv_data->tgt_dev;
3182 	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
3183 		return 0;
3184 	return sysfs_emit(buf, "0x%016llx\n",
3185 	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
3186 }
3187 
3188 static DEVICE_ATTR_RO(sas_address);
3189 
3190 /**
3191  * device_handle_show - SysFS callback for device handle display
3192  * @dev: class device
3193  * @attr: Device attributes
3194  * @buf: Buffer to copy
3195  *
3196  * Return: sysfs_emit() return after copying firmware internal
3197  * device handle of the specific device.
3198  */
3199 static ssize_t
3200 device_handle_show(struct device *dev, struct device_attribute *attr,
3201 			char *buf)
3202 {
3203 	struct scsi_device *sdev = to_scsi_device(dev);
3204 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3205 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3206 	struct mpi3mr_tgt_dev *tgtdev;
3207 
3208 	sdev_priv_data = sdev->hostdata;
3209 	if (!sdev_priv_data)
3210 		return 0;
3211 
3212 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3213 	if (!tgt_priv_data)
3214 		return 0;
3215 	tgtdev = tgt_priv_data->tgt_dev;
3216 	if (!tgtdev)
3217 		return 0;
3218 	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
3219 }
3220 
3221 static DEVICE_ATTR_RO(device_handle);
3222 
3223 /**
3224  * persistent_id_show - SysFS callback for persisten ID display
3225  * @dev: class device
3226  * @attr: Device attributes
3227  * @buf: Buffer to copy
3228  *
3229  * Return: sysfs_emit() return after copying persistent ID of the
3230  * of the specific device.
3231  */
3232 static ssize_t
3233 persistent_id_show(struct device *dev, struct device_attribute *attr,
3234 			char *buf)
3235 {
3236 	struct scsi_device *sdev = to_scsi_device(dev);
3237 	struct mpi3mr_sdev_priv_data *sdev_priv_data;
3238 	struct mpi3mr_stgt_priv_data *tgt_priv_data;
3239 	struct mpi3mr_tgt_dev *tgtdev;
3240 
3241 	sdev_priv_data = sdev->hostdata;
3242 	if (!sdev_priv_data)
3243 		return 0;
3244 
3245 	tgt_priv_data = sdev_priv_data->tgt_priv_data;
3246 	if (!tgt_priv_data)
3247 		return 0;
3248 	tgtdev = tgt_priv_data->tgt_dev;
3249 	if (!tgtdev)
3250 		return 0;
3251 	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
3252 }
3253 static DEVICE_ATTR_RO(persistent_id);
3254 
3255 /**
3256  * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority
3257  * @dev: pointer to embedded device
3258  * @attr: sas_ncq_prio_supported attribute descriptor
3259  * @buf: the buffer returned
3260  *
3261  * A sysfs 'read-only' sdev attribute, only works with SATA devices
3262  */
3263 static ssize_t
3264 sas_ncq_prio_supported_show(struct device *dev,
3265 			    struct device_attribute *attr, char *buf)
3266 {
3267 	struct scsi_device *sdev = to_scsi_device(dev);
3268 
3269 	return sysfs_emit(buf, "%d\n", sas_ata_ncq_prio_supported(sdev));
3270 }
3271 static DEVICE_ATTR_RO(sas_ncq_prio_supported);
3272 
3273 /**
3274  * sas_ncq_prio_enable_show - send prioritized io commands to device
3275  * @dev: pointer to embedded device
3276  * @attr: sas_ncq_prio_enable attribute descriptor
3277  * @buf: the buffer returned
3278  *
3279  * A sysfs 'read/write' sdev attribute, only works with SATA devices
3280  */
3281 static ssize_t
3282 sas_ncq_prio_enable_show(struct device *dev,
3283 				 struct device_attribute *attr, char *buf)
3284 {
3285 	struct scsi_device *sdev = to_scsi_device(dev);
3286 	struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3287 
3288 	if (!sdev_priv_data)
3289 		return 0;
3290 
3291 	return sysfs_emit(buf, "%d\n", sdev_priv_data->ncq_prio_enable);
3292 }
3293 
3294 static ssize_t
3295 sas_ncq_prio_enable_store(struct device *dev,
3296 				  struct device_attribute *attr,
3297 				  const char *buf, size_t count)
3298 {
3299 	struct scsi_device *sdev = to_scsi_device(dev);
3300 	struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3301 	bool ncq_prio_enable = 0;
3302 
3303 	if (kstrtobool(buf, &ncq_prio_enable))
3304 		return -EINVAL;
3305 
3306 	if (!sas_ata_ncq_prio_supported(sdev))
3307 		return -EINVAL;
3308 
3309 	sdev_priv_data->ncq_prio_enable = ncq_prio_enable;
3310 
3311 	return strlen(buf);
3312 }
3313 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3314 
3315 static struct attribute *mpi3mr_dev_attrs[] = {
3316 	&dev_attr_sas_address.attr,
3317 	&dev_attr_device_handle.attr,
3318 	&dev_attr_persistent_id.attr,
3319 	&dev_attr_sas_ncq_prio_supported.attr,
3320 	&dev_attr_sas_ncq_prio_enable.attr,
3321 	NULL,
3322 };
3323 
3324 static const struct attribute_group mpi3mr_dev_attr_group = {
3325 	.attrs = mpi3mr_dev_attrs
3326 };
3327 
3328 const struct attribute_group *mpi3mr_dev_groups[] = {
3329 	&mpi3mr_dev_attr_group,
3330 	NULL,
3331 };
3332