1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2023 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 93 struct lpfc_iocbq *pwqeq, 94 struct lpfc_sglq *sglq); 95 96 union lpfc_wqe128 lpfc_iread_cmd_template; 97 union lpfc_wqe128 lpfc_iwrite_cmd_template; 98 union lpfc_wqe128 lpfc_icmnd_cmd_template; 99 100 /* Setup WQE templates for IOs */ 101 void lpfc_wqe_cmd_template(void) 102 { 103 union lpfc_wqe128 *wqe; 104 105 /* IREAD template */ 106 wqe = &lpfc_iread_cmd_template; 107 memset(wqe, 0, sizeof(union lpfc_wqe128)); 108 109 /* Word 0, 1, 2 - BDE is variable */ 110 111 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 112 113 /* Word 4 - total_xfer_len is variable */ 114 115 /* Word 5 - is zero */ 116 117 /* Word 6 - ctxt_tag, xri_tag is variable */ 118 119 /* Word 7 */ 120 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 121 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 122 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 123 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 124 125 /* Word 8 - abort_tag is variable */ 126 127 /* Word 9 - reqtag is variable */ 128 129 /* Word 10 - dbde, wqes is variable */ 130 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 131 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 132 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 133 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 135 136 /* Word 11 - pbde is variable */ 137 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 138 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 139 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 140 141 /* Word 12 - is zero */ 142 143 /* Word 13, 14, 15 - PBDE is variable */ 144 145 /* IWRITE template */ 146 wqe = &lpfc_iwrite_cmd_template; 147 memset(wqe, 0, sizeof(union lpfc_wqe128)); 148 149 /* Word 0, 1, 2 - BDE is variable */ 150 151 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 152 153 /* Word 4 - total_xfer_len is variable */ 154 155 /* Word 5 - initial_xfer_len is variable */ 156 157 /* Word 6 - ctxt_tag, xri_tag is variable */ 158 159 /* Word 7 */ 160 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 161 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 162 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 163 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 164 165 /* Word 8 - abort_tag is variable */ 166 167 /* Word 9 - reqtag is variable */ 168 169 /* Word 10 - dbde, wqes is variable */ 170 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 171 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 172 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 173 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 175 176 /* Word 11 - pbde is variable */ 177 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 178 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 179 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 180 181 /* Word 12 - is zero */ 182 183 /* Word 13, 14, 15 - PBDE is variable */ 184 185 /* ICMND template */ 186 wqe = &lpfc_icmnd_cmd_template; 187 memset(wqe, 0, sizeof(union lpfc_wqe128)); 188 189 /* Word 0, 1, 2 - BDE is variable */ 190 191 /* Word 3 - payload_offset_len is variable */ 192 193 /* Word 4, 5 - is zero */ 194 195 /* Word 6 - ctxt_tag, xri_tag is variable */ 196 197 /* Word 7 */ 198 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 199 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 200 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 201 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 202 203 /* Word 8 - abort_tag is variable */ 204 205 /* Word 9 - reqtag is variable */ 206 207 /* Word 10 - dbde, wqes is variable */ 208 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 209 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 210 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 211 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 212 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 213 214 /* Word 11 */ 215 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 216 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 217 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 218 219 /* Word 12, 13, 14, 15 - is zero */ 220 } 221 222 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 223 /** 224 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 225 * @srcp: Source memory pointer. 226 * @destp: Destination memory pointer. 227 * @cnt: Number of words required to be copied. 228 * Must be a multiple of sizeof(uint64_t) 229 * 230 * This function is used for copying data between driver memory 231 * and the SLI WQ. This function also changes the endianness 232 * of each word if native endianness is different from SLI 233 * endianness. This function can be called with or without 234 * lock. 235 **/ 236 static void 237 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 238 { 239 uint64_t *src = srcp; 240 uint64_t *dest = destp; 241 int i; 242 243 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 244 *dest++ = *src++; 245 } 246 #else 247 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 248 #endif 249 250 /** 251 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 252 * @q: The Work Queue to operate on. 253 * @wqe: The work Queue Entry to put on the Work queue. 254 * 255 * This routine will copy the contents of @wqe to the next available entry on 256 * the @q. This function will then ring the Work Queue Doorbell to signal the 257 * HBA to start processing the Work Queue Entry. This function returns 0 if 258 * successful. If no entries are available on @q then this function will return 259 * -ENOMEM. 260 * The caller is expected to hold the hbalock when calling this routine. 261 **/ 262 static int 263 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 264 { 265 union lpfc_wqe *temp_wqe; 266 struct lpfc_register doorbell; 267 uint32_t host_index; 268 uint32_t idx; 269 uint32_t i = 0; 270 uint8_t *tmp; 271 u32 if_type; 272 273 /* sanity check on queue memory */ 274 if (unlikely(!q)) 275 return -ENOMEM; 276 277 temp_wqe = lpfc_sli4_qe(q, q->host_index); 278 279 /* If the host has not yet processed the next entry then we are done */ 280 idx = ((q->host_index + 1) % q->entry_count); 281 if (idx == q->hba_index) { 282 q->WQ_overflow++; 283 return -EBUSY; 284 } 285 q->WQ_posted++; 286 /* set consumption flag every once in a while */ 287 if (!((q->host_index + 1) % q->notify_interval)) 288 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 289 else 290 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 291 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 292 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 293 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 294 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 295 /* write to DPP aperture taking advatage of Combined Writes */ 296 tmp = (uint8_t *)temp_wqe; 297 #ifdef __raw_writeq 298 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 299 __raw_writeq(*((uint64_t *)(tmp + i)), 300 q->dpp_regaddr + i); 301 #else 302 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 303 __raw_writel(*((uint32_t *)(tmp + i)), 304 q->dpp_regaddr + i); 305 #endif 306 } 307 /* ensure WQE bcopy and DPP flushed before doorbell write */ 308 wmb(); 309 310 /* Update the host index before invoking device */ 311 host_index = q->host_index; 312 313 q->host_index = idx; 314 315 /* Ring Doorbell */ 316 doorbell.word0 = 0; 317 if (q->db_format == LPFC_DB_LIST_FORMAT) { 318 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 319 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 320 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 322 q->dpp_id); 323 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 324 q->queue_id); 325 } else { 326 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 327 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 328 329 /* Leave bits <23:16> clear for if_type 6 dpp */ 330 if_type = bf_get(lpfc_sli_intf_if_type, 331 &q->phba->sli4_hba.sli_intf); 332 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 333 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 334 host_index); 335 } 336 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 337 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 338 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 339 } else { 340 return -EINVAL; 341 } 342 writel(doorbell.word0, q->db_regaddr); 343 344 return 0; 345 } 346 347 /** 348 * lpfc_sli4_wq_release - Updates internal hba index for WQ 349 * @q: The Work Queue to operate on. 350 * @index: The index to advance the hba index to. 351 * 352 * This routine will update the HBA index of a queue to reflect consumption of 353 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 354 * an entry the host calls this function to update the queue's internal 355 * pointers. 356 **/ 357 static void 358 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 359 { 360 /* sanity check on queue memory */ 361 if (unlikely(!q)) 362 return; 363 364 q->hba_index = index; 365 } 366 367 /** 368 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 369 * @q: The Mailbox Queue to operate on. 370 * @mqe: The Mailbox Queue Entry to put on the Work queue. 371 * 372 * This routine will copy the contents of @mqe to the next available entry on 373 * the @q. This function will then ring the Work Queue Doorbell to signal the 374 * HBA to start processing the Work Queue Entry. This function returns 0 if 375 * successful. If no entries are available on @q then this function will return 376 * -ENOMEM. 377 * The caller is expected to hold the hbalock when calling this routine. 378 **/ 379 static uint32_t 380 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 381 { 382 struct lpfc_mqe *temp_mqe; 383 struct lpfc_register doorbell; 384 385 /* sanity check on queue memory */ 386 if (unlikely(!q)) 387 return -ENOMEM; 388 temp_mqe = lpfc_sli4_qe(q, q->host_index); 389 390 /* If the host has not yet processed the next entry then we are done */ 391 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 392 return -ENOMEM; 393 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 394 /* Save off the mailbox pointer for completion */ 395 q->phba->mbox = (MAILBOX_t *)temp_mqe; 396 397 /* Update the host index before invoking device */ 398 q->host_index = ((q->host_index + 1) % q->entry_count); 399 400 /* Ring Doorbell */ 401 doorbell.word0 = 0; 402 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 403 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 404 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 405 return 0; 406 } 407 408 /** 409 * lpfc_sli4_mq_release - Updates internal hba index for MQ 410 * @q: The Mailbox Queue to operate on. 411 * 412 * This routine will update the HBA index of a queue to reflect consumption of 413 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 414 * an entry the host calls this function to update the queue's internal 415 * pointers. This routine returns the number of entries that were consumed by 416 * the HBA. 417 **/ 418 static uint32_t 419 lpfc_sli4_mq_release(struct lpfc_queue *q) 420 { 421 /* sanity check on queue memory */ 422 if (unlikely(!q)) 423 return 0; 424 425 /* Clear the mailbox pointer for completion */ 426 q->phba->mbox = NULL; 427 q->hba_index = ((q->hba_index + 1) % q->entry_count); 428 return 1; 429 } 430 431 /** 432 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 433 * @q: The Event Queue to get the first valid EQE from 434 * 435 * This routine will get the first valid Event Queue Entry from @q, update 436 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 437 * the Queue (no more work to do), or the Queue is full of EQEs that have been 438 * processed, but not popped back to the HBA then this routine will return NULL. 439 **/ 440 static struct lpfc_eqe * 441 lpfc_sli4_eq_get(struct lpfc_queue *q) 442 { 443 struct lpfc_eqe *eqe; 444 445 /* sanity check on queue memory */ 446 if (unlikely(!q)) 447 return NULL; 448 eqe = lpfc_sli4_qe(q, q->host_index); 449 450 /* If the next EQE is not valid then we are done */ 451 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 452 return NULL; 453 454 /* 455 * insert barrier for instruction interlock : data from the hardware 456 * must have the valid bit checked before it can be copied and acted 457 * upon. Speculative instructions were allowing a bcopy at the start 458 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 459 * after our return, to copy data before the valid bit check above 460 * was done. As such, some of the copied data was stale. The barrier 461 * ensures the check is before any data is copied. 462 */ 463 mb(); 464 return eqe; 465 } 466 467 /** 468 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 469 * @q: The Event Queue to disable interrupts 470 * 471 **/ 472 void 473 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 474 { 475 struct lpfc_register doorbell; 476 477 doorbell.word0 = 0; 478 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 479 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 480 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 481 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 482 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 483 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 484 } 485 486 /** 487 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 488 * @q: The Event Queue to disable interrupts 489 * 490 **/ 491 void 492 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 493 { 494 struct lpfc_register doorbell; 495 496 doorbell.word0 = 0; 497 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 498 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 499 } 500 501 /** 502 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 503 * @phba: adapter with EQ 504 * @q: The Event Queue that the host has completed processing for. 505 * @count: Number of elements that have been consumed 506 * @arm: Indicates whether the host wants to arms this CQ. 507 * 508 * This routine will notify the HBA, by ringing the doorbell, that count 509 * number of EQEs have been processed. The @arm parameter indicates whether 510 * the queue should be rearmed when ringing the doorbell. 511 **/ 512 void 513 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 514 uint32_t count, bool arm) 515 { 516 struct lpfc_register doorbell; 517 518 /* sanity check on queue memory */ 519 if (unlikely(!q || (count == 0 && !arm))) 520 return; 521 522 /* ring doorbell for number popped */ 523 doorbell.word0 = 0; 524 if (arm) { 525 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 526 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 527 } 528 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 529 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 530 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 531 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 532 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 533 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 534 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 535 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 536 readl(q->phba->sli4_hba.EQDBregaddr); 537 } 538 539 /** 540 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 541 * @phba: adapter with EQ 542 * @q: The Event Queue that the host has completed processing for. 543 * @count: Number of elements that have been consumed 544 * @arm: Indicates whether the host wants to arms this CQ. 545 * 546 * This routine will notify the HBA, by ringing the doorbell, that count 547 * number of EQEs have been processed. The @arm parameter indicates whether 548 * the queue should be rearmed when ringing the doorbell. 549 **/ 550 void 551 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 552 uint32_t count, bool arm) 553 { 554 struct lpfc_register doorbell; 555 556 /* sanity check on queue memory */ 557 if (unlikely(!q || (count == 0 && !arm))) 558 return; 559 560 /* ring doorbell for number popped */ 561 doorbell.word0 = 0; 562 if (arm) 563 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 564 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 565 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 566 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 567 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 568 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 569 readl(q->phba->sli4_hba.EQDBregaddr); 570 } 571 572 static void 573 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 574 struct lpfc_eqe *eqe) 575 { 576 if (!phba->sli4_hba.pc_sli4_params.eqav) 577 bf_set_le32(lpfc_eqe_valid, eqe, 0); 578 579 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 580 581 /* if the index wrapped around, toggle the valid bit */ 582 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 583 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 584 } 585 586 static void 587 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 588 { 589 struct lpfc_eqe *eqe = NULL; 590 u32 eq_count = 0, cq_count = 0; 591 struct lpfc_cqe *cqe = NULL; 592 struct lpfc_queue *cq = NULL, *childq = NULL; 593 int cqid = 0; 594 595 /* walk all the EQ entries and drop on the floor */ 596 eqe = lpfc_sli4_eq_get(eq); 597 while (eqe) { 598 /* Get the reference to the corresponding CQ */ 599 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 600 cq = NULL; 601 602 list_for_each_entry(childq, &eq->child_list, list) { 603 if (childq->queue_id == cqid) { 604 cq = childq; 605 break; 606 } 607 } 608 /* If CQ is valid, iterate through it and drop all the CQEs */ 609 if (cq) { 610 cqe = lpfc_sli4_cq_get(cq); 611 while (cqe) { 612 __lpfc_sli4_consume_cqe(phba, cq, cqe); 613 cq_count++; 614 cqe = lpfc_sli4_cq_get(cq); 615 } 616 /* Clear and re-arm the CQ */ 617 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 618 LPFC_QUEUE_REARM); 619 cq_count = 0; 620 } 621 __lpfc_sli4_consume_eqe(phba, eq, eqe); 622 eq_count++; 623 eqe = lpfc_sli4_eq_get(eq); 624 } 625 626 /* Clear and re-arm the EQ */ 627 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 628 } 629 630 static int 631 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 632 uint8_t rearm) 633 { 634 struct lpfc_eqe *eqe; 635 int count = 0, consumed = 0; 636 637 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 638 goto rearm_and_exit; 639 640 eqe = lpfc_sli4_eq_get(eq); 641 while (eqe) { 642 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 643 __lpfc_sli4_consume_eqe(phba, eq, eqe); 644 645 consumed++; 646 if (!(++count % eq->max_proc_limit)) 647 break; 648 649 if (!(count % eq->notify_interval)) { 650 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 651 LPFC_QUEUE_NOARM); 652 consumed = 0; 653 } 654 655 eqe = lpfc_sli4_eq_get(eq); 656 } 657 eq->EQ_processed += count; 658 659 /* Track the max number of EQEs processed in 1 intr */ 660 if (count > eq->EQ_max_eqe) 661 eq->EQ_max_eqe = count; 662 663 xchg(&eq->queue_claimed, 0); 664 665 rearm_and_exit: 666 /* Always clear the EQ. */ 667 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 668 669 return count; 670 } 671 672 /** 673 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 674 * @q: The Completion Queue to get the first valid CQE from 675 * 676 * This routine will get the first valid Completion Queue Entry from @q, update 677 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 678 * the Queue (no more work to do), or the Queue is full of CQEs that have been 679 * processed, but not popped back to the HBA then this routine will return NULL. 680 **/ 681 static struct lpfc_cqe * 682 lpfc_sli4_cq_get(struct lpfc_queue *q) 683 { 684 struct lpfc_cqe *cqe; 685 686 /* sanity check on queue memory */ 687 if (unlikely(!q)) 688 return NULL; 689 cqe = lpfc_sli4_qe(q, q->host_index); 690 691 /* If the next CQE is not valid then we are done */ 692 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 693 return NULL; 694 695 /* 696 * insert barrier for instruction interlock : data from the hardware 697 * must have the valid bit checked before it can be copied and acted 698 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 699 * instructions allowing action on content before valid bit checked, 700 * add barrier here as well. May not be needed as "content" is a 701 * single 32-bit entity here (vs multi word structure for cq's). 702 */ 703 mb(); 704 return cqe; 705 } 706 707 static void 708 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 709 struct lpfc_cqe *cqe) 710 { 711 if (!phba->sli4_hba.pc_sli4_params.cqav) 712 bf_set_le32(lpfc_cqe_valid, cqe, 0); 713 714 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 715 716 /* if the index wrapped around, toggle the valid bit */ 717 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 718 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 719 } 720 721 /** 722 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 723 * @phba: the adapter with the CQ 724 * @q: The Completion Queue that the host has completed processing for. 725 * @count: the number of elements that were consumed 726 * @arm: Indicates whether the host wants to arms this CQ. 727 * 728 * This routine will notify the HBA, by ringing the doorbell, that the 729 * CQEs have been processed. The @arm parameter specifies whether the 730 * queue should be rearmed when ringing the doorbell. 731 **/ 732 void 733 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 734 uint32_t count, bool arm) 735 { 736 struct lpfc_register doorbell; 737 738 /* sanity check on queue memory */ 739 if (unlikely(!q || (count == 0 && !arm))) 740 return; 741 742 /* ring doorbell for number popped */ 743 doorbell.word0 = 0; 744 if (arm) 745 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 746 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 747 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 748 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 749 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 750 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 751 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 752 } 753 754 /** 755 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 756 * @phba: the adapter with the CQ 757 * @q: The Completion Queue that the host has completed processing for. 758 * @count: the number of elements that were consumed 759 * @arm: Indicates whether the host wants to arms this CQ. 760 * 761 * This routine will notify the HBA, by ringing the doorbell, that the 762 * CQEs have been processed. The @arm parameter specifies whether the 763 * queue should be rearmed when ringing the doorbell. 764 **/ 765 void 766 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 767 uint32_t count, bool arm) 768 { 769 struct lpfc_register doorbell; 770 771 /* sanity check on queue memory */ 772 if (unlikely(!q || (count == 0 && !arm))) 773 return; 774 775 /* ring doorbell for number popped */ 776 doorbell.word0 = 0; 777 if (arm) 778 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 779 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 780 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 781 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 782 } 783 784 /* 785 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 786 * 787 * This routine will copy the contents of @wqe to the next available entry on 788 * the @q. This function will then ring the Receive Queue Doorbell to signal the 789 * HBA to start processing the Receive Queue Entry. This function returns the 790 * index that the rqe was copied to if successful. If no entries are available 791 * on @q then this function will return -ENOMEM. 792 * The caller is expected to hold the hbalock when calling this routine. 793 **/ 794 int 795 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 796 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 797 { 798 struct lpfc_rqe *temp_hrqe; 799 struct lpfc_rqe *temp_drqe; 800 struct lpfc_register doorbell; 801 int hq_put_index; 802 int dq_put_index; 803 804 /* sanity check on queue memory */ 805 if (unlikely(!hq) || unlikely(!dq)) 806 return -ENOMEM; 807 hq_put_index = hq->host_index; 808 dq_put_index = dq->host_index; 809 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 810 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 811 812 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 813 return -EINVAL; 814 if (hq_put_index != dq_put_index) 815 return -EINVAL; 816 /* If the host has not yet processed the next entry then we are done */ 817 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 818 return -EBUSY; 819 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 820 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 821 822 /* Update the host index to point to the next slot */ 823 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 824 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 825 hq->RQ_buf_posted++; 826 827 /* Ring The Header Receive Queue Doorbell */ 828 if (!(hq->host_index % hq->notify_interval)) { 829 doorbell.word0 = 0; 830 if (hq->db_format == LPFC_DB_RING_FORMAT) { 831 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 832 hq->notify_interval); 833 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 834 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 835 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 836 hq->notify_interval); 837 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 838 hq->host_index); 839 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 840 } else { 841 return -EINVAL; 842 } 843 writel(doorbell.word0, hq->db_regaddr); 844 } 845 return hq_put_index; 846 } 847 848 /* 849 * lpfc_sli4_rq_release - Updates internal hba index for RQ 850 * 851 * This routine will update the HBA index of a queue to reflect consumption of 852 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 853 * consumed an entry the host calls this function to update the queue's 854 * internal pointers. This routine returns the number of entries that were 855 * consumed by the HBA. 856 **/ 857 static uint32_t 858 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 859 { 860 /* sanity check on queue memory */ 861 if (unlikely(!hq) || unlikely(!dq)) 862 return 0; 863 864 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 865 return 0; 866 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 867 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 868 return 1; 869 } 870 871 /** 872 * lpfc_cmd_iocb - Get next command iocb entry in the ring 873 * @phba: Pointer to HBA context object. 874 * @pring: Pointer to driver SLI ring object. 875 * 876 * This function returns pointer to next command iocb entry 877 * in the command ring. The caller must hold hbalock to prevent 878 * other threads consume the next command iocb. 879 * SLI-2/SLI-3 provide different sized iocbs. 880 **/ 881 static inline IOCB_t * 882 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 883 { 884 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 885 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 886 } 887 888 /** 889 * lpfc_resp_iocb - Get next response iocb entry in the ring 890 * @phba: Pointer to HBA context object. 891 * @pring: Pointer to driver SLI ring object. 892 * 893 * This function returns pointer to next response iocb entry 894 * in the response ring. The caller must hold hbalock to make sure 895 * that no other thread consume the next response iocb. 896 * SLI-2/SLI-3 provide different sized iocbs. 897 **/ 898 static inline IOCB_t * 899 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 900 { 901 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 902 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 903 } 904 905 /** 906 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 907 * @phba: Pointer to HBA context object. 908 * 909 * This function is called with hbalock held. This function 910 * allocates a new driver iocb object from the iocb pool. If the 911 * allocation is successful, it returns pointer to the newly 912 * allocated iocb object else it returns NULL. 913 **/ 914 struct lpfc_iocbq * 915 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 916 { 917 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 918 struct lpfc_iocbq * iocbq = NULL; 919 920 lockdep_assert_held(&phba->hbalock); 921 922 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 923 if (iocbq) 924 phba->iocb_cnt++; 925 if (phba->iocb_cnt > phba->iocb_max) 926 phba->iocb_max = phba->iocb_cnt; 927 return iocbq; 928 } 929 930 /** 931 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 932 * @phba: Pointer to HBA context object. 933 * @xritag: XRI value. 934 * 935 * This function clears the sglq pointer from the array of active 936 * sglq's. The xritag that is passed in is used to index into the 937 * array. Before the xritag can be used it needs to be adjusted 938 * by subtracting the xribase. 939 * 940 * Returns sglq ponter = success, NULL = Failure. 941 **/ 942 struct lpfc_sglq * 943 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 944 { 945 struct lpfc_sglq *sglq; 946 947 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 948 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 949 return sglq; 950 } 951 952 /** 953 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 954 * @phba: Pointer to HBA context object. 955 * @xritag: XRI value. 956 * 957 * This function returns the sglq pointer from the array of active 958 * sglq's. The xritag that is passed in is used to index into the 959 * array. Before the xritag can be used it needs to be adjusted 960 * by subtracting the xribase. 961 * 962 * Returns sglq ponter = success, NULL = Failure. 963 **/ 964 struct lpfc_sglq * 965 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 966 { 967 struct lpfc_sglq *sglq; 968 969 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 970 return sglq; 971 } 972 973 /** 974 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 975 * @phba: Pointer to HBA context object. 976 * @xritag: xri used in this exchange. 977 * @rrq: The RRQ to be cleared. 978 * 979 **/ 980 void 981 lpfc_clr_rrq_active(struct lpfc_hba *phba, 982 uint16_t xritag, 983 struct lpfc_node_rrq *rrq) 984 { 985 struct lpfc_nodelist *ndlp = NULL; 986 987 /* Lookup did to verify if did is still active on this vport */ 988 if (rrq->vport) 989 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 990 991 if (!ndlp) 992 goto out; 993 994 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 995 rrq->send_rrq = 0; 996 rrq->xritag = 0; 997 rrq->rrq_stop_time = 0; 998 } 999 out: 1000 mempool_free(rrq, phba->rrq_pool); 1001 } 1002 1003 /** 1004 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1005 * @phba: Pointer to HBA context object. 1006 * 1007 * This function is called with hbalock held. This function 1008 * Checks if stop_time (ratov from setting rrq active) has 1009 * been reached, if it has and the send_rrq flag is set then 1010 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1011 * then it will just call the routine to clear the rrq and 1012 * free the rrq resource. 1013 * The timer is set to the next rrq that is going to expire before 1014 * leaving the routine. 1015 * 1016 **/ 1017 void 1018 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1019 { 1020 struct lpfc_node_rrq *rrq; 1021 struct lpfc_node_rrq *nextrrq; 1022 unsigned long next_time; 1023 unsigned long iflags; 1024 LIST_HEAD(send_rrq); 1025 1026 spin_lock_irqsave(&phba->hbalock, iflags); 1027 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1028 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1029 list_for_each_entry_safe(rrq, nextrrq, 1030 &phba->active_rrq_list, list) { 1031 if (time_after(jiffies, rrq->rrq_stop_time)) 1032 list_move(&rrq->list, &send_rrq); 1033 else if (time_before(rrq->rrq_stop_time, next_time)) 1034 next_time = rrq->rrq_stop_time; 1035 } 1036 spin_unlock_irqrestore(&phba->hbalock, iflags); 1037 if ((!list_empty(&phba->active_rrq_list)) && 1038 (!(phba->pport->load_flag & FC_UNLOADING))) 1039 mod_timer(&phba->rrq_tmr, next_time); 1040 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1041 list_del(&rrq->list); 1042 if (!rrq->send_rrq) { 1043 /* this call will free the rrq */ 1044 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1045 } else if (lpfc_send_rrq(phba, rrq)) { 1046 /* if we send the rrq then the completion handler 1047 * will clear the bit in the xribitmap. 1048 */ 1049 lpfc_clr_rrq_active(phba, rrq->xritag, 1050 rrq); 1051 } 1052 } 1053 } 1054 1055 /** 1056 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1057 * @vport: Pointer to vport context object. 1058 * @xri: The xri used in the exchange. 1059 * @did: The targets DID for this exchange. 1060 * 1061 * returns NULL = rrq not found in the phba->active_rrq_list. 1062 * rrq = rrq for this xri and target. 1063 **/ 1064 struct lpfc_node_rrq * 1065 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1066 { 1067 struct lpfc_hba *phba = vport->phba; 1068 struct lpfc_node_rrq *rrq; 1069 struct lpfc_node_rrq *nextrrq; 1070 unsigned long iflags; 1071 1072 if (phba->sli_rev != LPFC_SLI_REV4) 1073 return NULL; 1074 spin_lock_irqsave(&phba->hbalock, iflags); 1075 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1076 if (rrq->vport == vport && rrq->xritag == xri && 1077 rrq->nlp_DID == did){ 1078 list_del(&rrq->list); 1079 spin_unlock_irqrestore(&phba->hbalock, iflags); 1080 return rrq; 1081 } 1082 } 1083 spin_unlock_irqrestore(&phba->hbalock, iflags); 1084 return NULL; 1085 } 1086 1087 /** 1088 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1089 * @vport: Pointer to vport context object. 1090 * @ndlp: Pointer to the lpfc_node_list structure. 1091 * If ndlp is NULL Remove all active RRQs for this vport from the 1092 * phba->active_rrq_list and clear the rrq. 1093 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1094 **/ 1095 void 1096 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1097 1098 { 1099 struct lpfc_hba *phba = vport->phba; 1100 struct lpfc_node_rrq *rrq; 1101 struct lpfc_node_rrq *nextrrq; 1102 unsigned long iflags; 1103 LIST_HEAD(rrq_list); 1104 1105 if (phba->sli_rev != LPFC_SLI_REV4) 1106 return; 1107 if (!ndlp) { 1108 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1109 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1110 } 1111 spin_lock_irqsave(&phba->hbalock, iflags); 1112 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1113 if (rrq->vport != vport) 1114 continue; 1115 1116 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1117 list_move(&rrq->list, &rrq_list); 1118 1119 } 1120 spin_unlock_irqrestore(&phba->hbalock, iflags); 1121 1122 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1123 list_del(&rrq->list); 1124 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1125 } 1126 } 1127 1128 /** 1129 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1130 * @phba: Pointer to HBA context object. 1131 * @ndlp: Targets nodelist pointer for this exchange. 1132 * @xritag: the xri in the bitmap to test. 1133 * 1134 * This function returns: 1135 * 0 = rrq not active for this xri 1136 * 1 = rrq is valid for this xri. 1137 **/ 1138 int 1139 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1140 uint16_t xritag) 1141 { 1142 if (!ndlp) 1143 return 0; 1144 if (!ndlp->active_rrqs_xri_bitmap) 1145 return 0; 1146 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1147 return 1; 1148 else 1149 return 0; 1150 } 1151 1152 /** 1153 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1154 * @phba: Pointer to HBA context object. 1155 * @ndlp: nodelist pointer for this target. 1156 * @xritag: xri used in this exchange. 1157 * @rxid: Remote Exchange ID. 1158 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1159 * 1160 * This function takes the hbalock. 1161 * The active bit is always set in the active rrq xri_bitmap even 1162 * if there is no slot avaiable for the other rrq information. 1163 * 1164 * returns 0 rrq actived for this xri 1165 * < 0 No memory or invalid ndlp. 1166 **/ 1167 int 1168 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1169 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1170 { 1171 unsigned long iflags; 1172 struct lpfc_node_rrq *rrq; 1173 int empty; 1174 1175 if (!ndlp) 1176 return -EINVAL; 1177 1178 if (!phba->cfg_enable_rrq) 1179 return -EINVAL; 1180 1181 spin_lock_irqsave(&phba->hbalock, iflags); 1182 if (phba->pport->load_flag & FC_UNLOADING) { 1183 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1184 goto out; 1185 } 1186 1187 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1188 goto out; 1189 1190 if (!ndlp->active_rrqs_xri_bitmap) 1191 goto out; 1192 1193 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1194 goto out; 1195 1196 spin_unlock_irqrestore(&phba->hbalock, iflags); 1197 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1198 if (!rrq) { 1199 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1200 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1201 " DID:0x%x Send:%d\n", 1202 xritag, rxid, ndlp->nlp_DID, send_rrq); 1203 return -EINVAL; 1204 } 1205 if (phba->cfg_enable_rrq == 1) 1206 rrq->send_rrq = send_rrq; 1207 else 1208 rrq->send_rrq = 0; 1209 rrq->xritag = xritag; 1210 rrq->rrq_stop_time = jiffies + 1211 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1212 rrq->nlp_DID = ndlp->nlp_DID; 1213 rrq->vport = ndlp->vport; 1214 rrq->rxid = rxid; 1215 spin_lock_irqsave(&phba->hbalock, iflags); 1216 empty = list_empty(&phba->active_rrq_list); 1217 list_add_tail(&rrq->list, &phba->active_rrq_list); 1218 phba->hba_flag |= HBA_RRQ_ACTIVE; 1219 if (empty) 1220 lpfc_worker_wake_up(phba); 1221 spin_unlock_irqrestore(&phba->hbalock, iflags); 1222 return 0; 1223 out: 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1226 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1227 " DID:0x%x Send:%d\n", 1228 xritag, rxid, ndlp->nlp_DID, send_rrq); 1229 return -EINVAL; 1230 } 1231 1232 /** 1233 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1234 * @phba: Pointer to HBA context object. 1235 * @piocbq: Pointer to the iocbq. 1236 * 1237 * The driver calls this function with either the nvme ls ring lock 1238 * or the fc els ring lock held depending on the iocb usage. This function 1239 * gets a new driver sglq object from the sglq list. If the list is not empty 1240 * then it is successful, it returns pointer to the newly allocated sglq 1241 * object else it returns NULL. 1242 **/ 1243 static struct lpfc_sglq * 1244 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1245 { 1246 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1247 struct lpfc_sglq *sglq = NULL; 1248 struct lpfc_sglq *start_sglq = NULL; 1249 struct lpfc_io_buf *lpfc_cmd; 1250 struct lpfc_nodelist *ndlp; 1251 int found = 0; 1252 u8 cmnd; 1253 1254 cmnd = get_job_cmnd(phba, piocbq); 1255 1256 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1257 lpfc_cmd = piocbq->io_buf; 1258 ndlp = lpfc_cmd->rdata->pnode; 1259 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1260 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1261 ndlp = piocbq->ndlp; 1262 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1263 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1264 ndlp = NULL; 1265 else 1266 ndlp = piocbq->ndlp; 1267 } else { 1268 ndlp = piocbq->ndlp; 1269 } 1270 1271 spin_lock(&phba->sli4_hba.sgl_list_lock); 1272 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1273 start_sglq = sglq; 1274 while (!found) { 1275 if (!sglq) 1276 break; 1277 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1278 test_bit(sglq->sli4_lxritag, 1279 ndlp->active_rrqs_xri_bitmap)) { 1280 /* This xri has an rrq outstanding for this DID. 1281 * put it back in the list and get another xri. 1282 */ 1283 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1284 sglq = NULL; 1285 list_remove_head(lpfc_els_sgl_list, sglq, 1286 struct lpfc_sglq, list); 1287 if (sglq == start_sglq) { 1288 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1289 sglq = NULL; 1290 break; 1291 } else 1292 continue; 1293 } 1294 sglq->ndlp = ndlp; 1295 found = 1; 1296 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1297 sglq->state = SGL_ALLOCATED; 1298 } 1299 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1300 return sglq; 1301 } 1302 1303 /** 1304 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1305 * @phba: Pointer to HBA context object. 1306 * @piocbq: Pointer to the iocbq. 1307 * 1308 * This function is called with the sgl_list lock held. This function 1309 * gets a new driver sglq object from the sglq list. If the 1310 * list is not empty then it is successful, it returns pointer to the newly 1311 * allocated sglq object else it returns NULL. 1312 **/ 1313 struct lpfc_sglq * 1314 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1315 { 1316 struct list_head *lpfc_nvmet_sgl_list; 1317 struct lpfc_sglq *sglq = NULL; 1318 1319 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1320 1321 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1322 1323 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1324 if (!sglq) 1325 return NULL; 1326 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1327 sglq->state = SGL_ALLOCATED; 1328 return sglq; 1329 } 1330 1331 /** 1332 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1333 * @phba: Pointer to HBA context object. 1334 * 1335 * This function is called with no lock held. This function 1336 * allocates a new driver iocb object from the iocb pool. If the 1337 * allocation is successful, it returns pointer to the newly 1338 * allocated iocb object else it returns NULL. 1339 **/ 1340 struct lpfc_iocbq * 1341 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1342 { 1343 struct lpfc_iocbq * iocbq = NULL; 1344 unsigned long iflags; 1345 1346 spin_lock_irqsave(&phba->hbalock, iflags); 1347 iocbq = __lpfc_sli_get_iocbq(phba); 1348 spin_unlock_irqrestore(&phba->hbalock, iflags); 1349 return iocbq; 1350 } 1351 1352 /** 1353 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1354 * @phba: Pointer to HBA context object. 1355 * @iocbq: Pointer to driver iocb object. 1356 * 1357 * This function is called to release the driver iocb object 1358 * to the iocb pool. The iotag in the iocb object 1359 * does not change for each use of the iocb object. This function 1360 * clears all other fields of the iocb object when it is freed. 1361 * The sqlq structure that holds the xritag and phys and virtual 1362 * mappings for the scatter gather list is retrieved from the 1363 * active array of sglq. The get of the sglq pointer also clears 1364 * the entry in the array. If the status of the IO indiactes that 1365 * this IO was aborted then the sglq entry it put on the 1366 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1367 * IO has good status or fails for any other reason then the sglq 1368 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1369 * asserted held in the code path calling this routine. 1370 **/ 1371 static void 1372 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1373 { 1374 struct lpfc_sglq *sglq; 1375 unsigned long iflag = 0; 1376 struct lpfc_sli_ring *pring; 1377 1378 if (iocbq->sli4_xritag == NO_XRI) 1379 sglq = NULL; 1380 else 1381 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1382 1383 1384 if (sglq) { 1385 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1386 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1387 iflag); 1388 sglq->state = SGL_FREED; 1389 sglq->ndlp = NULL; 1390 list_add_tail(&sglq->list, 1391 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1392 spin_unlock_irqrestore( 1393 &phba->sli4_hba.sgl_list_lock, iflag); 1394 goto out; 1395 } 1396 1397 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1398 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1399 sglq->state != SGL_XRI_ABORTED) { 1400 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1401 iflag); 1402 1403 /* Check if we can get a reference on ndlp */ 1404 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1405 sglq->ndlp = NULL; 1406 1407 list_add(&sglq->list, 1408 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1409 spin_unlock_irqrestore( 1410 &phba->sli4_hba.sgl_list_lock, iflag); 1411 } else { 1412 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1413 iflag); 1414 sglq->state = SGL_FREED; 1415 sglq->ndlp = NULL; 1416 list_add_tail(&sglq->list, 1417 &phba->sli4_hba.lpfc_els_sgl_list); 1418 spin_unlock_irqrestore( 1419 &phba->sli4_hba.sgl_list_lock, iflag); 1420 pring = lpfc_phba_elsring(phba); 1421 /* Check if TXQ queue needs to be serviced */ 1422 if (pring && (!list_empty(&pring->txq))) 1423 lpfc_worker_wake_up(phba); 1424 } 1425 } 1426 1427 out: 1428 /* 1429 * Clean all volatile data fields, preserve iotag and node struct. 1430 */ 1431 memset_startat(iocbq, 0, wqe); 1432 iocbq->sli4_lxritag = NO_XRI; 1433 iocbq->sli4_xritag = NO_XRI; 1434 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1435 LPFC_IO_NVME_LS); 1436 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1437 } 1438 1439 1440 /** 1441 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1442 * @phba: Pointer to HBA context object. 1443 * @iocbq: Pointer to driver iocb object. 1444 * 1445 * This function is called to release the driver iocb object to the 1446 * iocb pool. The iotag in the iocb object does not change for each 1447 * use of the iocb object. This function clears all other fields of 1448 * the iocb object when it is freed. The hbalock is asserted held in 1449 * the code path calling this routine. 1450 **/ 1451 static void 1452 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1453 { 1454 1455 /* 1456 * Clean all volatile data fields, preserve iotag and node struct. 1457 */ 1458 memset_startat(iocbq, 0, iocb); 1459 iocbq->sli4_xritag = NO_XRI; 1460 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1461 } 1462 1463 /** 1464 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1465 * @phba: Pointer to HBA context object. 1466 * @iocbq: Pointer to driver iocb object. 1467 * 1468 * This function is called with hbalock held to release driver 1469 * iocb object to the iocb pool. The iotag in the iocb object 1470 * does not change for each use of the iocb object. This function 1471 * clears all other fields of the iocb object when it is freed. 1472 **/ 1473 static void 1474 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1475 { 1476 lockdep_assert_held(&phba->hbalock); 1477 1478 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1479 phba->iocb_cnt--; 1480 } 1481 1482 /** 1483 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1484 * @phba: Pointer to HBA context object. 1485 * @iocbq: Pointer to driver iocb object. 1486 * 1487 * This function is called with no lock held to release the iocb to 1488 * iocb pool. 1489 **/ 1490 void 1491 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1492 { 1493 unsigned long iflags; 1494 1495 /* 1496 * Clean all volatile data fields, preserve iotag and node struct. 1497 */ 1498 spin_lock_irqsave(&phba->hbalock, iflags); 1499 __lpfc_sli_release_iocbq(phba, iocbq); 1500 spin_unlock_irqrestore(&phba->hbalock, iflags); 1501 } 1502 1503 /** 1504 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1505 * @phba: Pointer to HBA context object. 1506 * @iocblist: List of IOCBs. 1507 * @ulpstatus: ULP status in IOCB command field. 1508 * @ulpWord4: ULP word-4 in IOCB command field. 1509 * 1510 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1511 * on the list by invoking the complete callback function associated with the 1512 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1513 * fields. 1514 **/ 1515 void 1516 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1517 uint32_t ulpstatus, uint32_t ulpWord4) 1518 { 1519 struct lpfc_iocbq *piocb; 1520 1521 while (!list_empty(iocblist)) { 1522 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1523 if (piocb->cmd_cmpl) { 1524 if (piocb->cmd_flag & LPFC_IO_NVME) { 1525 lpfc_nvme_cancel_iocb(phba, piocb, 1526 ulpstatus, ulpWord4); 1527 } else { 1528 if (phba->sli_rev == LPFC_SLI_REV4) { 1529 bf_set(lpfc_wcqe_c_status, 1530 &piocb->wcqe_cmpl, ulpstatus); 1531 piocb->wcqe_cmpl.parameter = ulpWord4; 1532 } else { 1533 piocb->iocb.ulpStatus = ulpstatus; 1534 piocb->iocb.un.ulpWord[4] = ulpWord4; 1535 } 1536 (piocb->cmd_cmpl) (phba, piocb, piocb); 1537 } 1538 } else { 1539 lpfc_sli_release_iocbq(phba, piocb); 1540 } 1541 } 1542 return; 1543 } 1544 1545 /** 1546 * lpfc_sli_iocb_cmd_type - Get the iocb type 1547 * @iocb_cmnd: iocb command code. 1548 * 1549 * This function is called by ring event handler function to get the iocb type. 1550 * This function translates the iocb command to an iocb command type used to 1551 * decide the final disposition of each completed IOCB. 1552 * The function returns 1553 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1554 * LPFC_SOL_IOCB if it is a solicited iocb completion 1555 * LPFC_ABORT_IOCB if it is an abort iocb 1556 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1557 * 1558 * The caller is not required to hold any lock. 1559 **/ 1560 static lpfc_iocb_type 1561 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1562 { 1563 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1564 1565 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1566 return 0; 1567 1568 switch (iocb_cmnd) { 1569 case CMD_XMIT_SEQUENCE_CR: 1570 case CMD_XMIT_SEQUENCE_CX: 1571 case CMD_XMIT_BCAST_CN: 1572 case CMD_XMIT_BCAST_CX: 1573 case CMD_ELS_REQUEST_CR: 1574 case CMD_ELS_REQUEST_CX: 1575 case CMD_CREATE_XRI_CR: 1576 case CMD_CREATE_XRI_CX: 1577 case CMD_GET_RPI_CN: 1578 case CMD_XMIT_ELS_RSP_CX: 1579 case CMD_GET_RPI_CR: 1580 case CMD_FCP_IWRITE_CR: 1581 case CMD_FCP_IWRITE_CX: 1582 case CMD_FCP_IREAD_CR: 1583 case CMD_FCP_IREAD_CX: 1584 case CMD_FCP_ICMND_CR: 1585 case CMD_FCP_ICMND_CX: 1586 case CMD_FCP_TSEND_CX: 1587 case CMD_FCP_TRSP_CX: 1588 case CMD_FCP_TRECEIVE_CX: 1589 case CMD_FCP_AUTO_TRSP_CX: 1590 case CMD_ADAPTER_MSG: 1591 case CMD_ADAPTER_DUMP: 1592 case CMD_XMIT_SEQUENCE64_CR: 1593 case CMD_XMIT_SEQUENCE64_CX: 1594 case CMD_XMIT_BCAST64_CN: 1595 case CMD_XMIT_BCAST64_CX: 1596 case CMD_ELS_REQUEST64_CR: 1597 case CMD_ELS_REQUEST64_CX: 1598 case CMD_FCP_IWRITE64_CR: 1599 case CMD_FCP_IWRITE64_CX: 1600 case CMD_FCP_IREAD64_CR: 1601 case CMD_FCP_IREAD64_CX: 1602 case CMD_FCP_ICMND64_CR: 1603 case CMD_FCP_ICMND64_CX: 1604 case CMD_FCP_TSEND64_CX: 1605 case CMD_FCP_TRSP64_CX: 1606 case CMD_FCP_TRECEIVE64_CX: 1607 case CMD_GEN_REQUEST64_CR: 1608 case CMD_GEN_REQUEST64_CX: 1609 case CMD_XMIT_ELS_RSP64_CX: 1610 case DSSCMD_IWRITE64_CR: 1611 case DSSCMD_IWRITE64_CX: 1612 case DSSCMD_IREAD64_CR: 1613 case DSSCMD_IREAD64_CX: 1614 case CMD_SEND_FRAME: 1615 type = LPFC_SOL_IOCB; 1616 break; 1617 case CMD_ABORT_XRI_CN: 1618 case CMD_ABORT_XRI_CX: 1619 case CMD_CLOSE_XRI_CN: 1620 case CMD_CLOSE_XRI_CX: 1621 case CMD_XRI_ABORTED_CX: 1622 case CMD_ABORT_MXRI64_CN: 1623 case CMD_XMIT_BLS_RSP64_CX: 1624 type = LPFC_ABORT_IOCB; 1625 break; 1626 case CMD_RCV_SEQUENCE_CX: 1627 case CMD_RCV_ELS_REQ_CX: 1628 case CMD_RCV_SEQUENCE64_CX: 1629 case CMD_RCV_ELS_REQ64_CX: 1630 case CMD_ASYNC_STATUS: 1631 case CMD_IOCB_RCV_SEQ64_CX: 1632 case CMD_IOCB_RCV_ELS64_CX: 1633 case CMD_IOCB_RCV_CONT64_CX: 1634 case CMD_IOCB_RET_XRI64_CX: 1635 type = LPFC_UNSOL_IOCB; 1636 break; 1637 case CMD_IOCB_XMIT_MSEQ64_CR: 1638 case CMD_IOCB_XMIT_MSEQ64_CX: 1639 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1640 case CMD_IOCB_RCV_ELS_LIST64_CX: 1641 case CMD_IOCB_CLOSE_EXTENDED_CN: 1642 case CMD_IOCB_ABORT_EXTENDED_CN: 1643 case CMD_IOCB_RET_HBQE64_CN: 1644 case CMD_IOCB_FCP_IBIDIR64_CR: 1645 case CMD_IOCB_FCP_IBIDIR64_CX: 1646 case CMD_IOCB_FCP_ITASKMGT64_CX: 1647 case CMD_IOCB_LOGENTRY_CN: 1648 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1649 printk("%s - Unhandled SLI-3 Command x%x\n", 1650 __func__, iocb_cmnd); 1651 type = LPFC_UNKNOWN_IOCB; 1652 break; 1653 default: 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 } 1657 1658 return type; 1659 } 1660 1661 /** 1662 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1663 * @phba: Pointer to HBA context object. 1664 * 1665 * This function is called from SLI initialization code 1666 * to configure every ring of the HBA's SLI interface. The 1667 * caller is not required to hold any lock. This function issues 1668 * a config_ring mailbox command for each ring. 1669 * This function returns zero if successful else returns a negative 1670 * error code. 1671 **/ 1672 static int 1673 lpfc_sli_ring_map(struct lpfc_hba *phba) 1674 { 1675 struct lpfc_sli *psli = &phba->sli; 1676 LPFC_MBOXQ_t *pmb; 1677 MAILBOX_t *pmbox; 1678 int i, rc, ret = 0; 1679 1680 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1681 if (!pmb) 1682 return -ENOMEM; 1683 pmbox = &pmb->u.mb; 1684 phba->link_state = LPFC_INIT_MBX_CMDS; 1685 for (i = 0; i < psli->num_rings; i++) { 1686 lpfc_config_ring(phba, i, pmb); 1687 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1688 if (rc != MBX_SUCCESS) { 1689 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1690 "0446 Adapter failed to init (%d), " 1691 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1692 "ring %d\n", 1693 rc, pmbox->mbxCommand, 1694 pmbox->mbxStatus, i); 1695 phba->link_state = LPFC_HBA_ERROR; 1696 ret = -ENXIO; 1697 break; 1698 } 1699 } 1700 mempool_free(pmb, phba->mbox_mem_pool); 1701 return ret; 1702 } 1703 1704 /** 1705 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1706 * @phba: Pointer to HBA context object. 1707 * @pring: Pointer to driver SLI ring object. 1708 * @piocb: Pointer to the driver iocb object. 1709 * 1710 * The driver calls this function with the hbalock held for SLI3 ports or 1711 * the ring lock held for SLI4 ports. The function adds the 1712 * new iocb to txcmplq of the given ring. This function always returns 1713 * 0. If this function is called for ELS ring, this function checks if 1714 * there is a vport associated with the ELS command. This function also 1715 * starts els_tmofunc timer if this is an ELS command. 1716 **/ 1717 static int 1718 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1719 struct lpfc_iocbq *piocb) 1720 { 1721 u32 ulp_command = 0; 1722 1723 BUG_ON(!piocb); 1724 ulp_command = get_job_cmnd(phba, piocb); 1725 1726 list_add_tail(&piocb->list, &pring->txcmplq); 1727 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1728 pring->txcmplq_cnt++; 1729 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1730 (ulp_command != CMD_ABORT_XRI_WQE) && 1731 (ulp_command != CMD_ABORT_XRI_CN) && 1732 (ulp_command != CMD_CLOSE_XRI_CN)) { 1733 BUG_ON(!piocb->vport); 1734 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1735 mod_timer(&piocb->vport->els_tmofunc, 1736 jiffies + 1737 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1738 } 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * lpfc_sli_ringtx_get - Get first element of the txq 1745 * @phba: Pointer to HBA context object. 1746 * @pring: Pointer to driver SLI ring object. 1747 * 1748 * This function is called with hbalock held to get next 1749 * iocb in txq of the given ring. If there is any iocb in 1750 * the txq, the function returns first iocb in the list after 1751 * removing the iocb from the list, else it returns NULL. 1752 **/ 1753 struct lpfc_iocbq * 1754 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1755 { 1756 struct lpfc_iocbq *cmd_iocb; 1757 1758 lockdep_assert_held(&phba->hbalock); 1759 1760 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1761 return cmd_iocb; 1762 } 1763 1764 /** 1765 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1766 * @phba: Pointer to HBA context object. 1767 * @cmdiocb: Pointer to driver command iocb object. 1768 * @rspiocb: Pointer to driver response iocb object. 1769 * 1770 * This routine will inform the driver of any BW adjustments we need 1771 * to make. These changes will be picked up during the next CMF 1772 * timer interrupt. In addition, any BW changes will be logged 1773 * with LOG_CGN_MGMT. 1774 **/ 1775 static void 1776 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1777 struct lpfc_iocbq *rspiocb) 1778 { 1779 union lpfc_wqe128 *wqe; 1780 uint32_t status, info; 1781 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1782 uint64_t bw, bwdif, slop; 1783 uint64_t pcent, bwpcent; 1784 int asig, afpin, sigcnt, fpincnt; 1785 int wsigmax, wfpinmax, cg, tdp; 1786 char *s; 1787 1788 /* First check for error */ 1789 status = bf_get(lpfc_wcqe_c_status, wcqe); 1790 if (status) { 1791 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1792 "6211 CMF_SYNC_WQE Error " 1793 "req_tag x%x status x%x hwstatus x%x " 1794 "tdatap x%x parm x%x\n", 1795 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1796 bf_get(lpfc_wcqe_c_status, wcqe), 1797 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1798 wcqe->total_data_placed, 1799 wcqe->parameter); 1800 goto out; 1801 } 1802 1803 /* Gather congestion information on a successful cmpl */ 1804 info = wcqe->parameter; 1805 phba->cmf_active_info = info; 1806 1807 /* See if firmware info count is valid or has changed */ 1808 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1809 info = 0; 1810 else 1811 phba->cmf_info_per_interval = info; 1812 1813 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1814 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1815 1816 /* Get BW requirement from firmware */ 1817 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1818 if (!bw) { 1819 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1820 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1821 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1822 goto out; 1823 } 1824 1825 /* Gather information needed for logging if a BW change is required */ 1826 wqe = &cmdiocb->wqe; 1827 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1828 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1829 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1830 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1831 if (phba->cmf_max_bytes_per_interval != bw || 1832 (asig || afpin || sigcnt || fpincnt)) { 1833 /* Are we increasing or decreasing BW */ 1834 if (phba->cmf_max_bytes_per_interval < bw) { 1835 bwdif = bw - phba->cmf_max_bytes_per_interval; 1836 s = "Increase"; 1837 } else { 1838 bwdif = phba->cmf_max_bytes_per_interval - bw; 1839 s = "Decrease"; 1840 } 1841 1842 /* What is the change percentage */ 1843 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1844 pcent = div64_u64(bwdif * 100 + slop, 1845 phba->cmf_link_byte_count); 1846 bwpcent = div64_u64(bw * 100 + slop, 1847 phba->cmf_link_byte_count); 1848 /* Because of bytes adjustment due to shorter timer in 1849 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1850 * may seem like BW is above 100%. 1851 */ 1852 if (bwpcent > 100) 1853 bwpcent = 100; 1854 1855 if (phba->cmf_max_bytes_per_interval < bw && 1856 bwpcent > 95) 1857 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1858 "6208 Congestion bandwidth " 1859 "limits removed\n"); 1860 else if ((phba->cmf_max_bytes_per_interval > bw) && 1861 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1862 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1863 "6209 Congestion bandwidth " 1864 "limits in effect\n"); 1865 1866 if (asig) { 1867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1868 "6237 BW Threshold %lld%% (%lld): " 1869 "%lld%% %s: Signal Alarm: cg:%d " 1870 "Info:%u\n", 1871 bwpcent, bw, pcent, s, cg, 1872 phba->cmf_active_info); 1873 } else if (afpin) { 1874 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1875 "6238 BW Threshold %lld%% (%lld): " 1876 "%lld%% %s: FPIN Alarm: cg:%d " 1877 "Info:%u\n", 1878 bwpcent, bw, pcent, s, cg, 1879 phba->cmf_active_info); 1880 } else if (sigcnt) { 1881 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1882 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1883 "6239 BW Threshold %lld%% (%lld): " 1884 "%lld%% %s: Signal Warning: " 1885 "Cnt %d Max %d: cg:%d Info:%u\n", 1886 bwpcent, bw, pcent, s, sigcnt, 1887 wsigmax, cg, phba->cmf_active_info); 1888 } else if (fpincnt) { 1889 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1890 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1891 "6240 BW Threshold %lld%% (%lld): " 1892 "%lld%% %s: FPIN Warning: " 1893 "Cnt %d Max %d: cg:%d Info:%u\n", 1894 bwpcent, bw, pcent, s, fpincnt, 1895 wfpinmax, cg, phba->cmf_active_info); 1896 } else { 1897 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1898 "6241 BW Threshold %lld%% (%lld): " 1899 "CMF %lld%% %s: cg:%d Info:%u\n", 1900 bwpcent, bw, pcent, s, cg, 1901 phba->cmf_active_info); 1902 } 1903 } else if (info) { 1904 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1905 "6246 Info Threshold %u\n", info); 1906 } 1907 1908 /* Save BW change to be picked up during next timer interrupt */ 1909 phba->cmf_last_sync_bw = bw; 1910 out: 1911 lpfc_sli_release_iocbq(phba, cmdiocb); 1912 } 1913 1914 /** 1915 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1916 * @phba: Pointer to HBA context object. 1917 * @ms: ms to set in WQE interval, 0 means use init op 1918 * @total: Total rcv bytes for this interval 1919 * 1920 * This routine is called every CMF timer interrupt. Its purpose is 1921 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1922 * that may indicate we have congestion (FPINs or Signals). Upon 1923 * completion, the firmware will indicate any BW restrictions the 1924 * driver may need to take. 1925 **/ 1926 int 1927 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1928 { 1929 union lpfc_wqe128 *wqe; 1930 struct lpfc_iocbq *sync_buf; 1931 unsigned long iflags; 1932 u32 ret_val; 1933 u32 atot, wtot, max; 1934 u16 warn_sync_period = 0; 1935 1936 /* First address any alarm / warning activity */ 1937 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1938 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1939 1940 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1941 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1942 phba->link_state == LPFC_LINK_DOWN) 1943 return 0; 1944 1945 spin_lock_irqsave(&phba->hbalock, iflags); 1946 sync_buf = __lpfc_sli_get_iocbq(phba); 1947 if (!sync_buf) { 1948 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1949 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1950 ret_val = ENOMEM; 1951 goto out_unlock; 1952 } 1953 1954 wqe = &sync_buf->wqe; 1955 1956 /* WQEs are reused. Clear stale data and set key fields to zero */ 1957 memset(wqe, 0, sizeof(*wqe)); 1958 1959 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1960 if (!ms) { 1961 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1962 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1963 phba->fc_eventTag); 1964 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1965 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1966 goto initpath; 1967 } 1968 1969 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1970 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1971 1972 /* Check for alarms / warnings */ 1973 if (atot) { 1974 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1975 /* We hit an Signal alarm condition */ 1976 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1977 } else { 1978 /* We hit a FPIN alarm condition */ 1979 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1980 } 1981 } else if (wtot) { 1982 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1983 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1984 /* We hit an Signal warning condition */ 1985 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1986 lpfc_acqe_cgn_frequency; 1987 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1988 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1989 warn_sync_period = lpfc_acqe_cgn_frequency; 1990 } else { 1991 /* We hit a FPIN warning condition */ 1992 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1993 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1994 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1995 warn_sync_period = 1996 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1997 } 1998 } 1999 2000 /* Update total read blocks during previous timer interval */ 2001 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2002 2003 initpath: 2004 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2005 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2006 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2007 2008 /* Setup reqtag to match the wqe completion. */ 2009 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2010 2011 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2012 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2013 2014 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2015 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2016 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2017 2018 sync_buf->vport = phba->pport; 2019 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2020 sync_buf->cmd_dmabuf = NULL; 2021 sync_buf->rsp_dmabuf = NULL; 2022 sync_buf->bpl_dmabuf = NULL; 2023 sync_buf->sli4_xritag = NO_XRI; 2024 2025 sync_buf->cmd_flag |= LPFC_IO_CMF; 2026 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2027 if (ret_val) { 2028 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2029 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2030 ret_val); 2031 __lpfc_sli_release_iocbq(phba, sync_buf); 2032 } 2033 out_unlock: 2034 spin_unlock_irqrestore(&phba->hbalock, iflags); 2035 return ret_val; 2036 } 2037 2038 /** 2039 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2040 * @phba: Pointer to HBA context object. 2041 * @pring: Pointer to driver SLI ring object. 2042 * 2043 * This function is called with hbalock held and the caller must post the 2044 * iocb without releasing the lock. If the caller releases the lock, 2045 * iocb slot returned by the function is not guaranteed to be available. 2046 * The function returns pointer to the next available iocb slot if there 2047 * is available slot in the ring, else it returns NULL. 2048 * If the get index of the ring is ahead of the put index, the function 2049 * will post an error attention event to the worker thread to take the 2050 * HBA to offline state. 2051 **/ 2052 static IOCB_t * 2053 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2054 { 2055 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2056 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2057 2058 lockdep_assert_held(&phba->hbalock); 2059 2060 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2061 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2062 pring->sli.sli3.next_cmdidx = 0; 2063 2064 if (unlikely(pring->sli.sli3.local_getidx == 2065 pring->sli.sli3.next_cmdidx)) { 2066 2067 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2068 2069 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2071 "0315 Ring %d issue: portCmdGet %d " 2072 "is bigger than cmd ring %d\n", 2073 pring->ringno, 2074 pring->sli.sli3.local_getidx, 2075 max_cmd_idx); 2076 2077 phba->link_state = LPFC_HBA_ERROR; 2078 /* 2079 * All error attention handlers are posted to 2080 * worker thread 2081 */ 2082 phba->work_ha |= HA_ERATT; 2083 phba->work_hs = HS_FFER3; 2084 2085 lpfc_worker_wake_up(phba); 2086 2087 return NULL; 2088 } 2089 2090 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2091 return NULL; 2092 } 2093 2094 return lpfc_cmd_iocb(phba, pring); 2095 } 2096 2097 /** 2098 * lpfc_sli_next_iotag - Get an iotag for the iocb 2099 * @phba: Pointer to HBA context object. 2100 * @iocbq: Pointer to driver iocb object. 2101 * 2102 * This function gets an iotag for the iocb. If there is no unused iotag and 2103 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2104 * array and assigns a new iotag. 2105 * The function returns the allocated iotag if successful, else returns zero. 2106 * Zero is not a valid iotag. 2107 * The caller is not required to hold any lock. 2108 **/ 2109 uint16_t 2110 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2111 { 2112 struct lpfc_iocbq **new_arr; 2113 struct lpfc_iocbq **old_arr; 2114 size_t new_len; 2115 struct lpfc_sli *psli = &phba->sli; 2116 uint16_t iotag; 2117 2118 spin_lock_irq(&phba->hbalock); 2119 iotag = psli->last_iotag; 2120 if(++iotag < psli->iocbq_lookup_len) { 2121 psli->last_iotag = iotag; 2122 psli->iocbq_lookup[iotag] = iocbq; 2123 spin_unlock_irq(&phba->hbalock); 2124 iocbq->iotag = iotag; 2125 return iotag; 2126 } else if (psli->iocbq_lookup_len < (0xffff 2127 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2128 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2129 spin_unlock_irq(&phba->hbalock); 2130 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2131 GFP_KERNEL); 2132 if (new_arr) { 2133 spin_lock_irq(&phba->hbalock); 2134 old_arr = psli->iocbq_lookup; 2135 if (new_len <= psli->iocbq_lookup_len) { 2136 /* highly unprobable case */ 2137 kfree(new_arr); 2138 iotag = psli->last_iotag; 2139 if(++iotag < psli->iocbq_lookup_len) { 2140 psli->last_iotag = iotag; 2141 psli->iocbq_lookup[iotag] = iocbq; 2142 spin_unlock_irq(&phba->hbalock); 2143 iocbq->iotag = iotag; 2144 return iotag; 2145 } 2146 spin_unlock_irq(&phba->hbalock); 2147 return 0; 2148 } 2149 if (psli->iocbq_lookup) 2150 memcpy(new_arr, old_arr, 2151 ((psli->last_iotag + 1) * 2152 sizeof (struct lpfc_iocbq *))); 2153 psli->iocbq_lookup = new_arr; 2154 psli->iocbq_lookup_len = new_len; 2155 psli->last_iotag = iotag; 2156 psli->iocbq_lookup[iotag] = iocbq; 2157 spin_unlock_irq(&phba->hbalock); 2158 iocbq->iotag = iotag; 2159 kfree(old_arr); 2160 return iotag; 2161 } 2162 } else 2163 spin_unlock_irq(&phba->hbalock); 2164 2165 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2166 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2167 psli->last_iotag); 2168 2169 return 0; 2170 } 2171 2172 /** 2173 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2174 * @phba: Pointer to HBA context object. 2175 * @pring: Pointer to driver SLI ring object. 2176 * @iocb: Pointer to iocb slot in the ring. 2177 * @nextiocb: Pointer to driver iocb object which need to be 2178 * posted to firmware. 2179 * 2180 * This function is called to post a new iocb to the firmware. This 2181 * function copies the new iocb to ring iocb slot and updates the 2182 * ring pointers. It adds the new iocb to txcmplq if there is 2183 * a completion call back for this iocb else the function will free the 2184 * iocb object. The hbalock is asserted held in the code path calling 2185 * this routine. 2186 **/ 2187 static void 2188 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2189 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2190 { 2191 /* 2192 * Set up an iotag 2193 */ 2194 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2195 2196 2197 if (pring->ringno == LPFC_ELS_RING) { 2198 lpfc_debugfs_slow_ring_trc(phba, 2199 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2200 *(((uint32_t *) &nextiocb->iocb) + 4), 2201 *(((uint32_t *) &nextiocb->iocb) + 6), 2202 *(((uint32_t *) &nextiocb->iocb) + 7)); 2203 } 2204 2205 /* 2206 * Issue iocb command to adapter 2207 */ 2208 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2209 wmb(); 2210 pring->stats.iocb_cmd++; 2211 2212 /* 2213 * If there is no completion routine to call, we can release the 2214 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2215 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2216 */ 2217 if (nextiocb->cmd_cmpl) 2218 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2219 else 2220 __lpfc_sli_release_iocbq(phba, nextiocb); 2221 2222 /* 2223 * Let the HBA know what IOCB slot will be the next one the 2224 * driver will put a command into. 2225 */ 2226 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2227 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2228 } 2229 2230 /** 2231 * lpfc_sli_update_full_ring - Update the chip attention register 2232 * @phba: Pointer to HBA context object. 2233 * @pring: Pointer to driver SLI ring object. 2234 * 2235 * The caller is not required to hold any lock for calling this function. 2236 * This function updates the chip attention bits for the ring to inform firmware 2237 * that there are pending work to be done for this ring and requests an 2238 * interrupt when there is space available in the ring. This function is 2239 * called when the driver is unable to post more iocbs to the ring due 2240 * to unavailability of space in the ring. 2241 **/ 2242 static void 2243 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2244 { 2245 int ringno = pring->ringno; 2246 2247 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2248 2249 wmb(); 2250 2251 /* 2252 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2253 * The HBA will tell us when an IOCB entry is available. 2254 */ 2255 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2256 readl(phba->CAregaddr); /* flush */ 2257 2258 pring->stats.iocb_cmd_full++; 2259 } 2260 2261 /** 2262 * lpfc_sli_update_ring - Update chip attention register 2263 * @phba: Pointer to HBA context object. 2264 * @pring: Pointer to driver SLI ring object. 2265 * 2266 * This function updates the chip attention register bit for the 2267 * given ring to inform HBA that there is more work to be done 2268 * in this ring. The caller is not required to hold any lock. 2269 **/ 2270 static void 2271 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2272 { 2273 int ringno = pring->ringno; 2274 2275 /* 2276 * Tell the HBA that there is work to do in this ring. 2277 */ 2278 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2279 wmb(); 2280 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2281 readl(phba->CAregaddr); /* flush */ 2282 } 2283 } 2284 2285 /** 2286 * lpfc_sli_resume_iocb - Process iocbs in the txq 2287 * @phba: Pointer to HBA context object. 2288 * @pring: Pointer to driver SLI ring object. 2289 * 2290 * This function is called with hbalock held to post pending iocbs 2291 * in the txq to the firmware. This function is called when driver 2292 * detects space available in the ring. 2293 **/ 2294 static void 2295 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2296 { 2297 IOCB_t *iocb; 2298 struct lpfc_iocbq *nextiocb; 2299 2300 lockdep_assert_held(&phba->hbalock); 2301 2302 /* 2303 * Check to see if: 2304 * (a) there is anything on the txq to send 2305 * (b) link is up 2306 * (c) link attention events can be processed (fcp ring only) 2307 * (d) IOCB processing is not blocked by the outstanding mbox command. 2308 */ 2309 2310 if (lpfc_is_link_up(phba) && 2311 (!list_empty(&pring->txq)) && 2312 (pring->ringno != LPFC_FCP_RING || 2313 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2314 2315 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2316 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2317 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2318 2319 if (iocb) 2320 lpfc_sli_update_ring(phba, pring); 2321 else 2322 lpfc_sli_update_full_ring(phba, pring); 2323 } 2324 2325 return; 2326 } 2327 2328 /** 2329 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2330 * @phba: Pointer to HBA context object. 2331 * @hbqno: HBQ number. 2332 * 2333 * This function is called with hbalock held to get the next 2334 * available slot for the given HBQ. If there is free slot 2335 * available for the HBQ it will return pointer to the next available 2336 * HBQ entry else it will return NULL. 2337 **/ 2338 static struct lpfc_hbq_entry * 2339 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2340 { 2341 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2342 2343 lockdep_assert_held(&phba->hbalock); 2344 2345 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2346 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2347 hbqp->next_hbqPutIdx = 0; 2348 2349 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2350 uint32_t raw_index = phba->hbq_get[hbqno]; 2351 uint32_t getidx = le32_to_cpu(raw_index); 2352 2353 hbqp->local_hbqGetIdx = getidx; 2354 2355 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2356 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2357 "1802 HBQ %d: local_hbqGetIdx " 2358 "%u is > than hbqp->entry_count %u\n", 2359 hbqno, hbqp->local_hbqGetIdx, 2360 hbqp->entry_count); 2361 2362 phba->link_state = LPFC_HBA_ERROR; 2363 return NULL; 2364 } 2365 2366 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2367 return NULL; 2368 } 2369 2370 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2371 hbqp->hbqPutIdx; 2372 } 2373 2374 /** 2375 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2376 * @phba: Pointer to HBA context object. 2377 * 2378 * This function is called with no lock held to free all the 2379 * hbq buffers while uninitializing the SLI interface. It also 2380 * frees the HBQ buffers returned by the firmware but not yet 2381 * processed by the upper layers. 2382 **/ 2383 void 2384 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2385 { 2386 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2387 struct hbq_dmabuf *hbq_buf; 2388 unsigned long flags; 2389 int i, hbq_count; 2390 2391 hbq_count = lpfc_sli_hbq_count(); 2392 /* Return all memory used by all HBQs */ 2393 spin_lock_irqsave(&phba->hbalock, flags); 2394 for (i = 0; i < hbq_count; ++i) { 2395 list_for_each_entry_safe(dmabuf, next_dmabuf, 2396 &phba->hbqs[i].hbq_buffer_list, list) { 2397 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2398 list_del(&hbq_buf->dbuf.list); 2399 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2400 } 2401 phba->hbqs[i].buffer_count = 0; 2402 } 2403 2404 /* Mark the HBQs not in use */ 2405 phba->hbq_in_use = 0; 2406 spin_unlock_irqrestore(&phba->hbalock, flags); 2407 } 2408 2409 /** 2410 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2411 * @phba: Pointer to HBA context object. 2412 * @hbqno: HBQ number. 2413 * @hbq_buf: Pointer to HBQ buffer. 2414 * 2415 * This function is called with the hbalock held to post a 2416 * hbq buffer to the firmware. If the function finds an empty 2417 * slot in the HBQ, it will post the buffer. The function will return 2418 * pointer to the hbq entry if it successfully post the buffer 2419 * else it will return NULL. 2420 **/ 2421 static int 2422 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2423 struct hbq_dmabuf *hbq_buf) 2424 { 2425 lockdep_assert_held(&phba->hbalock); 2426 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2427 } 2428 2429 /** 2430 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2431 * @phba: Pointer to HBA context object. 2432 * @hbqno: HBQ number. 2433 * @hbq_buf: Pointer to HBQ buffer. 2434 * 2435 * This function is called with the hbalock held to post a hbq buffer to the 2436 * firmware. If the function finds an empty slot in the HBQ, it will post the 2437 * buffer and place it on the hbq_buffer_list. The function will return zero if 2438 * it successfully post the buffer else it will return an error. 2439 **/ 2440 static int 2441 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2442 struct hbq_dmabuf *hbq_buf) 2443 { 2444 struct lpfc_hbq_entry *hbqe; 2445 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2446 2447 lockdep_assert_held(&phba->hbalock); 2448 /* Get next HBQ entry slot to use */ 2449 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2450 if (hbqe) { 2451 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2452 2453 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2454 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2455 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2456 hbqe->bde.tus.f.bdeFlags = 0; 2457 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2458 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2459 /* Sync SLIM */ 2460 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2461 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2462 /* flush */ 2463 readl(phba->hbq_put + hbqno); 2464 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2465 return 0; 2466 } else 2467 return -ENOMEM; 2468 } 2469 2470 /** 2471 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2472 * @phba: Pointer to HBA context object. 2473 * @hbqno: HBQ number. 2474 * @hbq_buf: Pointer to HBQ buffer. 2475 * 2476 * This function is called with the hbalock held to post an RQE to the SLI4 2477 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2478 * the hbq_buffer_list and return zero, otherwise it will return an error. 2479 **/ 2480 static int 2481 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2482 struct hbq_dmabuf *hbq_buf) 2483 { 2484 int rc; 2485 struct lpfc_rqe hrqe; 2486 struct lpfc_rqe drqe; 2487 struct lpfc_queue *hrq; 2488 struct lpfc_queue *drq; 2489 2490 if (hbqno != LPFC_ELS_HBQ) 2491 return 1; 2492 hrq = phba->sli4_hba.hdr_rq; 2493 drq = phba->sli4_hba.dat_rq; 2494 2495 lockdep_assert_held(&phba->hbalock); 2496 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2497 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2498 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2499 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2500 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2501 if (rc < 0) 2502 return rc; 2503 hbq_buf->tag = (rc | (hbqno << 16)); 2504 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2505 return 0; 2506 } 2507 2508 /* HBQ for ELS and CT traffic. */ 2509 static struct lpfc_hbq_init lpfc_els_hbq = { 2510 .rn = 1, 2511 .entry_count = 256, 2512 .mask_count = 0, 2513 .profile = 0, 2514 .ring_mask = (1 << LPFC_ELS_RING), 2515 .buffer_count = 0, 2516 .init_count = 40, 2517 .add_count = 40, 2518 }; 2519 2520 /* Array of HBQs */ 2521 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2522 &lpfc_els_hbq, 2523 }; 2524 2525 /** 2526 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2527 * @phba: Pointer to HBA context object. 2528 * @hbqno: HBQ number. 2529 * @count: Number of HBQ buffers to be posted. 2530 * 2531 * This function is called with no lock held to post more hbq buffers to the 2532 * given HBQ. The function returns the number of HBQ buffers successfully 2533 * posted. 2534 **/ 2535 static int 2536 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2537 { 2538 uint32_t i, posted = 0; 2539 unsigned long flags; 2540 struct hbq_dmabuf *hbq_buffer; 2541 LIST_HEAD(hbq_buf_list); 2542 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2543 return 0; 2544 2545 if ((phba->hbqs[hbqno].buffer_count + count) > 2546 lpfc_hbq_defs[hbqno]->entry_count) 2547 count = lpfc_hbq_defs[hbqno]->entry_count - 2548 phba->hbqs[hbqno].buffer_count; 2549 if (!count) 2550 return 0; 2551 /* Allocate HBQ entries */ 2552 for (i = 0; i < count; i++) { 2553 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2554 if (!hbq_buffer) 2555 break; 2556 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2557 } 2558 /* Check whether HBQ is still in use */ 2559 spin_lock_irqsave(&phba->hbalock, flags); 2560 if (!phba->hbq_in_use) 2561 goto err; 2562 while (!list_empty(&hbq_buf_list)) { 2563 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2564 dbuf.list); 2565 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2566 (hbqno << 16)); 2567 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2568 phba->hbqs[hbqno].buffer_count++; 2569 posted++; 2570 } else 2571 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2572 } 2573 spin_unlock_irqrestore(&phba->hbalock, flags); 2574 return posted; 2575 err: 2576 spin_unlock_irqrestore(&phba->hbalock, flags); 2577 while (!list_empty(&hbq_buf_list)) { 2578 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2579 dbuf.list); 2580 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2581 } 2582 return 0; 2583 } 2584 2585 /** 2586 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2587 * @phba: Pointer to HBA context object. 2588 * @qno: HBQ number. 2589 * 2590 * This function posts more buffers to the HBQ. This function 2591 * is called with no lock held. The function returns the number of HBQ entries 2592 * successfully allocated. 2593 **/ 2594 int 2595 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2596 { 2597 if (phba->sli_rev == LPFC_SLI_REV4) 2598 return 0; 2599 else 2600 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2601 lpfc_hbq_defs[qno]->add_count); 2602 } 2603 2604 /** 2605 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2606 * @phba: Pointer to HBA context object. 2607 * @qno: HBQ queue number. 2608 * 2609 * This function is called from SLI initialization code path with 2610 * no lock held to post initial HBQ buffers to firmware. The 2611 * function returns the number of HBQ entries successfully allocated. 2612 **/ 2613 static int 2614 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2615 { 2616 if (phba->sli_rev == LPFC_SLI_REV4) 2617 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2618 lpfc_hbq_defs[qno]->entry_count); 2619 else 2620 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2621 lpfc_hbq_defs[qno]->init_count); 2622 } 2623 2624 /* 2625 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2626 * 2627 * This function removes the first hbq buffer on an hbq list and returns a 2628 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2629 **/ 2630 static struct hbq_dmabuf * 2631 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2632 { 2633 struct lpfc_dmabuf *d_buf; 2634 2635 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2636 if (!d_buf) 2637 return NULL; 2638 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2639 } 2640 2641 /** 2642 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2643 * @phba: Pointer to HBA context object. 2644 * @hrq: HBQ number. 2645 * 2646 * This function removes the first RQ buffer on an RQ buffer list and returns a 2647 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2648 **/ 2649 static struct rqb_dmabuf * 2650 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2651 { 2652 struct lpfc_dmabuf *h_buf; 2653 struct lpfc_rqb *rqbp; 2654 2655 rqbp = hrq->rqbp; 2656 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2657 struct lpfc_dmabuf, list); 2658 if (!h_buf) 2659 return NULL; 2660 rqbp->buffer_count--; 2661 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2662 } 2663 2664 /** 2665 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2666 * @phba: Pointer to HBA context object. 2667 * @tag: Tag of the hbq buffer. 2668 * 2669 * This function searches for the hbq buffer associated with the given tag in 2670 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2671 * otherwise it returns NULL. 2672 **/ 2673 static struct hbq_dmabuf * 2674 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2675 { 2676 struct lpfc_dmabuf *d_buf; 2677 struct hbq_dmabuf *hbq_buf; 2678 uint32_t hbqno; 2679 2680 hbqno = tag >> 16; 2681 if (hbqno >= LPFC_MAX_HBQS) 2682 return NULL; 2683 2684 spin_lock_irq(&phba->hbalock); 2685 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2686 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2687 if (hbq_buf->tag == tag) { 2688 spin_unlock_irq(&phba->hbalock); 2689 return hbq_buf; 2690 } 2691 } 2692 spin_unlock_irq(&phba->hbalock); 2693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2694 "1803 Bad hbq tag. Data: x%x x%x\n", 2695 tag, phba->hbqs[tag >> 16].buffer_count); 2696 return NULL; 2697 } 2698 2699 /** 2700 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2701 * @phba: Pointer to HBA context object. 2702 * @hbq_buffer: Pointer to HBQ buffer. 2703 * 2704 * This function is called with hbalock. This function gives back 2705 * the hbq buffer to firmware. If the HBQ does not have space to 2706 * post the buffer, it will free the buffer. 2707 **/ 2708 void 2709 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2710 { 2711 uint32_t hbqno; 2712 2713 if (hbq_buffer) { 2714 hbqno = hbq_buffer->tag >> 16; 2715 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2716 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2717 } 2718 } 2719 2720 /** 2721 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2722 * @mbxCommand: mailbox command code. 2723 * 2724 * This function is called by the mailbox event handler function to verify 2725 * that the completed mailbox command is a legitimate mailbox command. If the 2726 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2727 * and the mailbox event handler will take the HBA offline. 2728 **/ 2729 static int 2730 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2731 { 2732 uint8_t ret; 2733 2734 switch (mbxCommand) { 2735 case MBX_LOAD_SM: 2736 case MBX_READ_NV: 2737 case MBX_WRITE_NV: 2738 case MBX_WRITE_VPARMS: 2739 case MBX_RUN_BIU_DIAG: 2740 case MBX_INIT_LINK: 2741 case MBX_DOWN_LINK: 2742 case MBX_CONFIG_LINK: 2743 case MBX_CONFIG_RING: 2744 case MBX_RESET_RING: 2745 case MBX_READ_CONFIG: 2746 case MBX_READ_RCONFIG: 2747 case MBX_READ_SPARM: 2748 case MBX_READ_STATUS: 2749 case MBX_READ_RPI: 2750 case MBX_READ_XRI: 2751 case MBX_READ_REV: 2752 case MBX_READ_LNK_STAT: 2753 case MBX_REG_LOGIN: 2754 case MBX_UNREG_LOGIN: 2755 case MBX_CLEAR_LA: 2756 case MBX_DUMP_MEMORY: 2757 case MBX_DUMP_CONTEXT: 2758 case MBX_RUN_DIAGS: 2759 case MBX_RESTART: 2760 case MBX_UPDATE_CFG: 2761 case MBX_DOWN_LOAD: 2762 case MBX_DEL_LD_ENTRY: 2763 case MBX_RUN_PROGRAM: 2764 case MBX_SET_MASK: 2765 case MBX_SET_VARIABLE: 2766 case MBX_UNREG_D_ID: 2767 case MBX_KILL_BOARD: 2768 case MBX_CONFIG_FARP: 2769 case MBX_BEACON: 2770 case MBX_LOAD_AREA: 2771 case MBX_RUN_BIU_DIAG64: 2772 case MBX_CONFIG_PORT: 2773 case MBX_READ_SPARM64: 2774 case MBX_READ_RPI64: 2775 case MBX_REG_LOGIN64: 2776 case MBX_READ_TOPOLOGY: 2777 case MBX_WRITE_WWN: 2778 case MBX_SET_DEBUG: 2779 case MBX_LOAD_EXP_ROM: 2780 case MBX_ASYNCEVT_ENABLE: 2781 case MBX_REG_VPI: 2782 case MBX_UNREG_VPI: 2783 case MBX_HEARTBEAT: 2784 case MBX_PORT_CAPABILITIES: 2785 case MBX_PORT_IOV_CONTROL: 2786 case MBX_SLI4_CONFIG: 2787 case MBX_SLI4_REQ_FTRS: 2788 case MBX_REG_FCFI: 2789 case MBX_UNREG_FCFI: 2790 case MBX_REG_VFI: 2791 case MBX_UNREG_VFI: 2792 case MBX_INIT_VPI: 2793 case MBX_INIT_VFI: 2794 case MBX_RESUME_RPI: 2795 case MBX_READ_EVENT_LOG_STATUS: 2796 case MBX_READ_EVENT_LOG: 2797 case MBX_SECURITY_MGMT: 2798 case MBX_AUTH_PORT: 2799 case MBX_ACCESS_VDATA: 2800 ret = mbxCommand; 2801 break; 2802 default: 2803 ret = MBX_SHUTDOWN; 2804 break; 2805 } 2806 return ret; 2807 } 2808 2809 /** 2810 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2811 * @phba: Pointer to HBA context object. 2812 * @pmboxq: Pointer to mailbox command. 2813 * 2814 * This is completion handler function for mailbox commands issued from 2815 * lpfc_sli_issue_mbox_wait function. This function is called by the 2816 * mailbox event handler function with no lock held. This function 2817 * will wake up thread waiting on the wait queue pointed by context1 2818 * of the mailbox. 2819 **/ 2820 void 2821 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2822 { 2823 unsigned long drvr_flag; 2824 struct completion *pmbox_done; 2825 2826 /* 2827 * If pmbox_done is empty, the driver thread gave up waiting and 2828 * continued running. 2829 */ 2830 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2831 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2832 pmbox_done = (struct completion *)pmboxq->context3; 2833 if (pmbox_done) 2834 complete(pmbox_done); 2835 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2836 return; 2837 } 2838 2839 static void 2840 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2841 { 2842 unsigned long iflags; 2843 2844 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2845 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2846 spin_lock_irqsave(&ndlp->lock, iflags); 2847 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2848 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2849 spin_unlock_irqrestore(&ndlp->lock, iflags); 2850 } 2851 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2852 } 2853 2854 void 2855 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2856 { 2857 __lpfc_sli_rpi_release(vport, ndlp); 2858 } 2859 2860 /** 2861 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2862 * @phba: Pointer to HBA context object. 2863 * @pmb: Pointer to mailbox object. 2864 * 2865 * This function is the default mailbox completion handler. It 2866 * frees the memory resources associated with the completed mailbox 2867 * command. If the completed command is a REG_LOGIN mailbox command, 2868 * this function will issue a UREG_LOGIN to re-claim the RPI. 2869 **/ 2870 void 2871 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2872 { 2873 struct lpfc_vport *vport = pmb->vport; 2874 struct lpfc_dmabuf *mp; 2875 struct lpfc_nodelist *ndlp; 2876 struct Scsi_Host *shost; 2877 uint16_t rpi, vpi; 2878 int rc; 2879 2880 /* 2881 * If a REG_LOGIN succeeded after node is destroyed or node 2882 * is in re-discovery driver need to cleanup the RPI. 2883 */ 2884 if (!(phba->pport->load_flag & FC_UNLOADING) && 2885 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2886 !pmb->u.mb.mbxStatus) { 2887 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2888 if (mp) { 2889 pmb->ctx_buf = NULL; 2890 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2891 kfree(mp); 2892 } 2893 rpi = pmb->u.mb.un.varWords[0]; 2894 vpi = pmb->u.mb.un.varRegLogin.vpi; 2895 if (phba->sli_rev == LPFC_SLI_REV4) 2896 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2897 lpfc_unreg_login(phba, vpi, rpi, pmb); 2898 pmb->vport = vport; 2899 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2900 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2901 if (rc != MBX_NOT_FINISHED) 2902 return; 2903 } 2904 2905 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2906 !(phba->pport->load_flag & FC_UNLOADING) && 2907 !pmb->u.mb.mbxStatus) { 2908 shost = lpfc_shost_from_vport(vport); 2909 spin_lock_irq(shost->host_lock); 2910 vport->vpi_state |= LPFC_VPI_REGISTERED; 2911 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2912 spin_unlock_irq(shost->host_lock); 2913 } 2914 2915 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2916 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2917 lpfc_nlp_put(ndlp); 2918 } 2919 2920 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2921 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2922 2923 /* Check to see if there are any deferred events to process */ 2924 if (ndlp) { 2925 lpfc_printf_vlog( 2926 vport, 2927 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2928 "1438 UNREG cmpl deferred mbox x%x " 2929 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2930 ndlp->nlp_rpi, ndlp->nlp_DID, 2931 ndlp->nlp_flag, ndlp->nlp_defer_did, 2932 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2933 2934 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2935 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2936 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2937 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2938 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2939 } else { 2940 __lpfc_sli_rpi_release(vport, ndlp); 2941 } 2942 2943 /* The unreg_login mailbox is complete and had a 2944 * reference that has to be released. The PLOGI 2945 * got its own ref. 2946 */ 2947 lpfc_nlp_put(ndlp); 2948 pmb->ctx_ndlp = NULL; 2949 } 2950 } 2951 2952 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2953 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2954 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2955 lpfc_nlp_put(ndlp); 2956 } 2957 2958 /* Check security permission status on INIT_LINK mailbox command */ 2959 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2960 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2962 "2860 SLI authentication is required " 2963 "for INIT_LINK but has not done yet\n"); 2964 2965 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2966 lpfc_sli4_mbox_cmd_free(phba, pmb); 2967 else 2968 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2969 } 2970 /** 2971 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2972 * @phba: Pointer to HBA context object. 2973 * @pmb: Pointer to mailbox object. 2974 * 2975 * This function is the unreg rpi mailbox completion handler. It 2976 * frees the memory resources associated with the completed mailbox 2977 * command. An additional reference is put on the ndlp to prevent 2978 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2979 * the unreg mailbox command completes, this routine puts the 2980 * reference back. 2981 * 2982 **/ 2983 void 2984 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2985 { 2986 struct lpfc_vport *vport = pmb->vport; 2987 struct lpfc_nodelist *ndlp; 2988 2989 ndlp = pmb->ctx_ndlp; 2990 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2991 if (phba->sli_rev == LPFC_SLI_REV4 && 2992 (bf_get(lpfc_sli_intf_if_type, 2993 &phba->sli4_hba.sli_intf) >= 2994 LPFC_SLI_INTF_IF_TYPE_2)) { 2995 if (ndlp) { 2996 lpfc_printf_vlog( 2997 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2998 "0010 UNREG_LOGIN vpi:%x " 2999 "rpi:%x DID:%x defer x%x flg x%x " 3000 "x%px\n", 3001 vport->vpi, ndlp->nlp_rpi, 3002 ndlp->nlp_DID, ndlp->nlp_defer_did, 3003 ndlp->nlp_flag, 3004 ndlp); 3005 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3006 3007 /* Check to see if there are any deferred 3008 * events to process 3009 */ 3010 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3011 (ndlp->nlp_defer_did != 3012 NLP_EVT_NOTHING_PENDING)) { 3013 lpfc_printf_vlog( 3014 vport, KERN_INFO, LOG_DISCOVERY, 3015 "4111 UNREG cmpl deferred " 3016 "clr x%x on " 3017 "NPort x%x Data: x%x x%px\n", 3018 ndlp->nlp_rpi, ndlp->nlp_DID, 3019 ndlp->nlp_defer_did, ndlp); 3020 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3021 ndlp->nlp_defer_did = 3022 NLP_EVT_NOTHING_PENDING; 3023 lpfc_issue_els_plogi( 3024 vport, ndlp->nlp_DID, 0); 3025 } else { 3026 __lpfc_sli_rpi_release(vport, ndlp); 3027 } 3028 lpfc_nlp_put(ndlp); 3029 } 3030 } 3031 } 3032 3033 mempool_free(pmb, phba->mbox_mem_pool); 3034 } 3035 3036 /** 3037 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3038 * @phba: Pointer to HBA context object. 3039 * 3040 * This function is called with no lock held. This function processes all 3041 * the completed mailbox commands and gives it to upper layers. The interrupt 3042 * service routine processes mailbox completion interrupt and adds completed 3043 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3044 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3045 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3046 * function returns the mailbox commands to the upper layer by calling the 3047 * completion handler function of each mailbox. 3048 **/ 3049 int 3050 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3051 { 3052 MAILBOX_t *pmbox; 3053 LPFC_MBOXQ_t *pmb; 3054 int rc; 3055 LIST_HEAD(cmplq); 3056 3057 phba->sli.slistat.mbox_event++; 3058 3059 /* Get all completed mailboxe buffers into the cmplq */ 3060 spin_lock_irq(&phba->hbalock); 3061 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3062 spin_unlock_irq(&phba->hbalock); 3063 3064 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3065 do { 3066 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3067 if (pmb == NULL) 3068 break; 3069 3070 pmbox = &pmb->u.mb; 3071 3072 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3073 if (pmb->vport) { 3074 lpfc_debugfs_disc_trc(pmb->vport, 3075 LPFC_DISC_TRC_MBOX_VPORT, 3076 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3077 (uint32_t)pmbox->mbxCommand, 3078 pmbox->un.varWords[0], 3079 pmbox->un.varWords[1]); 3080 } 3081 else { 3082 lpfc_debugfs_disc_trc(phba->pport, 3083 LPFC_DISC_TRC_MBOX, 3084 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3085 (uint32_t)pmbox->mbxCommand, 3086 pmbox->un.varWords[0], 3087 pmbox->un.varWords[1]); 3088 } 3089 } 3090 3091 /* 3092 * It is a fatal error if unknown mbox command completion. 3093 */ 3094 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3095 MBX_SHUTDOWN) { 3096 /* Unknown mailbox command compl */ 3097 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3098 "(%d):0323 Unknown Mailbox command " 3099 "x%x (x%x/x%x) Cmpl\n", 3100 pmb->vport ? pmb->vport->vpi : 3101 LPFC_VPORT_UNKNOWN, 3102 pmbox->mbxCommand, 3103 lpfc_sli_config_mbox_subsys_get(phba, 3104 pmb), 3105 lpfc_sli_config_mbox_opcode_get(phba, 3106 pmb)); 3107 phba->link_state = LPFC_HBA_ERROR; 3108 phba->work_hs = HS_FFER3; 3109 lpfc_handle_eratt(phba); 3110 continue; 3111 } 3112 3113 if (pmbox->mbxStatus) { 3114 phba->sli.slistat.mbox_stat_err++; 3115 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3116 /* Mbox cmd cmpl error - RETRYing */ 3117 lpfc_printf_log(phba, KERN_INFO, 3118 LOG_MBOX | LOG_SLI, 3119 "(%d):0305 Mbox cmd cmpl " 3120 "error - RETRYing Data: x%x " 3121 "(x%x/x%x) x%x x%x x%x\n", 3122 pmb->vport ? pmb->vport->vpi : 3123 LPFC_VPORT_UNKNOWN, 3124 pmbox->mbxCommand, 3125 lpfc_sli_config_mbox_subsys_get(phba, 3126 pmb), 3127 lpfc_sli_config_mbox_opcode_get(phba, 3128 pmb), 3129 pmbox->mbxStatus, 3130 pmbox->un.varWords[0], 3131 pmb->vport ? pmb->vport->port_state : 3132 LPFC_VPORT_UNKNOWN); 3133 pmbox->mbxStatus = 0; 3134 pmbox->mbxOwner = OWN_HOST; 3135 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3136 if (rc != MBX_NOT_FINISHED) 3137 continue; 3138 } 3139 } 3140 3141 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3142 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3143 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3144 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3145 "x%x x%x x%x\n", 3146 pmb->vport ? pmb->vport->vpi : 0, 3147 pmbox->mbxCommand, 3148 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3149 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3150 pmb->mbox_cmpl, 3151 *((uint32_t *) pmbox), 3152 pmbox->un.varWords[0], 3153 pmbox->un.varWords[1], 3154 pmbox->un.varWords[2], 3155 pmbox->un.varWords[3], 3156 pmbox->un.varWords[4], 3157 pmbox->un.varWords[5], 3158 pmbox->un.varWords[6], 3159 pmbox->un.varWords[7], 3160 pmbox->un.varWords[8], 3161 pmbox->un.varWords[9], 3162 pmbox->un.varWords[10]); 3163 3164 if (pmb->mbox_cmpl) 3165 pmb->mbox_cmpl(phba,pmb); 3166 } while (1); 3167 return 0; 3168 } 3169 3170 /** 3171 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3172 * @phba: Pointer to HBA context object. 3173 * @pring: Pointer to driver SLI ring object. 3174 * @tag: buffer tag. 3175 * 3176 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3177 * is set in the tag the buffer is posted for a particular exchange, 3178 * the function will return the buffer without replacing the buffer. 3179 * If the buffer is for unsolicited ELS or CT traffic, this function 3180 * returns the buffer and also posts another buffer to the firmware. 3181 **/ 3182 static struct lpfc_dmabuf * 3183 lpfc_sli_get_buff(struct lpfc_hba *phba, 3184 struct lpfc_sli_ring *pring, 3185 uint32_t tag) 3186 { 3187 struct hbq_dmabuf *hbq_entry; 3188 3189 if (tag & QUE_BUFTAG_BIT) 3190 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3191 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3192 if (!hbq_entry) 3193 return NULL; 3194 return &hbq_entry->dbuf; 3195 } 3196 3197 /** 3198 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3199 * containing a NVME LS request. 3200 * @phba: pointer to lpfc hba data structure. 3201 * @piocb: pointer to the iocbq struct representing the sequence starting 3202 * frame. 3203 * 3204 * This routine initially validates the NVME LS, validates there is a login 3205 * with the port that sent the LS, and then calls the appropriate nvme host 3206 * or target LS request handler. 3207 **/ 3208 static void 3209 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3210 { 3211 struct lpfc_nodelist *ndlp; 3212 struct lpfc_dmabuf *d_buf; 3213 struct hbq_dmabuf *nvmebuf; 3214 struct fc_frame_header *fc_hdr; 3215 struct lpfc_async_xchg_ctx *axchg = NULL; 3216 char *failwhy = NULL; 3217 uint32_t oxid, sid, did, fctl, size; 3218 int ret = 1; 3219 3220 d_buf = piocb->cmd_dmabuf; 3221 3222 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3223 fc_hdr = nvmebuf->hbuf.virt; 3224 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3225 sid = sli4_sid_from_fc_hdr(fc_hdr); 3226 did = sli4_did_from_fc_hdr(fc_hdr); 3227 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3228 fc_hdr->fh_f_ctl[1] << 8 | 3229 fc_hdr->fh_f_ctl[2]); 3230 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3231 3232 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3233 oxid, size, sid); 3234 3235 if (phba->pport->load_flag & FC_UNLOADING) { 3236 failwhy = "Driver Unloading"; 3237 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3238 failwhy = "NVME FC4 Disabled"; 3239 } else if (!phba->nvmet_support && !phba->pport->localport) { 3240 failwhy = "No Localport"; 3241 } else if (phba->nvmet_support && !phba->targetport) { 3242 failwhy = "No Targetport"; 3243 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3244 failwhy = "Bad NVME LS R_CTL"; 3245 } else if (unlikely((fctl & 0x00FF0000) != 3246 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3247 failwhy = "Bad NVME LS F_CTL"; 3248 } else { 3249 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3250 if (!axchg) 3251 failwhy = "No CTX memory"; 3252 } 3253 3254 if (unlikely(failwhy)) { 3255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3256 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3257 sid, oxid, failwhy); 3258 goto out_fail; 3259 } 3260 3261 /* validate the source of the LS is logged in */ 3262 ndlp = lpfc_findnode_did(phba->pport, sid); 3263 if (!ndlp || 3264 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3265 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3266 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3267 "6216 NVME Unsol rcv: No ndlp: " 3268 "NPort_ID x%x oxid x%x\n", 3269 sid, oxid); 3270 goto out_fail; 3271 } 3272 3273 axchg->phba = phba; 3274 axchg->ndlp = ndlp; 3275 axchg->size = size; 3276 axchg->oxid = oxid; 3277 axchg->sid = sid; 3278 axchg->wqeq = NULL; 3279 axchg->state = LPFC_NVME_STE_LS_RCV; 3280 axchg->entry_cnt = 1; 3281 axchg->rqb_buffer = (void *)nvmebuf; 3282 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3283 axchg->payload = nvmebuf->dbuf.virt; 3284 INIT_LIST_HEAD(&axchg->list); 3285 3286 if (phba->nvmet_support) { 3287 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3288 spin_lock_irq(&ndlp->lock); 3289 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3290 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3291 spin_unlock_irq(&ndlp->lock); 3292 3293 /* This reference is a single occurrence to hold the 3294 * node valid until the nvmet transport calls 3295 * host_release. 3296 */ 3297 if (!lpfc_nlp_get(ndlp)) 3298 goto out_fail; 3299 3300 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3301 "6206 NVMET unsol ls_req ndlp x%px " 3302 "DID x%x xflags x%x refcnt %d\n", 3303 ndlp, ndlp->nlp_DID, 3304 ndlp->fc4_xpt_flags, 3305 kref_read(&ndlp->kref)); 3306 } else { 3307 spin_unlock_irq(&ndlp->lock); 3308 } 3309 } else { 3310 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3311 } 3312 3313 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3314 if (!ret) 3315 return; 3316 3317 out_fail: 3318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3319 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3320 "NVMe%s handler failed %d\n", 3321 did, sid, oxid, 3322 (phba->nvmet_support) ? "T" : "I", ret); 3323 3324 /* recycle receive buffer */ 3325 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3326 3327 /* If start of new exchange, abort it */ 3328 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3329 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3330 3331 if (ret) 3332 kfree(axchg); 3333 } 3334 3335 /** 3336 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3337 * @phba: Pointer to HBA context object. 3338 * @pring: Pointer to driver SLI ring object. 3339 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3340 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3341 * @fch_type: the type for the first frame of the sequence. 3342 * 3343 * This function is called with no lock held. This function uses the r_ctl and 3344 * type of the received sequence to find the correct callback function to call 3345 * to process the sequence. 3346 **/ 3347 static int 3348 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3349 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3350 uint32_t fch_type) 3351 { 3352 int i; 3353 3354 switch (fch_type) { 3355 case FC_TYPE_NVME: 3356 lpfc_nvme_unsol_ls_handler(phba, saveq); 3357 return 1; 3358 default: 3359 break; 3360 } 3361 3362 /* unSolicited Responses */ 3363 if (pring->prt[0].profile) { 3364 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3365 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3366 saveq); 3367 return 1; 3368 } 3369 /* We must search, based on rctl / type 3370 for the right routine */ 3371 for (i = 0; i < pring->num_mask; i++) { 3372 if ((pring->prt[i].rctl == fch_r_ctl) && 3373 (pring->prt[i].type == fch_type)) { 3374 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3375 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3376 (phba, pring, saveq); 3377 return 1; 3378 } 3379 } 3380 return 0; 3381 } 3382 3383 static void 3384 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3385 struct lpfc_iocbq *saveq) 3386 { 3387 IOCB_t *irsp; 3388 union lpfc_wqe128 *wqe; 3389 u16 i = 0; 3390 3391 irsp = &saveq->iocb; 3392 wqe = &saveq->wqe; 3393 3394 /* Fill wcqe with the IOCB status fields */ 3395 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3396 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3397 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3398 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3399 3400 /* Source ID */ 3401 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3402 3403 /* rx-id of the response frame */ 3404 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3405 3406 /* ox-id of the frame */ 3407 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3408 irsp->unsli3.rcvsli3.ox_id); 3409 3410 /* DID */ 3411 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3412 irsp->un.rcvels.remoteID); 3413 3414 /* unsol data len */ 3415 for (i = 0; i < irsp->ulpBdeCount; i++) { 3416 struct lpfc_hbq_entry *hbqe = NULL; 3417 3418 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3419 if (i == 0) { 3420 hbqe = (struct lpfc_hbq_entry *) 3421 &irsp->un.ulpWord[0]; 3422 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3423 hbqe->bde.tus.f.bdeSize; 3424 } else if (i == 1) { 3425 hbqe = (struct lpfc_hbq_entry *) 3426 &irsp->unsli3.sli3Words[4]; 3427 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3428 } 3429 } 3430 } 3431 } 3432 3433 /** 3434 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3435 * @phba: Pointer to HBA context object. 3436 * @pring: Pointer to driver SLI ring object. 3437 * @saveq: Pointer to the unsolicited iocb. 3438 * 3439 * This function is called with no lock held by the ring event handler 3440 * when there is an unsolicited iocb posted to the response ring by the 3441 * firmware. This function gets the buffer associated with the iocbs 3442 * and calls the event handler for the ring. This function handles both 3443 * qring buffers and hbq buffers. 3444 * When the function returns 1 the caller can free the iocb object otherwise 3445 * upper layer functions will free the iocb objects. 3446 **/ 3447 static int 3448 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3449 struct lpfc_iocbq *saveq) 3450 { 3451 IOCB_t * irsp; 3452 WORD5 * w5p; 3453 dma_addr_t paddr; 3454 uint32_t Rctl, Type; 3455 struct lpfc_iocbq *iocbq; 3456 struct lpfc_dmabuf *dmzbuf; 3457 3458 irsp = &saveq->iocb; 3459 saveq->vport = phba->pport; 3460 3461 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3462 if (pring->lpfc_sli_rcv_async_status) 3463 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3464 else 3465 lpfc_printf_log(phba, 3466 KERN_WARNING, 3467 LOG_SLI, 3468 "0316 Ring %d handler: unexpected " 3469 "ASYNC_STATUS iocb received evt_code " 3470 "0x%x\n", 3471 pring->ringno, 3472 irsp->un.asyncstat.evt_code); 3473 return 1; 3474 } 3475 3476 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3477 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3478 if (irsp->ulpBdeCount > 0) { 3479 dmzbuf = lpfc_sli_get_buff(phba, pring, 3480 irsp->un.ulpWord[3]); 3481 lpfc_in_buf_free(phba, dmzbuf); 3482 } 3483 3484 if (irsp->ulpBdeCount > 1) { 3485 dmzbuf = lpfc_sli_get_buff(phba, pring, 3486 irsp->unsli3.sli3Words[3]); 3487 lpfc_in_buf_free(phba, dmzbuf); 3488 } 3489 3490 if (irsp->ulpBdeCount > 2) { 3491 dmzbuf = lpfc_sli_get_buff(phba, pring, 3492 irsp->unsli3.sli3Words[7]); 3493 lpfc_in_buf_free(phba, dmzbuf); 3494 } 3495 3496 return 1; 3497 } 3498 3499 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3500 if (irsp->ulpBdeCount != 0) { 3501 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3502 irsp->un.ulpWord[3]); 3503 if (!saveq->cmd_dmabuf) 3504 lpfc_printf_log(phba, 3505 KERN_ERR, 3506 LOG_SLI, 3507 "0341 Ring %d Cannot find buffer for " 3508 "an unsolicited iocb. tag 0x%x\n", 3509 pring->ringno, 3510 irsp->un.ulpWord[3]); 3511 } 3512 if (irsp->ulpBdeCount == 2) { 3513 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3514 irsp->unsli3.sli3Words[7]); 3515 if (!saveq->bpl_dmabuf) 3516 lpfc_printf_log(phba, 3517 KERN_ERR, 3518 LOG_SLI, 3519 "0342 Ring %d Cannot find buffer for an" 3520 " unsolicited iocb. tag 0x%x\n", 3521 pring->ringno, 3522 irsp->unsli3.sli3Words[7]); 3523 } 3524 list_for_each_entry(iocbq, &saveq->list, list) { 3525 irsp = &iocbq->iocb; 3526 if (irsp->ulpBdeCount != 0) { 3527 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3528 pring, 3529 irsp->un.ulpWord[3]); 3530 if (!iocbq->cmd_dmabuf) 3531 lpfc_printf_log(phba, 3532 KERN_ERR, 3533 LOG_SLI, 3534 "0343 Ring %d Cannot find " 3535 "buffer for an unsolicited iocb" 3536 ". tag 0x%x\n", pring->ringno, 3537 irsp->un.ulpWord[3]); 3538 } 3539 if (irsp->ulpBdeCount == 2) { 3540 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3541 pring, 3542 irsp->unsli3.sli3Words[7]); 3543 if (!iocbq->bpl_dmabuf) 3544 lpfc_printf_log(phba, 3545 KERN_ERR, 3546 LOG_SLI, 3547 "0344 Ring %d Cannot find " 3548 "buffer for an unsolicited " 3549 "iocb. tag 0x%x\n", 3550 pring->ringno, 3551 irsp->unsli3.sli3Words[7]); 3552 } 3553 } 3554 } else { 3555 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3556 irsp->un.cont64[0].addrLow); 3557 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3558 paddr); 3559 if (irsp->ulpBdeCount == 2) { 3560 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3561 irsp->un.cont64[1].addrLow); 3562 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3563 pring, 3564 paddr); 3565 } 3566 } 3567 3568 if (irsp->ulpBdeCount != 0 && 3569 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3570 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3571 int found = 0; 3572 3573 /* search continue save q for same XRI */ 3574 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3575 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3576 saveq->iocb.unsli3.rcvsli3.ox_id) { 3577 list_add_tail(&saveq->list, &iocbq->list); 3578 found = 1; 3579 break; 3580 } 3581 } 3582 if (!found) 3583 list_add_tail(&saveq->clist, 3584 &pring->iocb_continue_saveq); 3585 3586 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3587 list_del_init(&iocbq->clist); 3588 saveq = iocbq; 3589 irsp = &saveq->iocb; 3590 } else { 3591 return 0; 3592 } 3593 } 3594 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3595 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3596 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3597 Rctl = FC_RCTL_ELS_REQ; 3598 Type = FC_TYPE_ELS; 3599 } else { 3600 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3601 Rctl = w5p->hcsw.Rctl; 3602 Type = w5p->hcsw.Type; 3603 3604 /* Firmware Workaround */ 3605 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3606 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3607 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3608 Rctl = FC_RCTL_ELS_REQ; 3609 Type = FC_TYPE_ELS; 3610 w5p->hcsw.Rctl = Rctl; 3611 w5p->hcsw.Type = Type; 3612 } 3613 } 3614 3615 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3616 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3617 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3618 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3619 saveq->vport = phba->pport; 3620 else 3621 saveq->vport = lpfc_find_vport_by_vpid(phba, 3622 irsp->unsli3.rcvsli3.vpi); 3623 } 3624 3625 /* Prepare WQE with Unsol frame */ 3626 lpfc_sli_prep_unsol_wqe(phba, saveq); 3627 3628 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3629 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3630 "0313 Ring %d handler: unexpected Rctl x%x " 3631 "Type x%x received\n", 3632 pring->ringno, Rctl, Type); 3633 3634 return 1; 3635 } 3636 3637 /** 3638 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3639 * @phba: Pointer to HBA context object. 3640 * @pring: Pointer to driver SLI ring object. 3641 * @prspiocb: Pointer to response iocb object. 3642 * 3643 * This function looks up the iocb_lookup table to get the command iocb 3644 * corresponding to the given response iocb using the iotag of the 3645 * response iocb. The driver calls this function with the hbalock held 3646 * for SLI3 ports or the ring lock held for SLI4 ports. 3647 * This function returns the command iocb object if it finds the command 3648 * iocb else returns NULL. 3649 **/ 3650 static struct lpfc_iocbq * 3651 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3652 struct lpfc_sli_ring *pring, 3653 struct lpfc_iocbq *prspiocb) 3654 { 3655 struct lpfc_iocbq *cmd_iocb = NULL; 3656 u16 iotag; 3657 3658 if (phba->sli_rev == LPFC_SLI_REV4) 3659 iotag = get_wqe_reqtag(prspiocb); 3660 else 3661 iotag = prspiocb->iocb.ulpIoTag; 3662 3663 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3664 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3665 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3666 /* remove from txcmpl queue list */ 3667 list_del_init(&cmd_iocb->list); 3668 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3669 pring->txcmplq_cnt--; 3670 return cmd_iocb; 3671 } 3672 } 3673 3674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3675 "0317 iotag x%x is out of " 3676 "range: max iotag x%x\n", 3677 iotag, phba->sli.last_iotag); 3678 return NULL; 3679 } 3680 3681 /** 3682 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3683 * @phba: Pointer to HBA context object. 3684 * @pring: Pointer to driver SLI ring object. 3685 * @iotag: IOCB tag. 3686 * 3687 * This function looks up the iocb_lookup table to get the command iocb 3688 * corresponding to the given iotag. The driver calls this function with 3689 * the ring lock held because this function is an SLI4 port only helper. 3690 * This function returns the command iocb object if it finds the command 3691 * iocb else returns NULL. 3692 **/ 3693 static struct lpfc_iocbq * 3694 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3695 struct lpfc_sli_ring *pring, uint16_t iotag) 3696 { 3697 struct lpfc_iocbq *cmd_iocb = NULL; 3698 3699 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3700 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3701 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3702 /* remove from txcmpl queue list */ 3703 list_del_init(&cmd_iocb->list); 3704 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3705 pring->txcmplq_cnt--; 3706 return cmd_iocb; 3707 } 3708 } 3709 3710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3711 "0372 iotag x%x lookup error: max iotag (x%x) " 3712 "cmd_flag x%x\n", 3713 iotag, phba->sli.last_iotag, 3714 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3715 return NULL; 3716 } 3717 3718 /** 3719 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3720 * @phba: Pointer to HBA context object. 3721 * @pring: Pointer to driver SLI ring object. 3722 * @saveq: Pointer to the response iocb to be processed. 3723 * 3724 * This function is called by the ring event handler for non-fcp 3725 * rings when there is a new response iocb in the response ring. 3726 * The caller is not required to hold any locks. This function 3727 * gets the command iocb associated with the response iocb and 3728 * calls the completion handler for the command iocb. If there 3729 * is no completion handler, the function will free the resources 3730 * associated with command iocb. If the response iocb is for 3731 * an already aborted command iocb, the status of the completion 3732 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3733 * This function always returns 1. 3734 **/ 3735 static int 3736 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3737 struct lpfc_iocbq *saveq) 3738 { 3739 struct lpfc_iocbq *cmdiocbp; 3740 unsigned long iflag; 3741 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3742 3743 if (phba->sli_rev == LPFC_SLI_REV4) 3744 spin_lock_irqsave(&pring->ring_lock, iflag); 3745 else 3746 spin_lock_irqsave(&phba->hbalock, iflag); 3747 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3748 if (phba->sli_rev == LPFC_SLI_REV4) 3749 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3750 else 3751 spin_unlock_irqrestore(&phba->hbalock, iflag); 3752 3753 ulp_command = get_job_cmnd(phba, saveq); 3754 ulp_status = get_job_ulpstatus(phba, saveq); 3755 ulp_word4 = get_job_word4(phba, saveq); 3756 ulp_context = get_job_ulpcontext(phba, saveq); 3757 if (phba->sli_rev == LPFC_SLI_REV4) 3758 iotag = get_wqe_reqtag(saveq); 3759 else 3760 iotag = saveq->iocb.ulpIoTag; 3761 3762 if (cmdiocbp) { 3763 ulp_command = get_job_cmnd(phba, cmdiocbp); 3764 if (cmdiocbp->cmd_cmpl) { 3765 /* 3766 * If an ELS command failed send an event to mgmt 3767 * application. 3768 */ 3769 if (ulp_status && 3770 (pring->ringno == LPFC_ELS_RING) && 3771 (ulp_command == CMD_ELS_REQUEST64_CR)) 3772 lpfc_send_els_failure_event(phba, 3773 cmdiocbp, saveq); 3774 3775 /* 3776 * Post all ELS completions to the worker thread. 3777 * All other are passed to the completion callback. 3778 */ 3779 if (pring->ringno == LPFC_ELS_RING) { 3780 if ((phba->sli_rev < LPFC_SLI_REV4) && 3781 (cmdiocbp->cmd_flag & 3782 LPFC_DRIVER_ABORTED)) { 3783 spin_lock_irqsave(&phba->hbalock, 3784 iflag); 3785 cmdiocbp->cmd_flag &= 3786 ~LPFC_DRIVER_ABORTED; 3787 spin_unlock_irqrestore(&phba->hbalock, 3788 iflag); 3789 saveq->iocb.ulpStatus = 3790 IOSTAT_LOCAL_REJECT; 3791 saveq->iocb.un.ulpWord[4] = 3792 IOERR_SLI_ABORTED; 3793 3794 /* Firmware could still be in progress 3795 * of DMAing payload, so don't free data 3796 * buffer till after a hbeat. 3797 */ 3798 spin_lock_irqsave(&phba->hbalock, 3799 iflag); 3800 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3801 spin_unlock_irqrestore(&phba->hbalock, 3802 iflag); 3803 } 3804 if (phba->sli_rev == LPFC_SLI_REV4) { 3805 if (saveq->cmd_flag & 3806 LPFC_EXCHANGE_BUSY) { 3807 /* Set cmdiocb flag for the 3808 * exchange busy so sgl (xri) 3809 * will not be released until 3810 * the abort xri is received 3811 * from hba. 3812 */ 3813 spin_lock_irqsave( 3814 &phba->hbalock, iflag); 3815 cmdiocbp->cmd_flag |= 3816 LPFC_EXCHANGE_BUSY; 3817 spin_unlock_irqrestore( 3818 &phba->hbalock, iflag); 3819 } 3820 if (cmdiocbp->cmd_flag & 3821 LPFC_DRIVER_ABORTED) { 3822 /* 3823 * Clear LPFC_DRIVER_ABORTED 3824 * bit in case it was driver 3825 * initiated abort. 3826 */ 3827 spin_lock_irqsave( 3828 &phba->hbalock, iflag); 3829 cmdiocbp->cmd_flag &= 3830 ~LPFC_DRIVER_ABORTED; 3831 spin_unlock_irqrestore( 3832 &phba->hbalock, iflag); 3833 set_job_ulpstatus(cmdiocbp, 3834 IOSTAT_LOCAL_REJECT); 3835 set_job_ulpword4(cmdiocbp, 3836 IOERR_ABORT_REQUESTED); 3837 /* 3838 * For SLI4, irspiocb contains 3839 * NO_XRI in sli_xritag, it 3840 * shall not affect releasing 3841 * sgl (xri) process. 3842 */ 3843 set_job_ulpstatus(saveq, 3844 IOSTAT_LOCAL_REJECT); 3845 set_job_ulpword4(saveq, 3846 IOERR_SLI_ABORTED); 3847 spin_lock_irqsave( 3848 &phba->hbalock, iflag); 3849 saveq->cmd_flag |= 3850 LPFC_DELAY_MEM_FREE; 3851 spin_unlock_irqrestore( 3852 &phba->hbalock, iflag); 3853 } 3854 } 3855 } 3856 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3857 } else 3858 lpfc_sli_release_iocbq(phba, cmdiocbp); 3859 } else { 3860 /* 3861 * Unknown initiating command based on the response iotag. 3862 * This could be the case on the ELS ring because of 3863 * lpfc_els_abort(). 3864 */ 3865 if (pring->ringno != LPFC_ELS_RING) { 3866 /* 3867 * Ring <ringno> handler: unexpected completion IoTag 3868 * <IoTag> 3869 */ 3870 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3871 "0322 Ring %d handler: " 3872 "unexpected completion IoTag x%x " 3873 "Data: x%x x%x x%x x%x\n", 3874 pring->ringno, iotag, ulp_status, 3875 ulp_word4, ulp_command, ulp_context); 3876 } 3877 } 3878 3879 return 1; 3880 } 3881 3882 /** 3883 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3884 * @phba: Pointer to HBA context object. 3885 * @pring: Pointer to driver SLI ring object. 3886 * 3887 * This function is called from the iocb ring event handlers when 3888 * put pointer is ahead of the get pointer for a ring. This function signal 3889 * an error attention condition to the worker thread and the worker 3890 * thread will transition the HBA to offline state. 3891 **/ 3892 static void 3893 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3894 { 3895 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3896 /* 3897 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3898 * rsp ring <portRspMax> 3899 */ 3900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3901 "0312 Ring %d handler: portRspPut %d " 3902 "is bigger than rsp ring %d\n", 3903 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3904 pring->sli.sli3.numRiocb); 3905 3906 phba->link_state = LPFC_HBA_ERROR; 3907 3908 /* 3909 * All error attention handlers are posted to 3910 * worker thread 3911 */ 3912 phba->work_ha |= HA_ERATT; 3913 phba->work_hs = HS_FFER3; 3914 3915 lpfc_worker_wake_up(phba); 3916 3917 return; 3918 } 3919 3920 /** 3921 * lpfc_poll_eratt - Error attention polling timer timeout handler 3922 * @t: Context to fetch pointer to address of HBA context object from. 3923 * 3924 * This function is invoked by the Error Attention polling timer when the 3925 * timer times out. It will check the SLI Error Attention register for 3926 * possible attention events. If so, it will post an Error Attention event 3927 * and wake up worker thread to process it. Otherwise, it will set up the 3928 * Error Attention polling timer for the next poll. 3929 **/ 3930 void lpfc_poll_eratt(struct timer_list *t) 3931 { 3932 struct lpfc_hba *phba; 3933 uint32_t eratt = 0; 3934 uint64_t sli_intr, cnt; 3935 3936 phba = from_timer(phba, t, eratt_poll); 3937 3938 /* Here we will also keep track of interrupts per sec of the hba */ 3939 sli_intr = phba->sli.slistat.sli_intr; 3940 3941 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3942 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3943 sli_intr); 3944 else 3945 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3946 3947 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3948 do_div(cnt, phba->eratt_poll_interval); 3949 phba->sli.slistat.sli_ips = cnt; 3950 3951 phba->sli.slistat.sli_prev_intr = sli_intr; 3952 3953 /* Check chip HA register for error event */ 3954 eratt = lpfc_sli_check_eratt(phba); 3955 3956 if (eratt) 3957 /* Tell the worker thread there is work to do */ 3958 lpfc_worker_wake_up(phba); 3959 else 3960 /* Restart the timer for next eratt poll */ 3961 mod_timer(&phba->eratt_poll, 3962 jiffies + 3963 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3964 return; 3965 } 3966 3967 3968 /** 3969 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3970 * @phba: Pointer to HBA context object. 3971 * @pring: Pointer to driver SLI ring object. 3972 * @mask: Host attention register mask for this ring. 3973 * 3974 * This function is called from the interrupt context when there is a ring 3975 * event for the fcp ring. The caller does not hold any lock. 3976 * The function processes each response iocb in the response ring until it 3977 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3978 * LE bit set. The function will call the completion handler of the command iocb 3979 * if the response iocb indicates a completion for a command iocb or it is 3980 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3981 * function if this is an unsolicited iocb. 3982 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3983 * to check it explicitly. 3984 */ 3985 int 3986 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3987 struct lpfc_sli_ring *pring, uint32_t mask) 3988 { 3989 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3990 IOCB_t *irsp = NULL; 3991 IOCB_t *entry = NULL; 3992 struct lpfc_iocbq *cmdiocbq = NULL; 3993 struct lpfc_iocbq rspiocbq; 3994 uint32_t status; 3995 uint32_t portRspPut, portRspMax; 3996 int rc = 1; 3997 lpfc_iocb_type type; 3998 unsigned long iflag; 3999 uint32_t rsp_cmpl = 0; 4000 4001 spin_lock_irqsave(&phba->hbalock, iflag); 4002 pring->stats.iocb_event++; 4003 4004 /* 4005 * The next available response entry should never exceed the maximum 4006 * entries. If it does, treat it as an adapter hardware error. 4007 */ 4008 portRspMax = pring->sli.sli3.numRiocb; 4009 portRspPut = le32_to_cpu(pgp->rspPutInx); 4010 if (unlikely(portRspPut >= portRspMax)) { 4011 lpfc_sli_rsp_pointers_error(phba, pring); 4012 spin_unlock_irqrestore(&phba->hbalock, iflag); 4013 return 1; 4014 } 4015 if (phba->fcp_ring_in_use) { 4016 spin_unlock_irqrestore(&phba->hbalock, iflag); 4017 return 1; 4018 } else 4019 phba->fcp_ring_in_use = 1; 4020 4021 rmb(); 4022 while (pring->sli.sli3.rspidx != portRspPut) { 4023 /* 4024 * Fetch an entry off the ring and copy it into a local data 4025 * structure. The copy involves a byte-swap since the 4026 * network byte order and pci byte orders are different. 4027 */ 4028 entry = lpfc_resp_iocb(phba, pring); 4029 phba->last_completion_time = jiffies; 4030 4031 if (++pring->sli.sli3.rspidx >= portRspMax) 4032 pring->sli.sli3.rspidx = 0; 4033 4034 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4035 (uint32_t *) &rspiocbq.iocb, 4036 phba->iocb_rsp_size); 4037 INIT_LIST_HEAD(&(rspiocbq.list)); 4038 irsp = &rspiocbq.iocb; 4039 4040 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4041 pring->stats.iocb_rsp++; 4042 rsp_cmpl++; 4043 4044 if (unlikely(irsp->ulpStatus)) { 4045 /* 4046 * If resource errors reported from HBA, reduce 4047 * queuedepths of the SCSI device. 4048 */ 4049 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4050 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4051 IOERR_NO_RESOURCES)) { 4052 spin_unlock_irqrestore(&phba->hbalock, iflag); 4053 phba->lpfc_rampdown_queue_depth(phba); 4054 spin_lock_irqsave(&phba->hbalock, iflag); 4055 } 4056 4057 /* Rsp ring <ringno> error: IOCB */ 4058 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4059 "0336 Rsp Ring %d error: IOCB Data: " 4060 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4061 pring->ringno, 4062 irsp->un.ulpWord[0], 4063 irsp->un.ulpWord[1], 4064 irsp->un.ulpWord[2], 4065 irsp->un.ulpWord[3], 4066 irsp->un.ulpWord[4], 4067 irsp->un.ulpWord[5], 4068 *(uint32_t *)&irsp->un1, 4069 *((uint32_t *)&irsp->un1 + 1)); 4070 } 4071 4072 switch (type) { 4073 case LPFC_ABORT_IOCB: 4074 case LPFC_SOL_IOCB: 4075 /* 4076 * Idle exchange closed via ABTS from port. No iocb 4077 * resources need to be recovered. 4078 */ 4079 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4080 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4081 "0333 IOCB cmd 0x%x" 4082 " processed. Skipping" 4083 " completion\n", 4084 irsp->ulpCommand); 4085 break; 4086 } 4087 4088 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4089 &rspiocbq); 4090 if (unlikely(!cmdiocbq)) 4091 break; 4092 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4093 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4094 if (cmdiocbq->cmd_cmpl) { 4095 spin_unlock_irqrestore(&phba->hbalock, iflag); 4096 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4097 spin_lock_irqsave(&phba->hbalock, iflag); 4098 } 4099 break; 4100 case LPFC_UNSOL_IOCB: 4101 spin_unlock_irqrestore(&phba->hbalock, iflag); 4102 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4103 spin_lock_irqsave(&phba->hbalock, iflag); 4104 break; 4105 default: 4106 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4107 char adaptermsg[LPFC_MAX_ADPTMSG]; 4108 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4109 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4110 MAX_MSG_DATA); 4111 dev_warn(&((phba->pcidev)->dev), 4112 "lpfc%d: %s\n", 4113 phba->brd_no, adaptermsg); 4114 } else { 4115 /* Unknown IOCB command */ 4116 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4117 "0334 Unknown IOCB command " 4118 "Data: x%x, x%x x%x x%x x%x\n", 4119 type, irsp->ulpCommand, 4120 irsp->ulpStatus, 4121 irsp->ulpIoTag, 4122 irsp->ulpContext); 4123 } 4124 break; 4125 } 4126 4127 /* 4128 * The response IOCB has been processed. Update the ring 4129 * pointer in SLIM. If the port response put pointer has not 4130 * been updated, sync the pgp->rspPutInx and fetch the new port 4131 * response put pointer. 4132 */ 4133 writel(pring->sli.sli3.rspidx, 4134 &phba->host_gp[pring->ringno].rspGetInx); 4135 4136 if (pring->sli.sli3.rspidx == portRspPut) 4137 portRspPut = le32_to_cpu(pgp->rspPutInx); 4138 } 4139 4140 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4141 pring->stats.iocb_rsp_full++; 4142 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4143 writel(status, phba->CAregaddr); 4144 readl(phba->CAregaddr); 4145 } 4146 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4147 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4148 pring->stats.iocb_cmd_empty++; 4149 4150 /* Force update of the local copy of cmdGetInx */ 4151 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4152 lpfc_sli_resume_iocb(phba, pring); 4153 4154 if ((pring->lpfc_sli_cmd_available)) 4155 (pring->lpfc_sli_cmd_available) (phba, pring); 4156 4157 } 4158 4159 phba->fcp_ring_in_use = 0; 4160 spin_unlock_irqrestore(&phba->hbalock, iflag); 4161 return rc; 4162 } 4163 4164 /** 4165 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4166 * @phba: Pointer to HBA context object. 4167 * @pring: Pointer to driver SLI ring object. 4168 * @rspiocbp: Pointer to driver response IOCB object. 4169 * 4170 * This function is called from the worker thread when there is a slow-path 4171 * response IOCB to process. This function chains all the response iocbs until 4172 * seeing the iocb with the LE bit set. The function will call 4173 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4174 * completion of a command iocb. The function will call the 4175 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4176 * The function frees the resources or calls the completion handler if this 4177 * iocb is an abort completion. The function returns NULL when the response 4178 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4179 * this function shall chain the iocb on to the iocb_continueq and return the 4180 * response iocb passed in. 4181 **/ 4182 static struct lpfc_iocbq * 4183 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4184 struct lpfc_iocbq *rspiocbp) 4185 { 4186 struct lpfc_iocbq *saveq; 4187 struct lpfc_iocbq *cmdiocb; 4188 struct lpfc_iocbq *next_iocb; 4189 IOCB_t *irsp; 4190 uint32_t free_saveq; 4191 u8 cmd_type; 4192 lpfc_iocb_type type; 4193 unsigned long iflag; 4194 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4195 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4196 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4197 int rc; 4198 4199 spin_lock_irqsave(&phba->hbalock, iflag); 4200 /* First add the response iocb to the countinueq list */ 4201 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4202 pring->iocb_continueq_cnt++; 4203 4204 /* 4205 * By default, the driver expects to free all resources 4206 * associated with this iocb completion. 4207 */ 4208 free_saveq = 1; 4209 saveq = list_get_first(&pring->iocb_continueq, 4210 struct lpfc_iocbq, list); 4211 list_del_init(&pring->iocb_continueq); 4212 pring->iocb_continueq_cnt = 0; 4213 4214 pring->stats.iocb_rsp++; 4215 4216 /* 4217 * If resource errors reported from HBA, reduce 4218 * queuedepths of the SCSI device. 4219 */ 4220 if (ulp_status == IOSTAT_LOCAL_REJECT && 4221 ((ulp_word4 & IOERR_PARAM_MASK) == 4222 IOERR_NO_RESOURCES)) { 4223 spin_unlock_irqrestore(&phba->hbalock, iflag); 4224 phba->lpfc_rampdown_queue_depth(phba); 4225 spin_lock_irqsave(&phba->hbalock, iflag); 4226 } 4227 4228 if (ulp_status) { 4229 /* Rsp ring <ringno> error: IOCB */ 4230 if (phba->sli_rev < LPFC_SLI_REV4) { 4231 irsp = &rspiocbp->iocb; 4232 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4233 "0328 Rsp Ring %d error: ulp_status x%x " 4234 "IOCB Data: " 4235 "x%08x x%08x x%08x x%08x " 4236 "x%08x x%08x x%08x x%08x " 4237 "x%08x x%08x x%08x x%08x " 4238 "x%08x x%08x x%08x x%08x\n", 4239 pring->ringno, ulp_status, 4240 get_job_ulpword(rspiocbp, 0), 4241 get_job_ulpword(rspiocbp, 1), 4242 get_job_ulpword(rspiocbp, 2), 4243 get_job_ulpword(rspiocbp, 3), 4244 get_job_ulpword(rspiocbp, 4), 4245 get_job_ulpword(rspiocbp, 5), 4246 *(((uint32_t *)irsp) + 6), 4247 *(((uint32_t *)irsp) + 7), 4248 *(((uint32_t *)irsp) + 8), 4249 *(((uint32_t *)irsp) + 9), 4250 *(((uint32_t *)irsp) + 10), 4251 *(((uint32_t *)irsp) + 11), 4252 *(((uint32_t *)irsp) + 12), 4253 *(((uint32_t *)irsp) + 13), 4254 *(((uint32_t *)irsp) + 14), 4255 *(((uint32_t *)irsp) + 15)); 4256 } else { 4257 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4258 "0321 Rsp Ring %d error: " 4259 "IOCB Data: " 4260 "x%x x%x x%x x%x\n", 4261 pring->ringno, 4262 rspiocbp->wcqe_cmpl.word0, 4263 rspiocbp->wcqe_cmpl.total_data_placed, 4264 rspiocbp->wcqe_cmpl.parameter, 4265 rspiocbp->wcqe_cmpl.word3); 4266 } 4267 } 4268 4269 4270 /* 4271 * Fetch the iocb command type and call the correct completion 4272 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4273 * get freed back to the lpfc_iocb_list by the discovery 4274 * kernel thread. 4275 */ 4276 cmd_type = ulp_command & CMD_IOCB_MASK; 4277 type = lpfc_sli_iocb_cmd_type(cmd_type); 4278 switch (type) { 4279 case LPFC_SOL_IOCB: 4280 spin_unlock_irqrestore(&phba->hbalock, iflag); 4281 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4282 spin_lock_irqsave(&phba->hbalock, iflag); 4283 break; 4284 case LPFC_UNSOL_IOCB: 4285 spin_unlock_irqrestore(&phba->hbalock, iflag); 4286 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4287 spin_lock_irqsave(&phba->hbalock, iflag); 4288 if (!rc) 4289 free_saveq = 0; 4290 break; 4291 case LPFC_ABORT_IOCB: 4292 cmdiocb = NULL; 4293 if (ulp_command != CMD_XRI_ABORTED_CX) 4294 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4295 saveq); 4296 if (cmdiocb) { 4297 /* Call the specified completion routine */ 4298 if (cmdiocb->cmd_cmpl) { 4299 spin_unlock_irqrestore(&phba->hbalock, iflag); 4300 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4301 spin_lock_irqsave(&phba->hbalock, iflag); 4302 } else { 4303 __lpfc_sli_release_iocbq(phba, cmdiocb); 4304 } 4305 } 4306 break; 4307 case LPFC_UNKNOWN_IOCB: 4308 if (ulp_command == CMD_ADAPTER_MSG) { 4309 char adaptermsg[LPFC_MAX_ADPTMSG]; 4310 4311 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4312 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4313 MAX_MSG_DATA); 4314 dev_warn(&((phba->pcidev)->dev), 4315 "lpfc%d: %s\n", 4316 phba->brd_no, adaptermsg); 4317 } else { 4318 /* Unknown command */ 4319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4320 "0335 Unknown IOCB " 4321 "command Data: x%x " 4322 "x%x x%x x%x\n", 4323 ulp_command, 4324 ulp_status, 4325 get_wqe_reqtag(rspiocbp), 4326 get_job_ulpcontext(phba, rspiocbp)); 4327 } 4328 break; 4329 } 4330 4331 if (free_saveq) { 4332 list_for_each_entry_safe(rspiocbp, next_iocb, 4333 &saveq->list, list) { 4334 list_del_init(&rspiocbp->list); 4335 __lpfc_sli_release_iocbq(phba, rspiocbp); 4336 } 4337 __lpfc_sli_release_iocbq(phba, saveq); 4338 } 4339 rspiocbp = NULL; 4340 spin_unlock_irqrestore(&phba->hbalock, iflag); 4341 return rspiocbp; 4342 } 4343 4344 /** 4345 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4346 * @phba: Pointer to HBA context object. 4347 * @pring: Pointer to driver SLI ring object. 4348 * @mask: Host attention register mask for this ring. 4349 * 4350 * This routine wraps the actual slow_ring event process routine from the 4351 * API jump table function pointer from the lpfc_hba struct. 4352 **/ 4353 void 4354 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4355 struct lpfc_sli_ring *pring, uint32_t mask) 4356 { 4357 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4358 } 4359 4360 /** 4361 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4362 * @phba: Pointer to HBA context object. 4363 * @pring: Pointer to driver SLI ring object. 4364 * @mask: Host attention register mask for this ring. 4365 * 4366 * This function is called from the worker thread when there is a ring event 4367 * for non-fcp rings. The caller does not hold any lock. The function will 4368 * remove each response iocb in the response ring and calls the handle 4369 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4370 **/ 4371 static void 4372 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4373 struct lpfc_sli_ring *pring, uint32_t mask) 4374 { 4375 struct lpfc_pgp *pgp; 4376 IOCB_t *entry; 4377 IOCB_t *irsp = NULL; 4378 struct lpfc_iocbq *rspiocbp = NULL; 4379 uint32_t portRspPut, portRspMax; 4380 unsigned long iflag; 4381 uint32_t status; 4382 4383 pgp = &phba->port_gp[pring->ringno]; 4384 spin_lock_irqsave(&phba->hbalock, iflag); 4385 pring->stats.iocb_event++; 4386 4387 /* 4388 * The next available response entry should never exceed the maximum 4389 * entries. If it does, treat it as an adapter hardware error. 4390 */ 4391 portRspMax = pring->sli.sli3.numRiocb; 4392 portRspPut = le32_to_cpu(pgp->rspPutInx); 4393 if (portRspPut >= portRspMax) { 4394 /* 4395 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4396 * rsp ring <portRspMax> 4397 */ 4398 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4399 "0303 Ring %d handler: portRspPut %d " 4400 "is bigger than rsp ring %d\n", 4401 pring->ringno, portRspPut, portRspMax); 4402 4403 phba->link_state = LPFC_HBA_ERROR; 4404 spin_unlock_irqrestore(&phba->hbalock, iflag); 4405 4406 phba->work_hs = HS_FFER3; 4407 lpfc_handle_eratt(phba); 4408 4409 return; 4410 } 4411 4412 rmb(); 4413 while (pring->sli.sli3.rspidx != portRspPut) { 4414 /* 4415 * Build a completion list and call the appropriate handler. 4416 * The process is to get the next available response iocb, get 4417 * a free iocb from the list, copy the response data into the 4418 * free iocb, insert to the continuation list, and update the 4419 * next response index to slim. This process makes response 4420 * iocb's in the ring available to DMA as fast as possible but 4421 * pays a penalty for a copy operation. Since the iocb is 4422 * only 32 bytes, this penalty is considered small relative to 4423 * the PCI reads for register values and a slim write. When 4424 * the ulpLe field is set, the entire Command has been 4425 * received. 4426 */ 4427 entry = lpfc_resp_iocb(phba, pring); 4428 4429 phba->last_completion_time = jiffies; 4430 rspiocbp = __lpfc_sli_get_iocbq(phba); 4431 if (rspiocbp == NULL) { 4432 printk(KERN_ERR "%s: out of buffers! Failing " 4433 "completion.\n", __func__); 4434 break; 4435 } 4436 4437 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4438 phba->iocb_rsp_size); 4439 irsp = &rspiocbp->iocb; 4440 4441 if (++pring->sli.sli3.rspidx >= portRspMax) 4442 pring->sli.sli3.rspidx = 0; 4443 4444 if (pring->ringno == LPFC_ELS_RING) { 4445 lpfc_debugfs_slow_ring_trc(phba, 4446 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4447 *(((uint32_t *) irsp) + 4), 4448 *(((uint32_t *) irsp) + 6), 4449 *(((uint32_t *) irsp) + 7)); 4450 } 4451 4452 writel(pring->sli.sli3.rspidx, 4453 &phba->host_gp[pring->ringno].rspGetInx); 4454 4455 spin_unlock_irqrestore(&phba->hbalock, iflag); 4456 /* Handle the response IOCB */ 4457 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4458 spin_lock_irqsave(&phba->hbalock, iflag); 4459 4460 /* 4461 * If the port response put pointer has not been updated, sync 4462 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4463 * response put pointer. 4464 */ 4465 if (pring->sli.sli3.rspidx == portRspPut) { 4466 portRspPut = le32_to_cpu(pgp->rspPutInx); 4467 } 4468 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4469 4470 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4471 /* At least one response entry has been freed */ 4472 pring->stats.iocb_rsp_full++; 4473 /* SET RxRE_RSP in Chip Att register */ 4474 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4475 writel(status, phba->CAregaddr); 4476 readl(phba->CAregaddr); /* flush */ 4477 } 4478 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4479 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4480 pring->stats.iocb_cmd_empty++; 4481 4482 /* Force update of the local copy of cmdGetInx */ 4483 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4484 lpfc_sli_resume_iocb(phba, pring); 4485 4486 if ((pring->lpfc_sli_cmd_available)) 4487 (pring->lpfc_sli_cmd_available) (phba, pring); 4488 4489 } 4490 4491 spin_unlock_irqrestore(&phba->hbalock, iflag); 4492 return; 4493 } 4494 4495 /** 4496 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4497 * @phba: Pointer to HBA context object. 4498 * @pring: Pointer to driver SLI ring object. 4499 * @mask: Host attention register mask for this ring. 4500 * 4501 * This function is called from the worker thread when there is a pending 4502 * ELS response iocb on the driver internal slow-path response iocb worker 4503 * queue. The caller does not hold any lock. The function will remove each 4504 * response iocb from the response worker queue and calls the handle 4505 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4506 **/ 4507 static void 4508 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4509 struct lpfc_sli_ring *pring, uint32_t mask) 4510 { 4511 struct lpfc_iocbq *irspiocbq; 4512 struct hbq_dmabuf *dmabuf; 4513 struct lpfc_cq_event *cq_event; 4514 unsigned long iflag; 4515 int count = 0; 4516 4517 spin_lock_irqsave(&phba->hbalock, iflag); 4518 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4519 spin_unlock_irqrestore(&phba->hbalock, iflag); 4520 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4521 /* Get the response iocb from the head of work queue */ 4522 spin_lock_irqsave(&phba->hbalock, iflag); 4523 list_remove_head(&phba->sli4_hba.sp_queue_event, 4524 cq_event, struct lpfc_cq_event, list); 4525 spin_unlock_irqrestore(&phba->hbalock, iflag); 4526 4527 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4528 case CQE_CODE_COMPL_WQE: 4529 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4530 cq_event); 4531 /* Translate ELS WCQE to response IOCBQ */ 4532 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4533 irspiocbq); 4534 if (irspiocbq) 4535 lpfc_sli_sp_handle_rspiocb(phba, pring, 4536 irspiocbq); 4537 count++; 4538 break; 4539 case CQE_CODE_RECEIVE: 4540 case CQE_CODE_RECEIVE_V1: 4541 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4542 cq_event); 4543 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4544 count++; 4545 break; 4546 default: 4547 break; 4548 } 4549 4550 /* Limit the number of events to 64 to avoid soft lockups */ 4551 if (count == 64) 4552 break; 4553 } 4554 } 4555 4556 /** 4557 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4558 * @phba: Pointer to HBA context object. 4559 * @pring: Pointer to driver SLI ring object. 4560 * 4561 * This function aborts all iocbs in the given ring and frees all the iocb 4562 * objects in txq. This function issues an abort iocb for all the iocb commands 4563 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4564 * the return of this function. The caller is not required to hold any locks. 4565 **/ 4566 void 4567 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4568 { 4569 LIST_HEAD(tx_completions); 4570 LIST_HEAD(txcmplq_completions); 4571 struct lpfc_iocbq *iocb, *next_iocb; 4572 int offline; 4573 4574 if (pring->ringno == LPFC_ELS_RING) { 4575 lpfc_fabric_abort_hba(phba); 4576 } 4577 offline = pci_channel_offline(phba->pcidev); 4578 4579 /* Error everything on txq and txcmplq 4580 * First do the txq. 4581 */ 4582 if (phba->sli_rev >= LPFC_SLI_REV4) { 4583 spin_lock_irq(&pring->ring_lock); 4584 list_splice_init(&pring->txq, &tx_completions); 4585 pring->txq_cnt = 0; 4586 4587 if (offline) { 4588 list_splice_init(&pring->txcmplq, 4589 &txcmplq_completions); 4590 } else { 4591 /* Next issue ABTS for everything on the txcmplq */ 4592 list_for_each_entry_safe(iocb, next_iocb, 4593 &pring->txcmplq, list) 4594 lpfc_sli_issue_abort_iotag(phba, pring, 4595 iocb, NULL); 4596 } 4597 spin_unlock_irq(&pring->ring_lock); 4598 } else { 4599 spin_lock_irq(&phba->hbalock); 4600 list_splice_init(&pring->txq, &tx_completions); 4601 pring->txq_cnt = 0; 4602 4603 if (offline) { 4604 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4605 } else { 4606 /* Next issue ABTS for everything on the txcmplq */ 4607 list_for_each_entry_safe(iocb, next_iocb, 4608 &pring->txcmplq, list) 4609 lpfc_sli_issue_abort_iotag(phba, pring, 4610 iocb, NULL); 4611 } 4612 spin_unlock_irq(&phba->hbalock); 4613 } 4614 4615 if (offline) { 4616 /* Cancel all the IOCBs from the completions list */ 4617 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4618 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4619 } else { 4620 /* Make sure HBA is alive */ 4621 lpfc_issue_hb_tmo(phba); 4622 } 4623 /* Cancel all the IOCBs from the completions list */ 4624 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4625 IOERR_SLI_ABORTED); 4626 } 4627 4628 /** 4629 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4630 * @phba: Pointer to HBA context object. 4631 * 4632 * This function aborts all iocbs in FCP rings and frees all the iocb 4633 * objects in txq. This function issues an abort iocb for all the iocb commands 4634 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4635 * the return of this function. The caller is not required to hold any locks. 4636 **/ 4637 void 4638 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4639 { 4640 struct lpfc_sli *psli = &phba->sli; 4641 struct lpfc_sli_ring *pring; 4642 uint32_t i; 4643 4644 /* Look on all the FCP Rings for the iotag */ 4645 if (phba->sli_rev >= LPFC_SLI_REV4) { 4646 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4647 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4648 lpfc_sli_abort_iocb_ring(phba, pring); 4649 } 4650 } else { 4651 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4652 lpfc_sli_abort_iocb_ring(phba, pring); 4653 } 4654 } 4655 4656 /** 4657 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4658 * @phba: Pointer to HBA context object. 4659 * 4660 * This function flushes all iocbs in the IO ring and frees all the iocb 4661 * objects in txq and txcmplq. This function will not issue abort iocbs 4662 * for all the iocb commands in txcmplq, they will just be returned with 4663 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4664 * slot has been permanently disabled. 4665 **/ 4666 void 4667 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4668 { 4669 LIST_HEAD(txq); 4670 LIST_HEAD(txcmplq); 4671 struct lpfc_sli *psli = &phba->sli; 4672 struct lpfc_sli_ring *pring; 4673 uint32_t i; 4674 struct lpfc_iocbq *piocb, *next_iocb; 4675 4676 spin_lock_irq(&phba->hbalock); 4677 /* Indicate the I/O queues are flushed */ 4678 phba->hba_flag |= HBA_IOQ_FLUSH; 4679 spin_unlock_irq(&phba->hbalock); 4680 4681 /* Look on all the FCP Rings for the iotag */ 4682 if (phba->sli_rev >= LPFC_SLI_REV4) { 4683 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4684 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4685 4686 spin_lock_irq(&pring->ring_lock); 4687 /* Retrieve everything on txq */ 4688 list_splice_init(&pring->txq, &txq); 4689 list_for_each_entry_safe(piocb, next_iocb, 4690 &pring->txcmplq, list) 4691 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4692 /* Retrieve everything on the txcmplq */ 4693 list_splice_init(&pring->txcmplq, &txcmplq); 4694 pring->txq_cnt = 0; 4695 pring->txcmplq_cnt = 0; 4696 spin_unlock_irq(&pring->ring_lock); 4697 4698 /* Flush the txq */ 4699 lpfc_sli_cancel_iocbs(phba, &txq, 4700 IOSTAT_LOCAL_REJECT, 4701 IOERR_SLI_DOWN); 4702 /* Flush the txcmplq */ 4703 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4704 IOSTAT_LOCAL_REJECT, 4705 IOERR_SLI_DOWN); 4706 if (unlikely(pci_channel_offline(phba->pcidev))) 4707 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4708 } 4709 } else { 4710 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4711 4712 spin_lock_irq(&phba->hbalock); 4713 /* Retrieve everything on txq */ 4714 list_splice_init(&pring->txq, &txq); 4715 list_for_each_entry_safe(piocb, next_iocb, 4716 &pring->txcmplq, list) 4717 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4718 /* Retrieve everything on the txcmplq */ 4719 list_splice_init(&pring->txcmplq, &txcmplq); 4720 pring->txq_cnt = 0; 4721 pring->txcmplq_cnt = 0; 4722 spin_unlock_irq(&phba->hbalock); 4723 4724 /* Flush the txq */ 4725 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4726 IOERR_SLI_DOWN); 4727 /* Flush the txcmpq */ 4728 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4729 IOERR_SLI_DOWN); 4730 } 4731 } 4732 4733 /** 4734 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4735 * @phba: Pointer to HBA context object. 4736 * @mask: Bit mask to be checked. 4737 * 4738 * This function reads the host status register and compares 4739 * with the provided bit mask to check if HBA completed 4740 * the restart. This function will wait in a loop for the 4741 * HBA to complete restart. If the HBA does not restart within 4742 * 15 iterations, the function will reset the HBA again. The 4743 * function returns 1 when HBA fail to restart otherwise returns 4744 * zero. 4745 **/ 4746 static int 4747 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4748 { 4749 uint32_t status; 4750 int i = 0; 4751 int retval = 0; 4752 4753 /* Read the HBA Host Status Register */ 4754 if (lpfc_readl(phba->HSregaddr, &status)) 4755 return 1; 4756 4757 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4758 4759 /* 4760 * Check status register every 100ms for 5 retries, then every 4761 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4762 * every 2.5 sec for 4. 4763 * Break our of the loop if errors occurred during init. 4764 */ 4765 while (((status & mask) != mask) && 4766 !(status & HS_FFERM) && 4767 i++ < 20) { 4768 4769 if (i <= 5) 4770 msleep(10); 4771 else if (i <= 10) 4772 msleep(500); 4773 else 4774 msleep(2500); 4775 4776 if (i == 15) { 4777 /* Do post */ 4778 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4779 lpfc_sli_brdrestart(phba); 4780 } 4781 /* Read the HBA Host Status Register */ 4782 if (lpfc_readl(phba->HSregaddr, &status)) { 4783 retval = 1; 4784 break; 4785 } 4786 } 4787 4788 /* Check to see if any errors occurred during init */ 4789 if ((status & HS_FFERM) || (i >= 20)) { 4790 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4791 "2751 Adapter failed to restart, " 4792 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4793 status, 4794 readl(phba->MBslimaddr + 0xa8), 4795 readl(phba->MBslimaddr + 0xac)); 4796 phba->link_state = LPFC_HBA_ERROR; 4797 retval = 1; 4798 } 4799 4800 return retval; 4801 } 4802 4803 /** 4804 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4805 * @phba: Pointer to HBA context object. 4806 * @mask: Bit mask to be checked. 4807 * 4808 * This function checks the host status register to check if HBA is 4809 * ready. This function will wait in a loop for the HBA to be ready 4810 * If the HBA is not ready , the function will will reset the HBA PCI 4811 * function again. The function returns 1 when HBA fail to be ready 4812 * otherwise returns zero. 4813 **/ 4814 static int 4815 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4816 { 4817 uint32_t status; 4818 int retval = 0; 4819 4820 /* Read the HBA Host Status Register */ 4821 status = lpfc_sli4_post_status_check(phba); 4822 4823 if (status) { 4824 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4825 lpfc_sli_brdrestart(phba); 4826 status = lpfc_sli4_post_status_check(phba); 4827 } 4828 4829 /* Check to see if any errors occurred during init */ 4830 if (status) { 4831 phba->link_state = LPFC_HBA_ERROR; 4832 retval = 1; 4833 } else 4834 phba->sli4_hba.intr_enable = 0; 4835 4836 phba->hba_flag &= ~HBA_SETUP; 4837 return retval; 4838 } 4839 4840 /** 4841 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4842 * @phba: Pointer to HBA context object. 4843 * @mask: Bit mask to be checked. 4844 * 4845 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4846 * from the API jump table function pointer from the lpfc_hba struct. 4847 **/ 4848 int 4849 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4850 { 4851 return phba->lpfc_sli_brdready(phba, mask); 4852 } 4853 4854 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4855 4856 /** 4857 * lpfc_reset_barrier - Make HBA ready for HBA reset 4858 * @phba: Pointer to HBA context object. 4859 * 4860 * This function is called before resetting an HBA. This function is called 4861 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4862 **/ 4863 void lpfc_reset_barrier(struct lpfc_hba *phba) 4864 { 4865 uint32_t __iomem *resp_buf; 4866 uint32_t __iomem *mbox_buf; 4867 volatile struct MAILBOX_word0 mbox; 4868 uint32_t hc_copy, ha_copy, resp_data; 4869 int i; 4870 uint8_t hdrtype; 4871 4872 lockdep_assert_held(&phba->hbalock); 4873 4874 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4875 if (hdrtype != 0x80 || 4876 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4877 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4878 return; 4879 4880 /* 4881 * Tell the other part of the chip to suspend temporarily all 4882 * its DMA activity. 4883 */ 4884 resp_buf = phba->MBslimaddr; 4885 4886 /* Disable the error attention */ 4887 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4888 return; 4889 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4890 readl(phba->HCregaddr); /* flush */ 4891 phba->link_flag |= LS_IGNORE_ERATT; 4892 4893 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4894 return; 4895 if (ha_copy & HA_ERATT) { 4896 /* Clear Chip error bit */ 4897 writel(HA_ERATT, phba->HAregaddr); 4898 phba->pport->stopped = 1; 4899 } 4900 4901 mbox.word0 = 0; 4902 mbox.mbxCommand = MBX_KILL_BOARD; 4903 mbox.mbxOwner = OWN_CHIP; 4904 4905 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4906 mbox_buf = phba->MBslimaddr; 4907 writel(mbox.word0, mbox_buf); 4908 4909 for (i = 0; i < 50; i++) { 4910 if (lpfc_readl((resp_buf + 1), &resp_data)) 4911 return; 4912 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4913 mdelay(1); 4914 else 4915 break; 4916 } 4917 resp_data = 0; 4918 if (lpfc_readl((resp_buf + 1), &resp_data)) 4919 return; 4920 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4921 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4922 phba->pport->stopped) 4923 goto restore_hc; 4924 else 4925 goto clear_errat; 4926 } 4927 4928 mbox.mbxOwner = OWN_HOST; 4929 resp_data = 0; 4930 for (i = 0; i < 500; i++) { 4931 if (lpfc_readl(resp_buf, &resp_data)) 4932 return; 4933 if (resp_data != mbox.word0) 4934 mdelay(1); 4935 else 4936 break; 4937 } 4938 4939 clear_errat: 4940 4941 while (++i < 500) { 4942 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4943 return; 4944 if (!(ha_copy & HA_ERATT)) 4945 mdelay(1); 4946 else 4947 break; 4948 } 4949 4950 if (readl(phba->HAregaddr) & HA_ERATT) { 4951 writel(HA_ERATT, phba->HAregaddr); 4952 phba->pport->stopped = 1; 4953 } 4954 4955 restore_hc: 4956 phba->link_flag &= ~LS_IGNORE_ERATT; 4957 writel(hc_copy, phba->HCregaddr); 4958 readl(phba->HCregaddr); /* flush */ 4959 } 4960 4961 /** 4962 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4963 * @phba: Pointer to HBA context object. 4964 * 4965 * This function issues a kill_board mailbox command and waits for 4966 * the error attention interrupt. This function is called for stopping 4967 * the firmware processing. The caller is not required to hold any 4968 * locks. This function calls lpfc_hba_down_post function to free 4969 * any pending commands after the kill. The function will return 1 when it 4970 * fails to kill the board else will return 0. 4971 **/ 4972 int 4973 lpfc_sli_brdkill(struct lpfc_hba *phba) 4974 { 4975 struct lpfc_sli *psli; 4976 LPFC_MBOXQ_t *pmb; 4977 uint32_t status; 4978 uint32_t ha_copy; 4979 int retval; 4980 int i = 0; 4981 4982 psli = &phba->sli; 4983 4984 /* Kill HBA */ 4985 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4986 "0329 Kill HBA Data: x%x x%x\n", 4987 phba->pport->port_state, psli->sli_flag); 4988 4989 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4990 if (!pmb) 4991 return 1; 4992 4993 /* Disable the error attention */ 4994 spin_lock_irq(&phba->hbalock); 4995 if (lpfc_readl(phba->HCregaddr, &status)) { 4996 spin_unlock_irq(&phba->hbalock); 4997 mempool_free(pmb, phba->mbox_mem_pool); 4998 return 1; 4999 } 5000 status &= ~HC_ERINT_ENA; 5001 writel(status, phba->HCregaddr); 5002 readl(phba->HCregaddr); /* flush */ 5003 phba->link_flag |= LS_IGNORE_ERATT; 5004 spin_unlock_irq(&phba->hbalock); 5005 5006 lpfc_kill_board(phba, pmb); 5007 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5008 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5009 5010 if (retval != MBX_SUCCESS) { 5011 if (retval != MBX_BUSY) 5012 mempool_free(pmb, phba->mbox_mem_pool); 5013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5014 "2752 KILL_BOARD command failed retval %d\n", 5015 retval); 5016 spin_lock_irq(&phba->hbalock); 5017 phba->link_flag &= ~LS_IGNORE_ERATT; 5018 spin_unlock_irq(&phba->hbalock); 5019 return 1; 5020 } 5021 5022 spin_lock_irq(&phba->hbalock); 5023 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5024 spin_unlock_irq(&phba->hbalock); 5025 5026 mempool_free(pmb, phba->mbox_mem_pool); 5027 5028 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5029 * attention every 100ms for 3 seconds. If we don't get ERATT after 5030 * 3 seconds we still set HBA_ERROR state because the status of the 5031 * board is now undefined. 5032 */ 5033 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5034 return 1; 5035 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5036 mdelay(100); 5037 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5038 return 1; 5039 } 5040 5041 del_timer_sync(&psli->mbox_tmo); 5042 if (ha_copy & HA_ERATT) { 5043 writel(HA_ERATT, phba->HAregaddr); 5044 phba->pport->stopped = 1; 5045 } 5046 spin_lock_irq(&phba->hbalock); 5047 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5048 psli->mbox_active = NULL; 5049 phba->link_flag &= ~LS_IGNORE_ERATT; 5050 spin_unlock_irq(&phba->hbalock); 5051 5052 lpfc_hba_down_post(phba); 5053 phba->link_state = LPFC_HBA_ERROR; 5054 5055 return ha_copy & HA_ERATT ? 0 : 1; 5056 } 5057 5058 /** 5059 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5060 * @phba: Pointer to HBA context object. 5061 * 5062 * This function resets the HBA by writing HC_INITFF to the control 5063 * register. After the HBA resets, this function resets all the iocb ring 5064 * indices. This function disables PCI layer parity checking during 5065 * the reset. 5066 * This function returns 0 always. 5067 * The caller is not required to hold any locks. 5068 **/ 5069 int 5070 lpfc_sli_brdreset(struct lpfc_hba *phba) 5071 { 5072 struct lpfc_sli *psli; 5073 struct lpfc_sli_ring *pring; 5074 uint16_t cfg_value; 5075 int i; 5076 5077 psli = &phba->sli; 5078 5079 /* Reset HBA */ 5080 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5081 "0325 Reset HBA Data: x%x x%x\n", 5082 (phba->pport) ? phba->pport->port_state : 0, 5083 psli->sli_flag); 5084 5085 /* perform board reset */ 5086 phba->fc_eventTag = 0; 5087 phba->link_events = 0; 5088 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5089 if (phba->pport) { 5090 phba->pport->fc_myDID = 0; 5091 phba->pport->fc_prevDID = 0; 5092 } 5093 5094 /* Turn off parity checking and serr during the physical reset */ 5095 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5096 return -EIO; 5097 5098 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5099 (cfg_value & 5100 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5101 5102 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5103 5104 /* Now toggle INITFF bit in the Host Control Register */ 5105 writel(HC_INITFF, phba->HCregaddr); 5106 mdelay(1); 5107 readl(phba->HCregaddr); /* flush */ 5108 writel(0, phba->HCregaddr); 5109 readl(phba->HCregaddr); /* flush */ 5110 5111 /* Restore PCI cmd register */ 5112 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5113 5114 /* Initialize relevant SLI info */ 5115 for (i = 0; i < psli->num_rings; i++) { 5116 pring = &psli->sli3_ring[i]; 5117 pring->flag = 0; 5118 pring->sli.sli3.rspidx = 0; 5119 pring->sli.sli3.next_cmdidx = 0; 5120 pring->sli.sli3.local_getidx = 0; 5121 pring->sli.sli3.cmdidx = 0; 5122 pring->missbufcnt = 0; 5123 } 5124 5125 phba->link_state = LPFC_WARM_START; 5126 return 0; 5127 } 5128 5129 /** 5130 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5131 * @phba: Pointer to HBA context object. 5132 * 5133 * This function resets a SLI4 HBA. This function disables PCI layer parity 5134 * checking during resets the device. The caller is not required to hold 5135 * any locks. 5136 * 5137 * This function returns 0 on success else returns negative error code. 5138 **/ 5139 int 5140 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5141 { 5142 struct lpfc_sli *psli = &phba->sli; 5143 uint16_t cfg_value; 5144 int rc = 0; 5145 5146 /* Reset HBA */ 5147 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5148 "0295 Reset HBA Data: x%x x%x x%x\n", 5149 phba->pport->port_state, psli->sli_flag, 5150 phba->hba_flag); 5151 5152 /* perform board reset */ 5153 phba->fc_eventTag = 0; 5154 phba->link_events = 0; 5155 phba->pport->fc_myDID = 0; 5156 phba->pport->fc_prevDID = 0; 5157 phba->hba_flag &= ~HBA_SETUP; 5158 5159 spin_lock_irq(&phba->hbalock); 5160 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5161 phba->fcf.fcf_flag = 0; 5162 spin_unlock_irq(&phba->hbalock); 5163 5164 /* Now physically reset the device */ 5165 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5166 "0389 Performing PCI function reset!\n"); 5167 5168 /* Turn off parity checking and serr during the physical reset */ 5169 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5170 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5171 "3205 PCI read Config failed\n"); 5172 return -EIO; 5173 } 5174 5175 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5176 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5177 5178 /* Perform FCoE PCI function reset before freeing queue memory */ 5179 rc = lpfc_pci_function_reset(phba); 5180 5181 /* Restore PCI cmd register */ 5182 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5183 5184 return rc; 5185 } 5186 5187 /** 5188 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5189 * @phba: Pointer to HBA context object. 5190 * 5191 * This function is called in the SLI initialization code path to 5192 * restart the HBA. The caller is not required to hold any lock. 5193 * This function writes MBX_RESTART mailbox command to the SLIM and 5194 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5195 * function to free any pending commands. The function enables 5196 * POST only during the first initialization. The function returns zero. 5197 * The function does not guarantee completion of MBX_RESTART mailbox 5198 * command before the return of this function. 5199 **/ 5200 static int 5201 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5202 { 5203 volatile struct MAILBOX_word0 mb; 5204 struct lpfc_sli *psli; 5205 void __iomem *to_slim; 5206 5207 spin_lock_irq(&phba->hbalock); 5208 5209 psli = &phba->sli; 5210 5211 /* Restart HBA */ 5212 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5213 "0337 Restart HBA Data: x%x x%x\n", 5214 (phba->pport) ? phba->pport->port_state : 0, 5215 psli->sli_flag); 5216 5217 mb.word0 = 0; 5218 mb.mbxCommand = MBX_RESTART; 5219 mb.mbxHc = 1; 5220 5221 lpfc_reset_barrier(phba); 5222 5223 to_slim = phba->MBslimaddr; 5224 writel(mb.word0, to_slim); 5225 readl(to_slim); /* flush */ 5226 5227 /* Only skip post after fc_ffinit is completed */ 5228 if (phba->pport && phba->pport->port_state) 5229 mb.word0 = 1; /* This is really setting up word1 */ 5230 else 5231 mb.word0 = 0; /* This is really setting up word1 */ 5232 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5233 writel(mb.word0, to_slim); 5234 readl(to_slim); /* flush */ 5235 5236 lpfc_sli_brdreset(phba); 5237 if (phba->pport) 5238 phba->pport->stopped = 0; 5239 phba->link_state = LPFC_INIT_START; 5240 phba->hba_flag = 0; 5241 spin_unlock_irq(&phba->hbalock); 5242 5243 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5244 psli->stats_start = ktime_get_seconds(); 5245 5246 /* Give the INITFF and Post time to settle. */ 5247 mdelay(100); 5248 5249 lpfc_hba_down_post(phba); 5250 5251 return 0; 5252 } 5253 5254 /** 5255 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5256 * @phba: Pointer to HBA context object. 5257 * 5258 * This function is called in the SLI initialization code path to restart 5259 * a SLI4 HBA. The caller is not required to hold any lock. 5260 * At the end of the function, it calls lpfc_hba_down_post function to 5261 * free any pending commands. 5262 **/ 5263 static int 5264 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5265 { 5266 struct lpfc_sli *psli = &phba->sli; 5267 int rc; 5268 5269 /* Restart HBA */ 5270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5271 "0296 Restart HBA Data: x%x x%x\n", 5272 phba->pport->port_state, psli->sli_flag); 5273 5274 rc = lpfc_sli4_brdreset(phba); 5275 if (rc) { 5276 phba->link_state = LPFC_HBA_ERROR; 5277 goto hba_down_queue; 5278 } 5279 5280 spin_lock_irq(&phba->hbalock); 5281 phba->pport->stopped = 0; 5282 phba->link_state = LPFC_INIT_START; 5283 phba->hba_flag = 0; 5284 /* Preserve FA-PWWN expectation */ 5285 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5286 spin_unlock_irq(&phba->hbalock); 5287 5288 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5289 psli->stats_start = ktime_get_seconds(); 5290 5291 hba_down_queue: 5292 lpfc_hba_down_post(phba); 5293 lpfc_sli4_queue_destroy(phba); 5294 5295 return rc; 5296 } 5297 5298 /** 5299 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5300 * @phba: Pointer to HBA context object. 5301 * 5302 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5303 * API jump table function pointer from the lpfc_hba struct. 5304 **/ 5305 int 5306 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5307 { 5308 return phba->lpfc_sli_brdrestart(phba); 5309 } 5310 5311 /** 5312 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5313 * @phba: Pointer to HBA context object. 5314 * 5315 * This function is called after a HBA restart to wait for successful 5316 * restart of the HBA. Successful restart of the HBA is indicated by 5317 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5318 * iteration, the function will restart the HBA again. The function returns 5319 * zero if HBA successfully restarted else returns negative error code. 5320 **/ 5321 int 5322 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5323 { 5324 uint32_t status, i = 0; 5325 5326 /* Read the HBA Host Status Register */ 5327 if (lpfc_readl(phba->HSregaddr, &status)) 5328 return -EIO; 5329 5330 /* Check status register to see what current state is */ 5331 i = 0; 5332 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5333 5334 /* Check every 10ms for 10 retries, then every 100ms for 90 5335 * retries, then every 1 sec for 50 retires for a total of 5336 * ~60 seconds before reset the board again and check every 5337 * 1 sec for 50 retries. The up to 60 seconds before the 5338 * board ready is required by the Falcon FIPS zeroization 5339 * complete, and any reset the board in between shall cause 5340 * restart of zeroization, further delay the board ready. 5341 */ 5342 if (i++ >= 200) { 5343 /* Adapter failed to init, timeout, status reg 5344 <status> */ 5345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5346 "0436 Adapter failed to init, " 5347 "timeout, status reg x%x, " 5348 "FW Data: A8 x%x AC x%x\n", status, 5349 readl(phba->MBslimaddr + 0xa8), 5350 readl(phba->MBslimaddr + 0xac)); 5351 phba->link_state = LPFC_HBA_ERROR; 5352 return -ETIMEDOUT; 5353 } 5354 5355 /* Check to see if any errors occurred during init */ 5356 if (status & HS_FFERM) { 5357 /* ERROR: During chipset initialization */ 5358 /* Adapter failed to init, chipset, status reg 5359 <status> */ 5360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5361 "0437 Adapter failed to init, " 5362 "chipset, status reg x%x, " 5363 "FW Data: A8 x%x AC x%x\n", status, 5364 readl(phba->MBslimaddr + 0xa8), 5365 readl(phba->MBslimaddr + 0xac)); 5366 phba->link_state = LPFC_HBA_ERROR; 5367 return -EIO; 5368 } 5369 5370 if (i <= 10) 5371 msleep(10); 5372 else if (i <= 100) 5373 msleep(100); 5374 else 5375 msleep(1000); 5376 5377 if (i == 150) { 5378 /* Do post */ 5379 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5380 lpfc_sli_brdrestart(phba); 5381 } 5382 /* Read the HBA Host Status Register */ 5383 if (lpfc_readl(phba->HSregaddr, &status)) 5384 return -EIO; 5385 } 5386 5387 /* Check to see if any errors occurred during init */ 5388 if (status & HS_FFERM) { 5389 /* ERROR: During chipset initialization */ 5390 /* Adapter failed to init, chipset, status reg <status> */ 5391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5392 "0438 Adapter failed to init, chipset, " 5393 "status reg x%x, " 5394 "FW Data: A8 x%x AC x%x\n", status, 5395 readl(phba->MBslimaddr + 0xa8), 5396 readl(phba->MBslimaddr + 0xac)); 5397 phba->link_state = LPFC_HBA_ERROR; 5398 return -EIO; 5399 } 5400 5401 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5402 5403 /* Clear all interrupt enable conditions */ 5404 writel(0, phba->HCregaddr); 5405 readl(phba->HCregaddr); /* flush */ 5406 5407 /* setup host attn register */ 5408 writel(0xffffffff, phba->HAregaddr); 5409 readl(phba->HAregaddr); /* flush */ 5410 return 0; 5411 } 5412 5413 /** 5414 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5415 * 5416 * This function calculates and returns the number of HBQs required to be 5417 * configured. 5418 **/ 5419 int 5420 lpfc_sli_hbq_count(void) 5421 { 5422 return ARRAY_SIZE(lpfc_hbq_defs); 5423 } 5424 5425 /** 5426 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5427 * 5428 * This function adds the number of hbq entries in every HBQ to get 5429 * the total number of hbq entries required for the HBA and returns 5430 * the total count. 5431 **/ 5432 static int 5433 lpfc_sli_hbq_entry_count(void) 5434 { 5435 int hbq_count = lpfc_sli_hbq_count(); 5436 int count = 0; 5437 int i; 5438 5439 for (i = 0; i < hbq_count; ++i) 5440 count += lpfc_hbq_defs[i]->entry_count; 5441 return count; 5442 } 5443 5444 /** 5445 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5446 * 5447 * This function calculates amount of memory required for all hbq entries 5448 * to be configured and returns the total memory required. 5449 **/ 5450 int 5451 lpfc_sli_hbq_size(void) 5452 { 5453 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5454 } 5455 5456 /** 5457 * lpfc_sli_hbq_setup - configure and initialize HBQs 5458 * @phba: Pointer to HBA context object. 5459 * 5460 * This function is called during the SLI initialization to configure 5461 * all the HBQs and post buffers to the HBQ. The caller is not 5462 * required to hold any locks. This function will return zero if successful 5463 * else it will return negative error code. 5464 **/ 5465 static int 5466 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5467 { 5468 int hbq_count = lpfc_sli_hbq_count(); 5469 LPFC_MBOXQ_t *pmb; 5470 MAILBOX_t *pmbox; 5471 uint32_t hbqno; 5472 uint32_t hbq_entry_index; 5473 5474 /* Get a Mailbox buffer to setup mailbox 5475 * commands for HBA initialization 5476 */ 5477 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5478 5479 if (!pmb) 5480 return -ENOMEM; 5481 5482 pmbox = &pmb->u.mb; 5483 5484 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5485 phba->link_state = LPFC_INIT_MBX_CMDS; 5486 phba->hbq_in_use = 1; 5487 5488 hbq_entry_index = 0; 5489 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5490 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5491 phba->hbqs[hbqno].hbqPutIdx = 0; 5492 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5493 phba->hbqs[hbqno].entry_count = 5494 lpfc_hbq_defs[hbqno]->entry_count; 5495 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5496 hbq_entry_index, pmb); 5497 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5498 5499 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5500 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5501 mbxStatus <status>, ring <num> */ 5502 5503 lpfc_printf_log(phba, KERN_ERR, 5504 LOG_SLI | LOG_VPORT, 5505 "1805 Adapter failed to init. " 5506 "Data: x%x x%x x%x\n", 5507 pmbox->mbxCommand, 5508 pmbox->mbxStatus, hbqno); 5509 5510 phba->link_state = LPFC_HBA_ERROR; 5511 mempool_free(pmb, phba->mbox_mem_pool); 5512 return -ENXIO; 5513 } 5514 } 5515 phba->hbq_count = hbq_count; 5516 5517 mempool_free(pmb, phba->mbox_mem_pool); 5518 5519 /* Initially populate or replenish the HBQs */ 5520 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5521 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5522 return 0; 5523 } 5524 5525 /** 5526 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5527 * @phba: Pointer to HBA context object. 5528 * 5529 * This function is called during the SLI initialization to configure 5530 * all the HBQs and post buffers to the HBQ. The caller is not 5531 * required to hold any locks. This function will return zero if successful 5532 * else it will return negative error code. 5533 **/ 5534 static int 5535 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5536 { 5537 phba->hbq_in_use = 1; 5538 /** 5539 * Specific case when the MDS diagnostics is enabled and supported. 5540 * The receive buffer count is truncated to manage the incoming 5541 * traffic. 5542 **/ 5543 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5544 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5545 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5546 else 5547 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5548 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5549 phba->hbq_count = 1; 5550 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5551 /* Initially populate or replenish the HBQs */ 5552 return 0; 5553 } 5554 5555 /** 5556 * lpfc_sli_config_port - Issue config port mailbox command 5557 * @phba: Pointer to HBA context object. 5558 * @sli_mode: sli mode - 2/3 5559 * 5560 * This function is called by the sli initialization code path 5561 * to issue config_port mailbox command. This function restarts the 5562 * HBA firmware and issues a config_port mailbox command to configure 5563 * the SLI interface in the sli mode specified by sli_mode 5564 * variable. The caller is not required to hold any locks. 5565 * The function returns 0 if successful, else returns negative error 5566 * code. 5567 **/ 5568 int 5569 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5570 { 5571 LPFC_MBOXQ_t *pmb; 5572 uint32_t resetcount = 0, rc = 0, done = 0; 5573 5574 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5575 if (!pmb) { 5576 phba->link_state = LPFC_HBA_ERROR; 5577 return -ENOMEM; 5578 } 5579 5580 phba->sli_rev = sli_mode; 5581 while (resetcount < 2 && !done) { 5582 spin_lock_irq(&phba->hbalock); 5583 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5584 spin_unlock_irq(&phba->hbalock); 5585 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5586 lpfc_sli_brdrestart(phba); 5587 rc = lpfc_sli_chipset_init(phba); 5588 if (rc) 5589 break; 5590 5591 spin_lock_irq(&phba->hbalock); 5592 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5593 spin_unlock_irq(&phba->hbalock); 5594 resetcount++; 5595 5596 /* Call pre CONFIG_PORT mailbox command initialization. A 5597 * value of 0 means the call was successful. Any other 5598 * nonzero value is a failure, but if ERESTART is returned, 5599 * the driver may reset the HBA and try again. 5600 */ 5601 rc = lpfc_config_port_prep(phba); 5602 if (rc == -ERESTART) { 5603 phba->link_state = LPFC_LINK_UNKNOWN; 5604 continue; 5605 } else if (rc) 5606 break; 5607 5608 phba->link_state = LPFC_INIT_MBX_CMDS; 5609 lpfc_config_port(phba, pmb); 5610 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5611 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5612 LPFC_SLI3_HBQ_ENABLED | 5613 LPFC_SLI3_CRP_ENABLED | 5614 LPFC_SLI3_DSS_ENABLED); 5615 if (rc != MBX_SUCCESS) { 5616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5617 "0442 Adapter failed to init, mbxCmd x%x " 5618 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5619 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5620 spin_lock_irq(&phba->hbalock); 5621 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5622 spin_unlock_irq(&phba->hbalock); 5623 rc = -ENXIO; 5624 } else { 5625 /* Allow asynchronous mailbox command to go through */ 5626 spin_lock_irq(&phba->hbalock); 5627 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5628 spin_unlock_irq(&phba->hbalock); 5629 done = 1; 5630 5631 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5632 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5633 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5634 "3110 Port did not grant ASABT\n"); 5635 } 5636 } 5637 if (!done) { 5638 rc = -EINVAL; 5639 goto do_prep_failed; 5640 } 5641 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5642 if (!pmb->u.mb.un.varCfgPort.cMA) { 5643 rc = -ENXIO; 5644 goto do_prep_failed; 5645 } 5646 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5647 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5648 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5649 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5650 phba->max_vpi : phba->max_vports; 5651 5652 } else 5653 phba->max_vpi = 0; 5654 if (pmb->u.mb.un.varCfgPort.gerbm) 5655 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5656 if (pmb->u.mb.un.varCfgPort.gcrp) 5657 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5658 5659 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5660 phba->port_gp = phba->mbox->us.s3_pgp.port; 5661 5662 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5663 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5664 phba->cfg_enable_bg = 0; 5665 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5667 "0443 Adapter did not grant " 5668 "BlockGuard\n"); 5669 } 5670 } 5671 } else { 5672 phba->hbq_get = NULL; 5673 phba->port_gp = phba->mbox->us.s2.port; 5674 phba->max_vpi = 0; 5675 } 5676 do_prep_failed: 5677 mempool_free(pmb, phba->mbox_mem_pool); 5678 return rc; 5679 } 5680 5681 5682 /** 5683 * lpfc_sli_hba_setup - SLI initialization function 5684 * @phba: Pointer to HBA context object. 5685 * 5686 * This function is the main SLI initialization function. This function 5687 * is called by the HBA initialization code, HBA reset code and HBA 5688 * error attention handler code. Caller is not required to hold any 5689 * locks. This function issues config_port mailbox command to configure 5690 * the SLI, setup iocb rings and HBQ rings. In the end the function 5691 * calls the config_port_post function to issue init_link mailbox 5692 * command and to start the discovery. The function will return zero 5693 * if successful, else it will return negative error code. 5694 **/ 5695 int 5696 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5697 { 5698 uint32_t rc; 5699 int i; 5700 int longs; 5701 5702 /* Enable ISR already does config_port because of config_msi mbx */ 5703 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5704 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5705 if (rc) 5706 return -EIO; 5707 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5708 } 5709 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5710 5711 if (phba->sli_rev == 3) { 5712 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5713 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5714 } else { 5715 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5716 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5717 phba->sli3_options = 0; 5718 } 5719 5720 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5721 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5722 phba->sli_rev, phba->max_vpi); 5723 rc = lpfc_sli_ring_map(phba); 5724 5725 if (rc) 5726 goto lpfc_sli_hba_setup_error; 5727 5728 /* Initialize VPIs. */ 5729 if (phba->sli_rev == LPFC_SLI_REV3) { 5730 /* 5731 * The VPI bitmask and physical ID array are allocated 5732 * and initialized once only - at driver load. A port 5733 * reset doesn't need to reinitialize this memory. 5734 */ 5735 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5736 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5737 phba->vpi_bmask = kcalloc(longs, 5738 sizeof(unsigned long), 5739 GFP_KERNEL); 5740 if (!phba->vpi_bmask) { 5741 rc = -ENOMEM; 5742 goto lpfc_sli_hba_setup_error; 5743 } 5744 5745 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5746 sizeof(uint16_t), 5747 GFP_KERNEL); 5748 if (!phba->vpi_ids) { 5749 kfree(phba->vpi_bmask); 5750 rc = -ENOMEM; 5751 goto lpfc_sli_hba_setup_error; 5752 } 5753 for (i = 0; i < phba->max_vpi; i++) 5754 phba->vpi_ids[i] = i; 5755 } 5756 } 5757 5758 /* Init HBQs */ 5759 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5760 rc = lpfc_sli_hbq_setup(phba); 5761 if (rc) 5762 goto lpfc_sli_hba_setup_error; 5763 } 5764 spin_lock_irq(&phba->hbalock); 5765 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5766 spin_unlock_irq(&phba->hbalock); 5767 5768 rc = lpfc_config_port_post(phba); 5769 if (rc) 5770 goto lpfc_sli_hba_setup_error; 5771 5772 return rc; 5773 5774 lpfc_sli_hba_setup_error: 5775 phba->link_state = LPFC_HBA_ERROR; 5776 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5777 "0445 Firmware initialization failed\n"); 5778 return rc; 5779 } 5780 5781 /** 5782 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5783 * @phba: Pointer to HBA context object. 5784 * 5785 * This function issue a dump mailbox command to read config region 5786 * 23 and parse the records in the region and populate driver 5787 * data structure. 5788 **/ 5789 static int 5790 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5791 { 5792 LPFC_MBOXQ_t *mboxq; 5793 struct lpfc_dmabuf *mp; 5794 struct lpfc_mqe *mqe; 5795 uint32_t data_length; 5796 int rc; 5797 5798 /* Program the default value of vlan_id and fc_map */ 5799 phba->valid_vlan = 0; 5800 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5801 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5802 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5803 5804 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5805 if (!mboxq) 5806 return -ENOMEM; 5807 5808 mqe = &mboxq->u.mqe; 5809 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5810 rc = -ENOMEM; 5811 goto out_free_mboxq; 5812 } 5813 5814 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5815 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5816 5817 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5818 "(%d):2571 Mailbox cmd x%x Status x%x " 5819 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5820 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5821 "CQ: x%x x%x x%x x%x\n", 5822 mboxq->vport ? mboxq->vport->vpi : 0, 5823 bf_get(lpfc_mqe_command, mqe), 5824 bf_get(lpfc_mqe_status, mqe), 5825 mqe->un.mb_words[0], mqe->un.mb_words[1], 5826 mqe->un.mb_words[2], mqe->un.mb_words[3], 5827 mqe->un.mb_words[4], mqe->un.mb_words[5], 5828 mqe->un.mb_words[6], mqe->un.mb_words[7], 5829 mqe->un.mb_words[8], mqe->un.mb_words[9], 5830 mqe->un.mb_words[10], mqe->un.mb_words[11], 5831 mqe->un.mb_words[12], mqe->un.mb_words[13], 5832 mqe->un.mb_words[14], mqe->un.mb_words[15], 5833 mqe->un.mb_words[16], mqe->un.mb_words[50], 5834 mboxq->mcqe.word0, 5835 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5836 mboxq->mcqe.trailer); 5837 5838 if (rc) { 5839 rc = -EIO; 5840 goto out_free_mboxq; 5841 } 5842 data_length = mqe->un.mb_words[5]; 5843 if (data_length > DMP_RGN23_SIZE) { 5844 rc = -EIO; 5845 goto out_free_mboxq; 5846 } 5847 5848 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5849 rc = 0; 5850 5851 out_free_mboxq: 5852 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5853 return rc; 5854 } 5855 5856 /** 5857 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5858 * @phba: pointer to lpfc hba data structure. 5859 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5860 * @vpd: pointer to the memory to hold resulting port vpd data. 5861 * @vpd_size: On input, the number of bytes allocated to @vpd. 5862 * On output, the number of data bytes in @vpd. 5863 * 5864 * This routine executes a READ_REV SLI4 mailbox command. In 5865 * addition, this routine gets the port vpd data. 5866 * 5867 * Return codes 5868 * 0 - successful 5869 * -ENOMEM - could not allocated memory. 5870 **/ 5871 static int 5872 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5873 uint8_t *vpd, uint32_t *vpd_size) 5874 { 5875 int rc = 0; 5876 uint32_t dma_size; 5877 struct lpfc_dmabuf *dmabuf; 5878 struct lpfc_mqe *mqe; 5879 5880 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5881 if (!dmabuf) 5882 return -ENOMEM; 5883 5884 /* 5885 * Get a DMA buffer for the vpd data resulting from the READ_REV 5886 * mailbox command. 5887 */ 5888 dma_size = *vpd_size; 5889 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5890 &dmabuf->phys, GFP_KERNEL); 5891 if (!dmabuf->virt) { 5892 kfree(dmabuf); 5893 return -ENOMEM; 5894 } 5895 5896 /* 5897 * The SLI4 implementation of READ_REV conflicts at word1, 5898 * bits 31:16 and SLI4 adds vpd functionality not present 5899 * in SLI3. This code corrects the conflicts. 5900 */ 5901 lpfc_read_rev(phba, mboxq); 5902 mqe = &mboxq->u.mqe; 5903 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5904 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5905 mqe->un.read_rev.word1 &= 0x0000FFFF; 5906 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5907 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5908 5909 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5910 if (rc) { 5911 dma_free_coherent(&phba->pcidev->dev, dma_size, 5912 dmabuf->virt, dmabuf->phys); 5913 kfree(dmabuf); 5914 return -EIO; 5915 } 5916 5917 /* 5918 * The available vpd length cannot be bigger than the 5919 * DMA buffer passed to the port. Catch the less than 5920 * case and update the caller's size. 5921 */ 5922 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5923 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5924 5925 memcpy(vpd, dmabuf->virt, *vpd_size); 5926 5927 dma_free_coherent(&phba->pcidev->dev, dma_size, 5928 dmabuf->virt, dmabuf->phys); 5929 kfree(dmabuf); 5930 return 0; 5931 } 5932 5933 /** 5934 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5935 * @phba: pointer to lpfc hba data structure. 5936 * 5937 * This routine retrieves SLI4 device physical port name this PCI function 5938 * is attached to. 5939 * 5940 * Return codes 5941 * 0 - successful 5942 * otherwise - failed to retrieve controller attributes 5943 **/ 5944 static int 5945 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5946 { 5947 LPFC_MBOXQ_t *mboxq; 5948 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5949 struct lpfc_controller_attribute *cntl_attr; 5950 void *virtaddr = NULL; 5951 uint32_t alloclen, reqlen; 5952 uint32_t shdr_status, shdr_add_status; 5953 union lpfc_sli4_cfg_shdr *shdr; 5954 int rc; 5955 5956 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5957 if (!mboxq) 5958 return -ENOMEM; 5959 5960 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5961 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5962 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5963 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5964 LPFC_SLI4_MBX_NEMBED); 5965 5966 if (alloclen < reqlen) { 5967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5968 "3084 Allocated DMA memory size (%d) is " 5969 "less than the requested DMA memory size " 5970 "(%d)\n", alloclen, reqlen); 5971 rc = -ENOMEM; 5972 goto out_free_mboxq; 5973 } 5974 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5975 virtaddr = mboxq->sge_array->addr[0]; 5976 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5977 shdr = &mbx_cntl_attr->cfg_shdr; 5978 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5979 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5980 if (shdr_status || shdr_add_status || rc) { 5981 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5982 "3085 Mailbox x%x (x%x/x%x) failed, " 5983 "rc:x%x, status:x%x, add_status:x%x\n", 5984 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5985 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5986 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5987 rc, shdr_status, shdr_add_status); 5988 rc = -ENXIO; 5989 goto out_free_mboxq; 5990 } 5991 5992 cntl_attr = &mbx_cntl_attr->cntl_attr; 5993 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5994 phba->sli4_hba.lnk_info.lnk_tp = 5995 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5996 phba->sli4_hba.lnk_info.lnk_no = 5997 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5998 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5999 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6000 6001 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6002 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6003 sizeof(phba->BIOSVersion)); 6004 6005 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6006 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6007 "flash_id: x%02x, asic_rev: x%02x\n", 6008 phba->sli4_hba.lnk_info.lnk_tp, 6009 phba->sli4_hba.lnk_info.lnk_no, 6010 phba->BIOSVersion, phba->sli4_hba.flash_id, 6011 phba->sli4_hba.asic_rev); 6012 out_free_mboxq: 6013 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6014 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6015 else 6016 mempool_free(mboxq, phba->mbox_mem_pool); 6017 return rc; 6018 } 6019 6020 /** 6021 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6022 * @phba: pointer to lpfc hba data structure. 6023 * 6024 * This routine retrieves SLI4 device physical port name this PCI function 6025 * is attached to. 6026 * 6027 * Return codes 6028 * 0 - successful 6029 * otherwise - failed to retrieve physical port name 6030 **/ 6031 static int 6032 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6033 { 6034 LPFC_MBOXQ_t *mboxq; 6035 struct lpfc_mbx_get_port_name *get_port_name; 6036 uint32_t shdr_status, shdr_add_status; 6037 union lpfc_sli4_cfg_shdr *shdr; 6038 char cport_name = 0; 6039 int rc; 6040 6041 /* We assume nothing at this point */ 6042 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6043 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6044 6045 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6046 if (!mboxq) 6047 return -ENOMEM; 6048 /* obtain link type and link number via READ_CONFIG */ 6049 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6050 lpfc_sli4_read_config(phba); 6051 6052 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6053 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6054 6055 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6056 goto retrieve_ppname; 6057 6058 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6059 rc = lpfc_sli4_get_ctl_attr(phba); 6060 if (rc) 6061 goto out_free_mboxq; 6062 6063 retrieve_ppname: 6064 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6065 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6066 sizeof(struct lpfc_mbx_get_port_name) - 6067 sizeof(struct lpfc_sli4_cfg_mhdr), 6068 LPFC_SLI4_MBX_EMBED); 6069 get_port_name = &mboxq->u.mqe.un.get_port_name; 6070 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6071 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6072 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6073 phba->sli4_hba.lnk_info.lnk_tp); 6074 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6075 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6076 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6077 if (shdr_status || shdr_add_status || rc) { 6078 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6079 "3087 Mailbox x%x (x%x/x%x) failed: " 6080 "rc:x%x, status:x%x, add_status:x%x\n", 6081 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6082 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6083 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6084 rc, shdr_status, shdr_add_status); 6085 rc = -ENXIO; 6086 goto out_free_mboxq; 6087 } 6088 switch (phba->sli4_hba.lnk_info.lnk_no) { 6089 case LPFC_LINK_NUMBER_0: 6090 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6091 &get_port_name->u.response); 6092 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6093 break; 6094 case LPFC_LINK_NUMBER_1: 6095 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6096 &get_port_name->u.response); 6097 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6098 break; 6099 case LPFC_LINK_NUMBER_2: 6100 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6101 &get_port_name->u.response); 6102 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6103 break; 6104 case LPFC_LINK_NUMBER_3: 6105 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6106 &get_port_name->u.response); 6107 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6108 break; 6109 default: 6110 break; 6111 } 6112 6113 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6114 phba->Port[0] = cport_name; 6115 phba->Port[1] = '\0'; 6116 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6117 "3091 SLI get port name: %s\n", phba->Port); 6118 } 6119 6120 out_free_mboxq: 6121 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6122 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6123 else 6124 mempool_free(mboxq, phba->mbox_mem_pool); 6125 return rc; 6126 } 6127 6128 /** 6129 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6130 * @phba: pointer to lpfc hba data structure. 6131 * 6132 * This routine is called to explicitly arm the SLI4 device's completion and 6133 * event queues 6134 **/ 6135 static void 6136 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6137 { 6138 int qidx; 6139 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6140 struct lpfc_sli4_hdw_queue *qp; 6141 struct lpfc_queue *eq; 6142 6143 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6144 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6145 if (sli4_hba->nvmels_cq) 6146 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6147 LPFC_QUEUE_REARM); 6148 6149 if (sli4_hba->hdwq) { 6150 /* Loop thru all Hardware Queues */ 6151 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6152 qp = &sli4_hba->hdwq[qidx]; 6153 /* ARM the corresponding CQ */ 6154 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6155 LPFC_QUEUE_REARM); 6156 } 6157 6158 /* Loop thru all IRQ vectors */ 6159 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6160 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6161 /* ARM the corresponding EQ */ 6162 sli4_hba->sli4_write_eq_db(phba, eq, 6163 0, LPFC_QUEUE_REARM); 6164 } 6165 } 6166 6167 if (phba->nvmet_support) { 6168 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6169 sli4_hba->sli4_write_cq_db(phba, 6170 sli4_hba->nvmet_cqset[qidx], 0, 6171 LPFC_QUEUE_REARM); 6172 } 6173 } 6174 } 6175 6176 /** 6177 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6178 * @phba: Pointer to HBA context object. 6179 * @type: The resource extent type. 6180 * @extnt_count: buffer to hold port available extent count. 6181 * @extnt_size: buffer to hold element count per extent. 6182 * 6183 * This function calls the port and retrievs the number of available 6184 * extents and their size for a particular extent type. 6185 * 6186 * Returns: 0 if successful. Nonzero otherwise. 6187 **/ 6188 int 6189 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6190 uint16_t *extnt_count, uint16_t *extnt_size) 6191 { 6192 int rc = 0; 6193 uint32_t length; 6194 uint32_t mbox_tmo; 6195 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6196 LPFC_MBOXQ_t *mbox; 6197 6198 *extnt_count = 0; 6199 *extnt_size = 0; 6200 6201 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6202 if (!mbox) 6203 return -ENOMEM; 6204 6205 /* Find out how many extents are available for this resource type */ 6206 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6207 sizeof(struct lpfc_sli4_cfg_mhdr)); 6208 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6209 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6210 length, LPFC_SLI4_MBX_EMBED); 6211 6212 /* Send an extents count of 0 - the GET doesn't use it. */ 6213 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6214 LPFC_SLI4_MBX_EMBED); 6215 if (unlikely(rc)) { 6216 rc = -EIO; 6217 goto err_exit; 6218 } 6219 6220 if (!phba->sli4_hba.intr_enable) 6221 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6222 else { 6223 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6224 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6225 } 6226 if (unlikely(rc)) { 6227 rc = -EIO; 6228 goto err_exit; 6229 } 6230 6231 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6232 if (bf_get(lpfc_mbox_hdr_status, 6233 &rsrc_info->header.cfg_shdr.response)) { 6234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6235 "2930 Failed to get resource extents " 6236 "Status 0x%x Add'l Status 0x%x\n", 6237 bf_get(lpfc_mbox_hdr_status, 6238 &rsrc_info->header.cfg_shdr.response), 6239 bf_get(lpfc_mbox_hdr_add_status, 6240 &rsrc_info->header.cfg_shdr.response)); 6241 rc = -EIO; 6242 goto err_exit; 6243 } 6244 6245 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6246 &rsrc_info->u.rsp); 6247 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6248 &rsrc_info->u.rsp); 6249 6250 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6251 "3162 Retrieved extents type-%d from port: count:%d, " 6252 "size:%d\n", type, *extnt_count, *extnt_size); 6253 6254 err_exit: 6255 mempool_free(mbox, phba->mbox_mem_pool); 6256 return rc; 6257 } 6258 6259 /** 6260 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6261 * @phba: Pointer to HBA context object. 6262 * @type: The extent type to check. 6263 * 6264 * This function reads the current available extents from the port and checks 6265 * if the extent count or extent size has changed since the last access. 6266 * Callers use this routine post port reset to understand if there is a 6267 * extent reprovisioning requirement. 6268 * 6269 * Returns: 6270 * -Error: error indicates problem. 6271 * 1: Extent count or size has changed. 6272 * 0: No changes. 6273 **/ 6274 static int 6275 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6276 { 6277 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6278 uint16_t size_diff, rsrc_ext_size; 6279 int rc = 0; 6280 struct lpfc_rsrc_blks *rsrc_entry; 6281 struct list_head *rsrc_blk_list = NULL; 6282 6283 size_diff = 0; 6284 curr_ext_cnt = 0; 6285 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6286 &rsrc_ext_cnt, 6287 &rsrc_ext_size); 6288 if (unlikely(rc)) 6289 return -EIO; 6290 6291 switch (type) { 6292 case LPFC_RSC_TYPE_FCOE_RPI: 6293 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6294 break; 6295 case LPFC_RSC_TYPE_FCOE_VPI: 6296 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6297 break; 6298 case LPFC_RSC_TYPE_FCOE_XRI: 6299 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6300 break; 6301 case LPFC_RSC_TYPE_FCOE_VFI: 6302 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6303 break; 6304 default: 6305 break; 6306 } 6307 6308 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6309 curr_ext_cnt++; 6310 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6311 size_diff++; 6312 } 6313 6314 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6315 rc = 1; 6316 6317 return rc; 6318 } 6319 6320 /** 6321 * lpfc_sli4_cfg_post_extnts - 6322 * @phba: Pointer to HBA context object. 6323 * @extnt_cnt: number of available extents. 6324 * @type: the extent type (rpi, xri, vfi, vpi). 6325 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6326 * @mbox: pointer to the caller's allocated mailbox structure. 6327 * 6328 * This function executes the extents allocation request. It also 6329 * takes care of the amount of memory needed to allocate or get the 6330 * allocated extents. It is the caller's responsibility to evaluate 6331 * the response. 6332 * 6333 * Returns: 6334 * -Error: Error value describes the condition found. 6335 * 0: if successful 6336 **/ 6337 static int 6338 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6339 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6340 { 6341 int rc = 0; 6342 uint32_t req_len; 6343 uint32_t emb_len; 6344 uint32_t alloc_len, mbox_tmo; 6345 6346 /* Calculate the total requested length of the dma memory */ 6347 req_len = extnt_cnt * sizeof(uint16_t); 6348 6349 /* 6350 * Calculate the size of an embedded mailbox. The uint32_t 6351 * accounts for extents-specific word. 6352 */ 6353 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6354 sizeof(uint32_t); 6355 6356 /* 6357 * Presume the allocation and response will fit into an embedded 6358 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6359 */ 6360 *emb = LPFC_SLI4_MBX_EMBED; 6361 if (req_len > emb_len) { 6362 req_len = extnt_cnt * sizeof(uint16_t) + 6363 sizeof(union lpfc_sli4_cfg_shdr) + 6364 sizeof(uint32_t); 6365 *emb = LPFC_SLI4_MBX_NEMBED; 6366 } 6367 6368 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6369 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6370 req_len, *emb); 6371 if (alloc_len < req_len) { 6372 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6373 "2982 Allocated DMA memory size (x%x) is " 6374 "less than the requested DMA memory " 6375 "size (x%x)\n", alloc_len, req_len); 6376 return -ENOMEM; 6377 } 6378 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6379 if (unlikely(rc)) 6380 return -EIO; 6381 6382 if (!phba->sli4_hba.intr_enable) 6383 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6384 else { 6385 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6386 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6387 } 6388 6389 if (unlikely(rc)) 6390 rc = -EIO; 6391 return rc; 6392 } 6393 6394 /** 6395 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6396 * @phba: Pointer to HBA context object. 6397 * @type: The resource extent type to allocate. 6398 * 6399 * This function allocates the number of elements for the specified 6400 * resource type. 6401 **/ 6402 static int 6403 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6404 { 6405 bool emb = false; 6406 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6407 uint16_t rsrc_id, rsrc_start, j, k; 6408 uint16_t *ids; 6409 int i, rc; 6410 unsigned long longs; 6411 unsigned long *bmask; 6412 struct lpfc_rsrc_blks *rsrc_blks; 6413 LPFC_MBOXQ_t *mbox; 6414 uint32_t length; 6415 struct lpfc_id_range *id_array = NULL; 6416 void *virtaddr = NULL; 6417 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6418 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6419 struct list_head *ext_blk_list; 6420 6421 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6422 &rsrc_cnt, 6423 &rsrc_size); 6424 if (unlikely(rc)) 6425 return -EIO; 6426 6427 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6429 "3009 No available Resource Extents " 6430 "for resource type 0x%x: Count: 0x%x, " 6431 "Size 0x%x\n", type, rsrc_cnt, 6432 rsrc_size); 6433 return -ENOMEM; 6434 } 6435 6436 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6437 "2903 Post resource extents type-0x%x: " 6438 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6439 6440 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6441 if (!mbox) 6442 return -ENOMEM; 6443 6444 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6445 if (unlikely(rc)) { 6446 rc = -EIO; 6447 goto err_exit; 6448 } 6449 6450 /* 6451 * Figure out where the response is located. Then get local pointers 6452 * to the response data. The port does not guarantee to respond to 6453 * all extents counts request so update the local variable with the 6454 * allocated count from the port. 6455 */ 6456 if (emb == LPFC_SLI4_MBX_EMBED) { 6457 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6458 id_array = &rsrc_ext->u.rsp.id[0]; 6459 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6460 } else { 6461 virtaddr = mbox->sge_array->addr[0]; 6462 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6463 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6464 id_array = &n_rsrc->id; 6465 } 6466 6467 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6468 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6469 6470 /* 6471 * Based on the resource size and count, correct the base and max 6472 * resource values. 6473 */ 6474 length = sizeof(struct lpfc_rsrc_blks); 6475 switch (type) { 6476 case LPFC_RSC_TYPE_FCOE_RPI: 6477 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6478 sizeof(unsigned long), 6479 GFP_KERNEL); 6480 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6481 rc = -ENOMEM; 6482 goto err_exit; 6483 } 6484 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6485 sizeof(uint16_t), 6486 GFP_KERNEL); 6487 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6488 kfree(phba->sli4_hba.rpi_bmask); 6489 rc = -ENOMEM; 6490 goto err_exit; 6491 } 6492 6493 /* 6494 * The next_rpi was initialized with the maximum available 6495 * count but the port may allocate a smaller number. Catch 6496 * that case and update the next_rpi. 6497 */ 6498 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6499 6500 /* Initialize local ptrs for common extent processing later. */ 6501 bmask = phba->sli4_hba.rpi_bmask; 6502 ids = phba->sli4_hba.rpi_ids; 6503 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6504 break; 6505 case LPFC_RSC_TYPE_FCOE_VPI: 6506 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6507 GFP_KERNEL); 6508 if (unlikely(!phba->vpi_bmask)) { 6509 rc = -ENOMEM; 6510 goto err_exit; 6511 } 6512 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6513 GFP_KERNEL); 6514 if (unlikely(!phba->vpi_ids)) { 6515 kfree(phba->vpi_bmask); 6516 rc = -ENOMEM; 6517 goto err_exit; 6518 } 6519 6520 /* Initialize local ptrs for common extent processing later. */ 6521 bmask = phba->vpi_bmask; 6522 ids = phba->vpi_ids; 6523 ext_blk_list = &phba->lpfc_vpi_blk_list; 6524 break; 6525 case LPFC_RSC_TYPE_FCOE_XRI: 6526 phba->sli4_hba.xri_bmask = kcalloc(longs, 6527 sizeof(unsigned long), 6528 GFP_KERNEL); 6529 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6530 rc = -ENOMEM; 6531 goto err_exit; 6532 } 6533 phba->sli4_hba.max_cfg_param.xri_used = 0; 6534 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6535 sizeof(uint16_t), 6536 GFP_KERNEL); 6537 if (unlikely(!phba->sli4_hba.xri_ids)) { 6538 kfree(phba->sli4_hba.xri_bmask); 6539 rc = -ENOMEM; 6540 goto err_exit; 6541 } 6542 6543 /* Initialize local ptrs for common extent processing later. */ 6544 bmask = phba->sli4_hba.xri_bmask; 6545 ids = phba->sli4_hba.xri_ids; 6546 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6547 break; 6548 case LPFC_RSC_TYPE_FCOE_VFI: 6549 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6550 sizeof(unsigned long), 6551 GFP_KERNEL); 6552 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6553 rc = -ENOMEM; 6554 goto err_exit; 6555 } 6556 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6557 sizeof(uint16_t), 6558 GFP_KERNEL); 6559 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6560 kfree(phba->sli4_hba.vfi_bmask); 6561 rc = -ENOMEM; 6562 goto err_exit; 6563 } 6564 6565 /* Initialize local ptrs for common extent processing later. */ 6566 bmask = phba->sli4_hba.vfi_bmask; 6567 ids = phba->sli4_hba.vfi_ids; 6568 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6569 break; 6570 default: 6571 /* Unsupported Opcode. Fail call. */ 6572 id_array = NULL; 6573 bmask = NULL; 6574 ids = NULL; 6575 ext_blk_list = NULL; 6576 goto err_exit; 6577 } 6578 6579 /* 6580 * Complete initializing the extent configuration with the 6581 * allocated ids assigned to this function. The bitmask serves 6582 * as an index into the array and manages the available ids. The 6583 * array just stores the ids communicated to the port via the wqes. 6584 */ 6585 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6586 if ((i % 2) == 0) 6587 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6588 &id_array[k]); 6589 else 6590 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6591 &id_array[k]); 6592 6593 rsrc_blks = kzalloc(length, GFP_KERNEL); 6594 if (unlikely(!rsrc_blks)) { 6595 rc = -ENOMEM; 6596 kfree(bmask); 6597 kfree(ids); 6598 goto err_exit; 6599 } 6600 rsrc_blks->rsrc_start = rsrc_id; 6601 rsrc_blks->rsrc_size = rsrc_size; 6602 list_add_tail(&rsrc_blks->list, ext_blk_list); 6603 rsrc_start = rsrc_id; 6604 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6605 phba->sli4_hba.io_xri_start = rsrc_start + 6606 lpfc_sli4_get_iocb_cnt(phba); 6607 } 6608 6609 while (rsrc_id < (rsrc_start + rsrc_size)) { 6610 ids[j] = rsrc_id; 6611 rsrc_id++; 6612 j++; 6613 } 6614 /* Entire word processed. Get next word.*/ 6615 if ((i % 2) == 1) 6616 k++; 6617 } 6618 err_exit: 6619 lpfc_sli4_mbox_cmd_free(phba, mbox); 6620 return rc; 6621 } 6622 6623 6624 6625 /** 6626 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6627 * @phba: Pointer to HBA context object. 6628 * @type: the extent's type. 6629 * 6630 * This function deallocates all extents of a particular resource type. 6631 * SLI4 does not allow for deallocating a particular extent range. It 6632 * is the caller's responsibility to release all kernel memory resources. 6633 **/ 6634 static int 6635 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6636 { 6637 int rc; 6638 uint32_t length, mbox_tmo = 0; 6639 LPFC_MBOXQ_t *mbox; 6640 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6641 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6642 6643 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6644 if (!mbox) 6645 return -ENOMEM; 6646 6647 /* 6648 * This function sends an embedded mailbox because it only sends the 6649 * the resource type. All extents of this type are released by the 6650 * port. 6651 */ 6652 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6653 sizeof(struct lpfc_sli4_cfg_mhdr)); 6654 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6655 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6656 length, LPFC_SLI4_MBX_EMBED); 6657 6658 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6659 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6660 LPFC_SLI4_MBX_EMBED); 6661 if (unlikely(rc)) { 6662 rc = -EIO; 6663 goto out_free_mbox; 6664 } 6665 if (!phba->sli4_hba.intr_enable) 6666 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6667 else { 6668 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6669 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6670 } 6671 if (unlikely(rc)) { 6672 rc = -EIO; 6673 goto out_free_mbox; 6674 } 6675 6676 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6677 if (bf_get(lpfc_mbox_hdr_status, 6678 &dealloc_rsrc->header.cfg_shdr.response)) { 6679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6680 "2919 Failed to release resource extents " 6681 "for type %d - Status 0x%x Add'l Status 0x%x. " 6682 "Resource memory not released.\n", 6683 type, 6684 bf_get(lpfc_mbox_hdr_status, 6685 &dealloc_rsrc->header.cfg_shdr.response), 6686 bf_get(lpfc_mbox_hdr_add_status, 6687 &dealloc_rsrc->header.cfg_shdr.response)); 6688 rc = -EIO; 6689 goto out_free_mbox; 6690 } 6691 6692 /* Release kernel memory resources for the specific type. */ 6693 switch (type) { 6694 case LPFC_RSC_TYPE_FCOE_VPI: 6695 kfree(phba->vpi_bmask); 6696 kfree(phba->vpi_ids); 6697 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6698 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6699 &phba->lpfc_vpi_blk_list, list) { 6700 list_del_init(&rsrc_blk->list); 6701 kfree(rsrc_blk); 6702 } 6703 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6704 break; 6705 case LPFC_RSC_TYPE_FCOE_XRI: 6706 kfree(phba->sli4_hba.xri_bmask); 6707 kfree(phba->sli4_hba.xri_ids); 6708 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6709 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6710 list_del_init(&rsrc_blk->list); 6711 kfree(rsrc_blk); 6712 } 6713 break; 6714 case LPFC_RSC_TYPE_FCOE_VFI: 6715 kfree(phba->sli4_hba.vfi_bmask); 6716 kfree(phba->sli4_hba.vfi_ids); 6717 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6718 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6719 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6720 list_del_init(&rsrc_blk->list); 6721 kfree(rsrc_blk); 6722 } 6723 break; 6724 case LPFC_RSC_TYPE_FCOE_RPI: 6725 /* RPI bitmask and physical id array are cleaned up earlier. */ 6726 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6727 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6728 list_del_init(&rsrc_blk->list); 6729 kfree(rsrc_blk); 6730 } 6731 break; 6732 default: 6733 break; 6734 } 6735 6736 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6737 6738 out_free_mbox: 6739 mempool_free(mbox, phba->mbox_mem_pool); 6740 return rc; 6741 } 6742 6743 static void 6744 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6745 uint32_t feature) 6746 { 6747 uint32_t len; 6748 u32 sig_freq = 0; 6749 6750 len = sizeof(struct lpfc_mbx_set_feature) - 6751 sizeof(struct lpfc_sli4_cfg_mhdr); 6752 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6753 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6754 LPFC_SLI4_MBX_EMBED); 6755 6756 switch (feature) { 6757 case LPFC_SET_UE_RECOVERY: 6758 bf_set(lpfc_mbx_set_feature_UER, 6759 &mbox->u.mqe.un.set_feature, 1); 6760 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6761 mbox->u.mqe.un.set_feature.param_len = 8; 6762 break; 6763 case LPFC_SET_MDS_DIAGS: 6764 bf_set(lpfc_mbx_set_feature_mds, 6765 &mbox->u.mqe.un.set_feature, 1); 6766 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6767 &mbox->u.mqe.un.set_feature, 1); 6768 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6769 mbox->u.mqe.un.set_feature.param_len = 8; 6770 break; 6771 case LPFC_SET_CGN_SIGNAL: 6772 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6773 sig_freq = 0; 6774 else 6775 sig_freq = phba->cgn_sig_freq; 6776 6777 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6778 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6779 &mbox->u.mqe.un.set_feature, sig_freq); 6780 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6781 &mbox->u.mqe.un.set_feature, sig_freq); 6782 } 6783 6784 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6785 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6786 &mbox->u.mqe.un.set_feature, sig_freq); 6787 6788 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6789 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6790 sig_freq = 0; 6791 else 6792 sig_freq = lpfc_acqe_cgn_frequency; 6793 6794 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6795 &mbox->u.mqe.un.set_feature, sig_freq); 6796 6797 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6798 mbox->u.mqe.un.set_feature.param_len = 12; 6799 break; 6800 case LPFC_SET_DUAL_DUMP: 6801 bf_set(lpfc_mbx_set_feature_dd, 6802 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6803 bf_set(lpfc_mbx_set_feature_ddquery, 6804 &mbox->u.mqe.un.set_feature, 0); 6805 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6806 mbox->u.mqe.un.set_feature.param_len = 4; 6807 break; 6808 case LPFC_SET_ENABLE_MI: 6809 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6810 mbox->u.mqe.un.set_feature.param_len = 4; 6811 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6812 phba->pport->cfg_lun_queue_depth); 6813 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6814 phba->sli4_hba.pc_sli4_params.mi_ver); 6815 break; 6816 case LPFC_SET_LD_SIGNAL: 6817 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6818 mbox->u.mqe.un.set_feature.param_len = 16; 6819 bf_set(lpfc_mbx_set_feature_lds_qry, 6820 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6821 break; 6822 case LPFC_SET_ENABLE_CMF: 6823 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6824 mbox->u.mqe.un.set_feature.param_len = 4; 6825 bf_set(lpfc_mbx_set_feature_cmf, 6826 &mbox->u.mqe.un.set_feature, 1); 6827 break; 6828 } 6829 return; 6830 } 6831 6832 /** 6833 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6834 * @phba: Pointer to HBA context object. 6835 * 6836 * Disable FW logging into host memory on the adapter. To 6837 * be done before reading logs from the host memory. 6838 **/ 6839 void 6840 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6841 { 6842 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6843 6844 spin_lock_irq(&phba->hbalock); 6845 ras_fwlog->state = INACTIVE; 6846 spin_unlock_irq(&phba->hbalock); 6847 6848 /* Disable FW logging to host memory */ 6849 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6850 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6851 6852 /* Wait 10ms for firmware to stop using DMA buffer */ 6853 usleep_range(10 * 1000, 20 * 1000); 6854 } 6855 6856 /** 6857 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6858 * @phba: Pointer to HBA context object. 6859 * 6860 * This function is called to free memory allocated for RAS FW logging 6861 * support in the driver. 6862 **/ 6863 void 6864 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6865 { 6866 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6867 struct lpfc_dmabuf *dmabuf, *next; 6868 6869 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6870 list_for_each_entry_safe(dmabuf, next, 6871 &ras_fwlog->fwlog_buff_list, 6872 list) { 6873 list_del(&dmabuf->list); 6874 dma_free_coherent(&phba->pcidev->dev, 6875 LPFC_RAS_MAX_ENTRY_SIZE, 6876 dmabuf->virt, dmabuf->phys); 6877 kfree(dmabuf); 6878 } 6879 } 6880 6881 if (ras_fwlog->lwpd.virt) { 6882 dma_free_coherent(&phba->pcidev->dev, 6883 sizeof(uint32_t) * 2, 6884 ras_fwlog->lwpd.virt, 6885 ras_fwlog->lwpd.phys); 6886 ras_fwlog->lwpd.virt = NULL; 6887 } 6888 6889 spin_lock_irq(&phba->hbalock); 6890 ras_fwlog->state = INACTIVE; 6891 spin_unlock_irq(&phba->hbalock); 6892 } 6893 6894 /** 6895 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6896 * @phba: Pointer to HBA context object. 6897 * @fwlog_buff_count: Count of buffers to be created. 6898 * 6899 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6900 * to update FW log is posted to the adapter. 6901 * Buffer count is calculated based on module param ras_fwlog_buffsize 6902 * Size of each buffer posted to FW is 64K. 6903 **/ 6904 6905 static int 6906 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6907 uint32_t fwlog_buff_count) 6908 { 6909 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6910 struct lpfc_dmabuf *dmabuf; 6911 int rc = 0, i = 0; 6912 6913 /* Initialize List */ 6914 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6915 6916 /* Allocate memory for the LWPD */ 6917 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6918 sizeof(uint32_t) * 2, 6919 &ras_fwlog->lwpd.phys, 6920 GFP_KERNEL); 6921 if (!ras_fwlog->lwpd.virt) { 6922 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6923 "6185 LWPD Memory Alloc Failed\n"); 6924 6925 return -ENOMEM; 6926 } 6927 6928 ras_fwlog->fw_buffcount = fwlog_buff_count; 6929 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6930 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6931 GFP_KERNEL); 6932 if (!dmabuf) { 6933 rc = -ENOMEM; 6934 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6935 "6186 Memory Alloc failed FW logging"); 6936 goto free_mem; 6937 } 6938 6939 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6940 LPFC_RAS_MAX_ENTRY_SIZE, 6941 &dmabuf->phys, GFP_KERNEL); 6942 if (!dmabuf->virt) { 6943 kfree(dmabuf); 6944 rc = -ENOMEM; 6945 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6946 "6187 DMA Alloc Failed FW logging"); 6947 goto free_mem; 6948 } 6949 dmabuf->buffer_tag = i; 6950 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6951 } 6952 6953 free_mem: 6954 if (rc) 6955 lpfc_sli4_ras_dma_free(phba); 6956 6957 return rc; 6958 } 6959 6960 /** 6961 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6962 * @phba: pointer to lpfc hba data structure. 6963 * @pmb: pointer to the driver internal queue element for mailbox command. 6964 * 6965 * Completion handler for driver's RAS MBX command to the device. 6966 **/ 6967 static void 6968 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6969 { 6970 MAILBOX_t *mb; 6971 union lpfc_sli4_cfg_shdr *shdr; 6972 uint32_t shdr_status, shdr_add_status; 6973 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6974 6975 mb = &pmb->u.mb; 6976 6977 shdr = (union lpfc_sli4_cfg_shdr *) 6978 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6979 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6980 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6981 6982 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6983 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6984 "6188 FW LOG mailbox " 6985 "completed with status x%x add_status x%x," 6986 " mbx status x%x\n", 6987 shdr_status, shdr_add_status, mb->mbxStatus); 6988 6989 ras_fwlog->ras_hwsupport = false; 6990 goto disable_ras; 6991 } 6992 6993 spin_lock_irq(&phba->hbalock); 6994 ras_fwlog->state = ACTIVE; 6995 spin_unlock_irq(&phba->hbalock); 6996 mempool_free(pmb, phba->mbox_mem_pool); 6997 6998 return; 6999 7000 disable_ras: 7001 /* Free RAS DMA memory */ 7002 lpfc_sli4_ras_dma_free(phba); 7003 mempool_free(pmb, phba->mbox_mem_pool); 7004 } 7005 7006 /** 7007 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7008 * @phba: pointer to lpfc hba data structure. 7009 * @fwlog_level: Logging verbosity level. 7010 * @fwlog_enable: Enable/Disable logging. 7011 * 7012 * Initialize memory and post mailbox command to enable FW logging in host 7013 * memory. 7014 **/ 7015 int 7016 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7017 uint32_t fwlog_level, 7018 uint32_t fwlog_enable) 7019 { 7020 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7021 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7022 struct lpfc_dmabuf *dmabuf; 7023 LPFC_MBOXQ_t *mbox; 7024 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7025 int rc = 0; 7026 7027 spin_lock_irq(&phba->hbalock); 7028 ras_fwlog->state = INACTIVE; 7029 spin_unlock_irq(&phba->hbalock); 7030 7031 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7032 phba->cfg_ras_fwlog_buffsize); 7033 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7034 7035 /* 7036 * If re-enabling FW logging support use earlier allocated 7037 * DMA buffers while posting MBX command. 7038 **/ 7039 if (!ras_fwlog->lwpd.virt) { 7040 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7041 if (rc) { 7042 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7043 "6189 FW Log Memory Allocation Failed"); 7044 return rc; 7045 } 7046 } 7047 7048 /* Setup Mailbox command */ 7049 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7050 if (!mbox) { 7051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7052 "6190 RAS MBX Alloc Failed"); 7053 rc = -ENOMEM; 7054 goto mem_free; 7055 } 7056 7057 ras_fwlog->fw_loglevel = fwlog_level; 7058 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7059 sizeof(struct lpfc_sli4_cfg_mhdr)); 7060 7061 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7062 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7063 len, LPFC_SLI4_MBX_EMBED); 7064 7065 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7066 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7067 fwlog_enable); 7068 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7069 ras_fwlog->fw_loglevel); 7070 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7071 ras_fwlog->fw_buffcount); 7072 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7073 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7074 7075 /* Update DMA buffer address */ 7076 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7077 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7078 7079 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7080 putPaddrLow(dmabuf->phys); 7081 7082 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7083 putPaddrHigh(dmabuf->phys); 7084 } 7085 7086 /* Update LPWD address */ 7087 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7088 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7089 7090 spin_lock_irq(&phba->hbalock); 7091 ras_fwlog->state = REG_INPROGRESS; 7092 spin_unlock_irq(&phba->hbalock); 7093 mbox->vport = phba->pport; 7094 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7095 7096 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7097 7098 if (rc == MBX_NOT_FINISHED) { 7099 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7100 "6191 FW-Log Mailbox failed. " 7101 "status %d mbxStatus : x%x", rc, 7102 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7103 mempool_free(mbox, phba->mbox_mem_pool); 7104 rc = -EIO; 7105 goto mem_free; 7106 } else 7107 rc = 0; 7108 mem_free: 7109 if (rc) 7110 lpfc_sli4_ras_dma_free(phba); 7111 7112 return rc; 7113 } 7114 7115 /** 7116 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7117 * @phba: Pointer to HBA context object. 7118 * 7119 * Check if RAS is supported on the adapter and initialize it. 7120 **/ 7121 void 7122 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7123 { 7124 /* Check RAS FW Log needs to be enabled or not */ 7125 if (lpfc_check_fwlog_support(phba)) 7126 return; 7127 7128 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7129 LPFC_RAS_ENABLE_LOGGING); 7130 } 7131 7132 /** 7133 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7134 * @phba: Pointer to HBA context object. 7135 * 7136 * This function allocates all SLI4 resource identifiers. 7137 **/ 7138 int 7139 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7140 { 7141 int i, rc, error = 0; 7142 uint16_t count, base; 7143 unsigned long longs; 7144 7145 if (!phba->sli4_hba.rpi_hdrs_in_use) 7146 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7147 if (phba->sli4_hba.extents_in_use) { 7148 /* 7149 * The port supports resource extents. The XRI, VPI, VFI, RPI 7150 * resource extent count must be read and allocated before 7151 * provisioning the resource id arrays. 7152 */ 7153 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7154 LPFC_IDX_RSRC_RDY) { 7155 /* 7156 * Extent-based resources are set - the driver could 7157 * be in a port reset. Figure out if any corrective 7158 * actions need to be taken. 7159 */ 7160 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7161 LPFC_RSC_TYPE_FCOE_VFI); 7162 if (rc != 0) 7163 error++; 7164 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7165 LPFC_RSC_TYPE_FCOE_VPI); 7166 if (rc != 0) 7167 error++; 7168 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7169 LPFC_RSC_TYPE_FCOE_XRI); 7170 if (rc != 0) 7171 error++; 7172 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7173 LPFC_RSC_TYPE_FCOE_RPI); 7174 if (rc != 0) 7175 error++; 7176 7177 /* 7178 * It's possible that the number of resources 7179 * provided to this port instance changed between 7180 * resets. Detect this condition and reallocate 7181 * resources. Otherwise, there is no action. 7182 */ 7183 if (error) { 7184 lpfc_printf_log(phba, KERN_INFO, 7185 LOG_MBOX | LOG_INIT, 7186 "2931 Detected extent resource " 7187 "change. Reallocating all " 7188 "extents.\n"); 7189 rc = lpfc_sli4_dealloc_extent(phba, 7190 LPFC_RSC_TYPE_FCOE_VFI); 7191 rc = lpfc_sli4_dealloc_extent(phba, 7192 LPFC_RSC_TYPE_FCOE_VPI); 7193 rc = lpfc_sli4_dealloc_extent(phba, 7194 LPFC_RSC_TYPE_FCOE_XRI); 7195 rc = lpfc_sli4_dealloc_extent(phba, 7196 LPFC_RSC_TYPE_FCOE_RPI); 7197 } else 7198 return 0; 7199 } 7200 7201 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7202 if (unlikely(rc)) 7203 goto err_exit; 7204 7205 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7206 if (unlikely(rc)) 7207 goto err_exit; 7208 7209 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7210 if (unlikely(rc)) 7211 goto err_exit; 7212 7213 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7214 if (unlikely(rc)) 7215 goto err_exit; 7216 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7217 LPFC_IDX_RSRC_RDY); 7218 return rc; 7219 } else { 7220 /* 7221 * The port does not support resource extents. The XRI, VPI, 7222 * VFI, RPI resource ids were determined from READ_CONFIG. 7223 * Just allocate the bitmasks and provision the resource id 7224 * arrays. If a port reset is active, the resources don't 7225 * need any action - just exit. 7226 */ 7227 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7228 LPFC_IDX_RSRC_RDY) { 7229 lpfc_sli4_dealloc_resource_identifiers(phba); 7230 lpfc_sli4_remove_rpis(phba); 7231 } 7232 /* RPIs. */ 7233 count = phba->sli4_hba.max_cfg_param.max_rpi; 7234 if (count <= 0) { 7235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7236 "3279 Invalid provisioning of " 7237 "rpi:%d\n", count); 7238 rc = -EINVAL; 7239 goto err_exit; 7240 } 7241 base = phba->sli4_hba.max_cfg_param.rpi_base; 7242 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7243 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7244 sizeof(unsigned long), 7245 GFP_KERNEL); 7246 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7247 rc = -ENOMEM; 7248 goto err_exit; 7249 } 7250 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7251 GFP_KERNEL); 7252 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7253 rc = -ENOMEM; 7254 goto free_rpi_bmask; 7255 } 7256 7257 for (i = 0; i < count; i++) 7258 phba->sli4_hba.rpi_ids[i] = base + i; 7259 7260 /* VPIs. */ 7261 count = phba->sli4_hba.max_cfg_param.max_vpi; 7262 if (count <= 0) { 7263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7264 "3280 Invalid provisioning of " 7265 "vpi:%d\n", count); 7266 rc = -EINVAL; 7267 goto free_rpi_ids; 7268 } 7269 base = phba->sli4_hba.max_cfg_param.vpi_base; 7270 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7271 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7272 GFP_KERNEL); 7273 if (unlikely(!phba->vpi_bmask)) { 7274 rc = -ENOMEM; 7275 goto free_rpi_ids; 7276 } 7277 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7278 GFP_KERNEL); 7279 if (unlikely(!phba->vpi_ids)) { 7280 rc = -ENOMEM; 7281 goto free_vpi_bmask; 7282 } 7283 7284 for (i = 0; i < count; i++) 7285 phba->vpi_ids[i] = base + i; 7286 7287 /* XRIs. */ 7288 count = phba->sli4_hba.max_cfg_param.max_xri; 7289 if (count <= 0) { 7290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7291 "3281 Invalid provisioning of " 7292 "xri:%d\n", count); 7293 rc = -EINVAL; 7294 goto free_vpi_ids; 7295 } 7296 base = phba->sli4_hba.max_cfg_param.xri_base; 7297 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7298 phba->sli4_hba.xri_bmask = kcalloc(longs, 7299 sizeof(unsigned long), 7300 GFP_KERNEL); 7301 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7302 rc = -ENOMEM; 7303 goto free_vpi_ids; 7304 } 7305 phba->sli4_hba.max_cfg_param.xri_used = 0; 7306 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7307 GFP_KERNEL); 7308 if (unlikely(!phba->sli4_hba.xri_ids)) { 7309 rc = -ENOMEM; 7310 goto free_xri_bmask; 7311 } 7312 7313 for (i = 0; i < count; i++) 7314 phba->sli4_hba.xri_ids[i] = base + i; 7315 7316 /* VFIs. */ 7317 count = phba->sli4_hba.max_cfg_param.max_vfi; 7318 if (count <= 0) { 7319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7320 "3282 Invalid provisioning of " 7321 "vfi:%d\n", count); 7322 rc = -EINVAL; 7323 goto free_xri_ids; 7324 } 7325 base = phba->sli4_hba.max_cfg_param.vfi_base; 7326 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7327 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7328 sizeof(unsigned long), 7329 GFP_KERNEL); 7330 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7331 rc = -ENOMEM; 7332 goto free_xri_ids; 7333 } 7334 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7335 GFP_KERNEL); 7336 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7337 rc = -ENOMEM; 7338 goto free_vfi_bmask; 7339 } 7340 7341 for (i = 0; i < count; i++) 7342 phba->sli4_hba.vfi_ids[i] = base + i; 7343 7344 /* 7345 * Mark all resources ready. An HBA reset doesn't need 7346 * to reset the initialization. 7347 */ 7348 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7349 LPFC_IDX_RSRC_RDY); 7350 return 0; 7351 } 7352 7353 free_vfi_bmask: 7354 kfree(phba->sli4_hba.vfi_bmask); 7355 phba->sli4_hba.vfi_bmask = NULL; 7356 free_xri_ids: 7357 kfree(phba->sli4_hba.xri_ids); 7358 phba->sli4_hba.xri_ids = NULL; 7359 free_xri_bmask: 7360 kfree(phba->sli4_hba.xri_bmask); 7361 phba->sli4_hba.xri_bmask = NULL; 7362 free_vpi_ids: 7363 kfree(phba->vpi_ids); 7364 phba->vpi_ids = NULL; 7365 free_vpi_bmask: 7366 kfree(phba->vpi_bmask); 7367 phba->vpi_bmask = NULL; 7368 free_rpi_ids: 7369 kfree(phba->sli4_hba.rpi_ids); 7370 phba->sli4_hba.rpi_ids = NULL; 7371 free_rpi_bmask: 7372 kfree(phba->sli4_hba.rpi_bmask); 7373 phba->sli4_hba.rpi_bmask = NULL; 7374 err_exit: 7375 return rc; 7376 } 7377 7378 /** 7379 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7380 * @phba: Pointer to HBA context object. 7381 * 7382 * This function allocates the number of elements for the specified 7383 * resource type. 7384 **/ 7385 int 7386 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7387 { 7388 if (phba->sli4_hba.extents_in_use) { 7389 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7390 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7391 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7392 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7393 } else { 7394 kfree(phba->vpi_bmask); 7395 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7396 kfree(phba->vpi_ids); 7397 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7398 kfree(phba->sli4_hba.xri_bmask); 7399 kfree(phba->sli4_hba.xri_ids); 7400 kfree(phba->sli4_hba.vfi_bmask); 7401 kfree(phba->sli4_hba.vfi_ids); 7402 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7403 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7404 } 7405 7406 return 0; 7407 } 7408 7409 /** 7410 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7411 * @phba: Pointer to HBA context object. 7412 * @type: The resource extent type. 7413 * @extnt_cnt: buffer to hold port extent count response 7414 * @extnt_size: buffer to hold port extent size response. 7415 * 7416 * This function calls the port to read the host allocated extents 7417 * for a particular type. 7418 **/ 7419 int 7420 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7421 uint16_t *extnt_cnt, uint16_t *extnt_size) 7422 { 7423 bool emb; 7424 int rc = 0; 7425 uint16_t curr_blks = 0; 7426 uint32_t req_len, emb_len; 7427 uint32_t alloc_len, mbox_tmo; 7428 struct list_head *blk_list_head; 7429 struct lpfc_rsrc_blks *rsrc_blk; 7430 LPFC_MBOXQ_t *mbox; 7431 void *virtaddr = NULL; 7432 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7433 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7434 union lpfc_sli4_cfg_shdr *shdr; 7435 7436 switch (type) { 7437 case LPFC_RSC_TYPE_FCOE_VPI: 7438 blk_list_head = &phba->lpfc_vpi_blk_list; 7439 break; 7440 case LPFC_RSC_TYPE_FCOE_XRI: 7441 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7442 break; 7443 case LPFC_RSC_TYPE_FCOE_VFI: 7444 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7445 break; 7446 case LPFC_RSC_TYPE_FCOE_RPI: 7447 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7448 break; 7449 default: 7450 return -EIO; 7451 } 7452 7453 /* Count the number of extents currently allocatd for this type. */ 7454 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7455 if (curr_blks == 0) { 7456 /* 7457 * The GET_ALLOCATED mailbox does not return the size, 7458 * just the count. The size should be just the size 7459 * stored in the current allocated block and all sizes 7460 * for an extent type are the same so set the return 7461 * value now. 7462 */ 7463 *extnt_size = rsrc_blk->rsrc_size; 7464 } 7465 curr_blks++; 7466 } 7467 7468 /* 7469 * Calculate the size of an embedded mailbox. The uint32_t 7470 * accounts for extents-specific word. 7471 */ 7472 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7473 sizeof(uint32_t); 7474 7475 /* 7476 * Presume the allocation and response will fit into an embedded 7477 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7478 */ 7479 emb = LPFC_SLI4_MBX_EMBED; 7480 req_len = emb_len; 7481 if (req_len > emb_len) { 7482 req_len = curr_blks * sizeof(uint16_t) + 7483 sizeof(union lpfc_sli4_cfg_shdr) + 7484 sizeof(uint32_t); 7485 emb = LPFC_SLI4_MBX_NEMBED; 7486 } 7487 7488 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7489 if (!mbox) 7490 return -ENOMEM; 7491 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7492 7493 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7494 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7495 req_len, emb); 7496 if (alloc_len < req_len) { 7497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7498 "2983 Allocated DMA memory size (x%x) is " 7499 "less than the requested DMA memory " 7500 "size (x%x)\n", alloc_len, req_len); 7501 rc = -ENOMEM; 7502 goto err_exit; 7503 } 7504 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7505 if (unlikely(rc)) { 7506 rc = -EIO; 7507 goto err_exit; 7508 } 7509 7510 if (!phba->sli4_hba.intr_enable) 7511 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7512 else { 7513 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7514 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7515 } 7516 7517 if (unlikely(rc)) { 7518 rc = -EIO; 7519 goto err_exit; 7520 } 7521 7522 /* 7523 * Figure out where the response is located. Then get local pointers 7524 * to the response data. The port does not guarantee to respond to 7525 * all extents counts request so update the local variable with the 7526 * allocated count from the port. 7527 */ 7528 if (emb == LPFC_SLI4_MBX_EMBED) { 7529 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7530 shdr = &rsrc_ext->header.cfg_shdr; 7531 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7532 } else { 7533 virtaddr = mbox->sge_array->addr[0]; 7534 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7535 shdr = &n_rsrc->cfg_shdr; 7536 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7537 } 7538 7539 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7540 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7541 "2984 Failed to read allocated resources " 7542 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7543 type, 7544 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7545 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7546 rc = -EIO; 7547 goto err_exit; 7548 } 7549 err_exit: 7550 lpfc_sli4_mbox_cmd_free(phba, mbox); 7551 return rc; 7552 } 7553 7554 /** 7555 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7556 * @phba: pointer to lpfc hba data structure. 7557 * @sgl_list: linked link of sgl buffers to post 7558 * @cnt: number of linked list buffers 7559 * 7560 * This routine walks the list of buffers that have been allocated and 7561 * repost them to the port by using SGL block post. This is needed after a 7562 * pci_function_reset/warm_start or start. It attempts to construct blocks 7563 * of buffer sgls which contains contiguous xris and uses the non-embedded 7564 * SGL block post mailbox commands to post them to the port. For single 7565 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7566 * mailbox command for posting. 7567 * 7568 * Returns: 0 = success, non-zero failure. 7569 **/ 7570 static int 7571 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7572 struct list_head *sgl_list, int cnt) 7573 { 7574 struct lpfc_sglq *sglq_entry = NULL; 7575 struct lpfc_sglq *sglq_entry_next = NULL; 7576 struct lpfc_sglq *sglq_entry_first = NULL; 7577 int status, total_cnt; 7578 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7579 int last_xritag = NO_XRI; 7580 LIST_HEAD(prep_sgl_list); 7581 LIST_HEAD(blck_sgl_list); 7582 LIST_HEAD(allc_sgl_list); 7583 LIST_HEAD(post_sgl_list); 7584 LIST_HEAD(free_sgl_list); 7585 7586 spin_lock_irq(&phba->hbalock); 7587 spin_lock(&phba->sli4_hba.sgl_list_lock); 7588 list_splice_init(sgl_list, &allc_sgl_list); 7589 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7590 spin_unlock_irq(&phba->hbalock); 7591 7592 total_cnt = cnt; 7593 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7594 &allc_sgl_list, list) { 7595 list_del_init(&sglq_entry->list); 7596 block_cnt++; 7597 if ((last_xritag != NO_XRI) && 7598 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7599 /* a hole in xri block, form a sgl posting block */ 7600 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7601 post_cnt = block_cnt - 1; 7602 /* prepare list for next posting block */ 7603 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7604 block_cnt = 1; 7605 } else { 7606 /* prepare list for next posting block */ 7607 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7608 /* enough sgls for non-embed sgl mbox command */ 7609 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7610 list_splice_init(&prep_sgl_list, 7611 &blck_sgl_list); 7612 post_cnt = block_cnt; 7613 block_cnt = 0; 7614 } 7615 } 7616 num_posted++; 7617 7618 /* keep track of last sgl's xritag */ 7619 last_xritag = sglq_entry->sli4_xritag; 7620 7621 /* end of repost sgl list condition for buffers */ 7622 if (num_posted == total_cnt) { 7623 if (post_cnt == 0) { 7624 list_splice_init(&prep_sgl_list, 7625 &blck_sgl_list); 7626 post_cnt = block_cnt; 7627 } else if (block_cnt == 1) { 7628 status = lpfc_sli4_post_sgl(phba, 7629 sglq_entry->phys, 0, 7630 sglq_entry->sli4_xritag); 7631 if (!status) { 7632 /* successful, put sgl to posted list */ 7633 list_add_tail(&sglq_entry->list, 7634 &post_sgl_list); 7635 } else { 7636 /* Failure, put sgl to free list */ 7637 lpfc_printf_log(phba, KERN_WARNING, 7638 LOG_SLI, 7639 "3159 Failed to post " 7640 "sgl, xritag:x%x\n", 7641 sglq_entry->sli4_xritag); 7642 list_add_tail(&sglq_entry->list, 7643 &free_sgl_list); 7644 total_cnt--; 7645 } 7646 } 7647 } 7648 7649 /* continue until a nembed page worth of sgls */ 7650 if (post_cnt == 0) 7651 continue; 7652 7653 /* post the buffer list sgls as a block */ 7654 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7655 post_cnt); 7656 7657 if (!status) { 7658 /* success, put sgl list to posted sgl list */ 7659 list_splice_init(&blck_sgl_list, &post_sgl_list); 7660 } else { 7661 /* Failure, put sgl list to free sgl list */ 7662 sglq_entry_first = list_first_entry(&blck_sgl_list, 7663 struct lpfc_sglq, 7664 list); 7665 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7666 "3160 Failed to post sgl-list, " 7667 "xritag:x%x-x%x\n", 7668 sglq_entry_first->sli4_xritag, 7669 (sglq_entry_first->sli4_xritag + 7670 post_cnt - 1)); 7671 list_splice_init(&blck_sgl_list, &free_sgl_list); 7672 total_cnt -= post_cnt; 7673 } 7674 7675 /* don't reset xirtag due to hole in xri block */ 7676 if (block_cnt == 0) 7677 last_xritag = NO_XRI; 7678 7679 /* reset sgl post count for next round of posting */ 7680 post_cnt = 0; 7681 } 7682 7683 /* free the sgls failed to post */ 7684 lpfc_free_sgl_list(phba, &free_sgl_list); 7685 7686 /* push sgls posted to the available list */ 7687 if (!list_empty(&post_sgl_list)) { 7688 spin_lock_irq(&phba->hbalock); 7689 spin_lock(&phba->sli4_hba.sgl_list_lock); 7690 list_splice_init(&post_sgl_list, sgl_list); 7691 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7692 spin_unlock_irq(&phba->hbalock); 7693 } else { 7694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7695 "3161 Failure to post sgl to port.\n"); 7696 return -EIO; 7697 } 7698 7699 /* return the number of XRIs actually posted */ 7700 return total_cnt; 7701 } 7702 7703 /** 7704 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7705 * @phba: pointer to lpfc hba data structure. 7706 * 7707 * This routine walks the list of nvme buffers that have been allocated and 7708 * repost them to the port by using SGL block post. This is needed after a 7709 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7710 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7711 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7712 * 7713 * Returns: 0 = success, non-zero failure. 7714 **/ 7715 static int 7716 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7717 { 7718 LIST_HEAD(post_nblist); 7719 int num_posted, rc = 0; 7720 7721 /* get all NVME buffers need to repost to a local list */ 7722 lpfc_io_buf_flush(phba, &post_nblist); 7723 7724 /* post the list of nvme buffer sgls to port if available */ 7725 if (!list_empty(&post_nblist)) { 7726 num_posted = lpfc_sli4_post_io_sgl_list( 7727 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7728 /* failed to post any nvme buffer, return error */ 7729 if (num_posted == 0) 7730 rc = -EIO; 7731 } 7732 return rc; 7733 } 7734 7735 static void 7736 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7737 { 7738 uint32_t len; 7739 7740 len = sizeof(struct lpfc_mbx_set_host_data) - 7741 sizeof(struct lpfc_sli4_cfg_mhdr); 7742 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7743 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7744 LPFC_SLI4_MBX_EMBED); 7745 7746 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7747 mbox->u.mqe.un.set_host_data.param_len = 7748 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7749 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7750 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7751 "Linux %s v"LPFC_DRIVER_VERSION, 7752 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7753 } 7754 7755 int 7756 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7757 struct lpfc_queue *drq, int count, int idx) 7758 { 7759 int rc, i; 7760 struct lpfc_rqe hrqe; 7761 struct lpfc_rqe drqe; 7762 struct lpfc_rqb *rqbp; 7763 unsigned long flags; 7764 struct rqb_dmabuf *rqb_buffer; 7765 LIST_HEAD(rqb_buf_list); 7766 7767 rqbp = hrq->rqbp; 7768 for (i = 0; i < count; i++) { 7769 spin_lock_irqsave(&phba->hbalock, flags); 7770 /* IF RQ is already full, don't bother */ 7771 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7772 spin_unlock_irqrestore(&phba->hbalock, flags); 7773 break; 7774 } 7775 spin_unlock_irqrestore(&phba->hbalock, flags); 7776 7777 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7778 if (!rqb_buffer) 7779 break; 7780 rqb_buffer->hrq = hrq; 7781 rqb_buffer->drq = drq; 7782 rqb_buffer->idx = idx; 7783 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7784 } 7785 7786 spin_lock_irqsave(&phba->hbalock, flags); 7787 while (!list_empty(&rqb_buf_list)) { 7788 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7789 hbuf.list); 7790 7791 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7792 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7793 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7794 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7795 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7796 if (rc < 0) { 7797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7798 "6421 Cannot post to HRQ %d: %x %x %x " 7799 "DRQ %x %x\n", 7800 hrq->queue_id, 7801 hrq->host_index, 7802 hrq->hba_index, 7803 hrq->entry_count, 7804 drq->host_index, 7805 drq->hba_index); 7806 rqbp->rqb_free_buffer(phba, rqb_buffer); 7807 } else { 7808 list_add_tail(&rqb_buffer->hbuf.list, 7809 &rqbp->rqb_buffer_list); 7810 rqbp->buffer_count++; 7811 } 7812 } 7813 spin_unlock_irqrestore(&phba->hbalock, flags); 7814 return 1; 7815 } 7816 7817 static void 7818 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7819 { 7820 union lpfc_sli4_cfg_shdr *shdr; 7821 u32 shdr_status, shdr_add_status; 7822 7823 shdr = (union lpfc_sli4_cfg_shdr *) 7824 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7825 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7826 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7827 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7828 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7829 "4622 SET_FEATURE (x%x) mbox failed, " 7830 "status x%x add_status x%x, mbx status x%x\n", 7831 LPFC_SET_LD_SIGNAL, shdr_status, 7832 shdr_add_status, pmb->u.mb.mbxStatus); 7833 phba->degrade_activate_threshold = 0; 7834 phba->degrade_deactivate_threshold = 0; 7835 phba->fec_degrade_interval = 0; 7836 goto out; 7837 } 7838 7839 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7840 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7841 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7842 7843 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7844 "4624 Success: da x%x dd x%x interval x%x\n", 7845 phba->degrade_activate_threshold, 7846 phba->degrade_deactivate_threshold, 7847 phba->fec_degrade_interval); 7848 out: 7849 mempool_free(pmb, phba->mbox_mem_pool); 7850 } 7851 7852 int 7853 lpfc_read_lds_params(struct lpfc_hba *phba) 7854 { 7855 LPFC_MBOXQ_t *mboxq; 7856 int rc; 7857 7858 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7859 if (!mboxq) 7860 return -ENOMEM; 7861 7862 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7863 mboxq->vport = phba->pport; 7864 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7865 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7866 if (rc == MBX_NOT_FINISHED) { 7867 mempool_free(mboxq, phba->mbox_mem_pool); 7868 return -EIO; 7869 } 7870 return 0; 7871 } 7872 7873 static void 7874 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7875 { 7876 struct lpfc_vport *vport = pmb->vport; 7877 union lpfc_sli4_cfg_shdr *shdr; 7878 u32 shdr_status, shdr_add_status; 7879 u32 sig, acqe; 7880 7881 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7882 * is done. (2) Mailbox failed and send FPIN support only. 7883 */ 7884 shdr = (union lpfc_sli4_cfg_shdr *) 7885 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7886 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7887 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7888 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7889 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7890 "2516 CGN SET_FEATURE mbox failed with " 7891 "status x%x add_status x%x, mbx status x%x " 7892 "Reset Congestion to FPINs only\n", 7893 shdr_status, shdr_add_status, 7894 pmb->u.mb.mbxStatus); 7895 /* If there is a mbox error, move on to RDF */ 7896 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7897 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7898 goto out; 7899 } 7900 7901 /* Zero out Congestion Signal ACQE counter */ 7902 phba->cgn_acqe_cnt = 0; 7903 7904 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7905 &pmb->u.mqe.un.set_feature); 7906 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7907 &pmb->u.mqe.un.set_feature); 7908 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7909 "4620 SET_FEATURES Success: Freq: %ds %dms " 7910 " Reg: x%x x%x\n", acqe, sig, 7911 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7912 out: 7913 mempool_free(pmb, phba->mbox_mem_pool); 7914 7915 /* Register for FPIN events from the fabric now that the 7916 * EDC common_set_features has completed. 7917 */ 7918 lpfc_issue_els_rdf(vport, 0); 7919 } 7920 7921 int 7922 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7923 { 7924 LPFC_MBOXQ_t *mboxq; 7925 u32 rc; 7926 7927 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7928 if (!mboxq) 7929 goto out_rdf; 7930 7931 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7932 mboxq->vport = phba->pport; 7933 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7934 7935 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7936 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7937 "Reg: x%x x%x\n", 7938 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7939 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7940 7941 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7942 if (rc == MBX_NOT_FINISHED) 7943 goto out; 7944 return 0; 7945 7946 out: 7947 mempool_free(mboxq, phba->mbox_mem_pool); 7948 out_rdf: 7949 /* If there is a mbox error, move on to RDF */ 7950 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7951 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7952 lpfc_issue_els_rdf(phba->pport, 0); 7953 return -EIO; 7954 } 7955 7956 /** 7957 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7958 * @phba: pointer to lpfc hba data structure. 7959 * 7960 * This routine initializes the per-cq idle_stat to dynamically dictate 7961 * polling decisions. 7962 * 7963 * Return codes: 7964 * None 7965 **/ 7966 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7967 { 7968 int i; 7969 struct lpfc_sli4_hdw_queue *hdwq; 7970 struct lpfc_queue *cq; 7971 struct lpfc_idle_stat *idle_stat; 7972 u64 wall; 7973 7974 for_each_present_cpu(i) { 7975 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7976 cq = hdwq->io_cq; 7977 7978 /* Skip if we've already handled this cq's primary CPU */ 7979 if (cq->chann != i) 7980 continue; 7981 7982 idle_stat = &phba->sli4_hba.idle_stat[i]; 7983 7984 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7985 idle_stat->prev_wall = wall; 7986 7987 if (phba->nvmet_support || 7988 phba->cmf_active_mode != LPFC_CFG_OFF) 7989 cq->poll_mode = LPFC_QUEUE_WORK; 7990 else 7991 cq->poll_mode = LPFC_IRQ_POLL; 7992 } 7993 7994 if (!phba->nvmet_support) 7995 schedule_delayed_work(&phba->idle_stat_delay_work, 7996 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7997 } 7998 7999 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8000 { 8001 uint32_t if_type; 8002 8003 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8004 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8005 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8006 struct lpfc_register reg_data; 8007 8008 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8009 ®_data.word0)) 8010 return; 8011 8012 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8013 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8014 "2904 Firmware Dump Image Present" 8015 " on Adapter"); 8016 } 8017 } 8018 8019 /** 8020 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8021 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8022 * @entries: Number of rx_info_entry objects to allocate in ring 8023 * 8024 * Return: 8025 * 0 - Success 8026 * ENOMEM - Failure to kmalloc 8027 **/ 8028 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8029 u32 entries) 8030 { 8031 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8032 GFP_KERNEL); 8033 if (!rx_monitor->ring) 8034 return -ENOMEM; 8035 8036 rx_monitor->head_idx = 0; 8037 rx_monitor->tail_idx = 0; 8038 spin_lock_init(&rx_monitor->lock); 8039 rx_monitor->entries = entries; 8040 8041 return 0; 8042 } 8043 8044 /** 8045 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8046 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8047 * 8048 * Called after cancellation of cmf_timer. 8049 **/ 8050 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8051 { 8052 kfree(rx_monitor->ring); 8053 rx_monitor->ring = NULL; 8054 rx_monitor->entries = 0; 8055 rx_monitor->head_idx = 0; 8056 rx_monitor->tail_idx = 0; 8057 } 8058 8059 /** 8060 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8061 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8062 * @entry: Pointer to rx_info_entry 8063 * 8064 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8065 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8066 * 8067 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8068 * 8069 * In cases of old data overflow, we do a best effort of FIFO order. 8070 **/ 8071 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8072 struct rx_info_entry *entry) 8073 { 8074 struct rx_info_entry *ring = rx_monitor->ring; 8075 u32 *head_idx = &rx_monitor->head_idx; 8076 u32 *tail_idx = &rx_monitor->tail_idx; 8077 spinlock_t *ring_lock = &rx_monitor->lock; 8078 u32 ring_size = rx_monitor->entries; 8079 8080 spin_lock(ring_lock); 8081 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8082 *tail_idx = (*tail_idx + 1) % ring_size; 8083 8084 /* Best effort of FIFO saved data */ 8085 if (*tail_idx == *head_idx) 8086 *head_idx = (*head_idx + 1) % ring_size; 8087 8088 spin_unlock(ring_lock); 8089 } 8090 8091 /** 8092 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8093 * @phba: Pointer to lpfc_hba object 8094 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8095 * @buf: Pointer to char buffer that will contain rx monitor info data 8096 * @buf_len: Length buf including null char 8097 * @max_read_entries: Maximum number of entries to read out of ring 8098 * 8099 * Used to dump/read what's in rx_monitor's ring buffer. 8100 * 8101 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8102 * information to kmsg instead of filling out buf. 8103 * 8104 * Return: 8105 * Number of entries read out of the ring 8106 **/ 8107 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8108 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8109 u32 buf_len, u32 max_read_entries) 8110 { 8111 struct rx_info_entry *ring = rx_monitor->ring; 8112 struct rx_info_entry *entry; 8113 u32 *head_idx = &rx_monitor->head_idx; 8114 u32 *tail_idx = &rx_monitor->tail_idx; 8115 spinlock_t *ring_lock = &rx_monitor->lock; 8116 u32 ring_size = rx_monitor->entries; 8117 u32 cnt = 0; 8118 char tmp[DBG_LOG_STR_SZ] = {0}; 8119 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8120 8121 if (!log_to_kmsg) { 8122 /* clear the buffer to be sure */ 8123 memset(buf, 0, buf_len); 8124 8125 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8126 "%-8s%-8s%-8s%-16s\n", 8127 "MaxBPI", "Tot_Data_CMF", 8128 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8129 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8130 "IO_cnt", "Info", "BWutil(ms)"); 8131 } 8132 8133 /* Needs to be _irq because record is called from timer interrupt 8134 * context 8135 */ 8136 spin_lock_irq(ring_lock); 8137 while (*head_idx != *tail_idx) { 8138 entry = &ring[*head_idx]; 8139 8140 /* Read out this entry's data. */ 8141 if (!log_to_kmsg) { 8142 /* If !log_to_kmsg, then store to buf. */ 8143 scnprintf(tmp, sizeof(tmp), 8144 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8145 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8146 *head_idx, entry->max_bytes_per_interval, 8147 entry->cmf_bytes, entry->total_bytes, 8148 entry->rcv_bytes, entry->avg_io_latency, 8149 entry->avg_io_size, entry->max_read_cnt, 8150 entry->cmf_busy, entry->io_cnt, 8151 entry->cmf_info, entry->timer_utilization, 8152 entry->timer_interval); 8153 8154 /* Check for buffer overflow */ 8155 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8156 break; 8157 8158 /* Append entry's data to buffer */ 8159 strlcat(buf, tmp, buf_len); 8160 } else { 8161 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8162 "4410 %02u: MBPI %llu Xmit %llu " 8163 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8164 "BWUtil %u Int %u slot %u\n", 8165 cnt, entry->max_bytes_per_interval, 8166 entry->total_bytes, entry->rcv_bytes, 8167 entry->avg_io_latency, 8168 entry->avg_io_size, entry->cmf_info, 8169 entry->timer_utilization, 8170 entry->timer_interval, *head_idx); 8171 } 8172 8173 *head_idx = (*head_idx + 1) % ring_size; 8174 8175 /* Don't feed more than max_read_entries */ 8176 cnt++; 8177 if (cnt >= max_read_entries) 8178 break; 8179 } 8180 spin_unlock_irq(ring_lock); 8181 8182 return cnt; 8183 } 8184 8185 /** 8186 * lpfc_cmf_setup - Initialize idle_stat tracking 8187 * @phba: Pointer to HBA context object. 8188 * 8189 * This is called from HBA setup during driver load or when the HBA 8190 * comes online. this does all the initialization to support CMF and MI. 8191 **/ 8192 static int 8193 lpfc_cmf_setup(struct lpfc_hba *phba) 8194 { 8195 LPFC_MBOXQ_t *mboxq; 8196 struct lpfc_dmabuf *mp; 8197 struct lpfc_pc_sli4_params *sli4_params; 8198 int rc, cmf, mi_ver; 8199 8200 rc = lpfc_sli4_refresh_params(phba); 8201 if (unlikely(rc)) 8202 return rc; 8203 8204 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8205 if (!mboxq) 8206 return -ENOMEM; 8207 8208 sli4_params = &phba->sli4_hba.pc_sli4_params; 8209 8210 /* Always try to enable MI feature if we can */ 8211 if (sli4_params->mi_ver) { 8212 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8213 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8214 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8215 &mboxq->u.mqe.un.set_feature); 8216 8217 if (rc == MBX_SUCCESS) { 8218 if (mi_ver) { 8219 lpfc_printf_log(phba, 8220 KERN_WARNING, LOG_CGN_MGMT, 8221 "6215 MI is enabled\n"); 8222 sli4_params->mi_ver = mi_ver; 8223 } else { 8224 lpfc_printf_log(phba, 8225 KERN_WARNING, LOG_CGN_MGMT, 8226 "6338 MI is disabled\n"); 8227 sli4_params->mi_ver = 0; 8228 } 8229 } else { 8230 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8231 lpfc_printf_log(phba, KERN_INFO, 8232 LOG_CGN_MGMT | LOG_INIT, 8233 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8234 "failed, rc:x%x mi:x%x\n", 8235 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8236 lpfc_sli_config_mbox_subsys_get 8237 (phba, mboxq), 8238 lpfc_sli_config_mbox_opcode_get 8239 (phba, mboxq), 8240 rc, sli4_params->mi_ver); 8241 } 8242 } else { 8243 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8244 "6217 MI is disabled\n"); 8245 } 8246 8247 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8248 if (sli4_params->mi_ver) 8249 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8250 8251 /* Always try to enable CMF feature if we can */ 8252 if (sli4_params->cmf) { 8253 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8254 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8255 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8256 &mboxq->u.mqe.un.set_feature); 8257 if (rc == MBX_SUCCESS && cmf) { 8258 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8259 "6218 CMF is enabled: mode %d\n", 8260 phba->cmf_active_mode); 8261 } else { 8262 lpfc_printf_log(phba, KERN_WARNING, 8263 LOG_CGN_MGMT | LOG_INIT, 8264 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8265 "failed, rc:x%x dd:x%x\n", 8266 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8267 lpfc_sli_config_mbox_subsys_get 8268 (phba, mboxq), 8269 lpfc_sli_config_mbox_opcode_get 8270 (phba, mboxq), 8271 rc, cmf); 8272 sli4_params->cmf = 0; 8273 phba->cmf_active_mode = LPFC_CFG_OFF; 8274 goto no_cmf; 8275 } 8276 8277 /* Allocate Congestion Information Buffer */ 8278 if (!phba->cgn_i) { 8279 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8280 if (mp) 8281 mp->virt = dma_alloc_coherent 8282 (&phba->pcidev->dev, 8283 sizeof(struct lpfc_cgn_info), 8284 &mp->phys, GFP_KERNEL); 8285 if (!mp || !mp->virt) { 8286 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8287 "2640 Failed to alloc memory " 8288 "for Congestion Info\n"); 8289 kfree(mp); 8290 sli4_params->cmf = 0; 8291 phba->cmf_active_mode = LPFC_CFG_OFF; 8292 goto no_cmf; 8293 } 8294 phba->cgn_i = mp; 8295 8296 /* initialize congestion buffer info */ 8297 lpfc_init_congestion_buf(phba); 8298 lpfc_init_congestion_stat(phba); 8299 8300 /* Zero out Congestion Signal counters */ 8301 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8302 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8303 } 8304 8305 rc = lpfc_sli4_cgn_params_read(phba); 8306 if (rc < 0) { 8307 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8308 "6242 Error reading Cgn Params (%d)\n", 8309 rc); 8310 /* Ensure CGN Mode is off */ 8311 sli4_params->cmf = 0; 8312 } else if (!rc) { 8313 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8314 "6243 CGN Event empty object.\n"); 8315 /* Ensure CGN Mode is off */ 8316 sli4_params->cmf = 0; 8317 } 8318 } else { 8319 no_cmf: 8320 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8321 "6220 CMF is disabled\n"); 8322 } 8323 8324 /* Only register congestion buffer with firmware if BOTH 8325 * CMF and E2E are enabled. 8326 */ 8327 if (sli4_params->cmf && sli4_params->mi_ver) { 8328 rc = lpfc_reg_congestion_buf(phba); 8329 if (rc) { 8330 dma_free_coherent(&phba->pcidev->dev, 8331 sizeof(struct lpfc_cgn_info), 8332 phba->cgn_i->virt, phba->cgn_i->phys); 8333 kfree(phba->cgn_i); 8334 phba->cgn_i = NULL; 8335 /* Ensure CGN Mode is off */ 8336 phba->cmf_active_mode = LPFC_CFG_OFF; 8337 sli4_params->cmf = 0; 8338 return 0; 8339 } 8340 } 8341 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8342 "6470 Setup MI version %d CMF %d mode %d\n", 8343 sli4_params->mi_ver, sli4_params->cmf, 8344 phba->cmf_active_mode); 8345 8346 mempool_free(mboxq, phba->mbox_mem_pool); 8347 8348 /* Initialize atomic counters */ 8349 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8350 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8351 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8352 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8353 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8354 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8355 atomic64_set(&phba->cgn_latency_evt, 0); 8356 8357 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8358 8359 /* Allocate RX Monitor Buffer */ 8360 if (!phba->rx_monitor) { 8361 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8362 GFP_KERNEL); 8363 8364 if (!phba->rx_monitor) { 8365 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8366 "2644 Failed to alloc memory " 8367 "for RX Monitor Buffer\n"); 8368 return -ENOMEM; 8369 } 8370 8371 /* Instruct the rx_monitor object to instantiate its ring */ 8372 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8373 LPFC_MAX_RXMONITOR_ENTRY)) { 8374 kfree(phba->rx_monitor); 8375 phba->rx_monitor = NULL; 8376 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8377 "2645 Failed to alloc memory " 8378 "for RX Monitor's Ring\n"); 8379 return -ENOMEM; 8380 } 8381 } 8382 8383 return 0; 8384 } 8385 8386 static int 8387 lpfc_set_host_tm(struct lpfc_hba *phba) 8388 { 8389 LPFC_MBOXQ_t *mboxq; 8390 uint32_t len, rc; 8391 struct timespec64 cur_time; 8392 struct tm broken; 8393 uint32_t month, day, year; 8394 uint32_t hour, minute, second; 8395 struct lpfc_mbx_set_host_date_time *tm; 8396 8397 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8398 if (!mboxq) 8399 return -ENOMEM; 8400 8401 len = sizeof(struct lpfc_mbx_set_host_data) - 8402 sizeof(struct lpfc_sli4_cfg_mhdr); 8403 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8404 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8405 LPFC_SLI4_MBX_EMBED); 8406 8407 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8408 mboxq->u.mqe.un.set_host_data.param_len = 8409 sizeof(struct lpfc_mbx_set_host_date_time); 8410 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8411 ktime_get_real_ts64(&cur_time); 8412 time64_to_tm(cur_time.tv_sec, 0, &broken); 8413 month = broken.tm_mon + 1; 8414 day = broken.tm_mday; 8415 year = broken.tm_year - 100; 8416 hour = broken.tm_hour; 8417 minute = broken.tm_min; 8418 second = broken.tm_sec; 8419 bf_set(lpfc_mbx_set_host_month, tm, month); 8420 bf_set(lpfc_mbx_set_host_day, tm, day); 8421 bf_set(lpfc_mbx_set_host_year, tm, year); 8422 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8423 bf_set(lpfc_mbx_set_host_min, tm, minute); 8424 bf_set(lpfc_mbx_set_host_sec, tm, second); 8425 8426 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8427 mempool_free(mboxq, phba->mbox_mem_pool); 8428 return rc; 8429 } 8430 8431 /** 8432 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8433 * @phba: Pointer to HBA context object. 8434 * 8435 * This function is the main SLI4 device initialization PCI function. This 8436 * function is called by the HBA initialization code, HBA reset code and 8437 * HBA error attention handler code. Caller is not required to hold any 8438 * locks. 8439 **/ 8440 int 8441 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8442 { 8443 int rc, i, cnt, len, dd; 8444 LPFC_MBOXQ_t *mboxq; 8445 struct lpfc_mqe *mqe; 8446 uint8_t *vpd; 8447 uint32_t vpd_size; 8448 uint32_t ftr_rsp = 0; 8449 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8450 struct lpfc_vport *vport = phba->pport; 8451 struct lpfc_dmabuf *mp; 8452 struct lpfc_rqb *rqbp; 8453 u32 flg; 8454 8455 /* Perform a PCI function reset to start from clean */ 8456 rc = lpfc_pci_function_reset(phba); 8457 if (unlikely(rc)) 8458 return -ENODEV; 8459 8460 /* Check the HBA Host Status Register for readyness */ 8461 rc = lpfc_sli4_post_status_check(phba); 8462 if (unlikely(rc)) 8463 return -ENODEV; 8464 else { 8465 spin_lock_irq(&phba->hbalock); 8466 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8467 flg = phba->sli.sli_flag; 8468 spin_unlock_irq(&phba->hbalock); 8469 /* Allow a little time after setting SLI_ACTIVE for any polled 8470 * MBX commands to complete via BSG. 8471 */ 8472 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8473 msleep(20); 8474 spin_lock_irq(&phba->hbalock); 8475 flg = phba->sli.sli_flag; 8476 spin_unlock_irq(&phba->hbalock); 8477 } 8478 } 8479 8480 lpfc_sli4_dip(phba); 8481 8482 /* 8483 * Allocate a single mailbox container for initializing the 8484 * port. 8485 */ 8486 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8487 if (!mboxq) 8488 return -ENOMEM; 8489 8490 /* Issue READ_REV to collect vpd and FW information. */ 8491 vpd_size = SLI4_PAGE_SIZE; 8492 vpd = kzalloc(vpd_size, GFP_KERNEL); 8493 if (!vpd) { 8494 rc = -ENOMEM; 8495 goto out_free_mbox; 8496 } 8497 8498 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8499 if (unlikely(rc)) { 8500 kfree(vpd); 8501 goto out_free_mbox; 8502 } 8503 8504 mqe = &mboxq->u.mqe; 8505 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8506 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8507 phba->hba_flag |= HBA_FCOE_MODE; 8508 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8509 } else { 8510 phba->hba_flag &= ~HBA_FCOE_MODE; 8511 } 8512 8513 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8514 LPFC_DCBX_CEE_MODE) 8515 phba->hba_flag |= HBA_FIP_SUPPORT; 8516 else 8517 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8518 8519 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8520 8521 if (phba->sli_rev != LPFC_SLI_REV4) { 8522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8523 "0376 READ_REV Error. SLI Level %d " 8524 "FCoE enabled %d\n", 8525 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8526 rc = -EIO; 8527 kfree(vpd); 8528 goto out_free_mbox; 8529 } 8530 8531 rc = lpfc_set_host_tm(phba); 8532 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8533 "6468 Set host date / time: Status x%x:\n", rc); 8534 8535 /* 8536 * Continue initialization with default values even if driver failed 8537 * to read FCoE param config regions, only read parameters if the 8538 * board is FCoE 8539 */ 8540 if (phba->hba_flag & HBA_FCOE_MODE && 8541 lpfc_sli4_read_fcoe_params(phba)) 8542 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8543 "2570 Failed to read FCoE parameters\n"); 8544 8545 /* 8546 * Retrieve sli4 device physical port name, failure of doing it 8547 * is considered as non-fatal. 8548 */ 8549 rc = lpfc_sli4_retrieve_pport_name(phba); 8550 if (!rc) 8551 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8552 "3080 Successful retrieving SLI4 device " 8553 "physical port name: %s.\n", phba->Port); 8554 8555 rc = lpfc_sli4_get_ctl_attr(phba); 8556 if (!rc) 8557 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8558 "8351 Successful retrieving SLI4 device " 8559 "CTL ATTR\n"); 8560 8561 /* 8562 * Evaluate the read rev and vpd data. Populate the driver 8563 * state with the results. If this routine fails, the failure 8564 * is not fatal as the driver will use generic values. 8565 */ 8566 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8567 if (unlikely(!rc)) { 8568 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8569 "0377 Error %d parsing vpd. " 8570 "Using defaults.\n", rc); 8571 rc = 0; 8572 } 8573 kfree(vpd); 8574 8575 /* Save information as VPD data */ 8576 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8577 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8578 8579 /* 8580 * This is because first G7 ASIC doesn't support the standard 8581 * 0x5a NVME cmd descriptor type/subtype 8582 */ 8583 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8584 LPFC_SLI_INTF_IF_TYPE_6) && 8585 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8586 (phba->vpd.rev.smRev == 0) && 8587 (phba->cfg_nvme_embed_cmd == 1)) 8588 phba->cfg_nvme_embed_cmd = 0; 8589 8590 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8591 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8592 &mqe->un.read_rev); 8593 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8594 &mqe->un.read_rev); 8595 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8596 &mqe->un.read_rev); 8597 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8598 &mqe->un.read_rev); 8599 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8600 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8601 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8602 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8603 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8604 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8605 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8606 "(%d):0380 READ_REV Status x%x " 8607 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8608 mboxq->vport ? mboxq->vport->vpi : 0, 8609 bf_get(lpfc_mqe_status, mqe), 8610 phba->vpd.rev.opFwName, 8611 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8612 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8613 8614 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8615 LPFC_SLI_INTF_IF_TYPE_0) { 8616 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8617 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8618 if (rc == MBX_SUCCESS) { 8619 phba->hba_flag |= HBA_RECOVERABLE_UE; 8620 /* Set 1Sec interval to detect UE */ 8621 phba->eratt_poll_interval = 1; 8622 phba->sli4_hba.ue_to_sr = bf_get( 8623 lpfc_mbx_set_feature_UESR, 8624 &mboxq->u.mqe.un.set_feature); 8625 phba->sli4_hba.ue_to_rp = bf_get( 8626 lpfc_mbx_set_feature_UERP, 8627 &mboxq->u.mqe.un.set_feature); 8628 } 8629 } 8630 8631 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8632 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8633 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8634 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8635 if (rc != MBX_SUCCESS) 8636 phba->mds_diags_support = 0; 8637 } 8638 8639 /* 8640 * Discover the port's supported feature set and match it against the 8641 * hosts requests. 8642 */ 8643 lpfc_request_features(phba, mboxq); 8644 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8645 if (unlikely(rc)) { 8646 rc = -EIO; 8647 goto out_free_mbox; 8648 } 8649 8650 /* Disable VMID if app header is not supported */ 8651 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8652 &mqe->un.req_ftrs))) { 8653 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8654 phba->cfg_vmid_app_header = 0; 8655 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8656 "1242 vmid feature not supported\n"); 8657 } 8658 8659 /* 8660 * The port must support FCP initiator mode as this is the 8661 * only mode running in the host. 8662 */ 8663 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8664 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8665 "0378 No support for fcpi mode.\n"); 8666 ftr_rsp++; 8667 } 8668 8669 /* Performance Hints are ONLY for FCoE */ 8670 if (phba->hba_flag & HBA_FCOE_MODE) { 8671 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8672 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8673 else 8674 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8675 } 8676 8677 /* 8678 * If the port cannot support the host's requested features 8679 * then turn off the global config parameters to disable the 8680 * feature in the driver. This is not a fatal error. 8681 */ 8682 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8683 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8684 phba->cfg_enable_bg = 0; 8685 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8686 ftr_rsp++; 8687 } 8688 } 8689 8690 if (phba->max_vpi && phba->cfg_enable_npiv && 8691 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8692 ftr_rsp++; 8693 8694 if (ftr_rsp) { 8695 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8696 "0379 Feature Mismatch Data: x%08x %08x " 8697 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8698 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8699 phba->cfg_enable_npiv, phba->max_vpi); 8700 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8701 phba->cfg_enable_bg = 0; 8702 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8703 phba->cfg_enable_npiv = 0; 8704 } 8705 8706 /* These SLI3 features are assumed in SLI4 */ 8707 spin_lock_irq(&phba->hbalock); 8708 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8709 spin_unlock_irq(&phba->hbalock); 8710 8711 /* Always try to enable dual dump feature if we can */ 8712 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8713 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8714 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8715 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8716 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8717 "6448 Dual Dump is enabled\n"); 8718 else 8719 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8720 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8721 "rc:x%x dd:x%x\n", 8722 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8723 lpfc_sli_config_mbox_subsys_get( 8724 phba, mboxq), 8725 lpfc_sli_config_mbox_opcode_get( 8726 phba, mboxq), 8727 rc, dd); 8728 /* 8729 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8730 * calls depends on these resources to complete port setup. 8731 */ 8732 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8733 if (rc) { 8734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8735 "2920 Failed to alloc Resource IDs " 8736 "rc = x%x\n", rc); 8737 goto out_free_mbox; 8738 } 8739 8740 lpfc_set_host_data(phba, mboxq); 8741 8742 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8743 if (rc) { 8744 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8745 "2134 Failed to set host os driver version %x", 8746 rc); 8747 } 8748 8749 /* Read the port's service parameters. */ 8750 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8751 if (rc) { 8752 phba->link_state = LPFC_HBA_ERROR; 8753 rc = -ENOMEM; 8754 goto out_free_mbox; 8755 } 8756 8757 mboxq->vport = vport; 8758 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8759 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8760 if (rc == MBX_SUCCESS) { 8761 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8762 rc = 0; 8763 } 8764 8765 /* 8766 * This memory was allocated by the lpfc_read_sparam routine but is 8767 * no longer needed. It is released and ctx_buf NULLed to prevent 8768 * unintended pointer access as the mbox is reused. 8769 */ 8770 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8771 kfree(mp); 8772 mboxq->ctx_buf = NULL; 8773 if (unlikely(rc)) { 8774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8775 "0382 READ_SPARAM command failed " 8776 "status %d, mbxStatus x%x\n", 8777 rc, bf_get(lpfc_mqe_status, mqe)); 8778 phba->link_state = LPFC_HBA_ERROR; 8779 rc = -EIO; 8780 goto out_free_mbox; 8781 } 8782 8783 lpfc_update_vport_wwn(vport); 8784 8785 /* Update the fc_host data structures with new wwn. */ 8786 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8787 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8788 8789 /* Create all the SLI4 queues */ 8790 rc = lpfc_sli4_queue_create(phba); 8791 if (rc) { 8792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8793 "3089 Failed to allocate queues\n"); 8794 rc = -ENODEV; 8795 goto out_free_mbox; 8796 } 8797 /* Set up all the queues to the device */ 8798 rc = lpfc_sli4_queue_setup(phba); 8799 if (unlikely(rc)) { 8800 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8801 "0381 Error %d during queue setup.\n ", rc); 8802 goto out_stop_timers; 8803 } 8804 /* Initialize the driver internal SLI layer lists. */ 8805 lpfc_sli4_setup(phba); 8806 lpfc_sli4_queue_init(phba); 8807 8808 /* update host els xri-sgl sizes and mappings */ 8809 rc = lpfc_sli4_els_sgl_update(phba); 8810 if (unlikely(rc)) { 8811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8812 "1400 Failed to update xri-sgl size and " 8813 "mapping: %d\n", rc); 8814 goto out_destroy_queue; 8815 } 8816 8817 /* register the els sgl pool to the port */ 8818 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8819 phba->sli4_hba.els_xri_cnt); 8820 if (unlikely(rc < 0)) { 8821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8822 "0582 Error %d during els sgl post " 8823 "operation\n", rc); 8824 rc = -ENODEV; 8825 goto out_destroy_queue; 8826 } 8827 phba->sli4_hba.els_xri_cnt = rc; 8828 8829 if (phba->nvmet_support) { 8830 /* update host nvmet xri-sgl sizes and mappings */ 8831 rc = lpfc_sli4_nvmet_sgl_update(phba); 8832 if (unlikely(rc)) { 8833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8834 "6308 Failed to update nvmet-sgl size " 8835 "and mapping: %d\n", rc); 8836 goto out_destroy_queue; 8837 } 8838 8839 /* register the nvmet sgl pool to the port */ 8840 rc = lpfc_sli4_repost_sgl_list( 8841 phba, 8842 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8843 phba->sli4_hba.nvmet_xri_cnt); 8844 if (unlikely(rc < 0)) { 8845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8846 "3117 Error %d during nvmet " 8847 "sgl post\n", rc); 8848 rc = -ENODEV; 8849 goto out_destroy_queue; 8850 } 8851 phba->sli4_hba.nvmet_xri_cnt = rc; 8852 8853 /* We allocate an iocbq for every receive context SGL. 8854 * The additional allocation is for abort and ls handling. 8855 */ 8856 cnt = phba->sli4_hba.nvmet_xri_cnt + 8857 phba->sli4_hba.max_cfg_param.max_xri; 8858 } else { 8859 /* update host common xri-sgl sizes and mappings */ 8860 rc = lpfc_sli4_io_sgl_update(phba); 8861 if (unlikely(rc)) { 8862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8863 "6082 Failed to update nvme-sgl size " 8864 "and mapping: %d\n", rc); 8865 goto out_destroy_queue; 8866 } 8867 8868 /* register the allocated common sgl pool to the port */ 8869 rc = lpfc_sli4_repost_io_sgl_list(phba); 8870 if (unlikely(rc)) { 8871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8872 "6116 Error %d during nvme sgl post " 8873 "operation\n", rc); 8874 /* Some NVME buffers were moved to abort nvme list */ 8875 /* A pci function reset will repost them */ 8876 rc = -ENODEV; 8877 goto out_destroy_queue; 8878 } 8879 /* Each lpfc_io_buf job structure has an iocbq element. 8880 * This cnt provides for abort, els, ct and ls requests. 8881 */ 8882 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8883 } 8884 8885 if (!phba->sli.iocbq_lookup) { 8886 /* Initialize and populate the iocb list per host */ 8887 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8888 "2821 initialize iocb list with %d entries\n", 8889 cnt); 8890 rc = lpfc_init_iocb_list(phba, cnt); 8891 if (rc) { 8892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8893 "1413 Failed to init iocb list.\n"); 8894 goto out_destroy_queue; 8895 } 8896 } 8897 8898 if (phba->nvmet_support) 8899 lpfc_nvmet_create_targetport(phba); 8900 8901 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8902 /* Post initial buffers to all RQs created */ 8903 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8904 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8905 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8906 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8907 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8908 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8909 rqbp->buffer_count = 0; 8910 8911 lpfc_post_rq_buffer( 8912 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8913 phba->sli4_hba.nvmet_mrq_data[i], 8914 phba->cfg_nvmet_mrq_post, i); 8915 } 8916 } 8917 8918 /* Post the rpi header region to the device. */ 8919 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8920 if (unlikely(rc)) { 8921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8922 "0393 Error %d during rpi post operation\n", 8923 rc); 8924 rc = -ENODEV; 8925 goto out_free_iocblist; 8926 } 8927 lpfc_sli4_node_prep(phba); 8928 8929 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8930 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8931 /* 8932 * The FC Port needs to register FCFI (index 0) 8933 */ 8934 lpfc_reg_fcfi(phba, mboxq); 8935 mboxq->vport = phba->pport; 8936 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8937 if (rc != MBX_SUCCESS) 8938 goto out_unset_queue; 8939 rc = 0; 8940 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8941 &mboxq->u.mqe.un.reg_fcfi); 8942 } else { 8943 /* We are a NVME Target mode with MRQ > 1 */ 8944 8945 /* First register the FCFI */ 8946 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8947 mboxq->vport = phba->pport; 8948 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8949 if (rc != MBX_SUCCESS) 8950 goto out_unset_queue; 8951 rc = 0; 8952 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8953 &mboxq->u.mqe.un.reg_fcfi_mrq); 8954 8955 /* Next register the MRQs */ 8956 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8957 mboxq->vport = phba->pport; 8958 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8959 if (rc != MBX_SUCCESS) 8960 goto out_unset_queue; 8961 rc = 0; 8962 } 8963 /* Check if the port is configured to be disabled */ 8964 lpfc_sli_read_link_ste(phba); 8965 } 8966 8967 /* Don't post more new bufs if repost already recovered 8968 * the nvme sgls. 8969 */ 8970 if (phba->nvmet_support == 0) { 8971 if (phba->sli4_hba.io_xri_cnt == 0) { 8972 len = lpfc_new_io_buf( 8973 phba, phba->sli4_hba.io_xri_max); 8974 if (len == 0) { 8975 rc = -ENOMEM; 8976 goto out_unset_queue; 8977 } 8978 8979 if (phba->cfg_xri_rebalancing) 8980 lpfc_create_multixri_pools(phba); 8981 } 8982 } else { 8983 phba->cfg_xri_rebalancing = 0; 8984 } 8985 8986 /* Allow asynchronous mailbox command to go through */ 8987 spin_lock_irq(&phba->hbalock); 8988 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8989 spin_unlock_irq(&phba->hbalock); 8990 8991 /* Post receive buffers to the device */ 8992 lpfc_sli4_rb_setup(phba); 8993 8994 /* Reset HBA FCF states after HBA reset */ 8995 phba->fcf.fcf_flag = 0; 8996 phba->fcf.current_rec.flag = 0; 8997 8998 /* Start the ELS watchdog timer */ 8999 mod_timer(&vport->els_tmofunc, 9000 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9001 9002 /* Start heart beat timer */ 9003 mod_timer(&phba->hb_tmofunc, 9004 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9005 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9006 phba->last_completion_time = jiffies; 9007 9008 /* start eq_delay heartbeat */ 9009 if (phba->cfg_auto_imax) 9010 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9011 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9012 9013 /* start per phba idle_stat_delay heartbeat */ 9014 lpfc_init_idle_stat_hb(phba); 9015 9016 /* Start error attention (ERATT) polling timer */ 9017 mod_timer(&phba->eratt_poll, 9018 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9019 9020 /* 9021 * The port is ready, set the host's link state to LINK_DOWN 9022 * in preparation for link interrupts. 9023 */ 9024 spin_lock_irq(&phba->hbalock); 9025 phba->link_state = LPFC_LINK_DOWN; 9026 9027 /* Check if physical ports are trunked */ 9028 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9029 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9030 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9031 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9032 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9033 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9034 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9035 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9036 spin_unlock_irq(&phba->hbalock); 9037 9038 /* Arm the CQs and then EQs on device */ 9039 lpfc_sli4_arm_cqeq_intr(phba); 9040 9041 /* Indicate device interrupt mode */ 9042 phba->sli4_hba.intr_enable = 1; 9043 9044 /* Setup CMF after HBA is initialized */ 9045 lpfc_cmf_setup(phba); 9046 9047 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9048 (phba->hba_flag & LINK_DISABLED)) { 9049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9050 "3103 Adapter Link is disabled.\n"); 9051 lpfc_down_link(phba, mboxq); 9052 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9053 if (rc != MBX_SUCCESS) { 9054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9055 "3104 Adapter failed to issue " 9056 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9057 goto out_io_buff_free; 9058 } 9059 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9060 /* don't perform init_link on SLI4 FC port loopback test */ 9061 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9062 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9063 if (rc) 9064 goto out_io_buff_free; 9065 } 9066 } 9067 mempool_free(mboxq, phba->mbox_mem_pool); 9068 9069 /* Enable RAS FW log support */ 9070 lpfc_sli4_ras_setup(phba); 9071 9072 phba->hba_flag |= HBA_SETUP; 9073 return rc; 9074 9075 out_io_buff_free: 9076 /* Free allocated IO Buffers */ 9077 lpfc_io_free(phba); 9078 out_unset_queue: 9079 /* Unset all the queues set up in this routine when error out */ 9080 lpfc_sli4_queue_unset(phba); 9081 out_free_iocblist: 9082 lpfc_free_iocb_list(phba); 9083 out_destroy_queue: 9084 lpfc_sli4_queue_destroy(phba); 9085 out_stop_timers: 9086 lpfc_stop_hba_timers(phba); 9087 out_free_mbox: 9088 mempool_free(mboxq, phba->mbox_mem_pool); 9089 return rc; 9090 } 9091 9092 /** 9093 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9094 * @t: Context to fetch pointer to hba structure from. 9095 * 9096 * This is the callback function for mailbox timer. The mailbox 9097 * timer is armed when a new mailbox command is issued and the timer 9098 * is deleted when the mailbox complete. The function is called by 9099 * the kernel timer code when a mailbox does not complete within 9100 * expected time. This function wakes up the worker thread to 9101 * process the mailbox timeout and returns. All the processing is 9102 * done by the worker thread function lpfc_mbox_timeout_handler. 9103 **/ 9104 void 9105 lpfc_mbox_timeout(struct timer_list *t) 9106 { 9107 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9108 unsigned long iflag; 9109 uint32_t tmo_posted; 9110 9111 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9112 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9113 if (!tmo_posted) 9114 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9115 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9116 9117 if (!tmo_posted) 9118 lpfc_worker_wake_up(phba); 9119 return; 9120 } 9121 9122 /** 9123 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9124 * are pending 9125 * @phba: Pointer to HBA context object. 9126 * 9127 * This function checks if any mailbox completions are present on the mailbox 9128 * completion queue. 9129 **/ 9130 static bool 9131 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9132 { 9133 9134 uint32_t idx; 9135 struct lpfc_queue *mcq; 9136 struct lpfc_mcqe *mcqe; 9137 bool pending_completions = false; 9138 uint8_t qe_valid; 9139 9140 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9141 return false; 9142 9143 /* Check for completions on mailbox completion queue */ 9144 9145 mcq = phba->sli4_hba.mbx_cq; 9146 idx = mcq->hba_index; 9147 qe_valid = mcq->qe_valid; 9148 while (bf_get_le32(lpfc_cqe_valid, 9149 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9150 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9151 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9152 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9153 pending_completions = true; 9154 break; 9155 } 9156 idx = (idx + 1) % mcq->entry_count; 9157 if (mcq->hba_index == idx) 9158 break; 9159 9160 /* if the index wrapped around, toggle the valid bit */ 9161 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9162 qe_valid = (qe_valid) ? 0 : 1; 9163 } 9164 return pending_completions; 9165 9166 } 9167 9168 /** 9169 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9170 * that were missed. 9171 * @phba: Pointer to HBA context object. 9172 * 9173 * For sli4, it is possible to miss an interrupt. As such mbox completions 9174 * maybe missed causing erroneous mailbox timeouts to occur. This function 9175 * checks to see if mbox completions are on the mailbox completion queue 9176 * and will process all the completions associated with the eq for the 9177 * mailbox completion queue. 9178 **/ 9179 static bool 9180 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9181 { 9182 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9183 uint32_t eqidx; 9184 struct lpfc_queue *fpeq = NULL; 9185 struct lpfc_queue *eq; 9186 bool mbox_pending; 9187 9188 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9189 return false; 9190 9191 /* Find the EQ associated with the mbox CQ */ 9192 if (sli4_hba->hdwq) { 9193 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9194 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9195 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9196 fpeq = eq; 9197 break; 9198 } 9199 } 9200 } 9201 if (!fpeq) 9202 return false; 9203 9204 /* Turn off interrupts from this EQ */ 9205 9206 sli4_hba->sli4_eq_clr_intr(fpeq); 9207 9208 /* Check to see if a mbox completion is pending */ 9209 9210 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9211 9212 /* 9213 * If a mbox completion is pending, process all the events on EQ 9214 * associated with the mbox completion queue (this could include 9215 * mailbox commands, async events, els commands, receive queue data 9216 * and fcp commands) 9217 */ 9218 9219 if (mbox_pending) 9220 /* process and rearm the EQ */ 9221 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 9222 else 9223 /* Always clear and re-arm the EQ */ 9224 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9225 9226 return mbox_pending; 9227 9228 } 9229 9230 /** 9231 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9232 * @phba: Pointer to HBA context object. 9233 * 9234 * This function is called from worker thread when a mailbox command times out. 9235 * The caller is not required to hold any locks. This function will reset the 9236 * HBA and recover all the pending commands. 9237 **/ 9238 void 9239 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9240 { 9241 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9242 MAILBOX_t *mb = NULL; 9243 9244 struct lpfc_sli *psli = &phba->sli; 9245 9246 /* If the mailbox completed, process the completion */ 9247 lpfc_sli4_process_missed_mbox_completions(phba); 9248 9249 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9250 return; 9251 9252 if (pmbox != NULL) 9253 mb = &pmbox->u.mb; 9254 /* Check the pmbox pointer first. There is a race condition 9255 * between the mbox timeout handler getting executed in the 9256 * worklist and the mailbox actually completing. When this 9257 * race condition occurs, the mbox_active will be NULL. 9258 */ 9259 spin_lock_irq(&phba->hbalock); 9260 if (pmbox == NULL) { 9261 lpfc_printf_log(phba, KERN_WARNING, 9262 LOG_MBOX | LOG_SLI, 9263 "0353 Active Mailbox cleared - mailbox timeout " 9264 "exiting\n"); 9265 spin_unlock_irq(&phba->hbalock); 9266 return; 9267 } 9268 9269 /* Mbox cmd <mbxCommand> timeout */ 9270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9271 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9272 mb->mbxCommand, 9273 phba->pport->port_state, 9274 phba->sli.sli_flag, 9275 phba->sli.mbox_active); 9276 spin_unlock_irq(&phba->hbalock); 9277 9278 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9279 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9280 * it to fail all outstanding SCSI IO. 9281 */ 9282 spin_lock_irq(&phba->pport->work_port_lock); 9283 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9284 spin_unlock_irq(&phba->pport->work_port_lock); 9285 spin_lock_irq(&phba->hbalock); 9286 phba->link_state = LPFC_LINK_UNKNOWN; 9287 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9288 spin_unlock_irq(&phba->hbalock); 9289 9290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9291 "0345 Resetting board due to mailbox timeout\n"); 9292 9293 /* Reset the HBA device */ 9294 lpfc_reset_hba(phba); 9295 } 9296 9297 /** 9298 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9299 * @phba: Pointer to HBA context object. 9300 * @pmbox: Pointer to mailbox object. 9301 * @flag: Flag indicating how the mailbox need to be processed. 9302 * 9303 * This function is called by discovery code and HBA management code 9304 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9305 * function gets the hbalock to protect the data structures. 9306 * The mailbox command can be submitted in polling mode, in which case 9307 * this function will wait in a polling loop for the completion of the 9308 * mailbox. 9309 * If the mailbox is submitted in no_wait mode (not polling) the 9310 * function will submit the command and returns immediately without waiting 9311 * for the mailbox completion. The no_wait is supported only when HBA 9312 * is in SLI2/SLI3 mode - interrupts are enabled. 9313 * The SLI interface allows only one mailbox pending at a time. If the 9314 * mailbox is issued in polling mode and there is already a mailbox 9315 * pending, then the function will return an error. If the mailbox is issued 9316 * in NO_WAIT mode and there is a mailbox pending already, the function 9317 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9318 * The sli layer owns the mailbox object until the completion of mailbox 9319 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9320 * return codes the caller owns the mailbox command after the return of 9321 * the function. 9322 **/ 9323 static int 9324 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9325 uint32_t flag) 9326 { 9327 MAILBOX_t *mbx; 9328 struct lpfc_sli *psli = &phba->sli; 9329 uint32_t status, evtctr; 9330 uint32_t ha_copy, hc_copy; 9331 int i; 9332 unsigned long timeout; 9333 unsigned long drvr_flag = 0; 9334 uint32_t word0, ldata; 9335 void __iomem *to_slim; 9336 int processing_queue = 0; 9337 9338 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9339 if (!pmbox) { 9340 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9341 /* processing mbox queue from intr_handler */ 9342 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9343 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9344 return MBX_SUCCESS; 9345 } 9346 processing_queue = 1; 9347 pmbox = lpfc_mbox_get(phba); 9348 if (!pmbox) { 9349 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9350 return MBX_SUCCESS; 9351 } 9352 } 9353 9354 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9355 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9356 if(!pmbox->vport) { 9357 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9358 lpfc_printf_log(phba, KERN_ERR, 9359 LOG_MBOX | LOG_VPORT, 9360 "1806 Mbox x%x failed. No vport\n", 9361 pmbox->u.mb.mbxCommand); 9362 dump_stack(); 9363 goto out_not_finished; 9364 } 9365 } 9366 9367 /* If the PCI channel is in offline state, do not post mbox. */ 9368 if (unlikely(pci_channel_offline(phba->pcidev))) { 9369 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9370 goto out_not_finished; 9371 } 9372 9373 /* If HBA has a deferred error attention, fail the iocb. */ 9374 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9375 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9376 goto out_not_finished; 9377 } 9378 9379 psli = &phba->sli; 9380 9381 mbx = &pmbox->u.mb; 9382 status = MBX_SUCCESS; 9383 9384 if (phba->link_state == LPFC_HBA_ERROR) { 9385 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9386 9387 /* Mbox command <mbxCommand> cannot issue */ 9388 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9389 "(%d):0311 Mailbox command x%x cannot " 9390 "issue Data: x%x x%x\n", 9391 pmbox->vport ? pmbox->vport->vpi : 0, 9392 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9393 goto out_not_finished; 9394 } 9395 9396 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9397 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9398 !(hc_copy & HC_MBINT_ENA)) { 9399 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9401 "(%d):2528 Mailbox command x%x cannot " 9402 "issue Data: x%x x%x\n", 9403 pmbox->vport ? pmbox->vport->vpi : 0, 9404 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9405 goto out_not_finished; 9406 } 9407 } 9408 9409 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9410 /* Polling for a mbox command when another one is already active 9411 * is not allowed in SLI. Also, the driver must have established 9412 * SLI2 mode to queue and process multiple mbox commands. 9413 */ 9414 9415 if (flag & MBX_POLL) { 9416 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9417 9418 /* Mbox command <mbxCommand> cannot issue */ 9419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9420 "(%d):2529 Mailbox command x%x " 9421 "cannot issue Data: x%x x%x\n", 9422 pmbox->vport ? pmbox->vport->vpi : 0, 9423 pmbox->u.mb.mbxCommand, 9424 psli->sli_flag, flag); 9425 goto out_not_finished; 9426 } 9427 9428 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9429 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9430 /* Mbox command <mbxCommand> cannot issue */ 9431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9432 "(%d):2530 Mailbox command x%x " 9433 "cannot issue Data: x%x x%x\n", 9434 pmbox->vport ? pmbox->vport->vpi : 0, 9435 pmbox->u.mb.mbxCommand, 9436 psli->sli_flag, flag); 9437 goto out_not_finished; 9438 } 9439 9440 /* Another mailbox command is still being processed, queue this 9441 * command to be processed later. 9442 */ 9443 lpfc_mbox_put(phba, pmbox); 9444 9445 /* Mbox cmd issue - BUSY */ 9446 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9447 "(%d):0308 Mbox cmd issue - BUSY Data: " 9448 "x%x x%x x%x x%x\n", 9449 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9450 mbx->mbxCommand, 9451 phba->pport ? phba->pport->port_state : 0xff, 9452 psli->sli_flag, flag); 9453 9454 psli->slistat.mbox_busy++; 9455 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9456 9457 if (pmbox->vport) { 9458 lpfc_debugfs_disc_trc(pmbox->vport, 9459 LPFC_DISC_TRC_MBOX_VPORT, 9460 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9461 (uint32_t)mbx->mbxCommand, 9462 mbx->un.varWords[0], mbx->un.varWords[1]); 9463 } 9464 else { 9465 lpfc_debugfs_disc_trc(phba->pport, 9466 LPFC_DISC_TRC_MBOX, 9467 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9468 (uint32_t)mbx->mbxCommand, 9469 mbx->un.varWords[0], mbx->un.varWords[1]); 9470 } 9471 9472 return MBX_BUSY; 9473 } 9474 9475 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9476 9477 /* If we are not polling, we MUST be in SLI2 mode */ 9478 if (flag != MBX_POLL) { 9479 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9480 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9481 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9482 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9483 /* Mbox command <mbxCommand> cannot issue */ 9484 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9485 "(%d):2531 Mailbox command x%x " 9486 "cannot issue Data: x%x x%x\n", 9487 pmbox->vport ? pmbox->vport->vpi : 0, 9488 pmbox->u.mb.mbxCommand, 9489 psli->sli_flag, flag); 9490 goto out_not_finished; 9491 } 9492 /* timeout active mbox command */ 9493 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9494 1000); 9495 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9496 } 9497 9498 /* Mailbox cmd <cmd> issue */ 9499 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9500 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9501 "x%x\n", 9502 pmbox->vport ? pmbox->vport->vpi : 0, 9503 mbx->mbxCommand, 9504 phba->pport ? phba->pport->port_state : 0xff, 9505 psli->sli_flag, flag); 9506 9507 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9508 if (pmbox->vport) { 9509 lpfc_debugfs_disc_trc(pmbox->vport, 9510 LPFC_DISC_TRC_MBOX_VPORT, 9511 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9512 (uint32_t)mbx->mbxCommand, 9513 mbx->un.varWords[0], mbx->un.varWords[1]); 9514 } 9515 else { 9516 lpfc_debugfs_disc_trc(phba->pport, 9517 LPFC_DISC_TRC_MBOX, 9518 "MBOX Send: cmd:x%x mb:x%x x%x", 9519 (uint32_t)mbx->mbxCommand, 9520 mbx->un.varWords[0], mbx->un.varWords[1]); 9521 } 9522 } 9523 9524 psli->slistat.mbox_cmd++; 9525 evtctr = psli->slistat.mbox_event; 9526 9527 /* next set own bit for the adapter and copy over command word */ 9528 mbx->mbxOwner = OWN_CHIP; 9529 9530 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9531 /* Populate mbox extension offset word. */ 9532 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9533 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9534 = (uint8_t *)phba->mbox_ext 9535 - (uint8_t *)phba->mbox; 9536 } 9537 9538 /* Copy the mailbox extension data */ 9539 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9540 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9541 (uint8_t *)phba->mbox_ext, 9542 pmbox->in_ext_byte_len); 9543 } 9544 /* Copy command data to host SLIM area */ 9545 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9546 } else { 9547 /* Populate mbox extension offset word. */ 9548 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9549 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9550 = MAILBOX_HBA_EXT_OFFSET; 9551 9552 /* Copy the mailbox extension data */ 9553 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9554 lpfc_memcpy_to_slim(phba->MBslimaddr + 9555 MAILBOX_HBA_EXT_OFFSET, 9556 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9557 9558 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9559 /* copy command data into host mbox for cmpl */ 9560 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9561 MAILBOX_CMD_SIZE); 9562 9563 /* First copy mbox command data to HBA SLIM, skip past first 9564 word */ 9565 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9566 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9567 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9568 9569 /* Next copy over first word, with mbxOwner set */ 9570 ldata = *((uint32_t *)mbx); 9571 to_slim = phba->MBslimaddr; 9572 writel(ldata, to_slim); 9573 readl(to_slim); /* flush */ 9574 9575 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9576 /* switch over to host mailbox */ 9577 psli->sli_flag |= LPFC_SLI_ACTIVE; 9578 } 9579 9580 wmb(); 9581 9582 switch (flag) { 9583 case MBX_NOWAIT: 9584 /* Set up reference to mailbox command */ 9585 psli->mbox_active = pmbox; 9586 /* Interrupt board to do it */ 9587 writel(CA_MBATT, phba->CAregaddr); 9588 readl(phba->CAregaddr); /* flush */ 9589 /* Don't wait for it to finish, just return */ 9590 break; 9591 9592 case MBX_POLL: 9593 /* Set up null reference to mailbox command */ 9594 psli->mbox_active = NULL; 9595 /* Interrupt board to do it */ 9596 writel(CA_MBATT, phba->CAregaddr); 9597 readl(phba->CAregaddr); /* flush */ 9598 9599 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9600 /* First read mbox status word */ 9601 word0 = *((uint32_t *)phba->mbox); 9602 word0 = le32_to_cpu(word0); 9603 } else { 9604 /* First read mbox status word */ 9605 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9606 spin_unlock_irqrestore(&phba->hbalock, 9607 drvr_flag); 9608 goto out_not_finished; 9609 } 9610 } 9611 9612 /* Read the HBA Host Attention Register */ 9613 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9614 spin_unlock_irqrestore(&phba->hbalock, 9615 drvr_flag); 9616 goto out_not_finished; 9617 } 9618 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9619 1000) + jiffies; 9620 i = 0; 9621 /* Wait for command to complete */ 9622 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9623 (!(ha_copy & HA_MBATT) && 9624 (phba->link_state > LPFC_WARM_START))) { 9625 if (time_after(jiffies, timeout)) { 9626 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9627 spin_unlock_irqrestore(&phba->hbalock, 9628 drvr_flag); 9629 goto out_not_finished; 9630 } 9631 9632 /* Check if we took a mbox interrupt while we were 9633 polling */ 9634 if (((word0 & OWN_CHIP) != OWN_CHIP) 9635 && (evtctr != psli->slistat.mbox_event)) 9636 break; 9637 9638 if (i++ > 10) { 9639 spin_unlock_irqrestore(&phba->hbalock, 9640 drvr_flag); 9641 msleep(1); 9642 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9643 } 9644 9645 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9646 /* First copy command data */ 9647 word0 = *((uint32_t *)phba->mbox); 9648 word0 = le32_to_cpu(word0); 9649 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9650 MAILBOX_t *slimmb; 9651 uint32_t slimword0; 9652 /* Check real SLIM for any errors */ 9653 slimword0 = readl(phba->MBslimaddr); 9654 slimmb = (MAILBOX_t *) & slimword0; 9655 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9656 && slimmb->mbxStatus) { 9657 psli->sli_flag &= 9658 ~LPFC_SLI_ACTIVE; 9659 word0 = slimword0; 9660 } 9661 } 9662 } else { 9663 /* First copy command data */ 9664 word0 = readl(phba->MBslimaddr); 9665 } 9666 /* Read the HBA Host Attention Register */ 9667 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9668 spin_unlock_irqrestore(&phba->hbalock, 9669 drvr_flag); 9670 goto out_not_finished; 9671 } 9672 } 9673 9674 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9675 /* copy results back to user */ 9676 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9677 MAILBOX_CMD_SIZE); 9678 /* Copy the mailbox extension data */ 9679 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9680 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9681 pmbox->ctx_buf, 9682 pmbox->out_ext_byte_len); 9683 } 9684 } else { 9685 /* First copy command data */ 9686 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9687 MAILBOX_CMD_SIZE); 9688 /* Copy the mailbox extension data */ 9689 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9690 lpfc_memcpy_from_slim( 9691 pmbox->ctx_buf, 9692 phba->MBslimaddr + 9693 MAILBOX_HBA_EXT_OFFSET, 9694 pmbox->out_ext_byte_len); 9695 } 9696 } 9697 9698 writel(HA_MBATT, phba->HAregaddr); 9699 readl(phba->HAregaddr); /* flush */ 9700 9701 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9702 status = mbx->mbxStatus; 9703 } 9704 9705 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9706 return status; 9707 9708 out_not_finished: 9709 if (processing_queue) { 9710 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9711 lpfc_mbox_cmpl_put(phba, pmbox); 9712 } 9713 return MBX_NOT_FINISHED; 9714 } 9715 9716 /** 9717 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9718 * @phba: Pointer to HBA context object. 9719 * 9720 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9721 * the driver internal pending mailbox queue. It will then try to wait out the 9722 * possible outstanding mailbox command before return. 9723 * 9724 * Returns: 9725 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9726 * the outstanding mailbox command timed out. 9727 **/ 9728 static int 9729 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9730 { 9731 struct lpfc_sli *psli = &phba->sli; 9732 LPFC_MBOXQ_t *mboxq; 9733 int rc = 0; 9734 unsigned long timeout = 0; 9735 u32 sli_flag; 9736 u8 cmd, subsys, opcode; 9737 9738 /* Mark the asynchronous mailbox command posting as blocked */ 9739 spin_lock_irq(&phba->hbalock); 9740 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9741 /* Determine how long we might wait for the active mailbox 9742 * command to be gracefully completed by firmware. 9743 */ 9744 if (phba->sli.mbox_active) 9745 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9746 phba->sli.mbox_active) * 9747 1000) + jiffies; 9748 spin_unlock_irq(&phba->hbalock); 9749 9750 /* Make sure the mailbox is really active */ 9751 if (timeout) 9752 lpfc_sli4_process_missed_mbox_completions(phba); 9753 9754 /* Wait for the outstanding mailbox command to complete */ 9755 while (phba->sli.mbox_active) { 9756 /* Check active mailbox complete status every 2ms */ 9757 msleep(2); 9758 if (time_after(jiffies, timeout)) { 9759 /* Timeout, mark the outstanding cmd not complete */ 9760 9761 /* Sanity check sli.mbox_active has not completed or 9762 * cancelled from another context during last 2ms sleep, 9763 * so take hbalock to be sure before logging. 9764 */ 9765 spin_lock_irq(&phba->hbalock); 9766 if (phba->sli.mbox_active) { 9767 mboxq = phba->sli.mbox_active; 9768 cmd = mboxq->u.mb.mbxCommand; 9769 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9770 mboxq); 9771 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9772 mboxq); 9773 sli_flag = psli->sli_flag; 9774 spin_unlock_irq(&phba->hbalock); 9775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9776 "2352 Mailbox command x%x " 9777 "(x%x/x%x) sli_flag x%x could " 9778 "not complete\n", 9779 cmd, subsys, opcode, 9780 sli_flag); 9781 } else { 9782 spin_unlock_irq(&phba->hbalock); 9783 } 9784 9785 rc = 1; 9786 break; 9787 } 9788 } 9789 9790 /* Can not cleanly block async mailbox command, fails it */ 9791 if (rc) { 9792 spin_lock_irq(&phba->hbalock); 9793 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9794 spin_unlock_irq(&phba->hbalock); 9795 } 9796 return rc; 9797 } 9798 9799 /** 9800 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9801 * @phba: Pointer to HBA context object. 9802 * 9803 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9804 * commands from the driver internal pending mailbox queue. It makes sure 9805 * that there is no outstanding mailbox command before resuming posting 9806 * asynchronous mailbox commands. If, for any reason, there is outstanding 9807 * mailbox command, it will try to wait it out before resuming asynchronous 9808 * mailbox command posting. 9809 **/ 9810 static void 9811 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9812 { 9813 struct lpfc_sli *psli = &phba->sli; 9814 9815 spin_lock_irq(&phba->hbalock); 9816 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9817 /* Asynchronous mailbox posting is not blocked, do nothing */ 9818 spin_unlock_irq(&phba->hbalock); 9819 return; 9820 } 9821 9822 /* Outstanding synchronous mailbox command is guaranteed to be done, 9823 * successful or timeout, after timing-out the outstanding mailbox 9824 * command shall always be removed, so just unblock posting async 9825 * mailbox command and resume 9826 */ 9827 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9828 spin_unlock_irq(&phba->hbalock); 9829 9830 /* wake up worker thread to post asynchronous mailbox command */ 9831 lpfc_worker_wake_up(phba); 9832 } 9833 9834 /** 9835 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9836 * @phba: Pointer to HBA context object. 9837 * @mboxq: Pointer to mailbox object. 9838 * 9839 * The function waits for the bootstrap mailbox register ready bit from 9840 * port for twice the regular mailbox command timeout value. 9841 * 9842 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9843 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9844 * is in an unrecoverable state. 9845 **/ 9846 static int 9847 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9848 { 9849 uint32_t db_ready; 9850 unsigned long timeout; 9851 struct lpfc_register bmbx_reg; 9852 struct lpfc_register portstat_reg = {-1}; 9853 9854 /* Sanity check - there is no point to wait if the port is in an 9855 * unrecoverable state. 9856 */ 9857 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9858 LPFC_SLI_INTF_IF_TYPE_2) { 9859 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9860 &portstat_reg.word0) || 9861 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9862 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9863 "3858 Skipping bmbx ready because " 9864 "Port Status x%x\n", 9865 portstat_reg.word0); 9866 return MBXERR_ERROR; 9867 } 9868 } 9869 9870 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9871 * 1000) + jiffies; 9872 9873 do { 9874 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9875 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9876 if (!db_ready) 9877 mdelay(2); 9878 9879 if (time_after(jiffies, timeout)) 9880 return MBXERR_ERROR; 9881 } while (!db_ready); 9882 9883 return 0; 9884 } 9885 9886 /** 9887 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9888 * @phba: Pointer to HBA context object. 9889 * @mboxq: Pointer to mailbox object. 9890 * 9891 * The function posts a mailbox to the port. The mailbox is expected 9892 * to be comletely filled in and ready for the port to operate on it. 9893 * This routine executes a synchronous completion operation on the 9894 * mailbox by polling for its completion. 9895 * 9896 * The caller must not be holding any locks when calling this routine. 9897 * 9898 * Returns: 9899 * MBX_SUCCESS - mailbox posted successfully 9900 * Any of the MBX error values. 9901 **/ 9902 static int 9903 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9904 { 9905 int rc = MBX_SUCCESS; 9906 unsigned long iflag; 9907 uint32_t mcqe_status; 9908 uint32_t mbx_cmnd; 9909 struct lpfc_sli *psli = &phba->sli; 9910 struct lpfc_mqe *mb = &mboxq->u.mqe; 9911 struct lpfc_bmbx_create *mbox_rgn; 9912 struct dma_address *dma_address; 9913 9914 /* 9915 * Only one mailbox can be active to the bootstrap mailbox region 9916 * at a time and there is no queueing provided. 9917 */ 9918 spin_lock_irqsave(&phba->hbalock, iflag); 9919 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9920 spin_unlock_irqrestore(&phba->hbalock, iflag); 9921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9922 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9923 "cannot issue Data: x%x x%x\n", 9924 mboxq->vport ? mboxq->vport->vpi : 0, 9925 mboxq->u.mb.mbxCommand, 9926 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9927 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9928 psli->sli_flag, MBX_POLL); 9929 return MBXERR_ERROR; 9930 } 9931 /* The server grabs the token and owns it until release */ 9932 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9933 phba->sli.mbox_active = mboxq; 9934 spin_unlock_irqrestore(&phba->hbalock, iflag); 9935 9936 /* wait for bootstrap mbox register for readyness */ 9937 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9938 if (rc) 9939 goto exit; 9940 /* 9941 * Initialize the bootstrap memory region to avoid stale data areas 9942 * in the mailbox post. Then copy the caller's mailbox contents to 9943 * the bmbx mailbox region. 9944 */ 9945 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9946 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9947 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9948 sizeof(struct lpfc_mqe)); 9949 9950 /* Post the high mailbox dma address to the port and wait for ready. */ 9951 dma_address = &phba->sli4_hba.bmbx.dma_address; 9952 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9953 9954 /* wait for bootstrap mbox register for hi-address write done */ 9955 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9956 if (rc) 9957 goto exit; 9958 9959 /* Post the low mailbox dma address to the port. */ 9960 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9961 9962 /* wait for bootstrap mbox register for low address write done */ 9963 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9964 if (rc) 9965 goto exit; 9966 9967 /* 9968 * Read the CQ to ensure the mailbox has completed. 9969 * If so, update the mailbox status so that the upper layers 9970 * can complete the request normally. 9971 */ 9972 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9973 sizeof(struct lpfc_mqe)); 9974 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9975 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9976 sizeof(struct lpfc_mcqe)); 9977 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9978 /* 9979 * When the CQE status indicates a failure and the mailbox status 9980 * indicates success then copy the CQE status into the mailbox status 9981 * (and prefix it with x4000). 9982 */ 9983 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9984 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9985 bf_set(lpfc_mqe_status, mb, 9986 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9987 rc = MBXERR_ERROR; 9988 } else 9989 lpfc_sli4_swap_str(phba, mboxq); 9990 9991 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9992 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9993 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9994 " x%x x%x CQ: x%x x%x x%x x%x\n", 9995 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9996 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9997 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9998 bf_get(lpfc_mqe_status, mb), 9999 mb->un.mb_words[0], mb->un.mb_words[1], 10000 mb->un.mb_words[2], mb->un.mb_words[3], 10001 mb->un.mb_words[4], mb->un.mb_words[5], 10002 mb->un.mb_words[6], mb->un.mb_words[7], 10003 mb->un.mb_words[8], mb->un.mb_words[9], 10004 mb->un.mb_words[10], mb->un.mb_words[11], 10005 mb->un.mb_words[12], mboxq->mcqe.word0, 10006 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10007 mboxq->mcqe.trailer); 10008 exit: 10009 /* We are holding the token, no needed for lock when release */ 10010 spin_lock_irqsave(&phba->hbalock, iflag); 10011 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10012 phba->sli.mbox_active = NULL; 10013 spin_unlock_irqrestore(&phba->hbalock, iflag); 10014 return rc; 10015 } 10016 10017 /** 10018 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10019 * @phba: Pointer to HBA context object. 10020 * @mboxq: Pointer to mailbox object. 10021 * @flag: Flag indicating how the mailbox need to be processed. 10022 * 10023 * This function is called by discovery code and HBA management code to submit 10024 * a mailbox command to firmware with SLI-4 interface spec. 10025 * 10026 * Return codes the caller owns the mailbox command after the return of the 10027 * function. 10028 **/ 10029 static int 10030 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10031 uint32_t flag) 10032 { 10033 struct lpfc_sli *psli = &phba->sli; 10034 unsigned long iflags; 10035 int rc; 10036 10037 /* dump from issue mailbox command if setup */ 10038 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10039 10040 rc = lpfc_mbox_dev_check(phba); 10041 if (unlikely(rc)) { 10042 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10043 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10044 "cannot issue Data: x%x x%x\n", 10045 mboxq->vport ? mboxq->vport->vpi : 0, 10046 mboxq->u.mb.mbxCommand, 10047 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10048 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10049 psli->sli_flag, flag); 10050 goto out_not_finished; 10051 } 10052 10053 /* Detect polling mode and jump to a handler */ 10054 if (!phba->sli4_hba.intr_enable) { 10055 if (flag == MBX_POLL) 10056 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10057 else 10058 rc = -EIO; 10059 if (rc != MBX_SUCCESS) 10060 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10061 "(%d):2541 Mailbox command x%x " 10062 "(x%x/x%x) failure: " 10063 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10064 "Data: x%x x%x\n", 10065 mboxq->vport ? mboxq->vport->vpi : 0, 10066 mboxq->u.mb.mbxCommand, 10067 lpfc_sli_config_mbox_subsys_get(phba, 10068 mboxq), 10069 lpfc_sli_config_mbox_opcode_get(phba, 10070 mboxq), 10071 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10072 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10073 bf_get(lpfc_mcqe_ext_status, 10074 &mboxq->mcqe), 10075 psli->sli_flag, flag); 10076 return rc; 10077 } else if (flag == MBX_POLL) { 10078 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10079 "(%d):2542 Try to issue mailbox command " 10080 "x%x (x%x/x%x) synchronously ahead of async " 10081 "mailbox command queue: x%x x%x\n", 10082 mboxq->vport ? mboxq->vport->vpi : 0, 10083 mboxq->u.mb.mbxCommand, 10084 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10085 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10086 psli->sli_flag, flag); 10087 /* Try to block the asynchronous mailbox posting */ 10088 rc = lpfc_sli4_async_mbox_block(phba); 10089 if (!rc) { 10090 /* Successfully blocked, now issue sync mbox cmd */ 10091 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10092 if (rc != MBX_SUCCESS) 10093 lpfc_printf_log(phba, KERN_WARNING, 10094 LOG_MBOX | LOG_SLI, 10095 "(%d):2597 Sync Mailbox command " 10096 "x%x (x%x/x%x) failure: " 10097 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10098 "Data: x%x x%x\n", 10099 mboxq->vport ? mboxq->vport->vpi : 0, 10100 mboxq->u.mb.mbxCommand, 10101 lpfc_sli_config_mbox_subsys_get(phba, 10102 mboxq), 10103 lpfc_sli_config_mbox_opcode_get(phba, 10104 mboxq), 10105 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10106 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10107 bf_get(lpfc_mcqe_ext_status, 10108 &mboxq->mcqe), 10109 psli->sli_flag, flag); 10110 /* Unblock the async mailbox posting afterward */ 10111 lpfc_sli4_async_mbox_unblock(phba); 10112 } 10113 return rc; 10114 } 10115 10116 /* Now, interrupt mode asynchronous mailbox command */ 10117 rc = lpfc_mbox_cmd_check(phba, mboxq); 10118 if (rc) { 10119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10120 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10121 "cannot issue Data: x%x x%x\n", 10122 mboxq->vport ? mboxq->vport->vpi : 0, 10123 mboxq->u.mb.mbxCommand, 10124 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10125 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10126 psli->sli_flag, flag); 10127 goto out_not_finished; 10128 } 10129 10130 /* Put the mailbox command to the driver internal FIFO */ 10131 psli->slistat.mbox_busy++; 10132 spin_lock_irqsave(&phba->hbalock, iflags); 10133 lpfc_mbox_put(phba, mboxq); 10134 spin_unlock_irqrestore(&phba->hbalock, iflags); 10135 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10136 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10137 "x%x (x%x/x%x) x%x x%x x%x\n", 10138 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10139 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10140 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10141 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10142 phba->pport->port_state, 10143 psli->sli_flag, MBX_NOWAIT); 10144 /* Wake up worker thread to transport mailbox command from head */ 10145 lpfc_worker_wake_up(phba); 10146 10147 return MBX_BUSY; 10148 10149 out_not_finished: 10150 return MBX_NOT_FINISHED; 10151 } 10152 10153 /** 10154 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10155 * @phba: Pointer to HBA context object. 10156 * 10157 * This function is called by worker thread to send a mailbox command to 10158 * SLI4 HBA firmware. 10159 * 10160 **/ 10161 int 10162 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10163 { 10164 struct lpfc_sli *psli = &phba->sli; 10165 LPFC_MBOXQ_t *mboxq; 10166 int rc = MBX_SUCCESS; 10167 unsigned long iflags; 10168 struct lpfc_mqe *mqe; 10169 uint32_t mbx_cmnd; 10170 10171 /* Check interrupt mode before post async mailbox command */ 10172 if (unlikely(!phba->sli4_hba.intr_enable)) 10173 return MBX_NOT_FINISHED; 10174 10175 /* Check for mailbox command service token */ 10176 spin_lock_irqsave(&phba->hbalock, iflags); 10177 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10178 spin_unlock_irqrestore(&phba->hbalock, iflags); 10179 return MBX_NOT_FINISHED; 10180 } 10181 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10182 spin_unlock_irqrestore(&phba->hbalock, iflags); 10183 return MBX_NOT_FINISHED; 10184 } 10185 if (unlikely(phba->sli.mbox_active)) { 10186 spin_unlock_irqrestore(&phba->hbalock, iflags); 10187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10188 "0384 There is pending active mailbox cmd\n"); 10189 return MBX_NOT_FINISHED; 10190 } 10191 /* Take the mailbox command service token */ 10192 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10193 10194 /* Get the next mailbox command from head of queue */ 10195 mboxq = lpfc_mbox_get(phba); 10196 10197 /* If no more mailbox command waiting for post, we're done */ 10198 if (!mboxq) { 10199 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10200 spin_unlock_irqrestore(&phba->hbalock, iflags); 10201 return MBX_SUCCESS; 10202 } 10203 phba->sli.mbox_active = mboxq; 10204 spin_unlock_irqrestore(&phba->hbalock, iflags); 10205 10206 /* Check device readiness for posting mailbox command */ 10207 rc = lpfc_mbox_dev_check(phba); 10208 if (unlikely(rc)) 10209 /* Driver clean routine will clean up pending mailbox */ 10210 goto out_not_finished; 10211 10212 /* Prepare the mbox command to be posted */ 10213 mqe = &mboxq->u.mqe; 10214 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10215 10216 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10217 mod_timer(&psli->mbox_tmo, (jiffies + 10218 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10219 10220 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10221 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10222 "x%x x%x\n", 10223 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10224 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10225 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10226 phba->pport->port_state, psli->sli_flag); 10227 10228 if (mbx_cmnd != MBX_HEARTBEAT) { 10229 if (mboxq->vport) { 10230 lpfc_debugfs_disc_trc(mboxq->vport, 10231 LPFC_DISC_TRC_MBOX_VPORT, 10232 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10233 mbx_cmnd, mqe->un.mb_words[0], 10234 mqe->un.mb_words[1]); 10235 } else { 10236 lpfc_debugfs_disc_trc(phba->pport, 10237 LPFC_DISC_TRC_MBOX, 10238 "MBOX Send: cmd:x%x mb:x%x x%x", 10239 mbx_cmnd, mqe->un.mb_words[0], 10240 mqe->un.mb_words[1]); 10241 } 10242 } 10243 psli->slistat.mbox_cmd++; 10244 10245 /* Post the mailbox command to the port */ 10246 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10247 if (rc != MBX_SUCCESS) { 10248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10249 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10250 "cannot issue Data: x%x x%x\n", 10251 mboxq->vport ? mboxq->vport->vpi : 0, 10252 mboxq->u.mb.mbxCommand, 10253 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10254 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10255 psli->sli_flag, MBX_NOWAIT); 10256 goto out_not_finished; 10257 } 10258 10259 return rc; 10260 10261 out_not_finished: 10262 spin_lock_irqsave(&phba->hbalock, iflags); 10263 if (phba->sli.mbox_active) { 10264 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10265 __lpfc_mbox_cmpl_put(phba, mboxq); 10266 /* Release the token */ 10267 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10268 phba->sli.mbox_active = NULL; 10269 } 10270 spin_unlock_irqrestore(&phba->hbalock, iflags); 10271 10272 return MBX_NOT_FINISHED; 10273 } 10274 10275 /** 10276 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10277 * @phba: Pointer to HBA context object. 10278 * @pmbox: Pointer to mailbox object. 10279 * @flag: Flag indicating how the mailbox need to be processed. 10280 * 10281 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10282 * the API jump table function pointer from the lpfc_hba struct. 10283 * 10284 * Return codes the caller owns the mailbox command after the return of the 10285 * function. 10286 **/ 10287 int 10288 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10289 { 10290 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10291 } 10292 10293 /** 10294 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10295 * @phba: The hba struct for which this call is being executed. 10296 * @dev_grp: The HBA PCI-Device group number. 10297 * 10298 * This routine sets up the mbox interface API function jump table in @phba 10299 * struct. 10300 * Returns: 0 - success, -ENODEV - failure. 10301 **/ 10302 int 10303 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10304 { 10305 10306 switch (dev_grp) { 10307 case LPFC_PCI_DEV_LP: 10308 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10309 phba->lpfc_sli_handle_slow_ring_event = 10310 lpfc_sli_handle_slow_ring_event_s3; 10311 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10312 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10313 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10314 break; 10315 case LPFC_PCI_DEV_OC: 10316 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10317 phba->lpfc_sli_handle_slow_ring_event = 10318 lpfc_sli_handle_slow_ring_event_s4; 10319 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10320 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10321 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10322 break; 10323 default: 10324 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10325 "1420 Invalid HBA PCI-device group: 0x%x\n", 10326 dev_grp); 10327 return -ENODEV; 10328 } 10329 return 0; 10330 } 10331 10332 /** 10333 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10334 * @phba: Pointer to HBA context object. 10335 * @pring: Pointer to driver SLI ring object. 10336 * @piocb: Pointer to address of newly added command iocb. 10337 * 10338 * This function is called with hbalock held for SLI3 ports or 10339 * the ring lock held for SLI4 ports to add a command 10340 * iocb to the txq when SLI layer cannot submit the command iocb 10341 * to the ring. 10342 **/ 10343 void 10344 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10345 struct lpfc_iocbq *piocb) 10346 { 10347 if (phba->sli_rev == LPFC_SLI_REV4) 10348 lockdep_assert_held(&pring->ring_lock); 10349 else 10350 lockdep_assert_held(&phba->hbalock); 10351 /* Insert the caller's iocb in the txq tail for later processing. */ 10352 list_add_tail(&piocb->list, &pring->txq); 10353 } 10354 10355 /** 10356 * lpfc_sli_next_iocb - Get the next iocb in the txq 10357 * @phba: Pointer to HBA context object. 10358 * @pring: Pointer to driver SLI ring object. 10359 * @piocb: Pointer to address of newly added command iocb. 10360 * 10361 * This function is called with hbalock held before a new 10362 * iocb is submitted to the firmware. This function checks 10363 * txq to flush the iocbs in txq to Firmware before 10364 * submitting new iocbs to the Firmware. 10365 * If there are iocbs in the txq which need to be submitted 10366 * to firmware, lpfc_sli_next_iocb returns the first element 10367 * of the txq after dequeuing it from txq. 10368 * If there is no iocb in the txq then the function will return 10369 * *piocb and *piocb is set to NULL. Caller needs to check 10370 * *piocb to find if there are more commands in the txq. 10371 **/ 10372 static struct lpfc_iocbq * 10373 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10374 struct lpfc_iocbq **piocb) 10375 { 10376 struct lpfc_iocbq * nextiocb; 10377 10378 lockdep_assert_held(&phba->hbalock); 10379 10380 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10381 if (!nextiocb) { 10382 nextiocb = *piocb; 10383 *piocb = NULL; 10384 } 10385 10386 return nextiocb; 10387 } 10388 10389 /** 10390 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10391 * @phba: Pointer to HBA context object. 10392 * @ring_number: SLI ring number to issue iocb on. 10393 * @piocb: Pointer to command iocb. 10394 * @flag: Flag indicating if this command can be put into txq. 10395 * 10396 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10397 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10398 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10399 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10400 * this function allows only iocbs for posting buffers. This function finds 10401 * next available slot in the command ring and posts the command to the 10402 * available slot and writes the port attention register to request HBA start 10403 * processing new iocb. If there is no slot available in the ring and 10404 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10405 * the function returns IOCB_BUSY. 10406 * 10407 * This function is called with hbalock held. The function will return success 10408 * after it successfully submit the iocb to firmware or after adding to the 10409 * txq. 10410 **/ 10411 static int 10412 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10413 struct lpfc_iocbq *piocb, uint32_t flag) 10414 { 10415 struct lpfc_iocbq *nextiocb; 10416 IOCB_t *iocb; 10417 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10418 10419 lockdep_assert_held(&phba->hbalock); 10420 10421 if (piocb->cmd_cmpl && (!piocb->vport) && 10422 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10423 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10425 "1807 IOCB x%x failed. No vport\n", 10426 piocb->iocb.ulpCommand); 10427 dump_stack(); 10428 return IOCB_ERROR; 10429 } 10430 10431 10432 /* If the PCI channel is in offline state, do not post iocbs. */ 10433 if (unlikely(pci_channel_offline(phba->pcidev))) 10434 return IOCB_ERROR; 10435 10436 /* If HBA has a deferred error attention, fail the iocb. */ 10437 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10438 return IOCB_ERROR; 10439 10440 /* 10441 * We should never get an IOCB if we are in a < LINK_DOWN state 10442 */ 10443 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10444 return IOCB_ERROR; 10445 10446 /* 10447 * Check to see if we are blocking IOCB processing because of a 10448 * outstanding event. 10449 */ 10450 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10451 goto iocb_busy; 10452 10453 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10454 /* 10455 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10456 * can be issued if the link is not up. 10457 */ 10458 switch (piocb->iocb.ulpCommand) { 10459 case CMD_QUE_RING_BUF_CN: 10460 case CMD_QUE_RING_BUF64_CN: 10461 /* 10462 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10463 * completion, cmd_cmpl MUST be 0. 10464 */ 10465 if (piocb->cmd_cmpl) 10466 piocb->cmd_cmpl = NULL; 10467 fallthrough; 10468 case CMD_CREATE_XRI_CR: 10469 case CMD_CLOSE_XRI_CN: 10470 case CMD_CLOSE_XRI_CX: 10471 break; 10472 default: 10473 goto iocb_busy; 10474 } 10475 10476 /* 10477 * For FCP commands, we must be in a state where we can process link 10478 * attention events. 10479 */ 10480 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10481 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10482 goto iocb_busy; 10483 } 10484 10485 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10486 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10487 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10488 10489 if (iocb) 10490 lpfc_sli_update_ring(phba, pring); 10491 else 10492 lpfc_sli_update_full_ring(phba, pring); 10493 10494 if (!piocb) 10495 return IOCB_SUCCESS; 10496 10497 goto out_busy; 10498 10499 iocb_busy: 10500 pring->stats.iocb_cmd_delay++; 10501 10502 out_busy: 10503 10504 if (!(flag & SLI_IOCB_RET_IOCB)) { 10505 __lpfc_sli_ringtx_put(phba, pring, piocb); 10506 return IOCB_SUCCESS; 10507 } 10508 10509 return IOCB_BUSY; 10510 } 10511 10512 /** 10513 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10514 * @phba: Pointer to HBA context object. 10515 * @ring_number: SLI ring number to issue wqe on. 10516 * @piocb: Pointer to command iocb. 10517 * @flag: Flag indicating if this command can be put into txq. 10518 * 10519 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10520 * send an iocb command to an HBA with SLI-3 interface spec. 10521 * 10522 * This function takes the hbalock before invoking the lockless version. 10523 * The function will return success after it successfully submit the wqe to 10524 * firmware or after adding to the txq. 10525 **/ 10526 static int 10527 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10528 struct lpfc_iocbq *piocb, uint32_t flag) 10529 { 10530 unsigned long iflags; 10531 int rc; 10532 10533 spin_lock_irqsave(&phba->hbalock, iflags); 10534 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10535 spin_unlock_irqrestore(&phba->hbalock, iflags); 10536 10537 return rc; 10538 } 10539 10540 /** 10541 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10542 * @phba: Pointer to HBA context object. 10543 * @ring_number: SLI ring number to issue wqe on. 10544 * @piocb: Pointer to command iocb. 10545 * @flag: Flag indicating if this command can be put into txq. 10546 * 10547 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10548 * an wqe command to an HBA with SLI-4 interface spec. 10549 * 10550 * This function is a lockless version. The function will return success 10551 * after it successfully submit the wqe to firmware or after adding to the 10552 * txq. 10553 **/ 10554 static int 10555 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10556 struct lpfc_iocbq *piocb, uint32_t flag) 10557 { 10558 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10559 10560 lpfc_prep_embed_io(phba, lpfc_cmd); 10561 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10562 } 10563 10564 void 10565 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10566 { 10567 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10568 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10569 struct sli4_sge *sgl; 10570 10571 /* 128 byte wqe support here */ 10572 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10573 10574 if (phba->fcp_embed_io) { 10575 struct fcp_cmnd *fcp_cmnd; 10576 u32 *ptr; 10577 10578 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10579 10580 /* Word 0-2 - FCP_CMND */ 10581 wqe->generic.bde.tus.f.bdeFlags = 10582 BUFF_TYPE_BDE_IMMED; 10583 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10584 wqe->generic.bde.addrHigh = 0; 10585 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10586 10587 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10588 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10589 10590 /* Word 22-29 FCP CMND Payload */ 10591 ptr = &wqe->words[22]; 10592 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10593 } else { 10594 /* Word 0-2 - Inline BDE */ 10595 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10596 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10597 wqe->generic.bde.addrHigh = sgl->addr_hi; 10598 wqe->generic.bde.addrLow = sgl->addr_lo; 10599 10600 /* Word 10 */ 10601 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10602 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10603 } 10604 10605 /* add the VMID tags as per switch response */ 10606 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10607 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10608 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10609 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10610 (piocb->vmid_tag.cs_ctl_vmid)); 10611 } else if (phba->cfg_vmid_app_header) { 10612 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10613 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10614 wqe->words[31] = piocb->vmid_tag.app_id; 10615 } 10616 } 10617 } 10618 10619 /** 10620 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10621 * @phba: Pointer to HBA context object. 10622 * @ring_number: SLI ring number to issue iocb on. 10623 * @piocb: Pointer to command iocb. 10624 * @flag: Flag indicating if this command can be put into txq. 10625 * 10626 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10627 * an iocb command to an HBA with SLI-4 interface spec. 10628 * 10629 * This function is called with ringlock held. The function will return success 10630 * after it successfully submit the iocb to firmware or after adding to the 10631 * txq. 10632 **/ 10633 static int 10634 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10635 struct lpfc_iocbq *piocb, uint32_t flag) 10636 { 10637 struct lpfc_sglq *sglq; 10638 union lpfc_wqe128 *wqe; 10639 struct lpfc_queue *wq; 10640 struct lpfc_sli_ring *pring; 10641 u32 ulp_command = get_job_cmnd(phba, piocb); 10642 10643 /* Get the WQ */ 10644 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10645 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10646 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10647 } else { 10648 wq = phba->sli4_hba.els_wq; 10649 } 10650 10651 /* Get corresponding ring */ 10652 pring = wq->pring; 10653 10654 /* 10655 * The WQE can be either 64 or 128 bytes, 10656 */ 10657 10658 lockdep_assert_held(&pring->ring_lock); 10659 wqe = &piocb->wqe; 10660 if (piocb->sli4_xritag == NO_XRI) { 10661 if (ulp_command == CMD_ABORT_XRI_CX) 10662 sglq = NULL; 10663 else { 10664 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10665 if (!sglq) { 10666 if (!(flag & SLI_IOCB_RET_IOCB)) { 10667 __lpfc_sli_ringtx_put(phba, 10668 pring, 10669 piocb); 10670 return IOCB_SUCCESS; 10671 } else { 10672 return IOCB_BUSY; 10673 } 10674 } 10675 } 10676 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10677 /* These IO's already have an XRI and a mapped sgl. */ 10678 sglq = NULL; 10679 } 10680 else { 10681 /* 10682 * This is a continuation of a commandi,(CX) so this 10683 * sglq is on the active list 10684 */ 10685 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10686 if (!sglq) 10687 return IOCB_ERROR; 10688 } 10689 10690 if (sglq) { 10691 piocb->sli4_lxritag = sglq->sli4_lxritag; 10692 piocb->sli4_xritag = sglq->sli4_xritag; 10693 10694 /* ABTS sent by initiator to CT exchange, the 10695 * RX_ID field will be filled with the newly 10696 * allocated responder XRI. 10697 */ 10698 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10699 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10700 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10701 piocb->sli4_xritag); 10702 10703 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10704 piocb->sli4_xritag); 10705 10706 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10707 return IOCB_ERROR; 10708 } 10709 10710 if (lpfc_sli4_wq_put(wq, wqe)) 10711 return IOCB_ERROR; 10712 10713 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10714 10715 return 0; 10716 } 10717 10718 /* 10719 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10720 * 10721 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10722 * or IOCB for sli-3 function. 10723 * pointer from the lpfc_hba struct. 10724 * 10725 * Return codes: 10726 * IOCB_ERROR - Error 10727 * IOCB_SUCCESS - Success 10728 * IOCB_BUSY - Busy 10729 **/ 10730 int 10731 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10732 struct lpfc_iocbq *piocb, uint32_t flag) 10733 { 10734 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10735 } 10736 10737 /* 10738 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10739 * 10740 * This routine wraps the actual lockless version for issusing IOCB function 10741 * pointer from the lpfc_hba struct. 10742 * 10743 * Return codes: 10744 * IOCB_ERROR - Error 10745 * IOCB_SUCCESS - Success 10746 * IOCB_BUSY - Busy 10747 **/ 10748 int 10749 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10750 struct lpfc_iocbq *piocb, uint32_t flag) 10751 { 10752 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10753 } 10754 10755 static void 10756 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10757 struct lpfc_vport *vport, 10758 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10759 u32 elscmd, u8 tmo, u8 expect_rsp) 10760 { 10761 struct lpfc_hba *phba = vport->phba; 10762 IOCB_t *cmd; 10763 10764 cmd = &cmdiocbq->iocb; 10765 memset(cmd, 0, sizeof(*cmd)); 10766 10767 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10768 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10769 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10770 10771 if (expect_rsp) { 10772 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10773 cmd->un.elsreq64.remoteID = did; /* DID */ 10774 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10775 cmd->ulpTimeout = tmo; 10776 } else { 10777 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10778 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10779 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10780 cmd->ulpPU = PARM_NPIV_DID; 10781 } 10782 cmd->ulpBdeCount = 1; 10783 cmd->ulpLe = 1; 10784 cmd->ulpClass = CLASS3; 10785 10786 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10787 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10788 if (expect_rsp) { 10789 cmd->un.elsreq64.myID = vport->fc_myDID; 10790 10791 /* For ELS_REQUEST64_CR, use the VPI by default */ 10792 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10793 } 10794 10795 cmd->ulpCt_h = 0; 10796 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10797 if (elscmd == ELS_CMD_ECHO) 10798 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10799 else 10800 cmd->ulpCt_l = 1; /* context = VPI */ 10801 } 10802 } 10803 10804 static void 10805 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10806 struct lpfc_vport *vport, 10807 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10808 u32 elscmd, u8 tmo, u8 expect_rsp) 10809 { 10810 struct lpfc_hba *phba = vport->phba; 10811 union lpfc_wqe128 *wqe; 10812 struct ulp_bde64_le *bde; 10813 u8 els_id; 10814 10815 wqe = &cmdiocbq->wqe; 10816 memset(wqe, 0, sizeof(*wqe)); 10817 10818 /* Word 0 - 2 BDE */ 10819 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10820 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10821 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10822 bde->type_size = cpu_to_le32(cmd_size); 10823 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10824 10825 if (expect_rsp) { 10826 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10827 10828 /* Transfer length */ 10829 wqe->els_req.payload_len = cmd_size; 10830 wqe->els_req.max_response_payload_len = FCELSSIZE; 10831 10832 /* DID */ 10833 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10834 10835 /* Word 11 - ELS_ID */ 10836 switch (elscmd) { 10837 case ELS_CMD_PLOGI: 10838 els_id = LPFC_ELS_ID_PLOGI; 10839 break; 10840 case ELS_CMD_FLOGI: 10841 els_id = LPFC_ELS_ID_FLOGI; 10842 break; 10843 case ELS_CMD_LOGO: 10844 els_id = LPFC_ELS_ID_LOGO; 10845 break; 10846 case ELS_CMD_FDISC: 10847 if (!vport->fc_myDID) { 10848 els_id = LPFC_ELS_ID_FDISC; 10849 break; 10850 } 10851 fallthrough; 10852 default: 10853 els_id = LPFC_ELS_ID_DEFAULT; 10854 break; 10855 } 10856 10857 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10858 } else { 10859 /* DID */ 10860 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10861 10862 /* Transfer length */ 10863 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10864 10865 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10866 CMD_XMIT_ELS_RSP64_WQE); 10867 } 10868 10869 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10870 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10871 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10872 10873 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10874 * For SLI4, since the driver controls VPIs we also want to include 10875 * all ELS pt2pt protocol traffic as well. 10876 */ 10877 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10878 (vport->fc_flag & FC_PT2PT)) { 10879 if (expect_rsp) { 10880 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10881 10882 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10883 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10884 phba->vpi_ids[vport->vpi]); 10885 } 10886 10887 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10888 if (elscmd == ELS_CMD_ECHO) 10889 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10890 else 10891 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10892 } 10893 } 10894 10895 void 10896 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10897 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10898 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10899 u8 expect_rsp) 10900 { 10901 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10902 elscmd, tmo, expect_rsp); 10903 } 10904 10905 static void 10906 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10907 u16 rpi, u32 num_entry, u8 tmo) 10908 { 10909 IOCB_t *cmd; 10910 10911 cmd = &cmdiocbq->iocb; 10912 memset(cmd, 0, sizeof(*cmd)); 10913 10914 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10915 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10916 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10917 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10918 10919 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10920 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10921 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10922 10923 cmd->ulpContext = rpi; 10924 cmd->ulpClass = CLASS3; 10925 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10926 cmd->ulpBdeCount = 1; 10927 cmd->ulpLe = 1; 10928 cmd->ulpOwner = OWN_CHIP; 10929 cmd->ulpTimeout = tmo; 10930 } 10931 10932 static void 10933 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10934 u16 rpi, u32 num_entry, u8 tmo) 10935 { 10936 union lpfc_wqe128 *cmdwqe; 10937 struct ulp_bde64_le *bde, *bpl; 10938 u32 xmit_len = 0, total_len = 0, size, type, i; 10939 10940 cmdwqe = &cmdiocbq->wqe; 10941 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10942 10943 /* Calculate total_len and xmit_len */ 10944 bpl = (struct ulp_bde64_le *)bmp->virt; 10945 for (i = 0; i < num_entry; i++) { 10946 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10947 total_len += size; 10948 } 10949 for (i = 0; i < num_entry; i++) { 10950 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10951 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10952 if (type != ULP_BDE64_TYPE_BDE_64) 10953 break; 10954 xmit_len += size; 10955 } 10956 10957 /* Words 0 - 2 */ 10958 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10959 bde->addr_low = bpl->addr_low; 10960 bde->addr_high = bpl->addr_high; 10961 bde->type_size = cpu_to_le32(xmit_len); 10962 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10963 10964 /* Word 3 */ 10965 cmdwqe->gen_req.request_payload_len = xmit_len; 10966 10967 /* Word 5 */ 10968 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10969 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10970 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10971 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10972 10973 /* Word 6 */ 10974 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10975 10976 /* Word 7 */ 10977 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10978 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10979 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10980 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10981 10982 /* Word 12 */ 10983 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10984 } 10985 10986 void 10987 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10988 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10989 { 10990 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10991 } 10992 10993 static void 10994 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 10995 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10996 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10997 { 10998 IOCB_t *icmd; 10999 11000 icmd = &cmdiocbq->iocb; 11001 memset(icmd, 0, sizeof(*icmd)); 11002 11003 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11004 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11005 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11006 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11007 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11008 if (last_seq) 11009 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11010 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11011 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11012 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11013 11014 icmd->ulpBdeCount = 1; 11015 icmd->ulpLe = 1; 11016 icmd->ulpClass = CLASS3; 11017 11018 switch (cr_cx_cmd) { 11019 case CMD_XMIT_SEQUENCE64_CR: 11020 icmd->ulpContext = rpi; 11021 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11022 break; 11023 case CMD_XMIT_SEQUENCE64_CX: 11024 icmd->ulpContext = ox_id; 11025 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11026 break; 11027 default: 11028 break; 11029 } 11030 } 11031 11032 static void 11033 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11034 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11035 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11036 { 11037 union lpfc_wqe128 *wqe; 11038 struct ulp_bde64 *bpl; 11039 11040 wqe = &cmdiocbq->wqe; 11041 memset(wqe, 0, sizeof(*wqe)); 11042 11043 /* Words 0 - 2 */ 11044 bpl = (struct ulp_bde64 *)bmp->virt; 11045 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11046 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11047 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11048 11049 /* Word 5 */ 11050 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11051 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11052 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11053 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11054 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11055 11056 /* Word 6 */ 11057 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11058 11059 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11060 CMD_XMIT_SEQUENCE64_WQE); 11061 11062 /* Word 7 */ 11063 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11064 11065 /* Word 9 */ 11066 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11067 11068 /* Word 12 */ 11069 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11070 wqe->xmit_sequence.xmit_len = full_size; 11071 else 11072 wqe->xmit_sequence.xmit_len = 11073 wqe->xmit_sequence.bde.tus.f.bdeSize; 11074 } 11075 11076 void 11077 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11078 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11079 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11080 { 11081 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11082 rctl, last_seq, cr_cx_cmd); 11083 } 11084 11085 static void 11086 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11087 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11088 bool wqec) 11089 { 11090 IOCB_t *icmd = NULL; 11091 11092 icmd = &cmdiocbq->iocb; 11093 memset(icmd, 0, sizeof(*icmd)); 11094 11095 /* Word 5 */ 11096 icmd->un.acxri.abortContextTag = ulp_context; 11097 icmd->un.acxri.abortIoTag = iotag; 11098 11099 if (ia) { 11100 /* Word 7 */ 11101 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11102 } else { 11103 /* Word 3 */ 11104 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11105 11106 /* Word 7 */ 11107 icmd->ulpClass = ulp_class; 11108 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11109 } 11110 11111 /* Word 7 */ 11112 icmd->ulpLe = 1; 11113 } 11114 11115 static void 11116 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11117 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11118 bool wqec) 11119 { 11120 union lpfc_wqe128 *wqe; 11121 11122 wqe = &cmdiocbq->wqe; 11123 memset(wqe, 0, sizeof(*wqe)); 11124 11125 /* Word 3 */ 11126 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11127 if (ia) 11128 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11129 else 11130 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11131 11132 /* Word 7 */ 11133 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11134 11135 /* Word 8 */ 11136 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11137 11138 /* Word 9 */ 11139 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11140 11141 /* Word 10 */ 11142 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11143 11144 /* Word 11 */ 11145 if (wqec) 11146 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11147 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11148 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11149 } 11150 11151 void 11152 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11153 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11154 bool ia, bool wqec) 11155 { 11156 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11157 cqid, ia, wqec); 11158 } 11159 11160 /** 11161 * lpfc_sli_api_table_setup - Set up sli api function jump table 11162 * @phba: The hba struct for which this call is being executed. 11163 * @dev_grp: The HBA PCI-Device group number. 11164 * 11165 * This routine sets up the SLI interface API function jump table in @phba 11166 * struct. 11167 * Returns: 0 - success, -ENODEV - failure. 11168 **/ 11169 int 11170 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11171 { 11172 11173 switch (dev_grp) { 11174 case LPFC_PCI_DEV_LP: 11175 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11176 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11177 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11178 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11179 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11180 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11181 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11182 break; 11183 case LPFC_PCI_DEV_OC: 11184 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11185 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11186 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11187 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11188 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11189 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11190 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11191 break; 11192 default: 11193 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11194 "1419 Invalid HBA PCI-device group: 0x%x\n", 11195 dev_grp); 11196 return -ENODEV; 11197 } 11198 return 0; 11199 } 11200 11201 /** 11202 * lpfc_sli4_calc_ring - Calculates which ring to use 11203 * @phba: Pointer to HBA context object. 11204 * @piocb: Pointer to command iocb. 11205 * 11206 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11207 * hba_wqidx, thus we need to calculate the corresponding ring. 11208 * Since ABORTS must go on the same WQ of the command they are 11209 * aborting, we use command's hba_wqidx. 11210 */ 11211 struct lpfc_sli_ring * 11212 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11213 { 11214 struct lpfc_io_buf *lpfc_cmd; 11215 11216 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11217 if (unlikely(!phba->sli4_hba.hdwq)) 11218 return NULL; 11219 /* 11220 * for abort iocb hba_wqidx should already 11221 * be setup based on what work queue we used. 11222 */ 11223 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11224 lpfc_cmd = piocb->io_buf; 11225 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11226 } 11227 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11228 } else { 11229 if (unlikely(!phba->sli4_hba.els_wq)) 11230 return NULL; 11231 piocb->hba_wqidx = 0; 11232 return phba->sli4_hba.els_wq->pring; 11233 } 11234 } 11235 11236 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11237 { 11238 struct lpfc_hba *phba = eq->phba; 11239 11240 /* 11241 * Unlocking an irq is one of the entry point to check 11242 * for re-schedule, but we are good for io submission 11243 * path as midlayer does a get_cpu to glue us in. Flush 11244 * out the invalidate queue so we can see the updated 11245 * value for flag. 11246 */ 11247 smp_rmb(); 11248 11249 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11250 /* We will not likely get the completion for the caller 11251 * during this iteration but i guess that's fine. 11252 * Future io's coming on this eq should be able to 11253 * pick it up. As for the case of single io's, they 11254 * will be handled through a sched from polling timer 11255 * function which is currently triggered every 1msec. 11256 */ 11257 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 11258 } 11259 11260 /** 11261 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11262 * @phba: Pointer to HBA context object. 11263 * @ring_number: Ring number 11264 * @piocb: Pointer to command iocb. 11265 * @flag: Flag indicating if this command can be put into txq. 11266 * 11267 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11268 * function. This function gets the hbalock and calls 11269 * __lpfc_sli_issue_iocb function and will return the error returned 11270 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11271 * functions which do not hold hbalock. 11272 **/ 11273 int 11274 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11275 struct lpfc_iocbq *piocb, uint32_t flag) 11276 { 11277 struct lpfc_sli_ring *pring; 11278 struct lpfc_queue *eq; 11279 unsigned long iflags; 11280 int rc; 11281 11282 /* If the PCI channel is in offline state, do not post iocbs. */ 11283 if (unlikely(pci_channel_offline(phba->pcidev))) 11284 return IOCB_ERROR; 11285 11286 if (phba->sli_rev == LPFC_SLI_REV4) { 11287 lpfc_sli_prep_wqe(phba, piocb); 11288 11289 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11290 11291 pring = lpfc_sli4_calc_ring(phba, piocb); 11292 if (unlikely(pring == NULL)) 11293 return IOCB_ERROR; 11294 11295 spin_lock_irqsave(&pring->ring_lock, iflags); 11296 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11297 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11298 11299 lpfc_sli4_poll_eq(eq); 11300 } else { 11301 /* For now, SLI2/3 will still use hbalock */ 11302 spin_lock_irqsave(&phba->hbalock, iflags); 11303 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11304 spin_unlock_irqrestore(&phba->hbalock, iflags); 11305 } 11306 return rc; 11307 } 11308 11309 /** 11310 * lpfc_extra_ring_setup - Extra ring setup function 11311 * @phba: Pointer to HBA context object. 11312 * 11313 * This function is called while driver attaches with the 11314 * HBA to setup the extra ring. The extra ring is used 11315 * only when driver needs to support target mode functionality 11316 * or IP over FC functionalities. 11317 * 11318 * This function is called with no lock held. SLI3 only. 11319 **/ 11320 static int 11321 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11322 { 11323 struct lpfc_sli *psli; 11324 struct lpfc_sli_ring *pring; 11325 11326 psli = &phba->sli; 11327 11328 /* Adjust cmd/rsp ring iocb entries more evenly */ 11329 11330 /* Take some away from the FCP ring */ 11331 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11332 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11333 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11334 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11335 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11336 11337 /* and give them to the extra ring */ 11338 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11339 11340 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11341 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11342 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11343 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11344 11345 /* Setup default profile for this ring */ 11346 pring->iotag_max = 4096; 11347 pring->num_mask = 1; 11348 pring->prt[0].profile = 0; /* Mask 0 */ 11349 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11350 pring->prt[0].type = phba->cfg_multi_ring_type; 11351 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11352 return 0; 11353 } 11354 11355 static void 11356 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11357 struct lpfc_nodelist *ndlp) 11358 { 11359 unsigned long iflags; 11360 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11361 11362 spin_lock_irqsave(&phba->hbalock, iflags); 11363 if (!list_empty(&evtp->evt_listp)) { 11364 spin_unlock_irqrestore(&phba->hbalock, iflags); 11365 return; 11366 } 11367 11368 /* Incrementing the reference count until the queued work is done. */ 11369 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11370 if (!evtp->evt_arg1) { 11371 spin_unlock_irqrestore(&phba->hbalock, iflags); 11372 return; 11373 } 11374 evtp->evt = LPFC_EVT_RECOVER_PORT; 11375 list_add_tail(&evtp->evt_listp, &phba->work_list); 11376 spin_unlock_irqrestore(&phba->hbalock, iflags); 11377 11378 lpfc_worker_wake_up(phba); 11379 } 11380 11381 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11382 * @phba: Pointer to HBA context object. 11383 * @iocbq: Pointer to iocb object. 11384 * 11385 * The async_event handler calls this routine when it receives 11386 * an ASYNC_STATUS_CN event from the port. The port generates 11387 * this event when an Abort Sequence request to an rport fails 11388 * twice in succession. The abort could be originated by the 11389 * driver or by the port. The ABTS could have been for an ELS 11390 * or FCP IO. The port only generates this event when an ABTS 11391 * fails to complete after one retry. 11392 */ 11393 static void 11394 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11395 struct lpfc_iocbq *iocbq) 11396 { 11397 struct lpfc_nodelist *ndlp = NULL; 11398 uint16_t rpi = 0, vpi = 0; 11399 struct lpfc_vport *vport = NULL; 11400 11401 /* The rpi in the ulpContext is vport-sensitive. */ 11402 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11403 rpi = iocbq->iocb.ulpContext; 11404 11405 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11406 "3092 Port generated ABTS async event " 11407 "on vpi %d rpi %d status 0x%x\n", 11408 vpi, rpi, iocbq->iocb.ulpStatus); 11409 11410 vport = lpfc_find_vport_by_vpid(phba, vpi); 11411 if (!vport) 11412 goto err_exit; 11413 ndlp = lpfc_findnode_rpi(vport, rpi); 11414 if (!ndlp) 11415 goto err_exit; 11416 11417 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11418 lpfc_sli_abts_recover_port(vport, ndlp); 11419 return; 11420 11421 err_exit: 11422 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11423 "3095 Event Context not found, no " 11424 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11425 vpi, rpi, iocbq->iocb.ulpStatus, 11426 iocbq->iocb.ulpContext); 11427 } 11428 11429 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11430 * @phba: pointer to HBA context object. 11431 * @ndlp: nodelist pointer for the impacted rport. 11432 * @axri: pointer to the wcqe containing the failed exchange. 11433 * 11434 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11435 * port. The port generates this event when an abort exchange request to an 11436 * rport fails twice in succession with no reply. The abort could be originated 11437 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11438 */ 11439 void 11440 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11441 struct lpfc_nodelist *ndlp, 11442 struct sli4_wcqe_xri_aborted *axri) 11443 { 11444 uint32_t ext_status = 0; 11445 11446 if (!ndlp) { 11447 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11448 "3115 Node Context not found, driver " 11449 "ignoring abts err event\n"); 11450 return; 11451 } 11452 11453 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11454 "3116 Port generated FCP XRI ABORT event on " 11455 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11456 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11457 bf_get(lpfc_wcqe_xa_xri, axri), 11458 bf_get(lpfc_wcqe_xa_status, axri), 11459 axri->parameter); 11460 11461 /* 11462 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11463 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11464 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11465 */ 11466 ext_status = axri->parameter & IOERR_PARAM_MASK; 11467 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11468 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11469 lpfc_sli_post_recovery_event(phba, ndlp); 11470 } 11471 11472 /** 11473 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11474 * @phba: Pointer to HBA context object. 11475 * @pring: Pointer to driver SLI ring object. 11476 * @iocbq: Pointer to iocb object. 11477 * 11478 * This function is called by the slow ring event handler 11479 * function when there is an ASYNC event iocb in the ring. 11480 * This function is called with no lock held. 11481 * Currently this function handles only temperature related 11482 * ASYNC events. The function decodes the temperature sensor 11483 * event message and posts events for the management applications. 11484 **/ 11485 static void 11486 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11487 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11488 { 11489 IOCB_t *icmd; 11490 uint16_t evt_code; 11491 struct temp_event temp_event_data; 11492 struct Scsi_Host *shost; 11493 uint32_t *iocb_w; 11494 11495 icmd = &iocbq->iocb; 11496 evt_code = icmd->un.asyncstat.evt_code; 11497 11498 switch (evt_code) { 11499 case ASYNC_TEMP_WARN: 11500 case ASYNC_TEMP_SAFE: 11501 temp_event_data.data = (uint32_t) icmd->ulpContext; 11502 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11503 if (evt_code == ASYNC_TEMP_WARN) { 11504 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11506 "0347 Adapter is very hot, please take " 11507 "corrective action. temperature : %d Celsius\n", 11508 (uint32_t) icmd->ulpContext); 11509 } else { 11510 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11512 "0340 Adapter temperature is OK now. " 11513 "temperature : %d Celsius\n", 11514 (uint32_t) icmd->ulpContext); 11515 } 11516 11517 /* Send temperature change event to applications */ 11518 shost = lpfc_shost_from_vport(phba->pport); 11519 fc_host_post_vendor_event(shost, fc_get_event_number(), 11520 sizeof(temp_event_data), (char *) &temp_event_data, 11521 LPFC_NL_VENDOR_ID); 11522 break; 11523 case ASYNC_STATUS_CN: 11524 lpfc_sli_abts_err_handler(phba, iocbq); 11525 break; 11526 default: 11527 iocb_w = (uint32_t *) icmd; 11528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11529 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11530 " evt_code 0x%x\n" 11531 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11532 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11533 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11534 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11535 pring->ringno, icmd->un.asyncstat.evt_code, 11536 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11537 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11538 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11539 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11540 11541 break; 11542 } 11543 } 11544 11545 11546 /** 11547 * lpfc_sli4_setup - SLI ring setup function 11548 * @phba: Pointer to HBA context object. 11549 * 11550 * lpfc_sli_setup sets up rings of the SLI interface with 11551 * number of iocbs per ring and iotags. This function is 11552 * called while driver attach to the HBA and before the 11553 * interrupts are enabled. So there is no need for locking. 11554 * 11555 * This function always returns 0. 11556 **/ 11557 int 11558 lpfc_sli4_setup(struct lpfc_hba *phba) 11559 { 11560 struct lpfc_sli_ring *pring; 11561 11562 pring = phba->sli4_hba.els_wq->pring; 11563 pring->num_mask = LPFC_MAX_RING_MASK; 11564 pring->prt[0].profile = 0; /* Mask 0 */ 11565 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11566 pring->prt[0].type = FC_TYPE_ELS; 11567 pring->prt[0].lpfc_sli_rcv_unsol_event = 11568 lpfc_els_unsol_event; 11569 pring->prt[1].profile = 0; /* Mask 1 */ 11570 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11571 pring->prt[1].type = FC_TYPE_ELS; 11572 pring->prt[1].lpfc_sli_rcv_unsol_event = 11573 lpfc_els_unsol_event; 11574 pring->prt[2].profile = 0; /* Mask 2 */ 11575 /* NameServer Inquiry */ 11576 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11577 /* NameServer */ 11578 pring->prt[2].type = FC_TYPE_CT; 11579 pring->prt[2].lpfc_sli_rcv_unsol_event = 11580 lpfc_ct_unsol_event; 11581 pring->prt[3].profile = 0; /* Mask 3 */ 11582 /* NameServer response */ 11583 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11584 /* NameServer */ 11585 pring->prt[3].type = FC_TYPE_CT; 11586 pring->prt[3].lpfc_sli_rcv_unsol_event = 11587 lpfc_ct_unsol_event; 11588 return 0; 11589 } 11590 11591 /** 11592 * lpfc_sli_setup - SLI ring setup function 11593 * @phba: Pointer to HBA context object. 11594 * 11595 * lpfc_sli_setup sets up rings of the SLI interface with 11596 * number of iocbs per ring and iotags. This function is 11597 * called while driver attach to the HBA and before the 11598 * interrupts are enabled. So there is no need for locking. 11599 * 11600 * This function always returns 0. SLI3 only. 11601 **/ 11602 int 11603 lpfc_sli_setup(struct lpfc_hba *phba) 11604 { 11605 int i, totiocbsize = 0; 11606 struct lpfc_sli *psli = &phba->sli; 11607 struct lpfc_sli_ring *pring; 11608 11609 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11610 psli->sli_flag = 0; 11611 11612 psli->iocbq_lookup = NULL; 11613 psli->iocbq_lookup_len = 0; 11614 psli->last_iotag = 0; 11615 11616 for (i = 0; i < psli->num_rings; i++) { 11617 pring = &psli->sli3_ring[i]; 11618 switch (i) { 11619 case LPFC_FCP_RING: /* ring 0 - FCP */ 11620 /* numCiocb and numRiocb are used in config_port */ 11621 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11622 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11623 pring->sli.sli3.numCiocb += 11624 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11625 pring->sli.sli3.numRiocb += 11626 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11627 pring->sli.sli3.numCiocb += 11628 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11629 pring->sli.sli3.numRiocb += 11630 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11631 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11632 SLI3_IOCB_CMD_SIZE : 11633 SLI2_IOCB_CMD_SIZE; 11634 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11635 SLI3_IOCB_RSP_SIZE : 11636 SLI2_IOCB_RSP_SIZE; 11637 pring->iotag_ctr = 0; 11638 pring->iotag_max = 11639 (phba->cfg_hba_queue_depth * 2); 11640 pring->fast_iotag = pring->iotag_max; 11641 pring->num_mask = 0; 11642 break; 11643 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11644 /* numCiocb and numRiocb are used in config_port */ 11645 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11646 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11647 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11648 SLI3_IOCB_CMD_SIZE : 11649 SLI2_IOCB_CMD_SIZE; 11650 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11651 SLI3_IOCB_RSP_SIZE : 11652 SLI2_IOCB_RSP_SIZE; 11653 pring->iotag_max = phba->cfg_hba_queue_depth; 11654 pring->num_mask = 0; 11655 break; 11656 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11657 /* numCiocb and numRiocb are used in config_port */ 11658 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11659 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11660 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11661 SLI3_IOCB_CMD_SIZE : 11662 SLI2_IOCB_CMD_SIZE; 11663 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11664 SLI3_IOCB_RSP_SIZE : 11665 SLI2_IOCB_RSP_SIZE; 11666 pring->fast_iotag = 0; 11667 pring->iotag_ctr = 0; 11668 pring->iotag_max = 4096; 11669 pring->lpfc_sli_rcv_async_status = 11670 lpfc_sli_async_event_handler; 11671 pring->num_mask = LPFC_MAX_RING_MASK; 11672 pring->prt[0].profile = 0; /* Mask 0 */ 11673 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11674 pring->prt[0].type = FC_TYPE_ELS; 11675 pring->prt[0].lpfc_sli_rcv_unsol_event = 11676 lpfc_els_unsol_event; 11677 pring->prt[1].profile = 0; /* Mask 1 */ 11678 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11679 pring->prt[1].type = FC_TYPE_ELS; 11680 pring->prt[1].lpfc_sli_rcv_unsol_event = 11681 lpfc_els_unsol_event; 11682 pring->prt[2].profile = 0; /* Mask 2 */ 11683 /* NameServer Inquiry */ 11684 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11685 /* NameServer */ 11686 pring->prt[2].type = FC_TYPE_CT; 11687 pring->prt[2].lpfc_sli_rcv_unsol_event = 11688 lpfc_ct_unsol_event; 11689 pring->prt[3].profile = 0; /* Mask 3 */ 11690 /* NameServer response */ 11691 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11692 /* NameServer */ 11693 pring->prt[3].type = FC_TYPE_CT; 11694 pring->prt[3].lpfc_sli_rcv_unsol_event = 11695 lpfc_ct_unsol_event; 11696 break; 11697 } 11698 totiocbsize += (pring->sli.sli3.numCiocb * 11699 pring->sli.sli3.sizeCiocb) + 11700 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11701 } 11702 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11703 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11704 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11705 "SLI2 SLIM Data: x%x x%lx\n", 11706 phba->brd_no, totiocbsize, 11707 (unsigned long) MAX_SLIM_IOCB_SIZE); 11708 } 11709 if (phba->cfg_multi_ring_support == 2) 11710 lpfc_extra_ring_setup(phba); 11711 11712 return 0; 11713 } 11714 11715 /** 11716 * lpfc_sli4_queue_init - Queue initialization function 11717 * @phba: Pointer to HBA context object. 11718 * 11719 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11720 * ring. This function also initializes ring indices of each ring. 11721 * This function is called during the initialization of the SLI 11722 * interface of an HBA. 11723 * This function is called with no lock held and always returns 11724 * 1. 11725 **/ 11726 void 11727 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11728 { 11729 struct lpfc_sli *psli; 11730 struct lpfc_sli_ring *pring; 11731 int i; 11732 11733 psli = &phba->sli; 11734 spin_lock_irq(&phba->hbalock); 11735 INIT_LIST_HEAD(&psli->mboxq); 11736 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11737 /* Initialize list headers for txq and txcmplq as double linked lists */ 11738 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11739 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11740 pring->flag = 0; 11741 pring->ringno = LPFC_FCP_RING; 11742 pring->txcmplq_cnt = 0; 11743 INIT_LIST_HEAD(&pring->txq); 11744 INIT_LIST_HEAD(&pring->txcmplq); 11745 INIT_LIST_HEAD(&pring->iocb_continueq); 11746 spin_lock_init(&pring->ring_lock); 11747 } 11748 pring = phba->sli4_hba.els_wq->pring; 11749 pring->flag = 0; 11750 pring->ringno = LPFC_ELS_RING; 11751 pring->txcmplq_cnt = 0; 11752 INIT_LIST_HEAD(&pring->txq); 11753 INIT_LIST_HEAD(&pring->txcmplq); 11754 INIT_LIST_HEAD(&pring->iocb_continueq); 11755 spin_lock_init(&pring->ring_lock); 11756 11757 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11758 pring = phba->sli4_hba.nvmels_wq->pring; 11759 pring->flag = 0; 11760 pring->ringno = LPFC_ELS_RING; 11761 pring->txcmplq_cnt = 0; 11762 INIT_LIST_HEAD(&pring->txq); 11763 INIT_LIST_HEAD(&pring->txcmplq); 11764 INIT_LIST_HEAD(&pring->iocb_continueq); 11765 spin_lock_init(&pring->ring_lock); 11766 } 11767 11768 spin_unlock_irq(&phba->hbalock); 11769 } 11770 11771 /** 11772 * lpfc_sli_queue_init - Queue initialization function 11773 * @phba: Pointer to HBA context object. 11774 * 11775 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11776 * ring. This function also initializes ring indices of each ring. 11777 * This function is called during the initialization of the SLI 11778 * interface of an HBA. 11779 * This function is called with no lock held and always returns 11780 * 1. 11781 **/ 11782 void 11783 lpfc_sli_queue_init(struct lpfc_hba *phba) 11784 { 11785 struct lpfc_sli *psli; 11786 struct lpfc_sli_ring *pring; 11787 int i; 11788 11789 psli = &phba->sli; 11790 spin_lock_irq(&phba->hbalock); 11791 INIT_LIST_HEAD(&psli->mboxq); 11792 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11793 /* Initialize list headers for txq and txcmplq as double linked lists */ 11794 for (i = 0; i < psli->num_rings; i++) { 11795 pring = &psli->sli3_ring[i]; 11796 pring->ringno = i; 11797 pring->sli.sli3.next_cmdidx = 0; 11798 pring->sli.sli3.local_getidx = 0; 11799 pring->sli.sli3.cmdidx = 0; 11800 INIT_LIST_HEAD(&pring->iocb_continueq); 11801 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11802 INIT_LIST_HEAD(&pring->postbufq); 11803 pring->flag = 0; 11804 INIT_LIST_HEAD(&pring->txq); 11805 INIT_LIST_HEAD(&pring->txcmplq); 11806 spin_lock_init(&pring->ring_lock); 11807 } 11808 spin_unlock_irq(&phba->hbalock); 11809 } 11810 11811 /** 11812 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11813 * @phba: Pointer to HBA context object. 11814 * 11815 * This routine flushes the mailbox command subsystem. It will unconditionally 11816 * flush all the mailbox commands in the three possible stages in the mailbox 11817 * command sub-system: pending mailbox command queue; the outstanding mailbox 11818 * command; and completed mailbox command queue. It is caller's responsibility 11819 * to make sure that the driver is in the proper state to flush the mailbox 11820 * command sub-system. Namely, the posting of mailbox commands into the 11821 * pending mailbox command queue from the various clients must be stopped; 11822 * either the HBA is in a state that it will never works on the outstanding 11823 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11824 * mailbox command has been completed. 11825 **/ 11826 static void 11827 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11828 { 11829 LIST_HEAD(completions); 11830 struct lpfc_sli *psli = &phba->sli; 11831 LPFC_MBOXQ_t *pmb; 11832 unsigned long iflag; 11833 11834 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11835 local_bh_disable(); 11836 11837 /* Flush all the mailbox commands in the mbox system */ 11838 spin_lock_irqsave(&phba->hbalock, iflag); 11839 11840 /* The pending mailbox command queue */ 11841 list_splice_init(&phba->sli.mboxq, &completions); 11842 /* The outstanding active mailbox command */ 11843 if (psli->mbox_active) { 11844 list_add_tail(&psli->mbox_active->list, &completions); 11845 psli->mbox_active = NULL; 11846 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11847 } 11848 /* The completed mailbox command queue */ 11849 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11850 spin_unlock_irqrestore(&phba->hbalock, iflag); 11851 11852 /* Enable softirqs again, done with phba->hbalock */ 11853 local_bh_enable(); 11854 11855 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11856 while (!list_empty(&completions)) { 11857 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11858 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11859 if (pmb->mbox_cmpl) 11860 pmb->mbox_cmpl(phba, pmb); 11861 } 11862 } 11863 11864 /** 11865 * lpfc_sli_host_down - Vport cleanup function 11866 * @vport: Pointer to virtual port object. 11867 * 11868 * lpfc_sli_host_down is called to clean up the resources 11869 * associated with a vport before destroying virtual 11870 * port data structures. 11871 * This function does following operations: 11872 * - Free discovery resources associated with this virtual 11873 * port. 11874 * - Free iocbs associated with this virtual port in 11875 * the txq. 11876 * - Send abort for all iocb commands associated with this 11877 * vport in txcmplq. 11878 * 11879 * This function is called with no lock held and always returns 1. 11880 **/ 11881 int 11882 lpfc_sli_host_down(struct lpfc_vport *vport) 11883 { 11884 LIST_HEAD(completions); 11885 struct lpfc_hba *phba = vport->phba; 11886 struct lpfc_sli *psli = &phba->sli; 11887 struct lpfc_queue *qp = NULL; 11888 struct lpfc_sli_ring *pring; 11889 struct lpfc_iocbq *iocb, *next_iocb; 11890 int i; 11891 unsigned long flags = 0; 11892 uint16_t prev_pring_flag; 11893 11894 lpfc_cleanup_discovery_resources(vport); 11895 11896 spin_lock_irqsave(&phba->hbalock, flags); 11897 11898 /* 11899 * Error everything on the txq since these iocbs 11900 * have not been given to the FW yet. 11901 * Also issue ABTS for everything on the txcmplq 11902 */ 11903 if (phba->sli_rev != LPFC_SLI_REV4) { 11904 for (i = 0; i < psli->num_rings; i++) { 11905 pring = &psli->sli3_ring[i]; 11906 prev_pring_flag = pring->flag; 11907 /* Only slow rings */ 11908 if (pring->ringno == LPFC_ELS_RING) { 11909 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11910 /* Set the lpfc data pending flag */ 11911 set_bit(LPFC_DATA_READY, &phba->data_flags); 11912 } 11913 list_for_each_entry_safe(iocb, next_iocb, 11914 &pring->txq, list) { 11915 if (iocb->vport != vport) 11916 continue; 11917 list_move_tail(&iocb->list, &completions); 11918 } 11919 list_for_each_entry_safe(iocb, next_iocb, 11920 &pring->txcmplq, list) { 11921 if (iocb->vport != vport) 11922 continue; 11923 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11924 NULL); 11925 } 11926 pring->flag = prev_pring_flag; 11927 } 11928 } else { 11929 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11930 pring = qp->pring; 11931 if (!pring) 11932 continue; 11933 if (pring == phba->sli4_hba.els_wq->pring) { 11934 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11935 /* Set the lpfc data pending flag */ 11936 set_bit(LPFC_DATA_READY, &phba->data_flags); 11937 } 11938 prev_pring_flag = pring->flag; 11939 spin_lock(&pring->ring_lock); 11940 list_for_each_entry_safe(iocb, next_iocb, 11941 &pring->txq, list) { 11942 if (iocb->vport != vport) 11943 continue; 11944 list_move_tail(&iocb->list, &completions); 11945 } 11946 spin_unlock(&pring->ring_lock); 11947 list_for_each_entry_safe(iocb, next_iocb, 11948 &pring->txcmplq, list) { 11949 if (iocb->vport != vport) 11950 continue; 11951 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11952 NULL); 11953 } 11954 pring->flag = prev_pring_flag; 11955 } 11956 } 11957 spin_unlock_irqrestore(&phba->hbalock, flags); 11958 11959 /* Make sure HBA is alive */ 11960 lpfc_issue_hb_tmo(phba); 11961 11962 /* Cancel all the IOCBs from the completions list */ 11963 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11964 IOERR_SLI_DOWN); 11965 return 1; 11966 } 11967 11968 /** 11969 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11970 * @phba: Pointer to HBA context object. 11971 * 11972 * This function cleans up all iocb, buffers, mailbox commands 11973 * while shutting down the HBA. This function is called with no 11974 * lock held and always returns 1. 11975 * This function does the following to cleanup driver resources: 11976 * - Free discovery resources for each virtual port 11977 * - Cleanup any pending fabric iocbs 11978 * - Iterate through the iocb txq and free each entry 11979 * in the list. 11980 * - Free up any buffer posted to the HBA 11981 * - Free mailbox commands in the mailbox queue. 11982 **/ 11983 int 11984 lpfc_sli_hba_down(struct lpfc_hba *phba) 11985 { 11986 LIST_HEAD(completions); 11987 struct lpfc_sli *psli = &phba->sli; 11988 struct lpfc_queue *qp = NULL; 11989 struct lpfc_sli_ring *pring; 11990 struct lpfc_dmabuf *buf_ptr; 11991 unsigned long flags = 0; 11992 int i; 11993 11994 /* Shutdown the mailbox command sub-system */ 11995 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11996 11997 lpfc_hba_down_prep(phba); 11998 11999 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12000 local_bh_disable(); 12001 12002 lpfc_fabric_abort_hba(phba); 12003 12004 spin_lock_irqsave(&phba->hbalock, flags); 12005 12006 /* 12007 * Error everything on the txq since these iocbs 12008 * have not been given to the FW yet. 12009 */ 12010 if (phba->sli_rev != LPFC_SLI_REV4) { 12011 for (i = 0; i < psli->num_rings; i++) { 12012 pring = &psli->sli3_ring[i]; 12013 /* Only slow rings */ 12014 if (pring->ringno == LPFC_ELS_RING) { 12015 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12016 /* Set the lpfc data pending flag */ 12017 set_bit(LPFC_DATA_READY, &phba->data_flags); 12018 } 12019 list_splice_init(&pring->txq, &completions); 12020 } 12021 } else { 12022 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12023 pring = qp->pring; 12024 if (!pring) 12025 continue; 12026 spin_lock(&pring->ring_lock); 12027 list_splice_init(&pring->txq, &completions); 12028 spin_unlock(&pring->ring_lock); 12029 if (pring == phba->sli4_hba.els_wq->pring) { 12030 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12031 /* Set the lpfc data pending flag */ 12032 set_bit(LPFC_DATA_READY, &phba->data_flags); 12033 } 12034 } 12035 } 12036 spin_unlock_irqrestore(&phba->hbalock, flags); 12037 12038 /* Cancel all the IOCBs from the completions list */ 12039 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12040 IOERR_SLI_DOWN); 12041 12042 spin_lock_irqsave(&phba->hbalock, flags); 12043 list_splice_init(&phba->elsbuf, &completions); 12044 phba->elsbuf_cnt = 0; 12045 phba->elsbuf_prev_cnt = 0; 12046 spin_unlock_irqrestore(&phba->hbalock, flags); 12047 12048 while (!list_empty(&completions)) { 12049 list_remove_head(&completions, buf_ptr, 12050 struct lpfc_dmabuf, list); 12051 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12052 kfree(buf_ptr); 12053 } 12054 12055 /* Enable softirqs again, done with phba->hbalock */ 12056 local_bh_enable(); 12057 12058 /* Return any active mbox cmds */ 12059 del_timer_sync(&psli->mbox_tmo); 12060 12061 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12062 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12063 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12064 12065 return 1; 12066 } 12067 12068 /** 12069 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12070 * @srcp: Source memory pointer. 12071 * @destp: Destination memory pointer. 12072 * @cnt: Number of words required to be copied. 12073 * 12074 * This function is used for copying data between driver memory 12075 * and the SLI memory. This function also changes the endianness 12076 * of each word if native endianness is different from SLI 12077 * endianness. This function can be called with or without 12078 * lock. 12079 **/ 12080 void 12081 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12082 { 12083 uint32_t *src = srcp; 12084 uint32_t *dest = destp; 12085 uint32_t ldata; 12086 int i; 12087 12088 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12089 ldata = *src; 12090 ldata = le32_to_cpu(ldata); 12091 *dest = ldata; 12092 src++; 12093 dest++; 12094 } 12095 } 12096 12097 12098 /** 12099 * lpfc_sli_bemem_bcopy - SLI memory copy function 12100 * @srcp: Source memory pointer. 12101 * @destp: Destination memory pointer. 12102 * @cnt: Number of words required to be copied. 12103 * 12104 * This function is used for copying data between a data structure 12105 * with big endian representation to local endianness. 12106 * This function can be called with or without lock. 12107 **/ 12108 void 12109 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12110 { 12111 uint32_t *src = srcp; 12112 uint32_t *dest = destp; 12113 uint32_t ldata; 12114 int i; 12115 12116 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12117 ldata = *src; 12118 ldata = be32_to_cpu(ldata); 12119 *dest = ldata; 12120 src++; 12121 dest++; 12122 } 12123 } 12124 12125 /** 12126 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12127 * @phba: Pointer to HBA context object. 12128 * @pring: Pointer to driver SLI ring object. 12129 * @mp: Pointer to driver buffer object. 12130 * 12131 * This function is called with no lock held. 12132 * It always return zero after adding the buffer to the postbufq 12133 * buffer list. 12134 **/ 12135 int 12136 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12137 struct lpfc_dmabuf *mp) 12138 { 12139 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12140 later */ 12141 spin_lock_irq(&phba->hbalock); 12142 list_add_tail(&mp->list, &pring->postbufq); 12143 pring->postbufq_cnt++; 12144 spin_unlock_irq(&phba->hbalock); 12145 return 0; 12146 } 12147 12148 /** 12149 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12150 * @phba: Pointer to HBA context object. 12151 * 12152 * When HBQ is enabled, buffers are searched based on tags. This function 12153 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12154 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12155 * does not conflict with tags of buffer posted for unsolicited events. 12156 * The function returns the allocated tag. The function is called with 12157 * no locks held. 12158 **/ 12159 uint32_t 12160 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12161 { 12162 spin_lock_irq(&phba->hbalock); 12163 phba->buffer_tag_count++; 12164 /* 12165 * Always set the QUE_BUFTAG_BIT to distiguish between 12166 * a tag assigned by HBQ. 12167 */ 12168 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12169 spin_unlock_irq(&phba->hbalock); 12170 return phba->buffer_tag_count; 12171 } 12172 12173 /** 12174 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12175 * @phba: Pointer to HBA context object. 12176 * @pring: Pointer to driver SLI ring object. 12177 * @tag: Buffer tag. 12178 * 12179 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12180 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12181 * iocb is posted to the response ring with the tag of the buffer. 12182 * This function searches the pring->postbufq list using the tag 12183 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12184 * iocb. If the buffer is found then lpfc_dmabuf object of the 12185 * buffer is returned to the caller else NULL is returned. 12186 * This function is called with no lock held. 12187 **/ 12188 struct lpfc_dmabuf * 12189 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12190 uint32_t tag) 12191 { 12192 struct lpfc_dmabuf *mp, *next_mp; 12193 struct list_head *slp = &pring->postbufq; 12194 12195 /* Search postbufq, from the beginning, looking for a match on tag */ 12196 spin_lock_irq(&phba->hbalock); 12197 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12198 if (mp->buffer_tag == tag) { 12199 list_del_init(&mp->list); 12200 pring->postbufq_cnt--; 12201 spin_unlock_irq(&phba->hbalock); 12202 return mp; 12203 } 12204 } 12205 12206 spin_unlock_irq(&phba->hbalock); 12207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12208 "0402 Cannot find virtual addr for buffer tag on " 12209 "ring %d Data x%lx x%px x%px x%x\n", 12210 pring->ringno, (unsigned long) tag, 12211 slp->next, slp->prev, pring->postbufq_cnt); 12212 12213 return NULL; 12214 } 12215 12216 /** 12217 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12218 * @phba: Pointer to HBA context object. 12219 * @pring: Pointer to driver SLI ring object. 12220 * @phys: DMA address of the buffer. 12221 * 12222 * This function searches the buffer list using the dma_address 12223 * of unsolicited event to find the driver's lpfc_dmabuf object 12224 * corresponding to the dma_address. The function returns the 12225 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12226 * This function is called by the ct and els unsolicited event 12227 * handlers to get the buffer associated with the unsolicited 12228 * event. 12229 * 12230 * This function is called with no lock held. 12231 **/ 12232 struct lpfc_dmabuf * 12233 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12234 dma_addr_t phys) 12235 { 12236 struct lpfc_dmabuf *mp, *next_mp; 12237 struct list_head *slp = &pring->postbufq; 12238 12239 /* Search postbufq, from the beginning, looking for a match on phys */ 12240 spin_lock_irq(&phba->hbalock); 12241 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12242 if (mp->phys == phys) { 12243 list_del_init(&mp->list); 12244 pring->postbufq_cnt--; 12245 spin_unlock_irq(&phba->hbalock); 12246 return mp; 12247 } 12248 } 12249 12250 spin_unlock_irq(&phba->hbalock); 12251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12252 "0410 Cannot find virtual addr for mapped buf on " 12253 "ring %d Data x%llx x%px x%px x%x\n", 12254 pring->ringno, (unsigned long long)phys, 12255 slp->next, slp->prev, pring->postbufq_cnt); 12256 return NULL; 12257 } 12258 12259 /** 12260 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12261 * @phba: Pointer to HBA context object. 12262 * @cmdiocb: Pointer to driver command iocb object. 12263 * @rspiocb: Pointer to driver response iocb object. 12264 * 12265 * This function is the completion handler for the abort iocbs for 12266 * ELS commands. This function is called from the ELS ring event 12267 * handler with no lock held. This function frees memory resources 12268 * associated with the abort iocb. 12269 **/ 12270 static void 12271 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12272 struct lpfc_iocbq *rspiocb) 12273 { 12274 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12275 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12276 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12277 12278 if (ulp_status) { 12279 /* 12280 * Assume that the port already completed and returned, or 12281 * will return the iocb. Just Log the message. 12282 */ 12283 if (phba->sli_rev < LPFC_SLI_REV4) { 12284 if (cmnd == CMD_ABORT_XRI_CX && 12285 ulp_status == IOSTAT_LOCAL_REJECT && 12286 ulp_word4 == IOERR_ABORT_REQUESTED) { 12287 goto release_iocb; 12288 } 12289 } 12290 12291 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12292 "0327 Cannot abort els iocb x%px " 12293 "with io cmd xri %x abort tag : x%x, " 12294 "abort status %x abort code %x\n", 12295 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12296 (phba->sli_rev == LPFC_SLI_REV4) ? 12297 get_wqe_reqtag(cmdiocb) : 12298 cmdiocb->iocb.un.acxri.abortContextTag, 12299 ulp_status, ulp_word4); 12300 12301 } 12302 release_iocb: 12303 lpfc_sli_release_iocbq(phba, cmdiocb); 12304 return; 12305 } 12306 12307 /** 12308 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12309 * @phba: Pointer to HBA context object. 12310 * @cmdiocb: Pointer to driver command iocb object. 12311 * @rspiocb: Pointer to driver response iocb object. 12312 * 12313 * The function is called from SLI ring event handler with no 12314 * lock held. This function is the completion handler for ELS commands 12315 * which are aborted. The function frees memory resources used for 12316 * the aborted ELS commands. 12317 **/ 12318 void 12319 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12320 struct lpfc_iocbq *rspiocb) 12321 { 12322 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12323 IOCB_t *irsp; 12324 LPFC_MBOXQ_t *mbox; 12325 u32 ulp_command, ulp_status, ulp_word4, iotag; 12326 12327 ulp_command = get_job_cmnd(phba, cmdiocb); 12328 ulp_status = get_job_ulpstatus(phba, rspiocb); 12329 ulp_word4 = get_job_word4(phba, rspiocb); 12330 12331 if (phba->sli_rev == LPFC_SLI_REV4) { 12332 iotag = get_wqe_reqtag(cmdiocb); 12333 } else { 12334 irsp = &rspiocb->iocb; 12335 iotag = irsp->ulpIoTag; 12336 12337 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12338 * The MBX_REG_LOGIN64 mbox command is freed back to the 12339 * mbox_mem_pool here. 12340 */ 12341 if (cmdiocb->context_un.mbox) { 12342 mbox = cmdiocb->context_un.mbox; 12343 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12344 cmdiocb->context_un.mbox = NULL; 12345 } 12346 } 12347 12348 /* ELS cmd tag <ulpIoTag> completes */ 12349 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12350 "0139 Ignoring ELS cmd code x%x completion Data: " 12351 "x%x x%x x%x x%px\n", 12352 ulp_command, ulp_status, ulp_word4, iotag, 12353 cmdiocb->ndlp); 12354 /* 12355 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12356 * if exchange is busy. 12357 */ 12358 if (ulp_command == CMD_GEN_REQUEST64_CR) 12359 lpfc_ct_free_iocb(phba, cmdiocb); 12360 else 12361 lpfc_els_free_iocb(phba, cmdiocb); 12362 12363 lpfc_nlp_put(ndlp); 12364 } 12365 12366 /** 12367 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12368 * @phba: Pointer to HBA context object. 12369 * @pring: Pointer to driver SLI ring object. 12370 * @cmdiocb: Pointer to driver command iocb object. 12371 * @cmpl: completion function. 12372 * 12373 * This function issues an abort iocb for the provided command iocb. In case 12374 * of unloading, the abort iocb will not be issued to commands on the ELS 12375 * ring. Instead, the callback function shall be changed to those commands 12376 * so that nothing happens when them finishes. This function is called with 12377 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12378 * when the command iocb is an abort request. 12379 * 12380 **/ 12381 int 12382 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12383 struct lpfc_iocbq *cmdiocb, void *cmpl) 12384 { 12385 struct lpfc_vport *vport = cmdiocb->vport; 12386 struct lpfc_iocbq *abtsiocbp; 12387 int retval = IOCB_ERROR; 12388 unsigned long iflags; 12389 struct lpfc_nodelist *ndlp = NULL; 12390 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12391 u16 ulp_context, iotag; 12392 bool ia; 12393 12394 /* 12395 * There are certain command types we don't want to abort. And we 12396 * don't want to abort commands that are already in the process of 12397 * being aborted. 12398 */ 12399 if (ulp_command == CMD_ABORT_XRI_WQE || 12400 ulp_command == CMD_ABORT_XRI_CN || 12401 ulp_command == CMD_CLOSE_XRI_CN || 12402 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12403 return IOCB_ABORTING; 12404 12405 if (!pring) { 12406 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12407 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12408 else 12409 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12410 return retval; 12411 } 12412 12413 /* 12414 * If we're unloading, don't abort iocb on the ELS ring, but change 12415 * the callback so that nothing happens when it finishes. 12416 */ 12417 if ((vport->load_flag & FC_UNLOADING) && 12418 pring->ringno == LPFC_ELS_RING) { 12419 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12420 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12421 else 12422 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12423 return retval; 12424 } 12425 12426 /* issue ABTS for this IOCB based on iotag */ 12427 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12428 if (abtsiocbp == NULL) 12429 return IOCB_NORESOURCE; 12430 12431 /* This signals the response to set the correct status 12432 * before calling the completion handler 12433 */ 12434 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12435 12436 if (phba->sli_rev == LPFC_SLI_REV4) { 12437 ulp_context = cmdiocb->sli4_xritag; 12438 iotag = abtsiocbp->iotag; 12439 } else { 12440 iotag = cmdiocb->iocb.ulpIoTag; 12441 if (pring->ringno == LPFC_ELS_RING) { 12442 ndlp = cmdiocb->ndlp; 12443 ulp_context = ndlp->nlp_rpi; 12444 } else { 12445 ulp_context = cmdiocb->iocb.ulpContext; 12446 } 12447 } 12448 12449 if (phba->link_state < LPFC_LINK_UP || 12450 (phba->sli_rev == LPFC_SLI_REV4 && 12451 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12452 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12453 ia = true; 12454 else 12455 ia = false; 12456 12457 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12458 cmdiocb->iocb.ulpClass, 12459 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12460 12461 abtsiocbp->vport = vport; 12462 12463 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12464 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12465 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12466 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12467 12468 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12469 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12470 12471 if (cmpl) 12472 abtsiocbp->cmd_cmpl = cmpl; 12473 else 12474 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12475 abtsiocbp->vport = vport; 12476 12477 if (phba->sli_rev == LPFC_SLI_REV4) { 12478 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12479 if (unlikely(pring == NULL)) 12480 goto abort_iotag_exit; 12481 /* Note: both hbalock and ring_lock need to be set here */ 12482 spin_lock_irqsave(&pring->ring_lock, iflags); 12483 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12484 abtsiocbp, 0); 12485 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12486 } else { 12487 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12488 abtsiocbp, 0); 12489 } 12490 12491 abort_iotag_exit: 12492 12493 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12494 "0339 Abort IO XRI x%x, Original iotag x%x, " 12495 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12496 "retval x%x\n", 12497 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12498 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12499 retval); 12500 if (retval) { 12501 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12502 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12503 } 12504 12505 /* 12506 * Caller to this routine should check for IOCB_ERROR 12507 * and handle it properly. This routine no longer removes 12508 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12509 */ 12510 return retval; 12511 } 12512 12513 /** 12514 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12515 * @phba: pointer to lpfc HBA data structure. 12516 * 12517 * This routine will abort all pending and outstanding iocbs to an HBA. 12518 **/ 12519 void 12520 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12521 { 12522 struct lpfc_sli *psli = &phba->sli; 12523 struct lpfc_sli_ring *pring; 12524 struct lpfc_queue *qp = NULL; 12525 int i; 12526 12527 if (phba->sli_rev != LPFC_SLI_REV4) { 12528 for (i = 0; i < psli->num_rings; i++) { 12529 pring = &psli->sli3_ring[i]; 12530 lpfc_sli_abort_iocb_ring(phba, pring); 12531 } 12532 return; 12533 } 12534 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12535 pring = qp->pring; 12536 if (!pring) 12537 continue; 12538 lpfc_sli_abort_iocb_ring(phba, pring); 12539 } 12540 } 12541 12542 /** 12543 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12544 * @iocbq: Pointer to iocb object. 12545 * @vport: Pointer to driver virtual port object. 12546 * 12547 * This function acts as an iocb filter for functions which abort FCP iocbs. 12548 * 12549 * Return values 12550 * -ENODEV, if a null iocb or vport ptr is encountered 12551 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12552 * driver already started the abort process, or is an abort iocb itself 12553 * 0, passes criteria for aborting the FCP I/O iocb 12554 **/ 12555 static int 12556 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12557 struct lpfc_vport *vport) 12558 { 12559 u8 ulp_command; 12560 12561 /* No null ptr vports */ 12562 if (!iocbq || iocbq->vport != vport) 12563 return -ENODEV; 12564 12565 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12566 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12567 */ 12568 ulp_command = get_job_cmnd(vport->phba, iocbq); 12569 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12570 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12571 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12572 (ulp_command == CMD_ABORT_XRI_CN || 12573 ulp_command == CMD_CLOSE_XRI_CN || 12574 ulp_command == CMD_ABORT_XRI_WQE)) 12575 return -EINVAL; 12576 12577 return 0; 12578 } 12579 12580 /** 12581 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12582 * @iocbq: Pointer to driver iocb object. 12583 * @vport: Pointer to driver virtual port object. 12584 * @tgt_id: SCSI ID of the target. 12585 * @lun_id: LUN ID of the scsi device. 12586 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12587 * 12588 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12589 * host. 12590 * 12591 * It will return 12592 * 0 if the filtering criteria is met for the given iocb and will return 12593 * 1 if the filtering criteria is not met. 12594 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12595 * given iocb is for the SCSI device specified by vport, tgt_id and 12596 * lun_id parameter. 12597 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12598 * given iocb is for the SCSI target specified by vport and tgt_id 12599 * parameters. 12600 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12601 * given iocb is for the SCSI host associated with the given vport. 12602 * This function is called with no locks held. 12603 **/ 12604 static int 12605 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12606 uint16_t tgt_id, uint64_t lun_id, 12607 lpfc_ctx_cmd ctx_cmd) 12608 { 12609 struct lpfc_io_buf *lpfc_cmd; 12610 int rc = 1; 12611 12612 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12613 12614 if (lpfc_cmd->pCmd == NULL) 12615 return rc; 12616 12617 switch (ctx_cmd) { 12618 case LPFC_CTX_LUN: 12619 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12620 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12621 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12622 rc = 0; 12623 break; 12624 case LPFC_CTX_TGT: 12625 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12626 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12627 rc = 0; 12628 break; 12629 case LPFC_CTX_HOST: 12630 rc = 0; 12631 break; 12632 default: 12633 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12634 __func__, ctx_cmd); 12635 break; 12636 } 12637 12638 return rc; 12639 } 12640 12641 /** 12642 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12643 * @vport: Pointer to virtual port. 12644 * @tgt_id: SCSI ID of the target. 12645 * @lun_id: LUN ID of the scsi device. 12646 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12647 * 12648 * This function returns number of FCP commands pending for the vport. 12649 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12650 * commands pending on the vport associated with SCSI device specified 12651 * by tgt_id and lun_id parameters. 12652 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12653 * commands pending on the vport associated with SCSI target specified 12654 * by tgt_id parameter. 12655 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12656 * commands pending on the vport. 12657 * This function returns the number of iocbs which satisfy the filter. 12658 * This function is called without any lock held. 12659 **/ 12660 int 12661 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12662 lpfc_ctx_cmd ctx_cmd) 12663 { 12664 struct lpfc_hba *phba = vport->phba; 12665 struct lpfc_iocbq *iocbq; 12666 int sum, i; 12667 unsigned long iflags; 12668 u8 ulp_command; 12669 12670 spin_lock_irqsave(&phba->hbalock, iflags); 12671 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12672 iocbq = phba->sli.iocbq_lookup[i]; 12673 12674 if (!iocbq || iocbq->vport != vport) 12675 continue; 12676 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12677 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12678 continue; 12679 12680 /* Include counting outstanding aborts */ 12681 ulp_command = get_job_cmnd(phba, iocbq); 12682 if (ulp_command == CMD_ABORT_XRI_CN || 12683 ulp_command == CMD_CLOSE_XRI_CN || 12684 ulp_command == CMD_ABORT_XRI_WQE) { 12685 sum++; 12686 continue; 12687 } 12688 12689 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12690 ctx_cmd) == 0) 12691 sum++; 12692 } 12693 spin_unlock_irqrestore(&phba->hbalock, iflags); 12694 12695 return sum; 12696 } 12697 12698 /** 12699 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12700 * @phba: Pointer to HBA context object 12701 * @cmdiocb: Pointer to command iocb object. 12702 * @rspiocb: Pointer to response iocb object. 12703 * 12704 * This function is called when an aborted FCP iocb completes. This 12705 * function is called by the ring event handler with no lock held. 12706 * This function frees the iocb. 12707 **/ 12708 void 12709 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12710 struct lpfc_iocbq *rspiocb) 12711 { 12712 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12713 "3096 ABORT_XRI_CX completing on rpi x%x " 12714 "original iotag x%x, abort cmd iotag x%x " 12715 "status 0x%x, reason 0x%x\n", 12716 (phba->sli_rev == LPFC_SLI_REV4) ? 12717 cmdiocb->sli4_xritag : 12718 cmdiocb->iocb.un.acxri.abortContextTag, 12719 get_job_abtsiotag(phba, cmdiocb), 12720 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12721 get_job_word4(phba, rspiocb)); 12722 lpfc_sli_release_iocbq(phba, cmdiocb); 12723 return; 12724 } 12725 12726 /** 12727 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12728 * @vport: Pointer to virtual port. 12729 * @tgt_id: SCSI ID of the target. 12730 * @lun_id: LUN ID of the scsi device. 12731 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12732 * 12733 * This function sends an abort command for every SCSI command 12734 * associated with the given virtual port pending on the ring 12735 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12736 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12737 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12738 * followed by lpfc_sli_validate_fcp_iocb. 12739 * 12740 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12741 * FCP iocbs associated with lun specified by tgt_id and lun_id 12742 * parameters 12743 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12744 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12745 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12746 * FCP iocbs associated with virtual port. 12747 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12748 * lpfc_sli4_calc_ring is used. 12749 * This function returns number of iocbs it failed to abort. 12750 * This function is called with no locks held. 12751 **/ 12752 int 12753 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12754 lpfc_ctx_cmd abort_cmd) 12755 { 12756 struct lpfc_hba *phba = vport->phba; 12757 struct lpfc_sli_ring *pring = NULL; 12758 struct lpfc_iocbq *iocbq; 12759 int errcnt = 0, ret_val = 0; 12760 unsigned long iflags; 12761 int i; 12762 12763 /* all I/Os are in process of being flushed */ 12764 if (phba->hba_flag & HBA_IOQ_FLUSH) 12765 return errcnt; 12766 12767 for (i = 1; i <= phba->sli.last_iotag; i++) { 12768 iocbq = phba->sli.iocbq_lookup[i]; 12769 12770 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12771 continue; 12772 12773 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12774 abort_cmd) != 0) 12775 continue; 12776 12777 spin_lock_irqsave(&phba->hbalock, iflags); 12778 if (phba->sli_rev == LPFC_SLI_REV3) { 12779 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12780 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12781 pring = lpfc_sli4_calc_ring(phba, iocbq); 12782 } 12783 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12784 lpfc_sli_abort_fcp_cmpl); 12785 spin_unlock_irqrestore(&phba->hbalock, iflags); 12786 if (ret_val != IOCB_SUCCESS) 12787 errcnt++; 12788 } 12789 12790 return errcnt; 12791 } 12792 12793 /** 12794 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12795 * @vport: Pointer to virtual port. 12796 * @pring: Pointer to driver SLI ring object. 12797 * @tgt_id: SCSI ID of the target. 12798 * @lun_id: LUN ID of the scsi device. 12799 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12800 * 12801 * This function sends an abort command for every SCSI command 12802 * associated with the given virtual port pending on the ring 12803 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12804 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12805 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12806 * followed by lpfc_sli_validate_fcp_iocb. 12807 * 12808 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12809 * FCP iocbs associated with lun specified by tgt_id and lun_id 12810 * parameters 12811 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12812 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12813 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12814 * FCP iocbs associated with virtual port. 12815 * This function returns number of iocbs it aborted . 12816 * This function is called with no locks held right after a taskmgmt 12817 * command is sent. 12818 **/ 12819 int 12820 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12821 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12822 { 12823 struct lpfc_hba *phba = vport->phba; 12824 struct lpfc_io_buf *lpfc_cmd; 12825 struct lpfc_iocbq *abtsiocbq; 12826 struct lpfc_nodelist *ndlp = NULL; 12827 struct lpfc_iocbq *iocbq; 12828 int sum, i, ret_val; 12829 unsigned long iflags; 12830 struct lpfc_sli_ring *pring_s4 = NULL; 12831 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12832 bool ia; 12833 12834 spin_lock_irqsave(&phba->hbalock, iflags); 12835 12836 /* all I/Os are in process of being flushed */ 12837 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12838 spin_unlock_irqrestore(&phba->hbalock, iflags); 12839 return 0; 12840 } 12841 sum = 0; 12842 12843 for (i = 1; i <= phba->sli.last_iotag; i++) { 12844 iocbq = phba->sli.iocbq_lookup[i]; 12845 12846 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12847 continue; 12848 12849 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12850 cmd) != 0) 12851 continue; 12852 12853 /* Guard against IO completion being called at same time */ 12854 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12855 spin_lock(&lpfc_cmd->buf_lock); 12856 12857 if (!lpfc_cmd->pCmd) { 12858 spin_unlock(&lpfc_cmd->buf_lock); 12859 continue; 12860 } 12861 12862 if (phba->sli_rev == LPFC_SLI_REV4) { 12863 pring_s4 = 12864 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12865 if (!pring_s4) { 12866 spin_unlock(&lpfc_cmd->buf_lock); 12867 continue; 12868 } 12869 /* Note: both hbalock and ring_lock must be set here */ 12870 spin_lock(&pring_s4->ring_lock); 12871 } 12872 12873 /* 12874 * If the iocbq is already being aborted, don't take a second 12875 * action, but do count it. 12876 */ 12877 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12878 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12879 if (phba->sli_rev == LPFC_SLI_REV4) 12880 spin_unlock(&pring_s4->ring_lock); 12881 spin_unlock(&lpfc_cmd->buf_lock); 12882 continue; 12883 } 12884 12885 /* issue ABTS for this IOCB based on iotag */ 12886 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12887 if (!abtsiocbq) { 12888 if (phba->sli_rev == LPFC_SLI_REV4) 12889 spin_unlock(&pring_s4->ring_lock); 12890 spin_unlock(&lpfc_cmd->buf_lock); 12891 continue; 12892 } 12893 12894 if (phba->sli_rev == LPFC_SLI_REV4) { 12895 iotag = abtsiocbq->iotag; 12896 ulp_context = iocbq->sli4_xritag; 12897 cqid = lpfc_cmd->hdwq->io_cq_map; 12898 } else { 12899 iotag = iocbq->iocb.ulpIoTag; 12900 if (pring->ringno == LPFC_ELS_RING) { 12901 ndlp = iocbq->ndlp; 12902 ulp_context = ndlp->nlp_rpi; 12903 } else { 12904 ulp_context = iocbq->iocb.ulpContext; 12905 } 12906 } 12907 12908 ndlp = lpfc_cmd->rdata->pnode; 12909 12910 if (lpfc_is_link_up(phba) && 12911 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12912 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12913 ia = false; 12914 else 12915 ia = true; 12916 12917 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12918 iocbq->iocb.ulpClass, cqid, 12919 ia, false); 12920 12921 abtsiocbq->vport = vport; 12922 12923 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12924 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12925 if (iocbq->cmd_flag & LPFC_IO_FCP) 12926 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12927 if (iocbq->cmd_flag & LPFC_IO_FOF) 12928 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12929 12930 /* Setup callback routine and issue the command. */ 12931 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12932 12933 /* 12934 * Indicate the IO is being aborted by the driver and set 12935 * the caller's flag into the aborted IO. 12936 */ 12937 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12938 12939 if (phba->sli_rev == LPFC_SLI_REV4) { 12940 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12941 abtsiocbq, 0); 12942 spin_unlock(&pring_s4->ring_lock); 12943 } else { 12944 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12945 abtsiocbq, 0); 12946 } 12947 12948 spin_unlock(&lpfc_cmd->buf_lock); 12949 12950 if (ret_val == IOCB_ERROR) 12951 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12952 else 12953 sum++; 12954 } 12955 spin_unlock_irqrestore(&phba->hbalock, iflags); 12956 return sum; 12957 } 12958 12959 /** 12960 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12961 * @phba: Pointer to HBA context object. 12962 * @cmdiocbq: Pointer to command iocb. 12963 * @rspiocbq: Pointer to response iocb. 12964 * 12965 * This function is the completion handler for iocbs issued using 12966 * lpfc_sli_issue_iocb_wait function. This function is called by the 12967 * ring event handler function without any lock held. This function 12968 * can be called from both worker thread context and interrupt 12969 * context. This function also can be called from other thread which 12970 * cleans up the SLI layer objects. 12971 * This function copy the contents of the response iocb to the 12972 * response iocb memory object provided by the caller of 12973 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12974 * sleeps for the iocb completion. 12975 **/ 12976 static void 12977 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12978 struct lpfc_iocbq *cmdiocbq, 12979 struct lpfc_iocbq *rspiocbq) 12980 { 12981 wait_queue_head_t *pdone_q; 12982 unsigned long iflags; 12983 struct lpfc_io_buf *lpfc_cmd; 12984 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12985 12986 spin_lock_irqsave(&phba->hbalock, iflags); 12987 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12988 12989 /* 12990 * A time out has occurred for the iocb. If a time out 12991 * completion handler has been supplied, call it. Otherwise, 12992 * just free the iocbq. 12993 */ 12994 12995 spin_unlock_irqrestore(&phba->hbalock, iflags); 12996 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 12997 cmdiocbq->wait_cmd_cmpl = NULL; 12998 if (cmdiocbq->cmd_cmpl) 12999 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13000 else 13001 lpfc_sli_release_iocbq(phba, cmdiocbq); 13002 return; 13003 } 13004 13005 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13006 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13007 if (cmdiocbq->rsp_iocb && rspiocbq) 13008 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13009 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13010 13011 /* Set the exchange busy flag for task management commands */ 13012 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13013 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13014 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13015 cur_iocbq); 13016 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13017 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13018 else 13019 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13020 } 13021 13022 pdone_q = cmdiocbq->context_un.wait_queue; 13023 if (pdone_q) 13024 wake_up(pdone_q); 13025 spin_unlock_irqrestore(&phba->hbalock, iflags); 13026 return; 13027 } 13028 13029 /** 13030 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13031 * @phba: Pointer to HBA context object.. 13032 * @piocbq: Pointer to command iocb. 13033 * @flag: Flag to test. 13034 * 13035 * This routine grabs the hbalock and then test the cmd_flag to 13036 * see if the passed in flag is set. 13037 * Returns: 13038 * 1 if flag is set. 13039 * 0 if flag is not set. 13040 **/ 13041 static int 13042 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13043 struct lpfc_iocbq *piocbq, uint32_t flag) 13044 { 13045 unsigned long iflags; 13046 int ret; 13047 13048 spin_lock_irqsave(&phba->hbalock, iflags); 13049 ret = piocbq->cmd_flag & flag; 13050 spin_unlock_irqrestore(&phba->hbalock, iflags); 13051 return ret; 13052 13053 } 13054 13055 /** 13056 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13057 * @phba: Pointer to HBA context object.. 13058 * @ring_number: Ring number 13059 * @piocb: Pointer to command iocb. 13060 * @prspiocbq: Pointer to response iocb. 13061 * @timeout: Timeout in number of seconds. 13062 * 13063 * This function issues the iocb to firmware and waits for the 13064 * iocb to complete. The cmd_cmpl field of the shall be used 13065 * to handle iocbs which time out. If the field is NULL, the 13066 * function shall free the iocbq structure. If more clean up is 13067 * needed, the caller is expected to provide a completion function 13068 * that will provide the needed clean up. If the iocb command is 13069 * not completed within timeout seconds, the function will either 13070 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13071 * completion function set in the cmd_cmpl field and then return 13072 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13073 * resources if this function returns IOCB_TIMEDOUT. 13074 * The function waits for the iocb completion using an 13075 * non-interruptible wait. 13076 * This function will sleep while waiting for iocb completion. 13077 * So, this function should not be called from any context which 13078 * does not allow sleeping. Due to the same reason, this function 13079 * cannot be called with interrupt disabled. 13080 * This function assumes that the iocb completions occur while 13081 * this function sleep. So, this function cannot be called from 13082 * the thread which process iocb completion for this ring. 13083 * This function clears the cmd_flag of the iocb object before 13084 * issuing the iocb and the iocb completion handler sets this 13085 * flag and wakes this thread when the iocb completes. 13086 * The contents of the response iocb will be copied to prspiocbq 13087 * by the completion handler when the command completes. 13088 * This function returns IOCB_SUCCESS when success. 13089 * This function is called with no lock held. 13090 **/ 13091 int 13092 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13093 uint32_t ring_number, 13094 struct lpfc_iocbq *piocb, 13095 struct lpfc_iocbq *prspiocbq, 13096 uint32_t timeout) 13097 { 13098 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13099 long timeleft, timeout_req = 0; 13100 int retval = IOCB_SUCCESS; 13101 uint32_t creg_val; 13102 struct lpfc_iocbq *iocb; 13103 int txq_cnt = 0; 13104 int txcmplq_cnt = 0; 13105 struct lpfc_sli_ring *pring; 13106 unsigned long iflags; 13107 bool iocb_completed = true; 13108 13109 if (phba->sli_rev >= LPFC_SLI_REV4) { 13110 lpfc_sli_prep_wqe(phba, piocb); 13111 13112 pring = lpfc_sli4_calc_ring(phba, piocb); 13113 } else 13114 pring = &phba->sli.sli3_ring[ring_number]; 13115 /* 13116 * If the caller has provided a response iocbq buffer, then rsp_iocb 13117 * is NULL or its an error. 13118 */ 13119 if (prspiocbq) { 13120 if (piocb->rsp_iocb) 13121 return IOCB_ERROR; 13122 piocb->rsp_iocb = prspiocbq; 13123 } 13124 13125 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13126 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13127 piocb->context_un.wait_queue = &done_q; 13128 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13129 13130 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13131 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13132 return IOCB_ERROR; 13133 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13134 writel(creg_val, phba->HCregaddr); 13135 readl(phba->HCregaddr); /* flush */ 13136 } 13137 13138 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13139 SLI_IOCB_RET_IOCB); 13140 if (retval == IOCB_SUCCESS) { 13141 timeout_req = msecs_to_jiffies(timeout * 1000); 13142 timeleft = wait_event_timeout(done_q, 13143 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13144 timeout_req); 13145 spin_lock_irqsave(&phba->hbalock, iflags); 13146 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13147 13148 /* 13149 * IOCB timed out. Inform the wake iocb wait 13150 * completion function and set local status 13151 */ 13152 13153 iocb_completed = false; 13154 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13155 } 13156 spin_unlock_irqrestore(&phba->hbalock, iflags); 13157 if (iocb_completed) { 13158 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13159 "0331 IOCB wake signaled\n"); 13160 /* Note: we are not indicating if the IOCB has a success 13161 * status or not - that's for the caller to check. 13162 * IOCB_SUCCESS means just that the command was sent and 13163 * completed. Not that it completed successfully. 13164 * */ 13165 } else if (timeleft == 0) { 13166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13167 "0338 IOCB wait timeout error - no " 13168 "wake response Data x%x\n", timeout); 13169 retval = IOCB_TIMEDOUT; 13170 } else { 13171 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13172 "0330 IOCB wake NOT set, " 13173 "Data x%x x%lx\n", 13174 timeout, (timeleft / jiffies)); 13175 retval = IOCB_TIMEDOUT; 13176 } 13177 } else if (retval == IOCB_BUSY) { 13178 if (phba->cfg_log_verbose & LOG_SLI) { 13179 list_for_each_entry(iocb, &pring->txq, list) { 13180 txq_cnt++; 13181 } 13182 list_for_each_entry(iocb, &pring->txcmplq, list) { 13183 txcmplq_cnt++; 13184 } 13185 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13186 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13187 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13188 } 13189 return retval; 13190 } else { 13191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13192 "0332 IOCB wait issue failed, Data x%x\n", 13193 retval); 13194 retval = IOCB_ERROR; 13195 } 13196 13197 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13198 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13199 return IOCB_ERROR; 13200 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13201 writel(creg_val, phba->HCregaddr); 13202 readl(phba->HCregaddr); /* flush */ 13203 } 13204 13205 if (prspiocbq) 13206 piocb->rsp_iocb = NULL; 13207 13208 piocb->context_un.wait_queue = NULL; 13209 piocb->cmd_cmpl = NULL; 13210 return retval; 13211 } 13212 13213 /** 13214 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13215 * @phba: Pointer to HBA context object. 13216 * @pmboxq: Pointer to driver mailbox object. 13217 * @timeout: Timeout in number of seconds. 13218 * 13219 * This function issues the mailbox to firmware and waits for the 13220 * mailbox command to complete. If the mailbox command is not 13221 * completed within timeout seconds, it returns MBX_TIMEOUT. 13222 * The function waits for the mailbox completion using an 13223 * interruptible wait. If the thread is woken up due to a 13224 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13225 * should not free the mailbox resources, if this function returns 13226 * MBX_TIMEOUT. 13227 * This function will sleep while waiting for mailbox completion. 13228 * So, this function should not be called from any context which 13229 * does not allow sleeping. Due to the same reason, this function 13230 * cannot be called with interrupt disabled. 13231 * This function assumes that the mailbox completion occurs while 13232 * this function sleep. So, this function cannot be called from 13233 * the worker thread which processes mailbox completion. 13234 * This function is called in the context of HBA management 13235 * applications. 13236 * This function returns MBX_SUCCESS when successful. 13237 * This function is called with no lock held. 13238 **/ 13239 int 13240 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13241 uint32_t timeout) 13242 { 13243 struct completion mbox_done; 13244 int retval; 13245 unsigned long flag; 13246 13247 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13248 /* setup wake call as IOCB callback */ 13249 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13250 13251 /* setup context3 field to pass wait_queue pointer to wake function */ 13252 init_completion(&mbox_done); 13253 pmboxq->context3 = &mbox_done; 13254 /* now issue the command */ 13255 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13256 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13257 wait_for_completion_timeout(&mbox_done, 13258 msecs_to_jiffies(timeout * 1000)); 13259 13260 spin_lock_irqsave(&phba->hbalock, flag); 13261 pmboxq->context3 = NULL; 13262 /* 13263 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13264 * else do not free the resources. 13265 */ 13266 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13267 retval = MBX_SUCCESS; 13268 } else { 13269 retval = MBX_TIMEOUT; 13270 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13271 } 13272 spin_unlock_irqrestore(&phba->hbalock, flag); 13273 } 13274 return retval; 13275 } 13276 13277 /** 13278 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13279 * @phba: Pointer to HBA context. 13280 * @mbx_action: Mailbox shutdown options. 13281 * 13282 * This function is called to shutdown the driver's mailbox sub-system. 13283 * It first marks the mailbox sub-system is in a block state to prevent 13284 * the asynchronous mailbox command from issued off the pending mailbox 13285 * command queue. If the mailbox command sub-system shutdown is due to 13286 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13287 * the mailbox sub-system flush routine to forcefully bring down the 13288 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13289 * as with offline or HBA function reset), this routine will wait for the 13290 * outstanding mailbox command to complete before invoking the mailbox 13291 * sub-system flush routine to gracefully bring down mailbox sub-system. 13292 **/ 13293 void 13294 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13295 { 13296 struct lpfc_sli *psli = &phba->sli; 13297 unsigned long timeout; 13298 13299 if (mbx_action == LPFC_MBX_NO_WAIT) { 13300 /* delay 100ms for port state */ 13301 msleep(100); 13302 lpfc_sli_mbox_sys_flush(phba); 13303 return; 13304 } 13305 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13306 13307 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13308 local_bh_disable(); 13309 13310 spin_lock_irq(&phba->hbalock); 13311 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13312 13313 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13314 /* Determine how long we might wait for the active mailbox 13315 * command to be gracefully completed by firmware. 13316 */ 13317 if (phba->sli.mbox_active) 13318 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13319 phba->sli.mbox_active) * 13320 1000) + jiffies; 13321 spin_unlock_irq(&phba->hbalock); 13322 13323 /* Enable softirqs again, done with phba->hbalock */ 13324 local_bh_enable(); 13325 13326 while (phba->sli.mbox_active) { 13327 /* Check active mailbox complete status every 2ms */ 13328 msleep(2); 13329 if (time_after(jiffies, timeout)) 13330 /* Timeout, let the mailbox flush routine to 13331 * forcefully release active mailbox command 13332 */ 13333 break; 13334 } 13335 } else { 13336 spin_unlock_irq(&phba->hbalock); 13337 13338 /* Enable softirqs again, done with phba->hbalock */ 13339 local_bh_enable(); 13340 } 13341 13342 lpfc_sli_mbox_sys_flush(phba); 13343 } 13344 13345 /** 13346 * lpfc_sli_eratt_read - read sli-3 error attention events 13347 * @phba: Pointer to HBA context. 13348 * 13349 * This function is called to read the SLI3 device error attention registers 13350 * for possible error attention events. The caller must hold the hostlock 13351 * with spin_lock_irq(). 13352 * 13353 * This function returns 1 when there is Error Attention in the Host Attention 13354 * Register and returns 0 otherwise. 13355 **/ 13356 static int 13357 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13358 { 13359 uint32_t ha_copy; 13360 13361 /* Read chip Host Attention (HA) register */ 13362 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13363 goto unplug_err; 13364 13365 if (ha_copy & HA_ERATT) { 13366 /* Read host status register to retrieve error event */ 13367 if (lpfc_sli_read_hs(phba)) 13368 goto unplug_err; 13369 13370 /* Check if there is a deferred error condition is active */ 13371 if ((HS_FFER1 & phba->work_hs) && 13372 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13373 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13374 phba->hba_flag |= DEFER_ERATT; 13375 /* Clear all interrupt enable conditions */ 13376 writel(0, phba->HCregaddr); 13377 readl(phba->HCregaddr); 13378 } 13379 13380 /* Set the driver HA work bitmap */ 13381 phba->work_ha |= HA_ERATT; 13382 /* Indicate polling handles this ERATT */ 13383 phba->hba_flag |= HBA_ERATT_HANDLED; 13384 return 1; 13385 } 13386 return 0; 13387 13388 unplug_err: 13389 /* Set the driver HS work bitmap */ 13390 phba->work_hs |= UNPLUG_ERR; 13391 /* Set the driver HA work bitmap */ 13392 phba->work_ha |= HA_ERATT; 13393 /* Indicate polling handles this ERATT */ 13394 phba->hba_flag |= HBA_ERATT_HANDLED; 13395 return 1; 13396 } 13397 13398 /** 13399 * lpfc_sli4_eratt_read - read sli-4 error attention events 13400 * @phba: Pointer to HBA context. 13401 * 13402 * This function is called to read the SLI4 device error attention registers 13403 * for possible error attention events. The caller must hold the hostlock 13404 * with spin_lock_irq(). 13405 * 13406 * This function returns 1 when there is Error Attention in the Host Attention 13407 * Register and returns 0 otherwise. 13408 **/ 13409 static int 13410 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13411 { 13412 uint32_t uerr_sta_hi, uerr_sta_lo; 13413 uint32_t if_type, portsmphr; 13414 struct lpfc_register portstat_reg; 13415 u32 logmask; 13416 13417 /* 13418 * For now, use the SLI4 device internal unrecoverable error 13419 * registers for error attention. This can be changed later. 13420 */ 13421 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13422 switch (if_type) { 13423 case LPFC_SLI_INTF_IF_TYPE_0: 13424 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13425 &uerr_sta_lo) || 13426 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13427 &uerr_sta_hi)) { 13428 phba->work_hs |= UNPLUG_ERR; 13429 phba->work_ha |= HA_ERATT; 13430 phba->hba_flag |= HBA_ERATT_HANDLED; 13431 return 1; 13432 } 13433 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13434 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13435 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13436 "1423 HBA Unrecoverable error: " 13437 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13438 "ue_mask_lo_reg=0x%x, " 13439 "ue_mask_hi_reg=0x%x\n", 13440 uerr_sta_lo, uerr_sta_hi, 13441 phba->sli4_hba.ue_mask_lo, 13442 phba->sli4_hba.ue_mask_hi); 13443 phba->work_status[0] = uerr_sta_lo; 13444 phba->work_status[1] = uerr_sta_hi; 13445 phba->work_ha |= HA_ERATT; 13446 phba->hba_flag |= HBA_ERATT_HANDLED; 13447 return 1; 13448 } 13449 break; 13450 case LPFC_SLI_INTF_IF_TYPE_2: 13451 case LPFC_SLI_INTF_IF_TYPE_6: 13452 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13453 &portstat_reg.word0) || 13454 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13455 &portsmphr)){ 13456 phba->work_hs |= UNPLUG_ERR; 13457 phba->work_ha |= HA_ERATT; 13458 phba->hba_flag |= HBA_ERATT_HANDLED; 13459 return 1; 13460 } 13461 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13462 phba->work_status[0] = 13463 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13464 phba->work_status[1] = 13465 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13466 logmask = LOG_TRACE_EVENT; 13467 if (phba->work_status[0] == 13468 SLIPORT_ERR1_REG_ERR_CODE_2 && 13469 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13470 logmask = LOG_SLI; 13471 lpfc_printf_log(phba, KERN_ERR, logmask, 13472 "2885 Port Status Event: " 13473 "port status reg 0x%x, " 13474 "port smphr reg 0x%x, " 13475 "error 1=0x%x, error 2=0x%x\n", 13476 portstat_reg.word0, 13477 portsmphr, 13478 phba->work_status[0], 13479 phba->work_status[1]); 13480 phba->work_ha |= HA_ERATT; 13481 phba->hba_flag |= HBA_ERATT_HANDLED; 13482 return 1; 13483 } 13484 break; 13485 case LPFC_SLI_INTF_IF_TYPE_1: 13486 default: 13487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13488 "2886 HBA Error Attention on unsupported " 13489 "if type %d.", if_type); 13490 return 1; 13491 } 13492 13493 return 0; 13494 } 13495 13496 /** 13497 * lpfc_sli_check_eratt - check error attention events 13498 * @phba: Pointer to HBA context. 13499 * 13500 * This function is called from timer soft interrupt context to check HBA's 13501 * error attention register bit for error attention events. 13502 * 13503 * This function returns 1 when there is Error Attention in the Host Attention 13504 * Register and returns 0 otherwise. 13505 **/ 13506 int 13507 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13508 { 13509 uint32_t ha_copy; 13510 13511 /* If somebody is waiting to handle an eratt, don't process it 13512 * here. The brdkill function will do this. 13513 */ 13514 if (phba->link_flag & LS_IGNORE_ERATT) 13515 return 0; 13516 13517 /* Check if interrupt handler handles this ERATT */ 13518 spin_lock_irq(&phba->hbalock); 13519 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13520 /* Interrupt handler has handled ERATT */ 13521 spin_unlock_irq(&phba->hbalock); 13522 return 0; 13523 } 13524 13525 /* 13526 * If there is deferred error attention, do not check for error 13527 * attention 13528 */ 13529 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13530 spin_unlock_irq(&phba->hbalock); 13531 return 0; 13532 } 13533 13534 /* If PCI channel is offline, don't process it */ 13535 if (unlikely(pci_channel_offline(phba->pcidev))) { 13536 spin_unlock_irq(&phba->hbalock); 13537 return 0; 13538 } 13539 13540 switch (phba->sli_rev) { 13541 case LPFC_SLI_REV2: 13542 case LPFC_SLI_REV3: 13543 /* Read chip Host Attention (HA) register */ 13544 ha_copy = lpfc_sli_eratt_read(phba); 13545 break; 13546 case LPFC_SLI_REV4: 13547 /* Read device Uncoverable Error (UERR) registers */ 13548 ha_copy = lpfc_sli4_eratt_read(phba); 13549 break; 13550 default: 13551 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13552 "0299 Invalid SLI revision (%d)\n", 13553 phba->sli_rev); 13554 ha_copy = 0; 13555 break; 13556 } 13557 spin_unlock_irq(&phba->hbalock); 13558 13559 return ha_copy; 13560 } 13561 13562 /** 13563 * lpfc_intr_state_check - Check device state for interrupt handling 13564 * @phba: Pointer to HBA context. 13565 * 13566 * This inline routine checks whether a device or its PCI slot is in a state 13567 * that the interrupt should be handled. 13568 * 13569 * This function returns 0 if the device or the PCI slot is in a state that 13570 * interrupt should be handled, otherwise -EIO. 13571 */ 13572 static inline int 13573 lpfc_intr_state_check(struct lpfc_hba *phba) 13574 { 13575 /* If the pci channel is offline, ignore all the interrupts */ 13576 if (unlikely(pci_channel_offline(phba->pcidev))) 13577 return -EIO; 13578 13579 /* Update device level interrupt statistics */ 13580 phba->sli.slistat.sli_intr++; 13581 13582 /* Ignore all interrupts during initialization. */ 13583 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13584 return -EIO; 13585 13586 return 0; 13587 } 13588 13589 /** 13590 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13591 * @irq: Interrupt number. 13592 * @dev_id: The device context pointer. 13593 * 13594 * This function is directly called from the PCI layer as an interrupt 13595 * service routine when device with SLI-3 interface spec is enabled with 13596 * MSI-X multi-message interrupt mode and there are slow-path events in 13597 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13598 * interrupt mode, this function is called as part of the device-level 13599 * interrupt handler. When the PCI slot is in error recovery or the HBA 13600 * is undergoing initialization, the interrupt handler will not process 13601 * the interrupt. The link attention and ELS ring attention events are 13602 * handled by the worker thread. The interrupt handler signals the worker 13603 * thread and returns for these events. This function is called without 13604 * any lock held. It gets the hbalock to access and update SLI data 13605 * structures. 13606 * 13607 * This function returns IRQ_HANDLED when interrupt is handled else it 13608 * returns IRQ_NONE. 13609 **/ 13610 irqreturn_t 13611 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13612 { 13613 struct lpfc_hba *phba; 13614 uint32_t ha_copy, hc_copy; 13615 uint32_t work_ha_copy; 13616 unsigned long status; 13617 unsigned long iflag; 13618 uint32_t control; 13619 13620 MAILBOX_t *mbox, *pmbox; 13621 struct lpfc_vport *vport; 13622 struct lpfc_nodelist *ndlp; 13623 struct lpfc_dmabuf *mp; 13624 LPFC_MBOXQ_t *pmb; 13625 int rc; 13626 13627 /* 13628 * Get the driver's phba structure from the dev_id and 13629 * assume the HBA is not interrupting. 13630 */ 13631 phba = (struct lpfc_hba *)dev_id; 13632 13633 if (unlikely(!phba)) 13634 return IRQ_NONE; 13635 13636 /* 13637 * Stuff needs to be attented to when this function is invoked as an 13638 * individual interrupt handler in MSI-X multi-message interrupt mode 13639 */ 13640 if (phba->intr_type == MSIX) { 13641 /* Check device state for handling interrupt */ 13642 if (lpfc_intr_state_check(phba)) 13643 return IRQ_NONE; 13644 /* Need to read HA REG for slow-path events */ 13645 spin_lock_irqsave(&phba->hbalock, iflag); 13646 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13647 goto unplug_error; 13648 /* If somebody is waiting to handle an eratt don't process it 13649 * here. The brdkill function will do this. 13650 */ 13651 if (phba->link_flag & LS_IGNORE_ERATT) 13652 ha_copy &= ~HA_ERATT; 13653 /* Check the need for handling ERATT in interrupt handler */ 13654 if (ha_copy & HA_ERATT) { 13655 if (phba->hba_flag & HBA_ERATT_HANDLED) 13656 /* ERATT polling has handled ERATT */ 13657 ha_copy &= ~HA_ERATT; 13658 else 13659 /* Indicate interrupt handler handles ERATT */ 13660 phba->hba_flag |= HBA_ERATT_HANDLED; 13661 } 13662 13663 /* 13664 * If there is deferred error attention, do not check for any 13665 * interrupt. 13666 */ 13667 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13668 spin_unlock_irqrestore(&phba->hbalock, iflag); 13669 return IRQ_NONE; 13670 } 13671 13672 /* Clear up only attention source related to slow-path */ 13673 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13674 goto unplug_error; 13675 13676 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13677 HC_LAINT_ENA | HC_ERINT_ENA), 13678 phba->HCregaddr); 13679 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13680 phba->HAregaddr); 13681 writel(hc_copy, phba->HCregaddr); 13682 readl(phba->HAregaddr); /* flush */ 13683 spin_unlock_irqrestore(&phba->hbalock, iflag); 13684 } else 13685 ha_copy = phba->ha_copy; 13686 13687 work_ha_copy = ha_copy & phba->work_ha_mask; 13688 13689 if (work_ha_copy) { 13690 if (work_ha_copy & HA_LATT) { 13691 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13692 /* 13693 * Turn off Link Attention interrupts 13694 * until CLEAR_LA done 13695 */ 13696 spin_lock_irqsave(&phba->hbalock, iflag); 13697 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13698 if (lpfc_readl(phba->HCregaddr, &control)) 13699 goto unplug_error; 13700 control &= ~HC_LAINT_ENA; 13701 writel(control, phba->HCregaddr); 13702 readl(phba->HCregaddr); /* flush */ 13703 spin_unlock_irqrestore(&phba->hbalock, iflag); 13704 } 13705 else 13706 work_ha_copy &= ~HA_LATT; 13707 } 13708 13709 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13710 /* 13711 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13712 * the only slow ring. 13713 */ 13714 status = (work_ha_copy & 13715 (HA_RXMASK << (4*LPFC_ELS_RING))); 13716 status >>= (4*LPFC_ELS_RING); 13717 if (status & HA_RXMASK) { 13718 spin_lock_irqsave(&phba->hbalock, iflag); 13719 if (lpfc_readl(phba->HCregaddr, &control)) 13720 goto unplug_error; 13721 13722 lpfc_debugfs_slow_ring_trc(phba, 13723 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13724 control, status, 13725 (uint32_t)phba->sli.slistat.sli_intr); 13726 13727 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13728 lpfc_debugfs_slow_ring_trc(phba, 13729 "ISR Disable ring:" 13730 "pwork:x%x hawork:x%x wait:x%x", 13731 phba->work_ha, work_ha_copy, 13732 (uint32_t)((unsigned long) 13733 &phba->work_waitq)); 13734 13735 control &= 13736 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13737 writel(control, phba->HCregaddr); 13738 readl(phba->HCregaddr); /* flush */ 13739 } 13740 else { 13741 lpfc_debugfs_slow_ring_trc(phba, 13742 "ISR slow ring: pwork:" 13743 "x%x hawork:x%x wait:x%x", 13744 phba->work_ha, work_ha_copy, 13745 (uint32_t)((unsigned long) 13746 &phba->work_waitq)); 13747 } 13748 spin_unlock_irqrestore(&phba->hbalock, iflag); 13749 } 13750 } 13751 spin_lock_irqsave(&phba->hbalock, iflag); 13752 if (work_ha_copy & HA_ERATT) { 13753 if (lpfc_sli_read_hs(phba)) 13754 goto unplug_error; 13755 /* 13756 * Check if there is a deferred error condition 13757 * is active 13758 */ 13759 if ((HS_FFER1 & phba->work_hs) && 13760 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13761 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13762 phba->work_hs)) { 13763 phba->hba_flag |= DEFER_ERATT; 13764 /* Clear all interrupt enable conditions */ 13765 writel(0, phba->HCregaddr); 13766 readl(phba->HCregaddr); 13767 } 13768 } 13769 13770 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13771 pmb = phba->sli.mbox_active; 13772 pmbox = &pmb->u.mb; 13773 mbox = phba->mbox; 13774 vport = pmb->vport; 13775 13776 /* First check out the status word */ 13777 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13778 if (pmbox->mbxOwner != OWN_HOST) { 13779 spin_unlock_irqrestore(&phba->hbalock, iflag); 13780 /* 13781 * Stray Mailbox Interrupt, mbxCommand <cmd> 13782 * mbxStatus <status> 13783 */ 13784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13785 "(%d):0304 Stray Mailbox " 13786 "Interrupt mbxCommand x%x " 13787 "mbxStatus x%x\n", 13788 (vport ? vport->vpi : 0), 13789 pmbox->mbxCommand, 13790 pmbox->mbxStatus); 13791 /* clear mailbox attention bit */ 13792 work_ha_copy &= ~HA_MBATT; 13793 } else { 13794 phba->sli.mbox_active = NULL; 13795 spin_unlock_irqrestore(&phba->hbalock, iflag); 13796 phba->last_completion_time = jiffies; 13797 del_timer(&phba->sli.mbox_tmo); 13798 if (pmb->mbox_cmpl) { 13799 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13800 MAILBOX_CMD_SIZE); 13801 if (pmb->out_ext_byte_len && 13802 pmb->ctx_buf) 13803 lpfc_sli_pcimem_bcopy( 13804 phba->mbox_ext, 13805 pmb->ctx_buf, 13806 pmb->out_ext_byte_len); 13807 } 13808 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13809 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13810 13811 lpfc_debugfs_disc_trc(vport, 13812 LPFC_DISC_TRC_MBOX_VPORT, 13813 "MBOX dflt rpi: : " 13814 "status:x%x rpi:x%x", 13815 (uint32_t)pmbox->mbxStatus, 13816 pmbox->un.varWords[0], 0); 13817 13818 if (!pmbox->mbxStatus) { 13819 mp = (struct lpfc_dmabuf *) 13820 (pmb->ctx_buf); 13821 ndlp = (struct lpfc_nodelist *) 13822 pmb->ctx_ndlp; 13823 13824 /* Reg_LOGIN of dflt RPI was 13825 * successful. new lets get 13826 * rid of the RPI using the 13827 * same mbox buffer. 13828 */ 13829 lpfc_unreg_login(phba, 13830 vport->vpi, 13831 pmbox->un.varWords[0], 13832 pmb); 13833 pmb->mbox_cmpl = 13834 lpfc_mbx_cmpl_dflt_rpi; 13835 pmb->ctx_buf = mp; 13836 pmb->ctx_ndlp = ndlp; 13837 pmb->vport = vport; 13838 rc = lpfc_sli_issue_mbox(phba, 13839 pmb, 13840 MBX_NOWAIT); 13841 if (rc != MBX_BUSY) 13842 lpfc_printf_log(phba, 13843 KERN_ERR, 13844 LOG_TRACE_EVENT, 13845 "0350 rc should have" 13846 "been MBX_BUSY\n"); 13847 if (rc != MBX_NOT_FINISHED) 13848 goto send_current_mbox; 13849 } 13850 } 13851 spin_lock_irqsave( 13852 &phba->pport->work_port_lock, 13853 iflag); 13854 phba->pport->work_port_events &= 13855 ~WORKER_MBOX_TMO; 13856 spin_unlock_irqrestore( 13857 &phba->pport->work_port_lock, 13858 iflag); 13859 13860 /* Do NOT queue MBX_HEARTBEAT to the worker 13861 * thread for processing. 13862 */ 13863 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13864 /* Process mbox now */ 13865 phba->sli.mbox_active = NULL; 13866 phba->sli.sli_flag &= 13867 ~LPFC_SLI_MBOX_ACTIVE; 13868 if (pmb->mbox_cmpl) 13869 pmb->mbox_cmpl(phba, pmb); 13870 } else { 13871 /* Queue to worker thread to process */ 13872 lpfc_mbox_cmpl_put(phba, pmb); 13873 } 13874 } 13875 } else 13876 spin_unlock_irqrestore(&phba->hbalock, iflag); 13877 13878 if ((work_ha_copy & HA_MBATT) && 13879 (phba->sli.mbox_active == NULL)) { 13880 send_current_mbox: 13881 /* Process next mailbox command if there is one */ 13882 do { 13883 rc = lpfc_sli_issue_mbox(phba, NULL, 13884 MBX_NOWAIT); 13885 } while (rc == MBX_NOT_FINISHED); 13886 if (rc != MBX_SUCCESS) 13887 lpfc_printf_log(phba, KERN_ERR, 13888 LOG_TRACE_EVENT, 13889 "0349 rc should be " 13890 "MBX_SUCCESS\n"); 13891 } 13892 13893 spin_lock_irqsave(&phba->hbalock, iflag); 13894 phba->work_ha |= work_ha_copy; 13895 spin_unlock_irqrestore(&phba->hbalock, iflag); 13896 lpfc_worker_wake_up(phba); 13897 } 13898 return IRQ_HANDLED; 13899 unplug_error: 13900 spin_unlock_irqrestore(&phba->hbalock, iflag); 13901 return IRQ_HANDLED; 13902 13903 } /* lpfc_sli_sp_intr_handler */ 13904 13905 /** 13906 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13907 * @irq: Interrupt number. 13908 * @dev_id: The device context pointer. 13909 * 13910 * This function is directly called from the PCI layer as an interrupt 13911 * service routine when device with SLI-3 interface spec is enabled with 13912 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13913 * ring event in the HBA. However, when the device is enabled with either 13914 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13915 * device-level interrupt handler. When the PCI slot is in error recovery 13916 * or the HBA is undergoing initialization, the interrupt handler will not 13917 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13918 * the intrrupt context. This function is called without any lock held. 13919 * It gets the hbalock to access and update SLI data structures. 13920 * 13921 * This function returns IRQ_HANDLED when interrupt is handled else it 13922 * returns IRQ_NONE. 13923 **/ 13924 irqreturn_t 13925 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13926 { 13927 struct lpfc_hba *phba; 13928 uint32_t ha_copy; 13929 unsigned long status; 13930 unsigned long iflag; 13931 struct lpfc_sli_ring *pring; 13932 13933 /* Get the driver's phba structure from the dev_id and 13934 * assume the HBA is not interrupting. 13935 */ 13936 phba = (struct lpfc_hba *) dev_id; 13937 13938 if (unlikely(!phba)) 13939 return IRQ_NONE; 13940 13941 /* 13942 * Stuff needs to be attented to when this function is invoked as an 13943 * individual interrupt handler in MSI-X multi-message interrupt mode 13944 */ 13945 if (phba->intr_type == MSIX) { 13946 /* Check device state for handling interrupt */ 13947 if (lpfc_intr_state_check(phba)) 13948 return IRQ_NONE; 13949 /* Need to read HA REG for FCP ring and other ring events */ 13950 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13951 return IRQ_HANDLED; 13952 /* Clear up only attention source related to fast-path */ 13953 spin_lock_irqsave(&phba->hbalock, iflag); 13954 /* 13955 * If there is deferred error attention, do not check for 13956 * any interrupt. 13957 */ 13958 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13959 spin_unlock_irqrestore(&phba->hbalock, iflag); 13960 return IRQ_NONE; 13961 } 13962 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13963 phba->HAregaddr); 13964 readl(phba->HAregaddr); /* flush */ 13965 spin_unlock_irqrestore(&phba->hbalock, iflag); 13966 } else 13967 ha_copy = phba->ha_copy; 13968 13969 /* 13970 * Process all events on FCP ring. Take the optimized path for FCP IO. 13971 */ 13972 ha_copy &= ~(phba->work_ha_mask); 13973 13974 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13975 status >>= (4*LPFC_FCP_RING); 13976 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13977 if (status & HA_RXMASK) 13978 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13979 13980 if (phba->cfg_multi_ring_support == 2) { 13981 /* 13982 * Process all events on extra ring. Take the optimized path 13983 * for extra ring IO. 13984 */ 13985 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13986 status >>= (4*LPFC_EXTRA_RING); 13987 if (status & HA_RXMASK) { 13988 lpfc_sli_handle_fast_ring_event(phba, 13989 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13990 status); 13991 } 13992 } 13993 return IRQ_HANDLED; 13994 } /* lpfc_sli_fp_intr_handler */ 13995 13996 /** 13997 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13998 * @irq: Interrupt number. 13999 * @dev_id: The device context pointer. 14000 * 14001 * This function is the HBA device-level interrupt handler to device with 14002 * SLI-3 interface spec, called from the PCI layer when either MSI or 14003 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14004 * requires driver attention. This function invokes the slow-path interrupt 14005 * attention handling function and fast-path interrupt attention handling 14006 * function in turn to process the relevant HBA attention events. This 14007 * function is called without any lock held. It gets the hbalock to access 14008 * and update SLI data structures. 14009 * 14010 * This function returns IRQ_HANDLED when interrupt is handled, else it 14011 * returns IRQ_NONE. 14012 **/ 14013 irqreturn_t 14014 lpfc_sli_intr_handler(int irq, void *dev_id) 14015 { 14016 struct lpfc_hba *phba; 14017 irqreturn_t sp_irq_rc, fp_irq_rc; 14018 unsigned long status1, status2; 14019 uint32_t hc_copy; 14020 14021 /* 14022 * Get the driver's phba structure from the dev_id and 14023 * assume the HBA is not interrupting. 14024 */ 14025 phba = (struct lpfc_hba *) dev_id; 14026 14027 if (unlikely(!phba)) 14028 return IRQ_NONE; 14029 14030 /* Check device state for handling interrupt */ 14031 if (lpfc_intr_state_check(phba)) 14032 return IRQ_NONE; 14033 14034 spin_lock(&phba->hbalock); 14035 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14036 spin_unlock(&phba->hbalock); 14037 return IRQ_HANDLED; 14038 } 14039 14040 if (unlikely(!phba->ha_copy)) { 14041 spin_unlock(&phba->hbalock); 14042 return IRQ_NONE; 14043 } else if (phba->ha_copy & HA_ERATT) { 14044 if (phba->hba_flag & HBA_ERATT_HANDLED) 14045 /* ERATT polling has handled ERATT */ 14046 phba->ha_copy &= ~HA_ERATT; 14047 else 14048 /* Indicate interrupt handler handles ERATT */ 14049 phba->hba_flag |= HBA_ERATT_HANDLED; 14050 } 14051 14052 /* 14053 * If there is deferred error attention, do not check for any interrupt. 14054 */ 14055 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14056 spin_unlock(&phba->hbalock); 14057 return IRQ_NONE; 14058 } 14059 14060 /* Clear attention sources except link and error attentions */ 14061 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14062 spin_unlock(&phba->hbalock); 14063 return IRQ_HANDLED; 14064 } 14065 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14066 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14067 phba->HCregaddr); 14068 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14069 writel(hc_copy, phba->HCregaddr); 14070 readl(phba->HAregaddr); /* flush */ 14071 spin_unlock(&phba->hbalock); 14072 14073 /* 14074 * Invokes slow-path host attention interrupt handling as appropriate. 14075 */ 14076 14077 /* status of events with mailbox and link attention */ 14078 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14079 14080 /* status of events with ELS ring */ 14081 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14082 status2 >>= (4*LPFC_ELS_RING); 14083 14084 if (status1 || (status2 & HA_RXMASK)) 14085 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14086 else 14087 sp_irq_rc = IRQ_NONE; 14088 14089 /* 14090 * Invoke fast-path host attention interrupt handling as appropriate. 14091 */ 14092 14093 /* status of events with FCP ring */ 14094 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14095 status1 >>= (4*LPFC_FCP_RING); 14096 14097 /* status of events with extra ring */ 14098 if (phba->cfg_multi_ring_support == 2) { 14099 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14100 status2 >>= (4*LPFC_EXTRA_RING); 14101 } else 14102 status2 = 0; 14103 14104 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14105 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14106 else 14107 fp_irq_rc = IRQ_NONE; 14108 14109 /* Return device-level interrupt handling status */ 14110 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14111 } /* lpfc_sli_intr_handler */ 14112 14113 /** 14114 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14115 * @phba: pointer to lpfc hba data structure. 14116 * 14117 * This routine is invoked by the worker thread to process all the pending 14118 * SLI4 els abort xri events. 14119 **/ 14120 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14121 { 14122 struct lpfc_cq_event *cq_event; 14123 unsigned long iflags; 14124 14125 /* First, declare the els xri abort event has been handled */ 14126 spin_lock_irqsave(&phba->hbalock, iflags); 14127 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14128 spin_unlock_irqrestore(&phba->hbalock, iflags); 14129 14130 /* Now, handle all the els xri abort events */ 14131 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14132 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14133 /* Get the first event from the head of the event queue */ 14134 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14135 cq_event, struct lpfc_cq_event, list); 14136 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14137 iflags); 14138 /* Notify aborted XRI for ELS work queue */ 14139 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14140 14141 /* Free the event processed back to the free pool */ 14142 lpfc_sli4_cq_event_release(phba, cq_event); 14143 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14144 iflags); 14145 } 14146 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14147 } 14148 14149 /** 14150 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14151 * @phba: Pointer to HBA context object. 14152 * @irspiocbq: Pointer to work-queue completion queue entry. 14153 * 14154 * This routine handles an ELS work-queue completion event and construct 14155 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14156 * discovery engine to handle. 14157 * 14158 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14159 **/ 14160 static struct lpfc_iocbq * 14161 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14162 struct lpfc_iocbq *irspiocbq) 14163 { 14164 struct lpfc_sli_ring *pring; 14165 struct lpfc_iocbq *cmdiocbq; 14166 struct lpfc_wcqe_complete *wcqe; 14167 unsigned long iflags; 14168 14169 pring = lpfc_phba_elsring(phba); 14170 if (unlikely(!pring)) 14171 return NULL; 14172 14173 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14174 spin_lock_irqsave(&pring->ring_lock, iflags); 14175 pring->stats.iocb_event++; 14176 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14177 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14178 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14179 if (unlikely(!cmdiocbq)) { 14180 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14181 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14182 "0386 ELS complete with no corresponding " 14183 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14184 wcqe->word0, wcqe->total_data_placed, 14185 wcqe->parameter, wcqe->word3); 14186 lpfc_sli_release_iocbq(phba, irspiocbq); 14187 return NULL; 14188 } 14189 14190 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14191 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14192 14193 /* Put the iocb back on the txcmplq */ 14194 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14195 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14196 14197 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14198 spin_lock_irqsave(&phba->hbalock, iflags); 14199 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14200 spin_unlock_irqrestore(&phba->hbalock, iflags); 14201 } 14202 14203 return irspiocbq; 14204 } 14205 14206 inline struct lpfc_cq_event * 14207 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14208 { 14209 struct lpfc_cq_event *cq_event; 14210 14211 /* Allocate a new internal CQ_EVENT entry */ 14212 cq_event = lpfc_sli4_cq_event_alloc(phba); 14213 if (!cq_event) { 14214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14215 "0602 Failed to alloc CQ_EVENT entry\n"); 14216 return NULL; 14217 } 14218 14219 /* Move the CQE into the event */ 14220 memcpy(&cq_event->cqe, entry, size); 14221 return cq_event; 14222 } 14223 14224 /** 14225 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14226 * @phba: Pointer to HBA context object. 14227 * @mcqe: Pointer to mailbox completion queue entry. 14228 * 14229 * This routine process a mailbox completion queue entry with asynchronous 14230 * event. 14231 * 14232 * Return: true if work posted to worker thread, otherwise false. 14233 **/ 14234 static bool 14235 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14236 { 14237 struct lpfc_cq_event *cq_event; 14238 unsigned long iflags; 14239 14240 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14241 "0392 Async Event: word0:x%x, word1:x%x, " 14242 "word2:x%x, word3:x%x\n", mcqe->word0, 14243 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14244 14245 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14246 if (!cq_event) 14247 return false; 14248 14249 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14250 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14251 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14252 14253 /* Set the async event flag */ 14254 spin_lock_irqsave(&phba->hbalock, iflags); 14255 phba->hba_flag |= ASYNC_EVENT; 14256 spin_unlock_irqrestore(&phba->hbalock, iflags); 14257 14258 return true; 14259 } 14260 14261 /** 14262 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14263 * @phba: Pointer to HBA context object. 14264 * @mcqe: Pointer to mailbox completion queue entry. 14265 * 14266 * This routine process a mailbox completion queue entry with mailbox 14267 * completion event. 14268 * 14269 * Return: true if work posted to worker thread, otherwise false. 14270 **/ 14271 static bool 14272 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14273 { 14274 uint32_t mcqe_status; 14275 MAILBOX_t *mbox, *pmbox; 14276 struct lpfc_mqe *mqe; 14277 struct lpfc_vport *vport; 14278 struct lpfc_nodelist *ndlp; 14279 struct lpfc_dmabuf *mp; 14280 unsigned long iflags; 14281 LPFC_MBOXQ_t *pmb; 14282 bool workposted = false; 14283 int rc; 14284 14285 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14286 if (!bf_get(lpfc_trailer_completed, mcqe)) 14287 goto out_no_mqe_complete; 14288 14289 /* Get the reference to the active mbox command */ 14290 spin_lock_irqsave(&phba->hbalock, iflags); 14291 pmb = phba->sli.mbox_active; 14292 if (unlikely(!pmb)) { 14293 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14294 "1832 No pending MBOX command to handle\n"); 14295 spin_unlock_irqrestore(&phba->hbalock, iflags); 14296 goto out_no_mqe_complete; 14297 } 14298 spin_unlock_irqrestore(&phba->hbalock, iflags); 14299 mqe = &pmb->u.mqe; 14300 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14301 mbox = phba->mbox; 14302 vport = pmb->vport; 14303 14304 /* Reset heartbeat timer */ 14305 phba->last_completion_time = jiffies; 14306 del_timer(&phba->sli.mbox_tmo); 14307 14308 /* Move mbox data to caller's mailbox region, do endian swapping */ 14309 if (pmb->mbox_cmpl && mbox) 14310 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14311 14312 /* 14313 * For mcqe errors, conditionally move a modified error code to 14314 * the mbox so that the error will not be missed. 14315 */ 14316 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14317 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14318 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14319 bf_set(lpfc_mqe_status, mqe, 14320 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14321 } 14322 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14323 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14324 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14325 "MBOX dflt rpi: status:x%x rpi:x%x", 14326 mcqe_status, 14327 pmbox->un.varWords[0], 0); 14328 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14329 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14330 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14331 14332 /* Reg_LOGIN of dflt RPI was successful. Mark the 14333 * node as having an UNREG_LOGIN in progress to stop 14334 * an unsolicited PLOGI from the same NPortId from 14335 * starting another mailbox transaction. 14336 */ 14337 spin_lock_irqsave(&ndlp->lock, iflags); 14338 ndlp->nlp_flag |= NLP_UNREG_INP; 14339 spin_unlock_irqrestore(&ndlp->lock, iflags); 14340 lpfc_unreg_login(phba, vport->vpi, 14341 pmbox->un.varWords[0], pmb); 14342 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14343 pmb->ctx_buf = mp; 14344 14345 /* No reference taken here. This is a default 14346 * RPI reg/immediate unreg cycle. The reference was 14347 * taken in the reg rpi path and is released when 14348 * this mailbox completes. 14349 */ 14350 pmb->ctx_ndlp = ndlp; 14351 pmb->vport = vport; 14352 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14353 if (rc != MBX_BUSY) 14354 lpfc_printf_log(phba, KERN_ERR, 14355 LOG_TRACE_EVENT, 14356 "0385 rc should " 14357 "have been MBX_BUSY\n"); 14358 if (rc != MBX_NOT_FINISHED) 14359 goto send_current_mbox; 14360 } 14361 } 14362 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14363 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14364 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14365 14366 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14367 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14368 spin_lock_irqsave(&phba->hbalock, iflags); 14369 /* Release the mailbox command posting token */ 14370 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14371 phba->sli.mbox_active = NULL; 14372 if (bf_get(lpfc_trailer_consumed, mcqe)) 14373 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14374 spin_unlock_irqrestore(&phba->hbalock, iflags); 14375 14376 /* Post the next mbox command, if there is one */ 14377 lpfc_sli4_post_async_mbox(phba); 14378 14379 /* Process cmpl now */ 14380 if (pmb->mbox_cmpl) 14381 pmb->mbox_cmpl(phba, pmb); 14382 return false; 14383 } 14384 14385 /* There is mailbox completion work to queue to the worker thread */ 14386 spin_lock_irqsave(&phba->hbalock, iflags); 14387 __lpfc_mbox_cmpl_put(phba, pmb); 14388 phba->work_ha |= HA_MBATT; 14389 spin_unlock_irqrestore(&phba->hbalock, iflags); 14390 workposted = true; 14391 14392 send_current_mbox: 14393 spin_lock_irqsave(&phba->hbalock, iflags); 14394 /* Release the mailbox command posting token */ 14395 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14396 /* Setting active mailbox pointer need to be in sync to flag clear */ 14397 phba->sli.mbox_active = NULL; 14398 if (bf_get(lpfc_trailer_consumed, mcqe)) 14399 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14400 spin_unlock_irqrestore(&phba->hbalock, iflags); 14401 /* Wake up worker thread to post the next pending mailbox command */ 14402 lpfc_worker_wake_up(phba); 14403 return workposted; 14404 14405 out_no_mqe_complete: 14406 spin_lock_irqsave(&phba->hbalock, iflags); 14407 if (bf_get(lpfc_trailer_consumed, mcqe)) 14408 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14409 spin_unlock_irqrestore(&phba->hbalock, iflags); 14410 return false; 14411 } 14412 14413 /** 14414 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14415 * @phba: Pointer to HBA context object. 14416 * @cq: Pointer to associated CQ 14417 * @cqe: Pointer to mailbox completion queue entry. 14418 * 14419 * This routine process a mailbox completion queue entry, it invokes the 14420 * proper mailbox complete handling or asynchronous event handling routine 14421 * according to the MCQE's async bit. 14422 * 14423 * Return: true if work posted to worker thread, otherwise false. 14424 **/ 14425 static bool 14426 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14427 struct lpfc_cqe *cqe) 14428 { 14429 struct lpfc_mcqe mcqe; 14430 bool workposted; 14431 14432 cq->CQ_mbox++; 14433 14434 /* Copy the mailbox MCQE and convert endian order as needed */ 14435 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14436 14437 /* Invoke the proper event handling routine */ 14438 if (!bf_get(lpfc_trailer_async, &mcqe)) 14439 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14440 else 14441 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14442 return workposted; 14443 } 14444 14445 /** 14446 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14447 * @phba: Pointer to HBA context object. 14448 * @cq: Pointer to associated CQ 14449 * @wcqe: Pointer to work-queue completion queue entry. 14450 * 14451 * This routine handles an ELS work-queue completion event. 14452 * 14453 * Return: true if work posted to worker thread, otherwise false. 14454 **/ 14455 static bool 14456 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14457 struct lpfc_wcqe_complete *wcqe) 14458 { 14459 struct lpfc_iocbq *irspiocbq; 14460 unsigned long iflags; 14461 struct lpfc_sli_ring *pring = cq->pring; 14462 int txq_cnt = 0; 14463 int txcmplq_cnt = 0; 14464 14465 /* Check for response status */ 14466 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14467 /* Log the error status */ 14468 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14469 "0357 ELS CQE error: status=x%x: " 14470 "CQE: %08x %08x %08x %08x\n", 14471 bf_get(lpfc_wcqe_c_status, wcqe), 14472 wcqe->word0, wcqe->total_data_placed, 14473 wcqe->parameter, wcqe->word3); 14474 } 14475 14476 /* Get an irspiocbq for later ELS response processing use */ 14477 irspiocbq = lpfc_sli_get_iocbq(phba); 14478 if (!irspiocbq) { 14479 if (!list_empty(&pring->txq)) 14480 txq_cnt++; 14481 if (!list_empty(&pring->txcmplq)) 14482 txcmplq_cnt++; 14483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14484 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14485 "els_txcmplq_cnt=%d\n", 14486 txq_cnt, phba->iocb_cnt, 14487 txcmplq_cnt); 14488 return false; 14489 } 14490 14491 /* Save off the slow-path queue event for work thread to process */ 14492 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14493 spin_lock_irqsave(&phba->hbalock, iflags); 14494 list_add_tail(&irspiocbq->cq_event.list, 14495 &phba->sli4_hba.sp_queue_event); 14496 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14497 spin_unlock_irqrestore(&phba->hbalock, iflags); 14498 14499 return true; 14500 } 14501 14502 /** 14503 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14504 * @phba: Pointer to HBA context object. 14505 * @wcqe: Pointer to work-queue completion queue entry. 14506 * 14507 * This routine handles slow-path WQ entry consumed event by invoking the 14508 * proper WQ release routine to the slow-path WQ. 14509 **/ 14510 static void 14511 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14512 struct lpfc_wcqe_release *wcqe) 14513 { 14514 /* sanity check on queue memory */ 14515 if (unlikely(!phba->sli4_hba.els_wq)) 14516 return; 14517 /* Check for the slow-path ELS work queue */ 14518 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14519 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14520 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14521 else 14522 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14523 "2579 Slow-path wqe consume event carries " 14524 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14525 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14526 phba->sli4_hba.els_wq->queue_id); 14527 } 14528 14529 /** 14530 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14531 * @phba: Pointer to HBA context object. 14532 * @cq: Pointer to a WQ completion queue. 14533 * @wcqe: Pointer to work-queue completion queue entry. 14534 * 14535 * This routine handles an XRI abort event. 14536 * 14537 * Return: true if work posted to worker thread, otherwise false. 14538 **/ 14539 static bool 14540 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14541 struct lpfc_queue *cq, 14542 struct sli4_wcqe_xri_aborted *wcqe) 14543 { 14544 bool workposted = false; 14545 struct lpfc_cq_event *cq_event; 14546 unsigned long iflags; 14547 14548 switch (cq->subtype) { 14549 case LPFC_IO: 14550 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14551 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14552 /* Notify aborted XRI for NVME work queue */ 14553 if (phba->nvmet_support) 14554 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14555 } 14556 workposted = false; 14557 break; 14558 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14559 case LPFC_ELS: 14560 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14561 if (!cq_event) { 14562 workposted = false; 14563 break; 14564 } 14565 cq_event->hdwq = cq->hdwq; 14566 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14567 iflags); 14568 list_add_tail(&cq_event->list, 14569 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14570 /* Set the els xri abort event flag */ 14571 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14572 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14573 iflags); 14574 workposted = true; 14575 break; 14576 default: 14577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14578 "0603 Invalid CQ subtype %d: " 14579 "%08x %08x %08x %08x\n", 14580 cq->subtype, wcqe->word0, wcqe->parameter, 14581 wcqe->word2, wcqe->word3); 14582 workposted = false; 14583 break; 14584 } 14585 return workposted; 14586 } 14587 14588 #define FC_RCTL_MDS_DIAGS 0xF4 14589 14590 /** 14591 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14592 * @phba: Pointer to HBA context object. 14593 * @rcqe: Pointer to receive-queue completion queue entry. 14594 * 14595 * This routine process a receive-queue completion queue entry. 14596 * 14597 * Return: true if work posted to worker thread, otherwise false. 14598 **/ 14599 static bool 14600 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14601 { 14602 bool workposted = false; 14603 struct fc_frame_header *fc_hdr; 14604 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14605 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14606 struct lpfc_nvmet_tgtport *tgtp; 14607 struct hbq_dmabuf *dma_buf; 14608 uint32_t status, rq_id; 14609 unsigned long iflags; 14610 14611 /* sanity check on queue memory */ 14612 if (unlikely(!hrq) || unlikely(!drq)) 14613 return workposted; 14614 14615 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14616 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14617 else 14618 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14619 if (rq_id != hrq->queue_id) 14620 goto out; 14621 14622 status = bf_get(lpfc_rcqe_status, rcqe); 14623 switch (status) { 14624 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14626 "2537 Receive Frame Truncated!!\n"); 14627 fallthrough; 14628 case FC_STATUS_RQ_SUCCESS: 14629 spin_lock_irqsave(&phba->hbalock, iflags); 14630 lpfc_sli4_rq_release(hrq, drq); 14631 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14632 if (!dma_buf) { 14633 hrq->RQ_no_buf_found++; 14634 spin_unlock_irqrestore(&phba->hbalock, iflags); 14635 goto out; 14636 } 14637 hrq->RQ_rcv_buf++; 14638 hrq->RQ_buf_posted--; 14639 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14640 14641 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14642 14643 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14644 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14645 spin_unlock_irqrestore(&phba->hbalock, iflags); 14646 /* Handle MDS Loopback frames */ 14647 if (!(phba->pport->load_flag & FC_UNLOADING)) 14648 lpfc_sli4_handle_mds_loopback(phba->pport, 14649 dma_buf); 14650 else 14651 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14652 break; 14653 } 14654 14655 /* save off the frame for the work thread to process */ 14656 list_add_tail(&dma_buf->cq_event.list, 14657 &phba->sli4_hba.sp_queue_event); 14658 /* Frame received */ 14659 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14660 spin_unlock_irqrestore(&phba->hbalock, iflags); 14661 workposted = true; 14662 break; 14663 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14664 if (phba->nvmet_support) { 14665 tgtp = phba->targetport->private; 14666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14667 "6402 RQE Error x%x, posted %d err_cnt " 14668 "%d: %x %x %x\n", 14669 status, hrq->RQ_buf_posted, 14670 hrq->RQ_no_posted_buf, 14671 atomic_read(&tgtp->rcv_fcp_cmd_in), 14672 atomic_read(&tgtp->rcv_fcp_cmd_out), 14673 atomic_read(&tgtp->xmt_fcp_release)); 14674 } 14675 fallthrough; 14676 14677 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14678 hrq->RQ_no_posted_buf++; 14679 /* Post more buffers if possible */ 14680 spin_lock_irqsave(&phba->hbalock, iflags); 14681 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14682 spin_unlock_irqrestore(&phba->hbalock, iflags); 14683 workposted = true; 14684 break; 14685 } 14686 out: 14687 return workposted; 14688 } 14689 14690 /** 14691 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14692 * @phba: Pointer to HBA context object. 14693 * @cq: Pointer to the completion queue. 14694 * @cqe: Pointer to a completion queue entry. 14695 * 14696 * This routine process a slow-path work-queue or receive queue completion queue 14697 * entry. 14698 * 14699 * Return: true if work posted to worker thread, otherwise false. 14700 **/ 14701 static bool 14702 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14703 struct lpfc_cqe *cqe) 14704 { 14705 struct lpfc_cqe cqevt; 14706 bool workposted = false; 14707 14708 /* Copy the work queue CQE and convert endian order if needed */ 14709 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14710 14711 /* Check and process for different type of WCQE and dispatch */ 14712 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14713 case CQE_CODE_COMPL_WQE: 14714 /* Process the WQ/RQ complete event */ 14715 phba->last_completion_time = jiffies; 14716 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14717 (struct lpfc_wcqe_complete *)&cqevt); 14718 break; 14719 case CQE_CODE_RELEASE_WQE: 14720 /* Process the WQ release event */ 14721 lpfc_sli4_sp_handle_rel_wcqe(phba, 14722 (struct lpfc_wcqe_release *)&cqevt); 14723 break; 14724 case CQE_CODE_XRI_ABORTED: 14725 /* Process the WQ XRI abort event */ 14726 phba->last_completion_time = jiffies; 14727 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14728 (struct sli4_wcqe_xri_aborted *)&cqevt); 14729 break; 14730 case CQE_CODE_RECEIVE: 14731 case CQE_CODE_RECEIVE_V1: 14732 /* Process the RQ event */ 14733 phba->last_completion_time = jiffies; 14734 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14735 (struct lpfc_rcqe *)&cqevt); 14736 break; 14737 default: 14738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14739 "0388 Not a valid WCQE code: x%x\n", 14740 bf_get(lpfc_cqe_code, &cqevt)); 14741 break; 14742 } 14743 return workposted; 14744 } 14745 14746 /** 14747 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14748 * @phba: Pointer to HBA context object. 14749 * @eqe: Pointer to fast-path event queue entry. 14750 * @speq: Pointer to slow-path event queue. 14751 * 14752 * This routine process a event queue entry from the slow-path event queue. 14753 * It will check the MajorCode and MinorCode to determine this is for a 14754 * completion event on a completion queue, if not, an error shall be logged 14755 * and just return. Otherwise, it will get to the corresponding completion 14756 * queue and process all the entries on that completion queue, rearm the 14757 * completion queue, and then return. 14758 * 14759 **/ 14760 static void 14761 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14762 struct lpfc_queue *speq) 14763 { 14764 struct lpfc_queue *cq = NULL, *childq; 14765 uint16_t cqid; 14766 int ret = 0; 14767 14768 /* Get the reference to the corresponding CQ */ 14769 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14770 14771 list_for_each_entry(childq, &speq->child_list, list) { 14772 if (childq->queue_id == cqid) { 14773 cq = childq; 14774 break; 14775 } 14776 } 14777 if (unlikely(!cq)) { 14778 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14780 "0365 Slow-path CQ identifier " 14781 "(%d) does not exist\n", cqid); 14782 return; 14783 } 14784 14785 /* Save EQ associated with this CQ */ 14786 cq->assoc_qp = speq; 14787 14788 if (is_kdump_kernel()) 14789 ret = queue_work(phba->wq, &cq->spwork); 14790 else 14791 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14792 14793 if (!ret) 14794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14795 "0390 Cannot schedule queue work " 14796 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14797 cqid, cq->queue_id, raw_smp_processor_id()); 14798 } 14799 14800 /** 14801 * __lpfc_sli4_process_cq - Process elements of a CQ 14802 * @phba: Pointer to HBA context object. 14803 * @cq: Pointer to CQ to be processed 14804 * @handler: Routine to process each cqe 14805 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14806 * @poll_mode: Polling mode we were called from 14807 * 14808 * This routine processes completion queue entries in a CQ. While a valid 14809 * queue element is found, the handler is called. During processing checks 14810 * are made for periodic doorbell writes to let the hardware know of 14811 * element consumption. 14812 * 14813 * If the max limit on cqes to process is hit, or there are no more valid 14814 * entries, the loop stops. If we processed a sufficient number of elements, 14815 * meaning there is sufficient load, rather than rearming and generating 14816 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14817 * indicates no rescheduling. 14818 * 14819 * Returns True if work scheduled, False otherwise. 14820 **/ 14821 static bool 14822 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14823 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14824 struct lpfc_cqe *), unsigned long *delay, 14825 enum lpfc_poll_mode poll_mode) 14826 { 14827 struct lpfc_cqe *cqe; 14828 bool workposted = false; 14829 int count = 0, consumed = 0; 14830 bool arm = true; 14831 14832 /* default - no reschedule */ 14833 *delay = 0; 14834 14835 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14836 goto rearm_and_exit; 14837 14838 /* Process all the entries to the CQ */ 14839 cq->q_flag = 0; 14840 cqe = lpfc_sli4_cq_get(cq); 14841 while (cqe) { 14842 workposted |= handler(phba, cq, cqe); 14843 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14844 14845 consumed++; 14846 if (!(++count % cq->max_proc_limit)) 14847 break; 14848 14849 if (!(count % cq->notify_interval)) { 14850 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14851 LPFC_QUEUE_NOARM); 14852 consumed = 0; 14853 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14854 } 14855 14856 if (count == LPFC_NVMET_CQ_NOTIFY) 14857 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14858 14859 cqe = lpfc_sli4_cq_get(cq); 14860 } 14861 if (count >= phba->cfg_cq_poll_threshold) { 14862 *delay = 1; 14863 arm = false; 14864 } 14865 14866 /* Note: complete the irq_poll softirq before rearming CQ */ 14867 if (poll_mode == LPFC_IRQ_POLL) 14868 irq_poll_complete(&cq->iop); 14869 14870 /* Track the max number of CQEs processed in 1 EQ */ 14871 if (count > cq->CQ_max_cqe) 14872 cq->CQ_max_cqe = count; 14873 14874 cq->assoc_qp->EQ_cqe_cnt += count; 14875 14876 /* Catch the no cq entry condition */ 14877 if (unlikely(count == 0)) 14878 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14879 "0369 No entry from completion queue " 14880 "qid=%d\n", cq->queue_id); 14881 14882 xchg(&cq->queue_claimed, 0); 14883 14884 rearm_and_exit: 14885 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14886 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14887 14888 return workposted; 14889 } 14890 14891 /** 14892 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14893 * @cq: pointer to CQ to process 14894 * 14895 * This routine calls the cq processing routine with a handler specific 14896 * to the type of queue bound to it. 14897 * 14898 * The CQ routine returns two values: the first is the calling status, 14899 * which indicates whether work was queued to the background discovery 14900 * thread. If true, the routine should wakeup the discovery thread; 14901 * the second is the delay parameter. If non-zero, rather than rearming 14902 * the CQ and yet another interrupt, the CQ handler should be queued so 14903 * that it is processed in a subsequent polling action. The value of 14904 * the delay indicates when to reschedule it. 14905 **/ 14906 static void 14907 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14908 { 14909 struct lpfc_hba *phba = cq->phba; 14910 unsigned long delay; 14911 bool workposted = false; 14912 int ret = 0; 14913 14914 /* Process and rearm the CQ */ 14915 switch (cq->type) { 14916 case LPFC_MCQ: 14917 workposted |= __lpfc_sli4_process_cq(phba, cq, 14918 lpfc_sli4_sp_handle_mcqe, 14919 &delay, LPFC_QUEUE_WORK); 14920 break; 14921 case LPFC_WCQ: 14922 if (cq->subtype == LPFC_IO) 14923 workposted |= __lpfc_sli4_process_cq(phba, cq, 14924 lpfc_sli4_fp_handle_cqe, 14925 &delay, LPFC_QUEUE_WORK); 14926 else 14927 workposted |= __lpfc_sli4_process_cq(phba, cq, 14928 lpfc_sli4_sp_handle_cqe, 14929 &delay, LPFC_QUEUE_WORK); 14930 break; 14931 default: 14932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14933 "0370 Invalid completion queue type (%d)\n", 14934 cq->type); 14935 return; 14936 } 14937 14938 if (delay) { 14939 if (is_kdump_kernel()) 14940 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14941 delay); 14942 else 14943 ret = queue_delayed_work_on(cq->chann, phba->wq, 14944 &cq->sched_spwork, delay); 14945 if (!ret) 14946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14947 "0394 Cannot schedule queue work " 14948 "for cqid=%d on CPU %d\n", 14949 cq->queue_id, cq->chann); 14950 } 14951 14952 /* wake up worker thread if there are works to be done */ 14953 if (workposted) 14954 lpfc_worker_wake_up(phba); 14955 } 14956 14957 /** 14958 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14959 * interrupt 14960 * @work: pointer to work element 14961 * 14962 * translates from the work handler and calls the slow-path handler. 14963 **/ 14964 static void 14965 lpfc_sli4_sp_process_cq(struct work_struct *work) 14966 { 14967 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14968 14969 __lpfc_sli4_sp_process_cq(cq); 14970 } 14971 14972 /** 14973 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14974 * @work: pointer to work element 14975 * 14976 * translates from the work handler and calls the slow-path handler. 14977 **/ 14978 static void 14979 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14980 { 14981 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14982 struct lpfc_queue, sched_spwork); 14983 14984 __lpfc_sli4_sp_process_cq(cq); 14985 } 14986 14987 /** 14988 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14989 * @phba: Pointer to HBA context object. 14990 * @cq: Pointer to associated CQ 14991 * @wcqe: Pointer to work-queue completion queue entry. 14992 * 14993 * This routine process a fast-path work queue completion entry from fast-path 14994 * event queue for FCP command response completion. 14995 **/ 14996 static void 14997 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14998 struct lpfc_wcqe_complete *wcqe) 14999 { 15000 struct lpfc_sli_ring *pring = cq->pring; 15001 struct lpfc_iocbq *cmdiocbq; 15002 unsigned long iflags; 15003 15004 /* Check for response status */ 15005 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15006 /* If resource errors reported from HBA, reduce queue 15007 * depth of the SCSI device. 15008 */ 15009 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15010 IOSTAT_LOCAL_REJECT)) && 15011 ((wcqe->parameter & IOERR_PARAM_MASK) == 15012 IOERR_NO_RESOURCES)) 15013 phba->lpfc_rampdown_queue_depth(phba); 15014 15015 /* Log the cmpl status */ 15016 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15017 "0373 FCP CQE cmpl: status=x%x: " 15018 "CQE: %08x %08x %08x %08x\n", 15019 bf_get(lpfc_wcqe_c_status, wcqe), 15020 wcqe->word0, wcqe->total_data_placed, 15021 wcqe->parameter, wcqe->word3); 15022 } 15023 15024 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15025 spin_lock_irqsave(&pring->ring_lock, iflags); 15026 pring->stats.iocb_event++; 15027 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15028 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15029 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15030 if (unlikely(!cmdiocbq)) { 15031 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15032 "0374 FCP complete with no corresponding " 15033 "cmdiocb: iotag (%d)\n", 15034 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15035 return; 15036 } 15037 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15038 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15039 #endif 15040 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15041 spin_lock_irqsave(&phba->hbalock, iflags); 15042 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15043 spin_unlock_irqrestore(&phba->hbalock, iflags); 15044 } 15045 15046 if (cmdiocbq->cmd_cmpl) { 15047 /* For FCP the flag is cleared in cmd_cmpl */ 15048 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15049 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15050 spin_lock_irqsave(&phba->hbalock, iflags); 15051 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15052 spin_unlock_irqrestore(&phba->hbalock, iflags); 15053 } 15054 15055 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15056 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15057 sizeof(struct lpfc_wcqe_complete)); 15058 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15059 } else { 15060 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15061 "0375 FCP cmdiocb not callback function " 15062 "iotag: (%d)\n", 15063 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15064 } 15065 } 15066 15067 /** 15068 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15069 * @phba: Pointer to HBA context object. 15070 * @cq: Pointer to completion queue. 15071 * @wcqe: Pointer to work-queue completion queue entry. 15072 * 15073 * This routine handles an fast-path WQ entry consumed event by invoking the 15074 * proper WQ release routine to the slow-path WQ. 15075 **/ 15076 static void 15077 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15078 struct lpfc_wcqe_release *wcqe) 15079 { 15080 struct lpfc_queue *childwq; 15081 bool wqid_matched = false; 15082 uint16_t hba_wqid; 15083 15084 /* Check for fast-path FCP work queue release */ 15085 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15086 list_for_each_entry(childwq, &cq->child_list, list) { 15087 if (childwq->queue_id == hba_wqid) { 15088 lpfc_sli4_wq_release(childwq, 15089 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15090 if (childwq->q_flag & HBA_NVMET_WQFULL) 15091 lpfc_nvmet_wqfull_process(phba, childwq); 15092 wqid_matched = true; 15093 break; 15094 } 15095 } 15096 /* Report warning log message if no match found */ 15097 if (wqid_matched != true) 15098 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15099 "2580 Fast-path wqe consume event carries " 15100 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15101 } 15102 15103 /** 15104 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15105 * @phba: Pointer to HBA context object. 15106 * @cq: Pointer to completion queue. 15107 * @rcqe: Pointer to receive-queue completion queue entry. 15108 * 15109 * This routine process a receive-queue completion queue entry. 15110 * 15111 * Return: true if work posted to worker thread, otherwise false. 15112 **/ 15113 static bool 15114 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15115 struct lpfc_rcqe *rcqe) 15116 { 15117 bool workposted = false; 15118 struct lpfc_queue *hrq; 15119 struct lpfc_queue *drq; 15120 struct rqb_dmabuf *dma_buf; 15121 struct fc_frame_header *fc_hdr; 15122 struct lpfc_nvmet_tgtport *tgtp; 15123 uint32_t status, rq_id; 15124 unsigned long iflags; 15125 uint32_t fctl, idx; 15126 15127 if ((phba->nvmet_support == 0) || 15128 (phba->sli4_hba.nvmet_cqset == NULL)) 15129 return workposted; 15130 15131 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15132 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15133 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15134 15135 /* sanity check on queue memory */ 15136 if (unlikely(!hrq) || unlikely(!drq)) 15137 return workposted; 15138 15139 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15140 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15141 else 15142 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15143 15144 if ((phba->nvmet_support == 0) || 15145 (rq_id != hrq->queue_id)) 15146 return workposted; 15147 15148 status = bf_get(lpfc_rcqe_status, rcqe); 15149 switch (status) { 15150 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15151 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15152 "6126 Receive Frame Truncated!!\n"); 15153 fallthrough; 15154 case FC_STATUS_RQ_SUCCESS: 15155 spin_lock_irqsave(&phba->hbalock, iflags); 15156 lpfc_sli4_rq_release(hrq, drq); 15157 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15158 if (!dma_buf) { 15159 hrq->RQ_no_buf_found++; 15160 spin_unlock_irqrestore(&phba->hbalock, iflags); 15161 goto out; 15162 } 15163 spin_unlock_irqrestore(&phba->hbalock, iflags); 15164 hrq->RQ_rcv_buf++; 15165 hrq->RQ_buf_posted--; 15166 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15167 15168 /* Just some basic sanity checks on FCP Command frame */ 15169 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15170 fc_hdr->fh_f_ctl[1] << 8 | 15171 fc_hdr->fh_f_ctl[2]); 15172 if (((fctl & 15173 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15174 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15175 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15176 goto drop; 15177 15178 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15179 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15180 lpfc_nvmet_unsol_fcp_event( 15181 phba, idx, dma_buf, cq->isr_timestamp, 15182 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15183 return false; 15184 } 15185 drop: 15186 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15187 break; 15188 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15189 if (phba->nvmet_support) { 15190 tgtp = phba->targetport->private; 15191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15192 "6401 RQE Error x%x, posted %d err_cnt " 15193 "%d: %x %x %x\n", 15194 status, hrq->RQ_buf_posted, 15195 hrq->RQ_no_posted_buf, 15196 atomic_read(&tgtp->rcv_fcp_cmd_in), 15197 atomic_read(&tgtp->rcv_fcp_cmd_out), 15198 atomic_read(&tgtp->xmt_fcp_release)); 15199 } 15200 fallthrough; 15201 15202 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15203 hrq->RQ_no_posted_buf++; 15204 /* Post more buffers if possible */ 15205 break; 15206 } 15207 out: 15208 return workposted; 15209 } 15210 15211 /** 15212 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15213 * @phba: adapter with cq 15214 * @cq: Pointer to the completion queue. 15215 * @cqe: Pointer to fast-path completion queue entry. 15216 * 15217 * This routine process a fast-path work queue completion entry from fast-path 15218 * event queue for FCP command response completion. 15219 * 15220 * Return: true if work posted to worker thread, otherwise false. 15221 **/ 15222 static bool 15223 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15224 struct lpfc_cqe *cqe) 15225 { 15226 struct lpfc_wcqe_release wcqe; 15227 bool workposted = false; 15228 15229 /* Copy the work queue CQE and convert endian order if needed */ 15230 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15231 15232 /* Check and process for different type of WCQE and dispatch */ 15233 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15234 case CQE_CODE_COMPL_WQE: 15235 case CQE_CODE_NVME_ERSP: 15236 cq->CQ_wq++; 15237 /* Process the WQ complete event */ 15238 phba->last_completion_time = jiffies; 15239 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15240 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15241 (struct lpfc_wcqe_complete *)&wcqe); 15242 break; 15243 case CQE_CODE_RELEASE_WQE: 15244 cq->CQ_release_wqe++; 15245 /* Process the WQ release event */ 15246 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15247 (struct lpfc_wcqe_release *)&wcqe); 15248 break; 15249 case CQE_CODE_XRI_ABORTED: 15250 cq->CQ_xri_aborted++; 15251 /* Process the WQ XRI abort event */ 15252 phba->last_completion_time = jiffies; 15253 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15254 (struct sli4_wcqe_xri_aborted *)&wcqe); 15255 break; 15256 case CQE_CODE_RECEIVE_V1: 15257 case CQE_CODE_RECEIVE: 15258 phba->last_completion_time = jiffies; 15259 if (cq->subtype == LPFC_NVMET) { 15260 workposted = lpfc_sli4_nvmet_handle_rcqe( 15261 phba, cq, (struct lpfc_rcqe *)&wcqe); 15262 } 15263 break; 15264 default: 15265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15266 "0144 Not a valid CQE code: x%x\n", 15267 bf_get(lpfc_wcqe_c_code, &wcqe)); 15268 break; 15269 } 15270 return workposted; 15271 } 15272 15273 /** 15274 * lpfc_sli4_sched_cq_work - Schedules cq work 15275 * @phba: Pointer to HBA context object. 15276 * @cq: Pointer to CQ 15277 * @cqid: CQ ID 15278 * 15279 * This routine checks the poll mode of the CQ corresponding to 15280 * cq->chann, then either schedules a softirq or queue_work to complete 15281 * cq work. 15282 * 15283 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15284 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15285 * 15286 **/ 15287 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15288 struct lpfc_queue *cq, uint16_t cqid) 15289 { 15290 int ret = 0; 15291 15292 switch (cq->poll_mode) { 15293 case LPFC_IRQ_POLL: 15294 /* CGN mgmt is mutually exclusive from softirq processing */ 15295 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15296 irq_poll_sched(&cq->iop); 15297 break; 15298 } 15299 fallthrough; 15300 case LPFC_QUEUE_WORK: 15301 default: 15302 if (is_kdump_kernel()) 15303 ret = queue_work(phba->wq, &cq->irqwork); 15304 else 15305 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15306 if (!ret) 15307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15308 "0383 Cannot schedule queue work " 15309 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15310 cqid, cq->queue_id, 15311 raw_smp_processor_id()); 15312 } 15313 } 15314 15315 /** 15316 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15317 * @phba: Pointer to HBA context object. 15318 * @eq: Pointer to the queue structure. 15319 * @eqe: Pointer to fast-path event queue entry. 15320 * 15321 * This routine process a event queue entry from the fast-path event queue. 15322 * It will check the MajorCode and MinorCode to determine this is for a 15323 * completion event on a completion queue, if not, an error shall be logged 15324 * and just return. Otherwise, it will get to the corresponding completion 15325 * queue and process all the entries on the completion queue, rearm the 15326 * completion queue, and then return. 15327 **/ 15328 static void 15329 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15330 struct lpfc_eqe *eqe) 15331 { 15332 struct lpfc_queue *cq = NULL; 15333 uint32_t qidx = eq->hdwq; 15334 uint16_t cqid, id; 15335 15336 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15338 "0366 Not a valid completion " 15339 "event: majorcode=x%x, minorcode=x%x\n", 15340 bf_get_le32(lpfc_eqe_major_code, eqe), 15341 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15342 return; 15343 } 15344 15345 /* Get the reference to the corresponding CQ */ 15346 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15347 15348 /* Use the fast lookup method first */ 15349 if (cqid <= phba->sli4_hba.cq_max) { 15350 cq = phba->sli4_hba.cq_lookup[cqid]; 15351 if (cq) 15352 goto work_cq; 15353 } 15354 15355 /* Next check for NVMET completion */ 15356 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15357 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15358 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15359 /* Process NVMET unsol rcv */ 15360 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15361 goto process_cq; 15362 } 15363 } 15364 15365 if (phba->sli4_hba.nvmels_cq && 15366 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15367 /* Process NVME unsol rcv */ 15368 cq = phba->sli4_hba.nvmels_cq; 15369 } 15370 15371 /* Otherwise this is a Slow path event */ 15372 if (cq == NULL) { 15373 lpfc_sli4_sp_handle_eqe(phba, eqe, 15374 phba->sli4_hba.hdwq[qidx].hba_eq); 15375 return; 15376 } 15377 15378 process_cq: 15379 if (unlikely(cqid != cq->queue_id)) { 15380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15381 "0368 Miss-matched fast-path completion " 15382 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15383 cqid, cq->queue_id); 15384 return; 15385 } 15386 15387 work_cq: 15388 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15389 if (phba->ktime_on) 15390 cq->isr_timestamp = ktime_get_ns(); 15391 else 15392 cq->isr_timestamp = 0; 15393 #endif 15394 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15395 } 15396 15397 /** 15398 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15399 * @cq: Pointer to CQ to be processed 15400 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15401 * 15402 * This routine calls the cq processing routine with the handler for 15403 * fast path CQEs. 15404 * 15405 * The CQ routine returns two values: the first is the calling status, 15406 * which indicates whether work was queued to the background discovery 15407 * thread. If true, the routine should wakeup the discovery thread; 15408 * the second is the delay parameter. If non-zero, rather than rearming 15409 * the CQ and yet another interrupt, the CQ handler should be queued so 15410 * that it is processed in a subsequent polling action. The value of 15411 * the delay indicates when to reschedule it. 15412 **/ 15413 static void 15414 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15415 enum lpfc_poll_mode poll_mode) 15416 { 15417 struct lpfc_hba *phba = cq->phba; 15418 unsigned long delay; 15419 bool workposted = false; 15420 int ret = 0; 15421 15422 /* process and rearm the CQ */ 15423 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15424 &delay, poll_mode); 15425 15426 if (delay) { 15427 if (is_kdump_kernel()) 15428 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15429 delay); 15430 else 15431 ret = queue_delayed_work_on(cq->chann, phba->wq, 15432 &cq->sched_irqwork, delay); 15433 if (!ret) 15434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15435 "0367 Cannot schedule queue work " 15436 "for cqid=%d on CPU %d\n", 15437 cq->queue_id, cq->chann); 15438 } 15439 15440 /* wake up worker thread if there are works to be done */ 15441 if (workposted) 15442 lpfc_worker_wake_up(phba); 15443 } 15444 15445 /** 15446 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15447 * interrupt 15448 * @work: pointer to work element 15449 * 15450 * translates from the work handler and calls the fast-path handler. 15451 **/ 15452 static void 15453 lpfc_sli4_hba_process_cq(struct work_struct *work) 15454 { 15455 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15456 15457 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15458 } 15459 15460 /** 15461 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15462 * @work: pointer to work element 15463 * 15464 * translates from the work handler and calls the fast-path handler. 15465 **/ 15466 static void 15467 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15468 { 15469 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15470 struct lpfc_queue, sched_irqwork); 15471 15472 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15473 } 15474 15475 /** 15476 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15477 * @irq: Interrupt number. 15478 * @dev_id: The device context pointer. 15479 * 15480 * This function is directly called from the PCI layer as an interrupt 15481 * service routine when device with SLI-4 interface spec is enabled with 15482 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15483 * ring event in the HBA. However, when the device is enabled with either 15484 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15485 * device-level interrupt handler. When the PCI slot is in error recovery 15486 * or the HBA is undergoing initialization, the interrupt handler will not 15487 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15488 * the intrrupt context. This function is called without any lock held. 15489 * It gets the hbalock to access and update SLI data structures. Note that, 15490 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15491 * equal to that of FCP CQ index. 15492 * 15493 * The link attention and ELS ring attention events are handled 15494 * by the worker thread. The interrupt handler signals the worker thread 15495 * and returns for these events. This function is called without any lock 15496 * held. It gets the hbalock to access and update SLI data structures. 15497 * 15498 * This function returns IRQ_HANDLED when interrupt is handled else it 15499 * returns IRQ_NONE. 15500 **/ 15501 irqreturn_t 15502 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15503 { 15504 struct lpfc_hba *phba; 15505 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15506 struct lpfc_queue *fpeq; 15507 unsigned long iflag; 15508 int ecount = 0; 15509 int hba_eqidx; 15510 struct lpfc_eq_intr_info *eqi; 15511 15512 /* Get the driver's phba structure from the dev_id */ 15513 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15514 phba = hba_eq_hdl->phba; 15515 hba_eqidx = hba_eq_hdl->idx; 15516 15517 if (unlikely(!phba)) 15518 return IRQ_NONE; 15519 if (unlikely(!phba->sli4_hba.hdwq)) 15520 return IRQ_NONE; 15521 15522 /* Get to the EQ struct associated with this vector */ 15523 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15524 if (unlikely(!fpeq)) 15525 return IRQ_NONE; 15526 15527 /* Check device state for handling interrupt */ 15528 if (unlikely(lpfc_intr_state_check(phba))) { 15529 /* Check again for link_state with lock held */ 15530 spin_lock_irqsave(&phba->hbalock, iflag); 15531 if (phba->link_state < LPFC_LINK_DOWN) 15532 /* Flush, clear interrupt, and rearm the EQ */ 15533 lpfc_sli4_eqcq_flush(phba, fpeq); 15534 spin_unlock_irqrestore(&phba->hbalock, iflag); 15535 return IRQ_NONE; 15536 } 15537 15538 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15539 eqi->icnt++; 15540 15541 fpeq->last_cpu = raw_smp_processor_id(); 15542 15543 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15544 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15545 phba->cfg_auto_imax && 15546 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15547 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15548 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15549 15550 /* process and rearm the EQ */ 15551 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15552 15553 if (unlikely(ecount == 0)) { 15554 fpeq->EQ_no_entry++; 15555 if (phba->intr_type == MSIX) 15556 /* MSI-X treated interrupt served as no EQ share INT */ 15557 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15558 "0358 MSI-X interrupt with no EQE\n"); 15559 else 15560 /* Non MSI-X treated on interrupt as EQ share INT */ 15561 return IRQ_NONE; 15562 } 15563 15564 return IRQ_HANDLED; 15565 } /* lpfc_sli4_hba_intr_handler */ 15566 15567 /** 15568 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15569 * @irq: Interrupt number. 15570 * @dev_id: The device context pointer. 15571 * 15572 * This function is the device-level interrupt handler to device with SLI-4 15573 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15574 * interrupt mode is enabled and there is an event in the HBA which requires 15575 * driver attention. This function invokes the slow-path interrupt attention 15576 * handling function and fast-path interrupt attention handling function in 15577 * turn to process the relevant HBA attention events. This function is called 15578 * without any lock held. It gets the hbalock to access and update SLI data 15579 * structures. 15580 * 15581 * This function returns IRQ_HANDLED when interrupt is handled, else it 15582 * returns IRQ_NONE. 15583 **/ 15584 irqreturn_t 15585 lpfc_sli4_intr_handler(int irq, void *dev_id) 15586 { 15587 struct lpfc_hba *phba; 15588 irqreturn_t hba_irq_rc; 15589 bool hba_handled = false; 15590 int qidx; 15591 15592 /* Get the driver's phba structure from the dev_id */ 15593 phba = (struct lpfc_hba *)dev_id; 15594 15595 if (unlikely(!phba)) 15596 return IRQ_NONE; 15597 15598 /* 15599 * Invoke fast-path host attention interrupt handling as appropriate. 15600 */ 15601 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15602 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15603 &phba->sli4_hba.hba_eq_hdl[qidx]); 15604 if (hba_irq_rc == IRQ_HANDLED) 15605 hba_handled |= true; 15606 } 15607 15608 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15609 } /* lpfc_sli4_intr_handler */ 15610 15611 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15612 { 15613 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15614 struct lpfc_queue *eq; 15615 15616 rcu_read_lock(); 15617 15618 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15619 lpfc_sli4_poll_eq(eq); 15620 if (!list_empty(&phba->poll_list)) 15621 mod_timer(&phba->cpuhp_poll_timer, 15622 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15623 15624 rcu_read_unlock(); 15625 } 15626 15627 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15628 { 15629 struct lpfc_hba *phba = eq->phba; 15630 15631 /* kickstart slowpath processing if needed */ 15632 if (list_empty(&phba->poll_list)) 15633 mod_timer(&phba->cpuhp_poll_timer, 15634 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15635 15636 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15637 synchronize_rcu(); 15638 } 15639 15640 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15641 { 15642 struct lpfc_hba *phba = eq->phba; 15643 15644 /* Disable slowpath processing for this eq. Kick start the eq 15645 * by RE-ARMING the eq's ASAP 15646 */ 15647 list_del_rcu(&eq->_poll_list); 15648 synchronize_rcu(); 15649 15650 if (list_empty(&phba->poll_list)) 15651 del_timer_sync(&phba->cpuhp_poll_timer); 15652 } 15653 15654 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15655 { 15656 struct lpfc_queue *eq, *next; 15657 15658 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15659 list_del(&eq->_poll_list); 15660 15661 INIT_LIST_HEAD(&phba->poll_list); 15662 synchronize_rcu(); 15663 } 15664 15665 static inline void 15666 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15667 { 15668 if (mode == eq->mode) 15669 return; 15670 /* 15671 * currently this function is only called during a hotplug 15672 * event and the cpu on which this function is executing 15673 * is going offline. By now the hotplug has instructed 15674 * the scheduler to remove this cpu from cpu active mask. 15675 * So we don't need to work about being put aside by the 15676 * scheduler for a high priority process. Yes, the inte- 15677 * rrupts could come but they are known to retire ASAP. 15678 */ 15679 15680 /* Disable polling in the fastpath */ 15681 WRITE_ONCE(eq->mode, mode); 15682 /* flush out the store buffer */ 15683 smp_wmb(); 15684 15685 /* 15686 * Add this eq to the polling list and start polling. For 15687 * a grace period both interrupt handler and poller will 15688 * try to process the eq _but_ that's fine. We have a 15689 * synchronization mechanism in place (queue_claimed) to 15690 * deal with it. This is just a draining phase for int- 15691 * errupt handler (not eq's) as we have guranteed through 15692 * barrier that all the CPUs have seen the new CQ_POLLED 15693 * state. which will effectively disable the REARMING of 15694 * the EQ. The whole idea is eq's die off eventually as 15695 * we are not rearming EQ's anymore. 15696 */ 15697 mode ? lpfc_sli4_add_to_poll_list(eq) : 15698 lpfc_sli4_remove_from_poll_list(eq); 15699 } 15700 15701 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15702 { 15703 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15704 } 15705 15706 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15707 { 15708 struct lpfc_hba *phba = eq->phba; 15709 15710 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15711 15712 /* Kick start for the pending io's in h/w. 15713 * Once we switch back to interrupt processing on a eq 15714 * the io path completion will only arm eq's when it 15715 * receives a completion. But since eq's are in disa- 15716 * rmed state it doesn't receive a completion. This 15717 * creates a deadlock scenaro. 15718 */ 15719 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15720 } 15721 15722 /** 15723 * lpfc_sli4_queue_free - free a queue structure and associated memory 15724 * @queue: The queue structure to free. 15725 * 15726 * This function frees a queue structure and the DMAable memory used for 15727 * the host resident queue. This function must be called after destroying the 15728 * queue on the HBA. 15729 **/ 15730 void 15731 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15732 { 15733 struct lpfc_dmabuf *dmabuf; 15734 15735 if (!queue) 15736 return; 15737 15738 if (!list_empty(&queue->wq_list)) 15739 list_del(&queue->wq_list); 15740 15741 while (!list_empty(&queue->page_list)) { 15742 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15743 list); 15744 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15745 dmabuf->virt, dmabuf->phys); 15746 kfree(dmabuf); 15747 } 15748 if (queue->rqbp) { 15749 lpfc_free_rq_buffer(queue->phba, queue); 15750 kfree(queue->rqbp); 15751 } 15752 15753 if (!list_empty(&queue->cpu_list)) 15754 list_del(&queue->cpu_list); 15755 15756 kfree(queue); 15757 return; 15758 } 15759 15760 /** 15761 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15762 * @phba: The HBA that this queue is being created on. 15763 * @page_size: The size of a queue page 15764 * @entry_size: The size of each queue entry for this queue. 15765 * @entry_count: The number of entries that this queue will handle. 15766 * @cpu: The cpu that will primarily utilize this queue. 15767 * 15768 * This function allocates a queue structure and the DMAable memory used for 15769 * the host resident queue. This function must be called before creating the 15770 * queue on the HBA. 15771 **/ 15772 struct lpfc_queue * 15773 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15774 uint32_t entry_size, uint32_t entry_count, int cpu) 15775 { 15776 struct lpfc_queue *queue; 15777 struct lpfc_dmabuf *dmabuf; 15778 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15779 uint16_t x, pgcnt; 15780 15781 if (!phba->sli4_hba.pc_sli4_params.supported) 15782 hw_page_size = page_size; 15783 15784 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15785 15786 /* If needed, Adjust page count to match the max the adapter supports */ 15787 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15788 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15789 15790 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15791 GFP_KERNEL, cpu_to_node(cpu)); 15792 if (!queue) 15793 return NULL; 15794 15795 INIT_LIST_HEAD(&queue->list); 15796 INIT_LIST_HEAD(&queue->_poll_list); 15797 INIT_LIST_HEAD(&queue->wq_list); 15798 INIT_LIST_HEAD(&queue->wqfull_list); 15799 INIT_LIST_HEAD(&queue->page_list); 15800 INIT_LIST_HEAD(&queue->child_list); 15801 INIT_LIST_HEAD(&queue->cpu_list); 15802 15803 /* Set queue parameters now. If the system cannot provide memory 15804 * resources, the free routine needs to know what was allocated. 15805 */ 15806 queue->page_count = pgcnt; 15807 queue->q_pgs = (void **)&queue[1]; 15808 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15809 queue->entry_size = entry_size; 15810 queue->entry_count = entry_count; 15811 queue->page_size = hw_page_size; 15812 queue->phba = phba; 15813 15814 for (x = 0; x < queue->page_count; x++) { 15815 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15816 dev_to_node(&phba->pcidev->dev)); 15817 if (!dmabuf) 15818 goto out_fail; 15819 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15820 hw_page_size, &dmabuf->phys, 15821 GFP_KERNEL); 15822 if (!dmabuf->virt) { 15823 kfree(dmabuf); 15824 goto out_fail; 15825 } 15826 dmabuf->buffer_tag = x; 15827 list_add_tail(&dmabuf->list, &queue->page_list); 15828 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15829 queue->q_pgs[x] = dmabuf->virt; 15830 } 15831 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15832 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15833 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15834 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15835 15836 /* notify_interval will be set during q creation */ 15837 15838 return queue; 15839 out_fail: 15840 lpfc_sli4_queue_free(queue); 15841 return NULL; 15842 } 15843 15844 /** 15845 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15846 * @phba: HBA structure that indicates port to create a queue on. 15847 * @pci_barset: PCI BAR set flag. 15848 * 15849 * This function shall perform iomap of the specified PCI BAR address to host 15850 * memory address if not already done so and return it. The returned host 15851 * memory address can be NULL. 15852 */ 15853 static void __iomem * 15854 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15855 { 15856 if (!phba->pcidev) 15857 return NULL; 15858 15859 switch (pci_barset) { 15860 case WQ_PCI_BAR_0_AND_1: 15861 return phba->pci_bar0_memmap_p; 15862 case WQ_PCI_BAR_2_AND_3: 15863 return phba->pci_bar2_memmap_p; 15864 case WQ_PCI_BAR_4_AND_5: 15865 return phba->pci_bar4_memmap_p; 15866 default: 15867 break; 15868 } 15869 return NULL; 15870 } 15871 15872 /** 15873 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15874 * @phba: HBA structure that EQs are on. 15875 * @startq: The starting EQ index to modify 15876 * @numq: The number of EQs (consecutive indexes) to modify 15877 * @usdelay: amount of delay 15878 * 15879 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15880 * is set either by writing to a register (if supported by the SLI Port) 15881 * or by mailbox command. The mailbox command allows several EQs to be 15882 * updated at once. 15883 * 15884 * The @phba struct is used to send a mailbox command to HBA. The @startq 15885 * is used to get the starting EQ index to change. The @numq value is 15886 * used to specify how many consecutive EQ indexes, starting at EQ index, 15887 * are to be changed. This function is asynchronous and will wait for any 15888 * mailbox commands to finish before returning. 15889 * 15890 * On success this function will return a zero. If unable to allocate 15891 * enough memory this function will return -ENOMEM. If a mailbox command 15892 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15893 * have had their delay multipler changed. 15894 **/ 15895 void 15896 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15897 uint32_t numq, uint32_t usdelay) 15898 { 15899 struct lpfc_mbx_modify_eq_delay *eq_delay; 15900 LPFC_MBOXQ_t *mbox; 15901 struct lpfc_queue *eq; 15902 int cnt = 0, rc, length; 15903 uint32_t shdr_status, shdr_add_status; 15904 uint32_t dmult; 15905 int qidx; 15906 union lpfc_sli4_cfg_shdr *shdr; 15907 15908 if (startq >= phba->cfg_irq_chann) 15909 return; 15910 15911 if (usdelay > 0xFFFF) { 15912 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15913 "6429 usdelay %d too large. Scaled down to " 15914 "0xFFFF.\n", usdelay); 15915 usdelay = 0xFFFF; 15916 } 15917 15918 /* set values by EQ_DELAY register if supported */ 15919 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15920 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15921 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15922 if (!eq) 15923 continue; 15924 15925 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15926 15927 if (++cnt >= numq) 15928 break; 15929 } 15930 return; 15931 } 15932 15933 /* Otherwise, set values by mailbox cmd */ 15934 15935 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15936 if (!mbox) { 15937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15938 "6428 Failed allocating mailbox cmd buffer." 15939 " EQ delay was not set.\n"); 15940 return; 15941 } 15942 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15943 sizeof(struct lpfc_sli4_cfg_mhdr)); 15944 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15945 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15946 length, LPFC_SLI4_MBX_EMBED); 15947 eq_delay = &mbox->u.mqe.un.eq_delay; 15948 15949 /* Calculate delay multiper from maximum interrupt per second */ 15950 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15951 if (dmult) 15952 dmult--; 15953 if (dmult > LPFC_DMULT_MAX) 15954 dmult = LPFC_DMULT_MAX; 15955 15956 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15957 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15958 if (!eq) 15959 continue; 15960 eq->q_mode = usdelay; 15961 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15962 eq_delay->u.request.eq[cnt].phase = 0; 15963 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15964 15965 if (++cnt >= numq) 15966 break; 15967 } 15968 eq_delay->u.request.num_eq = cnt; 15969 15970 mbox->vport = phba->pport; 15971 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15972 mbox->ctx_ndlp = NULL; 15973 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15974 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15975 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15976 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15977 if (shdr_status || shdr_add_status || rc) { 15978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15979 "2512 MODIFY_EQ_DELAY mailbox failed with " 15980 "status x%x add_status x%x, mbx status x%x\n", 15981 shdr_status, shdr_add_status, rc); 15982 } 15983 mempool_free(mbox, phba->mbox_mem_pool); 15984 return; 15985 } 15986 15987 /** 15988 * lpfc_eq_create - Create an Event Queue on the HBA 15989 * @phba: HBA structure that indicates port to create a queue on. 15990 * @eq: The queue structure to use to create the event queue. 15991 * @imax: The maximum interrupt per second limit. 15992 * 15993 * This function creates an event queue, as detailed in @eq, on a port, 15994 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15995 * 15996 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15997 * is used to get the entry count and entry size that are necessary to 15998 * determine the number of pages to allocate and use for this queue. This 15999 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16000 * event queue. This function is asynchronous and will wait for the mailbox 16001 * command to finish before continuing. 16002 * 16003 * On success this function will return a zero. If unable to allocate enough 16004 * memory this function will return -ENOMEM. If the queue create mailbox command 16005 * fails this function will return -ENXIO. 16006 **/ 16007 int 16008 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16009 { 16010 struct lpfc_mbx_eq_create *eq_create; 16011 LPFC_MBOXQ_t *mbox; 16012 int rc, length, status = 0; 16013 struct lpfc_dmabuf *dmabuf; 16014 uint32_t shdr_status, shdr_add_status; 16015 union lpfc_sli4_cfg_shdr *shdr; 16016 uint16_t dmult; 16017 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16018 16019 /* sanity check on queue memory */ 16020 if (!eq) 16021 return -ENODEV; 16022 if (!phba->sli4_hba.pc_sli4_params.supported) 16023 hw_page_size = SLI4_PAGE_SIZE; 16024 16025 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16026 if (!mbox) 16027 return -ENOMEM; 16028 length = (sizeof(struct lpfc_mbx_eq_create) - 16029 sizeof(struct lpfc_sli4_cfg_mhdr)); 16030 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16031 LPFC_MBOX_OPCODE_EQ_CREATE, 16032 length, LPFC_SLI4_MBX_EMBED); 16033 eq_create = &mbox->u.mqe.un.eq_create; 16034 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16035 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16036 eq->page_count); 16037 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16038 LPFC_EQE_SIZE); 16039 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16040 16041 /* Use version 2 of CREATE_EQ if eqav is set */ 16042 if (phba->sli4_hba.pc_sli4_params.eqav) { 16043 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16044 LPFC_Q_CREATE_VERSION_2); 16045 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16046 phba->sli4_hba.pc_sli4_params.eqav); 16047 } 16048 16049 /* don't setup delay multiplier using EQ_CREATE */ 16050 dmult = 0; 16051 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16052 dmult); 16053 switch (eq->entry_count) { 16054 default: 16055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16056 "0360 Unsupported EQ count. (%d)\n", 16057 eq->entry_count); 16058 if (eq->entry_count < 256) { 16059 status = -EINVAL; 16060 goto out; 16061 } 16062 fallthrough; /* otherwise default to smallest count */ 16063 case 256: 16064 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16065 LPFC_EQ_CNT_256); 16066 break; 16067 case 512: 16068 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16069 LPFC_EQ_CNT_512); 16070 break; 16071 case 1024: 16072 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16073 LPFC_EQ_CNT_1024); 16074 break; 16075 case 2048: 16076 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16077 LPFC_EQ_CNT_2048); 16078 break; 16079 case 4096: 16080 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16081 LPFC_EQ_CNT_4096); 16082 break; 16083 } 16084 list_for_each_entry(dmabuf, &eq->page_list, list) { 16085 memset(dmabuf->virt, 0, hw_page_size); 16086 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16087 putPaddrLow(dmabuf->phys); 16088 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16089 putPaddrHigh(dmabuf->phys); 16090 } 16091 mbox->vport = phba->pport; 16092 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16093 mbox->ctx_buf = NULL; 16094 mbox->ctx_ndlp = NULL; 16095 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16096 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16097 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16098 if (shdr_status || shdr_add_status || rc) { 16099 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16100 "2500 EQ_CREATE mailbox failed with " 16101 "status x%x add_status x%x, mbx status x%x\n", 16102 shdr_status, shdr_add_status, rc); 16103 status = -ENXIO; 16104 } 16105 eq->type = LPFC_EQ; 16106 eq->subtype = LPFC_NONE; 16107 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16108 if (eq->queue_id == 0xFFFF) 16109 status = -ENXIO; 16110 eq->host_index = 0; 16111 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16112 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16113 out: 16114 mempool_free(mbox, phba->mbox_mem_pool); 16115 return status; 16116 } 16117 16118 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16119 { 16120 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16121 16122 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16123 16124 return 1; 16125 } 16126 16127 /** 16128 * lpfc_cq_create - Create a Completion Queue on the HBA 16129 * @phba: HBA structure that indicates port to create a queue on. 16130 * @cq: The queue structure to use to create the completion queue. 16131 * @eq: The event queue to bind this completion queue to. 16132 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16133 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16134 * 16135 * This function creates a completion queue, as detailed in @wq, on a port, 16136 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16137 * 16138 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16139 * is used to get the entry count and entry size that are necessary to 16140 * determine the number of pages to allocate and use for this queue. The @eq 16141 * is used to indicate which event queue to bind this completion queue to. This 16142 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16143 * completion queue. This function is asynchronous and will wait for the mailbox 16144 * command to finish before continuing. 16145 * 16146 * On success this function will return a zero. If unable to allocate enough 16147 * memory this function will return -ENOMEM. If the queue create mailbox command 16148 * fails this function will return -ENXIO. 16149 **/ 16150 int 16151 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16152 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16153 { 16154 struct lpfc_mbx_cq_create *cq_create; 16155 struct lpfc_dmabuf *dmabuf; 16156 LPFC_MBOXQ_t *mbox; 16157 int rc, length, status = 0; 16158 uint32_t shdr_status, shdr_add_status; 16159 union lpfc_sli4_cfg_shdr *shdr; 16160 16161 /* sanity check on queue memory */ 16162 if (!cq || !eq) 16163 return -ENODEV; 16164 16165 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16166 if (!mbox) 16167 return -ENOMEM; 16168 length = (sizeof(struct lpfc_mbx_cq_create) - 16169 sizeof(struct lpfc_sli4_cfg_mhdr)); 16170 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16171 LPFC_MBOX_OPCODE_CQ_CREATE, 16172 length, LPFC_SLI4_MBX_EMBED); 16173 cq_create = &mbox->u.mqe.un.cq_create; 16174 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16175 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16176 cq->page_count); 16177 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16178 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16179 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16180 phba->sli4_hba.pc_sli4_params.cqv); 16181 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16182 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16183 (cq->page_size / SLI4_PAGE_SIZE)); 16184 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16185 eq->queue_id); 16186 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16187 phba->sli4_hba.pc_sli4_params.cqav); 16188 } else { 16189 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16190 eq->queue_id); 16191 } 16192 switch (cq->entry_count) { 16193 case 2048: 16194 case 4096: 16195 if (phba->sli4_hba.pc_sli4_params.cqv == 16196 LPFC_Q_CREATE_VERSION_2) { 16197 cq_create->u.request.context.lpfc_cq_context_count = 16198 cq->entry_count; 16199 bf_set(lpfc_cq_context_count, 16200 &cq_create->u.request.context, 16201 LPFC_CQ_CNT_WORD7); 16202 break; 16203 } 16204 fallthrough; 16205 default: 16206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16207 "0361 Unsupported CQ count: " 16208 "entry cnt %d sz %d pg cnt %d\n", 16209 cq->entry_count, cq->entry_size, 16210 cq->page_count); 16211 if (cq->entry_count < 256) { 16212 status = -EINVAL; 16213 goto out; 16214 } 16215 fallthrough; /* otherwise default to smallest count */ 16216 case 256: 16217 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16218 LPFC_CQ_CNT_256); 16219 break; 16220 case 512: 16221 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16222 LPFC_CQ_CNT_512); 16223 break; 16224 case 1024: 16225 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16226 LPFC_CQ_CNT_1024); 16227 break; 16228 } 16229 list_for_each_entry(dmabuf, &cq->page_list, list) { 16230 memset(dmabuf->virt, 0, cq->page_size); 16231 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16232 putPaddrLow(dmabuf->phys); 16233 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16234 putPaddrHigh(dmabuf->phys); 16235 } 16236 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16237 16238 /* The IOCTL status is embedded in the mailbox subheader. */ 16239 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16240 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16241 if (shdr_status || shdr_add_status || rc) { 16242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16243 "2501 CQ_CREATE mailbox failed with " 16244 "status x%x add_status x%x, mbx status x%x\n", 16245 shdr_status, shdr_add_status, rc); 16246 status = -ENXIO; 16247 goto out; 16248 } 16249 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16250 if (cq->queue_id == 0xFFFF) { 16251 status = -ENXIO; 16252 goto out; 16253 } 16254 /* link the cq onto the parent eq child list */ 16255 list_add_tail(&cq->list, &eq->child_list); 16256 /* Set up completion queue's type and subtype */ 16257 cq->type = type; 16258 cq->subtype = subtype; 16259 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16260 cq->assoc_qid = eq->queue_id; 16261 cq->assoc_qp = eq; 16262 cq->host_index = 0; 16263 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16264 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16265 16266 if (cq->queue_id > phba->sli4_hba.cq_max) 16267 phba->sli4_hba.cq_max = cq->queue_id; 16268 16269 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16270 out: 16271 mempool_free(mbox, phba->mbox_mem_pool); 16272 return status; 16273 } 16274 16275 /** 16276 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16277 * @phba: HBA structure that indicates port to create a queue on. 16278 * @cqp: The queue structure array to use to create the completion queues. 16279 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16280 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16281 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16282 * 16283 * This function creates a set of completion queue, s to support MRQ 16284 * as detailed in @cqp, on a port, 16285 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16286 * 16287 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16288 * is used to get the entry count and entry size that are necessary to 16289 * determine the number of pages to allocate and use for this queue. The @eq 16290 * is used to indicate which event queue to bind this completion queue to. This 16291 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16292 * completion queue. This function is asynchronous and will wait for the mailbox 16293 * command to finish before continuing. 16294 * 16295 * On success this function will return a zero. If unable to allocate enough 16296 * memory this function will return -ENOMEM. If the queue create mailbox command 16297 * fails this function will return -ENXIO. 16298 **/ 16299 int 16300 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16301 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16302 uint32_t subtype) 16303 { 16304 struct lpfc_queue *cq; 16305 struct lpfc_queue *eq; 16306 struct lpfc_mbx_cq_create_set *cq_set; 16307 struct lpfc_dmabuf *dmabuf; 16308 LPFC_MBOXQ_t *mbox; 16309 int rc, length, alloclen, status = 0; 16310 int cnt, idx, numcq, page_idx = 0; 16311 uint32_t shdr_status, shdr_add_status; 16312 union lpfc_sli4_cfg_shdr *shdr; 16313 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16314 16315 /* sanity check on queue memory */ 16316 numcq = phba->cfg_nvmet_mrq; 16317 if (!cqp || !hdwq || !numcq) 16318 return -ENODEV; 16319 16320 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16321 if (!mbox) 16322 return -ENOMEM; 16323 16324 length = sizeof(struct lpfc_mbx_cq_create_set); 16325 length += ((numcq * cqp[0]->page_count) * 16326 sizeof(struct dma_address)); 16327 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16328 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16329 LPFC_SLI4_MBX_NEMBED); 16330 if (alloclen < length) { 16331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16332 "3098 Allocated DMA memory size (%d) is " 16333 "less than the requested DMA memory size " 16334 "(%d)\n", alloclen, length); 16335 status = -ENOMEM; 16336 goto out; 16337 } 16338 cq_set = mbox->sge_array->addr[0]; 16339 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16340 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16341 16342 for (idx = 0; idx < numcq; idx++) { 16343 cq = cqp[idx]; 16344 eq = hdwq[idx].hba_eq; 16345 if (!cq || !eq) { 16346 status = -ENOMEM; 16347 goto out; 16348 } 16349 if (!phba->sli4_hba.pc_sli4_params.supported) 16350 hw_page_size = cq->page_size; 16351 16352 switch (idx) { 16353 case 0: 16354 bf_set(lpfc_mbx_cq_create_set_page_size, 16355 &cq_set->u.request, 16356 (hw_page_size / SLI4_PAGE_SIZE)); 16357 bf_set(lpfc_mbx_cq_create_set_num_pages, 16358 &cq_set->u.request, cq->page_count); 16359 bf_set(lpfc_mbx_cq_create_set_evt, 16360 &cq_set->u.request, 1); 16361 bf_set(lpfc_mbx_cq_create_set_valid, 16362 &cq_set->u.request, 1); 16363 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16364 &cq_set->u.request, 0); 16365 bf_set(lpfc_mbx_cq_create_set_num_cq, 16366 &cq_set->u.request, numcq); 16367 bf_set(lpfc_mbx_cq_create_set_autovalid, 16368 &cq_set->u.request, 16369 phba->sli4_hba.pc_sli4_params.cqav); 16370 switch (cq->entry_count) { 16371 case 2048: 16372 case 4096: 16373 if (phba->sli4_hba.pc_sli4_params.cqv == 16374 LPFC_Q_CREATE_VERSION_2) { 16375 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16376 &cq_set->u.request, 16377 cq->entry_count); 16378 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16379 &cq_set->u.request, 16380 LPFC_CQ_CNT_WORD7); 16381 break; 16382 } 16383 fallthrough; 16384 default: 16385 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16386 "3118 Bad CQ count. (%d)\n", 16387 cq->entry_count); 16388 if (cq->entry_count < 256) { 16389 status = -EINVAL; 16390 goto out; 16391 } 16392 fallthrough; /* otherwise default to smallest */ 16393 case 256: 16394 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16395 &cq_set->u.request, LPFC_CQ_CNT_256); 16396 break; 16397 case 512: 16398 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16399 &cq_set->u.request, LPFC_CQ_CNT_512); 16400 break; 16401 case 1024: 16402 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16403 &cq_set->u.request, LPFC_CQ_CNT_1024); 16404 break; 16405 } 16406 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16407 &cq_set->u.request, eq->queue_id); 16408 break; 16409 case 1: 16410 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16411 &cq_set->u.request, eq->queue_id); 16412 break; 16413 case 2: 16414 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16415 &cq_set->u.request, eq->queue_id); 16416 break; 16417 case 3: 16418 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16419 &cq_set->u.request, eq->queue_id); 16420 break; 16421 case 4: 16422 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16423 &cq_set->u.request, eq->queue_id); 16424 break; 16425 case 5: 16426 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16427 &cq_set->u.request, eq->queue_id); 16428 break; 16429 case 6: 16430 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16431 &cq_set->u.request, eq->queue_id); 16432 break; 16433 case 7: 16434 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16435 &cq_set->u.request, eq->queue_id); 16436 break; 16437 case 8: 16438 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16439 &cq_set->u.request, eq->queue_id); 16440 break; 16441 case 9: 16442 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16443 &cq_set->u.request, eq->queue_id); 16444 break; 16445 case 10: 16446 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16447 &cq_set->u.request, eq->queue_id); 16448 break; 16449 case 11: 16450 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16451 &cq_set->u.request, eq->queue_id); 16452 break; 16453 case 12: 16454 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16455 &cq_set->u.request, eq->queue_id); 16456 break; 16457 case 13: 16458 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16459 &cq_set->u.request, eq->queue_id); 16460 break; 16461 case 14: 16462 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16463 &cq_set->u.request, eq->queue_id); 16464 break; 16465 case 15: 16466 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16467 &cq_set->u.request, eq->queue_id); 16468 break; 16469 } 16470 16471 /* link the cq onto the parent eq child list */ 16472 list_add_tail(&cq->list, &eq->child_list); 16473 /* Set up completion queue's type and subtype */ 16474 cq->type = type; 16475 cq->subtype = subtype; 16476 cq->assoc_qid = eq->queue_id; 16477 cq->assoc_qp = eq; 16478 cq->host_index = 0; 16479 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16480 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16481 cq->entry_count); 16482 cq->chann = idx; 16483 16484 rc = 0; 16485 list_for_each_entry(dmabuf, &cq->page_list, list) { 16486 memset(dmabuf->virt, 0, hw_page_size); 16487 cnt = page_idx + dmabuf->buffer_tag; 16488 cq_set->u.request.page[cnt].addr_lo = 16489 putPaddrLow(dmabuf->phys); 16490 cq_set->u.request.page[cnt].addr_hi = 16491 putPaddrHigh(dmabuf->phys); 16492 rc++; 16493 } 16494 page_idx += rc; 16495 } 16496 16497 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16498 16499 /* The IOCTL status is embedded in the mailbox subheader. */ 16500 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16501 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16502 if (shdr_status || shdr_add_status || rc) { 16503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16504 "3119 CQ_CREATE_SET mailbox failed with " 16505 "status x%x add_status x%x, mbx status x%x\n", 16506 shdr_status, shdr_add_status, rc); 16507 status = -ENXIO; 16508 goto out; 16509 } 16510 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16511 if (rc == 0xFFFF) { 16512 status = -ENXIO; 16513 goto out; 16514 } 16515 16516 for (idx = 0; idx < numcq; idx++) { 16517 cq = cqp[idx]; 16518 cq->queue_id = rc + idx; 16519 if (cq->queue_id > phba->sli4_hba.cq_max) 16520 phba->sli4_hba.cq_max = cq->queue_id; 16521 } 16522 16523 out: 16524 lpfc_sli4_mbox_cmd_free(phba, mbox); 16525 return status; 16526 } 16527 16528 /** 16529 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16530 * @phba: HBA structure that indicates port to create a queue on. 16531 * @mq: The queue structure to use to create the mailbox queue. 16532 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16533 * @cq: The completion queue to associate with this cq. 16534 * 16535 * This function provides failback (fb) functionality when the 16536 * mq_create_ext fails on older FW generations. It's purpose is identical 16537 * to mq_create_ext otherwise. 16538 * 16539 * This routine cannot fail as all attributes were previously accessed and 16540 * initialized in mq_create_ext. 16541 **/ 16542 static void 16543 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16544 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16545 { 16546 struct lpfc_mbx_mq_create *mq_create; 16547 struct lpfc_dmabuf *dmabuf; 16548 int length; 16549 16550 length = (sizeof(struct lpfc_mbx_mq_create) - 16551 sizeof(struct lpfc_sli4_cfg_mhdr)); 16552 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16553 LPFC_MBOX_OPCODE_MQ_CREATE, 16554 length, LPFC_SLI4_MBX_EMBED); 16555 mq_create = &mbox->u.mqe.un.mq_create; 16556 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16557 mq->page_count); 16558 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16559 cq->queue_id); 16560 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16561 switch (mq->entry_count) { 16562 case 16: 16563 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16564 LPFC_MQ_RING_SIZE_16); 16565 break; 16566 case 32: 16567 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16568 LPFC_MQ_RING_SIZE_32); 16569 break; 16570 case 64: 16571 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16572 LPFC_MQ_RING_SIZE_64); 16573 break; 16574 case 128: 16575 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16576 LPFC_MQ_RING_SIZE_128); 16577 break; 16578 } 16579 list_for_each_entry(dmabuf, &mq->page_list, list) { 16580 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16581 putPaddrLow(dmabuf->phys); 16582 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16583 putPaddrHigh(dmabuf->phys); 16584 } 16585 } 16586 16587 /** 16588 * lpfc_mq_create - Create a mailbox Queue on the HBA 16589 * @phba: HBA structure that indicates port to create a queue on. 16590 * @mq: The queue structure to use to create the mailbox queue. 16591 * @cq: The completion queue to associate with this cq. 16592 * @subtype: The queue's subtype. 16593 * 16594 * This function creates a mailbox queue, as detailed in @mq, on a port, 16595 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16596 * 16597 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16598 * is used to get the entry count and entry size that are necessary to 16599 * determine the number of pages to allocate and use for this queue. This 16600 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16601 * mailbox queue. This function is asynchronous and will wait for the mailbox 16602 * command to finish before continuing. 16603 * 16604 * On success this function will return a zero. If unable to allocate enough 16605 * memory this function will return -ENOMEM. If the queue create mailbox command 16606 * fails this function will return -ENXIO. 16607 **/ 16608 int32_t 16609 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16610 struct lpfc_queue *cq, uint32_t subtype) 16611 { 16612 struct lpfc_mbx_mq_create *mq_create; 16613 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16614 struct lpfc_dmabuf *dmabuf; 16615 LPFC_MBOXQ_t *mbox; 16616 int rc, length, status = 0; 16617 uint32_t shdr_status, shdr_add_status; 16618 union lpfc_sli4_cfg_shdr *shdr; 16619 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16620 16621 /* sanity check on queue memory */ 16622 if (!mq || !cq) 16623 return -ENODEV; 16624 if (!phba->sli4_hba.pc_sli4_params.supported) 16625 hw_page_size = SLI4_PAGE_SIZE; 16626 16627 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16628 if (!mbox) 16629 return -ENOMEM; 16630 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16631 sizeof(struct lpfc_sli4_cfg_mhdr)); 16632 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16633 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16634 length, LPFC_SLI4_MBX_EMBED); 16635 16636 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16637 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16638 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16639 &mq_create_ext->u.request, mq->page_count); 16640 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16641 &mq_create_ext->u.request, 1); 16642 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16643 &mq_create_ext->u.request, 1); 16644 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16645 &mq_create_ext->u.request, 1); 16646 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16647 &mq_create_ext->u.request, 1); 16648 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16649 &mq_create_ext->u.request, 1); 16650 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16651 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16652 phba->sli4_hba.pc_sli4_params.mqv); 16653 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16654 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16655 cq->queue_id); 16656 else 16657 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16658 cq->queue_id); 16659 switch (mq->entry_count) { 16660 default: 16661 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16662 "0362 Unsupported MQ count. (%d)\n", 16663 mq->entry_count); 16664 if (mq->entry_count < 16) { 16665 status = -EINVAL; 16666 goto out; 16667 } 16668 fallthrough; /* otherwise default to smallest count */ 16669 case 16: 16670 bf_set(lpfc_mq_context_ring_size, 16671 &mq_create_ext->u.request.context, 16672 LPFC_MQ_RING_SIZE_16); 16673 break; 16674 case 32: 16675 bf_set(lpfc_mq_context_ring_size, 16676 &mq_create_ext->u.request.context, 16677 LPFC_MQ_RING_SIZE_32); 16678 break; 16679 case 64: 16680 bf_set(lpfc_mq_context_ring_size, 16681 &mq_create_ext->u.request.context, 16682 LPFC_MQ_RING_SIZE_64); 16683 break; 16684 case 128: 16685 bf_set(lpfc_mq_context_ring_size, 16686 &mq_create_ext->u.request.context, 16687 LPFC_MQ_RING_SIZE_128); 16688 break; 16689 } 16690 list_for_each_entry(dmabuf, &mq->page_list, list) { 16691 memset(dmabuf->virt, 0, hw_page_size); 16692 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16693 putPaddrLow(dmabuf->phys); 16694 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16695 putPaddrHigh(dmabuf->phys); 16696 } 16697 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16698 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16699 &mq_create_ext->u.response); 16700 if (rc != MBX_SUCCESS) { 16701 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16702 "2795 MQ_CREATE_EXT failed with " 16703 "status x%x. Failback to MQ_CREATE.\n", 16704 rc); 16705 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16706 mq_create = &mbox->u.mqe.un.mq_create; 16707 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16708 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16709 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16710 &mq_create->u.response); 16711 } 16712 16713 /* The IOCTL status is embedded in the mailbox subheader. */ 16714 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16715 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16716 if (shdr_status || shdr_add_status || rc) { 16717 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16718 "2502 MQ_CREATE mailbox failed with " 16719 "status x%x add_status x%x, mbx status x%x\n", 16720 shdr_status, shdr_add_status, rc); 16721 status = -ENXIO; 16722 goto out; 16723 } 16724 if (mq->queue_id == 0xFFFF) { 16725 status = -ENXIO; 16726 goto out; 16727 } 16728 mq->type = LPFC_MQ; 16729 mq->assoc_qid = cq->queue_id; 16730 mq->subtype = subtype; 16731 mq->host_index = 0; 16732 mq->hba_index = 0; 16733 16734 /* link the mq onto the parent cq child list */ 16735 list_add_tail(&mq->list, &cq->child_list); 16736 out: 16737 mempool_free(mbox, phba->mbox_mem_pool); 16738 return status; 16739 } 16740 16741 /** 16742 * lpfc_wq_create - Create a Work Queue on the HBA 16743 * @phba: HBA structure that indicates port to create a queue on. 16744 * @wq: The queue structure to use to create the work queue. 16745 * @cq: The completion queue to bind this work queue to. 16746 * @subtype: The subtype of the work queue indicating its functionality. 16747 * 16748 * This function creates a work queue, as detailed in @wq, on a port, described 16749 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16750 * 16751 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16752 * is used to get the entry count and entry size that are necessary to 16753 * determine the number of pages to allocate and use for this queue. The @cq 16754 * is used to indicate which completion queue to bind this work queue to. This 16755 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16756 * work queue. This function is asynchronous and will wait for the mailbox 16757 * command to finish before continuing. 16758 * 16759 * On success this function will return a zero. If unable to allocate enough 16760 * memory this function will return -ENOMEM. If the queue create mailbox command 16761 * fails this function will return -ENXIO. 16762 **/ 16763 int 16764 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16765 struct lpfc_queue *cq, uint32_t subtype) 16766 { 16767 struct lpfc_mbx_wq_create *wq_create; 16768 struct lpfc_dmabuf *dmabuf; 16769 LPFC_MBOXQ_t *mbox; 16770 int rc, length, status = 0; 16771 uint32_t shdr_status, shdr_add_status; 16772 union lpfc_sli4_cfg_shdr *shdr; 16773 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16774 struct dma_address *page; 16775 void __iomem *bar_memmap_p; 16776 uint32_t db_offset; 16777 uint16_t pci_barset; 16778 uint8_t dpp_barset; 16779 uint32_t dpp_offset; 16780 uint8_t wq_create_version; 16781 #ifdef CONFIG_X86 16782 unsigned long pg_addr; 16783 #endif 16784 16785 /* sanity check on queue memory */ 16786 if (!wq || !cq) 16787 return -ENODEV; 16788 if (!phba->sli4_hba.pc_sli4_params.supported) 16789 hw_page_size = wq->page_size; 16790 16791 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16792 if (!mbox) 16793 return -ENOMEM; 16794 length = (sizeof(struct lpfc_mbx_wq_create) - 16795 sizeof(struct lpfc_sli4_cfg_mhdr)); 16796 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16797 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16798 length, LPFC_SLI4_MBX_EMBED); 16799 wq_create = &mbox->u.mqe.un.wq_create; 16800 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16801 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16802 wq->page_count); 16803 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16804 cq->queue_id); 16805 16806 /* wqv is the earliest version supported, NOT the latest */ 16807 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16808 phba->sli4_hba.pc_sli4_params.wqv); 16809 16810 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16811 (wq->page_size > SLI4_PAGE_SIZE)) 16812 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16813 else 16814 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16815 16816 switch (wq_create_version) { 16817 case LPFC_Q_CREATE_VERSION_1: 16818 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16819 wq->entry_count); 16820 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16821 LPFC_Q_CREATE_VERSION_1); 16822 16823 switch (wq->entry_size) { 16824 default: 16825 case 64: 16826 bf_set(lpfc_mbx_wq_create_wqe_size, 16827 &wq_create->u.request_1, 16828 LPFC_WQ_WQE_SIZE_64); 16829 break; 16830 case 128: 16831 bf_set(lpfc_mbx_wq_create_wqe_size, 16832 &wq_create->u.request_1, 16833 LPFC_WQ_WQE_SIZE_128); 16834 break; 16835 } 16836 /* Request DPP by default */ 16837 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16838 bf_set(lpfc_mbx_wq_create_page_size, 16839 &wq_create->u.request_1, 16840 (wq->page_size / SLI4_PAGE_SIZE)); 16841 page = wq_create->u.request_1.page; 16842 break; 16843 default: 16844 page = wq_create->u.request.page; 16845 break; 16846 } 16847 16848 list_for_each_entry(dmabuf, &wq->page_list, list) { 16849 memset(dmabuf->virt, 0, hw_page_size); 16850 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16851 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16852 } 16853 16854 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16855 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16856 16857 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16858 /* The IOCTL status is embedded in the mailbox subheader. */ 16859 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16860 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16861 if (shdr_status || shdr_add_status || rc) { 16862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16863 "2503 WQ_CREATE mailbox failed with " 16864 "status x%x add_status x%x, mbx status x%x\n", 16865 shdr_status, shdr_add_status, rc); 16866 status = -ENXIO; 16867 goto out; 16868 } 16869 16870 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16871 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16872 &wq_create->u.response); 16873 else 16874 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16875 &wq_create->u.response_1); 16876 16877 if (wq->queue_id == 0xFFFF) { 16878 status = -ENXIO; 16879 goto out; 16880 } 16881 16882 wq->db_format = LPFC_DB_LIST_FORMAT; 16883 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16884 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16885 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16886 &wq_create->u.response); 16887 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16888 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16889 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16890 "3265 WQ[%d] doorbell format " 16891 "not supported: x%x\n", 16892 wq->queue_id, wq->db_format); 16893 status = -EINVAL; 16894 goto out; 16895 } 16896 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16897 &wq_create->u.response); 16898 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16899 pci_barset); 16900 if (!bar_memmap_p) { 16901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16902 "3263 WQ[%d] failed to memmap " 16903 "pci barset:x%x\n", 16904 wq->queue_id, pci_barset); 16905 status = -ENOMEM; 16906 goto out; 16907 } 16908 db_offset = wq_create->u.response.doorbell_offset; 16909 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16910 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16912 "3252 WQ[%d] doorbell offset " 16913 "not supported: x%x\n", 16914 wq->queue_id, db_offset); 16915 status = -EINVAL; 16916 goto out; 16917 } 16918 wq->db_regaddr = bar_memmap_p + db_offset; 16919 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16920 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16921 "format:x%x\n", wq->queue_id, 16922 pci_barset, db_offset, wq->db_format); 16923 } else 16924 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16925 } else { 16926 /* Check if DPP was honored by the firmware */ 16927 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16928 &wq_create->u.response_1); 16929 if (wq->dpp_enable) { 16930 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16931 &wq_create->u.response_1); 16932 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16933 pci_barset); 16934 if (!bar_memmap_p) { 16935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16936 "3267 WQ[%d] failed to memmap " 16937 "pci barset:x%x\n", 16938 wq->queue_id, pci_barset); 16939 status = -ENOMEM; 16940 goto out; 16941 } 16942 db_offset = wq_create->u.response_1.doorbell_offset; 16943 wq->db_regaddr = bar_memmap_p + db_offset; 16944 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16945 &wq_create->u.response_1); 16946 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16947 &wq_create->u.response_1); 16948 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16949 dpp_barset); 16950 if (!bar_memmap_p) { 16951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16952 "3268 WQ[%d] failed to memmap " 16953 "pci barset:x%x\n", 16954 wq->queue_id, dpp_barset); 16955 status = -ENOMEM; 16956 goto out; 16957 } 16958 dpp_offset = wq_create->u.response_1.dpp_offset; 16959 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16960 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16961 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16962 "dpp_id:x%x dpp_barset:x%x " 16963 "dpp_offset:x%x\n", 16964 wq->queue_id, pci_barset, db_offset, 16965 wq->dpp_id, dpp_barset, dpp_offset); 16966 16967 #ifdef CONFIG_X86 16968 /* Enable combined writes for DPP aperture */ 16969 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16970 rc = set_memory_wc(pg_addr, 1); 16971 if (rc) { 16972 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16973 "3272 Cannot setup Combined " 16974 "Write on WQ[%d] - disable DPP\n", 16975 wq->queue_id); 16976 phba->cfg_enable_dpp = 0; 16977 } 16978 #else 16979 phba->cfg_enable_dpp = 0; 16980 #endif 16981 } else 16982 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16983 } 16984 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16985 if (wq->pring == NULL) { 16986 status = -ENOMEM; 16987 goto out; 16988 } 16989 wq->type = LPFC_WQ; 16990 wq->assoc_qid = cq->queue_id; 16991 wq->subtype = subtype; 16992 wq->host_index = 0; 16993 wq->hba_index = 0; 16994 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16995 16996 /* link the wq onto the parent cq child list */ 16997 list_add_tail(&wq->list, &cq->child_list); 16998 out: 16999 mempool_free(mbox, phba->mbox_mem_pool); 17000 return status; 17001 } 17002 17003 /** 17004 * lpfc_rq_create - Create a Receive Queue on the HBA 17005 * @phba: HBA structure that indicates port to create a queue on. 17006 * @hrq: The queue structure to use to create the header receive queue. 17007 * @drq: The queue structure to use to create the data receive queue. 17008 * @cq: The completion queue to bind this work queue to. 17009 * @subtype: The subtype of the work queue indicating its functionality. 17010 * 17011 * This function creates a receive buffer queue pair , as detailed in @hrq and 17012 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17013 * to the HBA. 17014 * 17015 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17016 * struct is used to get the entry count that is necessary to determine the 17017 * number of pages to use for this queue. The @cq is used to indicate which 17018 * completion queue to bind received buffers that are posted to these queues to. 17019 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17020 * receive queue pair. This function is asynchronous and will wait for the 17021 * mailbox command to finish before continuing. 17022 * 17023 * On success this function will return a zero. If unable to allocate enough 17024 * memory this function will return -ENOMEM. If the queue create mailbox command 17025 * fails this function will return -ENXIO. 17026 **/ 17027 int 17028 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17029 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17030 { 17031 struct lpfc_mbx_rq_create *rq_create; 17032 struct lpfc_dmabuf *dmabuf; 17033 LPFC_MBOXQ_t *mbox; 17034 int rc, length, status = 0; 17035 uint32_t shdr_status, shdr_add_status; 17036 union lpfc_sli4_cfg_shdr *shdr; 17037 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17038 void __iomem *bar_memmap_p; 17039 uint32_t db_offset; 17040 uint16_t pci_barset; 17041 17042 /* sanity check on queue memory */ 17043 if (!hrq || !drq || !cq) 17044 return -ENODEV; 17045 if (!phba->sli4_hba.pc_sli4_params.supported) 17046 hw_page_size = SLI4_PAGE_SIZE; 17047 17048 if (hrq->entry_count != drq->entry_count) 17049 return -EINVAL; 17050 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17051 if (!mbox) 17052 return -ENOMEM; 17053 length = (sizeof(struct lpfc_mbx_rq_create) - 17054 sizeof(struct lpfc_sli4_cfg_mhdr)); 17055 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17056 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17057 length, LPFC_SLI4_MBX_EMBED); 17058 rq_create = &mbox->u.mqe.un.rq_create; 17059 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17060 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17061 phba->sli4_hba.pc_sli4_params.rqv); 17062 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17063 bf_set(lpfc_rq_context_rqe_count_1, 17064 &rq_create->u.request.context, 17065 hrq->entry_count); 17066 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17067 bf_set(lpfc_rq_context_rqe_size, 17068 &rq_create->u.request.context, 17069 LPFC_RQE_SIZE_8); 17070 bf_set(lpfc_rq_context_page_size, 17071 &rq_create->u.request.context, 17072 LPFC_RQ_PAGE_SIZE_4096); 17073 } else { 17074 switch (hrq->entry_count) { 17075 default: 17076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17077 "2535 Unsupported RQ count. (%d)\n", 17078 hrq->entry_count); 17079 if (hrq->entry_count < 512) { 17080 status = -EINVAL; 17081 goto out; 17082 } 17083 fallthrough; /* otherwise default to smallest count */ 17084 case 512: 17085 bf_set(lpfc_rq_context_rqe_count, 17086 &rq_create->u.request.context, 17087 LPFC_RQ_RING_SIZE_512); 17088 break; 17089 case 1024: 17090 bf_set(lpfc_rq_context_rqe_count, 17091 &rq_create->u.request.context, 17092 LPFC_RQ_RING_SIZE_1024); 17093 break; 17094 case 2048: 17095 bf_set(lpfc_rq_context_rqe_count, 17096 &rq_create->u.request.context, 17097 LPFC_RQ_RING_SIZE_2048); 17098 break; 17099 case 4096: 17100 bf_set(lpfc_rq_context_rqe_count, 17101 &rq_create->u.request.context, 17102 LPFC_RQ_RING_SIZE_4096); 17103 break; 17104 } 17105 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17106 LPFC_HDR_BUF_SIZE); 17107 } 17108 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17109 cq->queue_id); 17110 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17111 hrq->page_count); 17112 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17113 memset(dmabuf->virt, 0, hw_page_size); 17114 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17115 putPaddrLow(dmabuf->phys); 17116 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17117 putPaddrHigh(dmabuf->phys); 17118 } 17119 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17120 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17121 17122 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17123 /* The IOCTL status is embedded in the mailbox subheader. */ 17124 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17125 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17126 if (shdr_status || shdr_add_status || rc) { 17127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17128 "2504 RQ_CREATE mailbox failed with " 17129 "status x%x add_status x%x, mbx status x%x\n", 17130 shdr_status, shdr_add_status, rc); 17131 status = -ENXIO; 17132 goto out; 17133 } 17134 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17135 if (hrq->queue_id == 0xFFFF) { 17136 status = -ENXIO; 17137 goto out; 17138 } 17139 17140 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17141 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17142 &rq_create->u.response); 17143 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17144 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17146 "3262 RQ [%d] doorbell format not " 17147 "supported: x%x\n", hrq->queue_id, 17148 hrq->db_format); 17149 status = -EINVAL; 17150 goto out; 17151 } 17152 17153 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17154 &rq_create->u.response); 17155 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17156 if (!bar_memmap_p) { 17157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17158 "3269 RQ[%d] failed to memmap pci " 17159 "barset:x%x\n", hrq->queue_id, 17160 pci_barset); 17161 status = -ENOMEM; 17162 goto out; 17163 } 17164 17165 db_offset = rq_create->u.response.doorbell_offset; 17166 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17167 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17168 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17169 "3270 RQ[%d] doorbell offset not " 17170 "supported: x%x\n", hrq->queue_id, 17171 db_offset); 17172 status = -EINVAL; 17173 goto out; 17174 } 17175 hrq->db_regaddr = bar_memmap_p + db_offset; 17176 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17177 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17178 "format:x%x\n", hrq->queue_id, pci_barset, 17179 db_offset, hrq->db_format); 17180 } else { 17181 hrq->db_format = LPFC_DB_RING_FORMAT; 17182 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17183 } 17184 hrq->type = LPFC_HRQ; 17185 hrq->assoc_qid = cq->queue_id; 17186 hrq->subtype = subtype; 17187 hrq->host_index = 0; 17188 hrq->hba_index = 0; 17189 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17190 17191 /* now create the data queue */ 17192 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17193 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17194 length, LPFC_SLI4_MBX_EMBED); 17195 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17196 phba->sli4_hba.pc_sli4_params.rqv); 17197 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17198 bf_set(lpfc_rq_context_rqe_count_1, 17199 &rq_create->u.request.context, hrq->entry_count); 17200 if (subtype == LPFC_NVMET) 17201 rq_create->u.request.context.buffer_size = 17202 LPFC_NVMET_DATA_BUF_SIZE; 17203 else 17204 rq_create->u.request.context.buffer_size = 17205 LPFC_DATA_BUF_SIZE; 17206 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17207 LPFC_RQE_SIZE_8); 17208 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17209 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17210 } else { 17211 switch (drq->entry_count) { 17212 default: 17213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17214 "2536 Unsupported RQ count. (%d)\n", 17215 drq->entry_count); 17216 if (drq->entry_count < 512) { 17217 status = -EINVAL; 17218 goto out; 17219 } 17220 fallthrough; /* otherwise default to smallest count */ 17221 case 512: 17222 bf_set(lpfc_rq_context_rqe_count, 17223 &rq_create->u.request.context, 17224 LPFC_RQ_RING_SIZE_512); 17225 break; 17226 case 1024: 17227 bf_set(lpfc_rq_context_rqe_count, 17228 &rq_create->u.request.context, 17229 LPFC_RQ_RING_SIZE_1024); 17230 break; 17231 case 2048: 17232 bf_set(lpfc_rq_context_rqe_count, 17233 &rq_create->u.request.context, 17234 LPFC_RQ_RING_SIZE_2048); 17235 break; 17236 case 4096: 17237 bf_set(lpfc_rq_context_rqe_count, 17238 &rq_create->u.request.context, 17239 LPFC_RQ_RING_SIZE_4096); 17240 break; 17241 } 17242 if (subtype == LPFC_NVMET) 17243 bf_set(lpfc_rq_context_buf_size, 17244 &rq_create->u.request.context, 17245 LPFC_NVMET_DATA_BUF_SIZE); 17246 else 17247 bf_set(lpfc_rq_context_buf_size, 17248 &rq_create->u.request.context, 17249 LPFC_DATA_BUF_SIZE); 17250 } 17251 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17252 cq->queue_id); 17253 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17254 drq->page_count); 17255 list_for_each_entry(dmabuf, &drq->page_list, list) { 17256 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17257 putPaddrLow(dmabuf->phys); 17258 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17259 putPaddrHigh(dmabuf->phys); 17260 } 17261 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17262 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17263 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17264 /* The IOCTL status is embedded in the mailbox subheader. */ 17265 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17266 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17267 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17268 if (shdr_status || shdr_add_status || rc) { 17269 status = -ENXIO; 17270 goto out; 17271 } 17272 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17273 if (drq->queue_id == 0xFFFF) { 17274 status = -ENXIO; 17275 goto out; 17276 } 17277 drq->type = LPFC_DRQ; 17278 drq->assoc_qid = cq->queue_id; 17279 drq->subtype = subtype; 17280 drq->host_index = 0; 17281 drq->hba_index = 0; 17282 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17283 17284 /* link the header and data RQs onto the parent cq child list */ 17285 list_add_tail(&hrq->list, &cq->child_list); 17286 list_add_tail(&drq->list, &cq->child_list); 17287 17288 out: 17289 mempool_free(mbox, phba->mbox_mem_pool); 17290 return status; 17291 } 17292 17293 /** 17294 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17295 * @phba: HBA structure that indicates port to create a queue on. 17296 * @hrqp: The queue structure array to use to create the header receive queues. 17297 * @drqp: The queue structure array to use to create the data receive queues. 17298 * @cqp: The completion queue array to bind these receive queues to. 17299 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17300 * 17301 * This function creates a receive buffer queue pair , as detailed in @hrq and 17302 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17303 * to the HBA. 17304 * 17305 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17306 * struct is used to get the entry count that is necessary to determine the 17307 * number of pages to use for this queue. The @cq is used to indicate which 17308 * completion queue to bind received buffers that are posted to these queues to. 17309 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17310 * receive queue pair. This function is asynchronous and will wait for the 17311 * mailbox command to finish before continuing. 17312 * 17313 * On success this function will return a zero. If unable to allocate enough 17314 * memory this function will return -ENOMEM. If the queue create mailbox command 17315 * fails this function will return -ENXIO. 17316 **/ 17317 int 17318 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17319 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17320 uint32_t subtype) 17321 { 17322 struct lpfc_queue *hrq, *drq, *cq; 17323 struct lpfc_mbx_rq_create_v2 *rq_create; 17324 struct lpfc_dmabuf *dmabuf; 17325 LPFC_MBOXQ_t *mbox; 17326 int rc, length, alloclen, status = 0; 17327 int cnt, idx, numrq, page_idx = 0; 17328 uint32_t shdr_status, shdr_add_status; 17329 union lpfc_sli4_cfg_shdr *shdr; 17330 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17331 17332 numrq = phba->cfg_nvmet_mrq; 17333 /* sanity check on array memory */ 17334 if (!hrqp || !drqp || !cqp || !numrq) 17335 return -ENODEV; 17336 if (!phba->sli4_hba.pc_sli4_params.supported) 17337 hw_page_size = SLI4_PAGE_SIZE; 17338 17339 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17340 if (!mbox) 17341 return -ENOMEM; 17342 17343 length = sizeof(struct lpfc_mbx_rq_create_v2); 17344 length += ((2 * numrq * hrqp[0]->page_count) * 17345 sizeof(struct dma_address)); 17346 17347 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17348 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17349 LPFC_SLI4_MBX_NEMBED); 17350 if (alloclen < length) { 17351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17352 "3099 Allocated DMA memory size (%d) is " 17353 "less than the requested DMA memory size " 17354 "(%d)\n", alloclen, length); 17355 status = -ENOMEM; 17356 goto out; 17357 } 17358 17359 17360 17361 rq_create = mbox->sge_array->addr[0]; 17362 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17363 17364 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17365 cnt = 0; 17366 17367 for (idx = 0; idx < numrq; idx++) { 17368 hrq = hrqp[idx]; 17369 drq = drqp[idx]; 17370 cq = cqp[idx]; 17371 17372 /* sanity check on queue memory */ 17373 if (!hrq || !drq || !cq) { 17374 status = -ENODEV; 17375 goto out; 17376 } 17377 17378 if (hrq->entry_count != drq->entry_count) { 17379 status = -EINVAL; 17380 goto out; 17381 } 17382 17383 if (idx == 0) { 17384 bf_set(lpfc_mbx_rq_create_num_pages, 17385 &rq_create->u.request, 17386 hrq->page_count); 17387 bf_set(lpfc_mbx_rq_create_rq_cnt, 17388 &rq_create->u.request, (numrq * 2)); 17389 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17390 1); 17391 bf_set(lpfc_rq_context_base_cq, 17392 &rq_create->u.request.context, 17393 cq->queue_id); 17394 bf_set(lpfc_rq_context_data_size, 17395 &rq_create->u.request.context, 17396 LPFC_NVMET_DATA_BUF_SIZE); 17397 bf_set(lpfc_rq_context_hdr_size, 17398 &rq_create->u.request.context, 17399 LPFC_HDR_BUF_SIZE); 17400 bf_set(lpfc_rq_context_rqe_count_1, 17401 &rq_create->u.request.context, 17402 hrq->entry_count); 17403 bf_set(lpfc_rq_context_rqe_size, 17404 &rq_create->u.request.context, 17405 LPFC_RQE_SIZE_8); 17406 bf_set(lpfc_rq_context_page_size, 17407 &rq_create->u.request.context, 17408 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17409 } 17410 rc = 0; 17411 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17412 memset(dmabuf->virt, 0, hw_page_size); 17413 cnt = page_idx + dmabuf->buffer_tag; 17414 rq_create->u.request.page[cnt].addr_lo = 17415 putPaddrLow(dmabuf->phys); 17416 rq_create->u.request.page[cnt].addr_hi = 17417 putPaddrHigh(dmabuf->phys); 17418 rc++; 17419 } 17420 page_idx += rc; 17421 17422 rc = 0; 17423 list_for_each_entry(dmabuf, &drq->page_list, list) { 17424 memset(dmabuf->virt, 0, hw_page_size); 17425 cnt = page_idx + dmabuf->buffer_tag; 17426 rq_create->u.request.page[cnt].addr_lo = 17427 putPaddrLow(dmabuf->phys); 17428 rq_create->u.request.page[cnt].addr_hi = 17429 putPaddrHigh(dmabuf->phys); 17430 rc++; 17431 } 17432 page_idx += rc; 17433 17434 hrq->db_format = LPFC_DB_RING_FORMAT; 17435 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17436 hrq->type = LPFC_HRQ; 17437 hrq->assoc_qid = cq->queue_id; 17438 hrq->subtype = subtype; 17439 hrq->host_index = 0; 17440 hrq->hba_index = 0; 17441 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17442 17443 drq->db_format = LPFC_DB_RING_FORMAT; 17444 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17445 drq->type = LPFC_DRQ; 17446 drq->assoc_qid = cq->queue_id; 17447 drq->subtype = subtype; 17448 drq->host_index = 0; 17449 drq->hba_index = 0; 17450 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17451 17452 list_add_tail(&hrq->list, &cq->child_list); 17453 list_add_tail(&drq->list, &cq->child_list); 17454 } 17455 17456 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17457 /* The IOCTL status is embedded in the mailbox subheader. */ 17458 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17459 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17460 if (shdr_status || shdr_add_status || rc) { 17461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17462 "3120 RQ_CREATE mailbox failed with " 17463 "status x%x add_status x%x, mbx status x%x\n", 17464 shdr_status, shdr_add_status, rc); 17465 status = -ENXIO; 17466 goto out; 17467 } 17468 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17469 if (rc == 0xFFFF) { 17470 status = -ENXIO; 17471 goto out; 17472 } 17473 17474 /* Initialize all RQs with associated queue id */ 17475 for (idx = 0; idx < numrq; idx++) { 17476 hrq = hrqp[idx]; 17477 hrq->queue_id = rc + (2 * idx); 17478 drq = drqp[idx]; 17479 drq->queue_id = rc + (2 * idx) + 1; 17480 } 17481 17482 out: 17483 lpfc_sli4_mbox_cmd_free(phba, mbox); 17484 return status; 17485 } 17486 17487 /** 17488 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17489 * @phba: HBA structure that indicates port to destroy a queue on. 17490 * @eq: The queue structure associated with the queue to destroy. 17491 * 17492 * This function destroys a queue, as detailed in @eq by sending an mailbox 17493 * command, specific to the type of queue, to the HBA. 17494 * 17495 * The @eq struct is used to get the queue ID of the queue to destroy. 17496 * 17497 * On success this function will return a zero. If the queue destroy mailbox 17498 * command fails this function will return -ENXIO. 17499 **/ 17500 int 17501 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17502 { 17503 LPFC_MBOXQ_t *mbox; 17504 int rc, length, status = 0; 17505 uint32_t shdr_status, shdr_add_status; 17506 union lpfc_sli4_cfg_shdr *shdr; 17507 17508 /* sanity check on queue memory */ 17509 if (!eq) 17510 return -ENODEV; 17511 17512 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17513 if (!mbox) 17514 return -ENOMEM; 17515 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17516 sizeof(struct lpfc_sli4_cfg_mhdr)); 17517 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17518 LPFC_MBOX_OPCODE_EQ_DESTROY, 17519 length, LPFC_SLI4_MBX_EMBED); 17520 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17521 eq->queue_id); 17522 mbox->vport = eq->phba->pport; 17523 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17524 17525 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17526 /* The IOCTL status is embedded in the mailbox subheader. */ 17527 shdr = (union lpfc_sli4_cfg_shdr *) 17528 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17529 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17530 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17531 if (shdr_status || shdr_add_status || rc) { 17532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17533 "2505 EQ_DESTROY mailbox failed with " 17534 "status x%x add_status x%x, mbx status x%x\n", 17535 shdr_status, shdr_add_status, rc); 17536 status = -ENXIO; 17537 } 17538 17539 /* Remove eq from any list */ 17540 list_del_init(&eq->list); 17541 mempool_free(mbox, eq->phba->mbox_mem_pool); 17542 return status; 17543 } 17544 17545 /** 17546 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17547 * @phba: HBA structure that indicates port to destroy a queue on. 17548 * @cq: The queue structure associated with the queue to destroy. 17549 * 17550 * This function destroys a queue, as detailed in @cq by sending an mailbox 17551 * command, specific to the type of queue, to the HBA. 17552 * 17553 * The @cq struct is used to get the queue ID of the queue to destroy. 17554 * 17555 * On success this function will return a zero. If the queue destroy mailbox 17556 * command fails this function will return -ENXIO. 17557 **/ 17558 int 17559 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17560 { 17561 LPFC_MBOXQ_t *mbox; 17562 int rc, length, status = 0; 17563 uint32_t shdr_status, shdr_add_status; 17564 union lpfc_sli4_cfg_shdr *shdr; 17565 17566 /* sanity check on queue memory */ 17567 if (!cq) 17568 return -ENODEV; 17569 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17570 if (!mbox) 17571 return -ENOMEM; 17572 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17573 sizeof(struct lpfc_sli4_cfg_mhdr)); 17574 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17575 LPFC_MBOX_OPCODE_CQ_DESTROY, 17576 length, LPFC_SLI4_MBX_EMBED); 17577 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17578 cq->queue_id); 17579 mbox->vport = cq->phba->pport; 17580 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17581 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17582 /* The IOCTL status is embedded in the mailbox subheader. */ 17583 shdr = (union lpfc_sli4_cfg_shdr *) 17584 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17585 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17586 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17587 if (shdr_status || shdr_add_status || rc) { 17588 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17589 "2506 CQ_DESTROY mailbox failed with " 17590 "status x%x add_status x%x, mbx status x%x\n", 17591 shdr_status, shdr_add_status, rc); 17592 status = -ENXIO; 17593 } 17594 /* Remove cq from any list */ 17595 list_del_init(&cq->list); 17596 mempool_free(mbox, cq->phba->mbox_mem_pool); 17597 return status; 17598 } 17599 17600 /** 17601 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17602 * @phba: HBA structure that indicates port to destroy a queue on. 17603 * @mq: The queue structure associated with the queue to destroy. 17604 * 17605 * This function destroys a queue, as detailed in @mq by sending an mailbox 17606 * command, specific to the type of queue, to the HBA. 17607 * 17608 * The @mq struct is used to get the queue ID of the queue to destroy. 17609 * 17610 * On success this function will return a zero. If the queue destroy mailbox 17611 * command fails this function will return -ENXIO. 17612 **/ 17613 int 17614 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17615 { 17616 LPFC_MBOXQ_t *mbox; 17617 int rc, length, status = 0; 17618 uint32_t shdr_status, shdr_add_status; 17619 union lpfc_sli4_cfg_shdr *shdr; 17620 17621 /* sanity check on queue memory */ 17622 if (!mq) 17623 return -ENODEV; 17624 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17625 if (!mbox) 17626 return -ENOMEM; 17627 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17628 sizeof(struct lpfc_sli4_cfg_mhdr)); 17629 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17630 LPFC_MBOX_OPCODE_MQ_DESTROY, 17631 length, LPFC_SLI4_MBX_EMBED); 17632 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17633 mq->queue_id); 17634 mbox->vport = mq->phba->pport; 17635 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17636 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17637 /* The IOCTL status is embedded in the mailbox subheader. */ 17638 shdr = (union lpfc_sli4_cfg_shdr *) 17639 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17640 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17641 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17642 if (shdr_status || shdr_add_status || rc) { 17643 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17644 "2507 MQ_DESTROY mailbox failed with " 17645 "status x%x add_status x%x, mbx status x%x\n", 17646 shdr_status, shdr_add_status, rc); 17647 status = -ENXIO; 17648 } 17649 /* Remove mq from any list */ 17650 list_del_init(&mq->list); 17651 mempool_free(mbox, mq->phba->mbox_mem_pool); 17652 return status; 17653 } 17654 17655 /** 17656 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17657 * @phba: HBA structure that indicates port to destroy a queue on. 17658 * @wq: The queue structure associated with the queue to destroy. 17659 * 17660 * This function destroys a queue, as detailed in @wq by sending an mailbox 17661 * command, specific to the type of queue, to the HBA. 17662 * 17663 * The @wq struct is used to get the queue ID of the queue to destroy. 17664 * 17665 * On success this function will return a zero. If the queue destroy mailbox 17666 * command fails this function will return -ENXIO. 17667 **/ 17668 int 17669 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17670 { 17671 LPFC_MBOXQ_t *mbox; 17672 int rc, length, status = 0; 17673 uint32_t shdr_status, shdr_add_status; 17674 union lpfc_sli4_cfg_shdr *shdr; 17675 17676 /* sanity check on queue memory */ 17677 if (!wq) 17678 return -ENODEV; 17679 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17680 if (!mbox) 17681 return -ENOMEM; 17682 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17683 sizeof(struct lpfc_sli4_cfg_mhdr)); 17684 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17685 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17686 length, LPFC_SLI4_MBX_EMBED); 17687 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17688 wq->queue_id); 17689 mbox->vport = wq->phba->pport; 17690 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17691 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17692 shdr = (union lpfc_sli4_cfg_shdr *) 17693 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17694 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17695 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17696 if (shdr_status || shdr_add_status || rc) { 17697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17698 "2508 WQ_DESTROY mailbox failed with " 17699 "status x%x add_status x%x, mbx status x%x\n", 17700 shdr_status, shdr_add_status, rc); 17701 status = -ENXIO; 17702 } 17703 /* Remove wq from any list */ 17704 list_del_init(&wq->list); 17705 kfree(wq->pring); 17706 wq->pring = NULL; 17707 mempool_free(mbox, wq->phba->mbox_mem_pool); 17708 return status; 17709 } 17710 17711 /** 17712 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17713 * @phba: HBA structure that indicates port to destroy a queue on. 17714 * @hrq: The queue structure associated with the queue to destroy. 17715 * @drq: The queue structure associated with the queue to destroy. 17716 * 17717 * This function destroys a queue, as detailed in @rq by sending an mailbox 17718 * command, specific to the type of queue, to the HBA. 17719 * 17720 * The @rq struct is used to get the queue ID of the queue to destroy. 17721 * 17722 * On success this function will return a zero. If the queue destroy mailbox 17723 * command fails this function will return -ENXIO. 17724 **/ 17725 int 17726 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17727 struct lpfc_queue *drq) 17728 { 17729 LPFC_MBOXQ_t *mbox; 17730 int rc, length, status = 0; 17731 uint32_t shdr_status, shdr_add_status; 17732 union lpfc_sli4_cfg_shdr *shdr; 17733 17734 /* sanity check on queue memory */ 17735 if (!hrq || !drq) 17736 return -ENODEV; 17737 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17738 if (!mbox) 17739 return -ENOMEM; 17740 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17741 sizeof(struct lpfc_sli4_cfg_mhdr)); 17742 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17743 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17744 length, LPFC_SLI4_MBX_EMBED); 17745 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17746 hrq->queue_id); 17747 mbox->vport = hrq->phba->pport; 17748 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17749 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17750 /* The IOCTL status is embedded in the mailbox subheader. */ 17751 shdr = (union lpfc_sli4_cfg_shdr *) 17752 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17753 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17754 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17755 if (shdr_status || shdr_add_status || rc) { 17756 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17757 "2509 RQ_DESTROY mailbox failed with " 17758 "status x%x add_status x%x, mbx status x%x\n", 17759 shdr_status, shdr_add_status, rc); 17760 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17761 return -ENXIO; 17762 } 17763 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17764 drq->queue_id); 17765 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17766 shdr = (union lpfc_sli4_cfg_shdr *) 17767 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17768 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17769 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17770 if (shdr_status || shdr_add_status || rc) { 17771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17772 "2510 RQ_DESTROY mailbox failed with " 17773 "status x%x add_status x%x, mbx status x%x\n", 17774 shdr_status, shdr_add_status, rc); 17775 status = -ENXIO; 17776 } 17777 list_del_init(&hrq->list); 17778 list_del_init(&drq->list); 17779 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17780 return status; 17781 } 17782 17783 /** 17784 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17785 * @phba: The virtual port for which this call being executed. 17786 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17787 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17788 * @xritag: the xritag that ties this io to the SGL pages. 17789 * 17790 * This routine will post the sgl pages for the IO that has the xritag 17791 * that is in the iocbq structure. The xritag is assigned during iocbq 17792 * creation and persists for as long as the driver is loaded. 17793 * if the caller has fewer than 256 scatter gather segments to map then 17794 * pdma_phys_addr1 should be 0. 17795 * If the caller needs to map more than 256 scatter gather segment then 17796 * pdma_phys_addr1 should be a valid physical address. 17797 * physical address for SGLs must be 64 byte aligned. 17798 * If you are going to map 2 SGL's then the first one must have 256 entries 17799 * the second sgl can have between 1 and 256 entries. 17800 * 17801 * Return codes: 17802 * 0 - Success 17803 * -ENXIO, -ENOMEM - Failure 17804 **/ 17805 int 17806 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17807 dma_addr_t pdma_phys_addr0, 17808 dma_addr_t pdma_phys_addr1, 17809 uint16_t xritag) 17810 { 17811 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17812 LPFC_MBOXQ_t *mbox; 17813 int rc; 17814 uint32_t shdr_status, shdr_add_status; 17815 uint32_t mbox_tmo; 17816 union lpfc_sli4_cfg_shdr *shdr; 17817 17818 if (xritag == NO_XRI) { 17819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17820 "0364 Invalid param:\n"); 17821 return -EINVAL; 17822 } 17823 17824 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17825 if (!mbox) 17826 return -ENOMEM; 17827 17828 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17829 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17830 sizeof(struct lpfc_mbx_post_sgl_pages) - 17831 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17832 17833 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17834 &mbox->u.mqe.un.post_sgl_pages; 17835 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17836 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17837 17838 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17839 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17840 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17841 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17842 17843 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17844 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17845 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17846 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17847 if (!phba->sli4_hba.intr_enable) 17848 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17849 else { 17850 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17851 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17852 } 17853 /* The IOCTL status is embedded in the mailbox subheader. */ 17854 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17855 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17856 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17857 if (!phba->sli4_hba.intr_enable) 17858 mempool_free(mbox, phba->mbox_mem_pool); 17859 else if (rc != MBX_TIMEOUT) 17860 mempool_free(mbox, phba->mbox_mem_pool); 17861 if (shdr_status || shdr_add_status || rc) { 17862 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17863 "2511 POST_SGL mailbox failed with " 17864 "status x%x add_status x%x, mbx status x%x\n", 17865 shdr_status, shdr_add_status, rc); 17866 } 17867 return 0; 17868 } 17869 17870 /** 17871 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17872 * @phba: pointer to lpfc hba data structure. 17873 * 17874 * This routine is invoked to post rpi header templates to the 17875 * HBA consistent with the SLI-4 interface spec. This routine 17876 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17877 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17878 * 17879 * Returns 17880 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17881 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17882 **/ 17883 static uint16_t 17884 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17885 { 17886 unsigned long xri; 17887 17888 /* 17889 * Fetch the next logical xri. Because this index is logical, 17890 * the driver starts at 0 each time. 17891 */ 17892 spin_lock_irq(&phba->hbalock); 17893 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17894 phba->sli4_hba.max_cfg_param.max_xri); 17895 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17896 spin_unlock_irq(&phba->hbalock); 17897 return NO_XRI; 17898 } else { 17899 set_bit(xri, phba->sli4_hba.xri_bmask); 17900 phba->sli4_hba.max_cfg_param.xri_used++; 17901 } 17902 spin_unlock_irq(&phba->hbalock); 17903 return xri; 17904 } 17905 17906 /** 17907 * __lpfc_sli4_free_xri - Release an xri for reuse. 17908 * @phba: pointer to lpfc hba data structure. 17909 * @xri: xri to release. 17910 * 17911 * This routine is invoked to release an xri to the pool of 17912 * available rpis maintained by the driver. 17913 **/ 17914 static void 17915 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17916 { 17917 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17918 phba->sli4_hba.max_cfg_param.xri_used--; 17919 } 17920 } 17921 17922 /** 17923 * lpfc_sli4_free_xri - Release an xri for reuse. 17924 * @phba: pointer to lpfc hba data structure. 17925 * @xri: xri to release. 17926 * 17927 * This routine is invoked to release an xri to the pool of 17928 * available rpis maintained by the driver. 17929 **/ 17930 void 17931 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17932 { 17933 spin_lock_irq(&phba->hbalock); 17934 __lpfc_sli4_free_xri(phba, xri); 17935 spin_unlock_irq(&phba->hbalock); 17936 } 17937 17938 /** 17939 * lpfc_sli4_next_xritag - Get an xritag for the io 17940 * @phba: Pointer to HBA context object. 17941 * 17942 * This function gets an xritag for the iocb. If there is no unused xritag 17943 * it will return 0xffff. 17944 * The function returns the allocated xritag if successful, else returns zero. 17945 * Zero is not a valid xritag. 17946 * The caller is not required to hold any lock. 17947 **/ 17948 uint16_t 17949 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17950 { 17951 uint16_t xri_index; 17952 17953 xri_index = lpfc_sli4_alloc_xri(phba); 17954 if (xri_index == NO_XRI) 17955 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17956 "2004 Failed to allocate XRI.last XRITAG is %d" 17957 " Max XRI is %d, Used XRI is %d\n", 17958 xri_index, 17959 phba->sli4_hba.max_cfg_param.max_xri, 17960 phba->sli4_hba.max_cfg_param.xri_used); 17961 return xri_index; 17962 } 17963 17964 /** 17965 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17966 * @phba: pointer to lpfc hba data structure. 17967 * @post_sgl_list: pointer to els sgl entry list. 17968 * @post_cnt: number of els sgl entries on the list. 17969 * 17970 * This routine is invoked to post a block of driver's sgl pages to the 17971 * HBA using non-embedded mailbox command. No Lock is held. This routine 17972 * is only called when the driver is loading and after all IO has been 17973 * stopped. 17974 **/ 17975 static int 17976 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17977 struct list_head *post_sgl_list, 17978 int post_cnt) 17979 { 17980 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17981 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17982 struct sgl_page_pairs *sgl_pg_pairs; 17983 void *viraddr; 17984 LPFC_MBOXQ_t *mbox; 17985 uint32_t reqlen, alloclen, pg_pairs; 17986 uint32_t mbox_tmo; 17987 uint16_t xritag_start = 0; 17988 int rc = 0; 17989 uint32_t shdr_status, shdr_add_status; 17990 union lpfc_sli4_cfg_shdr *shdr; 17991 17992 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17993 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17994 if (reqlen > SLI4_PAGE_SIZE) { 17995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17996 "2559 Block sgl registration required DMA " 17997 "size (%d) great than a page\n", reqlen); 17998 return -ENOMEM; 17999 } 18000 18001 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18002 if (!mbox) 18003 return -ENOMEM; 18004 18005 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18006 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18007 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18008 LPFC_SLI4_MBX_NEMBED); 18009 18010 if (alloclen < reqlen) { 18011 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18012 "0285 Allocated DMA memory size (%d) is " 18013 "less than the requested DMA memory " 18014 "size (%d)\n", alloclen, reqlen); 18015 lpfc_sli4_mbox_cmd_free(phba, mbox); 18016 return -ENOMEM; 18017 } 18018 /* Set up the SGL pages in the non-embedded DMA pages */ 18019 viraddr = mbox->sge_array->addr[0]; 18020 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18021 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18022 18023 pg_pairs = 0; 18024 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18025 /* Set up the sge entry */ 18026 sgl_pg_pairs->sgl_pg0_addr_lo = 18027 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18028 sgl_pg_pairs->sgl_pg0_addr_hi = 18029 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18030 sgl_pg_pairs->sgl_pg1_addr_lo = 18031 cpu_to_le32(putPaddrLow(0)); 18032 sgl_pg_pairs->sgl_pg1_addr_hi = 18033 cpu_to_le32(putPaddrHigh(0)); 18034 18035 /* Keep the first xritag on the list */ 18036 if (pg_pairs == 0) 18037 xritag_start = sglq_entry->sli4_xritag; 18038 sgl_pg_pairs++; 18039 pg_pairs++; 18040 } 18041 18042 /* Complete initialization and perform endian conversion. */ 18043 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18044 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18045 sgl->word0 = cpu_to_le32(sgl->word0); 18046 18047 if (!phba->sli4_hba.intr_enable) 18048 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18049 else { 18050 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18051 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18052 } 18053 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18054 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18055 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18056 if (!phba->sli4_hba.intr_enable) 18057 lpfc_sli4_mbox_cmd_free(phba, mbox); 18058 else if (rc != MBX_TIMEOUT) 18059 lpfc_sli4_mbox_cmd_free(phba, mbox); 18060 if (shdr_status || shdr_add_status || rc) { 18061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18062 "2513 POST_SGL_BLOCK mailbox command failed " 18063 "status x%x add_status x%x mbx status x%x\n", 18064 shdr_status, shdr_add_status, rc); 18065 rc = -ENXIO; 18066 } 18067 return rc; 18068 } 18069 18070 /** 18071 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18072 * @phba: pointer to lpfc hba data structure. 18073 * @nblist: pointer to nvme buffer list. 18074 * @count: number of scsi buffers on the list. 18075 * 18076 * This routine is invoked to post a block of @count scsi sgl pages from a 18077 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18078 * No Lock is held. 18079 * 18080 **/ 18081 static int 18082 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18083 int count) 18084 { 18085 struct lpfc_io_buf *lpfc_ncmd; 18086 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18087 struct sgl_page_pairs *sgl_pg_pairs; 18088 void *viraddr; 18089 LPFC_MBOXQ_t *mbox; 18090 uint32_t reqlen, alloclen, pg_pairs; 18091 uint32_t mbox_tmo; 18092 uint16_t xritag_start = 0; 18093 int rc = 0; 18094 uint32_t shdr_status, shdr_add_status; 18095 dma_addr_t pdma_phys_bpl1; 18096 union lpfc_sli4_cfg_shdr *shdr; 18097 18098 /* Calculate the requested length of the dma memory */ 18099 reqlen = count * sizeof(struct sgl_page_pairs) + 18100 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18101 if (reqlen > SLI4_PAGE_SIZE) { 18102 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18103 "6118 Block sgl registration required DMA " 18104 "size (%d) great than a page\n", reqlen); 18105 return -ENOMEM; 18106 } 18107 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18108 if (!mbox) { 18109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18110 "6119 Failed to allocate mbox cmd memory\n"); 18111 return -ENOMEM; 18112 } 18113 18114 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18115 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18116 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18117 reqlen, LPFC_SLI4_MBX_NEMBED); 18118 18119 if (alloclen < reqlen) { 18120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18121 "6120 Allocated DMA memory size (%d) is " 18122 "less than the requested DMA memory " 18123 "size (%d)\n", alloclen, reqlen); 18124 lpfc_sli4_mbox_cmd_free(phba, mbox); 18125 return -ENOMEM; 18126 } 18127 18128 /* Get the first SGE entry from the non-embedded DMA memory */ 18129 viraddr = mbox->sge_array->addr[0]; 18130 18131 /* Set up the SGL pages in the non-embedded DMA pages */ 18132 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18133 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18134 18135 pg_pairs = 0; 18136 list_for_each_entry(lpfc_ncmd, nblist, list) { 18137 /* Set up the sge entry */ 18138 sgl_pg_pairs->sgl_pg0_addr_lo = 18139 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18140 sgl_pg_pairs->sgl_pg0_addr_hi = 18141 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18142 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18143 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18144 SGL_PAGE_SIZE; 18145 else 18146 pdma_phys_bpl1 = 0; 18147 sgl_pg_pairs->sgl_pg1_addr_lo = 18148 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18149 sgl_pg_pairs->sgl_pg1_addr_hi = 18150 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18151 /* Keep the first xritag on the list */ 18152 if (pg_pairs == 0) 18153 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18154 sgl_pg_pairs++; 18155 pg_pairs++; 18156 } 18157 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18158 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18159 /* Perform endian conversion if necessary */ 18160 sgl->word0 = cpu_to_le32(sgl->word0); 18161 18162 if (!phba->sli4_hba.intr_enable) { 18163 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18164 } else { 18165 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18166 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18167 } 18168 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18169 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18170 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18171 if (!phba->sli4_hba.intr_enable) 18172 lpfc_sli4_mbox_cmd_free(phba, mbox); 18173 else if (rc != MBX_TIMEOUT) 18174 lpfc_sli4_mbox_cmd_free(phba, mbox); 18175 if (shdr_status || shdr_add_status || rc) { 18176 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18177 "6125 POST_SGL_BLOCK mailbox command failed " 18178 "status x%x add_status x%x mbx status x%x\n", 18179 shdr_status, shdr_add_status, rc); 18180 rc = -ENXIO; 18181 } 18182 return rc; 18183 } 18184 18185 /** 18186 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18187 * @phba: pointer to lpfc hba data structure. 18188 * @post_nblist: pointer to the nvme buffer list. 18189 * @sb_count: number of nvme buffers. 18190 * 18191 * This routine walks a list of nvme buffers that was passed in. It attempts 18192 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18193 * uses the non-embedded SGL block post mailbox commands to post to the port. 18194 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18195 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18196 * must be local list, thus no lock is needed when manipulate the list. 18197 * 18198 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18199 **/ 18200 int 18201 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18202 struct list_head *post_nblist, int sb_count) 18203 { 18204 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18205 int status, sgl_size; 18206 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18207 dma_addr_t pdma_phys_sgl1; 18208 int last_xritag = NO_XRI; 18209 int cur_xritag; 18210 LIST_HEAD(prep_nblist); 18211 LIST_HEAD(blck_nblist); 18212 LIST_HEAD(nvme_nblist); 18213 18214 /* sanity check */ 18215 if (sb_count <= 0) 18216 return -EINVAL; 18217 18218 sgl_size = phba->cfg_sg_dma_buf_size; 18219 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18220 list_del_init(&lpfc_ncmd->list); 18221 block_cnt++; 18222 if ((last_xritag != NO_XRI) && 18223 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18224 /* a hole in xri block, form a sgl posting block */ 18225 list_splice_init(&prep_nblist, &blck_nblist); 18226 post_cnt = block_cnt - 1; 18227 /* prepare list for next posting block */ 18228 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18229 block_cnt = 1; 18230 } else { 18231 /* prepare list for next posting block */ 18232 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18233 /* enough sgls for non-embed sgl mbox command */ 18234 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18235 list_splice_init(&prep_nblist, &blck_nblist); 18236 post_cnt = block_cnt; 18237 block_cnt = 0; 18238 } 18239 } 18240 num_posting++; 18241 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18242 18243 /* end of repost sgl list condition for NVME buffers */ 18244 if (num_posting == sb_count) { 18245 if (post_cnt == 0) { 18246 /* last sgl posting block */ 18247 list_splice_init(&prep_nblist, &blck_nblist); 18248 post_cnt = block_cnt; 18249 } else if (block_cnt == 1) { 18250 /* last single sgl with non-contiguous xri */ 18251 if (sgl_size > SGL_PAGE_SIZE) 18252 pdma_phys_sgl1 = 18253 lpfc_ncmd->dma_phys_sgl + 18254 SGL_PAGE_SIZE; 18255 else 18256 pdma_phys_sgl1 = 0; 18257 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18258 status = lpfc_sli4_post_sgl( 18259 phba, lpfc_ncmd->dma_phys_sgl, 18260 pdma_phys_sgl1, cur_xritag); 18261 if (status) { 18262 /* Post error. Buffer unavailable. */ 18263 lpfc_ncmd->flags |= 18264 LPFC_SBUF_NOT_POSTED; 18265 } else { 18266 /* Post success. Bffer available. */ 18267 lpfc_ncmd->flags &= 18268 ~LPFC_SBUF_NOT_POSTED; 18269 lpfc_ncmd->status = IOSTAT_SUCCESS; 18270 num_posted++; 18271 } 18272 /* success, put on NVME buffer sgl list */ 18273 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18274 } 18275 } 18276 18277 /* continue until a nembed page worth of sgls */ 18278 if (post_cnt == 0) 18279 continue; 18280 18281 /* post block of NVME buffer list sgls */ 18282 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18283 post_cnt); 18284 18285 /* don't reset xirtag due to hole in xri block */ 18286 if (block_cnt == 0) 18287 last_xritag = NO_XRI; 18288 18289 /* reset NVME buffer post count for next round of posting */ 18290 post_cnt = 0; 18291 18292 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18293 while (!list_empty(&blck_nblist)) { 18294 list_remove_head(&blck_nblist, lpfc_ncmd, 18295 struct lpfc_io_buf, list); 18296 if (status) { 18297 /* Post error. Mark buffer unavailable. */ 18298 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18299 } else { 18300 /* Post success, Mark buffer available. */ 18301 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18302 lpfc_ncmd->status = IOSTAT_SUCCESS; 18303 num_posted++; 18304 } 18305 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18306 } 18307 } 18308 /* Push NVME buffers with sgl posted to the available list */ 18309 lpfc_io_buf_replenish(phba, &nvme_nblist); 18310 18311 return num_posted; 18312 } 18313 18314 /** 18315 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18316 * @phba: pointer to lpfc_hba struct that the frame was received on 18317 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18318 * 18319 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18320 * valid type of frame that the LPFC driver will handle. This function will 18321 * return a zero if the frame is a valid frame or a non zero value when the 18322 * frame does not pass the check. 18323 **/ 18324 static int 18325 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18326 { 18327 /* make rctl_names static to save stack space */ 18328 struct fc_vft_header *fc_vft_hdr; 18329 uint32_t *header = (uint32_t *) fc_hdr; 18330 18331 #define FC_RCTL_MDS_DIAGS 0xF4 18332 18333 switch (fc_hdr->fh_r_ctl) { 18334 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18335 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18336 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18337 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18338 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18339 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18340 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18341 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18342 case FC_RCTL_ELS_REQ: /* extended link services request */ 18343 case FC_RCTL_ELS_REP: /* extended link services reply */ 18344 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18345 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18346 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18347 case FC_RCTL_BA_RMC: /* remove connection */ 18348 case FC_RCTL_BA_ACC: /* basic accept */ 18349 case FC_RCTL_BA_RJT: /* basic reject */ 18350 case FC_RCTL_BA_PRMT: 18351 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18352 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18353 case FC_RCTL_P_RJT: /* port reject */ 18354 case FC_RCTL_F_RJT: /* fabric reject */ 18355 case FC_RCTL_P_BSY: /* port busy */ 18356 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18357 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18358 case FC_RCTL_LCR: /* link credit reset */ 18359 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18360 case FC_RCTL_END: /* end */ 18361 break; 18362 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18363 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18364 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18365 return lpfc_fc_frame_check(phba, fc_hdr); 18366 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18367 default: 18368 goto drop; 18369 } 18370 18371 switch (fc_hdr->fh_type) { 18372 case FC_TYPE_BLS: 18373 case FC_TYPE_ELS: 18374 case FC_TYPE_FCP: 18375 case FC_TYPE_CT: 18376 case FC_TYPE_NVME: 18377 break; 18378 case FC_TYPE_IP: 18379 case FC_TYPE_ILS: 18380 default: 18381 goto drop; 18382 } 18383 18384 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18385 "2538 Received frame rctl:x%x, type:x%x, " 18386 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18387 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18388 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18389 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18390 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18391 be32_to_cpu(header[6])); 18392 return 0; 18393 drop: 18394 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18395 "2539 Dropped frame rctl:x%x type:x%x\n", 18396 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18397 return 1; 18398 } 18399 18400 /** 18401 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18402 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18403 * 18404 * This function processes the FC header to retrieve the VFI from the VF 18405 * header, if one exists. This function will return the VFI if one exists 18406 * or 0 if no VSAN Header exists. 18407 **/ 18408 static uint32_t 18409 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18410 { 18411 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18412 18413 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18414 return 0; 18415 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18416 } 18417 18418 /** 18419 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18420 * @phba: Pointer to the HBA structure to search for the vport on 18421 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18422 * @fcfi: The FC Fabric ID that the frame came from 18423 * @did: Destination ID to match against 18424 * 18425 * This function searches the @phba for a vport that matches the content of the 18426 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18427 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18428 * returns the matching vport pointer or NULL if unable to match frame to a 18429 * vport. 18430 **/ 18431 static struct lpfc_vport * 18432 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18433 uint16_t fcfi, uint32_t did) 18434 { 18435 struct lpfc_vport **vports; 18436 struct lpfc_vport *vport = NULL; 18437 int i; 18438 18439 if (did == Fabric_DID) 18440 return phba->pport; 18441 if ((phba->pport->fc_flag & FC_PT2PT) && 18442 !(phba->link_state == LPFC_HBA_READY)) 18443 return phba->pport; 18444 18445 vports = lpfc_create_vport_work_array(phba); 18446 if (vports != NULL) { 18447 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18448 if (phba->fcf.fcfi == fcfi && 18449 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18450 vports[i]->fc_myDID == did) { 18451 vport = vports[i]; 18452 break; 18453 } 18454 } 18455 } 18456 lpfc_destroy_vport_work_array(phba, vports); 18457 return vport; 18458 } 18459 18460 /** 18461 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18462 * @vport: The vport to work on. 18463 * 18464 * This function updates the receive sequence time stamp for this vport. The 18465 * receive sequence time stamp indicates the time that the last frame of the 18466 * the sequence that has been idle for the longest amount of time was received. 18467 * the driver uses this time stamp to indicate if any received sequences have 18468 * timed out. 18469 **/ 18470 static void 18471 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18472 { 18473 struct lpfc_dmabuf *h_buf; 18474 struct hbq_dmabuf *dmabuf = NULL; 18475 18476 /* get the oldest sequence on the rcv list */ 18477 h_buf = list_get_first(&vport->rcv_buffer_list, 18478 struct lpfc_dmabuf, list); 18479 if (!h_buf) 18480 return; 18481 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18482 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18483 } 18484 18485 /** 18486 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18487 * @vport: The vport that the received sequences were sent to. 18488 * 18489 * This function cleans up all outstanding received sequences. This is called 18490 * by the driver when a link event or user action invalidates all the received 18491 * sequences. 18492 **/ 18493 void 18494 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18495 { 18496 struct lpfc_dmabuf *h_buf, *hnext; 18497 struct lpfc_dmabuf *d_buf, *dnext; 18498 struct hbq_dmabuf *dmabuf = NULL; 18499 18500 /* start with the oldest sequence on the rcv list */ 18501 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18502 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18503 list_del_init(&dmabuf->hbuf.list); 18504 list_for_each_entry_safe(d_buf, dnext, 18505 &dmabuf->dbuf.list, list) { 18506 list_del_init(&d_buf->list); 18507 lpfc_in_buf_free(vport->phba, d_buf); 18508 } 18509 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18510 } 18511 } 18512 18513 /** 18514 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18515 * @vport: The vport that the received sequences were sent to. 18516 * 18517 * This function determines whether any received sequences have timed out by 18518 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18519 * indicates that there is at least one timed out sequence this routine will 18520 * go through the received sequences one at a time from most inactive to most 18521 * active to determine which ones need to be cleaned up. Once it has determined 18522 * that a sequence needs to be cleaned up it will simply free up the resources 18523 * without sending an abort. 18524 **/ 18525 void 18526 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18527 { 18528 struct lpfc_dmabuf *h_buf, *hnext; 18529 struct lpfc_dmabuf *d_buf, *dnext; 18530 struct hbq_dmabuf *dmabuf = NULL; 18531 unsigned long timeout; 18532 int abort_count = 0; 18533 18534 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18535 vport->rcv_buffer_time_stamp); 18536 if (list_empty(&vport->rcv_buffer_list) || 18537 time_before(jiffies, timeout)) 18538 return; 18539 /* start with the oldest sequence on the rcv list */ 18540 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18541 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18542 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18543 dmabuf->time_stamp); 18544 if (time_before(jiffies, timeout)) 18545 break; 18546 abort_count++; 18547 list_del_init(&dmabuf->hbuf.list); 18548 list_for_each_entry_safe(d_buf, dnext, 18549 &dmabuf->dbuf.list, list) { 18550 list_del_init(&d_buf->list); 18551 lpfc_in_buf_free(vport->phba, d_buf); 18552 } 18553 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18554 } 18555 if (abort_count) 18556 lpfc_update_rcv_time_stamp(vport); 18557 } 18558 18559 /** 18560 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18561 * @vport: pointer to a vitural port 18562 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18563 * 18564 * This function searches through the existing incomplete sequences that have 18565 * been sent to this @vport. If the frame matches one of the incomplete 18566 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18567 * make up that sequence. If no sequence is found that matches this frame then 18568 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18569 * This function returns a pointer to the first dmabuf in the sequence list that 18570 * the frame was linked to. 18571 **/ 18572 static struct hbq_dmabuf * 18573 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18574 { 18575 struct fc_frame_header *new_hdr; 18576 struct fc_frame_header *temp_hdr; 18577 struct lpfc_dmabuf *d_buf; 18578 struct lpfc_dmabuf *h_buf; 18579 struct hbq_dmabuf *seq_dmabuf = NULL; 18580 struct hbq_dmabuf *temp_dmabuf = NULL; 18581 uint8_t found = 0; 18582 18583 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18584 dmabuf->time_stamp = jiffies; 18585 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18586 18587 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18588 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18589 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18590 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18591 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18592 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18593 continue; 18594 /* found a pending sequence that matches this frame */ 18595 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18596 break; 18597 } 18598 if (!seq_dmabuf) { 18599 /* 18600 * This indicates first frame received for this sequence. 18601 * Queue the buffer on the vport's rcv_buffer_list. 18602 */ 18603 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18604 lpfc_update_rcv_time_stamp(vport); 18605 return dmabuf; 18606 } 18607 temp_hdr = seq_dmabuf->hbuf.virt; 18608 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18609 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18610 list_del_init(&seq_dmabuf->hbuf.list); 18611 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18612 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18613 lpfc_update_rcv_time_stamp(vport); 18614 return dmabuf; 18615 } 18616 /* move this sequence to the tail to indicate a young sequence */ 18617 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18618 seq_dmabuf->time_stamp = jiffies; 18619 lpfc_update_rcv_time_stamp(vport); 18620 if (list_empty(&seq_dmabuf->dbuf.list)) { 18621 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18622 return seq_dmabuf; 18623 } 18624 /* find the correct place in the sequence to insert this frame */ 18625 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18626 while (!found) { 18627 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18628 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18629 /* 18630 * If the frame's sequence count is greater than the frame on 18631 * the list then insert the frame right after this frame 18632 */ 18633 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18634 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18635 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18636 found = 1; 18637 break; 18638 } 18639 18640 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18641 break; 18642 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18643 } 18644 18645 if (found) 18646 return seq_dmabuf; 18647 return NULL; 18648 } 18649 18650 /** 18651 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18652 * @vport: pointer to a vitural port 18653 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18654 * 18655 * This function tries to abort from the partially assembed sequence, described 18656 * by the information from basic abbort @dmabuf. It checks to see whether such 18657 * partially assembled sequence held by the driver. If so, it shall free up all 18658 * the frames from the partially assembled sequence. 18659 * 18660 * Return 18661 * true -- if there is matching partially assembled sequence present and all 18662 * the frames freed with the sequence; 18663 * false -- if there is no matching partially assembled sequence present so 18664 * nothing got aborted in the lower layer driver 18665 **/ 18666 static bool 18667 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18668 struct hbq_dmabuf *dmabuf) 18669 { 18670 struct fc_frame_header *new_hdr; 18671 struct fc_frame_header *temp_hdr; 18672 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18673 struct hbq_dmabuf *seq_dmabuf = NULL; 18674 18675 /* Use the hdr_buf to find the sequence that matches this frame */ 18676 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18677 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18678 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18679 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18680 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18681 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18682 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18683 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18684 continue; 18685 /* found a pending sequence that matches this frame */ 18686 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18687 break; 18688 } 18689 18690 /* Free up all the frames from the partially assembled sequence */ 18691 if (seq_dmabuf) { 18692 list_for_each_entry_safe(d_buf, n_buf, 18693 &seq_dmabuf->dbuf.list, list) { 18694 list_del_init(&d_buf->list); 18695 lpfc_in_buf_free(vport->phba, d_buf); 18696 } 18697 return true; 18698 } 18699 return false; 18700 } 18701 18702 /** 18703 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18704 * @vport: pointer to a vitural port 18705 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18706 * 18707 * This function tries to abort from the assembed sequence from upper level 18708 * protocol, described by the information from basic abbort @dmabuf. It 18709 * checks to see whether such pending context exists at upper level protocol. 18710 * If so, it shall clean up the pending context. 18711 * 18712 * Return 18713 * true -- if there is matching pending context of the sequence cleaned 18714 * at ulp; 18715 * false -- if there is no matching pending context of the sequence present 18716 * at ulp. 18717 **/ 18718 static bool 18719 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18720 { 18721 struct lpfc_hba *phba = vport->phba; 18722 int handled; 18723 18724 /* Accepting abort at ulp with SLI4 only */ 18725 if (phba->sli_rev < LPFC_SLI_REV4) 18726 return false; 18727 18728 /* Register all caring upper level protocols to attend abort */ 18729 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18730 if (handled) 18731 return true; 18732 18733 return false; 18734 } 18735 18736 /** 18737 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18738 * @phba: Pointer to HBA context object. 18739 * @cmd_iocbq: pointer to the command iocbq structure. 18740 * @rsp_iocbq: pointer to the response iocbq structure. 18741 * 18742 * This function handles the sequence abort response iocb command complete 18743 * event. It properly releases the memory allocated to the sequence abort 18744 * accept iocb. 18745 **/ 18746 static void 18747 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18748 struct lpfc_iocbq *cmd_iocbq, 18749 struct lpfc_iocbq *rsp_iocbq) 18750 { 18751 if (cmd_iocbq) { 18752 lpfc_nlp_put(cmd_iocbq->ndlp); 18753 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18754 } 18755 18756 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18757 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18758 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18759 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18760 get_job_ulpstatus(phba, rsp_iocbq), 18761 get_job_word4(phba, rsp_iocbq)); 18762 } 18763 18764 /** 18765 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18766 * @phba: Pointer to HBA context object. 18767 * @xri: xri id in transaction. 18768 * 18769 * This function validates the xri maps to the known range of XRIs allocated an 18770 * used by the driver. 18771 **/ 18772 uint16_t 18773 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18774 uint16_t xri) 18775 { 18776 uint16_t i; 18777 18778 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18779 if (xri == phba->sli4_hba.xri_ids[i]) 18780 return i; 18781 } 18782 return NO_XRI; 18783 } 18784 18785 /** 18786 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18787 * @vport: pointer to a virtual port. 18788 * @fc_hdr: pointer to a FC frame header. 18789 * @aborted: was the partially assembled receive sequence successfully aborted 18790 * 18791 * This function sends a basic response to a previous unsol sequence abort 18792 * event after aborting the sequence handling. 18793 **/ 18794 void 18795 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18796 struct fc_frame_header *fc_hdr, bool aborted) 18797 { 18798 struct lpfc_hba *phba = vport->phba; 18799 struct lpfc_iocbq *ctiocb = NULL; 18800 struct lpfc_nodelist *ndlp; 18801 uint16_t oxid, rxid, xri, lxri; 18802 uint32_t sid, fctl; 18803 union lpfc_wqe128 *icmd; 18804 int rc; 18805 18806 if (!lpfc_is_link_up(phba)) 18807 return; 18808 18809 sid = sli4_sid_from_fc_hdr(fc_hdr); 18810 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18811 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18812 18813 ndlp = lpfc_findnode_did(vport, sid); 18814 if (!ndlp) { 18815 ndlp = lpfc_nlp_init(vport, sid); 18816 if (!ndlp) { 18817 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18818 "1268 Failed to allocate ndlp for " 18819 "oxid:x%x SID:x%x\n", oxid, sid); 18820 return; 18821 } 18822 /* Put ndlp onto pport node list */ 18823 lpfc_enqueue_node(vport, ndlp); 18824 } 18825 18826 /* Allocate buffer for rsp iocb */ 18827 ctiocb = lpfc_sli_get_iocbq(phba); 18828 if (!ctiocb) 18829 return; 18830 18831 icmd = &ctiocb->wqe; 18832 18833 /* Extract the F_CTL field from FC_HDR */ 18834 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18835 18836 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18837 if (!ctiocb->ndlp) { 18838 lpfc_sli_release_iocbq(phba, ctiocb); 18839 return; 18840 } 18841 18842 ctiocb->vport = phba->pport; 18843 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18844 ctiocb->sli4_lxritag = NO_XRI; 18845 ctiocb->sli4_xritag = NO_XRI; 18846 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18847 18848 if (fctl & FC_FC_EX_CTX) 18849 /* Exchange responder sent the abort so we 18850 * own the oxid. 18851 */ 18852 xri = oxid; 18853 else 18854 xri = rxid; 18855 lxri = lpfc_sli4_xri_inrange(phba, xri); 18856 if (lxri != NO_XRI) 18857 lpfc_set_rrq_active(phba, ndlp, lxri, 18858 (xri == oxid) ? rxid : oxid, 0); 18859 /* For BA_ABTS from exchange responder, if the logical xri with 18860 * the oxid maps to the FCP XRI range, the port no longer has 18861 * that exchange context, send a BLS_RJT. Override the IOCB for 18862 * a BA_RJT. 18863 */ 18864 if ((fctl & FC_FC_EX_CTX) && 18865 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18866 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18867 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18868 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18869 FC_BA_RJT_INV_XID); 18870 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18871 FC_BA_RJT_UNABLE); 18872 } 18873 18874 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18875 * the driver no longer has that exchange, send a BLS_RJT. Override 18876 * the IOCB for a BA_RJT. 18877 */ 18878 if (aborted == false) { 18879 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18880 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18881 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18882 FC_BA_RJT_INV_XID); 18883 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18884 FC_BA_RJT_UNABLE); 18885 } 18886 18887 if (fctl & FC_FC_EX_CTX) { 18888 /* ABTS sent by responder to CT exchange, construction 18889 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18890 * field and RX_ID from ABTS for RX_ID field. 18891 */ 18892 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18893 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18894 } else { 18895 /* ABTS sent by initiator to CT exchange, construction 18896 * of BA_ACC will need to allocate a new XRI as for the 18897 * XRI_TAG field. 18898 */ 18899 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18900 } 18901 18902 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18903 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18904 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18905 18906 /* Use CT=VPI */ 18907 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18908 ndlp->nlp_DID); 18909 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18910 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18911 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18912 18913 /* Xmit CT abts response on exchange <xid> */ 18914 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18915 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18916 ctiocb->abort_rctl, oxid, phba->link_state); 18917 18918 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18919 if (rc == IOCB_ERROR) { 18920 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18921 "2925 Failed to issue CT ABTS RSP x%x on " 18922 "xri x%x, Data x%x\n", 18923 ctiocb->abort_rctl, oxid, 18924 phba->link_state); 18925 lpfc_nlp_put(ndlp); 18926 ctiocb->ndlp = NULL; 18927 lpfc_sli_release_iocbq(phba, ctiocb); 18928 } 18929 } 18930 18931 /** 18932 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18933 * @vport: Pointer to the vport on which this sequence was received 18934 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18935 * 18936 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18937 * receive sequence is only partially assembed by the driver, it shall abort 18938 * the partially assembled frames for the sequence. Otherwise, if the 18939 * unsolicited receive sequence has been completely assembled and passed to 18940 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18941 * unsolicited sequence has been aborted. After that, it will issue a basic 18942 * accept to accept the abort. 18943 **/ 18944 static void 18945 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18946 struct hbq_dmabuf *dmabuf) 18947 { 18948 struct lpfc_hba *phba = vport->phba; 18949 struct fc_frame_header fc_hdr; 18950 uint32_t fctl; 18951 bool aborted; 18952 18953 /* Make a copy of fc_hdr before the dmabuf being released */ 18954 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18955 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18956 18957 if (fctl & FC_FC_EX_CTX) { 18958 /* ABTS by responder to exchange, no cleanup needed */ 18959 aborted = true; 18960 } else { 18961 /* ABTS by initiator to exchange, need to do cleanup */ 18962 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18963 if (aborted == false) 18964 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18965 } 18966 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18967 18968 if (phba->nvmet_support) { 18969 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18970 return; 18971 } 18972 18973 /* Respond with BA_ACC or BA_RJT accordingly */ 18974 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18975 } 18976 18977 /** 18978 * lpfc_seq_complete - Indicates if a sequence is complete 18979 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18980 * 18981 * This function checks the sequence, starting with the frame described by 18982 * @dmabuf, to see if all the frames associated with this sequence are present. 18983 * the frames associated with this sequence are linked to the @dmabuf using the 18984 * dbuf list. This function looks for two major things. 1) That the first frame 18985 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18986 * set. 3) That there are no holes in the sequence count. The function will 18987 * return 1 when the sequence is complete, otherwise it will return 0. 18988 **/ 18989 static int 18990 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18991 { 18992 struct fc_frame_header *hdr; 18993 struct lpfc_dmabuf *d_buf; 18994 struct hbq_dmabuf *seq_dmabuf; 18995 uint32_t fctl; 18996 int seq_count = 0; 18997 18998 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18999 /* make sure first fame of sequence has a sequence count of zero */ 19000 if (hdr->fh_seq_cnt != seq_count) 19001 return 0; 19002 fctl = (hdr->fh_f_ctl[0] << 16 | 19003 hdr->fh_f_ctl[1] << 8 | 19004 hdr->fh_f_ctl[2]); 19005 /* If last frame of sequence we can return success. */ 19006 if (fctl & FC_FC_END_SEQ) 19007 return 1; 19008 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19009 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19010 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19011 /* If there is a hole in the sequence count then fail. */ 19012 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19013 return 0; 19014 fctl = (hdr->fh_f_ctl[0] << 16 | 19015 hdr->fh_f_ctl[1] << 8 | 19016 hdr->fh_f_ctl[2]); 19017 /* If last frame of sequence we can return success. */ 19018 if (fctl & FC_FC_END_SEQ) 19019 return 1; 19020 } 19021 return 0; 19022 } 19023 19024 /** 19025 * lpfc_prep_seq - Prep sequence for ULP processing 19026 * @vport: Pointer to the vport on which this sequence was received 19027 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19028 * 19029 * This function takes a sequence, described by a list of frames, and creates 19030 * a list of iocbq structures to describe the sequence. This iocbq list will be 19031 * used to issue to the generic unsolicited sequence handler. This routine 19032 * returns a pointer to the first iocbq in the list. If the function is unable 19033 * to allocate an iocbq then it throw out the received frames that were not 19034 * able to be described and return a pointer to the first iocbq. If unable to 19035 * allocate any iocbqs (including the first) this function will return NULL. 19036 **/ 19037 static struct lpfc_iocbq * 19038 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19039 { 19040 struct hbq_dmabuf *hbq_buf; 19041 struct lpfc_dmabuf *d_buf, *n_buf; 19042 struct lpfc_iocbq *first_iocbq, *iocbq; 19043 struct fc_frame_header *fc_hdr; 19044 uint32_t sid; 19045 uint32_t len, tot_len; 19046 19047 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19048 /* remove from receive buffer list */ 19049 list_del_init(&seq_dmabuf->hbuf.list); 19050 lpfc_update_rcv_time_stamp(vport); 19051 /* get the Remote Port's SID */ 19052 sid = sli4_sid_from_fc_hdr(fc_hdr); 19053 tot_len = 0; 19054 /* Get an iocbq struct to fill in. */ 19055 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19056 if (first_iocbq) { 19057 /* Initialize the first IOCB. */ 19058 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19059 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19060 IOSTAT_SUCCESS); 19061 first_iocbq->vport = vport; 19062 19063 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19064 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19065 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19066 sli4_did_from_fc_hdr(fc_hdr)); 19067 } 19068 19069 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19070 NO_XRI); 19071 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19072 be16_to_cpu(fc_hdr->fh_ox_id)); 19073 19074 /* put the first buffer into the first iocb */ 19075 tot_len = bf_get(lpfc_rcqe_length, 19076 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19077 19078 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19079 first_iocbq->bpl_dmabuf = NULL; 19080 /* Keep track of the BDE count */ 19081 first_iocbq->wcqe_cmpl.word3 = 1; 19082 19083 if (tot_len > LPFC_DATA_BUF_SIZE) 19084 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19085 LPFC_DATA_BUF_SIZE; 19086 else 19087 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19088 19089 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19090 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19091 sid); 19092 } 19093 iocbq = first_iocbq; 19094 /* 19095 * Each IOCBq can have two Buffers assigned, so go through the list 19096 * of buffers for this sequence and save two buffers in each IOCBq 19097 */ 19098 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19099 if (!iocbq) { 19100 lpfc_in_buf_free(vport->phba, d_buf); 19101 continue; 19102 } 19103 if (!iocbq->bpl_dmabuf) { 19104 iocbq->bpl_dmabuf = d_buf; 19105 iocbq->wcqe_cmpl.word3++; 19106 /* We need to get the size out of the right CQE */ 19107 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19108 len = bf_get(lpfc_rcqe_length, 19109 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19110 iocbq->unsol_rcv_len = len; 19111 iocbq->wcqe_cmpl.total_data_placed += len; 19112 tot_len += len; 19113 } else { 19114 iocbq = lpfc_sli_get_iocbq(vport->phba); 19115 if (!iocbq) { 19116 if (first_iocbq) { 19117 bf_set(lpfc_wcqe_c_status, 19118 &first_iocbq->wcqe_cmpl, 19119 IOSTAT_SUCCESS); 19120 first_iocbq->wcqe_cmpl.parameter = 19121 IOERR_NO_RESOURCES; 19122 } 19123 lpfc_in_buf_free(vport->phba, d_buf); 19124 continue; 19125 } 19126 /* We need to get the size out of the right CQE */ 19127 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19128 len = bf_get(lpfc_rcqe_length, 19129 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19130 iocbq->cmd_dmabuf = d_buf; 19131 iocbq->bpl_dmabuf = NULL; 19132 iocbq->wcqe_cmpl.word3 = 1; 19133 19134 if (len > LPFC_DATA_BUF_SIZE) 19135 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19136 LPFC_DATA_BUF_SIZE; 19137 else 19138 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19139 len; 19140 19141 tot_len += len; 19142 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19143 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19144 sid); 19145 list_add_tail(&iocbq->list, &first_iocbq->list); 19146 } 19147 } 19148 /* Free the sequence's header buffer */ 19149 if (!first_iocbq) 19150 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19151 19152 return first_iocbq; 19153 } 19154 19155 static void 19156 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19157 struct hbq_dmabuf *seq_dmabuf) 19158 { 19159 struct fc_frame_header *fc_hdr; 19160 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19161 struct lpfc_hba *phba = vport->phba; 19162 19163 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19164 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19165 if (!iocbq) { 19166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19167 "2707 Ring %d handler: Failed to allocate " 19168 "iocb Rctl x%x Type x%x received\n", 19169 LPFC_ELS_RING, 19170 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19171 return; 19172 } 19173 if (!lpfc_complete_unsol_iocb(phba, 19174 phba->sli4_hba.els_wq->pring, 19175 iocbq, fc_hdr->fh_r_ctl, 19176 fc_hdr->fh_type)) { 19177 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19178 "2540 Ring %d handler: unexpected Rctl " 19179 "x%x Type x%x received\n", 19180 LPFC_ELS_RING, 19181 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19182 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19183 } 19184 19185 /* Free iocb created in lpfc_prep_seq */ 19186 list_for_each_entry_safe(curr_iocb, next_iocb, 19187 &iocbq->list, list) { 19188 list_del_init(&curr_iocb->list); 19189 lpfc_sli_release_iocbq(phba, curr_iocb); 19190 } 19191 lpfc_sli_release_iocbq(phba, iocbq); 19192 } 19193 19194 static void 19195 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19196 struct lpfc_iocbq *rspiocb) 19197 { 19198 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19199 19200 if (pcmd && pcmd->virt) 19201 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19202 kfree(pcmd); 19203 lpfc_sli_release_iocbq(phba, cmdiocb); 19204 lpfc_drain_txq(phba); 19205 } 19206 19207 static void 19208 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19209 struct hbq_dmabuf *dmabuf) 19210 { 19211 struct fc_frame_header *fc_hdr; 19212 struct lpfc_hba *phba = vport->phba; 19213 struct lpfc_iocbq *iocbq = NULL; 19214 union lpfc_wqe128 *pwqe; 19215 struct lpfc_dmabuf *pcmd = NULL; 19216 uint32_t frame_len; 19217 int rc; 19218 unsigned long iflags; 19219 19220 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19221 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19222 19223 /* Send the received frame back */ 19224 iocbq = lpfc_sli_get_iocbq(phba); 19225 if (!iocbq) { 19226 /* Queue cq event and wakeup worker thread to process it */ 19227 spin_lock_irqsave(&phba->hbalock, iflags); 19228 list_add_tail(&dmabuf->cq_event.list, 19229 &phba->sli4_hba.sp_queue_event); 19230 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19231 spin_unlock_irqrestore(&phba->hbalock, iflags); 19232 lpfc_worker_wake_up(phba); 19233 return; 19234 } 19235 19236 /* Allocate buffer for command payload */ 19237 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19238 if (pcmd) 19239 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19240 &pcmd->phys); 19241 if (!pcmd || !pcmd->virt) 19242 goto exit; 19243 19244 INIT_LIST_HEAD(&pcmd->list); 19245 19246 /* copyin the payload */ 19247 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19248 19249 iocbq->cmd_dmabuf = pcmd; 19250 iocbq->vport = vport; 19251 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19252 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19253 iocbq->num_bdes = 0; 19254 19255 pwqe = &iocbq->wqe; 19256 /* fill in BDE's for command */ 19257 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19258 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19259 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19260 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19261 19262 pwqe->send_frame.frame_len = frame_len; 19263 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19264 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19265 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19266 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19267 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19268 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19269 19270 pwqe->generic.wqe_com.word7 = 0; 19271 pwqe->generic.wqe_com.word10 = 0; 19272 19273 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19274 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19275 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19276 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19277 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19278 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19279 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19280 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19281 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19282 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19283 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19284 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19285 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19286 19287 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19288 19289 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19290 if (rc == IOCB_ERROR) 19291 goto exit; 19292 19293 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19294 return; 19295 19296 exit: 19297 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19298 "2023 Unable to process MDS loopback frame\n"); 19299 if (pcmd && pcmd->virt) 19300 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19301 kfree(pcmd); 19302 if (iocbq) 19303 lpfc_sli_release_iocbq(phba, iocbq); 19304 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19305 } 19306 19307 /** 19308 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19309 * @phba: Pointer to HBA context object. 19310 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19311 * 19312 * This function is called with no lock held. This function processes all 19313 * the received buffers and gives it to upper layers when a received buffer 19314 * indicates that it is the final frame in the sequence. The interrupt 19315 * service routine processes received buffers at interrupt contexts. 19316 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19317 * appropriate receive function when the final frame in a sequence is received. 19318 **/ 19319 void 19320 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19321 struct hbq_dmabuf *dmabuf) 19322 { 19323 struct hbq_dmabuf *seq_dmabuf; 19324 struct fc_frame_header *fc_hdr; 19325 struct lpfc_vport *vport; 19326 uint32_t fcfi; 19327 uint32_t did; 19328 19329 /* Process each received buffer */ 19330 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19331 19332 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19333 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19334 vport = phba->pport; 19335 /* Handle MDS Loopback frames */ 19336 if (!(phba->pport->load_flag & FC_UNLOADING)) 19337 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19338 else 19339 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19340 return; 19341 } 19342 19343 /* check to see if this a valid type of frame */ 19344 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19345 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19346 return; 19347 } 19348 19349 if ((bf_get(lpfc_cqe_code, 19350 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19351 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19352 &dmabuf->cq_event.cqe.rcqe_cmpl); 19353 else 19354 fcfi = bf_get(lpfc_rcqe_fcf_id, 19355 &dmabuf->cq_event.cqe.rcqe_cmpl); 19356 19357 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19358 vport = phba->pport; 19359 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19360 "2023 MDS Loopback %d bytes\n", 19361 bf_get(lpfc_rcqe_length, 19362 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19363 /* Handle MDS Loopback frames */ 19364 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19365 return; 19366 } 19367 19368 /* d_id this frame is directed to */ 19369 did = sli4_did_from_fc_hdr(fc_hdr); 19370 19371 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19372 if (!vport) { 19373 /* throw out the frame */ 19374 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19375 return; 19376 } 19377 19378 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19379 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19380 (did != Fabric_DID)) { 19381 /* 19382 * Throw out the frame if we are not pt2pt. 19383 * The pt2pt protocol allows for discovery frames 19384 * to be received without a registered VPI. 19385 */ 19386 if (!(vport->fc_flag & FC_PT2PT) || 19387 (phba->link_state == LPFC_HBA_READY)) { 19388 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19389 return; 19390 } 19391 } 19392 19393 /* Handle the basic abort sequence (BA_ABTS) event */ 19394 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19395 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19396 return; 19397 } 19398 19399 /* Link this frame */ 19400 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19401 if (!seq_dmabuf) { 19402 /* unable to add frame to vport - throw it out */ 19403 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19404 return; 19405 } 19406 /* If not last frame in sequence continue processing frames. */ 19407 if (!lpfc_seq_complete(seq_dmabuf)) 19408 return; 19409 19410 /* Send the complete sequence to the upper layer protocol */ 19411 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19412 } 19413 19414 /** 19415 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19416 * @phba: pointer to lpfc hba data structure. 19417 * 19418 * This routine is invoked to post rpi header templates to the 19419 * HBA consistent with the SLI-4 interface spec. This routine 19420 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19421 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19422 * 19423 * This routine does not require any locks. It's usage is expected 19424 * to be driver load or reset recovery when the driver is 19425 * sequential. 19426 * 19427 * Return codes 19428 * 0 - successful 19429 * -EIO - The mailbox failed to complete successfully. 19430 * When this error occurs, the driver is not guaranteed 19431 * to have any rpi regions posted to the device and 19432 * must either attempt to repost the regions or take a 19433 * fatal error. 19434 **/ 19435 int 19436 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19437 { 19438 struct lpfc_rpi_hdr *rpi_page; 19439 uint32_t rc = 0; 19440 uint16_t lrpi = 0; 19441 19442 /* SLI4 ports that support extents do not require RPI headers. */ 19443 if (!phba->sli4_hba.rpi_hdrs_in_use) 19444 goto exit; 19445 if (phba->sli4_hba.extents_in_use) 19446 return -EIO; 19447 19448 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19449 /* 19450 * Assign the rpi headers a physical rpi only if the driver 19451 * has not initialized those resources. A port reset only 19452 * needs the headers posted. 19453 */ 19454 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19455 LPFC_RPI_RSRC_RDY) 19456 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19457 19458 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19459 if (rc != MBX_SUCCESS) { 19460 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19461 "2008 Error %d posting all rpi " 19462 "headers\n", rc); 19463 rc = -EIO; 19464 break; 19465 } 19466 } 19467 19468 exit: 19469 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19470 LPFC_RPI_RSRC_RDY); 19471 return rc; 19472 } 19473 19474 /** 19475 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19476 * @phba: pointer to lpfc hba data structure. 19477 * @rpi_page: pointer to the rpi memory region. 19478 * 19479 * This routine is invoked to post a single rpi header to the 19480 * HBA consistent with the SLI-4 interface spec. This memory region 19481 * maps up to 64 rpi context regions. 19482 * 19483 * Return codes 19484 * 0 - successful 19485 * -ENOMEM - No available memory 19486 * -EIO - The mailbox failed to complete successfully. 19487 **/ 19488 int 19489 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19490 { 19491 LPFC_MBOXQ_t *mboxq; 19492 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19493 uint32_t rc = 0; 19494 uint32_t shdr_status, shdr_add_status; 19495 union lpfc_sli4_cfg_shdr *shdr; 19496 19497 /* SLI4 ports that support extents do not require RPI headers. */ 19498 if (!phba->sli4_hba.rpi_hdrs_in_use) 19499 return rc; 19500 if (phba->sli4_hba.extents_in_use) 19501 return -EIO; 19502 19503 /* The port is notified of the header region via a mailbox command. */ 19504 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19505 if (!mboxq) { 19506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19507 "2001 Unable to allocate memory for issuing " 19508 "SLI_CONFIG_SPECIAL mailbox command\n"); 19509 return -ENOMEM; 19510 } 19511 19512 /* Post all rpi memory regions to the port. */ 19513 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19514 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19515 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19516 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19517 sizeof(struct lpfc_sli4_cfg_mhdr), 19518 LPFC_SLI4_MBX_EMBED); 19519 19520 19521 /* Post the physical rpi to the port for this rpi header. */ 19522 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19523 rpi_page->start_rpi); 19524 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19525 hdr_tmpl, rpi_page->page_count); 19526 19527 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19528 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19529 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19530 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19531 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19532 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19533 mempool_free(mboxq, phba->mbox_mem_pool); 19534 if (shdr_status || shdr_add_status || rc) { 19535 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19536 "2514 POST_RPI_HDR mailbox failed with " 19537 "status x%x add_status x%x, mbx status x%x\n", 19538 shdr_status, shdr_add_status, rc); 19539 rc = -ENXIO; 19540 } else { 19541 /* 19542 * The next_rpi stores the next logical module-64 rpi value used 19543 * to post physical rpis in subsequent rpi postings. 19544 */ 19545 spin_lock_irq(&phba->hbalock); 19546 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19547 spin_unlock_irq(&phba->hbalock); 19548 } 19549 return rc; 19550 } 19551 19552 /** 19553 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19554 * @phba: pointer to lpfc hba data structure. 19555 * 19556 * This routine is invoked to post rpi header templates to the 19557 * HBA consistent with the SLI-4 interface spec. This routine 19558 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19559 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19560 * 19561 * Returns 19562 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19563 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19564 **/ 19565 int 19566 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19567 { 19568 unsigned long rpi; 19569 uint16_t max_rpi, rpi_limit; 19570 uint16_t rpi_remaining, lrpi = 0; 19571 struct lpfc_rpi_hdr *rpi_hdr; 19572 unsigned long iflag; 19573 19574 /* 19575 * Fetch the next logical rpi. Because this index is logical, 19576 * the driver starts at 0 each time. 19577 */ 19578 spin_lock_irqsave(&phba->hbalock, iflag); 19579 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19580 rpi_limit = phba->sli4_hba.next_rpi; 19581 19582 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19583 if (rpi >= rpi_limit) 19584 rpi = LPFC_RPI_ALLOC_ERROR; 19585 else { 19586 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19587 phba->sli4_hba.max_cfg_param.rpi_used++; 19588 phba->sli4_hba.rpi_count++; 19589 } 19590 lpfc_printf_log(phba, KERN_INFO, 19591 LOG_NODE | LOG_DISCOVERY, 19592 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19593 (int) rpi, max_rpi, rpi_limit); 19594 19595 /* 19596 * Don't try to allocate more rpi header regions if the device limit 19597 * has been exhausted. 19598 */ 19599 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19600 (phba->sli4_hba.rpi_count >= max_rpi)) { 19601 spin_unlock_irqrestore(&phba->hbalock, iflag); 19602 return rpi; 19603 } 19604 19605 /* 19606 * RPI header postings are not required for SLI4 ports capable of 19607 * extents. 19608 */ 19609 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19610 spin_unlock_irqrestore(&phba->hbalock, iflag); 19611 return rpi; 19612 } 19613 19614 /* 19615 * If the driver is running low on rpi resources, allocate another 19616 * page now. Note that the next_rpi value is used because 19617 * it represents how many are actually in use whereas max_rpi notes 19618 * how many are supported max by the device. 19619 */ 19620 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19621 spin_unlock_irqrestore(&phba->hbalock, iflag); 19622 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19623 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19624 if (!rpi_hdr) { 19625 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19626 "2002 Error Could not grow rpi " 19627 "count\n"); 19628 } else { 19629 lrpi = rpi_hdr->start_rpi; 19630 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19631 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19632 } 19633 } 19634 19635 return rpi; 19636 } 19637 19638 /** 19639 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19640 * @phba: pointer to lpfc hba data structure. 19641 * @rpi: rpi to free 19642 * 19643 * This routine is invoked to release an rpi to the pool of 19644 * available rpis maintained by the driver. 19645 **/ 19646 static void 19647 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19648 { 19649 /* 19650 * if the rpi value indicates a prior unreg has already 19651 * been done, skip the unreg. 19652 */ 19653 if (rpi == LPFC_RPI_ALLOC_ERROR) 19654 return; 19655 19656 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19657 phba->sli4_hba.rpi_count--; 19658 phba->sli4_hba.max_cfg_param.rpi_used--; 19659 } else { 19660 lpfc_printf_log(phba, KERN_INFO, 19661 LOG_NODE | LOG_DISCOVERY, 19662 "2016 rpi %x not inuse\n", 19663 rpi); 19664 } 19665 } 19666 19667 /** 19668 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19669 * @phba: pointer to lpfc hba data structure. 19670 * @rpi: rpi to free 19671 * 19672 * This routine is invoked to release an rpi to the pool of 19673 * available rpis maintained by the driver. 19674 **/ 19675 void 19676 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19677 { 19678 spin_lock_irq(&phba->hbalock); 19679 __lpfc_sli4_free_rpi(phba, rpi); 19680 spin_unlock_irq(&phba->hbalock); 19681 } 19682 19683 /** 19684 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19685 * @phba: pointer to lpfc hba data structure. 19686 * 19687 * This routine is invoked to remove the memory region that 19688 * provided rpi via a bitmask. 19689 **/ 19690 void 19691 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19692 { 19693 kfree(phba->sli4_hba.rpi_bmask); 19694 kfree(phba->sli4_hba.rpi_ids); 19695 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19696 } 19697 19698 /** 19699 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19700 * @ndlp: pointer to lpfc nodelist data structure. 19701 * @cmpl: completion call-back. 19702 * @arg: data to load as MBox 'caller buffer information' 19703 * 19704 * This routine is invoked to remove the memory region that 19705 * provided rpi via a bitmask. 19706 **/ 19707 int 19708 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19709 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19710 { 19711 LPFC_MBOXQ_t *mboxq; 19712 struct lpfc_hba *phba = ndlp->phba; 19713 int rc; 19714 19715 /* The port is notified of the header region via a mailbox command. */ 19716 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19717 if (!mboxq) 19718 return -ENOMEM; 19719 19720 /* If cmpl assigned, then this nlp_get pairs with 19721 * lpfc_mbx_cmpl_resume_rpi. 19722 * 19723 * Else cmpl is NULL, then this nlp_get pairs with 19724 * lpfc_sli_def_mbox_cmpl. 19725 */ 19726 if (!lpfc_nlp_get(ndlp)) { 19727 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19728 "2122 %s: Failed to get nlp ref\n", 19729 __func__); 19730 mempool_free(mboxq, phba->mbox_mem_pool); 19731 return -EIO; 19732 } 19733 19734 /* Post all rpi memory regions to the port. */ 19735 lpfc_resume_rpi(mboxq, ndlp); 19736 if (cmpl) { 19737 mboxq->mbox_cmpl = cmpl; 19738 mboxq->ctx_buf = arg; 19739 } else 19740 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19741 mboxq->ctx_ndlp = ndlp; 19742 mboxq->vport = ndlp->vport; 19743 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19744 if (rc == MBX_NOT_FINISHED) { 19745 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19746 "2010 Resume RPI Mailbox failed " 19747 "status %d, mbxStatus x%x\n", rc, 19748 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19749 lpfc_nlp_put(ndlp); 19750 mempool_free(mboxq, phba->mbox_mem_pool); 19751 return -EIO; 19752 } 19753 return 0; 19754 } 19755 19756 /** 19757 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19758 * @vport: Pointer to the vport for which the vpi is being initialized 19759 * 19760 * This routine is invoked to activate a vpi with the port. 19761 * 19762 * Returns: 19763 * 0 success 19764 * -Evalue otherwise 19765 **/ 19766 int 19767 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19768 { 19769 LPFC_MBOXQ_t *mboxq; 19770 int rc = 0; 19771 int retval = MBX_SUCCESS; 19772 uint32_t mbox_tmo; 19773 struct lpfc_hba *phba = vport->phba; 19774 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19775 if (!mboxq) 19776 return -ENOMEM; 19777 lpfc_init_vpi(phba, mboxq, vport->vpi); 19778 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19779 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19780 if (rc != MBX_SUCCESS) { 19781 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19782 "2022 INIT VPI Mailbox failed " 19783 "status %d, mbxStatus x%x\n", rc, 19784 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19785 retval = -EIO; 19786 } 19787 if (rc != MBX_TIMEOUT) 19788 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19789 19790 return retval; 19791 } 19792 19793 /** 19794 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19795 * @phba: pointer to lpfc hba data structure. 19796 * @mboxq: Pointer to mailbox object. 19797 * 19798 * This routine is invoked to manually add a single FCF record. The caller 19799 * must pass a completely initialized FCF_Record. This routine takes 19800 * care of the nonembedded mailbox operations. 19801 **/ 19802 static void 19803 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19804 { 19805 void *virt_addr; 19806 union lpfc_sli4_cfg_shdr *shdr; 19807 uint32_t shdr_status, shdr_add_status; 19808 19809 virt_addr = mboxq->sge_array->addr[0]; 19810 /* The IOCTL status is embedded in the mailbox subheader. */ 19811 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19812 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19813 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19814 19815 if ((shdr_status || shdr_add_status) && 19816 (shdr_status != STATUS_FCF_IN_USE)) 19817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19818 "2558 ADD_FCF_RECORD mailbox failed with " 19819 "status x%x add_status x%x\n", 19820 shdr_status, shdr_add_status); 19821 19822 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19823 } 19824 19825 /** 19826 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19827 * @phba: pointer to lpfc hba data structure. 19828 * @fcf_record: pointer to the initialized fcf record to add. 19829 * 19830 * This routine is invoked to manually add a single FCF record. The caller 19831 * must pass a completely initialized FCF_Record. This routine takes 19832 * care of the nonembedded mailbox operations. 19833 **/ 19834 int 19835 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19836 { 19837 int rc = 0; 19838 LPFC_MBOXQ_t *mboxq; 19839 uint8_t *bytep; 19840 void *virt_addr; 19841 struct lpfc_mbx_sge sge; 19842 uint32_t alloc_len, req_len; 19843 uint32_t fcfindex; 19844 19845 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19846 if (!mboxq) { 19847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19848 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19849 return -ENOMEM; 19850 } 19851 19852 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19853 sizeof(uint32_t); 19854 19855 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19856 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19857 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19858 req_len, LPFC_SLI4_MBX_NEMBED); 19859 if (alloc_len < req_len) { 19860 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19861 "2523 Allocated DMA memory size (x%x) is " 19862 "less than the requested DMA memory " 19863 "size (x%x)\n", alloc_len, req_len); 19864 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19865 return -ENOMEM; 19866 } 19867 19868 /* 19869 * Get the first SGE entry from the non-embedded DMA memory. This 19870 * routine only uses a single SGE. 19871 */ 19872 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19873 virt_addr = mboxq->sge_array->addr[0]; 19874 /* 19875 * Configure the FCF record for FCFI 0. This is the driver's 19876 * hardcoded default and gets used in nonFIP mode. 19877 */ 19878 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19879 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19880 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19881 19882 /* 19883 * Copy the fcf_index and the FCF Record Data. The data starts after 19884 * the FCoE header plus word10. The data copy needs to be endian 19885 * correct. 19886 */ 19887 bytep += sizeof(uint32_t); 19888 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19889 mboxq->vport = phba->pport; 19890 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19891 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19892 if (rc == MBX_NOT_FINISHED) { 19893 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19894 "2515 ADD_FCF_RECORD mailbox failed with " 19895 "status 0x%x\n", rc); 19896 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19897 rc = -EIO; 19898 } else 19899 rc = 0; 19900 19901 return rc; 19902 } 19903 19904 /** 19905 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19906 * @phba: pointer to lpfc hba data structure. 19907 * @fcf_record: pointer to the fcf record to write the default data. 19908 * @fcf_index: FCF table entry index. 19909 * 19910 * This routine is invoked to build the driver's default FCF record. The 19911 * values used are hardcoded. This routine handles memory initialization. 19912 * 19913 **/ 19914 void 19915 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19916 struct fcf_record *fcf_record, 19917 uint16_t fcf_index) 19918 { 19919 memset(fcf_record, 0, sizeof(struct fcf_record)); 19920 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19921 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19922 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19923 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19924 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19925 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19926 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19927 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19928 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19929 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19930 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19931 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19932 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19933 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19934 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19935 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19936 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19937 /* Set the VLAN bit map */ 19938 if (phba->valid_vlan) { 19939 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19940 = 1 << (phba->vlan_id % 8); 19941 } 19942 } 19943 19944 /** 19945 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19946 * @phba: pointer to lpfc hba data structure. 19947 * @fcf_index: FCF table entry offset. 19948 * 19949 * This routine is invoked to scan the entire FCF table by reading FCF 19950 * record and processing it one at a time starting from the @fcf_index 19951 * for initial FCF discovery or fast FCF failover rediscovery. 19952 * 19953 * Return 0 if the mailbox command is submitted successfully, none 0 19954 * otherwise. 19955 **/ 19956 int 19957 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19958 { 19959 int rc = 0, error; 19960 LPFC_MBOXQ_t *mboxq; 19961 19962 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19963 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19964 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19965 if (!mboxq) { 19966 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19967 "2000 Failed to allocate mbox for " 19968 "READ_FCF cmd\n"); 19969 error = -ENOMEM; 19970 goto fail_fcf_scan; 19971 } 19972 /* Construct the read FCF record mailbox command */ 19973 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19974 if (rc) { 19975 error = -EINVAL; 19976 goto fail_fcf_scan; 19977 } 19978 /* Issue the mailbox command asynchronously */ 19979 mboxq->vport = phba->pport; 19980 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19981 19982 spin_lock_irq(&phba->hbalock); 19983 phba->hba_flag |= FCF_TS_INPROG; 19984 spin_unlock_irq(&phba->hbalock); 19985 19986 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19987 if (rc == MBX_NOT_FINISHED) 19988 error = -EIO; 19989 else { 19990 /* Reset eligible FCF count for new scan */ 19991 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19992 phba->fcf.eligible_fcf_cnt = 0; 19993 error = 0; 19994 } 19995 fail_fcf_scan: 19996 if (error) { 19997 if (mboxq) 19998 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19999 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20000 spin_lock_irq(&phba->hbalock); 20001 phba->hba_flag &= ~FCF_TS_INPROG; 20002 spin_unlock_irq(&phba->hbalock); 20003 } 20004 return error; 20005 } 20006 20007 /** 20008 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20009 * @phba: pointer to lpfc hba data structure. 20010 * @fcf_index: FCF table entry offset. 20011 * 20012 * This routine is invoked to read an FCF record indicated by @fcf_index 20013 * and to use it for FLOGI roundrobin FCF failover. 20014 * 20015 * Return 0 if the mailbox command is submitted successfully, none 0 20016 * otherwise. 20017 **/ 20018 int 20019 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20020 { 20021 int rc = 0, error; 20022 LPFC_MBOXQ_t *mboxq; 20023 20024 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20025 if (!mboxq) { 20026 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20027 "2763 Failed to allocate mbox for " 20028 "READ_FCF cmd\n"); 20029 error = -ENOMEM; 20030 goto fail_fcf_read; 20031 } 20032 /* Construct the read FCF record mailbox command */ 20033 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20034 if (rc) { 20035 error = -EINVAL; 20036 goto fail_fcf_read; 20037 } 20038 /* Issue the mailbox command asynchronously */ 20039 mboxq->vport = phba->pport; 20040 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20041 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20042 if (rc == MBX_NOT_FINISHED) 20043 error = -EIO; 20044 else 20045 error = 0; 20046 20047 fail_fcf_read: 20048 if (error && mboxq) 20049 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20050 return error; 20051 } 20052 20053 /** 20054 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20055 * @phba: pointer to lpfc hba data structure. 20056 * @fcf_index: FCF table entry offset. 20057 * 20058 * This routine is invoked to read an FCF record indicated by @fcf_index to 20059 * determine whether it's eligible for FLOGI roundrobin failover list. 20060 * 20061 * Return 0 if the mailbox command is submitted successfully, none 0 20062 * otherwise. 20063 **/ 20064 int 20065 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20066 { 20067 int rc = 0, error; 20068 LPFC_MBOXQ_t *mboxq; 20069 20070 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20071 if (!mboxq) { 20072 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20073 "2758 Failed to allocate mbox for " 20074 "READ_FCF cmd\n"); 20075 error = -ENOMEM; 20076 goto fail_fcf_read; 20077 } 20078 /* Construct the read FCF record mailbox command */ 20079 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20080 if (rc) { 20081 error = -EINVAL; 20082 goto fail_fcf_read; 20083 } 20084 /* Issue the mailbox command asynchronously */ 20085 mboxq->vport = phba->pport; 20086 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20087 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20088 if (rc == MBX_NOT_FINISHED) 20089 error = -EIO; 20090 else 20091 error = 0; 20092 20093 fail_fcf_read: 20094 if (error && mboxq) 20095 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20096 return error; 20097 } 20098 20099 /** 20100 * lpfc_check_next_fcf_pri_level 20101 * @phba: pointer to the lpfc_hba struct for this port. 20102 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20103 * routine when the rr_bmask is empty. The FCF indecies are put into the 20104 * rr_bmask based on their priority level. Starting from the highest priority 20105 * to the lowest. The most likely FCF candidate will be in the highest 20106 * priority group. When this routine is called it searches the fcf_pri list for 20107 * next lowest priority group and repopulates the rr_bmask with only those 20108 * fcf_indexes. 20109 * returns: 20110 * 1=success 0=failure 20111 **/ 20112 static int 20113 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20114 { 20115 uint16_t next_fcf_pri; 20116 uint16_t last_index; 20117 struct lpfc_fcf_pri *fcf_pri; 20118 int rc; 20119 int ret = 0; 20120 20121 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20122 LPFC_SLI4_FCF_TBL_INDX_MAX); 20123 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20124 "3060 Last IDX %d\n", last_index); 20125 20126 /* Verify the priority list has 2 or more entries */ 20127 spin_lock_irq(&phba->hbalock); 20128 if (list_empty(&phba->fcf.fcf_pri_list) || 20129 list_is_singular(&phba->fcf.fcf_pri_list)) { 20130 spin_unlock_irq(&phba->hbalock); 20131 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20132 "3061 Last IDX %d\n", last_index); 20133 return 0; /* Empty rr list */ 20134 } 20135 spin_unlock_irq(&phba->hbalock); 20136 20137 next_fcf_pri = 0; 20138 /* 20139 * Clear the rr_bmask and set all of the bits that are at this 20140 * priority. 20141 */ 20142 memset(phba->fcf.fcf_rr_bmask, 0, 20143 sizeof(*phba->fcf.fcf_rr_bmask)); 20144 spin_lock_irq(&phba->hbalock); 20145 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20146 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20147 continue; 20148 /* 20149 * the 1st priority that has not FLOGI failed 20150 * will be the highest. 20151 */ 20152 if (!next_fcf_pri) 20153 next_fcf_pri = fcf_pri->fcf_rec.priority; 20154 spin_unlock_irq(&phba->hbalock); 20155 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20156 rc = lpfc_sli4_fcf_rr_index_set(phba, 20157 fcf_pri->fcf_rec.fcf_index); 20158 if (rc) 20159 return 0; 20160 } 20161 spin_lock_irq(&phba->hbalock); 20162 } 20163 /* 20164 * if next_fcf_pri was not set above and the list is not empty then 20165 * we have failed flogis on all of them. So reset flogi failed 20166 * and start at the beginning. 20167 */ 20168 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20169 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20170 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20171 /* 20172 * the 1st priority that has not FLOGI failed 20173 * will be the highest. 20174 */ 20175 if (!next_fcf_pri) 20176 next_fcf_pri = fcf_pri->fcf_rec.priority; 20177 spin_unlock_irq(&phba->hbalock); 20178 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20179 rc = lpfc_sli4_fcf_rr_index_set(phba, 20180 fcf_pri->fcf_rec.fcf_index); 20181 if (rc) 20182 return 0; 20183 } 20184 spin_lock_irq(&phba->hbalock); 20185 } 20186 } else 20187 ret = 1; 20188 spin_unlock_irq(&phba->hbalock); 20189 20190 return ret; 20191 } 20192 /** 20193 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20194 * @phba: pointer to lpfc hba data structure. 20195 * 20196 * This routine is to get the next eligible FCF record index in a round 20197 * robin fashion. If the next eligible FCF record index equals to the 20198 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20199 * shall be returned, otherwise, the next eligible FCF record's index 20200 * shall be returned. 20201 **/ 20202 uint16_t 20203 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20204 { 20205 uint16_t next_fcf_index; 20206 20207 initial_priority: 20208 /* Search start from next bit of currently registered FCF index */ 20209 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20210 20211 next_priority: 20212 /* Determine the next fcf index to check */ 20213 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20214 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20215 LPFC_SLI4_FCF_TBL_INDX_MAX, 20216 next_fcf_index); 20217 20218 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20219 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20220 /* 20221 * If we have wrapped then we need to clear the bits that 20222 * have been tested so that we can detect when we should 20223 * change the priority level. 20224 */ 20225 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20226 LPFC_SLI4_FCF_TBL_INDX_MAX); 20227 } 20228 20229 20230 /* Check roundrobin failover list empty condition */ 20231 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20232 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20233 /* 20234 * If next fcf index is not found check if there are lower 20235 * Priority level fcf's in the fcf_priority list. 20236 * Set up the rr_bmask with all of the avaiable fcf bits 20237 * at that level and continue the selection process. 20238 */ 20239 if (lpfc_check_next_fcf_pri_level(phba)) 20240 goto initial_priority; 20241 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20242 "2844 No roundrobin failover FCF available\n"); 20243 20244 return LPFC_FCOE_FCF_NEXT_NONE; 20245 } 20246 20247 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20248 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20249 LPFC_FCF_FLOGI_FAILED) { 20250 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20251 return LPFC_FCOE_FCF_NEXT_NONE; 20252 20253 goto next_priority; 20254 } 20255 20256 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20257 "2845 Get next roundrobin failover FCF (x%x)\n", 20258 next_fcf_index); 20259 20260 return next_fcf_index; 20261 } 20262 20263 /** 20264 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20265 * @phba: pointer to lpfc hba data structure. 20266 * @fcf_index: index into the FCF table to 'set' 20267 * 20268 * This routine sets the FCF record index in to the eligible bmask for 20269 * roundrobin failover search. It checks to make sure that the index 20270 * does not go beyond the range of the driver allocated bmask dimension 20271 * before setting the bit. 20272 * 20273 * Returns 0 if the index bit successfully set, otherwise, it returns 20274 * -EINVAL. 20275 **/ 20276 int 20277 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20278 { 20279 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20280 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20281 "2610 FCF (x%x) reached driver's book " 20282 "keeping dimension:x%x\n", 20283 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20284 return -EINVAL; 20285 } 20286 /* Set the eligible FCF record index bmask */ 20287 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20288 20289 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20290 "2790 Set FCF (x%x) to roundrobin FCF failover " 20291 "bmask\n", fcf_index); 20292 20293 return 0; 20294 } 20295 20296 /** 20297 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20298 * @phba: pointer to lpfc hba data structure. 20299 * @fcf_index: index into the FCF table to 'clear' 20300 * 20301 * This routine clears the FCF record index from the eligible bmask for 20302 * roundrobin failover search. It checks to make sure that the index 20303 * does not go beyond the range of the driver allocated bmask dimension 20304 * before clearing the bit. 20305 **/ 20306 void 20307 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20308 { 20309 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20310 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20311 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20312 "2762 FCF (x%x) reached driver's book " 20313 "keeping dimension:x%x\n", 20314 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20315 return; 20316 } 20317 /* Clear the eligible FCF record index bmask */ 20318 spin_lock_irq(&phba->hbalock); 20319 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20320 list) { 20321 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20322 list_del_init(&fcf_pri->list); 20323 break; 20324 } 20325 } 20326 spin_unlock_irq(&phba->hbalock); 20327 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20328 20329 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20330 "2791 Clear FCF (x%x) from roundrobin failover " 20331 "bmask\n", fcf_index); 20332 } 20333 20334 /** 20335 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20336 * @phba: pointer to lpfc hba data structure. 20337 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20338 * 20339 * This routine is the completion routine for the rediscover FCF table mailbox 20340 * command. If the mailbox command returned failure, it will try to stop the 20341 * FCF rediscover wait timer. 20342 **/ 20343 static void 20344 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20345 { 20346 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20347 uint32_t shdr_status, shdr_add_status; 20348 20349 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20350 20351 shdr_status = bf_get(lpfc_mbox_hdr_status, 20352 &redisc_fcf->header.cfg_shdr.response); 20353 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20354 &redisc_fcf->header.cfg_shdr.response); 20355 if (shdr_status || shdr_add_status) { 20356 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20357 "2746 Requesting for FCF rediscovery failed " 20358 "status x%x add_status x%x\n", 20359 shdr_status, shdr_add_status); 20360 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20361 spin_lock_irq(&phba->hbalock); 20362 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20363 spin_unlock_irq(&phba->hbalock); 20364 /* 20365 * CVL event triggered FCF rediscover request failed, 20366 * last resort to re-try current registered FCF entry. 20367 */ 20368 lpfc_retry_pport_discovery(phba); 20369 } else { 20370 spin_lock_irq(&phba->hbalock); 20371 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20372 spin_unlock_irq(&phba->hbalock); 20373 /* 20374 * DEAD FCF event triggered FCF rediscover request 20375 * failed, last resort to fail over as a link down 20376 * to FCF registration. 20377 */ 20378 lpfc_sli4_fcf_dead_failthrough(phba); 20379 } 20380 } else { 20381 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20382 "2775 Start FCF rediscover quiescent timer\n"); 20383 /* 20384 * Start FCF rediscovery wait timer for pending FCF 20385 * before rescan FCF record table. 20386 */ 20387 lpfc_fcf_redisc_wait_start_timer(phba); 20388 } 20389 20390 mempool_free(mbox, phba->mbox_mem_pool); 20391 } 20392 20393 /** 20394 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20395 * @phba: pointer to lpfc hba data structure. 20396 * 20397 * This routine is invoked to request for rediscovery of the entire FCF table 20398 * by the port. 20399 **/ 20400 int 20401 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20402 { 20403 LPFC_MBOXQ_t *mbox; 20404 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20405 int rc, length; 20406 20407 /* Cancel retry delay timers to all vports before FCF rediscover */ 20408 lpfc_cancel_all_vport_retry_delay_timer(phba); 20409 20410 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20411 if (!mbox) { 20412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20413 "2745 Failed to allocate mbox for " 20414 "requesting FCF rediscover.\n"); 20415 return -ENOMEM; 20416 } 20417 20418 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20419 sizeof(struct lpfc_sli4_cfg_mhdr)); 20420 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20421 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20422 length, LPFC_SLI4_MBX_EMBED); 20423 20424 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20425 /* Set count to 0 for invalidating the entire FCF database */ 20426 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20427 20428 /* Issue the mailbox command asynchronously */ 20429 mbox->vport = phba->pport; 20430 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20431 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20432 20433 if (rc == MBX_NOT_FINISHED) { 20434 mempool_free(mbox, phba->mbox_mem_pool); 20435 return -EIO; 20436 } 20437 return 0; 20438 } 20439 20440 /** 20441 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20442 * @phba: pointer to lpfc hba data structure. 20443 * 20444 * This function is the failover routine as a last resort to the FCF DEAD 20445 * event when driver failed to perform fast FCF failover. 20446 **/ 20447 void 20448 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20449 { 20450 uint32_t link_state; 20451 20452 /* 20453 * Last resort as FCF DEAD event failover will treat this as 20454 * a link down, but save the link state because we don't want 20455 * it to be changed to Link Down unless it is already down. 20456 */ 20457 link_state = phba->link_state; 20458 lpfc_linkdown(phba); 20459 phba->link_state = link_state; 20460 20461 /* Unregister FCF if no devices connected to it */ 20462 lpfc_unregister_unused_fcf(phba); 20463 } 20464 20465 /** 20466 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20467 * @phba: pointer to lpfc hba data structure. 20468 * @rgn23_data: pointer to configure region 23 data. 20469 * 20470 * This function gets SLI3 port configure region 23 data through memory dump 20471 * mailbox command. When it successfully retrieves data, the size of the data 20472 * will be returned, otherwise, 0 will be returned. 20473 **/ 20474 static uint32_t 20475 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20476 { 20477 LPFC_MBOXQ_t *pmb = NULL; 20478 MAILBOX_t *mb; 20479 uint32_t offset = 0; 20480 int rc; 20481 20482 if (!rgn23_data) 20483 return 0; 20484 20485 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20486 if (!pmb) { 20487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20488 "2600 failed to allocate mailbox memory\n"); 20489 return 0; 20490 } 20491 mb = &pmb->u.mb; 20492 20493 do { 20494 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20495 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20496 20497 if (rc != MBX_SUCCESS) { 20498 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20499 "2601 failed to read config " 20500 "region 23, rc 0x%x Status 0x%x\n", 20501 rc, mb->mbxStatus); 20502 mb->un.varDmp.word_cnt = 0; 20503 } 20504 /* 20505 * dump mem may return a zero when finished or we got a 20506 * mailbox error, either way we are done. 20507 */ 20508 if (mb->un.varDmp.word_cnt == 0) 20509 break; 20510 20511 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20512 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20513 20514 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20515 rgn23_data + offset, 20516 mb->un.varDmp.word_cnt); 20517 offset += mb->un.varDmp.word_cnt; 20518 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20519 20520 mempool_free(pmb, phba->mbox_mem_pool); 20521 return offset; 20522 } 20523 20524 /** 20525 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20526 * @phba: pointer to lpfc hba data structure. 20527 * @rgn23_data: pointer to configure region 23 data. 20528 * 20529 * This function gets SLI4 port configure region 23 data through memory dump 20530 * mailbox command. When it successfully retrieves data, the size of the data 20531 * will be returned, otherwise, 0 will be returned. 20532 **/ 20533 static uint32_t 20534 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20535 { 20536 LPFC_MBOXQ_t *mboxq = NULL; 20537 struct lpfc_dmabuf *mp = NULL; 20538 struct lpfc_mqe *mqe; 20539 uint32_t data_length = 0; 20540 int rc; 20541 20542 if (!rgn23_data) 20543 return 0; 20544 20545 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20546 if (!mboxq) { 20547 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20548 "3105 failed to allocate mailbox memory\n"); 20549 return 0; 20550 } 20551 20552 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20553 goto out; 20554 mqe = &mboxq->u.mqe; 20555 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20556 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20557 if (rc) 20558 goto out; 20559 data_length = mqe->un.mb_words[5]; 20560 if (data_length == 0) 20561 goto out; 20562 if (data_length > DMP_RGN23_SIZE) { 20563 data_length = 0; 20564 goto out; 20565 } 20566 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20567 out: 20568 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20569 return data_length; 20570 } 20571 20572 /** 20573 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20574 * @phba: pointer to lpfc hba data structure. 20575 * 20576 * This function read region 23 and parse TLV for port status to 20577 * decide if the user disaled the port. If the TLV indicates the 20578 * port is disabled, the hba_flag is set accordingly. 20579 **/ 20580 void 20581 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20582 { 20583 uint8_t *rgn23_data = NULL; 20584 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20585 uint32_t offset = 0; 20586 20587 /* Get adapter Region 23 data */ 20588 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20589 if (!rgn23_data) 20590 goto out; 20591 20592 if (phba->sli_rev < LPFC_SLI_REV4) 20593 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20594 else { 20595 if_type = bf_get(lpfc_sli_intf_if_type, 20596 &phba->sli4_hba.sli_intf); 20597 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20598 goto out; 20599 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20600 } 20601 20602 if (!data_size) 20603 goto out; 20604 20605 /* Check the region signature first */ 20606 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20607 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20608 "2619 Config region 23 has bad signature\n"); 20609 goto out; 20610 } 20611 offset += 4; 20612 20613 /* Check the data structure version */ 20614 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20616 "2620 Config region 23 has bad version\n"); 20617 goto out; 20618 } 20619 offset += 4; 20620 20621 /* Parse TLV entries in the region */ 20622 while (offset < data_size) { 20623 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20624 break; 20625 /* 20626 * If the TLV is not driver specific TLV or driver id is 20627 * not linux driver id, skip the record. 20628 */ 20629 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20630 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20631 (rgn23_data[offset + 3] != 0)) { 20632 offset += rgn23_data[offset + 1] * 4 + 4; 20633 continue; 20634 } 20635 20636 /* Driver found a driver specific TLV in the config region */ 20637 sub_tlv_len = rgn23_data[offset + 1] * 4; 20638 offset += 4; 20639 tlv_offset = 0; 20640 20641 /* 20642 * Search for configured port state sub-TLV. 20643 */ 20644 while ((offset < data_size) && 20645 (tlv_offset < sub_tlv_len)) { 20646 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20647 offset += 4; 20648 tlv_offset += 4; 20649 break; 20650 } 20651 if (rgn23_data[offset] != PORT_STE_TYPE) { 20652 offset += rgn23_data[offset + 1] * 4 + 4; 20653 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20654 continue; 20655 } 20656 20657 /* This HBA contains PORT_STE configured */ 20658 if (!rgn23_data[offset + 2]) 20659 phba->hba_flag |= LINK_DISABLED; 20660 20661 goto out; 20662 } 20663 } 20664 20665 out: 20666 kfree(rgn23_data); 20667 return; 20668 } 20669 20670 /** 20671 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20672 * @phba: pointer to lpfc hba data structure 20673 * @shdr_status: wr_object rsp's status field 20674 * @shdr_add_status: wr_object rsp's add_status field 20675 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20676 * @shdr_change_status: wr_object rsp's change_status field 20677 * @shdr_csf: wr_object rsp's csf bit 20678 * 20679 * This routine is intended to be called after a firmware write completes. 20680 * It will log next action items to be performed by the user to instantiate 20681 * the newly downloaded firmware or reason for incompatibility. 20682 **/ 20683 static void 20684 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20685 u32 shdr_add_status, u32 shdr_add_status_2, 20686 u32 shdr_change_status, u32 shdr_csf) 20687 { 20688 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20689 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20690 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20691 "change_status x%02x, csf %01x\n", __func__, 20692 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20693 shdr_status, shdr_add_status, shdr_add_status_2, 20694 shdr_change_status, shdr_csf); 20695 20696 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20697 switch (shdr_add_status_2) { 20698 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20699 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20700 "4199 Firmware write failed: " 20701 "image incompatible with flash x%02x\n", 20702 phba->sli4_hba.flash_id); 20703 break; 20704 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20705 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20706 "4200 Firmware write failed: " 20707 "image incompatible with ASIC " 20708 "architecture x%02x\n", 20709 phba->sli4_hba.asic_rev); 20710 break; 20711 default: 20712 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20713 "4210 Firmware write failed: " 20714 "add_status_2 x%02x\n", 20715 shdr_add_status_2); 20716 break; 20717 } 20718 } else if (!shdr_status && !shdr_add_status) { 20719 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20720 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20721 if (shdr_csf) 20722 shdr_change_status = 20723 LPFC_CHANGE_STATUS_PCI_RESET; 20724 } 20725 20726 switch (shdr_change_status) { 20727 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20728 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20729 "3198 Firmware write complete: System " 20730 "reboot required to instantiate\n"); 20731 break; 20732 case (LPFC_CHANGE_STATUS_FW_RESET): 20733 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20734 "3199 Firmware write complete: " 20735 "Firmware reset required to " 20736 "instantiate\n"); 20737 break; 20738 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20739 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20740 "3200 Firmware write complete: Port " 20741 "Migration or PCI Reset required to " 20742 "instantiate\n"); 20743 break; 20744 case (LPFC_CHANGE_STATUS_PCI_RESET): 20745 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20746 "3201 Firmware write complete: PCI " 20747 "Reset required to instantiate\n"); 20748 break; 20749 default: 20750 break; 20751 } 20752 } 20753 } 20754 20755 /** 20756 * lpfc_wr_object - write an object to the firmware 20757 * @phba: HBA structure that indicates port to create a queue on. 20758 * @dmabuf_list: list of dmabufs to write to the port. 20759 * @size: the total byte value of the objects to write to the port. 20760 * @offset: the current offset to be used to start the transfer. 20761 * 20762 * This routine will create a wr_object mailbox command to send to the port. 20763 * the mailbox command will be constructed using the dma buffers described in 20764 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20765 * BDEs that the imbedded mailbox can support. The @offset variable will be 20766 * used to indicate the starting offset of the transfer and will also return 20767 * the offset after the write object mailbox has completed. @size is used to 20768 * determine the end of the object and whether the eof bit should be set. 20769 * 20770 * Return 0 is successful and offset will contain the new offset to use 20771 * for the next write. 20772 * Return negative value for error cases. 20773 **/ 20774 int 20775 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20776 uint32_t size, uint32_t *offset) 20777 { 20778 struct lpfc_mbx_wr_object *wr_object; 20779 LPFC_MBOXQ_t *mbox; 20780 int rc = 0, i = 0; 20781 int mbox_status = 0; 20782 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20783 uint32_t shdr_change_status = 0, shdr_csf = 0; 20784 uint32_t mbox_tmo; 20785 struct lpfc_dmabuf *dmabuf; 20786 uint32_t written = 0; 20787 bool check_change_status = false; 20788 20789 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20790 if (!mbox) 20791 return -ENOMEM; 20792 20793 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20794 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20795 sizeof(struct lpfc_mbx_wr_object) - 20796 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20797 20798 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20799 wr_object->u.request.write_offset = *offset; 20800 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20801 wr_object->u.request.object_name[0] = 20802 cpu_to_le32(wr_object->u.request.object_name[0]); 20803 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20804 list_for_each_entry(dmabuf, dmabuf_list, list) { 20805 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20806 break; 20807 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20808 wr_object->u.request.bde[i].addrHigh = 20809 putPaddrHigh(dmabuf->phys); 20810 if (written + SLI4_PAGE_SIZE >= size) { 20811 wr_object->u.request.bde[i].tus.f.bdeSize = 20812 (size - written); 20813 written += (size - written); 20814 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20815 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20816 check_change_status = true; 20817 } else { 20818 wr_object->u.request.bde[i].tus.f.bdeSize = 20819 SLI4_PAGE_SIZE; 20820 written += SLI4_PAGE_SIZE; 20821 } 20822 i++; 20823 } 20824 wr_object->u.request.bde_count = i; 20825 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20826 if (!phba->sli4_hba.intr_enable) 20827 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20828 else { 20829 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20830 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20831 } 20832 20833 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20834 rc = mbox_status; 20835 20836 /* The IOCTL status is embedded in the mailbox subheader. */ 20837 shdr_status = bf_get(lpfc_mbox_hdr_status, 20838 &wr_object->header.cfg_shdr.response); 20839 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20840 &wr_object->header.cfg_shdr.response); 20841 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20842 &wr_object->header.cfg_shdr.response); 20843 if (check_change_status) { 20844 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20845 &wr_object->u.response); 20846 shdr_csf = bf_get(lpfc_wr_object_csf, 20847 &wr_object->u.response); 20848 } 20849 20850 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20852 "3025 Write Object mailbox failed with " 20853 "status x%x add_status x%x, add_status_2 x%x, " 20854 "mbx status x%x\n", 20855 shdr_status, shdr_add_status, shdr_add_status_2, 20856 rc); 20857 rc = -ENXIO; 20858 *offset = shdr_add_status; 20859 } else { 20860 *offset += wr_object->u.response.actual_write_length; 20861 } 20862 20863 if (rc || check_change_status) 20864 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20865 shdr_add_status_2, shdr_change_status, 20866 shdr_csf); 20867 20868 if (!phba->sli4_hba.intr_enable) 20869 mempool_free(mbox, phba->mbox_mem_pool); 20870 else if (mbox_status != MBX_TIMEOUT) 20871 mempool_free(mbox, phba->mbox_mem_pool); 20872 20873 return rc; 20874 } 20875 20876 /** 20877 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20878 * @vport: pointer to vport data structure. 20879 * 20880 * This function iterate through the mailboxq and clean up all REG_LOGIN 20881 * and REG_VPI mailbox commands associated with the vport. This function 20882 * is called when driver want to restart discovery of the vport due to 20883 * a Clear Virtual Link event. 20884 **/ 20885 void 20886 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20887 { 20888 struct lpfc_hba *phba = vport->phba; 20889 LPFC_MBOXQ_t *mb, *nextmb; 20890 struct lpfc_nodelist *ndlp; 20891 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20892 LIST_HEAD(mbox_cmd_list); 20893 uint8_t restart_loop; 20894 20895 /* Clean up internally queued mailbox commands with the vport */ 20896 spin_lock_irq(&phba->hbalock); 20897 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20898 if (mb->vport != vport) 20899 continue; 20900 20901 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20902 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20903 continue; 20904 20905 list_move_tail(&mb->list, &mbox_cmd_list); 20906 } 20907 /* Clean up active mailbox command with the vport */ 20908 mb = phba->sli.mbox_active; 20909 if (mb && (mb->vport == vport)) { 20910 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20911 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20912 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20913 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20914 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20915 20916 /* This reference is local to this routine. The 20917 * reference is removed at routine exit. 20918 */ 20919 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20920 20921 /* Unregister the RPI when mailbox complete */ 20922 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20923 } 20924 } 20925 /* Cleanup any mailbox completions which are not yet processed */ 20926 do { 20927 restart_loop = 0; 20928 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20929 /* 20930 * If this mailox is already processed or it is 20931 * for another vport ignore it. 20932 */ 20933 if ((mb->vport != vport) || 20934 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20935 continue; 20936 20937 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20938 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20939 continue; 20940 20941 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20942 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20943 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20944 /* Unregister the RPI when mailbox complete */ 20945 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20946 restart_loop = 1; 20947 spin_unlock_irq(&phba->hbalock); 20948 spin_lock(&ndlp->lock); 20949 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20950 spin_unlock(&ndlp->lock); 20951 spin_lock_irq(&phba->hbalock); 20952 break; 20953 } 20954 } 20955 } while (restart_loop); 20956 20957 spin_unlock_irq(&phba->hbalock); 20958 20959 /* Release the cleaned-up mailbox commands */ 20960 while (!list_empty(&mbox_cmd_list)) { 20961 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20962 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20963 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20964 mb->ctx_ndlp = NULL; 20965 if (ndlp) { 20966 spin_lock(&ndlp->lock); 20967 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20968 spin_unlock(&ndlp->lock); 20969 lpfc_nlp_put(ndlp); 20970 } 20971 } 20972 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 20973 } 20974 20975 /* Release the ndlp with the cleaned-up active mailbox command */ 20976 if (act_mbx_ndlp) { 20977 spin_lock(&act_mbx_ndlp->lock); 20978 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20979 spin_unlock(&act_mbx_ndlp->lock); 20980 lpfc_nlp_put(act_mbx_ndlp); 20981 } 20982 } 20983 20984 /** 20985 * lpfc_drain_txq - Drain the txq 20986 * @phba: Pointer to HBA context object. 20987 * 20988 * This function attempt to submit IOCBs on the txq 20989 * to the adapter. For SLI4 adapters, the txq contains 20990 * ELS IOCBs that have been deferred because the there 20991 * are no SGLs. This congestion can occur with large 20992 * vport counts during node discovery. 20993 **/ 20994 20995 uint32_t 20996 lpfc_drain_txq(struct lpfc_hba *phba) 20997 { 20998 LIST_HEAD(completions); 20999 struct lpfc_sli_ring *pring; 21000 struct lpfc_iocbq *piocbq = NULL; 21001 unsigned long iflags = 0; 21002 char *fail_msg = NULL; 21003 uint32_t txq_cnt = 0; 21004 struct lpfc_queue *wq; 21005 int ret = 0; 21006 21007 if (phba->link_flag & LS_MDS_LOOPBACK) { 21008 /* MDS WQE are posted only to first WQ*/ 21009 wq = phba->sli4_hba.hdwq[0].io_wq; 21010 if (unlikely(!wq)) 21011 return 0; 21012 pring = wq->pring; 21013 } else { 21014 wq = phba->sli4_hba.els_wq; 21015 if (unlikely(!wq)) 21016 return 0; 21017 pring = lpfc_phba_elsring(phba); 21018 } 21019 21020 if (unlikely(!pring) || list_empty(&pring->txq)) 21021 return 0; 21022 21023 spin_lock_irqsave(&pring->ring_lock, iflags); 21024 list_for_each_entry(piocbq, &pring->txq, list) { 21025 txq_cnt++; 21026 } 21027 21028 if (txq_cnt > pring->txq_max) 21029 pring->txq_max = txq_cnt; 21030 21031 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21032 21033 while (!list_empty(&pring->txq)) { 21034 spin_lock_irqsave(&pring->ring_lock, iflags); 21035 21036 piocbq = lpfc_sli_ringtx_get(phba, pring); 21037 if (!piocbq) { 21038 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21040 "2823 txq empty and txq_cnt is %d\n ", 21041 txq_cnt); 21042 break; 21043 } 21044 txq_cnt--; 21045 21046 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21047 21048 if (ret && ret != IOCB_BUSY) { 21049 fail_msg = " - Cannot send IO "; 21050 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21051 } 21052 if (fail_msg) { 21053 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21054 /* Failed means we can't issue and need to cancel */ 21055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21056 "2822 IOCB failed %s iotag 0x%x " 21057 "xri 0x%x %d flg x%x\n", 21058 fail_msg, piocbq->iotag, 21059 piocbq->sli4_xritag, ret, 21060 piocbq->cmd_flag); 21061 list_add_tail(&piocbq->list, &completions); 21062 fail_msg = NULL; 21063 } 21064 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21065 if (txq_cnt == 0 || ret == IOCB_BUSY) 21066 break; 21067 } 21068 /* Cancel all the IOCBs that cannot be issued */ 21069 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21070 IOERR_SLI_ABORTED); 21071 21072 return txq_cnt; 21073 } 21074 21075 /** 21076 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21077 * @phba: Pointer to HBA context object. 21078 * @pwqeq: Pointer to command WQE. 21079 * @sglq: Pointer to the scatter gather queue object. 21080 * 21081 * This routine converts the bpl or bde that is in the WQE 21082 * to a sgl list for the sli4 hardware. The physical address 21083 * of the bpl/bde is converted back to a virtual address. 21084 * If the WQE contains a BPL then the list of BDE's is 21085 * converted to sli4_sge's. If the WQE contains a single 21086 * BDE then it is converted to a single sli_sge. 21087 * The WQE is still in cpu endianness so the contents of 21088 * the bpl can be used without byte swapping. 21089 * 21090 * Returns valid XRI = Success, NO_XRI = Failure. 21091 */ 21092 static uint16_t 21093 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21094 struct lpfc_sglq *sglq) 21095 { 21096 uint16_t xritag = NO_XRI; 21097 struct ulp_bde64 *bpl = NULL; 21098 struct ulp_bde64 bde; 21099 struct sli4_sge *sgl = NULL; 21100 struct lpfc_dmabuf *dmabuf; 21101 union lpfc_wqe128 *wqe; 21102 int numBdes = 0; 21103 int i = 0; 21104 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21105 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21106 uint32_t cmd; 21107 21108 if (!pwqeq || !sglq) 21109 return xritag; 21110 21111 sgl = (struct sli4_sge *)sglq->sgl; 21112 wqe = &pwqeq->wqe; 21113 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21114 21115 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21116 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21117 return sglq->sli4_xritag; 21118 numBdes = pwqeq->num_bdes; 21119 if (numBdes) { 21120 /* The addrHigh and addrLow fields within the WQE 21121 * have not been byteswapped yet so there is no 21122 * need to swap them back. 21123 */ 21124 if (pwqeq->bpl_dmabuf) 21125 dmabuf = pwqeq->bpl_dmabuf; 21126 else 21127 return xritag; 21128 21129 bpl = (struct ulp_bde64 *)dmabuf->virt; 21130 if (!bpl) 21131 return xritag; 21132 21133 for (i = 0; i < numBdes; i++) { 21134 /* Should already be byte swapped. */ 21135 sgl->addr_hi = bpl->addrHigh; 21136 sgl->addr_lo = bpl->addrLow; 21137 21138 sgl->word2 = le32_to_cpu(sgl->word2); 21139 if ((i+1) == numBdes) 21140 bf_set(lpfc_sli4_sge_last, sgl, 1); 21141 else 21142 bf_set(lpfc_sli4_sge_last, sgl, 0); 21143 /* swap the size field back to the cpu so we 21144 * can assign it to the sgl. 21145 */ 21146 bde.tus.w = le32_to_cpu(bpl->tus.w); 21147 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21148 /* The offsets in the sgl need to be accumulated 21149 * separately for the request and reply lists. 21150 * The request is always first, the reply follows. 21151 */ 21152 switch (cmd) { 21153 case CMD_GEN_REQUEST64_WQE: 21154 /* add up the reply sg entries */ 21155 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21156 inbound++; 21157 /* first inbound? reset the offset */ 21158 if (inbound == 1) 21159 offset = 0; 21160 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21161 bf_set(lpfc_sli4_sge_type, sgl, 21162 LPFC_SGE_TYPE_DATA); 21163 offset += bde.tus.f.bdeSize; 21164 break; 21165 case CMD_FCP_TRSP64_WQE: 21166 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21167 bf_set(lpfc_sli4_sge_type, sgl, 21168 LPFC_SGE_TYPE_DATA); 21169 break; 21170 case CMD_FCP_TSEND64_WQE: 21171 case CMD_FCP_TRECEIVE64_WQE: 21172 bf_set(lpfc_sli4_sge_type, sgl, 21173 bpl->tus.f.bdeFlags); 21174 if (i < 3) 21175 offset = 0; 21176 else 21177 offset += bde.tus.f.bdeSize; 21178 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21179 break; 21180 } 21181 sgl->word2 = cpu_to_le32(sgl->word2); 21182 bpl++; 21183 sgl++; 21184 } 21185 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21186 /* The addrHigh and addrLow fields of the BDE have not 21187 * been byteswapped yet so they need to be swapped 21188 * before putting them in the sgl. 21189 */ 21190 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21191 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21192 sgl->word2 = le32_to_cpu(sgl->word2); 21193 bf_set(lpfc_sli4_sge_last, sgl, 1); 21194 sgl->word2 = cpu_to_le32(sgl->word2); 21195 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21196 } 21197 return sglq->sli4_xritag; 21198 } 21199 21200 /** 21201 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21202 * @phba: Pointer to HBA context object. 21203 * @qp: Pointer to HDW queue. 21204 * @pwqe: Pointer to command WQE. 21205 **/ 21206 int 21207 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21208 struct lpfc_iocbq *pwqe) 21209 { 21210 union lpfc_wqe128 *wqe = &pwqe->wqe; 21211 struct lpfc_async_xchg_ctx *ctxp; 21212 struct lpfc_queue *wq; 21213 struct lpfc_sglq *sglq; 21214 struct lpfc_sli_ring *pring; 21215 unsigned long iflags; 21216 uint32_t ret = 0; 21217 21218 /* NVME_LS and NVME_LS ABTS requests. */ 21219 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21220 pring = phba->sli4_hba.nvmels_wq->pring; 21221 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21222 qp, wq_access); 21223 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21224 if (!sglq) { 21225 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21226 return WQE_BUSY; 21227 } 21228 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21229 pwqe->sli4_xritag = sglq->sli4_xritag; 21230 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21231 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21232 return WQE_ERROR; 21233 } 21234 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21235 pwqe->sli4_xritag); 21236 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21237 if (ret) { 21238 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21239 return ret; 21240 } 21241 21242 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21243 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21244 21245 lpfc_sli4_poll_eq(qp->hba_eq); 21246 return 0; 21247 } 21248 21249 /* NVME_FCREQ and NVME_ABTS requests */ 21250 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21251 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21252 wq = qp->io_wq; 21253 pring = wq->pring; 21254 21255 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21256 21257 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21258 qp, wq_access); 21259 ret = lpfc_sli4_wq_put(wq, wqe); 21260 if (ret) { 21261 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21262 return ret; 21263 } 21264 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21265 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21266 21267 lpfc_sli4_poll_eq(qp->hba_eq); 21268 return 0; 21269 } 21270 21271 /* NVMET requests */ 21272 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21273 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21274 wq = qp->io_wq; 21275 pring = wq->pring; 21276 21277 ctxp = pwqe->context_un.axchg; 21278 sglq = ctxp->ctxbuf->sglq; 21279 if (pwqe->sli4_xritag == NO_XRI) { 21280 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21281 pwqe->sli4_xritag = sglq->sli4_xritag; 21282 } 21283 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21284 pwqe->sli4_xritag); 21285 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21286 21287 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21288 qp, wq_access); 21289 ret = lpfc_sli4_wq_put(wq, wqe); 21290 if (ret) { 21291 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21292 return ret; 21293 } 21294 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21295 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21296 21297 lpfc_sli4_poll_eq(qp->hba_eq); 21298 return 0; 21299 } 21300 return WQE_ERROR; 21301 } 21302 21303 /** 21304 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21305 * @phba: Pointer to HBA context object. 21306 * @cmdiocb: Pointer to driver command iocb object. 21307 * @cmpl: completion function. 21308 * 21309 * Fill the appropriate fields for the abort WQE and call 21310 * internal routine lpfc_sli4_issue_wqe to send the WQE 21311 * This function is called with hbalock held and no ring_lock held. 21312 * 21313 * RETURNS 0 - SUCCESS 21314 **/ 21315 21316 int 21317 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21318 void *cmpl) 21319 { 21320 struct lpfc_vport *vport = cmdiocb->vport; 21321 struct lpfc_iocbq *abtsiocb = NULL; 21322 union lpfc_wqe128 *abtswqe; 21323 struct lpfc_io_buf *lpfc_cmd; 21324 int retval = IOCB_ERROR; 21325 u16 xritag = cmdiocb->sli4_xritag; 21326 21327 /* 21328 * The scsi command can not be in txq and it is in flight because the 21329 * pCmd is still pointing at the SCSI command we have to abort. There 21330 * is no need to search the txcmplq. Just send an abort to the FW. 21331 */ 21332 21333 abtsiocb = __lpfc_sli_get_iocbq(phba); 21334 if (!abtsiocb) 21335 return WQE_NORESOURCE; 21336 21337 /* Indicate the IO is being aborted by the driver. */ 21338 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21339 21340 abtswqe = &abtsiocb->wqe; 21341 memset(abtswqe, 0, sizeof(*abtswqe)); 21342 21343 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21344 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21345 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21346 abtswqe->abort_cmd.rsrvd5 = 0; 21347 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21348 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21349 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21350 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21351 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21352 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21353 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21354 21355 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21356 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21357 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21358 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21359 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21360 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21361 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21362 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21363 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21364 abtsiocb->vport = vport; 21365 abtsiocb->cmd_cmpl = cmpl; 21366 21367 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21368 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21369 21370 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21371 "0359 Abort xri x%x, original iotag x%x, " 21372 "abort cmd iotag x%x retval x%x\n", 21373 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21374 21375 if (retval) { 21376 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21377 __lpfc_sli_release_iocbq(phba, abtsiocb); 21378 } 21379 21380 return retval; 21381 } 21382 21383 #ifdef LPFC_MXP_STAT 21384 /** 21385 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21386 * @phba: pointer to lpfc hba data structure. 21387 * @hwqid: belong to which HWQ. 21388 * 21389 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21390 * 15 seconds after a test case is running. 21391 * 21392 * The user should call lpfc_debugfs_multixripools_write before running a test 21393 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21394 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21395 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21396 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21397 **/ 21398 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21399 { 21400 struct lpfc_sli4_hdw_queue *qp; 21401 struct lpfc_multixri_pool *multixri_pool; 21402 struct lpfc_pvt_pool *pvt_pool; 21403 struct lpfc_pbl_pool *pbl_pool; 21404 u32 txcmplq_cnt; 21405 21406 qp = &phba->sli4_hba.hdwq[hwqid]; 21407 multixri_pool = qp->p_multixri_pool; 21408 if (!multixri_pool) 21409 return; 21410 21411 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21412 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21413 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21414 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21415 21416 multixri_pool->stat_pbl_count = pbl_pool->count; 21417 multixri_pool->stat_pvt_count = pvt_pool->count; 21418 multixri_pool->stat_busy_count = txcmplq_cnt; 21419 } 21420 21421 multixri_pool->stat_snapshot_taken++; 21422 } 21423 #endif 21424 21425 /** 21426 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21427 * @phba: pointer to lpfc hba data structure. 21428 * @hwqid: belong to which HWQ. 21429 * 21430 * This routine moves some XRIs from private to public pool when private pool 21431 * is not busy. 21432 **/ 21433 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21434 { 21435 struct lpfc_multixri_pool *multixri_pool; 21436 u32 io_req_count; 21437 u32 prev_io_req_count; 21438 21439 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21440 if (!multixri_pool) 21441 return; 21442 io_req_count = multixri_pool->io_req_count; 21443 prev_io_req_count = multixri_pool->prev_io_req_count; 21444 21445 if (prev_io_req_count != io_req_count) { 21446 /* Private pool is busy */ 21447 multixri_pool->prev_io_req_count = io_req_count; 21448 } else { 21449 /* Private pool is not busy. 21450 * Move XRIs from private to public pool. 21451 */ 21452 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21453 } 21454 } 21455 21456 /** 21457 * lpfc_adjust_high_watermark - Adjust high watermark 21458 * @phba: pointer to lpfc hba data structure. 21459 * @hwqid: belong to which HWQ. 21460 * 21461 * This routine sets high watermark as number of outstanding XRIs, 21462 * but make sure the new value is between xri_limit/2 and xri_limit. 21463 **/ 21464 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21465 { 21466 u32 new_watermark; 21467 u32 watermark_max; 21468 u32 watermark_min; 21469 u32 xri_limit; 21470 u32 txcmplq_cnt; 21471 u32 abts_io_bufs; 21472 struct lpfc_multixri_pool *multixri_pool; 21473 struct lpfc_sli4_hdw_queue *qp; 21474 21475 qp = &phba->sli4_hba.hdwq[hwqid]; 21476 multixri_pool = qp->p_multixri_pool; 21477 if (!multixri_pool) 21478 return; 21479 xri_limit = multixri_pool->xri_limit; 21480 21481 watermark_max = xri_limit; 21482 watermark_min = xri_limit / 2; 21483 21484 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21485 abts_io_bufs = qp->abts_scsi_io_bufs; 21486 abts_io_bufs += qp->abts_nvme_io_bufs; 21487 21488 new_watermark = txcmplq_cnt + abts_io_bufs; 21489 new_watermark = min(watermark_max, new_watermark); 21490 new_watermark = max(watermark_min, new_watermark); 21491 multixri_pool->pvt_pool.high_watermark = new_watermark; 21492 21493 #ifdef LPFC_MXP_STAT 21494 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21495 new_watermark); 21496 #endif 21497 } 21498 21499 /** 21500 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21501 * @phba: pointer to lpfc hba data structure. 21502 * @hwqid: belong to which HWQ. 21503 * 21504 * This routine is called from hearbeat timer when pvt_pool is idle. 21505 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21506 * The first step moves (all - low_watermark) amount of XRIs. 21507 * The second step moves the rest of XRIs. 21508 **/ 21509 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21510 { 21511 struct lpfc_pbl_pool *pbl_pool; 21512 struct lpfc_pvt_pool *pvt_pool; 21513 struct lpfc_sli4_hdw_queue *qp; 21514 struct lpfc_io_buf *lpfc_ncmd; 21515 struct lpfc_io_buf *lpfc_ncmd_next; 21516 unsigned long iflag; 21517 struct list_head tmp_list; 21518 u32 tmp_count; 21519 21520 qp = &phba->sli4_hba.hdwq[hwqid]; 21521 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21522 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21523 tmp_count = 0; 21524 21525 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21526 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21527 21528 if (pvt_pool->count > pvt_pool->low_watermark) { 21529 /* Step 1: move (all - low_watermark) from pvt_pool 21530 * to pbl_pool 21531 */ 21532 21533 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21534 INIT_LIST_HEAD(&tmp_list); 21535 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21536 &pvt_pool->list, list) { 21537 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21538 tmp_count++; 21539 if (tmp_count >= pvt_pool->low_watermark) 21540 break; 21541 } 21542 21543 /* Move all bufs from pvt_pool to pbl_pool */ 21544 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21545 21546 /* Move all bufs from tmp_list to pvt_pool */ 21547 list_splice(&tmp_list, &pvt_pool->list); 21548 21549 pbl_pool->count += (pvt_pool->count - tmp_count); 21550 pvt_pool->count = tmp_count; 21551 } else { 21552 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21553 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21554 pbl_pool->count += pvt_pool->count; 21555 pvt_pool->count = 0; 21556 } 21557 21558 spin_unlock(&pvt_pool->lock); 21559 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21560 } 21561 21562 /** 21563 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21564 * @phba: pointer to lpfc hba data structure 21565 * @qp: pointer to HDW queue 21566 * @pbl_pool: specified public free XRI pool 21567 * @pvt_pool: specified private free XRI pool 21568 * @count: number of XRIs to move 21569 * 21570 * This routine tries to move some free common bufs from the specified pbl_pool 21571 * to the specified pvt_pool. It might move less than count XRIs if there's not 21572 * enough in public pool. 21573 * 21574 * Return: 21575 * true - if XRIs are successfully moved from the specified pbl_pool to the 21576 * specified pvt_pool 21577 * false - if the specified pbl_pool is empty or locked by someone else 21578 **/ 21579 static bool 21580 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21581 struct lpfc_pbl_pool *pbl_pool, 21582 struct lpfc_pvt_pool *pvt_pool, u32 count) 21583 { 21584 struct lpfc_io_buf *lpfc_ncmd; 21585 struct lpfc_io_buf *lpfc_ncmd_next; 21586 unsigned long iflag; 21587 int ret; 21588 21589 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21590 if (ret) { 21591 if (pbl_pool->count) { 21592 /* Move a batch of XRIs from public to private pool */ 21593 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21594 list_for_each_entry_safe(lpfc_ncmd, 21595 lpfc_ncmd_next, 21596 &pbl_pool->list, 21597 list) { 21598 list_move_tail(&lpfc_ncmd->list, 21599 &pvt_pool->list); 21600 pvt_pool->count++; 21601 pbl_pool->count--; 21602 count--; 21603 if (count == 0) 21604 break; 21605 } 21606 21607 spin_unlock(&pvt_pool->lock); 21608 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21609 return true; 21610 } 21611 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21612 } 21613 21614 return false; 21615 } 21616 21617 /** 21618 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21619 * @phba: pointer to lpfc hba data structure. 21620 * @hwqid: belong to which HWQ. 21621 * @count: number of XRIs to move 21622 * 21623 * This routine tries to find some free common bufs in one of public pools with 21624 * Round Robin method. The search always starts from local hwqid, then the next 21625 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21626 * a batch of free common bufs are moved to private pool on hwqid. 21627 * It might move less than count XRIs if there's not enough in public pool. 21628 **/ 21629 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21630 { 21631 struct lpfc_multixri_pool *multixri_pool; 21632 struct lpfc_multixri_pool *next_multixri_pool; 21633 struct lpfc_pvt_pool *pvt_pool; 21634 struct lpfc_pbl_pool *pbl_pool; 21635 struct lpfc_sli4_hdw_queue *qp; 21636 u32 next_hwqid; 21637 u32 hwq_count; 21638 int ret; 21639 21640 qp = &phba->sli4_hba.hdwq[hwqid]; 21641 multixri_pool = qp->p_multixri_pool; 21642 pvt_pool = &multixri_pool->pvt_pool; 21643 pbl_pool = &multixri_pool->pbl_pool; 21644 21645 /* Check if local pbl_pool is available */ 21646 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21647 if (ret) { 21648 #ifdef LPFC_MXP_STAT 21649 multixri_pool->local_pbl_hit_count++; 21650 #endif 21651 return; 21652 } 21653 21654 hwq_count = phba->cfg_hdw_queue; 21655 21656 /* Get the next hwqid which was found last time */ 21657 next_hwqid = multixri_pool->rrb_next_hwqid; 21658 21659 do { 21660 /* Go to next hwq */ 21661 next_hwqid = (next_hwqid + 1) % hwq_count; 21662 21663 next_multixri_pool = 21664 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21665 pbl_pool = &next_multixri_pool->pbl_pool; 21666 21667 /* Check if the public free xri pool is available */ 21668 ret = _lpfc_move_xri_pbl_to_pvt( 21669 phba, qp, pbl_pool, pvt_pool, count); 21670 21671 /* Exit while-loop if success or all hwqid are checked */ 21672 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21673 21674 /* Starting point for the next time */ 21675 multixri_pool->rrb_next_hwqid = next_hwqid; 21676 21677 if (!ret) { 21678 /* stats: all public pools are empty*/ 21679 multixri_pool->pbl_empty_count++; 21680 } 21681 21682 #ifdef LPFC_MXP_STAT 21683 if (ret) { 21684 if (next_hwqid == hwqid) 21685 multixri_pool->local_pbl_hit_count++; 21686 else 21687 multixri_pool->other_pbl_hit_count++; 21688 } 21689 #endif 21690 } 21691 21692 /** 21693 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21694 * @phba: pointer to lpfc hba data structure. 21695 * @hwqid: belong to which HWQ. 21696 * 21697 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21698 * low watermark. 21699 **/ 21700 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21701 { 21702 struct lpfc_multixri_pool *multixri_pool; 21703 struct lpfc_pvt_pool *pvt_pool; 21704 21705 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21706 pvt_pool = &multixri_pool->pvt_pool; 21707 21708 if (pvt_pool->count < pvt_pool->low_watermark) 21709 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21710 } 21711 21712 /** 21713 * lpfc_release_io_buf - Return one IO buf back to free pool 21714 * @phba: pointer to lpfc hba data structure. 21715 * @lpfc_ncmd: IO buf to be returned. 21716 * @qp: belong to which HWQ. 21717 * 21718 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21719 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21720 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21721 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21722 * lpfc_io_buf_list_put. 21723 **/ 21724 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21725 struct lpfc_sli4_hdw_queue *qp) 21726 { 21727 unsigned long iflag; 21728 struct lpfc_pbl_pool *pbl_pool; 21729 struct lpfc_pvt_pool *pvt_pool; 21730 struct lpfc_epd_pool *epd_pool; 21731 u32 txcmplq_cnt; 21732 u32 xri_owned; 21733 u32 xri_limit; 21734 u32 abts_io_bufs; 21735 21736 /* MUST zero fields if buffer is reused by another protocol */ 21737 lpfc_ncmd->nvmeCmd = NULL; 21738 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21739 21740 if (phba->cfg_xpsgl && !phba->nvmet_support && 21741 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21742 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21743 21744 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21745 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21746 21747 if (phba->cfg_xri_rebalancing) { 21748 if (lpfc_ncmd->expedite) { 21749 /* Return to expedite pool */ 21750 epd_pool = &phba->epd_pool; 21751 spin_lock_irqsave(&epd_pool->lock, iflag); 21752 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21753 epd_pool->count++; 21754 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21755 return; 21756 } 21757 21758 /* Avoid invalid access if an IO sneaks in and is being rejected 21759 * just _after_ xri pools are destroyed in lpfc_offline. 21760 * Nothing much can be done at this point. 21761 */ 21762 if (!qp->p_multixri_pool) 21763 return; 21764 21765 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21766 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21767 21768 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21769 abts_io_bufs = qp->abts_scsi_io_bufs; 21770 abts_io_bufs += qp->abts_nvme_io_bufs; 21771 21772 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21773 xri_limit = qp->p_multixri_pool->xri_limit; 21774 21775 #ifdef LPFC_MXP_STAT 21776 if (xri_owned <= xri_limit) 21777 qp->p_multixri_pool->below_limit_count++; 21778 else 21779 qp->p_multixri_pool->above_limit_count++; 21780 #endif 21781 21782 /* XRI goes to either public or private free xri pool 21783 * based on watermark and xri_limit 21784 */ 21785 if ((pvt_pool->count < pvt_pool->low_watermark) || 21786 (xri_owned < xri_limit && 21787 pvt_pool->count < pvt_pool->high_watermark)) { 21788 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21789 qp, free_pvt_pool); 21790 list_add_tail(&lpfc_ncmd->list, 21791 &pvt_pool->list); 21792 pvt_pool->count++; 21793 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21794 } else { 21795 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21796 qp, free_pub_pool); 21797 list_add_tail(&lpfc_ncmd->list, 21798 &pbl_pool->list); 21799 pbl_pool->count++; 21800 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21801 } 21802 } else { 21803 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21804 qp, free_xri); 21805 list_add_tail(&lpfc_ncmd->list, 21806 &qp->lpfc_io_buf_list_put); 21807 qp->put_io_bufs++; 21808 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21809 iflag); 21810 } 21811 } 21812 21813 /** 21814 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21815 * @phba: pointer to lpfc hba data structure. 21816 * @qp: pointer to HDW queue 21817 * @pvt_pool: pointer to private pool data structure. 21818 * @ndlp: pointer to lpfc nodelist data structure. 21819 * 21820 * This routine tries to get one free IO buf from private pool. 21821 * 21822 * Return: 21823 * pointer to one free IO buf - if private pool is not empty 21824 * NULL - if private pool is empty 21825 **/ 21826 static struct lpfc_io_buf * 21827 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21828 struct lpfc_sli4_hdw_queue *qp, 21829 struct lpfc_pvt_pool *pvt_pool, 21830 struct lpfc_nodelist *ndlp) 21831 { 21832 struct lpfc_io_buf *lpfc_ncmd; 21833 struct lpfc_io_buf *lpfc_ncmd_next; 21834 unsigned long iflag; 21835 21836 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21837 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21838 &pvt_pool->list, list) { 21839 if (lpfc_test_rrq_active( 21840 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21841 continue; 21842 list_del(&lpfc_ncmd->list); 21843 pvt_pool->count--; 21844 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21845 return lpfc_ncmd; 21846 } 21847 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21848 21849 return NULL; 21850 } 21851 21852 /** 21853 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21854 * @phba: pointer to lpfc hba data structure. 21855 * 21856 * This routine tries to get one free IO buf from expedite pool. 21857 * 21858 * Return: 21859 * pointer to one free IO buf - if expedite pool is not empty 21860 * NULL - if expedite pool is empty 21861 **/ 21862 static struct lpfc_io_buf * 21863 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21864 { 21865 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21866 struct lpfc_io_buf *lpfc_ncmd_next; 21867 unsigned long iflag; 21868 struct lpfc_epd_pool *epd_pool; 21869 21870 epd_pool = &phba->epd_pool; 21871 21872 spin_lock_irqsave(&epd_pool->lock, iflag); 21873 if (epd_pool->count > 0) { 21874 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21875 &epd_pool->list, list) { 21876 list_del(&iter->list); 21877 epd_pool->count--; 21878 lpfc_ncmd = iter; 21879 break; 21880 } 21881 } 21882 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21883 21884 return lpfc_ncmd; 21885 } 21886 21887 /** 21888 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21889 * @phba: pointer to lpfc hba data structure. 21890 * @ndlp: pointer to lpfc nodelist data structure. 21891 * @hwqid: belong to which HWQ 21892 * @expedite: 1 means this request is urgent. 21893 * 21894 * This routine will do the following actions and then return a pointer to 21895 * one free IO buf. 21896 * 21897 * 1. If private free xri count is empty, move some XRIs from public to 21898 * private pool. 21899 * 2. Get one XRI from private free xri pool. 21900 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21901 * get one free xri from expedite pool. 21902 * 21903 * Note: ndlp is only used on SCSI side for RRQ testing. 21904 * The caller should pass NULL for ndlp on NVME side. 21905 * 21906 * Return: 21907 * pointer to one free IO buf - if private pool is not empty 21908 * NULL - if private pool is empty 21909 **/ 21910 static struct lpfc_io_buf * 21911 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21912 struct lpfc_nodelist *ndlp, 21913 int hwqid, int expedite) 21914 { 21915 struct lpfc_sli4_hdw_queue *qp; 21916 struct lpfc_multixri_pool *multixri_pool; 21917 struct lpfc_pvt_pool *pvt_pool; 21918 struct lpfc_io_buf *lpfc_ncmd; 21919 21920 qp = &phba->sli4_hba.hdwq[hwqid]; 21921 lpfc_ncmd = NULL; 21922 if (!qp) { 21923 lpfc_printf_log(phba, KERN_INFO, 21924 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21925 "5556 NULL qp for hwqid x%x\n", hwqid); 21926 return lpfc_ncmd; 21927 } 21928 multixri_pool = qp->p_multixri_pool; 21929 if (!multixri_pool) { 21930 lpfc_printf_log(phba, KERN_INFO, 21931 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21932 "5557 NULL multixri for hwqid x%x\n", hwqid); 21933 return lpfc_ncmd; 21934 } 21935 pvt_pool = &multixri_pool->pvt_pool; 21936 if (!pvt_pool) { 21937 lpfc_printf_log(phba, KERN_INFO, 21938 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21939 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21940 return lpfc_ncmd; 21941 } 21942 multixri_pool->io_req_count++; 21943 21944 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21945 if (pvt_pool->count == 0) 21946 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21947 21948 /* Get one XRI from private free xri pool */ 21949 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21950 21951 if (lpfc_ncmd) { 21952 lpfc_ncmd->hdwq = qp; 21953 lpfc_ncmd->hdwq_no = hwqid; 21954 } else if (expedite) { 21955 /* If we fail to get one from pvt_pool and this is an expedite 21956 * request, get one free xri from expedite pool. 21957 */ 21958 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21959 } 21960 21961 return lpfc_ncmd; 21962 } 21963 21964 static inline struct lpfc_io_buf * 21965 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21966 { 21967 struct lpfc_sli4_hdw_queue *qp; 21968 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21969 21970 qp = &phba->sli4_hba.hdwq[idx]; 21971 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21972 &qp->lpfc_io_buf_list_get, list) { 21973 if (lpfc_test_rrq_active(phba, ndlp, 21974 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21975 continue; 21976 21977 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21978 continue; 21979 21980 list_del_init(&lpfc_cmd->list); 21981 qp->get_io_bufs--; 21982 lpfc_cmd->hdwq = qp; 21983 lpfc_cmd->hdwq_no = idx; 21984 return lpfc_cmd; 21985 } 21986 return NULL; 21987 } 21988 21989 /** 21990 * lpfc_get_io_buf - Get one IO buffer from free pool 21991 * @phba: The HBA for which this call is being executed. 21992 * @ndlp: pointer to lpfc nodelist data structure. 21993 * @hwqid: belong to which HWQ 21994 * @expedite: 1 means this request is urgent. 21995 * 21996 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21997 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21998 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21999 * 22000 * Note: ndlp is only used on SCSI side for RRQ testing. 22001 * The caller should pass NULL for ndlp on NVME side. 22002 * 22003 * Return codes: 22004 * NULL - Error 22005 * Pointer to lpfc_io_buf - Success 22006 **/ 22007 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22008 struct lpfc_nodelist *ndlp, 22009 u32 hwqid, int expedite) 22010 { 22011 struct lpfc_sli4_hdw_queue *qp; 22012 unsigned long iflag; 22013 struct lpfc_io_buf *lpfc_cmd; 22014 22015 qp = &phba->sli4_hba.hdwq[hwqid]; 22016 lpfc_cmd = NULL; 22017 if (!qp) { 22018 lpfc_printf_log(phba, KERN_WARNING, 22019 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22020 "5555 NULL qp for hwqid x%x\n", hwqid); 22021 return lpfc_cmd; 22022 } 22023 22024 if (phba->cfg_xri_rebalancing) 22025 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22026 phba, ndlp, hwqid, expedite); 22027 else { 22028 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22029 qp, alloc_xri_get); 22030 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22031 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22032 if (!lpfc_cmd) { 22033 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22034 qp, alloc_xri_put); 22035 list_splice(&qp->lpfc_io_buf_list_put, 22036 &qp->lpfc_io_buf_list_get); 22037 qp->get_io_bufs += qp->put_io_bufs; 22038 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22039 qp->put_io_bufs = 0; 22040 spin_unlock(&qp->io_buf_list_put_lock); 22041 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22042 expedite) 22043 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22044 } 22045 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22046 } 22047 22048 return lpfc_cmd; 22049 } 22050 22051 /** 22052 * lpfc_read_object - Retrieve object data from HBA 22053 * @phba: The HBA for which this call is being executed. 22054 * @rdobject: Pathname of object data we want to read. 22055 * @datap: Pointer to where data will be copied to. 22056 * @datasz: size of data area 22057 * 22058 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22059 * The data will be truncated if datasz is not large enough. 22060 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22061 * Returns the actual bytes read from the object. 22062 */ 22063 int 22064 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22065 uint32_t datasz) 22066 { 22067 struct lpfc_mbx_read_object *read_object; 22068 LPFC_MBOXQ_t *mbox; 22069 int rc, length, eof, j, byte_cnt = 0; 22070 uint32_t shdr_status, shdr_add_status; 22071 union lpfc_sli4_cfg_shdr *shdr; 22072 struct lpfc_dmabuf *pcmd; 22073 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22074 22075 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22076 if (!mbox) 22077 return -ENOMEM; 22078 length = (sizeof(struct lpfc_mbx_read_object) - 22079 sizeof(struct lpfc_sli4_cfg_mhdr)); 22080 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22081 LPFC_MBOX_OPCODE_READ_OBJECT, 22082 length, LPFC_SLI4_MBX_EMBED); 22083 read_object = &mbox->u.mqe.un.read_object; 22084 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22085 22086 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22087 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22088 read_object->u.request.rd_object_offset = 0; 22089 read_object->u.request.rd_object_cnt = 1; 22090 22091 memset((void *)read_object->u.request.rd_object_name, 0, 22092 LPFC_OBJ_NAME_SZ); 22093 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22094 for (j = 0; j < strlen(rdobject); j++) 22095 read_object->u.request.rd_object_name[j] = 22096 cpu_to_le32(rd_object_name[j]); 22097 22098 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22099 if (pcmd) 22100 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22101 if (!pcmd || !pcmd->virt) { 22102 kfree(pcmd); 22103 mempool_free(mbox, phba->mbox_mem_pool); 22104 return -ENOMEM; 22105 } 22106 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22107 read_object->u.request.rd_object_hbuf[0].pa_lo = 22108 putPaddrLow(pcmd->phys); 22109 read_object->u.request.rd_object_hbuf[0].pa_hi = 22110 putPaddrHigh(pcmd->phys); 22111 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22112 22113 mbox->vport = phba->pport; 22114 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22115 mbox->ctx_ndlp = NULL; 22116 22117 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22118 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22119 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22120 22121 if (shdr_status == STATUS_FAILED && 22122 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22123 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22124 "4674 No port cfg file in FW.\n"); 22125 byte_cnt = -ENOENT; 22126 } else if (shdr_status || shdr_add_status || rc) { 22127 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22128 "2625 READ_OBJECT mailbox failed with " 22129 "status x%x add_status x%x, mbx status x%x\n", 22130 shdr_status, shdr_add_status, rc); 22131 byte_cnt = -ENXIO; 22132 } else { 22133 /* Success */ 22134 length = read_object->u.response.rd_object_actual_rlen; 22135 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22136 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22137 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22138 length, datasz, eof); 22139 22140 /* Detect the port config file exists but is empty */ 22141 if (!length && eof) { 22142 byte_cnt = 0; 22143 goto exit; 22144 } 22145 22146 byte_cnt = length; 22147 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22148 } 22149 22150 exit: 22151 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22152 * Free the pcmd and then cleanup with the correct routine. 22153 */ 22154 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22155 kfree(pcmd); 22156 lpfc_sli4_mbox_cmd_free(phba, mbox); 22157 return byte_cnt; 22158 } 22159 22160 /** 22161 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22162 * @phba: The HBA for which this call is being executed. 22163 * @lpfc_buf: IO buf structure to append the SGL chunk 22164 * 22165 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22166 * and will allocate an SGL chunk if the pool is empty. 22167 * 22168 * Return codes: 22169 * NULL - Error 22170 * Pointer to sli4_hybrid_sgl - Success 22171 **/ 22172 struct sli4_hybrid_sgl * 22173 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22174 { 22175 struct sli4_hybrid_sgl *list_entry = NULL; 22176 struct sli4_hybrid_sgl *tmp = NULL; 22177 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22178 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22179 struct list_head *buf_list = &hdwq->sgl_list; 22180 unsigned long iflags; 22181 22182 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22183 22184 if (likely(!list_empty(buf_list))) { 22185 /* break off 1 chunk from the sgl_list */ 22186 list_for_each_entry_safe(list_entry, tmp, 22187 buf_list, list_node) { 22188 list_move_tail(&list_entry->list_node, 22189 &lpfc_buf->dma_sgl_xtra_list); 22190 break; 22191 } 22192 } else { 22193 /* allocate more */ 22194 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22195 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22196 cpu_to_node(hdwq->io_wq->chann)); 22197 if (!tmp) { 22198 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22199 "8353 error kmalloc memory for HDWQ " 22200 "%d %s\n", 22201 lpfc_buf->hdwq_no, __func__); 22202 return NULL; 22203 } 22204 22205 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22206 GFP_ATOMIC, &tmp->dma_phys_sgl); 22207 if (!tmp->dma_sgl) { 22208 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22209 "8354 error pool_alloc memory for HDWQ " 22210 "%d %s\n", 22211 lpfc_buf->hdwq_no, __func__); 22212 kfree(tmp); 22213 return NULL; 22214 } 22215 22216 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22217 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22218 } 22219 22220 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22221 struct sli4_hybrid_sgl, 22222 list_node); 22223 22224 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22225 22226 return allocated_sgl; 22227 } 22228 22229 /** 22230 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22231 * @phba: The HBA for which this call is being executed. 22232 * @lpfc_buf: IO buf structure with the SGL chunk 22233 * 22234 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22235 * 22236 * Return codes: 22237 * 0 - Success 22238 * -EINVAL - Error 22239 **/ 22240 int 22241 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22242 { 22243 int rc = 0; 22244 struct sli4_hybrid_sgl *list_entry = NULL; 22245 struct sli4_hybrid_sgl *tmp = NULL; 22246 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22247 struct list_head *buf_list = &hdwq->sgl_list; 22248 unsigned long iflags; 22249 22250 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22251 22252 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22253 list_for_each_entry_safe(list_entry, tmp, 22254 &lpfc_buf->dma_sgl_xtra_list, 22255 list_node) { 22256 list_move_tail(&list_entry->list_node, 22257 buf_list); 22258 } 22259 } else { 22260 rc = -EINVAL; 22261 } 22262 22263 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22264 return rc; 22265 } 22266 22267 /** 22268 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22269 * @phba: phba object 22270 * @hdwq: hdwq to cleanup sgl buff resources on 22271 * 22272 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22273 * 22274 * Return codes: 22275 * None 22276 **/ 22277 void 22278 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22279 struct lpfc_sli4_hdw_queue *hdwq) 22280 { 22281 struct list_head *buf_list = &hdwq->sgl_list; 22282 struct sli4_hybrid_sgl *list_entry = NULL; 22283 struct sli4_hybrid_sgl *tmp = NULL; 22284 unsigned long iflags; 22285 22286 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22287 22288 /* Free sgl pool */ 22289 list_for_each_entry_safe(list_entry, tmp, 22290 buf_list, list_node) { 22291 list_del(&list_entry->list_node); 22292 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22293 list_entry->dma_sgl, 22294 list_entry->dma_phys_sgl); 22295 kfree(list_entry); 22296 } 22297 22298 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22299 } 22300 22301 /** 22302 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22303 * @phba: The HBA for which this call is being executed. 22304 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22305 * 22306 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22307 * and will allocate an CMD/RSP buffer if the pool is empty. 22308 * 22309 * Return codes: 22310 * NULL - Error 22311 * Pointer to fcp_cmd_rsp_buf - Success 22312 **/ 22313 struct fcp_cmd_rsp_buf * 22314 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22315 struct lpfc_io_buf *lpfc_buf) 22316 { 22317 struct fcp_cmd_rsp_buf *list_entry = NULL; 22318 struct fcp_cmd_rsp_buf *tmp = NULL; 22319 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22320 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22321 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22322 unsigned long iflags; 22323 22324 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22325 22326 if (likely(!list_empty(buf_list))) { 22327 /* break off 1 chunk from the list */ 22328 list_for_each_entry_safe(list_entry, tmp, 22329 buf_list, 22330 list_node) { 22331 list_move_tail(&list_entry->list_node, 22332 &lpfc_buf->dma_cmd_rsp_list); 22333 break; 22334 } 22335 } else { 22336 /* allocate more */ 22337 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22338 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22339 cpu_to_node(hdwq->io_wq->chann)); 22340 if (!tmp) { 22341 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22342 "8355 error kmalloc memory for HDWQ " 22343 "%d %s\n", 22344 lpfc_buf->hdwq_no, __func__); 22345 return NULL; 22346 } 22347 22348 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22349 GFP_ATOMIC, 22350 &tmp->fcp_cmd_rsp_dma_handle); 22351 22352 if (!tmp->fcp_cmnd) { 22353 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22354 "8356 error pool_alloc memory for HDWQ " 22355 "%d %s\n", 22356 lpfc_buf->hdwq_no, __func__); 22357 kfree(tmp); 22358 return NULL; 22359 } 22360 22361 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22362 sizeof(struct fcp_cmnd)); 22363 22364 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22365 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22366 } 22367 22368 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22369 struct fcp_cmd_rsp_buf, 22370 list_node); 22371 22372 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22373 22374 return allocated_buf; 22375 } 22376 22377 /** 22378 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22379 * @phba: The HBA for which this call is being executed. 22380 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22381 * 22382 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22383 * 22384 * Return codes: 22385 * 0 - Success 22386 * -EINVAL - Error 22387 **/ 22388 int 22389 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22390 struct lpfc_io_buf *lpfc_buf) 22391 { 22392 int rc = 0; 22393 struct fcp_cmd_rsp_buf *list_entry = NULL; 22394 struct fcp_cmd_rsp_buf *tmp = NULL; 22395 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22396 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22397 unsigned long iflags; 22398 22399 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22400 22401 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22402 list_for_each_entry_safe(list_entry, tmp, 22403 &lpfc_buf->dma_cmd_rsp_list, 22404 list_node) { 22405 list_move_tail(&list_entry->list_node, 22406 buf_list); 22407 } 22408 } else { 22409 rc = -EINVAL; 22410 } 22411 22412 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22413 return rc; 22414 } 22415 22416 /** 22417 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22418 * @phba: phba object 22419 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22420 * 22421 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22422 * 22423 * Return codes: 22424 * None 22425 **/ 22426 void 22427 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22428 struct lpfc_sli4_hdw_queue *hdwq) 22429 { 22430 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22431 struct fcp_cmd_rsp_buf *list_entry = NULL; 22432 struct fcp_cmd_rsp_buf *tmp = NULL; 22433 unsigned long iflags; 22434 22435 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22436 22437 /* Free cmd_rsp buf pool */ 22438 list_for_each_entry_safe(list_entry, tmp, 22439 buf_list, 22440 list_node) { 22441 list_del(&list_entry->list_node); 22442 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22443 list_entry->fcp_cmnd, 22444 list_entry->fcp_cmd_rsp_dma_handle); 22445 kfree(list_entry); 22446 } 22447 22448 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22449 } 22450 22451 /** 22452 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22453 * @phba: phba object 22454 * @job: job entry of the command to be posted. 22455 * 22456 * Fill the common fields of the wqe for each of the command. 22457 * 22458 * Return codes: 22459 * None 22460 **/ 22461 void 22462 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22463 { 22464 u8 cmnd; 22465 u32 *pcmd; 22466 u32 if_type = 0; 22467 u32 fip, abort_tag; 22468 struct lpfc_nodelist *ndlp = NULL; 22469 union lpfc_wqe128 *wqe = &job->wqe; 22470 u8 command_type = ELS_COMMAND_NON_FIP; 22471 22472 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22473 /* The fcp commands will set command type */ 22474 if (job->cmd_flag & LPFC_IO_FCP) 22475 command_type = FCP_COMMAND; 22476 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22477 command_type = ELS_COMMAND_FIP; 22478 else 22479 command_type = ELS_COMMAND_NON_FIP; 22480 22481 abort_tag = job->iotag; 22482 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22483 22484 switch (cmnd) { 22485 case CMD_ELS_REQUEST64_WQE: 22486 ndlp = job->ndlp; 22487 22488 if_type = bf_get(lpfc_sli_intf_if_type, 22489 &phba->sli4_hba.sli_intf); 22490 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22491 pcmd = (u32 *)job->cmd_dmabuf->virt; 22492 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22493 *pcmd == ELS_CMD_SCR || 22494 *pcmd == ELS_CMD_RDF || 22495 *pcmd == ELS_CMD_EDC || 22496 *pcmd == ELS_CMD_RSCN_XMT || 22497 *pcmd == ELS_CMD_FDISC || 22498 *pcmd == ELS_CMD_LOGO || 22499 *pcmd == ELS_CMD_QFPA || 22500 *pcmd == ELS_CMD_UVEM || 22501 *pcmd == ELS_CMD_PLOGI)) { 22502 bf_set(els_req64_sp, &wqe->els_req, 1); 22503 bf_set(els_req64_sid, &wqe->els_req, 22504 job->vport->fc_myDID); 22505 22506 if ((*pcmd == ELS_CMD_FLOGI) && 22507 !(phba->fc_topology == 22508 LPFC_TOPOLOGY_LOOP)) 22509 bf_set(els_req64_sid, &wqe->els_req, 0); 22510 22511 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22512 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22513 phba->vpi_ids[job->vport->vpi]); 22514 } else if (pcmd) { 22515 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22516 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22517 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22518 } 22519 } 22520 22521 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22522 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22523 22524 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22525 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22526 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22527 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22528 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22529 break; 22530 case CMD_XMIT_ELS_RSP64_WQE: 22531 ndlp = job->ndlp; 22532 22533 /* word4 */ 22534 wqe->xmit_els_rsp.word4 = 0; 22535 22536 if_type = bf_get(lpfc_sli_intf_if_type, 22537 &phba->sli4_hba.sli_intf); 22538 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22539 if (job->vport->fc_flag & FC_PT2PT) { 22540 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22541 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22542 job->vport->fc_myDID); 22543 if (job->vport->fc_myDID == Fabric_DID) { 22544 bf_set(wqe_els_did, 22545 &wqe->xmit_els_rsp.wqe_dest, 0); 22546 } 22547 } 22548 } 22549 22550 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22551 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22552 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22553 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22554 LPFC_WQE_LENLOC_WORD3); 22555 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22556 22557 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22558 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22559 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22560 job->vport->fc_myDID); 22561 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22562 } 22563 22564 if (phba->sli_rev == LPFC_SLI_REV4) { 22565 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22566 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22567 22568 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22569 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22570 phba->vpi_ids[job->vport->vpi]); 22571 } 22572 command_type = OTHER_COMMAND; 22573 break; 22574 case CMD_GEN_REQUEST64_WQE: 22575 /* Word 10 */ 22576 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22577 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22578 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22579 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22580 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22581 command_type = OTHER_COMMAND; 22582 break; 22583 case CMD_XMIT_SEQUENCE64_WQE: 22584 if (phba->link_flag & LS_LOOPBACK_MODE) 22585 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22586 22587 wqe->xmit_sequence.rsvd3 = 0; 22588 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22589 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22590 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22591 LPFC_WQE_IOD_WRITE); 22592 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22593 LPFC_WQE_LENLOC_WORD12); 22594 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22595 command_type = OTHER_COMMAND; 22596 break; 22597 case CMD_XMIT_BLS_RSP64_WQE: 22598 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22599 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22600 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22601 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22602 phba->vpi_ids[phba->pport->vpi]); 22603 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22604 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22605 LPFC_WQE_LENLOC_NONE); 22606 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22607 command_type = OTHER_COMMAND; 22608 break; 22609 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22610 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22611 case CMD_SEND_FRAME: /* mds loopback */ 22612 /* cases already formatted for sli4 wqe - no chgs necessary */ 22613 return; 22614 default: 22615 dump_stack(); 22616 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22617 "6207 Invalid command 0x%x\n", 22618 cmnd); 22619 break; 22620 } 22621 22622 wqe->generic.wqe_com.abort_tag = abort_tag; 22623 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22624 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22625 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22626 } 22627