1 2 /******************************************************************* 3 * This file is part of the Emulex Linux Device Driver for * 4 * Fibre Channel Host Bus Adapters. * 5 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term * 6 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 7 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 8 * EMULEX and SLI are trademarks of Emulex. * 9 * www.broadcom.com * 10 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 11 * * 12 * This program is free software; you can redistribute it and/or * 13 * modify it under the terms of version 2 of the GNU General * 14 * Public License as published by the Free Software Foundation. * 15 * This program is distributed in the hope that it will be useful. * 16 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 17 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 18 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 19 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 20 * TO BE LEGALLY INVALID. See the GNU General Public License for * 21 * more details, a copy of which can be found in the file COPYING * 22 * included with this package. * 23 *******************************************************************/ 24 25 #include <linux/blkdev.h> 26 #include <linux/pci.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/lockdep.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 #include <linux/aer.h> 39 40 #include <linux/nvme-fc-driver.h> 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_nvmet.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 80 struct lpfc_cqe *); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_eqe *eqe, uint32_t qidx); 85 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 86 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 87 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 88 struct lpfc_sli_ring *pring, 89 struct lpfc_iocbq *cmdiocb); 90 91 static IOCB_t * 92 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 93 { 94 return &iocbq->iocb; 95 } 96 97 /** 98 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 99 * @q: The Work Queue to operate on. 100 * @wqe: The work Queue Entry to put on the Work queue. 101 * 102 * This routine will copy the contents of @wqe to the next available entry on 103 * the @q. This function will then ring the Work Queue Doorbell to signal the 104 * HBA to start processing the Work Queue Entry. This function returns 0 if 105 * successful. If no entries are available on @q then this function will return 106 * -ENOMEM. 107 * The caller is expected to hold the hbalock when calling this routine. 108 **/ 109 static int 110 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 111 { 112 union lpfc_wqe *temp_wqe; 113 struct lpfc_register doorbell; 114 uint32_t host_index; 115 uint32_t idx; 116 117 /* sanity check on queue memory */ 118 if (unlikely(!q)) 119 return -ENOMEM; 120 temp_wqe = q->qe[q->host_index].wqe; 121 122 /* If the host has not yet processed the next entry then we are done */ 123 idx = ((q->host_index + 1) % q->entry_count); 124 if (idx == q->hba_index) { 125 q->WQ_overflow++; 126 return -EBUSY; 127 } 128 q->WQ_posted++; 129 /* set consumption flag every once in a while */ 130 if (!((q->host_index + 1) % q->entry_repost)) 131 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 132 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 133 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 134 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 135 /* ensure WQE bcopy flushed before doorbell write */ 136 wmb(); 137 138 /* Update the host index before invoking device */ 139 host_index = q->host_index; 140 141 q->host_index = idx; 142 143 /* Ring Doorbell */ 144 doorbell.word0 = 0; 145 if (q->db_format == LPFC_DB_LIST_FORMAT) { 146 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 147 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 148 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 149 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 150 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 151 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 152 } else { 153 return -EINVAL; 154 } 155 writel(doorbell.word0, q->db_regaddr); 156 157 return 0; 158 } 159 160 /** 161 * lpfc_sli4_wq_release - Updates internal hba index for WQ 162 * @q: The Work Queue to operate on. 163 * @index: The index to advance the hba index to. 164 * 165 * This routine will update the HBA index of a queue to reflect consumption of 166 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 167 * an entry the host calls this function to update the queue's internal 168 * pointers. This routine returns the number of entries that were consumed by 169 * the HBA. 170 **/ 171 static uint32_t 172 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 173 { 174 uint32_t released = 0; 175 176 /* sanity check on queue memory */ 177 if (unlikely(!q)) 178 return 0; 179 180 if (q->hba_index == index) 181 return 0; 182 do { 183 q->hba_index = ((q->hba_index + 1) % q->entry_count); 184 released++; 185 } while (q->hba_index != index); 186 return released; 187 } 188 189 /** 190 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 191 * @q: The Mailbox Queue to operate on. 192 * @wqe: The Mailbox Queue Entry to put on the Work queue. 193 * 194 * This routine will copy the contents of @mqe to the next available entry on 195 * the @q. This function will then ring the Work Queue Doorbell to signal the 196 * HBA to start processing the Work Queue Entry. This function returns 0 if 197 * successful. If no entries are available on @q then this function will return 198 * -ENOMEM. 199 * The caller is expected to hold the hbalock when calling this routine. 200 **/ 201 static uint32_t 202 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 203 { 204 struct lpfc_mqe *temp_mqe; 205 struct lpfc_register doorbell; 206 207 /* sanity check on queue memory */ 208 if (unlikely(!q)) 209 return -ENOMEM; 210 temp_mqe = q->qe[q->host_index].mqe; 211 212 /* If the host has not yet processed the next entry then we are done */ 213 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 214 return -ENOMEM; 215 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 216 /* Save off the mailbox pointer for completion */ 217 q->phba->mbox = (MAILBOX_t *)temp_mqe; 218 219 /* Update the host index before invoking device */ 220 q->host_index = ((q->host_index + 1) % q->entry_count); 221 222 /* Ring Doorbell */ 223 doorbell.word0 = 0; 224 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 225 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 226 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 227 return 0; 228 } 229 230 /** 231 * lpfc_sli4_mq_release - Updates internal hba index for MQ 232 * @q: The Mailbox Queue to operate on. 233 * 234 * This routine will update the HBA index of a queue to reflect consumption of 235 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 236 * an entry the host calls this function to update the queue's internal 237 * pointers. This routine returns the number of entries that were consumed by 238 * the HBA. 239 **/ 240 static uint32_t 241 lpfc_sli4_mq_release(struct lpfc_queue *q) 242 { 243 /* sanity check on queue memory */ 244 if (unlikely(!q)) 245 return 0; 246 247 /* Clear the mailbox pointer for completion */ 248 q->phba->mbox = NULL; 249 q->hba_index = ((q->hba_index + 1) % q->entry_count); 250 return 1; 251 } 252 253 /** 254 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 255 * @q: The Event Queue to get the first valid EQE from 256 * 257 * This routine will get the first valid Event Queue Entry from @q, update 258 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 259 * the Queue (no more work to do), or the Queue is full of EQEs that have been 260 * processed, but not popped back to the HBA then this routine will return NULL. 261 **/ 262 static struct lpfc_eqe * 263 lpfc_sli4_eq_get(struct lpfc_queue *q) 264 { 265 struct lpfc_eqe *eqe; 266 uint32_t idx; 267 268 /* sanity check on queue memory */ 269 if (unlikely(!q)) 270 return NULL; 271 eqe = q->qe[q->hba_index].eqe; 272 273 /* If the next EQE is not valid then we are done */ 274 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 275 return NULL; 276 /* If the host has not yet processed the next entry then we are done */ 277 idx = ((q->hba_index + 1) % q->entry_count); 278 if (idx == q->host_index) 279 return NULL; 280 281 q->hba_index = idx; 282 283 /* 284 * insert barrier for instruction interlock : data from the hardware 285 * must have the valid bit checked before it can be copied and acted 286 * upon. Speculative instructions were allowing a bcopy at the start 287 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 288 * after our return, to copy data before the valid bit check above 289 * was done. As such, some of the copied data was stale. The barrier 290 * ensures the check is before any data is copied. 291 */ 292 mb(); 293 return eqe; 294 } 295 296 /** 297 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 298 * @q: The Event Queue to disable interrupts 299 * 300 **/ 301 static inline void 302 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 303 { 304 struct lpfc_register doorbell; 305 306 doorbell.word0 = 0; 307 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 308 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 309 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 310 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 311 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 312 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 313 } 314 315 /** 316 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 317 * @q: The Event Queue that the host has completed processing for. 318 * @arm: Indicates whether the host wants to arms this CQ. 319 * 320 * This routine will mark all Event Queue Entries on @q, from the last 321 * known completed entry to the last entry that was processed, as completed 322 * by clearing the valid bit for each completion queue entry. Then it will 323 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 324 * The internal host index in the @q will be updated by this routine to indicate 325 * that the host has finished processing the entries. The @arm parameter 326 * indicates that the queue should be rearmed when ringing the doorbell. 327 * 328 * This function will return the number of EQEs that were popped. 329 **/ 330 uint32_t 331 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 332 { 333 uint32_t released = 0; 334 struct lpfc_eqe *temp_eqe; 335 struct lpfc_register doorbell; 336 337 /* sanity check on queue memory */ 338 if (unlikely(!q)) 339 return 0; 340 341 /* while there are valid entries */ 342 while (q->hba_index != q->host_index) { 343 temp_eqe = q->qe[q->host_index].eqe; 344 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 345 released++; 346 q->host_index = ((q->host_index + 1) % q->entry_count); 347 } 348 if (unlikely(released == 0 && !arm)) 349 return 0; 350 351 /* ring doorbell for number popped */ 352 doorbell.word0 = 0; 353 if (arm) { 354 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 355 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 356 } 357 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 358 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 359 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 360 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 361 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 362 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 363 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 364 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 365 readl(q->phba->sli4_hba.EQCQDBregaddr); 366 return released; 367 } 368 369 /** 370 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 371 * @q: The Completion Queue to get the first valid CQE from 372 * 373 * This routine will get the first valid Completion Queue Entry from @q, update 374 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 375 * the Queue (no more work to do), or the Queue is full of CQEs that have been 376 * processed, but not popped back to the HBA then this routine will return NULL. 377 **/ 378 static struct lpfc_cqe * 379 lpfc_sli4_cq_get(struct lpfc_queue *q) 380 { 381 struct lpfc_cqe *cqe; 382 uint32_t idx; 383 384 /* sanity check on queue memory */ 385 if (unlikely(!q)) 386 return NULL; 387 388 /* If the next CQE is not valid then we are done */ 389 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 390 return NULL; 391 /* If the host has not yet processed the next entry then we are done */ 392 idx = ((q->hba_index + 1) % q->entry_count); 393 if (idx == q->host_index) 394 return NULL; 395 396 cqe = q->qe[q->hba_index].cqe; 397 q->hba_index = idx; 398 399 /* 400 * insert barrier for instruction interlock : data from the hardware 401 * must have the valid bit checked before it can be copied and acted 402 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 403 * instructions allowing action on content before valid bit checked, 404 * add barrier here as well. May not be needed as "content" is a 405 * single 32-bit entity here (vs multi word structure for cq's). 406 */ 407 mb(); 408 return cqe; 409 } 410 411 /** 412 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 413 * @q: The Completion Queue that the host has completed processing for. 414 * @arm: Indicates whether the host wants to arms this CQ. 415 * 416 * This routine will mark all Completion queue entries on @q, from the last 417 * known completed entry to the last entry that was processed, as completed 418 * by clearing the valid bit for each completion queue entry. Then it will 419 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 420 * The internal host index in the @q will be updated by this routine to indicate 421 * that the host has finished processing the entries. The @arm parameter 422 * indicates that the queue should be rearmed when ringing the doorbell. 423 * 424 * This function will return the number of CQEs that were released. 425 **/ 426 uint32_t 427 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 428 { 429 uint32_t released = 0; 430 struct lpfc_cqe *temp_qe; 431 struct lpfc_register doorbell; 432 433 /* sanity check on queue memory */ 434 if (unlikely(!q)) 435 return 0; 436 /* while there are valid entries */ 437 while (q->hba_index != q->host_index) { 438 temp_qe = q->qe[q->host_index].cqe; 439 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 440 released++; 441 q->host_index = ((q->host_index + 1) % q->entry_count); 442 } 443 if (unlikely(released == 0 && !arm)) 444 return 0; 445 446 /* ring doorbell for number popped */ 447 doorbell.word0 = 0; 448 if (arm) 449 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 450 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 451 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 452 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 453 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 454 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 455 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 456 return released; 457 } 458 459 /** 460 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 461 * @q: The Header Receive Queue to operate on. 462 * @wqe: The Receive Queue Entry to put on the Receive queue. 463 * 464 * This routine will copy the contents of @wqe to the next available entry on 465 * the @q. This function will then ring the Receive Queue Doorbell to signal the 466 * HBA to start processing the Receive Queue Entry. This function returns the 467 * index that the rqe was copied to if successful. If no entries are available 468 * on @q then this function will return -ENOMEM. 469 * The caller is expected to hold the hbalock when calling this routine. 470 **/ 471 int 472 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 473 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 474 { 475 struct lpfc_rqe *temp_hrqe; 476 struct lpfc_rqe *temp_drqe; 477 struct lpfc_register doorbell; 478 int put_index; 479 480 /* sanity check on queue memory */ 481 if (unlikely(!hq) || unlikely(!dq)) 482 return -ENOMEM; 483 put_index = hq->host_index; 484 temp_hrqe = hq->qe[put_index].rqe; 485 temp_drqe = dq->qe[dq->host_index].rqe; 486 487 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 488 return -EINVAL; 489 if (put_index != dq->host_index) 490 return -EINVAL; 491 /* If the host has not yet processed the next entry then we are done */ 492 if (((put_index + 1) % hq->entry_count) == hq->hba_index) 493 return -EBUSY; 494 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 495 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 496 497 /* Update the host index to point to the next slot */ 498 hq->host_index = ((put_index + 1) % hq->entry_count); 499 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 500 hq->RQ_buf_posted++; 501 502 /* Ring The Header Receive Queue Doorbell */ 503 if (!(hq->host_index % hq->entry_repost)) { 504 doorbell.word0 = 0; 505 if (hq->db_format == LPFC_DB_RING_FORMAT) { 506 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 507 hq->entry_repost); 508 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 509 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 510 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 511 hq->entry_repost); 512 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 513 hq->host_index); 514 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 515 } else { 516 return -EINVAL; 517 } 518 writel(doorbell.word0, hq->db_regaddr); 519 } 520 return put_index; 521 } 522 523 /** 524 * lpfc_sli4_rq_release - Updates internal hba index for RQ 525 * @q: The Header Receive Queue to operate on. 526 * 527 * This routine will update the HBA index of a queue to reflect consumption of 528 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 529 * consumed an entry the host calls this function to update the queue's 530 * internal pointers. This routine returns the number of entries that were 531 * consumed by the HBA. 532 **/ 533 static uint32_t 534 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 535 { 536 /* sanity check on queue memory */ 537 if (unlikely(!hq) || unlikely(!dq)) 538 return 0; 539 540 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 541 return 0; 542 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 543 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 544 return 1; 545 } 546 547 /** 548 * lpfc_cmd_iocb - Get next command iocb entry in the ring 549 * @phba: Pointer to HBA context object. 550 * @pring: Pointer to driver SLI ring object. 551 * 552 * This function returns pointer to next command iocb entry 553 * in the command ring. The caller must hold hbalock to prevent 554 * other threads consume the next command iocb. 555 * SLI-2/SLI-3 provide different sized iocbs. 556 **/ 557 static inline IOCB_t * 558 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 559 { 560 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 561 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 562 } 563 564 /** 565 * lpfc_resp_iocb - Get next response iocb entry in the ring 566 * @phba: Pointer to HBA context object. 567 * @pring: Pointer to driver SLI ring object. 568 * 569 * This function returns pointer to next response iocb entry 570 * in the response ring. The caller must hold hbalock to make sure 571 * that no other thread consume the next response iocb. 572 * SLI-2/SLI-3 provide different sized iocbs. 573 **/ 574 static inline IOCB_t * 575 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 576 { 577 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 578 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 579 } 580 581 /** 582 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 583 * @phba: Pointer to HBA context object. 584 * 585 * This function is called with hbalock held. This function 586 * allocates a new driver iocb object from the iocb pool. If the 587 * allocation is successful, it returns pointer to the newly 588 * allocated iocb object else it returns NULL. 589 **/ 590 struct lpfc_iocbq * 591 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 592 { 593 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 594 struct lpfc_iocbq * iocbq = NULL; 595 596 lockdep_assert_held(&phba->hbalock); 597 598 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 599 if (iocbq) 600 phba->iocb_cnt++; 601 if (phba->iocb_cnt > phba->iocb_max) 602 phba->iocb_max = phba->iocb_cnt; 603 return iocbq; 604 } 605 606 /** 607 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 608 * @phba: Pointer to HBA context object. 609 * @xritag: XRI value. 610 * 611 * This function clears the sglq pointer from the array of acive 612 * sglq's. The xritag that is passed in is used to index into the 613 * array. Before the xritag can be used it needs to be adjusted 614 * by subtracting the xribase. 615 * 616 * Returns sglq ponter = success, NULL = Failure. 617 **/ 618 struct lpfc_sglq * 619 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 620 { 621 struct lpfc_sglq *sglq; 622 623 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 624 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 625 return sglq; 626 } 627 628 /** 629 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 630 * @phba: Pointer to HBA context object. 631 * @xritag: XRI value. 632 * 633 * This function returns the sglq pointer from the array of acive 634 * sglq's. The xritag that is passed in is used to index into the 635 * array. Before the xritag can be used it needs to be adjusted 636 * by subtracting the xribase. 637 * 638 * Returns sglq ponter = success, NULL = Failure. 639 **/ 640 struct lpfc_sglq * 641 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 642 { 643 struct lpfc_sglq *sglq; 644 645 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 646 return sglq; 647 } 648 649 /** 650 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 651 * @phba: Pointer to HBA context object. 652 * @xritag: xri used in this exchange. 653 * @rrq: The RRQ to be cleared. 654 * 655 **/ 656 void 657 lpfc_clr_rrq_active(struct lpfc_hba *phba, 658 uint16_t xritag, 659 struct lpfc_node_rrq *rrq) 660 { 661 struct lpfc_nodelist *ndlp = NULL; 662 663 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 664 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 665 666 /* The target DID could have been swapped (cable swap) 667 * we should use the ndlp from the findnode if it is 668 * available. 669 */ 670 if ((!ndlp) && rrq->ndlp) 671 ndlp = rrq->ndlp; 672 673 if (!ndlp) 674 goto out; 675 676 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 677 rrq->send_rrq = 0; 678 rrq->xritag = 0; 679 rrq->rrq_stop_time = 0; 680 } 681 out: 682 mempool_free(rrq, phba->rrq_pool); 683 } 684 685 /** 686 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 687 * @phba: Pointer to HBA context object. 688 * 689 * This function is called with hbalock held. This function 690 * Checks if stop_time (ratov from setting rrq active) has 691 * been reached, if it has and the send_rrq flag is set then 692 * it will call lpfc_send_rrq. If the send_rrq flag is not set 693 * then it will just call the routine to clear the rrq and 694 * free the rrq resource. 695 * The timer is set to the next rrq that is going to expire before 696 * leaving the routine. 697 * 698 **/ 699 void 700 lpfc_handle_rrq_active(struct lpfc_hba *phba) 701 { 702 struct lpfc_node_rrq *rrq; 703 struct lpfc_node_rrq *nextrrq; 704 unsigned long next_time; 705 unsigned long iflags; 706 LIST_HEAD(send_rrq); 707 708 spin_lock_irqsave(&phba->hbalock, iflags); 709 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 710 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 711 list_for_each_entry_safe(rrq, nextrrq, 712 &phba->active_rrq_list, list) { 713 if (time_after(jiffies, rrq->rrq_stop_time)) 714 list_move(&rrq->list, &send_rrq); 715 else if (time_before(rrq->rrq_stop_time, next_time)) 716 next_time = rrq->rrq_stop_time; 717 } 718 spin_unlock_irqrestore(&phba->hbalock, iflags); 719 if ((!list_empty(&phba->active_rrq_list)) && 720 (!(phba->pport->load_flag & FC_UNLOADING))) 721 mod_timer(&phba->rrq_tmr, next_time); 722 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 723 list_del(&rrq->list); 724 if (!rrq->send_rrq) 725 /* this call will free the rrq */ 726 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 727 else if (lpfc_send_rrq(phba, rrq)) { 728 /* if we send the rrq then the completion handler 729 * will clear the bit in the xribitmap. 730 */ 731 lpfc_clr_rrq_active(phba, rrq->xritag, 732 rrq); 733 } 734 } 735 } 736 737 /** 738 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 739 * @vport: Pointer to vport context object. 740 * @xri: The xri used in the exchange. 741 * @did: The targets DID for this exchange. 742 * 743 * returns NULL = rrq not found in the phba->active_rrq_list. 744 * rrq = rrq for this xri and target. 745 **/ 746 struct lpfc_node_rrq * 747 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 748 { 749 struct lpfc_hba *phba = vport->phba; 750 struct lpfc_node_rrq *rrq; 751 struct lpfc_node_rrq *nextrrq; 752 unsigned long iflags; 753 754 if (phba->sli_rev != LPFC_SLI_REV4) 755 return NULL; 756 spin_lock_irqsave(&phba->hbalock, iflags); 757 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 758 if (rrq->vport == vport && rrq->xritag == xri && 759 rrq->nlp_DID == did){ 760 list_del(&rrq->list); 761 spin_unlock_irqrestore(&phba->hbalock, iflags); 762 return rrq; 763 } 764 } 765 spin_unlock_irqrestore(&phba->hbalock, iflags); 766 return NULL; 767 } 768 769 /** 770 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 771 * @vport: Pointer to vport context object. 772 * @ndlp: Pointer to the lpfc_node_list structure. 773 * If ndlp is NULL Remove all active RRQs for this vport from the 774 * phba->active_rrq_list and clear the rrq. 775 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 776 **/ 777 void 778 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 779 780 { 781 struct lpfc_hba *phba = vport->phba; 782 struct lpfc_node_rrq *rrq; 783 struct lpfc_node_rrq *nextrrq; 784 unsigned long iflags; 785 LIST_HEAD(rrq_list); 786 787 if (phba->sli_rev != LPFC_SLI_REV4) 788 return; 789 if (!ndlp) { 790 lpfc_sli4_vport_delete_els_xri_aborted(vport); 791 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 792 } 793 spin_lock_irqsave(&phba->hbalock, iflags); 794 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 795 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 796 list_move(&rrq->list, &rrq_list); 797 spin_unlock_irqrestore(&phba->hbalock, iflags); 798 799 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 800 list_del(&rrq->list); 801 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 802 } 803 } 804 805 /** 806 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 807 * @phba: Pointer to HBA context object. 808 * @ndlp: Targets nodelist pointer for this exchange. 809 * @xritag the xri in the bitmap to test. 810 * 811 * This function is called with hbalock held. This function 812 * returns 0 = rrq not active for this xri 813 * 1 = rrq is valid for this xri. 814 **/ 815 int 816 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 817 uint16_t xritag) 818 { 819 lockdep_assert_held(&phba->hbalock); 820 if (!ndlp) 821 return 0; 822 if (!ndlp->active_rrqs_xri_bitmap) 823 return 0; 824 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 825 return 1; 826 else 827 return 0; 828 } 829 830 /** 831 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 832 * @phba: Pointer to HBA context object. 833 * @ndlp: nodelist pointer for this target. 834 * @xritag: xri used in this exchange. 835 * @rxid: Remote Exchange ID. 836 * @send_rrq: Flag used to determine if we should send rrq els cmd. 837 * 838 * This function takes the hbalock. 839 * The active bit is always set in the active rrq xri_bitmap even 840 * if there is no slot avaiable for the other rrq information. 841 * 842 * returns 0 rrq actived for this xri 843 * < 0 No memory or invalid ndlp. 844 **/ 845 int 846 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 847 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 848 { 849 unsigned long iflags; 850 struct lpfc_node_rrq *rrq; 851 int empty; 852 853 if (!ndlp) 854 return -EINVAL; 855 856 if (!phba->cfg_enable_rrq) 857 return -EINVAL; 858 859 spin_lock_irqsave(&phba->hbalock, iflags); 860 if (phba->pport->load_flag & FC_UNLOADING) { 861 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 862 goto out; 863 } 864 865 /* 866 * set the active bit even if there is no mem available. 867 */ 868 if (NLP_CHK_FREE_REQ(ndlp)) 869 goto out; 870 871 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 872 goto out; 873 874 if (!ndlp->active_rrqs_xri_bitmap) 875 goto out; 876 877 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 878 goto out; 879 880 spin_unlock_irqrestore(&phba->hbalock, iflags); 881 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 882 if (!rrq) { 883 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 884 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 885 " DID:0x%x Send:%d\n", 886 xritag, rxid, ndlp->nlp_DID, send_rrq); 887 return -EINVAL; 888 } 889 if (phba->cfg_enable_rrq == 1) 890 rrq->send_rrq = send_rrq; 891 else 892 rrq->send_rrq = 0; 893 rrq->xritag = xritag; 894 rrq->rrq_stop_time = jiffies + 895 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 896 rrq->ndlp = ndlp; 897 rrq->nlp_DID = ndlp->nlp_DID; 898 rrq->vport = ndlp->vport; 899 rrq->rxid = rxid; 900 spin_lock_irqsave(&phba->hbalock, iflags); 901 empty = list_empty(&phba->active_rrq_list); 902 list_add_tail(&rrq->list, &phba->active_rrq_list); 903 phba->hba_flag |= HBA_RRQ_ACTIVE; 904 if (empty) 905 lpfc_worker_wake_up(phba); 906 spin_unlock_irqrestore(&phba->hbalock, iflags); 907 return 0; 908 out: 909 spin_unlock_irqrestore(&phba->hbalock, iflags); 910 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 911 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 912 " DID:0x%x Send:%d\n", 913 xritag, rxid, ndlp->nlp_DID, send_rrq); 914 return -EINVAL; 915 } 916 917 /** 918 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 919 * @phba: Pointer to HBA context object. 920 * @piocb: Pointer to the iocbq. 921 * 922 * This function is called with the ring lock held. This function 923 * gets a new driver sglq object from the sglq list. If the 924 * list is not empty then it is successful, it returns pointer to the newly 925 * allocated sglq object else it returns NULL. 926 **/ 927 static struct lpfc_sglq * 928 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 929 { 930 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 931 struct lpfc_sglq *sglq = NULL; 932 struct lpfc_sglq *start_sglq = NULL; 933 struct lpfc_scsi_buf *lpfc_cmd; 934 struct lpfc_nodelist *ndlp; 935 int found = 0; 936 937 lockdep_assert_held(&phba->hbalock); 938 939 if (piocbq->iocb_flag & LPFC_IO_FCP) { 940 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 941 ndlp = lpfc_cmd->rdata->pnode; 942 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 943 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 944 ndlp = piocbq->context_un.ndlp; 945 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 946 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 947 ndlp = NULL; 948 else 949 ndlp = piocbq->context_un.ndlp; 950 } else { 951 ndlp = piocbq->context1; 952 } 953 954 spin_lock(&phba->sli4_hba.sgl_list_lock); 955 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 956 start_sglq = sglq; 957 while (!found) { 958 if (!sglq) 959 break; 960 if (ndlp && ndlp->active_rrqs_xri_bitmap && 961 test_bit(sglq->sli4_lxritag, 962 ndlp->active_rrqs_xri_bitmap)) { 963 /* This xri has an rrq outstanding for this DID. 964 * put it back in the list and get another xri. 965 */ 966 list_add_tail(&sglq->list, lpfc_els_sgl_list); 967 sglq = NULL; 968 list_remove_head(lpfc_els_sgl_list, sglq, 969 struct lpfc_sglq, list); 970 if (sglq == start_sglq) { 971 list_add_tail(&sglq->list, lpfc_els_sgl_list); 972 sglq = NULL; 973 break; 974 } else 975 continue; 976 } 977 sglq->ndlp = ndlp; 978 found = 1; 979 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 980 sglq->state = SGL_ALLOCATED; 981 } 982 spin_unlock(&phba->sli4_hba.sgl_list_lock); 983 return sglq; 984 } 985 986 /** 987 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 988 * @phba: Pointer to HBA context object. 989 * @piocb: Pointer to the iocbq. 990 * 991 * This function is called with the sgl_list lock held. This function 992 * gets a new driver sglq object from the sglq list. If the 993 * list is not empty then it is successful, it returns pointer to the newly 994 * allocated sglq object else it returns NULL. 995 **/ 996 struct lpfc_sglq * 997 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 998 { 999 struct list_head *lpfc_nvmet_sgl_list; 1000 struct lpfc_sglq *sglq = NULL; 1001 1002 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1003 1004 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1005 1006 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1007 if (!sglq) 1008 return NULL; 1009 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1010 sglq->state = SGL_ALLOCATED; 1011 return sglq; 1012 } 1013 1014 /** 1015 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1016 * @phba: Pointer to HBA context object. 1017 * 1018 * This function is called with no lock held. This function 1019 * allocates a new driver iocb object from the iocb pool. If the 1020 * allocation is successful, it returns pointer to the newly 1021 * allocated iocb object else it returns NULL. 1022 **/ 1023 struct lpfc_iocbq * 1024 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1025 { 1026 struct lpfc_iocbq * iocbq = NULL; 1027 unsigned long iflags; 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 iocbq = __lpfc_sli_get_iocbq(phba); 1031 spin_unlock_irqrestore(&phba->hbalock, iflags); 1032 return iocbq; 1033 } 1034 1035 /** 1036 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1037 * @phba: Pointer to HBA context object. 1038 * @iocbq: Pointer to driver iocb object. 1039 * 1040 * This function is called with hbalock held to release driver 1041 * iocb object to the iocb pool. The iotag in the iocb object 1042 * does not change for each use of the iocb object. This function 1043 * clears all other fields of the iocb object when it is freed. 1044 * The sqlq structure that holds the xritag and phys and virtual 1045 * mappings for the scatter gather list is retrieved from the 1046 * active array of sglq. The get of the sglq pointer also clears 1047 * the entry in the array. If the status of the IO indiactes that 1048 * this IO was aborted then the sglq entry it put on the 1049 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1050 * IO has good status or fails for any other reason then the sglq 1051 * entry is added to the free list (lpfc_els_sgl_list). 1052 **/ 1053 static void 1054 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1055 { 1056 struct lpfc_sglq *sglq; 1057 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1058 unsigned long iflag = 0; 1059 struct lpfc_sli_ring *pring; 1060 1061 lockdep_assert_held(&phba->hbalock); 1062 1063 if (iocbq->sli4_xritag == NO_XRI) 1064 sglq = NULL; 1065 else 1066 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1067 1068 1069 if (sglq) { 1070 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1071 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1072 iflag); 1073 sglq->state = SGL_FREED; 1074 sglq->ndlp = NULL; 1075 list_add_tail(&sglq->list, 1076 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1077 spin_unlock_irqrestore( 1078 &phba->sli4_hba.sgl_list_lock, iflag); 1079 goto out; 1080 } 1081 1082 pring = phba->sli4_hba.els_wq->pring; 1083 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1084 (sglq->state != SGL_XRI_ABORTED)) { 1085 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1086 iflag); 1087 list_add(&sglq->list, 1088 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1089 spin_unlock_irqrestore( 1090 &phba->sli4_hba.sgl_list_lock, iflag); 1091 } else { 1092 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1093 iflag); 1094 sglq->state = SGL_FREED; 1095 sglq->ndlp = NULL; 1096 list_add_tail(&sglq->list, 1097 &phba->sli4_hba.lpfc_els_sgl_list); 1098 spin_unlock_irqrestore( 1099 &phba->sli4_hba.sgl_list_lock, iflag); 1100 1101 /* Check if TXQ queue needs to be serviced */ 1102 if (!list_empty(&pring->txq)) 1103 lpfc_worker_wake_up(phba); 1104 } 1105 } 1106 1107 out: 1108 /* 1109 * Clean all volatile data fields, preserve iotag and node struct. 1110 */ 1111 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1112 iocbq->sli4_lxritag = NO_XRI; 1113 iocbq->sli4_xritag = NO_XRI; 1114 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1115 LPFC_IO_NVME_LS); 1116 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1117 } 1118 1119 1120 /** 1121 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1122 * @phba: Pointer to HBA context object. 1123 * @iocbq: Pointer to driver iocb object. 1124 * 1125 * This function is called with hbalock held to release driver 1126 * iocb object to the iocb pool. The iotag in the iocb object 1127 * does not change for each use of the iocb object. This function 1128 * clears all other fields of the iocb object when it is freed. 1129 **/ 1130 static void 1131 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1132 { 1133 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1134 1135 lockdep_assert_held(&phba->hbalock); 1136 1137 /* 1138 * Clean all volatile data fields, preserve iotag and node struct. 1139 */ 1140 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1141 iocbq->sli4_xritag = NO_XRI; 1142 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1143 } 1144 1145 /** 1146 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1147 * @phba: Pointer to HBA context object. 1148 * @iocbq: Pointer to driver iocb object. 1149 * 1150 * This function is called with hbalock held to release driver 1151 * iocb object to the iocb pool. The iotag in the iocb object 1152 * does not change for each use of the iocb object. This function 1153 * clears all other fields of the iocb object when it is freed. 1154 **/ 1155 static void 1156 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1157 { 1158 lockdep_assert_held(&phba->hbalock); 1159 1160 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1161 phba->iocb_cnt--; 1162 } 1163 1164 /** 1165 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1166 * @phba: Pointer to HBA context object. 1167 * @iocbq: Pointer to driver iocb object. 1168 * 1169 * This function is called with no lock held to release the iocb to 1170 * iocb pool. 1171 **/ 1172 void 1173 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1174 { 1175 unsigned long iflags; 1176 1177 /* 1178 * Clean all volatile data fields, preserve iotag and node struct. 1179 */ 1180 spin_lock_irqsave(&phba->hbalock, iflags); 1181 __lpfc_sli_release_iocbq(phba, iocbq); 1182 spin_unlock_irqrestore(&phba->hbalock, iflags); 1183 } 1184 1185 /** 1186 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1187 * @phba: Pointer to HBA context object. 1188 * @iocblist: List of IOCBs. 1189 * @ulpstatus: ULP status in IOCB command field. 1190 * @ulpWord4: ULP word-4 in IOCB command field. 1191 * 1192 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1193 * on the list by invoking the complete callback function associated with the 1194 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1195 * fields. 1196 **/ 1197 void 1198 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1199 uint32_t ulpstatus, uint32_t ulpWord4) 1200 { 1201 struct lpfc_iocbq *piocb; 1202 1203 while (!list_empty(iocblist)) { 1204 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1205 if (!piocb->iocb_cmpl) 1206 lpfc_sli_release_iocbq(phba, piocb); 1207 else { 1208 piocb->iocb.ulpStatus = ulpstatus; 1209 piocb->iocb.un.ulpWord[4] = ulpWord4; 1210 (piocb->iocb_cmpl) (phba, piocb, piocb); 1211 } 1212 } 1213 return; 1214 } 1215 1216 /** 1217 * lpfc_sli_iocb_cmd_type - Get the iocb type 1218 * @iocb_cmnd: iocb command code. 1219 * 1220 * This function is called by ring event handler function to get the iocb type. 1221 * This function translates the iocb command to an iocb command type used to 1222 * decide the final disposition of each completed IOCB. 1223 * The function returns 1224 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1225 * LPFC_SOL_IOCB if it is a solicited iocb completion 1226 * LPFC_ABORT_IOCB if it is an abort iocb 1227 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1228 * 1229 * The caller is not required to hold any lock. 1230 **/ 1231 static lpfc_iocb_type 1232 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1233 { 1234 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1235 1236 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1237 return 0; 1238 1239 switch (iocb_cmnd) { 1240 case CMD_XMIT_SEQUENCE_CR: 1241 case CMD_XMIT_SEQUENCE_CX: 1242 case CMD_XMIT_BCAST_CN: 1243 case CMD_XMIT_BCAST_CX: 1244 case CMD_ELS_REQUEST_CR: 1245 case CMD_ELS_REQUEST_CX: 1246 case CMD_CREATE_XRI_CR: 1247 case CMD_CREATE_XRI_CX: 1248 case CMD_GET_RPI_CN: 1249 case CMD_XMIT_ELS_RSP_CX: 1250 case CMD_GET_RPI_CR: 1251 case CMD_FCP_IWRITE_CR: 1252 case CMD_FCP_IWRITE_CX: 1253 case CMD_FCP_IREAD_CR: 1254 case CMD_FCP_IREAD_CX: 1255 case CMD_FCP_ICMND_CR: 1256 case CMD_FCP_ICMND_CX: 1257 case CMD_FCP_TSEND_CX: 1258 case CMD_FCP_TRSP_CX: 1259 case CMD_FCP_TRECEIVE_CX: 1260 case CMD_FCP_AUTO_TRSP_CX: 1261 case CMD_ADAPTER_MSG: 1262 case CMD_ADAPTER_DUMP: 1263 case CMD_XMIT_SEQUENCE64_CR: 1264 case CMD_XMIT_SEQUENCE64_CX: 1265 case CMD_XMIT_BCAST64_CN: 1266 case CMD_XMIT_BCAST64_CX: 1267 case CMD_ELS_REQUEST64_CR: 1268 case CMD_ELS_REQUEST64_CX: 1269 case CMD_FCP_IWRITE64_CR: 1270 case CMD_FCP_IWRITE64_CX: 1271 case CMD_FCP_IREAD64_CR: 1272 case CMD_FCP_IREAD64_CX: 1273 case CMD_FCP_ICMND64_CR: 1274 case CMD_FCP_ICMND64_CX: 1275 case CMD_FCP_TSEND64_CX: 1276 case CMD_FCP_TRSP64_CX: 1277 case CMD_FCP_TRECEIVE64_CX: 1278 case CMD_GEN_REQUEST64_CR: 1279 case CMD_GEN_REQUEST64_CX: 1280 case CMD_XMIT_ELS_RSP64_CX: 1281 case DSSCMD_IWRITE64_CR: 1282 case DSSCMD_IWRITE64_CX: 1283 case DSSCMD_IREAD64_CR: 1284 case DSSCMD_IREAD64_CX: 1285 type = LPFC_SOL_IOCB; 1286 break; 1287 case CMD_ABORT_XRI_CN: 1288 case CMD_ABORT_XRI_CX: 1289 case CMD_CLOSE_XRI_CN: 1290 case CMD_CLOSE_XRI_CX: 1291 case CMD_XRI_ABORTED_CX: 1292 case CMD_ABORT_MXRI64_CN: 1293 case CMD_XMIT_BLS_RSP64_CX: 1294 type = LPFC_ABORT_IOCB; 1295 break; 1296 case CMD_RCV_SEQUENCE_CX: 1297 case CMD_RCV_ELS_REQ_CX: 1298 case CMD_RCV_SEQUENCE64_CX: 1299 case CMD_RCV_ELS_REQ64_CX: 1300 case CMD_ASYNC_STATUS: 1301 case CMD_IOCB_RCV_SEQ64_CX: 1302 case CMD_IOCB_RCV_ELS64_CX: 1303 case CMD_IOCB_RCV_CONT64_CX: 1304 case CMD_IOCB_RET_XRI64_CX: 1305 type = LPFC_UNSOL_IOCB; 1306 break; 1307 case CMD_IOCB_XMIT_MSEQ64_CR: 1308 case CMD_IOCB_XMIT_MSEQ64_CX: 1309 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1310 case CMD_IOCB_RCV_ELS_LIST64_CX: 1311 case CMD_IOCB_CLOSE_EXTENDED_CN: 1312 case CMD_IOCB_ABORT_EXTENDED_CN: 1313 case CMD_IOCB_RET_HBQE64_CN: 1314 case CMD_IOCB_FCP_IBIDIR64_CR: 1315 case CMD_IOCB_FCP_IBIDIR64_CX: 1316 case CMD_IOCB_FCP_ITASKMGT64_CX: 1317 case CMD_IOCB_LOGENTRY_CN: 1318 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1319 printk("%s - Unhandled SLI-3 Command x%x\n", 1320 __func__, iocb_cmnd); 1321 type = LPFC_UNKNOWN_IOCB; 1322 break; 1323 default: 1324 type = LPFC_UNKNOWN_IOCB; 1325 break; 1326 } 1327 1328 return type; 1329 } 1330 1331 /** 1332 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1333 * @phba: Pointer to HBA context object. 1334 * 1335 * This function is called from SLI initialization code 1336 * to configure every ring of the HBA's SLI interface. The 1337 * caller is not required to hold any lock. This function issues 1338 * a config_ring mailbox command for each ring. 1339 * This function returns zero if successful else returns a negative 1340 * error code. 1341 **/ 1342 static int 1343 lpfc_sli_ring_map(struct lpfc_hba *phba) 1344 { 1345 struct lpfc_sli *psli = &phba->sli; 1346 LPFC_MBOXQ_t *pmb; 1347 MAILBOX_t *pmbox; 1348 int i, rc, ret = 0; 1349 1350 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1351 if (!pmb) 1352 return -ENOMEM; 1353 pmbox = &pmb->u.mb; 1354 phba->link_state = LPFC_INIT_MBX_CMDS; 1355 for (i = 0; i < psli->num_rings; i++) { 1356 lpfc_config_ring(phba, i, pmb); 1357 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1358 if (rc != MBX_SUCCESS) { 1359 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1360 "0446 Adapter failed to init (%d), " 1361 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1362 "ring %d\n", 1363 rc, pmbox->mbxCommand, 1364 pmbox->mbxStatus, i); 1365 phba->link_state = LPFC_HBA_ERROR; 1366 ret = -ENXIO; 1367 break; 1368 } 1369 } 1370 mempool_free(pmb, phba->mbox_mem_pool); 1371 return ret; 1372 } 1373 1374 /** 1375 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1376 * @phba: Pointer to HBA context object. 1377 * @pring: Pointer to driver SLI ring object. 1378 * @piocb: Pointer to the driver iocb object. 1379 * 1380 * This function is called with hbalock held. The function adds the 1381 * new iocb to txcmplq of the given ring. This function always returns 1382 * 0. If this function is called for ELS ring, this function checks if 1383 * there is a vport associated with the ELS command. This function also 1384 * starts els_tmofunc timer if this is an ELS command. 1385 **/ 1386 static int 1387 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1388 struct lpfc_iocbq *piocb) 1389 { 1390 lockdep_assert_held(&phba->hbalock); 1391 1392 BUG_ON(!piocb); 1393 1394 list_add_tail(&piocb->list, &pring->txcmplq); 1395 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1396 1397 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1398 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1399 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1400 BUG_ON(!piocb->vport); 1401 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1402 mod_timer(&piocb->vport->els_tmofunc, 1403 jiffies + 1404 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1405 } 1406 1407 return 0; 1408 } 1409 1410 /** 1411 * lpfc_sli_ringtx_get - Get first element of the txq 1412 * @phba: Pointer to HBA context object. 1413 * @pring: Pointer to driver SLI ring object. 1414 * 1415 * This function is called with hbalock held to get next 1416 * iocb in txq of the given ring. If there is any iocb in 1417 * the txq, the function returns first iocb in the list after 1418 * removing the iocb from the list, else it returns NULL. 1419 **/ 1420 struct lpfc_iocbq * 1421 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1422 { 1423 struct lpfc_iocbq *cmd_iocb; 1424 1425 lockdep_assert_held(&phba->hbalock); 1426 1427 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1428 return cmd_iocb; 1429 } 1430 1431 /** 1432 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1433 * @phba: Pointer to HBA context object. 1434 * @pring: Pointer to driver SLI ring object. 1435 * 1436 * This function is called with hbalock held and the caller must post the 1437 * iocb without releasing the lock. If the caller releases the lock, 1438 * iocb slot returned by the function is not guaranteed to be available. 1439 * The function returns pointer to the next available iocb slot if there 1440 * is available slot in the ring, else it returns NULL. 1441 * If the get index of the ring is ahead of the put index, the function 1442 * will post an error attention event to the worker thread to take the 1443 * HBA to offline state. 1444 **/ 1445 static IOCB_t * 1446 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1447 { 1448 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1449 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1450 1451 lockdep_assert_held(&phba->hbalock); 1452 1453 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1454 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1455 pring->sli.sli3.next_cmdidx = 0; 1456 1457 if (unlikely(pring->sli.sli3.local_getidx == 1458 pring->sli.sli3.next_cmdidx)) { 1459 1460 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1461 1462 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1463 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1464 "0315 Ring %d issue: portCmdGet %d " 1465 "is bigger than cmd ring %d\n", 1466 pring->ringno, 1467 pring->sli.sli3.local_getidx, 1468 max_cmd_idx); 1469 1470 phba->link_state = LPFC_HBA_ERROR; 1471 /* 1472 * All error attention handlers are posted to 1473 * worker thread 1474 */ 1475 phba->work_ha |= HA_ERATT; 1476 phba->work_hs = HS_FFER3; 1477 1478 lpfc_worker_wake_up(phba); 1479 1480 return NULL; 1481 } 1482 1483 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1484 return NULL; 1485 } 1486 1487 return lpfc_cmd_iocb(phba, pring); 1488 } 1489 1490 /** 1491 * lpfc_sli_next_iotag - Get an iotag for the iocb 1492 * @phba: Pointer to HBA context object. 1493 * @iocbq: Pointer to driver iocb object. 1494 * 1495 * This function gets an iotag for the iocb. If there is no unused iotag and 1496 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1497 * array and assigns a new iotag. 1498 * The function returns the allocated iotag if successful, else returns zero. 1499 * Zero is not a valid iotag. 1500 * The caller is not required to hold any lock. 1501 **/ 1502 uint16_t 1503 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1504 { 1505 struct lpfc_iocbq **new_arr; 1506 struct lpfc_iocbq **old_arr; 1507 size_t new_len; 1508 struct lpfc_sli *psli = &phba->sli; 1509 uint16_t iotag; 1510 1511 spin_lock_irq(&phba->hbalock); 1512 iotag = psli->last_iotag; 1513 if(++iotag < psli->iocbq_lookup_len) { 1514 psli->last_iotag = iotag; 1515 psli->iocbq_lookup[iotag] = iocbq; 1516 spin_unlock_irq(&phba->hbalock); 1517 iocbq->iotag = iotag; 1518 return iotag; 1519 } else if (psli->iocbq_lookup_len < (0xffff 1520 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1521 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1522 spin_unlock_irq(&phba->hbalock); 1523 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1524 GFP_KERNEL); 1525 if (new_arr) { 1526 spin_lock_irq(&phba->hbalock); 1527 old_arr = psli->iocbq_lookup; 1528 if (new_len <= psli->iocbq_lookup_len) { 1529 /* highly unprobable case */ 1530 kfree(new_arr); 1531 iotag = psli->last_iotag; 1532 if(++iotag < psli->iocbq_lookup_len) { 1533 psli->last_iotag = iotag; 1534 psli->iocbq_lookup[iotag] = iocbq; 1535 spin_unlock_irq(&phba->hbalock); 1536 iocbq->iotag = iotag; 1537 return iotag; 1538 } 1539 spin_unlock_irq(&phba->hbalock); 1540 return 0; 1541 } 1542 if (psli->iocbq_lookup) 1543 memcpy(new_arr, old_arr, 1544 ((psli->last_iotag + 1) * 1545 sizeof (struct lpfc_iocbq *))); 1546 psli->iocbq_lookup = new_arr; 1547 psli->iocbq_lookup_len = new_len; 1548 psli->last_iotag = iotag; 1549 psli->iocbq_lookup[iotag] = iocbq; 1550 spin_unlock_irq(&phba->hbalock); 1551 iocbq->iotag = iotag; 1552 kfree(old_arr); 1553 return iotag; 1554 } 1555 } else 1556 spin_unlock_irq(&phba->hbalock); 1557 1558 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1559 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1560 psli->last_iotag); 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1567 * @phba: Pointer to HBA context object. 1568 * @pring: Pointer to driver SLI ring object. 1569 * @iocb: Pointer to iocb slot in the ring. 1570 * @nextiocb: Pointer to driver iocb object which need to be 1571 * posted to firmware. 1572 * 1573 * This function is called with hbalock held to post a new iocb to 1574 * the firmware. This function copies the new iocb to ring iocb slot and 1575 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1576 * a completion call back for this iocb else the function will free the 1577 * iocb object. 1578 **/ 1579 static void 1580 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1581 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1582 { 1583 lockdep_assert_held(&phba->hbalock); 1584 /* 1585 * Set up an iotag 1586 */ 1587 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1588 1589 1590 if (pring->ringno == LPFC_ELS_RING) { 1591 lpfc_debugfs_slow_ring_trc(phba, 1592 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1593 *(((uint32_t *) &nextiocb->iocb) + 4), 1594 *(((uint32_t *) &nextiocb->iocb) + 6), 1595 *(((uint32_t *) &nextiocb->iocb) + 7)); 1596 } 1597 1598 /* 1599 * Issue iocb command to adapter 1600 */ 1601 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1602 wmb(); 1603 pring->stats.iocb_cmd++; 1604 1605 /* 1606 * If there is no completion routine to call, we can release the 1607 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1608 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1609 */ 1610 if (nextiocb->iocb_cmpl) 1611 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1612 else 1613 __lpfc_sli_release_iocbq(phba, nextiocb); 1614 1615 /* 1616 * Let the HBA know what IOCB slot will be the next one the 1617 * driver will put a command into. 1618 */ 1619 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1620 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1621 } 1622 1623 /** 1624 * lpfc_sli_update_full_ring - Update the chip attention register 1625 * @phba: Pointer to HBA context object. 1626 * @pring: Pointer to driver SLI ring object. 1627 * 1628 * The caller is not required to hold any lock for calling this function. 1629 * This function updates the chip attention bits for the ring to inform firmware 1630 * that there are pending work to be done for this ring and requests an 1631 * interrupt when there is space available in the ring. This function is 1632 * called when the driver is unable to post more iocbs to the ring due 1633 * to unavailability of space in the ring. 1634 **/ 1635 static void 1636 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1637 { 1638 int ringno = pring->ringno; 1639 1640 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1641 1642 wmb(); 1643 1644 /* 1645 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1646 * The HBA will tell us when an IOCB entry is available. 1647 */ 1648 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1649 readl(phba->CAregaddr); /* flush */ 1650 1651 pring->stats.iocb_cmd_full++; 1652 } 1653 1654 /** 1655 * lpfc_sli_update_ring - Update chip attention register 1656 * @phba: Pointer to HBA context object. 1657 * @pring: Pointer to driver SLI ring object. 1658 * 1659 * This function updates the chip attention register bit for the 1660 * given ring to inform HBA that there is more work to be done 1661 * in this ring. The caller is not required to hold any lock. 1662 **/ 1663 static void 1664 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1665 { 1666 int ringno = pring->ringno; 1667 1668 /* 1669 * Tell the HBA that there is work to do in this ring. 1670 */ 1671 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1672 wmb(); 1673 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1674 readl(phba->CAregaddr); /* flush */ 1675 } 1676 } 1677 1678 /** 1679 * lpfc_sli_resume_iocb - Process iocbs in the txq 1680 * @phba: Pointer to HBA context object. 1681 * @pring: Pointer to driver SLI ring object. 1682 * 1683 * This function is called with hbalock held to post pending iocbs 1684 * in the txq to the firmware. This function is called when driver 1685 * detects space available in the ring. 1686 **/ 1687 static void 1688 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1689 { 1690 IOCB_t *iocb; 1691 struct lpfc_iocbq *nextiocb; 1692 1693 lockdep_assert_held(&phba->hbalock); 1694 1695 /* 1696 * Check to see if: 1697 * (a) there is anything on the txq to send 1698 * (b) link is up 1699 * (c) link attention events can be processed (fcp ring only) 1700 * (d) IOCB processing is not blocked by the outstanding mbox command. 1701 */ 1702 1703 if (lpfc_is_link_up(phba) && 1704 (!list_empty(&pring->txq)) && 1705 (pring->ringno != LPFC_FCP_RING || 1706 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1707 1708 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1709 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1710 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1711 1712 if (iocb) 1713 lpfc_sli_update_ring(phba, pring); 1714 else 1715 lpfc_sli_update_full_ring(phba, pring); 1716 } 1717 1718 return; 1719 } 1720 1721 /** 1722 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1723 * @phba: Pointer to HBA context object. 1724 * @hbqno: HBQ number. 1725 * 1726 * This function is called with hbalock held to get the next 1727 * available slot for the given HBQ. If there is free slot 1728 * available for the HBQ it will return pointer to the next available 1729 * HBQ entry else it will return NULL. 1730 **/ 1731 static struct lpfc_hbq_entry * 1732 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1733 { 1734 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1735 1736 lockdep_assert_held(&phba->hbalock); 1737 1738 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1739 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1740 hbqp->next_hbqPutIdx = 0; 1741 1742 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1743 uint32_t raw_index = phba->hbq_get[hbqno]; 1744 uint32_t getidx = le32_to_cpu(raw_index); 1745 1746 hbqp->local_hbqGetIdx = getidx; 1747 1748 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1749 lpfc_printf_log(phba, KERN_ERR, 1750 LOG_SLI | LOG_VPORT, 1751 "1802 HBQ %d: local_hbqGetIdx " 1752 "%u is > than hbqp->entry_count %u\n", 1753 hbqno, hbqp->local_hbqGetIdx, 1754 hbqp->entry_count); 1755 1756 phba->link_state = LPFC_HBA_ERROR; 1757 return NULL; 1758 } 1759 1760 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1761 return NULL; 1762 } 1763 1764 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1765 hbqp->hbqPutIdx; 1766 } 1767 1768 /** 1769 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1770 * @phba: Pointer to HBA context object. 1771 * 1772 * This function is called with no lock held to free all the 1773 * hbq buffers while uninitializing the SLI interface. It also 1774 * frees the HBQ buffers returned by the firmware but not yet 1775 * processed by the upper layers. 1776 **/ 1777 void 1778 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1779 { 1780 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1781 struct hbq_dmabuf *hbq_buf; 1782 unsigned long flags; 1783 int i, hbq_count; 1784 1785 hbq_count = lpfc_sli_hbq_count(); 1786 /* Return all memory used by all HBQs */ 1787 spin_lock_irqsave(&phba->hbalock, flags); 1788 for (i = 0; i < hbq_count; ++i) { 1789 list_for_each_entry_safe(dmabuf, next_dmabuf, 1790 &phba->hbqs[i].hbq_buffer_list, list) { 1791 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1792 list_del(&hbq_buf->dbuf.list); 1793 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1794 } 1795 phba->hbqs[i].buffer_count = 0; 1796 } 1797 1798 /* Mark the HBQs not in use */ 1799 phba->hbq_in_use = 0; 1800 spin_unlock_irqrestore(&phba->hbalock, flags); 1801 } 1802 1803 /** 1804 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1805 * @phba: Pointer to HBA context object. 1806 * @hbqno: HBQ number. 1807 * @hbq_buf: Pointer to HBQ buffer. 1808 * 1809 * This function is called with the hbalock held to post a 1810 * hbq buffer to the firmware. If the function finds an empty 1811 * slot in the HBQ, it will post the buffer. The function will return 1812 * pointer to the hbq entry if it successfully post the buffer 1813 * else it will return NULL. 1814 **/ 1815 static int 1816 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1817 struct hbq_dmabuf *hbq_buf) 1818 { 1819 lockdep_assert_held(&phba->hbalock); 1820 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1821 } 1822 1823 /** 1824 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1825 * @phba: Pointer to HBA context object. 1826 * @hbqno: HBQ number. 1827 * @hbq_buf: Pointer to HBQ buffer. 1828 * 1829 * This function is called with the hbalock held to post a hbq buffer to the 1830 * firmware. If the function finds an empty slot in the HBQ, it will post the 1831 * buffer and place it on the hbq_buffer_list. The function will return zero if 1832 * it successfully post the buffer else it will return an error. 1833 **/ 1834 static int 1835 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1836 struct hbq_dmabuf *hbq_buf) 1837 { 1838 struct lpfc_hbq_entry *hbqe; 1839 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1840 1841 lockdep_assert_held(&phba->hbalock); 1842 /* Get next HBQ entry slot to use */ 1843 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1844 if (hbqe) { 1845 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1846 1847 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1848 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1849 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 1850 hbqe->bde.tus.f.bdeFlags = 0; 1851 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1852 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1853 /* Sync SLIM */ 1854 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1855 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1856 /* flush */ 1857 readl(phba->hbq_put + hbqno); 1858 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1859 return 0; 1860 } else 1861 return -ENOMEM; 1862 } 1863 1864 /** 1865 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1866 * @phba: Pointer to HBA context object. 1867 * @hbqno: HBQ number. 1868 * @hbq_buf: Pointer to HBQ buffer. 1869 * 1870 * This function is called with the hbalock held to post an RQE to the SLI4 1871 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1872 * the hbq_buffer_list and return zero, otherwise it will return an error. 1873 **/ 1874 static int 1875 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1876 struct hbq_dmabuf *hbq_buf) 1877 { 1878 int rc; 1879 struct lpfc_rqe hrqe; 1880 struct lpfc_rqe drqe; 1881 struct lpfc_queue *hrq; 1882 struct lpfc_queue *drq; 1883 1884 if (hbqno != LPFC_ELS_HBQ) 1885 return 1; 1886 hrq = phba->sli4_hba.hdr_rq; 1887 drq = phba->sli4_hba.dat_rq; 1888 1889 lockdep_assert_held(&phba->hbalock); 1890 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1891 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1892 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1893 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1894 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 1895 if (rc < 0) 1896 return rc; 1897 hbq_buf->tag = (rc | (hbqno << 16)); 1898 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1899 return 0; 1900 } 1901 1902 /* HBQ for ELS and CT traffic. */ 1903 static struct lpfc_hbq_init lpfc_els_hbq = { 1904 .rn = 1, 1905 .entry_count = 256, 1906 .mask_count = 0, 1907 .profile = 0, 1908 .ring_mask = (1 << LPFC_ELS_RING), 1909 .buffer_count = 0, 1910 .init_count = 40, 1911 .add_count = 40, 1912 }; 1913 1914 /* Array of HBQs */ 1915 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1916 &lpfc_els_hbq, 1917 }; 1918 1919 /** 1920 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1921 * @phba: Pointer to HBA context object. 1922 * @hbqno: HBQ number. 1923 * @count: Number of HBQ buffers to be posted. 1924 * 1925 * This function is called with no lock held to post more hbq buffers to the 1926 * given HBQ. The function returns the number of HBQ buffers successfully 1927 * posted. 1928 **/ 1929 static int 1930 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1931 { 1932 uint32_t i, posted = 0; 1933 unsigned long flags; 1934 struct hbq_dmabuf *hbq_buffer; 1935 LIST_HEAD(hbq_buf_list); 1936 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1937 return 0; 1938 1939 if ((phba->hbqs[hbqno].buffer_count + count) > 1940 lpfc_hbq_defs[hbqno]->entry_count) 1941 count = lpfc_hbq_defs[hbqno]->entry_count - 1942 phba->hbqs[hbqno].buffer_count; 1943 if (!count) 1944 return 0; 1945 /* Allocate HBQ entries */ 1946 for (i = 0; i < count; i++) { 1947 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1948 if (!hbq_buffer) 1949 break; 1950 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1951 } 1952 /* Check whether HBQ is still in use */ 1953 spin_lock_irqsave(&phba->hbalock, flags); 1954 if (!phba->hbq_in_use) 1955 goto err; 1956 while (!list_empty(&hbq_buf_list)) { 1957 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1958 dbuf.list); 1959 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1960 (hbqno << 16)); 1961 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1962 phba->hbqs[hbqno].buffer_count++; 1963 posted++; 1964 } else 1965 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1966 } 1967 spin_unlock_irqrestore(&phba->hbalock, flags); 1968 return posted; 1969 err: 1970 spin_unlock_irqrestore(&phba->hbalock, flags); 1971 while (!list_empty(&hbq_buf_list)) { 1972 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1973 dbuf.list); 1974 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1975 } 1976 return 0; 1977 } 1978 1979 /** 1980 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1981 * @phba: Pointer to HBA context object. 1982 * @qno: HBQ number. 1983 * 1984 * This function posts more buffers to the HBQ. This function 1985 * is called with no lock held. The function returns the number of HBQ entries 1986 * successfully allocated. 1987 **/ 1988 int 1989 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1990 { 1991 if (phba->sli_rev == LPFC_SLI_REV4) 1992 return 0; 1993 else 1994 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1995 lpfc_hbq_defs[qno]->add_count); 1996 } 1997 1998 /** 1999 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2000 * @phba: Pointer to HBA context object. 2001 * @qno: HBQ queue number. 2002 * 2003 * This function is called from SLI initialization code path with 2004 * no lock held to post initial HBQ buffers to firmware. The 2005 * function returns the number of HBQ entries successfully allocated. 2006 **/ 2007 static int 2008 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2009 { 2010 if (phba->sli_rev == LPFC_SLI_REV4) 2011 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2012 lpfc_hbq_defs[qno]->entry_count); 2013 else 2014 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2015 lpfc_hbq_defs[qno]->init_count); 2016 } 2017 2018 /** 2019 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2020 * @phba: Pointer to HBA context object. 2021 * @hbqno: HBQ number. 2022 * 2023 * This function removes the first hbq buffer on an hbq list and returns a 2024 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2025 **/ 2026 static struct hbq_dmabuf * 2027 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2028 { 2029 struct lpfc_dmabuf *d_buf; 2030 2031 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2032 if (!d_buf) 2033 return NULL; 2034 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2035 } 2036 2037 /** 2038 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2039 * @phba: Pointer to HBA context object. 2040 * @hbqno: HBQ number. 2041 * 2042 * This function removes the first RQ buffer on an RQ buffer list and returns a 2043 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2044 **/ 2045 static struct rqb_dmabuf * 2046 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2047 { 2048 struct lpfc_dmabuf *h_buf; 2049 struct lpfc_rqb *rqbp; 2050 2051 rqbp = hrq->rqbp; 2052 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2053 struct lpfc_dmabuf, list); 2054 if (!h_buf) 2055 return NULL; 2056 rqbp->buffer_count--; 2057 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2058 } 2059 2060 /** 2061 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2062 * @phba: Pointer to HBA context object. 2063 * @tag: Tag of the hbq buffer. 2064 * 2065 * This function searches for the hbq buffer associated with the given tag in 2066 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2067 * otherwise it returns NULL. 2068 **/ 2069 static struct hbq_dmabuf * 2070 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2071 { 2072 struct lpfc_dmabuf *d_buf; 2073 struct hbq_dmabuf *hbq_buf; 2074 uint32_t hbqno; 2075 2076 hbqno = tag >> 16; 2077 if (hbqno >= LPFC_MAX_HBQS) 2078 return NULL; 2079 2080 spin_lock_irq(&phba->hbalock); 2081 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2082 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2083 if (hbq_buf->tag == tag) { 2084 spin_unlock_irq(&phba->hbalock); 2085 return hbq_buf; 2086 } 2087 } 2088 spin_unlock_irq(&phba->hbalock); 2089 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2090 "1803 Bad hbq tag. Data: x%x x%x\n", 2091 tag, phba->hbqs[tag >> 16].buffer_count); 2092 return NULL; 2093 } 2094 2095 /** 2096 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2097 * @phba: Pointer to HBA context object. 2098 * @hbq_buffer: Pointer to HBQ buffer. 2099 * 2100 * This function is called with hbalock. This function gives back 2101 * the hbq buffer to firmware. If the HBQ does not have space to 2102 * post the buffer, it will free the buffer. 2103 **/ 2104 void 2105 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2106 { 2107 uint32_t hbqno; 2108 2109 if (hbq_buffer) { 2110 hbqno = hbq_buffer->tag >> 16; 2111 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2112 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2113 } 2114 } 2115 2116 /** 2117 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2118 * @mbxCommand: mailbox command code. 2119 * 2120 * This function is called by the mailbox event handler function to verify 2121 * that the completed mailbox command is a legitimate mailbox command. If the 2122 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2123 * and the mailbox event handler will take the HBA offline. 2124 **/ 2125 static int 2126 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2127 { 2128 uint8_t ret; 2129 2130 switch (mbxCommand) { 2131 case MBX_LOAD_SM: 2132 case MBX_READ_NV: 2133 case MBX_WRITE_NV: 2134 case MBX_WRITE_VPARMS: 2135 case MBX_RUN_BIU_DIAG: 2136 case MBX_INIT_LINK: 2137 case MBX_DOWN_LINK: 2138 case MBX_CONFIG_LINK: 2139 case MBX_CONFIG_RING: 2140 case MBX_RESET_RING: 2141 case MBX_READ_CONFIG: 2142 case MBX_READ_RCONFIG: 2143 case MBX_READ_SPARM: 2144 case MBX_READ_STATUS: 2145 case MBX_READ_RPI: 2146 case MBX_READ_XRI: 2147 case MBX_READ_REV: 2148 case MBX_READ_LNK_STAT: 2149 case MBX_REG_LOGIN: 2150 case MBX_UNREG_LOGIN: 2151 case MBX_CLEAR_LA: 2152 case MBX_DUMP_MEMORY: 2153 case MBX_DUMP_CONTEXT: 2154 case MBX_RUN_DIAGS: 2155 case MBX_RESTART: 2156 case MBX_UPDATE_CFG: 2157 case MBX_DOWN_LOAD: 2158 case MBX_DEL_LD_ENTRY: 2159 case MBX_RUN_PROGRAM: 2160 case MBX_SET_MASK: 2161 case MBX_SET_VARIABLE: 2162 case MBX_UNREG_D_ID: 2163 case MBX_KILL_BOARD: 2164 case MBX_CONFIG_FARP: 2165 case MBX_BEACON: 2166 case MBX_LOAD_AREA: 2167 case MBX_RUN_BIU_DIAG64: 2168 case MBX_CONFIG_PORT: 2169 case MBX_READ_SPARM64: 2170 case MBX_READ_RPI64: 2171 case MBX_REG_LOGIN64: 2172 case MBX_READ_TOPOLOGY: 2173 case MBX_WRITE_WWN: 2174 case MBX_SET_DEBUG: 2175 case MBX_LOAD_EXP_ROM: 2176 case MBX_ASYNCEVT_ENABLE: 2177 case MBX_REG_VPI: 2178 case MBX_UNREG_VPI: 2179 case MBX_HEARTBEAT: 2180 case MBX_PORT_CAPABILITIES: 2181 case MBX_PORT_IOV_CONTROL: 2182 case MBX_SLI4_CONFIG: 2183 case MBX_SLI4_REQ_FTRS: 2184 case MBX_REG_FCFI: 2185 case MBX_UNREG_FCFI: 2186 case MBX_REG_VFI: 2187 case MBX_UNREG_VFI: 2188 case MBX_INIT_VPI: 2189 case MBX_INIT_VFI: 2190 case MBX_RESUME_RPI: 2191 case MBX_READ_EVENT_LOG_STATUS: 2192 case MBX_READ_EVENT_LOG: 2193 case MBX_SECURITY_MGMT: 2194 case MBX_AUTH_PORT: 2195 case MBX_ACCESS_VDATA: 2196 ret = mbxCommand; 2197 break; 2198 default: 2199 ret = MBX_SHUTDOWN; 2200 break; 2201 } 2202 return ret; 2203 } 2204 2205 /** 2206 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2207 * @phba: Pointer to HBA context object. 2208 * @pmboxq: Pointer to mailbox command. 2209 * 2210 * This is completion handler function for mailbox commands issued from 2211 * lpfc_sli_issue_mbox_wait function. This function is called by the 2212 * mailbox event handler function with no lock held. This function 2213 * will wake up thread waiting on the wait queue pointed by context1 2214 * of the mailbox. 2215 **/ 2216 void 2217 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2218 { 2219 wait_queue_head_t *pdone_q; 2220 unsigned long drvr_flag; 2221 2222 /* 2223 * If pdone_q is empty, the driver thread gave up waiting and 2224 * continued running. 2225 */ 2226 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2227 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2228 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2229 if (pdone_q) 2230 wake_up_interruptible(pdone_q); 2231 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2232 return; 2233 } 2234 2235 2236 /** 2237 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2238 * @phba: Pointer to HBA context object. 2239 * @pmb: Pointer to mailbox object. 2240 * 2241 * This function is the default mailbox completion handler. It 2242 * frees the memory resources associated with the completed mailbox 2243 * command. If the completed command is a REG_LOGIN mailbox command, 2244 * this function will issue a UREG_LOGIN to re-claim the RPI. 2245 **/ 2246 void 2247 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2248 { 2249 struct lpfc_vport *vport = pmb->vport; 2250 struct lpfc_dmabuf *mp; 2251 struct lpfc_nodelist *ndlp; 2252 struct Scsi_Host *shost; 2253 uint16_t rpi, vpi; 2254 int rc; 2255 2256 mp = (struct lpfc_dmabuf *) (pmb->context1); 2257 2258 if (mp) { 2259 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2260 kfree(mp); 2261 } 2262 2263 /* 2264 * If a REG_LOGIN succeeded after node is destroyed or node 2265 * is in re-discovery driver need to cleanup the RPI. 2266 */ 2267 if (!(phba->pport->load_flag & FC_UNLOADING) && 2268 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2269 !pmb->u.mb.mbxStatus) { 2270 rpi = pmb->u.mb.un.varWords[0]; 2271 vpi = pmb->u.mb.un.varRegLogin.vpi; 2272 lpfc_unreg_login(phba, vpi, rpi, pmb); 2273 pmb->vport = vport; 2274 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2275 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2276 if (rc != MBX_NOT_FINISHED) 2277 return; 2278 } 2279 2280 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2281 !(phba->pport->load_flag & FC_UNLOADING) && 2282 !pmb->u.mb.mbxStatus) { 2283 shost = lpfc_shost_from_vport(vport); 2284 spin_lock_irq(shost->host_lock); 2285 vport->vpi_state |= LPFC_VPI_REGISTERED; 2286 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2287 spin_unlock_irq(shost->host_lock); 2288 } 2289 2290 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2291 ndlp = (struct lpfc_nodelist *)pmb->context2; 2292 lpfc_nlp_put(ndlp); 2293 pmb->context2 = NULL; 2294 } 2295 2296 /* Check security permission status on INIT_LINK mailbox command */ 2297 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2298 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2299 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2300 "2860 SLI authentication is required " 2301 "for INIT_LINK but has not done yet\n"); 2302 2303 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2304 lpfc_sli4_mbox_cmd_free(phba, pmb); 2305 else 2306 mempool_free(pmb, phba->mbox_mem_pool); 2307 } 2308 /** 2309 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2310 * @phba: Pointer to HBA context object. 2311 * @pmb: Pointer to mailbox object. 2312 * 2313 * This function is the unreg rpi mailbox completion handler. It 2314 * frees the memory resources associated with the completed mailbox 2315 * command. An additional refrenece is put on the ndlp to prevent 2316 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2317 * the unreg mailbox command completes, this routine puts the 2318 * reference back. 2319 * 2320 **/ 2321 void 2322 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2323 { 2324 struct lpfc_vport *vport = pmb->vport; 2325 struct lpfc_nodelist *ndlp; 2326 2327 ndlp = pmb->context1; 2328 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2329 if (phba->sli_rev == LPFC_SLI_REV4 && 2330 (bf_get(lpfc_sli_intf_if_type, 2331 &phba->sli4_hba.sli_intf) == 2332 LPFC_SLI_INTF_IF_TYPE_2)) { 2333 if (ndlp) { 2334 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2335 "0010 UNREG_LOGIN vpi:%x " 2336 "rpi:%x DID:%x map:%x %p\n", 2337 vport->vpi, ndlp->nlp_rpi, 2338 ndlp->nlp_DID, 2339 ndlp->nlp_usg_map, ndlp); 2340 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2341 lpfc_nlp_put(ndlp); 2342 } 2343 } 2344 } 2345 2346 mempool_free(pmb, phba->mbox_mem_pool); 2347 } 2348 2349 /** 2350 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2351 * @phba: Pointer to HBA context object. 2352 * 2353 * This function is called with no lock held. This function processes all 2354 * the completed mailbox commands and gives it to upper layers. The interrupt 2355 * service routine processes mailbox completion interrupt and adds completed 2356 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2357 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2358 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2359 * function returns the mailbox commands to the upper layer by calling the 2360 * completion handler function of each mailbox. 2361 **/ 2362 int 2363 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2364 { 2365 MAILBOX_t *pmbox; 2366 LPFC_MBOXQ_t *pmb; 2367 int rc; 2368 LIST_HEAD(cmplq); 2369 2370 phba->sli.slistat.mbox_event++; 2371 2372 /* Get all completed mailboxe buffers into the cmplq */ 2373 spin_lock_irq(&phba->hbalock); 2374 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2375 spin_unlock_irq(&phba->hbalock); 2376 2377 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2378 do { 2379 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2380 if (pmb == NULL) 2381 break; 2382 2383 pmbox = &pmb->u.mb; 2384 2385 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2386 if (pmb->vport) { 2387 lpfc_debugfs_disc_trc(pmb->vport, 2388 LPFC_DISC_TRC_MBOX_VPORT, 2389 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2390 (uint32_t)pmbox->mbxCommand, 2391 pmbox->un.varWords[0], 2392 pmbox->un.varWords[1]); 2393 } 2394 else { 2395 lpfc_debugfs_disc_trc(phba->pport, 2396 LPFC_DISC_TRC_MBOX, 2397 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2398 (uint32_t)pmbox->mbxCommand, 2399 pmbox->un.varWords[0], 2400 pmbox->un.varWords[1]); 2401 } 2402 } 2403 2404 /* 2405 * It is a fatal error if unknown mbox command completion. 2406 */ 2407 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2408 MBX_SHUTDOWN) { 2409 /* Unknown mailbox command compl */ 2410 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2411 "(%d):0323 Unknown Mailbox command " 2412 "x%x (x%x/x%x) Cmpl\n", 2413 pmb->vport ? pmb->vport->vpi : 0, 2414 pmbox->mbxCommand, 2415 lpfc_sli_config_mbox_subsys_get(phba, 2416 pmb), 2417 lpfc_sli_config_mbox_opcode_get(phba, 2418 pmb)); 2419 phba->link_state = LPFC_HBA_ERROR; 2420 phba->work_hs = HS_FFER3; 2421 lpfc_handle_eratt(phba); 2422 continue; 2423 } 2424 2425 if (pmbox->mbxStatus) { 2426 phba->sli.slistat.mbox_stat_err++; 2427 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2428 /* Mbox cmd cmpl error - RETRYing */ 2429 lpfc_printf_log(phba, KERN_INFO, 2430 LOG_MBOX | LOG_SLI, 2431 "(%d):0305 Mbox cmd cmpl " 2432 "error - RETRYing Data: x%x " 2433 "(x%x/x%x) x%x x%x x%x\n", 2434 pmb->vport ? pmb->vport->vpi : 0, 2435 pmbox->mbxCommand, 2436 lpfc_sli_config_mbox_subsys_get(phba, 2437 pmb), 2438 lpfc_sli_config_mbox_opcode_get(phba, 2439 pmb), 2440 pmbox->mbxStatus, 2441 pmbox->un.varWords[0], 2442 pmb->vport->port_state); 2443 pmbox->mbxStatus = 0; 2444 pmbox->mbxOwner = OWN_HOST; 2445 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2446 if (rc != MBX_NOT_FINISHED) 2447 continue; 2448 } 2449 } 2450 2451 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2452 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2453 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2454 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2455 "x%x x%x x%x\n", 2456 pmb->vport ? pmb->vport->vpi : 0, 2457 pmbox->mbxCommand, 2458 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2459 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2460 pmb->mbox_cmpl, 2461 *((uint32_t *) pmbox), 2462 pmbox->un.varWords[0], 2463 pmbox->un.varWords[1], 2464 pmbox->un.varWords[2], 2465 pmbox->un.varWords[3], 2466 pmbox->un.varWords[4], 2467 pmbox->un.varWords[5], 2468 pmbox->un.varWords[6], 2469 pmbox->un.varWords[7], 2470 pmbox->un.varWords[8], 2471 pmbox->un.varWords[9], 2472 pmbox->un.varWords[10]); 2473 2474 if (pmb->mbox_cmpl) 2475 pmb->mbox_cmpl(phba,pmb); 2476 } while (1); 2477 return 0; 2478 } 2479 2480 /** 2481 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2482 * @phba: Pointer to HBA context object. 2483 * @pring: Pointer to driver SLI ring object. 2484 * @tag: buffer tag. 2485 * 2486 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2487 * is set in the tag the buffer is posted for a particular exchange, 2488 * the function will return the buffer without replacing the buffer. 2489 * If the buffer is for unsolicited ELS or CT traffic, this function 2490 * returns the buffer and also posts another buffer to the firmware. 2491 **/ 2492 static struct lpfc_dmabuf * 2493 lpfc_sli_get_buff(struct lpfc_hba *phba, 2494 struct lpfc_sli_ring *pring, 2495 uint32_t tag) 2496 { 2497 struct hbq_dmabuf *hbq_entry; 2498 2499 if (tag & QUE_BUFTAG_BIT) 2500 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2501 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2502 if (!hbq_entry) 2503 return NULL; 2504 return &hbq_entry->dbuf; 2505 } 2506 2507 /** 2508 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2509 * @phba: Pointer to HBA context object. 2510 * @pring: Pointer to driver SLI ring object. 2511 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2512 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2513 * @fch_type: the type for the first frame of the sequence. 2514 * 2515 * This function is called with no lock held. This function uses the r_ctl and 2516 * type of the received sequence to find the correct callback function to call 2517 * to process the sequence. 2518 **/ 2519 static int 2520 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2521 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2522 uint32_t fch_type) 2523 { 2524 int i; 2525 2526 switch (fch_type) { 2527 case FC_TYPE_NVME: 2528 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2529 return 1; 2530 default: 2531 break; 2532 } 2533 2534 /* unSolicited Responses */ 2535 if (pring->prt[0].profile) { 2536 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2537 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2538 saveq); 2539 return 1; 2540 } 2541 /* We must search, based on rctl / type 2542 for the right routine */ 2543 for (i = 0; i < pring->num_mask; i++) { 2544 if ((pring->prt[i].rctl == fch_r_ctl) && 2545 (pring->prt[i].type == fch_type)) { 2546 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2547 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2548 (phba, pring, saveq); 2549 return 1; 2550 } 2551 } 2552 return 0; 2553 } 2554 2555 /** 2556 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2557 * @phba: Pointer to HBA context object. 2558 * @pring: Pointer to driver SLI ring object. 2559 * @saveq: Pointer to the unsolicited iocb. 2560 * 2561 * This function is called with no lock held by the ring event handler 2562 * when there is an unsolicited iocb posted to the response ring by the 2563 * firmware. This function gets the buffer associated with the iocbs 2564 * and calls the event handler for the ring. This function handles both 2565 * qring buffers and hbq buffers. 2566 * When the function returns 1 the caller can free the iocb object otherwise 2567 * upper layer functions will free the iocb objects. 2568 **/ 2569 static int 2570 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2571 struct lpfc_iocbq *saveq) 2572 { 2573 IOCB_t * irsp; 2574 WORD5 * w5p; 2575 uint32_t Rctl, Type; 2576 struct lpfc_iocbq *iocbq; 2577 struct lpfc_dmabuf *dmzbuf; 2578 2579 irsp = &(saveq->iocb); 2580 2581 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2582 if (pring->lpfc_sli_rcv_async_status) 2583 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2584 else 2585 lpfc_printf_log(phba, 2586 KERN_WARNING, 2587 LOG_SLI, 2588 "0316 Ring %d handler: unexpected " 2589 "ASYNC_STATUS iocb received evt_code " 2590 "0x%x\n", 2591 pring->ringno, 2592 irsp->un.asyncstat.evt_code); 2593 return 1; 2594 } 2595 2596 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2597 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2598 if (irsp->ulpBdeCount > 0) { 2599 dmzbuf = lpfc_sli_get_buff(phba, pring, 2600 irsp->un.ulpWord[3]); 2601 lpfc_in_buf_free(phba, dmzbuf); 2602 } 2603 2604 if (irsp->ulpBdeCount > 1) { 2605 dmzbuf = lpfc_sli_get_buff(phba, pring, 2606 irsp->unsli3.sli3Words[3]); 2607 lpfc_in_buf_free(phba, dmzbuf); 2608 } 2609 2610 if (irsp->ulpBdeCount > 2) { 2611 dmzbuf = lpfc_sli_get_buff(phba, pring, 2612 irsp->unsli3.sli3Words[7]); 2613 lpfc_in_buf_free(phba, dmzbuf); 2614 } 2615 2616 return 1; 2617 } 2618 2619 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2620 if (irsp->ulpBdeCount != 0) { 2621 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2622 irsp->un.ulpWord[3]); 2623 if (!saveq->context2) 2624 lpfc_printf_log(phba, 2625 KERN_ERR, 2626 LOG_SLI, 2627 "0341 Ring %d Cannot find buffer for " 2628 "an unsolicited iocb. tag 0x%x\n", 2629 pring->ringno, 2630 irsp->un.ulpWord[3]); 2631 } 2632 if (irsp->ulpBdeCount == 2) { 2633 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2634 irsp->unsli3.sli3Words[7]); 2635 if (!saveq->context3) 2636 lpfc_printf_log(phba, 2637 KERN_ERR, 2638 LOG_SLI, 2639 "0342 Ring %d Cannot find buffer for an" 2640 " unsolicited iocb. tag 0x%x\n", 2641 pring->ringno, 2642 irsp->unsli3.sli3Words[7]); 2643 } 2644 list_for_each_entry(iocbq, &saveq->list, list) { 2645 irsp = &(iocbq->iocb); 2646 if (irsp->ulpBdeCount != 0) { 2647 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2648 irsp->un.ulpWord[3]); 2649 if (!iocbq->context2) 2650 lpfc_printf_log(phba, 2651 KERN_ERR, 2652 LOG_SLI, 2653 "0343 Ring %d Cannot find " 2654 "buffer for an unsolicited iocb" 2655 ". tag 0x%x\n", pring->ringno, 2656 irsp->un.ulpWord[3]); 2657 } 2658 if (irsp->ulpBdeCount == 2) { 2659 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2660 irsp->unsli3.sli3Words[7]); 2661 if (!iocbq->context3) 2662 lpfc_printf_log(phba, 2663 KERN_ERR, 2664 LOG_SLI, 2665 "0344 Ring %d Cannot find " 2666 "buffer for an unsolicited " 2667 "iocb. tag 0x%x\n", 2668 pring->ringno, 2669 irsp->unsli3.sli3Words[7]); 2670 } 2671 } 2672 } 2673 if (irsp->ulpBdeCount != 0 && 2674 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2675 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2676 int found = 0; 2677 2678 /* search continue save q for same XRI */ 2679 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2680 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2681 saveq->iocb.unsli3.rcvsli3.ox_id) { 2682 list_add_tail(&saveq->list, &iocbq->list); 2683 found = 1; 2684 break; 2685 } 2686 } 2687 if (!found) 2688 list_add_tail(&saveq->clist, 2689 &pring->iocb_continue_saveq); 2690 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2691 list_del_init(&iocbq->clist); 2692 saveq = iocbq; 2693 irsp = &(saveq->iocb); 2694 } else 2695 return 0; 2696 } 2697 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2698 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2699 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2700 Rctl = FC_RCTL_ELS_REQ; 2701 Type = FC_TYPE_ELS; 2702 } else { 2703 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2704 Rctl = w5p->hcsw.Rctl; 2705 Type = w5p->hcsw.Type; 2706 2707 /* Firmware Workaround */ 2708 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2709 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2710 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2711 Rctl = FC_RCTL_ELS_REQ; 2712 Type = FC_TYPE_ELS; 2713 w5p->hcsw.Rctl = Rctl; 2714 w5p->hcsw.Type = Type; 2715 } 2716 } 2717 2718 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2719 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2720 "0313 Ring %d handler: unexpected Rctl x%x " 2721 "Type x%x received\n", 2722 pring->ringno, Rctl, Type); 2723 2724 return 1; 2725 } 2726 2727 /** 2728 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2729 * @phba: Pointer to HBA context object. 2730 * @pring: Pointer to driver SLI ring object. 2731 * @prspiocb: Pointer to response iocb object. 2732 * 2733 * This function looks up the iocb_lookup table to get the command iocb 2734 * corresponding to the given response iocb using the iotag of the 2735 * response iocb. This function is called with the hbalock held 2736 * for sli3 devices or the ring_lock for sli4 devices. 2737 * This function returns the command iocb object if it finds the command 2738 * iocb else returns NULL. 2739 **/ 2740 static struct lpfc_iocbq * 2741 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2742 struct lpfc_sli_ring *pring, 2743 struct lpfc_iocbq *prspiocb) 2744 { 2745 struct lpfc_iocbq *cmd_iocb = NULL; 2746 uint16_t iotag; 2747 lockdep_assert_held(&phba->hbalock); 2748 2749 iotag = prspiocb->iocb.ulpIoTag; 2750 2751 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2752 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2753 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2754 /* remove from txcmpl queue list */ 2755 list_del_init(&cmd_iocb->list); 2756 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2757 return cmd_iocb; 2758 } 2759 } 2760 2761 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2762 "0317 iotag x%x is out of " 2763 "range: max iotag x%x wd0 x%x\n", 2764 iotag, phba->sli.last_iotag, 2765 *(((uint32_t *) &prspiocb->iocb) + 7)); 2766 return NULL; 2767 } 2768 2769 /** 2770 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2771 * @phba: Pointer to HBA context object. 2772 * @pring: Pointer to driver SLI ring object. 2773 * @iotag: IOCB tag. 2774 * 2775 * This function looks up the iocb_lookup table to get the command iocb 2776 * corresponding to the given iotag. This function is called with the 2777 * hbalock held. 2778 * This function returns the command iocb object if it finds the command 2779 * iocb else returns NULL. 2780 **/ 2781 static struct lpfc_iocbq * 2782 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2783 struct lpfc_sli_ring *pring, uint16_t iotag) 2784 { 2785 struct lpfc_iocbq *cmd_iocb = NULL; 2786 2787 lockdep_assert_held(&phba->hbalock); 2788 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2789 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2790 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2791 /* remove from txcmpl queue list */ 2792 list_del_init(&cmd_iocb->list); 2793 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2794 return cmd_iocb; 2795 } 2796 } 2797 2798 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2799 "0372 iotag x%x lookup error: max iotag (x%x) " 2800 "iocb_flag x%x\n", 2801 iotag, phba->sli.last_iotag, 2802 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 2803 return NULL; 2804 } 2805 2806 /** 2807 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2808 * @phba: Pointer to HBA context object. 2809 * @pring: Pointer to driver SLI ring object. 2810 * @saveq: Pointer to the response iocb to be processed. 2811 * 2812 * This function is called by the ring event handler for non-fcp 2813 * rings when there is a new response iocb in the response ring. 2814 * The caller is not required to hold any locks. This function 2815 * gets the command iocb associated with the response iocb and 2816 * calls the completion handler for the command iocb. If there 2817 * is no completion handler, the function will free the resources 2818 * associated with command iocb. If the response iocb is for 2819 * an already aborted command iocb, the status of the completion 2820 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2821 * This function always returns 1. 2822 **/ 2823 static int 2824 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2825 struct lpfc_iocbq *saveq) 2826 { 2827 struct lpfc_iocbq *cmdiocbp; 2828 int rc = 1; 2829 unsigned long iflag; 2830 2831 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2832 if (phba->sli_rev == LPFC_SLI_REV4) 2833 spin_lock_irqsave(&pring->ring_lock, iflag); 2834 else 2835 spin_lock_irqsave(&phba->hbalock, iflag); 2836 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2837 if (phba->sli_rev == LPFC_SLI_REV4) 2838 spin_unlock_irqrestore(&pring->ring_lock, iflag); 2839 else 2840 spin_unlock_irqrestore(&phba->hbalock, iflag); 2841 2842 if (cmdiocbp) { 2843 if (cmdiocbp->iocb_cmpl) { 2844 /* 2845 * If an ELS command failed send an event to mgmt 2846 * application. 2847 */ 2848 if (saveq->iocb.ulpStatus && 2849 (pring->ringno == LPFC_ELS_RING) && 2850 (cmdiocbp->iocb.ulpCommand == 2851 CMD_ELS_REQUEST64_CR)) 2852 lpfc_send_els_failure_event(phba, 2853 cmdiocbp, saveq); 2854 2855 /* 2856 * Post all ELS completions to the worker thread. 2857 * All other are passed to the completion callback. 2858 */ 2859 if (pring->ringno == LPFC_ELS_RING) { 2860 if ((phba->sli_rev < LPFC_SLI_REV4) && 2861 (cmdiocbp->iocb_flag & 2862 LPFC_DRIVER_ABORTED)) { 2863 spin_lock_irqsave(&phba->hbalock, 2864 iflag); 2865 cmdiocbp->iocb_flag &= 2866 ~LPFC_DRIVER_ABORTED; 2867 spin_unlock_irqrestore(&phba->hbalock, 2868 iflag); 2869 saveq->iocb.ulpStatus = 2870 IOSTAT_LOCAL_REJECT; 2871 saveq->iocb.un.ulpWord[4] = 2872 IOERR_SLI_ABORTED; 2873 2874 /* Firmware could still be in progress 2875 * of DMAing payload, so don't free data 2876 * buffer till after a hbeat. 2877 */ 2878 spin_lock_irqsave(&phba->hbalock, 2879 iflag); 2880 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2881 spin_unlock_irqrestore(&phba->hbalock, 2882 iflag); 2883 } 2884 if (phba->sli_rev == LPFC_SLI_REV4) { 2885 if (saveq->iocb_flag & 2886 LPFC_EXCHANGE_BUSY) { 2887 /* Set cmdiocb flag for the 2888 * exchange busy so sgl (xri) 2889 * will not be released until 2890 * the abort xri is received 2891 * from hba. 2892 */ 2893 spin_lock_irqsave( 2894 &phba->hbalock, iflag); 2895 cmdiocbp->iocb_flag |= 2896 LPFC_EXCHANGE_BUSY; 2897 spin_unlock_irqrestore( 2898 &phba->hbalock, iflag); 2899 } 2900 if (cmdiocbp->iocb_flag & 2901 LPFC_DRIVER_ABORTED) { 2902 /* 2903 * Clear LPFC_DRIVER_ABORTED 2904 * bit in case it was driver 2905 * initiated abort. 2906 */ 2907 spin_lock_irqsave( 2908 &phba->hbalock, iflag); 2909 cmdiocbp->iocb_flag &= 2910 ~LPFC_DRIVER_ABORTED; 2911 spin_unlock_irqrestore( 2912 &phba->hbalock, iflag); 2913 cmdiocbp->iocb.ulpStatus = 2914 IOSTAT_LOCAL_REJECT; 2915 cmdiocbp->iocb.un.ulpWord[4] = 2916 IOERR_ABORT_REQUESTED; 2917 /* 2918 * For SLI4, irsiocb contains 2919 * NO_XRI in sli_xritag, it 2920 * shall not affect releasing 2921 * sgl (xri) process. 2922 */ 2923 saveq->iocb.ulpStatus = 2924 IOSTAT_LOCAL_REJECT; 2925 saveq->iocb.un.ulpWord[4] = 2926 IOERR_SLI_ABORTED; 2927 spin_lock_irqsave( 2928 &phba->hbalock, iflag); 2929 saveq->iocb_flag |= 2930 LPFC_DELAY_MEM_FREE; 2931 spin_unlock_irqrestore( 2932 &phba->hbalock, iflag); 2933 } 2934 } 2935 } 2936 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2937 } else 2938 lpfc_sli_release_iocbq(phba, cmdiocbp); 2939 } else { 2940 /* 2941 * Unknown initiating command based on the response iotag. 2942 * This could be the case on the ELS ring because of 2943 * lpfc_els_abort(). 2944 */ 2945 if (pring->ringno != LPFC_ELS_RING) { 2946 /* 2947 * Ring <ringno> handler: unexpected completion IoTag 2948 * <IoTag> 2949 */ 2950 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2951 "0322 Ring %d handler: " 2952 "unexpected completion IoTag x%x " 2953 "Data: x%x x%x x%x x%x\n", 2954 pring->ringno, 2955 saveq->iocb.ulpIoTag, 2956 saveq->iocb.ulpStatus, 2957 saveq->iocb.un.ulpWord[4], 2958 saveq->iocb.ulpCommand, 2959 saveq->iocb.ulpContext); 2960 } 2961 } 2962 2963 return rc; 2964 } 2965 2966 /** 2967 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2968 * @phba: Pointer to HBA context object. 2969 * @pring: Pointer to driver SLI ring object. 2970 * 2971 * This function is called from the iocb ring event handlers when 2972 * put pointer is ahead of the get pointer for a ring. This function signal 2973 * an error attention condition to the worker thread and the worker 2974 * thread will transition the HBA to offline state. 2975 **/ 2976 static void 2977 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2978 { 2979 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2980 /* 2981 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2982 * rsp ring <portRspMax> 2983 */ 2984 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2985 "0312 Ring %d handler: portRspPut %d " 2986 "is bigger than rsp ring %d\n", 2987 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2988 pring->sli.sli3.numRiocb); 2989 2990 phba->link_state = LPFC_HBA_ERROR; 2991 2992 /* 2993 * All error attention handlers are posted to 2994 * worker thread 2995 */ 2996 phba->work_ha |= HA_ERATT; 2997 phba->work_hs = HS_FFER3; 2998 2999 lpfc_worker_wake_up(phba); 3000 3001 return; 3002 } 3003 3004 /** 3005 * lpfc_poll_eratt - Error attention polling timer timeout handler 3006 * @ptr: Pointer to address of HBA context object. 3007 * 3008 * This function is invoked by the Error Attention polling timer when the 3009 * timer times out. It will check the SLI Error Attention register for 3010 * possible attention events. If so, it will post an Error Attention event 3011 * and wake up worker thread to process it. Otherwise, it will set up the 3012 * Error Attention polling timer for the next poll. 3013 **/ 3014 void lpfc_poll_eratt(struct timer_list *t) 3015 { 3016 struct lpfc_hba *phba; 3017 uint32_t eratt = 0; 3018 uint64_t sli_intr, cnt; 3019 3020 phba = from_timer(phba, t, eratt_poll); 3021 3022 /* Here we will also keep track of interrupts per sec of the hba */ 3023 sli_intr = phba->sli.slistat.sli_intr; 3024 3025 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3026 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3027 sli_intr); 3028 else 3029 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3030 3031 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3032 do_div(cnt, phba->eratt_poll_interval); 3033 phba->sli.slistat.sli_ips = cnt; 3034 3035 phba->sli.slistat.sli_prev_intr = sli_intr; 3036 3037 /* Check chip HA register for error event */ 3038 eratt = lpfc_sli_check_eratt(phba); 3039 3040 if (eratt) 3041 /* Tell the worker thread there is work to do */ 3042 lpfc_worker_wake_up(phba); 3043 else 3044 /* Restart the timer for next eratt poll */ 3045 mod_timer(&phba->eratt_poll, 3046 jiffies + 3047 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3048 return; 3049 } 3050 3051 3052 /** 3053 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3054 * @phba: Pointer to HBA context object. 3055 * @pring: Pointer to driver SLI ring object. 3056 * @mask: Host attention register mask for this ring. 3057 * 3058 * This function is called from the interrupt context when there is a ring 3059 * event for the fcp ring. The caller does not hold any lock. 3060 * The function processes each response iocb in the response ring until it 3061 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3062 * LE bit set. The function will call the completion handler of the command iocb 3063 * if the response iocb indicates a completion for a command iocb or it is 3064 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3065 * function if this is an unsolicited iocb. 3066 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3067 * to check it explicitly. 3068 */ 3069 int 3070 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3071 struct lpfc_sli_ring *pring, uint32_t mask) 3072 { 3073 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3074 IOCB_t *irsp = NULL; 3075 IOCB_t *entry = NULL; 3076 struct lpfc_iocbq *cmdiocbq = NULL; 3077 struct lpfc_iocbq rspiocbq; 3078 uint32_t status; 3079 uint32_t portRspPut, portRspMax; 3080 int rc = 1; 3081 lpfc_iocb_type type; 3082 unsigned long iflag; 3083 uint32_t rsp_cmpl = 0; 3084 3085 spin_lock_irqsave(&phba->hbalock, iflag); 3086 pring->stats.iocb_event++; 3087 3088 /* 3089 * The next available response entry should never exceed the maximum 3090 * entries. If it does, treat it as an adapter hardware error. 3091 */ 3092 portRspMax = pring->sli.sli3.numRiocb; 3093 portRspPut = le32_to_cpu(pgp->rspPutInx); 3094 if (unlikely(portRspPut >= portRspMax)) { 3095 lpfc_sli_rsp_pointers_error(phba, pring); 3096 spin_unlock_irqrestore(&phba->hbalock, iflag); 3097 return 1; 3098 } 3099 if (phba->fcp_ring_in_use) { 3100 spin_unlock_irqrestore(&phba->hbalock, iflag); 3101 return 1; 3102 } else 3103 phba->fcp_ring_in_use = 1; 3104 3105 rmb(); 3106 while (pring->sli.sli3.rspidx != portRspPut) { 3107 /* 3108 * Fetch an entry off the ring and copy it into a local data 3109 * structure. The copy involves a byte-swap since the 3110 * network byte order and pci byte orders are different. 3111 */ 3112 entry = lpfc_resp_iocb(phba, pring); 3113 phba->last_completion_time = jiffies; 3114 3115 if (++pring->sli.sli3.rspidx >= portRspMax) 3116 pring->sli.sli3.rspidx = 0; 3117 3118 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3119 (uint32_t *) &rspiocbq.iocb, 3120 phba->iocb_rsp_size); 3121 INIT_LIST_HEAD(&(rspiocbq.list)); 3122 irsp = &rspiocbq.iocb; 3123 3124 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3125 pring->stats.iocb_rsp++; 3126 rsp_cmpl++; 3127 3128 if (unlikely(irsp->ulpStatus)) { 3129 /* 3130 * If resource errors reported from HBA, reduce 3131 * queuedepths of the SCSI device. 3132 */ 3133 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3134 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3135 IOERR_NO_RESOURCES)) { 3136 spin_unlock_irqrestore(&phba->hbalock, iflag); 3137 phba->lpfc_rampdown_queue_depth(phba); 3138 spin_lock_irqsave(&phba->hbalock, iflag); 3139 } 3140 3141 /* Rsp ring <ringno> error: IOCB */ 3142 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3143 "0336 Rsp Ring %d error: IOCB Data: " 3144 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3145 pring->ringno, 3146 irsp->un.ulpWord[0], 3147 irsp->un.ulpWord[1], 3148 irsp->un.ulpWord[2], 3149 irsp->un.ulpWord[3], 3150 irsp->un.ulpWord[4], 3151 irsp->un.ulpWord[5], 3152 *(uint32_t *)&irsp->un1, 3153 *((uint32_t *)&irsp->un1 + 1)); 3154 } 3155 3156 switch (type) { 3157 case LPFC_ABORT_IOCB: 3158 case LPFC_SOL_IOCB: 3159 /* 3160 * Idle exchange closed via ABTS from port. No iocb 3161 * resources need to be recovered. 3162 */ 3163 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3164 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3165 "0333 IOCB cmd 0x%x" 3166 " processed. Skipping" 3167 " completion\n", 3168 irsp->ulpCommand); 3169 break; 3170 } 3171 3172 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3173 &rspiocbq); 3174 if (unlikely(!cmdiocbq)) 3175 break; 3176 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3177 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3178 if (cmdiocbq->iocb_cmpl) { 3179 spin_unlock_irqrestore(&phba->hbalock, iflag); 3180 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3181 &rspiocbq); 3182 spin_lock_irqsave(&phba->hbalock, iflag); 3183 } 3184 break; 3185 case LPFC_UNSOL_IOCB: 3186 spin_unlock_irqrestore(&phba->hbalock, iflag); 3187 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3188 spin_lock_irqsave(&phba->hbalock, iflag); 3189 break; 3190 default: 3191 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3192 char adaptermsg[LPFC_MAX_ADPTMSG]; 3193 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3194 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3195 MAX_MSG_DATA); 3196 dev_warn(&((phba->pcidev)->dev), 3197 "lpfc%d: %s\n", 3198 phba->brd_no, adaptermsg); 3199 } else { 3200 /* Unknown IOCB command */ 3201 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3202 "0334 Unknown IOCB command " 3203 "Data: x%x, x%x x%x x%x x%x\n", 3204 type, irsp->ulpCommand, 3205 irsp->ulpStatus, 3206 irsp->ulpIoTag, 3207 irsp->ulpContext); 3208 } 3209 break; 3210 } 3211 3212 /* 3213 * The response IOCB has been processed. Update the ring 3214 * pointer in SLIM. If the port response put pointer has not 3215 * been updated, sync the pgp->rspPutInx and fetch the new port 3216 * response put pointer. 3217 */ 3218 writel(pring->sli.sli3.rspidx, 3219 &phba->host_gp[pring->ringno].rspGetInx); 3220 3221 if (pring->sli.sli3.rspidx == portRspPut) 3222 portRspPut = le32_to_cpu(pgp->rspPutInx); 3223 } 3224 3225 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3226 pring->stats.iocb_rsp_full++; 3227 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3228 writel(status, phba->CAregaddr); 3229 readl(phba->CAregaddr); 3230 } 3231 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3232 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3233 pring->stats.iocb_cmd_empty++; 3234 3235 /* Force update of the local copy of cmdGetInx */ 3236 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3237 lpfc_sli_resume_iocb(phba, pring); 3238 3239 if ((pring->lpfc_sli_cmd_available)) 3240 (pring->lpfc_sli_cmd_available) (phba, pring); 3241 3242 } 3243 3244 phba->fcp_ring_in_use = 0; 3245 spin_unlock_irqrestore(&phba->hbalock, iflag); 3246 return rc; 3247 } 3248 3249 /** 3250 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3251 * @phba: Pointer to HBA context object. 3252 * @pring: Pointer to driver SLI ring object. 3253 * @rspiocbp: Pointer to driver response IOCB object. 3254 * 3255 * This function is called from the worker thread when there is a slow-path 3256 * response IOCB to process. This function chains all the response iocbs until 3257 * seeing the iocb with the LE bit set. The function will call 3258 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3259 * completion of a command iocb. The function will call the 3260 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3261 * The function frees the resources or calls the completion handler if this 3262 * iocb is an abort completion. The function returns NULL when the response 3263 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3264 * this function shall chain the iocb on to the iocb_continueq and return the 3265 * response iocb passed in. 3266 **/ 3267 static struct lpfc_iocbq * 3268 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3269 struct lpfc_iocbq *rspiocbp) 3270 { 3271 struct lpfc_iocbq *saveq; 3272 struct lpfc_iocbq *cmdiocbp; 3273 struct lpfc_iocbq *next_iocb; 3274 IOCB_t *irsp = NULL; 3275 uint32_t free_saveq; 3276 uint8_t iocb_cmd_type; 3277 lpfc_iocb_type type; 3278 unsigned long iflag; 3279 int rc; 3280 3281 spin_lock_irqsave(&phba->hbalock, iflag); 3282 /* First add the response iocb to the countinueq list */ 3283 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3284 pring->iocb_continueq_cnt++; 3285 3286 /* Now, determine whether the list is completed for processing */ 3287 irsp = &rspiocbp->iocb; 3288 if (irsp->ulpLe) { 3289 /* 3290 * By default, the driver expects to free all resources 3291 * associated with this iocb completion. 3292 */ 3293 free_saveq = 1; 3294 saveq = list_get_first(&pring->iocb_continueq, 3295 struct lpfc_iocbq, list); 3296 irsp = &(saveq->iocb); 3297 list_del_init(&pring->iocb_continueq); 3298 pring->iocb_continueq_cnt = 0; 3299 3300 pring->stats.iocb_rsp++; 3301 3302 /* 3303 * If resource errors reported from HBA, reduce 3304 * queuedepths of the SCSI device. 3305 */ 3306 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3307 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3308 IOERR_NO_RESOURCES)) { 3309 spin_unlock_irqrestore(&phba->hbalock, iflag); 3310 phba->lpfc_rampdown_queue_depth(phba); 3311 spin_lock_irqsave(&phba->hbalock, iflag); 3312 } 3313 3314 if (irsp->ulpStatus) { 3315 /* Rsp ring <ringno> error: IOCB */ 3316 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3317 "0328 Rsp Ring %d error: " 3318 "IOCB Data: " 3319 "x%x x%x x%x x%x " 3320 "x%x x%x x%x x%x " 3321 "x%x x%x x%x x%x " 3322 "x%x x%x x%x x%x\n", 3323 pring->ringno, 3324 irsp->un.ulpWord[0], 3325 irsp->un.ulpWord[1], 3326 irsp->un.ulpWord[2], 3327 irsp->un.ulpWord[3], 3328 irsp->un.ulpWord[4], 3329 irsp->un.ulpWord[5], 3330 *(((uint32_t *) irsp) + 6), 3331 *(((uint32_t *) irsp) + 7), 3332 *(((uint32_t *) irsp) + 8), 3333 *(((uint32_t *) irsp) + 9), 3334 *(((uint32_t *) irsp) + 10), 3335 *(((uint32_t *) irsp) + 11), 3336 *(((uint32_t *) irsp) + 12), 3337 *(((uint32_t *) irsp) + 13), 3338 *(((uint32_t *) irsp) + 14), 3339 *(((uint32_t *) irsp) + 15)); 3340 } 3341 3342 /* 3343 * Fetch the IOCB command type and call the correct completion 3344 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3345 * get freed back to the lpfc_iocb_list by the discovery 3346 * kernel thread. 3347 */ 3348 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3349 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3350 switch (type) { 3351 case LPFC_SOL_IOCB: 3352 spin_unlock_irqrestore(&phba->hbalock, iflag); 3353 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3354 spin_lock_irqsave(&phba->hbalock, iflag); 3355 break; 3356 3357 case LPFC_UNSOL_IOCB: 3358 spin_unlock_irqrestore(&phba->hbalock, iflag); 3359 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3360 spin_lock_irqsave(&phba->hbalock, iflag); 3361 if (!rc) 3362 free_saveq = 0; 3363 break; 3364 3365 case LPFC_ABORT_IOCB: 3366 cmdiocbp = NULL; 3367 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3368 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3369 saveq); 3370 if (cmdiocbp) { 3371 /* Call the specified completion routine */ 3372 if (cmdiocbp->iocb_cmpl) { 3373 spin_unlock_irqrestore(&phba->hbalock, 3374 iflag); 3375 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3376 saveq); 3377 spin_lock_irqsave(&phba->hbalock, 3378 iflag); 3379 } else 3380 __lpfc_sli_release_iocbq(phba, 3381 cmdiocbp); 3382 } 3383 break; 3384 3385 case LPFC_UNKNOWN_IOCB: 3386 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3387 char adaptermsg[LPFC_MAX_ADPTMSG]; 3388 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3389 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3390 MAX_MSG_DATA); 3391 dev_warn(&((phba->pcidev)->dev), 3392 "lpfc%d: %s\n", 3393 phba->brd_no, adaptermsg); 3394 } else { 3395 /* Unknown IOCB command */ 3396 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3397 "0335 Unknown IOCB " 3398 "command Data: x%x " 3399 "x%x x%x x%x\n", 3400 irsp->ulpCommand, 3401 irsp->ulpStatus, 3402 irsp->ulpIoTag, 3403 irsp->ulpContext); 3404 } 3405 break; 3406 } 3407 3408 if (free_saveq) { 3409 list_for_each_entry_safe(rspiocbp, next_iocb, 3410 &saveq->list, list) { 3411 list_del_init(&rspiocbp->list); 3412 __lpfc_sli_release_iocbq(phba, rspiocbp); 3413 } 3414 __lpfc_sli_release_iocbq(phba, saveq); 3415 } 3416 rspiocbp = NULL; 3417 } 3418 spin_unlock_irqrestore(&phba->hbalock, iflag); 3419 return rspiocbp; 3420 } 3421 3422 /** 3423 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3424 * @phba: Pointer to HBA context object. 3425 * @pring: Pointer to driver SLI ring object. 3426 * @mask: Host attention register mask for this ring. 3427 * 3428 * This routine wraps the actual slow_ring event process routine from the 3429 * API jump table function pointer from the lpfc_hba struct. 3430 **/ 3431 void 3432 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3433 struct lpfc_sli_ring *pring, uint32_t mask) 3434 { 3435 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3436 } 3437 3438 /** 3439 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3440 * @phba: Pointer to HBA context object. 3441 * @pring: Pointer to driver SLI ring object. 3442 * @mask: Host attention register mask for this ring. 3443 * 3444 * This function is called from the worker thread when there is a ring event 3445 * for non-fcp rings. The caller does not hold any lock. The function will 3446 * remove each response iocb in the response ring and calls the handle 3447 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3448 **/ 3449 static void 3450 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3451 struct lpfc_sli_ring *pring, uint32_t mask) 3452 { 3453 struct lpfc_pgp *pgp; 3454 IOCB_t *entry; 3455 IOCB_t *irsp = NULL; 3456 struct lpfc_iocbq *rspiocbp = NULL; 3457 uint32_t portRspPut, portRspMax; 3458 unsigned long iflag; 3459 uint32_t status; 3460 3461 pgp = &phba->port_gp[pring->ringno]; 3462 spin_lock_irqsave(&phba->hbalock, iflag); 3463 pring->stats.iocb_event++; 3464 3465 /* 3466 * The next available response entry should never exceed the maximum 3467 * entries. If it does, treat it as an adapter hardware error. 3468 */ 3469 portRspMax = pring->sli.sli3.numRiocb; 3470 portRspPut = le32_to_cpu(pgp->rspPutInx); 3471 if (portRspPut >= portRspMax) { 3472 /* 3473 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3474 * rsp ring <portRspMax> 3475 */ 3476 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3477 "0303 Ring %d handler: portRspPut %d " 3478 "is bigger than rsp ring %d\n", 3479 pring->ringno, portRspPut, portRspMax); 3480 3481 phba->link_state = LPFC_HBA_ERROR; 3482 spin_unlock_irqrestore(&phba->hbalock, iflag); 3483 3484 phba->work_hs = HS_FFER3; 3485 lpfc_handle_eratt(phba); 3486 3487 return; 3488 } 3489 3490 rmb(); 3491 while (pring->sli.sli3.rspidx != portRspPut) { 3492 /* 3493 * Build a completion list and call the appropriate handler. 3494 * The process is to get the next available response iocb, get 3495 * a free iocb from the list, copy the response data into the 3496 * free iocb, insert to the continuation list, and update the 3497 * next response index to slim. This process makes response 3498 * iocb's in the ring available to DMA as fast as possible but 3499 * pays a penalty for a copy operation. Since the iocb is 3500 * only 32 bytes, this penalty is considered small relative to 3501 * the PCI reads for register values and a slim write. When 3502 * the ulpLe field is set, the entire Command has been 3503 * received. 3504 */ 3505 entry = lpfc_resp_iocb(phba, pring); 3506 3507 phba->last_completion_time = jiffies; 3508 rspiocbp = __lpfc_sli_get_iocbq(phba); 3509 if (rspiocbp == NULL) { 3510 printk(KERN_ERR "%s: out of buffers! Failing " 3511 "completion.\n", __func__); 3512 break; 3513 } 3514 3515 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3516 phba->iocb_rsp_size); 3517 irsp = &rspiocbp->iocb; 3518 3519 if (++pring->sli.sli3.rspidx >= portRspMax) 3520 pring->sli.sli3.rspidx = 0; 3521 3522 if (pring->ringno == LPFC_ELS_RING) { 3523 lpfc_debugfs_slow_ring_trc(phba, 3524 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3525 *(((uint32_t *) irsp) + 4), 3526 *(((uint32_t *) irsp) + 6), 3527 *(((uint32_t *) irsp) + 7)); 3528 } 3529 3530 writel(pring->sli.sli3.rspidx, 3531 &phba->host_gp[pring->ringno].rspGetInx); 3532 3533 spin_unlock_irqrestore(&phba->hbalock, iflag); 3534 /* Handle the response IOCB */ 3535 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3536 spin_lock_irqsave(&phba->hbalock, iflag); 3537 3538 /* 3539 * If the port response put pointer has not been updated, sync 3540 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3541 * response put pointer. 3542 */ 3543 if (pring->sli.sli3.rspidx == portRspPut) { 3544 portRspPut = le32_to_cpu(pgp->rspPutInx); 3545 } 3546 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3547 3548 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3549 /* At least one response entry has been freed */ 3550 pring->stats.iocb_rsp_full++; 3551 /* SET RxRE_RSP in Chip Att register */ 3552 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3553 writel(status, phba->CAregaddr); 3554 readl(phba->CAregaddr); /* flush */ 3555 } 3556 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3557 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3558 pring->stats.iocb_cmd_empty++; 3559 3560 /* Force update of the local copy of cmdGetInx */ 3561 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3562 lpfc_sli_resume_iocb(phba, pring); 3563 3564 if ((pring->lpfc_sli_cmd_available)) 3565 (pring->lpfc_sli_cmd_available) (phba, pring); 3566 3567 } 3568 3569 spin_unlock_irqrestore(&phba->hbalock, iflag); 3570 return; 3571 } 3572 3573 /** 3574 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3575 * @phba: Pointer to HBA context object. 3576 * @pring: Pointer to driver SLI ring object. 3577 * @mask: Host attention register mask for this ring. 3578 * 3579 * This function is called from the worker thread when there is a pending 3580 * ELS response iocb on the driver internal slow-path response iocb worker 3581 * queue. The caller does not hold any lock. The function will remove each 3582 * response iocb from the response worker queue and calls the handle 3583 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3584 **/ 3585 static void 3586 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3587 struct lpfc_sli_ring *pring, uint32_t mask) 3588 { 3589 struct lpfc_iocbq *irspiocbq; 3590 struct hbq_dmabuf *dmabuf; 3591 struct lpfc_cq_event *cq_event; 3592 unsigned long iflag; 3593 3594 spin_lock_irqsave(&phba->hbalock, iflag); 3595 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3596 spin_unlock_irqrestore(&phba->hbalock, iflag); 3597 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3598 /* Get the response iocb from the head of work queue */ 3599 spin_lock_irqsave(&phba->hbalock, iflag); 3600 list_remove_head(&phba->sli4_hba.sp_queue_event, 3601 cq_event, struct lpfc_cq_event, list); 3602 spin_unlock_irqrestore(&phba->hbalock, iflag); 3603 3604 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3605 case CQE_CODE_COMPL_WQE: 3606 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3607 cq_event); 3608 /* Translate ELS WCQE to response IOCBQ */ 3609 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3610 irspiocbq); 3611 if (irspiocbq) 3612 lpfc_sli_sp_handle_rspiocb(phba, pring, 3613 irspiocbq); 3614 break; 3615 case CQE_CODE_RECEIVE: 3616 case CQE_CODE_RECEIVE_V1: 3617 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3618 cq_event); 3619 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3620 break; 3621 default: 3622 break; 3623 } 3624 } 3625 } 3626 3627 /** 3628 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3629 * @phba: Pointer to HBA context object. 3630 * @pring: Pointer to driver SLI ring object. 3631 * 3632 * This function aborts all iocbs in the given ring and frees all the iocb 3633 * objects in txq. This function issues an abort iocb for all the iocb commands 3634 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3635 * the return of this function. The caller is not required to hold any locks. 3636 **/ 3637 void 3638 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3639 { 3640 LIST_HEAD(completions); 3641 struct lpfc_iocbq *iocb, *next_iocb; 3642 3643 if (pring->ringno == LPFC_ELS_RING) { 3644 lpfc_fabric_abort_hba(phba); 3645 } 3646 3647 /* Error everything on txq and txcmplq 3648 * First do the txq. 3649 */ 3650 if (phba->sli_rev >= LPFC_SLI_REV4) { 3651 spin_lock_irq(&pring->ring_lock); 3652 list_splice_init(&pring->txq, &completions); 3653 pring->txq_cnt = 0; 3654 spin_unlock_irq(&pring->ring_lock); 3655 3656 spin_lock_irq(&phba->hbalock); 3657 /* Next issue ABTS for everything on the txcmplq */ 3658 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3659 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3660 spin_unlock_irq(&phba->hbalock); 3661 } else { 3662 spin_lock_irq(&phba->hbalock); 3663 list_splice_init(&pring->txq, &completions); 3664 pring->txq_cnt = 0; 3665 3666 /* Next issue ABTS for everything on the txcmplq */ 3667 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3668 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3669 spin_unlock_irq(&phba->hbalock); 3670 } 3671 3672 /* Cancel all the IOCBs from the completions list */ 3673 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3674 IOERR_SLI_ABORTED); 3675 } 3676 3677 /** 3678 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3679 * @phba: Pointer to HBA context object. 3680 * @pring: Pointer to driver SLI ring object. 3681 * 3682 * This function aborts all iocbs in the given ring and frees all the iocb 3683 * objects in txq. This function issues an abort iocb for all the iocb commands 3684 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3685 * the return of this function. The caller is not required to hold any locks. 3686 **/ 3687 void 3688 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3689 { 3690 LIST_HEAD(completions); 3691 struct lpfc_iocbq *iocb, *next_iocb; 3692 3693 if (pring->ringno == LPFC_ELS_RING) 3694 lpfc_fabric_abort_hba(phba); 3695 3696 spin_lock_irq(&phba->hbalock); 3697 /* Next issue ABTS for everything on the txcmplq */ 3698 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3699 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3700 spin_unlock_irq(&phba->hbalock); 3701 } 3702 3703 3704 /** 3705 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3706 * @phba: Pointer to HBA context object. 3707 * @pring: Pointer to driver SLI ring object. 3708 * 3709 * This function aborts all iocbs in FCP rings and frees all the iocb 3710 * objects in txq. This function issues an abort iocb for all the iocb commands 3711 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3712 * the return of this function. The caller is not required to hold any locks. 3713 **/ 3714 void 3715 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3716 { 3717 struct lpfc_sli *psli = &phba->sli; 3718 struct lpfc_sli_ring *pring; 3719 uint32_t i; 3720 3721 /* Look on all the FCP Rings for the iotag */ 3722 if (phba->sli_rev >= LPFC_SLI_REV4) { 3723 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3724 pring = phba->sli4_hba.fcp_wq[i]->pring; 3725 lpfc_sli_abort_iocb_ring(phba, pring); 3726 } 3727 } else { 3728 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3729 lpfc_sli_abort_iocb_ring(phba, pring); 3730 } 3731 } 3732 3733 /** 3734 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3735 * @phba: Pointer to HBA context object. 3736 * 3737 * This function aborts all wqes in NVME rings. This function issues an 3738 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3739 * the txcmplq is not guaranteed to complete before the return of this 3740 * function. The caller is not required to hold any locks. 3741 **/ 3742 void 3743 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3744 { 3745 struct lpfc_sli_ring *pring; 3746 uint32_t i; 3747 3748 if (phba->sli_rev < LPFC_SLI_REV4) 3749 return; 3750 3751 /* Abort all IO on each NVME ring. */ 3752 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3753 pring = phba->sli4_hba.nvme_wq[i]->pring; 3754 lpfc_sli_abort_wqe_ring(phba, pring); 3755 } 3756 } 3757 3758 3759 /** 3760 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3761 * @phba: Pointer to HBA context object. 3762 * 3763 * This function flushes all iocbs in the fcp ring and frees all the iocb 3764 * objects in txq and txcmplq. This function will not issue abort iocbs 3765 * for all the iocb commands in txcmplq, they will just be returned with 3766 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3767 * slot has been permanently disabled. 3768 **/ 3769 void 3770 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3771 { 3772 LIST_HEAD(txq); 3773 LIST_HEAD(txcmplq); 3774 struct lpfc_sli *psli = &phba->sli; 3775 struct lpfc_sli_ring *pring; 3776 uint32_t i; 3777 3778 spin_lock_irq(&phba->hbalock); 3779 /* Indicate the I/O queues are flushed */ 3780 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3781 spin_unlock_irq(&phba->hbalock); 3782 3783 /* Look on all the FCP Rings for the iotag */ 3784 if (phba->sli_rev >= LPFC_SLI_REV4) { 3785 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3786 pring = phba->sli4_hba.fcp_wq[i]->pring; 3787 3788 spin_lock_irq(&pring->ring_lock); 3789 /* Retrieve everything on txq */ 3790 list_splice_init(&pring->txq, &txq); 3791 /* Retrieve everything on the txcmplq */ 3792 list_splice_init(&pring->txcmplq, &txcmplq); 3793 pring->txq_cnt = 0; 3794 pring->txcmplq_cnt = 0; 3795 spin_unlock_irq(&pring->ring_lock); 3796 3797 /* Flush the txq */ 3798 lpfc_sli_cancel_iocbs(phba, &txq, 3799 IOSTAT_LOCAL_REJECT, 3800 IOERR_SLI_DOWN); 3801 /* Flush the txcmpq */ 3802 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3803 IOSTAT_LOCAL_REJECT, 3804 IOERR_SLI_DOWN); 3805 } 3806 } else { 3807 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3808 3809 spin_lock_irq(&phba->hbalock); 3810 /* Retrieve everything on txq */ 3811 list_splice_init(&pring->txq, &txq); 3812 /* Retrieve everything on the txcmplq */ 3813 list_splice_init(&pring->txcmplq, &txcmplq); 3814 pring->txq_cnt = 0; 3815 pring->txcmplq_cnt = 0; 3816 spin_unlock_irq(&phba->hbalock); 3817 3818 /* Flush the txq */ 3819 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3820 IOERR_SLI_DOWN); 3821 /* Flush the txcmpq */ 3822 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3823 IOERR_SLI_DOWN); 3824 } 3825 } 3826 3827 /** 3828 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 3829 * @phba: Pointer to HBA context object. 3830 * 3831 * This function flushes all wqes in the nvme rings and frees all resources 3832 * in the txcmplq. This function does not issue abort wqes for the IO 3833 * commands in txcmplq, they will just be returned with 3834 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3835 * slot has been permanently disabled. 3836 **/ 3837 void 3838 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 3839 { 3840 LIST_HEAD(txcmplq); 3841 struct lpfc_sli_ring *pring; 3842 uint32_t i; 3843 3844 if (phba->sli_rev < LPFC_SLI_REV4) 3845 return; 3846 3847 /* Hint to other driver operations that a flush is in progress. */ 3848 spin_lock_irq(&phba->hbalock); 3849 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 3850 spin_unlock_irq(&phba->hbalock); 3851 3852 /* Cycle through all NVME rings and complete each IO with 3853 * a local driver reason code. This is a flush so no 3854 * abort exchange to FW. 3855 */ 3856 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3857 pring = phba->sli4_hba.nvme_wq[i]->pring; 3858 3859 /* Retrieve everything on the txcmplq */ 3860 spin_lock_irq(&pring->ring_lock); 3861 list_splice_init(&pring->txcmplq, &txcmplq); 3862 pring->txcmplq_cnt = 0; 3863 spin_unlock_irq(&pring->ring_lock); 3864 3865 /* Flush the txcmpq &&&PAE */ 3866 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3867 IOSTAT_LOCAL_REJECT, 3868 IOERR_SLI_DOWN); 3869 } 3870 } 3871 3872 /** 3873 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3874 * @phba: Pointer to HBA context object. 3875 * @mask: Bit mask to be checked. 3876 * 3877 * This function reads the host status register and compares 3878 * with the provided bit mask to check if HBA completed 3879 * the restart. This function will wait in a loop for the 3880 * HBA to complete restart. If the HBA does not restart within 3881 * 15 iterations, the function will reset the HBA again. The 3882 * function returns 1 when HBA fail to restart otherwise returns 3883 * zero. 3884 **/ 3885 static int 3886 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3887 { 3888 uint32_t status; 3889 int i = 0; 3890 int retval = 0; 3891 3892 /* Read the HBA Host Status Register */ 3893 if (lpfc_readl(phba->HSregaddr, &status)) 3894 return 1; 3895 3896 /* 3897 * Check status register every 100ms for 5 retries, then every 3898 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3899 * every 2.5 sec for 4. 3900 * Break our of the loop if errors occurred during init. 3901 */ 3902 while (((status & mask) != mask) && 3903 !(status & HS_FFERM) && 3904 i++ < 20) { 3905 3906 if (i <= 5) 3907 msleep(10); 3908 else if (i <= 10) 3909 msleep(500); 3910 else 3911 msleep(2500); 3912 3913 if (i == 15) { 3914 /* Do post */ 3915 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3916 lpfc_sli_brdrestart(phba); 3917 } 3918 /* Read the HBA Host Status Register */ 3919 if (lpfc_readl(phba->HSregaddr, &status)) { 3920 retval = 1; 3921 break; 3922 } 3923 } 3924 3925 /* Check to see if any errors occurred during init */ 3926 if ((status & HS_FFERM) || (i >= 20)) { 3927 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3928 "2751 Adapter failed to restart, " 3929 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3930 status, 3931 readl(phba->MBslimaddr + 0xa8), 3932 readl(phba->MBslimaddr + 0xac)); 3933 phba->link_state = LPFC_HBA_ERROR; 3934 retval = 1; 3935 } 3936 3937 return retval; 3938 } 3939 3940 /** 3941 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3942 * @phba: Pointer to HBA context object. 3943 * @mask: Bit mask to be checked. 3944 * 3945 * This function checks the host status register to check if HBA is 3946 * ready. This function will wait in a loop for the HBA to be ready 3947 * If the HBA is not ready , the function will will reset the HBA PCI 3948 * function again. The function returns 1 when HBA fail to be ready 3949 * otherwise returns zero. 3950 **/ 3951 static int 3952 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3953 { 3954 uint32_t status; 3955 int retval = 0; 3956 3957 /* Read the HBA Host Status Register */ 3958 status = lpfc_sli4_post_status_check(phba); 3959 3960 if (status) { 3961 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3962 lpfc_sli_brdrestart(phba); 3963 status = lpfc_sli4_post_status_check(phba); 3964 } 3965 3966 /* Check to see if any errors occurred during init */ 3967 if (status) { 3968 phba->link_state = LPFC_HBA_ERROR; 3969 retval = 1; 3970 } else 3971 phba->sli4_hba.intr_enable = 0; 3972 3973 return retval; 3974 } 3975 3976 /** 3977 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3978 * @phba: Pointer to HBA context object. 3979 * @mask: Bit mask to be checked. 3980 * 3981 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3982 * from the API jump table function pointer from the lpfc_hba struct. 3983 **/ 3984 int 3985 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3986 { 3987 return phba->lpfc_sli_brdready(phba, mask); 3988 } 3989 3990 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3991 3992 /** 3993 * lpfc_reset_barrier - Make HBA ready for HBA reset 3994 * @phba: Pointer to HBA context object. 3995 * 3996 * This function is called before resetting an HBA. This function is called 3997 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3998 **/ 3999 void lpfc_reset_barrier(struct lpfc_hba *phba) 4000 { 4001 uint32_t __iomem *resp_buf; 4002 uint32_t __iomem *mbox_buf; 4003 volatile uint32_t mbox; 4004 uint32_t hc_copy, ha_copy, resp_data; 4005 int i; 4006 uint8_t hdrtype; 4007 4008 lockdep_assert_held(&phba->hbalock); 4009 4010 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4011 if (hdrtype != 0x80 || 4012 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4013 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4014 return; 4015 4016 /* 4017 * Tell the other part of the chip to suspend temporarily all 4018 * its DMA activity. 4019 */ 4020 resp_buf = phba->MBslimaddr; 4021 4022 /* Disable the error attention */ 4023 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4024 return; 4025 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4026 readl(phba->HCregaddr); /* flush */ 4027 phba->link_flag |= LS_IGNORE_ERATT; 4028 4029 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4030 return; 4031 if (ha_copy & HA_ERATT) { 4032 /* Clear Chip error bit */ 4033 writel(HA_ERATT, phba->HAregaddr); 4034 phba->pport->stopped = 1; 4035 } 4036 4037 mbox = 0; 4038 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4039 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4040 4041 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4042 mbox_buf = phba->MBslimaddr; 4043 writel(mbox, mbox_buf); 4044 4045 for (i = 0; i < 50; i++) { 4046 if (lpfc_readl((resp_buf + 1), &resp_data)) 4047 return; 4048 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4049 mdelay(1); 4050 else 4051 break; 4052 } 4053 resp_data = 0; 4054 if (lpfc_readl((resp_buf + 1), &resp_data)) 4055 return; 4056 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4057 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4058 phba->pport->stopped) 4059 goto restore_hc; 4060 else 4061 goto clear_errat; 4062 } 4063 4064 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4065 resp_data = 0; 4066 for (i = 0; i < 500; i++) { 4067 if (lpfc_readl(resp_buf, &resp_data)) 4068 return; 4069 if (resp_data != mbox) 4070 mdelay(1); 4071 else 4072 break; 4073 } 4074 4075 clear_errat: 4076 4077 while (++i < 500) { 4078 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4079 return; 4080 if (!(ha_copy & HA_ERATT)) 4081 mdelay(1); 4082 else 4083 break; 4084 } 4085 4086 if (readl(phba->HAregaddr) & HA_ERATT) { 4087 writel(HA_ERATT, phba->HAregaddr); 4088 phba->pport->stopped = 1; 4089 } 4090 4091 restore_hc: 4092 phba->link_flag &= ~LS_IGNORE_ERATT; 4093 writel(hc_copy, phba->HCregaddr); 4094 readl(phba->HCregaddr); /* flush */ 4095 } 4096 4097 /** 4098 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4099 * @phba: Pointer to HBA context object. 4100 * 4101 * This function issues a kill_board mailbox command and waits for 4102 * the error attention interrupt. This function is called for stopping 4103 * the firmware processing. The caller is not required to hold any 4104 * locks. This function calls lpfc_hba_down_post function to free 4105 * any pending commands after the kill. The function will return 1 when it 4106 * fails to kill the board else will return 0. 4107 **/ 4108 int 4109 lpfc_sli_brdkill(struct lpfc_hba *phba) 4110 { 4111 struct lpfc_sli *psli; 4112 LPFC_MBOXQ_t *pmb; 4113 uint32_t status; 4114 uint32_t ha_copy; 4115 int retval; 4116 int i = 0; 4117 4118 psli = &phba->sli; 4119 4120 /* Kill HBA */ 4121 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4122 "0329 Kill HBA Data: x%x x%x\n", 4123 phba->pport->port_state, psli->sli_flag); 4124 4125 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4126 if (!pmb) 4127 return 1; 4128 4129 /* Disable the error attention */ 4130 spin_lock_irq(&phba->hbalock); 4131 if (lpfc_readl(phba->HCregaddr, &status)) { 4132 spin_unlock_irq(&phba->hbalock); 4133 mempool_free(pmb, phba->mbox_mem_pool); 4134 return 1; 4135 } 4136 status &= ~HC_ERINT_ENA; 4137 writel(status, phba->HCregaddr); 4138 readl(phba->HCregaddr); /* flush */ 4139 phba->link_flag |= LS_IGNORE_ERATT; 4140 spin_unlock_irq(&phba->hbalock); 4141 4142 lpfc_kill_board(phba, pmb); 4143 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4144 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4145 4146 if (retval != MBX_SUCCESS) { 4147 if (retval != MBX_BUSY) 4148 mempool_free(pmb, phba->mbox_mem_pool); 4149 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4150 "2752 KILL_BOARD command failed retval %d\n", 4151 retval); 4152 spin_lock_irq(&phba->hbalock); 4153 phba->link_flag &= ~LS_IGNORE_ERATT; 4154 spin_unlock_irq(&phba->hbalock); 4155 return 1; 4156 } 4157 4158 spin_lock_irq(&phba->hbalock); 4159 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4160 spin_unlock_irq(&phba->hbalock); 4161 4162 mempool_free(pmb, phba->mbox_mem_pool); 4163 4164 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4165 * attention every 100ms for 3 seconds. If we don't get ERATT after 4166 * 3 seconds we still set HBA_ERROR state because the status of the 4167 * board is now undefined. 4168 */ 4169 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4170 return 1; 4171 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4172 mdelay(100); 4173 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4174 return 1; 4175 } 4176 4177 del_timer_sync(&psli->mbox_tmo); 4178 if (ha_copy & HA_ERATT) { 4179 writel(HA_ERATT, phba->HAregaddr); 4180 phba->pport->stopped = 1; 4181 } 4182 spin_lock_irq(&phba->hbalock); 4183 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4184 psli->mbox_active = NULL; 4185 phba->link_flag &= ~LS_IGNORE_ERATT; 4186 spin_unlock_irq(&phba->hbalock); 4187 4188 lpfc_hba_down_post(phba); 4189 phba->link_state = LPFC_HBA_ERROR; 4190 4191 return ha_copy & HA_ERATT ? 0 : 1; 4192 } 4193 4194 /** 4195 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4196 * @phba: Pointer to HBA context object. 4197 * 4198 * This function resets the HBA by writing HC_INITFF to the control 4199 * register. After the HBA resets, this function resets all the iocb ring 4200 * indices. This function disables PCI layer parity checking during 4201 * the reset. 4202 * This function returns 0 always. 4203 * The caller is not required to hold any locks. 4204 **/ 4205 int 4206 lpfc_sli_brdreset(struct lpfc_hba *phba) 4207 { 4208 struct lpfc_sli *psli; 4209 struct lpfc_sli_ring *pring; 4210 uint16_t cfg_value; 4211 int i; 4212 4213 psli = &phba->sli; 4214 4215 /* Reset HBA */ 4216 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4217 "0325 Reset HBA Data: x%x x%x\n", 4218 (phba->pport) ? phba->pport->port_state : 0, 4219 psli->sli_flag); 4220 4221 /* perform board reset */ 4222 phba->fc_eventTag = 0; 4223 phba->link_events = 0; 4224 if (phba->pport) { 4225 phba->pport->fc_myDID = 0; 4226 phba->pport->fc_prevDID = 0; 4227 } 4228 4229 /* Turn off parity checking and serr during the physical reset */ 4230 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4231 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4232 (cfg_value & 4233 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4234 4235 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4236 4237 /* Now toggle INITFF bit in the Host Control Register */ 4238 writel(HC_INITFF, phba->HCregaddr); 4239 mdelay(1); 4240 readl(phba->HCregaddr); /* flush */ 4241 writel(0, phba->HCregaddr); 4242 readl(phba->HCregaddr); /* flush */ 4243 4244 /* Restore PCI cmd register */ 4245 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4246 4247 /* Initialize relevant SLI info */ 4248 for (i = 0; i < psli->num_rings; i++) { 4249 pring = &psli->sli3_ring[i]; 4250 pring->flag = 0; 4251 pring->sli.sli3.rspidx = 0; 4252 pring->sli.sli3.next_cmdidx = 0; 4253 pring->sli.sli3.local_getidx = 0; 4254 pring->sli.sli3.cmdidx = 0; 4255 pring->missbufcnt = 0; 4256 } 4257 4258 phba->link_state = LPFC_WARM_START; 4259 return 0; 4260 } 4261 4262 /** 4263 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4264 * @phba: Pointer to HBA context object. 4265 * 4266 * This function resets a SLI4 HBA. This function disables PCI layer parity 4267 * checking during resets the device. The caller is not required to hold 4268 * any locks. 4269 * 4270 * This function returns 0 always. 4271 **/ 4272 int 4273 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4274 { 4275 struct lpfc_sli *psli = &phba->sli; 4276 uint16_t cfg_value; 4277 int rc = 0; 4278 4279 /* Reset HBA */ 4280 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4281 "0295 Reset HBA Data: x%x x%x x%x\n", 4282 phba->pport->port_state, psli->sli_flag, 4283 phba->hba_flag); 4284 4285 /* perform board reset */ 4286 phba->fc_eventTag = 0; 4287 phba->link_events = 0; 4288 phba->pport->fc_myDID = 0; 4289 phba->pport->fc_prevDID = 0; 4290 4291 spin_lock_irq(&phba->hbalock); 4292 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4293 phba->fcf.fcf_flag = 0; 4294 spin_unlock_irq(&phba->hbalock); 4295 4296 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4297 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4298 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4299 return rc; 4300 } 4301 4302 /* Now physically reset the device */ 4303 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4304 "0389 Performing PCI function reset!\n"); 4305 4306 /* Turn off parity checking and serr during the physical reset */ 4307 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4308 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4309 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4310 4311 /* Perform FCoE PCI function reset before freeing queue memory */ 4312 rc = lpfc_pci_function_reset(phba); 4313 4314 /* Restore PCI cmd register */ 4315 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4316 4317 return rc; 4318 } 4319 4320 /** 4321 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4322 * @phba: Pointer to HBA context object. 4323 * 4324 * This function is called in the SLI initialization code path to 4325 * restart the HBA. The caller is not required to hold any lock. 4326 * This function writes MBX_RESTART mailbox command to the SLIM and 4327 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4328 * function to free any pending commands. The function enables 4329 * POST only during the first initialization. The function returns zero. 4330 * The function does not guarantee completion of MBX_RESTART mailbox 4331 * command before the return of this function. 4332 **/ 4333 static int 4334 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4335 { 4336 MAILBOX_t *mb; 4337 struct lpfc_sli *psli; 4338 volatile uint32_t word0; 4339 void __iomem *to_slim; 4340 uint32_t hba_aer_enabled; 4341 4342 spin_lock_irq(&phba->hbalock); 4343 4344 /* Take PCIe device Advanced Error Reporting (AER) state */ 4345 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4346 4347 psli = &phba->sli; 4348 4349 /* Restart HBA */ 4350 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4351 "0337 Restart HBA Data: x%x x%x\n", 4352 (phba->pport) ? phba->pport->port_state : 0, 4353 psli->sli_flag); 4354 4355 word0 = 0; 4356 mb = (MAILBOX_t *) &word0; 4357 mb->mbxCommand = MBX_RESTART; 4358 mb->mbxHc = 1; 4359 4360 lpfc_reset_barrier(phba); 4361 4362 to_slim = phba->MBslimaddr; 4363 writel(*(uint32_t *) mb, to_slim); 4364 readl(to_slim); /* flush */ 4365 4366 /* Only skip post after fc_ffinit is completed */ 4367 if (phba->pport && phba->pport->port_state) 4368 word0 = 1; /* This is really setting up word1 */ 4369 else 4370 word0 = 0; /* This is really setting up word1 */ 4371 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4372 writel(*(uint32_t *) mb, to_slim); 4373 readl(to_slim); /* flush */ 4374 4375 lpfc_sli_brdreset(phba); 4376 if (phba->pport) 4377 phba->pport->stopped = 0; 4378 phba->link_state = LPFC_INIT_START; 4379 phba->hba_flag = 0; 4380 spin_unlock_irq(&phba->hbalock); 4381 4382 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4383 psli->stats_start = get_seconds(); 4384 4385 /* Give the INITFF and Post time to settle. */ 4386 mdelay(100); 4387 4388 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4389 if (hba_aer_enabled) 4390 pci_disable_pcie_error_reporting(phba->pcidev); 4391 4392 lpfc_hba_down_post(phba); 4393 4394 return 0; 4395 } 4396 4397 /** 4398 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4399 * @phba: Pointer to HBA context object. 4400 * 4401 * This function is called in the SLI initialization code path to restart 4402 * a SLI4 HBA. The caller is not required to hold any lock. 4403 * At the end of the function, it calls lpfc_hba_down_post function to 4404 * free any pending commands. 4405 **/ 4406 static int 4407 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4408 { 4409 struct lpfc_sli *psli = &phba->sli; 4410 uint32_t hba_aer_enabled; 4411 int rc; 4412 4413 /* Restart HBA */ 4414 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4415 "0296 Restart HBA Data: x%x x%x\n", 4416 phba->pport->port_state, psli->sli_flag); 4417 4418 /* Take PCIe device Advanced Error Reporting (AER) state */ 4419 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4420 4421 rc = lpfc_sli4_brdreset(phba); 4422 4423 spin_lock_irq(&phba->hbalock); 4424 phba->pport->stopped = 0; 4425 phba->link_state = LPFC_INIT_START; 4426 phba->hba_flag = 0; 4427 spin_unlock_irq(&phba->hbalock); 4428 4429 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4430 psli->stats_start = get_seconds(); 4431 4432 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4433 if (hba_aer_enabled) 4434 pci_disable_pcie_error_reporting(phba->pcidev); 4435 4436 lpfc_hba_down_post(phba); 4437 lpfc_sli4_queue_destroy(phba); 4438 4439 return rc; 4440 } 4441 4442 /** 4443 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4444 * @phba: Pointer to HBA context object. 4445 * 4446 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4447 * API jump table function pointer from the lpfc_hba struct. 4448 **/ 4449 int 4450 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4451 { 4452 return phba->lpfc_sli_brdrestart(phba); 4453 } 4454 4455 /** 4456 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4457 * @phba: Pointer to HBA context object. 4458 * 4459 * This function is called after a HBA restart to wait for successful 4460 * restart of the HBA. Successful restart of the HBA is indicated by 4461 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4462 * iteration, the function will restart the HBA again. The function returns 4463 * zero if HBA successfully restarted else returns negative error code. 4464 **/ 4465 int 4466 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4467 { 4468 uint32_t status, i = 0; 4469 4470 /* Read the HBA Host Status Register */ 4471 if (lpfc_readl(phba->HSregaddr, &status)) 4472 return -EIO; 4473 4474 /* Check status register to see what current state is */ 4475 i = 0; 4476 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4477 4478 /* Check every 10ms for 10 retries, then every 100ms for 90 4479 * retries, then every 1 sec for 50 retires for a total of 4480 * ~60 seconds before reset the board again and check every 4481 * 1 sec for 50 retries. The up to 60 seconds before the 4482 * board ready is required by the Falcon FIPS zeroization 4483 * complete, and any reset the board in between shall cause 4484 * restart of zeroization, further delay the board ready. 4485 */ 4486 if (i++ >= 200) { 4487 /* Adapter failed to init, timeout, status reg 4488 <status> */ 4489 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4490 "0436 Adapter failed to init, " 4491 "timeout, status reg x%x, " 4492 "FW Data: A8 x%x AC x%x\n", status, 4493 readl(phba->MBslimaddr + 0xa8), 4494 readl(phba->MBslimaddr + 0xac)); 4495 phba->link_state = LPFC_HBA_ERROR; 4496 return -ETIMEDOUT; 4497 } 4498 4499 /* Check to see if any errors occurred during init */ 4500 if (status & HS_FFERM) { 4501 /* ERROR: During chipset initialization */ 4502 /* Adapter failed to init, chipset, status reg 4503 <status> */ 4504 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4505 "0437 Adapter failed to init, " 4506 "chipset, status reg x%x, " 4507 "FW Data: A8 x%x AC x%x\n", status, 4508 readl(phba->MBslimaddr + 0xa8), 4509 readl(phba->MBslimaddr + 0xac)); 4510 phba->link_state = LPFC_HBA_ERROR; 4511 return -EIO; 4512 } 4513 4514 if (i <= 10) 4515 msleep(10); 4516 else if (i <= 100) 4517 msleep(100); 4518 else 4519 msleep(1000); 4520 4521 if (i == 150) { 4522 /* Do post */ 4523 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4524 lpfc_sli_brdrestart(phba); 4525 } 4526 /* Read the HBA Host Status Register */ 4527 if (lpfc_readl(phba->HSregaddr, &status)) 4528 return -EIO; 4529 } 4530 4531 /* Check to see if any errors occurred during init */ 4532 if (status & HS_FFERM) { 4533 /* ERROR: During chipset initialization */ 4534 /* Adapter failed to init, chipset, status reg <status> */ 4535 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4536 "0438 Adapter failed to init, chipset, " 4537 "status reg x%x, " 4538 "FW Data: A8 x%x AC x%x\n", status, 4539 readl(phba->MBslimaddr + 0xa8), 4540 readl(phba->MBslimaddr + 0xac)); 4541 phba->link_state = LPFC_HBA_ERROR; 4542 return -EIO; 4543 } 4544 4545 /* Clear all interrupt enable conditions */ 4546 writel(0, phba->HCregaddr); 4547 readl(phba->HCregaddr); /* flush */ 4548 4549 /* setup host attn register */ 4550 writel(0xffffffff, phba->HAregaddr); 4551 readl(phba->HAregaddr); /* flush */ 4552 return 0; 4553 } 4554 4555 /** 4556 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4557 * 4558 * This function calculates and returns the number of HBQs required to be 4559 * configured. 4560 **/ 4561 int 4562 lpfc_sli_hbq_count(void) 4563 { 4564 return ARRAY_SIZE(lpfc_hbq_defs); 4565 } 4566 4567 /** 4568 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4569 * 4570 * This function adds the number of hbq entries in every HBQ to get 4571 * the total number of hbq entries required for the HBA and returns 4572 * the total count. 4573 **/ 4574 static int 4575 lpfc_sli_hbq_entry_count(void) 4576 { 4577 int hbq_count = lpfc_sli_hbq_count(); 4578 int count = 0; 4579 int i; 4580 4581 for (i = 0; i < hbq_count; ++i) 4582 count += lpfc_hbq_defs[i]->entry_count; 4583 return count; 4584 } 4585 4586 /** 4587 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4588 * 4589 * This function calculates amount of memory required for all hbq entries 4590 * to be configured and returns the total memory required. 4591 **/ 4592 int 4593 lpfc_sli_hbq_size(void) 4594 { 4595 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4596 } 4597 4598 /** 4599 * lpfc_sli_hbq_setup - configure and initialize HBQs 4600 * @phba: Pointer to HBA context object. 4601 * 4602 * This function is called during the SLI initialization to configure 4603 * all the HBQs and post buffers to the HBQ. The caller is not 4604 * required to hold any locks. This function will return zero if successful 4605 * else it will return negative error code. 4606 **/ 4607 static int 4608 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4609 { 4610 int hbq_count = lpfc_sli_hbq_count(); 4611 LPFC_MBOXQ_t *pmb; 4612 MAILBOX_t *pmbox; 4613 uint32_t hbqno; 4614 uint32_t hbq_entry_index; 4615 4616 /* Get a Mailbox buffer to setup mailbox 4617 * commands for HBA initialization 4618 */ 4619 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4620 4621 if (!pmb) 4622 return -ENOMEM; 4623 4624 pmbox = &pmb->u.mb; 4625 4626 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4627 phba->link_state = LPFC_INIT_MBX_CMDS; 4628 phba->hbq_in_use = 1; 4629 4630 hbq_entry_index = 0; 4631 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4632 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4633 phba->hbqs[hbqno].hbqPutIdx = 0; 4634 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4635 phba->hbqs[hbqno].entry_count = 4636 lpfc_hbq_defs[hbqno]->entry_count; 4637 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4638 hbq_entry_index, pmb); 4639 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4640 4641 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4642 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4643 mbxStatus <status>, ring <num> */ 4644 4645 lpfc_printf_log(phba, KERN_ERR, 4646 LOG_SLI | LOG_VPORT, 4647 "1805 Adapter failed to init. " 4648 "Data: x%x x%x x%x\n", 4649 pmbox->mbxCommand, 4650 pmbox->mbxStatus, hbqno); 4651 4652 phba->link_state = LPFC_HBA_ERROR; 4653 mempool_free(pmb, phba->mbox_mem_pool); 4654 return -ENXIO; 4655 } 4656 } 4657 phba->hbq_count = hbq_count; 4658 4659 mempool_free(pmb, phba->mbox_mem_pool); 4660 4661 /* Initially populate or replenish the HBQs */ 4662 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4663 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4664 return 0; 4665 } 4666 4667 /** 4668 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4669 * @phba: Pointer to HBA context object. 4670 * 4671 * This function is called during the SLI initialization to configure 4672 * all the HBQs and post buffers to the HBQ. The caller is not 4673 * required to hold any locks. This function will return zero if successful 4674 * else it will return negative error code. 4675 **/ 4676 static int 4677 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4678 { 4679 phba->hbq_in_use = 1; 4680 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4681 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4682 phba->hbq_count = 1; 4683 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4684 /* Initially populate or replenish the HBQs */ 4685 return 0; 4686 } 4687 4688 /** 4689 * lpfc_sli_config_port - Issue config port mailbox command 4690 * @phba: Pointer to HBA context object. 4691 * @sli_mode: sli mode - 2/3 4692 * 4693 * This function is called by the sli initialization code path 4694 * to issue config_port mailbox command. This function restarts the 4695 * HBA firmware and issues a config_port mailbox command to configure 4696 * the SLI interface in the sli mode specified by sli_mode 4697 * variable. The caller is not required to hold any locks. 4698 * The function returns 0 if successful, else returns negative error 4699 * code. 4700 **/ 4701 int 4702 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4703 { 4704 LPFC_MBOXQ_t *pmb; 4705 uint32_t resetcount = 0, rc = 0, done = 0; 4706 4707 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4708 if (!pmb) { 4709 phba->link_state = LPFC_HBA_ERROR; 4710 return -ENOMEM; 4711 } 4712 4713 phba->sli_rev = sli_mode; 4714 while (resetcount < 2 && !done) { 4715 spin_lock_irq(&phba->hbalock); 4716 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4717 spin_unlock_irq(&phba->hbalock); 4718 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4719 lpfc_sli_brdrestart(phba); 4720 rc = lpfc_sli_chipset_init(phba); 4721 if (rc) 4722 break; 4723 4724 spin_lock_irq(&phba->hbalock); 4725 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4726 spin_unlock_irq(&phba->hbalock); 4727 resetcount++; 4728 4729 /* Call pre CONFIG_PORT mailbox command initialization. A 4730 * value of 0 means the call was successful. Any other 4731 * nonzero value is a failure, but if ERESTART is returned, 4732 * the driver may reset the HBA and try again. 4733 */ 4734 rc = lpfc_config_port_prep(phba); 4735 if (rc == -ERESTART) { 4736 phba->link_state = LPFC_LINK_UNKNOWN; 4737 continue; 4738 } else if (rc) 4739 break; 4740 4741 phba->link_state = LPFC_INIT_MBX_CMDS; 4742 lpfc_config_port(phba, pmb); 4743 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4744 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4745 LPFC_SLI3_HBQ_ENABLED | 4746 LPFC_SLI3_CRP_ENABLED | 4747 LPFC_SLI3_BG_ENABLED | 4748 LPFC_SLI3_DSS_ENABLED); 4749 if (rc != MBX_SUCCESS) { 4750 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4751 "0442 Adapter failed to init, mbxCmd x%x " 4752 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4753 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4754 spin_lock_irq(&phba->hbalock); 4755 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4756 spin_unlock_irq(&phba->hbalock); 4757 rc = -ENXIO; 4758 } else { 4759 /* Allow asynchronous mailbox command to go through */ 4760 spin_lock_irq(&phba->hbalock); 4761 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4762 spin_unlock_irq(&phba->hbalock); 4763 done = 1; 4764 4765 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4766 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4767 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4768 "3110 Port did not grant ASABT\n"); 4769 } 4770 } 4771 if (!done) { 4772 rc = -EINVAL; 4773 goto do_prep_failed; 4774 } 4775 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4776 if (!pmb->u.mb.un.varCfgPort.cMA) { 4777 rc = -ENXIO; 4778 goto do_prep_failed; 4779 } 4780 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4781 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4782 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4783 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4784 phba->max_vpi : phba->max_vports; 4785 4786 } else 4787 phba->max_vpi = 0; 4788 phba->fips_level = 0; 4789 phba->fips_spec_rev = 0; 4790 if (pmb->u.mb.un.varCfgPort.gdss) { 4791 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4792 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4793 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4794 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4795 "2850 Security Crypto Active. FIPS x%d " 4796 "(Spec Rev: x%d)", 4797 phba->fips_level, phba->fips_spec_rev); 4798 } 4799 if (pmb->u.mb.un.varCfgPort.sec_err) { 4800 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4801 "2856 Config Port Security Crypto " 4802 "Error: x%x ", 4803 pmb->u.mb.un.varCfgPort.sec_err); 4804 } 4805 if (pmb->u.mb.un.varCfgPort.gerbm) 4806 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4807 if (pmb->u.mb.un.varCfgPort.gcrp) 4808 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4809 4810 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4811 phba->port_gp = phba->mbox->us.s3_pgp.port; 4812 4813 if (phba->cfg_enable_bg) { 4814 if (pmb->u.mb.un.varCfgPort.gbg) 4815 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4816 else 4817 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4818 "0443 Adapter did not grant " 4819 "BlockGuard\n"); 4820 } 4821 } else { 4822 phba->hbq_get = NULL; 4823 phba->port_gp = phba->mbox->us.s2.port; 4824 phba->max_vpi = 0; 4825 } 4826 do_prep_failed: 4827 mempool_free(pmb, phba->mbox_mem_pool); 4828 return rc; 4829 } 4830 4831 4832 /** 4833 * lpfc_sli_hba_setup - SLI initialization function 4834 * @phba: Pointer to HBA context object. 4835 * 4836 * This function is the main SLI initialization function. This function 4837 * is called by the HBA initialization code, HBA reset code and HBA 4838 * error attention handler code. Caller is not required to hold any 4839 * locks. This function issues config_port mailbox command to configure 4840 * the SLI, setup iocb rings and HBQ rings. In the end the function 4841 * calls the config_port_post function to issue init_link mailbox 4842 * command and to start the discovery. The function will return zero 4843 * if successful, else it will return negative error code. 4844 **/ 4845 int 4846 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4847 { 4848 uint32_t rc; 4849 int mode = 3, i; 4850 int longs; 4851 4852 switch (phba->cfg_sli_mode) { 4853 case 2: 4854 if (phba->cfg_enable_npiv) { 4855 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4856 "1824 NPIV enabled: Override sli_mode " 4857 "parameter (%d) to auto (0).\n", 4858 phba->cfg_sli_mode); 4859 break; 4860 } 4861 mode = 2; 4862 break; 4863 case 0: 4864 case 3: 4865 break; 4866 default: 4867 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4868 "1819 Unrecognized sli_mode parameter: %d.\n", 4869 phba->cfg_sli_mode); 4870 4871 break; 4872 } 4873 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4874 4875 rc = lpfc_sli_config_port(phba, mode); 4876 4877 if (rc && phba->cfg_sli_mode == 3) 4878 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4879 "1820 Unable to select SLI-3. " 4880 "Not supported by adapter.\n"); 4881 if (rc && mode != 2) 4882 rc = lpfc_sli_config_port(phba, 2); 4883 else if (rc && mode == 2) 4884 rc = lpfc_sli_config_port(phba, 3); 4885 if (rc) 4886 goto lpfc_sli_hba_setup_error; 4887 4888 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4889 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4890 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4891 if (!rc) { 4892 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4893 "2709 This device supports " 4894 "Advanced Error Reporting (AER)\n"); 4895 spin_lock_irq(&phba->hbalock); 4896 phba->hba_flag |= HBA_AER_ENABLED; 4897 spin_unlock_irq(&phba->hbalock); 4898 } else { 4899 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4900 "2708 This device does not support " 4901 "Advanced Error Reporting (AER): %d\n", 4902 rc); 4903 phba->cfg_aer_support = 0; 4904 } 4905 } 4906 4907 if (phba->sli_rev == 3) { 4908 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4909 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4910 } else { 4911 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4912 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4913 phba->sli3_options = 0; 4914 } 4915 4916 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4917 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4918 phba->sli_rev, phba->max_vpi); 4919 rc = lpfc_sli_ring_map(phba); 4920 4921 if (rc) 4922 goto lpfc_sli_hba_setup_error; 4923 4924 /* Initialize VPIs. */ 4925 if (phba->sli_rev == LPFC_SLI_REV3) { 4926 /* 4927 * The VPI bitmask and physical ID array are allocated 4928 * and initialized once only - at driver load. A port 4929 * reset doesn't need to reinitialize this memory. 4930 */ 4931 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4932 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4933 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4934 GFP_KERNEL); 4935 if (!phba->vpi_bmask) { 4936 rc = -ENOMEM; 4937 goto lpfc_sli_hba_setup_error; 4938 } 4939 4940 phba->vpi_ids = kzalloc( 4941 (phba->max_vpi+1) * sizeof(uint16_t), 4942 GFP_KERNEL); 4943 if (!phba->vpi_ids) { 4944 kfree(phba->vpi_bmask); 4945 rc = -ENOMEM; 4946 goto lpfc_sli_hba_setup_error; 4947 } 4948 for (i = 0; i < phba->max_vpi; i++) 4949 phba->vpi_ids[i] = i; 4950 } 4951 } 4952 4953 /* Init HBQs */ 4954 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4955 rc = lpfc_sli_hbq_setup(phba); 4956 if (rc) 4957 goto lpfc_sli_hba_setup_error; 4958 } 4959 spin_lock_irq(&phba->hbalock); 4960 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4961 spin_unlock_irq(&phba->hbalock); 4962 4963 rc = lpfc_config_port_post(phba); 4964 if (rc) 4965 goto lpfc_sli_hba_setup_error; 4966 4967 return rc; 4968 4969 lpfc_sli_hba_setup_error: 4970 phba->link_state = LPFC_HBA_ERROR; 4971 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4972 "0445 Firmware initialization failed\n"); 4973 return rc; 4974 } 4975 4976 /** 4977 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4978 * @phba: Pointer to HBA context object. 4979 * @mboxq: mailbox pointer. 4980 * This function issue a dump mailbox command to read config region 4981 * 23 and parse the records in the region and populate driver 4982 * data structure. 4983 **/ 4984 static int 4985 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4986 { 4987 LPFC_MBOXQ_t *mboxq; 4988 struct lpfc_dmabuf *mp; 4989 struct lpfc_mqe *mqe; 4990 uint32_t data_length; 4991 int rc; 4992 4993 /* Program the default value of vlan_id and fc_map */ 4994 phba->valid_vlan = 0; 4995 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4996 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4997 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4998 4999 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5000 if (!mboxq) 5001 return -ENOMEM; 5002 5003 mqe = &mboxq->u.mqe; 5004 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5005 rc = -ENOMEM; 5006 goto out_free_mboxq; 5007 } 5008 5009 mp = (struct lpfc_dmabuf *) mboxq->context1; 5010 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5011 5012 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5013 "(%d):2571 Mailbox cmd x%x Status x%x " 5014 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5015 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5016 "CQ: x%x x%x x%x x%x\n", 5017 mboxq->vport ? mboxq->vport->vpi : 0, 5018 bf_get(lpfc_mqe_command, mqe), 5019 bf_get(lpfc_mqe_status, mqe), 5020 mqe->un.mb_words[0], mqe->un.mb_words[1], 5021 mqe->un.mb_words[2], mqe->un.mb_words[3], 5022 mqe->un.mb_words[4], mqe->un.mb_words[5], 5023 mqe->un.mb_words[6], mqe->un.mb_words[7], 5024 mqe->un.mb_words[8], mqe->un.mb_words[9], 5025 mqe->un.mb_words[10], mqe->un.mb_words[11], 5026 mqe->un.mb_words[12], mqe->un.mb_words[13], 5027 mqe->un.mb_words[14], mqe->un.mb_words[15], 5028 mqe->un.mb_words[16], mqe->un.mb_words[50], 5029 mboxq->mcqe.word0, 5030 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5031 mboxq->mcqe.trailer); 5032 5033 if (rc) { 5034 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5035 kfree(mp); 5036 rc = -EIO; 5037 goto out_free_mboxq; 5038 } 5039 data_length = mqe->un.mb_words[5]; 5040 if (data_length > DMP_RGN23_SIZE) { 5041 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5042 kfree(mp); 5043 rc = -EIO; 5044 goto out_free_mboxq; 5045 } 5046 5047 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5048 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5049 kfree(mp); 5050 rc = 0; 5051 5052 out_free_mboxq: 5053 mempool_free(mboxq, phba->mbox_mem_pool); 5054 return rc; 5055 } 5056 5057 /** 5058 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5059 * @phba: pointer to lpfc hba data structure. 5060 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5061 * @vpd: pointer to the memory to hold resulting port vpd data. 5062 * @vpd_size: On input, the number of bytes allocated to @vpd. 5063 * On output, the number of data bytes in @vpd. 5064 * 5065 * This routine executes a READ_REV SLI4 mailbox command. In 5066 * addition, this routine gets the port vpd data. 5067 * 5068 * Return codes 5069 * 0 - successful 5070 * -ENOMEM - could not allocated memory. 5071 **/ 5072 static int 5073 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5074 uint8_t *vpd, uint32_t *vpd_size) 5075 { 5076 int rc = 0; 5077 uint32_t dma_size; 5078 struct lpfc_dmabuf *dmabuf; 5079 struct lpfc_mqe *mqe; 5080 5081 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5082 if (!dmabuf) 5083 return -ENOMEM; 5084 5085 /* 5086 * Get a DMA buffer for the vpd data resulting from the READ_REV 5087 * mailbox command. 5088 */ 5089 dma_size = *vpd_size; 5090 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5091 &dmabuf->phys, GFP_KERNEL); 5092 if (!dmabuf->virt) { 5093 kfree(dmabuf); 5094 return -ENOMEM; 5095 } 5096 5097 /* 5098 * The SLI4 implementation of READ_REV conflicts at word1, 5099 * bits 31:16 and SLI4 adds vpd functionality not present 5100 * in SLI3. This code corrects the conflicts. 5101 */ 5102 lpfc_read_rev(phba, mboxq); 5103 mqe = &mboxq->u.mqe; 5104 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5105 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5106 mqe->un.read_rev.word1 &= 0x0000FFFF; 5107 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5108 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5109 5110 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5111 if (rc) { 5112 dma_free_coherent(&phba->pcidev->dev, dma_size, 5113 dmabuf->virt, dmabuf->phys); 5114 kfree(dmabuf); 5115 return -EIO; 5116 } 5117 5118 /* 5119 * The available vpd length cannot be bigger than the 5120 * DMA buffer passed to the port. Catch the less than 5121 * case and update the caller's size. 5122 */ 5123 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5124 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5125 5126 memcpy(vpd, dmabuf->virt, *vpd_size); 5127 5128 dma_free_coherent(&phba->pcidev->dev, dma_size, 5129 dmabuf->virt, dmabuf->phys); 5130 kfree(dmabuf); 5131 return 0; 5132 } 5133 5134 /** 5135 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5136 * @phba: pointer to lpfc hba data structure. 5137 * 5138 * This routine retrieves SLI4 device physical port name this PCI function 5139 * is attached to. 5140 * 5141 * Return codes 5142 * 0 - successful 5143 * otherwise - failed to retrieve physical port name 5144 **/ 5145 static int 5146 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5147 { 5148 LPFC_MBOXQ_t *mboxq; 5149 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5150 struct lpfc_controller_attribute *cntl_attr; 5151 struct lpfc_mbx_get_port_name *get_port_name; 5152 void *virtaddr = NULL; 5153 uint32_t alloclen, reqlen; 5154 uint32_t shdr_status, shdr_add_status; 5155 union lpfc_sli4_cfg_shdr *shdr; 5156 char cport_name = 0; 5157 int rc; 5158 5159 /* We assume nothing at this point */ 5160 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5161 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5162 5163 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5164 if (!mboxq) 5165 return -ENOMEM; 5166 /* obtain link type and link number via READ_CONFIG */ 5167 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5168 lpfc_sli4_read_config(phba); 5169 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5170 goto retrieve_ppname; 5171 5172 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5173 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5174 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5175 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5176 LPFC_SLI4_MBX_NEMBED); 5177 if (alloclen < reqlen) { 5178 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5179 "3084 Allocated DMA memory size (%d) is " 5180 "less than the requested DMA memory size " 5181 "(%d)\n", alloclen, reqlen); 5182 rc = -ENOMEM; 5183 goto out_free_mboxq; 5184 } 5185 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5186 virtaddr = mboxq->sge_array->addr[0]; 5187 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5188 shdr = &mbx_cntl_attr->cfg_shdr; 5189 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5190 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5191 if (shdr_status || shdr_add_status || rc) { 5192 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5193 "3085 Mailbox x%x (x%x/x%x) failed, " 5194 "rc:x%x, status:x%x, add_status:x%x\n", 5195 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5196 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5197 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5198 rc, shdr_status, shdr_add_status); 5199 rc = -ENXIO; 5200 goto out_free_mboxq; 5201 } 5202 cntl_attr = &mbx_cntl_attr->cntl_attr; 5203 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5204 phba->sli4_hba.lnk_info.lnk_tp = 5205 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5206 phba->sli4_hba.lnk_info.lnk_no = 5207 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5208 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5209 "3086 lnk_type:%d, lnk_numb:%d\n", 5210 phba->sli4_hba.lnk_info.lnk_tp, 5211 phba->sli4_hba.lnk_info.lnk_no); 5212 5213 retrieve_ppname: 5214 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5215 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5216 sizeof(struct lpfc_mbx_get_port_name) - 5217 sizeof(struct lpfc_sli4_cfg_mhdr), 5218 LPFC_SLI4_MBX_EMBED); 5219 get_port_name = &mboxq->u.mqe.un.get_port_name; 5220 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5221 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5222 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5223 phba->sli4_hba.lnk_info.lnk_tp); 5224 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5225 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5226 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5227 if (shdr_status || shdr_add_status || rc) { 5228 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5229 "3087 Mailbox x%x (x%x/x%x) failed: " 5230 "rc:x%x, status:x%x, add_status:x%x\n", 5231 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5232 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5233 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5234 rc, shdr_status, shdr_add_status); 5235 rc = -ENXIO; 5236 goto out_free_mboxq; 5237 } 5238 switch (phba->sli4_hba.lnk_info.lnk_no) { 5239 case LPFC_LINK_NUMBER_0: 5240 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5241 &get_port_name->u.response); 5242 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5243 break; 5244 case LPFC_LINK_NUMBER_1: 5245 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5246 &get_port_name->u.response); 5247 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5248 break; 5249 case LPFC_LINK_NUMBER_2: 5250 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5251 &get_port_name->u.response); 5252 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5253 break; 5254 case LPFC_LINK_NUMBER_3: 5255 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5256 &get_port_name->u.response); 5257 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5258 break; 5259 default: 5260 break; 5261 } 5262 5263 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5264 phba->Port[0] = cport_name; 5265 phba->Port[1] = '\0'; 5266 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5267 "3091 SLI get port name: %s\n", phba->Port); 5268 } 5269 5270 out_free_mboxq: 5271 if (rc != MBX_TIMEOUT) { 5272 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5273 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5274 else 5275 mempool_free(mboxq, phba->mbox_mem_pool); 5276 } 5277 return rc; 5278 } 5279 5280 /** 5281 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5282 * @phba: pointer to lpfc hba data structure. 5283 * 5284 * This routine is called to explicitly arm the SLI4 device's completion and 5285 * event queues 5286 **/ 5287 static void 5288 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5289 { 5290 int qidx; 5291 5292 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5293 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5294 if (phba->sli4_hba.nvmels_cq) 5295 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq, 5296 LPFC_QUEUE_REARM); 5297 5298 if (phba->sli4_hba.fcp_cq) 5299 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5300 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx], 5301 LPFC_QUEUE_REARM); 5302 5303 if (phba->sli4_hba.nvme_cq) 5304 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5305 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx], 5306 LPFC_QUEUE_REARM); 5307 5308 if (phba->cfg_fof) 5309 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5310 5311 if (phba->sli4_hba.hba_eq) 5312 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5313 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx], 5314 LPFC_QUEUE_REARM); 5315 5316 if (phba->nvmet_support) { 5317 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5318 lpfc_sli4_cq_release( 5319 phba->sli4_hba.nvmet_cqset[qidx], 5320 LPFC_QUEUE_REARM); 5321 } 5322 } 5323 5324 if (phba->cfg_fof) 5325 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5326 } 5327 5328 /** 5329 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5330 * @phba: Pointer to HBA context object. 5331 * @type: The resource extent type. 5332 * @extnt_count: buffer to hold port available extent count. 5333 * @extnt_size: buffer to hold element count per extent. 5334 * 5335 * This function calls the port and retrievs the number of available 5336 * extents and their size for a particular extent type. 5337 * 5338 * Returns: 0 if successful. Nonzero otherwise. 5339 **/ 5340 int 5341 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5342 uint16_t *extnt_count, uint16_t *extnt_size) 5343 { 5344 int rc = 0; 5345 uint32_t length; 5346 uint32_t mbox_tmo; 5347 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5348 LPFC_MBOXQ_t *mbox; 5349 5350 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5351 if (!mbox) 5352 return -ENOMEM; 5353 5354 /* Find out how many extents are available for this resource type */ 5355 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5356 sizeof(struct lpfc_sli4_cfg_mhdr)); 5357 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5358 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5359 length, LPFC_SLI4_MBX_EMBED); 5360 5361 /* Send an extents count of 0 - the GET doesn't use it. */ 5362 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5363 LPFC_SLI4_MBX_EMBED); 5364 if (unlikely(rc)) { 5365 rc = -EIO; 5366 goto err_exit; 5367 } 5368 5369 if (!phba->sli4_hba.intr_enable) 5370 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5371 else { 5372 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5373 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5374 } 5375 if (unlikely(rc)) { 5376 rc = -EIO; 5377 goto err_exit; 5378 } 5379 5380 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5381 if (bf_get(lpfc_mbox_hdr_status, 5382 &rsrc_info->header.cfg_shdr.response)) { 5383 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5384 "2930 Failed to get resource extents " 5385 "Status 0x%x Add'l Status 0x%x\n", 5386 bf_get(lpfc_mbox_hdr_status, 5387 &rsrc_info->header.cfg_shdr.response), 5388 bf_get(lpfc_mbox_hdr_add_status, 5389 &rsrc_info->header.cfg_shdr.response)); 5390 rc = -EIO; 5391 goto err_exit; 5392 } 5393 5394 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5395 &rsrc_info->u.rsp); 5396 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5397 &rsrc_info->u.rsp); 5398 5399 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5400 "3162 Retrieved extents type-%d from port: count:%d, " 5401 "size:%d\n", type, *extnt_count, *extnt_size); 5402 5403 err_exit: 5404 mempool_free(mbox, phba->mbox_mem_pool); 5405 return rc; 5406 } 5407 5408 /** 5409 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5410 * @phba: Pointer to HBA context object. 5411 * @type: The extent type to check. 5412 * 5413 * This function reads the current available extents from the port and checks 5414 * if the extent count or extent size has changed since the last access. 5415 * Callers use this routine post port reset to understand if there is a 5416 * extent reprovisioning requirement. 5417 * 5418 * Returns: 5419 * -Error: error indicates problem. 5420 * 1: Extent count or size has changed. 5421 * 0: No changes. 5422 **/ 5423 static int 5424 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5425 { 5426 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5427 uint16_t size_diff, rsrc_ext_size; 5428 int rc = 0; 5429 struct lpfc_rsrc_blks *rsrc_entry; 5430 struct list_head *rsrc_blk_list = NULL; 5431 5432 size_diff = 0; 5433 curr_ext_cnt = 0; 5434 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5435 &rsrc_ext_cnt, 5436 &rsrc_ext_size); 5437 if (unlikely(rc)) 5438 return -EIO; 5439 5440 switch (type) { 5441 case LPFC_RSC_TYPE_FCOE_RPI: 5442 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5443 break; 5444 case LPFC_RSC_TYPE_FCOE_VPI: 5445 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5446 break; 5447 case LPFC_RSC_TYPE_FCOE_XRI: 5448 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5449 break; 5450 case LPFC_RSC_TYPE_FCOE_VFI: 5451 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5452 break; 5453 default: 5454 break; 5455 } 5456 5457 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5458 curr_ext_cnt++; 5459 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5460 size_diff++; 5461 } 5462 5463 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5464 rc = 1; 5465 5466 return rc; 5467 } 5468 5469 /** 5470 * lpfc_sli4_cfg_post_extnts - 5471 * @phba: Pointer to HBA context object. 5472 * @extnt_cnt - number of available extents. 5473 * @type - the extent type (rpi, xri, vfi, vpi). 5474 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5475 * @mbox - pointer to the caller's allocated mailbox structure. 5476 * 5477 * This function executes the extents allocation request. It also 5478 * takes care of the amount of memory needed to allocate or get the 5479 * allocated extents. It is the caller's responsibility to evaluate 5480 * the response. 5481 * 5482 * Returns: 5483 * -Error: Error value describes the condition found. 5484 * 0: if successful 5485 **/ 5486 static int 5487 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5488 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5489 { 5490 int rc = 0; 5491 uint32_t req_len; 5492 uint32_t emb_len; 5493 uint32_t alloc_len, mbox_tmo; 5494 5495 /* Calculate the total requested length of the dma memory */ 5496 req_len = extnt_cnt * sizeof(uint16_t); 5497 5498 /* 5499 * Calculate the size of an embedded mailbox. The uint32_t 5500 * accounts for extents-specific word. 5501 */ 5502 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5503 sizeof(uint32_t); 5504 5505 /* 5506 * Presume the allocation and response will fit into an embedded 5507 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5508 */ 5509 *emb = LPFC_SLI4_MBX_EMBED; 5510 if (req_len > emb_len) { 5511 req_len = extnt_cnt * sizeof(uint16_t) + 5512 sizeof(union lpfc_sli4_cfg_shdr) + 5513 sizeof(uint32_t); 5514 *emb = LPFC_SLI4_MBX_NEMBED; 5515 } 5516 5517 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5518 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5519 req_len, *emb); 5520 if (alloc_len < req_len) { 5521 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5522 "2982 Allocated DMA memory size (x%x) is " 5523 "less than the requested DMA memory " 5524 "size (x%x)\n", alloc_len, req_len); 5525 return -ENOMEM; 5526 } 5527 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5528 if (unlikely(rc)) 5529 return -EIO; 5530 5531 if (!phba->sli4_hba.intr_enable) 5532 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5533 else { 5534 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5535 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5536 } 5537 5538 if (unlikely(rc)) 5539 rc = -EIO; 5540 return rc; 5541 } 5542 5543 /** 5544 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5545 * @phba: Pointer to HBA context object. 5546 * @type: The resource extent type to allocate. 5547 * 5548 * This function allocates the number of elements for the specified 5549 * resource type. 5550 **/ 5551 static int 5552 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5553 { 5554 bool emb = false; 5555 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5556 uint16_t rsrc_id, rsrc_start, j, k; 5557 uint16_t *ids; 5558 int i, rc; 5559 unsigned long longs; 5560 unsigned long *bmask; 5561 struct lpfc_rsrc_blks *rsrc_blks; 5562 LPFC_MBOXQ_t *mbox; 5563 uint32_t length; 5564 struct lpfc_id_range *id_array = NULL; 5565 void *virtaddr = NULL; 5566 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5567 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5568 struct list_head *ext_blk_list; 5569 5570 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5571 &rsrc_cnt, 5572 &rsrc_size); 5573 if (unlikely(rc)) 5574 return -EIO; 5575 5576 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5577 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5578 "3009 No available Resource Extents " 5579 "for resource type 0x%x: Count: 0x%x, " 5580 "Size 0x%x\n", type, rsrc_cnt, 5581 rsrc_size); 5582 return -ENOMEM; 5583 } 5584 5585 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5586 "2903 Post resource extents type-0x%x: " 5587 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5588 5589 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5590 if (!mbox) 5591 return -ENOMEM; 5592 5593 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5594 if (unlikely(rc)) { 5595 rc = -EIO; 5596 goto err_exit; 5597 } 5598 5599 /* 5600 * Figure out where the response is located. Then get local pointers 5601 * to the response data. The port does not guarantee to respond to 5602 * all extents counts request so update the local variable with the 5603 * allocated count from the port. 5604 */ 5605 if (emb == LPFC_SLI4_MBX_EMBED) { 5606 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5607 id_array = &rsrc_ext->u.rsp.id[0]; 5608 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5609 } else { 5610 virtaddr = mbox->sge_array->addr[0]; 5611 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5612 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5613 id_array = &n_rsrc->id; 5614 } 5615 5616 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5617 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5618 5619 /* 5620 * Based on the resource size and count, correct the base and max 5621 * resource values. 5622 */ 5623 length = sizeof(struct lpfc_rsrc_blks); 5624 switch (type) { 5625 case LPFC_RSC_TYPE_FCOE_RPI: 5626 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5627 sizeof(unsigned long), 5628 GFP_KERNEL); 5629 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5630 rc = -ENOMEM; 5631 goto err_exit; 5632 } 5633 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5634 sizeof(uint16_t), 5635 GFP_KERNEL); 5636 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5637 kfree(phba->sli4_hba.rpi_bmask); 5638 rc = -ENOMEM; 5639 goto err_exit; 5640 } 5641 5642 /* 5643 * The next_rpi was initialized with the maximum available 5644 * count but the port may allocate a smaller number. Catch 5645 * that case and update the next_rpi. 5646 */ 5647 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5648 5649 /* Initialize local ptrs for common extent processing later. */ 5650 bmask = phba->sli4_hba.rpi_bmask; 5651 ids = phba->sli4_hba.rpi_ids; 5652 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5653 break; 5654 case LPFC_RSC_TYPE_FCOE_VPI: 5655 phba->vpi_bmask = kzalloc(longs * 5656 sizeof(unsigned long), 5657 GFP_KERNEL); 5658 if (unlikely(!phba->vpi_bmask)) { 5659 rc = -ENOMEM; 5660 goto err_exit; 5661 } 5662 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5663 sizeof(uint16_t), 5664 GFP_KERNEL); 5665 if (unlikely(!phba->vpi_ids)) { 5666 kfree(phba->vpi_bmask); 5667 rc = -ENOMEM; 5668 goto err_exit; 5669 } 5670 5671 /* Initialize local ptrs for common extent processing later. */ 5672 bmask = phba->vpi_bmask; 5673 ids = phba->vpi_ids; 5674 ext_blk_list = &phba->lpfc_vpi_blk_list; 5675 break; 5676 case LPFC_RSC_TYPE_FCOE_XRI: 5677 phba->sli4_hba.xri_bmask = kzalloc(longs * 5678 sizeof(unsigned long), 5679 GFP_KERNEL); 5680 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5681 rc = -ENOMEM; 5682 goto err_exit; 5683 } 5684 phba->sli4_hba.max_cfg_param.xri_used = 0; 5685 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5686 sizeof(uint16_t), 5687 GFP_KERNEL); 5688 if (unlikely(!phba->sli4_hba.xri_ids)) { 5689 kfree(phba->sli4_hba.xri_bmask); 5690 rc = -ENOMEM; 5691 goto err_exit; 5692 } 5693 5694 /* Initialize local ptrs for common extent processing later. */ 5695 bmask = phba->sli4_hba.xri_bmask; 5696 ids = phba->sli4_hba.xri_ids; 5697 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5698 break; 5699 case LPFC_RSC_TYPE_FCOE_VFI: 5700 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5701 sizeof(unsigned long), 5702 GFP_KERNEL); 5703 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5704 rc = -ENOMEM; 5705 goto err_exit; 5706 } 5707 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5708 sizeof(uint16_t), 5709 GFP_KERNEL); 5710 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5711 kfree(phba->sli4_hba.vfi_bmask); 5712 rc = -ENOMEM; 5713 goto err_exit; 5714 } 5715 5716 /* Initialize local ptrs for common extent processing later. */ 5717 bmask = phba->sli4_hba.vfi_bmask; 5718 ids = phba->sli4_hba.vfi_ids; 5719 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5720 break; 5721 default: 5722 /* Unsupported Opcode. Fail call. */ 5723 id_array = NULL; 5724 bmask = NULL; 5725 ids = NULL; 5726 ext_blk_list = NULL; 5727 goto err_exit; 5728 } 5729 5730 /* 5731 * Complete initializing the extent configuration with the 5732 * allocated ids assigned to this function. The bitmask serves 5733 * as an index into the array and manages the available ids. The 5734 * array just stores the ids communicated to the port via the wqes. 5735 */ 5736 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5737 if ((i % 2) == 0) 5738 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5739 &id_array[k]); 5740 else 5741 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5742 &id_array[k]); 5743 5744 rsrc_blks = kzalloc(length, GFP_KERNEL); 5745 if (unlikely(!rsrc_blks)) { 5746 rc = -ENOMEM; 5747 kfree(bmask); 5748 kfree(ids); 5749 goto err_exit; 5750 } 5751 rsrc_blks->rsrc_start = rsrc_id; 5752 rsrc_blks->rsrc_size = rsrc_size; 5753 list_add_tail(&rsrc_blks->list, ext_blk_list); 5754 rsrc_start = rsrc_id; 5755 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5756 phba->sli4_hba.scsi_xri_start = rsrc_start + 5757 lpfc_sli4_get_iocb_cnt(phba); 5758 phba->sli4_hba.nvme_xri_start = 5759 phba->sli4_hba.scsi_xri_start + 5760 phba->sli4_hba.scsi_xri_max; 5761 } 5762 5763 while (rsrc_id < (rsrc_start + rsrc_size)) { 5764 ids[j] = rsrc_id; 5765 rsrc_id++; 5766 j++; 5767 } 5768 /* Entire word processed. Get next word.*/ 5769 if ((i % 2) == 1) 5770 k++; 5771 } 5772 err_exit: 5773 lpfc_sli4_mbox_cmd_free(phba, mbox); 5774 return rc; 5775 } 5776 5777 5778 5779 /** 5780 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5781 * @phba: Pointer to HBA context object. 5782 * @type: the extent's type. 5783 * 5784 * This function deallocates all extents of a particular resource type. 5785 * SLI4 does not allow for deallocating a particular extent range. It 5786 * is the caller's responsibility to release all kernel memory resources. 5787 **/ 5788 static int 5789 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5790 { 5791 int rc; 5792 uint32_t length, mbox_tmo = 0; 5793 LPFC_MBOXQ_t *mbox; 5794 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5795 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5796 5797 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5798 if (!mbox) 5799 return -ENOMEM; 5800 5801 /* 5802 * This function sends an embedded mailbox because it only sends the 5803 * the resource type. All extents of this type are released by the 5804 * port. 5805 */ 5806 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5807 sizeof(struct lpfc_sli4_cfg_mhdr)); 5808 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5809 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5810 length, LPFC_SLI4_MBX_EMBED); 5811 5812 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5813 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5814 LPFC_SLI4_MBX_EMBED); 5815 if (unlikely(rc)) { 5816 rc = -EIO; 5817 goto out_free_mbox; 5818 } 5819 if (!phba->sli4_hba.intr_enable) 5820 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5821 else { 5822 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5823 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5824 } 5825 if (unlikely(rc)) { 5826 rc = -EIO; 5827 goto out_free_mbox; 5828 } 5829 5830 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5831 if (bf_get(lpfc_mbox_hdr_status, 5832 &dealloc_rsrc->header.cfg_shdr.response)) { 5833 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5834 "2919 Failed to release resource extents " 5835 "for type %d - Status 0x%x Add'l Status 0x%x. " 5836 "Resource memory not released.\n", 5837 type, 5838 bf_get(lpfc_mbox_hdr_status, 5839 &dealloc_rsrc->header.cfg_shdr.response), 5840 bf_get(lpfc_mbox_hdr_add_status, 5841 &dealloc_rsrc->header.cfg_shdr.response)); 5842 rc = -EIO; 5843 goto out_free_mbox; 5844 } 5845 5846 /* Release kernel memory resources for the specific type. */ 5847 switch (type) { 5848 case LPFC_RSC_TYPE_FCOE_VPI: 5849 kfree(phba->vpi_bmask); 5850 kfree(phba->vpi_ids); 5851 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5852 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5853 &phba->lpfc_vpi_blk_list, list) { 5854 list_del_init(&rsrc_blk->list); 5855 kfree(rsrc_blk); 5856 } 5857 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5858 break; 5859 case LPFC_RSC_TYPE_FCOE_XRI: 5860 kfree(phba->sli4_hba.xri_bmask); 5861 kfree(phba->sli4_hba.xri_ids); 5862 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5863 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5864 list_del_init(&rsrc_blk->list); 5865 kfree(rsrc_blk); 5866 } 5867 break; 5868 case LPFC_RSC_TYPE_FCOE_VFI: 5869 kfree(phba->sli4_hba.vfi_bmask); 5870 kfree(phba->sli4_hba.vfi_ids); 5871 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5872 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5873 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5874 list_del_init(&rsrc_blk->list); 5875 kfree(rsrc_blk); 5876 } 5877 break; 5878 case LPFC_RSC_TYPE_FCOE_RPI: 5879 /* RPI bitmask and physical id array are cleaned up earlier. */ 5880 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5881 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5882 list_del_init(&rsrc_blk->list); 5883 kfree(rsrc_blk); 5884 } 5885 break; 5886 default: 5887 break; 5888 } 5889 5890 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5891 5892 out_free_mbox: 5893 mempool_free(mbox, phba->mbox_mem_pool); 5894 return rc; 5895 } 5896 5897 static void 5898 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5899 uint32_t feature) 5900 { 5901 uint32_t len; 5902 5903 len = sizeof(struct lpfc_mbx_set_feature) - 5904 sizeof(struct lpfc_sli4_cfg_mhdr); 5905 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5906 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5907 LPFC_SLI4_MBX_EMBED); 5908 5909 switch (feature) { 5910 case LPFC_SET_UE_RECOVERY: 5911 bf_set(lpfc_mbx_set_feature_UER, 5912 &mbox->u.mqe.un.set_feature, 1); 5913 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5914 mbox->u.mqe.un.set_feature.param_len = 8; 5915 break; 5916 case LPFC_SET_MDS_DIAGS: 5917 bf_set(lpfc_mbx_set_feature_mds, 5918 &mbox->u.mqe.un.set_feature, 1); 5919 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5920 &mbox->u.mqe.un.set_feature, 1); 5921 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5922 mbox->u.mqe.un.set_feature.param_len = 8; 5923 break; 5924 } 5925 5926 return; 5927 } 5928 5929 /** 5930 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5931 * @phba: Pointer to HBA context object. 5932 * 5933 * This function allocates all SLI4 resource identifiers. 5934 **/ 5935 int 5936 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5937 { 5938 int i, rc, error = 0; 5939 uint16_t count, base; 5940 unsigned long longs; 5941 5942 if (!phba->sli4_hba.rpi_hdrs_in_use) 5943 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5944 if (phba->sli4_hba.extents_in_use) { 5945 /* 5946 * The port supports resource extents. The XRI, VPI, VFI, RPI 5947 * resource extent count must be read and allocated before 5948 * provisioning the resource id arrays. 5949 */ 5950 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5951 LPFC_IDX_RSRC_RDY) { 5952 /* 5953 * Extent-based resources are set - the driver could 5954 * be in a port reset. Figure out if any corrective 5955 * actions need to be taken. 5956 */ 5957 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5958 LPFC_RSC_TYPE_FCOE_VFI); 5959 if (rc != 0) 5960 error++; 5961 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5962 LPFC_RSC_TYPE_FCOE_VPI); 5963 if (rc != 0) 5964 error++; 5965 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5966 LPFC_RSC_TYPE_FCOE_XRI); 5967 if (rc != 0) 5968 error++; 5969 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5970 LPFC_RSC_TYPE_FCOE_RPI); 5971 if (rc != 0) 5972 error++; 5973 5974 /* 5975 * It's possible that the number of resources 5976 * provided to this port instance changed between 5977 * resets. Detect this condition and reallocate 5978 * resources. Otherwise, there is no action. 5979 */ 5980 if (error) { 5981 lpfc_printf_log(phba, KERN_INFO, 5982 LOG_MBOX | LOG_INIT, 5983 "2931 Detected extent resource " 5984 "change. Reallocating all " 5985 "extents.\n"); 5986 rc = lpfc_sli4_dealloc_extent(phba, 5987 LPFC_RSC_TYPE_FCOE_VFI); 5988 rc = lpfc_sli4_dealloc_extent(phba, 5989 LPFC_RSC_TYPE_FCOE_VPI); 5990 rc = lpfc_sli4_dealloc_extent(phba, 5991 LPFC_RSC_TYPE_FCOE_XRI); 5992 rc = lpfc_sli4_dealloc_extent(phba, 5993 LPFC_RSC_TYPE_FCOE_RPI); 5994 } else 5995 return 0; 5996 } 5997 5998 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5999 if (unlikely(rc)) 6000 goto err_exit; 6001 6002 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6003 if (unlikely(rc)) 6004 goto err_exit; 6005 6006 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6007 if (unlikely(rc)) 6008 goto err_exit; 6009 6010 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6011 if (unlikely(rc)) 6012 goto err_exit; 6013 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6014 LPFC_IDX_RSRC_RDY); 6015 return rc; 6016 } else { 6017 /* 6018 * The port does not support resource extents. The XRI, VPI, 6019 * VFI, RPI resource ids were determined from READ_CONFIG. 6020 * Just allocate the bitmasks and provision the resource id 6021 * arrays. If a port reset is active, the resources don't 6022 * need any action - just exit. 6023 */ 6024 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6025 LPFC_IDX_RSRC_RDY) { 6026 lpfc_sli4_dealloc_resource_identifiers(phba); 6027 lpfc_sli4_remove_rpis(phba); 6028 } 6029 /* RPIs. */ 6030 count = phba->sli4_hba.max_cfg_param.max_rpi; 6031 if (count <= 0) { 6032 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6033 "3279 Invalid provisioning of " 6034 "rpi:%d\n", count); 6035 rc = -EINVAL; 6036 goto err_exit; 6037 } 6038 base = phba->sli4_hba.max_cfg_param.rpi_base; 6039 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6040 phba->sli4_hba.rpi_bmask = kzalloc(longs * 6041 sizeof(unsigned long), 6042 GFP_KERNEL); 6043 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6044 rc = -ENOMEM; 6045 goto err_exit; 6046 } 6047 phba->sli4_hba.rpi_ids = kzalloc(count * 6048 sizeof(uint16_t), 6049 GFP_KERNEL); 6050 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6051 rc = -ENOMEM; 6052 goto free_rpi_bmask; 6053 } 6054 6055 for (i = 0; i < count; i++) 6056 phba->sli4_hba.rpi_ids[i] = base + i; 6057 6058 /* VPIs. */ 6059 count = phba->sli4_hba.max_cfg_param.max_vpi; 6060 if (count <= 0) { 6061 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6062 "3280 Invalid provisioning of " 6063 "vpi:%d\n", count); 6064 rc = -EINVAL; 6065 goto free_rpi_ids; 6066 } 6067 base = phba->sli4_hba.max_cfg_param.vpi_base; 6068 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6069 phba->vpi_bmask = kzalloc(longs * 6070 sizeof(unsigned long), 6071 GFP_KERNEL); 6072 if (unlikely(!phba->vpi_bmask)) { 6073 rc = -ENOMEM; 6074 goto free_rpi_ids; 6075 } 6076 phba->vpi_ids = kzalloc(count * 6077 sizeof(uint16_t), 6078 GFP_KERNEL); 6079 if (unlikely(!phba->vpi_ids)) { 6080 rc = -ENOMEM; 6081 goto free_vpi_bmask; 6082 } 6083 6084 for (i = 0; i < count; i++) 6085 phba->vpi_ids[i] = base + i; 6086 6087 /* XRIs. */ 6088 count = phba->sli4_hba.max_cfg_param.max_xri; 6089 if (count <= 0) { 6090 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6091 "3281 Invalid provisioning of " 6092 "xri:%d\n", count); 6093 rc = -EINVAL; 6094 goto free_vpi_ids; 6095 } 6096 base = phba->sli4_hba.max_cfg_param.xri_base; 6097 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6098 phba->sli4_hba.xri_bmask = kzalloc(longs * 6099 sizeof(unsigned long), 6100 GFP_KERNEL); 6101 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6102 rc = -ENOMEM; 6103 goto free_vpi_ids; 6104 } 6105 phba->sli4_hba.max_cfg_param.xri_used = 0; 6106 phba->sli4_hba.xri_ids = kzalloc(count * 6107 sizeof(uint16_t), 6108 GFP_KERNEL); 6109 if (unlikely(!phba->sli4_hba.xri_ids)) { 6110 rc = -ENOMEM; 6111 goto free_xri_bmask; 6112 } 6113 6114 for (i = 0; i < count; i++) 6115 phba->sli4_hba.xri_ids[i] = base + i; 6116 6117 /* VFIs. */ 6118 count = phba->sli4_hba.max_cfg_param.max_vfi; 6119 if (count <= 0) { 6120 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6121 "3282 Invalid provisioning of " 6122 "vfi:%d\n", count); 6123 rc = -EINVAL; 6124 goto free_xri_ids; 6125 } 6126 base = phba->sli4_hba.max_cfg_param.vfi_base; 6127 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6128 phba->sli4_hba.vfi_bmask = kzalloc(longs * 6129 sizeof(unsigned long), 6130 GFP_KERNEL); 6131 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6132 rc = -ENOMEM; 6133 goto free_xri_ids; 6134 } 6135 phba->sli4_hba.vfi_ids = kzalloc(count * 6136 sizeof(uint16_t), 6137 GFP_KERNEL); 6138 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6139 rc = -ENOMEM; 6140 goto free_vfi_bmask; 6141 } 6142 6143 for (i = 0; i < count; i++) 6144 phba->sli4_hba.vfi_ids[i] = base + i; 6145 6146 /* 6147 * Mark all resources ready. An HBA reset doesn't need 6148 * to reset the initialization. 6149 */ 6150 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6151 LPFC_IDX_RSRC_RDY); 6152 return 0; 6153 } 6154 6155 free_vfi_bmask: 6156 kfree(phba->sli4_hba.vfi_bmask); 6157 phba->sli4_hba.vfi_bmask = NULL; 6158 free_xri_ids: 6159 kfree(phba->sli4_hba.xri_ids); 6160 phba->sli4_hba.xri_ids = NULL; 6161 free_xri_bmask: 6162 kfree(phba->sli4_hba.xri_bmask); 6163 phba->sli4_hba.xri_bmask = NULL; 6164 free_vpi_ids: 6165 kfree(phba->vpi_ids); 6166 phba->vpi_ids = NULL; 6167 free_vpi_bmask: 6168 kfree(phba->vpi_bmask); 6169 phba->vpi_bmask = NULL; 6170 free_rpi_ids: 6171 kfree(phba->sli4_hba.rpi_ids); 6172 phba->sli4_hba.rpi_ids = NULL; 6173 free_rpi_bmask: 6174 kfree(phba->sli4_hba.rpi_bmask); 6175 phba->sli4_hba.rpi_bmask = NULL; 6176 err_exit: 6177 return rc; 6178 } 6179 6180 /** 6181 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6182 * @phba: Pointer to HBA context object. 6183 * 6184 * This function allocates the number of elements for the specified 6185 * resource type. 6186 **/ 6187 int 6188 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6189 { 6190 if (phba->sli4_hba.extents_in_use) { 6191 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6192 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6193 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6194 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6195 } else { 6196 kfree(phba->vpi_bmask); 6197 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6198 kfree(phba->vpi_ids); 6199 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6200 kfree(phba->sli4_hba.xri_bmask); 6201 kfree(phba->sli4_hba.xri_ids); 6202 kfree(phba->sli4_hba.vfi_bmask); 6203 kfree(phba->sli4_hba.vfi_ids); 6204 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6205 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6206 } 6207 6208 return 0; 6209 } 6210 6211 /** 6212 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6213 * @phba: Pointer to HBA context object. 6214 * @type: The resource extent type. 6215 * @extnt_count: buffer to hold port extent count response 6216 * @extnt_size: buffer to hold port extent size response. 6217 * 6218 * This function calls the port to read the host allocated extents 6219 * for a particular type. 6220 **/ 6221 int 6222 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6223 uint16_t *extnt_cnt, uint16_t *extnt_size) 6224 { 6225 bool emb; 6226 int rc = 0; 6227 uint16_t curr_blks = 0; 6228 uint32_t req_len, emb_len; 6229 uint32_t alloc_len, mbox_tmo; 6230 struct list_head *blk_list_head; 6231 struct lpfc_rsrc_blks *rsrc_blk; 6232 LPFC_MBOXQ_t *mbox; 6233 void *virtaddr = NULL; 6234 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6235 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6236 union lpfc_sli4_cfg_shdr *shdr; 6237 6238 switch (type) { 6239 case LPFC_RSC_TYPE_FCOE_VPI: 6240 blk_list_head = &phba->lpfc_vpi_blk_list; 6241 break; 6242 case LPFC_RSC_TYPE_FCOE_XRI: 6243 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6244 break; 6245 case LPFC_RSC_TYPE_FCOE_VFI: 6246 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6247 break; 6248 case LPFC_RSC_TYPE_FCOE_RPI: 6249 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6250 break; 6251 default: 6252 return -EIO; 6253 } 6254 6255 /* Count the number of extents currently allocatd for this type. */ 6256 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6257 if (curr_blks == 0) { 6258 /* 6259 * The GET_ALLOCATED mailbox does not return the size, 6260 * just the count. The size should be just the size 6261 * stored in the current allocated block and all sizes 6262 * for an extent type are the same so set the return 6263 * value now. 6264 */ 6265 *extnt_size = rsrc_blk->rsrc_size; 6266 } 6267 curr_blks++; 6268 } 6269 6270 /* 6271 * Calculate the size of an embedded mailbox. The uint32_t 6272 * accounts for extents-specific word. 6273 */ 6274 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6275 sizeof(uint32_t); 6276 6277 /* 6278 * Presume the allocation and response will fit into an embedded 6279 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6280 */ 6281 emb = LPFC_SLI4_MBX_EMBED; 6282 req_len = emb_len; 6283 if (req_len > emb_len) { 6284 req_len = curr_blks * sizeof(uint16_t) + 6285 sizeof(union lpfc_sli4_cfg_shdr) + 6286 sizeof(uint32_t); 6287 emb = LPFC_SLI4_MBX_NEMBED; 6288 } 6289 6290 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6291 if (!mbox) 6292 return -ENOMEM; 6293 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6294 6295 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6296 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6297 req_len, emb); 6298 if (alloc_len < req_len) { 6299 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6300 "2983 Allocated DMA memory size (x%x) is " 6301 "less than the requested DMA memory " 6302 "size (x%x)\n", alloc_len, req_len); 6303 rc = -ENOMEM; 6304 goto err_exit; 6305 } 6306 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6307 if (unlikely(rc)) { 6308 rc = -EIO; 6309 goto err_exit; 6310 } 6311 6312 if (!phba->sli4_hba.intr_enable) 6313 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6314 else { 6315 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6316 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6317 } 6318 6319 if (unlikely(rc)) { 6320 rc = -EIO; 6321 goto err_exit; 6322 } 6323 6324 /* 6325 * Figure out where the response is located. Then get local pointers 6326 * to the response data. The port does not guarantee to respond to 6327 * all extents counts request so update the local variable with the 6328 * allocated count from the port. 6329 */ 6330 if (emb == LPFC_SLI4_MBX_EMBED) { 6331 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6332 shdr = &rsrc_ext->header.cfg_shdr; 6333 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6334 } else { 6335 virtaddr = mbox->sge_array->addr[0]; 6336 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6337 shdr = &n_rsrc->cfg_shdr; 6338 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6339 } 6340 6341 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6342 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6343 "2984 Failed to read allocated resources " 6344 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6345 type, 6346 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6347 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6348 rc = -EIO; 6349 goto err_exit; 6350 } 6351 err_exit: 6352 lpfc_sli4_mbox_cmd_free(phba, mbox); 6353 return rc; 6354 } 6355 6356 /** 6357 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 6358 * @phba: pointer to lpfc hba data structure. 6359 * @pring: Pointer to driver SLI ring object. 6360 * @sgl_list: linked link of sgl buffers to post 6361 * @cnt: number of linked list buffers 6362 * 6363 * This routine walks the list of buffers that have been allocated and 6364 * repost them to the port by using SGL block post. This is needed after a 6365 * pci_function_reset/warm_start or start. It attempts to construct blocks 6366 * of buffer sgls which contains contiguous xris and uses the non-embedded 6367 * SGL block post mailbox commands to post them to the port. For single 6368 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6369 * mailbox command for posting. 6370 * 6371 * Returns: 0 = success, non-zero failure. 6372 **/ 6373 static int 6374 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6375 struct list_head *sgl_list, int cnt) 6376 { 6377 struct lpfc_sglq *sglq_entry = NULL; 6378 struct lpfc_sglq *sglq_entry_next = NULL; 6379 struct lpfc_sglq *sglq_entry_first = NULL; 6380 int status, total_cnt; 6381 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6382 int last_xritag = NO_XRI; 6383 LIST_HEAD(prep_sgl_list); 6384 LIST_HEAD(blck_sgl_list); 6385 LIST_HEAD(allc_sgl_list); 6386 LIST_HEAD(post_sgl_list); 6387 LIST_HEAD(free_sgl_list); 6388 6389 spin_lock_irq(&phba->hbalock); 6390 spin_lock(&phba->sli4_hba.sgl_list_lock); 6391 list_splice_init(sgl_list, &allc_sgl_list); 6392 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6393 spin_unlock_irq(&phba->hbalock); 6394 6395 total_cnt = cnt; 6396 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6397 &allc_sgl_list, list) { 6398 list_del_init(&sglq_entry->list); 6399 block_cnt++; 6400 if ((last_xritag != NO_XRI) && 6401 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6402 /* a hole in xri block, form a sgl posting block */ 6403 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6404 post_cnt = block_cnt - 1; 6405 /* prepare list for next posting block */ 6406 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6407 block_cnt = 1; 6408 } else { 6409 /* prepare list for next posting block */ 6410 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6411 /* enough sgls for non-embed sgl mbox command */ 6412 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6413 list_splice_init(&prep_sgl_list, 6414 &blck_sgl_list); 6415 post_cnt = block_cnt; 6416 block_cnt = 0; 6417 } 6418 } 6419 num_posted++; 6420 6421 /* keep track of last sgl's xritag */ 6422 last_xritag = sglq_entry->sli4_xritag; 6423 6424 /* end of repost sgl list condition for buffers */ 6425 if (num_posted == total_cnt) { 6426 if (post_cnt == 0) { 6427 list_splice_init(&prep_sgl_list, 6428 &blck_sgl_list); 6429 post_cnt = block_cnt; 6430 } else if (block_cnt == 1) { 6431 status = lpfc_sli4_post_sgl(phba, 6432 sglq_entry->phys, 0, 6433 sglq_entry->sli4_xritag); 6434 if (!status) { 6435 /* successful, put sgl to posted list */ 6436 list_add_tail(&sglq_entry->list, 6437 &post_sgl_list); 6438 } else { 6439 /* Failure, put sgl to free list */ 6440 lpfc_printf_log(phba, KERN_WARNING, 6441 LOG_SLI, 6442 "3159 Failed to post " 6443 "sgl, xritag:x%x\n", 6444 sglq_entry->sli4_xritag); 6445 list_add_tail(&sglq_entry->list, 6446 &free_sgl_list); 6447 total_cnt--; 6448 } 6449 } 6450 } 6451 6452 /* continue until a nembed page worth of sgls */ 6453 if (post_cnt == 0) 6454 continue; 6455 6456 /* post the buffer list sgls as a block */ 6457 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6458 post_cnt); 6459 6460 if (!status) { 6461 /* success, put sgl list to posted sgl list */ 6462 list_splice_init(&blck_sgl_list, &post_sgl_list); 6463 } else { 6464 /* Failure, put sgl list to free sgl list */ 6465 sglq_entry_first = list_first_entry(&blck_sgl_list, 6466 struct lpfc_sglq, 6467 list); 6468 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6469 "3160 Failed to post sgl-list, " 6470 "xritag:x%x-x%x\n", 6471 sglq_entry_first->sli4_xritag, 6472 (sglq_entry_first->sli4_xritag + 6473 post_cnt - 1)); 6474 list_splice_init(&blck_sgl_list, &free_sgl_list); 6475 total_cnt -= post_cnt; 6476 } 6477 6478 /* don't reset xirtag due to hole in xri block */ 6479 if (block_cnt == 0) 6480 last_xritag = NO_XRI; 6481 6482 /* reset sgl post count for next round of posting */ 6483 post_cnt = 0; 6484 } 6485 6486 /* free the sgls failed to post */ 6487 lpfc_free_sgl_list(phba, &free_sgl_list); 6488 6489 /* push sgls posted to the available list */ 6490 if (!list_empty(&post_sgl_list)) { 6491 spin_lock_irq(&phba->hbalock); 6492 spin_lock(&phba->sli4_hba.sgl_list_lock); 6493 list_splice_init(&post_sgl_list, sgl_list); 6494 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6495 spin_unlock_irq(&phba->hbalock); 6496 } else { 6497 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6498 "3161 Failure to post sgl to port.\n"); 6499 return -EIO; 6500 } 6501 6502 /* return the number of XRIs actually posted */ 6503 return total_cnt; 6504 } 6505 6506 void 6507 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6508 { 6509 uint32_t len; 6510 6511 len = sizeof(struct lpfc_mbx_set_host_data) - 6512 sizeof(struct lpfc_sli4_cfg_mhdr); 6513 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6514 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6515 LPFC_SLI4_MBX_EMBED); 6516 6517 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6518 mbox->u.mqe.un.set_host_data.param_len = 6519 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6520 snprintf(mbox->u.mqe.un.set_host_data.data, 6521 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6522 "Linux %s v"LPFC_DRIVER_VERSION, 6523 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6524 } 6525 6526 int 6527 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 6528 struct lpfc_queue *drq, int count, int idx) 6529 { 6530 int rc, i; 6531 struct lpfc_rqe hrqe; 6532 struct lpfc_rqe drqe; 6533 struct lpfc_rqb *rqbp; 6534 struct rqb_dmabuf *rqb_buffer; 6535 LIST_HEAD(rqb_buf_list); 6536 6537 rqbp = hrq->rqbp; 6538 for (i = 0; i < count; i++) { 6539 /* IF RQ is already full, don't bother */ 6540 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 6541 break; 6542 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 6543 if (!rqb_buffer) 6544 break; 6545 rqb_buffer->hrq = hrq; 6546 rqb_buffer->drq = drq; 6547 rqb_buffer->idx = idx; 6548 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 6549 } 6550 while (!list_empty(&rqb_buf_list)) { 6551 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 6552 hbuf.list); 6553 6554 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 6555 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 6556 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 6557 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 6558 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 6559 if (rc < 0) { 6560 rqbp->rqb_free_buffer(phba, rqb_buffer); 6561 } else { 6562 list_add_tail(&rqb_buffer->hbuf.list, 6563 &rqbp->rqb_buffer_list); 6564 rqbp->buffer_count++; 6565 } 6566 } 6567 return 1; 6568 } 6569 6570 /** 6571 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6572 * @phba: Pointer to HBA context object. 6573 * 6574 * This function is the main SLI4 device initialization PCI function. This 6575 * function is called by the HBA initialization code, HBA reset code and 6576 * HBA error attention handler code. Caller is not required to hold any 6577 * locks. 6578 **/ 6579 int 6580 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6581 { 6582 int rc, i, cnt; 6583 LPFC_MBOXQ_t *mboxq; 6584 struct lpfc_mqe *mqe; 6585 uint8_t *vpd; 6586 uint32_t vpd_size; 6587 uint32_t ftr_rsp = 0; 6588 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6589 struct lpfc_vport *vport = phba->pport; 6590 struct lpfc_dmabuf *mp; 6591 struct lpfc_rqb *rqbp; 6592 6593 /* Perform a PCI function reset to start from clean */ 6594 rc = lpfc_pci_function_reset(phba); 6595 if (unlikely(rc)) 6596 return -ENODEV; 6597 6598 /* Check the HBA Host Status Register for readyness */ 6599 rc = lpfc_sli4_post_status_check(phba); 6600 if (unlikely(rc)) 6601 return -ENODEV; 6602 else { 6603 spin_lock_irq(&phba->hbalock); 6604 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6605 spin_unlock_irq(&phba->hbalock); 6606 } 6607 6608 /* 6609 * Allocate a single mailbox container for initializing the 6610 * port. 6611 */ 6612 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6613 if (!mboxq) 6614 return -ENOMEM; 6615 6616 /* Issue READ_REV to collect vpd and FW information. */ 6617 vpd_size = SLI4_PAGE_SIZE; 6618 vpd = kzalloc(vpd_size, GFP_KERNEL); 6619 if (!vpd) { 6620 rc = -ENOMEM; 6621 goto out_free_mbox; 6622 } 6623 6624 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6625 if (unlikely(rc)) { 6626 kfree(vpd); 6627 goto out_free_mbox; 6628 } 6629 6630 mqe = &mboxq->u.mqe; 6631 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6632 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6633 phba->hba_flag |= HBA_FCOE_MODE; 6634 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6635 } else { 6636 phba->hba_flag &= ~HBA_FCOE_MODE; 6637 } 6638 6639 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6640 LPFC_DCBX_CEE_MODE) 6641 phba->hba_flag |= HBA_FIP_SUPPORT; 6642 else 6643 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6644 6645 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6646 6647 if (phba->sli_rev != LPFC_SLI_REV4) { 6648 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6649 "0376 READ_REV Error. SLI Level %d " 6650 "FCoE enabled %d\n", 6651 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6652 rc = -EIO; 6653 kfree(vpd); 6654 goto out_free_mbox; 6655 } 6656 6657 /* 6658 * Continue initialization with default values even if driver failed 6659 * to read FCoE param config regions, only read parameters if the 6660 * board is FCoE 6661 */ 6662 if (phba->hba_flag & HBA_FCOE_MODE && 6663 lpfc_sli4_read_fcoe_params(phba)) 6664 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6665 "2570 Failed to read FCoE parameters\n"); 6666 6667 /* 6668 * Retrieve sli4 device physical port name, failure of doing it 6669 * is considered as non-fatal. 6670 */ 6671 rc = lpfc_sli4_retrieve_pport_name(phba); 6672 if (!rc) 6673 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6674 "3080 Successful retrieving SLI4 device " 6675 "physical port name: %s.\n", phba->Port); 6676 6677 /* 6678 * Evaluate the read rev and vpd data. Populate the driver 6679 * state with the results. If this routine fails, the failure 6680 * is not fatal as the driver will use generic values. 6681 */ 6682 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6683 if (unlikely(!rc)) { 6684 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6685 "0377 Error %d parsing vpd. " 6686 "Using defaults.\n", rc); 6687 rc = 0; 6688 } 6689 kfree(vpd); 6690 6691 /* Save information as VPD data */ 6692 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6693 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6694 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6695 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6696 &mqe->un.read_rev); 6697 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6698 &mqe->un.read_rev); 6699 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6700 &mqe->un.read_rev); 6701 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6702 &mqe->un.read_rev); 6703 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6704 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6705 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6706 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6707 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6708 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6709 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6710 "(%d):0380 READ_REV Status x%x " 6711 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6712 mboxq->vport ? mboxq->vport->vpi : 0, 6713 bf_get(lpfc_mqe_status, mqe), 6714 phba->vpd.rev.opFwName, 6715 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6716 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6717 6718 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6719 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6720 if (phba->pport->cfg_lun_queue_depth > rc) { 6721 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6722 "3362 LUN queue depth changed from %d to %d\n", 6723 phba->pport->cfg_lun_queue_depth, rc); 6724 phba->pport->cfg_lun_queue_depth = rc; 6725 } 6726 6727 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6728 LPFC_SLI_INTF_IF_TYPE_0) { 6729 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6730 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6731 if (rc == MBX_SUCCESS) { 6732 phba->hba_flag |= HBA_RECOVERABLE_UE; 6733 /* Set 1Sec interval to detect UE */ 6734 phba->eratt_poll_interval = 1; 6735 phba->sli4_hba.ue_to_sr = bf_get( 6736 lpfc_mbx_set_feature_UESR, 6737 &mboxq->u.mqe.un.set_feature); 6738 phba->sli4_hba.ue_to_rp = bf_get( 6739 lpfc_mbx_set_feature_UERP, 6740 &mboxq->u.mqe.un.set_feature); 6741 } 6742 } 6743 6744 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6745 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6746 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6747 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6748 if (rc != MBX_SUCCESS) 6749 phba->mds_diags_support = 0; 6750 } 6751 6752 /* 6753 * Discover the port's supported feature set and match it against the 6754 * hosts requests. 6755 */ 6756 lpfc_request_features(phba, mboxq); 6757 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6758 if (unlikely(rc)) { 6759 rc = -EIO; 6760 goto out_free_mbox; 6761 } 6762 6763 /* 6764 * The port must support FCP initiator mode as this is the 6765 * only mode running in the host. 6766 */ 6767 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6768 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6769 "0378 No support for fcpi mode.\n"); 6770 ftr_rsp++; 6771 } 6772 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6773 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6774 else 6775 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6776 /* 6777 * If the port cannot support the host's requested features 6778 * then turn off the global config parameters to disable the 6779 * feature in the driver. This is not a fatal error. 6780 */ 6781 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6782 if (phba->cfg_enable_bg) { 6783 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6784 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6785 else 6786 ftr_rsp++; 6787 } 6788 6789 if (phba->max_vpi && phba->cfg_enable_npiv && 6790 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6791 ftr_rsp++; 6792 6793 if (ftr_rsp) { 6794 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6795 "0379 Feature Mismatch Data: x%08x %08x " 6796 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6797 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6798 phba->cfg_enable_npiv, phba->max_vpi); 6799 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6800 phba->cfg_enable_bg = 0; 6801 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6802 phba->cfg_enable_npiv = 0; 6803 } 6804 6805 /* These SLI3 features are assumed in SLI4 */ 6806 spin_lock_irq(&phba->hbalock); 6807 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6808 spin_unlock_irq(&phba->hbalock); 6809 6810 /* 6811 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6812 * calls depends on these resources to complete port setup. 6813 */ 6814 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6815 if (rc) { 6816 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6817 "2920 Failed to alloc Resource IDs " 6818 "rc = x%x\n", rc); 6819 goto out_free_mbox; 6820 } 6821 6822 lpfc_set_host_data(phba, mboxq); 6823 6824 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6825 if (rc) { 6826 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6827 "2134 Failed to set host os driver version %x", 6828 rc); 6829 } 6830 6831 /* Read the port's service parameters. */ 6832 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6833 if (rc) { 6834 phba->link_state = LPFC_HBA_ERROR; 6835 rc = -ENOMEM; 6836 goto out_free_mbox; 6837 } 6838 6839 mboxq->vport = vport; 6840 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6841 mp = (struct lpfc_dmabuf *) mboxq->context1; 6842 if (rc == MBX_SUCCESS) { 6843 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6844 rc = 0; 6845 } 6846 6847 /* 6848 * This memory was allocated by the lpfc_read_sparam routine. Release 6849 * it to the mbuf pool. 6850 */ 6851 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6852 kfree(mp); 6853 mboxq->context1 = NULL; 6854 if (unlikely(rc)) { 6855 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6856 "0382 READ_SPARAM command failed " 6857 "status %d, mbxStatus x%x\n", 6858 rc, bf_get(lpfc_mqe_status, mqe)); 6859 phba->link_state = LPFC_HBA_ERROR; 6860 rc = -EIO; 6861 goto out_free_mbox; 6862 } 6863 6864 lpfc_update_vport_wwn(vport); 6865 6866 /* Update the fc_host data structures with new wwn. */ 6867 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6868 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6869 6870 /* Create all the SLI4 queues */ 6871 rc = lpfc_sli4_queue_create(phba); 6872 if (rc) { 6873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6874 "3089 Failed to allocate queues\n"); 6875 rc = -ENODEV; 6876 goto out_free_mbox; 6877 } 6878 /* Set up all the queues to the device */ 6879 rc = lpfc_sli4_queue_setup(phba); 6880 if (unlikely(rc)) { 6881 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6882 "0381 Error %d during queue setup.\n ", rc); 6883 goto out_stop_timers; 6884 } 6885 /* Initialize the driver internal SLI layer lists. */ 6886 lpfc_sli4_setup(phba); 6887 lpfc_sli4_queue_init(phba); 6888 6889 /* update host els xri-sgl sizes and mappings */ 6890 rc = lpfc_sli4_els_sgl_update(phba); 6891 if (unlikely(rc)) { 6892 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6893 "1400 Failed to update xri-sgl size and " 6894 "mapping: %d\n", rc); 6895 goto out_destroy_queue; 6896 } 6897 6898 /* register the els sgl pool to the port */ 6899 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 6900 phba->sli4_hba.els_xri_cnt); 6901 if (unlikely(rc < 0)) { 6902 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6903 "0582 Error %d during els sgl post " 6904 "operation\n", rc); 6905 rc = -ENODEV; 6906 goto out_destroy_queue; 6907 } 6908 phba->sli4_hba.els_xri_cnt = rc; 6909 6910 if (phba->nvmet_support) { 6911 /* update host nvmet xri-sgl sizes and mappings */ 6912 rc = lpfc_sli4_nvmet_sgl_update(phba); 6913 if (unlikely(rc)) { 6914 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6915 "6308 Failed to update nvmet-sgl size " 6916 "and mapping: %d\n", rc); 6917 goto out_destroy_queue; 6918 } 6919 6920 /* register the nvmet sgl pool to the port */ 6921 rc = lpfc_sli4_repost_sgl_list( 6922 phba, 6923 &phba->sli4_hba.lpfc_nvmet_sgl_list, 6924 phba->sli4_hba.nvmet_xri_cnt); 6925 if (unlikely(rc < 0)) { 6926 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6927 "3117 Error %d during nvmet " 6928 "sgl post\n", rc); 6929 rc = -ENODEV; 6930 goto out_destroy_queue; 6931 } 6932 phba->sli4_hba.nvmet_xri_cnt = rc; 6933 6934 cnt = phba->cfg_iocb_cnt * 1024; 6935 /* We need 1 iocbq for every SGL, for IO processing */ 6936 cnt += phba->sli4_hba.nvmet_xri_cnt; 6937 } else { 6938 /* update host scsi xri-sgl sizes and mappings */ 6939 rc = lpfc_sli4_scsi_sgl_update(phba); 6940 if (unlikely(rc)) { 6941 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6942 "6309 Failed to update scsi-sgl size " 6943 "and mapping: %d\n", rc); 6944 goto out_destroy_queue; 6945 } 6946 6947 /* update host nvme xri-sgl sizes and mappings */ 6948 rc = lpfc_sli4_nvme_sgl_update(phba); 6949 if (unlikely(rc)) { 6950 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6951 "6082 Failed to update nvme-sgl size " 6952 "and mapping: %d\n", rc); 6953 goto out_destroy_queue; 6954 } 6955 6956 cnt = phba->cfg_iocb_cnt * 1024; 6957 } 6958 6959 if (!phba->sli.iocbq_lookup) { 6960 /* Initialize and populate the iocb list per host */ 6961 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6962 "2821 initialize iocb list %d total %d\n", 6963 phba->cfg_iocb_cnt, cnt); 6964 rc = lpfc_init_iocb_list(phba, cnt); 6965 if (rc) { 6966 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6967 "1413 Failed to init iocb list.\n"); 6968 goto out_destroy_queue; 6969 } 6970 } 6971 6972 if (phba->nvmet_support) 6973 lpfc_nvmet_create_targetport(phba); 6974 6975 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 6976 /* Post initial buffers to all RQs created */ 6977 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 6978 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 6979 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 6980 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 6981 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 6982 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 6983 rqbp->buffer_count = 0; 6984 6985 lpfc_post_rq_buffer( 6986 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 6987 phba->sli4_hba.nvmet_mrq_data[i], 6988 LPFC_NVMET_RQE_DEF_COUNT, i); 6989 } 6990 } 6991 6992 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 6993 /* register the allocated scsi sgl pool to the port */ 6994 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6995 if (unlikely(rc)) { 6996 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6997 "0383 Error %d during scsi sgl post " 6998 "operation\n", rc); 6999 /* Some Scsi buffers were moved to abort scsi list */ 7000 /* A pci function reset will repost them */ 7001 rc = -ENODEV; 7002 goto out_destroy_queue; 7003 } 7004 } 7005 7006 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 7007 (phba->nvmet_support == 0)) { 7008 7009 /* register the allocated nvme sgl pool to the port */ 7010 rc = lpfc_repost_nvme_sgl_list(phba); 7011 if (unlikely(rc)) { 7012 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7013 "6116 Error %d during nvme sgl post " 7014 "operation\n", rc); 7015 /* Some NVME buffers were moved to abort nvme list */ 7016 /* A pci function reset will repost them */ 7017 rc = -ENODEV; 7018 goto out_destroy_queue; 7019 } 7020 } 7021 7022 /* Post the rpi header region to the device. */ 7023 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7024 if (unlikely(rc)) { 7025 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7026 "0393 Error %d during rpi post operation\n", 7027 rc); 7028 rc = -ENODEV; 7029 goto out_destroy_queue; 7030 } 7031 lpfc_sli4_node_prep(phba); 7032 7033 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7034 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7035 /* 7036 * The FC Port needs to register FCFI (index 0) 7037 */ 7038 lpfc_reg_fcfi(phba, mboxq); 7039 mboxq->vport = phba->pport; 7040 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7041 if (rc != MBX_SUCCESS) 7042 goto out_unset_queue; 7043 rc = 0; 7044 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7045 &mboxq->u.mqe.un.reg_fcfi); 7046 } else { 7047 /* We are a NVME Target mode with MRQ > 1 */ 7048 7049 /* First register the FCFI */ 7050 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7051 mboxq->vport = phba->pport; 7052 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7053 if (rc != MBX_SUCCESS) 7054 goto out_unset_queue; 7055 rc = 0; 7056 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7057 &mboxq->u.mqe.un.reg_fcfi_mrq); 7058 7059 /* Next register the MRQs */ 7060 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7061 mboxq->vport = phba->pport; 7062 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7063 if (rc != MBX_SUCCESS) 7064 goto out_unset_queue; 7065 rc = 0; 7066 } 7067 /* Check if the port is configured to be disabled */ 7068 lpfc_sli_read_link_ste(phba); 7069 } 7070 7071 /* Arm the CQs and then EQs on device */ 7072 lpfc_sli4_arm_cqeq_intr(phba); 7073 7074 /* Indicate device interrupt mode */ 7075 phba->sli4_hba.intr_enable = 1; 7076 7077 /* Allow asynchronous mailbox command to go through */ 7078 spin_lock_irq(&phba->hbalock); 7079 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7080 spin_unlock_irq(&phba->hbalock); 7081 7082 /* Post receive buffers to the device */ 7083 lpfc_sli4_rb_setup(phba); 7084 7085 /* Reset HBA FCF states after HBA reset */ 7086 phba->fcf.fcf_flag = 0; 7087 phba->fcf.current_rec.flag = 0; 7088 7089 /* Start the ELS watchdog timer */ 7090 mod_timer(&vport->els_tmofunc, 7091 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7092 7093 /* Start heart beat timer */ 7094 mod_timer(&phba->hb_tmofunc, 7095 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7096 phba->hb_outstanding = 0; 7097 phba->last_completion_time = jiffies; 7098 7099 /* Start error attention (ERATT) polling timer */ 7100 mod_timer(&phba->eratt_poll, 7101 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7102 7103 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7104 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7105 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7106 if (!rc) { 7107 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7108 "2829 This device supports " 7109 "Advanced Error Reporting (AER)\n"); 7110 spin_lock_irq(&phba->hbalock); 7111 phba->hba_flag |= HBA_AER_ENABLED; 7112 spin_unlock_irq(&phba->hbalock); 7113 } else { 7114 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7115 "2830 This device does not support " 7116 "Advanced Error Reporting (AER)\n"); 7117 phba->cfg_aer_support = 0; 7118 } 7119 rc = 0; 7120 } 7121 7122 /* 7123 * The port is ready, set the host's link state to LINK_DOWN 7124 * in preparation for link interrupts. 7125 */ 7126 spin_lock_irq(&phba->hbalock); 7127 phba->link_state = LPFC_LINK_DOWN; 7128 spin_unlock_irq(&phba->hbalock); 7129 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7130 (phba->hba_flag & LINK_DISABLED)) { 7131 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7132 "3103 Adapter Link is disabled.\n"); 7133 lpfc_down_link(phba, mboxq); 7134 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7135 if (rc != MBX_SUCCESS) { 7136 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7137 "3104 Adapter failed to issue " 7138 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7139 goto out_unset_queue; 7140 } 7141 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7142 /* don't perform init_link on SLI4 FC port loopback test */ 7143 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7144 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7145 if (rc) 7146 goto out_unset_queue; 7147 } 7148 } 7149 mempool_free(mboxq, phba->mbox_mem_pool); 7150 return rc; 7151 out_unset_queue: 7152 /* Unset all the queues set up in this routine when error out */ 7153 lpfc_sli4_queue_unset(phba); 7154 out_destroy_queue: 7155 lpfc_free_iocb_list(phba); 7156 lpfc_sli4_queue_destroy(phba); 7157 out_stop_timers: 7158 lpfc_stop_hba_timers(phba); 7159 out_free_mbox: 7160 mempool_free(mboxq, phba->mbox_mem_pool); 7161 return rc; 7162 } 7163 7164 /** 7165 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7166 * @ptr: context object - pointer to hba structure. 7167 * 7168 * This is the callback function for mailbox timer. The mailbox 7169 * timer is armed when a new mailbox command is issued and the timer 7170 * is deleted when the mailbox complete. The function is called by 7171 * the kernel timer code when a mailbox does not complete within 7172 * expected time. This function wakes up the worker thread to 7173 * process the mailbox timeout and returns. All the processing is 7174 * done by the worker thread function lpfc_mbox_timeout_handler. 7175 **/ 7176 void 7177 lpfc_mbox_timeout(struct timer_list *t) 7178 { 7179 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7180 unsigned long iflag; 7181 uint32_t tmo_posted; 7182 7183 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7184 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7185 if (!tmo_posted) 7186 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7187 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7188 7189 if (!tmo_posted) 7190 lpfc_worker_wake_up(phba); 7191 return; 7192 } 7193 7194 /** 7195 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7196 * are pending 7197 * @phba: Pointer to HBA context object. 7198 * 7199 * This function checks if any mailbox completions are present on the mailbox 7200 * completion queue. 7201 **/ 7202 static bool 7203 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7204 { 7205 7206 uint32_t idx; 7207 struct lpfc_queue *mcq; 7208 struct lpfc_mcqe *mcqe; 7209 bool pending_completions = false; 7210 7211 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7212 return false; 7213 7214 /* Check for completions on mailbox completion queue */ 7215 7216 mcq = phba->sli4_hba.mbx_cq; 7217 idx = mcq->hba_index; 7218 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 7219 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7220 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7221 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7222 pending_completions = true; 7223 break; 7224 } 7225 idx = (idx + 1) % mcq->entry_count; 7226 if (mcq->hba_index == idx) 7227 break; 7228 } 7229 return pending_completions; 7230 7231 } 7232 7233 /** 7234 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7235 * that were missed. 7236 * @phba: Pointer to HBA context object. 7237 * 7238 * For sli4, it is possible to miss an interrupt. As such mbox completions 7239 * maybe missed causing erroneous mailbox timeouts to occur. This function 7240 * checks to see if mbox completions are on the mailbox completion queue 7241 * and will process all the completions associated with the eq for the 7242 * mailbox completion queue. 7243 **/ 7244 bool 7245 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7246 { 7247 7248 uint32_t eqidx; 7249 struct lpfc_queue *fpeq = NULL; 7250 struct lpfc_eqe *eqe; 7251 bool mbox_pending; 7252 7253 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7254 return false; 7255 7256 /* Find the eq associated with the mcq */ 7257 7258 if (phba->sli4_hba.hba_eq) 7259 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7260 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 7261 phba->sli4_hba.mbx_cq->assoc_qid) { 7262 fpeq = phba->sli4_hba.hba_eq[eqidx]; 7263 break; 7264 } 7265 if (!fpeq) 7266 return false; 7267 7268 /* Turn off interrupts from this EQ */ 7269 7270 lpfc_sli4_eq_clr_intr(fpeq); 7271 7272 /* Check to see if a mbox completion is pending */ 7273 7274 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7275 7276 /* 7277 * If a mbox completion is pending, process all the events on EQ 7278 * associated with the mbox completion queue (this could include 7279 * mailbox commands, async events, els commands, receive queue data 7280 * and fcp commands) 7281 */ 7282 7283 if (mbox_pending) 7284 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7285 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7286 fpeq->EQ_processed++; 7287 } 7288 7289 /* Always clear and re-arm the EQ */ 7290 7291 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7292 7293 return mbox_pending; 7294 7295 } 7296 7297 /** 7298 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7299 * @phba: Pointer to HBA context object. 7300 * 7301 * This function is called from worker thread when a mailbox command times out. 7302 * The caller is not required to hold any locks. This function will reset the 7303 * HBA and recover all the pending commands. 7304 **/ 7305 void 7306 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7307 { 7308 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7309 MAILBOX_t *mb = NULL; 7310 7311 struct lpfc_sli *psli = &phba->sli; 7312 7313 /* If the mailbox completed, process the completion and return */ 7314 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7315 return; 7316 7317 if (pmbox != NULL) 7318 mb = &pmbox->u.mb; 7319 /* Check the pmbox pointer first. There is a race condition 7320 * between the mbox timeout handler getting executed in the 7321 * worklist and the mailbox actually completing. When this 7322 * race condition occurs, the mbox_active will be NULL. 7323 */ 7324 spin_lock_irq(&phba->hbalock); 7325 if (pmbox == NULL) { 7326 lpfc_printf_log(phba, KERN_WARNING, 7327 LOG_MBOX | LOG_SLI, 7328 "0353 Active Mailbox cleared - mailbox timeout " 7329 "exiting\n"); 7330 spin_unlock_irq(&phba->hbalock); 7331 return; 7332 } 7333 7334 /* Mbox cmd <mbxCommand> timeout */ 7335 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7336 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7337 mb->mbxCommand, 7338 phba->pport->port_state, 7339 phba->sli.sli_flag, 7340 phba->sli.mbox_active); 7341 spin_unlock_irq(&phba->hbalock); 7342 7343 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7344 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7345 * it to fail all outstanding SCSI IO. 7346 */ 7347 spin_lock_irq(&phba->pport->work_port_lock); 7348 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7349 spin_unlock_irq(&phba->pport->work_port_lock); 7350 spin_lock_irq(&phba->hbalock); 7351 phba->link_state = LPFC_LINK_UNKNOWN; 7352 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7353 spin_unlock_irq(&phba->hbalock); 7354 7355 lpfc_sli_abort_fcp_rings(phba); 7356 7357 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7358 "0345 Resetting board due to mailbox timeout\n"); 7359 7360 /* Reset the HBA device */ 7361 lpfc_reset_hba(phba); 7362 } 7363 7364 /** 7365 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7366 * @phba: Pointer to HBA context object. 7367 * @pmbox: Pointer to mailbox object. 7368 * @flag: Flag indicating how the mailbox need to be processed. 7369 * 7370 * This function is called by discovery code and HBA management code 7371 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7372 * function gets the hbalock to protect the data structures. 7373 * The mailbox command can be submitted in polling mode, in which case 7374 * this function will wait in a polling loop for the completion of the 7375 * mailbox. 7376 * If the mailbox is submitted in no_wait mode (not polling) the 7377 * function will submit the command and returns immediately without waiting 7378 * for the mailbox completion. The no_wait is supported only when HBA 7379 * is in SLI2/SLI3 mode - interrupts are enabled. 7380 * The SLI interface allows only one mailbox pending at a time. If the 7381 * mailbox is issued in polling mode and there is already a mailbox 7382 * pending, then the function will return an error. If the mailbox is issued 7383 * in NO_WAIT mode and there is a mailbox pending already, the function 7384 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7385 * The sli layer owns the mailbox object until the completion of mailbox 7386 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7387 * return codes the caller owns the mailbox command after the return of 7388 * the function. 7389 **/ 7390 static int 7391 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7392 uint32_t flag) 7393 { 7394 MAILBOX_t *mbx; 7395 struct lpfc_sli *psli = &phba->sli; 7396 uint32_t status, evtctr; 7397 uint32_t ha_copy, hc_copy; 7398 int i; 7399 unsigned long timeout; 7400 unsigned long drvr_flag = 0; 7401 uint32_t word0, ldata; 7402 void __iomem *to_slim; 7403 int processing_queue = 0; 7404 7405 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7406 if (!pmbox) { 7407 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7408 /* processing mbox queue from intr_handler */ 7409 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7410 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7411 return MBX_SUCCESS; 7412 } 7413 processing_queue = 1; 7414 pmbox = lpfc_mbox_get(phba); 7415 if (!pmbox) { 7416 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7417 return MBX_SUCCESS; 7418 } 7419 } 7420 7421 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7422 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7423 if(!pmbox->vport) { 7424 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7425 lpfc_printf_log(phba, KERN_ERR, 7426 LOG_MBOX | LOG_VPORT, 7427 "1806 Mbox x%x failed. No vport\n", 7428 pmbox->u.mb.mbxCommand); 7429 dump_stack(); 7430 goto out_not_finished; 7431 } 7432 } 7433 7434 /* If the PCI channel is in offline state, do not post mbox. */ 7435 if (unlikely(pci_channel_offline(phba->pcidev))) { 7436 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7437 goto out_not_finished; 7438 } 7439 7440 /* If HBA has a deferred error attention, fail the iocb. */ 7441 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7442 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7443 goto out_not_finished; 7444 } 7445 7446 psli = &phba->sli; 7447 7448 mbx = &pmbox->u.mb; 7449 status = MBX_SUCCESS; 7450 7451 if (phba->link_state == LPFC_HBA_ERROR) { 7452 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7453 7454 /* Mbox command <mbxCommand> cannot issue */ 7455 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7456 "(%d):0311 Mailbox command x%x cannot " 7457 "issue Data: x%x x%x\n", 7458 pmbox->vport ? pmbox->vport->vpi : 0, 7459 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7460 goto out_not_finished; 7461 } 7462 7463 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7464 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7465 !(hc_copy & HC_MBINT_ENA)) { 7466 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7467 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7468 "(%d):2528 Mailbox command x%x cannot " 7469 "issue Data: x%x x%x\n", 7470 pmbox->vport ? pmbox->vport->vpi : 0, 7471 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7472 goto out_not_finished; 7473 } 7474 } 7475 7476 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7477 /* Polling for a mbox command when another one is already active 7478 * is not allowed in SLI. Also, the driver must have established 7479 * SLI2 mode to queue and process multiple mbox commands. 7480 */ 7481 7482 if (flag & MBX_POLL) { 7483 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7484 7485 /* Mbox command <mbxCommand> cannot issue */ 7486 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7487 "(%d):2529 Mailbox command x%x " 7488 "cannot issue Data: x%x x%x\n", 7489 pmbox->vport ? pmbox->vport->vpi : 0, 7490 pmbox->u.mb.mbxCommand, 7491 psli->sli_flag, flag); 7492 goto out_not_finished; 7493 } 7494 7495 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7496 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7497 /* Mbox command <mbxCommand> cannot issue */ 7498 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7499 "(%d):2530 Mailbox command x%x " 7500 "cannot issue Data: x%x x%x\n", 7501 pmbox->vport ? pmbox->vport->vpi : 0, 7502 pmbox->u.mb.mbxCommand, 7503 psli->sli_flag, flag); 7504 goto out_not_finished; 7505 } 7506 7507 /* Another mailbox command is still being processed, queue this 7508 * command to be processed later. 7509 */ 7510 lpfc_mbox_put(phba, pmbox); 7511 7512 /* Mbox cmd issue - BUSY */ 7513 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7514 "(%d):0308 Mbox cmd issue - BUSY Data: " 7515 "x%x x%x x%x x%x\n", 7516 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7517 mbx->mbxCommand, 7518 phba->pport ? phba->pport->port_state : 0xff, 7519 psli->sli_flag, flag); 7520 7521 psli->slistat.mbox_busy++; 7522 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7523 7524 if (pmbox->vport) { 7525 lpfc_debugfs_disc_trc(pmbox->vport, 7526 LPFC_DISC_TRC_MBOX_VPORT, 7527 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7528 (uint32_t)mbx->mbxCommand, 7529 mbx->un.varWords[0], mbx->un.varWords[1]); 7530 } 7531 else { 7532 lpfc_debugfs_disc_trc(phba->pport, 7533 LPFC_DISC_TRC_MBOX, 7534 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7535 (uint32_t)mbx->mbxCommand, 7536 mbx->un.varWords[0], mbx->un.varWords[1]); 7537 } 7538 7539 return MBX_BUSY; 7540 } 7541 7542 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7543 7544 /* If we are not polling, we MUST be in SLI2 mode */ 7545 if (flag != MBX_POLL) { 7546 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7547 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7548 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7549 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7550 /* Mbox command <mbxCommand> cannot issue */ 7551 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7552 "(%d):2531 Mailbox command x%x " 7553 "cannot issue Data: x%x x%x\n", 7554 pmbox->vport ? pmbox->vport->vpi : 0, 7555 pmbox->u.mb.mbxCommand, 7556 psli->sli_flag, flag); 7557 goto out_not_finished; 7558 } 7559 /* timeout active mbox command */ 7560 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7561 1000); 7562 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7563 } 7564 7565 /* Mailbox cmd <cmd> issue */ 7566 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7567 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7568 "x%x\n", 7569 pmbox->vport ? pmbox->vport->vpi : 0, 7570 mbx->mbxCommand, 7571 phba->pport ? phba->pport->port_state : 0xff, 7572 psli->sli_flag, flag); 7573 7574 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7575 if (pmbox->vport) { 7576 lpfc_debugfs_disc_trc(pmbox->vport, 7577 LPFC_DISC_TRC_MBOX_VPORT, 7578 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7579 (uint32_t)mbx->mbxCommand, 7580 mbx->un.varWords[0], mbx->un.varWords[1]); 7581 } 7582 else { 7583 lpfc_debugfs_disc_trc(phba->pport, 7584 LPFC_DISC_TRC_MBOX, 7585 "MBOX Send: cmd:x%x mb:x%x x%x", 7586 (uint32_t)mbx->mbxCommand, 7587 mbx->un.varWords[0], mbx->un.varWords[1]); 7588 } 7589 } 7590 7591 psli->slistat.mbox_cmd++; 7592 evtctr = psli->slistat.mbox_event; 7593 7594 /* next set own bit for the adapter and copy over command word */ 7595 mbx->mbxOwner = OWN_CHIP; 7596 7597 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7598 /* Populate mbox extension offset word. */ 7599 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7600 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7601 = (uint8_t *)phba->mbox_ext 7602 - (uint8_t *)phba->mbox; 7603 } 7604 7605 /* Copy the mailbox extension data */ 7606 if (pmbox->in_ext_byte_len && pmbox->context2) { 7607 lpfc_sli_pcimem_bcopy(pmbox->context2, 7608 (uint8_t *)phba->mbox_ext, 7609 pmbox->in_ext_byte_len); 7610 } 7611 /* Copy command data to host SLIM area */ 7612 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7613 } else { 7614 /* Populate mbox extension offset word. */ 7615 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7616 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7617 = MAILBOX_HBA_EXT_OFFSET; 7618 7619 /* Copy the mailbox extension data */ 7620 if (pmbox->in_ext_byte_len && pmbox->context2) 7621 lpfc_memcpy_to_slim(phba->MBslimaddr + 7622 MAILBOX_HBA_EXT_OFFSET, 7623 pmbox->context2, pmbox->in_ext_byte_len); 7624 7625 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7626 /* copy command data into host mbox for cmpl */ 7627 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7628 MAILBOX_CMD_SIZE); 7629 7630 /* First copy mbox command data to HBA SLIM, skip past first 7631 word */ 7632 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7633 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7634 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7635 7636 /* Next copy over first word, with mbxOwner set */ 7637 ldata = *((uint32_t *)mbx); 7638 to_slim = phba->MBslimaddr; 7639 writel(ldata, to_slim); 7640 readl(to_slim); /* flush */ 7641 7642 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7643 /* switch over to host mailbox */ 7644 psli->sli_flag |= LPFC_SLI_ACTIVE; 7645 } 7646 7647 wmb(); 7648 7649 switch (flag) { 7650 case MBX_NOWAIT: 7651 /* Set up reference to mailbox command */ 7652 psli->mbox_active = pmbox; 7653 /* Interrupt board to do it */ 7654 writel(CA_MBATT, phba->CAregaddr); 7655 readl(phba->CAregaddr); /* flush */ 7656 /* Don't wait for it to finish, just return */ 7657 break; 7658 7659 case MBX_POLL: 7660 /* Set up null reference to mailbox command */ 7661 psli->mbox_active = NULL; 7662 /* Interrupt board to do it */ 7663 writel(CA_MBATT, phba->CAregaddr); 7664 readl(phba->CAregaddr); /* flush */ 7665 7666 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7667 /* First read mbox status word */ 7668 word0 = *((uint32_t *)phba->mbox); 7669 word0 = le32_to_cpu(word0); 7670 } else { 7671 /* First read mbox status word */ 7672 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7673 spin_unlock_irqrestore(&phba->hbalock, 7674 drvr_flag); 7675 goto out_not_finished; 7676 } 7677 } 7678 7679 /* Read the HBA Host Attention Register */ 7680 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7681 spin_unlock_irqrestore(&phba->hbalock, 7682 drvr_flag); 7683 goto out_not_finished; 7684 } 7685 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7686 1000) + jiffies; 7687 i = 0; 7688 /* Wait for command to complete */ 7689 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7690 (!(ha_copy & HA_MBATT) && 7691 (phba->link_state > LPFC_WARM_START))) { 7692 if (time_after(jiffies, timeout)) { 7693 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7694 spin_unlock_irqrestore(&phba->hbalock, 7695 drvr_flag); 7696 goto out_not_finished; 7697 } 7698 7699 /* Check if we took a mbox interrupt while we were 7700 polling */ 7701 if (((word0 & OWN_CHIP) != OWN_CHIP) 7702 && (evtctr != psli->slistat.mbox_event)) 7703 break; 7704 7705 if (i++ > 10) { 7706 spin_unlock_irqrestore(&phba->hbalock, 7707 drvr_flag); 7708 msleep(1); 7709 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7710 } 7711 7712 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7713 /* First copy command data */ 7714 word0 = *((uint32_t *)phba->mbox); 7715 word0 = le32_to_cpu(word0); 7716 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7717 MAILBOX_t *slimmb; 7718 uint32_t slimword0; 7719 /* Check real SLIM for any errors */ 7720 slimword0 = readl(phba->MBslimaddr); 7721 slimmb = (MAILBOX_t *) & slimword0; 7722 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7723 && slimmb->mbxStatus) { 7724 psli->sli_flag &= 7725 ~LPFC_SLI_ACTIVE; 7726 word0 = slimword0; 7727 } 7728 } 7729 } else { 7730 /* First copy command data */ 7731 word0 = readl(phba->MBslimaddr); 7732 } 7733 /* Read the HBA Host Attention Register */ 7734 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7735 spin_unlock_irqrestore(&phba->hbalock, 7736 drvr_flag); 7737 goto out_not_finished; 7738 } 7739 } 7740 7741 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7742 /* copy results back to user */ 7743 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7744 MAILBOX_CMD_SIZE); 7745 /* Copy the mailbox extension data */ 7746 if (pmbox->out_ext_byte_len && pmbox->context2) { 7747 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7748 pmbox->context2, 7749 pmbox->out_ext_byte_len); 7750 } 7751 } else { 7752 /* First copy command data */ 7753 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7754 MAILBOX_CMD_SIZE); 7755 /* Copy the mailbox extension data */ 7756 if (pmbox->out_ext_byte_len && pmbox->context2) { 7757 lpfc_memcpy_from_slim(pmbox->context2, 7758 phba->MBslimaddr + 7759 MAILBOX_HBA_EXT_OFFSET, 7760 pmbox->out_ext_byte_len); 7761 } 7762 } 7763 7764 writel(HA_MBATT, phba->HAregaddr); 7765 readl(phba->HAregaddr); /* flush */ 7766 7767 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7768 status = mbx->mbxStatus; 7769 } 7770 7771 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7772 return status; 7773 7774 out_not_finished: 7775 if (processing_queue) { 7776 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7777 lpfc_mbox_cmpl_put(phba, pmbox); 7778 } 7779 return MBX_NOT_FINISHED; 7780 } 7781 7782 /** 7783 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7784 * @phba: Pointer to HBA context object. 7785 * 7786 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7787 * the driver internal pending mailbox queue. It will then try to wait out the 7788 * possible outstanding mailbox command before return. 7789 * 7790 * Returns: 7791 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7792 * the outstanding mailbox command timed out. 7793 **/ 7794 static int 7795 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7796 { 7797 struct lpfc_sli *psli = &phba->sli; 7798 int rc = 0; 7799 unsigned long timeout = 0; 7800 7801 /* Mark the asynchronous mailbox command posting as blocked */ 7802 spin_lock_irq(&phba->hbalock); 7803 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7804 /* Determine how long we might wait for the active mailbox 7805 * command to be gracefully completed by firmware. 7806 */ 7807 if (phba->sli.mbox_active) 7808 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7809 phba->sli.mbox_active) * 7810 1000) + jiffies; 7811 spin_unlock_irq(&phba->hbalock); 7812 7813 /* Make sure the mailbox is really active */ 7814 if (timeout) 7815 lpfc_sli4_process_missed_mbox_completions(phba); 7816 7817 /* Wait for the outstnading mailbox command to complete */ 7818 while (phba->sli.mbox_active) { 7819 /* Check active mailbox complete status every 2ms */ 7820 msleep(2); 7821 if (time_after(jiffies, timeout)) { 7822 /* Timeout, marked the outstanding cmd not complete */ 7823 rc = 1; 7824 break; 7825 } 7826 } 7827 7828 /* Can not cleanly block async mailbox command, fails it */ 7829 if (rc) { 7830 spin_lock_irq(&phba->hbalock); 7831 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7832 spin_unlock_irq(&phba->hbalock); 7833 } 7834 return rc; 7835 } 7836 7837 /** 7838 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7839 * @phba: Pointer to HBA context object. 7840 * 7841 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7842 * commands from the driver internal pending mailbox queue. It makes sure 7843 * that there is no outstanding mailbox command before resuming posting 7844 * asynchronous mailbox commands. If, for any reason, there is outstanding 7845 * mailbox command, it will try to wait it out before resuming asynchronous 7846 * mailbox command posting. 7847 **/ 7848 static void 7849 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7850 { 7851 struct lpfc_sli *psli = &phba->sli; 7852 7853 spin_lock_irq(&phba->hbalock); 7854 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7855 /* Asynchronous mailbox posting is not blocked, do nothing */ 7856 spin_unlock_irq(&phba->hbalock); 7857 return; 7858 } 7859 7860 /* Outstanding synchronous mailbox command is guaranteed to be done, 7861 * successful or timeout, after timing-out the outstanding mailbox 7862 * command shall always be removed, so just unblock posting async 7863 * mailbox command and resume 7864 */ 7865 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7866 spin_unlock_irq(&phba->hbalock); 7867 7868 /* wake up worker thread to post asynchronlous mailbox command */ 7869 lpfc_worker_wake_up(phba); 7870 } 7871 7872 /** 7873 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7874 * @phba: Pointer to HBA context object. 7875 * @mboxq: Pointer to mailbox object. 7876 * 7877 * The function waits for the bootstrap mailbox register ready bit from 7878 * port for twice the regular mailbox command timeout value. 7879 * 7880 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7881 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7882 **/ 7883 static int 7884 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7885 { 7886 uint32_t db_ready; 7887 unsigned long timeout; 7888 struct lpfc_register bmbx_reg; 7889 7890 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7891 * 1000) + jiffies; 7892 7893 do { 7894 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7895 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7896 if (!db_ready) 7897 msleep(2); 7898 7899 if (time_after(jiffies, timeout)) 7900 return MBXERR_ERROR; 7901 } while (!db_ready); 7902 7903 return 0; 7904 } 7905 7906 /** 7907 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7908 * @phba: Pointer to HBA context object. 7909 * @mboxq: Pointer to mailbox object. 7910 * 7911 * The function posts a mailbox to the port. The mailbox is expected 7912 * to be comletely filled in and ready for the port to operate on it. 7913 * This routine executes a synchronous completion operation on the 7914 * mailbox by polling for its completion. 7915 * 7916 * The caller must not be holding any locks when calling this routine. 7917 * 7918 * Returns: 7919 * MBX_SUCCESS - mailbox posted successfully 7920 * Any of the MBX error values. 7921 **/ 7922 static int 7923 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7924 { 7925 int rc = MBX_SUCCESS; 7926 unsigned long iflag; 7927 uint32_t mcqe_status; 7928 uint32_t mbx_cmnd; 7929 struct lpfc_sli *psli = &phba->sli; 7930 struct lpfc_mqe *mb = &mboxq->u.mqe; 7931 struct lpfc_bmbx_create *mbox_rgn; 7932 struct dma_address *dma_address; 7933 7934 /* 7935 * Only one mailbox can be active to the bootstrap mailbox region 7936 * at a time and there is no queueing provided. 7937 */ 7938 spin_lock_irqsave(&phba->hbalock, iflag); 7939 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7940 spin_unlock_irqrestore(&phba->hbalock, iflag); 7941 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7942 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7943 "cannot issue Data: x%x x%x\n", 7944 mboxq->vport ? mboxq->vport->vpi : 0, 7945 mboxq->u.mb.mbxCommand, 7946 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7947 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7948 psli->sli_flag, MBX_POLL); 7949 return MBXERR_ERROR; 7950 } 7951 /* The server grabs the token and owns it until release */ 7952 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7953 phba->sli.mbox_active = mboxq; 7954 spin_unlock_irqrestore(&phba->hbalock, iflag); 7955 7956 /* wait for bootstrap mbox register for readyness */ 7957 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7958 if (rc) 7959 goto exit; 7960 7961 /* 7962 * Initialize the bootstrap memory region to avoid stale data areas 7963 * in the mailbox post. Then copy the caller's mailbox contents to 7964 * the bmbx mailbox region. 7965 */ 7966 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7967 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7968 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7969 sizeof(struct lpfc_mqe)); 7970 7971 /* Post the high mailbox dma address to the port and wait for ready. */ 7972 dma_address = &phba->sli4_hba.bmbx.dma_address; 7973 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7974 7975 /* wait for bootstrap mbox register for hi-address write done */ 7976 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7977 if (rc) 7978 goto exit; 7979 7980 /* Post the low mailbox dma address to the port. */ 7981 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7982 7983 /* wait for bootstrap mbox register for low address write done */ 7984 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7985 if (rc) 7986 goto exit; 7987 7988 /* 7989 * Read the CQ to ensure the mailbox has completed. 7990 * If so, update the mailbox status so that the upper layers 7991 * can complete the request normally. 7992 */ 7993 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7994 sizeof(struct lpfc_mqe)); 7995 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7996 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7997 sizeof(struct lpfc_mcqe)); 7998 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7999 /* 8000 * When the CQE status indicates a failure and the mailbox status 8001 * indicates success then copy the CQE status into the mailbox status 8002 * (and prefix it with x4000). 8003 */ 8004 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8005 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8006 bf_set(lpfc_mqe_status, mb, 8007 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8008 rc = MBXERR_ERROR; 8009 } else 8010 lpfc_sli4_swap_str(phba, mboxq); 8011 8012 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8013 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8014 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8015 " x%x x%x CQ: x%x x%x x%x x%x\n", 8016 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8017 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8018 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8019 bf_get(lpfc_mqe_status, mb), 8020 mb->un.mb_words[0], mb->un.mb_words[1], 8021 mb->un.mb_words[2], mb->un.mb_words[3], 8022 mb->un.mb_words[4], mb->un.mb_words[5], 8023 mb->un.mb_words[6], mb->un.mb_words[7], 8024 mb->un.mb_words[8], mb->un.mb_words[9], 8025 mb->un.mb_words[10], mb->un.mb_words[11], 8026 mb->un.mb_words[12], mboxq->mcqe.word0, 8027 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8028 mboxq->mcqe.trailer); 8029 exit: 8030 /* We are holding the token, no needed for lock when release */ 8031 spin_lock_irqsave(&phba->hbalock, iflag); 8032 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8033 phba->sli.mbox_active = NULL; 8034 spin_unlock_irqrestore(&phba->hbalock, iflag); 8035 return rc; 8036 } 8037 8038 /** 8039 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8040 * @phba: Pointer to HBA context object. 8041 * @pmbox: Pointer to mailbox object. 8042 * @flag: Flag indicating how the mailbox need to be processed. 8043 * 8044 * This function is called by discovery code and HBA management code to submit 8045 * a mailbox command to firmware with SLI-4 interface spec. 8046 * 8047 * Return codes the caller owns the mailbox command after the return of the 8048 * function. 8049 **/ 8050 static int 8051 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8052 uint32_t flag) 8053 { 8054 struct lpfc_sli *psli = &phba->sli; 8055 unsigned long iflags; 8056 int rc; 8057 8058 /* dump from issue mailbox command if setup */ 8059 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8060 8061 rc = lpfc_mbox_dev_check(phba); 8062 if (unlikely(rc)) { 8063 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8064 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8065 "cannot issue Data: x%x x%x\n", 8066 mboxq->vport ? mboxq->vport->vpi : 0, 8067 mboxq->u.mb.mbxCommand, 8068 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8069 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8070 psli->sli_flag, flag); 8071 goto out_not_finished; 8072 } 8073 8074 /* Detect polling mode and jump to a handler */ 8075 if (!phba->sli4_hba.intr_enable) { 8076 if (flag == MBX_POLL) 8077 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8078 else 8079 rc = -EIO; 8080 if (rc != MBX_SUCCESS) 8081 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8082 "(%d):2541 Mailbox command x%x " 8083 "(x%x/x%x) failure: " 8084 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8085 "Data: x%x x%x\n,", 8086 mboxq->vport ? mboxq->vport->vpi : 0, 8087 mboxq->u.mb.mbxCommand, 8088 lpfc_sli_config_mbox_subsys_get(phba, 8089 mboxq), 8090 lpfc_sli_config_mbox_opcode_get(phba, 8091 mboxq), 8092 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8093 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8094 bf_get(lpfc_mcqe_ext_status, 8095 &mboxq->mcqe), 8096 psli->sli_flag, flag); 8097 return rc; 8098 } else if (flag == MBX_POLL) { 8099 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8100 "(%d):2542 Try to issue mailbox command " 8101 "x%x (x%x/x%x) synchronously ahead of async" 8102 "mailbox command queue: x%x x%x\n", 8103 mboxq->vport ? mboxq->vport->vpi : 0, 8104 mboxq->u.mb.mbxCommand, 8105 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8106 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8107 psli->sli_flag, flag); 8108 /* Try to block the asynchronous mailbox posting */ 8109 rc = lpfc_sli4_async_mbox_block(phba); 8110 if (!rc) { 8111 /* Successfully blocked, now issue sync mbox cmd */ 8112 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8113 if (rc != MBX_SUCCESS) 8114 lpfc_printf_log(phba, KERN_WARNING, 8115 LOG_MBOX | LOG_SLI, 8116 "(%d):2597 Sync Mailbox command " 8117 "x%x (x%x/x%x) failure: " 8118 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8119 "Data: x%x x%x\n,", 8120 mboxq->vport ? mboxq->vport->vpi : 0, 8121 mboxq->u.mb.mbxCommand, 8122 lpfc_sli_config_mbox_subsys_get(phba, 8123 mboxq), 8124 lpfc_sli_config_mbox_opcode_get(phba, 8125 mboxq), 8126 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8127 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8128 bf_get(lpfc_mcqe_ext_status, 8129 &mboxq->mcqe), 8130 psli->sli_flag, flag); 8131 /* Unblock the async mailbox posting afterward */ 8132 lpfc_sli4_async_mbox_unblock(phba); 8133 } 8134 return rc; 8135 } 8136 8137 /* Now, interrupt mode asynchrous mailbox command */ 8138 rc = lpfc_mbox_cmd_check(phba, mboxq); 8139 if (rc) { 8140 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8141 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8142 "cannot issue Data: x%x x%x\n", 8143 mboxq->vport ? mboxq->vport->vpi : 0, 8144 mboxq->u.mb.mbxCommand, 8145 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8146 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8147 psli->sli_flag, flag); 8148 goto out_not_finished; 8149 } 8150 8151 /* Put the mailbox command to the driver internal FIFO */ 8152 psli->slistat.mbox_busy++; 8153 spin_lock_irqsave(&phba->hbalock, iflags); 8154 lpfc_mbox_put(phba, mboxq); 8155 spin_unlock_irqrestore(&phba->hbalock, iflags); 8156 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8157 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8158 "x%x (x%x/x%x) x%x x%x x%x\n", 8159 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8160 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8161 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8162 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8163 phba->pport->port_state, 8164 psli->sli_flag, MBX_NOWAIT); 8165 /* Wake up worker thread to transport mailbox command from head */ 8166 lpfc_worker_wake_up(phba); 8167 8168 return MBX_BUSY; 8169 8170 out_not_finished: 8171 return MBX_NOT_FINISHED; 8172 } 8173 8174 /** 8175 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8176 * @phba: Pointer to HBA context object. 8177 * 8178 * This function is called by worker thread to send a mailbox command to 8179 * SLI4 HBA firmware. 8180 * 8181 **/ 8182 int 8183 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8184 { 8185 struct lpfc_sli *psli = &phba->sli; 8186 LPFC_MBOXQ_t *mboxq; 8187 int rc = MBX_SUCCESS; 8188 unsigned long iflags; 8189 struct lpfc_mqe *mqe; 8190 uint32_t mbx_cmnd; 8191 8192 /* Check interrupt mode before post async mailbox command */ 8193 if (unlikely(!phba->sli4_hba.intr_enable)) 8194 return MBX_NOT_FINISHED; 8195 8196 /* Check for mailbox command service token */ 8197 spin_lock_irqsave(&phba->hbalock, iflags); 8198 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8199 spin_unlock_irqrestore(&phba->hbalock, iflags); 8200 return MBX_NOT_FINISHED; 8201 } 8202 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8203 spin_unlock_irqrestore(&phba->hbalock, iflags); 8204 return MBX_NOT_FINISHED; 8205 } 8206 if (unlikely(phba->sli.mbox_active)) { 8207 spin_unlock_irqrestore(&phba->hbalock, iflags); 8208 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8209 "0384 There is pending active mailbox cmd\n"); 8210 return MBX_NOT_FINISHED; 8211 } 8212 /* Take the mailbox command service token */ 8213 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8214 8215 /* Get the next mailbox command from head of queue */ 8216 mboxq = lpfc_mbox_get(phba); 8217 8218 /* If no more mailbox command waiting for post, we're done */ 8219 if (!mboxq) { 8220 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8221 spin_unlock_irqrestore(&phba->hbalock, iflags); 8222 return MBX_SUCCESS; 8223 } 8224 phba->sli.mbox_active = mboxq; 8225 spin_unlock_irqrestore(&phba->hbalock, iflags); 8226 8227 /* Check device readiness for posting mailbox command */ 8228 rc = lpfc_mbox_dev_check(phba); 8229 if (unlikely(rc)) 8230 /* Driver clean routine will clean up pending mailbox */ 8231 goto out_not_finished; 8232 8233 /* Prepare the mbox command to be posted */ 8234 mqe = &mboxq->u.mqe; 8235 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8236 8237 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8238 mod_timer(&psli->mbox_tmo, (jiffies + 8239 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8240 8241 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8242 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8243 "x%x x%x\n", 8244 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8245 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8246 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8247 phba->pport->port_state, psli->sli_flag); 8248 8249 if (mbx_cmnd != MBX_HEARTBEAT) { 8250 if (mboxq->vport) { 8251 lpfc_debugfs_disc_trc(mboxq->vport, 8252 LPFC_DISC_TRC_MBOX_VPORT, 8253 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8254 mbx_cmnd, mqe->un.mb_words[0], 8255 mqe->un.mb_words[1]); 8256 } else { 8257 lpfc_debugfs_disc_trc(phba->pport, 8258 LPFC_DISC_TRC_MBOX, 8259 "MBOX Send: cmd:x%x mb:x%x x%x", 8260 mbx_cmnd, mqe->un.mb_words[0], 8261 mqe->un.mb_words[1]); 8262 } 8263 } 8264 psli->slistat.mbox_cmd++; 8265 8266 /* Post the mailbox command to the port */ 8267 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8268 if (rc != MBX_SUCCESS) { 8269 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8270 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8271 "cannot issue Data: x%x x%x\n", 8272 mboxq->vport ? mboxq->vport->vpi : 0, 8273 mboxq->u.mb.mbxCommand, 8274 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8275 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8276 psli->sli_flag, MBX_NOWAIT); 8277 goto out_not_finished; 8278 } 8279 8280 return rc; 8281 8282 out_not_finished: 8283 spin_lock_irqsave(&phba->hbalock, iflags); 8284 if (phba->sli.mbox_active) { 8285 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8286 __lpfc_mbox_cmpl_put(phba, mboxq); 8287 /* Release the token */ 8288 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8289 phba->sli.mbox_active = NULL; 8290 } 8291 spin_unlock_irqrestore(&phba->hbalock, iflags); 8292 8293 return MBX_NOT_FINISHED; 8294 } 8295 8296 /** 8297 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8298 * @phba: Pointer to HBA context object. 8299 * @pmbox: Pointer to mailbox object. 8300 * @flag: Flag indicating how the mailbox need to be processed. 8301 * 8302 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8303 * the API jump table function pointer from the lpfc_hba struct. 8304 * 8305 * Return codes the caller owns the mailbox command after the return of the 8306 * function. 8307 **/ 8308 int 8309 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8310 { 8311 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8312 } 8313 8314 /** 8315 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8316 * @phba: The hba struct for which this call is being executed. 8317 * @dev_grp: The HBA PCI-Device group number. 8318 * 8319 * This routine sets up the mbox interface API function jump table in @phba 8320 * struct. 8321 * Returns: 0 - success, -ENODEV - failure. 8322 **/ 8323 int 8324 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8325 { 8326 8327 switch (dev_grp) { 8328 case LPFC_PCI_DEV_LP: 8329 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8330 phba->lpfc_sli_handle_slow_ring_event = 8331 lpfc_sli_handle_slow_ring_event_s3; 8332 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8333 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8334 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8335 break; 8336 case LPFC_PCI_DEV_OC: 8337 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8338 phba->lpfc_sli_handle_slow_ring_event = 8339 lpfc_sli_handle_slow_ring_event_s4; 8340 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8341 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8342 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8343 break; 8344 default: 8345 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8346 "1420 Invalid HBA PCI-device group: 0x%x\n", 8347 dev_grp); 8348 return -ENODEV; 8349 break; 8350 } 8351 return 0; 8352 } 8353 8354 /** 8355 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8356 * @phba: Pointer to HBA context object. 8357 * @pring: Pointer to driver SLI ring object. 8358 * @piocb: Pointer to address of newly added command iocb. 8359 * 8360 * This function is called with hbalock held to add a command 8361 * iocb to the txq when SLI layer cannot submit the command iocb 8362 * to the ring. 8363 **/ 8364 void 8365 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8366 struct lpfc_iocbq *piocb) 8367 { 8368 lockdep_assert_held(&phba->hbalock); 8369 /* Insert the caller's iocb in the txq tail for later processing. */ 8370 list_add_tail(&piocb->list, &pring->txq); 8371 } 8372 8373 /** 8374 * lpfc_sli_next_iocb - Get the next iocb in the txq 8375 * @phba: Pointer to HBA context object. 8376 * @pring: Pointer to driver SLI ring object. 8377 * @piocb: Pointer to address of newly added command iocb. 8378 * 8379 * This function is called with hbalock held before a new 8380 * iocb is submitted to the firmware. This function checks 8381 * txq to flush the iocbs in txq to Firmware before 8382 * submitting new iocbs to the Firmware. 8383 * If there are iocbs in the txq which need to be submitted 8384 * to firmware, lpfc_sli_next_iocb returns the first element 8385 * of the txq after dequeuing it from txq. 8386 * If there is no iocb in the txq then the function will return 8387 * *piocb and *piocb is set to NULL. Caller needs to check 8388 * *piocb to find if there are more commands in the txq. 8389 **/ 8390 static struct lpfc_iocbq * 8391 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8392 struct lpfc_iocbq **piocb) 8393 { 8394 struct lpfc_iocbq * nextiocb; 8395 8396 lockdep_assert_held(&phba->hbalock); 8397 8398 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8399 if (!nextiocb) { 8400 nextiocb = *piocb; 8401 *piocb = NULL; 8402 } 8403 8404 return nextiocb; 8405 } 8406 8407 /** 8408 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8409 * @phba: Pointer to HBA context object. 8410 * @ring_number: SLI ring number to issue iocb on. 8411 * @piocb: Pointer to command iocb. 8412 * @flag: Flag indicating if this command can be put into txq. 8413 * 8414 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8415 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8416 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8417 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8418 * this function allows only iocbs for posting buffers. This function finds 8419 * next available slot in the command ring and posts the command to the 8420 * available slot and writes the port attention register to request HBA start 8421 * processing new iocb. If there is no slot available in the ring and 8422 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8423 * the function returns IOCB_BUSY. 8424 * 8425 * This function is called with hbalock held. The function will return success 8426 * after it successfully submit the iocb to firmware or after adding to the 8427 * txq. 8428 **/ 8429 static int 8430 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8431 struct lpfc_iocbq *piocb, uint32_t flag) 8432 { 8433 struct lpfc_iocbq *nextiocb; 8434 IOCB_t *iocb; 8435 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8436 8437 lockdep_assert_held(&phba->hbalock); 8438 8439 if (piocb->iocb_cmpl && (!piocb->vport) && 8440 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8441 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8442 lpfc_printf_log(phba, KERN_ERR, 8443 LOG_SLI | LOG_VPORT, 8444 "1807 IOCB x%x failed. No vport\n", 8445 piocb->iocb.ulpCommand); 8446 dump_stack(); 8447 return IOCB_ERROR; 8448 } 8449 8450 8451 /* If the PCI channel is in offline state, do not post iocbs. */ 8452 if (unlikely(pci_channel_offline(phba->pcidev))) 8453 return IOCB_ERROR; 8454 8455 /* If HBA has a deferred error attention, fail the iocb. */ 8456 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8457 return IOCB_ERROR; 8458 8459 /* 8460 * We should never get an IOCB if we are in a < LINK_DOWN state 8461 */ 8462 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8463 return IOCB_ERROR; 8464 8465 /* 8466 * Check to see if we are blocking IOCB processing because of a 8467 * outstanding event. 8468 */ 8469 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8470 goto iocb_busy; 8471 8472 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8473 /* 8474 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8475 * can be issued if the link is not up. 8476 */ 8477 switch (piocb->iocb.ulpCommand) { 8478 case CMD_GEN_REQUEST64_CR: 8479 case CMD_GEN_REQUEST64_CX: 8480 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8481 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8482 FC_RCTL_DD_UNSOL_CMD) || 8483 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8484 MENLO_TRANSPORT_TYPE)) 8485 8486 goto iocb_busy; 8487 break; 8488 case CMD_QUE_RING_BUF_CN: 8489 case CMD_QUE_RING_BUF64_CN: 8490 /* 8491 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8492 * completion, iocb_cmpl MUST be 0. 8493 */ 8494 if (piocb->iocb_cmpl) 8495 piocb->iocb_cmpl = NULL; 8496 /*FALLTHROUGH*/ 8497 case CMD_CREATE_XRI_CR: 8498 case CMD_CLOSE_XRI_CN: 8499 case CMD_CLOSE_XRI_CX: 8500 break; 8501 default: 8502 goto iocb_busy; 8503 } 8504 8505 /* 8506 * For FCP commands, we must be in a state where we can process link 8507 * attention events. 8508 */ 8509 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8510 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8511 goto iocb_busy; 8512 } 8513 8514 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8515 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8516 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8517 8518 if (iocb) 8519 lpfc_sli_update_ring(phba, pring); 8520 else 8521 lpfc_sli_update_full_ring(phba, pring); 8522 8523 if (!piocb) 8524 return IOCB_SUCCESS; 8525 8526 goto out_busy; 8527 8528 iocb_busy: 8529 pring->stats.iocb_cmd_delay++; 8530 8531 out_busy: 8532 8533 if (!(flag & SLI_IOCB_RET_IOCB)) { 8534 __lpfc_sli_ringtx_put(phba, pring, piocb); 8535 return IOCB_SUCCESS; 8536 } 8537 8538 return IOCB_BUSY; 8539 } 8540 8541 /** 8542 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8543 * @phba: Pointer to HBA context object. 8544 * @piocb: Pointer to command iocb. 8545 * @sglq: Pointer to the scatter gather queue object. 8546 * 8547 * This routine converts the bpl or bde that is in the IOCB 8548 * to a sgl list for the sli4 hardware. The physical address 8549 * of the bpl/bde is converted back to a virtual address. 8550 * If the IOCB contains a BPL then the list of BDE's is 8551 * converted to sli4_sge's. If the IOCB contains a single 8552 * BDE then it is converted to a single sli_sge. 8553 * The IOCB is still in cpu endianess so the contents of 8554 * the bpl can be used without byte swapping. 8555 * 8556 * Returns valid XRI = Success, NO_XRI = Failure. 8557 **/ 8558 static uint16_t 8559 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8560 struct lpfc_sglq *sglq) 8561 { 8562 uint16_t xritag = NO_XRI; 8563 struct ulp_bde64 *bpl = NULL; 8564 struct ulp_bde64 bde; 8565 struct sli4_sge *sgl = NULL; 8566 struct lpfc_dmabuf *dmabuf; 8567 IOCB_t *icmd; 8568 int numBdes = 0; 8569 int i = 0; 8570 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8571 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8572 8573 if (!piocbq || !sglq) 8574 return xritag; 8575 8576 sgl = (struct sli4_sge *)sglq->sgl; 8577 icmd = &piocbq->iocb; 8578 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8579 return sglq->sli4_xritag; 8580 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8581 numBdes = icmd->un.genreq64.bdl.bdeSize / 8582 sizeof(struct ulp_bde64); 8583 /* The addrHigh and addrLow fields within the IOCB 8584 * have not been byteswapped yet so there is no 8585 * need to swap them back. 8586 */ 8587 if (piocbq->context3) 8588 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8589 else 8590 return xritag; 8591 8592 bpl = (struct ulp_bde64 *)dmabuf->virt; 8593 if (!bpl) 8594 return xritag; 8595 8596 for (i = 0; i < numBdes; i++) { 8597 /* Should already be byte swapped. */ 8598 sgl->addr_hi = bpl->addrHigh; 8599 sgl->addr_lo = bpl->addrLow; 8600 8601 sgl->word2 = le32_to_cpu(sgl->word2); 8602 if ((i+1) == numBdes) 8603 bf_set(lpfc_sli4_sge_last, sgl, 1); 8604 else 8605 bf_set(lpfc_sli4_sge_last, sgl, 0); 8606 /* swap the size field back to the cpu so we 8607 * can assign it to the sgl. 8608 */ 8609 bde.tus.w = le32_to_cpu(bpl->tus.w); 8610 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8611 /* The offsets in the sgl need to be accumulated 8612 * separately for the request and reply lists. 8613 * The request is always first, the reply follows. 8614 */ 8615 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8616 /* add up the reply sg entries */ 8617 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8618 inbound++; 8619 /* first inbound? reset the offset */ 8620 if (inbound == 1) 8621 offset = 0; 8622 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8623 bf_set(lpfc_sli4_sge_type, sgl, 8624 LPFC_SGE_TYPE_DATA); 8625 offset += bde.tus.f.bdeSize; 8626 } 8627 sgl->word2 = cpu_to_le32(sgl->word2); 8628 bpl++; 8629 sgl++; 8630 } 8631 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8632 /* The addrHigh and addrLow fields of the BDE have not 8633 * been byteswapped yet so they need to be swapped 8634 * before putting them in the sgl. 8635 */ 8636 sgl->addr_hi = 8637 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8638 sgl->addr_lo = 8639 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8640 sgl->word2 = le32_to_cpu(sgl->word2); 8641 bf_set(lpfc_sli4_sge_last, sgl, 1); 8642 sgl->word2 = cpu_to_le32(sgl->word2); 8643 sgl->sge_len = 8644 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8645 } 8646 return sglq->sli4_xritag; 8647 } 8648 8649 /** 8650 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8651 * @phba: Pointer to HBA context object. 8652 * @piocb: Pointer to command iocb. 8653 * @wqe: Pointer to the work queue entry. 8654 * 8655 * This routine converts the iocb command to its Work Queue Entry 8656 * equivalent. The wqe pointer should not have any fields set when 8657 * this routine is called because it will memcpy over them. 8658 * This routine does not set the CQ_ID or the WQEC bits in the 8659 * wqe. 8660 * 8661 * Returns: 0 = Success, IOCB_ERROR = Failure. 8662 **/ 8663 static int 8664 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8665 union lpfc_wqe *wqe) 8666 { 8667 uint32_t xmit_len = 0, total_len = 0; 8668 uint8_t ct = 0; 8669 uint32_t fip; 8670 uint32_t abort_tag; 8671 uint8_t command_type = ELS_COMMAND_NON_FIP; 8672 uint8_t cmnd; 8673 uint16_t xritag; 8674 uint16_t abrt_iotag; 8675 struct lpfc_iocbq *abrtiocbq; 8676 struct ulp_bde64 *bpl = NULL; 8677 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8678 int numBdes, i; 8679 struct ulp_bde64 bde; 8680 struct lpfc_nodelist *ndlp; 8681 uint32_t *pcmd; 8682 uint32_t if_type; 8683 8684 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8685 /* The fcp commands will set command type */ 8686 if (iocbq->iocb_flag & LPFC_IO_FCP) 8687 command_type = FCP_COMMAND; 8688 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8689 command_type = ELS_COMMAND_FIP; 8690 else 8691 command_type = ELS_COMMAND_NON_FIP; 8692 8693 if (phba->fcp_embed_io) 8694 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8695 /* Some of the fields are in the right position already */ 8696 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8697 if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) { 8698 /* The ct field has moved so reset */ 8699 wqe->generic.wqe_com.word7 = 0; 8700 wqe->generic.wqe_com.word10 = 0; 8701 } 8702 8703 abort_tag = (uint32_t) iocbq->iotag; 8704 xritag = iocbq->sli4_xritag; 8705 /* words0-2 bpl convert bde */ 8706 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8707 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8708 sizeof(struct ulp_bde64); 8709 bpl = (struct ulp_bde64 *) 8710 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8711 if (!bpl) 8712 return IOCB_ERROR; 8713 8714 /* Should already be byte swapped. */ 8715 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8716 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8717 /* swap the size field back to the cpu so we 8718 * can assign it to the sgl. 8719 */ 8720 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8721 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8722 total_len = 0; 8723 for (i = 0; i < numBdes; i++) { 8724 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8725 total_len += bde.tus.f.bdeSize; 8726 } 8727 } else 8728 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8729 8730 iocbq->iocb.ulpIoTag = iocbq->iotag; 8731 cmnd = iocbq->iocb.ulpCommand; 8732 8733 switch (iocbq->iocb.ulpCommand) { 8734 case CMD_ELS_REQUEST64_CR: 8735 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8736 ndlp = iocbq->context_un.ndlp; 8737 else 8738 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8739 if (!iocbq->iocb.ulpLe) { 8740 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8741 "2007 Only Limited Edition cmd Format" 8742 " supported 0x%x\n", 8743 iocbq->iocb.ulpCommand); 8744 return IOCB_ERROR; 8745 } 8746 8747 wqe->els_req.payload_len = xmit_len; 8748 /* Els_reguest64 has a TMO */ 8749 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8750 iocbq->iocb.ulpTimeout); 8751 /* Need a VF for word 4 set the vf bit*/ 8752 bf_set(els_req64_vf, &wqe->els_req, 0); 8753 /* And a VFID for word 12 */ 8754 bf_set(els_req64_vfid, &wqe->els_req, 0); 8755 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8756 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8757 iocbq->iocb.ulpContext); 8758 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8759 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8760 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8761 if (command_type == ELS_COMMAND_FIP) 8762 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8763 >> LPFC_FIP_ELS_ID_SHIFT); 8764 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8765 iocbq->context2)->virt); 8766 if_type = bf_get(lpfc_sli_intf_if_type, 8767 &phba->sli4_hba.sli_intf); 8768 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8769 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8770 *pcmd == ELS_CMD_SCR || 8771 *pcmd == ELS_CMD_FDISC || 8772 *pcmd == ELS_CMD_LOGO || 8773 *pcmd == ELS_CMD_PLOGI)) { 8774 bf_set(els_req64_sp, &wqe->els_req, 1); 8775 bf_set(els_req64_sid, &wqe->els_req, 8776 iocbq->vport->fc_myDID); 8777 if ((*pcmd == ELS_CMD_FLOGI) && 8778 !(phba->fc_topology == 8779 LPFC_TOPOLOGY_LOOP)) 8780 bf_set(els_req64_sid, &wqe->els_req, 0); 8781 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8782 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8783 phba->vpi_ids[iocbq->vport->vpi]); 8784 } else if (pcmd && iocbq->context1) { 8785 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8786 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8787 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8788 } 8789 } 8790 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8791 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8792 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8793 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8794 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8795 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8796 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8797 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8798 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8799 break; 8800 case CMD_XMIT_SEQUENCE64_CX: 8801 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8802 iocbq->iocb.un.ulpWord[3]); 8803 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8804 iocbq->iocb.unsli3.rcvsli3.ox_id); 8805 /* The entire sequence is transmitted for this IOCB */ 8806 xmit_len = total_len; 8807 cmnd = CMD_XMIT_SEQUENCE64_CR; 8808 if (phba->link_flag & LS_LOOPBACK_MODE) 8809 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8810 case CMD_XMIT_SEQUENCE64_CR: 8811 /* word3 iocb=io_tag32 wqe=reserved */ 8812 wqe->xmit_sequence.rsvd3 = 0; 8813 /* word4 relative_offset memcpy */ 8814 /* word5 r_ctl/df_ctl memcpy */ 8815 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8816 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8817 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8818 LPFC_WQE_IOD_WRITE); 8819 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8820 LPFC_WQE_LENLOC_WORD12); 8821 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8822 wqe->xmit_sequence.xmit_len = xmit_len; 8823 command_type = OTHER_COMMAND; 8824 break; 8825 case CMD_XMIT_BCAST64_CN: 8826 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8827 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8828 /* word4 iocb=rsvd wqe=rsvd */ 8829 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8830 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8831 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8832 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8833 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8834 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8835 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8836 LPFC_WQE_LENLOC_WORD3); 8837 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8838 break; 8839 case CMD_FCP_IWRITE64_CR: 8840 command_type = FCP_COMMAND_DATA_OUT; 8841 /* word3 iocb=iotag wqe=payload_offset_len */ 8842 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8843 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8844 xmit_len + sizeof(struct fcp_rsp)); 8845 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8846 0); 8847 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8848 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8849 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8850 iocbq->iocb.ulpFCP2Rcvy); 8851 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8852 /* Always open the exchange */ 8853 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8854 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8855 LPFC_WQE_LENLOC_WORD4); 8856 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8857 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8858 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8859 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8860 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8861 if (iocbq->priority) { 8862 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8863 (iocbq->priority << 1)); 8864 } else { 8865 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8866 (phba->cfg_XLanePriority << 1)); 8867 } 8868 } 8869 /* Note, word 10 is already initialized to 0 */ 8870 8871 if (phba->fcp_embed_io) { 8872 struct lpfc_scsi_buf *lpfc_cmd; 8873 struct sli4_sge *sgl; 8874 union lpfc_wqe128 *wqe128; 8875 struct fcp_cmnd *fcp_cmnd; 8876 uint32_t *ptr; 8877 8878 /* 128 byte wqe support here */ 8879 wqe128 = (union lpfc_wqe128 *)wqe; 8880 8881 lpfc_cmd = iocbq->context1; 8882 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8883 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8884 8885 /* Word 0-2 - FCP_CMND */ 8886 wqe128->generic.bde.tus.f.bdeFlags = 8887 BUFF_TYPE_BDE_IMMED; 8888 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8889 wqe128->generic.bde.addrHigh = 0; 8890 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8891 8892 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8893 8894 /* Word 22-29 FCP CMND Payload */ 8895 ptr = &wqe128->words[22]; 8896 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8897 } 8898 break; 8899 case CMD_FCP_IREAD64_CR: 8900 /* word3 iocb=iotag wqe=payload_offset_len */ 8901 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8902 bf_set(payload_offset_len, &wqe->fcp_iread, 8903 xmit_len + sizeof(struct fcp_rsp)); 8904 bf_set(cmd_buff_len, &wqe->fcp_iread, 8905 0); 8906 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8907 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8908 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8909 iocbq->iocb.ulpFCP2Rcvy); 8910 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8911 /* Always open the exchange */ 8912 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8913 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8914 LPFC_WQE_LENLOC_WORD4); 8915 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8916 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8917 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8918 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8919 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8920 if (iocbq->priority) { 8921 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8922 (iocbq->priority << 1)); 8923 } else { 8924 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8925 (phba->cfg_XLanePriority << 1)); 8926 } 8927 } 8928 /* Note, word 10 is already initialized to 0 */ 8929 8930 if (phba->fcp_embed_io) { 8931 struct lpfc_scsi_buf *lpfc_cmd; 8932 struct sli4_sge *sgl; 8933 union lpfc_wqe128 *wqe128; 8934 struct fcp_cmnd *fcp_cmnd; 8935 uint32_t *ptr; 8936 8937 /* 128 byte wqe support here */ 8938 wqe128 = (union lpfc_wqe128 *)wqe; 8939 8940 lpfc_cmd = iocbq->context1; 8941 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8942 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8943 8944 /* Word 0-2 - FCP_CMND */ 8945 wqe128->generic.bde.tus.f.bdeFlags = 8946 BUFF_TYPE_BDE_IMMED; 8947 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8948 wqe128->generic.bde.addrHigh = 0; 8949 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8950 8951 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8952 8953 /* Word 22-29 FCP CMND Payload */ 8954 ptr = &wqe128->words[22]; 8955 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8956 } 8957 break; 8958 case CMD_FCP_ICMND64_CR: 8959 /* word3 iocb=iotag wqe=payload_offset_len */ 8960 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8961 bf_set(payload_offset_len, &wqe->fcp_icmd, 8962 xmit_len + sizeof(struct fcp_rsp)); 8963 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8964 0); 8965 /* word3 iocb=IO_TAG wqe=reserved */ 8966 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8967 /* Always open the exchange */ 8968 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8969 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8970 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8971 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8972 LPFC_WQE_LENLOC_NONE); 8973 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8974 iocbq->iocb.ulpFCP2Rcvy); 8975 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8976 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8977 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8978 if (iocbq->priority) { 8979 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8980 (iocbq->priority << 1)); 8981 } else { 8982 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8983 (phba->cfg_XLanePriority << 1)); 8984 } 8985 } 8986 /* Note, word 10 is already initialized to 0 */ 8987 8988 if (phba->fcp_embed_io) { 8989 struct lpfc_scsi_buf *lpfc_cmd; 8990 struct sli4_sge *sgl; 8991 union lpfc_wqe128 *wqe128; 8992 struct fcp_cmnd *fcp_cmnd; 8993 uint32_t *ptr; 8994 8995 /* 128 byte wqe support here */ 8996 wqe128 = (union lpfc_wqe128 *)wqe; 8997 8998 lpfc_cmd = iocbq->context1; 8999 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 9000 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9001 9002 /* Word 0-2 - FCP_CMND */ 9003 wqe128->generic.bde.tus.f.bdeFlags = 9004 BUFF_TYPE_BDE_IMMED; 9005 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 9006 wqe128->generic.bde.addrHigh = 0; 9007 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 9008 9009 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 9010 9011 /* Word 22-29 FCP CMND Payload */ 9012 ptr = &wqe128->words[22]; 9013 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9014 } 9015 break; 9016 case CMD_GEN_REQUEST64_CR: 9017 /* For this command calculate the xmit length of the 9018 * request bde. 9019 */ 9020 xmit_len = 0; 9021 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9022 sizeof(struct ulp_bde64); 9023 for (i = 0; i < numBdes; i++) { 9024 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9025 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9026 break; 9027 xmit_len += bde.tus.f.bdeSize; 9028 } 9029 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9030 wqe->gen_req.request_payload_len = xmit_len; 9031 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9032 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9033 /* word6 context tag copied in memcpy */ 9034 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9035 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9036 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9037 "2015 Invalid CT %x command 0x%x\n", 9038 ct, iocbq->iocb.ulpCommand); 9039 return IOCB_ERROR; 9040 } 9041 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9042 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9043 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9044 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9045 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9046 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9047 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9048 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9049 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9050 command_type = OTHER_COMMAND; 9051 break; 9052 case CMD_XMIT_ELS_RSP64_CX: 9053 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9054 /* words0-2 BDE memcpy */ 9055 /* word3 iocb=iotag32 wqe=response_payload_len */ 9056 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9057 /* word4 */ 9058 wqe->xmit_els_rsp.word4 = 0; 9059 /* word5 iocb=rsvd wge=did */ 9060 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9061 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9062 9063 if_type = bf_get(lpfc_sli_intf_if_type, 9064 &phba->sli4_hba.sli_intf); 9065 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 9066 if (iocbq->vport->fc_flag & FC_PT2PT) { 9067 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9068 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9069 iocbq->vport->fc_myDID); 9070 if (iocbq->vport->fc_myDID == Fabric_DID) { 9071 bf_set(wqe_els_did, 9072 &wqe->xmit_els_rsp.wqe_dest, 0); 9073 } 9074 } 9075 } 9076 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9077 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9078 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9079 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9080 iocbq->iocb.unsli3.rcvsli3.ox_id); 9081 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9082 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9083 phba->vpi_ids[iocbq->vport->vpi]); 9084 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9085 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9086 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9087 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9088 LPFC_WQE_LENLOC_WORD3); 9089 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9090 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9091 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9092 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9093 iocbq->context2)->virt); 9094 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9095 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9096 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9097 iocbq->vport->fc_myDID); 9098 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9099 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9100 phba->vpi_ids[phba->pport->vpi]); 9101 } 9102 command_type = OTHER_COMMAND; 9103 break; 9104 case CMD_CLOSE_XRI_CN: 9105 case CMD_ABORT_XRI_CN: 9106 case CMD_ABORT_XRI_CX: 9107 /* words 0-2 memcpy should be 0 rserved */ 9108 /* port will send abts */ 9109 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9110 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9111 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9112 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9113 } else 9114 fip = 0; 9115 9116 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9117 /* 9118 * The link is down, or the command was ELS_FIP 9119 * so the fw does not need to send abts 9120 * on the wire. 9121 */ 9122 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9123 else 9124 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9125 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9126 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9127 wqe->abort_cmd.rsrvd5 = 0; 9128 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9129 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9130 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9131 /* 9132 * The abort handler will send us CMD_ABORT_XRI_CN or 9133 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9134 */ 9135 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9136 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9137 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9138 LPFC_WQE_LENLOC_NONE); 9139 cmnd = CMD_ABORT_XRI_CX; 9140 command_type = OTHER_COMMAND; 9141 xritag = 0; 9142 break; 9143 case CMD_XMIT_BLS_RSP64_CX: 9144 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9145 /* As BLS ABTS RSP WQE is very different from other WQEs, 9146 * we re-construct this WQE here based on information in 9147 * iocbq from scratch. 9148 */ 9149 memset(wqe, 0, sizeof(union lpfc_wqe)); 9150 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9151 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9152 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9153 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9154 LPFC_ABTS_UNSOL_INT) { 9155 /* ABTS sent by initiator to CT exchange, the 9156 * RX_ID field will be filled with the newly 9157 * allocated responder XRI. 9158 */ 9159 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9160 iocbq->sli4_xritag); 9161 } else { 9162 /* ABTS sent by responder to CT exchange, the 9163 * RX_ID field will be filled with the responder 9164 * RX_ID from ABTS. 9165 */ 9166 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9167 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9168 } 9169 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9170 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9171 9172 /* Use CT=VPI */ 9173 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9174 ndlp->nlp_DID); 9175 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9176 iocbq->iocb.ulpContext); 9177 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9178 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9179 phba->vpi_ids[phba->pport->vpi]); 9180 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9181 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9182 LPFC_WQE_LENLOC_NONE); 9183 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9184 command_type = OTHER_COMMAND; 9185 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9186 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9187 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9188 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9189 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9190 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9191 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9192 } 9193 9194 break; 9195 case CMD_SEND_FRAME: 9196 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9197 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9198 return 0; 9199 case CMD_XRI_ABORTED_CX: 9200 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9201 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9202 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9203 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9204 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9205 default: 9206 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9207 "2014 Invalid command 0x%x\n", 9208 iocbq->iocb.ulpCommand); 9209 return IOCB_ERROR; 9210 break; 9211 } 9212 9213 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9214 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9215 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9216 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9217 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9218 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9219 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9220 LPFC_IO_DIF_INSERT); 9221 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9222 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9223 wqe->generic.wqe_com.abort_tag = abort_tag; 9224 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9225 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9226 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9227 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9228 return 0; 9229 } 9230 9231 /** 9232 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9233 * @phba: Pointer to HBA context object. 9234 * @ring_number: SLI ring number to issue iocb on. 9235 * @piocb: Pointer to command iocb. 9236 * @flag: Flag indicating if this command can be put into txq. 9237 * 9238 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9239 * an iocb command to an HBA with SLI-4 interface spec. 9240 * 9241 * This function is called with hbalock held. The function will return success 9242 * after it successfully submit the iocb to firmware or after adding to the 9243 * txq. 9244 **/ 9245 static int 9246 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9247 struct lpfc_iocbq *piocb, uint32_t flag) 9248 { 9249 struct lpfc_sglq *sglq; 9250 union lpfc_wqe *wqe; 9251 union lpfc_wqe128 wqe128; 9252 struct lpfc_queue *wq; 9253 struct lpfc_sli_ring *pring; 9254 9255 /* Get the WQ */ 9256 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9257 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9258 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9259 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9260 else 9261 wq = phba->sli4_hba.oas_wq; 9262 } else { 9263 wq = phba->sli4_hba.els_wq; 9264 } 9265 9266 /* Get corresponding ring */ 9267 pring = wq->pring; 9268 9269 /* 9270 * The WQE can be either 64 or 128 bytes, 9271 * so allocate space on the stack assuming the largest. 9272 */ 9273 wqe = (union lpfc_wqe *)&wqe128; 9274 9275 lockdep_assert_held(&phba->hbalock); 9276 9277 if (piocb->sli4_xritag == NO_XRI) { 9278 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9279 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9280 sglq = NULL; 9281 else { 9282 if (!list_empty(&pring->txq)) { 9283 if (!(flag & SLI_IOCB_RET_IOCB)) { 9284 __lpfc_sli_ringtx_put(phba, 9285 pring, piocb); 9286 return IOCB_SUCCESS; 9287 } else { 9288 return IOCB_BUSY; 9289 } 9290 } else { 9291 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9292 if (!sglq) { 9293 if (!(flag & SLI_IOCB_RET_IOCB)) { 9294 __lpfc_sli_ringtx_put(phba, 9295 pring, 9296 piocb); 9297 return IOCB_SUCCESS; 9298 } else 9299 return IOCB_BUSY; 9300 } 9301 } 9302 } 9303 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9304 /* These IO's already have an XRI and a mapped sgl. */ 9305 sglq = NULL; 9306 else { 9307 /* 9308 * This is a continuation of a commandi,(CX) so this 9309 * sglq is on the active list 9310 */ 9311 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9312 if (!sglq) 9313 return IOCB_ERROR; 9314 } 9315 9316 if (sglq) { 9317 piocb->sli4_lxritag = sglq->sli4_lxritag; 9318 piocb->sli4_xritag = sglq->sli4_xritag; 9319 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9320 return IOCB_ERROR; 9321 } 9322 9323 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 9324 return IOCB_ERROR; 9325 9326 if (lpfc_sli4_wq_put(wq, wqe)) 9327 return IOCB_ERROR; 9328 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9329 9330 return 0; 9331 } 9332 9333 /** 9334 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9335 * 9336 * This routine wraps the actual lockless version for issusing IOCB function 9337 * pointer from the lpfc_hba struct. 9338 * 9339 * Return codes: 9340 * IOCB_ERROR - Error 9341 * IOCB_SUCCESS - Success 9342 * IOCB_BUSY - Busy 9343 **/ 9344 int 9345 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9346 struct lpfc_iocbq *piocb, uint32_t flag) 9347 { 9348 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9349 } 9350 9351 /** 9352 * lpfc_sli_api_table_setup - Set up sli api function jump table 9353 * @phba: The hba struct for which this call is being executed. 9354 * @dev_grp: The HBA PCI-Device group number. 9355 * 9356 * This routine sets up the SLI interface API function jump table in @phba 9357 * struct. 9358 * Returns: 0 - success, -ENODEV - failure. 9359 **/ 9360 int 9361 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9362 { 9363 9364 switch (dev_grp) { 9365 case LPFC_PCI_DEV_LP: 9366 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9367 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9368 break; 9369 case LPFC_PCI_DEV_OC: 9370 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9371 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9372 break; 9373 default: 9374 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9375 "1419 Invalid HBA PCI-device group: 0x%x\n", 9376 dev_grp); 9377 return -ENODEV; 9378 break; 9379 } 9380 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9381 return 0; 9382 } 9383 9384 /** 9385 * lpfc_sli4_calc_ring - Calculates which ring to use 9386 * @phba: Pointer to HBA context object. 9387 * @piocb: Pointer to command iocb. 9388 * 9389 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9390 * hba_wqidx, thus we need to calculate the corresponding ring. 9391 * Since ABORTS must go on the same WQ of the command they are 9392 * aborting, we use command's hba_wqidx. 9393 */ 9394 struct lpfc_sli_ring * 9395 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9396 { 9397 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9398 if (!(phba->cfg_fof) || 9399 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9400 if (unlikely(!phba->sli4_hba.fcp_wq)) 9401 return NULL; 9402 /* 9403 * for abort iocb hba_wqidx should already 9404 * be setup based on what work queue we used. 9405 */ 9406 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9407 piocb->hba_wqidx = 9408 lpfc_sli4_scmd_to_wqidx_distr(phba, 9409 piocb->context1); 9410 piocb->hba_wqidx = piocb->hba_wqidx % 9411 phba->cfg_fcp_io_channel; 9412 } 9413 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9414 } else { 9415 if (unlikely(!phba->sli4_hba.oas_wq)) 9416 return NULL; 9417 piocb->hba_wqidx = 0; 9418 return phba->sli4_hba.oas_wq->pring; 9419 } 9420 } else { 9421 if (unlikely(!phba->sli4_hba.els_wq)) 9422 return NULL; 9423 piocb->hba_wqidx = 0; 9424 return phba->sli4_hba.els_wq->pring; 9425 } 9426 } 9427 9428 /** 9429 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9430 * @phba: Pointer to HBA context object. 9431 * @pring: Pointer to driver SLI ring object. 9432 * @piocb: Pointer to command iocb. 9433 * @flag: Flag indicating if this command can be put into txq. 9434 * 9435 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9436 * function. This function gets the hbalock and calls 9437 * __lpfc_sli_issue_iocb function and will return the error returned 9438 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9439 * functions which do not hold hbalock. 9440 **/ 9441 int 9442 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9443 struct lpfc_iocbq *piocb, uint32_t flag) 9444 { 9445 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9446 struct lpfc_sli_ring *pring; 9447 struct lpfc_queue *fpeq; 9448 struct lpfc_eqe *eqe; 9449 unsigned long iflags; 9450 int rc, idx; 9451 9452 if (phba->sli_rev == LPFC_SLI_REV4) { 9453 pring = lpfc_sli4_calc_ring(phba, piocb); 9454 if (unlikely(pring == NULL)) 9455 return IOCB_ERROR; 9456 9457 spin_lock_irqsave(&pring->ring_lock, iflags); 9458 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9459 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9460 9461 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9462 idx = piocb->hba_wqidx; 9463 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9464 9465 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9466 9467 /* Get associated EQ with this index */ 9468 fpeq = phba->sli4_hba.hba_eq[idx]; 9469 9470 /* Turn off interrupts from this EQ */ 9471 lpfc_sli4_eq_clr_intr(fpeq); 9472 9473 /* 9474 * Process all the events on FCP EQ 9475 */ 9476 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9477 lpfc_sli4_hba_handle_eqe(phba, 9478 eqe, idx); 9479 fpeq->EQ_processed++; 9480 } 9481 9482 /* Always clear and re-arm the EQ */ 9483 lpfc_sli4_eq_release(fpeq, 9484 LPFC_QUEUE_REARM); 9485 } 9486 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9487 } 9488 } else { 9489 /* For now, SLI2/3 will still use hbalock */ 9490 spin_lock_irqsave(&phba->hbalock, iflags); 9491 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9492 spin_unlock_irqrestore(&phba->hbalock, iflags); 9493 } 9494 return rc; 9495 } 9496 9497 /** 9498 * lpfc_extra_ring_setup - Extra ring setup function 9499 * @phba: Pointer to HBA context object. 9500 * 9501 * This function is called while driver attaches with the 9502 * HBA to setup the extra ring. The extra ring is used 9503 * only when driver needs to support target mode functionality 9504 * or IP over FC functionalities. 9505 * 9506 * This function is called with no lock held. SLI3 only. 9507 **/ 9508 static int 9509 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9510 { 9511 struct lpfc_sli *psli; 9512 struct lpfc_sli_ring *pring; 9513 9514 psli = &phba->sli; 9515 9516 /* Adjust cmd/rsp ring iocb entries more evenly */ 9517 9518 /* Take some away from the FCP ring */ 9519 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9520 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9521 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9522 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9523 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9524 9525 /* and give them to the extra ring */ 9526 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9527 9528 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9529 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9530 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9531 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9532 9533 /* Setup default profile for this ring */ 9534 pring->iotag_max = 4096; 9535 pring->num_mask = 1; 9536 pring->prt[0].profile = 0; /* Mask 0 */ 9537 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9538 pring->prt[0].type = phba->cfg_multi_ring_type; 9539 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9540 return 0; 9541 } 9542 9543 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9544 * @phba: Pointer to HBA context object. 9545 * @iocbq: Pointer to iocb object. 9546 * 9547 * The async_event handler calls this routine when it receives 9548 * an ASYNC_STATUS_CN event from the port. The port generates 9549 * this event when an Abort Sequence request to an rport fails 9550 * twice in succession. The abort could be originated by the 9551 * driver or by the port. The ABTS could have been for an ELS 9552 * or FCP IO. The port only generates this event when an ABTS 9553 * fails to complete after one retry. 9554 */ 9555 static void 9556 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9557 struct lpfc_iocbq *iocbq) 9558 { 9559 struct lpfc_nodelist *ndlp = NULL; 9560 uint16_t rpi = 0, vpi = 0; 9561 struct lpfc_vport *vport = NULL; 9562 9563 /* The rpi in the ulpContext is vport-sensitive. */ 9564 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9565 rpi = iocbq->iocb.ulpContext; 9566 9567 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9568 "3092 Port generated ABTS async event " 9569 "on vpi %d rpi %d status 0x%x\n", 9570 vpi, rpi, iocbq->iocb.ulpStatus); 9571 9572 vport = lpfc_find_vport_by_vpid(phba, vpi); 9573 if (!vport) 9574 goto err_exit; 9575 ndlp = lpfc_findnode_rpi(vport, rpi); 9576 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9577 goto err_exit; 9578 9579 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9580 lpfc_sli_abts_recover_port(vport, ndlp); 9581 return; 9582 9583 err_exit: 9584 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9585 "3095 Event Context not found, no " 9586 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9587 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9588 vpi, rpi); 9589 } 9590 9591 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9592 * @phba: pointer to HBA context object. 9593 * @ndlp: nodelist pointer for the impacted rport. 9594 * @axri: pointer to the wcqe containing the failed exchange. 9595 * 9596 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9597 * port. The port generates this event when an abort exchange request to an 9598 * rport fails twice in succession with no reply. The abort could be originated 9599 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9600 */ 9601 void 9602 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9603 struct lpfc_nodelist *ndlp, 9604 struct sli4_wcqe_xri_aborted *axri) 9605 { 9606 struct lpfc_vport *vport; 9607 uint32_t ext_status = 0; 9608 9609 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9610 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9611 "3115 Node Context not found, driver " 9612 "ignoring abts err event\n"); 9613 return; 9614 } 9615 9616 vport = ndlp->vport; 9617 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9618 "3116 Port generated FCP XRI ABORT event on " 9619 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9620 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9621 bf_get(lpfc_wcqe_xa_xri, axri), 9622 bf_get(lpfc_wcqe_xa_status, axri), 9623 axri->parameter); 9624 9625 /* 9626 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9627 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9628 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9629 */ 9630 ext_status = axri->parameter & IOERR_PARAM_MASK; 9631 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9632 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9633 lpfc_sli_abts_recover_port(vport, ndlp); 9634 } 9635 9636 /** 9637 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9638 * @phba: Pointer to HBA context object. 9639 * @pring: Pointer to driver SLI ring object. 9640 * @iocbq: Pointer to iocb object. 9641 * 9642 * This function is called by the slow ring event handler 9643 * function when there is an ASYNC event iocb in the ring. 9644 * This function is called with no lock held. 9645 * Currently this function handles only temperature related 9646 * ASYNC events. The function decodes the temperature sensor 9647 * event message and posts events for the management applications. 9648 **/ 9649 static void 9650 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9651 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9652 { 9653 IOCB_t *icmd; 9654 uint16_t evt_code; 9655 struct temp_event temp_event_data; 9656 struct Scsi_Host *shost; 9657 uint32_t *iocb_w; 9658 9659 icmd = &iocbq->iocb; 9660 evt_code = icmd->un.asyncstat.evt_code; 9661 9662 switch (evt_code) { 9663 case ASYNC_TEMP_WARN: 9664 case ASYNC_TEMP_SAFE: 9665 temp_event_data.data = (uint32_t) icmd->ulpContext; 9666 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9667 if (evt_code == ASYNC_TEMP_WARN) { 9668 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9669 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9670 "0347 Adapter is very hot, please take " 9671 "corrective action. temperature : %d Celsius\n", 9672 (uint32_t) icmd->ulpContext); 9673 } else { 9674 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9675 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9676 "0340 Adapter temperature is OK now. " 9677 "temperature : %d Celsius\n", 9678 (uint32_t) icmd->ulpContext); 9679 } 9680 9681 /* Send temperature change event to applications */ 9682 shost = lpfc_shost_from_vport(phba->pport); 9683 fc_host_post_vendor_event(shost, fc_get_event_number(), 9684 sizeof(temp_event_data), (char *) &temp_event_data, 9685 LPFC_NL_VENDOR_ID); 9686 break; 9687 case ASYNC_STATUS_CN: 9688 lpfc_sli_abts_err_handler(phba, iocbq); 9689 break; 9690 default: 9691 iocb_w = (uint32_t *) icmd; 9692 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9693 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9694 " evt_code 0x%x\n" 9695 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9696 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9697 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9698 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9699 pring->ringno, icmd->un.asyncstat.evt_code, 9700 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9701 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9702 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9703 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9704 9705 break; 9706 } 9707 } 9708 9709 9710 /** 9711 * lpfc_sli4_setup - SLI ring setup function 9712 * @phba: Pointer to HBA context object. 9713 * 9714 * lpfc_sli_setup sets up rings of the SLI interface with 9715 * number of iocbs per ring and iotags. This function is 9716 * called while driver attach to the HBA and before the 9717 * interrupts are enabled. So there is no need for locking. 9718 * 9719 * This function always returns 0. 9720 **/ 9721 int 9722 lpfc_sli4_setup(struct lpfc_hba *phba) 9723 { 9724 struct lpfc_sli_ring *pring; 9725 9726 pring = phba->sli4_hba.els_wq->pring; 9727 pring->num_mask = LPFC_MAX_RING_MASK; 9728 pring->prt[0].profile = 0; /* Mask 0 */ 9729 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9730 pring->prt[0].type = FC_TYPE_ELS; 9731 pring->prt[0].lpfc_sli_rcv_unsol_event = 9732 lpfc_els_unsol_event; 9733 pring->prt[1].profile = 0; /* Mask 1 */ 9734 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9735 pring->prt[1].type = FC_TYPE_ELS; 9736 pring->prt[1].lpfc_sli_rcv_unsol_event = 9737 lpfc_els_unsol_event; 9738 pring->prt[2].profile = 0; /* Mask 2 */ 9739 /* NameServer Inquiry */ 9740 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9741 /* NameServer */ 9742 pring->prt[2].type = FC_TYPE_CT; 9743 pring->prt[2].lpfc_sli_rcv_unsol_event = 9744 lpfc_ct_unsol_event; 9745 pring->prt[3].profile = 0; /* Mask 3 */ 9746 /* NameServer response */ 9747 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9748 /* NameServer */ 9749 pring->prt[3].type = FC_TYPE_CT; 9750 pring->prt[3].lpfc_sli_rcv_unsol_event = 9751 lpfc_ct_unsol_event; 9752 return 0; 9753 } 9754 9755 /** 9756 * lpfc_sli_setup - SLI ring setup function 9757 * @phba: Pointer to HBA context object. 9758 * 9759 * lpfc_sli_setup sets up rings of the SLI interface with 9760 * number of iocbs per ring and iotags. This function is 9761 * called while driver attach to the HBA and before the 9762 * interrupts are enabled. So there is no need for locking. 9763 * 9764 * This function always returns 0. SLI3 only. 9765 **/ 9766 int 9767 lpfc_sli_setup(struct lpfc_hba *phba) 9768 { 9769 int i, totiocbsize = 0; 9770 struct lpfc_sli *psli = &phba->sli; 9771 struct lpfc_sli_ring *pring; 9772 9773 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9774 psli->sli_flag = 0; 9775 9776 psli->iocbq_lookup = NULL; 9777 psli->iocbq_lookup_len = 0; 9778 psli->last_iotag = 0; 9779 9780 for (i = 0; i < psli->num_rings; i++) { 9781 pring = &psli->sli3_ring[i]; 9782 switch (i) { 9783 case LPFC_FCP_RING: /* ring 0 - FCP */ 9784 /* numCiocb and numRiocb are used in config_port */ 9785 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9786 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9787 pring->sli.sli3.numCiocb += 9788 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9789 pring->sli.sli3.numRiocb += 9790 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9791 pring->sli.sli3.numCiocb += 9792 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9793 pring->sli.sli3.numRiocb += 9794 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9795 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9796 SLI3_IOCB_CMD_SIZE : 9797 SLI2_IOCB_CMD_SIZE; 9798 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9799 SLI3_IOCB_RSP_SIZE : 9800 SLI2_IOCB_RSP_SIZE; 9801 pring->iotag_ctr = 0; 9802 pring->iotag_max = 9803 (phba->cfg_hba_queue_depth * 2); 9804 pring->fast_iotag = pring->iotag_max; 9805 pring->num_mask = 0; 9806 break; 9807 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9808 /* numCiocb and numRiocb are used in config_port */ 9809 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9810 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9811 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9812 SLI3_IOCB_CMD_SIZE : 9813 SLI2_IOCB_CMD_SIZE; 9814 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9815 SLI3_IOCB_RSP_SIZE : 9816 SLI2_IOCB_RSP_SIZE; 9817 pring->iotag_max = phba->cfg_hba_queue_depth; 9818 pring->num_mask = 0; 9819 break; 9820 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9821 /* numCiocb and numRiocb are used in config_port */ 9822 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9823 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9824 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9825 SLI3_IOCB_CMD_SIZE : 9826 SLI2_IOCB_CMD_SIZE; 9827 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9828 SLI3_IOCB_RSP_SIZE : 9829 SLI2_IOCB_RSP_SIZE; 9830 pring->fast_iotag = 0; 9831 pring->iotag_ctr = 0; 9832 pring->iotag_max = 4096; 9833 pring->lpfc_sli_rcv_async_status = 9834 lpfc_sli_async_event_handler; 9835 pring->num_mask = LPFC_MAX_RING_MASK; 9836 pring->prt[0].profile = 0; /* Mask 0 */ 9837 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9838 pring->prt[0].type = FC_TYPE_ELS; 9839 pring->prt[0].lpfc_sli_rcv_unsol_event = 9840 lpfc_els_unsol_event; 9841 pring->prt[1].profile = 0; /* Mask 1 */ 9842 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9843 pring->prt[1].type = FC_TYPE_ELS; 9844 pring->prt[1].lpfc_sli_rcv_unsol_event = 9845 lpfc_els_unsol_event; 9846 pring->prt[2].profile = 0; /* Mask 2 */ 9847 /* NameServer Inquiry */ 9848 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9849 /* NameServer */ 9850 pring->prt[2].type = FC_TYPE_CT; 9851 pring->prt[2].lpfc_sli_rcv_unsol_event = 9852 lpfc_ct_unsol_event; 9853 pring->prt[3].profile = 0; /* Mask 3 */ 9854 /* NameServer response */ 9855 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9856 /* NameServer */ 9857 pring->prt[3].type = FC_TYPE_CT; 9858 pring->prt[3].lpfc_sli_rcv_unsol_event = 9859 lpfc_ct_unsol_event; 9860 break; 9861 } 9862 totiocbsize += (pring->sli.sli3.numCiocb * 9863 pring->sli.sli3.sizeCiocb) + 9864 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9865 } 9866 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9867 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9868 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9869 "SLI2 SLIM Data: x%x x%lx\n", 9870 phba->brd_no, totiocbsize, 9871 (unsigned long) MAX_SLIM_IOCB_SIZE); 9872 } 9873 if (phba->cfg_multi_ring_support == 2) 9874 lpfc_extra_ring_setup(phba); 9875 9876 return 0; 9877 } 9878 9879 /** 9880 * lpfc_sli4_queue_init - Queue initialization function 9881 * @phba: Pointer to HBA context object. 9882 * 9883 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 9884 * ring. This function also initializes ring indices of each ring. 9885 * This function is called during the initialization of the SLI 9886 * interface of an HBA. 9887 * This function is called with no lock held and always returns 9888 * 1. 9889 **/ 9890 void 9891 lpfc_sli4_queue_init(struct lpfc_hba *phba) 9892 { 9893 struct lpfc_sli *psli; 9894 struct lpfc_sli_ring *pring; 9895 int i; 9896 9897 psli = &phba->sli; 9898 spin_lock_irq(&phba->hbalock); 9899 INIT_LIST_HEAD(&psli->mboxq); 9900 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9901 /* Initialize list headers for txq and txcmplq as double linked lists */ 9902 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 9903 pring = phba->sli4_hba.fcp_wq[i]->pring; 9904 pring->flag = 0; 9905 pring->ringno = LPFC_FCP_RING; 9906 INIT_LIST_HEAD(&pring->txq); 9907 INIT_LIST_HEAD(&pring->txcmplq); 9908 INIT_LIST_HEAD(&pring->iocb_continueq); 9909 spin_lock_init(&pring->ring_lock); 9910 } 9911 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 9912 pring = phba->sli4_hba.nvme_wq[i]->pring; 9913 pring->flag = 0; 9914 pring->ringno = LPFC_FCP_RING; 9915 INIT_LIST_HEAD(&pring->txq); 9916 INIT_LIST_HEAD(&pring->txcmplq); 9917 INIT_LIST_HEAD(&pring->iocb_continueq); 9918 spin_lock_init(&pring->ring_lock); 9919 } 9920 pring = phba->sli4_hba.els_wq->pring; 9921 pring->flag = 0; 9922 pring->ringno = LPFC_ELS_RING; 9923 INIT_LIST_HEAD(&pring->txq); 9924 INIT_LIST_HEAD(&pring->txcmplq); 9925 INIT_LIST_HEAD(&pring->iocb_continueq); 9926 spin_lock_init(&pring->ring_lock); 9927 9928 if (phba->cfg_nvme_io_channel) { 9929 pring = phba->sli4_hba.nvmels_wq->pring; 9930 pring->flag = 0; 9931 pring->ringno = LPFC_ELS_RING; 9932 INIT_LIST_HEAD(&pring->txq); 9933 INIT_LIST_HEAD(&pring->txcmplq); 9934 INIT_LIST_HEAD(&pring->iocb_continueq); 9935 spin_lock_init(&pring->ring_lock); 9936 } 9937 9938 if (phba->cfg_fof) { 9939 pring = phba->sli4_hba.oas_wq->pring; 9940 pring->flag = 0; 9941 pring->ringno = LPFC_FCP_RING; 9942 INIT_LIST_HEAD(&pring->txq); 9943 INIT_LIST_HEAD(&pring->txcmplq); 9944 INIT_LIST_HEAD(&pring->iocb_continueq); 9945 spin_lock_init(&pring->ring_lock); 9946 } 9947 9948 spin_unlock_irq(&phba->hbalock); 9949 } 9950 9951 /** 9952 * lpfc_sli_queue_init - Queue initialization function 9953 * @phba: Pointer to HBA context object. 9954 * 9955 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 9956 * ring. This function also initializes ring indices of each ring. 9957 * This function is called during the initialization of the SLI 9958 * interface of an HBA. 9959 * This function is called with no lock held and always returns 9960 * 1. 9961 **/ 9962 void 9963 lpfc_sli_queue_init(struct lpfc_hba *phba) 9964 { 9965 struct lpfc_sli *psli; 9966 struct lpfc_sli_ring *pring; 9967 int i; 9968 9969 psli = &phba->sli; 9970 spin_lock_irq(&phba->hbalock); 9971 INIT_LIST_HEAD(&psli->mboxq); 9972 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9973 /* Initialize list headers for txq and txcmplq as double linked lists */ 9974 for (i = 0; i < psli->num_rings; i++) { 9975 pring = &psli->sli3_ring[i]; 9976 pring->ringno = i; 9977 pring->sli.sli3.next_cmdidx = 0; 9978 pring->sli.sli3.local_getidx = 0; 9979 pring->sli.sli3.cmdidx = 0; 9980 INIT_LIST_HEAD(&pring->iocb_continueq); 9981 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9982 INIT_LIST_HEAD(&pring->postbufq); 9983 pring->flag = 0; 9984 INIT_LIST_HEAD(&pring->txq); 9985 INIT_LIST_HEAD(&pring->txcmplq); 9986 spin_lock_init(&pring->ring_lock); 9987 } 9988 spin_unlock_irq(&phba->hbalock); 9989 } 9990 9991 /** 9992 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9993 * @phba: Pointer to HBA context object. 9994 * 9995 * This routine flushes the mailbox command subsystem. It will unconditionally 9996 * flush all the mailbox commands in the three possible stages in the mailbox 9997 * command sub-system: pending mailbox command queue; the outstanding mailbox 9998 * command; and completed mailbox command queue. It is caller's responsibility 9999 * to make sure that the driver is in the proper state to flush the mailbox 10000 * command sub-system. Namely, the posting of mailbox commands into the 10001 * pending mailbox command queue from the various clients must be stopped; 10002 * either the HBA is in a state that it will never works on the outstanding 10003 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10004 * mailbox command has been completed. 10005 **/ 10006 static void 10007 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10008 { 10009 LIST_HEAD(completions); 10010 struct lpfc_sli *psli = &phba->sli; 10011 LPFC_MBOXQ_t *pmb; 10012 unsigned long iflag; 10013 10014 /* Flush all the mailbox commands in the mbox system */ 10015 spin_lock_irqsave(&phba->hbalock, iflag); 10016 /* The pending mailbox command queue */ 10017 list_splice_init(&phba->sli.mboxq, &completions); 10018 /* The outstanding active mailbox command */ 10019 if (psli->mbox_active) { 10020 list_add_tail(&psli->mbox_active->list, &completions); 10021 psli->mbox_active = NULL; 10022 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10023 } 10024 /* The completed mailbox command queue */ 10025 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10026 spin_unlock_irqrestore(&phba->hbalock, iflag); 10027 10028 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10029 while (!list_empty(&completions)) { 10030 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10031 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10032 if (pmb->mbox_cmpl) 10033 pmb->mbox_cmpl(phba, pmb); 10034 } 10035 } 10036 10037 /** 10038 * lpfc_sli_host_down - Vport cleanup function 10039 * @vport: Pointer to virtual port object. 10040 * 10041 * lpfc_sli_host_down is called to clean up the resources 10042 * associated with a vport before destroying virtual 10043 * port data structures. 10044 * This function does following operations: 10045 * - Free discovery resources associated with this virtual 10046 * port. 10047 * - Free iocbs associated with this virtual port in 10048 * the txq. 10049 * - Send abort for all iocb commands associated with this 10050 * vport in txcmplq. 10051 * 10052 * This function is called with no lock held and always returns 1. 10053 **/ 10054 int 10055 lpfc_sli_host_down(struct lpfc_vport *vport) 10056 { 10057 LIST_HEAD(completions); 10058 struct lpfc_hba *phba = vport->phba; 10059 struct lpfc_sli *psli = &phba->sli; 10060 struct lpfc_queue *qp = NULL; 10061 struct lpfc_sli_ring *pring; 10062 struct lpfc_iocbq *iocb, *next_iocb; 10063 int i; 10064 unsigned long flags = 0; 10065 uint16_t prev_pring_flag; 10066 10067 lpfc_cleanup_discovery_resources(vport); 10068 10069 spin_lock_irqsave(&phba->hbalock, flags); 10070 10071 /* 10072 * Error everything on the txq since these iocbs 10073 * have not been given to the FW yet. 10074 * Also issue ABTS for everything on the txcmplq 10075 */ 10076 if (phba->sli_rev != LPFC_SLI_REV4) { 10077 for (i = 0; i < psli->num_rings; i++) { 10078 pring = &psli->sli3_ring[i]; 10079 prev_pring_flag = pring->flag; 10080 /* Only slow rings */ 10081 if (pring->ringno == LPFC_ELS_RING) { 10082 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10083 /* Set the lpfc data pending flag */ 10084 set_bit(LPFC_DATA_READY, &phba->data_flags); 10085 } 10086 list_for_each_entry_safe(iocb, next_iocb, 10087 &pring->txq, list) { 10088 if (iocb->vport != vport) 10089 continue; 10090 list_move_tail(&iocb->list, &completions); 10091 } 10092 list_for_each_entry_safe(iocb, next_iocb, 10093 &pring->txcmplq, list) { 10094 if (iocb->vport != vport) 10095 continue; 10096 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10097 } 10098 pring->flag = prev_pring_flag; 10099 } 10100 } else { 10101 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10102 pring = qp->pring; 10103 if (!pring) 10104 continue; 10105 if (pring == phba->sli4_hba.els_wq->pring) { 10106 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10107 /* Set the lpfc data pending flag */ 10108 set_bit(LPFC_DATA_READY, &phba->data_flags); 10109 } 10110 prev_pring_flag = pring->flag; 10111 spin_lock_irq(&pring->ring_lock); 10112 list_for_each_entry_safe(iocb, next_iocb, 10113 &pring->txq, list) { 10114 if (iocb->vport != vport) 10115 continue; 10116 list_move_tail(&iocb->list, &completions); 10117 } 10118 spin_unlock_irq(&pring->ring_lock); 10119 list_for_each_entry_safe(iocb, next_iocb, 10120 &pring->txcmplq, list) { 10121 if (iocb->vport != vport) 10122 continue; 10123 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10124 } 10125 pring->flag = prev_pring_flag; 10126 } 10127 } 10128 spin_unlock_irqrestore(&phba->hbalock, flags); 10129 10130 /* Cancel all the IOCBs from the completions list */ 10131 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10132 IOERR_SLI_DOWN); 10133 return 1; 10134 } 10135 10136 /** 10137 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10138 * @phba: Pointer to HBA context object. 10139 * 10140 * This function cleans up all iocb, buffers, mailbox commands 10141 * while shutting down the HBA. This function is called with no 10142 * lock held and always returns 1. 10143 * This function does the following to cleanup driver resources: 10144 * - Free discovery resources for each virtual port 10145 * - Cleanup any pending fabric iocbs 10146 * - Iterate through the iocb txq and free each entry 10147 * in the list. 10148 * - Free up any buffer posted to the HBA 10149 * - Free mailbox commands in the mailbox queue. 10150 **/ 10151 int 10152 lpfc_sli_hba_down(struct lpfc_hba *phba) 10153 { 10154 LIST_HEAD(completions); 10155 struct lpfc_sli *psli = &phba->sli; 10156 struct lpfc_queue *qp = NULL; 10157 struct lpfc_sli_ring *pring; 10158 struct lpfc_dmabuf *buf_ptr; 10159 unsigned long flags = 0; 10160 int i; 10161 10162 /* Shutdown the mailbox command sub-system */ 10163 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10164 10165 lpfc_hba_down_prep(phba); 10166 10167 lpfc_fabric_abort_hba(phba); 10168 10169 spin_lock_irqsave(&phba->hbalock, flags); 10170 10171 /* 10172 * Error everything on the txq since these iocbs 10173 * have not been given to the FW yet. 10174 */ 10175 if (phba->sli_rev != LPFC_SLI_REV4) { 10176 for (i = 0; i < psli->num_rings; i++) { 10177 pring = &psli->sli3_ring[i]; 10178 /* Only slow rings */ 10179 if (pring->ringno == LPFC_ELS_RING) { 10180 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10181 /* Set the lpfc data pending flag */ 10182 set_bit(LPFC_DATA_READY, &phba->data_flags); 10183 } 10184 list_splice_init(&pring->txq, &completions); 10185 } 10186 } else { 10187 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10188 pring = qp->pring; 10189 if (!pring) 10190 continue; 10191 spin_lock_irq(&pring->ring_lock); 10192 list_splice_init(&pring->txq, &completions); 10193 spin_unlock_irq(&pring->ring_lock); 10194 if (pring == phba->sli4_hba.els_wq->pring) { 10195 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10196 /* Set the lpfc data pending flag */ 10197 set_bit(LPFC_DATA_READY, &phba->data_flags); 10198 } 10199 } 10200 } 10201 spin_unlock_irqrestore(&phba->hbalock, flags); 10202 10203 /* Cancel all the IOCBs from the completions list */ 10204 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10205 IOERR_SLI_DOWN); 10206 10207 spin_lock_irqsave(&phba->hbalock, flags); 10208 list_splice_init(&phba->elsbuf, &completions); 10209 phba->elsbuf_cnt = 0; 10210 phba->elsbuf_prev_cnt = 0; 10211 spin_unlock_irqrestore(&phba->hbalock, flags); 10212 10213 while (!list_empty(&completions)) { 10214 list_remove_head(&completions, buf_ptr, 10215 struct lpfc_dmabuf, list); 10216 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10217 kfree(buf_ptr); 10218 } 10219 10220 /* Return any active mbox cmds */ 10221 del_timer_sync(&psli->mbox_tmo); 10222 10223 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10224 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10225 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10226 10227 return 1; 10228 } 10229 10230 /** 10231 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10232 * @srcp: Source memory pointer. 10233 * @destp: Destination memory pointer. 10234 * @cnt: Number of words required to be copied. 10235 * 10236 * This function is used for copying data between driver memory 10237 * and the SLI memory. This function also changes the endianness 10238 * of each word if native endianness is different from SLI 10239 * endianness. This function can be called with or without 10240 * lock. 10241 **/ 10242 void 10243 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10244 { 10245 uint32_t *src = srcp; 10246 uint32_t *dest = destp; 10247 uint32_t ldata; 10248 int i; 10249 10250 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10251 ldata = *src; 10252 ldata = le32_to_cpu(ldata); 10253 *dest = ldata; 10254 src++; 10255 dest++; 10256 } 10257 } 10258 10259 10260 /** 10261 * lpfc_sli_bemem_bcopy - SLI memory copy function 10262 * @srcp: Source memory pointer. 10263 * @destp: Destination memory pointer. 10264 * @cnt: Number of words required to be copied. 10265 * 10266 * This function is used for copying data between a data structure 10267 * with big endian representation to local endianness. 10268 * This function can be called with or without lock. 10269 **/ 10270 void 10271 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10272 { 10273 uint32_t *src = srcp; 10274 uint32_t *dest = destp; 10275 uint32_t ldata; 10276 int i; 10277 10278 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10279 ldata = *src; 10280 ldata = be32_to_cpu(ldata); 10281 *dest = ldata; 10282 src++; 10283 dest++; 10284 } 10285 } 10286 10287 /** 10288 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10289 * @phba: Pointer to HBA context object. 10290 * @pring: Pointer to driver SLI ring object. 10291 * @mp: Pointer to driver buffer object. 10292 * 10293 * This function is called with no lock held. 10294 * It always return zero after adding the buffer to the postbufq 10295 * buffer list. 10296 **/ 10297 int 10298 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10299 struct lpfc_dmabuf *mp) 10300 { 10301 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10302 later */ 10303 spin_lock_irq(&phba->hbalock); 10304 list_add_tail(&mp->list, &pring->postbufq); 10305 pring->postbufq_cnt++; 10306 spin_unlock_irq(&phba->hbalock); 10307 return 0; 10308 } 10309 10310 /** 10311 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10312 * @phba: Pointer to HBA context object. 10313 * 10314 * When HBQ is enabled, buffers are searched based on tags. This function 10315 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10316 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10317 * does not conflict with tags of buffer posted for unsolicited events. 10318 * The function returns the allocated tag. The function is called with 10319 * no locks held. 10320 **/ 10321 uint32_t 10322 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10323 { 10324 spin_lock_irq(&phba->hbalock); 10325 phba->buffer_tag_count++; 10326 /* 10327 * Always set the QUE_BUFTAG_BIT to distiguish between 10328 * a tag assigned by HBQ. 10329 */ 10330 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10331 spin_unlock_irq(&phba->hbalock); 10332 return phba->buffer_tag_count; 10333 } 10334 10335 /** 10336 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10337 * @phba: Pointer to HBA context object. 10338 * @pring: Pointer to driver SLI ring object. 10339 * @tag: Buffer tag. 10340 * 10341 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10342 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10343 * iocb is posted to the response ring with the tag of the buffer. 10344 * This function searches the pring->postbufq list using the tag 10345 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10346 * iocb. If the buffer is found then lpfc_dmabuf object of the 10347 * buffer is returned to the caller else NULL is returned. 10348 * This function is called with no lock held. 10349 **/ 10350 struct lpfc_dmabuf * 10351 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10352 uint32_t tag) 10353 { 10354 struct lpfc_dmabuf *mp, *next_mp; 10355 struct list_head *slp = &pring->postbufq; 10356 10357 /* Search postbufq, from the beginning, looking for a match on tag */ 10358 spin_lock_irq(&phba->hbalock); 10359 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10360 if (mp->buffer_tag == tag) { 10361 list_del_init(&mp->list); 10362 pring->postbufq_cnt--; 10363 spin_unlock_irq(&phba->hbalock); 10364 return mp; 10365 } 10366 } 10367 10368 spin_unlock_irq(&phba->hbalock); 10369 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10370 "0402 Cannot find virtual addr for buffer tag on " 10371 "ring %d Data x%lx x%p x%p x%x\n", 10372 pring->ringno, (unsigned long) tag, 10373 slp->next, slp->prev, pring->postbufq_cnt); 10374 10375 return NULL; 10376 } 10377 10378 /** 10379 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10380 * @phba: Pointer to HBA context object. 10381 * @pring: Pointer to driver SLI ring object. 10382 * @phys: DMA address of the buffer. 10383 * 10384 * This function searches the buffer list using the dma_address 10385 * of unsolicited event to find the driver's lpfc_dmabuf object 10386 * corresponding to the dma_address. The function returns the 10387 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10388 * This function is called by the ct and els unsolicited event 10389 * handlers to get the buffer associated with the unsolicited 10390 * event. 10391 * 10392 * This function is called with no lock held. 10393 **/ 10394 struct lpfc_dmabuf * 10395 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10396 dma_addr_t phys) 10397 { 10398 struct lpfc_dmabuf *mp, *next_mp; 10399 struct list_head *slp = &pring->postbufq; 10400 10401 /* Search postbufq, from the beginning, looking for a match on phys */ 10402 spin_lock_irq(&phba->hbalock); 10403 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10404 if (mp->phys == phys) { 10405 list_del_init(&mp->list); 10406 pring->postbufq_cnt--; 10407 spin_unlock_irq(&phba->hbalock); 10408 return mp; 10409 } 10410 } 10411 10412 spin_unlock_irq(&phba->hbalock); 10413 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10414 "0410 Cannot find virtual addr for mapped buf on " 10415 "ring %d Data x%llx x%p x%p x%x\n", 10416 pring->ringno, (unsigned long long)phys, 10417 slp->next, slp->prev, pring->postbufq_cnt); 10418 return NULL; 10419 } 10420 10421 /** 10422 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10423 * @phba: Pointer to HBA context object. 10424 * @cmdiocb: Pointer to driver command iocb object. 10425 * @rspiocb: Pointer to driver response iocb object. 10426 * 10427 * This function is the completion handler for the abort iocbs for 10428 * ELS commands. This function is called from the ELS ring event 10429 * handler with no lock held. This function frees memory resources 10430 * associated with the abort iocb. 10431 **/ 10432 static void 10433 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10434 struct lpfc_iocbq *rspiocb) 10435 { 10436 IOCB_t *irsp = &rspiocb->iocb; 10437 uint16_t abort_iotag, abort_context; 10438 struct lpfc_iocbq *abort_iocb = NULL; 10439 10440 if (irsp->ulpStatus) { 10441 10442 /* 10443 * Assume that the port already completed and returned, or 10444 * will return the iocb. Just Log the message. 10445 */ 10446 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10447 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10448 10449 spin_lock_irq(&phba->hbalock); 10450 if (phba->sli_rev < LPFC_SLI_REV4) { 10451 if (abort_iotag != 0 && 10452 abort_iotag <= phba->sli.last_iotag) 10453 abort_iocb = 10454 phba->sli.iocbq_lookup[abort_iotag]; 10455 } else 10456 /* For sli4 the abort_tag is the XRI, 10457 * so the abort routine puts the iotag of the iocb 10458 * being aborted in the context field of the abort 10459 * IOCB. 10460 */ 10461 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10462 10463 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10464 "0327 Cannot abort els iocb %p " 10465 "with tag %x context %x, abort status %x, " 10466 "abort code %x\n", 10467 abort_iocb, abort_iotag, abort_context, 10468 irsp->ulpStatus, irsp->un.ulpWord[4]); 10469 10470 spin_unlock_irq(&phba->hbalock); 10471 } 10472 lpfc_sli_release_iocbq(phba, cmdiocb); 10473 return; 10474 } 10475 10476 /** 10477 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10478 * @phba: Pointer to HBA context object. 10479 * @cmdiocb: Pointer to driver command iocb object. 10480 * @rspiocb: Pointer to driver response iocb object. 10481 * 10482 * The function is called from SLI ring event handler with no 10483 * lock held. This function is the completion handler for ELS commands 10484 * which are aborted. The function frees memory resources used for 10485 * the aborted ELS commands. 10486 **/ 10487 static void 10488 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10489 struct lpfc_iocbq *rspiocb) 10490 { 10491 IOCB_t *irsp = &rspiocb->iocb; 10492 10493 /* ELS cmd tag <ulpIoTag> completes */ 10494 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10495 "0139 Ignoring ELS cmd tag x%x completion Data: " 10496 "x%x x%x x%x\n", 10497 irsp->ulpIoTag, irsp->ulpStatus, 10498 irsp->un.ulpWord[4], irsp->ulpTimeout); 10499 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10500 lpfc_ct_free_iocb(phba, cmdiocb); 10501 else 10502 lpfc_els_free_iocb(phba, cmdiocb); 10503 return; 10504 } 10505 10506 /** 10507 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10508 * @phba: Pointer to HBA context object. 10509 * @pring: Pointer to driver SLI ring object. 10510 * @cmdiocb: Pointer to driver command iocb object. 10511 * 10512 * This function issues an abort iocb for the provided command iocb down to 10513 * the port. Other than the case the outstanding command iocb is an abort 10514 * request, this function issues abort out unconditionally. This function is 10515 * called with hbalock held. The function returns 0 when it fails due to 10516 * memory allocation failure or when the command iocb is an abort request. 10517 **/ 10518 static int 10519 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10520 struct lpfc_iocbq *cmdiocb) 10521 { 10522 struct lpfc_vport *vport = cmdiocb->vport; 10523 struct lpfc_iocbq *abtsiocbp; 10524 IOCB_t *icmd = NULL; 10525 IOCB_t *iabt = NULL; 10526 int retval; 10527 unsigned long iflags; 10528 10529 lockdep_assert_held(&phba->hbalock); 10530 10531 /* 10532 * There are certain command types we don't want to abort. And we 10533 * don't want to abort commands that are already in the process of 10534 * being aborted. 10535 */ 10536 icmd = &cmdiocb->iocb; 10537 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10538 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10539 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10540 return 0; 10541 10542 /* issue ABTS for this IOCB based on iotag */ 10543 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10544 if (abtsiocbp == NULL) 10545 return 0; 10546 10547 /* This signals the response to set the correct status 10548 * before calling the completion handler 10549 */ 10550 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10551 10552 iabt = &abtsiocbp->iocb; 10553 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10554 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10555 if (phba->sli_rev == LPFC_SLI_REV4) { 10556 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10557 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10558 } 10559 else 10560 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10561 iabt->ulpLe = 1; 10562 iabt->ulpClass = icmd->ulpClass; 10563 10564 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10565 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10566 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10567 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10568 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10569 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10570 10571 if (phba->link_state >= LPFC_LINK_UP) 10572 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10573 else 10574 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10575 10576 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10577 abtsiocbp->vport = vport; 10578 10579 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10580 "0339 Abort xri x%x, original iotag x%x, " 10581 "abort cmd iotag x%x\n", 10582 iabt->un.acxri.abortIoTag, 10583 iabt->un.acxri.abortContextTag, 10584 abtsiocbp->iotag); 10585 10586 if (phba->sli_rev == LPFC_SLI_REV4) { 10587 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10588 if (unlikely(pring == NULL)) 10589 return 0; 10590 /* Note: both hbalock and ring_lock need to be set here */ 10591 spin_lock_irqsave(&pring->ring_lock, iflags); 10592 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10593 abtsiocbp, 0); 10594 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10595 } else { 10596 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10597 abtsiocbp, 0); 10598 } 10599 10600 if (retval) 10601 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10602 10603 /* 10604 * Caller to this routine should check for IOCB_ERROR 10605 * and handle it properly. This routine no longer removes 10606 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10607 */ 10608 return retval; 10609 } 10610 10611 /** 10612 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10613 * @phba: Pointer to HBA context object. 10614 * @pring: Pointer to driver SLI ring object. 10615 * @cmdiocb: Pointer to driver command iocb object. 10616 * 10617 * This function issues an abort iocb for the provided command iocb. In case 10618 * of unloading, the abort iocb will not be issued to commands on the ELS 10619 * ring. Instead, the callback function shall be changed to those commands 10620 * so that nothing happens when them finishes. This function is called with 10621 * hbalock held. The function returns 0 when the command iocb is an abort 10622 * request. 10623 **/ 10624 int 10625 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10626 struct lpfc_iocbq *cmdiocb) 10627 { 10628 struct lpfc_vport *vport = cmdiocb->vport; 10629 int retval = IOCB_ERROR; 10630 IOCB_t *icmd = NULL; 10631 10632 lockdep_assert_held(&phba->hbalock); 10633 10634 /* 10635 * There are certain command types we don't want to abort. And we 10636 * don't want to abort commands that are already in the process of 10637 * being aborted. 10638 */ 10639 icmd = &cmdiocb->iocb; 10640 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10641 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10642 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10643 return 0; 10644 10645 if (!pring) { 10646 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10647 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10648 else 10649 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10650 goto abort_iotag_exit; 10651 } 10652 10653 /* 10654 * If we're unloading, don't abort iocb on the ELS ring, but change 10655 * the callback so that nothing happens when it finishes. 10656 */ 10657 if ((vport->load_flag & FC_UNLOADING) && 10658 (pring->ringno == LPFC_ELS_RING)) { 10659 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10660 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10661 else 10662 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10663 goto abort_iotag_exit; 10664 } 10665 10666 /* Now, we try to issue the abort to the cmdiocb out */ 10667 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10668 10669 abort_iotag_exit: 10670 /* 10671 * Caller to this routine should check for IOCB_ERROR 10672 * and handle it properly. This routine no longer removes 10673 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10674 */ 10675 return retval; 10676 } 10677 10678 /** 10679 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10680 * @phba: Pointer to HBA context object. 10681 * @pring: Pointer to driver SLI ring object. 10682 * @cmdiocb: Pointer to driver command iocb object. 10683 * 10684 * This function issues an abort iocb for the provided command iocb down to 10685 * the port. Other than the case the outstanding command iocb is an abort 10686 * request, this function issues abort out unconditionally. This function is 10687 * called with hbalock held. The function returns 0 when it fails due to 10688 * memory allocation failure or when the command iocb is an abort request. 10689 **/ 10690 static int 10691 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10692 struct lpfc_iocbq *cmdiocb) 10693 { 10694 struct lpfc_vport *vport = cmdiocb->vport; 10695 struct lpfc_iocbq *abtsiocbp; 10696 union lpfc_wqe *abts_wqe; 10697 int retval; 10698 10699 /* 10700 * There are certain command types we don't want to abort. And we 10701 * don't want to abort commands that are already in the process of 10702 * being aborted. 10703 */ 10704 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10705 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10706 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10707 return 0; 10708 10709 /* issue ABTS for this io based on iotag */ 10710 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10711 if (abtsiocbp == NULL) 10712 return 0; 10713 10714 /* This signals the response to set the correct status 10715 * before calling the completion handler 10716 */ 10717 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10718 10719 /* Complete prepping the abort wqe and issue to the FW. */ 10720 abts_wqe = &abtsiocbp->wqe; 10721 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10722 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10723 10724 /* Explicitly set reserved fields to zero.*/ 10725 abts_wqe->abort_cmd.rsrvd4 = 0; 10726 abts_wqe->abort_cmd.rsrvd5 = 0; 10727 10728 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10729 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10730 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10731 10732 /* word 7 */ 10733 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 10734 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10735 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 10736 cmdiocb->iocb.ulpClass); 10737 10738 /* word 8 - tell the FW to abort the IO associated with this 10739 * outstanding exchange ID. 10740 */ 10741 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 10742 10743 /* word 9 - this is the iotag for the abts_wqe completion. */ 10744 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 10745 abtsiocbp->iotag); 10746 10747 /* word 10 */ 10748 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 10749 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 10750 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 10751 10752 /* word 11 */ 10753 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10754 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 10755 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10756 10757 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10758 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 10759 abtsiocbp->vport = vport; 10760 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 10761 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 10762 if (retval) { 10763 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10764 "6147 Failed abts issue_wqe with status x%x " 10765 "for oxid x%x\n", 10766 retval, cmdiocb->sli4_xritag); 10767 lpfc_sli_release_iocbq(phba, abtsiocbp); 10768 return retval; 10769 } 10770 10771 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10772 "6148 Drv Abort NVME Request Issued for " 10773 "ox_id x%x on reqtag x%x\n", 10774 cmdiocb->sli4_xritag, 10775 abtsiocbp->iotag); 10776 10777 return retval; 10778 } 10779 10780 /** 10781 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10782 * @phba: pointer to lpfc HBA data structure. 10783 * 10784 * This routine will abort all pending and outstanding iocbs to an HBA. 10785 **/ 10786 void 10787 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10788 { 10789 struct lpfc_sli *psli = &phba->sli; 10790 struct lpfc_sli_ring *pring; 10791 struct lpfc_queue *qp = NULL; 10792 int i; 10793 10794 if (phba->sli_rev != LPFC_SLI_REV4) { 10795 for (i = 0; i < psli->num_rings; i++) { 10796 pring = &psli->sli3_ring[i]; 10797 lpfc_sli_abort_iocb_ring(phba, pring); 10798 } 10799 return; 10800 } 10801 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10802 pring = qp->pring; 10803 if (!pring) 10804 continue; 10805 lpfc_sli_abort_iocb_ring(phba, pring); 10806 } 10807 } 10808 10809 /** 10810 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10811 * @iocbq: Pointer to driver iocb object. 10812 * @vport: Pointer to driver virtual port object. 10813 * @tgt_id: SCSI ID of the target. 10814 * @lun_id: LUN ID of the scsi device. 10815 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10816 * 10817 * This function acts as an iocb filter for functions which abort or count 10818 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10819 * 0 if the filtering criteria is met for the given iocb and will return 10820 * 1 if the filtering criteria is not met. 10821 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10822 * given iocb is for the SCSI device specified by vport, tgt_id and 10823 * lun_id parameter. 10824 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10825 * given iocb is for the SCSI target specified by vport and tgt_id 10826 * parameters. 10827 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10828 * given iocb is for the SCSI host associated with the given vport. 10829 * This function is called with no locks held. 10830 **/ 10831 static int 10832 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10833 uint16_t tgt_id, uint64_t lun_id, 10834 lpfc_ctx_cmd ctx_cmd) 10835 { 10836 struct lpfc_scsi_buf *lpfc_cmd; 10837 int rc = 1; 10838 10839 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10840 return rc; 10841 10842 if (iocbq->vport != vport) 10843 return rc; 10844 10845 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10846 10847 if (lpfc_cmd->pCmd == NULL) 10848 return rc; 10849 10850 switch (ctx_cmd) { 10851 case LPFC_CTX_LUN: 10852 if ((lpfc_cmd->rdata->pnode) && 10853 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10854 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10855 rc = 0; 10856 break; 10857 case LPFC_CTX_TGT: 10858 if ((lpfc_cmd->rdata->pnode) && 10859 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10860 rc = 0; 10861 break; 10862 case LPFC_CTX_HOST: 10863 rc = 0; 10864 break; 10865 default: 10866 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10867 __func__, ctx_cmd); 10868 break; 10869 } 10870 10871 return rc; 10872 } 10873 10874 /** 10875 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10876 * @vport: Pointer to virtual port. 10877 * @tgt_id: SCSI ID of the target. 10878 * @lun_id: LUN ID of the scsi device. 10879 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10880 * 10881 * This function returns number of FCP commands pending for the vport. 10882 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10883 * commands pending on the vport associated with SCSI device specified 10884 * by tgt_id and lun_id parameters. 10885 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10886 * commands pending on the vport associated with SCSI target specified 10887 * by tgt_id parameter. 10888 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10889 * commands pending on the vport. 10890 * This function returns the number of iocbs which satisfy the filter. 10891 * This function is called without any lock held. 10892 **/ 10893 int 10894 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10895 lpfc_ctx_cmd ctx_cmd) 10896 { 10897 struct lpfc_hba *phba = vport->phba; 10898 struct lpfc_iocbq *iocbq; 10899 int sum, i; 10900 10901 spin_lock_irq(&phba->hbalock); 10902 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10903 iocbq = phba->sli.iocbq_lookup[i]; 10904 10905 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10906 ctx_cmd) == 0) 10907 sum++; 10908 } 10909 spin_unlock_irq(&phba->hbalock); 10910 10911 return sum; 10912 } 10913 10914 /** 10915 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10916 * @phba: Pointer to HBA context object 10917 * @cmdiocb: Pointer to command iocb object. 10918 * @rspiocb: Pointer to response iocb object. 10919 * 10920 * This function is called when an aborted FCP iocb completes. This 10921 * function is called by the ring event handler with no lock held. 10922 * This function frees the iocb. 10923 **/ 10924 void 10925 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10926 struct lpfc_iocbq *rspiocb) 10927 { 10928 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10929 "3096 ABORT_XRI_CN completing on rpi x%x " 10930 "original iotag x%x, abort cmd iotag x%x " 10931 "status 0x%x, reason 0x%x\n", 10932 cmdiocb->iocb.un.acxri.abortContextTag, 10933 cmdiocb->iocb.un.acxri.abortIoTag, 10934 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10935 rspiocb->iocb.un.ulpWord[4]); 10936 lpfc_sli_release_iocbq(phba, cmdiocb); 10937 return; 10938 } 10939 10940 /** 10941 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10942 * @vport: Pointer to virtual port. 10943 * @pring: Pointer to driver SLI ring object. 10944 * @tgt_id: SCSI ID of the target. 10945 * @lun_id: LUN ID of the scsi device. 10946 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10947 * 10948 * This function sends an abort command for every SCSI command 10949 * associated with the given virtual port pending on the ring 10950 * filtered by lpfc_sli_validate_fcp_iocb function. 10951 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10952 * FCP iocbs associated with lun specified by tgt_id and lun_id 10953 * parameters 10954 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10955 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10956 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10957 * FCP iocbs associated with virtual port. 10958 * This function returns number of iocbs it failed to abort. 10959 * This function is called with no locks held. 10960 **/ 10961 int 10962 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10963 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10964 { 10965 struct lpfc_hba *phba = vport->phba; 10966 struct lpfc_iocbq *iocbq; 10967 struct lpfc_iocbq *abtsiocb; 10968 struct lpfc_sli_ring *pring_s4; 10969 IOCB_t *cmd = NULL; 10970 int errcnt = 0, ret_val = 0; 10971 int i; 10972 10973 for (i = 1; i <= phba->sli.last_iotag; i++) { 10974 iocbq = phba->sli.iocbq_lookup[i]; 10975 10976 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10977 abort_cmd) != 0) 10978 continue; 10979 10980 /* 10981 * If the iocbq is already being aborted, don't take a second 10982 * action, but do count it. 10983 */ 10984 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10985 continue; 10986 10987 /* issue ABTS for this IOCB based on iotag */ 10988 abtsiocb = lpfc_sli_get_iocbq(phba); 10989 if (abtsiocb == NULL) { 10990 errcnt++; 10991 continue; 10992 } 10993 10994 /* indicate the IO is being aborted by the driver. */ 10995 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10996 10997 cmd = &iocbq->iocb; 10998 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10999 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11000 if (phba->sli_rev == LPFC_SLI_REV4) 11001 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11002 else 11003 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11004 abtsiocb->iocb.ulpLe = 1; 11005 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11006 abtsiocb->vport = vport; 11007 11008 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11009 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11010 if (iocbq->iocb_flag & LPFC_IO_FCP) 11011 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11012 if (iocbq->iocb_flag & LPFC_IO_FOF) 11013 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11014 11015 if (lpfc_is_link_up(phba)) 11016 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11017 else 11018 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11019 11020 /* Setup callback routine and issue the command. */ 11021 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11022 if (phba->sli_rev == LPFC_SLI_REV4) { 11023 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11024 if (!pring_s4) 11025 continue; 11026 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11027 abtsiocb, 0); 11028 } else 11029 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11030 abtsiocb, 0); 11031 if (ret_val == IOCB_ERROR) { 11032 lpfc_sli_release_iocbq(phba, abtsiocb); 11033 errcnt++; 11034 continue; 11035 } 11036 } 11037 11038 return errcnt; 11039 } 11040 11041 /** 11042 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11043 * @vport: Pointer to virtual port. 11044 * @pring: Pointer to driver SLI ring object. 11045 * @tgt_id: SCSI ID of the target. 11046 * @lun_id: LUN ID of the scsi device. 11047 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11048 * 11049 * This function sends an abort command for every SCSI command 11050 * associated with the given virtual port pending on the ring 11051 * filtered by lpfc_sli_validate_fcp_iocb function. 11052 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11053 * FCP iocbs associated with lun specified by tgt_id and lun_id 11054 * parameters 11055 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11056 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11057 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11058 * FCP iocbs associated with virtual port. 11059 * This function returns number of iocbs it aborted . 11060 * This function is called with no locks held right after a taskmgmt 11061 * command is sent. 11062 **/ 11063 int 11064 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11065 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11066 { 11067 struct lpfc_hba *phba = vport->phba; 11068 struct lpfc_scsi_buf *lpfc_cmd; 11069 struct lpfc_iocbq *abtsiocbq; 11070 struct lpfc_nodelist *ndlp; 11071 struct lpfc_iocbq *iocbq; 11072 IOCB_t *icmd; 11073 int sum, i, ret_val; 11074 unsigned long iflags; 11075 struct lpfc_sli_ring *pring_s4; 11076 11077 spin_lock_irq(&phba->hbalock); 11078 11079 /* all I/Os are in process of being flushed */ 11080 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 11081 spin_unlock_irq(&phba->hbalock); 11082 return 0; 11083 } 11084 sum = 0; 11085 11086 for (i = 1; i <= phba->sli.last_iotag; i++) { 11087 iocbq = phba->sli.iocbq_lookup[i]; 11088 11089 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11090 cmd) != 0) 11091 continue; 11092 11093 /* 11094 * If the iocbq is already being aborted, don't take a second 11095 * action, but do count it. 11096 */ 11097 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11098 continue; 11099 11100 /* issue ABTS for this IOCB based on iotag */ 11101 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11102 if (abtsiocbq == NULL) 11103 continue; 11104 11105 icmd = &iocbq->iocb; 11106 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11107 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11108 if (phba->sli_rev == LPFC_SLI_REV4) 11109 abtsiocbq->iocb.un.acxri.abortIoTag = 11110 iocbq->sli4_xritag; 11111 else 11112 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11113 abtsiocbq->iocb.ulpLe = 1; 11114 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11115 abtsiocbq->vport = vport; 11116 11117 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11118 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11119 if (iocbq->iocb_flag & LPFC_IO_FCP) 11120 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11121 if (iocbq->iocb_flag & LPFC_IO_FOF) 11122 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11123 11124 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11125 ndlp = lpfc_cmd->rdata->pnode; 11126 11127 if (lpfc_is_link_up(phba) && 11128 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11129 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11130 else 11131 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11132 11133 /* Setup callback routine and issue the command. */ 11134 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11135 11136 /* 11137 * Indicate the IO is being aborted by the driver and set 11138 * the caller's flag into the aborted IO. 11139 */ 11140 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11141 11142 if (phba->sli_rev == LPFC_SLI_REV4) { 11143 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11144 if (pring_s4 == NULL) 11145 continue; 11146 /* Note: both hbalock and ring_lock must be set here */ 11147 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 11148 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11149 abtsiocbq, 0); 11150 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 11151 } else { 11152 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11153 abtsiocbq, 0); 11154 } 11155 11156 11157 if (ret_val == IOCB_ERROR) 11158 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11159 else 11160 sum++; 11161 } 11162 spin_unlock_irq(&phba->hbalock); 11163 return sum; 11164 } 11165 11166 /** 11167 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11168 * @phba: Pointer to HBA context object. 11169 * @cmdiocbq: Pointer to command iocb. 11170 * @rspiocbq: Pointer to response iocb. 11171 * 11172 * This function is the completion handler for iocbs issued using 11173 * lpfc_sli_issue_iocb_wait function. This function is called by the 11174 * ring event handler function without any lock held. This function 11175 * can be called from both worker thread context and interrupt 11176 * context. This function also can be called from other thread which 11177 * cleans up the SLI layer objects. 11178 * This function copy the contents of the response iocb to the 11179 * response iocb memory object provided by the caller of 11180 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11181 * sleeps for the iocb completion. 11182 **/ 11183 static void 11184 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11185 struct lpfc_iocbq *cmdiocbq, 11186 struct lpfc_iocbq *rspiocbq) 11187 { 11188 wait_queue_head_t *pdone_q; 11189 unsigned long iflags; 11190 struct lpfc_scsi_buf *lpfc_cmd; 11191 11192 spin_lock_irqsave(&phba->hbalock, iflags); 11193 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11194 11195 /* 11196 * A time out has occurred for the iocb. If a time out 11197 * completion handler has been supplied, call it. Otherwise, 11198 * just free the iocbq. 11199 */ 11200 11201 spin_unlock_irqrestore(&phba->hbalock, iflags); 11202 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11203 cmdiocbq->wait_iocb_cmpl = NULL; 11204 if (cmdiocbq->iocb_cmpl) 11205 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11206 else 11207 lpfc_sli_release_iocbq(phba, cmdiocbq); 11208 return; 11209 } 11210 11211 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11212 if (cmdiocbq->context2 && rspiocbq) 11213 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11214 &rspiocbq->iocb, sizeof(IOCB_t)); 11215 11216 /* Set the exchange busy flag for task management commands */ 11217 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11218 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11219 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11220 cur_iocbq); 11221 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11222 } 11223 11224 pdone_q = cmdiocbq->context_un.wait_queue; 11225 if (pdone_q) 11226 wake_up(pdone_q); 11227 spin_unlock_irqrestore(&phba->hbalock, iflags); 11228 return; 11229 } 11230 11231 /** 11232 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11233 * @phba: Pointer to HBA context object.. 11234 * @piocbq: Pointer to command iocb. 11235 * @flag: Flag to test. 11236 * 11237 * This routine grabs the hbalock and then test the iocb_flag to 11238 * see if the passed in flag is set. 11239 * Returns: 11240 * 1 if flag is set. 11241 * 0 if flag is not set. 11242 **/ 11243 static int 11244 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11245 struct lpfc_iocbq *piocbq, uint32_t flag) 11246 { 11247 unsigned long iflags; 11248 int ret; 11249 11250 spin_lock_irqsave(&phba->hbalock, iflags); 11251 ret = piocbq->iocb_flag & flag; 11252 spin_unlock_irqrestore(&phba->hbalock, iflags); 11253 return ret; 11254 11255 } 11256 11257 /** 11258 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11259 * @phba: Pointer to HBA context object.. 11260 * @pring: Pointer to sli ring. 11261 * @piocb: Pointer to command iocb. 11262 * @prspiocbq: Pointer to response iocb. 11263 * @timeout: Timeout in number of seconds. 11264 * 11265 * This function issues the iocb to firmware and waits for the 11266 * iocb to complete. The iocb_cmpl field of the shall be used 11267 * to handle iocbs which time out. If the field is NULL, the 11268 * function shall free the iocbq structure. If more clean up is 11269 * needed, the caller is expected to provide a completion function 11270 * that will provide the needed clean up. If the iocb command is 11271 * not completed within timeout seconds, the function will either 11272 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11273 * completion function set in the iocb_cmpl field and then return 11274 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11275 * resources if this function returns IOCB_TIMEDOUT. 11276 * The function waits for the iocb completion using an 11277 * non-interruptible wait. 11278 * This function will sleep while waiting for iocb completion. 11279 * So, this function should not be called from any context which 11280 * does not allow sleeping. Due to the same reason, this function 11281 * cannot be called with interrupt disabled. 11282 * This function assumes that the iocb completions occur while 11283 * this function sleep. So, this function cannot be called from 11284 * the thread which process iocb completion for this ring. 11285 * This function clears the iocb_flag of the iocb object before 11286 * issuing the iocb and the iocb completion handler sets this 11287 * flag and wakes this thread when the iocb completes. 11288 * The contents of the response iocb will be copied to prspiocbq 11289 * by the completion handler when the command completes. 11290 * This function returns IOCB_SUCCESS when success. 11291 * This function is called with no lock held. 11292 **/ 11293 int 11294 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11295 uint32_t ring_number, 11296 struct lpfc_iocbq *piocb, 11297 struct lpfc_iocbq *prspiocbq, 11298 uint32_t timeout) 11299 { 11300 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11301 long timeleft, timeout_req = 0; 11302 int retval = IOCB_SUCCESS; 11303 uint32_t creg_val; 11304 struct lpfc_iocbq *iocb; 11305 int txq_cnt = 0; 11306 int txcmplq_cnt = 0; 11307 struct lpfc_sli_ring *pring; 11308 unsigned long iflags; 11309 bool iocb_completed = true; 11310 11311 if (phba->sli_rev >= LPFC_SLI_REV4) 11312 pring = lpfc_sli4_calc_ring(phba, piocb); 11313 else 11314 pring = &phba->sli.sli3_ring[ring_number]; 11315 /* 11316 * If the caller has provided a response iocbq buffer, then context2 11317 * is NULL or its an error. 11318 */ 11319 if (prspiocbq) { 11320 if (piocb->context2) 11321 return IOCB_ERROR; 11322 piocb->context2 = prspiocbq; 11323 } 11324 11325 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11326 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11327 piocb->context_un.wait_queue = &done_q; 11328 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11329 11330 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11331 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11332 return IOCB_ERROR; 11333 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11334 writel(creg_val, phba->HCregaddr); 11335 readl(phba->HCregaddr); /* flush */ 11336 } 11337 11338 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11339 SLI_IOCB_RET_IOCB); 11340 if (retval == IOCB_SUCCESS) { 11341 timeout_req = msecs_to_jiffies(timeout * 1000); 11342 timeleft = wait_event_timeout(done_q, 11343 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11344 timeout_req); 11345 spin_lock_irqsave(&phba->hbalock, iflags); 11346 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11347 11348 /* 11349 * IOCB timed out. Inform the wake iocb wait 11350 * completion function and set local status 11351 */ 11352 11353 iocb_completed = false; 11354 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11355 } 11356 spin_unlock_irqrestore(&phba->hbalock, iflags); 11357 if (iocb_completed) { 11358 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11359 "0331 IOCB wake signaled\n"); 11360 /* Note: we are not indicating if the IOCB has a success 11361 * status or not - that's for the caller to check. 11362 * IOCB_SUCCESS means just that the command was sent and 11363 * completed. Not that it completed successfully. 11364 * */ 11365 } else if (timeleft == 0) { 11366 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11367 "0338 IOCB wait timeout error - no " 11368 "wake response Data x%x\n", timeout); 11369 retval = IOCB_TIMEDOUT; 11370 } else { 11371 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11372 "0330 IOCB wake NOT set, " 11373 "Data x%x x%lx\n", 11374 timeout, (timeleft / jiffies)); 11375 retval = IOCB_TIMEDOUT; 11376 } 11377 } else if (retval == IOCB_BUSY) { 11378 if (phba->cfg_log_verbose & LOG_SLI) { 11379 list_for_each_entry(iocb, &pring->txq, list) { 11380 txq_cnt++; 11381 } 11382 list_for_each_entry(iocb, &pring->txcmplq, list) { 11383 txcmplq_cnt++; 11384 } 11385 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11386 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11387 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11388 } 11389 return retval; 11390 } else { 11391 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11392 "0332 IOCB wait issue failed, Data x%x\n", 11393 retval); 11394 retval = IOCB_ERROR; 11395 } 11396 11397 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11398 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11399 return IOCB_ERROR; 11400 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11401 writel(creg_val, phba->HCregaddr); 11402 readl(phba->HCregaddr); /* flush */ 11403 } 11404 11405 if (prspiocbq) 11406 piocb->context2 = NULL; 11407 11408 piocb->context_un.wait_queue = NULL; 11409 piocb->iocb_cmpl = NULL; 11410 return retval; 11411 } 11412 11413 /** 11414 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11415 * @phba: Pointer to HBA context object. 11416 * @pmboxq: Pointer to driver mailbox object. 11417 * @timeout: Timeout in number of seconds. 11418 * 11419 * This function issues the mailbox to firmware and waits for the 11420 * mailbox command to complete. If the mailbox command is not 11421 * completed within timeout seconds, it returns MBX_TIMEOUT. 11422 * The function waits for the mailbox completion using an 11423 * interruptible wait. If the thread is woken up due to a 11424 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11425 * should not free the mailbox resources, if this function returns 11426 * MBX_TIMEOUT. 11427 * This function will sleep while waiting for mailbox completion. 11428 * So, this function should not be called from any context which 11429 * does not allow sleeping. Due to the same reason, this function 11430 * cannot be called with interrupt disabled. 11431 * This function assumes that the mailbox completion occurs while 11432 * this function sleep. So, this function cannot be called from 11433 * the worker thread which processes mailbox completion. 11434 * This function is called in the context of HBA management 11435 * applications. 11436 * This function returns MBX_SUCCESS when successful. 11437 * This function is called with no lock held. 11438 **/ 11439 int 11440 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11441 uint32_t timeout) 11442 { 11443 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11444 MAILBOX_t *mb = NULL; 11445 int retval; 11446 unsigned long flag; 11447 11448 /* The caller might set context1 for extended buffer */ 11449 if (pmboxq->context1) 11450 mb = (MAILBOX_t *)pmboxq->context1; 11451 11452 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11453 /* setup wake call as IOCB callback */ 11454 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11455 /* setup context field to pass wait_queue pointer to wake function */ 11456 pmboxq->context1 = &done_q; 11457 11458 /* now issue the command */ 11459 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11460 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11461 wait_event_interruptible_timeout(done_q, 11462 pmboxq->mbox_flag & LPFC_MBX_WAKE, 11463 msecs_to_jiffies(timeout * 1000)); 11464 11465 spin_lock_irqsave(&phba->hbalock, flag); 11466 /* restore the possible extended buffer for free resource */ 11467 pmboxq->context1 = (uint8_t *)mb; 11468 /* 11469 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11470 * else do not free the resources. 11471 */ 11472 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11473 retval = MBX_SUCCESS; 11474 } else { 11475 retval = MBX_TIMEOUT; 11476 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11477 } 11478 spin_unlock_irqrestore(&phba->hbalock, flag); 11479 } else { 11480 /* restore the possible extended buffer for free resource */ 11481 pmboxq->context1 = (uint8_t *)mb; 11482 } 11483 11484 return retval; 11485 } 11486 11487 /** 11488 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11489 * @phba: Pointer to HBA context. 11490 * 11491 * This function is called to shutdown the driver's mailbox sub-system. 11492 * It first marks the mailbox sub-system is in a block state to prevent 11493 * the asynchronous mailbox command from issued off the pending mailbox 11494 * command queue. If the mailbox command sub-system shutdown is due to 11495 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11496 * the mailbox sub-system flush routine to forcefully bring down the 11497 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11498 * as with offline or HBA function reset), this routine will wait for the 11499 * outstanding mailbox command to complete before invoking the mailbox 11500 * sub-system flush routine to gracefully bring down mailbox sub-system. 11501 **/ 11502 void 11503 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11504 { 11505 struct lpfc_sli *psli = &phba->sli; 11506 unsigned long timeout; 11507 11508 if (mbx_action == LPFC_MBX_NO_WAIT) { 11509 /* delay 100ms for port state */ 11510 msleep(100); 11511 lpfc_sli_mbox_sys_flush(phba); 11512 return; 11513 } 11514 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11515 11516 spin_lock_irq(&phba->hbalock); 11517 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11518 11519 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11520 /* Determine how long we might wait for the active mailbox 11521 * command to be gracefully completed by firmware. 11522 */ 11523 if (phba->sli.mbox_active) 11524 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11525 phba->sli.mbox_active) * 11526 1000) + jiffies; 11527 spin_unlock_irq(&phba->hbalock); 11528 11529 while (phba->sli.mbox_active) { 11530 /* Check active mailbox complete status every 2ms */ 11531 msleep(2); 11532 if (time_after(jiffies, timeout)) 11533 /* Timeout, let the mailbox flush routine to 11534 * forcefully release active mailbox command 11535 */ 11536 break; 11537 } 11538 } else 11539 spin_unlock_irq(&phba->hbalock); 11540 11541 lpfc_sli_mbox_sys_flush(phba); 11542 } 11543 11544 /** 11545 * lpfc_sli_eratt_read - read sli-3 error attention events 11546 * @phba: Pointer to HBA context. 11547 * 11548 * This function is called to read the SLI3 device error attention registers 11549 * for possible error attention events. The caller must hold the hostlock 11550 * with spin_lock_irq(). 11551 * 11552 * This function returns 1 when there is Error Attention in the Host Attention 11553 * Register and returns 0 otherwise. 11554 **/ 11555 static int 11556 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11557 { 11558 uint32_t ha_copy; 11559 11560 /* Read chip Host Attention (HA) register */ 11561 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11562 goto unplug_err; 11563 11564 if (ha_copy & HA_ERATT) { 11565 /* Read host status register to retrieve error event */ 11566 if (lpfc_sli_read_hs(phba)) 11567 goto unplug_err; 11568 11569 /* Check if there is a deferred error condition is active */ 11570 if ((HS_FFER1 & phba->work_hs) && 11571 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11572 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11573 phba->hba_flag |= DEFER_ERATT; 11574 /* Clear all interrupt enable conditions */ 11575 writel(0, phba->HCregaddr); 11576 readl(phba->HCregaddr); 11577 } 11578 11579 /* Set the driver HA work bitmap */ 11580 phba->work_ha |= HA_ERATT; 11581 /* Indicate polling handles this ERATT */ 11582 phba->hba_flag |= HBA_ERATT_HANDLED; 11583 return 1; 11584 } 11585 return 0; 11586 11587 unplug_err: 11588 /* Set the driver HS work bitmap */ 11589 phba->work_hs |= UNPLUG_ERR; 11590 /* Set the driver HA work bitmap */ 11591 phba->work_ha |= HA_ERATT; 11592 /* Indicate polling handles this ERATT */ 11593 phba->hba_flag |= HBA_ERATT_HANDLED; 11594 return 1; 11595 } 11596 11597 /** 11598 * lpfc_sli4_eratt_read - read sli-4 error attention events 11599 * @phba: Pointer to HBA context. 11600 * 11601 * This function is called to read the SLI4 device error attention registers 11602 * for possible error attention events. The caller must hold the hostlock 11603 * with spin_lock_irq(). 11604 * 11605 * This function returns 1 when there is Error Attention in the Host Attention 11606 * Register and returns 0 otherwise. 11607 **/ 11608 static int 11609 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11610 { 11611 uint32_t uerr_sta_hi, uerr_sta_lo; 11612 uint32_t if_type, portsmphr; 11613 struct lpfc_register portstat_reg; 11614 11615 /* 11616 * For now, use the SLI4 device internal unrecoverable error 11617 * registers for error attention. This can be changed later. 11618 */ 11619 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11620 switch (if_type) { 11621 case LPFC_SLI_INTF_IF_TYPE_0: 11622 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11623 &uerr_sta_lo) || 11624 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11625 &uerr_sta_hi)) { 11626 phba->work_hs |= UNPLUG_ERR; 11627 phba->work_ha |= HA_ERATT; 11628 phba->hba_flag |= HBA_ERATT_HANDLED; 11629 return 1; 11630 } 11631 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11632 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11633 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11634 "1423 HBA Unrecoverable error: " 11635 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11636 "ue_mask_lo_reg=0x%x, " 11637 "ue_mask_hi_reg=0x%x\n", 11638 uerr_sta_lo, uerr_sta_hi, 11639 phba->sli4_hba.ue_mask_lo, 11640 phba->sli4_hba.ue_mask_hi); 11641 phba->work_status[0] = uerr_sta_lo; 11642 phba->work_status[1] = uerr_sta_hi; 11643 phba->work_ha |= HA_ERATT; 11644 phba->hba_flag |= HBA_ERATT_HANDLED; 11645 return 1; 11646 } 11647 break; 11648 case LPFC_SLI_INTF_IF_TYPE_2: 11649 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11650 &portstat_reg.word0) || 11651 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11652 &portsmphr)){ 11653 phba->work_hs |= UNPLUG_ERR; 11654 phba->work_ha |= HA_ERATT; 11655 phba->hba_flag |= HBA_ERATT_HANDLED; 11656 return 1; 11657 } 11658 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11659 phba->work_status[0] = 11660 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11661 phba->work_status[1] = 11662 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11663 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11664 "2885 Port Status Event: " 11665 "port status reg 0x%x, " 11666 "port smphr reg 0x%x, " 11667 "error 1=0x%x, error 2=0x%x\n", 11668 portstat_reg.word0, 11669 portsmphr, 11670 phba->work_status[0], 11671 phba->work_status[1]); 11672 phba->work_ha |= HA_ERATT; 11673 phba->hba_flag |= HBA_ERATT_HANDLED; 11674 return 1; 11675 } 11676 break; 11677 case LPFC_SLI_INTF_IF_TYPE_1: 11678 default: 11679 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11680 "2886 HBA Error Attention on unsupported " 11681 "if type %d.", if_type); 11682 return 1; 11683 } 11684 11685 return 0; 11686 } 11687 11688 /** 11689 * lpfc_sli_check_eratt - check error attention events 11690 * @phba: Pointer to HBA context. 11691 * 11692 * This function is called from timer soft interrupt context to check HBA's 11693 * error attention register bit for error attention events. 11694 * 11695 * This function returns 1 when there is Error Attention in the Host Attention 11696 * Register and returns 0 otherwise. 11697 **/ 11698 int 11699 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11700 { 11701 uint32_t ha_copy; 11702 11703 /* If somebody is waiting to handle an eratt, don't process it 11704 * here. The brdkill function will do this. 11705 */ 11706 if (phba->link_flag & LS_IGNORE_ERATT) 11707 return 0; 11708 11709 /* Check if interrupt handler handles this ERATT */ 11710 spin_lock_irq(&phba->hbalock); 11711 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11712 /* Interrupt handler has handled ERATT */ 11713 spin_unlock_irq(&phba->hbalock); 11714 return 0; 11715 } 11716 11717 /* 11718 * If there is deferred error attention, do not check for error 11719 * attention 11720 */ 11721 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11722 spin_unlock_irq(&phba->hbalock); 11723 return 0; 11724 } 11725 11726 /* If PCI channel is offline, don't process it */ 11727 if (unlikely(pci_channel_offline(phba->pcidev))) { 11728 spin_unlock_irq(&phba->hbalock); 11729 return 0; 11730 } 11731 11732 switch (phba->sli_rev) { 11733 case LPFC_SLI_REV2: 11734 case LPFC_SLI_REV3: 11735 /* Read chip Host Attention (HA) register */ 11736 ha_copy = lpfc_sli_eratt_read(phba); 11737 break; 11738 case LPFC_SLI_REV4: 11739 /* Read device Uncoverable Error (UERR) registers */ 11740 ha_copy = lpfc_sli4_eratt_read(phba); 11741 break; 11742 default: 11743 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11744 "0299 Invalid SLI revision (%d)\n", 11745 phba->sli_rev); 11746 ha_copy = 0; 11747 break; 11748 } 11749 spin_unlock_irq(&phba->hbalock); 11750 11751 return ha_copy; 11752 } 11753 11754 /** 11755 * lpfc_intr_state_check - Check device state for interrupt handling 11756 * @phba: Pointer to HBA context. 11757 * 11758 * This inline routine checks whether a device or its PCI slot is in a state 11759 * that the interrupt should be handled. 11760 * 11761 * This function returns 0 if the device or the PCI slot is in a state that 11762 * interrupt should be handled, otherwise -EIO. 11763 */ 11764 static inline int 11765 lpfc_intr_state_check(struct lpfc_hba *phba) 11766 { 11767 /* If the pci channel is offline, ignore all the interrupts */ 11768 if (unlikely(pci_channel_offline(phba->pcidev))) 11769 return -EIO; 11770 11771 /* Update device level interrupt statistics */ 11772 phba->sli.slistat.sli_intr++; 11773 11774 /* Ignore all interrupts during initialization. */ 11775 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11776 return -EIO; 11777 11778 return 0; 11779 } 11780 11781 /** 11782 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11783 * @irq: Interrupt number. 11784 * @dev_id: The device context pointer. 11785 * 11786 * This function is directly called from the PCI layer as an interrupt 11787 * service routine when device with SLI-3 interface spec is enabled with 11788 * MSI-X multi-message interrupt mode and there are slow-path events in 11789 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11790 * interrupt mode, this function is called as part of the device-level 11791 * interrupt handler. When the PCI slot is in error recovery or the HBA 11792 * is undergoing initialization, the interrupt handler will not process 11793 * the interrupt. The link attention and ELS ring attention events are 11794 * handled by the worker thread. The interrupt handler signals the worker 11795 * thread and returns for these events. This function is called without 11796 * any lock held. It gets the hbalock to access and update SLI data 11797 * structures. 11798 * 11799 * This function returns IRQ_HANDLED when interrupt is handled else it 11800 * returns IRQ_NONE. 11801 **/ 11802 irqreturn_t 11803 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11804 { 11805 struct lpfc_hba *phba; 11806 uint32_t ha_copy, hc_copy; 11807 uint32_t work_ha_copy; 11808 unsigned long status; 11809 unsigned long iflag; 11810 uint32_t control; 11811 11812 MAILBOX_t *mbox, *pmbox; 11813 struct lpfc_vport *vport; 11814 struct lpfc_nodelist *ndlp; 11815 struct lpfc_dmabuf *mp; 11816 LPFC_MBOXQ_t *pmb; 11817 int rc; 11818 11819 /* 11820 * Get the driver's phba structure from the dev_id and 11821 * assume the HBA is not interrupting. 11822 */ 11823 phba = (struct lpfc_hba *)dev_id; 11824 11825 if (unlikely(!phba)) 11826 return IRQ_NONE; 11827 11828 /* 11829 * Stuff needs to be attented to when this function is invoked as an 11830 * individual interrupt handler in MSI-X multi-message interrupt mode 11831 */ 11832 if (phba->intr_type == MSIX) { 11833 /* Check device state for handling interrupt */ 11834 if (lpfc_intr_state_check(phba)) 11835 return IRQ_NONE; 11836 /* Need to read HA REG for slow-path events */ 11837 spin_lock_irqsave(&phba->hbalock, iflag); 11838 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11839 goto unplug_error; 11840 /* If somebody is waiting to handle an eratt don't process it 11841 * here. The brdkill function will do this. 11842 */ 11843 if (phba->link_flag & LS_IGNORE_ERATT) 11844 ha_copy &= ~HA_ERATT; 11845 /* Check the need for handling ERATT in interrupt handler */ 11846 if (ha_copy & HA_ERATT) { 11847 if (phba->hba_flag & HBA_ERATT_HANDLED) 11848 /* ERATT polling has handled ERATT */ 11849 ha_copy &= ~HA_ERATT; 11850 else 11851 /* Indicate interrupt handler handles ERATT */ 11852 phba->hba_flag |= HBA_ERATT_HANDLED; 11853 } 11854 11855 /* 11856 * If there is deferred error attention, do not check for any 11857 * interrupt. 11858 */ 11859 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11860 spin_unlock_irqrestore(&phba->hbalock, iflag); 11861 return IRQ_NONE; 11862 } 11863 11864 /* Clear up only attention source related to slow-path */ 11865 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11866 goto unplug_error; 11867 11868 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11869 HC_LAINT_ENA | HC_ERINT_ENA), 11870 phba->HCregaddr); 11871 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11872 phba->HAregaddr); 11873 writel(hc_copy, phba->HCregaddr); 11874 readl(phba->HAregaddr); /* flush */ 11875 spin_unlock_irqrestore(&phba->hbalock, iflag); 11876 } else 11877 ha_copy = phba->ha_copy; 11878 11879 work_ha_copy = ha_copy & phba->work_ha_mask; 11880 11881 if (work_ha_copy) { 11882 if (work_ha_copy & HA_LATT) { 11883 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11884 /* 11885 * Turn off Link Attention interrupts 11886 * until CLEAR_LA done 11887 */ 11888 spin_lock_irqsave(&phba->hbalock, iflag); 11889 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11890 if (lpfc_readl(phba->HCregaddr, &control)) 11891 goto unplug_error; 11892 control &= ~HC_LAINT_ENA; 11893 writel(control, phba->HCregaddr); 11894 readl(phba->HCregaddr); /* flush */ 11895 spin_unlock_irqrestore(&phba->hbalock, iflag); 11896 } 11897 else 11898 work_ha_copy &= ~HA_LATT; 11899 } 11900 11901 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11902 /* 11903 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11904 * the only slow ring. 11905 */ 11906 status = (work_ha_copy & 11907 (HA_RXMASK << (4*LPFC_ELS_RING))); 11908 status >>= (4*LPFC_ELS_RING); 11909 if (status & HA_RXMASK) { 11910 spin_lock_irqsave(&phba->hbalock, iflag); 11911 if (lpfc_readl(phba->HCregaddr, &control)) 11912 goto unplug_error; 11913 11914 lpfc_debugfs_slow_ring_trc(phba, 11915 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11916 control, status, 11917 (uint32_t)phba->sli.slistat.sli_intr); 11918 11919 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11920 lpfc_debugfs_slow_ring_trc(phba, 11921 "ISR Disable ring:" 11922 "pwork:x%x hawork:x%x wait:x%x", 11923 phba->work_ha, work_ha_copy, 11924 (uint32_t)((unsigned long) 11925 &phba->work_waitq)); 11926 11927 control &= 11928 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11929 writel(control, phba->HCregaddr); 11930 readl(phba->HCregaddr); /* flush */ 11931 } 11932 else { 11933 lpfc_debugfs_slow_ring_trc(phba, 11934 "ISR slow ring: pwork:" 11935 "x%x hawork:x%x wait:x%x", 11936 phba->work_ha, work_ha_copy, 11937 (uint32_t)((unsigned long) 11938 &phba->work_waitq)); 11939 } 11940 spin_unlock_irqrestore(&phba->hbalock, iflag); 11941 } 11942 } 11943 spin_lock_irqsave(&phba->hbalock, iflag); 11944 if (work_ha_copy & HA_ERATT) { 11945 if (lpfc_sli_read_hs(phba)) 11946 goto unplug_error; 11947 /* 11948 * Check if there is a deferred error condition 11949 * is active 11950 */ 11951 if ((HS_FFER1 & phba->work_hs) && 11952 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11953 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11954 phba->work_hs)) { 11955 phba->hba_flag |= DEFER_ERATT; 11956 /* Clear all interrupt enable conditions */ 11957 writel(0, phba->HCregaddr); 11958 readl(phba->HCregaddr); 11959 } 11960 } 11961 11962 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11963 pmb = phba->sli.mbox_active; 11964 pmbox = &pmb->u.mb; 11965 mbox = phba->mbox; 11966 vport = pmb->vport; 11967 11968 /* First check out the status word */ 11969 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11970 if (pmbox->mbxOwner != OWN_HOST) { 11971 spin_unlock_irqrestore(&phba->hbalock, iflag); 11972 /* 11973 * Stray Mailbox Interrupt, mbxCommand <cmd> 11974 * mbxStatus <status> 11975 */ 11976 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11977 LOG_SLI, 11978 "(%d):0304 Stray Mailbox " 11979 "Interrupt mbxCommand x%x " 11980 "mbxStatus x%x\n", 11981 (vport ? vport->vpi : 0), 11982 pmbox->mbxCommand, 11983 pmbox->mbxStatus); 11984 /* clear mailbox attention bit */ 11985 work_ha_copy &= ~HA_MBATT; 11986 } else { 11987 phba->sli.mbox_active = NULL; 11988 spin_unlock_irqrestore(&phba->hbalock, iflag); 11989 phba->last_completion_time = jiffies; 11990 del_timer(&phba->sli.mbox_tmo); 11991 if (pmb->mbox_cmpl) { 11992 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11993 MAILBOX_CMD_SIZE); 11994 if (pmb->out_ext_byte_len && 11995 pmb->context2) 11996 lpfc_sli_pcimem_bcopy( 11997 phba->mbox_ext, 11998 pmb->context2, 11999 pmb->out_ext_byte_len); 12000 } 12001 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12002 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12003 12004 lpfc_debugfs_disc_trc(vport, 12005 LPFC_DISC_TRC_MBOX_VPORT, 12006 "MBOX dflt rpi: : " 12007 "status:x%x rpi:x%x", 12008 (uint32_t)pmbox->mbxStatus, 12009 pmbox->un.varWords[0], 0); 12010 12011 if (!pmbox->mbxStatus) { 12012 mp = (struct lpfc_dmabuf *) 12013 (pmb->context1); 12014 ndlp = (struct lpfc_nodelist *) 12015 pmb->context2; 12016 12017 /* Reg_LOGIN of dflt RPI was 12018 * successful. new lets get 12019 * rid of the RPI using the 12020 * same mbox buffer. 12021 */ 12022 lpfc_unreg_login(phba, 12023 vport->vpi, 12024 pmbox->un.varWords[0], 12025 pmb); 12026 pmb->mbox_cmpl = 12027 lpfc_mbx_cmpl_dflt_rpi; 12028 pmb->context1 = mp; 12029 pmb->context2 = ndlp; 12030 pmb->vport = vport; 12031 rc = lpfc_sli_issue_mbox(phba, 12032 pmb, 12033 MBX_NOWAIT); 12034 if (rc != MBX_BUSY) 12035 lpfc_printf_log(phba, 12036 KERN_ERR, 12037 LOG_MBOX | LOG_SLI, 12038 "0350 rc should have" 12039 "been MBX_BUSY\n"); 12040 if (rc != MBX_NOT_FINISHED) 12041 goto send_current_mbox; 12042 } 12043 } 12044 spin_lock_irqsave( 12045 &phba->pport->work_port_lock, 12046 iflag); 12047 phba->pport->work_port_events &= 12048 ~WORKER_MBOX_TMO; 12049 spin_unlock_irqrestore( 12050 &phba->pport->work_port_lock, 12051 iflag); 12052 lpfc_mbox_cmpl_put(phba, pmb); 12053 } 12054 } else 12055 spin_unlock_irqrestore(&phba->hbalock, iflag); 12056 12057 if ((work_ha_copy & HA_MBATT) && 12058 (phba->sli.mbox_active == NULL)) { 12059 send_current_mbox: 12060 /* Process next mailbox command if there is one */ 12061 do { 12062 rc = lpfc_sli_issue_mbox(phba, NULL, 12063 MBX_NOWAIT); 12064 } while (rc == MBX_NOT_FINISHED); 12065 if (rc != MBX_SUCCESS) 12066 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12067 LOG_SLI, "0349 rc should be " 12068 "MBX_SUCCESS\n"); 12069 } 12070 12071 spin_lock_irqsave(&phba->hbalock, iflag); 12072 phba->work_ha |= work_ha_copy; 12073 spin_unlock_irqrestore(&phba->hbalock, iflag); 12074 lpfc_worker_wake_up(phba); 12075 } 12076 return IRQ_HANDLED; 12077 unplug_error: 12078 spin_unlock_irqrestore(&phba->hbalock, iflag); 12079 return IRQ_HANDLED; 12080 12081 } /* lpfc_sli_sp_intr_handler */ 12082 12083 /** 12084 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12085 * @irq: Interrupt number. 12086 * @dev_id: The device context pointer. 12087 * 12088 * This function is directly called from the PCI layer as an interrupt 12089 * service routine when device with SLI-3 interface spec is enabled with 12090 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12091 * ring event in the HBA. However, when the device is enabled with either 12092 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12093 * device-level interrupt handler. When the PCI slot is in error recovery 12094 * or the HBA is undergoing initialization, the interrupt handler will not 12095 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12096 * the intrrupt context. This function is called without any lock held. 12097 * It gets the hbalock to access and update SLI data structures. 12098 * 12099 * This function returns IRQ_HANDLED when interrupt is handled else it 12100 * returns IRQ_NONE. 12101 **/ 12102 irqreturn_t 12103 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12104 { 12105 struct lpfc_hba *phba; 12106 uint32_t ha_copy; 12107 unsigned long status; 12108 unsigned long iflag; 12109 struct lpfc_sli_ring *pring; 12110 12111 /* Get the driver's phba structure from the dev_id and 12112 * assume the HBA is not interrupting. 12113 */ 12114 phba = (struct lpfc_hba *) dev_id; 12115 12116 if (unlikely(!phba)) 12117 return IRQ_NONE; 12118 12119 /* 12120 * Stuff needs to be attented to when this function is invoked as an 12121 * individual interrupt handler in MSI-X multi-message interrupt mode 12122 */ 12123 if (phba->intr_type == MSIX) { 12124 /* Check device state for handling interrupt */ 12125 if (lpfc_intr_state_check(phba)) 12126 return IRQ_NONE; 12127 /* Need to read HA REG for FCP ring and other ring events */ 12128 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12129 return IRQ_HANDLED; 12130 /* Clear up only attention source related to fast-path */ 12131 spin_lock_irqsave(&phba->hbalock, iflag); 12132 /* 12133 * If there is deferred error attention, do not check for 12134 * any interrupt. 12135 */ 12136 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12137 spin_unlock_irqrestore(&phba->hbalock, iflag); 12138 return IRQ_NONE; 12139 } 12140 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12141 phba->HAregaddr); 12142 readl(phba->HAregaddr); /* flush */ 12143 spin_unlock_irqrestore(&phba->hbalock, iflag); 12144 } else 12145 ha_copy = phba->ha_copy; 12146 12147 /* 12148 * Process all events on FCP ring. Take the optimized path for FCP IO. 12149 */ 12150 ha_copy &= ~(phba->work_ha_mask); 12151 12152 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12153 status >>= (4*LPFC_FCP_RING); 12154 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12155 if (status & HA_RXMASK) 12156 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12157 12158 if (phba->cfg_multi_ring_support == 2) { 12159 /* 12160 * Process all events on extra ring. Take the optimized path 12161 * for extra ring IO. 12162 */ 12163 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12164 status >>= (4*LPFC_EXTRA_RING); 12165 if (status & HA_RXMASK) { 12166 lpfc_sli_handle_fast_ring_event(phba, 12167 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12168 status); 12169 } 12170 } 12171 return IRQ_HANDLED; 12172 } /* lpfc_sli_fp_intr_handler */ 12173 12174 /** 12175 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12176 * @irq: Interrupt number. 12177 * @dev_id: The device context pointer. 12178 * 12179 * This function is the HBA device-level interrupt handler to device with 12180 * SLI-3 interface spec, called from the PCI layer when either MSI or 12181 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12182 * requires driver attention. This function invokes the slow-path interrupt 12183 * attention handling function and fast-path interrupt attention handling 12184 * function in turn to process the relevant HBA attention events. This 12185 * function is called without any lock held. It gets the hbalock to access 12186 * and update SLI data structures. 12187 * 12188 * This function returns IRQ_HANDLED when interrupt is handled, else it 12189 * returns IRQ_NONE. 12190 **/ 12191 irqreturn_t 12192 lpfc_sli_intr_handler(int irq, void *dev_id) 12193 { 12194 struct lpfc_hba *phba; 12195 irqreturn_t sp_irq_rc, fp_irq_rc; 12196 unsigned long status1, status2; 12197 uint32_t hc_copy; 12198 12199 /* 12200 * Get the driver's phba structure from the dev_id and 12201 * assume the HBA is not interrupting. 12202 */ 12203 phba = (struct lpfc_hba *) dev_id; 12204 12205 if (unlikely(!phba)) 12206 return IRQ_NONE; 12207 12208 /* Check device state for handling interrupt */ 12209 if (lpfc_intr_state_check(phba)) 12210 return IRQ_NONE; 12211 12212 spin_lock(&phba->hbalock); 12213 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12214 spin_unlock(&phba->hbalock); 12215 return IRQ_HANDLED; 12216 } 12217 12218 if (unlikely(!phba->ha_copy)) { 12219 spin_unlock(&phba->hbalock); 12220 return IRQ_NONE; 12221 } else if (phba->ha_copy & HA_ERATT) { 12222 if (phba->hba_flag & HBA_ERATT_HANDLED) 12223 /* ERATT polling has handled ERATT */ 12224 phba->ha_copy &= ~HA_ERATT; 12225 else 12226 /* Indicate interrupt handler handles ERATT */ 12227 phba->hba_flag |= HBA_ERATT_HANDLED; 12228 } 12229 12230 /* 12231 * If there is deferred error attention, do not check for any interrupt. 12232 */ 12233 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12234 spin_unlock(&phba->hbalock); 12235 return IRQ_NONE; 12236 } 12237 12238 /* Clear attention sources except link and error attentions */ 12239 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12240 spin_unlock(&phba->hbalock); 12241 return IRQ_HANDLED; 12242 } 12243 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12244 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12245 phba->HCregaddr); 12246 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12247 writel(hc_copy, phba->HCregaddr); 12248 readl(phba->HAregaddr); /* flush */ 12249 spin_unlock(&phba->hbalock); 12250 12251 /* 12252 * Invokes slow-path host attention interrupt handling as appropriate. 12253 */ 12254 12255 /* status of events with mailbox and link attention */ 12256 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12257 12258 /* status of events with ELS ring */ 12259 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12260 status2 >>= (4*LPFC_ELS_RING); 12261 12262 if (status1 || (status2 & HA_RXMASK)) 12263 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12264 else 12265 sp_irq_rc = IRQ_NONE; 12266 12267 /* 12268 * Invoke fast-path host attention interrupt handling as appropriate. 12269 */ 12270 12271 /* status of events with FCP ring */ 12272 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12273 status1 >>= (4*LPFC_FCP_RING); 12274 12275 /* status of events with extra ring */ 12276 if (phba->cfg_multi_ring_support == 2) { 12277 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12278 status2 >>= (4*LPFC_EXTRA_RING); 12279 } else 12280 status2 = 0; 12281 12282 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12283 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12284 else 12285 fp_irq_rc = IRQ_NONE; 12286 12287 /* Return device-level interrupt handling status */ 12288 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12289 } /* lpfc_sli_intr_handler */ 12290 12291 /** 12292 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12293 * @phba: pointer to lpfc hba data structure. 12294 * 12295 * This routine is invoked by the worker thread to process all the pending 12296 * SLI4 FCP abort XRI events. 12297 **/ 12298 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12299 { 12300 struct lpfc_cq_event *cq_event; 12301 12302 /* First, declare the fcp xri abort event has been handled */ 12303 spin_lock_irq(&phba->hbalock); 12304 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12305 spin_unlock_irq(&phba->hbalock); 12306 /* Now, handle all the fcp xri abort events */ 12307 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12308 /* Get the first event from the head of the event queue */ 12309 spin_lock_irq(&phba->hbalock); 12310 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12311 cq_event, struct lpfc_cq_event, list); 12312 spin_unlock_irq(&phba->hbalock); 12313 /* Notify aborted XRI for FCP work queue */ 12314 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12315 /* Free the event processed back to the free pool */ 12316 lpfc_sli4_cq_event_release(phba, cq_event); 12317 } 12318 } 12319 12320 /** 12321 * lpfc_sli4_nvme_xri_abort_event_proc - Process nvme xri abort event 12322 * @phba: pointer to lpfc hba data structure. 12323 * 12324 * This routine is invoked by the worker thread to process all the pending 12325 * SLI4 NVME abort XRI events. 12326 **/ 12327 void lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba *phba) 12328 { 12329 struct lpfc_cq_event *cq_event; 12330 12331 /* First, declare the fcp xri abort event has been handled */ 12332 spin_lock_irq(&phba->hbalock); 12333 phba->hba_flag &= ~NVME_XRI_ABORT_EVENT; 12334 spin_unlock_irq(&phba->hbalock); 12335 /* Now, handle all the fcp xri abort events */ 12336 while (!list_empty(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue)) { 12337 /* Get the first event from the head of the event queue */ 12338 spin_lock_irq(&phba->hbalock); 12339 list_remove_head(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue, 12340 cq_event, struct lpfc_cq_event, list); 12341 spin_unlock_irq(&phba->hbalock); 12342 /* Notify aborted XRI for NVME work queue */ 12343 if (phba->nvmet_support) { 12344 lpfc_sli4_nvmet_xri_aborted(phba, 12345 &cq_event->cqe.wcqe_axri); 12346 } else { 12347 lpfc_sli4_nvme_xri_aborted(phba, 12348 &cq_event->cqe.wcqe_axri); 12349 } 12350 /* Free the event processed back to the free pool */ 12351 lpfc_sli4_cq_event_release(phba, cq_event); 12352 } 12353 } 12354 12355 /** 12356 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12357 * @phba: pointer to lpfc hba data structure. 12358 * 12359 * This routine is invoked by the worker thread to process all the pending 12360 * SLI4 els abort xri events. 12361 **/ 12362 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12363 { 12364 struct lpfc_cq_event *cq_event; 12365 12366 /* First, declare the els xri abort event has been handled */ 12367 spin_lock_irq(&phba->hbalock); 12368 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12369 spin_unlock_irq(&phba->hbalock); 12370 /* Now, handle all the els xri abort events */ 12371 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12372 /* Get the first event from the head of the event queue */ 12373 spin_lock_irq(&phba->hbalock); 12374 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12375 cq_event, struct lpfc_cq_event, list); 12376 spin_unlock_irq(&phba->hbalock); 12377 /* Notify aborted XRI for ELS work queue */ 12378 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12379 /* Free the event processed back to the free pool */ 12380 lpfc_sli4_cq_event_release(phba, cq_event); 12381 } 12382 } 12383 12384 /** 12385 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12386 * @phba: pointer to lpfc hba data structure 12387 * @pIocbIn: pointer to the rspiocbq 12388 * @pIocbOut: pointer to the cmdiocbq 12389 * @wcqe: pointer to the complete wcqe 12390 * 12391 * This routine transfers the fields of a command iocbq to a response iocbq 12392 * by copying all the IOCB fields from command iocbq and transferring the 12393 * completion status information from the complete wcqe. 12394 **/ 12395 static void 12396 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12397 struct lpfc_iocbq *pIocbIn, 12398 struct lpfc_iocbq *pIocbOut, 12399 struct lpfc_wcqe_complete *wcqe) 12400 { 12401 int numBdes, i; 12402 unsigned long iflags; 12403 uint32_t status, max_response; 12404 struct lpfc_dmabuf *dmabuf; 12405 struct ulp_bde64 *bpl, bde; 12406 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12407 12408 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12409 sizeof(struct lpfc_iocbq) - offset); 12410 /* Map WCQE parameters into irspiocb parameters */ 12411 status = bf_get(lpfc_wcqe_c_status, wcqe); 12412 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12413 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12414 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12415 pIocbIn->iocb.un.fcpi.fcpi_parm = 12416 pIocbOut->iocb.un.fcpi.fcpi_parm - 12417 wcqe->total_data_placed; 12418 else 12419 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12420 else { 12421 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12422 switch (pIocbOut->iocb.ulpCommand) { 12423 case CMD_ELS_REQUEST64_CR: 12424 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12425 bpl = (struct ulp_bde64 *)dmabuf->virt; 12426 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12427 max_response = bde.tus.f.bdeSize; 12428 break; 12429 case CMD_GEN_REQUEST64_CR: 12430 max_response = 0; 12431 if (!pIocbOut->context3) 12432 break; 12433 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12434 sizeof(struct ulp_bde64); 12435 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12436 bpl = (struct ulp_bde64 *)dmabuf->virt; 12437 for (i = 0; i < numBdes; i++) { 12438 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12439 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12440 max_response += bde.tus.f.bdeSize; 12441 } 12442 break; 12443 default: 12444 max_response = wcqe->total_data_placed; 12445 break; 12446 } 12447 if (max_response < wcqe->total_data_placed) 12448 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12449 else 12450 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12451 wcqe->total_data_placed; 12452 } 12453 12454 /* Convert BG errors for completion status */ 12455 if (status == CQE_STATUS_DI_ERROR) { 12456 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12457 12458 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12459 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12460 else 12461 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12462 12463 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12464 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12465 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12466 BGS_GUARD_ERR_MASK; 12467 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12468 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12469 BGS_APPTAG_ERR_MASK; 12470 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12471 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12472 BGS_REFTAG_ERR_MASK; 12473 12474 /* Check to see if there was any good data before the error */ 12475 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12476 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12477 BGS_HI_WATER_MARK_PRESENT_MASK; 12478 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12479 wcqe->total_data_placed; 12480 } 12481 12482 /* 12483 * Set ALL the error bits to indicate we don't know what 12484 * type of error it is. 12485 */ 12486 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12487 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12488 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12489 BGS_GUARD_ERR_MASK); 12490 } 12491 12492 /* Pick up HBA exchange busy condition */ 12493 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12494 spin_lock_irqsave(&phba->hbalock, iflags); 12495 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12496 spin_unlock_irqrestore(&phba->hbalock, iflags); 12497 } 12498 } 12499 12500 /** 12501 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12502 * @phba: Pointer to HBA context object. 12503 * @wcqe: Pointer to work-queue completion queue entry. 12504 * 12505 * This routine handles an ELS work-queue completion event and construct 12506 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12507 * discovery engine to handle. 12508 * 12509 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12510 **/ 12511 static struct lpfc_iocbq * 12512 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12513 struct lpfc_iocbq *irspiocbq) 12514 { 12515 struct lpfc_sli_ring *pring; 12516 struct lpfc_iocbq *cmdiocbq; 12517 struct lpfc_wcqe_complete *wcqe; 12518 unsigned long iflags; 12519 12520 pring = lpfc_phba_elsring(phba); 12521 if (unlikely(!pring)) 12522 return NULL; 12523 12524 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12525 spin_lock_irqsave(&pring->ring_lock, iflags); 12526 pring->stats.iocb_event++; 12527 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12528 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12529 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12530 if (unlikely(!cmdiocbq)) { 12531 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12532 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12533 "0386 ELS complete with no corresponding " 12534 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 12535 wcqe->word0, wcqe->total_data_placed, 12536 wcqe->parameter, wcqe->word3); 12537 lpfc_sli_release_iocbq(phba, irspiocbq); 12538 return NULL; 12539 } 12540 12541 /* Put the iocb back on the txcmplq */ 12542 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12543 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12544 12545 /* Fake the irspiocbq and copy necessary response information */ 12546 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12547 12548 return irspiocbq; 12549 } 12550 12551 /** 12552 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12553 * @phba: Pointer to HBA context object. 12554 * @cqe: Pointer to mailbox completion queue entry. 12555 * 12556 * This routine process a mailbox completion queue entry with asynchrous 12557 * event. 12558 * 12559 * Return: true if work posted to worker thread, otherwise false. 12560 **/ 12561 static bool 12562 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12563 { 12564 struct lpfc_cq_event *cq_event; 12565 unsigned long iflags; 12566 12567 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12568 "0392 Async Event: word0:x%x, word1:x%x, " 12569 "word2:x%x, word3:x%x\n", mcqe->word0, 12570 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12571 12572 /* Allocate a new internal CQ_EVENT entry */ 12573 cq_event = lpfc_sli4_cq_event_alloc(phba); 12574 if (!cq_event) { 12575 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12576 "0394 Failed to allocate CQ_EVENT entry\n"); 12577 return false; 12578 } 12579 12580 /* Move the CQE into an asynchronous event entry */ 12581 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 12582 spin_lock_irqsave(&phba->hbalock, iflags); 12583 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12584 /* Set the async event flag */ 12585 phba->hba_flag |= ASYNC_EVENT; 12586 spin_unlock_irqrestore(&phba->hbalock, iflags); 12587 12588 return true; 12589 } 12590 12591 /** 12592 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12593 * @phba: Pointer to HBA context object. 12594 * @cqe: Pointer to mailbox completion queue entry. 12595 * 12596 * This routine process a mailbox completion queue entry with mailbox 12597 * completion event. 12598 * 12599 * Return: true if work posted to worker thread, otherwise false. 12600 **/ 12601 static bool 12602 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12603 { 12604 uint32_t mcqe_status; 12605 MAILBOX_t *mbox, *pmbox; 12606 struct lpfc_mqe *mqe; 12607 struct lpfc_vport *vport; 12608 struct lpfc_nodelist *ndlp; 12609 struct lpfc_dmabuf *mp; 12610 unsigned long iflags; 12611 LPFC_MBOXQ_t *pmb; 12612 bool workposted = false; 12613 int rc; 12614 12615 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12616 if (!bf_get(lpfc_trailer_completed, mcqe)) 12617 goto out_no_mqe_complete; 12618 12619 /* Get the reference to the active mbox command */ 12620 spin_lock_irqsave(&phba->hbalock, iflags); 12621 pmb = phba->sli.mbox_active; 12622 if (unlikely(!pmb)) { 12623 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12624 "1832 No pending MBOX command to handle\n"); 12625 spin_unlock_irqrestore(&phba->hbalock, iflags); 12626 goto out_no_mqe_complete; 12627 } 12628 spin_unlock_irqrestore(&phba->hbalock, iflags); 12629 mqe = &pmb->u.mqe; 12630 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12631 mbox = phba->mbox; 12632 vport = pmb->vport; 12633 12634 /* Reset heartbeat timer */ 12635 phba->last_completion_time = jiffies; 12636 del_timer(&phba->sli.mbox_tmo); 12637 12638 /* Move mbox data to caller's mailbox region, do endian swapping */ 12639 if (pmb->mbox_cmpl && mbox) 12640 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12641 12642 /* 12643 * For mcqe errors, conditionally move a modified error code to 12644 * the mbox so that the error will not be missed. 12645 */ 12646 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12647 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12648 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12649 bf_set(lpfc_mqe_status, mqe, 12650 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12651 } 12652 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12653 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12654 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12655 "MBOX dflt rpi: status:x%x rpi:x%x", 12656 mcqe_status, 12657 pmbox->un.varWords[0], 0); 12658 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12659 mp = (struct lpfc_dmabuf *)(pmb->context1); 12660 ndlp = (struct lpfc_nodelist *)pmb->context2; 12661 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12662 * RID of the PPI using the same mbox buffer. 12663 */ 12664 lpfc_unreg_login(phba, vport->vpi, 12665 pmbox->un.varWords[0], pmb); 12666 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12667 pmb->context1 = mp; 12668 pmb->context2 = ndlp; 12669 pmb->vport = vport; 12670 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12671 if (rc != MBX_BUSY) 12672 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12673 LOG_SLI, "0385 rc should " 12674 "have been MBX_BUSY\n"); 12675 if (rc != MBX_NOT_FINISHED) 12676 goto send_current_mbox; 12677 } 12678 } 12679 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12680 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12681 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12682 12683 /* There is mailbox completion work to do */ 12684 spin_lock_irqsave(&phba->hbalock, iflags); 12685 __lpfc_mbox_cmpl_put(phba, pmb); 12686 phba->work_ha |= HA_MBATT; 12687 spin_unlock_irqrestore(&phba->hbalock, iflags); 12688 workposted = true; 12689 12690 send_current_mbox: 12691 spin_lock_irqsave(&phba->hbalock, iflags); 12692 /* Release the mailbox command posting token */ 12693 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12694 /* Setting active mailbox pointer need to be in sync to flag clear */ 12695 phba->sli.mbox_active = NULL; 12696 spin_unlock_irqrestore(&phba->hbalock, iflags); 12697 /* Wake up worker thread to post the next pending mailbox command */ 12698 lpfc_worker_wake_up(phba); 12699 out_no_mqe_complete: 12700 if (bf_get(lpfc_trailer_consumed, mcqe)) 12701 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12702 return workposted; 12703 } 12704 12705 /** 12706 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12707 * @phba: Pointer to HBA context object. 12708 * @cqe: Pointer to mailbox completion queue entry. 12709 * 12710 * This routine process a mailbox completion queue entry, it invokes the 12711 * proper mailbox complete handling or asynchrous event handling routine 12712 * according to the MCQE's async bit. 12713 * 12714 * Return: true if work posted to worker thread, otherwise false. 12715 **/ 12716 static bool 12717 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12718 { 12719 struct lpfc_mcqe mcqe; 12720 bool workposted; 12721 12722 /* Copy the mailbox MCQE and convert endian order as needed */ 12723 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12724 12725 /* Invoke the proper event handling routine */ 12726 if (!bf_get(lpfc_trailer_async, &mcqe)) 12727 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12728 else 12729 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12730 return workposted; 12731 } 12732 12733 /** 12734 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12735 * @phba: Pointer to HBA context object. 12736 * @cq: Pointer to associated CQ 12737 * @wcqe: Pointer to work-queue completion queue entry. 12738 * 12739 * This routine handles an ELS work-queue completion event. 12740 * 12741 * Return: true if work posted to worker thread, otherwise false. 12742 **/ 12743 static bool 12744 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12745 struct lpfc_wcqe_complete *wcqe) 12746 { 12747 struct lpfc_iocbq *irspiocbq; 12748 unsigned long iflags; 12749 struct lpfc_sli_ring *pring = cq->pring; 12750 int txq_cnt = 0; 12751 int txcmplq_cnt = 0; 12752 int fcp_txcmplq_cnt = 0; 12753 12754 /* Get an irspiocbq for later ELS response processing use */ 12755 irspiocbq = lpfc_sli_get_iocbq(phba); 12756 if (!irspiocbq) { 12757 if (!list_empty(&pring->txq)) 12758 txq_cnt++; 12759 if (!list_empty(&pring->txcmplq)) 12760 txcmplq_cnt++; 12761 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12762 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12763 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12764 txq_cnt, phba->iocb_cnt, 12765 fcp_txcmplq_cnt, 12766 txcmplq_cnt); 12767 return false; 12768 } 12769 12770 /* Save off the slow-path queue event for work thread to process */ 12771 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12772 spin_lock_irqsave(&phba->hbalock, iflags); 12773 list_add_tail(&irspiocbq->cq_event.list, 12774 &phba->sli4_hba.sp_queue_event); 12775 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12776 spin_unlock_irqrestore(&phba->hbalock, iflags); 12777 12778 return true; 12779 } 12780 12781 /** 12782 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12783 * @phba: Pointer to HBA context object. 12784 * @wcqe: Pointer to work-queue completion queue entry. 12785 * 12786 * This routine handles slow-path WQ entry consumed event by invoking the 12787 * proper WQ release routine to the slow-path WQ. 12788 **/ 12789 static void 12790 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12791 struct lpfc_wcqe_release *wcqe) 12792 { 12793 /* sanity check on queue memory */ 12794 if (unlikely(!phba->sli4_hba.els_wq)) 12795 return; 12796 /* Check for the slow-path ELS work queue */ 12797 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12798 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12799 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12800 else 12801 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12802 "2579 Slow-path wqe consume event carries " 12803 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12804 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12805 phba->sli4_hba.els_wq->queue_id); 12806 } 12807 12808 /** 12809 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12810 * @phba: Pointer to HBA context object. 12811 * @cq: Pointer to a WQ completion queue. 12812 * @wcqe: Pointer to work-queue completion queue entry. 12813 * 12814 * This routine handles an XRI abort event. 12815 * 12816 * Return: true if work posted to worker thread, otherwise false. 12817 **/ 12818 static bool 12819 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12820 struct lpfc_queue *cq, 12821 struct sli4_wcqe_xri_aborted *wcqe) 12822 { 12823 bool workposted = false; 12824 struct lpfc_cq_event *cq_event; 12825 unsigned long iflags; 12826 12827 /* Allocate a new internal CQ_EVENT entry */ 12828 cq_event = lpfc_sli4_cq_event_alloc(phba); 12829 if (!cq_event) { 12830 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12831 "0602 Failed to allocate CQ_EVENT entry\n"); 12832 return false; 12833 } 12834 12835 /* Move the CQE into the proper xri abort event list */ 12836 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12837 switch (cq->subtype) { 12838 case LPFC_FCP: 12839 spin_lock_irqsave(&phba->hbalock, iflags); 12840 list_add_tail(&cq_event->list, 12841 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12842 /* Set the fcp xri abort event flag */ 12843 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12844 spin_unlock_irqrestore(&phba->hbalock, iflags); 12845 workposted = true; 12846 break; 12847 case LPFC_ELS: 12848 spin_lock_irqsave(&phba->hbalock, iflags); 12849 list_add_tail(&cq_event->list, 12850 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12851 /* Set the els xri abort event flag */ 12852 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12853 spin_unlock_irqrestore(&phba->hbalock, iflags); 12854 workposted = true; 12855 break; 12856 case LPFC_NVME: 12857 spin_lock_irqsave(&phba->hbalock, iflags); 12858 list_add_tail(&cq_event->list, 12859 &phba->sli4_hba.sp_nvme_xri_aborted_work_queue); 12860 /* Set the nvme xri abort event flag */ 12861 phba->hba_flag |= NVME_XRI_ABORT_EVENT; 12862 spin_unlock_irqrestore(&phba->hbalock, iflags); 12863 workposted = true; 12864 break; 12865 default: 12866 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12867 "0603 Invalid CQ subtype %d: " 12868 "%08x %08x %08x %08x\n", 12869 cq->subtype, wcqe->word0, wcqe->parameter, 12870 wcqe->word2, wcqe->word3); 12871 lpfc_sli4_cq_event_release(phba, cq_event); 12872 workposted = false; 12873 break; 12874 } 12875 return workposted; 12876 } 12877 12878 /** 12879 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12880 * @phba: Pointer to HBA context object. 12881 * @rcqe: Pointer to receive-queue completion queue entry. 12882 * 12883 * This routine process a receive-queue completion queue entry. 12884 * 12885 * Return: true if work posted to worker thread, otherwise false. 12886 **/ 12887 static bool 12888 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12889 { 12890 bool workposted = false; 12891 struct fc_frame_header *fc_hdr; 12892 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12893 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12894 struct lpfc_nvmet_tgtport *tgtp; 12895 struct hbq_dmabuf *dma_buf; 12896 uint32_t status, rq_id; 12897 unsigned long iflags; 12898 12899 /* sanity check on queue memory */ 12900 if (unlikely(!hrq) || unlikely(!drq)) 12901 return workposted; 12902 12903 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12904 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12905 else 12906 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12907 if (rq_id != hrq->queue_id) 12908 goto out; 12909 12910 status = bf_get(lpfc_rcqe_status, rcqe); 12911 switch (status) { 12912 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12913 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12914 "2537 Receive Frame Truncated!!\n"); 12915 case FC_STATUS_RQ_SUCCESS: 12916 lpfc_sli4_rq_release(hrq, drq); 12917 spin_lock_irqsave(&phba->hbalock, iflags); 12918 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12919 if (!dma_buf) { 12920 hrq->RQ_no_buf_found++; 12921 spin_unlock_irqrestore(&phba->hbalock, iflags); 12922 goto out; 12923 } 12924 hrq->RQ_rcv_buf++; 12925 hrq->RQ_buf_posted--; 12926 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12927 12928 /* If a NVME LS event (type 0x28), treat it as Fast path */ 12929 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 12930 12931 /* save off the frame for the word thread to process */ 12932 list_add_tail(&dma_buf->cq_event.list, 12933 &phba->sli4_hba.sp_queue_event); 12934 /* Frame received */ 12935 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12936 spin_unlock_irqrestore(&phba->hbalock, iflags); 12937 workposted = true; 12938 break; 12939 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12940 if (phba->nvmet_support) { 12941 tgtp = phba->targetport->private; 12942 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 12943 "6402 RQE Error x%x, posted %d err_cnt " 12944 "%d: %x %x %x\n", 12945 status, hrq->RQ_buf_posted, 12946 hrq->RQ_no_posted_buf, 12947 atomic_read(&tgtp->rcv_fcp_cmd_in), 12948 atomic_read(&tgtp->rcv_fcp_cmd_out), 12949 atomic_read(&tgtp->xmt_fcp_release)); 12950 } 12951 /* fallthrough */ 12952 12953 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12954 hrq->RQ_no_posted_buf++; 12955 /* Post more buffers if possible */ 12956 spin_lock_irqsave(&phba->hbalock, iflags); 12957 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12958 spin_unlock_irqrestore(&phba->hbalock, iflags); 12959 workposted = true; 12960 break; 12961 } 12962 out: 12963 return workposted; 12964 } 12965 12966 /** 12967 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12968 * @phba: Pointer to HBA context object. 12969 * @cq: Pointer to the completion queue. 12970 * @wcqe: Pointer to a completion queue entry. 12971 * 12972 * This routine process a slow-path work-queue or receive queue completion queue 12973 * entry. 12974 * 12975 * Return: true if work posted to worker thread, otherwise false. 12976 **/ 12977 static bool 12978 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12979 struct lpfc_cqe *cqe) 12980 { 12981 struct lpfc_cqe cqevt; 12982 bool workposted = false; 12983 12984 /* Copy the work queue CQE and convert endian order if needed */ 12985 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12986 12987 /* Check and process for different type of WCQE and dispatch */ 12988 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12989 case CQE_CODE_COMPL_WQE: 12990 /* Process the WQ/RQ complete event */ 12991 phba->last_completion_time = jiffies; 12992 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12993 (struct lpfc_wcqe_complete *)&cqevt); 12994 break; 12995 case CQE_CODE_RELEASE_WQE: 12996 /* Process the WQ release event */ 12997 lpfc_sli4_sp_handle_rel_wcqe(phba, 12998 (struct lpfc_wcqe_release *)&cqevt); 12999 break; 13000 case CQE_CODE_XRI_ABORTED: 13001 /* Process the WQ XRI abort event */ 13002 phba->last_completion_time = jiffies; 13003 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13004 (struct sli4_wcqe_xri_aborted *)&cqevt); 13005 break; 13006 case CQE_CODE_RECEIVE: 13007 case CQE_CODE_RECEIVE_V1: 13008 /* Process the RQ event */ 13009 phba->last_completion_time = jiffies; 13010 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13011 (struct lpfc_rcqe *)&cqevt); 13012 break; 13013 default: 13014 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13015 "0388 Not a valid WCQE code: x%x\n", 13016 bf_get(lpfc_cqe_code, &cqevt)); 13017 break; 13018 } 13019 return workposted; 13020 } 13021 13022 /** 13023 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13024 * @phba: Pointer to HBA context object. 13025 * @eqe: Pointer to fast-path event queue entry. 13026 * 13027 * This routine process a event queue entry from the slow-path event queue. 13028 * It will check the MajorCode and MinorCode to determine this is for a 13029 * completion event on a completion queue, if not, an error shall be logged 13030 * and just return. Otherwise, it will get to the corresponding completion 13031 * queue and process all the entries on that completion queue, rearm the 13032 * completion queue, and then return. 13033 * 13034 **/ 13035 static void 13036 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13037 struct lpfc_queue *speq) 13038 { 13039 struct lpfc_queue *cq = NULL, *childq; 13040 uint16_t cqid; 13041 13042 /* Get the reference to the corresponding CQ */ 13043 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13044 13045 list_for_each_entry(childq, &speq->child_list, list) { 13046 if (childq->queue_id == cqid) { 13047 cq = childq; 13048 break; 13049 } 13050 } 13051 if (unlikely(!cq)) { 13052 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13054 "0365 Slow-path CQ identifier " 13055 "(%d) does not exist\n", cqid); 13056 return; 13057 } 13058 13059 /* Save EQ associated with this CQ */ 13060 cq->assoc_qp = speq; 13061 13062 if (!queue_work(phba->wq, &cq->spwork)) 13063 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13064 "0390 Cannot schedule soft IRQ " 13065 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13066 cqid, cq->queue_id, smp_processor_id()); 13067 } 13068 13069 /** 13070 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13071 * @phba: Pointer to HBA context object. 13072 * 13073 * This routine process a event queue entry from the slow-path event queue. 13074 * It will check the MajorCode and MinorCode to determine this is for a 13075 * completion event on a completion queue, if not, an error shall be logged 13076 * and just return. Otherwise, it will get to the corresponding completion 13077 * queue and process all the entries on that completion queue, rearm the 13078 * completion queue, and then return. 13079 * 13080 **/ 13081 static void 13082 lpfc_sli4_sp_process_cq(struct work_struct *work) 13083 { 13084 struct lpfc_queue *cq = 13085 container_of(work, struct lpfc_queue, spwork); 13086 struct lpfc_hba *phba = cq->phba; 13087 struct lpfc_cqe *cqe; 13088 bool workposted = false; 13089 int ccount = 0; 13090 13091 /* Process all the entries to the CQ */ 13092 switch (cq->type) { 13093 case LPFC_MCQ: 13094 while ((cqe = lpfc_sli4_cq_get(cq))) { 13095 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 13096 if (!(++ccount % cq->entry_repost)) 13097 break; 13098 cq->CQ_mbox++; 13099 } 13100 break; 13101 case LPFC_WCQ: 13102 while ((cqe = lpfc_sli4_cq_get(cq))) { 13103 if (cq->subtype == LPFC_FCP || 13104 cq->subtype == LPFC_NVME) { 13105 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13106 if (phba->ktime_on) 13107 cq->isr_timestamp = ktime_get_ns(); 13108 else 13109 cq->isr_timestamp = 0; 13110 #endif 13111 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 13112 cqe); 13113 } else { 13114 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 13115 cqe); 13116 } 13117 if (!(++ccount % cq->entry_repost)) 13118 break; 13119 } 13120 13121 /* Track the max number of CQEs processed in 1 EQ */ 13122 if (ccount > cq->CQ_max_cqe) 13123 cq->CQ_max_cqe = ccount; 13124 break; 13125 default: 13126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13127 "0370 Invalid completion queue type (%d)\n", 13128 cq->type); 13129 return; 13130 } 13131 13132 /* Catch the no cq entry condition, log an error */ 13133 if (unlikely(ccount == 0)) 13134 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13135 "0371 No entry from the CQ: identifier " 13136 "(x%x), type (%d)\n", cq->queue_id, cq->type); 13137 13138 /* In any case, flash and re-arm the RCQ */ 13139 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13140 13141 /* wake up worker thread if there are works to be done */ 13142 if (workposted) 13143 lpfc_worker_wake_up(phba); 13144 } 13145 13146 /** 13147 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13148 * @phba: Pointer to HBA context object. 13149 * @cq: Pointer to associated CQ 13150 * @wcqe: Pointer to work-queue completion queue entry. 13151 * 13152 * This routine process a fast-path work queue completion entry from fast-path 13153 * event queue for FCP command response completion. 13154 **/ 13155 static void 13156 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13157 struct lpfc_wcqe_complete *wcqe) 13158 { 13159 struct lpfc_sli_ring *pring = cq->pring; 13160 struct lpfc_iocbq *cmdiocbq; 13161 struct lpfc_iocbq irspiocbq; 13162 unsigned long iflags; 13163 13164 /* Check for response status */ 13165 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13166 /* If resource errors reported from HBA, reduce queue 13167 * depth of the SCSI device. 13168 */ 13169 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13170 IOSTAT_LOCAL_REJECT)) && 13171 ((wcqe->parameter & IOERR_PARAM_MASK) == 13172 IOERR_NO_RESOURCES)) 13173 phba->lpfc_rampdown_queue_depth(phba); 13174 13175 /* Log the error status */ 13176 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13177 "0373 FCP complete error: status=x%x, " 13178 "hw_status=x%x, total_data_specified=%d, " 13179 "parameter=x%x, word3=x%x\n", 13180 bf_get(lpfc_wcqe_c_status, wcqe), 13181 bf_get(lpfc_wcqe_c_hw_status, wcqe), 13182 wcqe->total_data_placed, wcqe->parameter, 13183 wcqe->word3); 13184 } 13185 13186 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13187 spin_lock_irqsave(&pring->ring_lock, iflags); 13188 pring->stats.iocb_event++; 13189 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13190 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13191 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13192 if (unlikely(!cmdiocbq)) { 13193 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13194 "0374 FCP complete with no corresponding " 13195 "cmdiocb: iotag (%d)\n", 13196 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13197 return; 13198 } 13199 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13200 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13201 #endif 13202 if (cmdiocbq->iocb_cmpl == NULL) { 13203 if (cmdiocbq->wqe_cmpl) { 13204 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13205 spin_lock_irqsave(&phba->hbalock, iflags); 13206 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13207 spin_unlock_irqrestore(&phba->hbalock, iflags); 13208 } 13209 13210 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13211 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13212 return; 13213 } 13214 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13215 "0375 FCP cmdiocb not callback function " 13216 "iotag: (%d)\n", 13217 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13218 return; 13219 } 13220 13221 /* Fake the irspiocb and copy necessary response information */ 13222 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13223 13224 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13225 spin_lock_irqsave(&phba->hbalock, iflags); 13226 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13227 spin_unlock_irqrestore(&phba->hbalock, iflags); 13228 } 13229 13230 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13231 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13232 } 13233 13234 /** 13235 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13236 * @phba: Pointer to HBA context object. 13237 * @cq: Pointer to completion queue. 13238 * @wcqe: Pointer to work-queue completion queue entry. 13239 * 13240 * This routine handles an fast-path WQ entry consumed event by invoking the 13241 * proper WQ release routine to the slow-path WQ. 13242 **/ 13243 static void 13244 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13245 struct lpfc_wcqe_release *wcqe) 13246 { 13247 struct lpfc_queue *childwq; 13248 bool wqid_matched = false; 13249 uint16_t hba_wqid; 13250 13251 /* Check for fast-path FCP work queue release */ 13252 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13253 list_for_each_entry(childwq, &cq->child_list, list) { 13254 if (childwq->queue_id == hba_wqid) { 13255 lpfc_sli4_wq_release(childwq, 13256 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13257 wqid_matched = true; 13258 break; 13259 } 13260 } 13261 /* Report warning log message if no match found */ 13262 if (wqid_matched != true) 13263 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13264 "2580 Fast-path wqe consume event carries " 13265 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13266 } 13267 13268 /** 13269 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13270 * @phba: Pointer to HBA context object. 13271 * @rcqe: Pointer to receive-queue completion queue entry. 13272 * 13273 * This routine process a receive-queue completion queue entry. 13274 * 13275 * Return: true if work posted to worker thread, otherwise false. 13276 **/ 13277 static bool 13278 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13279 struct lpfc_rcqe *rcqe) 13280 { 13281 bool workposted = false; 13282 struct lpfc_queue *hrq; 13283 struct lpfc_queue *drq; 13284 struct rqb_dmabuf *dma_buf; 13285 struct fc_frame_header *fc_hdr; 13286 struct lpfc_nvmet_tgtport *tgtp; 13287 uint32_t status, rq_id; 13288 unsigned long iflags; 13289 uint32_t fctl, idx; 13290 13291 if ((phba->nvmet_support == 0) || 13292 (phba->sli4_hba.nvmet_cqset == NULL)) 13293 return workposted; 13294 13295 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13296 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13297 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13298 13299 /* sanity check on queue memory */ 13300 if (unlikely(!hrq) || unlikely(!drq)) 13301 return workposted; 13302 13303 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13304 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13305 else 13306 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13307 13308 if ((phba->nvmet_support == 0) || 13309 (rq_id != hrq->queue_id)) 13310 return workposted; 13311 13312 status = bf_get(lpfc_rcqe_status, rcqe); 13313 switch (status) { 13314 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13315 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13316 "6126 Receive Frame Truncated!!\n"); 13317 /* Drop thru */ 13318 case FC_STATUS_RQ_SUCCESS: 13319 lpfc_sli4_rq_release(hrq, drq); 13320 spin_lock_irqsave(&phba->hbalock, iflags); 13321 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13322 if (!dma_buf) { 13323 hrq->RQ_no_buf_found++; 13324 spin_unlock_irqrestore(&phba->hbalock, iflags); 13325 goto out; 13326 } 13327 spin_unlock_irqrestore(&phba->hbalock, iflags); 13328 hrq->RQ_rcv_buf++; 13329 hrq->RQ_buf_posted--; 13330 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13331 13332 /* Just some basic sanity checks on FCP Command frame */ 13333 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13334 fc_hdr->fh_f_ctl[1] << 8 | 13335 fc_hdr->fh_f_ctl[2]); 13336 if (((fctl & 13337 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13338 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13339 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13340 goto drop; 13341 13342 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13343 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13344 lpfc_nvmet_unsol_fcp_event( 13345 phba, idx, dma_buf, 13346 cq->isr_timestamp); 13347 return false; 13348 } 13349 drop: 13350 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13351 break; 13352 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13353 if (phba->nvmet_support) { 13354 tgtp = phba->targetport->private; 13355 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13356 "6401 RQE Error x%x, posted %d err_cnt " 13357 "%d: %x %x %x\n", 13358 status, hrq->RQ_buf_posted, 13359 hrq->RQ_no_posted_buf, 13360 atomic_read(&tgtp->rcv_fcp_cmd_in), 13361 atomic_read(&tgtp->rcv_fcp_cmd_out), 13362 atomic_read(&tgtp->xmt_fcp_release)); 13363 } 13364 /* fallthrough */ 13365 13366 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13367 hrq->RQ_no_posted_buf++; 13368 /* Post more buffers if possible */ 13369 break; 13370 } 13371 out: 13372 return workposted; 13373 } 13374 13375 /** 13376 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13377 * @cq: Pointer to the completion queue. 13378 * @eqe: Pointer to fast-path completion queue entry. 13379 * 13380 * This routine process a fast-path work queue completion entry from fast-path 13381 * event queue for FCP command response completion. 13382 **/ 13383 static int 13384 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13385 struct lpfc_cqe *cqe) 13386 { 13387 struct lpfc_wcqe_release wcqe; 13388 bool workposted = false; 13389 13390 /* Copy the work queue CQE and convert endian order if needed */ 13391 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13392 13393 /* Check and process for different type of WCQE and dispatch */ 13394 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13395 case CQE_CODE_COMPL_WQE: 13396 case CQE_CODE_NVME_ERSP: 13397 cq->CQ_wq++; 13398 /* Process the WQ complete event */ 13399 phba->last_completion_time = jiffies; 13400 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13401 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13402 (struct lpfc_wcqe_complete *)&wcqe); 13403 if (cq->subtype == LPFC_NVME_LS) 13404 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13405 (struct lpfc_wcqe_complete *)&wcqe); 13406 break; 13407 case CQE_CODE_RELEASE_WQE: 13408 cq->CQ_release_wqe++; 13409 /* Process the WQ release event */ 13410 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13411 (struct lpfc_wcqe_release *)&wcqe); 13412 break; 13413 case CQE_CODE_XRI_ABORTED: 13414 cq->CQ_xri_aborted++; 13415 /* Process the WQ XRI abort event */ 13416 phba->last_completion_time = jiffies; 13417 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13418 (struct sli4_wcqe_xri_aborted *)&wcqe); 13419 break; 13420 case CQE_CODE_RECEIVE_V1: 13421 case CQE_CODE_RECEIVE: 13422 phba->last_completion_time = jiffies; 13423 if (cq->subtype == LPFC_NVMET) { 13424 workposted = lpfc_sli4_nvmet_handle_rcqe( 13425 phba, cq, (struct lpfc_rcqe *)&wcqe); 13426 } 13427 break; 13428 default: 13429 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13430 "0144 Not a valid CQE code: x%x\n", 13431 bf_get(lpfc_wcqe_c_code, &wcqe)); 13432 break; 13433 } 13434 return workposted; 13435 } 13436 13437 /** 13438 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13439 * @phba: Pointer to HBA context object. 13440 * @eqe: Pointer to fast-path event queue entry. 13441 * 13442 * This routine process a event queue entry from the fast-path event queue. 13443 * It will check the MajorCode and MinorCode to determine this is for a 13444 * completion event on a completion queue, if not, an error shall be logged 13445 * and just return. Otherwise, it will get to the corresponding completion 13446 * queue and process all the entries on the completion queue, rearm the 13447 * completion queue, and then return. 13448 **/ 13449 static void 13450 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13451 uint32_t qidx) 13452 { 13453 struct lpfc_queue *cq = NULL; 13454 uint16_t cqid, id; 13455 13456 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13457 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13458 "0366 Not a valid completion " 13459 "event: majorcode=x%x, minorcode=x%x\n", 13460 bf_get_le32(lpfc_eqe_major_code, eqe), 13461 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13462 return; 13463 } 13464 13465 /* Get the reference to the corresponding CQ */ 13466 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13467 13468 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13469 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13470 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13471 /* Process NVMET unsol rcv */ 13472 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13473 goto process_cq; 13474 } 13475 } 13476 13477 if (phba->sli4_hba.nvme_cq_map && 13478 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13479 /* Process NVME / NVMET command completion */ 13480 cq = phba->sli4_hba.nvme_cq[qidx]; 13481 goto process_cq; 13482 } 13483 13484 if (phba->sli4_hba.fcp_cq_map && 13485 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13486 /* Process FCP command completion */ 13487 cq = phba->sli4_hba.fcp_cq[qidx]; 13488 goto process_cq; 13489 } 13490 13491 if (phba->sli4_hba.nvmels_cq && 13492 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13493 /* Process NVME unsol rcv */ 13494 cq = phba->sli4_hba.nvmels_cq; 13495 } 13496 13497 /* Otherwise this is a Slow path event */ 13498 if (cq == NULL) { 13499 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 13500 return; 13501 } 13502 13503 process_cq: 13504 if (unlikely(cqid != cq->queue_id)) { 13505 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13506 "0368 Miss-matched fast-path completion " 13507 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13508 cqid, cq->queue_id); 13509 return; 13510 } 13511 13512 /* Save EQ associated with this CQ */ 13513 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13514 13515 if (!queue_work(phba->wq, &cq->irqwork)) 13516 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13517 "0363 Cannot schedule soft IRQ " 13518 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13519 cqid, cq->queue_id, smp_processor_id()); 13520 } 13521 13522 /** 13523 * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 13524 * @phba: Pointer to HBA context object. 13525 * @eqe: Pointer to fast-path event queue entry. 13526 * 13527 * This routine process a event queue entry from the fast-path event queue. 13528 * It will check the MajorCode and MinorCode to determine this is for a 13529 * completion event on a completion queue, if not, an error shall be logged 13530 * and just return. Otherwise, it will get to the corresponding completion 13531 * queue and process all the entries on the completion queue, rearm the 13532 * completion queue, and then return. 13533 **/ 13534 static void 13535 lpfc_sli4_hba_process_cq(struct work_struct *work) 13536 { 13537 struct lpfc_queue *cq = 13538 container_of(work, struct lpfc_queue, irqwork); 13539 struct lpfc_hba *phba = cq->phba; 13540 struct lpfc_cqe *cqe; 13541 bool workposted = false; 13542 int ccount = 0; 13543 13544 /* Process all the entries to the CQ */ 13545 while ((cqe = lpfc_sli4_cq_get(cq))) { 13546 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13547 if (phba->ktime_on) 13548 cq->isr_timestamp = ktime_get_ns(); 13549 else 13550 cq->isr_timestamp = 0; 13551 #endif 13552 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13553 if (!(++ccount % cq->entry_repost)) 13554 break; 13555 } 13556 13557 /* Track the max number of CQEs processed in 1 EQ */ 13558 if (ccount > cq->CQ_max_cqe) 13559 cq->CQ_max_cqe = ccount; 13560 cq->assoc_qp->EQ_cqe_cnt += ccount; 13561 13562 /* Catch the no cq entry condition */ 13563 if (unlikely(ccount == 0)) 13564 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13565 "0369 No entry from fast-path completion " 13566 "queue fcpcqid=%d\n", cq->queue_id); 13567 13568 /* In any case, flash and re-arm the CQ */ 13569 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13570 13571 /* wake up worker thread if there are works to be done */ 13572 if (workposted) 13573 lpfc_worker_wake_up(phba); 13574 } 13575 13576 static void 13577 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13578 { 13579 struct lpfc_eqe *eqe; 13580 13581 /* walk all the EQ entries and drop on the floor */ 13582 while ((eqe = lpfc_sli4_eq_get(eq))) 13583 ; 13584 13585 /* Clear and re-arm the EQ */ 13586 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13587 } 13588 13589 13590 /** 13591 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13592 * entry 13593 * @phba: Pointer to HBA context object. 13594 * @eqe: Pointer to fast-path event queue entry. 13595 * 13596 * This routine process a event queue entry from the Flash Optimized Fabric 13597 * event queue. It will check the MajorCode and MinorCode to determine this 13598 * is for a completion event on a completion queue, if not, an error shall be 13599 * logged and just return. Otherwise, it will get to the corresponding 13600 * completion queue and process all the entries on the completion queue, rearm 13601 * the completion queue, and then return. 13602 **/ 13603 static void 13604 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13605 { 13606 struct lpfc_queue *cq; 13607 uint16_t cqid; 13608 13609 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13610 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13611 "9147 Not a valid completion " 13612 "event: majorcode=x%x, minorcode=x%x\n", 13613 bf_get_le32(lpfc_eqe_major_code, eqe), 13614 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13615 return; 13616 } 13617 13618 /* Get the reference to the corresponding CQ */ 13619 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13620 13621 /* Next check for OAS */ 13622 cq = phba->sli4_hba.oas_cq; 13623 if (unlikely(!cq)) { 13624 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13625 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13626 "9148 OAS completion queue " 13627 "does not exist\n"); 13628 return; 13629 } 13630 13631 if (unlikely(cqid != cq->queue_id)) { 13632 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13633 "9149 Miss-matched fast-path compl " 13634 "queue id: eqcqid=%d, fcpcqid=%d\n", 13635 cqid, cq->queue_id); 13636 return; 13637 } 13638 13639 /* Save EQ associated with this CQ */ 13640 cq->assoc_qp = phba->sli4_hba.fof_eq; 13641 13642 /* CQ work will be processed on CPU affinitized to this IRQ */ 13643 if (!queue_work(phba->wq, &cq->irqwork)) 13644 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13645 "0367 Cannot schedule soft IRQ " 13646 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13647 cqid, cq->queue_id, smp_processor_id()); 13648 } 13649 13650 /** 13651 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13652 * @irq: Interrupt number. 13653 * @dev_id: The device context pointer. 13654 * 13655 * This function is directly called from the PCI layer as an interrupt 13656 * service routine when device with SLI-4 interface spec is enabled with 13657 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13658 * IOCB ring event in the HBA. However, when the device is enabled with either 13659 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13660 * device-level interrupt handler. When the PCI slot is in error recovery 13661 * or the HBA is undergoing initialization, the interrupt handler will not 13662 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13663 * the intrrupt context. This function is called without any lock held. 13664 * It gets the hbalock to access and update SLI data structures. Note that, 13665 * the EQ to CQ are one-to-one map such that the EQ index is 13666 * equal to that of CQ index. 13667 * 13668 * This function returns IRQ_HANDLED when interrupt is handled else it 13669 * returns IRQ_NONE. 13670 **/ 13671 irqreturn_t 13672 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13673 { 13674 struct lpfc_hba *phba; 13675 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13676 struct lpfc_queue *eq; 13677 struct lpfc_eqe *eqe; 13678 unsigned long iflag; 13679 int ecount = 0; 13680 13681 /* Get the driver's phba structure from the dev_id */ 13682 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13683 phba = hba_eq_hdl->phba; 13684 13685 if (unlikely(!phba)) 13686 return IRQ_NONE; 13687 13688 /* Get to the EQ struct associated with this vector */ 13689 eq = phba->sli4_hba.fof_eq; 13690 if (unlikely(!eq)) 13691 return IRQ_NONE; 13692 13693 /* Check device state for handling interrupt */ 13694 if (unlikely(lpfc_intr_state_check(phba))) { 13695 /* Check again for link_state with lock held */ 13696 spin_lock_irqsave(&phba->hbalock, iflag); 13697 if (phba->link_state < LPFC_LINK_DOWN) 13698 /* Flush, clear interrupt, and rearm the EQ */ 13699 lpfc_sli4_eq_flush(phba, eq); 13700 spin_unlock_irqrestore(&phba->hbalock, iflag); 13701 return IRQ_NONE; 13702 } 13703 13704 /* 13705 * Process all the event on FCP fast-path EQ 13706 */ 13707 while ((eqe = lpfc_sli4_eq_get(eq))) { 13708 lpfc_sli4_fof_handle_eqe(phba, eqe); 13709 if (!(++ecount % eq->entry_repost)) 13710 break; 13711 eq->EQ_processed++; 13712 } 13713 13714 /* Track the max number of EQEs processed in 1 intr */ 13715 if (ecount > eq->EQ_max_eqe) 13716 eq->EQ_max_eqe = ecount; 13717 13718 13719 if (unlikely(ecount == 0)) { 13720 eq->EQ_no_entry++; 13721 13722 if (phba->intr_type == MSIX) 13723 /* MSI-X treated interrupt served as no EQ share INT */ 13724 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13725 "9145 MSI-X interrupt with no EQE\n"); 13726 else { 13727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13728 "9146 ISR interrupt with no EQE\n"); 13729 /* Non MSI-X treated on interrupt as EQ share INT */ 13730 return IRQ_NONE; 13731 } 13732 } 13733 /* Always clear and re-arm the fast-path EQ */ 13734 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13735 return IRQ_HANDLED; 13736 } 13737 13738 /** 13739 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13740 * @irq: Interrupt number. 13741 * @dev_id: The device context pointer. 13742 * 13743 * This function is directly called from the PCI layer as an interrupt 13744 * service routine when device with SLI-4 interface spec is enabled with 13745 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13746 * ring event in the HBA. However, when the device is enabled with either 13747 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13748 * device-level interrupt handler. When the PCI slot is in error recovery 13749 * or the HBA is undergoing initialization, the interrupt handler will not 13750 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13751 * the intrrupt context. This function is called without any lock held. 13752 * It gets the hbalock to access and update SLI data structures. Note that, 13753 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 13754 * equal to that of FCP CQ index. 13755 * 13756 * The link attention and ELS ring attention events are handled 13757 * by the worker thread. The interrupt handler signals the worker thread 13758 * and returns for these events. This function is called without any lock 13759 * held. It gets the hbalock to access and update SLI data structures. 13760 * 13761 * This function returns IRQ_HANDLED when interrupt is handled else it 13762 * returns IRQ_NONE. 13763 **/ 13764 irqreturn_t 13765 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 13766 { 13767 struct lpfc_hba *phba; 13768 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13769 struct lpfc_queue *fpeq; 13770 struct lpfc_eqe *eqe; 13771 unsigned long iflag; 13772 int ecount = 0; 13773 int hba_eqidx; 13774 13775 /* Get the driver's phba structure from the dev_id */ 13776 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13777 phba = hba_eq_hdl->phba; 13778 hba_eqidx = hba_eq_hdl->idx; 13779 13780 if (unlikely(!phba)) 13781 return IRQ_NONE; 13782 if (unlikely(!phba->sli4_hba.hba_eq)) 13783 return IRQ_NONE; 13784 13785 /* Get to the EQ struct associated with this vector */ 13786 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 13787 if (unlikely(!fpeq)) 13788 return IRQ_NONE; 13789 13790 if (lpfc_fcp_look_ahead) { 13791 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 13792 lpfc_sli4_eq_clr_intr(fpeq); 13793 else { 13794 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13795 return IRQ_NONE; 13796 } 13797 } 13798 13799 /* Check device state for handling interrupt */ 13800 if (unlikely(lpfc_intr_state_check(phba))) { 13801 /* Check again for link_state with lock held */ 13802 spin_lock_irqsave(&phba->hbalock, iflag); 13803 if (phba->link_state < LPFC_LINK_DOWN) 13804 /* Flush, clear interrupt, and rearm the EQ */ 13805 lpfc_sli4_eq_flush(phba, fpeq); 13806 spin_unlock_irqrestore(&phba->hbalock, iflag); 13807 if (lpfc_fcp_look_ahead) 13808 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13809 return IRQ_NONE; 13810 } 13811 13812 /* 13813 * Process all the event on FCP fast-path EQ 13814 */ 13815 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 13816 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 13817 if (!(++ecount % fpeq->entry_repost)) 13818 break; 13819 fpeq->EQ_processed++; 13820 } 13821 13822 /* Track the max number of EQEs processed in 1 intr */ 13823 if (ecount > fpeq->EQ_max_eqe) 13824 fpeq->EQ_max_eqe = ecount; 13825 13826 /* Always clear and re-arm the fast-path EQ */ 13827 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 13828 13829 if (unlikely(ecount == 0)) { 13830 fpeq->EQ_no_entry++; 13831 13832 if (lpfc_fcp_look_ahead) { 13833 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13834 return IRQ_NONE; 13835 } 13836 13837 if (phba->intr_type == MSIX) 13838 /* MSI-X treated interrupt served as no EQ share INT */ 13839 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13840 "0358 MSI-X interrupt with no EQE\n"); 13841 else 13842 /* Non MSI-X treated on interrupt as EQ share INT */ 13843 return IRQ_NONE; 13844 } 13845 13846 if (lpfc_fcp_look_ahead) 13847 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13848 13849 return IRQ_HANDLED; 13850 } /* lpfc_sli4_fp_intr_handler */ 13851 13852 /** 13853 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 13854 * @irq: Interrupt number. 13855 * @dev_id: The device context pointer. 13856 * 13857 * This function is the device-level interrupt handler to device with SLI-4 13858 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 13859 * interrupt mode is enabled and there is an event in the HBA which requires 13860 * driver attention. This function invokes the slow-path interrupt attention 13861 * handling function and fast-path interrupt attention handling function in 13862 * turn to process the relevant HBA attention events. This function is called 13863 * without any lock held. It gets the hbalock to access and update SLI data 13864 * structures. 13865 * 13866 * This function returns IRQ_HANDLED when interrupt is handled, else it 13867 * returns IRQ_NONE. 13868 **/ 13869 irqreturn_t 13870 lpfc_sli4_intr_handler(int irq, void *dev_id) 13871 { 13872 struct lpfc_hba *phba; 13873 irqreturn_t hba_irq_rc; 13874 bool hba_handled = false; 13875 int qidx; 13876 13877 /* Get the driver's phba structure from the dev_id */ 13878 phba = (struct lpfc_hba *)dev_id; 13879 13880 if (unlikely(!phba)) 13881 return IRQ_NONE; 13882 13883 /* 13884 * Invoke fast-path host attention interrupt handling as appropriate. 13885 */ 13886 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 13887 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 13888 &phba->sli4_hba.hba_eq_hdl[qidx]); 13889 if (hba_irq_rc == IRQ_HANDLED) 13890 hba_handled |= true; 13891 } 13892 13893 if (phba->cfg_fof) { 13894 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 13895 &phba->sli4_hba.hba_eq_hdl[qidx]); 13896 if (hba_irq_rc == IRQ_HANDLED) 13897 hba_handled |= true; 13898 } 13899 13900 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 13901 } /* lpfc_sli4_intr_handler */ 13902 13903 /** 13904 * lpfc_sli4_queue_free - free a queue structure and associated memory 13905 * @queue: The queue structure to free. 13906 * 13907 * This function frees a queue structure and the DMAable memory used for 13908 * the host resident queue. This function must be called after destroying the 13909 * queue on the HBA. 13910 **/ 13911 void 13912 lpfc_sli4_queue_free(struct lpfc_queue *queue) 13913 { 13914 struct lpfc_dmabuf *dmabuf; 13915 13916 if (!queue) 13917 return; 13918 13919 while (!list_empty(&queue->page_list)) { 13920 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 13921 list); 13922 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 13923 dmabuf->virt, dmabuf->phys); 13924 kfree(dmabuf); 13925 } 13926 if (queue->rqbp) { 13927 lpfc_free_rq_buffer(queue->phba, queue); 13928 kfree(queue->rqbp); 13929 } 13930 13931 if (!list_empty(&queue->wq_list)) 13932 list_del(&queue->wq_list); 13933 13934 kfree(queue); 13935 return; 13936 } 13937 13938 /** 13939 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 13940 * @phba: The HBA that this queue is being created on. 13941 * @entry_size: The size of each queue entry for this queue. 13942 * @entry count: The number of entries that this queue will handle. 13943 * 13944 * This function allocates a queue structure and the DMAable memory used for 13945 * the host resident queue. This function must be called before creating the 13946 * queue on the HBA. 13947 **/ 13948 struct lpfc_queue * 13949 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13950 uint32_t entry_count) 13951 { 13952 struct lpfc_queue *queue; 13953 struct lpfc_dmabuf *dmabuf; 13954 int x, total_qe_count; 13955 void *dma_pointer; 13956 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13957 13958 if (!phba->sli4_hba.pc_sli4_params.supported) 13959 hw_page_size = SLI4_PAGE_SIZE; 13960 13961 queue = kzalloc(sizeof(struct lpfc_queue) + 13962 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13963 if (!queue) 13964 return NULL; 13965 queue->page_count = (ALIGN(entry_size * entry_count, 13966 hw_page_size))/hw_page_size; 13967 13968 /* If needed, Adjust page count to match the max the adapter supports */ 13969 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 13970 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 13971 13972 INIT_LIST_HEAD(&queue->list); 13973 INIT_LIST_HEAD(&queue->wq_list); 13974 INIT_LIST_HEAD(&queue->page_list); 13975 INIT_LIST_HEAD(&queue->child_list); 13976 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13977 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13978 if (!dmabuf) 13979 goto out_fail; 13980 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13981 hw_page_size, &dmabuf->phys, 13982 GFP_KERNEL); 13983 if (!dmabuf->virt) { 13984 kfree(dmabuf); 13985 goto out_fail; 13986 } 13987 dmabuf->buffer_tag = x; 13988 list_add_tail(&dmabuf->list, &queue->page_list); 13989 /* initialize queue's entry array */ 13990 dma_pointer = dmabuf->virt; 13991 for (; total_qe_count < entry_count && 13992 dma_pointer < (hw_page_size + dmabuf->virt); 13993 total_qe_count++, dma_pointer += entry_size) { 13994 queue->qe[total_qe_count].address = dma_pointer; 13995 } 13996 } 13997 queue->entry_size = entry_size; 13998 queue->entry_count = entry_count; 13999 queue->phba = phba; 14000 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14001 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14002 14003 /* entry_repost will be set during q creation */ 14004 14005 return queue; 14006 out_fail: 14007 lpfc_sli4_queue_free(queue); 14008 return NULL; 14009 } 14010 14011 /** 14012 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14013 * @phba: HBA structure that indicates port to create a queue on. 14014 * @pci_barset: PCI BAR set flag. 14015 * 14016 * This function shall perform iomap of the specified PCI BAR address to host 14017 * memory address if not already done so and return it. The returned host 14018 * memory address can be NULL. 14019 */ 14020 static void __iomem * 14021 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14022 { 14023 if (!phba->pcidev) 14024 return NULL; 14025 14026 switch (pci_barset) { 14027 case WQ_PCI_BAR_0_AND_1: 14028 return phba->pci_bar0_memmap_p; 14029 case WQ_PCI_BAR_2_AND_3: 14030 return phba->pci_bar2_memmap_p; 14031 case WQ_PCI_BAR_4_AND_5: 14032 return phba->pci_bar4_memmap_p; 14033 default: 14034 break; 14035 } 14036 return NULL; 14037 } 14038 14039 /** 14040 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 14041 * @phba: HBA structure that indicates port to create a queue on. 14042 * @startq: The starting FCP EQ to modify 14043 * 14044 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 14045 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 14046 * updated in one mailbox command. 14047 * 14048 * The @phba struct is used to send mailbox command to HBA. The @startq 14049 * is used to get the starting FCP EQ to change. 14050 * This function is asynchronous and will wait for the mailbox 14051 * command to finish before continuing. 14052 * 14053 * On success this function will return a zero. If unable to allocate enough 14054 * memory this function will return -ENOMEM. If the queue create mailbox command 14055 * fails this function will return -ENXIO. 14056 **/ 14057 int 14058 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14059 uint32_t numq, uint32_t imax) 14060 { 14061 struct lpfc_mbx_modify_eq_delay *eq_delay; 14062 LPFC_MBOXQ_t *mbox; 14063 struct lpfc_queue *eq; 14064 int cnt, rc, length, status = 0; 14065 uint32_t shdr_status, shdr_add_status; 14066 uint32_t result, val; 14067 int qidx; 14068 union lpfc_sli4_cfg_shdr *shdr; 14069 uint16_t dmult; 14070 14071 if (startq >= phba->io_channel_irqs) 14072 return 0; 14073 14074 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14075 if (!mbox) 14076 return -ENOMEM; 14077 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14078 sizeof(struct lpfc_sli4_cfg_mhdr)); 14079 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14080 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14081 length, LPFC_SLI4_MBX_EMBED); 14082 eq_delay = &mbox->u.mqe.un.eq_delay; 14083 14084 /* Calculate delay multiper from maximum interrupt per second */ 14085 result = imax / phba->io_channel_irqs; 14086 if (result > LPFC_DMULT_CONST || result == 0) 14087 dmult = 0; 14088 else 14089 dmult = LPFC_DMULT_CONST/result - 1; 14090 if (dmult > LPFC_DMULT_MAX) 14091 dmult = LPFC_DMULT_MAX; 14092 14093 cnt = 0; 14094 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 14095 eq = phba->sli4_hba.hba_eq[qidx]; 14096 if (!eq) 14097 continue; 14098 eq->q_mode = imax; 14099 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14100 eq_delay->u.request.eq[cnt].phase = 0; 14101 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14102 cnt++; 14103 14104 /* q_mode is only used for auto_imax */ 14105 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14106 /* Use EQ Delay Register method for q_mode */ 14107 14108 /* Convert for EQ Delay register */ 14109 val = phba->cfg_fcp_imax; 14110 if (val) { 14111 /* First, interrupts per sec per EQ */ 14112 val = phba->cfg_fcp_imax / 14113 phba->io_channel_irqs; 14114 14115 /* us delay between each interrupt */ 14116 val = LPFC_SEC_TO_USEC / val; 14117 } 14118 eq->q_mode = val; 14119 } else { 14120 eq->q_mode = imax; 14121 } 14122 14123 if (cnt >= numq) 14124 break; 14125 } 14126 eq_delay->u.request.num_eq = cnt; 14127 14128 mbox->vport = phba->pport; 14129 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14130 mbox->context1 = NULL; 14131 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14132 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14133 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14134 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14135 if (shdr_status || shdr_add_status || rc) { 14136 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14137 "2512 MODIFY_EQ_DELAY mailbox failed with " 14138 "status x%x add_status x%x, mbx status x%x\n", 14139 shdr_status, shdr_add_status, rc); 14140 status = -ENXIO; 14141 } 14142 mempool_free(mbox, phba->mbox_mem_pool); 14143 return status; 14144 } 14145 14146 /** 14147 * lpfc_eq_create - Create an Event Queue on the HBA 14148 * @phba: HBA structure that indicates port to create a queue on. 14149 * @eq: The queue structure to use to create the event queue. 14150 * @imax: The maximum interrupt per second limit. 14151 * 14152 * This function creates an event queue, as detailed in @eq, on a port, 14153 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14154 * 14155 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14156 * is used to get the entry count and entry size that are necessary to 14157 * determine the number of pages to allocate and use for this queue. This 14158 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14159 * event queue. This function is asynchronous and will wait for the mailbox 14160 * command to finish before continuing. 14161 * 14162 * On success this function will return a zero. If unable to allocate enough 14163 * memory this function will return -ENOMEM. If the queue create mailbox command 14164 * fails this function will return -ENXIO. 14165 **/ 14166 int 14167 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14168 { 14169 struct lpfc_mbx_eq_create *eq_create; 14170 LPFC_MBOXQ_t *mbox; 14171 int rc, length, status = 0; 14172 struct lpfc_dmabuf *dmabuf; 14173 uint32_t shdr_status, shdr_add_status; 14174 union lpfc_sli4_cfg_shdr *shdr; 14175 uint16_t dmult; 14176 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14177 14178 /* sanity check on queue memory */ 14179 if (!eq) 14180 return -ENODEV; 14181 if (!phba->sli4_hba.pc_sli4_params.supported) 14182 hw_page_size = SLI4_PAGE_SIZE; 14183 14184 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14185 if (!mbox) 14186 return -ENOMEM; 14187 length = (sizeof(struct lpfc_mbx_eq_create) - 14188 sizeof(struct lpfc_sli4_cfg_mhdr)); 14189 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14190 LPFC_MBOX_OPCODE_EQ_CREATE, 14191 length, LPFC_SLI4_MBX_EMBED); 14192 eq_create = &mbox->u.mqe.un.eq_create; 14193 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14194 eq->page_count); 14195 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14196 LPFC_EQE_SIZE); 14197 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14198 /* don't setup delay multiplier using EQ_CREATE */ 14199 dmult = 0; 14200 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14201 dmult); 14202 switch (eq->entry_count) { 14203 default: 14204 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14205 "0360 Unsupported EQ count. (%d)\n", 14206 eq->entry_count); 14207 if (eq->entry_count < 256) 14208 return -EINVAL; 14209 /* otherwise default to smallest count (drop through) */ 14210 case 256: 14211 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14212 LPFC_EQ_CNT_256); 14213 break; 14214 case 512: 14215 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14216 LPFC_EQ_CNT_512); 14217 break; 14218 case 1024: 14219 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14220 LPFC_EQ_CNT_1024); 14221 break; 14222 case 2048: 14223 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14224 LPFC_EQ_CNT_2048); 14225 break; 14226 case 4096: 14227 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14228 LPFC_EQ_CNT_4096); 14229 break; 14230 } 14231 list_for_each_entry(dmabuf, &eq->page_list, list) { 14232 memset(dmabuf->virt, 0, hw_page_size); 14233 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14234 putPaddrLow(dmabuf->phys); 14235 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14236 putPaddrHigh(dmabuf->phys); 14237 } 14238 mbox->vport = phba->pport; 14239 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14240 mbox->context1 = NULL; 14241 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14242 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14243 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14244 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14245 if (shdr_status || shdr_add_status || rc) { 14246 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14247 "2500 EQ_CREATE mailbox failed with " 14248 "status x%x add_status x%x, mbx status x%x\n", 14249 shdr_status, shdr_add_status, rc); 14250 status = -ENXIO; 14251 } 14252 eq->type = LPFC_EQ; 14253 eq->subtype = LPFC_NONE; 14254 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14255 if (eq->queue_id == 0xFFFF) 14256 status = -ENXIO; 14257 eq->host_index = 0; 14258 eq->hba_index = 0; 14259 eq->entry_repost = LPFC_EQ_REPOST; 14260 14261 mempool_free(mbox, phba->mbox_mem_pool); 14262 return status; 14263 } 14264 14265 /** 14266 * lpfc_cq_create - Create a Completion Queue on the HBA 14267 * @phba: HBA structure that indicates port to create a queue on. 14268 * @cq: The queue structure to use to create the completion queue. 14269 * @eq: The event queue to bind this completion queue to. 14270 * 14271 * This function creates a completion queue, as detailed in @wq, on a port, 14272 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14273 * 14274 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14275 * is used to get the entry count and entry size that are necessary to 14276 * determine the number of pages to allocate and use for this queue. The @eq 14277 * is used to indicate which event queue to bind this completion queue to. This 14278 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14279 * completion queue. This function is asynchronous and will wait for the mailbox 14280 * command to finish before continuing. 14281 * 14282 * On success this function will return a zero. If unable to allocate enough 14283 * memory this function will return -ENOMEM. If the queue create mailbox command 14284 * fails this function will return -ENXIO. 14285 **/ 14286 int 14287 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14288 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14289 { 14290 struct lpfc_mbx_cq_create *cq_create; 14291 struct lpfc_dmabuf *dmabuf; 14292 LPFC_MBOXQ_t *mbox; 14293 int rc, length, status = 0; 14294 uint32_t shdr_status, shdr_add_status; 14295 union lpfc_sli4_cfg_shdr *shdr; 14296 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14297 14298 /* sanity check on queue memory */ 14299 if (!cq || !eq) 14300 return -ENODEV; 14301 if (!phba->sli4_hba.pc_sli4_params.supported) 14302 hw_page_size = SLI4_PAGE_SIZE; 14303 14304 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14305 if (!mbox) 14306 return -ENOMEM; 14307 length = (sizeof(struct lpfc_mbx_cq_create) - 14308 sizeof(struct lpfc_sli4_cfg_mhdr)); 14309 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14310 LPFC_MBOX_OPCODE_CQ_CREATE, 14311 length, LPFC_SLI4_MBX_EMBED); 14312 cq_create = &mbox->u.mqe.un.cq_create; 14313 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14314 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14315 cq->page_count); 14316 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14317 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14318 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14319 phba->sli4_hba.pc_sli4_params.cqv); 14320 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14321 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 14322 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 14323 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14324 eq->queue_id); 14325 } else { 14326 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14327 eq->queue_id); 14328 } 14329 switch (cq->entry_count) { 14330 default: 14331 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14332 "0361 Unsupported CQ count: " 14333 "entry cnt %d sz %d pg cnt %d\n", 14334 cq->entry_count, cq->entry_size, 14335 cq->page_count); 14336 if (cq->entry_count < 256) { 14337 status = -EINVAL; 14338 goto out; 14339 } 14340 /* otherwise default to smallest count (drop through) */ 14341 case 256: 14342 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14343 LPFC_CQ_CNT_256); 14344 break; 14345 case 512: 14346 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14347 LPFC_CQ_CNT_512); 14348 break; 14349 case 1024: 14350 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14351 LPFC_CQ_CNT_1024); 14352 break; 14353 } 14354 list_for_each_entry(dmabuf, &cq->page_list, list) { 14355 memset(dmabuf->virt, 0, hw_page_size); 14356 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14357 putPaddrLow(dmabuf->phys); 14358 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14359 putPaddrHigh(dmabuf->phys); 14360 } 14361 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14362 14363 /* The IOCTL status is embedded in the mailbox subheader. */ 14364 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14365 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14366 if (shdr_status || shdr_add_status || rc) { 14367 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14368 "2501 CQ_CREATE mailbox failed with " 14369 "status x%x add_status x%x, mbx status x%x\n", 14370 shdr_status, shdr_add_status, rc); 14371 status = -ENXIO; 14372 goto out; 14373 } 14374 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14375 if (cq->queue_id == 0xFFFF) { 14376 status = -ENXIO; 14377 goto out; 14378 } 14379 /* link the cq onto the parent eq child list */ 14380 list_add_tail(&cq->list, &eq->child_list); 14381 /* Set up completion queue's type and subtype */ 14382 cq->type = type; 14383 cq->subtype = subtype; 14384 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14385 cq->assoc_qid = eq->queue_id; 14386 cq->host_index = 0; 14387 cq->hba_index = 0; 14388 cq->entry_repost = LPFC_CQ_REPOST; 14389 14390 out: 14391 mempool_free(mbox, phba->mbox_mem_pool); 14392 return status; 14393 } 14394 14395 /** 14396 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14397 * @phba: HBA structure that indicates port to create a queue on. 14398 * @cqp: The queue structure array to use to create the completion queues. 14399 * @eqp: The event queue array to bind these completion queues to. 14400 * 14401 * This function creates a set of completion queue, s to support MRQ 14402 * as detailed in @cqp, on a port, 14403 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14404 * 14405 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14406 * is used to get the entry count and entry size that are necessary to 14407 * determine the number of pages to allocate and use for this queue. The @eq 14408 * is used to indicate which event queue to bind this completion queue to. This 14409 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14410 * completion queue. This function is asynchronous and will wait for the mailbox 14411 * command to finish before continuing. 14412 * 14413 * On success this function will return a zero. If unable to allocate enough 14414 * memory this function will return -ENOMEM. If the queue create mailbox command 14415 * fails this function will return -ENXIO. 14416 **/ 14417 int 14418 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14419 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14420 { 14421 struct lpfc_queue *cq; 14422 struct lpfc_queue *eq; 14423 struct lpfc_mbx_cq_create_set *cq_set; 14424 struct lpfc_dmabuf *dmabuf; 14425 LPFC_MBOXQ_t *mbox; 14426 int rc, length, alloclen, status = 0; 14427 int cnt, idx, numcq, page_idx = 0; 14428 uint32_t shdr_status, shdr_add_status; 14429 union lpfc_sli4_cfg_shdr *shdr; 14430 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14431 14432 /* sanity check on queue memory */ 14433 numcq = phba->cfg_nvmet_mrq; 14434 if (!cqp || !eqp || !numcq) 14435 return -ENODEV; 14436 if (!phba->sli4_hba.pc_sli4_params.supported) 14437 hw_page_size = SLI4_PAGE_SIZE; 14438 14439 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14440 if (!mbox) 14441 return -ENOMEM; 14442 14443 length = sizeof(struct lpfc_mbx_cq_create_set); 14444 length += ((numcq * cqp[0]->page_count) * 14445 sizeof(struct dma_address)); 14446 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14447 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14448 LPFC_SLI4_MBX_NEMBED); 14449 if (alloclen < length) { 14450 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14451 "3098 Allocated DMA memory size (%d) is " 14452 "less than the requested DMA memory size " 14453 "(%d)\n", alloclen, length); 14454 status = -ENOMEM; 14455 goto out; 14456 } 14457 cq_set = mbox->sge_array->addr[0]; 14458 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14459 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14460 14461 for (idx = 0; idx < numcq; idx++) { 14462 cq = cqp[idx]; 14463 eq = eqp[idx]; 14464 if (!cq || !eq) { 14465 status = -ENOMEM; 14466 goto out; 14467 } 14468 14469 switch (idx) { 14470 case 0: 14471 bf_set(lpfc_mbx_cq_create_set_page_size, 14472 &cq_set->u.request, 14473 (hw_page_size / SLI4_PAGE_SIZE)); 14474 bf_set(lpfc_mbx_cq_create_set_num_pages, 14475 &cq_set->u.request, cq->page_count); 14476 bf_set(lpfc_mbx_cq_create_set_evt, 14477 &cq_set->u.request, 1); 14478 bf_set(lpfc_mbx_cq_create_set_valid, 14479 &cq_set->u.request, 1); 14480 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14481 &cq_set->u.request, 0); 14482 bf_set(lpfc_mbx_cq_create_set_num_cq, 14483 &cq_set->u.request, numcq); 14484 switch (cq->entry_count) { 14485 default: 14486 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14487 "3118 Bad CQ count. (%d)\n", 14488 cq->entry_count); 14489 if (cq->entry_count < 256) { 14490 status = -EINVAL; 14491 goto out; 14492 } 14493 /* otherwise default to smallest (drop thru) */ 14494 case 256: 14495 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14496 &cq_set->u.request, LPFC_CQ_CNT_256); 14497 break; 14498 case 512: 14499 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14500 &cq_set->u.request, LPFC_CQ_CNT_512); 14501 break; 14502 case 1024: 14503 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14504 &cq_set->u.request, LPFC_CQ_CNT_1024); 14505 break; 14506 } 14507 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14508 &cq_set->u.request, eq->queue_id); 14509 break; 14510 case 1: 14511 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14512 &cq_set->u.request, eq->queue_id); 14513 break; 14514 case 2: 14515 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14516 &cq_set->u.request, eq->queue_id); 14517 break; 14518 case 3: 14519 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14520 &cq_set->u.request, eq->queue_id); 14521 break; 14522 case 4: 14523 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14524 &cq_set->u.request, eq->queue_id); 14525 break; 14526 case 5: 14527 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14528 &cq_set->u.request, eq->queue_id); 14529 break; 14530 case 6: 14531 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14532 &cq_set->u.request, eq->queue_id); 14533 break; 14534 case 7: 14535 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14536 &cq_set->u.request, eq->queue_id); 14537 break; 14538 case 8: 14539 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14540 &cq_set->u.request, eq->queue_id); 14541 break; 14542 case 9: 14543 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14544 &cq_set->u.request, eq->queue_id); 14545 break; 14546 case 10: 14547 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14548 &cq_set->u.request, eq->queue_id); 14549 break; 14550 case 11: 14551 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14552 &cq_set->u.request, eq->queue_id); 14553 break; 14554 case 12: 14555 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14556 &cq_set->u.request, eq->queue_id); 14557 break; 14558 case 13: 14559 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14560 &cq_set->u.request, eq->queue_id); 14561 break; 14562 case 14: 14563 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14564 &cq_set->u.request, eq->queue_id); 14565 break; 14566 case 15: 14567 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14568 &cq_set->u.request, eq->queue_id); 14569 break; 14570 } 14571 14572 /* link the cq onto the parent eq child list */ 14573 list_add_tail(&cq->list, &eq->child_list); 14574 /* Set up completion queue's type and subtype */ 14575 cq->type = type; 14576 cq->subtype = subtype; 14577 cq->assoc_qid = eq->queue_id; 14578 cq->host_index = 0; 14579 cq->hba_index = 0; 14580 cq->entry_repost = LPFC_CQ_REPOST; 14581 14582 rc = 0; 14583 list_for_each_entry(dmabuf, &cq->page_list, list) { 14584 memset(dmabuf->virt, 0, hw_page_size); 14585 cnt = page_idx + dmabuf->buffer_tag; 14586 cq_set->u.request.page[cnt].addr_lo = 14587 putPaddrLow(dmabuf->phys); 14588 cq_set->u.request.page[cnt].addr_hi = 14589 putPaddrHigh(dmabuf->phys); 14590 rc++; 14591 } 14592 page_idx += rc; 14593 } 14594 14595 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14596 14597 /* The IOCTL status is embedded in the mailbox subheader. */ 14598 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14600 if (shdr_status || shdr_add_status || rc) { 14601 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14602 "3119 CQ_CREATE_SET mailbox failed with " 14603 "status x%x add_status x%x, mbx status x%x\n", 14604 shdr_status, shdr_add_status, rc); 14605 status = -ENXIO; 14606 goto out; 14607 } 14608 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14609 if (rc == 0xFFFF) { 14610 status = -ENXIO; 14611 goto out; 14612 } 14613 14614 for (idx = 0; idx < numcq; idx++) { 14615 cq = cqp[idx]; 14616 cq->queue_id = rc + idx; 14617 } 14618 14619 out: 14620 lpfc_sli4_mbox_cmd_free(phba, mbox); 14621 return status; 14622 } 14623 14624 /** 14625 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14626 * @phba: HBA structure that indicates port to create a queue on. 14627 * @mq: The queue structure to use to create the mailbox queue. 14628 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14629 * @cq: The completion queue to associate with this cq. 14630 * 14631 * This function provides failback (fb) functionality when the 14632 * mq_create_ext fails on older FW generations. It's purpose is identical 14633 * to mq_create_ext otherwise. 14634 * 14635 * This routine cannot fail as all attributes were previously accessed and 14636 * initialized in mq_create_ext. 14637 **/ 14638 static void 14639 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14640 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14641 { 14642 struct lpfc_mbx_mq_create *mq_create; 14643 struct lpfc_dmabuf *dmabuf; 14644 int length; 14645 14646 length = (sizeof(struct lpfc_mbx_mq_create) - 14647 sizeof(struct lpfc_sli4_cfg_mhdr)); 14648 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14649 LPFC_MBOX_OPCODE_MQ_CREATE, 14650 length, LPFC_SLI4_MBX_EMBED); 14651 mq_create = &mbox->u.mqe.un.mq_create; 14652 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14653 mq->page_count); 14654 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14655 cq->queue_id); 14656 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14657 switch (mq->entry_count) { 14658 case 16: 14659 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14660 LPFC_MQ_RING_SIZE_16); 14661 break; 14662 case 32: 14663 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14664 LPFC_MQ_RING_SIZE_32); 14665 break; 14666 case 64: 14667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14668 LPFC_MQ_RING_SIZE_64); 14669 break; 14670 case 128: 14671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14672 LPFC_MQ_RING_SIZE_128); 14673 break; 14674 } 14675 list_for_each_entry(dmabuf, &mq->page_list, list) { 14676 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14677 putPaddrLow(dmabuf->phys); 14678 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14679 putPaddrHigh(dmabuf->phys); 14680 } 14681 } 14682 14683 /** 14684 * lpfc_mq_create - Create a mailbox Queue on the HBA 14685 * @phba: HBA structure that indicates port to create a queue on. 14686 * @mq: The queue structure to use to create the mailbox queue. 14687 * @cq: The completion queue to associate with this cq. 14688 * @subtype: The queue's subtype. 14689 * 14690 * This function creates a mailbox queue, as detailed in @mq, on a port, 14691 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14692 * 14693 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14694 * is used to get the entry count and entry size that are necessary to 14695 * determine the number of pages to allocate and use for this queue. This 14696 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14697 * mailbox queue. This function is asynchronous and will wait for the mailbox 14698 * command to finish before continuing. 14699 * 14700 * On success this function will return a zero. If unable to allocate enough 14701 * memory this function will return -ENOMEM. If the queue create mailbox command 14702 * fails this function will return -ENXIO. 14703 **/ 14704 int32_t 14705 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 14706 struct lpfc_queue *cq, uint32_t subtype) 14707 { 14708 struct lpfc_mbx_mq_create *mq_create; 14709 struct lpfc_mbx_mq_create_ext *mq_create_ext; 14710 struct lpfc_dmabuf *dmabuf; 14711 LPFC_MBOXQ_t *mbox; 14712 int rc, length, status = 0; 14713 uint32_t shdr_status, shdr_add_status; 14714 union lpfc_sli4_cfg_shdr *shdr; 14715 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14716 14717 /* sanity check on queue memory */ 14718 if (!mq || !cq) 14719 return -ENODEV; 14720 if (!phba->sli4_hba.pc_sli4_params.supported) 14721 hw_page_size = SLI4_PAGE_SIZE; 14722 14723 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14724 if (!mbox) 14725 return -ENOMEM; 14726 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 14727 sizeof(struct lpfc_sli4_cfg_mhdr)); 14728 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14729 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 14730 length, LPFC_SLI4_MBX_EMBED); 14731 14732 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 14733 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 14734 bf_set(lpfc_mbx_mq_create_ext_num_pages, 14735 &mq_create_ext->u.request, mq->page_count); 14736 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 14737 &mq_create_ext->u.request, 1); 14738 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 14739 &mq_create_ext->u.request, 1); 14740 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 14741 &mq_create_ext->u.request, 1); 14742 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 14743 &mq_create_ext->u.request, 1); 14744 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 14745 &mq_create_ext->u.request, 1); 14746 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 14747 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14748 phba->sli4_hba.pc_sli4_params.mqv); 14749 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 14750 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 14751 cq->queue_id); 14752 else 14753 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 14754 cq->queue_id); 14755 switch (mq->entry_count) { 14756 default: 14757 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14758 "0362 Unsupported MQ count. (%d)\n", 14759 mq->entry_count); 14760 if (mq->entry_count < 16) { 14761 status = -EINVAL; 14762 goto out; 14763 } 14764 /* otherwise default to smallest count (drop through) */ 14765 case 16: 14766 bf_set(lpfc_mq_context_ring_size, 14767 &mq_create_ext->u.request.context, 14768 LPFC_MQ_RING_SIZE_16); 14769 break; 14770 case 32: 14771 bf_set(lpfc_mq_context_ring_size, 14772 &mq_create_ext->u.request.context, 14773 LPFC_MQ_RING_SIZE_32); 14774 break; 14775 case 64: 14776 bf_set(lpfc_mq_context_ring_size, 14777 &mq_create_ext->u.request.context, 14778 LPFC_MQ_RING_SIZE_64); 14779 break; 14780 case 128: 14781 bf_set(lpfc_mq_context_ring_size, 14782 &mq_create_ext->u.request.context, 14783 LPFC_MQ_RING_SIZE_128); 14784 break; 14785 } 14786 list_for_each_entry(dmabuf, &mq->page_list, list) { 14787 memset(dmabuf->virt, 0, hw_page_size); 14788 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 14789 putPaddrLow(dmabuf->phys); 14790 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 14791 putPaddrHigh(dmabuf->phys); 14792 } 14793 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14794 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14795 &mq_create_ext->u.response); 14796 if (rc != MBX_SUCCESS) { 14797 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14798 "2795 MQ_CREATE_EXT failed with " 14799 "status x%x. Failback to MQ_CREATE.\n", 14800 rc); 14801 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 14802 mq_create = &mbox->u.mqe.un.mq_create; 14803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14804 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 14805 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14806 &mq_create->u.response); 14807 } 14808 14809 /* The IOCTL status is embedded in the mailbox subheader. */ 14810 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14811 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14812 if (shdr_status || shdr_add_status || rc) { 14813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14814 "2502 MQ_CREATE mailbox failed with " 14815 "status x%x add_status x%x, mbx status x%x\n", 14816 shdr_status, shdr_add_status, rc); 14817 status = -ENXIO; 14818 goto out; 14819 } 14820 if (mq->queue_id == 0xFFFF) { 14821 status = -ENXIO; 14822 goto out; 14823 } 14824 mq->type = LPFC_MQ; 14825 mq->assoc_qid = cq->queue_id; 14826 mq->subtype = subtype; 14827 mq->host_index = 0; 14828 mq->hba_index = 0; 14829 mq->entry_repost = LPFC_MQ_REPOST; 14830 14831 /* link the mq onto the parent cq child list */ 14832 list_add_tail(&mq->list, &cq->child_list); 14833 out: 14834 mempool_free(mbox, phba->mbox_mem_pool); 14835 return status; 14836 } 14837 14838 /** 14839 * lpfc_wq_create - Create a Work Queue on the HBA 14840 * @phba: HBA structure that indicates port to create a queue on. 14841 * @wq: The queue structure to use to create the work queue. 14842 * @cq: The completion queue to bind this work queue to. 14843 * @subtype: The subtype of the work queue indicating its functionality. 14844 * 14845 * This function creates a work queue, as detailed in @wq, on a port, described 14846 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 14847 * 14848 * The @phba struct is used to send mailbox command to HBA. The @wq struct 14849 * is used to get the entry count and entry size that are necessary to 14850 * determine the number of pages to allocate and use for this queue. The @cq 14851 * is used to indicate which completion queue to bind this work queue to. This 14852 * function will send the WQ_CREATE mailbox command to the HBA to setup the 14853 * work queue. This function is asynchronous and will wait for the mailbox 14854 * command to finish before continuing. 14855 * 14856 * On success this function will return a zero. If unable to allocate enough 14857 * memory this function will return -ENOMEM. If the queue create mailbox command 14858 * fails this function will return -ENXIO. 14859 **/ 14860 int 14861 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 14862 struct lpfc_queue *cq, uint32_t subtype) 14863 { 14864 struct lpfc_mbx_wq_create *wq_create; 14865 struct lpfc_dmabuf *dmabuf; 14866 LPFC_MBOXQ_t *mbox; 14867 int rc, length, status = 0; 14868 uint32_t shdr_status, shdr_add_status; 14869 union lpfc_sli4_cfg_shdr *shdr; 14870 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14871 struct dma_address *page; 14872 void __iomem *bar_memmap_p; 14873 uint32_t db_offset; 14874 uint16_t pci_barset; 14875 14876 /* sanity check on queue memory */ 14877 if (!wq || !cq) 14878 return -ENODEV; 14879 if (!phba->sli4_hba.pc_sli4_params.supported) 14880 hw_page_size = SLI4_PAGE_SIZE; 14881 14882 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14883 if (!mbox) 14884 return -ENOMEM; 14885 length = (sizeof(struct lpfc_mbx_wq_create) - 14886 sizeof(struct lpfc_sli4_cfg_mhdr)); 14887 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14888 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 14889 length, LPFC_SLI4_MBX_EMBED); 14890 wq_create = &mbox->u.mqe.un.wq_create; 14891 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 14892 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 14893 wq->page_count); 14894 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 14895 cq->queue_id); 14896 14897 /* wqv is the earliest version supported, NOT the latest */ 14898 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14899 phba->sli4_hba.pc_sli4_params.wqv); 14900 14901 switch (phba->sli4_hba.pc_sli4_params.wqv) { 14902 case LPFC_Q_CREATE_VERSION_0: 14903 switch (wq->entry_size) { 14904 default: 14905 case 64: 14906 /* Nothing to do, version 0 ONLY supports 64 byte */ 14907 page = wq_create->u.request.page; 14908 break; 14909 case 128: 14910 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14911 LPFC_WQ_SZ128_SUPPORT)) { 14912 status = -ERANGE; 14913 goto out; 14914 } 14915 /* If we get here the HBA MUST also support V1 and 14916 * we MUST use it 14917 */ 14918 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14919 LPFC_Q_CREATE_VERSION_1); 14920 14921 bf_set(lpfc_mbx_wq_create_wqe_count, 14922 &wq_create->u.request_1, wq->entry_count); 14923 bf_set(lpfc_mbx_wq_create_wqe_size, 14924 &wq_create->u.request_1, 14925 LPFC_WQ_WQE_SIZE_128); 14926 bf_set(lpfc_mbx_wq_create_page_size, 14927 &wq_create->u.request_1, 14928 LPFC_WQ_PAGE_SIZE_4096); 14929 page = wq_create->u.request_1.page; 14930 break; 14931 } 14932 break; 14933 case LPFC_Q_CREATE_VERSION_1: 14934 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 14935 wq->entry_count); 14936 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14937 LPFC_Q_CREATE_VERSION_1); 14938 14939 switch (wq->entry_size) { 14940 default: 14941 case 64: 14942 bf_set(lpfc_mbx_wq_create_wqe_size, 14943 &wq_create->u.request_1, 14944 LPFC_WQ_WQE_SIZE_64); 14945 break; 14946 case 128: 14947 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14948 LPFC_WQ_SZ128_SUPPORT)) { 14949 status = -ERANGE; 14950 goto out; 14951 } 14952 bf_set(lpfc_mbx_wq_create_wqe_size, 14953 &wq_create->u.request_1, 14954 LPFC_WQ_WQE_SIZE_128); 14955 break; 14956 } 14957 bf_set(lpfc_mbx_wq_create_page_size, 14958 &wq_create->u.request_1, 14959 LPFC_WQ_PAGE_SIZE_4096); 14960 page = wq_create->u.request_1.page; 14961 break; 14962 default: 14963 status = -ERANGE; 14964 goto out; 14965 } 14966 14967 list_for_each_entry(dmabuf, &wq->page_list, list) { 14968 memset(dmabuf->virt, 0, hw_page_size); 14969 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 14970 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 14971 } 14972 14973 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14974 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 14975 14976 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14977 /* The IOCTL status is embedded in the mailbox subheader. */ 14978 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14979 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14980 if (shdr_status || shdr_add_status || rc) { 14981 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14982 "2503 WQ_CREATE mailbox failed with " 14983 "status x%x add_status x%x, mbx status x%x\n", 14984 shdr_status, shdr_add_status, rc); 14985 status = -ENXIO; 14986 goto out; 14987 } 14988 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 14989 if (wq->queue_id == 0xFFFF) { 14990 status = -ENXIO; 14991 goto out; 14992 } 14993 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14994 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 14995 &wq_create->u.response); 14996 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 14997 (wq->db_format != LPFC_DB_RING_FORMAT)) { 14998 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14999 "3265 WQ[%d] doorbell format not " 15000 "supported: x%x\n", wq->queue_id, 15001 wq->db_format); 15002 status = -EINVAL; 15003 goto out; 15004 } 15005 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15006 &wq_create->u.response); 15007 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15008 if (!bar_memmap_p) { 15009 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15010 "3263 WQ[%d] failed to memmap pci " 15011 "barset:x%x\n", wq->queue_id, 15012 pci_barset); 15013 status = -ENOMEM; 15014 goto out; 15015 } 15016 db_offset = wq_create->u.response.doorbell_offset; 15017 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15018 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15019 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15020 "3252 WQ[%d] doorbell offset not " 15021 "supported: x%x\n", wq->queue_id, 15022 db_offset); 15023 status = -EINVAL; 15024 goto out; 15025 } 15026 wq->db_regaddr = bar_memmap_p + db_offset; 15027 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15028 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15029 "format:x%x\n", wq->queue_id, pci_barset, 15030 db_offset, wq->db_format); 15031 } else { 15032 wq->db_format = LPFC_DB_LIST_FORMAT; 15033 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15034 } 15035 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15036 if (wq->pring == NULL) { 15037 status = -ENOMEM; 15038 goto out; 15039 } 15040 wq->type = LPFC_WQ; 15041 wq->assoc_qid = cq->queue_id; 15042 wq->subtype = subtype; 15043 wq->host_index = 0; 15044 wq->hba_index = 0; 15045 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 15046 15047 /* link the wq onto the parent cq child list */ 15048 list_add_tail(&wq->list, &cq->child_list); 15049 out: 15050 mempool_free(mbox, phba->mbox_mem_pool); 15051 return status; 15052 } 15053 15054 /** 15055 * lpfc_rq_create - Create a Receive Queue on the HBA 15056 * @phba: HBA structure that indicates port to create a queue on. 15057 * @hrq: The queue structure to use to create the header receive queue. 15058 * @drq: The queue structure to use to create the data receive queue. 15059 * @cq: The completion queue to bind this work queue to. 15060 * 15061 * This function creates a receive buffer queue pair , as detailed in @hrq and 15062 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15063 * to the HBA. 15064 * 15065 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15066 * struct is used to get the entry count that is necessary to determine the 15067 * number of pages to use for this queue. The @cq is used to indicate which 15068 * completion queue to bind received buffers that are posted to these queues to. 15069 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15070 * receive queue pair. This function is asynchronous and will wait for the 15071 * mailbox command to finish before continuing. 15072 * 15073 * On success this function will return a zero. If unable to allocate enough 15074 * memory this function will return -ENOMEM. If the queue create mailbox command 15075 * fails this function will return -ENXIO. 15076 **/ 15077 int 15078 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15079 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15080 { 15081 struct lpfc_mbx_rq_create *rq_create; 15082 struct lpfc_dmabuf *dmabuf; 15083 LPFC_MBOXQ_t *mbox; 15084 int rc, length, status = 0; 15085 uint32_t shdr_status, shdr_add_status; 15086 union lpfc_sli4_cfg_shdr *shdr; 15087 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15088 void __iomem *bar_memmap_p; 15089 uint32_t db_offset; 15090 uint16_t pci_barset; 15091 15092 /* sanity check on queue memory */ 15093 if (!hrq || !drq || !cq) 15094 return -ENODEV; 15095 if (!phba->sli4_hba.pc_sli4_params.supported) 15096 hw_page_size = SLI4_PAGE_SIZE; 15097 15098 if (hrq->entry_count != drq->entry_count) 15099 return -EINVAL; 15100 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15101 if (!mbox) 15102 return -ENOMEM; 15103 length = (sizeof(struct lpfc_mbx_rq_create) - 15104 sizeof(struct lpfc_sli4_cfg_mhdr)); 15105 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15106 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15107 length, LPFC_SLI4_MBX_EMBED); 15108 rq_create = &mbox->u.mqe.un.rq_create; 15109 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15110 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15111 phba->sli4_hba.pc_sli4_params.rqv); 15112 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15113 bf_set(lpfc_rq_context_rqe_count_1, 15114 &rq_create->u.request.context, 15115 hrq->entry_count); 15116 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15117 bf_set(lpfc_rq_context_rqe_size, 15118 &rq_create->u.request.context, 15119 LPFC_RQE_SIZE_8); 15120 bf_set(lpfc_rq_context_page_size, 15121 &rq_create->u.request.context, 15122 LPFC_RQ_PAGE_SIZE_4096); 15123 } else { 15124 switch (hrq->entry_count) { 15125 default: 15126 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15127 "2535 Unsupported RQ count. (%d)\n", 15128 hrq->entry_count); 15129 if (hrq->entry_count < 512) { 15130 status = -EINVAL; 15131 goto out; 15132 } 15133 /* otherwise default to smallest count (drop through) */ 15134 case 512: 15135 bf_set(lpfc_rq_context_rqe_count, 15136 &rq_create->u.request.context, 15137 LPFC_RQ_RING_SIZE_512); 15138 break; 15139 case 1024: 15140 bf_set(lpfc_rq_context_rqe_count, 15141 &rq_create->u.request.context, 15142 LPFC_RQ_RING_SIZE_1024); 15143 break; 15144 case 2048: 15145 bf_set(lpfc_rq_context_rqe_count, 15146 &rq_create->u.request.context, 15147 LPFC_RQ_RING_SIZE_2048); 15148 break; 15149 case 4096: 15150 bf_set(lpfc_rq_context_rqe_count, 15151 &rq_create->u.request.context, 15152 LPFC_RQ_RING_SIZE_4096); 15153 break; 15154 } 15155 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15156 LPFC_HDR_BUF_SIZE); 15157 } 15158 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15159 cq->queue_id); 15160 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15161 hrq->page_count); 15162 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15163 memset(dmabuf->virt, 0, hw_page_size); 15164 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15165 putPaddrLow(dmabuf->phys); 15166 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15167 putPaddrHigh(dmabuf->phys); 15168 } 15169 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15170 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15171 15172 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15173 /* The IOCTL status is embedded in the mailbox subheader. */ 15174 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15175 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15176 if (shdr_status || shdr_add_status || rc) { 15177 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15178 "2504 RQ_CREATE mailbox failed with " 15179 "status x%x add_status x%x, mbx status x%x\n", 15180 shdr_status, shdr_add_status, rc); 15181 status = -ENXIO; 15182 goto out; 15183 } 15184 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15185 if (hrq->queue_id == 0xFFFF) { 15186 status = -ENXIO; 15187 goto out; 15188 } 15189 15190 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15191 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15192 &rq_create->u.response); 15193 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15194 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15195 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15196 "3262 RQ [%d] doorbell format not " 15197 "supported: x%x\n", hrq->queue_id, 15198 hrq->db_format); 15199 status = -EINVAL; 15200 goto out; 15201 } 15202 15203 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15204 &rq_create->u.response); 15205 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15206 if (!bar_memmap_p) { 15207 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15208 "3269 RQ[%d] failed to memmap pci " 15209 "barset:x%x\n", hrq->queue_id, 15210 pci_barset); 15211 status = -ENOMEM; 15212 goto out; 15213 } 15214 15215 db_offset = rq_create->u.response.doorbell_offset; 15216 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15217 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15218 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15219 "3270 RQ[%d] doorbell offset not " 15220 "supported: x%x\n", hrq->queue_id, 15221 db_offset); 15222 status = -EINVAL; 15223 goto out; 15224 } 15225 hrq->db_regaddr = bar_memmap_p + db_offset; 15226 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15227 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15228 "format:x%x\n", hrq->queue_id, pci_barset, 15229 db_offset, hrq->db_format); 15230 } else { 15231 hrq->db_format = LPFC_DB_RING_FORMAT; 15232 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15233 } 15234 hrq->type = LPFC_HRQ; 15235 hrq->assoc_qid = cq->queue_id; 15236 hrq->subtype = subtype; 15237 hrq->host_index = 0; 15238 hrq->hba_index = 0; 15239 hrq->entry_repost = LPFC_RQ_REPOST; 15240 15241 /* now create the data queue */ 15242 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15243 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15244 length, LPFC_SLI4_MBX_EMBED); 15245 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15246 phba->sli4_hba.pc_sli4_params.rqv); 15247 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15248 bf_set(lpfc_rq_context_rqe_count_1, 15249 &rq_create->u.request.context, hrq->entry_count); 15250 if (subtype == LPFC_NVMET) 15251 rq_create->u.request.context.buffer_size = 15252 LPFC_NVMET_DATA_BUF_SIZE; 15253 else 15254 rq_create->u.request.context.buffer_size = 15255 LPFC_DATA_BUF_SIZE; 15256 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15257 LPFC_RQE_SIZE_8); 15258 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15259 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15260 } else { 15261 switch (drq->entry_count) { 15262 default: 15263 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15264 "2536 Unsupported RQ count. (%d)\n", 15265 drq->entry_count); 15266 if (drq->entry_count < 512) { 15267 status = -EINVAL; 15268 goto out; 15269 } 15270 /* otherwise default to smallest count (drop through) */ 15271 case 512: 15272 bf_set(lpfc_rq_context_rqe_count, 15273 &rq_create->u.request.context, 15274 LPFC_RQ_RING_SIZE_512); 15275 break; 15276 case 1024: 15277 bf_set(lpfc_rq_context_rqe_count, 15278 &rq_create->u.request.context, 15279 LPFC_RQ_RING_SIZE_1024); 15280 break; 15281 case 2048: 15282 bf_set(lpfc_rq_context_rqe_count, 15283 &rq_create->u.request.context, 15284 LPFC_RQ_RING_SIZE_2048); 15285 break; 15286 case 4096: 15287 bf_set(lpfc_rq_context_rqe_count, 15288 &rq_create->u.request.context, 15289 LPFC_RQ_RING_SIZE_4096); 15290 break; 15291 } 15292 if (subtype == LPFC_NVMET) 15293 bf_set(lpfc_rq_context_buf_size, 15294 &rq_create->u.request.context, 15295 LPFC_NVMET_DATA_BUF_SIZE); 15296 else 15297 bf_set(lpfc_rq_context_buf_size, 15298 &rq_create->u.request.context, 15299 LPFC_DATA_BUF_SIZE); 15300 } 15301 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15302 cq->queue_id); 15303 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15304 drq->page_count); 15305 list_for_each_entry(dmabuf, &drq->page_list, list) { 15306 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15307 putPaddrLow(dmabuf->phys); 15308 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15309 putPaddrHigh(dmabuf->phys); 15310 } 15311 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15312 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15313 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15314 /* The IOCTL status is embedded in the mailbox subheader. */ 15315 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15316 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15317 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15318 if (shdr_status || shdr_add_status || rc) { 15319 status = -ENXIO; 15320 goto out; 15321 } 15322 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15323 if (drq->queue_id == 0xFFFF) { 15324 status = -ENXIO; 15325 goto out; 15326 } 15327 drq->type = LPFC_DRQ; 15328 drq->assoc_qid = cq->queue_id; 15329 drq->subtype = subtype; 15330 drq->host_index = 0; 15331 drq->hba_index = 0; 15332 drq->entry_repost = LPFC_RQ_REPOST; 15333 15334 /* link the header and data RQs onto the parent cq child list */ 15335 list_add_tail(&hrq->list, &cq->child_list); 15336 list_add_tail(&drq->list, &cq->child_list); 15337 15338 out: 15339 mempool_free(mbox, phba->mbox_mem_pool); 15340 return status; 15341 } 15342 15343 /** 15344 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15345 * @phba: HBA structure that indicates port to create a queue on. 15346 * @hrqp: The queue structure array to use to create the header receive queues. 15347 * @drqp: The queue structure array to use to create the data receive queues. 15348 * @cqp: The completion queue array to bind these receive queues to. 15349 * 15350 * This function creates a receive buffer queue pair , as detailed in @hrq and 15351 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15352 * to the HBA. 15353 * 15354 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15355 * struct is used to get the entry count that is necessary to determine the 15356 * number of pages to use for this queue. The @cq is used to indicate which 15357 * completion queue to bind received buffers that are posted to these queues to. 15358 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15359 * receive queue pair. This function is asynchronous and will wait for the 15360 * mailbox command to finish before continuing. 15361 * 15362 * On success this function will return a zero. If unable to allocate enough 15363 * memory this function will return -ENOMEM. If the queue create mailbox command 15364 * fails this function will return -ENXIO. 15365 **/ 15366 int 15367 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15368 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15369 uint32_t subtype) 15370 { 15371 struct lpfc_queue *hrq, *drq, *cq; 15372 struct lpfc_mbx_rq_create_v2 *rq_create; 15373 struct lpfc_dmabuf *dmabuf; 15374 LPFC_MBOXQ_t *mbox; 15375 int rc, length, alloclen, status = 0; 15376 int cnt, idx, numrq, page_idx = 0; 15377 uint32_t shdr_status, shdr_add_status; 15378 union lpfc_sli4_cfg_shdr *shdr; 15379 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15380 15381 numrq = phba->cfg_nvmet_mrq; 15382 /* sanity check on array memory */ 15383 if (!hrqp || !drqp || !cqp || !numrq) 15384 return -ENODEV; 15385 if (!phba->sli4_hba.pc_sli4_params.supported) 15386 hw_page_size = SLI4_PAGE_SIZE; 15387 15388 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15389 if (!mbox) 15390 return -ENOMEM; 15391 15392 length = sizeof(struct lpfc_mbx_rq_create_v2); 15393 length += ((2 * numrq * hrqp[0]->page_count) * 15394 sizeof(struct dma_address)); 15395 15396 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15397 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15398 LPFC_SLI4_MBX_NEMBED); 15399 if (alloclen < length) { 15400 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15401 "3099 Allocated DMA memory size (%d) is " 15402 "less than the requested DMA memory size " 15403 "(%d)\n", alloclen, length); 15404 status = -ENOMEM; 15405 goto out; 15406 } 15407 15408 15409 15410 rq_create = mbox->sge_array->addr[0]; 15411 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15412 15413 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15414 cnt = 0; 15415 15416 for (idx = 0; idx < numrq; idx++) { 15417 hrq = hrqp[idx]; 15418 drq = drqp[idx]; 15419 cq = cqp[idx]; 15420 15421 /* sanity check on queue memory */ 15422 if (!hrq || !drq || !cq) { 15423 status = -ENODEV; 15424 goto out; 15425 } 15426 15427 if (hrq->entry_count != drq->entry_count) { 15428 status = -EINVAL; 15429 goto out; 15430 } 15431 15432 if (idx == 0) { 15433 bf_set(lpfc_mbx_rq_create_num_pages, 15434 &rq_create->u.request, 15435 hrq->page_count); 15436 bf_set(lpfc_mbx_rq_create_rq_cnt, 15437 &rq_create->u.request, (numrq * 2)); 15438 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15439 1); 15440 bf_set(lpfc_rq_context_base_cq, 15441 &rq_create->u.request.context, 15442 cq->queue_id); 15443 bf_set(lpfc_rq_context_data_size, 15444 &rq_create->u.request.context, 15445 LPFC_NVMET_DATA_BUF_SIZE); 15446 bf_set(lpfc_rq_context_hdr_size, 15447 &rq_create->u.request.context, 15448 LPFC_HDR_BUF_SIZE); 15449 bf_set(lpfc_rq_context_rqe_count_1, 15450 &rq_create->u.request.context, 15451 hrq->entry_count); 15452 bf_set(lpfc_rq_context_rqe_size, 15453 &rq_create->u.request.context, 15454 LPFC_RQE_SIZE_8); 15455 bf_set(lpfc_rq_context_page_size, 15456 &rq_create->u.request.context, 15457 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15458 } 15459 rc = 0; 15460 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15461 memset(dmabuf->virt, 0, hw_page_size); 15462 cnt = page_idx + dmabuf->buffer_tag; 15463 rq_create->u.request.page[cnt].addr_lo = 15464 putPaddrLow(dmabuf->phys); 15465 rq_create->u.request.page[cnt].addr_hi = 15466 putPaddrHigh(dmabuf->phys); 15467 rc++; 15468 } 15469 page_idx += rc; 15470 15471 rc = 0; 15472 list_for_each_entry(dmabuf, &drq->page_list, list) { 15473 memset(dmabuf->virt, 0, hw_page_size); 15474 cnt = page_idx + dmabuf->buffer_tag; 15475 rq_create->u.request.page[cnt].addr_lo = 15476 putPaddrLow(dmabuf->phys); 15477 rq_create->u.request.page[cnt].addr_hi = 15478 putPaddrHigh(dmabuf->phys); 15479 rc++; 15480 } 15481 page_idx += rc; 15482 15483 hrq->db_format = LPFC_DB_RING_FORMAT; 15484 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15485 hrq->type = LPFC_HRQ; 15486 hrq->assoc_qid = cq->queue_id; 15487 hrq->subtype = subtype; 15488 hrq->host_index = 0; 15489 hrq->hba_index = 0; 15490 hrq->entry_repost = LPFC_RQ_REPOST; 15491 15492 drq->db_format = LPFC_DB_RING_FORMAT; 15493 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15494 drq->type = LPFC_DRQ; 15495 drq->assoc_qid = cq->queue_id; 15496 drq->subtype = subtype; 15497 drq->host_index = 0; 15498 drq->hba_index = 0; 15499 drq->entry_repost = LPFC_RQ_REPOST; 15500 15501 list_add_tail(&hrq->list, &cq->child_list); 15502 list_add_tail(&drq->list, &cq->child_list); 15503 } 15504 15505 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15506 /* The IOCTL status is embedded in the mailbox subheader. */ 15507 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15508 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15509 if (shdr_status || shdr_add_status || rc) { 15510 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15511 "3120 RQ_CREATE mailbox failed with " 15512 "status x%x add_status x%x, mbx status x%x\n", 15513 shdr_status, shdr_add_status, rc); 15514 status = -ENXIO; 15515 goto out; 15516 } 15517 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15518 if (rc == 0xFFFF) { 15519 status = -ENXIO; 15520 goto out; 15521 } 15522 15523 /* Initialize all RQs with associated queue id */ 15524 for (idx = 0; idx < numrq; idx++) { 15525 hrq = hrqp[idx]; 15526 hrq->queue_id = rc + (2 * idx); 15527 drq = drqp[idx]; 15528 drq->queue_id = rc + (2 * idx) + 1; 15529 } 15530 15531 out: 15532 lpfc_sli4_mbox_cmd_free(phba, mbox); 15533 return status; 15534 } 15535 15536 /** 15537 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15538 * @eq: The queue structure associated with the queue to destroy. 15539 * 15540 * This function destroys a queue, as detailed in @eq by sending an mailbox 15541 * command, specific to the type of queue, to the HBA. 15542 * 15543 * The @eq struct is used to get the queue ID of the queue to destroy. 15544 * 15545 * On success this function will return a zero. If the queue destroy mailbox 15546 * command fails this function will return -ENXIO. 15547 **/ 15548 int 15549 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15550 { 15551 LPFC_MBOXQ_t *mbox; 15552 int rc, length, status = 0; 15553 uint32_t shdr_status, shdr_add_status; 15554 union lpfc_sli4_cfg_shdr *shdr; 15555 15556 /* sanity check on queue memory */ 15557 if (!eq) 15558 return -ENODEV; 15559 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15560 if (!mbox) 15561 return -ENOMEM; 15562 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15563 sizeof(struct lpfc_sli4_cfg_mhdr)); 15564 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15565 LPFC_MBOX_OPCODE_EQ_DESTROY, 15566 length, LPFC_SLI4_MBX_EMBED); 15567 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15568 eq->queue_id); 15569 mbox->vport = eq->phba->pport; 15570 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15571 15572 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15573 /* The IOCTL status is embedded in the mailbox subheader. */ 15574 shdr = (union lpfc_sli4_cfg_shdr *) 15575 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15576 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15577 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15578 if (shdr_status || shdr_add_status || rc) { 15579 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15580 "2505 EQ_DESTROY mailbox failed with " 15581 "status x%x add_status x%x, mbx status x%x\n", 15582 shdr_status, shdr_add_status, rc); 15583 status = -ENXIO; 15584 } 15585 15586 /* Remove eq from any list */ 15587 list_del_init(&eq->list); 15588 mempool_free(mbox, eq->phba->mbox_mem_pool); 15589 return status; 15590 } 15591 15592 /** 15593 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15594 * @cq: The queue structure associated with the queue to destroy. 15595 * 15596 * This function destroys a queue, as detailed in @cq by sending an mailbox 15597 * command, specific to the type of queue, to the HBA. 15598 * 15599 * The @cq struct is used to get the queue ID of the queue to destroy. 15600 * 15601 * On success this function will return a zero. If the queue destroy mailbox 15602 * command fails this function will return -ENXIO. 15603 **/ 15604 int 15605 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15606 { 15607 LPFC_MBOXQ_t *mbox; 15608 int rc, length, status = 0; 15609 uint32_t shdr_status, shdr_add_status; 15610 union lpfc_sli4_cfg_shdr *shdr; 15611 15612 /* sanity check on queue memory */ 15613 if (!cq) 15614 return -ENODEV; 15615 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15616 if (!mbox) 15617 return -ENOMEM; 15618 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15619 sizeof(struct lpfc_sli4_cfg_mhdr)); 15620 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15621 LPFC_MBOX_OPCODE_CQ_DESTROY, 15622 length, LPFC_SLI4_MBX_EMBED); 15623 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15624 cq->queue_id); 15625 mbox->vport = cq->phba->pport; 15626 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15627 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15628 /* The IOCTL status is embedded in the mailbox subheader. */ 15629 shdr = (union lpfc_sli4_cfg_shdr *) 15630 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15631 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15632 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15633 if (shdr_status || shdr_add_status || rc) { 15634 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15635 "2506 CQ_DESTROY mailbox failed with " 15636 "status x%x add_status x%x, mbx status x%x\n", 15637 shdr_status, shdr_add_status, rc); 15638 status = -ENXIO; 15639 } 15640 /* Remove cq from any list */ 15641 list_del_init(&cq->list); 15642 mempool_free(mbox, cq->phba->mbox_mem_pool); 15643 return status; 15644 } 15645 15646 /** 15647 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15648 * @qm: The queue structure associated with the queue to destroy. 15649 * 15650 * This function destroys a queue, as detailed in @mq by sending an mailbox 15651 * command, specific to the type of queue, to the HBA. 15652 * 15653 * The @mq struct is used to get the queue ID of the queue to destroy. 15654 * 15655 * On success this function will return a zero. If the queue destroy mailbox 15656 * command fails this function will return -ENXIO. 15657 **/ 15658 int 15659 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 15660 { 15661 LPFC_MBOXQ_t *mbox; 15662 int rc, length, status = 0; 15663 uint32_t shdr_status, shdr_add_status; 15664 union lpfc_sli4_cfg_shdr *shdr; 15665 15666 /* sanity check on queue memory */ 15667 if (!mq) 15668 return -ENODEV; 15669 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 15670 if (!mbox) 15671 return -ENOMEM; 15672 length = (sizeof(struct lpfc_mbx_mq_destroy) - 15673 sizeof(struct lpfc_sli4_cfg_mhdr)); 15674 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15675 LPFC_MBOX_OPCODE_MQ_DESTROY, 15676 length, LPFC_SLI4_MBX_EMBED); 15677 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 15678 mq->queue_id); 15679 mbox->vport = mq->phba->pport; 15680 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15681 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 15682 /* The IOCTL status is embedded in the mailbox subheader. */ 15683 shdr = (union lpfc_sli4_cfg_shdr *) 15684 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 15685 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15686 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15687 if (shdr_status || shdr_add_status || rc) { 15688 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15689 "2507 MQ_DESTROY mailbox failed with " 15690 "status x%x add_status x%x, mbx status x%x\n", 15691 shdr_status, shdr_add_status, rc); 15692 status = -ENXIO; 15693 } 15694 /* Remove mq from any list */ 15695 list_del_init(&mq->list); 15696 mempool_free(mbox, mq->phba->mbox_mem_pool); 15697 return status; 15698 } 15699 15700 /** 15701 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 15702 * @wq: The queue structure associated with the queue to destroy. 15703 * 15704 * This function destroys a queue, as detailed in @wq by sending an mailbox 15705 * command, specific to the type of queue, to the HBA. 15706 * 15707 * The @wq struct is used to get the queue ID of the queue to destroy. 15708 * 15709 * On success this function will return a zero. If the queue destroy mailbox 15710 * command fails this function will return -ENXIO. 15711 **/ 15712 int 15713 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 15714 { 15715 LPFC_MBOXQ_t *mbox; 15716 int rc, length, status = 0; 15717 uint32_t shdr_status, shdr_add_status; 15718 union lpfc_sli4_cfg_shdr *shdr; 15719 15720 /* sanity check on queue memory */ 15721 if (!wq) 15722 return -ENODEV; 15723 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 15724 if (!mbox) 15725 return -ENOMEM; 15726 length = (sizeof(struct lpfc_mbx_wq_destroy) - 15727 sizeof(struct lpfc_sli4_cfg_mhdr)); 15728 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15729 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 15730 length, LPFC_SLI4_MBX_EMBED); 15731 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 15732 wq->queue_id); 15733 mbox->vport = wq->phba->pport; 15734 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15735 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 15736 shdr = (union lpfc_sli4_cfg_shdr *) 15737 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 15738 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15739 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15740 if (shdr_status || shdr_add_status || rc) { 15741 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15742 "2508 WQ_DESTROY mailbox failed with " 15743 "status x%x add_status x%x, mbx status x%x\n", 15744 shdr_status, shdr_add_status, rc); 15745 status = -ENXIO; 15746 } 15747 /* Remove wq from any list */ 15748 list_del_init(&wq->list); 15749 kfree(wq->pring); 15750 wq->pring = NULL; 15751 mempool_free(mbox, wq->phba->mbox_mem_pool); 15752 return status; 15753 } 15754 15755 /** 15756 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 15757 * @rq: The queue structure associated with the queue to destroy. 15758 * 15759 * This function destroys a queue, as detailed in @rq by sending an mailbox 15760 * command, specific to the type of queue, to the HBA. 15761 * 15762 * The @rq struct is used to get the queue ID of the queue to destroy. 15763 * 15764 * On success this function will return a zero. If the queue destroy mailbox 15765 * command fails this function will return -ENXIO. 15766 **/ 15767 int 15768 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15769 struct lpfc_queue *drq) 15770 { 15771 LPFC_MBOXQ_t *mbox; 15772 int rc, length, status = 0; 15773 uint32_t shdr_status, shdr_add_status; 15774 union lpfc_sli4_cfg_shdr *shdr; 15775 15776 /* sanity check on queue memory */ 15777 if (!hrq || !drq) 15778 return -ENODEV; 15779 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 15780 if (!mbox) 15781 return -ENOMEM; 15782 length = (sizeof(struct lpfc_mbx_rq_destroy) - 15783 sizeof(struct lpfc_sli4_cfg_mhdr)); 15784 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15785 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 15786 length, LPFC_SLI4_MBX_EMBED); 15787 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15788 hrq->queue_id); 15789 mbox->vport = hrq->phba->pport; 15790 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15791 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 15792 /* The IOCTL status is embedded in the mailbox subheader. */ 15793 shdr = (union lpfc_sli4_cfg_shdr *) 15794 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15795 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15796 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15797 if (shdr_status || shdr_add_status || rc) { 15798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15799 "2509 RQ_DESTROY mailbox failed with " 15800 "status x%x add_status x%x, mbx status x%x\n", 15801 shdr_status, shdr_add_status, rc); 15802 if (rc != MBX_TIMEOUT) 15803 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15804 return -ENXIO; 15805 } 15806 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15807 drq->queue_id); 15808 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 15809 shdr = (union lpfc_sli4_cfg_shdr *) 15810 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15811 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15812 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15813 if (shdr_status || shdr_add_status || rc) { 15814 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15815 "2510 RQ_DESTROY mailbox failed with " 15816 "status x%x add_status x%x, mbx status x%x\n", 15817 shdr_status, shdr_add_status, rc); 15818 status = -ENXIO; 15819 } 15820 list_del_init(&hrq->list); 15821 list_del_init(&drq->list); 15822 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15823 return status; 15824 } 15825 15826 /** 15827 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 15828 * @phba: The virtual port for which this call being executed. 15829 * @pdma_phys_addr0: Physical address of the 1st SGL page. 15830 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 15831 * @xritag: the xritag that ties this io to the SGL pages. 15832 * 15833 * This routine will post the sgl pages for the IO that has the xritag 15834 * that is in the iocbq structure. The xritag is assigned during iocbq 15835 * creation and persists for as long as the driver is loaded. 15836 * if the caller has fewer than 256 scatter gather segments to map then 15837 * pdma_phys_addr1 should be 0. 15838 * If the caller needs to map more than 256 scatter gather segment then 15839 * pdma_phys_addr1 should be a valid physical address. 15840 * physical address for SGLs must be 64 byte aligned. 15841 * If you are going to map 2 SGL's then the first one must have 256 entries 15842 * the second sgl can have between 1 and 256 entries. 15843 * 15844 * Return codes: 15845 * 0 - Success 15846 * -ENXIO, -ENOMEM - Failure 15847 **/ 15848 int 15849 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 15850 dma_addr_t pdma_phys_addr0, 15851 dma_addr_t pdma_phys_addr1, 15852 uint16_t xritag) 15853 { 15854 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 15855 LPFC_MBOXQ_t *mbox; 15856 int rc; 15857 uint32_t shdr_status, shdr_add_status; 15858 uint32_t mbox_tmo; 15859 union lpfc_sli4_cfg_shdr *shdr; 15860 15861 if (xritag == NO_XRI) { 15862 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15863 "0364 Invalid param:\n"); 15864 return -EINVAL; 15865 } 15866 15867 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15868 if (!mbox) 15869 return -ENOMEM; 15870 15871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15872 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 15873 sizeof(struct lpfc_mbx_post_sgl_pages) - 15874 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 15875 15876 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 15877 &mbox->u.mqe.un.post_sgl_pages; 15878 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 15879 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 15880 15881 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 15882 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 15883 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 15884 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 15885 15886 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 15887 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 15888 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 15889 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 15890 if (!phba->sli4_hba.intr_enable) 15891 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15892 else { 15893 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15894 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15895 } 15896 /* The IOCTL status is embedded in the mailbox subheader. */ 15897 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 15898 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15899 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15900 if (rc != MBX_TIMEOUT) 15901 mempool_free(mbox, phba->mbox_mem_pool); 15902 if (shdr_status || shdr_add_status || rc) { 15903 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15904 "2511 POST_SGL mailbox failed with " 15905 "status x%x add_status x%x, mbx status x%x\n", 15906 shdr_status, shdr_add_status, rc); 15907 } 15908 return 0; 15909 } 15910 15911 /** 15912 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 15913 * @phba: pointer to lpfc hba data structure. 15914 * 15915 * This routine is invoked to post rpi header templates to the 15916 * HBA consistent with the SLI-4 interface spec. This routine 15917 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15918 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15919 * 15920 * Returns 15921 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15922 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15923 **/ 15924 static uint16_t 15925 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 15926 { 15927 unsigned long xri; 15928 15929 /* 15930 * Fetch the next logical xri. Because this index is logical, 15931 * the driver starts at 0 each time. 15932 */ 15933 spin_lock_irq(&phba->hbalock); 15934 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 15935 phba->sli4_hba.max_cfg_param.max_xri, 0); 15936 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 15937 spin_unlock_irq(&phba->hbalock); 15938 return NO_XRI; 15939 } else { 15940 set_bit(xri, phba->sli4_hba.xri_bmask); 15941 phba->sli4_hba.max_cfg_param.xri_used++; 15942 } 15943 spin_unlock_irq(&phba->hbalock); 15944 return xri; 15945 } 15946 15947 /** 15948 * lpfc_sli4_free_xri - Release an xri for reuse. 15949 * @phba: pointer to lpfc hba data structure. 15950 * 15951 * This routine is invoked to release an xri to the pool of 15952 * available rpis maintained by the driver. 15953 **/ 15954 static void 15955 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15956 { 15957 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 15958 phba->sli4_hba.max_cfg_param.xri_used--; 15959 } 15960 } 15961 15962 /** 15963 * lpfc_sli4_free_xri - Release an xri for reuse. 15964 * @phba: pointer to lpfc hba data structure. 15965 * 15966 * This routine is invoked to release an xri to the pool of 15967 * available rpis maintained by the driver. 15968 **/ 15969 void 15970 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15971 { 15972 spin_lock_irq(&phba->hbalock); 15973 __lpfc_sli4_free_xri(phba, xri); 15974 spin_unlock_irq(&phba->hbalock); 15975 } 15976 15977 /** 15978 * lpfc_sli4_next_xritag - Get an xritag for the io 15979 * @phba: Pointer to HBA context object. 15980 * 15981 * This function gets an xritag for the iocb. If there is no unused xritag 15982 * it will return 0xffff. 15983 * The function returns the allocated xritag if successful, else returns zero. 15984 * Zero is not a valid xritag. 15985 * The caller is not required to hold any lock. 15986 **/ 15987 uint16_t 15988 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 15989 { 15990 uint16_t xri_index; 15991 15992 xri_index = lpfc_sli4_alloc_xri(phba); 15993 if (xri_index == NO_XRI) 15994 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15995 "2004 Failed to allocate XRI.last XRITAG is %d" 15996 " Max XRI is %d, Used XRI is %d\n", 15997 xri_index, 15998 phba->sli4_hba.max_cfg_param.max_xri, 15999 phba->sli4_hba.max_cfg_param.xri_used); 16000 return xri_index; 16001 } 16002 16003 /** 16004 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16005 * @phba: pointer to lpfc hba data structure. 16006 * @post_sgl_list: pointer to els sgl entry list. 16007 * @count: number of els sgl entries on the list. 16008 * 16009 * This routine is invoked to post a block of driver's sgl pages to the 16010 * HBA using non-embedded mailbox command. No Lock is held. This routine 16011 * is only called when the driver is loading and after all IO has been 16012 * stopped. 16013 **/ 16014 static int 16015 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16016 struct list_head *post_sgl_list, 16017 int post_cnt) 16018 { 16019 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16020 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16021 struct sgl_page_pairs *sgl_pg_pairs; 16022 void *viraddr; 16023 LPFC_MBOXQ_t *mbox; 16024 uint32_t reqlen, alloclen, pg_pairs; 16025 uint32_t mbox_tmo; 16026 uint16_t xritag_start = 0; 16027 int rc = 0; 16028 uint32_t shdr_status, shdr_add_status; 16029 union lpfc_sli4_cfg_shdr *shdr; 16030 16031 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16032 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16033 if (reqlen > SLI4_PAGE_SIZE) { 16034 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16035 "2559 Block sgl registration required DMA " 16036 "size (%d) great than a page\n", reqlen); 16037 return -ENOMEM; 16038 } 16039 16040 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16041 if (!mbox) 16042 return -ENOMEM; 16043 16044 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16045 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16046 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16047 LPFC_SLI4_MBX_NEMBED); 16048 16049 if (alloclen < reqlen) { 16050 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16051 "0285 Allocated DMA memory size (%d) is " 16052 "less than the requested DMA memory " 16053 "size (%d)\n", alloclen, reqlen); 16054 lpfc_sli4_mbox_cmd_free(phba, mbox); 16055 return -ENOMEM; 16056 } 16057 /* Set up the SGL pages in the non-embedded DMA pages */ 16058 viraddr = mbox->sge_array->addr[0]; 16059 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16060 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16061 16062 pg_pairs = 0; 16063 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16064 /* Set up the sge entry */ 16065 sgl_pg_pairs->sgl_pg0_addr_lo = 16066 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16067 sgl_pg_pairs->sgl_pg0_addr_hi = 16068 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16069 sgl_pg_pairs->sgl_pg1_addr_lo = 16070 cpu_to_le32(putPaddrLow(0)); 16071 sgl_pg_pairs->sgl_pg1_addr_hi = 16072 cpu_to_le32(putPaddrHigh(0)); 16073 16074 /* Keep the first xritag on the list */ 16075 if (pg_pairs == 0) 16076 xritag_start = sglq_entry->sli4_xritag; 16077 sgl_pg_pairs++; 16078 pg_pairs++; 16079 } 16080 16081 /* Complete initialization and perform endian conversion. */ 16082 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16083 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16084 sgl->word0 = cpu_to_le32(sgl->word0); 16085 16086 if (!phba->sli4_hba.intr_enable) 16087 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16088 else { 16089 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16090 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16091 } 16092 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16093 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16094 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16095 if (rc != MBX_TIMEOUT) 16096 lpfc_sli4_mbox_cmd_free(phba, mbox); 16097 if (shdr_status || shdr_add_status || rc) { 16098 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16099 "2513 POST_SGL_BLOCK mailbox command failed " 16100 "status x%x add_status x%x mbx status x%x\n", 16101 shdr_status, shdr_add_status, rc); 16102 rc = -ENXIO; 16103 } 16104 return rc; 16105 } 16106 16107 /** 16108 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 16109 * @phba: pointer to lpfc hba data structure. 16110 * @sblist: pointer to scsi buffer list. 16111 * @count: number of scsi buffers on the list. 16112 * 16113 * This routine is invoked to post a block of @count scsi sgl pages from a 16114 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 16115 * No Lock is held. 16116 * 16117 **/ 16118 int 16119 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 16120 struct list_head *sblist, 16121 int count) 16122 { 16123 struct lpfc_scsi_buf *psb; 16124 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16125 struct sgl_page_pairs *sgl_pg_pairs; 16126 void *viraddr; 16127 LPFC_MBOXQ_t *mbox; 16128 uint32_t reqlen, alloclen, pg_pairs; 16129 uint32_t mbox_tmo; 16130 uint16_t xritag_start = 0; 16131 int rc = 0; 16132 uint32_t shdr_status, shdr_add_status; 16133 dma_addr_t pdma_phys_bpl1; 16134 union lpfc_sli4_cfg_shdr *shdr; 16135 16136 /* Calculate the requested length of the dma memory */ 16137 reqlen = count * sizeof(struct sgl_page_pairs) + 16138 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16139 if (reqlen > SLI4_PAGE_SIZE) { 16140 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16141 "0217 Block sgl registration required DMA " 16142 "size (%d) great than a page\n", reqlen); 16143 return -ENOMEM; 16144 } 16145 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16146 if (!mbox) { 16147 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16148 "0283 Failed to allocate mbox cmd memory\n"); 16149 return -ENOMEM; 16150 } 16151 16152 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16153 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16154 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16155 LPFC_SLI4_MBX_NEMBED); 16156 16157 if (alloclen < reqlen) { 16158 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16159 "2561 Allocated DMA memory size (%d) is " 16160 "less than the requested DMA memory " 16161 "size (%d)\n", alloclen, reqlen); 16162 lpfc_sli4_mbox_cmd_free(phba, mbox); 16163 return -ENOMEM; 16164 } 16165 16166 /* Get the first SGE entry from the non-embedded DMA memory */ 16167 viraddr = mbox->sge_array->addr[0]; 16168 16169 /* Set up the SGL pages in the non-embedded DMA pages */ 16170 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16171 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16172 16173 pg_pairs = 0; 16174 list_for_each_entry(psb, sblist, list) { 16175 /* Set up the sge entry */ 16176 sgl_pg_pairs->sgl_pg0_addr_lo = 16177 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 16178 sgl_pg_pairs->sgl_pg0_addr_hi = 16179 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 16180 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 16181 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 16182 else 16183 pdma_phys_bpl1 = 0; 16184 sgl_pg_pairs->sgl_pg1_addr_lo = 16185 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 16186 sgl_pg_pairs->sgl_pg1_addr_hi = 16187 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16188 /* Keep the first xritag on the list */ 16189 if (pg_pairs == 0) 16190 xritag_start = psb->cur_iocbq.sli4_xritag; 16191 sgl_pg_pairs++; 16192 pg_pairs++; 16193 } 16194 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16195 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16196 /* Perform endian conversion if necessary */ 16197 sgl->word0 = cpu_to_le32(sgl->word0); 16198 16199 if (!phba->sli4_hba.intr_enable) 16200 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16201 else { 16202 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16203 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16204 } 16205 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16206 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16207 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16208 if (rc != MBX_TIMEOUT) 16209 lpfc_sli4_mbox_cmd_free(phba, mbox); 16210 if (shdr_status || shdr_add_status || rc) { 16211 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16212 "2564 POST_SGL_BLOCK mailbox command failed " 16213 "status x%x add_status x%x mbx status x%x\n", 16214 shdr_status, shdr_add_status, rc); 16215 rc = -ENXIO; 16216 } 16217 return rc; 16218 } 16219 16220 /** 16221 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16222 * @phba: pointer to lpfc_hba struct that the frame was received on 16223 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16224 * 16225 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16226 * valid type of frame that the LPFC driver will handle. This function will 16227 * return a zero if the frame is a valid frame or a non zero value when the 16228 * frame does not pass the check. 16229 **/ 16230 static int 16231 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16232 { 16233 /* make rctl_names static to save stack space */ 16234 struct fc_vft_header *fc_vft_hdr; 16235 uint32_t *header = (uint32_t *) fc_hdr; 16236 16237 #define FC_RCTL_MDS_DIAGS 0xF4 16238 16239 switch (fc_hdr->fh_r_ctl) { 16240 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16241 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16242 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16243 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16244 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16245 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16246 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16247 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16248 case FC_RCTL_ELS_REQ: /* extended link services request */ 16249 case FC_RCTL_ELS_REP: /* extended link services reply */ 16250 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16251 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16252 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16253 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16254 case FC_RCTL_BA_RMC: /* remove connection */ 16255 case FC_RCTL_BA_ACC: /* basic accept */ 16256 case FC_RCTL_BA_RJT: /* basic reject */ 16257 case FC_RCTL_BA_PRMT: 16258 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16259 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16260 case FC_RCTL_P_RJT: /* port reject */ 16261 case FC_RCTL_F_RJT: /* fabric reject */ 16262 case FC_RCTL_P_BSY: /* port busy */ 16263 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16264 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16265 case FC_RCTL_LCR: /* link credit reset */ 16266 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 16267 case FC_RCTL_END: /* end */ 16268 break; 16269 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16270 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16271 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16272 return lpfc_fc_frame_check(phba, fc_hdr); 16273 default: 16274 goto drop; 16275 } 16276 16277 #define FC_TYPE_VENDOR_UNIQUE 0xFF 16278 16279 switch (fc_hdr->fh_type) { 16280 case FC_TYPE_BLS: 16281 case FC_TYPE_ELS: 16282 case FC_TYPE_FCP: 16283 case FC_TYPE_CT: 16284 case FC_TYPE_NVME: 16285 case FC_TYPE_VENDOR_UNIQUE: 16286 break; 16287 case FC_TYPE_IP: 16288 case FC_TYPE_ILS: 16289 default: 16290 goto drop; 16291 } 16292 16293 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16294 "2538 Received frame rctl:x%x, type:x%x, " 16295 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16296 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 16297 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16298 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16299 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16300 be32_to_cpu(header[6])); 16301 return 0; 16302 drop: 16303 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16304 "2539 Dropped frame rctl:x%x type:x%x\n", 16305 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16306 return 1; 16307 } 16308 16309 /** 16310 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16311 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16312 * 16313 * This function processes the FC header to retrieve the VFI from the VF 16314 * header, if one exists. This function will return the VFI if one exists 16315 * or 0 if no VSAN Header exists. 16316 **/ 16317 static uint32_t 16318 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16319 { 16320 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16321 16322 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16323 return 0; 16324 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16325 } 16326 16327 /** 16328 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16329 * @phba: Pointer to the HBA structure to search for the vport on 16330 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16331 * @fcfi: The FC Fabric ID that the frame came from 16332 * 16333 * This function searches the @phba for a vport that matches the content of the 16334 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16335 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16336 * returns the matching vport pointer or NULL if unable to match frame to a 16337 * vport. 16338 **/ 16339 static struct lpfc_vport * 16340 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16341 uint16_t fcfi, uint32_t did) 16342 { 16343 struct lpfc_vport **vports; 16344 struct lpfc_vport *vport = NULL; 16345 int i; 16346 16347 if (did == Fabric_DID) 16348 return phba->pport; 16349 if ((phba->pport->fc_flag & FC_PT2PT) && 16350 !(phba->link_state == LPFC_HBA_READY)) 16351 return phba->pport; 16352 16353 vports = lpfc_create_vport_work_array(phba); 16354 if (vports != NULL) { 16355 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16356 if (phba->fcf.fcfi == fcfi && 16357 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16358 vports[i]->fc_myDID == did) { 16359 vport = vports[i]; 16360 break; 16361 } 16362 } 16363 } 16364 lpfc_destroy_vport_work_array(phba, vports); 16365 return vport; 16366 } 16367 16368 /** 16369 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16370 * @vport: The vport to work on. 16371 * 16372 * This function updates the receive sequence time stamp for this vport. The 16373 * receive sequence time stamp indicates the time that the last frame of the 16374 * the sequence that has been idle for the longest amount of time was received. 16375 * the driver uses this time stamp to indicate if any received sequences have 16376 * timed out. 16377 **/ 16378 static void 16379 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16380 { 16381 struct lpfc_dmabuf *h_buf; 16382 struct hbq_dmabuf *dmabuf = NULL; 16383 16384 /* get the oldest sequence on the rcv list */ 16385 h_buf = list_get_first(&vport->rcv_buffer_list, 16386 struct lpfc_dmabuf, list); 16387 if (!h_buf) 16388 return; 16389 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16390 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16391 } 16392 16393 /** 16394 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16395 * @vport: The vport that the received sequences were sent to. 16396 * 16397 * This function cleans up all outstanding received sequences. This is called 16398 * by the driver when a link event or user action invalidates all the received 16399 * sequences. 16400 **/ 16401 void 16402 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16403 { 16404 struct lpfc_dmabuf *h_buf, *hnext; 16405 struct lpfc_dmabuf *d_buf, *dnext; 16406 struct hbq_dmabuf *dmabuf = NULL; 16407 16408 /* start with the oldest sequence on the rcv list */ 16409 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16410 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16411 list_del_init(&dmabuf->hbuf.list); 16412 list_for_each_entry_safe(d_buf, dnext, 16413 &dmabuf->dbuf.list, list) { 16414 list_del_init(&d_buf->list); 16415 lpfc_in_buf_free(vport->phba, d_buf); 16416 } 16417 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16418 } 16419 } 16420 16421 /** 16422 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16423 * @vport: The vport that the received sequences were sent to. 16424 * 16425 * This function determines whether any received sequences have timed out by 16426 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16427 * indicates that there is at least one timed out sequence this routine will 16428 * go through the received sequences one at a time from most inactive to most 16429 * active to determine which ones need to be cleaned up. Once it has determined 16430 * that a sequence needs to be cleaned up it will simply free up the resources 16431 * without sending an abort. 16432 **/ 16433 void 16434 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16435 { 16436 struct lpfc_dmabuf *h_buf, *hnext; 16437 struct lpfc_dmabuf *d_buf, *dnext; 16438 struct hbq_dmabuf *dmabuf = NULL; 16439 unsigned long timeout; 16440 int abort_count = 0; 16441 16442 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16443 vport->rcv_buffer_time_stamp); 16444 if (list_empty(&vport->rcv_buffer_list) || 16445 time_before(jiffies, timeout)) 16446 return; 16447 /* start with the oldest sequence on the rcv list */ 16448 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16449 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16450 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16451 dmabuf->time_stamp); 16452 if (time_before(jiffies, timeout)) 16453 break; 16454 abort_count++; 16455 list_del_init(&dmabuf->hbuf.list); 16456 list_for_each_entry_safe(d_buf, dnext, 16457 &dmabuf->dbuf.list, list) { 16458 list_del_init(&d_buf->list); 16459 lpfc_in_buf_free(vport->phba, d_buf); 16460 } 16461 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16462 } 16463 if (abort_count) 16464 lpfc_update_rcv_time_stamp(vport); 16465 } 16466 16467 /** 16468 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16469 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16470 * 16471 * This function searches through the existing incomplete sequences that have 16472 * been sent to this @vport. If the frame matches one of the incomplete 16473 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16474 * make up that sequence. If no sequence is found that matches this frame then 16475 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16476 * This function returns a pointer to the first dmabuf in the sequence list that 16477 * the frame was linked to. 16478 **/ 16479 static struct hbq_dmabuf * 16480 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16481 { 16482 struct fc_frame_header *new_hdr; 16483 struct fc_frame_header *temp_hdr; 16484 struct lpfc_dmabuf *d_buf; 16485 struct lpfc_dmabuf *h_buf; 16486 struct hbq_dmabuf *seq_dmabuf = NULL; 16487 struct hbq_dmabuf *temp_dmabuf = NULL; 16488 uint8_t found = 0; 16489 16490 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16491 dmabuf->time_stamp = jiffies; 16492 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16493 16494 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16495 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16496 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16497 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16498 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16499 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16500 continue; 16501 /* found a pending sequence that matches this frame */ 16502 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16503 break; 16504 } 16505 if (!seq_dmabuf) { 16506 /* 16507 * This indicates first frame received for this sequence. 16508 * Queue the buffer on the vport's rcv_buffer_list. 16509 */ 16510 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16511 lpfc_update_rcv_time_stamp(vport); 16512 return dmabuf; 16513 } 16514 temp_hdr = seq_dmabuf->hbuf.virt; 16515 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16516 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16517 list_del_init(&seq_dmabuf->hbuf.list); 16518 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16519 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16520 lpfc_update_rcv_time_stamp(vport); 16521 return dmabuf; 16522 } 16523 /* move this sequence to the tail to indicate a young sequence */ 16524 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16525 seq_dmabuf->time_stamp = jiffies; 16526 lpfc_update_rcv_time_stamp(vport); 16527 if (list_empty(&seq_dmabuf->dbuf.list)) { 16528 temp_hdr = dmabuf->hbuf.virt; 16529 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16530 return seq_dmabuf; 16531 } 16532 /* find the correct place in the sequence to insert this frame */ 16533 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16534 while (!found) { 16535 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16536 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16537 /* 16538 * If the frame's sequence count is greater than the frame on 16539 * the list then insert the frame right after this frame 16540 */ 16541 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16542 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16543 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16544 found = 1; 16545 break; 16546 } 16547 16548 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16549 break; 16550 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16551 } 16552 16553 if (found) 16554 return seq_dmabuf; 16555 return NULL; 16556 } 16557 16558 /** 16559 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16560 * @vport: pointer to a vitural port 16561 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16562 * 16563 * This function tries to abort from the partially assembed sequence, described 16564 * by the information from basic abbort @dmabuf. It checks to see whether such 16565 * partially assembled sequence held by the driver. If so, it shall free up all 16566 * the frames from the partially assembled sequence. 16567 * 16568 * Return 16569 * true -- if there is matching partially assembled sequence present and all 16570 * the frames freed with the sequence; 16571 * false -- if there is no matching partially assembled sequence present so 16572 * nothing got aborted in the lower layer driver 16573 **/ 16574 static bool 16575 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16576 struct hbq_dmabuf *dmabuf) 16577 { 16578 struct fc_frame_header *new_hdr; 16579 struct fc_frame_header *temp_hdr; 16580 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16581 struct hbq_dmabuf *seq_dmabuf = NULL; 16582 16583 /* Use the hdr_buf to find the sequence that matches this frame */ 16584 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16585 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16586 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16587 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16588 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16589 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16590 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16591 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16592 continue; 16593 /* found a pending sequence that matches this frame */ 16594 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16595 break; 16596 } 16597 16598 /* Free up all the frames from the partially assembled sequence */ 16599 if (seq_dmabuf) { 16600 list_for_each_entry_safe(d_buf, n_buf, 16601 &seq_dmabuf->dbuf.list, list) { 16602 list_del_init(&d_buf->list); 16603 lpfc_in_buf_free(vport->phba, d_buf); 16604 } 16605 return true; 16606 } 16607 return false; 16608 } 16609 16610 /** 16611 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16612 * @vport: pointer to a vitural port 16613 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16614 * 16615 * This function tries to abort from the assembed sequence from upper level 16616 * protocol, described by the information from basic abbort @dmabuf. It 16617 * checks to see whether such pending context exists at upper level protocol. 16618 * If so, it shall clean up the pending context. 16619 * 16620 * Return 16621 * true -- if there is matching pending context of the sequence cleaned 16622 * at ulp; 16623 * false -- if there is no matching pending context of the sequence present 16624 * at ulp. 16625 **/ 16626 static bool 16627 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16628 { 16629 struct lpfc_hba *phba = vport->phba; 16630 int handled; 16631 16632 /* Accepting abort at ulp with SLI4 only */ 16633 if (phba->sli_rev < LPFC_SLI_REV4) 16634 return false; 16635 16636 /* Register all caring upper level protocols to attend abort */ 16637 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16638 if (handled) 16639 return true; 16640 16641 return false; 16642 } 16643 16644 /** 16645 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16646 * @phba: Pointer to HBA context object. 16647 * @cmd_iocbq: pointer to the command iocbq structure. 16648 * @rsp_iocbq: pointer to the response iocbq structure. 16649 * 16650 * This function handles the sequence abort response iocb command complete 16651 * event. It properly releases the memory allocated to the sequence abort 16652 * accept iocb. 16653 **/ 16654 static void 16655 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 16656 struct lpfc_iocbq *cmd_iocbq, 16657 struct lpfc_iocbq *rsp_iocbq) 16658 { 16659 struct lpfc_nodelist *ndlp; 16660 16661 if (cmd_iocbq) { 16662 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 16663 lpfc_nlp_put(ndlp); 16664 lpfc_nlp_not_used(ndlp); 16665 lpfc_sli_release_iocbq(phba, cmd_iocbq); 16666 } 16667 16668 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 16669 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 16670 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16671 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 16672 rsp_iocbq->iocb.ulpStatus, 16673 rsp_iocbq->iocb.un.ulpWord[4]); 16674 } 16675 16676 /** 16677 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 16678 * @phba: Pointer to HBA context object. 16679 * @xri: xri id in transaction. 16680 * 16681 * This function validates the xri maps to the known range of XRIs allocated an 16682 * used by the driver. 16683 **/ 16684 uint16_t 16685 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 16686 uint16_t xri) 16687 { 16688 uint16_t i; 16689 16690 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 16691 if (xri == phba->sli4_hba.xri_ids[i]) 16692 return i; 16693 } 16694 return NO_XRI; 16695 } 16696 16697 /** 16698 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 16699 * @phba: Pointer to HBA context object. 16700 * @fc_hdr: pointer to a FC frame header. 16701 * 16702 * This function sends a basic response to a previous unsol sequence abort 16703 * event after aborting the sequence handling. 16704 **/ 16705 void 16706 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 16707 struct fc_frame_header *fc_hdr, bool aborted) 16708 { 16709 struct lpfc_hba *phba = vport->phba; 16710 struct lpfc_iocbq *ctiocb = NULL; 16711 struct lpfc_nodelist *ndlp; 16712 uint16_t oxid, rxid, xri, lxri; 16713 uint32_t sid, fctl; 16714 IOCB_t *icmd; 16715 int rc; 16716 16717 if (!lpfc_is_link_up(phba)) 16718 return; 16719 16720 sid = sli4_sid_from_fc_hdr(fc_hdr); 16721 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 16722 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 16723 16724 ndlp = lpfc_findnode_did(vport, sid); 16725 if (!ndlp) { 16726 ndlp = lpfc_nlp_init(vport, sid); 16727 if (!ndlp) { 16728 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16729 "1268 Failed to allocate ndlp for " 16730 "oxid:x%x SID:x%x\n", oxid, sid); 16731 return; 16732 } 16733 /* Put ndlp onto pport node list */ 16734 lpfc_enqueue_node(vport, ndlp); 16735 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 16736 /* re-setup ndlp without removing from node list */ 16737 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 16738 if (!ndlp) { 16739 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16740 "3275 Failed to active ndlp found " 16741 "for oxid:x%x SID:x%x\n", oxid, sid); 16742 return; 16743 } 16744 } 16745 16746 /* Allocate buffer for rsp iocb */ 16747 ctiocb = lpfc_sli_get_iocbq(phba); 16748 if (!ctiocb) 16749 return; 16750 16751 /* Extract the F_CTL field from FC_HDR */ 16752 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 16753 16754 icmd = &ctiocb->iocb; 16755 icmd->un.xseq64.bdl.bdeSize = 0; 16756 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 16757 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 16758 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 16759 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 16760 16761 /* Fill in the rest of iocb fields */ 16762 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 16763 icmd->ulpBdeCount = 0; 16764 icmd->ulpLe = 1; 16765 icmd->ulpClass = CLASS3; 16766 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 16767 ctiocb->context1 = lpfc_nlp_get(ndlp); 16768 16769 ctiocb->iocb_cmpl = NULL; 16770 ctiocb->vport = phba->pport; 16771 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 16772 ctiocb->sli4_lxritag = NO_XRI; 16773 ctiocb->sli4_xritag = NO_XRI; 16774 16775 if (fctl & FC_FC_EX_CTX) 16776 /* Exchange responder sent the abort so we 16777 * own the oxid. 16778 */ 16779 xri = oxid; 16780 else 16781 xri = rxid; 16782 lxri = lpfc_sli4_xri_inrange(phba, xri); 16783 if (lxri != NO_XRI) 16784 lpfc_set_rrq_active(phba, ndlp, lxri, 16785 (xri == oxid) ? rxid : oxid, 0); 16786 /* For BA_ABTS from exchange responder, if the logical xri with 16787 * the oxid maps to the FCP XRI range, the port no longer has 16788 * that exchange context, send a BLS_RJT. Override the IOCB for 16789 * a BA_RJT. 16790 */ 16791 if ((fctl & FC_FC_EX_CTX) && 16792 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 16793 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16794 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16795 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16796 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16797 } 16798 16799 /* If BA_ABTS failed to abort a partially assembled receive sequence, 16800 * the driver no longer has that exchange, send a BLS_RJT. Override 16801 * the IOCB for a BA_RJT. 16802 */ 16803 if (aborted == false) { 16804 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16805 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16806 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16807 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16808 } 16809 16810 if (fctl & FC_FC_EX_CTX) { 16811 /* ABTS sent by responder to CT exchange, construction 16812 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 16813 * field and RX_ID from ABTS for RX_ID field. 16814 */ 16815 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 16816 } else { 16817 /* ABTS sent by initiator to CT exchange, construction 16818 * of BA_ACC will need to allocate a new XRI as for the 16819 * XRI_TAG field. 16820 */ 16821 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 16822 } 16823 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 16824 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 16825 16826 /* Xmit CT abts response on exchange <xid> */ 16827 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 16828 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 16829 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 16830 16831 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 16832 if (rc == IOCB_ERROR) { 16833 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 16834 "2925 Failed to issue CT ABTS RSP x%x on " 16835 "xri x%x, Data x%x\n", 16836 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 16837 phba->link_state); 16838 lpfc_nlp_put(ndlp); 16839 ctiocb->context1 = NULL; 16840 lpfc_sli_release_iocbq(phba, ctiocb); 16841 } 16842 } 16843 16844 /** 16845 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 16846 * @vport: Pointer to the vport on which this sequence was received 16847 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16848 * 16849 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 16850 * receive sequence is only partially assembed by the driver, it shall abort 16851 * the partially assembled frames for the sequence. Otherwise, if the 16852 * unsolicited receive sequence has been completely assembled and passed to 16853 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 16854 * unsolicited sequence has been aborted. After that, it will issue a basic 16855 * accept to accept the abort. 16856 **/ 16857 static void 16858 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 16859 struct hbq_dmabuf *dmabuf) 16860 { 16861 struct lpfc_hba *phba = vport->phba; 16862 struct fc_frame_header fc_hdr; 16863 uint32_t fctl; 16864 bool aborted; 16865 16866 /* Make a copy of fc_hdr before the dmabuf being released */ 16867 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 16868 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 16869 16870 if (fctl & FC_FC_EX_CTX) { 16871 /* ABTS by responder to exchange, no cleanup needed */ 16872 aborted = true; 16873 } else { 16874 /* ABTS by initiator to exchange, need to do cleanup */ 16875 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 16876 if (aborted == false) 16877 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 16878 } 16879 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16880 16881 if (phba->nvmet_support) { 16882 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 16883 return; 16884 } 16885 16886 /* Respond with BA_ACC or BA_RJT accordingly */ 16887 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 16888 } 16889 16890 /** 16891 * lpfc_seq_complete - Indicates if a sequence is complete 16892 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16893 * 16894 * This function checks the sequence, starting with the frame described by 16895 * @dmabuf, to see if all the frames associated with this sequence are present. 16896 * the frames associated with this sequence are linked to the @dmabuf using the 16897 * dbuf list. This function looks for two major things. 1) That the first frame 16898 * has a sequence count of zero. 2) There is a frame with last frame of sequence 16899 * set. 3) That there are no holes in the sequence count. The function will 16900 * return 1 when the sequence is complete, otherwise it will return 0. 16901 **/ 16902 static int 16903 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 16904 { 16905 struct fc_frame_header *hdr; 16906 struct lpfc_dmabuf *d_buf; 16907 struct hbq_dmabuf *seq_dmabuf; 16908 uint32_t fctl; 16909 int seq_count = 0; 16910 16911 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16912 /* make sure first fame of sequence has a sequence count of zero */ 16913 if (hdr->fh_seq_cnt != seq_count) 16914 return 0; 16915 fctl = (hdr->fh_f_ctl[0] << 16 | 16916 hdr->fh_f_ctl[1] << 8 | 16917 hdr->fh_f_ctl[2]); 16918 /* If last frame of sequence we can return success. */ 16919 if (fctl & FC_FC_END_SEQ) 16920 return 1; 16921 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 16922 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16923 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16924 /* If there is a hole in the sequence count then fail. */ 16925 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 16926 return 0; 16927 fctl = (hdr->fh_f_ctl[0] << 16 | 16928 hdr->fh_f_ctl[1] << 8 | 16929 hdr->fh_f_ctl[2]); 16930 /* If last frame of sequence we can return success. */ 16931 if (fctl & FC_FC_END_SEQ) 16932 return 1; 16933 } 16934 return 0; 16935 } 16936 16937 /** 16938 * lpfc_prep_seq - Prep sequence for ULP processing 16939 * @vport: Pointer to the vport on which this sequence was received 16940 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16941 * 16942 * This function takes a sequence, described by a list of frames, and creates 16943 * a list of iocbq structures to describe the sequence. This iocbq list will be 16944 * used to issue to the generic unsolicited sequence handler. This routine 16945 * returns a pointer to the first iocbq in the list. If the function is unable 16946 * to allocate an iocbq then it throw out the received frames that were not 16947 * able to be described and return a pointer to the first iocbq. If unable to 16948 * allocate any iocbqs (including the first) this function will return NULL. 16949 **/ 16950 static struct lpfc_iocbq * 16951 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 16952 { 16953 struct hbq_dmabuf *hbq_buf; 16954 struct lpfc_dmabuf *d_buf, *n_buf; 16955 struct lpfc_iocbq *first_iocbq, *iocbq; 16956 struct fc_frame_header *fc_hdr; 16957 uint32_t sid; 16958 uint32_t len, tot_len; 16959 struct ulp_bde64 *pbde; 16960 16961 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16962 /* remove from receive buffer list */ 16963 list_del_init(&seq_dmabuf->hbuf.list); 16964 lpfc_update_rcv_time_stamp(vport); 16965 /* get the Remote Port's SID */ 16966 sid = sli4_sid_from_fc_hdr(fc_hdr); 16967 tot_len = 0; 16968 /* Get an iocbq struct to fill in. */ 16969 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 16970 if (first_iocbq) { 16971 /* Initialize the first IOCB. */ 16972 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 16973 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 16974 first_iocbq->vport = vport; 16975 16976 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 16977 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 16978 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 16979 first_iocbq->iocb.un.rcvels.parmRo = 16980 sli4_did_from_fc_hdr(fc_hdr); 16981 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 16982 } else 16983 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 16984 first_iocbq->iocb.ulpContext = NO_XRI; 16985 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 16986 be16_to_cpu(fc_hdr->fh_ox_id); 16987 /* iocbq is prepped for internal consumption. Physical vpi. */ 16988 first_iocbq->iocb.unsli3.rcvsli3.vpi = 16989 vport->phba->vpi_ids[vport->vpi]; 16990 /* put the first buffer into the first IOCBq */ 16991 tot_len = bf_get(lpfc_rcqe_length, 16992 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 16993 16994 first_iocbq->context2 = &seq_dmabuf->dbuf; 16995 first_iocbq->context3 = NULL; 16996 first_iocbq->iocb.ulpBdeCount = 1; 16997 if (tot_len > LPFC_DATA_BUF_SIZE) 16998 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16999 LPFC_DATA_BUF_SIZE; 17000 else 17001 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17002 17003 first_iocbq->iocb.un.rcvels.remoteID = sid; 17004 17005 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17006 } 17007 iocbq = first_iocbq; 17008 /* 17009 * Each IOCBq can have two Buffers assigned, so go through the list 17010 * of buffers for this sequence and save two buffers in each IOCBq 17011 */ 17012 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17013 if (!iocbq) { 17014 lpfc_in_buf_free(vport->phba, d_buf); 17015 continue; 17016 } 17017 if (!iocbq->context3) { 17018 iocbq->context3 = d_buf; 17019 iocbq->iocb.ulpBdeCount++; 17020 /* We need to get the size out of the right CQE */ 17021 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17022 len = bf_get(lpfc_rcqe_length, 17023 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17024 pbde = (struct ulp_bde64 *) 17025 &iocbq->iocb.unsli3.sli3Words[4]; 17026 if (len > LPFC_DATA_BUF_SIZE) 17027 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17028 else 17029 pbde->tus.f.bdeSize = len; 17030 17031 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 17032 tot_len += len; 17033 } else { 17034 iocbq = lpfc_sli_get_iocbq(vport->phba); 17035 if (!iocbq) { 17036 if (first_iocbq) { 17037 first_iocbq->iocb.ulpStatus = 17038 IOSTAT_FCP_RSP_ERROR; 17039 first_iocbq->iocb.un.ulpWord[4] = 17040 IOERR_NO_RESOURCES; 17041 } 17042 lpfc_in_buf_free(vport->phba, d_buf); 17043 continue; 17044 } 17045 /* We need to get the size out of the right CQE */ 17046 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17047 len = bf_get(lpfc_rcqe_length, 17048 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17049 iocbq->context2 = d_buf; 17050 iocbq->context3 = NULL; 17051 iocbq->iocb.ulpBdeCount = 1; 17052 if (len > LPFC_DATA_BUF_SIZE) 17053 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17054 LPFC_DATA_BUF_SIZE; 17055 else 17056 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 17057 17058 tot_len += len; 17059 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17060 17061 iocbq->iocb.un.rcvels.remoteID = sid; 17062 list_add_tail(&iocbq->list, &first_iocbq->list); 17063 } 17064 } 17065 return first_iocbq; 17066 } 17067 17068 static void 17069 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 17070 struct hbq_dmabuf *seq_dmabuf) 17071 { 17072 struct fc_frame_header *fc_hdr; 17073 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 17074 struct lpfc_hba *phba = vport->phba; 17075 17076 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17077 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 17078 if (!iocbq) { 17079 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17080 "2707 Ring %d handler: Failed to allocate " 17081 "iocb Rctl x%x Type x%x received\n", 17082 LPFC_ELS_RING, 17083 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17084 return; 17085 } 17086 if (!lpfc_complete_unsol_iocb(phba, 17087 phba->sli4_hba.els_wq->pring, 17088 iocbq, fc_hdr->fh_r_ctl, 17089 fc_hdr->fh_type)) 17090 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17091 "2540 Ring %d handler: unexpected Rctl " 17092 "x%x Type x%x received\n", 17093 LPFC_ELS_RING, 17094 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17095 17096 /* Free iocb created in lpfc_prep_seq */ 17097 list_for_each_entry_safe(curr_iocb, next_iocb, 17098 &iocbq->list, list) { 17099 list_del_init(&curr_iocb->list); 17100 lpfc_sli_release_iocbq(phba, curr_iocb); 17101 } 17102 lpfc_sli_release_iocbq(phba, iocbq); 17103 } 17104 17105 static void 17106 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 17107 struct lpfc_iocbq *rspiocb) 17108 { 17109 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 17110 17111 if (pcmd && pcmd->virt) 17112 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17113 kfree(pcmd); 17114 lpfc_sli_release_iocbq(phba, cmdiocb); 17115 } 17116 17117 static void 17118 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 17119 struct hbq_dmabuf *dmabuf) 17120 { 17121 struct fc_frame_header *fc_hdr; 17122 struct lpfc_hba *phba = vport->phba; 17123 struct lpfc_iocbq *iocbq = NULL; 17124 union lpfc_wqe *wqe; 17125 struct lpfc_dmabuf *pcmd = NULL; 17126 uint32_t frame_len; 17127 int rc; 17128 17129 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17130 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 17131 17132 /* Send the received frame back */ 17133 iocbq = lpfc_sli_get_iocbq(phba); 17134 if (!iocbq) 17135 goto exit; 17136 17137 /* Allocate buffer for command payload */ 17138 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 17139 if (pcmd) 17140 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 17141 &pcmd->phys); 17142 if (!pcmd || !pcmd->virt) 17143 goto exit; 17144 17145 INIT_LIST_HEAD(&pcmd->list); 17146 17147 /* copyin the payload */ 17148 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 17149 17150 /* fill in BDE's for command */ 17151 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 17152 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 17153 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 17154 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 17155 17156 iocbq->context2 = pcmd; 17157 iocbq->vport = vport; 17158 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 17159 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 17160 17161 /* 17162 * Setup rest of the iocb as though it were a WQE 17163 * Build the SEND_FRAME WQE 17164 */ 17165 wqe = (union lpfc_wqe *)&iocbq->iocb; 17166 17167 wqe->send_frame.frame_len = frame_len; 17168 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 17169 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 17170 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 17171 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 17172 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 17173 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 17174 17175 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 17176 iocbq->iocb.ulpLe = 1; 17177 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 17178 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 17179 if (rc == IOCB_ERROR) 17180 goto exit; 17181 17182 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17183 return; 17184 17185 exit: 17186 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17187 "2023 Unable to process MDS loopback frame\n"); 17188 if (pcmd && pcmd->virt) 17189 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 17190 kfree(pcmd); 17191 if (iocbq) 17192 lpfc_sli_release_iocbq(phba, iocbq); 17193 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17194 } 17195 17196 /** 17197 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 17198 * @phba: Pointer to HBA context object. 17199 * 17200 * This function is called with no lock held. This function processes all 17201 * the received buffers and gives it to upper layers when a received buffer 17202 * indicates that it is the final frame in the sequence. The interrupt 17203 * service routine processes received buffers at interrupt contexts. 17204 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 17205 * appropriate receive function when the final frame in a sequence is received. 17206 **/ 17207 void 17208 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 17209 struct hbq_dmabuf *dmabuf) 17210 { 17211 struct hbq_dmabuf *seq_dmabuf; 17212 struct fc_frame_header *fc_hdr; 17213 struct lpfc_vport *vport; 17214 uint32_t fcfi; 17215 uint32_t did; 17216 17217 /* Process each received buffer */ 17218 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17219 17220 /* check to see if this a valid type of frame */ 17221 if (lpfc_fc_frame_check(phba, fc_hdr)) { 17222 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17223 return; 17224 } 17225 17226 if ((bf_get(lpfc_cqe_code, 17227 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 17228 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 17229 &dmabuf->cq_event.cqe.rcqe_cmpl); 17230 else 17231 fcfi = bf_get(lpfc_rcqe_fcf_id, 17232 &dmabuf->cq_event.cqe.rcqe_cmpl); 17233 17234 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 17235 vport = phba->pport; 17236 /* Handle MDS Loopback frames */ 17237 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 17238 return; 17239 } 17240 17241 /* d_id this frame is directed to */ 17242 did = sli4_did_from_fc_hdr(fc_hdr); 17243 17244 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 17245 if (!vport) { 17246 /* throw out the frame */ 17247 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17248 return; 17249 } 17250 17251 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 17252 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 17253 (did != Fabric_DID)) { 17254 /* 17255 * Throw out the frame if we are not pt2pt. 17256 * The pt2pt protocol allows for discovery frames 17257 * to be received without a registered VPI. 17258 */ 17259 if (!(vport->fc_flag & FC_PT2PT) || 17260 (phba->link_state == LPFC_HBA_READY)) { 17261 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17262 return; 17263 } 17264 } 17265 17266 /* Handle the basic abort sequence (BA_ABTS) event */ 17267 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 17268 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 17269 return; 17270 } 17271 17272 /* Link this frame */ 17273 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 17274 if (!seq_dmabuf) { 17275 /* unable to add frame to vport - throw it out */ 17276 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17277 return; 17278 } 17279 /* If not last frame in sequence continue processing frames. */ 17280 if (!lpfc_seq_complete(seq_dmabuf)) 17281 return; 17282 17283 /* Send the complete sequence to the upper layer protocol */ 17284 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 17285 } 17286 17287 /** 17288 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 17289 * @phba: pointer to lpfc hba data structure. 17290 * 17291 * This routine is invoked to post rpi header templates to the 17292 * HBA consistent with the SLI-4 interface spec. This routine 17293 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17294 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17295 * 17296 * This routine does not require any locks. It's usage is expected 17297 * to be driver load or reset recovery when the driver is 17298 * sequential. 17299 * 17300 * Return codes 17301 * 0 - successful 17302 * -EIO - The mailbox failed to complete successfully. 17303 * When this error occurs, the driver is not guaranteed 17304 * to have any rpi regions posted to the device and 17305 * must either attempt to repost the regions or take a 17306 * fatal error. 17307 **/ 17308 int 17309 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17310 { 17311 struct lpfc_rpi_hdr *rpi_page; 17312 uint32_t rc = 0; 17313 uint16_t lrpi = 0; 17314 17315 /* SLI4 ports that support extents do not require RPI headers. */ 17316 if (!phba->sli4_hba.rpi_hdrs_in_use) 17317 goto exit; 17318 if (phba->sli4_hba.extents_in_use) 17319 return -EIO; 17320 17321 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17322 /* 17323 * Assign the rpi headers a physical rpi only if the driver 17324 * has not initialized those resources. A port reset only 17325 * needs the headers posted. 17326 */ 17327 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17328 LPFC_RPI_RSRC_RDY) 17329 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17330 17331 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17332 if (rc != MBX_SUCCESS) { 17333 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17334 "2008 Error %d posting all rpi " 17335 "headers\n", rc); 17336 rc = -EIO; 17337 break; 17338 } 17339 } 17340 17341 exit: 17342 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17343 LPFC_RPI_RSRC_RDY); 17344 return rc; 17345 } 17346 17347 /** 17348 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17349 * @phba: pointer to lpfc hba data structure. 17350 * @rpi_page: pointer to the rpi memory region. 17351 * 17352 * This routine is invoked to post a single rpi header to the 17353 * HBA consistent with the SLI-4 interface spec. This memory region 17354 * maps up to 64 rpi context regions. 17355 * 17356 * Return codes 17357 * 0 - successful 17358 * -ENOMEM - No available memory 17359 * -EIO - The mailbox failed to complete successfully. 17360 **/ 17361 int 17362 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17363 { 17364 LPFC_MBOXQ_t *mboxq; 17365 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17366 uint32_t rc = 0; 17367 uint32_t shdr_status, shdr_add_status; 17368 union lpfc_sli4_cfg_shdr *shdr; 17369 17370 /* SLI4 ports that support extents do not require RPI headers. */ 17371 if (!phba->sli4_hba.rpi_hdrs_in_use) 17372 return rc; 17373 if (phba->sli4_hba.extents_in_use) 17374 return -EIO; 17375 17376 /* The port is notified of the header region via a mailbox command. */ 17377 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17378 if (!mboxq) { 17379 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17380 "2001 Unable to allocate memory for issuing " 17381 "SLI_CONFIG_SPECIAL mailbox command\n"); 17382 return -ENOMEM; 17383 } 17384 17385 /* Post all rpi memory regions to the port. */ 17386 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17387 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17388 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17389 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17390 sizeof(struct lpfc_sli4_cfg_mhdr), 17391 LPFC_SLI4_MBX_EMBED); 17392 17393 17394 /* Post the physical rpi to the port for this rpi header. */ 17395 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17396 rpi_page->start_rpi); 17397 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17398 hdr_tmpl, rpi_page->page_count); 17399 17400 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17401 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17402 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17403 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17404 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17405 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17406 if (rc != MBX_TIMEOUT) 17407 mempool_free(mboxq, phba->mbox_mem_pool); 17408 if (shdr_status || shdr_add_status || rc) { 17409 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17410 "2514 POST_RPI_HDR mailbox failed with " 17411 "status x%x add_status x%x, mbx status x%x\n", 17412 shdr_status, shdr_add_status, rc); 17413 rc = -ENXIO; 17414 } else { 17415 /* 17416 * The next_rpi stores the next logical module-64 rpi value used 17417 * to post physical rpis in subsequent rpi postings. 17418 */ 17419 spin_lock_irq(&phba->hbalock); 17420 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 17421 spin_unlock_irq(&phba->hbalock); 17422 } 17423 return rc; 17424 } 17425 17426 /** 17427 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17428 * @phba: pointer to lpfc hba data structure. 17429 * 17430 * This routine is invoked to post rpi header templates to the 17431 * HBA consistent with the SLI-4 interface spec. This routine 17432 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17433 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17434 * 17435 * Returns 17436 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17437 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17438 **/ 17439 int 17440 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17441 { 17442 unsigned long rpi; 17443 uint16_t max_rpi, rpi_limit; 17444 uint16_t rpi_remaining, lrpi = 0; 17445 struct lpfc_rpi_hdr *rpi_hdr; 17446 unsigned long iflag; 17447 17448 /* 17449 * Fetch the next logical rpi. Because this index is logical, 17450 * the driver starts at 0 each time. 17451 */ 17452 spin_lock_irqsave(&phba->hbalock, iflag); 17453 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17454 rpi_limit = phba->sli4_hba.next_rpi; 17455 17456 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17457 if (rpi >= rpi_limit) 17458 rpi = LPFC_RPI_ALLOC_ERROR; 17459 else { 17460 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17461 phba->sli4_hba.max_cfg_param.rpi_used++; 17462 phba->sli4_hba.rpi_count++; 17463 } 17464 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17465 "0001 rpi:%x max:%x lim:%x\n", 17466 (int) rpi, max_rpi, rpi_limit); 17467 17468 /* 17469 * Don't try to allocate more rpi header regions if the device limit 17470 * has been exhausted. 17471 */ 17472 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17473 (phba->sli4_hba.rpi_count >= max_rpi)) { 17474 spin_unlock_irqrestore(&phba->hbalock, iflag); 17475 return rpi; 17476 } 17477 17478 /* 17479 * RPI header postings are not required for SLI4 ports capable of 17480 * extents. 17481 */ 17482 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17483 spin_unlock_irqrestore(&phba->hbalock, iflag); 17484 return rpi; 17485 } 17486 17487 /* 17488 * If the driver is running low on rpi resources, allocate another 17489 * page now. Note that the next_rpi value is used because 17490 * it represents how many are actually in use whereas max_rpi notes 17491 * how many are supported max by the device. 17492 */ 17493 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17494 spin_unlock_irqrestore(&phba->hbalock, iflag); 17495 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17496 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17497 if (!rpi_hdr) { 17498 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17499 "2002 Error Could not grow rpi " 17500 "count\n"); 17501 } else { 17502 lrpi = rpi_hdr->start_rpi; 17503 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17504 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17505 } 17506 } 17507 17508 return rpi; 17509 } 17510 17511 /** 17512 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17513 * @phba: pointer to lpfc hba data structure. 17514 * 17515 * This routine is invoked to release an rpi to the pool of 17516 * available rpis maintained by the driver. 17517 **/ 17518 static void 17519 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17520 { 17521 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17522 phba->sli4_hba.rpi_count--; 17523 phba->sli4_hba.max_cfg_param.rpi_used--; 17524 } 17525 } 17526 17527 /** 17528 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17529 * @phba: pointer to lpfc hba data structure. 17530 * 17531 * This routine is invoked to release an rpi to the pool of 17532 * available rpis maintained by the driver. 17533 **/ 17534 void 17535 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17536 { 17537 spin_lock_irq(&phba->hbalock); 17538 __lpfc_sli4_free_rpi(phba, rpi); 17539 spin_unlock_irq(&phba->hbalock); 17540 } 17541 17542 /** 17543 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17544 * @phba: pointer to lpfc hba data structure. 17545 * 17546 * This routine is invoked to remove the memory region that 17547 * provided rpi via a bitmask. 17548 **/ 17549 void 17550 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17551 { 17552 kfree(phba->sli4_hba.rpi_bmask); 17553 kfree(phba->sli4_hba.rpi_ids); 17554 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17555 } 17556 17557 /** 17558 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17559 * @phba: pointer to lpfc hba data structure. 17560 * 17561 * This routine is invoked to remove the memory region that 17562 * provided rpi via a bitmask. 17563 **/ 17564 int 17565 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17566 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17567 { 17568 LPFC_MBOXQ_t *mboxq; 17569 struct lpfc_hba *phba = ndlp->phba; 17570 int rc; 17571 17572 /* The port is notified of the header region via a mailbox command. */ 17573 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17574 if (!mboxq) 17575 return -ENOMEM; 17576 17577 /* Post all rpi memory regions to the port. */ 17578 lpfc_resume_rpi(mboxq, ndlp); 17579 if (cmpl) { 17580 mboxq->mbox_cmpl = cmpl; 17581 mboxq->context1 = arg; 17582 mboxq->context2 = ndlp; 17583 } else 17584 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17585 mboxq->vport = ndlp->vport; 17586 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17587 if (rc == MBX_NOT_FINISHED) { 17588 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17589 "2010 Resume RPI Mailbox failed " 17590 "status %d, mbxStatus x%x\n", rc, 17591 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17592 mempool_free(mboxq, phba->mbox_mem_pool); 17593 return -EIO; 17594 } 17595 return 0; 17596 } 17597 17598 /** 17599 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17600 * @vport: Pointer to the vport for which the vpi is being initialized 17601 * 17602 * This routine is invoked to activate a vpi with the port. 17603 * 17604 * Returns: 17605 * 0 success 17606 * -Evalue otherwise 17607 **/ 17608 int 17609 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17610 { 17611 LPFC_MBOXQ_t *mboxq; 17612 int rc = 0; 17613 int retval = MBX_SUCCESS; 17614 uint32_t mbox_tmo; 17615 struct lpfc_hba *phba = vport->phba; 17616 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17617 if (!mboxq) 17618 return -ENOMEM; 17619 lpfc_init_vpi(phba, mboxq, vport->vpi); 17620 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17621 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17622 if (rc != MBX_SUCCESS) { 17623 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17624 "2022 INIT VPI Mailbox failed " 17625 "status %d, mbxStatus x%x\n", rc, 17626 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17627 retval = -EIO; 17628 } 17629 if (rc != MBX_TIMEOUT) 17630 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17631 17632 return retval; 17633 } 17634 17635 /** 17636 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17637 * @phba: pointer to lpfc hba data structure. 17638 * @mboxq: Pointer to mailbox object. 17639 * 17640 * This routine is invoked to manually add a single FCF record. The caller 17641 * must pass a completely initialized FCF_Record. This routine takes 17642 * care of the nonembedded mailbox operations. 17643 **/ 17644 static void 17645 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17646 { 17647 void *virt_addr; 17648 union lpfc_sli4_cfg_shdr *shdr; 17649 uint32_t shdr_status, shdr_add_status; 17650 17651 virt_addr = mboxq->sge_array->addr[0]; 17652 /* The IOCTL status is embedded in the mailbox subheader. */ 17653 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 17654 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17655 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17656 17657 if ((shdr_status || shdr_add_status) && 17658 (shdr_status != STATUS_FCF_IN_USE)) 17659 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17660 "2558 ADD_FCF_RECORD mailbox failed with " 17661 "status x%x add_status x%x\n", 17662 shdr_status, shdr_add_status); 17663 17664 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17665 } 17666 17667 /** 17668 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 17669 * @phba: pointer to lpfc hba data structure. 17670 * @fcf_record: pointer to the initialized fcf record to add. 17671 * 17672 * This routine is invoked to manually add a single FCF record. The caller 17673 * must pass a completely initialized FCF_Record. This routine takes 17674 * care of the nonembedded mailbox operations. 17675 **/ 17676 int 17677 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 17678 { 17679 int rc = 0; 17680 LPFC_MBOXQ_t *mboxq; 17681 uint8_t *bytep; 17682 void *virt_addr; 17683 struct lpfc_mbx_sge sge; 17684 uint32_t alloc_len, req_len; 17685 uint32_t fcfindex; 17686 17687 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17688 if (!mboxq) { 17689 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17690 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 17691 return -ENOMEM; 17692 } 17693 17694 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 17695 sizeof(uint32_t); 17696 17697 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17698 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17699 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 17700 req_len, LPFC_SLI4_MBX_NEMBED); 17701 if (alloc_len < req_len) { 17702 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17703 "2523 Allocated DMA memory size (x%x) is " 17704 "less than the requested DMA memory " 17705 "size (x%x)\n", alloc_len, req_len); 17706 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17707 return -ENOMEM; 17708 } 17709 17710 /* 17711 * Get the first SGE entry from the non-embedded DMA memory. This 17712 * routine only uses a single SGE. 17713 */ 17714 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 17715 virt_addr = mboxq->sge_array->addr[0]; 17716 /* 17717 * Configure the FCF record for FCFI 0. This is the driver's 17718 * hardcoded default and gets used in nonFIP mode. 17719 */ 17720 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 17721 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 17722 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 17723 17724 /* 17725 * Copy the fcf_index and the FCF Record Data. The data starts after 17726 * the FCoE header plus word10. The data copy needs to be endian 17727 * correct. 17728 */ 17729 bytep += sizeof(uint32_t); 17730 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 17731 mboxq->vport = phba->pport; 17732 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 17733 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17734 if (rc == MBX_NOT_FINISHED) { 17735 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17736 "2515 ADD_FCF_RECORD mailbox failed with " 17737 "status 0x%x\n", rc); 17738 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17739 rc = -EIO; 17740 } else 17741 rc = 0; 17742 17743 return rc; 17744 } 17745 17746 /** 17747 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 17748 * @phba: pointer to lpfc hba data structure. 17749 * @fcf_record: pointer to the fcf record to write the default data. 17750 * @fcf_index: FCF table entry index. 17751 * 17752 * This routine is invoked to build the driver's default FCF record. The 17753 * values used are hardcoded. This routine handles memory initialization. 17754 * 17755 **/ 17756 void 17757 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 17758 struct fcf_record *fcf_record, 17759 uint16_t fcf_index) 17760 { 17761 memset(fcf_record, 0, sizeof(struct fcf_record)); 17762 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 17763 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 17764 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 17765 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 17766 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 17767 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 17768 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 17769 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 17770 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 17771 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 17772 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 17773 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 17774 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 17775 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 17776 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 17777 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 17778 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 17779 /* Set the VLAN bit map */ 17780 if (phba->valid_vlan) { 17781 fcf_record->vlan_bitmap[phba->vlan_id / 8] 17782 = 1 << (phba->vlan_id % 8); 17783 } 17784 } 17785 17786 /** 17787 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 17788 * @phba: pointer to lpfc hba data structure. 17789 * @fcf_index: FCF table entry offset. 17790 * 17791 * This routine is invoked to scan the entire FCF table by reading FCF 17792 * record and processing it one at a time starting from the @fcf_index 17793 * for initial FCF discovery or fast FCF failover rediscovery. 17794 * 17795 * Return 0 if the mailbox command is submitted successfully, none 0 17796 * otherwise. 17797 **/ 17798 int 17799 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17800 { 17801 int rc = 0, error; 17802 LPFC_MBOXQ_t *mboxq; 17803 17804 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 17805 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 17806 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17807 if (!mboxq) { 17808 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17809 "2000 Failed to allocate mbox for " 17810 "READ_FCF cmd\n"); 17811 error = -ENOMEM; 17812 goto fail_fcf_scan; 17813 } 17814 /* Construct the read FCF record mailbox command */ 17815 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17816 if (rc) { 17817 error = -EINVAL; 17818 goto fail_fcf_scan; 17819 } 17820 /* Issue the mailbox command asynchronously */ 17821 mboxq->vport = phba->pport; 17822 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 17823 17824 spin_lock_irq(&phba->hbalock); 17825 phba->hba_flag |= FCF_TS_INPROG; 17826 spin_unlock_irq(&phba->hbalock); 17827 17828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17829 if (rc == MBX_NOT_FINISHED) 17830 error = -EIO; 17831 else { 17832 /* Reset eligible FCF count for new scan */ 17833 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 17834 phba->fcf.eligible_fcf_cnt = 0; 17835 error = 0; 17836 } 17837 fail_fcf_scan: 17838 if (error) { 17839 if (mboxq) 17840 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17841 /* FCF scan failed, clear FCF_TS_INPROG flag */ 17842 spin_lock_irq(&phba->hbalock); 17843 phba->hba_flag &= ~FCF_TS_INPROG; 17844 spin_unlock_irq(&phba->hbalock); 17845 } 17846 return error; 17847 } 17848 17849 /** 17850 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 17851 * @phba: pointer to lpfc hba data structure. 17852 * @fcf_index: FCF table entry offset. 17853 * 17854 * This routine is invoked to read an FCF record indicated by @fcf_index 17855 * and to use it for FLOGI roundrobin FCF failover. 17856 * 17857 * Return 0 if the mailbox command is submitted successfully, none 0 17858 * otherwise. 17859 **/ 17860 int 17861 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17862 { 17863 int rc = 0, error; 17864 LPFC_MBOXQ_t *mboxq; 17865 17866 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17867 if (!mboxq) { 17868 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17869 "2763 Failed to allocate mbox for " 17870 "READ_FCF cmd\n"); 17871 error = -ENOMEM; 17872 goto fail_fcf_read; 17873 } 17874 /* Construct the read FCF record mailbox command */ 17875 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17876 if (rc) { 17877 error = -EINVAL; 17878 goto fail_fcf_read; 17879 } 17880 /* Issue the mailbox command asynchronously */ 17881 mboxq->vport = phba->pport; 17882 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 17883 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17884 if (rc == MBX_NOT_FINISHED) 17885 error = -EIO; 17886 else 17887 error = 0; 17888 17889 fail_fcf_read: 17890 if (error && mboxq) 17891 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17892 return error; 17893 } 17894 17895 /** 17896 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 17897 * @phba: pointer to lpfc hba data structure. 17898 * @fcf_index: FCF table entry offset. 17899 * 17900 * This routine is invoked to read an FCF record indicated by @fcf_index to 17901 * determine whether it's eligible for FLOGI roundrobin failover list. 17902 * 17903 * Return 0 if the mailbox command is submitted successfully, none 0 17904 * otherwise. 17905 **/ 17906 int 17907 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17908 { 17909 int rc = 0, error; 17910 LPFC_MBOXQ_t *mboxq; 17911 17912 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17913 if (!mboxq) { 17914 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17915 "2758 Failed to allocate mbox for " 17916 "READ_FCF cmd\n"); 17917 error = -ENOMEM; 17918 goto fail_fcf_read; 17919 } 17920 /* Construct the read FCF record mailbox command */ 17921 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17922 if (rc) { 17923 error = -EINVAL; 17924 goto fail_fcf_read; 17925 } 17926 /* Issue the mailbox command asynchronously */ 17927 mboxq->vport = phba->pport; 17928 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 17929 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17930 if (rc == MBX_NOT_FINISHED) 17931 error = -EIO; 17932 else 17933 error = 0; 17934 17935 fail_fcf_read: 17936 if (error && mboxq) 17937 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17938 return error; 17939 } 17940 17941 /** 17942 * lpfc_check_next_fcf_pri_level 17943 * phba pointer to the lpfc_hba struct for this port. 17944 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 17945 * routine when the rr_bmask is empty. The FCF indecies are put into the 17946 * rr_bmask based on their priority level. Starting from the highest priority 17947 * to the lowest. The most likely FCF candidate will be in the highest 17948 * priority group. When this routine is called it searches the fcf_pri list for 17949 * next lowest priority group and repopulates the rr_bmask with only those 17950 * fcf_indexes. 17951 * returns: 17952 * 1=success 0=failure 17953 **/ 17954 static int 17955 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 17956 { 17957 uint16_t next_fcf_pri; 17958 uint16_t last_index; 17959 struct lpfc_fcf_pri *fcf_pri; 17960 int rc; 17961 int ret = 0; 17962 17963 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 17964 LPFC_SLI4_FCF_TBL_INDX_MAX); 17965 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17966 "3060 Last IDX %d\n", last_index); 17967 17968 /* Verify the priority list has 2 or more entries */ 17969 spin_lock_irq(&phba->hbalock); 17970 if (list_empty(&phba->fcf.fcf_pri_list) || 17971 list_is_singular(&phba->fcf.fcf_pri_list)) { 17972 spin_unlock_irq(&phba->hbalock); 17973 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17974 "3061 Last IDX %d\n", last_index); 17975 return 0; /* Empty rr list */ 17976 } 17977 spin_unlock_irq(&phba->hbalock); 17978 17979 next_fcf_pri = 0; 17980 /* 17981 * Clear the rr_bmask and set all of the bits that are at this 17982 * priority. 17983 */ 17984 memset(phba->fcf.fcf_rr_bmask, 0, 17985 sizeof(*phba->fcf.fcf_rr_bmask)); 17986 spin_lock_irq(&phba->hbalock); 17987 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17988 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 17989 continue; 17990 /* 17991 * the 1st priority that has not FLOGI failed 17992 * will be the highest. 17993 */ 17994 if (!next_fcf_pri) 17995 next_fcf_pri = fcf_pri->fcf_rec.priority; 17996 spin_unlock_irq(&phba->hbalock); 17997 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17998 rc = lpfc_sli4_fcf_rr_index_set(phba, 17999 fcf_pri->fcf_rec.fcf_index); 18000 if (rc) 18001 return 0; 18002 } 18003 spin_lock_irq(&phba->hbalock); 18004 } 18005 /* 18006 * if next_fcf_pri was not set above and the list is not empty then 18007 * we have failed flogis on all of them. So reset flogi failed 18008 * and start at the beginning. 18009 */ 18010 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 18011 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18012 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 18013 /* 18014 * the 1st priority that has not FLOGI failed 18015 * will be the highest. 18016 */ 18017 if (!next_fcf_pri) 18018 next_fcf_pri = fcf_pri->fcf_rec.priority; 18019 spin_unlock_irq(&phba->hbalock); 18020 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 18021 rc = lpfc_sli4_fcf_rr_index_set(phba, 18022 fcf_pri->fcf_rec.fcf_index); 18023 if (rc) 18024 return 0; 18025 } 18026 spin_lock_irq(&phba->hbalock); 18027 } 18028 } else 18029 ret = 1; 18030 spin_unlock_irq(&phba->hbalock); 18031 18032 return ret; 18033 } 18034 /** 18035 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 18036 * @phba: pointer to lpfc hba data structure. 18037 * 18038 * This routine is to get the next eligible FCF record index in a round 18039 * robin fashion. If the next eligible FCF record index equals to the 18040 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 18041 * shall be returned, otherwise, the next eligible FCF record's index 18042 * shall be returned. 18043 **/ 18044 uint16_t 18045 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 18046 { 18047 uint16_t next_fcf_index; 18048 18049 initial_priority: 18050 /* Search start from next bit of currently registered FCF index */ 18051 next_fcf_index = phba->fcf.current_rec.fcf_indx; 18052 18053 next_priority: 18054 /* Determine the next fcf index to check */ 18055 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 18056 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18057 LPFC_SLI4_FCF_TBL_INDX_MAX, 18058 next_fcf_index); 18059 18060 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 18061 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18062 /* 18063 * If we have wrapped then we need to clear the bits that 18064 * have been tested so that we can detect when we should 18065 * change the priority level. 18066 */ 18067 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 18068 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 18069 } 18070 18071 18072 /* Check roundrobin failover list empty condition */ 18073 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 18074 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 18075 /* 18076 * If next fcf index is not found check if there are lower 18077 * Priority level fcf's in the fcf_priority list. 18078 * Set up the rr_bmask with all of the avaiable fcf bits 18079 * at that level and continue the selection process. 18080 */ 18081 if (lpfc_check_next_fcf_pri_level(phba)) 18082 goto initial_priority; 18083 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18084 "2844 No roundrobin failover FCF available\n"); 18085 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 18086 return LPFC_FCOE_FCF_NEXT_NONE; 18087 else { 18088 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 18089 "3063 Only FCF available idx %d, flag %x\n", 18090 next_fcf_index, 18091 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 18092 return next_fcf_index; 18093 } 18094 } 18095 18096 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 18097 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 18098 LPFC_FCF_FLOGI_FAILED) { 18099 if (list_is_singular(&phba->fcf.fcf_pri_list)) 18100 return LPFC_FCOE_FCF_NEXT_NONE; 18101 18102 goto next_priority; 18103 } 18104 18105 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18106 "2845 Get next roundrobin failover FCF (x%x)\n", 18107 next_fcf_index); 18108 18109 return next_fcf_index; 18110 } 18111 18112 /** 18113 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 18114 * @phba: pointer to lpfc hba data structure. 18115 * 18116 * This routine sets the FCF record index in to the eligible bmask for 18117 * roundrobin failover search. It checks to make sure that the index 18118 * does not go beyond the range of the driver allocated bmask dimension 18119 * before setting the bit. 18120 * 18121 * Returns 0 if the index bit successfully set, otherwise, it returns 18122 * -EINVAL. 18123 **/ 18124 int 18125 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 18126 { 18127 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18128 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18129 "2610 FCF (x%x) reached driver's book " 18130 "keeping dimension:x%x\n", 18131 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18132 return -EINVAL; 18133 } 18134 /* Set the eligible FCF record index bmask */ 18135 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18136 18137 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18138 "2790 Set FCF (x%x) to roundrobin FCF failover " 18139 "bmask\n", fcf_index); 18140 18141 return 0; 18142 } 18143 18144 /** 18145 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 18146 * @phba: pointer to lpfc hba data structure. 18147 * 18148 * This routine clears the FCF record index from the eligible bmask for 18149 * roundrobin failover search. It checks to make sure that the index 18150 * does not go beyond the range of the driver allocated bmask dimension 18151 * before clearing the bit. 18152 **/ 18153 void 18154 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 18155 { 18156 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 18157 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 18158 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18159 "2762 FCF (x%x) reached driver's book " 18160 "keeping dimension:x%x\n", 18161 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 18162 return; 18163 } 18164 /* Clear the eligible FCF record index bmask */ 18165 spin_lock_irq(&phba->hbalock); 18166 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 18167 list) { 18168 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 18169 list_del_init(&fcf_pri->list); 18170 break; 18171 } 18172 } 18173 spin_unlock_irq(&phba->hbalock); 18174 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 18175 18176 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18177 "2791 Clear FCF (x%x) from roundrobin failover " 18178 "bmask\n", fcf_index); 18179 } 18180 18181 /** 18182 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 18183 * @phba: pointer to lpfc hba data structure. 18184 * 18185 * This routine is the completion routine for the rediscover FCF table mailbox 18186 * command. If the mailbox command returned failure, it will try to stop the 18187 * FCF rediscover wait timer. 18188 **/ 18189 static void 18190 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 18191 { 18192 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18193 uint32_t shdr_status, shdr_add_status; 18194 18195 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18196 18197 shdr_status = bf_get(lpfc_mbox_hdr_status, 18198 &redisc_fcf->header.cfg_shdr.response); 18199 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 18200 &redisc_fcf->header.cfg_shdr.response); 18201 if (shdr_status || shdr_add_status) { 18202 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18203 "2746 Requesting for FCF rediscovery failed " 18204 "status x%x add_status x%x\n", 18205 shdr_status, shdr_add_status); 18206 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 18207 spin_lock_irq(&phba->hbalock); 18208 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 18209 spin_unlock_irq(&phba->hbalock); 18210 /* 18211 * CVL event triggered FCF rediscover request failed, 18212 * last resort to re-try current registered FCF entry. 18213 */ 18214 lpfc_retry_pport_discovery(phba); 18215 } else { 18216 spin_lock_irq(&phba->hbalock); 18217 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 18218 spin_unlock_irq(&phba->hbalock); 18219 /* 18220 * DEAD FCF event triggered FCF rediscover request 18221 * failed, last resort to fail over as a link down 18222 * to FCF registration. 18223 */ 18224 lpfc_sli4_fcf_dead_failthrough(phba); 18225 } 18226 } else { 18227 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18228 "2775 Start FCF rediscover quiescent timer\n"); 18229 /* 18230 * Start FCF rediscovery wait timer for pending FCF 18231 * before rescan FCF record table. 18232 */ 18233 lpfc_fcf_redisc_wait_start_timer(phba); 18234 } 18235 18236 mempool_free(mbox, phba->mbox_mem_pool); 18237 } 18238 18239 /** 18240 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 18241 * @phba: pointer to lpfc hba data structure. 18242 * 18243 * This routine is invoked to request for rediscovery of the entire FCF table 18244 * by the port. 18245 **/ 18246 int 18247 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 18248 { 18249 LPFC_MBOXQ_t *mbox; 18250 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 18251 int rc, length; 18252 18253 /* Cancel retry delay timers to all vports before FCF rediscover */ 18254 lpfc_cancel_all_vport_retry_delay_timer(phba); 18255 18256 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18257 if (!mbox) { 18258 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18259 "2745 Failed to allocate mbox for " 18260 "requesting FCF rediscover.\n"); 18261 return -ENOMEM; 18262 } 18263 18264 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 18265 sizeof(struct lpfc_sli4_cfg_mhdr)); 18266 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18267 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 18268 length, LPFC_SLI4_MBX_EMBED); 18269 18270 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 18271 /* Set count to 0 for invalidating the entire FCF database */ 18272 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 18273 18274 /* Issue the mailbox command asynchronously */ 18275 mbox->vport = phba->pport; 18276 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 18277 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 18278 18279 if (rc == MBX_NOT_FINISHED) { 18280 mempool_free(mbox, phba->mbox_mem_pool); 18281 return -EIO; 18282 } 18283 return 0; 18284 } 18285 18286 /** 18287 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 18288 * @phba: pointer to lpfc hba data structure. 18289 * 18290 * This function is the failover routine as a last resort to the FCF DEAD 18291 * event when driver failed to perform fast FCF failover. 18292 **/ 18293 void 18294 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 18295 { 18296 uint32_t link_state; 18297 18298 /* 18299 * Last resort as FCF DEAD event failover will treat this as 18300 * a link down, but save the link state because we don't want 18301 * it to be changed to Link Down unless it is already down. 18302 */ 18303 link_state = phba->link_state; 18304 lpfc_linkdown(phba); 18305 phba->link_state = link_state; 18306 18307 /* Unregister FCF if no devices connected to it */ 18308 lpfc_unregister_unused_fcf(phba); 18309 } 18310 18311 /** 18312 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18313 * @phba: pointer to lpfc hba data structure. 18314 * @rgn23_data: pointer to configure region 23 data. 18315 * 18316 * This function gets SLI3 port configure region 23 data through memory dump 18317 * mailbox command. When it successfully retrieves data, the size of the data 18318 * will be returned, otherwise, 0 will be returned. 18319 **/ 18320 static uint32_t 18321 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18322 { 18323 LPFC_MBOXQ_t *pmb = NULL; 18324 MAILBOX_t *mb; 18325 uint32_t offset = 0; 18326 int rc; 18327 18328 if (!rgn23_data) 18329 return 0; 18330 18331 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18332 if (!pmb) { 18333 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18334 "2600 failed to allocate mailbox memory\n"); 18335 return 0; 18336 } 18337 mb = &pmb->u.mb; 18338 18339 do { 18340 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18341 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18342 18343 if (rc != MBX_SUCCESS) { 18344 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18345 "2601 failed to read config " 18346 "region 23, rc 0x%x Status 0x%x\n", 18347 rc, mb->mbxStatus); 18348 mb->un.varDmp.word_cnt = 0; 18349 } 18350 /* 18351 * dump mem may return a zero when finished or we got a 18352 * mailbox error, either way we are done. 18353 */ 18354 if (mb->un.varDmp.word_cnt == 0) 18355 break; 18356 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18357 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18358 18359 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18360 rgn23_data + offset, 18361 mb->un.varDmp.word_cnt); 18362 offset += mb->un.varDmp.word_cnt; 18363 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18364 18365 mempool_free(pmb, phba->mbox_mem_pool); 18366 return offset; 18367 } 18368 18369 /** 18370 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18371 * @phba: pointer to lpfc hba data structure. 18372 * @rgn23_data: pointer to configure region 23 data. 18373 * 18374 * This function gets SLI4 port configure region 23 data through memory dump 18375 * mailbox command. When it successfully retrieves data, the size of the data 18376 * will be returned, otherwise, 0 will be returned. 18377 **/ 18378 static uint32_t 18379 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18380 { 18381 LPFC_MBOXQ_t *mboxq = NULL; 18382 struct lpfc_dmabuf *mp = NULL; 18383 struct lpfc_mqe *mqe; 18384 uint32_t data_length = 0; 18385 int rc; 18386 18387 if (!rgn23_data) 18388 return 0; 18389 18390 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18391 if (!mboxq) { 18392 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18393 "3105 failed to allocate mailbox memory\n"); 18394 return 0; 18395 } 18396 18397 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18398 goto out; 18399 mqe = &mboxq->u.mqe; 18400 mp = (struct lpfc_dmabuf *) mboxq->context1; 18401 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18402 if (rc) 18403 goto out; 18404 data_length = mqe->un.mb_words[5]; 18405 if (data_length == 0) 18406 goto out; 18407 if (data_length > DMP_RGN23_SIZE) { 18408 data_length = 0; 18409 goto out; 18410 } 18411 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18412 out: 18413 mempool_free(mboxq, phba->mbox_mem_pool); 18414 if (mp) { 18415 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18416 kfree(mp); 18417 } 18418 return data_length; 18419 } 18420 18421 /** 18422 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18423 * @phba: pointer to lpfc hba data structure. 18424 * 18425 * This function read region 23 and parse TLV for port status to 18426 * decide if the user disaled the port. If the TLV indicates the 18427 * port is disabled, the hba_flag is set accordingly. 18428 **/ 18429 void 18430 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18431 { 18432 uint8_t *rgn23_data = NULL; 18433 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18434 uint32_t offset = 0; 18435 18436 /* Get adapter Region 23 data */ 18437 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18438 if (!rgn23_data) 18439 goto out; 18440 18441 if (phba->sli_rev < LPFC_SLI_REV4) 18442 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18443 else { 18444 if_type = bf_get(lpfc_sli_intf_if_type, 18445 &phba->sli4_hba.sli_intf); 18446 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18447 goto out; 18448 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18449 } 18450 18451 if (!data_size) 18452 goto out; 18453 18454 /* Check the region signature first */ 18455 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18456 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18457 "2619 Config region 23 has bad signature\n"); 18458 goto out; 18459 } 18460 offset += 4; 18461 18462 /* Check the data structure version */ 18463 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18464 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18465 "2620 Config region 23 has bad version\n"); 18466 goto out; 18467 } 18468 offset += 4; 18469 18470 /* Parse TLV entries in the region */ 18471 while (offset < data_size) { 18472 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18473 break; 18474 /* 18475 * If the TLV is not driver specific TLV or driver id is 18476 * not linux driver id, skip the record. 18477 */ 18478 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18479 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18480 (rgn23_data[offset + 3] != 0)) { 18481 offset += rgn23_data[offset + 1] * 4 + 4; 18482 continue; 18483 } 18484 18485 /* Driver found a driver specific TLV in the config region */ 18486 sub_tlv_len = rgn23_data[offset + 1] * 4; 18487 offset += 4; 18488 tlv_offset = 0; 18489 18490 /* 18491 * Search for configured port state sub-TLV. 18492 */ 18493 while ((offset < data_size) && 18494 (tlv_offset < sub_tlv_len)) { 18495 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18496 offset += 4; 18497 tlv_offset += 4; 18498 break; 18499 } 18500 if (rgn23_data[offset] != PORT_STE_TYPE) { 18501 offset += rgn23_data[offset + 1] * 4 + 4; 18502 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18503 continue; 18504 } 18505 18506 /* This HBA contains PORT_STE configured */ 18507 if (!rgn23_data[offset + 2]) 18508 phba->hba_flag |= LINK_DISABLED; 18509 18510 goto out; 18511 } 18512 } 18513 18514 out: 18515 kfree(rgn23_data); 18516 return; 18517 } 18518 18519 /** 18520 * lpfc_wr_object - write an object to the firmware 18521 * @phba: HBA structure that indicates port to create a queue on. 18522 * @dmabuf_list: list of dmabufs to write to the port. 18523 * @size: the total byte value of the objects to write to the port. 18524 * @offset: the current offset to be used to start the transfer. 18525 * 18526 * This routine will create a wr_object mailbox command to send to the port. 18527 * the mailbox command will be constructed using the dma buffers described in 18528 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18529 * BDEs that the imbedded mailbox can support. The @offset variable will be 18530 * used to indicate the starting offset of the transfer and will also return 18531 * the offset after the write object mailbox has completed. @size is used to 18532 * determine the end of the object and whether the eof bit should be set. 18533 * 18534 * Return 0 is successful and offset will contain the the new offset to use 18535 * for the next write. 18536 * Return negative value for error cases. 18537 **/ 18538 int 18539 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18540 uint32_t size, uint32_t *offset) 18541 { 18542 struct lpfc_mbx_wr_object *wr_object; 18543 LPFC_MBOXQ_t *mbox; 18544 int rc = 0, i = 0; 18545 uint32_t shdr_status, shdr_add_status; 18546 uint32_t mbox_tmo; 18547 union lpfc_sli4_cfg_shdr *shdr; 18548 struct lpfc_dmabuf *dmabuf; 18549 uint32_t written = 0; 18550 18551 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18552 if (!mbox) 18553 return -ENOMEM; 18554 18555 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18556 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18557 sizeof(struct lpfc_mbx_wr_object) - 18558 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18559 18560 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18561 wr_object->u.request.write_offset = *offset; 18562 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18563 wr_object->u.request.object_name[0] = 18564 cpu_to_le32(wr_object->u.request.object_name[0]); 18565 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18566 list_for_each_entry(dmabuf, dmabuf_list, list) { 18567 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18568 break; 18569 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18570 wr_object->u.request.bde[i].addrHigh = 18571 putPaddrHigh(dmabuf->phys); 18572 if (written + SLI4_PAGE_SIZE >= size) { 18573 wr_object->u.request.bde[i].tus.f.bdeSize = 18574 (size - written); 18575 written += (size - written); 18576 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18577 } else { 18578 wr_object->u.request.bde[i].tus.f.bdeSize = 18579 SLI4_PAGE_SIZE; 18580 written += SLI4_PAGE_SIZE; 18581 } 18582 i++; 18583 } 18584 wr_object->u.request.bde_count = i; 18585 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18586 if (!phba->sli4_hba.intr_enable) 18587 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18588 else { 18589 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18590 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18591 } 18592 /* The IOCTL status is embedded in the mailbox subheader. */ 18593 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18594 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18595 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18596 if (rc != MBX_TIMEOUT) 18597 mempool_free(mbox, phba->mbox_mem_pool); 18598 if (shdr_status || shdr_add_status || rc) { 18599 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18600 "3025 Write Object mailbox failed with " 18601 "status x%x add_status x%x, mbx status x%x\n", 18602 shdr_status, shdr_add_status, rc); 18603 rc = -ENXIO; 18604 } else 18605 *offset += wr_object->u.response.actual_write_length; 18606 return rc; 18607 } 18608 18609 /** 18610 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18611 * @vport: pointer to vport data structure. 18612 * 18613 * This function iterate through the mailboxq and clean up all REG_LOGIN 18614 * and REG_VPI mailbox commands associated with the vport. This function 18615 * is called when driver want to restart discovery of the vport due to 18616 * a Clear Virtual Link event. 18617 **/ 18618 void 18619 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18620 { 18621 struct lpfc_hba *phba = vport->phba; 18622 LPFC_MBOXQ_t *mb, *nextmb; 18623 struct lpfc_dmabuf *mp; 18624 struct lpfc_nodelist *ndlp; 18625 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18626 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18627 LIST_HEAD(mbox_cmd_list); 18628 uint8_t restart_loop; 18629 18630 /* Clean up internally queued mailbox commands with the vport */ 18631 spin_lock_irq(&phba->hbalock); 18632 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18633 if (mb->vport != vport) 18634 continue; 18635 18636 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18637 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18638 continue; 18639 18640 list_del(&mb->list); 18641 list_add_tail(&mb->list, &mbox_cmd_list); 18642 } 18643 /* Clean up active mailbox command with the vport */ 18644 mb = phba->sli.mbox_active; 18645 if (mb && (mb->vport == vport)) { 18646 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18647 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18648 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18649 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18650 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18651 /* Put reference count for delayed processing */ 18652 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 18653 /* Unregister the RPI when mailbox complete */ 18654 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18655 } 18656 } 18657 /* Cleanup any mailbox completions which are not yet processed */ 18658 do { 18659 restart_loop = 0; 18660 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 18661 /* 18662 * If this mailox is already processed or it is 18663 * for another vport ignore it. 18664 */ 18665 if ((mb->vport != vport) || 18666 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 18667 continue; 18668 18669 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18670 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18671 continue; 18672 18673 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18674 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18675 ndlp = (struct lpfc_nodelist *)mb->context2; 18676 /* Unregister the RPI when mailbox complete */ 18677 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18678 restart_loop = 1; 18679 spin_unlock_irq(&phba->hbalock); 18680 spin_lock(shost->host_lock); 18681 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18682 spin_unlock(shost->host_lock); 18683 spin_lock_irq(&phba->hbalock); 18684 break; 18685 } 18686 } 18687 } while (restart_loop); 18688 18689 spin_unlock_irq(&phba->hbalock); 18690 18691 /* Release the cleaned-up mailbox commands */ 18692 while (!list_empty(&mbox_cmd_list)) { 18693 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 18694 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18695 mp = (struct lpfc_dmabuf *) (mb->context1); 18696 if (mp) { 18697 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 18698 kfree(mp); 18699 } 18700 ndlp = (struct lpfc_nodelist *) mb->context2; 18701 mb->context2 = NULL; 18702 if (ndlp) { 18703 spin_lock(shost->host_lock); 18704 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18705 spin_unlock(shost->host_lock); 18706 lpfc_nlp_put(ndlp); 18707 } 18708 } 18709 mempool_free(mb, phba->mbox_mem_pool); 18710 } 18711 18712 /* Release the ndlp with the cleaned-up active mailbox command */ 18713 if (act_mbx_ndlp) { 18714 spin_lock(shost->host_lock); 18715 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18716 spin_unlock(shost->host_lock); 18717 lpfc_nlp_put(act_mbx_ndlp); 18718 } 18719 } 18720 18721 /** 18722 * lpfc_drain_txq - Drain the txq 18723 * @phba: Pointer to HBA context object. 18724 * 18725 * This function attempt to submit IOCBs on the txq 18726 * to the adapter. For SLI4 adapters, the txq contains 18727 * ELS IOCBs that have been deferred because the there 18728 * are no SGLs. This congestion can occur with large 18729 * vport counts during node discovery. 18730 **/ 18731 18732 uint32_t 18733 lpfc_drain_txq(struct lpfc_hba *phba) 18734 { 18735 LIST_HEAD(completions); 18736 struct lpfc_sli_ring *pring; 18737 struct lpfc_iocbq *piocbq = NULL; 18738 unsigned long iflags = 0; 18739 char *fail_msg = NULL; 18740 struct lpfc_sglq *sglq; 18741 union lpfc_wqe128 wqe128; 18742 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128; 18743 uint32_t txq_cnt = 0; 18744 18745 pring = lpfc_phba_elsring(phba); 18746 if (unlikely(!pring)) 18747 return 0; 18748 18749 spin_lock_irqsave(&pring->ring_lock, iflags); 18750 list_for_each_entry(piocbq, &pring->txq, list) { 18751 txq_cnt++; 18752 } 18753 18754 if (txq_cnt > pring->txq_max) 18755 pring->txq_max = txq_cnt; 18756 18757 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18758 18759 while (!list_empty(&pring->txq)) { 18760 spin_lock_irqsave(&pring->ring_lock, iflags); 18761 18762 piocbq = lpfc_sli_ringtx_get(phba, pring); 18763 if (!piocbq) { 18764 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18765 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18766 "2823 txq empty and txq_cnt is %d\n ", 18767 txq_cnt); 18768 break; 18769 } 18770 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 18771 if (!sglq) { 18772 __lpfc_sli_ringtx_put(phba, pring, piocbq); 18773 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18774 break; 18775 } 18776 txq_cnt--; 18777 18778 /* The xri and iocb resources secured, 18779 * attempt to issue request 18780 */ 18781 piocbq->sli4_lxritag = sglq->sli4_lxritag; 18782 piocbq->sli4_xritag = sglq->sli4_xritag; 18783 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 18784 fail_msg = "to convert bpl to sgl"; 18785 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe)) 18786 fail_msg = "to convert iocb to wqe"; 18787 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 18788 fail_msg = " - Wq is full"; 18789 else 18790 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 18791 18792 if (fail_msg) { 18793 /* Failed means we can't issue and need to cancel */ 18794 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18795 "2822 IOCB failed %s iotag 0x%x " 18796 "xri 0x%x\n", 18797 fail_msg, 18798 piocbq->iotag, piocbq->sli4_xritag); 18799 list_add_tail(&piocbq->list, &completions); 18800 } 18801 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18802 } 18803 18804 /* Cancel all the IOCBs that cannot be issued */ 18805 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 18806 IOERR_SLI_ABORTED); 18807 18808 return txq_cnt; 18809 } 18810 18811 /** 18812 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 18813 * @phba: Pointer to HBA context object. 18814 * @pwqe: Pointer to command WQE. 18815 * @sglq: Pointer to the scatter gather queue object. 18816 * 18817 * This routine converts the bpl or bde that is in the WQE 18818 * to a sgl list for the sli4 hardware. The physical address 18819 * of the bpl/bde is converted back to a virtual address. 18820 * If the WQE contains a BPL then the list of BDE's is 18821 * converted to sli4_sge's. If the WQE contains a single 18822 * BDE then it is converted to a single sli_sge. 18823 * The WQE is still in cpu endianness so the contents of 18824 * the bpl can be used without byte swapping. 18825 * 18826 * Returns valid XRI = Success, NO_XRI = Failure. 18827 */ 18828 static uint16_t 18829 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 18830 struct lpfc_sglq *sglq) 18831 { 18832 uint16_t xritag = NO_XRI; 18833 struct ulp_bde64 *bpl = NULL; 18834 struct ulp_bde64 bde; 18835 struct sli4_sge *sgl = NULL; 18836 struct lpfc_dmabuf *dmabuf; 18837 union lpfc_wqe *wqe; 18838 int numBdes = 0; 18839 int i = 0; 18840 uint32_t offset = 0; /* accumulated offset in the sg request list */ 18841 int inbound = 0; /* number of sg reply entries inbound from firmware */ 18842 uint32_t cmd; 18843 18844 if (!pwqeq || !sglq) 18845 return xritag; 18846 18847 sgl = (struct sli4_sge *)sglq->sgl; 18848 wqe = &pwqeq->wqe; 18849 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 18850 18851 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 18852 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 18853 return sglq->sli4_xritag; 18854 numBdes = pwqeq->rsvd2; 18855 if (numBdes) { 18856 /* The addrHigh and addrLow fields within the WQE 18857 * have not been byteswapped yet so there is no 18858 * need to swap them back. 18859 */ 18860 if (pwqeq->context3) 18861 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 18862 else 18863 return xritag; 18864 18865 bpl = (struct ulp_bde64 *)dmabuf->virt; 18866 if (!bpl) 18867 return xritag; 18868 18869 for (i = 0; i < numBdes; i++) { 18870 /* Should already be byte swapped. */ 18871 sgl->addr_hi = bpl->addrHigh; 18872 sgl->addr_lo = bpl->addrLow; 18873 18874 sgl->word2 = le32_to_cpu(sgl->word2); 18875 if ((i+1) == numBdes) 18876 bf_set(lpfc_sli4_sge_last, sgl, 1); 18877 else 18878 bf_set(lpfc_sli4_sge_last, sgl, 0); 18879 /* swap the size field back to the cpu so we 18880 * can assign it to the sgl. 18881 */ 18882 bde.tus.w = le32_to_cpu(bpl->tus.w); 18883 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 18884 /* The offsets in the sgl need to be accumulated 18885 * separately for the request and reply lists. 18886 * The request is always first, the reply follows. 18887 */ 18888 switch (cmd) { 18889 case CMD_GEN_REQUEST64_WQE: 18890 /* add up the reply sg entries */ 18891 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 18892 inbound++; 18893 /* first inbound? reset the offset */ 18894 if (inbound == 1) 18895 offset = 0; 18896 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18897 bf_set(lpfc_sli4_sge_type, sgl, 18898 LPFC_SGE_TYPE_DATA); 18899 offset += bde.tus.f.bdeSize; 18900 break; 18901 case CMD_FCP_TRSP64_WQE: 18902 bf_set(lpfc_sli4_sge_offset, sgl, 0); 18903 bf_set(lpfc_sli4_sge_type, sgl, 18904 LPFC_SGE_TYPE_DATA); 18905 break; 18906 case CMD_FCP_TSEND64_WQE: 18907 case CMD_FCP_TRECEIVE64_WQE: 18908 bf_set(lpfc_sli4_sge_type, sgl, 18909 bpl->tus.f.bdeFlags); 18910 if (i < 3) 18911 offset = 0; 18912 else 18913 offset += bde.tus.f.bdeSize; 18914 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18915 break; 18916 } 18917 sgl->word2 = cpu_to_le32(sgl->word2); 18918 bpl++; 18919 sgl++; 18920 } 18921 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 18922 /* The addrHigh and addrLow fields of the BDE have not 18923 * been byteswapped yet so they need to be swapped 18924 * before putting them in the sgl. 18925 */ 18926 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 18927 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 18928 sgl->word2 = le32_to_cpu(sgl->word2); 18929 bf_set(lpfc_sli4_sge_last, sgl, 1); 18930 sgl->word2 = cpu_to_le32(sgl->word2); 18931 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 18932 } 18933 return sglq->sli4_xritag; 18934 } 18935 18936 /** 18937 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 18938 * @phba: Pointer to HBA context object. 18939 * @ring_number: Base sli ring number 18940 * @pwqe: Pointer to command WQE. 18941 **/ 18942 int 18943 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 18944 struct lpfc_iocbq *pwqe) 18945 { 18946 union lpfc_wqe *wqe = &pwqe->wqe; 18947 struct lpfc_nvmet_rcv_ctx *ctxp; 18948 struct lpfc_queue *wq; 18949 struct lpfc_sglq *sglq; 18950 struct lpfc_sli_ring *pring; 18951 unsigned long iflags; 18952 uint32_t ret = 0; 18953 18954 /* NVME_LS and NVME_LS ABTS requests. */ 18955 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 18956 pring = phba->sli4_hba.nvmels_wq->pring; 18957 spin_lock_irqsave(&pring->ring_lock, iflags); 18958 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 18959 if (!sglq) { 18960 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18961 return WQE_BUSY; 18962 } 18963 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18964 pwqe->sli4_xritag = sglq->sli4_xritag; 18965 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 18966 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18967 return WQE_ERROR; 18968 } 18969 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18970 pwqe->sli4_xritag); 18971 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 18972 if (ret) { 18973 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18974 return ret; 18975 } 18976 18977 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18978 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18979 return 0; 18980 } 18981 18982 /* NVME_FCREQ and NVME_ABTS requests */ 18983 if (pwqe->iocb_flag & LPFC_IO_NVME) { 18984 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18985 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18986 18987 spin_lock_irqsave(&pring->ring_lock, iflags); 18988 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18989 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18990 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18991 ret = lpfc_sli4_wq_put(wq, wqe); 18992 if (ret) { 18993 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18994 return ret; 18995 } 18996 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18997 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18998 return 0; 18999 } 19000 19001 /* NVMET requests */ 19002 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 19003 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 19004 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 19005 19006 spin_lock_irqsave(&pring->ring_lock, iflags); 19007 ctxp = pwqe->context2; 19008 sglq = ctxp->ctxbuf->sglq; 19009 if (pwqe->sli4_xritag == NO_XRI) { 19010 pwqe->sli4_lxritag = sglq->sli4_lxritag; 19011 pwqe->sli4_xritag = sglq->sli4_xritag; 19012 } 19013 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 19014 pwqe->sli4_xritag); 19015 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 19016 bf_set(wqe_cqid, &wqe->generic.wqe_com, 19017 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 19018 ret = lpfc_sli4_wq_put(wq, wqe); 19019 if (ret) { 19020 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19021 return ret; 19022 } 19023 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 19024 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19025 return 0; 19026 } 19027 return WQE_ERROR; 19028 } 19029