1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 unsigned long iflag = 0; 1377 struct lpfc_sli_ring *pring; 1378 1379 if (iocbq->sli4_xritag == NO_XRI) 1380 sglq = NULL; 1381 else 1382 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1383 1384 1385 if (sglq) { 1386 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1387 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1388 iflag); 1389 sglq->state = SGL_FREED; 1390 sglq->ndlp = NULL; 1391 list_add_tail(&sglq->list, 1392 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1393 spin_unlock_irqrestore( 1394 &phba->sli4_hba.sgl_list_lock, iflag); 1395 goto out; 1396 } 1397 1398 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1399 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1400 sglq->state != SGL_XRI_ABORTED) { 1401 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1402 iflag); 1403 1404 /* Check if we can get a reference on ndlp */ 1405 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1406 sglq->ndlp = NULL; 1407 1408 list_add(&sglq->list, 1409 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1410 spin_unlock_irqrestore( 1411 &phba->sli4_hba.sgl_list_lock, iflag); 1412 } else { 1413 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1414 iflag); 1415 sglq->state = SGL_FREED; 1416 sglq->ndlp = NULL; 1417 list_add_tail(&sglq->list, 1418 &phba->sli4_hba.lpfc_els_sgl_list); 1419 spin_unlock_irqrestore( 1420 &phba->sli4_hba.sgl_list_lock, iflag); 1421 pring = lpfc_phba_elsring(phba); 1422 /* Check if TXQ queue needs to be serviced */ 1423 if (pring && (!list_empty(&pring->txq))) 1424 lpfc_worker_wake_up(phba); 1425 } 1426 } 1427 1428 out: 1429 /* 1430 * Clean all volatile data fields, preserve iotag and node struct. 1431 */ 1432 memset_startat(iocbq, 0, wqe); 1433 iocbq->sli4_lxritag = NO_XRI; 1434 iocbq->sli4_xritag = NO_XRI; 1435 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1436 LPFC_IO_NVME_LS); 1437 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1438 } 1439 1440 1441 /** 1442 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1443 * @phba: Pointer to HBA context object. 1444 * @iocbq: Pointer to driver iocb object. 1445 * 1446 * This function is called to release the driver iocb object to the 1447 * iocb pool. The iotag in the iocb object does not change for each 1448 * use of the iocb object. This function clears all other fields of 1449 * the iocb object when it is freed. The hbalock is asserted held in 1450 * the code path calling this routine. 1451 **/ 1452 static void 1453 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1454 { 1455 1456 /* 1457 * Clean all volatile data fields, preserve iotag and node struct. 1458 */ 1459 memset_startat(iocbq, 0, iocb); 1460 iocbq->sli4_xritag = NO_XRI; 1461 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1462 } 1463 1464 /** 1465 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1466 * @phba: Pointer to HBA context object. 1467 * @iocbq: Pointer to driver iocb object. 1468 * 1469 * This function is called with hbalock held to release driver 1470 * iocb object to the iocb pool. The iotag in the iocb object 1471 * does not change for each use of the iocb object. This function 1472 * clears all other fields of the iocb object when it is freed. 1473 **/ 1474 static void 1475 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1476 { 1477 lockdep_assert_held(&phba->hbalock); 1478 1479 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1480 phba->iocb_cnt--; 1481 } 1482 1483 /** 1484 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1485 * @phba: Pointer to HBA context object. 1486 * @iocbq: Pointer to driver iocb object. 1487 * 1488 * This function is called with no lock held to release the iocb to 1489 * iocb pool. 1490 **/ 1491 void 1492 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1493 { 1494 unsigned long iflags; 1495 1496 /* 1497 * Clean all volatile data fields, preserve iotag and node struct. 1498 */ 1499 spin_lock_irqsave(&phba->hbalock, iflags); 1500 __lpfc_sli_release_iocbq(phba, iocbq); 1501 spin_unlock_irqrestore(&phba->hbalock, iflags); 1502 } 1503 1504 /** 1505 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1506 * @phba: Pointer to HBA context object. 1507 * @iocblist: List of IOCBs. 1508 * @ulpstatus: ULP status in IOCB command field. 1509 * @ulpWord4: ULP word-4 in IOCB command field. 1510 * 1511 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1512 * on the list by invoking the complete callback function associated with the 1513 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1514 * fields. 1515 **/ 1516 void 1517 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1518 uint32_t ulpstatus, uint32_t ulpWord4) 1519 { 1520 struct lpfc_iocbq *piocb; 1521 1522 while (!list_empty(iocblist)) { 1523 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1524 if (piocb->cmd_cmpl) { 1525 if (piocb->cmd_flag & LPFC_IO_NVME) { 1526 lpfc_nvme_cancel_iocb(phba, piocb, 1527 ulpstatus, ulpWord4); 1528 } else { 1529 if (phba->sli_rev == LPFC_SLI_REV4) { 1530 bf_set(lpfc_wcqe_c_status, 1531 &piocb->wcqe_cmpl, ulpstatus); 1532 piocb->wcqe_cmpl.parameter = ulpWord4; 1533 } else { 1534 piocb->iocb.ulpStatus = ulpstatus; 1535 piocb->iocb.un.ulpWord[4] = ulpWord4; 1536 } 1537 (piocb->cmd_cmpl) (phba, piocb, piocb); 1538 } 1539 } else { 1540 lpfc_sli_release_iocbq(phba, piocb); 1541 } 1542 } 1543 return; 1544 } 1545 1546 /** 1547 * lpfc_sli_iocb_cmd_type - Get the iocb type 1548 * @iocb_cmnd: iocb command code. 1549 * 1550 * This function is called by ring event handler function to get the iocb type. 1551 * This function translates the iocb command to an iocb command type used to 1552 * decide the final disposition of each completed IOCB. 1553 * The function returns 1554 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1555 * LPFC_SOL_IOCB if it is a solicited iocb completion 1556 * LPFC_ABORT_IOCB if it is an abort iocb 1557 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1558 * 1559 * The caller is not required to hold any lock. 1560 **/ 1561 static lpfc_iocb_type 1562 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1563 { 1564 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1565 1566 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1567 return 0; 1568 1569 switch (iocb_cmnd) { 1570 case CMD_XMIT_SEQUENCE_CR: 1571 case CMD_XMIT_SEQUENCE_CX: 1572 case CMD_XMIT_BCAST_CN: 1573 case CMD_XMIT_BCAST_CX: 1574 case CMD_ELS_REQUEST_CR: 1575 case CMD_ELS_REQUEST_CX: 1576 case CMD_CREATE_XRI_CR: 1577 case CMD_CREATE_XRI_CX: 1578 case CMD_GET_RPI_CN: 1579 case CMD_XMIT_ELS_RSP_CX: 1580 case CMD_GET_RPI_CR: 1581 case CMD_FCP_IWRITE_CR: 1582 case CMD_FCP_IWRITE_CX: 1583 case CMD_FCP_IREAD_CR: 1584 case CMD_FCP_IREAD_CX: 1585 case CMD_FCP_ICMND_CR: 1586 case CMD_FCP_ICMND_CX: 1587 case CMD_FCP_TSEND_CX: 1588 case CMD_FCP_TRSP_CX: 1589 case CMD_FCP_TRECEIVE_CX: 1590 case CMD_FCP_AUTO_TRSP_CX: 1591 case CMD_ADAPTER_MSG: 1592 case CMD_ADAPTER_DUMP: 1593 case CMD_XMIT_SEQUENCE64_CR: 1594 case CMD_XMIT_SEQUENCE64_CX: 1595 case CMD_XMIT_BCAST64_CN: 1596 case CMD_XMIT_BCAST64_CX: 1597 case CMD_ELS_REQUEST64_CR: 1598 case CMD_ELS_REQUEST64_CX: 1599 case CMD_FCP_IWRITE64_CR: 1600 case CMD_FCP_IWRITE64_CX: 1601 case CMD_FCP_IREAD64_CR: 1602 case CMD_FCP_IREAD64_CX: 1603 case CMD_FCP_ICMND64_CR: 1604 case CMD_FCP_ICMND64_CX: 1605 case CMD_FCP_TSEND64_CX: 1606 case CMD_FCP_TRSP64_CX: 1607 case CMD_FCP_TRECEIVE64_CX: 1608 case CMD_GEN_REQUEST64_CR: 1609 case CMD_GEN_REQUEST64_CX: 1610 case CMD_XMIT_ELS_RSP64_CX: 1611 case DSSCMD_IWRITE64_CR: 1612 case DSSCMD_IWRITE64_CX: 1613 case DSSCMD_IREAD64_CR: 1614 case DSSCMD_IREAD64_CX: 1615 case CMD_SEND_FRAME: 1616 type = LPFC_SOL_IOCB; 1617 break; 1618 case CMD_ABORT_XRI_CN: 1619 case CMD_ABORT_XRI_CX: 1620 case CMD_CLOSE_XRI_CN: 1621 case CMD_CLOSE_XRI_CX: 1622 case CMD_XRI_ABORTED_CX: 1623 case CMD_ABORT_MXRI64_CN: 1624 case CMD_XMIT_BLS_RSP64_CX: 1625 type = LPFC_ABORT_IOCB; 1626 break; 1627 case CMD_RCV_SEQUENCE_CX: 1628 case CMD_RCV_ELS_REQ_CX: 1629 case CMD_RCV_SEQUENCE64_CX: 1630 case CMD_RCV_ELS_REQ64_CX: 1631 case CMD_ASYNC_STATUS: 1632 case CMD_IOCB_RCV_SEQ64_CX: 1633 case CMD_IOCB_RCV_ELS64_CX: 1634 case CMD_IOCB_RCV_CONT64_CX: 1635 case CMD_IOCB_RET_XRI64_CX: 1636 type = LPFC_UNSOL_IOCB; 1637 break; 1638 case CMD_IOCB_XMIT_MSEQ64_CR: 1639 case CMD_IOCB_XMIT_MSEQ64_CX: 1640 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1641 case CMD_IOCB_RCV_ELS_LIST64_CX: 1642 case CMD_IOCB_CLOSE_EXTENDED_CN: 1643 case CMD_IOCB_ABORT_EXTENDED_CN: 1644 case CMD_IOCB_RET_HBQE64_CN: 1645 case CMD_IOCB_FCP_IBIDIR64_CR: 1646 case CMD_IOCB_FCP_IBIDIR64_CX: 1647 case CMD_IOCB_FCP_ITASKMGT64_CX: 1648 case CMD_IOCB_LOGENTRY_CN: 1649 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1650 printk("%s - Unhandled SLI-3 Command x%x\n", 1651 __func__, iocb_cmnd); 1652 type = LPFC_UNKNOWN_IOCB; 1653 break; 1654 default: 1655 type = LPFC_UNKNOWN_IOCB; 1656 break; 1657 } 1658 1659 return type; 1660 } 1661 1662 /** 1663 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1664 * @phba: Pointer to HBA context object. 1665 * 1666 * This function is called from SLI initialization code 1667 * to configure every ring of the HBA's SLI interface. The 1668 * caller is not required to hold any lock. This function issues 1669 * a config_ring mailbox command for each ring. 1670 * This function returns zero if successful else returns a negative 1671 * error code. 1672 **/ 1673 static int 1674 lpfc_sli_ring_map(struct lpfc_hba *phba) 1675 { 1676 struct lpfc_sli *psli = &phba->sli; 1677 LPFC_MBOXQ_t *pmb; 1678 MAILBOX_t *pmbox; 1679 int i, rc, ret = 0; 1680 1681 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1682 if (!pmb) 1683 return -ENOMEM; 1684 pmbox = &pmb->u.mb; 1685 phba->link_state = LPFC_INIT_MBX_CMDS; 1686 for (i = 0; i < psli->num_rings; i++) { 1687 lpfc_config_ring(phba, i, pmb); 1688 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1689 if (rc != MBX_SUCCESS) { 1690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1691 "0446 Adapter failed to init (%d), " 1692 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1693 "ring %d\n", 1694 rc, pmbox->mbxCommand, 1695 pmbox->mbxStatus, i); 1696 phba->link_state = LPFC_HBA_ERROR; 1697 ret = -ENXIO; 1698 break; 1699 } 1700 } 1701 mempool_free(pmb, phba->mbox_mem_pool); 1702 return ret; 1703 } 1704 1705 /** 1706 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1707 * @phba: Pointer to HBA context object. 1708 * @pring: Pointer to driver SLI ring object. 1709 * @piocb: Pointer to the driver iocb object. 1710 * 1711 * The driver calls this function with the hbalock held for SLI3 ports or 1712 * the ring lock held for SLI4 ports. The function adds the 1713 * new iocb to txcmplq of the given ring. This function always returns 1714 * 0. If this function is called for ELS ring, this function checks if 1715 * there is a vport associated with the ELS command. This function also 1716 * starts els_tmofunc timer if this is an ELS command. 1717 **/ 1718 static int 1719 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1720 struct lpfc_iocbq *piocb) 1721 { 1722 u32 ulp_command = 0; 1723 1724 BUG_ON(!piocb); 1725 ulp_command = get_job_cmnd(phba, piocb); 1726 1727 list_add_tail(&piocb->list, &pring->txcmplq); 1728 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1729 pring->txcmplq_cnt++; 1730 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1731 (ulp_command != CMD_ABORT_XRI_WQE) && 1732 (ulp_command != CMD_ABORT_XRI_CN) && 1733 (ulp_command != CMD_CLOSE_XRI_CN)) { 1734 BUG_ON(!piocb->vport); 1735 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1736 mod_timer(&piocb->vport->els_tmofunc, 1737 jiffies + 1738 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1942 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1943 phba->link_state == LPFC_LINK_DOWN) 1944 return 0; 1945 1946 spin_lock_irqsave(&phba->hbalock, iflags); 1947 sync_buf = __lpfc_sli_get_iocbq(phba); 1948 if (!sync_buf) { 1949 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1950 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1951 ret_val = ENOMEM; 1952 goto out_unlock; 1953 } 1954 1955 wqe = &sync_buf->wqe; 1956 1957 /* WQEs are reused. Clear stale data and set key fields to zero */ 1958 memset(wqe, 0, sizeof(*wqe)); 1959 1960 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1961 if (!ms) { 1962 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1963 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1964 phba->fc_eventTag); 1965 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1966 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1967 goto initpath; 1968 } 1969 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1972 1973 /* Check for alarms / warnings */ 1974 if (atot) { 1975 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1976 /* We hit an Signal alarm condition */ 1977 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1978 } else { 1979 /* We hit a FPIN alarm condition */ 1980 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1981 } 1982 } else if (wtot) { 1983 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1984 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1985 /* We hit an Signal warning condition */ 1986 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1987 lpfc_acqe_cgn_frequency; 1988 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1989 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1990 warn_sync_period = lpfc_acqe_cgn_frequency; 1991 } else { 1992 /* We hit a FPIN warning condition */ 1993 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1994 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1995 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1996 warn_sync_period = 1997 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1998 } 1999 } 2000 2001 /* Update total read blocks during previous timer interval */ 2002 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2003 2004 initpath: 2005 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2006 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2007 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2008 2009 /* Setup reqtag to match the wqe completion. */ 2010 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2011 2012 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2013 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2014 2015 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2016 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2017 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2018 2019 sync_buf->vport = phba->pport; 2020 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2021 sync_buf->cmd_dmabuf = NULL; 2022 sync_buf->rsp_dmabuf = NULL; 2023 sync_buf->bpl_dmabuf = NULL; 2024 sync_buf->sli4_xritag = NO_XRI; 2025 2026 sync_buf->cmd_flag |= LPFC_IO_CMF; 2027 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2028 if (ret_val) { 2029 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2030 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2031 ret_val); 2032 __lpfc_sli_release_iocbq(phba, sync_buf); 2033 } 2034 out_unlock: 2035 spin_unlock_irqrestore(&phba->hbalock, iflags); 2036 return ret_val; 2037 } 2038 2039 /** 2040 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2041 * @phba: Pointer to HBA context object. 2042 * @pring: Pointer to driver SLI ring object. 2043 * 2044 * This function is called with hbalock held and the caller must post the 2045 * iocb without releasing the lock. If the caller releases the lock, 2046 * iocb slot returned by the function is not guaranteed to be available. 2047 * The function returns pointer to the next available iocb slot if there 2048 * is available slot in the ring, else it returns NULL. 2049 * If the get index of the ring is ahead of the put index, the function 2050 * will post an error attention event to the worker thread to take the 2051 * HBA to offline state. 2052 **/ 2053 static IOCB_t * 2054 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2055 { 2056 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2057 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2058 2059 lockdep_assert_held(&phba->hbalock); 2060 2061 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2062 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2063 pring->sli.sli3.next_cmdidx = 0; 2064 2065 if (unlikely(pring->sli.sli3.local_getidx == 2066 pring->sli.sli3.next_cmdidx)) { 2067 2068 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2069 2070 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2072 "0315 Ring %d issue: portCmdGet %d " 2073 "is bigger than cmd ring %d\n", 2074 pring->ringno, 2075 pring->sli.sli3.local_getidx, 2076 max_cmd_idx); 2077 2078 phba->link_state = LPFC_HBA_ERROR; 2079 /* 2080 * All error attention handlers are posted to 2081 * worker thread 2082 */ 2083 phba->work_ha |= HA_ERATT; 2084 phba->work_hs = HS_FFER3; 2085 2086 lpfc_worker_wake_up(phba); 2087 2088 return NULL; 2089 } 2090 2091 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2092 return NULL; 2093 } 2094 2095 return lpfc_cmd_iocb(phba, pring); 2096 } 2097 2098 /** 2099 * lpfc_sli_next_iotag - Get an iotag for the iocb 2100 * @phba: Pointer to HBA context object. 2101 * @iocbq: Pointer to driver iocb object. 2102 * 2103 * This function gets an iotag for the iocb. If there is no unused iotag and 2104 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2105 * array and assigns a new iotag. 2106 * The function returns the allocated iotag if successful, else returns zero. 2107 * Zero is not a valid iotag. 2108 * The caller is not required to hold any lock. 2109 **/ 2110 uint16_t 2111 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2112 { 2113 struct lpfc_iocbq **new_arr; 2114 struct lpfc_iocbq **old_arr; 2115 size_t new_len; 2116 struct lpfc_sli *psli = &phba->sli; 2117 uint16_t iotag; 2118 2119 spin_lock_irq(&phba->hbalock); 2120 iotag = psli->last_iotag; 2121 if(++iotag < psli->iocbq_lookup_len) { 2122 psli->last_iotag = iotag; 2123 psli->iocbq_lookup[iotag] = iocbq; 2124 spin_unlock_irq(&phba->hbalock); 2125 iocbq->iotag = iotag; 2126 return iotag; 2127 } else if (psli->iocbq_lookup_len < (0xffff 2128 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2129 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2130 spin_unlock_irq(&phba->hbalock); 2131 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2132 GFP_KERNEL); 2133 if (new_arr) { 2134 spin_lock_irq(&phba->hbalock); 2135 old_arr = psli->iocbq_lookup; 2136 if (new_len <= psli->iocbq_lookup_len) { 2137 /* highly unprobable case */ 2138 kfree(new_arr); 2139 iotag = psli->last_iotag; 2140 if(++iotag < psli->iocbq_lookup_len) { 2141 psli->last_iotag = iotag; 2142 psli->iocbq_lookup[iotag] = iocbq; 2143 spin_unlock_irq(&phba->hbalock); 2144 iocbq->iotag = iotag; 2145 return iotag; 2146 } 2147 spin_unlock_irq(&phba->hbalock); 2148 return 0; 2149 } 2150 if (psli->iocbq_lookup) 2151 memcpy(new_arr, old_arr, 2152 ((psli->last_iotag + 1) * 2153 sizeof (struct lpfc_iocbq *))); 2154 psli->iocbq_lookup = new_arr; 2155 psli->iocbq_lookup_len = new_len; 2156 psli->last_iotag = iotag; 2157 psli->iocbq_lookup[iotag] = iocbq; 2158 spin_unlock_irq(&phba->hbalock); 2159 iocbq->iotag = iotag; 2160 kfree(old_arr); 2161 return iotag; 2162 } 2163 } else 2164 spin_unlock_irq(&phba->hbalock); 2165 2166 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2167 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2168 psli->last_iotag); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2175 * @phba: Pointer to HBA context object. 2176 * @pring: Pointer to driver SLI ring object. 2177 * @iocb: Pointer to iocb slot in the ring. 2178 * @nextiocb: Pointer to driver iocb object which need to be 2179 * posted to firmware. 2180 * 2181 * This function is called to post a new iocb to the firmware. This 2182 * function copies the new iocb to ring iocb slot and updates the 2183 * ring pointers. It adds the new iocb to txcmplq if there is 2184 * a completion call back for this iocb else the function will free the 2185 * iocb object. The hbalock is asserted held in the code path calling 2186 * this routine. 2187 **/ 2188 static void 2189 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2190 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2191 { 2192 /* 2193 * Set up an iotag 2194 */ 2195 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2196 2197 2198 if (pring->ringno == LPFC_ELS_RING) { 2199 lpfc_debugfs_slow_ring_trc(phba, 2200 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2201 *(((uint32_t *) &nextiocb->iocb) + 4), 2202 *(((uint32_t *) &nextiocb->iocb) + 6), 2203 *(((uint32_t *) &nextiocb->iocb) + 7)); 2204 } 2205 2206 /* 2207 * Issue iocb command to adapter 2208 */ 2209 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2210 wmb(); 2211 pring->stats.iocb_cmd++; 2212 2213 /* 2214 * If there is no completion routine to call, we can release the 2215 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2216 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2217 */ 2218 if (nextiocb->cmd_cmpl) 2219 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2220 else 2221 __lpfc_sli_release_iocbq(phba, nextiocb); 2222 2223 /* 2224 * Let the HBA know what IOCB slot will be the next one the 2225 * driver will put a command into. 2226 */ 2227 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2228 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2229 } 2230 2231 /** 2232 * lpfc_sli_update_full_ring - Update the chip attention register 2233 * @phba: Pointer to HBA context object. 2234 * @pring: Pointer to driver SLI ring object. 2235 * 2236 * The caller is not required to hold any lock for calling this function. 2237 * This function updates the chip attention bits for the ring to inform firmware 2238 * that there are pending work to be done for this ring and requests an 2239 * interrupt when there is space available in the ring. This function is 2240 * called when the driver is unable to post more iocbs to the ring due 2241 * to unavailability of space in the ring. 2242 **/ 2243 static void 2244 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2245 { 2246 int ringno = pring->ringno; 2247 2248 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2249 2250 wmb(); 2251 2252 /* 2253 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2254 * The HBA will tell us when an IOCB entry is available. 2255 */ 2256 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2257 readl(phba->CAregaddr); /* flush */ 2258 2259 pring->stats.iocb_cmd_full++; 2260 } 2261 2262 /** 2263 * lpfc_sli_update_ring - Update chip attention register 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function updates the chip attention register bit for the 2268 * given ring to inform HBA that there is more work to be done 2269 * in this ring. The caller is not required to hold any lock. 2270 **/ 2271 static void 2272 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 int ringno = pring->ringno; 2275 2276 /* 2277 * Tell the HBA that there is work to do in this ring. 2278 */ 2279 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2280 wmb(); 2281 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2282 readl(phba->CAregaddr); /* flush */ 2283 } 2284 } 2285 2286 /** 2287 * lpfc_sli_resume_iocb - Process iocbs in the txq 2288 * @phba: Pointer to HBA context object. 2289 * @pring: Pointer to driver SLI ring object. 2290 * 2291 * This function is called with hbalock held to post pending iocbs 2292 * in the txq to the firmware. This function is called when driver 2293 * detects space available in the ring. 2294 **/ 2295 static void 2296 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2297 { 2298 IOCB_t *iocb; 2299 struct lpfc_iocbq *nextiocb; 2300 2301 lockdep_assert_held(&phba->hbalock); 2302 2303 /* 2304 * Check to see if: 2305 * (a) there is anything on the txq to send 2306 * (b) link is up 2307 * (c) link attention events can be processed (fcp ring only) 2308 * (d) IOCB processing is not blocked by the outstanding mbox command. 2309 */ 2310 2311 if (lpfc_is_link_up(phba) && 2312 (!list_empty(&pring->txq)) && 2313 (pring->ringno != LPFC_FCP_RING || 2314 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2315 2316 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2317 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2318 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2319 2320 if (iocb) 2321 lpfc_sli_update_ring(phba, pring); 2322 else 2323 lpfc_sli_update_full_ring(phba, pring); 2324 } 2325 2326 return; 2327 } 2328 2329 /** 2330 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2331 * @phba: Pointer to HBA context object. 2332 * @hbqno: HBQ number. 2333 * 2334 * This function is called with hbalock held to get the next 2335 * available slot for the given HBQ. If there is free slot 2336 * available for the HBQ it will return pointer to the next available 2337 * HBQ entry else it will return NULL. 2338 **/ 2339 static struct lpfc_hbq_entry * 2340 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2341 { 2342 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2343 2344 lockdep_assert_held(&phba->hbalock); 2345 2346 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2347 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2348 hbqp->next_hbqPutIdx = 0; 2349 2350 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2351 uint32_t raw_index = phba->hbq_get[hbqno]; 2352 uint32_t getidx = le32_to_cpu(raw_index); 2353 2354 hbqp->local_hbqGetIdx = getidx; 2355 2356 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2357 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2358 "1802 HBQ %d: local_hbqGetIdx " 2359 "%u is > than hbqp->entry_count %u\n", 2360 hbqno, hbqp->local_hbqGetIdx, 2361 hbqp->entry_count); 2362 2363 phba->link_state = LPFC_HBA_ERROR; 2364 return NULL; 2365 } 2366 2367 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2368 return NULL; 2369 } 2370 2371 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2372 hbqp->hbqPutIdx; 2373 } 2374 2375 /** 2376 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2377 * @phba: Pointer to HBA context object. 2378 * 2379 * This function is called with no lock held to free all the 2380 * hbq buffers while uninitializing the SLI interface. It also 2381 * frees the HBQ buffers returned by the firmware but not yet 2382 * processed by the upper layers. 2383 **/ 2384 void 2385 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2386 { 2387 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2388 struct hbq_dmabuf *hbq_buf; 2389 unsigned long flags; 2390 int i, hbq_count; 2391 2392 hbq_count = lpfc_sli_hbq_count(); 2393 /* Return all memory used by all HBQs */ 2394 spin_lock_irqsave(&phba->hbalock, flags); 2395 for (i = 0; i < hbq_count; ++i) { 2396 list_for_each_entry_safe(dmabuf, next_dmabuf, 2397 &phba->hbqs[i].hbq_buffer_list, list) { 2398 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2399 list_del(&hbq_buf->dbuf.list); 2400 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2401 } 2402 phba->hbqs[i].buffer_count = 0; 2403 } 2404 2405 /* Mark the HBQs not in use */ 2406 phba->hbq_in_use = 0; 2407 spin_unlock_irqrestore(&phba->hbalock, flags); 2408 } 2409 2410 /** 2411 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2412 * @phba: Pointer to HBA context object. 2413 * @hbqno: HBQ number. 2414 * @hbq_buf: Pointer to HBQ buffer. 2415 * 2416 * This function is called with the hbalock held to post a 2417 * hbq buffer to the firmware. If the function finds an empty 2418 * slot in the HBQ, it will post the buffer. The function will return 2419 * pointer to the hbq entry if it successfully post the buffer 2420 * else it will return NULL. 2421 **/ 2422 static int 2423 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2424 struct hbq_dmabuf *hbq_buf) 2425 { 2426 lockdep_assert_held(&phba->hbalock); 2427 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2428 } 2429 2430 /** 2431 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2432 * @phba: Pointer to HBA context object. 2433 * @hbqno: HBQ number. 2434 * @hbq_buf: Pointer to HBQ buffer. 2435 * 2436 * This function is called with the hbalock held to post a hbq buffer to the 2437 * firmware. If the function finds an empty slot in the HBQ, it will post the 2438 * buffer and place it on the hbq_buffer_list. The function will return zero if 2439 * it successfully post the buffer else it will return an error. 2440 **/ 2441 static int 2442 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2443 struct hbq_dmabuf *hbq_buf) 2444 { 2445 struct lpfc_hbq_entry *hbqe; 2446 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2447 2448 lockdep_assert_held(&phba->hbalock); 2449 /* Get next HBQ entry slot to use */ 2450 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2451 if (hbqe) { 2452 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2453 2454 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2455 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2456 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2457 hbqe->bde.tus.f.bdeFlags = 0; 2458 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2459 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2460 /* Sync SLIM */ 2461 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2462 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2463 /* flush */ 2464 readl(phba->hbq_put + hbqno); 2465 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2466 return 0; 2467 } else 2468 return -ENOMEM; 2469 } 2470 2471 /** 2472 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2473 * @phba: Pointer to HBA context object. 2474 * @hbqno: HBQ number. 2475 * @hbq_buf: Pointer to HBQ buffer. 2476 * 2477 * This function is called with the hbalock held to post an RQE to the SLI4 2478 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2479 * the hbq_buffer_list and return zero, otherwise it will return an error. 2480 **/ 2481 static int 2482 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2483 struct hbq_dmabuf *hbq_buf) 2484 { 2485 int rc; 2486 struct lpfc_rqe hrqe; 2487 struct lpfc_rqe drqe; 2488 struct lpfc_queue *hrq; 2489 struct lpfc_queue *drq; 2490 2491 if (hbqno != LPFC_ELS_HBQ) 2492 return 1; 2493 hrq = phba->sli4_hba.hdr_rq; 2494 drq = phba->sli4_hba.dat_rq; 2495 2496 lockdep_assert_held(&phba->hbalock); 2497 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2498 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2499 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2500 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2501 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2502 if (rc < 0) 2503 return rc; 2504 hbq_buf->tag = (rc | (hbqno << 16)); 2505 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2506 return 0; 2507 } 2508 2509 /* HBQ for ELS and CT traffic. */ 2510 static struct lpfc_hbq_init lpfc_els_hbq = { 2511 .rn = 1, 2512 .entry_count = 256, 2513 .mask_count = 0, 2514 .profile = 0, 2515 .ring_mask = (1 << LPFC_ELS_RING), 2516 .buffer_count = 0, 2517 .init_count = 40, 2518 .add_count = 40, 2519 }; 2520 2521 /* Array of HBQs */ 2522 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2523 &lpfc_els_hbq, 2524 }; 2525 2526 /** 2527 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2528 * @phba: Pointer to HBA context object. 2529 * @hbqno: HBQ number. 2530 * @count: Number of HBQ buffers to be posted. 2531 * 2532 * This function is called with no lock held to post more hbq buffers to the 2533 * given HBQ. The function returns the number of HBQ buffers successfully 2534 * posted. 2535 **/ 2536 static int 2537 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2538 { 2539 uint32_t i, posted = 0; 2540 unsigned long flags; 2541 struct hbq_dmabuf *hbq_buffer; 2542 LIST_HEAD(hbq_buf_list); 2543 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2544 return 0; 2545 2546 if ((phba->hbqs[hbqno].buffer_count + count) > 2547 lpfc_hbq_defs[hbqno]->entry_count) 2548 count = lpfc_hbq_defs[hbqno]->entry_count - 2549 phba->hbqs[hbqno].buffer_count; 2550 if (!count) 2551 return 0; 2552 /* Allocate HBQ entries */ 2553 for (i = 0; i < count; i++) { 2554 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2555 if (!hbq_buffer) 2556 break; 2557 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2558 } 2559 /* Check whether HBQ is still in use */ 2560 spin_lock_irqsave(&phba->hbalock, flags); 2561 if (!phba->hbq_in_use) 2562 goto err; 2563 while (!list_empty(&hbq_buf_list)) { 2564 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2565 dbuf.list); 2566 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2567 (hbqno << 16)); 2568 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2569 phba->hbqs[hbqno].buffer_count++; 2570 posted++; 2571 } else 2572 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2573 } 2574 spin_unlock_irqrestore(&phba->hbalock, flags); 2575 return posted; 2576 err: 2577 spin_unlock_irqrestore(&phba->hbalock, flags); 2578 while (!list_empty(&hbq_buf_list)) { 2579 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2580 dbuf.list); 2581 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2582 } 2583 return 0; 2584 } 2585 2586 /** 2587 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2588 * @phba: Pointer to HBA context object. 2589 * @qno: HBQ number. 2590 * 2591 * This function posts more buffers to the HBQ. This function 2592 * is called with no lock held. The function returns the number of HBQ entries 2593 * successfully allocated. 2594 **/ 2595 int 2596 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2597 { 2598 if (phba->sli_rev == LPFC_SLI_REV4) 2599 return 0; 2600 else 2601 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2602 lpfc_hbq_defs[qno]->add_count); 2603 } 2604 2605 /** 2606 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2607 * @phba: Pointer to HBA context object. 2608 * @qno: HBQ queue number. 2609 * 2610 * This function is called from SLI initialization code path with 2611 * no lock held to post initial HBQ buffers to firmware. The 2612 * function returns the number of HBQ entries successfully allocated. 2613 **/ 2614 static int 2615 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2616 { 2617 if (phba->sli_rev == LPFC_SLI_REV4) 2618 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2619 lpfc_hbq_defs[qno]->entry_count); 2620 else 2621 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2622 lpfc_hbq_defs[qno]->init_count); 2623 } 2624 2625 /* 2626 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2627 * 2628 * This function removes the first hbq buffer on an hbq list and returns a 2629 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2630 **/ 2631 static struct hbq_dmabuf * 2632 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2633 { 2634 struct lpfc_dmabuf *d_buf; 2635 2636 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2637 if (!d_buf) 2638 return NULL; 2639 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2640 } 2641 2642 /** 2643 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2644 * @phba: Pointer to HBA context object. 2645 * @hrq: HBQ number. 2646 * 2647 * This function removes the first RQ buffer on an RQ buffer list and returns a 2648 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2649 **/ 2650 static struct rqb_dmabuf * 2651 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2652 { 2653 struct lpfc_dmabuf *h_buf; 2654 struct lpfc_rqb *rqbp; 2655 2656 rqbp = hrq->rqbp; 2657 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2658 struct lpfc_dmabuf, list); 2659 if (!h_buf) 2660 return NULL; 2661 rqbp->buffer_count--; 2662 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2663 } 2664 2665 /** 2666 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2667 * @phba: Pointer to HBA context object. 2668 * @tag: Tag of the hbq buffer. 2669 * 2670 * This function searches for the hbq buffer associated with the given tag in 2671 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2672 * otherwise it returns NULL. 2673 **/ 2674 static struct hbq_dmabuf * 2675 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2676 { 2677 struct lpfc_dmabuf *d_buf; 2678 struct hbq_dmabuf *hbq_buf; 2679 uint32_t hbqno; 2680 2681 hbqno = tag >> 16; 2682 if (hbqno >= LPFC_MAX_HBQS) 2683 return NULL; 2684 2685 spin_lock_irq(&phba->hbalock); 2686 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2687 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2688 if (hbq_buf->tag == tag) { 2689 spin_unlock_irq(&phba->hbalock); 2690 return hbq_buf; 2691 } 2692 } 2693 spin_unlock_irq(&phba->hbalock); 2694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2695 "1803 Bad hbq tag. Data: x%x x%x\n", 2696 tag, phba->hbqs[tag >> 16].buffer_count); 2697 return NULL; 2698 } 2699 2700 /** 2701 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2702 * @phba: Pointer to HBA context object. 2703 * @hbq_buffer: Pointer to HBQ buffer. 2704 * 2705 * This function is called with hbalock. This function gives back 2706 * the hbq buffer to firmware. If the HBQ does not have space to 2707 * post the buffer, it will free the buffer. 2708 **/ 2709 void 2710 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2711 { 2712 uint32_t hbqno; 2713 2714 if (hbq_buffer) { 2715 hbqno = hbq_buffer->tag >> 16; 2716 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2717 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2718 } 2719 } 2720 2721 /** 2722 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2723 * @mbxCommand: mailbox command code. 2724 * 2725 * This function is called by the mailbox event handler function to verify 2726 * that the completed mailbox command is a legitimate mailbox command. If the 2727 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2728 * and the mailbox event handler will take the HBA offline. 2729 **/ 2730 static int 2731 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2732 { 2733 uint8_t ret; 2734 2735 switch (mbxCommand) { 2736 case MBX_LOAD_SM: 2737 case MBX_READ_NV: 2738 case MBX_WRITE_NV: 2739 case MBX_WRITE_VPARMS: 2740 case MBX_RUN_BIU_DIAG: 2741 case MBX_INIT_LINK: 2742 case MBX_DOWN_LINK: 2743 case MBX_CONFIG_LINK: 2744 case MBX_CONFIG_RING: 2745 case MBX_RESET_RING: 2746 case MBX_READ_CONFIG: 2747 case MBX_READ_RCONFIG: 2748 case MBX_READ_SPARM: 2749 case MBX_READ_STATUS: 2750 case MBX_READ_RPI: 2751 case MBX_READ_XRI: 2752 case MBX_READ_REV: 2753 case MBX_READ_LNK_STAT: 2754 case MBX_REG_LOGIN: 2755 case MBX_UNREG_LOGIN: 2756 case MBX_CLEAR_LA: 2757 case MBX_DUMP_MEMORY: 2758 case MBX_DUMP_CONTEXT: 2759 case MBX_RUN_DIAGS: 2760 case MBX_RESTART: 2761 case MBX_UPDATE_CFG: 2762 case MBX_DOWN_LOAD: 2763 case MBX_DEL_LD_ENTRY: 2764 case MBX_RUN_PROGRAM: 2765 case MBX_SET_MASK: 2766 case MBX_SET_VARIABLE: 2767 case MBX_UNREG_D_ID: 2768 case MBX_KILL_BOARD: 2769 case MBX_CONFIG_FARP: 2770 case MBX_BEACON: 2771 case MBX_LOAD_AREA: 2772 case MBX_RUN_BIU_DIAG64: 2773 case MBX_CONFIG_PORT: 2774 case MBX_READ_SPARM64: 2775 case MBX_READ_RPI64: 2776 case MBX_REG_LOGIN64: 2777 case MBX_READ_TOPOLOGY: 2778 case MBX_WRITE_WWN: 2779 case MBX_SET_DEBUG: 2780 case MBX_LOAD_EXP_ROM: 2781 case MBX_ASYNCEVT_ENABLE: 2782 case MBX_REG_VPI: 2783 case MBX_UNREG_VPI: 2784 case MBX_HEARTBEAT: 2785 case MBX_PORT_CAPABILITIES: 2786 case MBX_PORT_IOV_CONTROL: 2787 case MBX_SLI4_CONFIG: 2788 case MBX_SLI4_REQ_FTRS: 2789 case MBX_REG_FCFI: 2790 case MBX_UNREG_FCFI: 2791 case MBX_REG_VFI: 2792 case MBX_UNREG_VFI: 2793 case MBX_INIT_VPI: 2794 case MBX_INIT_VFI: 2795 case MBX_RESUME_RPI: 2796 case MBX_READ_EVENT_LOG_STATUS: 2797 case MBX_READ_EVENT_LOG: 2798 case MBX_SECURITY_MGMT: 2799 case MBX_AUTH_PORT: 2800 case MBX_ACCESS_VDATA: 2801 ret = mbxCommand; 2802 break; 2803 default: 2804 ret = MBX_SHUTDOWN; 2805 break; 2806 } 2807 return ret; 2808 } 2809 2810 /** 2811 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2812 * @phba: Pointer to HBA context object. 2813 * @pmboxq: Pointer to mailbox command. 2814 * 2815 * This is completion handler function for mailbox commands issued from 2816 * lpfc_sli_issue_mbox_wait function. This function is called by the 2817 * mailbox event handler function with no lock held. This function 2818 * will wake up thread waiting on the wait queue pointed by context1 2819 * of the mailbox. 2820 **/ 2821 void 2822 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2823 { 2824 unsigned long drvr_flag; 2825 struct completion *pmbox_done; 2826 2827 /* 2828 * If pmbox_done is empty, the driver thread gave up waiting and 2829 * continued running. 2830 */ 2831 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2832 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2833 pmbox_done = (struct completion *)pmboxq->context3; 2834 if (pmbox_done) 2835 complete(pmbox_done); 2836 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2837 return; 2838 } 2839 2840 static void 2841 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2842 { 2843 unsigned long iflags; 2844 2845 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2846 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2847 spin_lock_irqsave(&ndlp->lock, iflags); 2848 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2849 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2850 spin_unlock_irqrestore(&ndlp->lock, iflags); 2851 } 2852 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2853 } 2854 2855 void 2856 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2857 { 2858 __lpfc_sli_rpi_release(vport, ndlp); 2859 } 2860 2861 /** 2862 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2863 * @phba: Pointer to HBA context object. 2864 * @pmb: Pointer to mailbox object. 2865 * 2866 * This function is the default mailbox completion handler. It 2867 * frees the memory resources associated with the completed mailbox 2868 * command. If the completed command is a REG_LOGIN mailbox command, 2869 * this function will issue a UREG_LOGIN to re-claim the RPI. 2870 **/ 2871 void 2872 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2873 { 2874 struct lpfc_vport *vport = pmb->vport; 2875 struct lpfc_dmabuf *mp; 2876 struct lpfc_nodelist *ndlp; 2877 struct Scsi_Host *shost; 2878 uint16_t rpi, vpi; 2879 int rc; 2880 2881 /* 2882 * If a REG_LOGIN succeeded after node is destroyed or node 2883 * is in re-discovery driver need to cleanup the RPI. 2884 */ 2885 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2886 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2887 !pmb->u.mb.mbxStatus) { 2888 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2889 if (mp) { 2890 pmb->ctx_buf = NULL; 2891 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2892 kfree(mp); 2893 } 2894 rpi = pmb->u.mb.un.varWords[0]; 2895 vpi = pmb->u.mb.un.varRegLogin.vpi; 2896 if (phba->sli_rev == LPFC_SLI_REV4) 2897 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2898 lpfc_unreg_login(phba, vpi, rpi, pmb); 2899 pmb->vport = vport; 2900 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2901 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2902 if (rc != MBX_NOT_FINISHED) 2903 return; 2904 } 2905 2906 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2907 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2908 !pmb->u.mb.mbxStatus) { 2909 shost = lpfc_shost_from_vport(vport); 2910 spin_lock_irq(shost->host_lock); 2911 vport->vpi_state |= LPFC_VPI_REGISTERED; 2912 spin_unlock_irq(shost->host_lock); 2913 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2914 } 2915 2916 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2917 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2918 lpfc_nlp_put(ndlp); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2922 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2923 2924 /* Check to see if there are any deferred events to process */ 2925 if (ndlp) { 2926 lpfc_printf_vlog( 2927 vport, 2928 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2929 "1438 UNREG cmpl deferred mbox x%x " 2930 "on NPort x%x Data: x%x x%x x%px x%lx x%x\n", 2931 ndlp->nlp_rpi, ndlp->nlp_DID, 2932 ndlp->nlp_flag, ndlp->nlp_defer_did, 2933 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2934 2935 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2936 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2937 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2938 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2939 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2940 } else { 2941 __lpfc_sli_rpi_release(vport, ndlp); 2942 } 2943 2944 /* The unreg_login mailbox is complete and had a 2945 * reference that has to be released. The PLOGI 2946 * got its own ref. 2947 */ 2948 lpfc_nlp_put(ndlp); 2949 pmb->ctx_ndlp = NULL; 2950 } 2951 } 2952 2953 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2954 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2955 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2956 lpfc_nlp_put(ndlp); 2957 } 2958 2959 /* Check security permission status on INIT_LINK mailbox command */ 2960 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2961 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2962 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2963 "2860 SLI authentication is required " 2964 "for INIT_LINK but has not done yet\n"); 2965 2966 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2967 lpfc_sli4_mbox_cmd_free(phba, pmb); 2968 else 2969 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2970 } 2971 /** 2972 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2973 * @phba: Pointer to HBA context object. 2974 * @pmb: Pointer to mailbox object. 2975 * 2976 * This function is the unreg rpi mailbox completion handler. It 2977 * frees the memory resources associated with the completed mailbox 2978 * command. An additional reference is put on the ndlp to prevent 2979 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2980 * the unreg mailbox command completes, this routine puts the 2981 * reference back. 2982 * 2983 **/ 2984 void 2985 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2986 { 2987 struct lpfc_vport *vport = pmb->vport; 2988 struct lpfc_nodelist *ndlp; 2989 2990 ndlp = pmb->ctx_ndlp; 2991 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2992 if (phba->sli_rev == LPFC_SLI_REV4 && 2993 (bf_get(lpfc_sli_intf_if_type, 2994 &phba->sli4_hba.sli_intf) >= 2995 LPFC_SLI_INTF_IF_TYPE_2)) { 2996 if (ndlp) { 2997 lpfc_printf_vlog( 2998 vport, KERN_INFO, 2999 LOG_MBOX | LOG_SLI | LOG_NODE, 3000 "0010 UNREG_LOGIN vpi:x%x " 3001 "rpi:%x DID:%x defer x%x flg x%x " 3002 "x%px\n", 3003 vport->vpi, ndlp->nlp_rpi, 3004 ndlp->nlp_DID, ndlp->nlp_defer_did, 3005 ndlp->nlp_flag, 3006 ndlp); 3007 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3008 3009 /* Check to see if there are any deferred 3010 * events to process 3011 */ 3012 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3013 (ndlp->nlp_defer_did != 3014 NLP_EVT_NOTHING_PENDING)) { 3015 lpfc_printf_vlog( 3016 vport, KERN_INFO, 3017 LOG_MBOX | LOG_SLI | LOG_NODE, 3018 "4111 UNREG cmpl deferred " 3019 "clr x%x on " 3020 "NPort x%x Data: x%x x%px\n", 3021 ndlp->nlp_rpi, ndlp->nlp_DID, 3022 ndlp->nlp_defer_did, ndlp); 3023 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3024 ndlp->nlp_defer_did = 3025 NLP_EVT_NOTHING_PENDING; 3026 lpfc_issue_els_plogi( 3027 vport, ndlp->nlp_DID, 0); 3028 } else { 3029 __lpfc_sli_rpi_release(vport, ndlp); 3030 } 3031 lpfc_nlp_put(ndlp); 3032 } 3033 } 3034 } 3035 3036 mempool_free(pmb, phba->mbox_mem_pool); 3037 } 3038 3039 /** 3040 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3041 * @phba: Pointer to HBA context object. 3042 * 3043 * This function is called with no lock held. This function processes all 3044 * the completed mailbox commands and gives it to upper layers. The interrupt 3045 * service routine processes mailbox completion interrupt and adds completed 3046 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3047 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3048 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3049 * function returns the mailbox commands to the upper layer by calling the 3050 * completion handler function of each mailbox. 3051 **/ 3052 int 3053 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3054 { 3055 MAILBOX_t *pmbox; 3056 LPFC_MBOXQ_t *pmb; 3057 int rc; 3058 LIST_HEAD(cmplq); 3059 3060 phba->sli.slistat.mbox_event++; 3061 3062 /* Get all completed mailboxe buffers into the cmplq */ 3063 spin_lock_irq(&phba->hbalock); 3064 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3065 spin_unlock_irq(&phba->hbalock); 3066 3067 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3068 do { 3069 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3070 if (pmb == NULL) 3071 break; 3072 3073 pmbox = &pmb->u.mb; 3074 3075 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3076 if (pmb->vport) { 3077 lpfc_debugfs_disc_trc(pmb->vport, 3078 LPFC_DISC_TRC_MBOX_VPORT, 3079 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3080 (uint32_t)pmbox->mbxCommand, 3081 pmbox->un.varWords[0], 3082 pmbox->un.varWords[1]); 3083 } 3084 else { 3085 lpfc_debugfs_disc_trc(phba->pport, 3086 LPFC_DISC_TRC_MBOX, 3087 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3088 (uint32_t)pmbox->mbxCommand, 3089 pmbox->un.varWords[0], 3090 pmbox->un.varWords[1]); 3091 } 3092 } 3093 3094 /* 3095 * It is a fatal error if unknown mbox command completion. 3096 */ 3097 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3098 MBX_SHUTDOWN) { 3099 /* Unknown mailbox command compl */ 3100 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3101 "(%d):0323 Unknown Mailbox command " 3102 "x%x (x%x/x%x) Cmpl\n", 3103 pmb->vport ? pmb->vport->vpi : 3104 LPFC_VPORT_UNKNOWN, 3105 pmbox->mbxCommand, 3106 lpfc_sli_config_mbox_subsys_get(phba, 3107 pmb), 3108 lpfc_sli_config_mbox_opcode_get(phba, 3109 pmb)); 3110 phba->link_state = LPFC_HBA_ERROR; 3111 phba->work_hs = HS_FFER3; 3112 lpfc_handle_eratt(phba); 3113 continue; 3114 } 3115 3116 if (pmbox->mbxStatus) { 3117 phba->sli.slistat.mbox_stat_err++; 3118 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3119 /* Mbox cmd cmpl error - RETRYing */ 3120 lpfc_printf_log(phba, KERN_INFO, 3121 LOG_MBOX | LOG_SLI, 3122 "(%d):0305 Mbox cmd cmpl " 3123 "error - RETRYing Data: x%x " 3124 "(x%x/x%x) x%x x%x x%x\n", 3125 pmb->vport ? pmb->vport->vpi : 3126 LPFC_VPORT_UNKNOWN, 3127 pmbox->mbxCommand, 3128 lpfc_sli_config_mbox_subsys_get(phba, 3129 pmb), 3130 lpfc_sli_config_mbox_opcode_get(phba, 3131 pmb), 3132 pmbox->mbxStatus, 3133 pmbox->un.varWords[0], 3134 pmb->vport ? pmb->vport->port_state : 3135 LPFC_VPORT_UNKNOWN); 3136 pmbox->mbxStatus = 0; 3137 pmbox->mbxOwner = OWN_HOST; 3138 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3139 if (rc != MBX_NOT_FINISHED) 3140 continue; 3141 } 3142 } 3143 3144 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3145 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3146 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3147 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3148 "x%x x%x x%x\n", 3149 pmb->vport ? pmb->vport->vpi : 0, 3150 pmbox->mbxCommand, 3151 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3152 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3153 pmb->mbox_cmpl, 3154 *((uint32_t *) pmbox), 3155 pmbox->un.varWords[0], 3156 pmbox->un.varWords[1], 3157 pmbox->un.varWords[2], 3158 pmbox->un.varWords[3], 3159 pmbox->un.varWords[4], 3160 pmbox->un.varWords[5], 3161 pmbox->un.varWords[6], 3162 pmbox->un.varWords[7], 3163 pmbox->un.varWords[8], 3164 pmbox->un.varWords[9], 3165 pmbox->un.varWords[10]); 3166 3167 if (pmb->mbox_cmpl) 3168 pmb->mbox_cmpl(phba,pmb); 3169 } while (1); 3170 return 0; 3171 } 3172 3173 /** 3174 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3175 * @phba: Pointer to HBA context object. 3176 * @pring: Pointer to driver SLI ring object. 3177 * @tag: buffer tag. 3178 * 3179 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3180 * is set in the tag the buffer is posted for a particular exchange, 3181 * the function will return the buffer without replacing the buffer. 3182 * If the buffer is for unsolicited ELS or CT traffic, this function 3183 * returns the buffer and also posts another buffer to the firmware. 3184 **/ 3185 static struct lpfc_dmabuf * 3186 lpfc_sli_get_buff(struct lpfc_hba *phba, 3187 struct lpfc_sli_ring *pring, 3188 uint32_t tag) 3189 { 3190 struct hbq_dmabuf *hbq_entry; 3191 3192 if (tag & QUE_BUFTAG_BIT) 3193 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3194 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3195 if (!hbq_entry) 3196 return NULL; 3197 return &hbq_entry->dbuf; 3198 } 3199 3200 /** 3201 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3202 * containing a NVME LS request. 3203 * @phba: pointer to lpfc hba data structure. 3204 * @piocb: pointer to the iocbq struct representing the sequence starting 3205 * frame. 3206 * 3207 * This routine initially validates the NVME LS, validates there is a login 3208 * with the port that sent the LS, and then calls the appropriate nvme host 3209 * or target LS request handler. 3210 **/ 3211 static void 3212 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3213 { 3214 struct lpfc_nodelist *ndlp; 3215 struct lpfc_dmabuf *d_buf; 3216 struct hbq_dmabuf *nvmebuf; 3217 struct fc_frame_header *fc_hdr; 3218 struct lpfc_async_xchg_ctx *axchg = NULL; 3219 char *failwhy = NULL; 3220 uint32_t oxid, sid, did, fctl, size; 3221 int ret = 1; 3222 3223 d_buf = piocb->cmd_dmabuf; 3224 3225 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3226 fc_hdr = nvmebuf->hbuf.virt; 3227 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3228 sid = sli4_sid_from_fc_hdr(fc_hdr); 3229 did = sli4_did_from_fc_hdr(fc_hdr); 3230 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3231 fc_hdr->fh_f_ctl[1] << 8 | 3232 fc_hdr->fh_f_ctl[2]); 3233 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3234 3235 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3236 oxid, size, sid); 3237 3238 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3239 failwhy = "Driver Unloading"; 3240 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3241 failwhy = "NVME FC4 Disabled"; 3242 } else if (!phba->nvmet_support && !phba->pport->localport) { 3243 failwhy = "No Localport"; 3244 } else if (phba->nvmet_support && !phba->targetport) { 3245 failwhy = "No Targetport"; 3246 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3247 failwhy = "Bad NVME LS R_CTL"; 3248 } else if (unlikely((fctl & 0x00FF0000) != 3249 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3250 failwhy = "Bad NVME LS F_CTL"; 3251 } else { 3252 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3253 if (!axchg) 3254 failwhy = "No CTX memory"; 3255 } 3256 3257 if (unlikely(failwhy)) { 3258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3259 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3260 sid, oxid, failwhy); 3261 goto out_fail; 3262 } 3263 3264 /* validate the source of the LS is logged in */ 3265 ndlp = lpfc_findnode_did(phba->pport, sid); 3266 if (!ndlp || 3267 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3268 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3269 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3270 "6216 NVME Unsol rcv: No ndlp: " 3271 "NPort_ID x%x oxid x%x\n", 3272 sid, oxid); 3273 goto out_fail; 3274 } 3275 3276 axchg->phba = phba; 3277 axchg->ndlp = ndlp; 3278 axchg->size = size; 3279 axchg->oxid = oxid; 3280 axchg->sid = sid; 3281 axchg->wqeq = NULL; 3282 axchg->state = LPFC_NVME_STE_LS_RCV; 3283 axchg->entry_cnt = 1; 3284 axchg->rqb_buffer = (void *)nvmebuf; 3285 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3286 axchg->payload = nvmebuf->dbuf.virt; 3287 INIT_LIST_HEAD(&axchg->list); 3288 3289 if (phba->nvmet_support) { 3290 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3291 spin_lock_irq(&ndlp->lock); 3292 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3293 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3294 spin_unlock_irq(&ndlp->lock); 3295 3296 /* This reference is a single occurrence to hold the 3297 * node valid until the nvmet transport calls 3298 * host_release. 3299 */ 3300 if (!lpfc_nlp_get(ndlp)) 3301 goto out_fail; 3302 3303 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3304 "6206 NVMET unsol ls_req ndlp x%px " 3305 "DID x%x xflags x%x refcnt %d\n", 3306 ndlp, ndlp->nlp_DID, 3307 ndlp->fc4_xpt_flags, 3308 kref_read(&ndlp->kref)); 3309 } else { 3310 spin_unlock_irq(&ndlp->lock); 3311 } 3312 } else { 3313 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3314 } 3315 3316 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3317 if (!ret) 3318 return; 3319 3320 out_fail: 3321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3322 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3323 "NVMe%s handler failed %d\n", 3324 did, sid, oxid, 3325 (phba->nvmet_support) ? "T" : "I", ret); 3326 3327 /* recycle receive buffer */ 3328 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3329 3330 /* If start of new exchange, abort it */ 3331 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3332 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3333 3334 if (ret) 3335 kfree(axchg); 3336 } 3337 3338 /** 3339 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3340 * @phba: Pointer to HBA context object. 3341 * @pring: Pointer to driver SLI ring object. 3342 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3343 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3344 * @fch_type: the type for the first frame of the sequence. 3345 * 3346 * This function is called with no lock held. This function uses the r_ctl and 3347 * type of the received sequence to find the correct callback function to call 3348 * to process the sequence. 3349 **/ 3350 static int 3351 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3352 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3353 uint32_t fch_type) 3354 { 3355 int i; 3356 3357 switch (fch_type) { 3358 case FC_TYPE_NVME: 3359 lpfc_nvme_unsol_ls_handler(phba, saveq); 3360 return 1; 3361 default: 3362 break; 3363 } 3364 3365 /* unSolicited Responses */ 3366 if (pring->prt[0].profile) { 3367 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3368 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3369 saveq); 3370 return 1; 3371 } 3372 /* We must search, based on rctl / type 3373 for the right routine */ 3374 for (i = 0; i < pring->num_mask; i++) { 3375 if ((pring->prt[i].rctl == fch_r_ctl) && 3376 (pring->prt[i].type == fch_type)) { 3377 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3378 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3379 (phba, pring, saveq); 3380 return 1; 3381 } 3382 } 3383 return 0; 3384 } 3385 3386 static void 3387 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3388 struct lpfc_iocbq *saveq) 3389 { 3390 IOCB_t *irsp; 3391 union lpfc_wqe128 *wqe; 3392 u16 i = 0; 3393 3394 irsp = &saveq->iocb; 3395 wqe = &saveq->wqe; 3396 3397 /* Fill wcqe with the IOCB status fields */ 3398 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3399 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3400 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3401 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3402 3403 /* Source ID */ 3404 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3405 3406 /* rx-id of the response frame */ 3407 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3408 3409 /* ox-id of the frame */ 3410 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3411 irsp->unsli3.rcvsli3.ox_id); 3412 3413 /* DID */ 3414 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3415 irsp->un.rcvels.remoteID); 3416 3417 /* unsol data len */ 3418 for (i = 0; i < irsp->ulpBdeCount; i++) { 3419 struct lpfc_hbq_entry *hbqe = NULL; 3420 3421 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3422 if (i == 0) { 3423 hbqe = (struct lpfc_hbq_entry *) 3424 &irsp->un.ulpWord[0]; 3425 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3426 hbqe->bde.tus.f.bdeSize; 3427 } else if (i == 1) { 3428 hbqe = (struct lpfc_hbq_entry *) 3429 &irsp->unsli3.sli3Words[4]; 3430 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3431 } 3432 } 3433 } 3434 } 3435 3436 /** 3437 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3438 * @phba: Pointer to HBA context object. 3439 * @pring: Pointer to driver SLI ring object. 3440 * @saveq: Pointer to the unsolicited iocb. 3441 * 3442 * This function is called with no lock held by the ring event handler 3443 * when there is an unsolicited iocb posted to the response ring by the 3444 * firmware. This function gets the buffer associated with the iocbs 3445 * and calls the event handler for the ring. This function handles both 3446 * qring buffers and hbq buffers. 3447 * When the function returns 1 the caller can free the iocb object otherwise 3448 * upper layer functions will free the iocb objects. 3449 **/ 3450 static int 3451 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3452 struct lpfc_iocbq *saveq) 3453 { 3454 IOCB_t * irsp; 3455 WORD5 * w5p; 3456 dma_addr_t paddr; 3457 uint32_t Rctl, Type; 3458 struct lpfc_iocbq *iocbq; 3459 struct lpfc_dmabuf *dmzbuf; 3460 3461 irsp = &saveq->iocb; 3462 saveq->vport = phba->pport; 3463 3464 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3465 if (pring->lpfc_sli_rcv_async_status) 3466 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3467 else 3468 lpfc_printf_log(phba, 3469 KERN_WARNING, 3470 LOG_SLI, 3471 "0316 Ring %d handler: unexpected " 3472 "ASYNC_STATUS iocb received evt_code " 3473 "0x%x\n", 3474 pring->ringno, 3475 irsp->un.asyncstat.evt_code); 3476 return 1; 3477 } 3478 3479 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3480 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3481 if (irsp->ulpBdeCount > 0) { 3482 dmzbuf = lpfc_sli_get_buff(phba, pring, 3483 irsp->un.ulpWord[3]); 3484 lpfc_in_buf_free(phba, dmzbuf); 3485 } 3486 3487 if (irsp->ulpBdeCount > 1) { 3488 dmzbuf = lpfc_sli_get_buff(phba, pring, 3489 irsp->unsli3.sli3Words[3]); 3490 lpfc_in_buf_free(phba, dmzbuf); 3491 } 3492 3493 if (irsp->ulpBdeCount > 2) { 3494 dmzbuf = lpfc_sli_get_buff(phba, pring, 3495 irsp->unsli3.sli3Words[7]); 3496 lpfc_in_buf_free(phba, dmzbuf); 3497 } 3498 3499 return 1; 3500 } 3501 3502 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3503 if (irsp->ulpBdeCount != 0) { 3504 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3505 irsp->un.ulpWord[3]); 3506 if (!saveq->cmd_dmabuf) 3507 lpfc_printf_log(phba, 3508 KERN_ERR, 3509 LOG_SLI, 3510 "0341 Ring %d Cannot find buffer for " 3511 "an unsolicited iocb. tag 0x%x\n", 3512 pring->ringno, 3513 irsp->un.ulpWord[3]); 3514 } 3515 if (irsp->ulpBdeCount == 2) { 3516 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3517 irsp->unsli3.sli3Words[7]); 3518 if (!saveq->bpl_dmabuf) 3519 lpfc_printf_log(phba, 3520 KERN_ERR, 3521 LOG_SLI, 3522 "0342 Ring %d Cannot find buffer for an" 3523 " unsolicited iocb. tag 0x%x\n", 3524 pring->ringno, 3525 irsp->unsli3.sli3Words[7]); 3526 } 3527 list_for_each_entry(iocbq, &saveq->list, list) { 3528 irsp = &iocbq->iocb; 3529 if (irsp->ulpBdeCount != 0) { 3530 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3531 pring, 3532 irsp->un.ulpWord[3]); 3533 if (!iocbq->cmd_dmabuf) 3534 lpfc_printf_log(phba, 3535 KERN_ERR, 3536 LOG_SLI, 3537 "0343 Ring %d Cannot find " 3538 "buffer for an unsolicited iocb" 3539 ". tag 0x%x\n", pring->ringno, 3540 irsp->un.ulpWord[3]); 3541 } 3542 if (irsp->ulpBdeCount == 2) { 3543 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3544 pring, 3545 irsp->unsli3.sli3Words[7]); 3546 if (!iocbq->bpl_dmabuf) 3547 lpfc_printf_log(phba, 3548 KERN_ERR, 3549 LOG_SLI, 3550 "0344 Ring %d Cannot find " 3551 "buffer for an unsolicited " 3552 "iocb. tag 0x%x\n", 3553 pring->ringno, 3554 irsp->unsli3.sli3Words[7]); 3555 } 3556 } 3557 } else { 3558 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3559 irsp->un.cont64[0].addrLow); 3560 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3561 paddr); 3562 if (irsp->ulpBdeCount == 2) { 3563 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3564 irsp->un.cont64[1].addrLow); 3565 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3566 pring, 3567 paddr); 3568 } 3569 } 3570 3571 if (irsp->ulpBdeCount != 0 && 3572 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3573 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3574 int found = 0; 3575 3576 /* search continue save q for same XRI */ 3577 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3578 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3579 saveq->iocb.unsli3.rcvsli3.ox_id) { 3580 list_add_tail(&saveq->list, &iocbq->list); 3581 found = 1; 3582 break; 3583 } 3584 } 3585 if (!found) 3586 list_add_tail(&saveq->clist, 3587 &pring->iocb_continue_saveq); 3588 3589 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3590 list_del_init(&iocbq->clist); 3591 saveq = iocbq; 3592 irsp = &saveq->iocb; 3593 } else { 3594 return 0; 3595 } 3596 } 3597 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3598 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3599 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3600 Rctl = FC_RCTL_ELS_REQ; 3601 Type = FC_TYPE_ELS; 3602 } else { 3603 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3604 Rctl = w5p->hcsw.Rctl; 3605 Type = w5p->hcsw.Type; 3606 3607 /* Firmware Workaround */ 3608 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3609 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3610 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3611 Rctl = FC_RCTL_ELS_REQ; 3612 Type = FC_TYPE_ELS; 3613 w5p->hcsw.Rctl = Rctl; 3614 w5p->hcsw.Type = Type; 3615 } 3616 } 3617 3618 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3619 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3620 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3621 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3622 saveq->vport = phba->pport; 3623 else 3624 saveq->vport = lpfc_find_vport_by_vpid(phba, 3625 irsp->unsli3.rcvsli3.vpi); 3626 } 3627 3628 /* Prepare WQE with Unsol frame */ 3629 lpfc_sli_prep_unsol_wqe(phba, saveq); 3630 3631 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3632 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3633 "0313 Ring %d handler: unexpected Rctl x%x " 3634 "Type x%x received\n", 3635 pring->ringno, Rctl, Type); 3636 3637 return 1; 3638 } 3639 3640 /** 3641 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3642 * @phba: Pointer to HBA context object. 3643 * @pring: Pointer to driver SLI ring object. 3644 * @prspiocb: Pointer to response iocb object. 3645 * 3646 * This function looks up the iocb_lookup table to get the command iocb 3647 * corresponding to the given response iocb using the iotag of the 3648 * response iocb. The driver calls this function with the hbalock held 3649 * for SLI3 ports or the ring lock held for SLI4 ports. 3650 * This function returns the command iocb object if it finds the command 3651 * iocb else returns NULL. 3652 **/ 3653 static struct lpfc_iocbq * 3654 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3655 struct lpfc_sli_ring *pring, 3656 struct lpfc_iocbq *prspiocb) 3657 { 3658 struct lpfc_iocbq *cmd_iocb = NULL; 3659 u16 iotag; 3660 3661 if (phba->sli_rev == LPFC_SLI_REV4) 3662 iotag = get_wqe_reqtag(prspiocb); 3663 else 3664 iotag = prspiocb->iocb.ulpIoTag; 3665 3666 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3667 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3668 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3669 /* remove from txcmpl queue list */ 3670 list_del_init(&cmd_iocb->list); 3671 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3672 pring->txcmplq_cnt--; 3673 return cmd_iocb; 3674 } 3675 } 3676 3677 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3678 "0317 iotag x%x is out of " 3679 "range: max iotag x%x\n", 3680 iotag, phba->sli.last_iotag); 3681 return NULL; 3682 } 3683 3684 /** 3685 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3686 * @phba: Pointer to HBA context object. 3687 * @pring: Pointer to driver SLI ring object. 3688 * @iotag: IOCB tag. 3689 * 3690 * This function looks up the iocb_lookup table to get the command iocb 3691 * corresponding to the given iotag. The driver calls this function with 3692 * the ring lock held because this function is an SLI4 port only helper. 3693 * This function returns the command iocb object if it finds the command 3694 * iocb else returns NULL. 3695 **/ 3696 static struct lpfc_iocbq * 3697 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3698 struct lpfc_sli_ring *pring, uint16_t iotag) 3699 { 3700 struct lpfc_iocbq *cmd_iocb = NULL; 3701 3702 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3703 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3704 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3705 /* remove from txcmpl queue list */ 3706 list_del_init(&cmd_iocb->list); 3707 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3708 pring->txcmplq_cnt--; 3709 return cmd_iocb; 3710 } 3711 } 3712 3713 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3714 "0372 iotag x%x lookup error: max iotag (x%x) " 3715 "cmd_flag x%x\n", 3716 iotag, phba->sli.last_iotag, 3717 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3718 return NULL; 3719 } 3720 3721 /** 3722 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3723 * @phba: Pointer to HBA context object. 3724 * @pring: Pointer to driver SLI ring object. 3725 * @saveq: Pointer to the response iocb to be processed. 3726 * 3727 * This function is called by the ring event handler for non-fcp 3728 * rings when there is a new response iocb in the response ring. 3729 * The caller is not required to hold any locks. This function 3730 * gets the command iocb associated with the response iocb and 3731 * calls the completion handler for the command iocb. If there 3732 * is no completion handler, the function will free the resources 3733 * associated with command iocb. If the response iocb is for 3734 * an already aborted command iocb, the status of the completion 3735 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3736 * This function always returns 1. 3737 **/ 3738 static int 3739 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3740 struct lpfc_iocbq *saveq) 3741 { 3742 struct lpfc_iocbq *cmdiocbp; 3743 unsigned long iflag; 3744 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3745 3746 if (phba->sli_rev == LPFC_SLI_REV4) 3747 spin_lock_irqsave(&pring->ring_lock, iflag); 3748 else 3749 spin_lock_irqsave(&phba->hbalock, iflag); 3750 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3751 if (phba->sli_rev == LPFC_SLI_REV4) 3752 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3753 else 3754 spin_unlock_irqrestore(&phba->hbalock, iflag); 3755 3756 ulp_command = get_job_cmnd(phba, saveq); 3757 ulp_status = get_job_ulpstatus(phba, saveq); 3758 ulp_word4 = get_job_word4(phba, saveq); 3759 ulp_context = get_job_ulpcontext(phba, saveq); 3760 if (phba->sli_rev == LPFC_SLI_REV4) 3761 iotag = get_wqe_reqtag(saveq); 3762 else 3763 iotag = saveq->iocb.ulpIoTag; 3764 3765 if (cmdiocbp) { 3766 ulp_command = get_job_cmnd(phba, cmdiocbp); 3767 if (cmdiocbp->cmd_cmpl) { 3768 /* 3769 * If an ELS command failed send an event to mgmt 3770 * application. 3771 */ 3772 if (ulp_status && 3773 (pring->ringno == LPFC_ELS_RING) && 3774 (ulp_command == CMD_ELS_REQUEST64_CR)) 3775 lpfc_send_els_failure_event(phba, 3776 cmdiocbp, saveq); 3777 3778 /* 3779 * Post all ELS completions to the worker thread. 3780 * All other are passed to the completion callback. 3781 */ 3782 if (pring->ringno == LPFC_ELS_RING) { 3783 if ((phba->sli_rev < LPFC_SLI_REV4) && 3784 (cmdiocbp->cmd_flag & 3785 LPFC_DRIVER_ABORTED)) { 3786 spin_lock_irqsave(&phba->hbalock, 3787 iflag); 3788 cmdiocbp->cmd_flag &= 3789 ~LPFC_DRIVER_ABORTED; 3790 spin_unlock_irqrestore(&phba->hbalock, 3791 iflag); 3792 saveq->iocb.ulpStatus = 3793 IOSTAT_LOCAL_REJECT; 3794 saveq->iocb.un.ulpWord[4] = 3795 IOERR_SLI_ABORTED; 3796 3797 /* Firmware could still be in progress 3798 * of DMAing payload, so don't free data 3799 * buffer till after a hbeat. 3800 */ 3801 spin_lock_irqsave(&phba->hbalock, 3802 iflag); 3803 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3804 spin_unlock_irqrestore(&phba->hbalock, 3805 iflag); 3806 } 3807 if (phba->sli_rev == LPFC_SLI_REV4) { 3808 if (saveq->cmd_flag & 3809 LPFC_EXCHANGE_BUSY) { 3810 /* Set cmdiocb flag for the 3811 * exchange busy so sgl (xri) 3812 * will not be released until 3813 * the abort xri is received 3814 * from hba. 3815 */ 3816 spin_lock_irqsave( 3817 &phba->hbalock, iflag); 3818 cmdiocbp->cmd_flag |= 3819 LPFC_EXCHANGE_BUSY; 3820 spin_unlock_irqrestore( 3821 &phba->hbalock, iflag); 3822 } 3823 if (cmdiocbp->cmd_flag & 3824 LPFC_DRIVER_ABORTED) { 3825 /* 3826 * Clear LPFC_DRIVER_ABORTED 3827 * bit in case it was driver 3828 * initiated abort. 3829 */ 3830 spin_lock_irqsave( 3831 &phba->hbalock, iflag); 3832 cmdiocbp->cmd_flag &= 3833 ~LPFC_DRIVER_ABORTED; 3834 spin_unlock_irqrestore( 3835 &phba->hbalock, iflag); 3836 set_job_ulpstatus(cmdiocbp, 3837 IOSTAT_LOCAL_REJECT); 3838 set_job_ulpword4(cmdiocbp, 3839 IOERR_ABORT_REQUESTED); 3840 /* 3841 * For SLI4, irspiocb contains 3842 * NO_XRI in sli_xritag, it 3843 * shall not affect releasing 3844 * sgl (xri) process. 3845 */ 3846 set_job_ulpstatus(saveq, 3847 IOSTAT_LOCAL_REJECT); 3848 set_job_ulpword4(saveq, 3849 IOERR_SLI_ABORTED); 3850 spin_lock_irqsave( 3851 &phba->hbalock, iflag); 3852 saveq->cmd_flag |= 3853 LPFC_DELAY_MEM_FREE; 3854 spin_unlock_irqrestore( 3855 &phba->hbalock, iflag); 3856 } 3857 } 3858 } 3859 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3860 } else 3861 lpfc_sli_release_iocbq(phba, cmdiocbp); 3862 } else { 3863 /* 3864 * Unknown initiating command based on the response iotag. 3865 * This could be the case on the ELS ring because of 3866 * lpfc_els_abort(). 3867 */ 3868 if (pring->ringno != LPFC_ELS_RING) { 3869 /* 3870 * Ring <ringno> handler: unexpected completion IoTag 3871 * <IoTag> 3872 */ 3873 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3874 "0322 Ring %d handler: " 3875 "unexpected completion IoTag x%x " 3876 "Data: x%x x%x x%x x%x\n", 3877 pring->ringno, iotag, ulp_status, 3878 ulp_word4, ulp_command, ulp_context); 3879 } 3880 } 3881 3882 return 1; 3883 } 3884 3885 /** 3886 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3887 * @phba: Pointer to HBA context object. 3888 * @pring: Pointer to driver SLI ring object. 3889 * 3890 * This function is called from the iocb ring event handlers when 3891 * put pointer is ahead of the get pointer for a ring. This function signal 3892 * an error attention condition to the worker thread and the worker 3893 * thread will transition the HBA to offline state. 3894 **/ 3895 static void 3896 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3897 { 3898 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3899 /* 3900 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3901 * rsp ring <portRspMax> 3902 */ 3903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3904 "0312 Ring %d handler: portRspPut %d " 3905 "is bigger than rsp ring %d\n", 3906 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3907 pring->sli.sli3.numRiocb); 3908 3909 phba->link_state = LPFC_HBA_ERROR; 3910 3911 /* 3912 * All error attention handlers are posted to 3913 * worker thread 3914 */ 3915 phba->work_ha |= HA_ERATT; 3916 phba->work_hs = HS_FFER3; 3917 3918 lpfc_worker_wake_up(phba); 3919 3920 return; 3921 } 3922 3923 /** 3924 * lpfc_poll_eratt - Error attention polling timer timeout handler 3925 * @t: Context to fetch pointer to address of HBA context object from. 3926 * 3927 * This function is invoked by the Error Attention polling timer when the 3928 * timer times out. It will check the SLI Error Attention register for 3929 * possible attention events. If so, it will post an Error Attention event 3930 * and wake up worker thread to process it. Otherwise, it will set up the 3931 * Error Attention polling timer for the next poll. 3932 **/ 3933 void lpfc_poll_eratt(struct timer_list *t) 3934 { 3935 struct lpfc_hba *phba; 3936 uint32_t eratt = 0; 3937 uint64_t sli_intr, cnt; 3938 3939 phba = from_timer(phba, t, eratt_poll); 3940 if (!(phba->hba_flag & HBA_SETUP)) 3941 return; 3942 3943 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3944 return; 3945 3946 /* Here we will also keep track of interrupts per sec of the hba */ 3947 sli_intr = phba->sli.slistat.sli_intr; 3948 3949 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3950 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3951 sli_intr); 3952 else 3953 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3954 3955 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3956 do_div(cnt, phba->eratt_poll_interval); 3957 phba->sli.slistat.sli_ips = cnt; 3958 3959 phba->sli.slistat.sli_prev_intr = sli_intr; 3960 3961 /* Check chip HA register for error event */ 3962 eratt = lpfc_sli_check_eratt(phba); 3963 3964 if (eratt) 3965 /* Tell the worker thread there is work to do */ 3966 lpfc_worker_wake_up(phba); 3967 else 3968 /* Restart the timer for next eratt poll */ 3969 mod_timer(&phba->eratt_poll, 3970 jiffies + 3971 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3972 return; 3973 } 3974 3975 3976 /** 3977 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3978 * @phba: Pointer to HBA context object. 3979 * @pring: Pointer to driver SLI ring object. 3980 * @mask: Host attention register mask for this ring. 3981 * 3982 * This function is called from the interrupt context when there is a ring 3983 * event for the fcp ring. The caller does not hold any lock. 3984 * The function processes each response iocb in the response ring until it 3985 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3986 * LE bit set. The function will call the completion handler of the command iocb 3987 * if the response iocb indicates a completion for a command iocb or it is 3988 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3989 * function if this is an unsolicited iocb. 3990 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3991 * to check it explicitly. 3992 */ 3993 int 3994 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3995 struct lpfc_sli_ring *pring, uint32_t mask) 3996 { 3997 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3998 IOCB_t *irsp = NULL; 3999 IOCB_t *entry = NULL; 4000 struct lpfc_iocbq *cmdiocbq = NULL; 4001 struct lpfc_iocbq rspiocbq; 4002 uint32_t status; 4003 uint32_t portRspPut, portRspMax; 4004 int rc = 1; 4005 lpfc_iocb_type type; 4006 unsigned long iflag; 4007 uint32_t rsp_cmpl = 0; 4008 4009 spin_lock_irqsave(&phba->hbalock, iflag); 4010 pring->stats.iocb_event++; 4011 4012 /* 4013 * The next available response entry should never exceed the maximum 4014 * entries. If it does, treat it as an adapter hardware error. 4015 */ 4016 portRspMax = pring->sli.sli3.numRiocb; 4017 portRspPut = le32_to_cpu(pgp->rspPutInx); 4018 if (unlikely(portRspPut >= portRspMax)) { 4019 lpfc_sli_rsp_pointers_error(phba, pring); 4020 spin_unlock_irqrestore(&phba->hbalock, iflag); 4021 return 1; 4022 } 4023 if (phba->fcp_ring_in_use) { 4024 spin_unlock_irqrestore(&phba->hbalock, iflag); 4025 return 1; 4026 } else 4027 phba->fcp_ring_in_use = 1; 4028 4029 rmb(); 4030 while (pring->sli.sli3.rspidx != portRspPut) { 4031 /* 4032 * Fetch an entry off the ring and copy it into a local data 4033 * structure. The copy involves a byte-swap since the 4034 * network byte order and pci byte orders are different. 4035 */ 4036 entry = lpfc_resp_iocb(phba, pring); 4037 phba->last_completion_time = jiffies; 4038 4039 if (++pring->sli.sli3.rspidx >= portRspMax) 4040 pring->sli.sli3.rspidx = 0; 4041 4042 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4043 (uint32_t *) &rspiocbq.iocb, 4044 phba->iocb_rsp_size); 4045 INIT_LIST_HEAD(&(rspiocbq.list)); 4046 irsp = &rspiocbq.iocb; 4047 4048 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4049 pring->stats.iocb_rsp++; 4050 rsp_cmpl++; 4051 4052 if (unlikely(irsp->ulpStatus)) { 4053 /* 4054 * If resource errors reported from HBA, reduce 4055 * queuedepths of the SCSI device. 4056 */ 4057 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4058 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4059 IOERR_NO_RESOURCES)) { 4060 spin_unlock_irqrestore(&phba->hbalock, iflag); 4061 phba->lpfc_rampdown_queue_depth(phba); 4062 spin_lock_irqsave(&phba->hbalock, iflag); 4063 } 4064 4065 /* Rsp ring <ringno> error: IOCB */ 4066 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4067 "0336 Rsp Ring %d error: IOCB Data: " 4068 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4069 pring->ringno, 4070 irsp->un.ulpWord[0], 4071 irsp->un.ulpWord[1], 4072 irsp->un.ulpWord[2], 4073 irsp->un.ulpWord[3], 4074 irsp->un.ulpWord[4], 4075 irsp->un.ulpWord[5], 4076 *(uint32_t *)&irsp->un1, 4077 *((uint32_t *)&irsp->un1 + 1)); 4078 } 4079 4080 switch (type) { 4081 case LPFC_ABORT_IOCB: 4082 case LPFC_SOL_IOCB: 4083 /* 4084 * Idle exchange closed via ABTS from port. No iocb 4085 * resources need to be recovered. 4086 */ 4087 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4088 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4089 "0333 IOCB cmd 0x%x" 4090 " processed. Skipping" 4091 " completion\n", 4092 irsp->ulpCommand); 4093 break; 4094 } 4095 4096 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4097 &rspiocbq); 4098 if (unlikely(!cmdiocbq)) 4099 break; 4100 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4101 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4102 if (cmdiocbq->cmd_cmpl) { 4103 spin_unlock_irqrestore(&phba->hbalock, iflag); 4104 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4105 spin_lock_irqsave(&phba->hbalock, iflag); 4106 } 4107 break; 4108 case LPFC_UNSOL_IOCB: 4109 spin_unlock_irqrestore(&phba->hbalock, iflag); 4110 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4111 spin_lock_irqsave(&phba->hbalock, iflag); 4112 break; 4113 default: 4114 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4115 char adaptermsg[LPFC_MAX_ADPTMSG]; 4116 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4117 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4118 MAX_MSG_DATA); 4119 dev_warn(&((phba->pcidev)->dev), 4120 "lpfc%d: %s\n", 4121 phba->brd_no, adaptermsg); 4122 } else { 4123 /* Unknown IOCB command */ 4124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4125 "0334 Unknown IOCB command " 4126 "Data: x%x, x%x x%x x%x x%x\n", 4127 type, irsp->ulpCommand, 4128 irsp->ulpStatus, 4129 irsp->ulpIoTag, 4130 irsp->ulpContext); 4131 } 4132 break; 4133 } 4134 4135 /* 4136 * The response IOCB has been processed. Update the ring 4137 * pointer in SLIM. If the port response put pointer has not 4138 * been updated, sync the pgp->rspPutInx and fetch the new port 4139 * response put pointer. 4140 */ 4141 writel(pring->sli.sli3.rspidx, 4142 &phba->host_gp[pring->ringno].rspGetInx); 4143 4144 if (pring->sli.sli3.rspidx == portRspPut) 4145 portRspPut = le32_to_cpu(pgp->rspPutInx); 4146 } 4147 4148 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4149 pring->stats.iocb_rsp_full++; 4150 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4151 writel(status, phba->CAregaddr); 4152 readl(phba->CAregaddr); 4153 } 4154 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4155 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4156 pring->stats.iocb_cmd_empty++; 4157 4158 /* Force update of the local copy of cmdGetInx */ 4159 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4160 lpfc_sli_resume_iocb(phba, pring); 4161 4162 if ((pring->lpfc_sli_cmd_available)) 4163 (pring->lpfc_sli_cmd_available) (phba, pring); 4164 4165 } 4166 4167 phba->fcp_ring_in_use = 0; 4168 spin_unlock_irqrestore(&phba->hbalock, iflag); 4169 return rc; 4170 } 4171 4172 /** 4173 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4174 * @phba: Pointer to HBA context object. 4175 * @pring: Pointer to driver SLI ring object. 4176 * @rspiocbp: Pointer to driver response IOCB object. 4177 * 4178 * This function is called from the worker thread when there is a slow-path 4179 * response IOCB to process. This function chains all the response iocbs until 4180 * seeing the iocb with the LE bit set. The function will call 4181 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4182 * completion of a command iocb. The function will call the 4183 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4184 * The function frees the resources or calls the completion handler if this 4185 * iocb is an abort completion. The function returns NULL when the response 4186 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4187 * this function shall chain the iocb on to the iocb_continueq and return the 4188 * response iocb passed in. 4189 **/ 4190 static struct lpfc_iocbq * 4191 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4192 struct lpfc_iocbq *rspiocbp) 4193 { 4194 struct lpfc_iocbq *saveq; 4195 struct lpfc_iocbq *cmdiocb; 4196 struct lpfc_iocbq *next_iocb; 4197 IOCB_t *irsp; 4198 uint32_t free_saveq; 4199 u8 cmd_type; 4200 lpfc_iocb_type type; 4201 unsigned long iflag; 4202 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4203 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4204 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4205 int rc; 4206 4207 spin_lock_irqsave(&phba->hbalock, iflag); 4208 /* First add the response iocb to the countinueq list */ 4209 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4210 pring->iocb_continueq_cnt++; 4211 4212 /* 4213 * By default, the driver expects to free all resources 4214 * associated with this iocb completion. 4215 */ 4216 free_saveq = 1; 4217 saveq = list_get_first(&pring->iocb_continueq, 4218 struct lpfc_iocbq, list); 4219 list_del_init(&pring->iocb_continueq); 4220 pring->iocb_continueq_cnt = 0; 4221 4222 pring->stats.iocb_rsp++; 4223 4224 /* 4225 * If resource errors reported from HBA, reduce 4226 * queuedepths of the SCSI device. 4227 */ 4228 if (ulp_status == IOSTAT_LOCAL_REJECT && 4229 ((ulp_word4 & IOERR_PARAM_MASK) == 4230 IOERR_NO_RESOURCES)) { 4231 spin_unlock_irqrestore(&phba->hbalock, iflag); 4232 phba->lpfc_rampdown_queue_depth(phba); 4233 spin_lock_irqsave(&phba->hbalock, iflag); 4234 } 4235 4236 if (ulp_status) { 4237 /* Rsp ring <ringno> error: IOCB */ 4238 if (phba->sli_rev < LPFC_SLI_REV4) { 4239 irsp = &rspiocbp->iocb; 4240 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4241 "0328 Rsp Ring %d error: ulp_status x%x " 4242 "IOCB Data: " 4243 "x%08x x%08x x%08x x%08x " 4244 "x%08x x%08x x%08x x%08x " 4245 "x%08x x%08x x%08x x%08x " 4246 "x%08x x%08x x%08x x%08x\n", 4247 pring->ringno, ulp_status, 4248 get_job_ulpword(rspiocbp, 0), 4249 get_job_ulpword(rspiocbp, 1), 4250 get_job_ulpword(rspiocbp, 2), 4251 get_job_ulpword(rspiocbp, 3), 4252 get_job_ulpword(rspiocbp, 4), 4253 get_job_ulpword(rspiocbp, 5), 4254 *(((uint32_t *)irsp) + 6), 4255 *(((uint32_t *)irsp) + 7), 4256 *(((uint32_t *)irsp) + 8), 4257 *(((uint32_t *)irsp) + 9), 4258 *(((uint32_t *)irsp) + 10), 4259 *(((uint32_t *)irsp) + 11), 4260 *(((uint32_t *)irsp) + 12), 4261 *(((uint32_t *)irsp) + 13), 4262 *(((uint32_t *)irsp) + 14), 4263 *(((uint32_t *)irsp) + 15)); 4264 } else { 4265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4266 "0321 Rsp Ring %d error: " 4267 "IOCB Data: " 4268 "x%x x%x x%x x%x\n", 4269 pring->ringno, 4270 rspiocbp->wcqe_cmpl.word0, 4271 rspiocbp->wcqe_cmpl.total_data_placed, 4272 rspiocbp->wcqe_cmpl.parameter, 4273 rspiocbp->wcqe_cmpl.word3); 4274 } 4275 } 4276 4277 4278 /* 4279 * Fetch the iocb command type and call the correct completion 4280 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4281 * get freed back to the lpfc_iocb_list by the discovery 4282 * kernel thread. 4283 */ 4284 cmd_type = ulp_command & CMD_IOCB_MASK; 4285 type = lpfc_sli_iocb_cmd_type(cmd_type); 4286 switch (type) { 4287 case LPFC_SOL_IOCB: 4288 spin_unlock_irqrestore(&phba->hbalock, iflag); 4289 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4290 spin_lock_irqsave(&phba->hbalock, iflag); 4291 break; 4292 case LPFC_UNSOL_IOCB: 4293 spin_unlock_irqrestore(&phba->hbalock, iflag); 4294 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4295 spin_lock_irqsave(&phba->hbalock, iflag); 4296 if (!rc) 4297 free_saveq = 0; 4298 break; 4299 case LPFC_ABORT_IOCB: 4300 cmdiocb = NULL; 4301 if (ulp_command != CMD_XRI_ABORTED_CX) 4302 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4303 saveq); 4304 if (cmdiocb) { 4305 /* Call the specified completion routine */ 4306 if (cmdiocb->cmd_cmpl) { 4307 spin_unlock_irqrestore(&phba->hbalock, iflag); 4308 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4309 spin_lock_irqsave(&phba->hbalock, iflag); 4310 } else { 4311 __lpfc_sli_release_iocbq(phba, cmdiocb); 4312 } 4313 } 4314 break; 4315 case LPFC_UNKNOWN_IOCB: 4316 if (ulp_command == CMD_ADAPTER_MSG) { 4317 char adaptermsg[LPFC_MAX_ADPTMSG]; 4318 4319 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4320 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4321 MAX_MSG_DATA); 4322 dev_warn(&((phba->pcidev)->dev), 4323 "lpfc%d: %s\n", 4324 phba->brd_no, adaptermsg); 4325 } else { 4326 /* Unknown command */ 4327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4328 "0335 Unknown IOCB " 4329 "command Data: x%x " 4330 "x%x x%x x%x\n", 4331 ulp_command, 4332 ulp_status, 4333 get_wqe_reqtag(rspiocbp), 4334 get_job_ulpcontext(phba, rspiocbp)); 4335 } 4336 break; 4337 } 4338 4339 if (free_saveq) { 4340 list_for_each_entry_safe(rspiocbp, next_iocb, 4341 &saveq->list, list) { 4342 list_del_init(&rspiocbp->list); 4343 __lpfc_sli_release_iocbq(phba, rspiocbp); 4344 } 4345 __lpfc_sli_release_iocbq(phba, saveq); 4346 } 4347 rspiocbp = NULL; 4348 spin_unlock_irqrestore(&phba->hbalock, iflag); 4349 return rspiocbp; 4350 } 4351 4352 /** 4353 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4354 * @phba: Pointer to HBA context object. 4355 * @pring: Pointer to driver SLI ring object. 4356 * @mask: Host attention register mask for this ring. 4357 * 4358 * This routine wraps the actual slow_ring event process routine from the 4359 * API jump table function pointer from the lpfc_hba struct. 4360 **/ 4361 void 4362 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4363 struct lpfc_sli_ring *pring, uint32_t mask) 4364 { 4365 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4366 } 4367 4368 /** 4369 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4370 * @phba: Pointer to HBA context object. 4371 * @pring: Pointer to driver SLI ring object. 4372 * @mask: Host attention register mask for this ring. 4373 * 4374 * This function is called from the worker thread when there is a ring event 4375 * for non-fcp rings. The caller does not hold any lock. The function will 4376 * remove each response iocb in the response ring and calls the handle 4377 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4378 **/ 4379 static void 4380 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4381 struct lpfc_sli_ring *pring, uint32_t mask) 4382 { 4383 struct lpfc_pgp *pgp; 4384 IOCB_t *entry; 4385 IOCB_t *irsp = NULL; 4386 struct lpfc_iocbq *rspiocbp = NULL; 4387 uint32_t portRspPut, portRspMax; 4388 unsigned long iflag; 4389 uint32_t status; 4390 4391 pgp = &phba->port_gp[pring->ringno]; 4392 spin_lock_irqsave(&phba->hbalock, iflag); 4393 pring->stats.iocb_event++; 4394 4395 /* 4396 * The next available response entry should never exceed the maximum 4397 * entries. If it does, treat it as an adapter hardware error. 4398 */ 4399 portRspMax = pring->sli.sli3.numRiocb; 4400 portRspPut = le32_to_cpu(pgp->rspPutInx); 4401 if (portRspPut >= portRspMax) { 4402 /* 4403 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4404 * rsp ring <portRspMax> 4405 */ 4406 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4407 "0303 Ring %d handler: portRspPut %d " 4408 "is bigger than rsp ring %d\n", 4409 pring->ringno, portRspPut, portRspMax); 4410 4411 phba->link_state = LPFC_HBA_ERROR; 4412 spin_unlock_irqrestore(&phba->hbalock, iflag); 4413 4414 phba->work_hs = HS_FFER3; 4415 lpfc_handle_eratt(phba); 4416 4417 return; 4418 } 4419 4420 rmb(); 4421 while (pring->sli.sli3.rspidx != portRspPut) { 4422 /* 4423 * Build a completion list and call the appropriate handler. 4424 * The process is to get the next available response iocb, get 4425 * a free iocb from the list, copy the response data into the 4426 * free iocb, insert to the continuation list, and update the 4427 * next response index to slim. This process makes response 4428 * iocb's in the ring available to DMA as fast as possible but 4429 * pays a penalty for a copy operation. Since the iocb is 4430 * only 32 bytes, this penalty is considered small relative to 4431 * the PCI reads for register values and a slim write. When 4432 * the ulpLe field is set, the entire Command has been 4433 * received. 4434 */ 4435 entry = lpfc_resp_iocb(phba, pring); 4436 4437 phba->last_completion_time = jiffies; 4438 rspiocbp = __lpfc_sli_get_iocbq(phba); 4439 if (rspiocbp == NULL) { 4440 printk(KERN_ERR "%s: out of buffers! Failing " 4441 "completion.\n", __func__); 4442 break; 4443 } 4444 4445 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4446 phba->iocb_rsp_size); 4447 irsp = &rspiocbp->iocb; 4448 4449 if (++pring->sli.sli3.rspidx >= portRspMax) 4450 pring->sli.sli3.rspidx = 0; 4451 4452 if (pring->ringno == LPFC_ELS_RING) { 4453 lpfc_debugfs_slow_ring_trc(phba, 4454 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4455 *(((uint32_t *) irsp) + 4), 4456 *(((uint32_t *) irsp) + 6), 4457 *(((uint32_t *) irsp) + 7)); 4458 } 4459 4460 writel(pring->sli.sli3.rspidx, 4461 &phba->host_gp[pring->ringno].rspGetInx); 4462 4463 spin_unlock_irqrestore(&phba->hbalock, iflag); 4464 /* Handle the response IOCB */ 4465 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4466 spin_lock_irqsave(&phba->hbalock, iflag); 4467 4468 /* 4469 * If the port response put pointer has not been updated, sync 4470 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4471 * response put pointer. 4472 */ 4473 if (pring->sli.sli3.rspidx == portRspPut) { 4474 portRspPut = le32_to_cpu(pgp->rspPutInx); 4475 } 4476 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4477 4478 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4479 /* At least one response entry has been freed */ 4480 pring->stats.iocb_rsp_full++; 4481 /* SET RxRE_RSP in Chip Att register */ 4482 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4483 writel(status, phba->CAregaddr); 4484 readl(phba->CAregaddr); /* flush */ 4485 } 4486 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4487 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4488 pring->stats.iocb_cmd_empty++; 4489 4490 /* Force update of the local copy of cmdGetInx */ 4491 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4492 lpfc_sli_resume_iocb(phba, pring); 4493 4494 if ((pring->lpfc_sli_cmd_available)) 4495 (pring->lpfc_sli_cmd_available) (phba, pring); 4496 4497 } 4498 4499 spin_unlock_irqrestore(&phba->hbalock, iflag); 4500 return; 4501 } 4502 4503 /** 4504 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4505 * @phba: Pointer to HBA context object. 4506 * @pring: Pointer to driver SLI ring object. 4507 * @mask: Host attention register mask for this ring. 4508 * 4509 * This function is called from the worker thread when there is a pending 4510 * ELS response iocb on the driver internal slow-path response iocb worker 4511 * queue. The caller does not hold any lock. The function will remove each 4512 * response iocb from the response worker queue and calls the handle 4513 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4514 **/ 4515 static void 4516 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4517 struct lpfc_sli_ring *pring, uint32_t mask) 4518 { 4519 struct lpfc_iocbq *irspiocbq; 4520 struct hbq_dmabuf *dmabuf; 4521 struct lpfc_cq_event *cq_event; 4522 unsigned long iflag; 4523 int count = 0; 4524 4525 spin_lock_irqsave(&phba->hbalock, iflag); 4526 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4527 spin_unlock_irqrestore(&phba->hbalock, iflag); 4528 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4529 /* Get the response iocb from the head of work queue */ 4530 spin_lock_irqsave(&phba->hbalock, iflag); 4531 list_remove_head(&phba->sli4_hba.sp_queue_event, 4532 cq_event, struct lpfc_cq_event, list); 4533 spin_unlock_irqrestore(&phba->hbalock, iflag); 4534 4535 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4536 case CQE_CODE_COMPL_WQE: 4537 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4538 cq_event); 4539 /* Translate ELS WCQE to response IOCBQ */ 4540 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4541 irspiocbq); 4542 if (irspiocbq) 4543 lpfc_sli_sp_handle_rspiocb(phba, pring, 4544 irspiocbq); 4545 count++; 4546 break; 4547 case CQE_CODE_RECEIVE: 4548 case CQE_CODE_RECEIVE_V1: 4549 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4550 cq_event); 4551 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4552 count++; 4553 break; 4554 default: 4555 break; 4556 } 4557 4558 /* Limit the number of events to 64 to avoid soft lockups */ 4559 if (count == 64) 4560 break; 4561 } 4562 } 4563 4564 /** 4565 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4566 * @phba: Pointer to HBA context object. 4567 * @pring: Pointer to driver SLI ring object. 4568 * 4569 * This function aborts all iocbs in the given ring and frees all the iocb 4570 * objects in txq. This function issues an abort iocb for all the iocb commands 4571 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4572 * the return of this function. The caller is not required to hold any locks. 4573 **/ 4574 void 4575 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4576 { 4577 LIST_HEAD(tx_completions); 4578 LIST_HEAD(txcmplq_completions); 4579 struct lpfc_iocbq *iocb, *next_iocb; 4580 int offline; 4581 4582 if (pring->ringno == LPFC_ELS_RING) { 4583 lpfc_fabric_abort_hba(phba); 4584 } 4585 offline = pci_channel_offline(phba->pcidev); 4586 4587 /* Error everything on txq and txcmplq 4588 * First do the txq. 4589 */ 4590 if (phba->sli_rev >= LPFC_SLI_REV4) { 4591 spin_lock_irq(&pring->ring_lock); 4592 list_splice_init(&pring->txq, &tx_completions); 4593 pring->txq_cnt = 0; 4594 4595 if (offline) { 4596 list_splice_init(&pring->txcmplq, 4597 &txcmplq_completions); 4598 } else { 4599 /* Next issue ABTS for everything on the txcmplq */ 4600 list_for_each_entry_safe(iocb, next_iocb, 4601 &pring->txcmplq, list) 4602 lpfc_sli_issue_abort_iotag(phba, pring, 4603 iocb, NULL); 4604 } 4605 spin_unlock_irq(&pring->ring_lock); 4606 } else { 4607 spin_lock_irq(&phba->hbalock); 4608 list_splice_init(&pring->txq, &tx_completions); 4609 pring->txq_cnt = 0; 4610 4611 if (offline) { 4612 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4613 } else { 4614 /* Next issue ABTS for everything on the txcmplq */ 4615 list_for_each_entry_safe(iocb, next_iocb, 4616 &pring->txcmplq, list) 4617 lpfc_sli_issue_abort_iotag(phba, pring, 4618 iocb, NULL); 4619 } 4620 spin_unlock_irq(&phba->hbalock); 4621 } 4622 4623 if (offline) { 4624 /* Cancel all the IOCBs from the completions list */ 4625 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4626 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4627 } else { 4628 /* Make sure HBA is alive */ 4629 lpfc_issue_hb_tmo(phba); 4630 } 4631 /* Cancel all the IOCBs from the completions list */ 4632 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4633 IOERR_SLI_ABORTED); 4634 } 4635 4636 /** 4637 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4638 * @phba: Pointer to HBA context object. 4639 * 4640 * This function aborts all iocbs in FCP rings and frees all the iocb 4641 * objects in txq. This function issues an abort iocb for all the iocb commands 4642 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4643 * the return of this function. The caller is not required to hold any locks. 4644 **/ 4645 void 4646 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4647 { 4648 struct lpfc_sli *psli = &phba->sli; 4649 struct lpfc_sli_ring *pring; 4650 uint32_t i; 4651 4652 /* Look on all the FCP Rings for the iotag */ 4653 if (phba->sli_rev >= LPFC_SLI_REV4) { 4654 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4655 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4656 lpfc_sli_abort_iocb_ring(phba, pring); 4657 } 4658 } else { 4659 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4660 lpfc_sli_abort_iocb_ring(phba, pring); 4661 } 4662 } 4663 4664 /** 4665 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4666 * @phba: Pointer to HBA context object. 4667 * 4668 * This function flushes all iocbs in the IO ring and frees all the iocb 4669 * objects in txq and txcmplq. This function will not issue abort iocbs 4670 * for all the iocb commands in txcmplq, they will just be returned with 4671 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4672 * slot has been permanently disabled. 4673 **/ 4674 void 4675 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4676 { 4677 LIST_HEAD(txq); 4678 LIST_HEAD(txcmplq); 4679 struct lpfc_sli *psli = &phba->sli; 4680 struct lpfc_sli_ring *pring; 4681 uint32_t i; 4682 struct lpfc_iocbq *piocb, *next_iocb; 4683 4684 spin_lock_irq(&phba->hbalock); 4685 /* Indicate the I/O queues are flushed */ 4686 phba->hba_flag |= HBA_IOQ_FLUSH; 4687 spin_unlock_irq(&phba->hbalock); 4688 4689 /* Look on all the FCP Rings for the iotag */ 4690 if (phba->sli_rev >= LPFC_SLI_REV4) { 4691 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4692 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4693 4694 spin_lock_irq(&pring->ring_lock); 4695 /* Retrieve everything on txq */ 4696 list_splice_init(&pring->txq, &txq); 4697 list_for_each_entry_safe(piocb, next_iocb, 4698 &pring->txcmplq, list) 4699 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4700 /* Retrieve everything on the txcmplq */ 4701 list_splice_init(&pring->txcmplq, &txcmplq); 4702 pring->txq_cnt = 0; 4703 pring->txcmplq_cnt = 0; 4704 spin_unlock_irq(&pring->ring_lock); 4705 4706 /* Flush the txq */ 4707 lpfc_sli_cancel_iocbs(phba, &txq, 4708 IOSTAT_LOCAL_REJECT, 4709 IOERR_SLI_DOWN); 4710 /* Flush the txcmplq */ 4711 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4712 IOSTAT_LOCAL_REJECT, 4713 IOERR_SLI_DOWN); 4714 if (unlikely(pci_channel_offline(phba->pcidev))) 4715 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4716 } 4717 } else { 4718 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4719 4720 spin_lock_irq(&phba->hbalock); 4721 /* Retrieve everything on txq */ 4722 list_splice_init(&pring->txq, &txq); 4723 list_for_each_entry_safe(piocb, next_iocb, 4724 &pring->txcmplq, list) 4725 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4726 /* Retrieve everything on the txcmplq */ 4727 list_splice_init(&pring->txcmplq, &txcmplq); 4728 pring->txq_cnt = 0; 4729 pring->txcmplq_cnt = 0; 4730 spin_unlock_irq(&phba->hbalock); 4731 4732 /* Flush the txq */ 4733 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4734 IOERR_SLI_DOWN); 4735 /* Flush the txcmpq */ 4736 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4737 IOERR_SLI_DOWN); 4738 } 4739 } 4740 4741 /** 4742 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4743 * @phba: Pointer to HBA context object. 4744 * @mask: Bit mask to be checked. 4745 * 4746 * This function reads the host status register and compares 4747 * with the provided bit mask to check if HBA completed 4748 * the restart. This function will wait in a loop for the 4749 * HBA to complete restart. If the HBA does not restart within 4750 * 15 iterations, the function will reset the HBA again. The 4751 * function returns 1 when HBA fail to restart otherwise returns 4752 * zero. 4753 **/ 4754 static int 4755 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4756 { 4757 uint32_t status; 4758 int i = 0; 4759 int retval = 0; 4760 4761 /* Read the HBA Host Status Register */ 4762 if (lpfc_readl(phba->HSregaddr, &status)) 4763 return 1; 4764 4765 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4766 4767 /* 4768 * Check status register every 100ms for 5 retries, then every 4769 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4770 * every 2.5 sec for 4. 4771 * Break our of the loop if errors occurred during init. 4772 */ 4773 while (((status & mask) != mask) && 4774 !(status & HS_FFERM) && 4775 i++ < 20) { 4776 4777 if (i <= 5) 4778 msleep(10); 4779 else if (i <= 10) 4780 msleep(500); 4781 else 4782 msleep(2500); 4783 4784 if (i == 15) { 4785 /* Do post */ 4786 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4787 lpfc_sli_brdrestart(phba); 4788 } 4789 /* Read the HBA Host Status Register */ 4790 if (lpfc_readl(phba->HSregaddr, &status)) { 4791 retval = 1; 4792 break; 4793 } 4794 } 4795 4796 /* Check to see if any errors occurred during init */ 4797 if ((status & HS_FFERM) || (i >= 20)) { 4798 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4799 "2751 Adapter failed to restart, " 4800 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4801 status, 4802 readl(phba->MBslimaddr + 0xa8), 4803 readl(phba->MBslimaddr + 0xac)); 4804 phba->link_state = LPFC_HBA_ERROR; 4805 retval = 1; 4806 } 4807 4808 return retval; 4809 } 4810 4811 /** 4812 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4813 * @phba: Pointer to HBA context object. 4814 * @mask: Bit mask to be checked. 4815 * 4816 * This function checks the host status register to check if HBA is 4817 * ready. This function will wait in a loop for the HBA to be ready 4818 * If the HBA is not ready , the function will will reset the HBA PCI 4819 * function again. The function returns 1 when HBA fail to be ready 4820 * otherwise returns zero. 4821 **/ 4822 static int 4823 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4824 { 4825 uint32_t status; 4826 int retval = 0; 4827 4828 /* Read the HBA Host Status Register */ 4829 status = lpfc_sli4_post_status_check(phba); 4830 4831 if (status) { 4832 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4833 lpfc_sli_brdrestart(phba); 4834 status = lpfc_sli4_post_status_check(phba); 4835 } 4836 4837 /* Check to see if any errors occurred during init */ 4838 if (status) { 4839 phba->link_state = LPFC_HBA_ERROR; 4840 retval = 1; 4841 } else 4842 phba->sli4_hba.intr_enable = 0; 4843 4844 phba->hba_flag &= ~HBA_SETUP; 4845 return retval; 4846 } 4847 4848 /** 4849 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4850 * @phba: Pointer to HBA context object. 4851 * @mask: Bit mask to be checked. 4852 * 4853 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4854 * from the API jump table function pointer from the lpfc_hba struct. 4855 **/ 4856 int 4857 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4858 { 4859 return phba->lpfc_sli_brdready(phba, mask); 4860 } 4861 4862 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4863 4864 /** 4865 * lpfc_reset_barrier - Make HBA ready for HBA reset 4866 * @phba: Pointer to HBA context object. 4867 * 4868 * This function is called before resetting an HBA. This function is called 4869 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4870 **/ 4871 void lpfc_reset_barrier(struct lpfc_hba *phba) 4872 { 4873 uint32_t __iomem *resp_buf; 4874 uint32_t __iomem *mbox_buf; 4875 volatile struct MAILBOX_word0 mbox; 4876 uint32_t hc_copy, ha_copy, resp_data; 4877 int i; 4878 uint8_t hdrtype; 4879 4880 lockdep_assert_held(&phba->hbalock); 4881 4882 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4883 if (hdrtype != PCI_HEADER_TYPE_MFD || 4884 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4885 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4886 return; 4887 4888 /* 4889 * Tell the other part of the chip to suspend temporarily all 4890 * its DMA activity. 4891 */ 4892 resp_buf = phba->MBslimaddr; 4893 4894 /* Disable the error attention */ 4895 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4896 return; 4897 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4898 readl(phba->HCregaddr); /* flush */ 4899 phba->link_flag |= LS_IGNORE_ERATT; 4900 4901 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4902 return; 4903 if (ha_copy & HA_ERATT) { 4904 /* Clear Chip error bit */ 4905 writel(HA_ERATT, phba->HAregaddr); 4906 phba->pport->stopped = 1; 4907 } 4908 4909 mbox.word0 = 0; 4910 mbox.mbxCommand = MBX_KILL_BOARD; 4911 mbox.mbxOwner = OWN_CHIP; 4912 4913 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4914 mbox_buf = phba->MBslimaddr; 4915 writel(mbox.word0, mbox_buf); 4916 4917 for (i = 0; i < 50; i++) { 4918 if (lpfc_readl((resp_buf + 1), &resp_data)) 4919 return; 4920 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4921 mdelay(1); 4922 else 4923 break; 4924 } 4925 resp_data = 0; 4926 if (lpfc_readl((resp_buf + 1), &resp_data)) 4927 return; 4928 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4929 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4930 phba->pport->stopped) 4931 goto restore_hc; 4932 else 4933 goto clear_errat; 4934 } 4935 4936 mbox.mbxOwner = OWN_HOST; 4937 resp_data = 0; 4938 for (i = 0; i < 500; i++) { 4939 if (lpfc_readl(resp_buf, &resp_data)) 4940 return; 4941 if (resp_data != mbox.word0) 4942 mdelay(1); 4943 else 4944 break; 4945 } 4946 4947 clear_errat: 4948 4949 while (++i < 500) { 4950 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4951 return; 4952 if (!(ha_copy & HA_ERATT)) 4953 mdelay(1); 4954 else 4955 break; 4956 } 4957 4958 if (readl(phba->HAregaddr) & HA_ERATT) { 4959 writel(HA_ERATT, phba->HAregaddr); 4960 phba->pport->stopped = 1; 4961 } 4962 4963 restore_hc: 4964 phba->link_flag &= ~LS_IGNORE_ERATT; 4965 writel(hc_copy, phba->HCregaddr); 4966 readl(phba->HCregaddr); /* flush */ 4967 } 4968 4969 /** 4970 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4971 * @phba: Pointer to HBA context object. 4972 * 4973 * This function issues a kill_board mailbox command and waits for 4974 * the error attention interrupt. This function is called for stopping 4975 * the firmware processing. The caller is not required to hold any 4976 * locks. This function calls lpfc_hba_down_post function to free 4977 * any pending commands after the kill. The function will return 1 when it 4978 * fails to kill the board else will return 0. 4979 **/ 4980 int 4981 lpfc_sli_brdkill(struct lpfc_hba *phba) 4982 { 4983 struct lpfc_sli *psli; 4984 LPFC_MBOXQ_t *pmb; 4985 uint32_t status; 4986 uint32_t ha_copy; 4987 int retval; 4988 int i = 0; 4989 4990 psli = &phba->sli; 4991 4992 /* Kill HBA */ 4993 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4994 "0329 Kill HBA Data: x%x x%x\n", 4995 phba->pport->port_state, psli->sli_flag); 4996 4997 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4998 if (!pmb) 4999 return 1; 5000 5001 /* Disable the error attention */ 5002 spin_lock_irq(&phba->hbalock); 5003 if (lpfc_readl(phba->HCregaddr, &status)) { 5004 spin_unlock_irq(&phba->hbalock); 5005 mempool_free(pmb, phba->mbox_mem_pool); 5006 return 1; 5007 } 5008 status &= ~HC_ERINT_ENA; 5009 writel(status, phba->HCregaddr); 5010 readl(phba->HCregaddr); /* flush */ 5011 phba->link_flag |= LS_IGNORE_ERATT; 5012 spin_unlock_irq(&phba->hbalock); 5013 5014 lpfc_kill_board(phba, pmb); 5015 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5016 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5017 5018 if (retval != MBX_SUCCESS) { 5019 if (retval != MBX_BUSY) 5020 mempool_free(pmb, phba->mbox_mem_pool); 5021 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5022 "2752 KILL_BOARD command failed retval %d\n", 5023 retval); 5024 spin_lock_irq(&phba->hbalock); 5025 phba->link_flag &= ~LS_IGNORE_ERATT; 5026 spin_unlock_irq(&phba->hbalock); 5027 return 1; 5028 } 5029 5030 spin_lock_irq(&phba->hbalock); 5031 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5032 spin_unlock_irq(&phba->hbalock); 5033 5034 mempool_free(pmb, phba->mbox_mem_pool); 5035 5036 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5037 * attention every 100ms for 3 seconds. If we don't get ERATT after 5038 * 3 seconds we still set HBA_ERROR state because the status of the 5039 * board is now undefined. 5040 */ 5041 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5042 return 1; 5043 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5044 mdelay(100); 5045 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5046 return 1; 5047 } 5048 5049 del_timer_sync(&psli->mbox_tmo); 5050 if (ha_copy & HA_ERATT) { 5051 writel(HA_ERATT, phba->HAregaddr); 5052 phba->pport->stopped = 1; 5053 } 5054 spin_lock_irq(&phba->hbalock); 5055 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5056 psli->mbox_active = NULL; 5057 phba->link_flag &= ~LS_IGNORE_ERATT; 5058 spin_unlock_irq(&phba->hbalock); 5059 5060 lpfc_hba_down_post(phba); 5061 phba->link_state = LPFC_HBA_ERROR; 5062 5063 return ha_copy & HA_ERATT ? 0 : 1; 5064 } 5065 5066 /** 5067 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5068 * @phba: Pointer to HBA context object. 5069 * 5070 * This function resets the HBA by writing HC_INITFF to the control 5071 * register. After the HBA resets, this function resets all the iocb ring 5072 * indices. This function disables PCI layer parity checking during 5073 * the reset. 5074 * This function returns 0 always. 5075 * The caller is not required to hold any locks. 5076 **/ 5077 int 5078 lpfc_sli_brdreset(struct lpfc_hba *phba) 5079 { 5080 struct lpfc_sli *psli; 5081 struct lpfc_sli_ring *pring; 5082 uint16_t cfg_value; 5083 int i; 5084 5085 psli = &phba->sli; 5086 5087 /* Reset HBA */ 5088 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5089 "0325 Reset HBA Data: x%x x%x\n", 5090 (phba->pport) ? phba->pport->port_state : 0, 5091 psli->sli_flag); 5092 5093 /* perform board reset */ 5094 phba->fc_eventTag = 0; 5095 phba->link_events = 0; 5096 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5097 if (phba->pport) { 5098 phba->pport->fc_myDID = 0; 5099 phba->pport->fc_prevDID = 0; 5100 } 5101 5102 /* Turn off parity checking and serr during the physical reset */ 5103 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5104 return -EIO; 5105 5106 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5107 (cfg_value & 5108 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5109 5110 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5111 5112 /* Now toggle INITFF bit in the Host Control Register */ 5113 writel(HC_INITFF, phba->HCregaddr); 5114 mdelay(1); 5115 readl(phba->HCregaddr); /* flush */ 5116 writel(0, phba->HCregaddr); 5117 readl(phba->HCregaddr); /* flush */ 5118 5119 /* Restore PCI cmd register */ 5120 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5121 5122 /* Initialize relevant SLI info */ 5123 for (i = 0; i < psli->num_rings; i++) { 5124 pring = &psli->sli3_ring[i]; 5125 pring->flag = 0; 5126 pring->sli.sli3.rspidx = 0; 5127 pring->sli.sli3.next_cmdidx = 0; 5128 pring->sli.sli3.local_getidx = 0; 5129 pring->sli.sli3.cmdidx = 0; 5130 pring->missbufcnt = 0; 5131 } 5132 5133 phba->link_state = LPFC_WARM_START; 5134 return 0; 5135 } 5136 5137 /** 5138 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5139 * @phba: Pointer to HBA context object. 5140 * 5141 * This function resets a SLI4 HBA. This function disables PCI layer parity 5142 * checking during resets the device. The caller is not required to hold 5143 * any locks. 5144 * 5145 * This function returns 0 on success else returns negative error code. 5146 **/ 5147 int 5148 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5149 { 5150 struct lpfc_sli *psli = &phba->sli; 5151 uint16_t cfg_value; 5152 int rc = 0; 5153 5154 /* Reset HBA */ 5155 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5156 "0295 Reset HBA Data: x%x x%x x%x\n", 5157 phba->pport->port_state, psli->sli_flag, 5158 phba->hba_flag); 5159 5160 /* perform board reset */ 5161 phba->fc_eventTag = 0; 5162 phba->link_events = 0; 5163 phba->pport->fc_myDID = 0; 5164 phba->pport->fc_prevDID = 0; 5165 phba->hba_flag &= ~HBA_SETUP; 5166 5167 spin_lock_irq(&phba->hbalock); 5168 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5169 phba->fcf.fcf_flag = 0; 5170 spin_unlock_irq(&phba->hbalock); 5171 5172 /* Now physically reset the device */ 5173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5174 "0389 Performing PCI function reset!\n"); 5175 5176 /* Turn off parity checking and serr during the physical reset */ 5177 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5178 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5179 "3205 PCI read Config failed\n"); 5180 return -EIO; 5181 } 5182 5183 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5184 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5185 5186 /* Perform FCoE PCI function reset before freeing queue memory */ 5187 rc = lpfc_pci_function_reset(phba); 5188 5189 /* Restore PCI cmd register */ 5190 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5191 5192 return rc; 5193 } 5194 5195 /** 5196 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5197 * @phba: Pointer to HBA context object. 5198 * 5199 * This function is called in the SLI initialization code path to 5200 * restart the HBA. The caller is not required to hold any lock. 5201 * This function writes MBX_RESTART mailbox command to the SLIM and 5202 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5203 * function to free any pending commands. The function enables 5204 * POST only during the first initialization. The function returns zero. 5205 * The function does not guarantee completion of MBX_RESTART mailbox 5206 * command before the return of this function. 5207 **/ 5208 static int 5209 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5210 { 5211 volatile struct MAILBOX_word0 mb; 5212 struct lpfc_sli *psli; 5213 void __iomem *to_slim; 5214 5215 spin_lock_irq(&phba->hbalock); 5216 5217 psli = &phba->sli; 5218 5219 /* Restart HBA */ 5220 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5221 "0337 Restart HBA Data: x%x x%x\n", 5222 (phba->pport) ? phba->pport->port_state : 0, 5223 psli->sli_flag); 5224 5225 mb.word0 = 0; 5226 mb.mbxCommand = MBX_RESTART; 5227 mb.mbxHc = 1; 5228 5229 lpfc_reset_barrier(phba); 5230 5231 to_slim = phba->MBslimaddr; 5232 writel(mb.word0, to_slim); 5233 readl(to_slim); /* flush */ 5234 5235 /* Only skip post after fc_ffinit is completed */ 5236 if (phba->pport && phba->pport->port_state) 5237 mb.word0 = 1; /* This is really setting up word1 */ 5238 else 5239 mb.word0 = 0; /* This is really setting up word1 */ 5240 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5241 writel(mb.word0, to_slim); 5242 readl(to_slim); /* flush */ 5243 5244 lpfc_sli_brdreset(phba); 5245 if (phba->pport) 5246 phba->pport->stopped = 0; 5247 phba->link_state = LPFC_INIT_START; 5248 phba->hba_flag = 0; 5249 spin_unlock_irq(&phba->hbalock); 5250 5251 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5252 psli->stats_start = ktime_get_seconds(); 5253 5254 /* Give the INITFF and Post time to settle. */ 5255 mdelay(100); 5256 5257 lpfc_hba_down_post(phba); 5258 5259 return 0; 5260 } 5261 5262 /** 5263 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5264 * @phba: Pointer to HBA context object. 5265 * 5266 * This function is called in the SLI initialization code path to restart 5267 * a SLI4 HBA. The caller is not required to hold any lock. 5268 * At the end of the function, it calls lpfc_hba_down_post function to 5269 * free any pending commands. 5270 **/ 5271 static int 5272 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5273 { 5274 struct lpfc_sli *psli = &phba->sli; 5275 int rc; 5276 5277 /* Restart HBA */ 5278 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5279 "0296 Restart HBA Data: x%x x%x\n", 5280 phba->pport->port_state, psli->sli_flag); 5281 5282 rc = lpfc_sli4_brdreset(phba); 5283 if (rc) { 5284 phba->link_state = LPFC_HBA_ERROR; 5285 goto hba_down_queue; 5286 } 5287 5288 spin_lock_irq(&phba->hbalock); 5289 phba->pport->stopped = 0; 5290 phba->link_state = LPFC_INIT_START; 5291 phba->hba_flag = 0; 5292 /* Preserve FA-PWWN expectation */ 5293 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5294 spin_unlock_irq(&phba->hbalock); 5295 5296 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5297 psli->stats_start = ktime_get_seconds(); 5298 5299 hba_down_queue: 5300 lpfc_hba_down_post(phba); 5301 lpfc_sli4_queue_destroy(phba); 5302 5303 return rc; 5304 } 5305 5306 /** 5307 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5308 * @phba: Pointer to HBA context object. 5309 * 5310 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5311 * API jump table function pointer from the lpfc_hba struct. 5312 **/ 5313 int 5314 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5315 { 5316 return phba->lpfc_sli_brdrestart(phba); 5317 } 5318 5319 /** 5320 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5321 * @phba: Pointer to HBA context object. 5322 * 5323 * This function is called after a HBA restart to wait for successful 5324 * restart of the HBA. Successful restart of the HBA is indicated by 5325 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5326 * iteration, the function will restart the HBA again. The function returns 5327 * zero if HBA successfully restarted else returns negative error code. 5328 **/ 5329 int 5330 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5331 { 5332 uint32_t status, i = 0; 5333 5334 /* Read the HBA Host Status Register */ 5335 if (lpfc_readl(phba->HSregaddr, &status)) 5336 return -EIO; 5337 5338 /* Check status register to see what current state is */ 5339 i = 0; 5340 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5341 5342 /* Check every 10ms for 10 retries, then every 100ms for 90 5343 * retries, then every 1 sec for 50 retires for a total of 5344 * ~60 seconds before reset the board again and check every 5345 * 1 sec for 50 retries. The up to 60 seconds before the 5346 * board ready is required by the Falcon FIPS zeroization 5347 * complete, and any reset the board in between shall cause 5348 * restart of zeroization, further delay the board ready. 5349 */ 5350 if (i++ >= 200) { 5351 /* Adapter failed to init, timeout, status reg 5352 <status> */ 5353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5354 "0436 Adapter failed to init, " 5355 "timeout, status reg x%x, " 5356 "FW Data: A8 x%x AC x%x\n", status, 5357 readl(phba->MBslimaddr + 0xa8), 5358 readl(phba->MBslimaddr + 0xac)); 5359 phba->link_state = LPFC_HBA_ERROR; 5360 return -ETIMEDOUT; 5361 } 5362 5363 /* Check to see if any errors occurred during init */ 5364 if (status & HS_FFERM) { 5365 /* ERROR: During chipset initialization */ 5366 /* Adapter failed to init, chipset, status reg 5367 <status> */ 5368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5369 "0437 Adapter failed to init, " 5370 "chipset, status reg x%x, " 5371 "FW Data: A8 x%x AC x%x\n", status, 5372 readl(phba->MBslimaddr + 0xa8), 5373 readl(phba->MBslimaddr + 0xac)); 5374 phba->link_state = LPFC_HBA_ERROR; 5375 return -EIO; 5376 } 5377 5378 if (i <= 10) 5379 msleep(10); 5380 else if (i <= 100) 5381 msleep(100); 5382 else 5383 msleep(1000); 5384 5385 if (i == 150) { 5386 /* Do post */ 5387 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5388 lpfc_sli_brdrestart(phba); 5389 } 5390 /* Read the HBA Host Status Register */ 5391 if (lpfc_readl(phba->HSregaddr, &status)) 5392 return -EIO; 5393 } 5394 5395 /* Check to see if any errors occurred during init */ 5396 if (status & HS_FFERM) { 5397 /* ERROR: During chipset initialization */ 5398 /* Adapter failed to init, chipset, status reg <status> */ 5399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5400 "0438 Adapter failed to init, chipset, " 5401 "status reg x%x, " 5402 "FW Data: A8 x%x AC x%x\n", status, 5403 readl(phba->MBslimaddr + 0xa8), 5404 readl(phba->MBslimaddr + 0xac)); 5405 phba->link_state = LPFC_HBA_ERROR; 5406 return -EIO; 5407 } 5408 5409 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5410 5411 /* Clear all interrupt enable conditions */ 5412 writel(0, phba->HCregaddr); 5413 readl(phba->HCregaddr); /* flush */ 5414 5415 /* setup host attn register */ 5416 writel(0xffffffff, phba->HAregaddr); 5417 readl(phba->HAregaddr); /* flush */ 5418 return 0; 5419 } 5420 5421 /** 5422 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5423 * 5424 * This function calculates and returns the number of HBQs required to be 5425 * configured. 5426 **/ 5427 int 5428 lpfc_sli_hbq_count(void) 5429 { 5430 return ARRAY_SIZE(lpfc_hbq_defs); 5431 } 5432 5433 /** 5434 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5435 * 5436 * This function adds the number of hbq entries in every HBQ to get 5437 * the total number of hbq entries required for the HBA and returns 5438 * the total count. 5439 **/ 5440 static int 5441 lpfc_sli_hbq_entry_count(void) 5442 { 5443 int hbq_count = lpfc_sli_hbq_count(); 5444 int count = 0; 5445 int i; 5446 5447 for (i = 0; i < hbq_count; ++i) 5448 count += lpfc_hbq_defs[i]->entry_count; 5449 return count; 5450 } 5451 5452 /** 5453 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5454 * 5455 * This function calculates amount of memory required for all hbq entries 5456 * to be configured and returns the total memory required. 5457 **/ 5458 int 5459 lpfc_sli_hbq_size(void) 5460 { 5461 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5462 } 5463 5464 /** 5465 * lpfc_sli_hbq_setup - configure and initialize HBQs 5466 * @phba: Pointer to HBA context object. 5467 * 5468 * This function is called during the SLI initialization to configure 5469 * all the HBQs and post buffers to the HBQ. The caller is not 5470 * required to hold any locks. This function will return zero if successful 5471 * else it will return negative error code. 5472 **/ 5473 static int 5474 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5475 { 5476 int hbq_count = lpfc_sli_hbq_count(); 5477 LPFC_MBOXQ_t *pmb; 5478 MAILBOX_t *pmbox; 5479 uint32_t hbqno; 5480 uint32_t hbq_entry_index; 5481 5482 /* Get a Mailbox buffer to setup mailbox 5483 * commands for HBA initialization 5484 */ 5485 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5486 5487 if (!pmb) 5488 return -ENOMEM; 5489 5490 pmbox = &pmb->u.mb; 5491 5492 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5493 phba->link_state = LPFC_INIT_MBX_CMDS; 5494 phba->hbq_in_use = 1; 5495 5496 hbq_entry_index = 0; 5497 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5498 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5499 phba->hbqs[hbqno].hbqPutIdx = 0; 5500 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5501 phba->hbqs[hbqno].entry_count = 5502 lpfc_hbq_defs[hbqno]->entry_count; 5503 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5504 hbq_entry_index, pmb); 5505 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5506 5507 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5508 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5509 mbxStatus <status>, ring <num> */ 5510 5511 lpfc_printf_log(phba, KERN_ERR, 5512 LOG_SLI | LOG_VPORT, 5513 "1805 Adapter failed to init. " 5514 "Data: x%x x%x x%x\n", 5515 pmbox->mbxCommand, 5516 pmbox->mbxStatus, hbqno); 5517 5518 phba->link_state = LPFC_HBA_ERROR; 5519 mempool_free(pmb, phba->mbox_mem_pool); 5520 return -ENXIO; 5521 } 5522 } 5523 phba->hbq_count = hbq_count; 5524 5525 mempool_free(pmb, phba->mbox_mem_pool); 5526 5527 /* Initially populate or replenish the HBQs */ 5528 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5529 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5530 return 0; 5531 } 5532 5533 /** 5534 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5535 * @phba: Pointer to HBA context object. 5536 * 5537 * This function is called during the SLI initialization to configure 5538 * all the HBQs and post buffers to the HBQ. The caller is not 5539 * required to hold any locks. This function will return zero if successful 5540 * else it will return negative error code. 5541 **/ 5542 static int 5543 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5544 { 5545 phba->hbq_in_use = 1; 5546 /** 5547 * Specific case when the MDS diagnostics is enabled and supported. 5548 * The receive buffer count is truncated to manage the incoming 5549 * traffic. 5550 **/ 5551 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5552 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5553 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5554 else 5555 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5556 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5557 phba->hbq_count = 1; 5558 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5559 /* Initially populate or replenish the HBQs */ 5560 return 0; 5561 } 5562 5563 /** 5564 * lpfc_sli_config_port - Issue config port mailbox command 5565 * @phba: Pointer to HBA context object. 5566 * @sli_mode: sli mode - 2/3 5567 * 5568 * This function is called by the sli initialization code path 5569 * to issue config_port mailbox command. This function restarts the 5570 * HBA firmware and issues a config_port mailbox command to configure 5571 * the SLI interface in the sli mode specified by sli_mode 5572 * variable. The caller is not required to hold any locks. 5573 * The function returns 0 if successful, else returns negative error 5574 * code. 5575 **/ 5576 int 5577 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5578 { 5579 LPFC_MBOXQ_t *pmb; 5580 uint32_t resetcount = 0, rc = 0, done = 0; 5581 5582 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5583 if (!pmb) { 5584 phba->link_state = LPFC_HBA_ERROR; 5585 return -ENOMEM; 5586 } 5587 5588 phba->sli_rev = sli_mode; 5589 while (resetcount < 2 && !done) { 5590 spin_lock_irq(&phba->hbalock); 5591 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5592 spin_unlock_irq(&phba->hbalock); 5593 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5594 lpfc_sli_brdrestart(phba); 5595 rc = lpfc_sli_chipset_init(phba); 5596 if (rc) 5597 break; 5598 5599 spin_lock_irq(&phba->hbalock); 5600 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5601 spin_unlock_irq(&phba->hbalock); 5602 resetcount++; 5603 5604 /* Call pre CONFIG_PORT mailbox command initialization. A 5605 * value of 0 means the call was successful. Any other 5606 * nonzero value is a failure, but if ERESTART is returned, 5607 * the driver may reset the HBA and try again. 5608 */ 5609 rc = lpfc_config_port_prep(phba); 5610 if (rc == -ERESTART) { 5611 phba->link_state = LPFC_LINK_UNKNOWN; 5612 continue; 5613 } else if (rc) 5614 break; 5615 5616 phba->link_state = LPFC_INIT_MBX_CMDS; 5617 lpfc_config_port(phba, pmb); 5618 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5619 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5620 LPFC_SLI3_HBQ_ENABLED | 5621 LPFC_SLI3_CRP_ENABLED | 5622 LPFC_SLI3_DSS_ENABLED); 5623 if (rc != MBX_SUCCESS) { 5624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5625 "0442 Adapter failed to init, mbxCmd x%x " 5626 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5627 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5628 spin_lock_irq(&phba->hbalock); 5629 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5630 spin_unlock_irq(&phba->hbalock); 5631 rc = -ENXIO; 5632 } else { 5633 /* Allow asynchronous mailbox command to go through */ 5634 spin_lock_irq(&phba->hbalock); 5635 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5636 spin_unlock_irq(&phba->hbalock); 5637 done = 1; 5638 5639 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5640 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5641 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5642 "3110 Port did not grant ASABT\n"); 5643 } 5644 } 5645 if (!done) { 5646 rc = -EINVAL; 5647 goto do_prep_failed; 5648 } 5649 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5650 if (!pmb->u.mb.un.varCfgPort.cMA) { 5651 rc = -ENXIO; 5652 goto do_prep_failed; 5653 } 5654 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5655 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5656 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5657 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5658 phba->max_vpi : phba->max_vports; 5659 5660 } else 5661 phba->max_vpi = 0; 5662 if (pmb->u.mb.un.varCfgPort.gerbm) 5663 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5664 if (pmb->u.mb.un.varCfgPort.gcrp) 5665 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5666 5667 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5668 phba->port_gp = phba->mbox->us.s3_pgp.port; 5669 5670 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5671 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5672 phba->cfg_enable_bg = 0; 5673 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5675 "0443 Adapter did not grant " 5676 "BlockGuard\n"); 5677 } 5678 } 5679 } else { 5680 phba->hbq_get = NULL; 5681 phba->port_gp = phba->mbox->us.s2.port; 5682 phba->max_vpi = 0; 5683 } 5684 do_prep_failed: 5685 mempool_free(pmb, phba->mbox_mem_pool); 5686 return rc; 5687 } 5688 5689 5690 /** 5691 * lpfc_sli_hba_setup - SLI initialization function 5692 * @phba: Pointer to HBA context object. 5693 * 5694 * This function is the main SLI initialization function. This function 5695 * is called by the HBA initialization code, HBA reset code and HBA 5696 * error attention handler code. Caller is not required to hold any 5697 * locks. This function issues config_port mailbox command to configure 5698 * the SLI, setup iocb rings and HBQ rings. In the end the function 5699 * calls the config_port_post function to issue init_link mailbox 5700 * command and to start the discovery. The function will return zero 5701 * if successful, else it will return negative error code. 5702 **/ 5703 int 5704 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5705 { 5706 uint32_t rc; 5707 int i; 5708 int longs; 5709 5710 /* Enable ISR already does config_port because of config_msi mbx */ 5711 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5712 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5713 if (rc) 5714 return -EIO; 5715 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5716 } 5717 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5718 5719 if (phba->sli_rev == 3) { 5720 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5721 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5722 } else { 5723 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5724 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5725 phba->sli3_options = 0; 5726 } 5727 5728 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5729 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5730 phba->sli_rev, phba->max_vpi); 5731 rc = lpfc_sli_ring_map(phba); 5732 5733 if (rc) 5734 goto lpfc_sli_hba_setup_error; 5735 5736 /* Initialize VPIs. */ 5737 if (phba->sli_rev == LPFC_SLI_REV3) { 5738 /* 5739 * The VPI bitmask and physical ID array are allocated 5740 * and initialized once only - at driver load. A port 5741 * reset doesn't need to reinitialize this memory. 5742 */ 5743 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5744 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5745 phba->vpi_bmask = kcalloc(longs, 5746 sizeof(unsigned long), 5747 GFP_KERNEL); 5748 if (!phba->vpi_bmask) { 5749 rc = -ENOMEM; 5750 goto lpfc_sli_hba_setup_error; 5751 } 5752 5753 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5754 sizeof(uint16_t), 5755 GFP_KERNEL); 5756 if (!phba->vpi_ids) { 5757 kfree(phba->vpi_bmask); 5758 rc = -ENOMEM; 5759 goto lpfc_sli_hba_setup_error; 5760 } 5761 for (i = 0; i < phba->max_vpi; i++) 5762 phba->vpi_ids[i] = i; 5763 } 5764 } 5765 5766 /* Init HBQs */ 5767 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5768 rc = lpfc_sli_hbq_setup(phba); 5769 if (rc) 5770 goto lpfc_sli_hba_setup_error; 5771 } 5772 spin_lock_irq(&phba->hbalock); 5773 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5774 spin_unlock_irq(&phba->hbalock); 5775 5776 rc = lpfc_config_port_post(phba); 5777 if (rc) 5778 goto lpfc_sli_hba_setup_error; 5779 5780 return rc; 5781 5782 lpfc_sli_hba_setup_error: 5783 phba->link_state = LPFC_HBA_ERROR; 5784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5785 "0445 Firmware initialization failed\n"); 5786 return rc; 5787 } 5788 5789 /** 5790 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5791 * @phba: Pointer to HBA context object. 5792 * 5793 * This function issue a dump mailbox command to read config region 5794 * 23 and parse the records in the region and populate driver 5795 * data structure. 5796 **/ 5797 static int 5798 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5799 { 5800 LPFC_MBOXQ_t *mboxq; 5801 struct lpfc_dmabuf *mp; 5802 struct lpfc_mqe *mqe; 5803 uint32_t data_length; 5804 int rc; 5805 5806 /* Program the default value of vlan_id and fc_map */ 5807 phba->valid_vlan = 0; 5808 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5809 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5810 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5811 5812 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5813 if (!mboxq) 5814 return -ENOMEM; 5815 5816 mqe = &mboxq->u.mqe; 5817 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5818 rc = -ENOMEM; 5819 goto out_free_mboxq; 5820 } 5821 5822 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5823 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5824 5825 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5826 "(%d):2571 Mailbox cmd x%x Status x%x " 5827 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5828 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5829 "CQ: x%x x%x x%x x%x\n", 5830 mboxq->vport ? mboxq->vport->vpi : 0, 5831 bf_get(lpfc_mqe_command, mqe), 5832 bf_get(lpfc_mqe_status, mqe), 5833 mqe->un.mb_words[0], mqe->un.mb_words[1], 5834 mqe->un.mb_words[2], mqe->un.mb_words[3], 5835 mqe->un.mb_words[4], mqe->un.mb_words[5], 5836 mqe->un.mb_words[6], mqe->un.mb_words[7], 5837 mqe->un.mb_words[8], mqe->un.mb_words[9], 5838 mqe->un.mb_words[10], mqe->un.mb_words[11], 5839 mqe->un.mb_words[12], mqe->un.mb_words[13], 5840 mqe->un.mb_words[14], mqe->un.mb_words[15], 5841 mqe->un.mb_words[16], mqe->un.mb_words[50], 5842 mboxq->mcqe.word0, 5843 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5844 mboxq->mcqe.trailer); 5845 5846 if (rc) { 5847 rc = -EIO; 5848 goto out_free_mboxq; 5849 } 5850 data_length = mqe->un.mb_words[5]; 5851 if (data_length > DMP_RGN23_SIZE) { 5852 rc = -EIO; 5853 goto out_free_mboxq; 5854 } 5855 5856 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5857 rc = 0; 5858 5859 out_free_mboxq: 5860 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5861 return rc; 5862 } 5863 5864 /** 5865 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5866 * @phba: pointer to lpfc hba data structure. 5867 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5868 * @vpd: pointer to the memory to hold resulting port vpd data. 5869 * @vpd_size: On input, the number of bytes allocated to @vpd. 5870 * On output, the number of data bytes in @vpd. 5871 * 5872 * This routine executes a READ_REV SLI4 mailbox command. In 5873 * addition, this routine gets the port vpd data. 5874 * 5875 * Return codes 5876 * 0 - successful 5877 * -ENOMEM - could not allocated memory. 5878 **/ 5879 static int 5880 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5881 uint8_t *vpd, uint32_t *vpd_size) 5882 { 5883 int rc = 0; 5884 uint32_t dma_size; 5885 struct lpfc_dmabuf *dmabuf; 5886 struct lpfc_mqe *mqe; 5887 5888 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5889 if (!dmabuf) 5890 return -ENOMEM; 5891 5892 /* 5893 * Get a DMA buffer for the vpd data resulting from the READ_REV 5894 * mailbox command. 5895 */ 5896 dma_size = *vpd_size; 5897 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5898 &dmabuf->phys, GFP_KERNEL); 5899 if (!dmabuf->virt) { 5900 kfree(dmabuf); 5901 return -ENOMEM; 5902 } 5903 5904 /* 5905 * The SLI4 implementation of READ_REV conflicts at word1, 5906 * bits 31:16 and SLI4 adds vpd functionality not present 5907 * in SLI3. This code corrects the conflicts. 5908 */ 5909 lpfc_read_rev(phba, mboxq); 5910 mqe = &mboxq->u.mqe; 5911 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5912 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5913 mqe->un.read_rev.word1 &= 0x0000FFFF; 5914 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5915 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5916 5917 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5918 if (rc) { 5919 dma_free_coherent(&phba->pcidev->dev, dma_size, 5920 dmabuf->virt, dmabuf->phys); 5921 kfree(dmabuf); 5922 return -EIO; 5923 } 5924 5925 /* 5926 * The available vpd length cannot be bigger than the 5927 * DMA buffer passed to the port. Catch the less than 5928 * case and update the caller's size. 5929 */ 5930 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5931 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5932 5933 memcpy(vpd, dmabuf->virt, *vpd_size); 5934 5935 dma_free_coherent(&phba->pcidev->dev, dma_size, 5936 dmabuf->virt, dmabuf->phys); 5937 kfree(dmabuf); 5938 return 0; 5939 } 5940 5941 /** 5942 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5943 * @phba: pointer to lpfc hba data structure. 5944 * 5945 * This routine retrieves SLI4 device physical port name this PCI function 5946 * is attached to. 5947 * 5948 * Return codes 5949 * 0 - successful 5950 * otherwise - failed to retrieve controller attributes 5951 **/ 5952 static int 5953 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5954 { 5955 LPFC_MBOXQ_t *mboxq; 5956 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5957 struct lpfc_controller_attribute *cntl_attr; 5958 void *virtaddr = NULL; 5959 uint32_t alloclen, reqlen; 5960 uint32_t shdr_status, shdr_add_status; 5961 union lpfc_sli4_cfg_shdr *shdr; 5962 int rc; 5963 5964 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5965 if (!mboxq) 5966 return -ENOMEM; 5967 5968 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5969 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5970 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5971 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5972 LPFC_SLI4_MBX_NEMBED); 5973 5974 if (alloclen < reqlen) { 5975 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5976 "3084 Allocated DMA memory size (%d) is " 5977 "less than the requested DMA memory size " 5978 "(%d)\n", alloclen, reqlen); 5979 rc = -ENOMEM; 5980 goto out_free_mboxq; 5981 } 5982 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5983 virtaddr = mboxq->sge_array->addr[0]; 5984 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5985 shdr = &mbx_cntl_attr->cfg_shdr; 5986 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5987 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5988 if (shdr_status || shdr_add_status || rc) { 5989 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5990 "3085 Mailbox x%x (x%x/x%x) failed, " 5991 "rc:x%x, status:x%x, add_status:x%x\n", 5992 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5993 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5994 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5995 rc, shdr_status, shdr_add_status); 5996 rc = -ENXIO; 5997 goto out_free_mboxq; 5998 } 5999 6000 cntl_attr = &mbx_cntl_attr->cntl_attr; 6001 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6002 phba->sli4_hba.lnk_info.lnk_tp = 6003 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6004 phba->sli4_hba.lnk_info.lnk_no = 6005 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6006 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6007 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6008 6009 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6010 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6011 sizeof(phba->BIOSVersion)); 6012 6013 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6014 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6015 "flash_id: x%02x, asic_rev: x%02x\n", 6016 phba->sli4_hba.lnk_info.lnk_tp, 6017 phba->sli4_hba.lnk_info.lnk_no, 6018 phba->BIOSVersion, phba->sli4_hba.flash_id, 6019 phba->sli4_hba.asic_rev); 6020 out_free_mboxq: 6021 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6022 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6023 else 6024 mempool_free(mboxq, phba->mbox_mem_pool); 6025 return rc; 6026 } 6027 6028 /** 6029 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6030 * @phba: pointer to lpfc hba data structure. 6031 * 6032 * This routine retrieves SLI4 device physical port name this PCI function 6033 * is attached to. 6034 * 6035 * Return codes 6036 * 0 - successful 6037 * otherwise - failed to retrieve physical port name 6038 **/ 6039 static int 6040 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6041 { 6042 LPFC_MBOXQ_t *mboxq; 6043 struct lpfc_mbx_get_port_name *get_port_name; 6044 uint32_t shdr_status, shdr_add_status; 6045 union lpfc_sli4_cfg_shdr *shdr; 6046 char cport_name = 0; 6047 int rc; 6048 6049 /* We assume nothing at this point */ 6050 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6051 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6052 6053 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6054 if (!mboxq) 6055 return -ENOMEM; 6056 /* obtain link type and link number via READ_CONFIG */ 6057 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6058 lpfc_sli4_read_config(phba); 6059 6060 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6061 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6062 6063 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6064 goto retrieve_ppname; 6065 6066 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6067 rc = lpfc_sli4_get_ctl_attr(phba); 6068 if (rc) 6069 goto out_free_mboxq; 6070 6071 retrieve_ppname: 6072 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6073 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6074 sizeof(struct lpfc_mbx_get_port_name) - 6075 sizeof(struct lpfc_sli4_cfg_mhdr), 6076 LPFC_SLI4_MBX_EMBED); 6077 get_port_name = &mboxq->u.mqe.un.get_port_name; 6078 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6079 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6080 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6081 phba->sli4_hba.lnk_info.lnk_tp); 6082 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6083 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6084 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6085 if (shdr_status || shdr_add_status || rc) { 6086 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6087 "3087 Mailbox x%x (x%x/x%x) failed: " 6088 "rc:x%x, status:x%x, add_status:x%x\n", 6089 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6090 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6091 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6092 rc, shdr_status, shdr_add_status); 6093 rc = -ENXIO; 6094 goto out_free_mboxq; 6095 } 6096 switch (phba->sli4_hba.lnk_info.lnk_no) { 6097 case LPFC_LINK_NUMBER_0: 6098 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6099 &get_port_name->u.response); 6100 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6101 break; 6102 case LPFC_LINK_NUMBER_1: 6103 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6104 &get_port_name->u.response); 6105 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6106 break; 6107 case LPFC_LINK_NUMBER_2: 6108 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6109 &get_port_name->u.response); 6110 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6111 break; 6112 case LPFC_LINK_NUMBER_3: 6113 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6114 &get_port_name->u.response); 6115 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6116 break; 6117 default: 6118 break; 6119 } 6120 6121 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6122 phba->Port[0] = cport_name; 6123 phba->Port[1] = '\0'; 6124 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6125 "3091 SLI get port name: %s\n", phba->Port); 6126 } 6127 6128 out_free_mboxq: 6129 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6130 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6131 else 6132 mempool_free(mboxq, phba->mbox_mem_pool); 6133 return rc; 6134 } 6135 6136 /** 6137 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6138 * @phba: pointer to lpfc hba data structure. 6139 * 6140 * This routine is called to explicitly arm the SLI4 device's completion and 6141 * event queues 6142 **/ 6143 static void 6144 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6145 { 6146 int qidx; 6147 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6148 struct lpfc_sli4_hdw_queue *qp; 6149 struct lpfc_queue *eq; 6150 6151 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6152 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6153 if (sli4_hba->nvmels_cq) 6154 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6155 LPFC_QUEUE_REARM); 6156 6157 if (sli4_hba->hdwq) { 6158 /* Loop thru all Hardware Queues */ 6159 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6160 qp = &sli4_hba->hdwq[qidx]; 6161 /* ARM the corresponding CQ */ 6162 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6163 LPFC_QUEUE_REARM); 6164 } 6165 6166 /* Loop thru all IRQ vectors */ 6167 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6168 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6169 /* ARM the corresponding EQ */ 6170 sli4_hba->sli4_write_eq_db(phba, eq, 6171 0, LPFC_QUEUE_REARM); 6172 } 6173 } 6174 6175 if (phba->nvmet_support) { 6176 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6177 sli4_hba->sli4_write_cq_db(phba, 6178 sli4_hba->nvmet_cqset[qidx], 0, 6179 LPFC_QUEUE_REARM); 6180 } 6181 } 6182 } 6183 6184 /** 6185 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6186 * @phba: Pointer to HBA context object. 6187 * @type: The resource extent type. 6188 * @extnt_count: buffer to hold port available extent count. 6189 * @extnt_size: buffer to hold element count per extent. 6190 * 6191 * This function calls the port and retrievs the number of available 6192 * extents and their size for a particular extent type. 6193 * 6194 * Returns: 0 if successful. Nonzero otherwise. 6195 **/ 6196 int 6197 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6198 uint16_t *extnt_count, uint16_t *extnt_size) 6199 { 6200 int rc = 0; 6201 uint32_t length; 6202 uint32_t mbox_tmo; 6203 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6204 LPFC_MBOXQ_t *mbox; 6205 6206 *extnt_count = 0; 6207 *extnt_size = 0; 6208 6209 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6210 if (!mbox) 6211 return -ENOMEM; 6212 6213 /* Find out how many extents are available for this resource type */ 6214 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6215 sizeof(struct lpfc_sli4_cfg_mhdr)); 6216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6217 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6218 length, LPFC_SLI4_MBX_EMBED); 6219 6220 /* Send an extents count of 0 - the GET doesn't use it. */ 6221 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6222 LPFC_SLI4_MBX_EMBED); 6223 if (unlikely(rc)) { 6224 rc = -EIO; 6225 goto err_exit; 6226 } 6227 6228 if (!phba->sli4_hba.intr_enable) 6229 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6230 else { 6231 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6232 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6233 } 6234 if (unlikely(rc)) { 6235 rc = -EIO; 6236 goto err_exit; 6237 } 6238 6239 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6240 if (bf_get(lpfc_mbox_hdr_status, 6241 &rsrc_info->header.cfg_shdr.response)) { 6242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6243 "2930 Failed to get resource extents " 6244 "Status 0x%x Add'l Status 0x%x\n", 6245 bf_get(lpfc_mbox_hdr_status, 6246 &rsrc_info->header.cfg_shdr.response), 6247 bf_get(lpfc_mbox_hdr_add_status, 6248 &rsrc_info->header.cfg_shdr.response)); 6249 rc = -EIO; 6250 goto err_exit; 6251 } 6252 6253 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6254 &rsrc_info->u.rsp); 6255 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6256 &rsrc_info->u.rsp); 6257 6258 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6259 "3162 Retrieved extents type-%d from port: count:%d, " 6260 "size:%d\n", type, *extnt_count, *extnt_size); 6261 6262 err_exit: 6263 mempool_free(mbox, phba->mbox_mem_pool); 6264 return rc; 6265 } 6266 6267 /** 6268 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6269 * @phba: Pointer to HBA context object. 6270 * @type: The extent type to check. 6271 * 6272 * This function reads the current available extents from the port and checks 6273 * if the extent count or extent size has changed since the last access. 6274 * Callers use this routine post port reset to understand if there is a 6275 * extent reprovisioning requirement. 6276 * 6277 * Returns: 6278 * -Error: error indicates problem. 6279 * 1: Extent count or size has changed. 6280 * 0: No changes. 6281 **/ 6282 static int 6283 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6284 { 6285 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6286 uint16_t size_diff, rsrc_ext_size; 6287 int rc = 0; 6288 struct lpfc_rsrc_blks *rsrc_entry; 6289 struct list_head *rsrc_blk_list = NULL; 6290 6291 size_diff = 0; 6292 curr_ext_cnt = 0; 6293 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6294 &rsrc_ext_cnt, 6295 &rsrc_ext_size); 6296 if (unlikely(rc)) 6297 return -EIO; 6298 6299 switch (type) { 6300 case LPFC_RSC_TYPE_FCOE_RPI: 6301 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6302 break; 6303 case LPFC_RSC_TYPE_FCOE_VPI: 6304 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6305 break; 6306 case LPFC_RSC_TYPE_FCOE_XRI: 6307 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6308 break; 6309 case LPFC_RSC_TYPE_FCOE_VFI: 6310 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6311 break; 6312 default: 6313 break; 6314 } 6315 6316 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6317 curr_ext_cnt++; 6318 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6319 size_diff++; 6320 } 6321 6322 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6323 rc = 1; 6324 6325 return rc; 6326 } 6327 6328 /** 6329 * lpfc_sli4_cfg_post_extnts - 6330 * @phba: Pointer to HBA context object. 6331 * @extnt_cnt: number of available extents. 6332 * @type: the extent type (rpi, xri, vfi, vpi). 6333 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6334 * @mbox: pointer to the caller's allocated mailbox structure. 6335 * 6336 * This function executes the extents allocation request. It also 6337 * takes care of the amount of memory needed to allocate or get the 6338 * allocated extents. It is the caller's responsibility to evaluate 6339 * the response. 6340 * 6341 * Returns: 6342 * -Error: Error value describes the condition found. 6343 * 0: if successful 6344 **/ 6345 static int 6346 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6347 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6348 { 6349 int rc = 0; 6350 uint32_t req_len; 6351 uint32_t emb_len; 6352 uint32_t alloc_len, mbox_tmo; 6353 6354 /* Calculate the total requested length of the dma memory */ 6355 req_len = extnt_cnt * sizeof(uint16_t); 6356 6357 /* 6358 * Calculate the size of an embedded mailbox. The uint32_t 6359 * accounts for extents-specific word. 6360 */ 6361 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6362 sizeof(uint32_t); 6363 6364 /* 6365 * Presume the allocation and response will fit into an embedded 6366 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6367 */ 6368 *emb = LPFC_SLI4_MBX_EMBED; 6369 if (req_len > emb_len) { 6370 req_len = extnt_cnt * sizeof(uint16_t) + 6371 sizeof(union lpfc_sli4_cfg_shdr) + 6372 sizeof(uint32_t); 6373 *emb = LPFC_SLI4_MBX_NEMBED; 6374 } 6375 6376 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6377 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6378 req_len, *emb); 6379 if (alloc_len < req_len) { 6380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6381 "2982 Allocated DMA memory size (x%x) is " 6382 "less than the requested DMA memory " 6383 "size (x%x)\n", alloc_len, req_len); 6384 return -ENOMEM; 6385 } 6386 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6387 if (unlikely(rc)) 6388 return -EIO; 6389 6390 if (!phba->sli4_hba.intr_enable) 6391 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6392 else { 6393 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6394 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6395 } 6396 6397 if (unlikely(rc)) 6398 rc = -EIO; 6399 return rc; 6400 } 6401 6402 /** 6403 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6404 * @phba: Pointer to HBA context object. 6405 * @type: The resource extent type to allocate. 6406 * 6407 * This function allocates the number of elements for the specified 6408 * resource type. 6409 **/ 6410 static int 6411 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6412 { 6413 bool emb = false; 6414 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6415 uint16_t rsrc_id, rsrc_start, j, k; 6416 uint16_t *ids; 6417 int i, rc; 6418 unsigned long longs; 6419 unsigned long *bmask; 6420 struct lpfc_rsrc_blks *rsrc_blks; 6421 LPFC_MBOXQ_t *mbox; 6422 uint32_t length; 6423 struct lpfc_id_range *id_array = NULL; 6424 void *virtaddr = NULL; 6425 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6426 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6427 struct list_head *ext_blk_list; 6428 6429 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6430 &rsrc_cnt, 6431 &rsrc_size); 6432 if (unlikely(rc)) 6433 return -EIO; 6434 6435 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6437 "3009 No available Resource Extents " 6438 "for resource type 0x%x: Count: 0x%x, " 6439 "Size 0x%x\n", type, rsrc_cnt, 6440 rsrc_size); 6441 return -ENOMEM; 6442 } 6443 6444 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6445 "2903 Post resource extents type-0x%x: " 6446 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6447 6448 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6449 if (!mbox) 6450 return -ENOMEM; 6451 6452 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6453 if (unlikely(rc)) { 6454 rc = -EIO; 6455 goto err_exit; 6456 } 6457 6458 /* 6459 * Figure out where the response is located. Then get local pointers 6460 * to the response data. The port does not guarantee to respond to 6461 * all extents counts request so update the local variable with the 6462 * allocated count from the port. 6463 */ 6464 if (emb == LPFC_SLI4_MBX_EMBED) { 6465 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6466 id_array = &rsrc_ext->u.rsp.id[0]; 6467 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6468 } else { 6469 virtaddr = mbox->sge_array->addr[0]; 6470 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6471 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6472 id_array = &n_rsrc->id; 6473 } 6474 6475 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6476 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6477 6478 /* 6479 * Based on the resource size and count, correct the base and max 6480 * resource values. 6481 */ 6482 length = sizeof(struct lpfc_rsrc_blks); 6483 switch (type) { 6484 case LPFC_RSC_TYPE_FCOE_RPI: 6485 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6486 sizeof(unsigned long), 6487 GFP_KERNEL); 6488 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6489 rc = -ENOMEM; 6490 goto err_exit; 6491 } 6492 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6493 sizeof(uint16_t), 6494 GFP_KERNEL); 6495 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6496 kfree(phba->sli4_hba.rpi_bmask); 6497 rc = -ENOMEM; 6498 goto err_exit; 6499 } 6500 6501 /* 6502 * The next_rpi was initialized with the maximum available 6503 * count but the port may allocate a smaller number. Catch 6504 * that case and update the next_rpi. 6505 */ 6506 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6507 6508 /* Initialize local ptrs for common extent processing later. */ 6509 bmask = phba->sli4_hba.rpi_bmask; 6510 ids = phba->sli4_hba.rpi_ids; 6511 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6512 break; 6513 case LPFC_RSC_TYPE_FCOE_VPI: 6514 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6515 GFP_KERNEL); 6516 if (unlikely(!phba->vpi_bmask)) { 6517 rc = -ENOMEM; 6518 goto err_exit; 6519 } 6520 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6521 GFP_KERNEL); 6522 if (unlikely(!phba->vpi_ids)) { 6523 kfree(phba->vpi_bmask); 6524 rc = -ENOMEM; 6525 goto err_exit; 6526 } 6527 6528 /* Initialize local ptrs for common extent processing later. */ 6529 bmask = phba->vpi_bmask; 6530 ids = phba->vpi_ids; 6531 ext_blk_list = &phba->lpfc_vpi_blk_list; 6532 break; 6533 case LPFC_RSC_TYPE_FCOE_XRI: 6534 phba->sli4_hba.xri_bmask = kcalloc(longs, 6535 sizeof(unsigned long), 6536 GFP_KERNEL); 6537 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6538 rc = -ENOMEM; 6539 goto err_exit; 6540 } 6541 phba->sli4_hba.max_cfg_param.xri_used = 0; 6542 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6543 sizeof(uint16_t), 6544 GFP_KERNEL); 6545 if (unlikely(!phba->sli4_hba.xri_ids)) { 6546 kfree(phba->sli4_hba.xri_bmask); 6547 rc = -ENOMEM; 6548 goto err_exit; 6549 } 6550 6551 /* Initialize local ptrs for common extent processing later. */ 6552 bmask = phba->sli4_hba.xri_bmask; 6553 ids = phba->sli4_hba.xri_ids; 6554 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6555 break; 6556 case LPFC_RSC_TYPE_FCOE_VFI: 6557 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6558 sizeof(unsigned long), 6559 GFP_KERNEL); 6560 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6561 rc = -ENOMEM; 6562 goto err_exit; 6563 } 6564 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6565 sizeof(uint16_t), 6566 GFP_KERNEL); 6567 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6568 kfree(phba->sli4_hba.vfi_bmask); 6569 rc = -ENOMEM; 6570 goto err_exit; 6571 } 6572 6573 /* Initialize local ptrs for common extent processing later. */ 6574 bmask = phba->sli4_hba.vfi_bmask; 6575 ids = phba->sli4_hba.vfi_ids; 6576 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6577 break; 6578 default: 6579 /* Unsupported Opcode. Fail call. */ 6580 id_array = NULL; 6581 bmask = NULL; 6582 ids = NULL; 6583 ext_blk_list = NULL; 6584 goto err_exit; 6585 } 6586 6587 /* 6588 * Complete initializing the extent configuration with the 6589 * allocated ids assigned to this function. The bitmask serves 6590 * as an index into the array and manages the available ids. The 6591 * array just stores the ids communicated to the port via the wqes. 6592 */ 6593 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6594 if ((i % 2) == 0) 6595 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6596 &id_array[k]); 6597 else 6598 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6599 &id_array[k]); 6600 6601 rsrc_blks = kzalloc(length, GFP_KERNEL); 6602 if (unlikely(!rsrc_blks)) { 6603 rc = -ENOMEM; 6604 kfree(bmask); 6605 kfree(ids); 6606 goto err_exit; 6607 } 6608 rsrc_blks->rsrc_start = rsrc_id; 6609 rsrc_blks->rsrc_size = rsrc_size; 6610 list_add_tail(&rsrc_blks->list, ext_blk_list); 6611 rsrc_start = rsrc_id; 6612 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6613 phba->sli4_hba.io_xri_start = rsrc_start + 6614 lpfc_sli4_get_iocb_cnt(phba); 6615 } 6616 6617 while (rsrc_id < (rsrc_start + rsrc_size)) { 6618 ids[j] = rsrc_id; 6619 rsrc_id++; 6620 j++; 6621 } 6622 /* Entire word processed. Get next word.*/ 6623 if ((i % 2) == 1) 6624 k++; 6625 } 6626 err_exit: 6627 lpfc_sli4_mbox_cmd_free(phba, mbox); 6628 return rc; 6629 } 6630 6631 6632 6633 /** 6634 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6635 * @phba: Pointer to HBA context object. 6636 * @type: the extent's type. 6637 * 6638 * This function deallocates all extents of a particular resource type. 6639 * SLI4 does not allow for deallocating a particular extent range. It 6640 * is the caller's responsibility to release all kernel memory resources. 6641 **/ 6642 static int 6643 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6644 { 6645 int rc; 6646 uint32_t length, mbox_tmo = 0; 6647 LPFC_MBOXQ_t *mbox; 6648 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6649 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6650 6651 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6652 if (!mbox) 6653 return -ENOMEM; 6654 6655 /* 6656 * This function sends an embedded mailbox because it only sends the 6657 * the resource type. All extents of this type are released by the 6658 * port. 6659 */ 6660 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6661 sizeof(struct lpfc_sli4_cfg_mhdr)); 6662 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6663 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6664 length, LPFC_SLI4_MBX_EMBED); 6665 6666 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6667 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6668 LPFC_SLI4_MBX_EMBED); 6669 if (unlikely(rc)) { 6670 rc = -EIO; 6671 goto out_free_mbox; 6672 } 6673 if (!phba->sli4_hba.intr_enable) 6674 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6675 else { 6676 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6677 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6678 } 6679 if (unlikely(rc)) { 6680 rc = -EIO; 6681 goto out_free_mbox; 6682 } 6683 6684 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6685 if (bf_get(lpfc_mbox_hdr_status, 6686 &dealloc_rsrc->header.cfg_shdr.response)) { 6687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6688 "2919 Failed to release resource extents " 6689 "for type %d - Status 0x%x Add'l Status 0x%x. " 6690 "Resource memory not released.\n", 6691 type, 6692 bf_get(lpfc_mbox_hdr_status, 6693 &dealloc_rsrc->header.cfg_shdr.response), 6694 bf_get(lpfc_mbox_hdr_add_status, 6695 &dealloc_rsrc->header.cfg_shdr.response)); 6696 rc = -EIO; 6697 goto out_free_mbox; 6698 } 6699 6700 /* Release kernel memory resources for the specific type. */ 6701 switch (type) { 6702 case LPFC_RSC_TYPE_FCOE_VPI: 6703 kfree(phba->vpi_bmask); 6704 kfree(phba->vpi_ids); 6705 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6706 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6707 &phba->lpfc_vpi_blk_list, list) { 6708 list_del_init(&rsrc_blk->list); 6709 kfree(rsrc_blk); 6710 } 6711 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6712 break; 6713 case LPFC_RSC_TYPE_FCOE_XRI: 6714 kfree(phba->sli4_hba.xri_bmask); 6715 kfree(phba->sli4_hba.xri_ids); 6716 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6717 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6718 list_del_init(&rsrc_blk->list); 6719 kfree(rsrc_blk); 6720 } 6721 break; 6722 case LPFC_RSC_TYPE_FCOE_VFI: 6723 kfree(phba->sli4_hba.vfi_bmask); 6724 kfree(phba->sli4_hba.vfi_ids); 6725 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6726 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6727 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6728 list_del_init(&rsrc_blk->list); 6729 kfree(rsrc_blk); 6730 } 6731 break; 6732 case LPFC_RSC_TYPE_FCOE_RPI: 6733 /* RPI bitmask and physical id array are cleaned up earlier. */ 6734 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6735 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6736 list_del_init(&rsrc_blk->list); 6737 kfree(rsrc_blk); 6738 } 6739 break; 6740 default: 6741 break; 6742 } 6743 6744 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6745 6746 out_free_mbox: 6747 mempool_free(mbox, phba->mbox_mem_pool); 6748 return rc; 6749 } 6750 6751 static void 6752 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6753 uint32_t feature) 6754 { 6755 uint32_t len; 6756 u32 sig_freq = 0; 6757 6758 len = sizeof(struct lpfc_mbx_set_feature) - 6759 sizeof(struct lpfc_sli4_cfg_mhdr); 6760 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6761 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6762 LPFC_SLI4_MBX_EMBED); 6763 6764 switch (feature) { 6765 case LPFC_SET_UE_RECOVERY: 6766 bf_set(lpfc_mbx_set_feature_UER, 6767 &mbox->u.mqe.un.set_feature, 1); 6768 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6769 mbox->u.mqe.un.set_feature.param_len = 8; 6770 break; 6771 case LPFC_SET_MDS_DIAGS: 6772 bf_set(lpfc_mbx_set_feature_mds, 6773 &mbox->u.mqe.un.set_feature, 1); 6774 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6775 &mbox->u.mqe.un.set_feature, 1); 6776 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6777 mbox->u.mqe.un.set_feature.param_len = 8; 6778 break; 6779 case LPFC_SET_CGN_SIGNAL: 6780 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6781 sig_freq = 0; 6782 else 6783 sig_freq = phba->cgn_sig_freq; 6784 6785 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6786 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6787 &mbox->u.mqe.un.set_feature, sig_freq); 6788 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6789 &mbox->u.mqe.un.set_feature, sig_freq); 6790 } 6791 6792 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6793 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6794 &mbox->u.mqe.un.set_feature, sig_freq); 6795 6796 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6797 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6798 sig_freq = 0; 6799 else 6800 sig_freq = lpfc_acqe_cgn_frequency; 6801 6802 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6803 &mbox->u.mqe.un.set_feature, sig_freq); 6804 6805 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6806 mbox->u.mqe.un.set_feature.param_len = 12; 6807 break; 6808 case LPFC_SET_DUAL_DUMP: 6809 bf_set(lpfc_mbx_set_feature_dd, 6810 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6811 bf_set(lpfc_mbx_set_feature_ddquery, 6812 &mbox->u.mqe.un.set_feature, 0); 6813 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6814 mbox->u.mqe.un.set_feature.param_len = 4; 6815 break; 6816 case LPFC_SET_ENABLE_MI: 6817 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6818 mbox->u.mqe.un.set_feature.param_len = 4; 6819 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6820 phba->pport->cfg_lun_queue_depth); 6821 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6822 phba->sli4_hba.pc_sli4_params.mi_ver); 6823 break; 6824 case LPFC_SET_LD_SIGNAL: 6825 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6826 mbox->u.mqe.un.set_feature.param_len = 16; 6827 bf_set(lpfc_mbx_set_feature_lds_qry, 6828 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6829 break; 6830 case LPFC_SET_ENABLE_CMF: 6831 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6832 mbox->u.mqe.un.set_feature.param_len = 4; 6833 bf_set(lpfc_mbx_set_feature_cmf, 6834 &mbox->u.mqe.un.set_feature, 1); 6835 break; 6836 } 6837 return; 6838 } 6839 6840 /** 6841 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6842 * @phba: Pointer to HBA context object. 6843 * 6844 * Disable FW logging into host memory on the adapter. To 6845 * be done before reading logs from the host memory. 6846 **/ 6847 void 6848 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6849 { 6850 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6851 6852 spin_lock_irq(&phba->hbalock); 6853 ras_fwlog->state = INACTIVE; 6854 spin_unlock_irq(&phba->hbalock); 6855 6856 /* Disable FW logging to host memory */ 6857 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6858 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6859 6860 /* Wait 10ms for firmware to stop using DMA buffer */ 6861 usleep_range(10 * 1000, 20 * 1000); 6862 } 6863 6864 /** 6865 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6866 * @phba: Pointer to HBA context object. 6867 * 6868 * This function is called to free memory allocated for RAS FW logging 6869 * support in the driver. 6870 **/ 6871 void 6872 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6873 { 6874 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6875 struct lpfc_dmabuf *dmabuf, *next; 6876 6877 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6878 list_for_each_entry_safe(dmabuf, next, 6879 &ras_fwlog->fwlog_buff_list, 6880 list) { 6881 list_del(&dmabuf->list); 6882 dma_free_coherent(&phba->pcidev->dev, 6883 LPFC_RAS_MAX_ENTRY_SIZE, 6884 dmabuf->virt, dmabuf->phys); 6885 kfree(dmabuf); 6886 } 6887 } 6888 6889 if (ras_fwlog->lwpd.virt) { 6890 dma_free_coherent(&phba->pcidev->dev, 6891 sizeof(uint32_t) * 2, 6892 ras_fwlog->lwpd.virt, 6893 ras_fwlog->lwpd.phys); 6894 ras_fwlog->lwpd.virt = NULL; 6895 } 6896 6897 spin_lock_irq(&phba->hbalock); 6898 ras_fwlog->state = INACTIVE; 6899 spin_unlock_irq(&phba->hbalock); 6900 } 6901 6902 /** 6903 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6904 * @phba: Pointer to HBA context object. 6905 * @fwlog_buff_count: Count of buffers to be created. 6906 * 6907 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6908 * to update FW log is posted to the adapter. 6909 * Buffer count is calculated based on module param ras_fwlog_buffsize 6910 * Size of each buffer posted to FW is 64K. 6911 **/ 6912 6913 static int 6914 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6915 uint32_t fwlog_buff_count) 6916 { 6917 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6918 struct lpfc_dmabuf *dmabuf; 6919 int rc = 0, i = 0; 6920 6921 /* Initialize List */ 6922 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6923 6924 /* Allocate memory for the LWPD */ 6925 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6926 sizeof(uint32_t) * 2, 6927 &ras_fwlog->lwpd.phys, 6928 GFP_KERNEL); 6929 if (!ras_fwlog->lwpd.virt) { 6930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6931 "6185 LWPD Memory Alloc Failed\n"); 6932 6933 return -ENOMEM; 6934 } 6935 6936 ras_fwlog->fw_buffcount = fwlog_buff_count; 6937 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6938 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6939 GFP_KERNEL); 6940 if (!dmabuf) { 6941 rc = -ENOMEM; 6942 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6943 "6186 Memory Alloc failed FW logging"); 6944 goto free_mem; 6945 } 6946 6947 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6948 LPFC_RAS_MAX_ENTRY_SIZE, 6949 &dmabuf->phys, GFP_KERNEL); 6950 if (!dmabuf->virt) { 6951 kfree(dmabuf); 6952 rc = -ENOMEM; 6953 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6954 "6187 DMA Alloc Failed FW logging"); 6955 goto free_mem; 6956 } 6957 dmabuf->buffer_tag = i; 6958 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6959 } 6960 6961 free_mem: 6962 if (rc) 6963 lpfc_sli4_ras_dma_free(phba); 6964 6965 return rc; 6966 } 6967 6968 /** 6969 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6970 * @phba: pointer to lpfc hba data structure. 6971 * @pmb: pointer to the driver internal queue element for mailbox command. 6972 * 6973 * Completion handler for driver's RAS MBX command to the device. 6974 **/ 6975 static void 6976 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6977 { 6978 MAILBOX_t *mb; 6979 union lpfc_sli4_cfg_shdr *shdr; 6980 uint32_t shdr_status, shdr_add_status; 6981 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6982 6983 mb = &pmb->u.mb; 6984 6985 shdr = (union lpfc_sli4_cfg_shdr *) 6986 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6987 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6988 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6989 6990 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6992 "6188 FW LOG mailbox " 6993 "completed with status x%x add_status x%x," 6994 " mbx status x%x\n", 6995 shdr_status, shdr_add_status, mb->mbxStatus); 6996 6997 ras_fwlog->ras_hwsupport = false; 6998 goto disable_ras; 6999 } 7000 7001 spin_lock_irq(&phba->hbalock); 7002 ras_fwlog->state = ACTIVE; 7003 spin_unlock_irq(&phba->hbalock); 7004 mempool_free(pmb, phba->mbox_mem_pool); 7005 7006 return; 7007 7008 disable_ras: 7009 /* Free RAS DMA memory */ 7010 lpfc_sli4_ras_dma_free(phba); 7011 mempool_free(pmb, phba->mbox_mem_pool); 7012 } 7013 7014 /** 7015 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7016 * @phba: pointer to lpfc hba data structure. 7017 * @fwlog_level: Logging verbosity level. 7018 * @fwlog_enable: Enable/Disable logging. 7019 * 7020 * Initialize memory and post mailbox command to enable FW logging in host 7021 * memory. 7022 **/ 7023 int 7024 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7025 uint32_t fwlog_level, 7026 uint32_t fwlog_enable) 7027 { 7028 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7029 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7030 struct lpfc_dmabuf *dmabuf; 7031 LPFC_MBOXQ_t *mbox; 7032 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7033 int rc = 0; 7034 7035 spin_lock_irq(&phba->hbalock); 7036 ras_fwlog->state = INACTIVE; 7037 spin_unlock_irq(&phba->hbalock); 7038 7039 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7040 phba->cfg_ras_fwlog_buffsize); 7041 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7042 7043 /* 7044 * If re-enabling FW logging support use earlier allocated 7045 * DMA buffers while posting MBX command. 7046 **/ 7047 if (!ras_fwlog->lwpd.virt) { 7048 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7049 if (rc) { 7050 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7051 "6189 FW Log Memory Allocation Failed"); 7052 return rc; 7053 } 7054 } 7055 7056 /* Setup Mailbox command */ 7057 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7058 if (!mbox) { 7059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7060 "6190 RAS MBX Alloc Failed"); 7061 rc = -ENOMEM; 7062 goto mem_free; 7063 } 7064 7065 ras_fwlog->fw_loglevel = fwlog_level; 7066 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7067 sizeof(struct lpfc_sli4_cfg_mhdr)); 7068 7069 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7070 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7071 len, LPFC_SLI4_MBX_EMBED); 7072 7073 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7074 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7075 fwlog_enable); 7076 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7077 ras_fwlog->fw_loglevel); 7078 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7079 ras_fwlog->fw_buffcount); 7080 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7081 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7082 7083 /* Update DMA buffer address */ 7084 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7085 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7086 7087 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7088 putPaddrLow(dmabuf->phys); 7089 7090 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7091 putPaddrHigh(dmabuf->phys); 7092 } 7093 7094 /* Update LPWD address */ 7095 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7096 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7097 7098 spin_lock_irq(&phba->hbalock); 7099 ras_fwlog->state = REG_INPROGRESS; 7100 spin_unlock_irq(&phba->hbalock); 7101 mbox->vport = phba->pport; 7102 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7103 7104 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7105 7106 if (rc == MBX_NOT_FINISHED) { 7107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7108 "6191 FW-Log Mailbox failed. " 7109 "status %d mbxStatus : x%x", rc, 7110 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7111 mempool_free(mbox, phba->mbox_mem_pool); 7112 rc = -EIO; 7113 goto mem_free; 7114 } else 7115 rc = 0; 7116 mem_free: 7117 if (rc) 7118 lpfc_sli4_ras_dma_free(phba); 7119 7120 return rc; 7121 } 7122 7123 /** 7124 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7125 * @phba: Pointer to HBA context object. 7126 * 7127 * Check if RAS is supported on the adapter and initialize it. 7128 **/ 7129 void 7130 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7131 { 7132 /* Check RAS FW Log needs to be enabled or not */ 7133 if (lpfc_check_fwlog_support(phba)) 7134 return; 7135 7136 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7137 LPFC_RAS_ENABLE_LOGGING); 7138 } 7139 7140 /** 7141 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7142 * @phba: Pointer to HBA context object. 7143 * 7144 * This function allocates all SLI4 resource identifiers. 7145 **/ 7146 int 7147 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7148 { 7149 int i, rc, error = 0; 7150 uint16_t count, base; 7151 unsigned long longs; 7152 7153 if (!phba->sli4_hba.rpi_hdrs_in_use) 7154 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7155 if (phba->sli4_hba.extents_in_use) { 7156 /* 7157 * The port supports resource extents. The XRI, VPI, VFI, RPI 7158 * resource extent count must be read and allocated before 7159 * provisioning the resource id arrays. 7160 */ 7161 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7162 LPFC_IDX_RSRC_RDY) { 7163 /* 7164 * Extent-based resources are set - the driver could 7165 * be in a port reset. Figure out if any corrective 7166 * actions need to be taken. 7167 */ 7168 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7169 LPFC_RSC_TYPE_FCOE_VFI); 7170 if (rc != 0) 7171 error++; 7172 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7173 LPFC_RSC_TYPE_FCOE_VPI); 7174 if (rc != 0) 7175 error++; 7176 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7177 LPFC_RSC_TYPE_FCOE_XRI); 7178 if (rc != 0) 7179 error++; 7180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7181 LPFC_RSC_TYPE_FCOE_RPI); 7182 if (rc != 0) 7183 error++; 7184 7185 /* 7186 * It's possible that the number of resources 7187 * provided to this port instance changed between 7188 * resets. Detect this condition and reallocate 7189 * resources. Otherwise, there is no action. 7190 */ 7191 if (error) { 7192 lpfc_printf_log(phba, KERN_INFO, 7193 LOG_MBOX | LOG_INIT, 7194 "2931 Detected extent resource " 7195 "change. Reallocating all " 7196 "extents.\n"); 7197 rc = lpfc_sli4_dealloc_extent(phba, 7198 LPFC_RSC_TYPE_FCOE_VFI); 7199 rc = lpfc_sli4_dealloc_extent(phba, 7200 LPFC_RSC_TYPE_FCOE_VPI); 7201 rc = lpfc_sli4_dealloc_extent(phba, 7202 LPFC_RSC_TYPE_FCOE_XRI); 7203 rc = lpfc_sli4_dealloc_extent(phba, 7204 LPFC_RSC_TYPE_FCOE_RPI); 7205 } else 7206 return 0; 7207 } 7208 7209 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7210 if (unlikely(rc)) 7211 goto err_exit; 7212 7213 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7214 if (unlikely(rc)) 7215 goto err_exit; 7216 7217 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7218 if (unlikely(rc)) 7219 goto err_exit; 7220 7221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7222 if (unlikely(rc)) 7223 goto err_exit; 7224 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7225 LPFC_IDX_RSRC_RDY); 7226 return rc; 7227 } else { 7228 /* 7229 * The port does not support resource extents. The XRI, VPI, 7230 * VFI, RPI resource ids were determined from READ_CONFIG. 7231 * Just allocate the bitmasks and provision the resource id 7232 * arrays. If a port reset is active, the resources don't 7233 * need any action - just exit. 7234 */ 7235 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7236 LPFC_IDX_RSRC_RDY) { 7237 lpfc_sli4_dealloc_resource_identifiers(phba); 7238 lpfc_sli4_remove_rpis(phba); 7239 } 7240 /* RPIs. */ 7241 count = phba->sli4_hba.max_cfg_param.max_rpi; 7242 if (count <= 0) { 7243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7244 "3279 Invalid provisioning of " 7245 "rpi:%d\n", count); 7246 rc = -EINVAL; 7247 goto err_exit; 7248 } 7249 base = phba->sli4_hba.max_cfg_param.rpi_base; 7250 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7251 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7252 sizeof(unsigned long), 7253 GFP_KERNEL); 7254 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7255 rc = -ENOMEM; 7256 goto err_exit; 7257 } 7258 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7259 GFP_KERNEL); 7260 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7261 rc = -ENOMEM; 7262 goto free_rpi_bmask; 7263 } 7264 7265 for (i = 0; i < count; i++) 7266 phba->sli4_hba.rpi_ids[i] = base + i; 7267 7268 /* VPIs. */ 7269 count = phba->sli4_hba.max_cfg_param.max_vpi; 7270 if (count <= 0) { 7271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7272 "3280 Invalid provisioning of " 7273 "vpi:%d\n", count); 7274 rc = -EINVAL; 7275 goto free_rpi_ids; 7276 } 7277 base = phba->sli4_hba.max_cfg_param.vpi_base; 7278 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7279 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7280 GFP_KERNEL); 7281 if (unlikely(!phba->vpi_bmask)) { 7282 rc = -ENOMEM; 7283 goto free_rpi_ids; 7284 } 7285 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7286 GFP_KERNEL); 7287 if (unlikely(!phba->vpi_ids)) { 7288 rc = -ENOMEM; 7289 goto free_vpi_bmask; 7290 } 7291 7292 for (i = 0; i < count; i++) 7293 phba->vpi_ids[i] = base + i; 7294 7295 /* XRIs. */ 7296 count = phba->sli4_hba.max_cfg_param.max_xri; 7297 if (count <= 0) { 7298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7299 "3281 Invalid provisioning of " 7300 "xri:%d\n", count); 7301 rc = -EINVAL; 7302 goto free_vpi_ids; 7303 } 7304 base = phba->sli4_hba.max_cfg_param.xri_base; 7305 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7306 phba->sli4_hba.xri_bmask = kcalloc(longs, 7307 sizeof(unsigned long), 7308 GFP_KERNEL); 7309 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7310 rc = -ENOMEM; 7311 goto free_vpi_ids; 7312 } 7313 phba->sli4_hba.max_cfg_param.xri_used = 0; 7314 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7315 GFP_KERNEL); 7316 if (unlikely(!phba->sli4_hba.xri_ids)) { 7317 rc = -ENOMEM; 7318 goto free_xri_bmask; 7319 } 7320 7321 for (i = 0; i < count; i++) 7322 phba->sli4_hba.xri_ids[i] = base + i; 7323 7324 /* VFIs. */ 7325 count = phba->sli4_hba.max_cfg_param.max_vfi; 7326 if (count <= 0) { 7327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7328 "3282 Invalid provisioning of " 7329 "vfi:%d\n", count); 7330 rc = -EINVAL; 7331 goto free_xri_ids; 7332 } 7333 base = phba->sli4_hba.max_cfg_param.vfi_base; 7334 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7335 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7336 sizeof(unsigned long), 7337 GFP_KERNEL); 7338 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7339 rc = -ENOMEM; 7340 goto free_xri_ids; 7341 } 7342 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7343 GFP_KERNEL); 7344 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7345 rc = -ENOMEM; 7346 goto free_vfi_bmask; 7347 } 7348 7349 for (i = 0; i < count; i++) 7350 phba->sli4_hba.vfi_ids[i] = base + i; 7351 7352 /* 7353 * Mark all resources ready. An HBA reset doesn't need 7354 * to reset the initialization. 7355 */ 7356 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7357 LPFC_IDX_RSRC_RDY); 7358 return 0; 7359 } 7360 7361 free_vfi_bmask: 7362 kfree(phba->sli4_hba.vfi_bmask); 7363 phba->sli4_hba.vfi_bmask = NULL; 7364 free_xri_ids: 7365 kfree(phba->sli4_hba.xri_ids); 7366 phba->sli4_hba.xri_ids = NULL; 7367 free_xri_bmask: 7368 kfree(phba->sli4_hba.xri_bmask); 7369 phba->sli4_hba.xri_bmask = NULL; 7370 free_vpi_ids: 7371 kfree(phba->vpi_ids); 7372 phba->vpi_ids = NULL; 7373 free_vpi_bmask: 7374 kfree(phba->vpi_bmask); 7375 phba->vpi_bmask = NULL; 7376 free_rpi_ids: 7377 kfree(phba->sli4_hba.rpi_ids); 7378 phba->sli4_hba.rpi_ids = NULL; 7379 free_rpi_bmask: 7380 kfree(phba->sli4_hba.rpi_bmask); 7381 phba->sli4_hba.rpi_bmask = NULL; 7382 err_exit: 7383 return rc; 7384 } 7385 7386 /** 7387 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7388 * @phba: Pointer to HBA context object. 7389 * 7390 * This function allocates the number of elements for the specified 7391 * resource type. 7392 **/ 7393 int 7394 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7395 { 7396 if (phba->sli4_hba.extents_in_use) { 7397 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7398 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7399 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7400 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7401 } else { 7402 kfree(phba->vpi_bmask); 7403 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7404 kfree(phba->vpi_ids); 7405 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7406 kfree(phba->sli4_hba.xri_bmask); 7407 kfree(phba->sli4_hba.xri_ids); 7408 kfree(phba->sli4_hba.vfi_bmask); 7409 kfree(phba->sli4_hba.vfi_ids); 7410 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7411 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7412 } 7413 7414 return 0; 7415 } 7416 7417 /** 7418 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7419 * @phba: Pointer to HBA context object. 7420 * @type: The resource extent type. 7421 * @extnt_cnt: buffer to hold port extent count response 7422 * @extnt_size: buffer to hold port extent size response. 7423 * 7424 * This function calls the port to read the host allocated extents 7425 * for a particular type. 7426 **/ 7427 int 7428 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7429 uint16_t *extnt_cnt, uint16_t *extnt_size) 7430 { 7431 bool emb; 7432 int rc = 0; 7433 uint16_t curr_blks = 0; 7434 uint32_t req_len, emb_len; 7435 uint32_t alloc_len, mbox_tmo; 7436 struct list_head *blk_list_head; 7437 struct lpfc_rsrc_blks *rsrc_blk; 7438 LPFC_MBOXQ_t *mbox; 7439 void *virtaddr = NULL; 7440 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7441 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7442 union lpfc_sli4_cfg_shdr *shdr; 7443 7444 switch (type) { 7445 case LPFC_RSC_TYPE_FCOE_VPI: 7446 blk_list_head = &phba->lpfc_vpi_blk_list; 7447 break; 7448 case LPFC_RSC_TYPE_FCOE_XRI: 7449 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7450 break; 7451 case LPFC_RSC_TYPE_FCOE_VFI: 7452 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7453 break; 7454 case LPFC_RSC_TYPE_FCOE_RPI: 7455 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7456 break; 7457 default: 7458 return -EIO; 7459 } 7460 7461 /* Count the number of extents currently allocatd for this type. */ 7462 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7463 if (curr_blks == 0) { 7464 /* 7465 * The GET_ALLOCATED mailbox does not return the size, 7466 * just the count. The size should be just the size 7467 * stored in the current allocated block and all sizes 7468 * for an extent type are the same so set the return 7469 * value now. 7470 */ 7471 *extnt_size = rsrc_blk->rsrc_size; 7472 } 7473 curr_blks++; 7474 } 7475 7476 /* 7477 * Calculate the size of an embedded mailbox. The uint32_t 7478 * accounts for extents-specific word. 7479 */ 7480 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7481 sizeof(uint32_t); 7482 7483 /* 7484 * Presume the allocation and response will fit into an embedded 7485 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7486 */ 7487 emb = LPFC_SLI4_MBX_EMBED; 7488 req_len = emb_len; 7489 if (req_len > emb_len) { 7490 req_len = curr_blks * sizeof(uint16_t) + 7491 sizeof(union lpfc_sli4_cfg_shdr) + 7492 sizeof(uint32_t); 7493 emb = LPFC_SLI4_MBX_NEMBED; 7494 } 7495 7496 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7497 if (!mbox) 7498 return -ENOMEM; 7499 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7500 7501 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7502 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7503 req_len, emb); 7504 if (alloc_len < req_len) { 7505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7506 "2983 Allocated DMA memory size (x%x) is " 7507 "less than the requested DMA memory " 7508 "size (x%x)\n", alloc_len, req_len); 7509 rc = -ENOMEM; 7510 goto err_exit; 7511 } 7512 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7513 if (unlikely(rc)) { 7514 rc = -EIO; 7515 goto err_exit; 7516 } 7517 7518 if (!phba->sli4_hba.intr_enable) 7519 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7520 else { 7521 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7522 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7523 } 7524 7525 if (unlikely(rc)) { 7526 rc = -EIO; 7527 goto err_exit; 7528 } 7529 7530 /* 7531 * Figure out where the response is located. Then get local pointers 7532 * to the response data. The port does not guarantee to respond to 7533 * all extents counts request so update the local variable with the 7534 * allocated count from the port. 7535 */ 7536 if (emb == LPFC_SLI4_MBX_EMBED) { 7537 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7538 shdr = &rsrc_ext->header.cfg_shdr; 7539 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7540 } else { 7541 virtaddr = mbox->sge_array->addr[0]; 7542 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7543 shdr = &n_rsrc->cfg_shdr; 7544 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7545 } 7546 7547 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7548 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7549 "2984 Failed to read allocated resources " 7550 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7551 type, 7552 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7553 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7554 rc = -EIO; 7555 goto err_exit; 7556 } 7557 err_exit: 7558 lpfc_sli4_mbox_cmd_free(phba, mbox); 7559 return rc; 7560 } 7561 7562 /** 7563 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7564 * @phba: pointer to lpfc hba data structure. 7565 * @sgl_list: linked link of sgl buffers to post 7566 * @cnt: number of linked list buffers 7567 * 7568 * This routine walks the list of buffers that have been allocated and 7569 * repost them to the port by using SGL block post. This is needed after a 7570 * pci_function_reset/warm_start or start. It attempts to construct blocks 7571 * of buffer sgls which contains contiguous xris and uses the non-embedded 7572 * SGL block post mailbox commands to post them to the port. For single 7573 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7574 * mailbox command for posting. 7575 * 7576 * Returns: 0 = success, non-zero failure. 7577 **/ 7578 static int 7579 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7580 struct list_head *sgl_list, int cnt) 7581 { 7582 struct lpfc_sglq *sglq_entry = NULL; 7583 struct lpfc_sglq *sglq_entry_next = NULL; 7584 struct lpfc_sglq *sglq_entry_first = NULL; 7585 int status = 0, total_cnt; 7586 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7587 int last_xritag = NO_XRI; 7588 LIST_HEAD(prep_sgl_list); 7589 LIST_HEAD(blck_sgl_list); 7590 LIST_HEAD(allc_sgl_list); 7591 LIST_HEAD(post_sgl_list); 7592 LIST_HEAD(free_sgl_list); 7593 7594 spin_lock_irq(&phba->hbalock); 7595 spin_lock(&phba->sli4_hba.sgl_list_lock); 7596 list_splice_init(sgl_list, &allc_sgl_list); 7597 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7598 spin_unlock_irq(&phba->hbalock); 7599 7600 total_cnt = cnt; 7601 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7602 &allc_sgl_list, list) { 7603 list_del_init(&sglq_entry->list); 7604 block_cnt++; 7605 if ((last_xritag != NO_XRI) && 7606 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7607 /* a hole in xri block, form a sgl posting block */ 7608 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7609 post_cnt = block_cnt - 1; 7610 /* prepare list for next posting block */ 7611 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7612 block_cnt = 1; 7613 } else { 7614 /* prepare list for next posting block */ 7615 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7616 /* enough sgls for non-embed sgl mbox command */ 7617 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7618 list_splice_init(&prep_sgl_list, 7619 &blck_sgl_list); 7620 post_cnt = block_cnt; 7621 block_cnt = 0; 7622 } 7623 } 7624 num_posted++; 7625 7626 /* keep track of last sgl's xritag */ 7627 last_xritag = sglq_entry->sli4_xritag; 7628 7629 /* end of repost sgl list condition for buffers */ 7630 if (num_posted == total_cnt) { 7631 if (post_cnt == 0) { 7632 list_splice_init(&prep_sgl_list, 7633 &blck_sgl_list); 7634 post_cnt = block_cnt; 7635 } else if (block_cnt == 1) { 7636 status = lpfc_sli4_post_sgl(phba, 7637 sglq_entry->phys, 0, 7638 sglq_entry->sli4_xritag); 7639 if (!status) { 7640 /* successful, put sgl to posted list */ 7641 list_add_tail(&sglq_entry->list, 7642 &post_sgl_list); 7643 } else { 7644 /* Failure, put sgl to free list */ 7645 lpfc_printf_log(phba, KERN_WARNING, 7646 LOG_SLI, 7647 "3159 Failed to post " 7648 "sgl, xritag:x%x\n", 7649 sglq_entry->sli4_xritag); 7650 list_add_tail(&sglq_entry->list, 7651 &free_sgl_list); 7652 total_cnt--; 7653 } 7654 } 7655 } 7656 7657 /* continue until a nembed page worth of sgls */ 7658 if (post_cnt == 0) 7659 continue; 7660 7661 /* post the buffer list sgls as a block */ 7662 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7663 post_cnt); 7664 7665 if (!status) { 7666 /* success, put sgl list to posted sgl list */ 7667 list_splice_init(&blck_sgl_list, &post_sgl_list); 7668 } else { 7669 /* Failure, put sgl list to free sgl list */ 7670 sglq_entry_first = list_first_entry(&blck_sgl_list, 7671 struct lpfc_sglq, 7672 list); 7673 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7674 "3160 Failed to post sgl-list, " 7675 "xritag:x%x-x%x\n", 7676 sglq_entry_first->sli4_xritag, 7677 (sglq_entry_first->sli4_xritag + 7678 post_cnt - 1)); 7679 list_splice_init(&blck_sgl_list, &free_sgl_list); 7680 total_cnt -= post_cnt; 7681 } 7682 7683 /* don't reset xirtag due to hole in xri block */ 7684 if (block_cnt == 0) 7685 last_xritag = NO_XRI; 7686 7687 /* reset sgl post count for next round of posting */ 7688 post_cnt = 0; 7689 } 7690 7691 /* free the sgls failed to post */ 7692 lpfc_free_sgl_list(phba, &free_sgl_list); 7693 7694 /* push sgls posted to the available list */ 7695 if (!list_empty(&post_sgl_list)) { 7696 spin_lock_irq(&phba->hbalock); 7697 spin_lock(&phba->sli4_hba.sgl_list_lock); 7698 list_splice_init(&post_sgl_list, sgl_list); 7699 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7700 spin_unlock_irq(&phba->hbalock); 7701 } else { 7702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7703 "3161 Failure to post sgl to port,status %x " 7704 "blkcnt %d totalcnt %d postcnt %d\n", 7705 status, block_cnt, total_cnt, post_cnt); 7706 return -EIO; 7707 } 7708 7709 /* return the number of XRIs actually posted */ 7710 return total_cnt; 7711 } 7712 7713 /** 7714 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7715 * @phba: pointer to lpfc hba data structure. 7716 * 7717 * This routine walks the list of nvme buffers that have been allocated and 7718 * repost them to the port by using SGL block post. This is needed after a 7719 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7720 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7721 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7722 * 7723 * Returns: 0 = success, non-zero failure. 7724 **/ 7725 static int 7726 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7727 { 7728 LIST_HEAD(post_nblist); 7729 int num_posted, rc = 0; 7730 7731 /* get all NVME buffers need to repost to a local list */ 7732 lpfc_io_buf_flush(phba, &post_nblist); 7733 7734 /* post the list of nvme buffer sgls to port if available */ 7735 if (!list_empty(&post_nblist)) { 7736 num_posted = lpfc_sli4_post_io_sgl_list( 7737 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7738 /* failed to post any nvme buffer, return error */ 7739 if (num_posted == 0) 7740 rc = -EIO; 7741 } 7742 return rc; 7743 } 7744 7745 static void 7746 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7747 { 7748 uint32_t len; 7749 7750 len = sizeof(struct lpfc_mbx_set_host_data) - 7751 sizeof(struct lpfc_sli4_cfg_mhdr); 7752 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7753 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7754 LPFC_SLI4_MBX_EMBED); 7755 7756 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7757 mbox->u.mqe.un.set_host_data.param_len = 7758 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7759 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7760 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7761 "Linux %s v"LPFC_DRIVER_VERSION, 7762 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7763 } 7764 7765 int 7766 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7767 struct lpfc_queue *drq, int count, int idx) 7768 { 7769 int rc, i; 7770 struct lpfc_rqe hrqe; 7771 struct lpfc_rqe drqe; 7772 struct lpfc_rqb *rqbp; 7773 unsigned long flags; 7774 struct rqb_dmabuf *rqb_buffer; 7775 LIST_HEAD(rqb_buf_list); 7776 7777 rqbp = hrq->rqbp; 7778 for (i = 0; i < count; i++) { 7779 spin_lock_irqsave(&phba->hbalock, flags); 7780 /* IF RQ is already full, don't bother */ 7781 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7782 spin_unlock_irqrestore(&phba->hbalock, flags); 7783 break; 7784 } 7785 spin_unlock_irqrestore(&phba->hbalock, flags); 7786 7787 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7788 if (!rqb_buffer) 7789 break; 7790 rqb_buffer->hrq = hrq; 7791 rqb_buffer->drq = drq; 7792 rqb_buffer->idx = idx; 7793 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7794 } 7795 7796 spin_lock_irqsave(&phba->hbalock, flags); 7797 while (!list_empty(&rqb_buf_list)) { 7798 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7799 hbuf.list); 7800 7801 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7802 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7803 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7804 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7805 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7806 if (rc < 0) { 7807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7808 "6421 Cannot post to HRQ %d: %x %x %x " 7809 "DRQ %x %x\n", 7810 hrq->queue_id, 7811 hrq->host_index, 7812 hrq->hba_index, 7813 hrq->entry_count, 7814 drq->host_index, 7815 drq->hba_index); 7816 rqbp->rqb_free_buffer(phba, rqb_buffer); 7817 } else { 7818 list_add_tail(&rqb_buffer->hbuf.list, 7819 &rqbp->rqb_buffer_list); 7820 rqbp->buffer_count++; 7821 } 7822 } 7823 spin_unlock_irqrestore(&phba->hbalock, flags); 7824 return 1; 7825 } 7826 7827 static void 7828 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7829 { 7830 union lpfc_sli4_cfg_shdr *shdr; 7831 u32 shdr_status, shdr_add_status; 7832 7833 shdr = (union lpfc_sli4_cfg_shdr *) 7834 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7835 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7836 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7837 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7838 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7839 "4622 SET_FEATURE (x%x) mbox failed, " 7840 "status x%x add_status x%x, mbx status x%x\n", 7841 LPFC_SET_LD_SIGNAL, shdr_status, 7842 shdr_add_status, pmb->u.mb.mbxStatus); 7843 phba->degrade_activate_threshold = 0; 7844 phba->degrade_deactivate_threshold = 0; 7845 phba->fec_degrade_interval = 0; 7846 goto out; 7847 } 7848 7849 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7850 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7851 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7852 7853 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7854 "4624 Success: da x%x dd x%x interval x%x\n", 7855 phba->degrade_activate_threshold, 7856 phba->degrade_deactivate_threshold, 7857 phba->fec_degrade_interval); 7858 out: 7859 mempool_free(pmb, phba->mbox_mem_pool); 7860 } 7861 7862 int 7863 lpfc_read_lds_params(struct lpfc_hba *phba) 7864 { 7865 LPFC_MBOXQ_t *mboxq; 7866 int rc; 7867 7868 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7869 if (!mboxq) 7870 return -ENOMEM; 7871 7872 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7873 mboxq->vport = phba->pport; 7874 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7875 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7876 if (rc == MBX_NOT_FINISHED) { 7877 mempool_free(mboxq, phba->mbox_mem_pool); 7878 return -EIO; 7879 } 7880 return 0; 7881 } 7882 7883 static void 7884 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7885 { 7886 struct lpfc_vport *vport = pmb->vport; 7887 union lpfc_sli4_cfg_shdr *shdr; 7888 u32 shdr_status, shdr_add_status; 7889 u32 sig, acqe; 7890 7891 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7892 * is done. (2) Mailbox failed and send FPIN support only. 7893 */ 7894 shdr = (union lpfc_sli4_cfg_shdr *) 7895 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7898 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7900 "2516 CGN SET_FEATURE mbox failed with " 7901 "status x%x add_status x%x, mbx status x%x " 7902 "Reset Congestion to FPINs only\n", 7903 shdr_status, shdr_add_status, 7904 pmb->u.mb.mbxStatus); 7905 /* If there is a mbox error, move on to RDF */ 7906 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7907 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7908 goto out; 7909 } 7910 7911 /* Zero out Congestion Signal ACQE counter */ 7912 phba->cgn_acqe_cnt = 0; 7913 7914 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7915 &pmb->u.mqe.un.set_feature); 7916 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7917 &pmb->u.mqe.un.set_feature); 7918 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7919 "4620 SET_FEATURES Success: Freq: %ds %dms " 7920 " Reg: x%x x%x\n", acqe, sig, 7921 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7922 out: 7923 mempool_free(pmb, phba->mbox_mem_pool); 7924 7925 /* Register for FPIN events from the fabric now that the 7926 * EDC common_set_features has completed. 7927 */ 7928 lpfc_issue_els_rdf(vport, 0); 7929 } 7930 7931 int 7932 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7933 { 7934 LPFC_MBOXQ_t *mboxq; 7935 u32 rc; 7936 7937 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7938 if (!mboxq) 7939 goto out_rdf; 7940 7941 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7942 mboxq->vport = phba->pport; 7943 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7944 7945 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7946 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7947 "Reg: x%x x%x\n", 7948 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7949 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7950 7951 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7952 if (rc == MBX_NOT_FINISHED) 7953 goto out; 7954 return 0; 7955 7956 out: 7957 mempool_free(mboxq, phba->mbox_mem_pool); 7958 out_rdf: 7959 /* If there is a mbox error, move on to RDF */ 7960 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7961 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7962 lpfc_issue_els_rdf(phba->pport, 0); 7963 return -EIO; 7964 } 7965 7966 /** 7967 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7968 * @phba: pointer to lpfc hba data structure. 7969 * 7970 * This routine initializes the per-eq idle_stat to dynamically dictate 7971 * polling decisions. 7972 * 7973 * Return codes: 7974 * None 7975 **/ 7976 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7977 { 7978 int i; 7979 struct lpfc_sli4_hdw_queue *hdwq; 7980 struct lpfc_queue *eq; 7981 struct lpfc_idle_stat *idle_stat; 7982 u64 wall; 7983 7984 for_each_present_cpu(i) { 7985 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7986 eq = hdwq->hba_eq; 7987 7988 /* Skip if we've already handled this eq's primary CPU */ 7989 if (eq->chann != i) 7990 continue; 7991 7992 idle_stat = &phba->sli4_hba.idle_stat[i]; 7993 7994 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7995 idle_stat->prev_wall = wall; 7996 7997 if (phba->nvmet_support || 7998 phba->cmf_active_mode != LPFC_CFG_OFF || 7999 phba->intr_type != MSIX) 8000 eq->poll_mode = LPFC_QUEUE_WORK; 8001 else 8002 eq->poll_mode = LPFC_THREADED_IRQ; 8003 } 8004 8005 if (!phba->nvmet_support && phba->intr_type == MSIX) 8006 schedule_delayed_work(&phba->idle_stat_delay_work, 8007 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8008 } 8009 8010 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8011 { 8012 uint32_t if_type; 8013 8014 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8015 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8016 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8017 struct lpfc_register reg_data; 8018 8019 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8020 ®_data.word0)) 8021 return; 8022 8023 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8024 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8025 "2904 Firmware Dump Image Present" 8026 " on Adapter"); 8027 } 8028 } 8029 8030 /** 8031 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8032 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8033 * @entries: Number of rx_info_entry objects to allocate in ring 8034 * 8035 * Return: 8036 * 0 - Success 8037 * ENOMEM - Failure to kmalloc 8038 **/ 8039 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8040 u32 entries) 8041 { 8042 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8043 GFP_KERNEL); 8044 if (!rx_monitor->ring) 8045 return -ENOMEM; 8046 8047 rx_monitor->head_idx = 0; 8048 rx_monitor->tail_idx = 0; 8049 spin_lock_init(&rx_monitor->lock); 8050 rx_monitor->entries = entries; 8051 8052 return 0; 8053 } 8054 8055 /** 8056 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8057 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8058 * 8059 * Called after cancellation of cmf_timer. 8060 **/ 8061 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8062 { 8063 kfree(rx_monitor->ring); 8064 rx_monitor->ring = NULL; 8065 rx_monitor->entries = 0; 8066 rx_monitor->head_idx = 0; 8067 rx_monitor->tail_idx = 0; 8068 } 8069 8070 /** 8071 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8072 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8073 * @entry: Pointer to rx_info_entry 8074 * 8075 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8076 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8077 * 8078 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8079 * 8080 * In cases of old data overflow, we do a best effort of FIFO order. 8081 **/ 8082 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8083 struct rx_info_entry *entry) 8084 { 8085 struct rx_info_entry *ring = rx_monitor->ring; 8086 u32 *head_idx = &rx_monitor->head_idx; 8087 u32 *tail_idx = &rx_monitor->tail_idx; 8088 spinlock_t *ring_lock = &rx_monitor->lock; 8089 u32 ring_size = rx_monitor->entries; 8090 8091 spin_lock(ring_lock); 8092 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8093 *tail_idx = (*tail_idx + 1) % ring_size; 8094 8095 /* Best effort of FIFO saved data */ 8096 if (*tail_idx == *head_idx) 8097 *head_idx = (*head_idx + 1) % ring_size; 8098 8099 spin_unlock(ring_lock); 8100 } 8101 8102 /** 8103 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8104 * @phba: Pointer to lpfc_hba object 8105 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8106 * @buf: Pointer to char buffer that will contain rx monitor info data 8107 * @buf_len: Length buf including null char 8108 * @max_read_entries: Maximum number of entries to read out of ring 8109 * 8110 * Used to dump/read what's in rx_monitor's ring buffer. 8111 * 8112 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8113 * information to kmsg instead of filling out buf. 8114 * 8115 * Return: 8116 * Number of entries read out of the ring 8117 **/ 8118 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8119 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8120 u32 buf_len, u32 max_read_entries) 8121 { 8122 struct rx_info_entry *ring = rx_monitor->ring; 8123 struct rx_info_entry *entry; 8124 u32 *head_idx = &rx_monitor->head_idx; 8125 u32 *tail_idx = &rx_monitor->tail_idx; 8126 spinlock_t *ring_lock = &rx_monitor->lock; 8127 u32 ring_size = rx_monitor->entries; 8128 u32 cnt = 0; 8129 char tmp[DBG_LOG_STR_SZ] = {0}; 8130 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8131 8132 if (!log_to_kmsg) { 8133 /* clear the buffer to be sure */ 8134 memset(buf, 0, buf_len); 8135 8136 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8137 "%-8s%-8s%-8s%-16s\n", 8138 "MaxBPI", "Tot_Data_CMF", 8139 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8140 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8141 "IO_cnt", "Info", "BWutil(ms)"); 8142 } 8143 8144 /* Needs to be _irq because record is called from timer interrupt 8145 * context 8146 */ 8147 spin_lock_irq(ring_lock); 8148 while (*head_idx != *tail_idx) { 8149 entry = &ring[*head_idx]; 8150 8151 /* Read out this entry's data. */ 8152 if (!log_to_kmsg) { 8153 /* If !log_to_kmsg, then store to buf. */ 8154 scnprintf(tmp, sizeof(tmp), 8155 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8156 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8157 *head_idx, entry->max_bytes_per_interval, 8158 entry->cmf_bytes, entry->total_bytes, 8159 entry->rcv_bytes, entry->avg_io_latency, 8160 entry->avg_io_size, entry->max_read_cnt, 8161 entry->cmf_busy, entry->io_cnt, 8162 entry->cmf_info, entry->timer_utilization, 8163 entry->timer_interval); 8164 8165 /* Check for buffer overflow */ 8166 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8167 break; 8168 8169 /* Append entry's data to buffer */ 8170 strlcat(buf, tmp, buf_len); 8171 } else { 8172 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8173 "4410 %02u: MBPI %llu Xmit %llu " 8174 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8175 "BWUtil %u Int %u slot %u\n", 8176 cnt, entry->max_bytes_per_interval, 8177 entry->total_bytes, entry->rcv_bytes, 8178 entry->avg_io_latency, 8179 entry->avg_io_size, entry->cmf_info, 8180 entry->timer_utilization, 8181 entry->timer_interval, *head_idx); 8182 } 8183 8184 *head_idx = (*head_idx + 1) % ring_size; 8185 8186 /* Don't feed more than max_read_entries */ 8187 cnt++; 8188 if (cnt >= max_read_entries) 8189 break; 8190 } 8191 spin_unlock_irq(ring_lock); 8192 8193 return cnt; 8194 } 8195 8196 /** 8197 * lpfc_cmf_setup - Initialize idle_stat tracking 8198 * @phba: Pointer to HBA context object. 8199 * 8200 * This is called from HBA setup during driver load or when the HBA 8201 * comes online. this does all the initialization to support CMF and MI. 8202 **/ 8203 static int 8204 lpfc_cmf_setup(struct lpfc_hba *phba) 8205 { 8206 LPFC_MBOXQ_t *mboxq; 8207 struct lpfc_dmabuf *mp; 8208 struct lpfc_pc_sli4_params *sli4_params; 8209 int rc, cmf, mi_ver; 8210 8211 rc = lpfc_sli4_refresh_params(phba); 8212 if (unlikely(rc)) 8213 return rc; 8214 8215 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8216 if (!mboxq) 8217 return -ENOMEM; 8218 8219 sli4_params = &phba->sli4_hba.pc_sli4_params; 8220 8221 /* Always try to enable MI feature if we can */ 8222 if (sli4_params->mi_ver) { 8223 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8224 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8225 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8226 &mboxq->u.mqe.un.set_feature); 8227 8228 if (rc == MBX_SUCCESS) { 8229 if (mi_ver) { 8230 lpfc_printf_log(phba, 8231 KERN_WARNING, LOG_CGN_MGMT, 8232 "6215 MI is enabled\n"); 8233 sli4_params->mi_ver = mi_ver; 8234 } else { 8235 lpfc_printf_log(phba, 8236 KERN_WARNING, LOG_CGN_MGMT, 8237 "6338 MI is disabled\n"); 8238 sli4_params->mi_ver = 0; 8239 } 8240 } else { 8241 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8242 lpfc_printf_log(phba, KERN_INFO, 8243 LOG_CGN_MGMT | LOG_INIT, 8244 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8245 "failed, rc:x%x mi:x%x\n", 8246 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8247 lpfc_sli_config_mbox_subsys_get 8248 (phba, mboxq), 8249 lpfc_sli_config_mbox_opcode_get 8250 (phba, mboxq), 8251 rc, sli4_params->mi_ver); 8252 } 8253 } else { 8254 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8255 "6217 MI is disabled\n"); 8256 } 8257 8258 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8259 if (sli4_params->mi_ver) 8260 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8261 8262 /* Always try to enable CMF feature if we can */ 8263 if (sli4_params->cmf) { 8264 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8265 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8266 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8267 &mboxq->u.mqe.un.set_feature); 8268 if (rc == MBX_SUCCESS && cmf) { 8269 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8270 "6218 CMF is enabled: mode %d\n", 8271 phba->cmf_active_mode); 8272 } else { 8273 lpfc_printf_log(phba, KERN_WARNING, 8274 LOG_CGN_MGMT | LOG_INIT, 8275 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8276 "failed, rc:x%x dd:x%x\n", 8277 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8278 lpfc_sli_config_mbox_subsys_get 8279 (phba, mboxq), 8280 lpfc_sli_config_mbox_opcode_get 8281 (phba, mboxq), 8282 rc, cmf); 8283 sli4_params->cmf = 0; 8284 phba->cmf_active_mode = LPFC_CFG_OFF; 8285 goto no_cmf; 8286 } 8287 8288 /* Allocate Congestion Information Buffer */ 8289 if (!phba->cgn_i) { 8290 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8291 if (mp) 8292 mp->virt = dma_alloc_coherent 8293 (&phba->pcidev->dev, 8294 sizeof(struct lpfc_cgn_info), 8295 &mp->phys, GFP_KERNEL); 8296 if (!mp || !mp->virt) { 8297 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8298 "2640 Failed to alloc memory " 8299 "for Congestion Info\n"); 8300 kfree(mp); 8301 sli4_params->cmf = 0; 8302 phba->cmf_active_mode = LPFC_CFG_OFF; 8303 goto no_cmf; 8304 } 8305 phba->cgn_i = mp; 8306 8307 /* initialize congestion buffer info */ 8308 lpfc_init_congestion_buf(phba); 8309 lpfc_init_congestion_stat(phba); 8310 8311 /* Zero out Congestion Signal counters */ 8312 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8313 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8314 } 8315 8316 rc = lpfc_sli4_cgn_params_read(phba); 8317 if (rc < 0) { 8318 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8319 "6242 Error reading Cgn Params (%d)\n", 8320 rc); 8321 /* Ensure CGN Mode is off */ 8322 sli4_params->cmf = 0; 8323 } else if (!rc) { 8324 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8325 "6243 CGN Event empty object.\n"); 8326 /* Ensure CGN Mode is off */ 8327 sli4_params->cmf = 0; 8328 } 8329 } else { 8330 no_cmf: 8331 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8332 "6220 CMF is disabled\n"); 8333 } 8334 8335 /* Only register congestion buffer with firmware if BOTH 8336 * CMF and E2E are enabled. 8337 */ 8338 if (sli4_params->cmf && sli4_params->mi_ver) { 8339 rc = lpfc_reg_congestion_buf(phba); 8340 if (rc) { 8341 dma_free_coherent(&phba->pcidev->dev, 8342 sizeof(struct lpfc_cgn_info), 8343 phba->cgn_i->virt, phba->cgn_i->phys); 8344 kfree(phba->cgn_i); 8345 phba->cgn_i = NULL; 8346 /* Ensure CGN Mode is off */ 8347 phba->cmf_active_mode = LPFC_CFG_OFF; 8348 sli4_params->cmf = 0; 8349 return 0; 8350 } 8351 } 8352 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8353 "6470 Setup MI version %d CMF %d mode %d\n", 8354 sli4_params->mi_ver, sli4_params->cmf, 8355 phba->cmf_active_mode); 8356 8357 mempool_free(mboxq, phba->mbox_mem_pool); 8358 8359 /* Initialize atomic counters */ 8360 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8361 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8362 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8363 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8364 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8365 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8366 atomic64_set(&phba->cgn_latency_evt, 0); 8367 8368 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8369 8370 /* Allocate RX Monitor Buffer */ 8371 if (!phba->rx_monitor) { 8372 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8373 GFP_KERNEL); 8374 8375 if (!phba->rx_monitor) { 8376 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8377 "2644 Failed to alloc memory " 8378 "for RX Monitor Buffer\n"); 8379 return -ENOMEM; 8380 } 8381 8382 /* Instruct the rx_monitor object to instantiate its ring */ 8383 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8384 LPFC_MAX_RXMONITOR_ENTRY)) { 8385 kfree(phba->rx_monitor); 8386 phba->rx_monitor = NULL; 8387 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8388 "2645 Failed to alloc memory " 8389 "for RX Monitor's Ring\n"); 8390 return -ENOMEM; 8391 } 8392 } 8393 8394 return 0; 8395 } 8396 8397 static int 8398 lpfc_set_host_tm(struct lpfc_hba *phba) 8399 { 8400 LPFC_MBOXQ_t *mboxq; 8401 uint32_t len, rc; 8402 struct timespec64 cur_time; 8403 struct tm broken; 8404 uint32_t month, day, year; 8405 uint32_t hour, minute, second; 8406 struct lpfc_mbx_set_host_date_time *tm; 8407 8408 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8409 if (!mboxq) 8410 return -ENOMEM; 8411 8412 len = sizeof(struct lpfc_mbx_set_host_data) - 8413 sizeof(struct lpfc_sli4_cfg_mhdr); 8414 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8415 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8416 LPFC_SLI4_MBX_EMBED); 8417 8418 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8419 mboxq->u.mqe.un.set_host_data.param_len = 8420 sizeof(struct lpfc_mbx_set_host_date_time); 8421 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8422 ktime_get_real_ts64(&cur_time); 8423 time64_to_tm(cur_time.tv_sec, 0, &broken); 8424 month = broken.tm_mon + 1; 8425 day = broken.tm_mday; 8426 year = broken.tm_year - 100; 8427 hour = broken.tm_hour; 8428 minute = broken.tm_min; 8429 second = broken.tm_sec; 8430 bf_set(lpfc_mbx_set_host_month, tm, month); 8431 bf_set(lpfc_mbx_set_host_day, tm, day); 8432 bf_set(lpfc_mbx_set_host_year, tm, year); 8433 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8434 bf_set(lpfc_mbx_set_host_min, tm, minute); 8435 bf_set(lpfc_mbx_set_host_sec, tm, second); 8436 8437 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8438 mempool_free(mboxq, phba->mbox_mem_pool); 8439 return rc; 8440 } 8441 8442 /** 8443 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8444 * @phba: Pointer to HBA context object. 8445 * 8446 * This function is the main SLI4 device initialization PCI function. This 8447 * function is called by the HBA initialization code, HBA reset code and 8448 * HBA error attention handler code. Caller is not required to hold any 8449 * locks. 8450 **/ 8451 int 8452 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8453 { 8454 int rc, i, cnt, len, dd; 8455 LPFC_MBOXQ_t *mboxq; 8456 struct lpfc_mqe *mqe; 8457 uint8_t *vpd; 8458 uint32_t vpd_size; 8459 uint32_t ftr_rsp = 0; 8460 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8461 struct lpfc_vport *vport = phba->pport; 8462 struct lpfc_dmabuf *mp; 8463 struct lpfc_rqb *rqbp; 8464 u32 flg; 8465 8466 /* Perform a PCI function reset to start from clean */ 8467 rc = lpfc_pci_function_reset(phba); 8468 if (unlikely(rc)) 8469 return -ENODEV; 8470 8471 /* Check the HBA Host Status Register for readyness */ 8472 rc = lpfc_sli4_post_status_check(phba); 8473 if (unlikely(rc)) 8474 return -ENODEV; 8475 else { 8476 spin_lock_irq(&phba->hbalock); 8477 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8478 flg = phba->sli.sli_flag; 8479 spin_unlock_irq(&phba->hbalock); 8480 /* Allow a little time after setting SLI_ACTIVE for any polled 8481 * MBX commands to complete via BSG. 8482 */ 8483 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8484 msleep(20); 8485 spin_lock_irq(&phba->hbalock); 8486 flg = phba->sli.sli_flag; 8487 spin_unlock_irq(&phba->hbalock); 8488 } 8489 } 8490 phba->hba_flag &= ~HBA_SETUP; 8491 8492 lpfc_sli4_dip(phba); 8493 8494 /* 8495 * Allocate a single mailbox container for initializing the 8496 * port. 8497 */ 8498 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8499 if (!mboxq) 8500 return -ENOMEM; 8501 8502 /* Issue READ_REV to collect vpd and FW information. */ 8503 vpd_size = SLI4_PAGE_SIZE; 8504 vpd = kzalloc(vpd_size, GFP_KERNEL); 8505 if (!vpd) { 8506 rc = -ENOMEM; 8507 goto out_free_mbox; 8508 } 8509 8510 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8511 if (unlikely(rc)) { 8512 kfree(vpd); 8513 goto out_free_mbox; 8514 } 8515 8516 mqe = &mboxq->u.mqe; 8517 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8518 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8519 phba->hba_flag |= HBA_FCOE_MODE; 8520 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8521 } else { 8522 phba->hba_flag &= ~HBA_FCOE_MODE; 8523 } 8524 8525 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8526 LPFC_DCBX_CEE_MODE) 8527 phba->hba_flag |= HBA_FIP_SUPPORT; 8528 else 8529 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8530 8531 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8532 8533 if (phba->sli_rev != LPFC_SLI_REV4) { 8534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8535 "0376 READ_REV Error. SLI Level %d " 8536 "FCoE enabled %d\n", 8537 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8538 rc = -EIO; 8539 kfree(vpd); 8540 goto out_free_mbox; 8541 } 8542 8543 rc = lpfc_set_host_tm(phba); 8544 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8545 "6468 Set host date / time: Status x%x:\n", rc); 8546 8547 /* 8548 * Continue initialization with default values even if driver failed 8549 * to read FCoE param config regions, only read parameters if the 8550 * board is FCoE 8551 */ 8552 if (phba->hba_flag & HBA_FCOE_MODE && 8553 lpfc_sli4_read_fcoe_params(phba)) 8554 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8555 "2570 Failed to read FCoE parameters\n"); 8556 8557 /* 8558 * Retrieve sli4 device physical port name, failure of doing it 8559 * is considered as non-fatal. 8560 */ 8561 rc = lpfc_sli4_retrieve_pport_name(phba); 8562 if (!rc) 8563 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8564 "3080 Successful retrieving SLI4 device " 8565 "physical port name: %s.\n", phba->Port); 8566 8567 rc = lpfc_sli4_get_ctl_attr(phba); 8568 if (!rc) 8569 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8570 "8351 Successful retrieving SLI4 device " 8571 "CTL ATTR\n"); 8572 8573 /* 8574 * Evaluate the read rev and vpd data. Populate the driver 8575 * state with the results. If this routine fails, the failure 8576 * is not fatal as the driver will use generic values. 8577 */ 8578 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8579 if (unlikely(!rc)) 8580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8581 "0377 Error %d parsing vpd. " 8582 "Using defaults.\n", rc); 8583 kfree(vpd); 8584 8585 /* Save information as VPD data */ 8586 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8587 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8588 8589 /* 8590 * This is because first G7 ASIC doesn't support the standard 8591 * 0x5a NVME cmd descriptor type/subtype 8592 */ 8593 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8594 LPFC_SLI_INTF_IF_TYPE_6) && 8595 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8596 (phba->vpd.rev.smRev == 0) && 8597 (phba->cfg_nvme_embed_cmd == 1)) 8598 phba->cfg_nvme_embed_cmd = 0; 8599 8600 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8601 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8602 &mqe->un.read_rev); 8603 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8604 &mqe->un.read_rev); 8605 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8606 &mqe->un.read_rev); 8607 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8608 &mqe->un.read_rev); 8609 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8610 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8611 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8612 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8613 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8614 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8615 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8616 "(%d):0380 READ_REV Status x%x " 8617 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8618 mboxq->vport ? mboxq->vport->vpi : 0, 8619 bf_get(lpfc_mqe_status, mqe), 8620 phba->vpd.rev.opFwName, 8621 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8622 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8623 8624 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8625 LPFC_SLI_INTF_IF_TYPE_0) { 8626 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8627 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8628 if (rc == MBX_SUCCESS) { 8629 phba->hba_flag |= HBA_RECOVERABLE_UE; 8630 /* Set 1Sec interval to detect UE */ 8631 phba->eratt_poll_interval = 1; 8632 phba->sli4_hba.ue_to_sr = bf_get( 8633 lpfc_mbx_set_feature_UESR, 8634 &mboxq->u.mqe.un.set_feature); 8635 phba->sli4_hba.ue_to_rp = bf_get( 8636 lpfc_mbx_set_feature_UERP, 8637 &mboxq->u.mqe.un.set_feature); 8638 } 8639 } 8640 8641 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8642 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8643 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8644 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8645 if (rc != MBX_SUCCESS) 8646 phba->mds_diags_support = 0; 8647 } 8648 8649 /* 8650 * Discover the port's supported feature set and match it against the 8651 * hosts requests. 8652 */ 8653 lpfc_request_features(phba, mboxq); 8654 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8655 if (unlikely(rc)) { 8656 rc = -EIO; 8657 goto out_free_mbox; 8658 } 8659 8660 /* Disable VMID if app header is not supported */ 8661 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8662 &mqe->un.req_ftrs))) { 8663 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8664 phba->cfg_vmid_app_header = 0; 8665 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8666 "1242 vmid feature not supported\n"); 8667 } 8668 8669 /* 8670 * The port must support FCP initiator mode as this is the 8671 * only mode running in the host. 8672 */ 8673 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8674 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8675 "0378 No support for fcpi mode.\n"); 8676 ftr_rsp++; 8677 } 8678 8679 /* Performance Hints are ONLY for FCoE */ 8680 if (phba->hba_flag & HBA_FCOE_MODE) { 8681 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8682 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8683 else 8684 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8685 } 8686 8687 /* 8688 * If the port cannot support the host's requested features 8689 * then turn off the global config parameters to disable the 8690 * feature in the driver. This is not a fatal error. 8691 */ 8692 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8693 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8694 phba->cfg_enable_bg = 0; 8695 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8696 ftr_rsp++; 8697 } 8698 } 8699 8700 if (phba->max_vpi && phba->cfg_enable_npiv && 8701 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8702 ftr_rsp++; 8703 8704 if (ftr_rsp) { 8705 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8706 "0379 Feature Mismatch Data: x%08x %08x " 8707 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8708 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8709 phba->cfg_enable_npiv, phba->max_vpi); 8710 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8711 phba->cfg_enable_bg = 0; 8712 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8713 phba->cfg_enable_npiv = 0; 8714 } 8715 8716 /* These SLI3 features are assumed in SLI4 */ 8717 spin_lock_irq(&phba->hbalock); 8718 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8719 spin_unlock_irq(&phba->hbalock); 8720 8721 /* Always try to enable dual dump feature if we can */ 8722 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8723 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8724 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8725 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8726 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8727 "6448 Dual Dump is enabled\n"); 8728 else 8729 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8730 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8731 "rc:x%x dd:x%x\n", 8732 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8733 lpfc_sli_config_mbox_subsys_get( 8734 phba, mboxq), 8735 lpfc_sli_config_mbox_opcode_get( 8736 phba, mboxq), 8737 rc, dd); 8738 /* 8739 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8740 * calls depends on these resources to complete port setup. 8741 */ 8742 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8743 if (rc) { 8744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8745 "2920 Failed to alloc Resource IDs " 8746 "rc = x%x\n", rc); 8747 goto out_free_mbox; 8748 } 8749 8750 lpfc_set_host_data(phba, mboxq); 8751 8752 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8753 if (rc) { 8754 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8755 "2134 Failed to set host os driver version %x", 8756 rc); 8757 } 8758 8759 /* Read the port's service parameters. */ 8760 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8761 if (rc) { 8762 phba->link_state = LPFC_HBA_ERROR; 8763 rc = -ENOMEM; 8764 goto out_free_mbox; 8765 } 8766 8767 mboxq->vport = vport; 8768 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8769 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8770 if (rc == MBX_SUCCESS) { 8771 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8772 rc = 0; 8773 } 8774 8775 /* 8776 * This memory was allocated by the lpfc_read_sparam routine but is 8777 * no longer needed. It is released and ctx_buf NULLed to prevent 8778 * unintended pointer access as the mbox is reused. 8779 */ 8780 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8781 kfree(mp); 8782 mboxq->ctx_buf = NULL; 8783 if (unlikely(rc)) { 8784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8785 "0382 READ_SPARAM command failed " 8786 "status %d, mbxStatus x%x\n", 8787 rc, bf_get(lpfc_mqe_status, mqe)); 8788 phba->link_state = LPFC_HBA_ERROR; 8789 rc = -EIO; 8790 goto out_free_mbox; 8791 } 8792 8793 lpfc_update_vport_wwn(vport); 8794 8795 /* Update the fc_host data structures with new wwn. */ 8796 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8797 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8798 8799 /* Create all the SLI4 queues */ 8800 rc = lpfc_sli4_queue_create(phba); 8801 if (rc) { 8802 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8803 "3089 Failed to allocate queues\n"); 8804 rc = -ENODEV; 8805 goto out_free_mbox; 8806 } 8807 /* Set up all the queues to the device */ 8808 rc = lpfc_sli4_queue_setup(phba); 8809 if (unlikely(rc)) { 8810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8811 "0381 Error %d during queue setup.\n ", rc); 8812 goto out_stop_timers; 8813 } 8814 /* Initialize the driver internal SLI layer lists. */ 8815 lpfc_sli4_setup(phba); 8816 lpfc_sli4_queue_init(phba); 8817 8818 /* update host els xri-sgl sizes and mappings */ 8819 rc = lpfc_sli4_els_sgl_update(phba); 8820 if (unlikely(rc)) { 8821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8822 "1400 Failed to update xri-sgl size and " 8823 "mapping: %d\n", rc); 8824 goto out_destroy_queue; 8825 } 8826 8827 /* register the els sgl pool to the port */ 8828 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8829 phba->sli4_hba.els_xri_cnt); 8830 if (unlikely(rc < 0)) { 8831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8832 "0582 Error %d during els sgl post " 8833 "operation\n", rc); 8834 rc = -ENODEV; 8835 goto out_destroy_queue; 8836 } 8837 phba->sli4_hba.els_xri_cnt = rc; 8838 8839 if (phba->nvmet_support) { 8840 /* update host nvmet xri-sgl sizes and mappings */ 8841 rc = lpfc_sli4_nvmet_sgl_update(phba); 8842 if (unlikely(rc)) { 8843 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8844 "6308 Failed to update nvmet-sgl size " 8845 "and mapping: %d\n", rc); 8846 goto out_destroy_queue; 8847 } 8848 8849 /* register the nvmet sgl pool to the port */ 8850 rc = lpfc_sli4_repost_sgl_list( 8851 phba, 8852 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8853 phba->sli4_hba.nvmet_xri_cnt); 8854 if (unlikely(rc < 0)) { 8855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8856 "3117 Error %d during nvmet " 8857 "sgl post\n", rc); 8858 rc = -ENODEV; 8859 goto out_destroy_queue; 8860 } 8861 phba->sli4_hba.nvmet_xri_cnt = rc; 8862 8863 /* We allocate an iocbq for every receive context SGL. 8864 * The additional allocation is for abort and ls handling. 8865 */ 8866 cnt = phba->sli4_hba.nvmet_xri_cnt + 8867 phba->sli4_hba.max_cfg_param.max_xri; 8868 } else { 8869 /* update host common xri-sgl sizes and mappings */ 8870 rc = lpfc_sli4_io_sgl_update(phba); 8871 if (unlikely(rc)) { 8872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8873 "6082 Failed to update nvme-sgl size " 8874 "and mapping: %d\n", rc); 8875 goto out_destroy_queue; 8876 } 8877 8878 /* register the allocated common sgl pool to the port */ 8879 rc = lpfc_sli4_repost_io_sgl_list(phba); 8880 if (unlikely(rc)) { 8881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8882 "6116 Error %d during nvme sgl post " 8883 "operation\n", rc); 8884 /* Some NVME buffers were moved to abort nvme list */ 8885 /* A pci function reset will repost them */ 8886 rc = -ENODEV; 8887 goto out_destroy_queue; 8888 } 8889 /* Each lpfc_io_buf job structure has an iocbq element. 8890 * This cnt provides for abort, els, ct and ls requests. 8891 */ 8892 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8893 } 8894 8895 if (!phba->sli.iocbq_lookup) { 8896 /* Initialize and populate the iocb list per host */ 8897 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8898 "2821 initialize iocb list with %d entries\n", 8899 cnt); 8900 rc = lpfc_init_iocb_list(phba, cnt); 8901 if (rc) { 8902 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8903 "1413 Failed to init iocb list.\n"); 8904 goto out_destroy_queue; 8905 } 8906 } 8907 8908 if (phba->nvmet_support) 8909 lpfc_nvmet_create_targetport(phba); 8910 8911 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8912 /* Post initial buffers to all RQs created */ 8913 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8914 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8915 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8916 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8917 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8918 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8919 rqbp->buffer_count = 0; 8920 8921 lpfc_post_rq_buffer( 8922 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8923 phba->sli4_hba.nvmet_mrq_data[i], 8924 phba->cfg_nvmet_mrq_post, i); 8925 } 8926 } 8927 8928 /* Post the rpi header region to the device. */ 8929 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8930 if (unlikely(rc)) { 8931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8932 "0393 Error %d during rpi post operation\n", 8933 rc); 8934 rc = -ENODEV; 8935 goto out_free_iocblist; 8936 } 8937 lpfc_sli4_node_prep(phba); 8938 8939 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8940 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8941 /* 8942 * The FC Port needs to register FCFI (index 0) 8943 */ 8944 lpfc_reg_fcfi(phba, mboxq); 8945 mboxq->vport = phba->pport; 8946 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8947 if (rc != MBX_SUCCESS) 8948 goto out_unset_queue; 8949 rc = 0; 8950 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8951 &mboxq->u.mqe.un.reg_fcfi); 8952 } else { 8953 /* We are a NVME Target mode with MRQ > 1 */ 8954 8955 /* First register the FCFI */ 8956 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8957 mboxq->vport = phba->pport; 8958 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8959 if (rc != MBX_SUCCESS) 8960 goto out_unset_queue; 8961 rc = 0; 8962 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8963 &mboxq->u.mqe.un.reg_fcfi_mrq); 8964 8965 /* Next register the MRQs */ 8966 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8967 mboxq->vport = phba->pport; 8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8969 if (rc != MBX_SUCCESS) 8970 goto out_unset_queue; 8971 rc = 0; 8972 } 8973 /* Check if the port is configured to be disabled */ 8974 lpfc_sli_read_link_ste(phba); 8975 } 8976 8977 /* Don't post more new bufs if repost already recovered 8978 * the nvme sgls. 8979 */ 8980 if (phba->nvmet_support == 0) { 8981 if (phba->sli4_hba.io_xri_cnt == 0) { 8982 len = lpfc_new_io_buf( 8983 phba, phba->sli4_hba.io_xri_max); 8984 if (len == 0) { 8985 rc = -ENOMEM; 8986 goto out_unset_queue; 8987 } 8988 8989 if (phba->cfg_xri_rebalancing) 8990 lpfc_create_multixri_pools(phba); 8991 } 8992 } else { 8993 phba->cfg_xri_rebalancing = 0; 8994 } 8995 8996 /* Allow asynchronous mailbox command to go through */ 8997 spin_lock_irq(&phba->hbalock); 8998 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8999 spin_unlock_irq(&phba->hbalock); 9000 9001 /* Post receive buffers to the device */ 9002 lpfc_sli4_rb_setup(phba); 9003 9004 /* Reset HBA FCF states after HBA reset */ 9005 phba->fcf.fcf_flag = 0; 9006 phba->fcf.current_rec.flag = 0; 9007 9008 /* Start the ELS watchdog timer */ 9009 mod_timer(&vport->els_tmofunc, 9010 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9011 9012 /* Start heart beat timer */ 9013 mod_timer(&phba->hb_tmofunc, 9014 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9015 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9016 phba->last_completion_time = jiffies; 9017 9018 /* start eq_delay heartbeat */ 9019 if (phba->cfg_auto_imax) 9020 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9021 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9022 9023 /* start per phba idle_stat_delay heartbeat */ 9024 lpfc_init_idle_stat_hb(phba); 9025 9026 /* Start error attention (ERATT) polling timer */ 9027 mod_timer(&phba->eratt_poll, 9028 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9029 9030 /* 9031 * The port is ready, set the host's link state to LINK_DOWN 9032 * in preparation for link interrupts. 9033 */ 9034 spin_lock_irq(&phba->hbalock); 9035 phba->link_state = LPFC_LINK_DOWN; 9036 9037 /* Check if physical ports are trunked */ 9038 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9039 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9040 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9041 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9042 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9043 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9044 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9045 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9046 spin_unlock_irq(&phba->hbalock); 9047 9048 /* Arm the CQs and then EQs on device */ 9049 lpfc_sli4_arm_cqeq_intr(phba); 9050 9051 /* Indicate device interrupt mode */ 9052 phba->sli4_hba.intr_enable = 1; 9053 9054 /* Setup CMF after HBA is initialized */ 9055 lpfc_cmf_setup(phba); 9056 9057 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9058 (phba->hba_flag & LINK_DISABLED)) { 9059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9060 "3103 Adapter Link is disabled.\n"); 9061 lpfc_down_link(phba, mboxq); 9062 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9063 if (rc != MBX_SUCCESS) { 9064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9065 "3104 Adapter failed to issue " 9066 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9067 goto out_io_buff_free; 9068 } 9069 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9070 /* don't perform init_link on SLI4 FC port loopback test */ 9071 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9072 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9073 if (rc) 9074 goto out_io_buff_free; 9075 } 9076 } 9077 mempool_free(mboxq, phba->mbox_mem_pool); 9078 9079 /* Enable RAS FW log support */ 9080 lpfc_sli4_ras_setup(phba); 9081 9082 phba->hba_flag |= HBA_SETUP; 9083 return rc; 9084 9085 out_io_buff_free: 9086 /* Free allocated IO Buffers */ 9087 lpfc_io_free(phba); 9088 out_unset_queue: 9089 /* Unset all the queues set up in this routine when error out */ 9090 lpfc_sli4_queue_unset(phba); 9091 out_free_iocblist: 9092 lpfc_free_iocb_list(phba); 9093 out_destroy_queue: 9094 lpfc_sli4_queue_destroy(phba); 9095 out_stop_timers: 9096 lpfc_stop_hba_timers(phba); 9097 out_free_mbox: 9098 mempool_free(mboxq, phba->mbox_mem_pool); 9099 return rc; 9100 } 9101 9102 /** 9103 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9104 * @t: Context to fetch pointer to hba structure from. 9105 * 9106 * This is the callback function for mailbox timer. The mailbox 9107 * timer is armed when a new mailbox command is issued and the timer 9108 * is deleted when the mailbox complete. The function is called by 9109 * the kernel timer code when a mailbox does not complete within 9110 * expected time. This function wakes up the worker thread to 9111 * process the mailbox timeout and returns. All the processing is 9112 * done by the worker thread function lpfc_mbox_timeout_handler. 9113 **/ 9114 void 9115 lpfc_mbox_timeout(struct timer_list *t) 9116 { 9117 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9118 unsigned long iflag; 9119 uint32_t tmo_posted; 9120 9121 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9122 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9123 if (!tmo_posted) 9124 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9125 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9126 9127 if (!tmo_posted) 9128 lpfc_worker_wake_up(phba); 9129 return; 9130 } 9131 9132 /** 9133 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9134 * are pending 9135 * @phba: Pointer to HBA context object. 9136 * 9137 * This function checks if any mailbox completions are present on the mailbox 9138 * completion queue. 9139 **/ 9140 static bool 9141 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9142 { 9143 9144 uint32_t idx; 9145 struct lpfc_queue *mcq; 9146 struct lpfc_mcqe *mcqe; 9147 bool pending_completions = false; 9148 uint8_t qe_valid; 9149 9150 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9151 return false; 9152 9153 /* Check for completions on mailbox completion queue */ 9154 9155 mcq = phba->sli4_hba.mbx_cq; 9156 idx = mcq->hba_index; 9157 qe_valid = mcq->qe_valid; 9158 while (bf_get_le32(lpfc_cqe_valid, 9159 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9160 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9161 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9162 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9163 pending_completions = true; 9164 break; 9165 } 9166 idx = (idx + 1) % mcq->entry_count; 9167 if (mcq->hba_index == idx) 9168 break; 9169 9170 /* if the index wrapped around, toggle the valid bit */ 9171 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9172 qe_valid = (qe_valid) ? 0 : 1; 9173 } 9174 return pending_completions; 9175 9176 } 9177 9178 /** 9179 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9180 * that were missed. 9181 * @phba: Pointer to HBA context object. 9182 * 9183 * For sli4, it is possible to miss an interrupt. As such mbox completions 9184 * maybe missed causing erroneous mailbox timeouts to occur. This function 9185 * checks to see if mbox completions are on the mailbox completion queue 9186 * and will process all the completions associated with the eq for the 9187 * mailbox completion queue. 9188 **/ 9189 static bool 9190 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9191 { 9192 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9193 uint32_t eqidx; 9194 struct lpfc_queue *fpeq = NULL; 9195 struct lpfc_queue *eq; 9196 bool mbox_pending; 9197 9198 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9199 return false; 9200 9201 /* Find the EQ associated with the mbox CQ */ 9202 if (sli4_hba->hdwq) { 9203 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9204 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9205 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9206 fpeq = eq; 9207 break; 9208 } 9209 } 9210 } 9211 if (!fpeq) 9212 return false; 9213 9214 /* Turn off interrupts from this EQ */ 9215 9216 sli4_hba->sli4_eq_clr_intr(fpeq); 9217 9218 /* Check to see if a mbox completion is pending */ 9219 9220 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9221 9222 /* 9223 * If a mbox completion is pending, process all the events on EQ 9224 * associated with the mbox completion queue (this could include 9225 * mailbox commands, async events, els commands, receive queue data 9226 * and fcp commands) 9227 */ 9228 9229 if (mbox_pending) 9230 /* process and rearm the EQ */ 9231 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9232 LPFC_QUEUE_WORK); 9233 else 9234 /* Always clear and re-arm the EQ */ 9235 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9236 9237 return mbox_pending; 9238 9239 } 9240 9241 /** 9242 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9243 * @phba: Pointer to HBA context object. 9244 * 9245 * This function is called from worker thread when a mailbox command times out. 9246 * The caller is not required to hold any locks. This function will reset the 9247 * HBA and recover all the pending commands. 9248 **/ 9249 void 9250 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9251 { 9252 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9253 MAILBOX_t *mb = NULL; 9254 9255 struct lpfc_sli *psli = &phba->sli; 9256 9257 /* If the mailbox completed, process the completion */ 9258 lpfc_sli4_process_missed_mbox_completions(phba); 9259 9260 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9261 return; 9262 9263 if (pmbox != NULL) 9264 mb = &pmbox->u.mb; 9265 /* Check the pmbox pointer first. There is a race condition 9266 * between the mbox timeout handler getting executed in the 9267 * worklist and the mailbox actually completing. When this 9268 * race condition occurs, the mbox_active will be NULL. 9269 */ 9270 spin_lock_irq(&phba->hbalock); 9271 if (pmbox == NULL) { 9272 lpfc_printf_log(phba, KERN_WARNING, 9273 LOG_MBOX | LOG_SLI, 9274 "0353 Active Mailbox cleared - mailbox timeout " 9275 "exiting\n"); 9276 spin_unlock_irq(&phba->hbalock); 9277 return; 9278 } 9279 9280 /* Mbox cmd <mbxCommand> timeout */ 9281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9282 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9283 mb->mbxCommand, 9284 phba->pport->port_state, 9285 phba->sli.sli_flag, 9286 phba->sli.mbox_active); 9287 spin_unlock_irq(&phba->hbalock); 9288 9289 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9290 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9291 * it to fail all outstanding SCSI IO. 9292 */ 9293 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9294 spin_lock_irq(&phba->pport->work_port_lock); 9295 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9296 spin_unlock_irq(&phba->pport->work_port_lock); 9297 spin_lock_irq(&phba->hbalock); 9298 phba->link_state = LPFC_LINK_UNKNOWN; 9299 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9300 spin_unlock_irq(&phba->hbalock); 9301 9302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9303 "0345 Resetting board due to mailbox timeout\n"); 9304 9305 /* Reset the HBA device */ 9306 lpfc_reset_hba(phba); 9307 } 9308 9309 /** 9310 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9311 * @phba: Pointer to HBA context object. 9312 * @pmbox: Pointer to mailbox object. 9313 * @flag: Flag indicating how the mailbox need to be processed. 9314 * 9315 * This function is called by discovery code and HBA management code 9316 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9317 * function gets the hbalock to protect the data structures. 9318 * The mailbox command can be submitted in polling mode, in which case 9319 * this function will wait in a polling loop for the completion of the 9320 * mailbox. 9321 * If the mailbox is submitted in no_wait mode (not polling) the 9322 * function will submit the command and returns immediately without waiting 9323 * for the mailbox completion. The no_wait is supported only when HBA 9324 * is in SLI2/SLI3 mode - interrupts are enabled. 9325 * The SLI interface allows only one mailbox pending at a time. If the 9326 * mailbox is issued in polling mode and there is already a mailbox 9327 * pending, then the function will return an error. If the mailbox is issued 9328 * in NO_WAIT mode and there is a mailbox pending already, the function 9329 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9330 * The sli layer owns the mailbox object until the completion of mailbox 9331 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9332 * return codes the caller owns the mailbox command after the return of 9333 * the function. 9334 **/ 9335 static int 9336 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9337 uint32_t flag) 9338 { 9339 MAILBOX_t *mbx; 9340 struct lpfc_sli *psli = &phba->sli; 9341 uint32_t status, evtctr; 9342 uint32_t ha_copy, hc_copy; 9343 int i; 9344 unsigned long timeout; 9345 unsigned long drvr_flag = 0; 9346 uint32_t word0, ldata; 9347 void __iomem *to_slim; 9348 int processing_queue = 0; 9349 9350 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9351 if (!pmbox) { 9352 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9353 /* processing mbox queue from intr_handler */ 9354 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9355 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9356 return MBX_SUCCESS; 9357 } 9358 processing_queue = 1; 9359 pmbox = lpfc_mbox_get(phba); 9360 if (!pmbox) { 9361 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9362 return MBX_SUCCESS; 9363 } 9364 } 9365 9366 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9367 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9368 if(!pmbox->vport) { 9369 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9370 lpfc_printf_log(phba, KERN_ERR, 9371 LOG_MBOX | LOG_VPORT, 9372 "1806 Mbox x%x failed. No vport\n", 9373 pmbox->u.mb.mbxCommand); 9374 dump_stack(); 9375 goto out_not_finished; 9376 } 9377 } 9378 9379 /* If the PCI channel is in offline state, do not post mbox. */ 9380 if (unlikely(pci_channel_offline(phba->pcidev))) { 9381 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9382 goto out_not_finished; 9383 } 9384 9385 /* If HBA has a deferred error attention, fail the iocb. */ 9386 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9387 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9388 goto out_not_finished; 9389 } 9390 9391 psli = &phba->sli; 9392 9393 mbx = &pmbox->u.mb; 9394 status = MBX_SUCCESS; 9395 9396 if (phba->link_state == LPFC_HBA_ERROR) { 9397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9398 9399 /* Mbox command <mbxCommand> cannot issue */ 9400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9401 "(%d):0311 Mailbox command x%x cannot " 9402 "issue Data: x%x x%x\n", 9403 pmbox->vport ? pmbox->vport->vpi : 0, 9404 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9405 goto out_not_finished; 9406 } 9407 9408 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9409 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9410 !(hc_copy & HC_MBINT_ENA)) { 9411 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9413 "(%d):2528 Mailbox command x%x cannot " 9414 "issue Data: x%x x%x\n", 9415 pmbox->vport ? pmbox->vport->vpi : 0, 9416 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9417 goto out_not_finished; 9418 } 9419 } 9420 9421 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9422 /* Polling for a mbox command when another one is already active 9423 * is not allowed in SLI. Also, the driver must have established 9424 * SLI2 mode to queue and process multiple mbox commands. 9425 */ 9426 9427 if (flag & MBX_POLL) { 9428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9429 9430 /* Mbox command <mbxCommand> cannot issue */ 9431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9432 "(%d):2529 Mailbox command x%x " 9433 "cannot issue Data: x%x x%x\n", 9434 pmbox->vport ? pmbox->vport->vpi : 0, 9435 pmbox->u.mb.mbxCommand, 9436 psli->sli_flag, flag); 9437 goto out_not_finished; 9438 } 9439 9440 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9442 /* Mbox command <mbxCommand> cannot issue */ 9443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9444 "(%d):2530 Mailbox command x%x " 9445 "cannot issue Data: x%x x%x\n", 9446 pmbox->vport ? pmbox->vport->vpi : 0, 9447 pmbox->u.mb.mbxCommand, 9448 psli->sli_flag, flag); 9449 goto out_not_finished; 9450 } 9451 9452 /* Another mailbox command is still being processed, queue this 9453 * command to be processed later. 9454 */ 9455 lpfc_mbox_put(phba, pmbox); 9456 9457 /* Mbox cmd issue - BUSY */ 9458 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9459 "(%d):0308 Mbox cmd issue - BUSY Data: " 9460 "x%x x%x x%x x%x\n", 9461 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9462 mbx->mbxCommand, 9463 phba->pport ? phba->pport->port_state : 0xff, 9464 psli->sli_flag, flag); 9465 9466 psli->slistat.mbox_busy++; 9467 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9468 9469 if (pmbox->vport) { 9470 lpfc_debugfs_disc_trc(pmbox->vport, 9471 LPFC_DISC_TRC_MBOX_VPORT, 9472 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9473 (uint32_t)mbx->mbxCommand, 9474 mbx->un.varWords[0], mbx->un.varWords[1]); 9475 } 9476 else { 9477 lpfc_debugfs_disc_trc(phba->pport, 9478 LPFC_DISC_TRC_MBOX, 9479 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9480 (uint32_t)mbx->mbxCommand, 9481 mbx->un.varWords[0], mbx->un.varWords[1]); 9482 } 9483 9484 return MBX_BUSY; 9485 } 9486 9487 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9488 9489 /* If we are not polling, we MUST be in SLI2 mode */ 9490 if (flag != MBX_POLL) { 9491 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9492 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9493 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9494 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9495 /* Mbox command <mbxCommand> cannot issue */ 9496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9497 "(%d):2531 Mailbox command x%x " 9498 "cannot issue Data: x%x x%x\n", 9499 pmbox->vport ? pmbox->vport->vpi : 0, 9500 pmbox->u.mb.mbxCommand, 9501 psli->sli_flag, flag); 9502 goto out_not_finished; 9503 } 9504 /* timeout active mbox command */ 9505 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9506 1000); 9507 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9508 } 9509 9510 /* Mailbox cmd <cmd> issue */ 9511 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9512 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9513 "x%x\n", 9514 pmbox->vport ? pmbox->vport->vpi : 0, 9515 mbx->mbxCommand, 9516 phba->pport ? phba->pport->port_state : 0xff, 9517 psli->sli_flag, flag); 9518 9519 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9520 if (pmbox->vport) { 9521 lpfc_debugfs_disc_trc(pmbox->vport, 9522 LPFC_DISC_TRC_MBOX_VPORT, 9523 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9524 (uint32_t)mbx->mbxCommand, 9525 mbx->un.varWords[0], mbx->un.varWords[1]); 9526 } 9527 else { 9528 lpfc_debugfs_disc_trc(phba->pport, 9529 LPFC_DISC_TRC_MBOX, 9530 "MBOX Send: cmd:x%x mb:x%x x%x", 9531 (uint32_t)mbx->mbxCommand, 9532 mbx->un.varWords[0], mbx->un.varWords[1]); 9533 } 9534 } 9535 9536 psli->slistat.mbox_cmd++; 9537 evtctr = psli->slistat.mbox_event; 9538 9539 /* next set own bit for the adapter and copy over command word */ 9540 mbx->mbxOwner = OWN_CHIP; 9541 9542 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9543 /* Populate mbox extension offset word. */ 9544 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9545 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9546 = (uint8_t *)phba->mbox_ext 9547 - (uint8_t *)phba->mbox; 9548 } 9549 9550 /* Copy the mailbox extension data */ 9551 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9552 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9553 (uint8_t *)phba->mbox_ext, 9554 pmbox->in_ext_byte_len); 9555 } 9556 /* Copy command data to host SLIM area */ 9557 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9558 } else { 9559 /* Populate mbox extension offset word. */ 9560 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9561 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9562 = MAILBOX_HBA_EXT_OFFSET; 9563 9564 /* Copy the mailbox extension data */ 9565 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9566 lpfc_memcpy_to_slim(phba->MBslimaddr + 9567 MAILBOX_HBA_EXT_OFFSET, 9568 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9569 9570 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9571 /* copy command data into host mbox for cmpl */ 9572 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9573 MAILBOX_CMD_SIZE); 9574 9575 /* First copy mbox command data to HBA SLIM, skip past first 9576 word */ 9577 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9578 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9579 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9580 9581 /* Next copy over first word, with mbxOwner set */ 9582 ldata = *((uint32_t *)mbx); 9583 to_slim = phba->MBslimaddr; 9584 writel(ldata, to_slim); 9585 readl(to_slim); /* flush */ 9586 9587 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9588 /* switch over to host mailbox */ 9589 psli->sli_flag |= LPFC_SLI_ACTIVE; 9590 } 9591 9592 wmb(); 9593 9594 switch (flag) { 9595 case MBX_NOWAIT: 9596 /* Set up reference to mailbox command */ 9597 psli->mbox_active = pmbox; 9598 /* Interrupt board to do it */ 9599 writel(CA_MBATT, phba->CAregaddr); 9600 readl(phba->CAregaddr); /* flush */ 9601 /* Don't wait for it to finish, just return */ 9602 break; 9603 9604 case MBX_POLL: 9605 /* Set up null reference to mailbox command */ 9606 psli->mbox_active = NULL; 9607 /* Interrupt board to do it */ 9608 writel(CA_MBATT, phba->CAregaddr); 9609 readl(phba->CAregaddr); /* flush */ 9610 9611 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9612 /* First read mbox status word */ 9613 word0 = *((uint32_t *)phba->mbox); 9614 word0 = le32_to_cpu(word0); 9615 } else { 9616 /* First read mbox status word */ 9617 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9618 spin_unlock_irqrestore(&phba->hbalock, 9619 drvr_flag); 9620 goto out_not_finished; 9621 } 9622 } 9623 9624 /* Read the HBA Host Attention Register */ 9625 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9626 spin_unlock_irqrestore(&phba->hbalock, 9627 drvr_flag); 9628 goto out_not_finished; 9629 } 9630 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9631 1000) + jiffies; 9632 i = 0; 9633 /* Wait for command to complete */ 9634 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9635 (!(ha_copy & HA_MBATT) && 9636 (phba->link_state > LPFC_WARM_START))) { 9637 if (time_after(jiffies, timeout)) { 9638 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9639 spin_unlock_irqrestore(&phba->hbalock, 9640 drvr_flag); 9641 goto out_not_finished; 9642 } 9643 9644 /* Check if we took a mbox interrupt while we were 9645 polling */ 9646 if (((word0 & OWN_CHIP) != OWN_CHIP) 9647 && (evtctr != psli->slistat.mbox_event)) 9648 break; 9649 9650 if (i++ > 10) { 9651 spin_unlock_irqrestore(&phba->hbalock, 9652 drvr_flag); 9653 msleep(1); 9654 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9655 } 9656 9657 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9658 /* First copy command data */ 9659 word0 = *((uint32_t *)phba->mbox); 9660 word0 = le32_to_cpu(word0); 9661 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9662 MAILBOX_t *slimmb; 9663 uint32_t slimword0; 9664 /* Check real SLIM for any errors */ 9665 slimword0 = readl(phba->MBslimaddr); 9666 slimmb = (MAILBOX_t *) & slimword0; 9667 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9668 && slimmb->mbxStatus) { 9669 psli->sli_flag &= 9670 ~LPFC_SLI_ACTIVE; 9671 word0 = slimword0; 9672 } 9673 } 9674 } else { 9675 /* First copy command data */ 9676 word0 = readl(phba->MBslimaddr); 9677 } 9678 /* Read the HBA Host Attention Register */ 9679 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9680 spin_unlock_irqrestore(&phba->hbalock, 9681 drvr_flag); 9682 goto out_not_finished; 9683 } 9684 } 9685 9686 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9687 /* copy results back to user */ 9688 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9689 MAILBOX_CMD_SIZE); 9690 /* Copy the mailbox extension data */ 9691 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9692 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9693 pmbox->ctx_buf, 9694 pmbox->out_ext_byte_len); 9695 } 9696 } else { 9697 /* First copy command data */ 9698 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9699 MAILBOX_CMD_SIZE); 9700 /* Copy the mailbox extension data */ 9701 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9702 lpfc_memcpy_from_slim( 9703 pmbox->ctx_buf, 9704 phba->MBslimaddr + 9705 MAILBOX_HBA_EXT_OFFSET, 9706 pmbox->out_ext_byte_len); 9707 } 9708 } 9709 9710 writel(HA_MBATT, phba->HAregaddr); 9711 readl(phba->HAregaddr); /* flush */ 9712 9713 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9714 status = mbx->mbxStatus; 9715 } 9716 9717 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9718 return status; 9719 9720 out_not_finished: 9721 if (processing_queue) { 9722 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9723 lpfc_mbox_cmpl_put(phba, pmbox); 9724 } 9725 return MBX_NOT_FINISHED; 9726 } 9727 9728 /** 9729 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9730 * @phba: Pointer to HBA context object. 9731 * 9732 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9733 * the driver internal pending mailbox queue. It will then try to wait out the 9734 * possible outstanding mailbox command before return. 9735 * 9736 * Returns: 9737 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9738 * the outstanding mailbox command timed out. 9739 **/ 9740 static int 9741 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9742 { 9743 struct lpfc_sli *psli = &phba->sli; 9744 LPFC_MBOXQ_t *mboxq; 9745 int rc = 0; 9746 unsigned long timeout = 0; 9747 u32 sli_flag; 9748 u8 cmd, subsys, opcode; 9749 9750 /* Mark the asynchronous mailbox command posting as blocked */ 9751 spin_lock_irq(&phba->hbalock); 9752 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9753 /* Determine how long we might wait for the active mailbox 9754 * command to be gracefully completed by firmware. 9755 */ 9756 if (phba->sli.mbox_active) 9757 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9758 phba->sli.mbox_active) * 9759 1000) + jiffies; 9760 spin_unlock_irq(&phba->hbalock); 9761 9762 /* Make sure the mailbox is really active */ 9763 if (timeout) 9764 lpfc_sli4_process_missed_mbox_completions(phba); 9765 9766 /* Wait for the outstanding mailbox command to complete */ 9767 while (phba->sli.mbox_active) { 9768 /* Check active mailbox complete status every 2ms */ 9769 msleep(2); 9770 if (time_after(jiffies, timeout)) { 9771 /* Timeout, mark the outstanding cmd not complete */ 9772 9773 /* Sanity check sli.mbox_active has not completed or 9774 * cancelled from another context during last 2ms sleep, 9775 * so take hbalock to be sure before logging. 9776 */ 9777 spin_lock_irq(&phba->hbalock); 9778 if (phba->sli.mbox_active) { 9779 mboxq = phba->sli.mbox_active; 9780 cmd = mboxq->u.mb.mbxCommand; 9781 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9782 mboxq); 9783 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9784 mboxq); 9785 sli_flag = psli->sli_flag; 9786 spin_unlock_irq(&phba->hbalock); 9787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9788 "2352 Mailbox command x%x " 9789 "(x%x/x%x) sli_flag x%x could " 9790 "not complete\n", 9791 cmd, subsys, opcode, 9792 sli_flag); 9793 } else { 9794 spin_unlock_irq(&phba->hbalock); 9795 } 9796 9797 rc = 1; 9798 break; 9799 } 9800 } 9801 9802 /* Can not cleanly block async mailbox command, fails it */ 9803 if (rc) { 9804 spin_lock_irq(&phba->hbalock); 9805 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9806 spin_unlock_irq(&phba->hbalock); 9807 } 9808 return rc; 9809 } 9810 9811 /** 9812 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9813 * @phba: Pointer to HBA context object. 9814 * 9815 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9816 * commands from the driver internal pending mailbox queue. It makes sure 9817 * that there is no outstanding mailbox command before resuming posting 9818 * asynchronous mailbox commands. If, for any reason, there is outstanding 9819 * mailbox command, it will try to wait it out before resuming asynchronous 9820 * mailbox command posting. 9821 **/ 9822 static void 9823 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9824 { 9825 struct lpfc_sli *psli = &phba->sli; 9826 9827 spin_lock_irq(&phba->hbalock); 9828 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9829 /* Asynchronous mailbox posting is not blocked, do nothing */ 9830 spin_unlock_irq(&phba->hbalock); 9831 return; 9832 } 9833 9834 /* Outstanding synchronous mailbox command is guaranteed to be done, 9835 * successful or timeout, after timing-out the outstanding mailbox 9836 * command shall always be removed, so just unblock posting async 9837 * mailbox command and resume 9838 */ 9839 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9840 spin_unlock_irq(&phba->hbalock); 9841 9842 /* wake up worker thread to post asynchronous mailbox command */ 9843 lpfc_worker_wake_up(phba); 9844 } 9845 9846 /** 9847 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9848 * @phba: Pointer to HBA context object. 9849 * @mboxq: Pointer to mailbox object. 9850 * 9851 * The function waits for the bootstrap mailbox register ready bit from 9852 * port for twice the regular mailbox command timeout value. 9853 * 9854 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9855 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9856 * is in an unrecoverable state. 9857 **/ 9858 static int 9859 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9860 { 9861 uint32_t db_ready; 9862 unsigned long timeout; 9863 struct lpfc_register bmbx_reg; 9864 struct lpfc_register portstat_reg = {-1}; 9865 9866 /* Sanity check - there is no point to wait if the port is in an 9867 * unrecoverable state. 9868 */ 9869 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9870 LPFC_SLI_INTF_IF_TYPE_2) { 9871 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9872 &portstat_reg.word0) || 9873 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9874 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9875 "3858 Skipping bmbx ready because " 9876 "Port Status x%x\n", 9877 portstat_reg.word0); 9878 return MBXERR_ERROR; 9879 } 9880 } 9881 9882 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9883 * 1000) + jiffies; 9884 9885 do { 9886 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9887 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9888 if (!db_ready) 9889 mdelay(2); 9890 9891 if (time_after(jiffies, timeout)) 9892 return MBXERR_ERROR; 9893 } while (!db_ready); 9894 9895 return 0; 9896 } 9897 9898 /** 9899 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9900 * @phba: Pointer to HBA context object. 9901 * @mboxq: Pointer to mailbox object. 9902 * 9903 * The function posts a mailbox to the port. The mailbox is expected 9904 * to be comletely filled in and ready for the port to operate on it. 9905 * This routine executes a synchronous completion operation on the 9906 * mailbox by polling for its completion. 9907 * 9908 * The caller must not be holding any locks when calling this routine. 9909 * 9910 * Returns: 9911 * MBX_SUCCESS - mailbox posted successfully 9912 * Any of the MBX error values. 9913 **/ 9914 static int 9915 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9916 { 9917 int rc = MBX_SUCCESS; 9918 unsigned long iflag; 9919 uint32_t mcqe_status; 9920 uint32_t mbx_cmnd; 9921 struct lpfc_sli *psli = &phba->sli; 9922 struct lpfc_mqe *mb = &mboxq->u.mqe; 9923 struct lpfc_bmbx_create *mbox_rgn; 9924 struct dma_address *dma_address; 9925 9926 /* 9927 * Only one mailbox can be active to the bootstrap mailbox region 9928 * at a time and there is no queueing provided. 9929 */ 9930 spin_lock_irqsave(&phba->hbalock, iflag); 9931 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9932 spin_unlock_irqrestore(&phba->hbalock, iflag); 9933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9934 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9935 "cannot issue Data: x%x x%x\n", 9936 mboxq->vport ? mboxq->vport->vpi : 0, 9937 mboxq->u.mb.mbxCommand, 9938 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9939 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9940 psli->sli_flag, MBX_POLL); 9941 return MBXERR_ERROR; 9942 } 9943 /* The server grabs the token and owns it until release */ 9944 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9945 phba->sli.mbox_active = mboxq; 9946 spin_unlock_irqrestore(&phba->hbalock, iflag); 9947 9948 /* wait for bootstrap mbox register for readyness */ 9949 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9950 if (rc) 9951 goto exit; 9952 /* 9953 * Initialize the bootstrap memory region to avoid stale data areas 9954 * in the mailbox post. Then copy the caller's mailbox contents to 9955 * the bmbx mailbox region. 9956 */ 9957 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9958 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9959 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9960 sizeof(struct lpfc_mqe)); 9961 9962 /* Post the high mailbox dma address to the port and wait for ready. */ 9963 dma_address = &phba->sli4_hba.bmbx.dma_address; 9964 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9965 9966 /* wait for bootstrap mbox register for hi-address write done */ 9967 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9968 if (rc) 9969 goto exit; 9970 9971 /* Post the low mailbox dma address to the port. */ 9972 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9973 9974 /* wait for bootstrap mbox register for low address write done */ 9975 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9976 if (rc) 9977 goto exit; 9978 9979 /* 9980 * Read the CQ to ensure the mailbox has completed. 9981 * If so, update the mailbox status so that the upper layers 9982 * can complete the request normally. 9983 */ 9984 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9985 sizeof(struct lpfc_mqe)); 9986 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9987 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9988 sizeof(struct lpfc_mcqe)); 9989 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9990 /* 9991 * When the CQE status indicates a failure and the mailbox status 9992 * indicates success then copy the CQE status into the mailbox status 9993 * (and prefix it with x4000). 9994 */ 9995 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9996 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9997 bf_set(lpfc_mqe_status, mb, 9998 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9999 rc = MBXERR_ERROR; 10000 } else 10001 lpfc_sli4_swap_str(phba, mboxq); 10002 10003 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10004 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10005 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10006 " x%x x%x CQ: x%x x%x x%x x%x\n", 10007 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10008 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10009 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10010 bf_get(lpfc_mqe_status, mb), 10011 mb->un.mb_words[0], mb->un.mb_words[1], 10012 mb->un.mb_words[2], mb->un.mb_words[3], 10013 mb->un.mb_words[4], mb->un.mb_words[5], 10014 mb->un.mb_words[6], mb->un.mb_words[7], 10015 mb->un.mb_words[8], mb->un.mb_words[9], 10016 mb->un.mb_words[10], mb->un.mb_words[11], 10017 mb->un.mb_words[12], mboxq->mcqe.word0, 10018 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10019 mboxq->mcqe.trailer); 10020 exit: 10021 /* We are holding the token, no needed for lock when release */ 10022 spin_lock_irqsave(&phba->hbalock, iflag); 10023 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10024 phba->sli.mbox_active = NULL; 10025 spin_unlock_irqrestore(&phba->hbalock, iflag); 10026 return rc; 10027 } 10028 10029 /** 10030 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10031 * @phba: Pointer to HBA context object. 10032 * @mboxq: Pointer to mailbox object. 10033 * @flag: Flag indicating how the mailbox need to be processed. 10034 * 10035 * This function is called by discovery code and HBA management code to submit 10036 * a mailbox command to firmware with SLI-4 interface spec. 10037 * 10038 * Return codes the caller owns the mailbox command after the return of the 10039 * function. 10040 **/ 10041 static int 10042 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10043 uint32_t flag) 10044 { 10045 struct lpfc_sli *psli = &phba->sli; 10046 unsigned long iflags; 10047 int rc; 10048 10049 /* dump from issue mailbox command if setup */ 10050 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10051 10052 rc = lpfc_mbox_dev_check(phba); 10053 if (unlikely(rc)) { 10054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10055 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10056 "cannot issue Data: x%x x%x\n", 10057 mboxq->vport ? mboxq->vport->vpi : 0, 10058 mboxq->u.mb.mbxCommand, 10059 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10060 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10061 psli->sli_flag, flag); 10062 goto out_not_finished; 10063 } 10064 10065 /* Detect polling mode and jump to a handler */ 10066 if (!phba->sli4_hba.intr_enable) { 10067 if (flag == MBX_POLL) 10068 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10069 else 10070 rc = -EIO; 10071 if (rc != MBX_SUCCESS) 10072 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10073 "(%d):2541 Mailbox command x%x " 10074 "(x%x/x%x) failure: " 10075 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10076 "Data: x%x x%x\n", 10077 mboxq->vport ? mboxq->vport->vpi : 0, 10078 mboxq->u.mb.mbxCommand, 10079 lpfc_sli_config_mbox_subsys_get(phba, 10080 mboxq), 10081 lpfc_sli_config_mbox_opcode_get(phba, 10082 mboxq), 10083 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10084 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10085 bf_get(lpfc_mcqe_ext_status, 10086 &mboxq->mcqe), 10087 psli->sli_flag, flag); 10088 return rc; 10089 } else if (flag == MBX_POLL) { 10090 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10091 "(%d):2542 Try to issue mailbox command " 10092 "x%x (x%x/x%x) synchronously ahead of async " 10093 "mailbox command queue: x%x x%x\n", 10094 mboxq->vport ? mboxq->vport->vpi : 0, 10095 mboxq->u.mb.mbxCommand, 10096 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10097 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10098 psli->sli_flag, flag); 10099 /* Try to block the asynchronous mailbox posting */ 10100 rc = lpfc_sli4_async_mbox_block(phba); 10101 if (!rc) { 10102 /* Successfully blocked, now issue sync mbox cmd */ 10103 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10104 if (rc != MBX_SUCCESS) 10105 lpfc_printf_log(phba, KERN_WARNING, 10106 LOG_MBOX | LOG_SLI, 10107 "(%d):2597 Sync Mailbox command " 10108 "x%x (x%x/x%x) failure: " 10109 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10110 "Data: x%x x%x\n", 10111 mboxq->vport ? mboxq->vport->vpi : 0, 10112 mboxq->u.mb.mbxCommand, 10113 lpfc_sli_config_mbox_subsys_get(phba, 10114 mboxq), 10115 lpfc_sli_config_mbox_opcode_get(phba, 10116 mboxq), 10117 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10118 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10119 bf_get(lpfc_mcqe_ext_status, 10120 &mboxq->mcqe), 10121 psli->sli_flag, flag); 10122 /* Unblock the async mailbox posting afterward */ 10123 lpfc_sli4_async_mbox_unblock(phba); 10124 } 10125 return rc; 10126 } 10127 10128 /* Now, interrupt mode asynchronous mailbox command */ 10129 rc = lpfc_mbox_cmd_check(phba, mboxq); 10130 if (rc) { 10131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10132 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10133 "cannot issue Data: x%x x%x\n", 10134 mboxq->vport ? mboxq->vport->vpi : 0, 10135 mboxq->u.mb.mbxCommand, 10136 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10137 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10138 psli->sli_flag, flag); 10139 goto out_not_finished; 10140 } 10141 10142 /* Put the mailbox command to the driver internal FIFO */ 10143 psli->slistat.mbox_busy++; 10144 spin_lock_irqsave(&phba->hbalock, iflags); 10145 lpfc_mbox_put(phba, mboxq); 10146 spin_unlock_irqrestore(&phba->hbalock, iflags); 10147 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10148 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10149 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10150 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10151 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10152 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10153 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10154 mboxq->u.mb.un.varUnregLogin.rpi, 10155 phba->pport->port_state, 10156 psli->sli_flag, MBX_NOWAIT); 10157 /* Wake up worker thread to transport mailbox command from head */ 10158 lpfc_worker_wake_up(phba); 10159 10160 return MBX_BUSY; 10161 10162 out_not_finished: 10163 return MBX_NOT_FINISHED; 10164 } 10165 10166 /** 10167 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10168 * @phba: Pointer to HBA context object. 10169 * 10170 * This function is called by worker thread to send a mailbox command to 10171 * SLI4 HBA firmware. 10172 * 10173 **/ 10174 int 10175 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10176 { 10177 struct lpfc_sli *psli = &phba->sli; 10178 LPFC_MBOXQ_t *mboxq; 10179 int rc = MBX_SUCCESS; 10180 unsigned long iflags; 10181 struct lpfc_mqe *mqe; 10182 uint32_t mbx_cmnd; 10183 10184 /* Check interrupt mode before post async mailbox command */ 10185 if (unlikely(!phba->sli4_hba.intr_enable)) 10186 return MBX_NOT_FINISHED; 10187 10188 /* Check for mailbox command service token */ 10189 spin_lock_irqsave(&phba->hbalock, iflags); 10190 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10191 spin_unlock_irqrestore(&phba->hbalock, iflags); 10192 return MBX_NOT_FINISHED; 10193 } 10194 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10195 spin_unlock_irqrestore(&phba->hbalock, iflags); 10196 return MBX_NOT_FINISHED; 10197 } 10198 if (unlikely(phba->sli.mbox_active)) { 10199 spin_unlock_irqrestore(&phba->hbalock, iflags); 10200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10201 "0384 There is pending active mailbox cmd\n"); 10202 return MBX_NOT_FINISHED; 10203 } 10204 /* Take the mailbox command service token */ 10205 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10206 10207 /* Get the next mailbox command from head of queue */ 10208 mboxq = lpfc_mbox_get(phba); 10209 10210 /* If no more mailbox command waiting for post, we're done */ 10211 if (!mboxq) { 10212 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10213 spin_unlock_irqrestore(&phba->hbalock, iflags); 10214 return MBX_SUCCESS; 10215 } 10216 phba->sli.mbox_active = mboxq; 10217 spin_unlock_irqrestore(&phba->hbalock, iflags); 10218 10219 /* Check device readiness for posting mailbox command */ 10220 rc = lpfc_mbox_dev_check(phba); 10221 if (unlikely(rc)) 10222 /* Driver clean routine will clean up pending mailbox */ 10223 goto out_not_finished; 10224 10225 /* Prepare the mbox command to be posted */ 10226 mqe = &mboxq->u.mqe; 10227 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10228 10229 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10230 mod_timer(&psli->mbox_tmo, (jiffies + 10231 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10232 10233 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10234 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10235 "x%x x%x\n", 10236 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10237 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10238 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10239 phba->pport->port_state, psli->sli_flag); 10240 10241 if (mbx_cmnd != MBX_HEARTBEAT) { 10242 if (mboxq->vport) { 10243 lpfc_debugfs_disc_trc(mboxq->vport, 10244 LPFC_DISC_TRC_MBOX_VPORT, 10245 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10246 mbx_cmnd, mqe->un.mb_words[0], 10247 mqe->un.mb_words[1]); 10248 } else { 10249 lpfc_debugfs_disc_trc(phba->pport, 10250 LPFC_DISC_TRC_MBOX, 10251 "MBOX Send: cmd:x%x mb:x%x x%x", 10252 mbx_cmnd, mqe->un.mb_words[0], 10253 mqe->un.mb_words[1]); 10254 } 10255 } 10256 psli->slistat.mbox_cmd++; 10257 10258 /* Post the mailbox command to the port */ 10259 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10260 if (rc != MBX_SUCCESS) { 10261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10262 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10263 "cannot issue Data: x%x x%x\n", 10264 mboxq->vport ? mboxq->vport->vpi : 0, 10265 mboxq->u.mb.mbxCommand, 10266 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10267 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10268 psli->sli_flag, MBX_NOWAIT); 10269 goto out_not_finished; 10270 } 10271 10272 return rc; 10273 10274 out_not_finished: 10275 spin_lock_irqsave(&phba->hbalock, iflags); 10276 if (phba->sli.mbox_active) { 10277 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10278 __lpfc_mbox_cmpl_put(phba, mboxq); 10279 /* Release the token */ 10280 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10281 phba->sli.mbox_active = NULL; 10282 } 10283 spin_unlock_irqrestore(&phba->hbalock, iflags); 10284 10285 return MBX_NOT_FINISHED; 10286 } 10287 10288 /** 10289 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10290 * @phba: Pointer to HBA context object. 10291 * @pmbox: Pointer to mailbox object. 10292 * @flag: Flag indicating how the mailbox need to be processed. 10293 * 10294 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10295 * the API jump table function pointer from the lpfc_hba struct. 10296 * 10297 * Return codes the caller owns the mailbox command after the return of the 10298 * function. 10299 **/ 10300 int 10301 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10302 { 10303 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10304 } 10305 10306 /** 10307 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10308 * @phba: The hba struct for which this call is being executed. 10309 * @dev_grp: The HBA PCI-Device group number. 10310 * 10311 * This routine sets up the mbox interface API function jump table in @phba 10312 * struct. 10313 * Returns: 0 - success, -ENODEV - failure. 10314 **/ 10315 int 10316 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10317 { 10318 10319 switch (dev_grp) { 10320 case LPFC_PCI_DEV_LP: 10321 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10322 phba->lpfc_sli_handle_slow_ring_event = 10323 lpfc_sli_handle_slow_ring_event_s3; 10324 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10325 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10326 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10327 break; 10328 case LPFC_PCI_DEV_OC: 10329 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10330 phba->lpfc_sli_handle_slow_ring_event = 10331 lpfc_sli_handle_slow_ring_event_s4; 10332 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10333 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10334 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10335 break; 10336 default: 10337 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10338 "1420 Invalid HBA PCI-device group: 0x%x\n", 10339 dev_grp); 10340 return -ENODEV; 10341 } 10342 return 0; 10343 } 10344 10345 /** 10346 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10347 * @phba: Pointer to HBA context object. 10348 * @pring: Pointer to driver SLI ring object. 10349 * @piocb: Pointer to address of newly added command iocb. 10350 * 10351 * This function is called with hbalock held for SLI3 ports or 10352 * the ring lock held for SLI4 ports to add a command 10353 * iocb to the txq when SLI layer cannot submit the command iocb 10354 * to the ring. 10355 **/ 10356 void 10357 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10358 struct lpfc_iocbq *piocb) 10359 { 10360 if (phba->sli_rev == LPFC_SLI_REV4) 10361 lockdep_assert_held(&pring->ring_lock); 10362 else 10363 lockdep_assert_held(&phba->hbalock); 10364 /* Insert the caller's iocb in the txq tail for later processing. */ 10365 list_add_tail(&piocb->list, &pring->txq); 10366 } 10367 10368 /** 10369 * lpfc_sli_next_iocb - Get the next iocb in the txq 10370 * @phba: Pointer to HBA context object. 10371 * @pring: Pointer to driver SLI ring object. 10372 * @piocb: Pointer to address of newly added command iocb. 10373 * 10374 * This function is called with hbalock held before a new 10375 * iocb is submitted to the firmware. This function checks 10376 * txq to flush the iocbs in txq to Firmware before 10377 * submitting new iocbs to the Firmware. 10378 * If there are iocbs in the txq which need to be submitted 10379 * to firmware, lpfc_sli_next_iocb returns the first element 10380 * of the txq after dequeuing it from txq. 10381 * If there is no iocb in the txq then the function will return 10382 * *piocb and *piocb is set to NULL. Caller needs to check 10383 * *piocb to find if there are more commands in the txq. 10384 **/ 10385 static struct lpfc_iocbq * 10386 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10387 struct lpfc_iocbq **piocb) 10388 { 10389 struct lpfc_iocbq * nextiocb; 10390 10391 lockdep_assert_held(&phba->hbalock); 10392 10393 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10394 if (!nextiocb) { 10395 nextiocb = *piocb; 10396 *piocb = NULL; 10397 } 10398 10399 return nextiocb; 10400 } 10401 10402 /** 10403 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10404 * @phba: Pointer to HBA context object. 10405 * @ring_number: SLI ring number to issue iocb on. 10406 * @piocb: Pointer to command iocb. 10407 * @flag: Flag indicating if this command can be put into txq. 10408 * 10409 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10410 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10411 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10412 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10413 * this function allows only iocbs for posting buffers. This function finds 10414 * next available slot in the command ring and posts the command to the 10415 * available slot and writes the port attention register to request HBA start 10416 * processing new iocb. If there is no slot available in the ring and 10417 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10418 * the function returns IOCB_BUSY. 10419 * 10420 * This function is called with hbalock held. The function will return success 10421 * after it successfully submit the iocb to firmware or after adding to the 10422 * txq. 10423 **/ 10424 static int 10425 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10426 struct lpfc_iocbq *piocb, uint32_t flag) 10427 { 10428 struct lpfc_iocbq *nextiocb; 10429 IOCB_t *iocb; 10430 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10431 10432 lockdep_assert_held(&phba->hbalock); 10433 10434 if (piocb->cmd_cmpl && (!piocb->vport) && 10435 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10436 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10438 "1807 IOCB x%x failed. No vport\n", 10439 piocb->iocb.ulpCommand); 10440 dump_stack(); 10441 return IOCB_ERROR; 10442 } 10443 10444 10445 /* If the PCI channel is in offline state, do not post iocbs. */ 10446 if (unlikely(pci_channel_offline(phba->pcidev))) 10447 return IOCB_ERROR; 10448 10449 /* If HBA has a deferred error attention, fail the iocb. */ 10450 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10451 return IOCB_ERROR; 10452 10453 /* 10454 * We should never get an IOCB if we are in a < LINK_DOWN state 10455 */ 10456 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10457 return IOCB_ERROR; 10458 10459 /* 10460 * Check to see if we are blocking IOCB processing because of a 10461 * outstanding event. 10462 */ 10463 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10464 goto iocb_busy; 10465 10466 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10467 /* 10468 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10469 * can be issued if the link is not up. 10470 */ 10471 switch (piocb->iocb.ulpCommand) { 10472 case CMD_QUE_RING_BUF_CN: 10473 case CMD_QUE_RING_BUF64_CN: 10474 /* 10475 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10476 * completion, cmd_cmpl MUST be 0. 10477 */ 10478 if (piocb->cmd_cmpl) 10479 piocb->cmd_cmpl = NULL; 10480 fallthrough; 10481 case CMD_CREATE_XRI_CR: 10482 case CMD_CLOSE_XRI_CN: 10483 case CMD_CLOSE_XRI_CX: 10484 break; 10485 default: 10486 goto iocb_busy; 10487 } 10488 10489 /* 10490 * For FCP commands, we must be in a state where we can process link 10491 * attention events. 10492 */ 10493 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10494 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10495 goto iocb_busy; 10496 } 10497 10498 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10499 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10500 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10501 10502 if (iocb) 10503 lpfc_sli_update_ring(phba, pring); 10504 else 10505 lpfc_sli_update_full_ring(phba, pring); 10506 10507 if (!piocb) 10508 return IOCB_SUCCESS; 10509 10510 goto out_busy; 10511 10512 iocb_busy: 10513 pring->stats.iocb_cmd_delay++; 10514 10515 out_busy: 10516 10517 if (!(flag & SLI_IOCB_RET_IOCB)) { 10518 __lpfc_sli_ringtx_put(phba, pring, piocb); 10519 return IOCB_SUCCESS; 10520 } 10521 10522 return IOCB_BUSY; 10523 } 10524 10525 /** 10526 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10527 * @phba: Pointer to HBA context object. 10528 * @ring_number: SLI ring number to issue wqe on. 10529 * @piocb: Pointer to command iocb. 10530 * @flag: Flag indicating if this command can be put into txq. 10531 * 10532 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10533 * send an iocb command to an HBA with SLI-3 interface spec. 10534 * 10535 * This function takes the hbalock before invoking the lockless version. 10536 * The function will return success after it successfully submit the wqe to 10537 * firmware or after adding to the txq. 10538 **/ 10539 static int 10540 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10541 struct lpfc_iocbq *piocb, uint32_t flag) 10542 { 10543 unsigned long iflags; 10544 int rc; 10545 10546 spin_lock_irqsave(&phba->hbalock, iflags); 10547 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10548 spin_unlock_irqrestore(&phba->hbalock, iflags); 10549 10550 return rc; 10551 } 10552 10553 /** 10554 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10555 * @phba: Pointer to HBA context object. 10556 * @ring_number: SLI ring number to issue wqe on. 10557 * @piocb: Pointer to command iocb. 10558 * @flag: Flag indicating if this command can be put into txq. 10559 * 10560 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10561 * an wqe command to an HBA with SLI-4 interface spec. 10562 * 10563 * This function is a lockless version. The function will return success 10564 * after it successfully submit the wqe to firmware or after adding to the 10565 * txq. 10566 **/ 10567 static int 10568 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10569 struct lpfc_iocbq *piocb, uint32_t flag) 10570 { 10571 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10572 10573 lpfc_prep_embed_io(phba, lpfc_cmd); 10574 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10575 } 10576 10577 void 10578 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10579 { 10580 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10581 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10582 struct sli4_sge *sgl; 10583 10584 /* 128 byte wqe support here */ 10585 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10586 10587 if (phba->fcp_embed_io) { 10588 struct fcp_cmnd *fcp_cmnd; 10589 u32 *ptr; 10590 10591 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10592 10593 /* Word 0-2 - FCP_CMND */ 10594 wqe->generic.bde.tus.f.bdeFlags = 10595 BUFF_TYPE_BDE_IMMED; 10596 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10597 wqe->generic.bde.addrHigh = 0; 10598 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10599 10600 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10601 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10602 10603 /* Word 22-29 FCP CMND Payload */ 10604 ptr = &wqe->words[22]; 10605 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10606 } else { 10607 /* Word 0-2 - Inline BDE */ 10608 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10609 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10610 wqe->generic.bde.addrHigh = sgl->addr_hi; 10611 wqe->generic.bde.addrLow = sgl->addr_lo; 10612 10613 /* Word 10 */ 10614 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10615 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10616 } 10617 10618 /* add the VMID tags as per switch response */ 10619 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10620 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10621 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10622 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10623 (piocb->vmid_tag.cs_ctl_vmid)); 10624 } else if (phba->cfg_vmid_app_header) { 10625 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10626 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10627 wqe->words[31] = piocb->vmid_tag.app_id; 10628 } 10629 } 10630 } 10631 10632 /** 10633 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10634 * @phba: Pointer to HBA context object. 10635 * @ring_number: SLI ring number to issue iocb on. 10636 * @piocb: Pointer to command iocb. 10637 * @flag: Flag indicating if this command can be put into txq. 10638 * 10639 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10640 * an iocb command to an HBA with SLI-4 interface spec. 10641 * 10642 * This function is called with ringlock held. The function will return success 10643 * after it successfully submit the iocb to firmware or after adding to the 10644 * txq. 10645 **/ 10646 static int 10647 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10648 struct lpfc_iocbq *piocb, uint32_t flag) 10649 { 10650 struct lpfc_sglq *sglq; 10651 union lpfc_wqe128 *wqe; 10652 struct lpfc_queue *wq; 10653 struct lpfc_sli_ring *pring; 10654 u32 ulp_command = get_job_cmnd(phba, piocb); 10655 10656 /* Get the WQ */ 10657 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10658 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10659 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10660 } else { 10661 wq = phba->sli4_hba.els_wq; 10662 } 10663 10664 /* Get corresponding ring */ 10665 pring = wq->pring; 10666 10667 /* 10668 * The WQE can be either 64 or 128 bytes, 10669 */ 10670 10671 lockdep_assert_held(&pring->ring_lock); 10672 wqe = &piocb->wqe; 10673 if (piocb->sli4_xritag == NO_XRI) { 10674 if (ulp_command == CMD_ABORT_XRI_CX) 10675 sglq = NULL; 10676 else { 10677 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10678 if (!sglq) { 10679 if (!(flag & SLI_IOCB_RET_IOCB)) { 10680 __lpfc_sli_ringtx_put(phba, 10681 pring, 10682 piocb); 10683 return IOCB_SUCCESS; 10684 } else { 10685 return IOCB_BUSY; 10686 } 10687 } 10688 } 10689 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10690 /* These IO's already have an XRI and a mapped sgl. */ 10691 sglq = NULL; 10692 } 10693 else { 10694 /* 10695 * This is a continuation of a commandi,(CX) so this 10696 * sglq is on the active list 10697 */ 10698 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10699 if (!sglq) 10700 return IOCB_ERROR; 10701 } 10702 10703 if (sglq) { 10704 piocb->sli4_lxritag = sglq->sli4_lxritag; 10705 piocb->sli4_xritag = sglq->sli4_xritag; 10706 10707 /* ABTS sent by initiator to CT exchange, the 10708 * RX_ID field will be filled with the newly 10709 * allocated responder XRI. 10710 */ 10711 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10712 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10713 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10714 piocb->sli4_xritag); 10715 10716 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10717 piocb->sli4_xritag); 10718 10719 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10720 return IOCB_ERROR; 10721 } 10722 10723 if (lpfc_sli4_wq_put(wq, wqe)) 10724 return IOCB_ERROR; 10725 10726 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10727 10728 return 0; 10729 } 10730 10731 /* 10732 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10733 * 10734 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10735 * or IOCB for sli-3 function. 10736 * pointer from the lpfc_hba struct. 10737 * 10738 * Return codes: 10739 * IOCB_ERROR - Error 10740 * IOCB_SUCCESS - Success 10741 * IOCB_BUSY - Busy 10742 **/ 10743 int 10744 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10745 struct lpfc_iocbq *piocb, uint32_t flag) 10746 { 10747 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10748 } 10749 10750 /* 10751 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10752 * 10753 * This routine wraps the actual lockless version for issusing IOCB function 10754 * pointer from the lpfc_hba struct. 10755 * 10756 * Return codes: 10757 * IOCB_ERROR - Error 10758 * IOCB_SUCCESS - Success 10759 * IOCB_BUSY - Busy 10760 **/ 10761 int 10762 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10763 struct lpfc_iocbq *piocb, uint32_t flag) 10764 { 10765 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10766 } 10767 10768 static void 10769 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10770 struct lpfc_vport *vport, 10771 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10772 u32 elscmd, u8 tmo, u8 expect_rsp) 10773 { 10774 struct lpfc_hba *phba = vport->phba; 10775 IOCB_t *cmd; 10776 10777 cmd = &cmdiocbq->iocb; 10778 memset(cmd, 0, sizeof(*cmd)); 10779 10780 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10781 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10782 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10783 10784 if (expect_rsp) { 10785 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10786 cmd->un.elsreq64.remoteID = did; /* DID */ 10787 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10788 cmd->ulpTimeout = tmo; 10789 } else { 10790 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10791 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10792 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10793 cmd->ulpPU = PARM_NPIV_DID; 10794 } 10795 cmd->ulpBdeCount = 1; 10796 cmd->ulpLe = 1; 10797 cmd->ulpClass = CLASS3; 10798 10799 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10800 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10801 if (expect_rsp) { 10802 cmd->un.elsreq64.myID = vport->fc_myDID; 10803 10804 /* For ELS_REQUEST64_CR, use the VPI by default */ 10805 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10806 } 10807 10808 cmd->ulpCt_h = 0; 10809 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10810 if (elscmd == ELS_CMD_ECHO) 10811 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10812 else 10813 cmd->ulpCt_l = 1; /* context = VPI */ 10814 } 10815 } 10816 10817 static void 10818 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10819 struct lpfc_vport *vport, 10820 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10821 u32 elscmd, u8 tmo, u8 expect_rsp) 10822 { 10823 struct lpfc_hba *phba = vport->phba; 10824 union lpfc_wqe128 *wqe; 10825 struct ulp_bde64_le *bde; 10826 u8 els_id; 10827 10828 wqe = &cmdiocbq->wqe; 10829 memset(wqe, 0, sizeof(*wqe)); 10830 10831 /* Word 0 - 2 BDE */ 10832 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10833 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10834 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10835 bde->type_size = cpu_to_le32(cmd_size); 10836 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10837 10838 if (expect_rsp) { 10839 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10840 10841 /* Transfer length */ 10842 wqe->els_req.payload_len = cmd_size; 10843 wqe->els_req.max_response_payload_len = FCELSSIZE; 10844 10845 /* DID */ 10846 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10847 10848 /* Word 11 - ELS_ID */ 10849 switch (elscmd) { 10850 case ELS_CMD_PLOGI: 10851 els_id = LPFC_ELS_ID_PLOGI; 10852 break; 10853 case ELS_CMD_FLOGI: 10854 els_id = LPFC_ELS_ID_FLOGI; 10855 break; 10856 case ELS_CMD_LOGO: 10857 els_id = LPFC_ELS_ID_LOGO; 10858 break; 10859 case ELS_CMD_FDISC: 10860 if (!vport->fc_myDID) { 10861 els_id = LPFC_ELS_ID_FDISC; 10862 break; 10863 } 10864 fallthrough; 10865 default: 10866 els_id = LPFC_ELS_ID_DEFAULT; 10867 break; 10868 } 10869 10870 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10871 } else { 10872 /* DID */ 10873 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10874 10875 /* Transfer length */ 10876 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10877 10878 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10879 CMD_XMIT_ELS_RSP64_WQE); 10880 } 10881 10882 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10883 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10884 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10885 10886 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10887 * For SLI4, since the driver controls VPIs we also want to include 10888 * all ELS pt2pt protocol traffic as well. 10889 */ 10890 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10891 test_bit(FC_PT2PT, &vport->fc_flag)) { 10892 if (expect_rsp) { 10893 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10894 10895 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10896 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10897 phba->vpi_ids[vport->vpi]); 10898 } 10899 10900 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10901 if (elscmd == ELS_CMD_ECHO) 10902 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10903 else 10904 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10905 } 10906 } 10907 10908 void 10909 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10910 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10911 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10912 u8 expect_rsp) 10913 { 10914 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10915 elscmd, tmo, expect_rsp); 10916 } 10917 10918 static void 10919 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10920 u16 rpi, u32 num_entry, u8 tmo) 10921 { 10922 IOCB_t *cmd; 10923 10924 cmd = &cmdiocbq->iocb; 10925 memset(cmd, 0, sizeof(*cmd)); 10926 10927 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10928 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10929 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10930 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10931 10932 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10933 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10934 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10935 10936 cmd->ulpContext = rpi; 10937 cmd->ulpClass = CLASS3; 10938 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10939 cmd->ulpBdeCount = 1; 10940 cmd->ulpLe = 1; 10941 cmd->ulpOwner = OWN_CHIP; 10942 cmd->ulpTimeout = tmo; 10943 } 10944 10945 static void 10946 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10947 u16 rpi, u32 num_entry, u8 tmo) 10948 { 10949 union lpfc_wqe128 *cmdwqe; 10950 struct ulp_bde64_le *bde, *bpl; 10951 u32 xmit_len = 0, total_len = 0, size, type, i; 10952 10953 cmdwqe = &cmdiocbq->wqe; 10954 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10955 10956 /* Calculate total_len and xmit_len */ 10957 bpl = (struct ulp_bde64_le *)bmp->virt; 10958 for (i = 0; i < num_entry; i++) { 10959 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10960 total_len += size; 10961 } 10962 for (i = 0; i < num_entry; i++) { 10963 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10964 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10965 if (type != ULP_BDE64_TYPE_BDE_64) 10966 break; 10967 xmit_len += size; 10968 } 10969 10970 /* Words 0 - 2 */ 10971 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10972 bde->addr_low = bpl->addr_low; 10973 bde->addr_high = bpl->addr_high; 10974 bde->type_size = cpu_to_le32(xmit_len); 10975 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10976 10977 /* Word 3 */ 10978 cmdwqe->gen_req.request_payload_len = xmit_len; 10979 10980 /* Word 5 */ 10981 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10982 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10983 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10984 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10985 10986 /* Word 6 */ 10987 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10988 10989 /* Word 7 */ 10990 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10991 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10992 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10993 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10994 10995 /* Word 12 */ 10996 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10997 } 10998 10999 void 11000 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11001 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11002 { 11003 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11004 } 11005 11006 static void 11007 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11008 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11009 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11010 { 11011 IOCB_t *icmd; 11012 11013 icmd = &cmdiocbq->iocb; 11014 memset(icmd, 0, sizeof(*icmd)); 11015 11016 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11017 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11018 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11019 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11020 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11021 if (last_seq) 11022 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11023 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11024 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11025 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11026 11027 icmd->ulpBdeCount = 1; 11028 icmd->ulpLe = 1; 11029 icmd->ulpClass = CLASS3; 11030 11031 switch (cr_cx_cmd) { 11032 case CMD_XMIT_SEQUENCE64_CR: 11033 icmd->ulpContext = rpi; 11034 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11035 break; 11036 case CMD_XMIT_SEQUENCE64_CX: 11037 icmd->ulpContext = ox_id; 11038 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11039 break; 11040 default: 11041 break; 11042 } 11043 } 11044 11045 static void 11046 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11047 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11048 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11049 { 11050 union lpfc_wqe128 *wqe; 11051 struct ulp_bde64 *bpl; 11052 11053 wqe = &cmdiocbq->wqe; 11054 memset(wqe, 0, sizeof(*wqe)); 11055 11056 /* Words 0 - 2 */ 11057 bpl = (struct ulp_bde64 *)bmp->virt; 11058 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11059 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11060 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11061 11062 /* Word 5 */ 11063 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11064 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11065 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11066 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11067 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11068 11069 /* Word 6 */ 11070 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11071 11072 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11073 CMD_XMIT_SEQUENCE64_WQE); 11074 11075 /* Word 7 */ 11076 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11077 11078 /* Word 9 */ 11079 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11080 11081 /* Word 12 */ 11082 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11083 wqe->xmit_sequence.xmit_len = full_size; 11084 else 11085 wqe->xmit_sequence.xmit_len = 11086 wqe->xmit_sequence.bde.tus.f.bdeSize; 11087 } 11088 11089 void 11090 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11091 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11092 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11093 { 11094 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11095 rctl, last_seq, cr_cx_cmd); 11096 } 11097 11098 static void 11099 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11100 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11101 bool wqec) 11102 { 11103 IOCB_t *icmd = NULL; 11104 11105 icmd = &cmdiocbq->iocb; 11106 memset(icmd, 0, sizeof(*icmd)); 11107 11108 /* Word 5 */ 11109 icmd->un.acxri.abortContextTag = ulp_context; 11110 icmd->un.acxri.abortIoTag = iotag; 11111 11112 if (ia) { 11113 /* Word 7 */ 11114 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11115 } else { 11116 /* Word 3 */ 11117 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11118 11119 /* Word 7 */ 11120 icmd->ulpClass = ulp_class; 11121 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11122 } 11123 11124 /* Word 7 */ 11125 icmd->ulpLe = 1; 11126 } 11127 11128 static void 11129 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11130 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11131 bool wqec) 11132 { 11133 union lpfc_wqe128 *wqe; 11134 11135 wqe = &cmdiocbq->wqe; 11136 memset(wqe, 0, sizeof(*wqe)); 11137 11138 /* Word 3 */ 11139 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11140 if (ia) 11141 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11142 else 11143 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11144 11145 /* Word 7 */ 11146 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11147 11148 /* Word 8 */ 11149 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11150 11151 /* Word 9 */ 11152 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11153 11154 /* Word 10 */ 11155 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11156 11157 /* Word 11 */ 11158 if (wqec) 11159 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11160 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11161 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11162 } 11163 11164 void 11165 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11166 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11167 bool ia, bool wqec) 11168 { 11169 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11170 cqid, ia, wqec); 11171 } 11172 11173 /** 11174 * lpfc_sli_api_table_setup - Set up sli api function jump table 11175 * @phba: The hba struct for which this call is being executed. 11176 * @dev_grp: The HBA PCI-Device group number. 11177 * 11178 * This routine sets up the SLI interface API function jump table in @phba 11179 * struct. 11180 * Returns: 0 - success, -ENODEV - failure. 11181 **/ 11182 int 11183 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11184 { 11185 11186 switch (dev_grp) { 11187 case LPFC_PCI_DEV_LP: 11188 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11189 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11190 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11191 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11192 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11193 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11194 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11195 break; 11196 case LPFC_PCI_DEV_OC: 11197 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11198 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11199 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11200 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11201 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11202 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11203 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11204 break; 11205 default: 11206 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11207 "1419 Invalid HBA PCI-device group: 0x%x\n", 11208 dev_grp); 11209 return -ENODEV; 11210 } 11211 return 0; 11212 } 11213 11214 /** 11215 * lpfc_sli4_calc_ring - Calculates which ring to use 11216 * @phba: Pointer to HBA context object. 11217 * @piocb: Pointer to command iocb. 11218 * 11219 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11220 * hba_wqidx, thus we need to calculate the corresponding ring. 11221 * Since ABORTS must go on the same WQ of the command they are 11222 * aborting, we use command's hba_wqidx. 11223 */ 11224 struct lpfc_sli_ring * 11225 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11226 { 11227 struct lpfc_io_buf *lpfc_cmd; 11228 11229 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11230 if (unlikely(!phba->sli4_hba.hdwq)) 11231 return NULL; 11232 /* 11233 * for abort iocb hba_wqidx should already 11234 * be setup based on what work queue we used. 11235 */ 11236 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11237 lpfc_cmd = piocb->io_buf; 11238 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11239 } 11240 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11241 } else { 11242 if (unlikely(!phba->sli4_hba.els_wq)) 11243 return NULL; 11244 piocb->hba_wqidx = 0; 11245 return phba->sli4_hba.els_wq->pring; 11246 } 11247 } 11248 11249 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11250 { 11251 struct lpfc_hba *phba = eq->phba; 11252 11253 /* 11254 * Unlocking an irq is one of the entry point to check 11255 * for re-schedule, but we are good for io submission 11256 * path as midlayer does a get_cpu to glue us in. Flush 11257 * out the invalidate queue so we can see the updated 11258 * value for flag. 11259 */ 11260 smp_rmb(); 11261 11262 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11263 /* We will not likely get the completion for the caller 11264 * during this iteration but i guess that's fine. 11265 * Future io's coming on this eq should be able to 11266 * pick it up. As for the case of single io's, they 11267 * will be handled through a sched from polling timer 11268 * function which is currently triggered every 1msec. 11269 */ 11270 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11271 LPFC_QUEUE_WORK); 11272 } 11273 11274 /** 11275 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11276 * @phba: Pointer to HBA context object. 11277 * @ring_number: Ring number 11278 * @piocb: Pointer to command iocb. 11279 * @flag: Flag indicating if this command can be put into txq. 11280 * 11281 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11282 * function. This function gets the hbalock and calls 11283 * __lpfc_sli_issue_iocb function and will return the error returned 11284 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11285 * functions which do not hold hbalock. 11286 **/ 11287 int 11288 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11289 struct lpfc_iocbq *piocb, uint32_t flag) 11290 { 11291 struct lpfc_sli_ring *pring; 11292 struct lpfc_queue *eq; 11293 unsigned long iflags; 11294 int rc; 11295 11296 /* If the PCI channel is in offline state, do not post iocbs. */ 11297 if (unlikely(pci_channel_offline(phba->pcidev))) 11298 return IOCB_ERROR; 11299 11300 if (phba->sli_rev == LPFC_SLI_REV4) { 11301 lpfc_sli_prep_wqe(phba, piocb); 11302 11303 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11304 11305 pring = lpfc_sli4_calc_ring(phba, piocb); 11306 if (unlikely(pring == NULL)) 11307 return IOCB_ERROR; 11308 11309 spin_lock_irqsave(&pring->ring_lock, iflags); 11310 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11311 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11312 11313 lpfc_sli4_poll_eq(eq); 11314 } else { 11315 /* For now, SLI2/3 will still use hbalock */ 11316 spin_lock_irqsave(&phba->hbalock, iflags); 11317 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11318 spin_unlock_irqrestore(&phba->hbalock, iflags); 11319 } 11320 return rc; 11321 } 11322 11323 /** 11324 * lpfc_extra_ring_setup - Extra ring setup function 11325 * @phba: Pointer to HBA context object. 11326 * 11327 * This function is called while driver attaches with the 11328 * HBA to setup the extra ring. The extra ring is used 11329 * only when driver needs to support target mode functionality 11330 * or IP over FC functionalities. 11331 * 11332 * This function is called with no lock held. SLI3 only. 11333 **/ 11334 static int 11335 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11336 { 11337 struct lpfc_sli *psli; 11338 struct lpfc_sli_ring *pring; 11339 11340 psli = &phba->sli; 11341 11342 /* Adjust cmd/rsp ring iocb entries more evenly */ 11343 11344 /* Take some away from the FCP ring */ 11345 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11346 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11347 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11348 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11349 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11350 11351 /* and give them to the extra ring */ 11352 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11353 11354 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11355 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11356 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11357 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11358 11359 /* Setup default profile for this ring */ 11360 pring->iotag_max = 4096; 11361 pring->num_mask = 1; 11362 pring->prt[0].profile = 0; /* Mask 0 */ 11363 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11364 pring->prt[0].type = phba->cfg_multi_ring_type; 11365 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11366 return 0; 11367 } 11368 11369 static void 11370 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11371 struct lpfc_nodelist *ndlp) 11372 { 11373 unsigned long iflags; 11374 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11375 11376 spin_lock_irqsave(&phba->hbalock, iflags); 11377 if (!list_empty(&evtp->evt_listp)) { 11378 spin_unlock_irqrestore(&phba->hbalock, iflags); 11379 return; 11380 } 11381 11382 /* Incrementing the reference count until the queued work is done. */ 11383 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11384 if (!evtp->evt_arg1) { 11385 spin_unlock_irqrestore(&phba->hbalock, iflags); 11386 return; 11387 } 11388 evtp->evt = LPFC_EVT_RECOVER_PORT; 11389 list_add_tail(&evtp->evt_listp, &phba->work_list); 11390 spin_unlock_irqrestore(&phba->hbalock, iflags); 11391 11392 lpfc_worker_wake_up(phba); 11393 } 11394 11395 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11396 * @phba: Pointer to HBA context object. 11397 * @iocbq: Pointer to iocb object. 11398 * 11399 * The async_event handler calls this routine when it receives 11400 * an ASYNC_STATUS_CN event from the port. The port generates 11401 * this event when an Abort Sequence request to an rport fails 11402 * twice in succession. The abort could be originated by the 11403 * driver or by the port. The ABTS could have been for an ELS 11404 * or FCP IO. The port only generates this event when an ABTS 11405 * fails to complete after one retry. 11406 */ 11407 static void 11408 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11409 struct lpfc_iocbq *iocbq) 11410 { 11411 struct lpfc_nodelist *ndlp = NULL; 11412 uint16_t rpi = 0, vpi = 0; 11413 struct lpfc_vport *vport = NULL; 11414 11415 /* The rpi in the ulpContext is vport-sensitive. */ 11416 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11417 rpi = iocbq->iocb.ulpContext; 11418 11419 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11420 "3092 Port generated ABTS async event " 11421 "on vpi %d rpi %d status 0x%x\n", 11422 vpi, rpi, iocbq->iocb.ulpStatus); 11423 11424 vport = lpfc_find_vport_by_vpid(phba, vpi); 11425 if (!vport) 11426 goto err_exit; 11427 ndlp = lpfc_findnode_rpi(vport, rpi); 11428 if (!ndlp) 11429 goto err_exit; 11430 11431 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11432 lpfc_sli_abts_recover_port(vport, ndlp); 11433 return; 11434 11435 err_exit: 11436 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11437 "3095 Event Context not found, no " 11438 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11439 vpi, rpi, iocbq->iocb.ulpStatus, 11440 iocbq->iocb.ulpContext); 11441 } 11442 11443 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11444 * @phba: pointer to HBA context object. 11445 * @ndlp: nodelist pointer for the impacted rport. 11446 * @axri: pointer to the wcqe containing the failed exchange. 11447 * 11448 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11449 * port. The port generates this event when an abort exchange request to an 11450 * rport fails twice in succession with no reply. The abort could be originated 11451 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11452 */ 11453 void 11454 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11455 struct lpfc_nodelist *ndlp, 11456 struct sli4_wcqe_xri_aborted *axri) 11457 { 11458 uint32_t ext_status = 0; 11459 11460 if (!ndlp) { 11461 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11462 "3115 Node Context not found, driver " 11463 "ignoring abts err event\n"); 11464 return; 11465 } 11466 11467 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11468 "3116 Port generated FCP XRI ABORT event on " 11469 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11470 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11471 bf_get(lpfc_wcqe_xa_xri, axri), 11472 bf_get(lpfc_wcqe_xa_status, axri), 11473 axri->parameter); 11474 11475 /* 11476 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11477 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11478 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11479 */ 11480 ext_status = axri->parameter & IOERR_PARAM_MASK; 11481 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11482 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11483 lpfc_sli_post_recovery_event(phba, ndlp); 11484 } 11485 11486 /** 11487 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11488 * @phba: Pointer to HBA context object. 11489 * @pring: Pointer to driver SLI ring object. 11490 * @iocbq: Pointer to iocb object. 11491 * 11492 * This function is called by the slow ring event handler 11493 * function when there is an ASYNC event iocb in the ring. 11494 * This function is called with no lock held. 11495 * Currently this function handles only temperature related 11496 * ASYNC events. The function decodes the temperature sensor 11497 * event message and posts events for the management applications. 11498 **/ 11499 static void 11500 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11501 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11502 { 11503 IOCB_t *icmd; 11504 uint16_t evt_code; 11505 struct temp_event temp_event_data; 11506 struct Scsi_Host *shost; 11507 uint32_t *iocb_w; 11508 11509 icmd = &iocbq->iocb; 11510 evt_code = icmd->un.asyncstat.evt_code; 11511 11512 switch (evt_code) { 11513 case ASYNC_TEMP_WARN: 11514 case ASYNC_TEMP_SAFE: 11515 temp_event_data.data = (uint32_t) icmd->ulpContext; 11516 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11517 if (evt_code == ASYNC_TEMP_WARN) { 11518 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11519 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11520 "0347 Adapter is very hot, please take " 11521 "corrective action. temperature : %d Celsius\n", 11522 (uint32_t) icmd->ulpContext); 11523 } else { 11524 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11526 "0340 Adapter temperature is OK now. " 11527 "temperature : %d Celsius\n", 11528 (uint32_t) icmd->ulpContext); 11529 } 11530 11531 /* Send temperature change event to applications */ 11532 shost = lpfc_shost_from_vport(phba->pport); 11533 fc_host_post_vendor_event(shost, fc_get_event_number(), 11534 sizeof(temp_event_data), (char *) &temp_event_data, 11535 LPFC_NL_VENDOR_ID); 11536 break; 11537 case ASYNC_STATUS_CN: 11538 lpfc_sli_abts_err_handler(phba, iocbq); 11539 break; 11540 default: 11541 iocb_w = (uint32_t *) icmd; 11542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11543 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11544 " evt_code 0x%x\n" 11545 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11546 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11547 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11548 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11549 pring->ringno, icmd->un.asyncstat.evt_code, 11550 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11551 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11552 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11553 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11554 11555 break; 11556 } 11557 } 11558 11559 11560 /** 11561 * lpfc_sli4_setup - SLI ring setup function 11562 * @phba: Pointer to HBA context object. 11563 * 11564 * lpfc_sli_setup sets up rings of the SLI interface with 11565 * number of iocbs per ring and iotags. This function is 11566 * called while driver attach to the HBA and before the 11567 * interrupts are enabled. So there is no need for locking. 11568 * 11569 * This function always returns 0. 11570 **/ 11571 int 11572 lpfc_sli4_setup(struct lpfc_hba *phba) 11573 { 11574 struct lpfc_sli_ring *pring; 11575 11576 pring = phba->sli4_hba.els_wq->pring; 11577 pring->num_mask = LPFC_MAX_RING_MASK; 11578 pring->prt[0].profile = 0; /* Mask 0 */ 11579 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11580 pring->prt[0].type = FC_TYPE_ELS; 11581 pring->prt[0].lpfc_sli_rcv_unsol_event = 11582 lpfc_els_unsol_event; 11583 pring->prt[1].profile = 0; /* Mask 1 */ 11584 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11585 pring->prt[1].type = FC_TYPE_ELS; 11586 pring->prt[1].lpfc_sli_rcv_unsol_event = 11587 lpfc_els_unsol_event; 11588 pring->prt[2].profile = 0; /* Mask 2 */ 11589 /* NameServer Inquiry */ 11590 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11591 /* NameServer */ 11592 pring->prt[2].type = FC_TYPE_CT; 11593 pring->prt[2].lpfc_sli_rcv_unsol_event = 11594 lpfc_ct_unsol_event; 11595 pring->prt[3].profile = 0; /* Mask 3 */ 11596 /* NameServer response */ 11597 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11598 /* NameServer */ 11599 pring->prt[3].type = FC_TYPE_CT; 11600 pring->prt[3].lpfc_sli_rcv_unsol_event = 11601 lpfc_ct_unsol_event; 11602 return 0; 11603 } 11604 11605 /** 11606 * lpfc_sli_setup - SLI ring setup function 11607 * @phba: Pointer to HBA context object. 11608 * 11609 * lpfc_sli_setup sets up rings of the SLI interface with 11610 * number of iocbs per ring and iotags. This function is 11611 * called while driver attach to the HBA and before the 11612 * interrupts are enabled. So there is no need for locking. 11613 * 11614 * This function always returns 0. SLI3 only. 11615 **/ 11616 int 11617 lpfc_sli_setup(struct lpfc_hba *phba) 11618 { 11619 int i, totiocbsize = 0; 11620 struct lpfc_sli *psli = &phba->sli; 11621 struct lpfc_sli_ring *pring; 11622 11623 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11624 psli->sli_flag = 0; 11625 11626 psli->iocbq_lookup = NULL; 11627 psli->iocbq_lookup_len = 0; 11628 psli->last_iotag = 0; 11629 11630 for (i = 0; i < psli->num_rings; i++) { 11631 pring = &psli->sli3_ring[i]; 11632 switch (i) { 11633 case LPFC_FCP_RING: /* ring 0 - FCP */ 11634 /* numCiocb and numRiocb are used in config_port */ 11635 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11636 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11637 pring->sli.sli3.numCiocb += 11638 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11639 pring->sli.sli3.numRiocb += 11640 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11641 pring->sli.sli3.numCiocb += 11642 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11643 pring->sli.sli3.numRiocb += 11644 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11645 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11646 SLI3_IOCB_CMD_SIZE : 11647 SLI2_IOCB_CMD_SIZE; 11648 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11649 SLI3_IOCB_RSP_SIZE : 11650 SLI2_IOCB_RSP_SIZE; 11651 pring->iotag_ctr = 0; 11652 pring->iotag_max = 11653 (phba->cfg_hba_queue_depth * 2); 11654 pring->fast_iotag = pring->iotag_max; 11655 pring->num_mask = 0; 11656 break; 11657 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11658 /* numCiocb and numRiocb are used in config_port */ 11659 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11660 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11661 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11662 SLI3_IOCB_CMD_SIZE : 11663 SLI2_IOCB_CMD_SIZE; 11664 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11665 SLI3_IOCB_RSP_SIZE : 11666 SLI2_IOCB_RSP_SIZE; 11667 pring->iotag_max = phba->cfg_hba_queue_depth; 11668 pring->num_mask = 0; 11669 break; 11670 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11671 /* numCiocb and numRiocb are used in config_port */ 11672 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11673 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11674 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11675 SLI3_IOCB_CMD_SIZE : 11676 SLI2_IOCB_CMD_SIZE; 11677 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11678 SLI3_IOCB_RSP_SIZE : 11679 SLI2_IOCB_RSP_SIZE; 11680 pring->fast_iotag = 0; 11681 pring->iotag_ctr = 0; 11682 pring->iotag_max = 4096; 11683 pring->lpfc_sli_rcv_async_status = 11684 lpfc_sli_async_event_handler; 11685 pring->num_mask = LPFC_MAX_RING_MASK; 11686 pring->prt[0].profile = 0; /* Mask 0 */ 11687 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11688 pring->prt[0].type = FC_TYPE_ELS; 11689 pring->prt[0].lpfc_sli_rcv_unsol_event = 11690 lpfc_els_unsol_event; 11691 pring->prt[1].profile = 0; /* Mask 1 */ 11692 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11693 pring->prt[1].type = FC_TYPE_ELS; 11694 pring->prt[1].lpfc_sli_rcv_unsol_event = 11695 lpfc_els_unsol_event; 11696 pring->prt[2].profile = 0; /* Mask 2 */ 11697 /* NameServer Inquiry */ 11698 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11699 /* NameServer */ 11700 pring->prt[2].type = FC_TYPE_CT; 11701 pring->prt[2].lpfc_sli_rcv_unsol_event = 11702 lpfc_ct_unsol_event; 11703 pring->prt[3].profile = 0; /* Mask 3 */ 11704 /* NameServer response */ 11705 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11706 /* NameServer */ 11707 pring->prt[3].type = FC_TYPE_CT; 11708 pring->prt[3].lpfc_sli_rcv_unsol_event = 11709 lpfc_ct_unsol_event; 11710 break; 11711 } 11712 totiocbsize += (pring->sli.sli3.numCiocb * 11713 pring->sli.sli3.sizeCiocb) + 11714 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11715 } 11716 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11717 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11718 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11719 "SLI2 SLIM Data: x%x x%lx\n", 11720 phba->brd_no, totiocbsize, 11721 (unsigned long) MAX_SLIM_IOCB_SIZE); 11722 } 11723 if (phba->cfg_multi_ring_support == 2) 11724 lpfc_extra_ring_setup(phba); 11725 11726 return 0; 11727 } 11728 11729 /** 11730 * lpfc_sli4_queue_init - Queue initialization function 11731 * @phba: Pointer to HBA context object. 11732 * 11733 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11734 * ring. This function also initializes ring indices of each ring. 11735 * This function is called during the initialization of the SLI 11736 * interface of an HBA. 11737 * This function is called with no lock held and always returns 11738 * 1. 11739 **/ 11740 void 11741 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11742 { 11743 struct lpfc_sli *psli; 11744 struct lpfc_sli_ring *pring; 11745 int i; 11746 11747 psli = &phba->sli; 11748 spin_lock_irq(&phba->hbalock); 11749 INIT_LIST_HEAD(&psli->mboxq); 11750 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11751 /* Initialize list headers for txq and txcmplq as double linked lists */ 11752 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11753 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11754 pring->flag = 0; 11755 pring->ringno = LPFC_FCP_RING; 11756 pring->txcmplq_cnt = 0; 11757 INIT_LIST_HEAD(&pring->txq); 11758 INIT_LIST_HEAD(&pring->txcmplq); 11759 INIT_LIST_HEAD(&pring->iocb_continueq); 11760 spin_lock_init(&pring->ring_lock); 11761 } 11762 pring = phba->sli4_hba.els_wq->pring; 11763 pring->flag = 0; 11764 pring->ringno = LPFC_ELS_RING; 11765 pring->txcmplq_cnt = 0; 11766 INIT_LIST_HEAD(&pring->txq); 11767 INIT_LIST_HEAD(&pring->txcmplq); 11768 INIT_LIST_HEAD(&pring->iocb_continueq); 11769 spin_lock_init(&pring->ring_lock); 11770 11771 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11772 pring = phba->sli4_hba.nvmels_wq->pring; 11773 pring->flag = 0; 11774 pring->ringno = LPFC_ELS_RING; 11775 pring->txcmplq_cnt = 0; 11776 INIT_LIST_HEAD(&pring->txq); 11777 INIT_LIST_HEAD(&pring->txcmplq); 11778 INIT_LIST_HEAD(&pring->iocb_continueq); 11779 spin_lock_init(&pring->ring_lock); 11780 } 11781 11782 spin_unlock_irq(&phba->hbalock); 11783 } 11784 11785 /** 11786 * lpfc_sli_queue_init - Queue initialization function 11787 * @phba: Pointer to HBA context object. 11788 * 11789 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11790 * ring. This function also initializes ring indices of each ring. 11791 * This function is called during the initialization of the SLI 11792 * interface of an HBA. 11793 * This function is called with no lock held and always returns 11794 * 1. 11795 **/ 11796 void 11797 lpfc_sli_queue_init(struct lpfc_hba *phba) 11798 { 11799 struct lpfc_sli *psli; 11800 struct lpfc_sli_ring *pring; 11801 int i; 11802 11803 psli = &phba->sli; 11804 spin_lock_irq(&phba->hbalock); 11805 INIT_LIST_HEAD(&psli->mboxq); 11806 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11807 /* Initialize list headers for txq and txcmplq as double linked lists */ 11808 for (i = 0; i < psli->num_rings; i++) { 11809 pring = &psli->sli3_ring[i]; 11810 pring->ringno = i; 11811 pring->sli.sli3.next_cmdidx = 0; 11812 pring->sli.sli3.local_getidx = 0; 11813 pring->sli.sli3.cmdidx = 0; 11814 INIT_LIST_HEAD(&pring->iocb_continueq); 11815 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11816 INIT_LIST_HEAD(&pring->postbufq); 11817 pring->flag = 0; 11818 INIT_LIST_HEAD(&pring->txq); 11819 INIT_LIST_HEAD(&pring->txcmplq); 11820 spin_lock_init(&pring->ring_lock); 11821 } 11822 spin_unlock_irq(&phba->hbalock); 11823 } 11824 11825 /** 11826 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11827 * @phba: Pointer to HBA context object. 11828 * 11829 * This routine flushes the mailbox command subsystem. It will unconditionally 11830 * flush all the mailbox commands in the three possible stages in the mailbox 11831 * command sub-system: pending mailbox command queue; the outstanding mailbox 11832 * command; and completed mailbox command queue. It is caller's responsibility 11833 * to make sure that the driver is in the proper state to flush the mailbox 11834 * command sub-system. Namely, the posting of mailbox commands into the 11835 * pending mailbox command queue from the various clients must be stopped; 11836 * either the HBA is in a state that it will never works on the outstanding 11837 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11838 * mailbox command has been completed. 11839 **/ 11840 static void 11841 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11842 { 11843 LIST_HEAD(completions); 11844 struct lpfc_sli *psli = &phba->sli; 11845 LPFC_MBOXQ_t *pmb; 11846 unsigned long iflag; 11847 11848 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11849 local_bh_disable(); 11850 11851 /* Flush all the mailbox commands in the mbox system */ 11852 spin_lock_irqsave(&phba->hbalock, iflag); 11853 11854 /* The pending mailbox command queue */ 11855 list_splice_init(&phba->sli.mboxq, &completions); 11856 /* The outstanding active mailbox command */ 11857 if (psli->mbox_active) { 11858 list_add_tail(&psli->mbox_active->list, &completions); 11859 psli->mbox_active = NULL; 11860 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11861 } 11862 /* The completed mailbox command queue */ 11863 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11864 spin_unlock_irqrestore(&phba->hbalock, iflag); 11865 11866 /* Enable softirqs again, done with phba->hbalock */ 11867 local_bh_enable(); 11868 11869 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11870 while (!list_empty(&completions)) { 11871 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11872 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11873 if (pmb->mbox_cmpl) 11874 pmb->mbox_cmpl(phba, pmb); 11875 } 11876 } 11877 11878 /** 11879 * lpfc_sli_host_down - Vport cleanup function 11880 * @vport: Pointer to virtual port object. 11881 * 11882 * lpfc_sli_host_down is called to clean up the resources 11883 * associated with a vport before destroying virtual 11884 * port data structures. 11885 * This function does following operations: 11886 * - Free discovery resources associated with this virtual 11887 * port. 11888 * - Free iocbs associated with this virtual port in 11889 * the txq. 11890 * - Send abort for all iocb commands associated with this 11891 * vport in txcmplq. 11892 * 11893 * This function is called with no lock held and always returns 1. 11894 **/ 11895 int 11896 lpfc_sli_host_down(struct lpfc_vport *vport) 11897 { 11898 LIST_HEAD(completions); 11899 struct lpfc_hba *phba = vport->phba; 11900 struct lpfc_sli *psli = &phba->sli; 11901 struct lpfc_queue *qp = NULL; 11902 struct lpfc_sli_ring *pring; 11903 struct lpfc_iocbq *iocb, *next_iocb; 11904 int i; 11905 unsigned long flags = 0; 11906 uint16_t prev_pring_flag; 11907 11908 lpfc_cleanup_discovery_resources(vport); 11909 11910 spin_lock_irqsave(&phba->hbalock, flags); 11911 11912 /* 11913 * Error everything on the txq since these iocbs 11914 * have not been given to the FW yet. 11915 * Also issue ABTS for everything on the txcmplq 11916 */ 11917 if (phba->sli_rev != LPFC_SLI_REV4) { 11918 for (i = 0; i < psli->num_rings; i++) { 11919 pring = &psli->sli3_ring[i]; 11920 prev_pring_flag = pring->flag; 11921 /* Only slow rings */ 11922 if (pring->ringno == LPFC_ELS_RING) { 11923 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11924 /* Set the lpfc data pending flag */ 11925 set_bit(LPFC_DATA_READY, &phba->data_flags); 11926 } 11927 list_for_each_entry_safe(iocb, next_iocb, 11928 &pring->txq, list) { 11929 if (iocb->vport != vport) 11930 continue; 11931 list_move_tail(&iocb->list, &completions); 11932 } 11933 list_for_each_entry_safe(iocb, next_iocb, 11934 &pring->txcmplq, list) { 11935 if (iocb->vport != vport) 11936 continue; 11937 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11938 NULL); 11939 } 11940 pring->flag = prev_pring_flag; 11941 } 11942 } else { 11943 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11944 pring = qp->pring; 11945 if (!pring) 11946 continue; 11947 if (pring == phba->sli4_hba.els_wq->pring) { 11948 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11949 /* Set the lpfc data pending flag */ 11950 set_bit(LPFC_DATA_READY, &phba->data_flags); 11951 } 11952 prev_pring_flag = pring->flag; 11953 spin_lock(&pring->ring_lock); 11954 list_for_each_entry_safe(iocb, next_iocb, 11955 &pring->txq, list) { 11956 if (iocb->vport != vport) 11957 continue; 11958 list_move_tail(&iocb->list, &completions); 11959 } 11960 spin_unlock(&pring->ring_lock); 11961 list_for_each_entry_safe(iocb, next_iocb, 11962 &pring->txcmplq, list) { 11963 if (iocb->vport != vport) 11964 continue; 11965 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11966 NULL); 11967 } 11968 pring->flag = prev_pring_flag; 11969 } 11970 } 11971 spin_unlock_irqrestore(&phba->hbalock, flags); 11972 11973 /* Make sure HBA is alive */ 11974 lpfc_issue_hb_tmo(phba); 11975 11976 /* Cancel all the IOCBs from the completions list */ 11977 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11978 IOERR_SLI_DOWN); 11979 return 1; 11980 } 11981 11982 /** 11983 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11984 * @phba: Pointer to HBA context object. 11985 * 11986 * This function cleans up all iocb, buffers, mailbox commands 11987 * while shutting down the HBA. This function is called with no 11988 * lock held and always returns 1. 11989 * This function does the following to cleanup driver resources: 11990 * - Free discovery resources for each virtual port 11991 * - Cleanup any pending fabric iocbs 11992 * - Iterate through the iocb txq and free each entry 11993 * in the list. 11994 * - Free up any buffer posted to the HBA 11995 * - Free mailbox commands in the mailbox queue. 11996 **/ 11997 int 11998 lpfc_sli_hba_down(struct lpfc_hba *phba) 11999 { 12000 LIST_HEAD(completions); 12001 struct lpfc_sli *psli = &phba->sli; 12002 struct lpfc_queue *qp = NULL; 12003 struct lpfc_sli_ring *pring; 12004 struct lpfc_dmabuf *buf_ptr; 12005 unsigned long flags = 0; 12006 int i; 12007 12008 /* Shutdown the mailbox command sub-system */ 12009 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12010 12011 lpfc_hba_down_prep(phba); 12012 12013 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12014 local_bh_disable(); 12015 12016 lpfc_fabric_abort_hba(phba); 12017 12018 spin_lock_irqsave(&phba->hbalock, flags); 12019 12020 /* 12021 * Error everything on the txq since these iocbs 12022 * have not been given to the FW yet. 12023 */ 12024 if (phba->sli_rev != LPFC_SLI_REV4) { 12025 for (i = 0; i < psli->num_rings; i++) { 12026 pring = &psli->sli3_ring[i]; 12027 /* Only slow rings */ 12028 if (pring->ringno == LPFC_ELS_RING) { 12029 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12030 /* Set the lpfc data pending flag */ 12031 set_bit(LPFC_DATA_READY, &phba->data_flags); 12032 } 12033 list_splice_init(&pring->txq, &completions); 12034 } 12035 } else { 12036 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12037 pring = qp->pring; 12038 if (!pring) 12039 continue; 12040 spin_lock(&pring->ring_lock); 12041 list_splice_init(&pring->txq, &completions); 12042 spin_unlock(&pring->ring_lock); 12043 if (pring == phba->sli4_hba.els_wq->pring) { 12044 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12045 /* Set the lpfc data pending flag */ 12046 set_bit(LPFC_DATA_READY, &phba->data_flags); 12047 } 12048 } 12049 } 12050 spin_unlock_irqrestore(&phba->hbalock, flags); 12051 12052 /* Cancel all the IOCBs from the completions list */ 12053 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12054 IOERR_SLI_DOWN); 12055 12056 spin_lock_irqsave(&phba->hbalock, flags); 12057 list_splice_init(&phba->elsbuf, &completions); 12058 phba->elsbuf_cnt = 0; 12059 phba->elsbuf_prev_cnt = 0; 12060 spin_unlock_irqrestore(&phba->hbalock, flags); 12061 12062 while (!list_empty(&completions)) { 12063 list_remove_head(&completions, buf_ptr, 12064 struct lpfc_dmabuf, list); 12065 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12066 kfree(buf_ptr); 12067 } 12068 12069 /* Enable softirqs again, done with phba->hbalock */ 12070 local_bh_enable(); 12071 12072 /* Return any active mbox cmds */ 12073 del_timer_sync(&psli->mbox_tmo); 12074 12075 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12076 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12077 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12078 12079 return 1; 12080 } 12081 12082 /** 12083 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12084 * @srcp: Source memory pointer. 12085 * @destp: Destination memory pointer. 12086 * @cnt: Number of words required to be copied. 12087 * 12088 * This function is used for copying data between driver memory 12089 * and the SLI memory. This function also changes the endianness 12090 * of each word if native endianness is different from SLI 12091 * endianness. This function can be called with or without 12092 * lock. 12093 **/ 12094 void 12095 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12096 { 12097 uint32_t *src = srcp; 12098 uint32_t *dest = destp; 12099 uint32_t ldata; 12100 int i; 12101 12102 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12103 ldata = *src; 12104 ldata = le32_to_cpu(ldata); 12105 *dest = ldata; 12106 src++; 12107 dest++; 12108 } 12109 } 12110 12111 12112 /** 12113 * lpfc_sli_bemem_bcopy - SLI memory copy function 12114 * @srcp: Source memory pointer. 12115 * @destp: Destination memory pointer. 12116 * @cnt: Number of words required to be copied. 12117 * 12118 * This function is used for copying data between a data structure 12119 * with big endian representation to local endianness. 12120 * This function can be called with or without lock. 12121 **/ 12122 void 12123 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12124 { 12125 uint32_t *src = srcp; 12126 uint32_t *dest = destp; 12127 uint32_t ldata; 12128 int i; 12129 12130 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12131 ldata = *src; 12132 ldata = be32_to_cpu(ldata); 12133 *dest = ldata; 12134 src++; 12135 dest++; 12136 } 12137 } 12138 12139 /** 12140 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12141 * @phba: Pointer to HBA context object. 12142 * @pring: Pointer to driver SLI ring object. 12143 * @mp: Pointer to driver buffer object. 12144 * 12145 * This function is called with no lock held. 12146 * It always return zero after adding the buffer to the postbufq 12147 * buffer list. 12148 **/ 12149 int 12150 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12151 struct lpfc_dmabuf *mp) 12152 { 12153 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12154 later */ 12155 spin_lock_irq(&phba->hbalock); 12156 list_add_tail(&mp->list, &pring->postbufq); 12157 pring->postbufq_cnt++; 12158 spin_unlock_irq(&phba->hbalock); 12159 return 0; 12160 } 12161 12162 /** 12163 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12164 * @phba: Pointer to HBA context object. 12165 * 12166 * When HBQ is enabled, buffers are searched based on tags. This function 12167 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12168 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12169 * does not conflict with tags of buffer posted for unsolicited events. 12170 * The function returns the allocated tag. The function is called with 12171 * no locks held. 12172 **/ 12173 uint32_t 12174 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12175 { 12176 spin_lock_irq(&phba->hbalock); 12177 phba->buffer_tag_count++; 12178 /* 12179 * Always set the QUE_BUFTAG_BIT to distiguish between 12180 * a tag assigned by HBQ. 12181 */ 12182 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12183 spin_unlock_irq(&phba->hbalock); 12184 return phba->buffer_tag_count; 12185 } 12186 12187 /** 12188 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12189 * @phba: Pointer to HBA context object. 12190 * @pring: Pointer to driver SLI ring object. 12191 * @tag: Buffer tag. 12192 * 12193 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12194 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12195 * iocb is posted to the response ring with the tag of the buffer. 12196 * This function searches the pring->postbufq list using the tag 12197 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12198 * iocb. If the buffer is found then lpfc_dmabuf object of the 12199 * buffer is returned to the caller else NULL is returned. 12200 * This function is called with no lock held. 12201 **/ 12202 struct lpfc_dmabuf * 12203 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12204 uint32_t tag) 12205 { 12206 struct lpfc_dmabuf *mp, *next_mp; 12207 struct list_head *slp = &pring->postbufq; 12208 12209 /* Search postbufq, from the beginning, looking for a match on tag */ 12210 spin_lock_irq(&phba->hbalock); 12211 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12212 if (mp->buffer_tag == tag) { 12213 list_del_init(&mp->list); 12214 pring->postbufq_cnt--; 12215 spin_unlock_irq(&phba->hbalock); 12216 return mp; 12217 } 12218 } 12219 12220 spin_unlock_irq(&phba->hbalock); 12221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12222 "0402 Cannot find virtual addr for buffer tag on " 12223 "ring %d Data x%lx x%px x%px x%x\n", 12224 pring->ringno, (unsigned long) tag, 12225 slp->next, slp->prev, pring->postbufq_cnt); 12226 12227 return NULL; 12228 } 12229 12230 /** 12231 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12232 * @phba: Pointer to HBA context object. 12233 * @pring: Pointer to driver SLI ring object. 12234 * @phys: DMA address of the buffer. 12235 * 12236 * This function searches the buffer list using the dma_address 12237 * of unsolicited event to find the driver's lpfc_dmabuf object 12238 * corresponding to the dma_address. The function returns the 12239 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12240 * This function is called by the ct and els unsolicited event 12241 * handlers to get the buffer associated with the unsolicited 12242 * event. 12243 * 12244 * This function is called with no lock held. 12245 **/ 12246 struct lpfc_dmabuf * 12247 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12248 dma_addr_t phys) 12249 { 12250 struct lpfc_dmabuf *mp, *next_mp; 12251 struct list_head *slp = &pring->postbufq; 12252 12253 /* Search postbufq, from the beginning, looking for a match on phys */ 12254 spin_lock_irq(&phba->hbalock); 12255 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12256 if (mp->phys == phys) { 12257 list_del_init(&mp->list); 12258 pring->postbufq_cnt--; 12259 spin_unlock_irq(&phba->hbalock); 12260 return mp; 12261 } 12262 } 12263 12264 spin_unlock_irq(&phba->hbalock); 12265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12266 "0410 Cannot find virtual addr for mapped buf on " 12267 "ring %d Data x%llx x%px x%px x%x\n", 12268 pring->ringno, (unsigned long long)phys, 12269 slp->next, slp->prev, pring->postbufq_cnt); 12270 return NULL; 12271 } 12272 12273 /** 12274 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12275 * @phba: Pointer to HBA context object. 12276 * @cmdiocb: Pointer to driver command iocb object. 12277 * @rspiocb: Pointer to driver response iocb object. 12278 * 12279 * This function is the completion handler for the abort iocbs for 12280 * ELS commands. This function is called from the ELS ring event 12281 * handler with no lock held. This function frees memory resources 12282 * associated with the abort iocb. 12283 **/ 12284 static void 12285 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12286 struct lpfc_iocbq *rspiocb) 12287 { 12288 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12289 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12290 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12291 12292 if (ulp_status) { 12293 /* 12294 * Assume that the port already completed and returned, or 12295 * will return the iocb. Just Log the message. 12296 */ 12297 if (phba->sli_rev < LPFC_SLI_REV4) { 12298 if (cmnd == CMD_ABORT_XRI_CX && 12299 ulp_status == IOSTAT_LOCAL_REJECT && 12300 ulp_word4 == IOERR_ABORT_REQUESTED) { 12301 goto release_iocb; 12302 } 12303 } 12304 12305 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12306 "0327 Cannot abort els iocb x%px " 12307 "with io cmd xri %x abort tag : x%x, " 12308 "abort status %x abort code %x\n", 12309 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12310 (phba->sli_rev == LPFC_SLI_REV4) ? 12311 get_wqe_reqtag(cmdiocb) : 12312 cmdiocb->iocb.un.acxri.abortContextTag, 12313 ulp_status, ulp_word4); 12314 12315 } 12316 release_iocb: 12317 lpfc_sli_release_iocbq(phba, cmdiocb); 12318 return; 12319 } 12320 12321 /** 12322 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12323 * @phba: Pointer to HBA context object. 12324 * @cmdiocb: Pointer to driver command iocb object. 12325 * @rspiocb: Pointer to driver response iocb object. 12326 * 12327 * The function is called from SLI ring event handler with no 12328 * lock held. This function is the completion handler for ELS commands 12329 * which are aborted. The function frees memory resources used for 12330 * the aborted ELS commands. 12331 **/ 12332 void 12333 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12334 struct lpfc_iocbq *rspiocb) 12335 { 12336 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12337 IOCB_t *irsp; 12338 LPFC_MBOXQ_t *mbox; 12339 u32 ulp_command, ulp_status, ulp_word4, iotag; 12340 12341 ulp_command = get_job_cmnd(phba, cmdiocb); 12342 ulp_status = get_job_ulpstatus(phba, rspiocb); 12343 ulp_word4 = get_job_word4(phba, rspiocb); 12344 12345 if (phba->sli_rev == LPFC_SLI_REV4) { 12346 iotag = get_wqe_reqtag(cmdiocb); 12347 } else { 12348 irsp = &rspiocb->iocb; 12349 iotag = irsp->ulpIoTag; 12350 12351 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12352 * The MBX_REG_LOGIN64 mbox command is freed back to the 12353 * mbox_mem_pool here. 12354 */ 12355 if (cmdiocb->context_un.mbox) { 12356 mbox = cmdiocb->context_un.mbox; 12357 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12358 cmdiocb->context_un.mbox = NULL; 12359 } 12360 } 12361 12362 /* ELS cmd tag <ulpIoTag> completes */ 12363 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12364 "0139 Ignoring ELS cmd code x%x completion Data: " 12365 "x%x x%x x%x x%px\n", 12366 ulp_command, ulp_status, ulp_word4, iotag, 12367 cmdiocb->ndlp); 12368 /* 12369 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12370 * if exchange is busy. 12371 */ 12372 if (ulp_command == CMD_GEN_REQUEST64_CR) 12373 lpfc_ct_free_iocb(phba, cmdiocb); 12374 else 12375 lpfc_els_free_iocb(phba, cmdiocb); 12376 12377 lpfc_nlp_put(ndlp); 12378 } 12379 12380 /** 12381 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12382 * @phba: Pointer to HBA context object. 12383 * @pring: Pointer to driver SLI ring object. 12384 * @cmdiocb: Pointer to driver command iocb object. 12385 * @cmpl: completion function. 12386 * 12387 * This function issues an abort iocb for the provided command iocb. In case 12388 * of unloading, the abort iocb will not be issued to commands on the ELS 12389 * ring. Instead, the callback function shall be changed to those commands 12390 * so that nothing happens when them finishes. This function is called with 12391 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12392 * when the command iocb is an abort request. 12393 * 12394 **/ 12395 int 12396 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12397 struct lpfc_iocbq *cmdiocb, void *cmpl) 12398 { 12399 struct lpfc_vport *vport = cmdiocb->vport; 12400 struct lpfc_iocbq *abtsiocbp; 12401 int retval = IOCB_ERROR; 12402 unsigned long iflags; 12403 struct lpfc_nodelist *ndlp = NULL; 12404 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12405 u16 ulp_context, iotag; 12406 bool ia; 12407 12408 /* 12409 * There are certain command types we don't want to abort. And we 12410 * don't want to abort commands that are already in the process of 12411 * being aborted. 12412 */ 12413 if (ulp_command == CMD_ABORT_XRI_WQE || 12414 ulp_command == CMD_ABORT_XRI_CN || 12415 ulp_command == CMD_CLOSE_XRI_CN || 12416 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12417 return IOCB_ABORTING; 12418 12419 if (!pring) { 12420 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12421 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12422 else 12423 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12424 return retval; 12425 } 12426 12427 /* 12428 * If we're unloading, don't abort iocb on the ELS ring, but change 12429 * the callback so that nothing happens when it finishes. 12430 */ 12431 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12432 pring->ringno == LPFC_ELS_RING) { 12433 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12434 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12435 else 12436 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12437 return retval; 12438 } 12439 12440 /* issue ABTS for this IOCB based on iotag */ 12441 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12442 if (abtsiocbp == NULL) 12443 return IOCB_NORESOURCE; 12444 12445 /* This signals the response to set the correct status 12446 * before calling the completion handler 12447 */ 12448 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12449 12450 if (phba->sli_rev == LPFC_SLI_REV4) { 12451 ulp_context = cmdiocb->sli4_xritag; 12452 iotag = abtsiocbp->iotag; 12453 } else { 12454 iotag = cmdiocb->iocb.ulpIoTag; 12455 if (pring->ringno == LPFC_ELS_RING) { 12456 ndlp = cmdiocb->ndlp; 12457 ulp_context = ndlp->nlp_rpi; 12458 } else { 12459 ulp_context = cmdiocb->iocb.ulpContext; 12460 } 12461 } 12462 12463 if (phba->link_state < LPFC_LINK_UP || 12464 (phba->sli_rev == LPFC_SLI_REV4 && 12465 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12466 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12467 ia = true; 12468 else 12469 ia = false; 12470 12471 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12472 cmdiocb->iocb.ulpClass, 12473 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12474 12475 abtsiocbp->vport = vport; 12476 12477 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12478 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12479 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12480 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12481 12482 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12483 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12484 12485 if (cmpl) 12486 abtsiocbp->cmd_cmpl = cmpl; 12487 else 12488 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12489 abtsiocbp->vport = vport; 12490 12491 if (phba->sli_rev == LPFC_SLI_REV4) { 12492 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12493 if (unlikely(pring == NULL)) 12494 goto abort_iotag_exit; 12495 /* Note: both hbalock and ring_lock need to be set here */ 12496 spin_lock_irqsave(&pring->ring_lock, iflags); 12497 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12498 abtsiocbp, 0); 12499 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12500 } else { 12501 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12502 abtsiocbp, 0); 12503 } 12504 12505 abort_iotag_exit: 12506 12507 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12508 "0339 Abort IO XRI x%x, Original iotag x%x, " 12509 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12510 "retval x%x\n", 12511 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12512 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12513 retval); 12514 if (retval) { 12515 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12516 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12517 } 12518 12519 /* 12520 * Caller to this routine should check for IOCB_ERROR 12521 * and handle it properly. This routine no longer removes 12522 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12523 */ 12524 return retval; 12525 } 12526 12527 /** 12528 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12529 * @phba: pointer to lpfc HBA data structure. 12530 * 12531 * This routine will abort all pending and outstanding iocbs to an HBA. 12532 **/ 12533 void 12534 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12535 { 12536 struct lpfc_sli *psli = &phba->sli; 12537 struct lpfc_sli_ring *pring; 12538 struct lpfc_queue *qp = NULL; 12539 int i; 12540 12541 if (phba->sli_rev != LPFC_SLI_REV4) { 12542 for (i = 0; i < psli->num_rings; i++) { 12543 pring = &psli->sli3_ring[i]; 12544 lpfc_sli_abort_iocb_ring(phba, pring); 12545 } 12546 return; 12547 } 12548 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12549 pring = qp->pring; 12550 if (!pring) 12551 continue; 12552 lpfc_sli_abort_iocb_ring(phba, pring); 12553 } 12554 } 12555 12556 /** 12557 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12558 * @iocbq: Pointer to iocb object. 12559 * @vport: Pointer to driver virtual port object. 12560 * 12561 * This function acts as an iocb filter for functions which abort FCP iocbs. 12562 * 12563 * Return values 12564 * -ENODEV, if a null iocb or vport ptr is encountered 12565 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12566 * driver already started the abort process, or is an abort iocb itself 12567 * 0, passes criteria for aborting the FCP I/O iocb 12568 **/ 12569 static int 12570 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12571 struct lpfc_vport *vport) 12572 { 12573 u8 ulp_command; 12574 12575 /* No null ptr vports */ 12576 if (!iocbq || iocbq->vport != vport) 12577 return -ENODEV; 12578 12579 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12580 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12581 */ 12582 ulp_command = get_job_cmnd(vport->phba, iocbq); 12583 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12584 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12585 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12586 (ulp_command == CMD_ABORT_XRI_CN || 12587 ulp_command == CMD_CLOSE_XRI_CN || 12588 ulp_command == CMD_ABORT_XRI_WQE)) 12589 return -EINVAL; 12590 12591 return 0; 12592 } 12593 12594 /** 12595 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12596 * @iocbq: Pointer to driver iocb object. 12597 * @vport: Pointer to driver virtual port object. 12598 * @tgt_id: SCSI ID of the target. 12599 * @lun_id: LUN ID of the scsi device. 12600 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12601 * 12602 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12603 * host. 12604 * 12605 * It will return 12606 * 0 if the filtering criteria is met for the given iocb and will return 12607 * 1 if the filtering criteria is not met. 12608 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12609 * given iocb is for the SCSI device specified by vport, tgt_id and 12610 * lun_id parameter. 12611 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12612 * given iocb is for the SCSI target specified by vport and tgt_id 12613 * parameters. 12614 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12615 * given iocb is for the SCSI host associated with the given vport. 12616 * This function is called with no locks held. 12617 **/ 12618 static int 12619 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12620 uint16_t tgt_id, uint64_t lun_id, 12621 lpfc_ctx_cmd ctx_cmd) 12622 { 12623 struct lpfc_io_buf *lpfc_cmd; 12624 int rc = 1; 12625 12626 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12627 12628 if (lpfc_cmd->pCmd == NULL) 12629 return rc; 12630 12631 switch (ctx_cmd) { 12632 case LPFC_CTX_LUN: 12633 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12634 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12635 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12636 rc = 0; 12637 break; 12638 case LPFC_CTX_TGT: 12639 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12640 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12641 rc = 0; 12642 break; 12643 case LPFC_CTX_HOST: 12644 rc = 0; 12645 break; 12646 default: 12647 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12648 __func__, ctx_cmd); 12649 break; 12650 } 12651 12652 return rc; 12653 } 12654 12655 /** 12656 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12657 * @vport: Pointer to virtual port. 12658 * @tgt_id: SCSI ID of the target. 12659 * @lun_id: LUN ID of the scsi device. 12660 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12661 * 12662 * This function returns number of FCP commands pending for the vport. 12663 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12664 * commands pending on the vport associated with SCSI device specified 12665 * by tgt_id and lun_id parameters. 12666 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12667 * commands pending on the vport associated with SCSI target specified 12668 * by tgt_id parameter. 12669 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12670 * commands pending on the vport. 12671 * This function returns the number of iocbs which satisfy the filter. 12672 * This function is called without any lock held. 12673 **/ 12674 int 12675 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12676 lpfc_ctx_cmd ctx_cmd) 12677 { 12678 struct lpfc_hba *phba = vport->phba; 12679 struct lpfc_iocbq *iocbq; 12680 int sum, i; 12681 unsigned long iflags; 12682 u8 ulp_command; 12683 12684 spin_lock_irqsave(&phba->hbalock, iflags); 12685 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12686 iocbq = phba->sli.iocbq_lookup[i]; 12687 12688 if (!iocbq || iocbq->vport != vport) 12689 continue; 12690 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12691 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12692 continue; 12693 12694 /* Include counting outstanding aborts */ 12695 ulp_command = get_job_cmnd(phba, iocbq); 12696 if (ulp_command == CMD_ABORT_XRI_CN || 12697 ulp_command == CMD_CLOSE_XRI_CN || 12698 ulp_command == CMD_ABORT_XRI_WQE) { 12699 sum++; 12700 continue; 12701 } 12702 12703 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12704 ctx_cmd) == 0) 12705 sum++; 12706 } 12707 spin_unlock_irqrestore(&phba->hbalock, iflags); 12708 12709 return sum; 12710 } 12711 12712 /** 12713 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12714 * @phba: Pointer to HBA context object 12715 * @cmdiocb: Pointer to command iocb object. 12716 * @rspiocb: Pointer to response iocb object. 12717 * 12718 * This function is called when an aborted FCP iocb completes. This 12719 * function is called by the ring event handler with no lock held. 12720 * This function frees the iocb. 12721 **/ 12722 void 12723 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12724 struct lpfc_iocbq *rspiocb) 12725 { 12726 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12727 "3096 ABORT_XRI_CX completing on rpi x%x " 12728 "original iotag x%x, abort cmd iotag x%x " 12729 "status 0x%x, reason 0x%x\n", 12730 (phba->sli_rev == LPFC_SLI_REV4) ? 12731 cmdiocb->sli4_xritag : 12732 cmdiocb->iocb.un.acxri.abortContextTag, 12733 get_job_abtsiotag(phba, cmdiocb), 12734 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12735 get_job_word4(phba, rspiocb)); 12736 lpfc_sli_release_iocbq(phba, cmdiocb); 12737 return; 12738 } 12739 12740 /** 12741 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12742 * @vport: Pointer to virtual port. 12743 * @tgt_id: SCSI ID of the target. 12744 * @lun_id: LUN ID of the scsi device. 12745 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12746 * 12747 * This function sends an abort command for every SCSI command 12748 * associated with the given virtual port pending on the ring 12749 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12750 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12751 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12752 * followed by lpfc_sli_validate_fcp_iocb. 12753 * 12754 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12755 * FCP iocbs associated with lun specified by tgt_id and lun_id 12756 * parameters 12757 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12758 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12759 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12760 * FCP iocbs associated with virtual port. 12761 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12762 * lpfc_sli4_calc_ring is used. 12763 * This function returns number of iocbs it failed to abort. 12764 * This function is called with no locks held. 12765 **/ 12766 int 12767 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12768 lpfc_ctx_cmd abort_cmd) 12769 { 12770 struct lpfc_hba *phba = vport->phba; 12771 struct lpfc_sli_ring *pring = NULL; 12772 struct lpfc_iocbq *iocbq; 12773 int errcnt = 0, ret_val = 0; 12774 unsigned long iflags; 12775 int i; 12776 12777 /* all I/Os are in process of being flushed */ 12778 if (phba->hba_flag & HBA_IOQ_FLUSH) 12779 return errcnt; 12780 12781 for (i = 1; i <= phba->sli.last_iotag; i++) { 12782 iocbq = phba->sli.iocbq_lookup[i]; 12783 12784 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12785 continue; 12786 12787 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12788 abort_cmd) != 0) 12789 continue; 12790 12791 spin_lock_irqsave(&phba->hbalock, iflags); 12792 if (phba->sli_rev == LPFC_SLI_REV3) { 12793 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12794 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12795 pring = lpfc_sli4_calc_ring(phba, iocbq); 12796 } 12797 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12798 lpfc_sli_abort_fcp_cmpl); 12799 spin_unlock_irqrestore(&phba->hbalock, iflags); 12800 if (ret_val != IOCB_SUCCESS) 12801 errcnt++; 12802 } 12803 12804 return errcnt; 12805 } 12806 12807 /** 12808 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12809 * @vport: Pointer to virtual port. 12810 * @pring: Pointer to driver SLI ring object. 12811 * @tgt_id: SCSI ID of the target. 12812 * @lun_id: LUN ID of the scsi device. 12813 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12814 * 12815 * This function sends an abort command for every SCSI command 12816 * associated with the given virtual port pending on the ring 12817 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12818 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12819 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12820 * followed by lpfc_sli_validate_fcp_iocb. 12821 * 12822 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12823 * FCP iocbs associated with lun specified by tgt_id and lun_id 12824 * parameters 12825 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12826 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12827 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12828 * FCP iocbs associated with virtual port. 12829 * This function returns number of iocbs it aborted . 12830 * This function is called with no locks held right after a taskmgmt 12831 * command is sent. 12832 **/ 12833 int 12834 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12835 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12836 { 12837 struct lpfc_hba *phba = vport->phba; 12838 struct lpfc_io_buf *lpfc_cmd; 12839 struct lpfc_iocbq *abtsiocbq; 12840 struct lpfc_nodelist *ndlp = NULL; 12841 struct lpfc_iocbq *iocbq; 12842 int sum, i, ret_val; 12843 unsigned long iflags; 12844 struct lpfc_sli_ring *pring_s4 = NULL; 12845 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12846 bool ia; 12847 12848 spin_lock_irqsave(&phba->hbalock, iflags); 12849 12850 /* all I/Os are in process of being flushed */ 12851 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12852 spin_unlock_irqrestore(&phba->hbalock, iflags); 12853 return 0; 12854 } 12855 sum = 0; 12856 12857 for (i = 1; i <= phba->sli.last_iotag; i++) { 12858 iocbq = phba->sli.iocbq_lookup[i]; 12859 12860 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12861 continue; 12862 12863 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12864 cmd) != 0) 12865 continue; 12866 12867 /* Guard against IO completion being called at same time */ 12868 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12869 spin_lock(&lpfc_cmd->buf_lock); 12870 12871 if (!lpfc_cmd->pCmd) { 12872 spin_unlock(&lpfc_cmd->buf_lock); 12873 continue; 12874 } 12875 12876 if (phba->sli_rev == LPFC_SLI_REV4) { 12877 pring_s4 = 12878 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12879 if (!pring_s4) { 12880 spin_unlock(&lpfc_cmd->buf_lock); 12881 continue; 12882 } 12883 /* Note: both hbalock and ring_lock must be set here */ 12884 spin_lock(&pring_s4->ring_lock); 12885 } 12886 12887 /* 12888 * If the iocbq is already being aborted, don't take a second 12889 * action, but do count it. 12890 */ 12891 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12892 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12893 if (phba->sli_rev == LPFC_SLI_REV4) 12894 spin_unlock(&pring_s4->ring_lock); 12895 spin_unlock(&lpfc_cmd->buf_lock); 12896 continue; 12897 } 12898 12899 /* issue ABTS for this IOCB based on iotag */ 12900 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12901 if (!abtsiocbq) { 12902 if (phba->sli_rev == LPFC_SLI_REV4) 12903 spin_unlock(&pring_s4->ring_lock); 12904 spin_unlock(&lpfc_cmd->buf_lock); 12905 continue; 12906 } 12907 12908 if (phba->sli_rev == LPFC_SLI_REV4) { 12909 iotag = abtsiocbq->iotag; 12910 ulp_context = iocbq->sli4_xritag; 12911 cqid = lpfc_cmd->hdwq->io_cq_map; 12912 } else { 12913 iotag = iocbq->iocb.ulpIoTag; 12914 if (pring->ringno == LPFC_ELS_RING) { 12915 ndlp = iocbq->ndlp; 12916 ulp_context = ndlp->nlp_rpi; 12917 } else { 12918 ulp_context = iocbq->iocb.ulpContext; 12919 } 12920 } 12921 12922 ndlp = lpfc_cmd->rdata->pnode; 12923 12924 if (lpfc_is_link_up(phba) && 12925 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12926 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12927 ia = false; 12928 else 12929 ia = true; 12930 12931 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12932 iocbq->iocb.ulpClass, cqid, 12933 ia, false); 12934 12935 abtsiocbq->vport = vport; 12936 12937 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12938 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12939 if (iocbq->cmd_flag & LPFC_IO_FCP) 12940 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12941 if (iocbq->cmd_flag & LPFC_IO_FOF) 12942 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12943 12944 /* Setup callback routine and issue the command. */ 12945 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12946 12947 /* 12948 * Indicate the IO is being aborted by the driver and set 12949 * the caller's flag into the aborted IO. 12950 */ 12951 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12952 12953 if (phba->sli_rev == LPFC_SLI_REV4) { 12954 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12955 abtsiocbq, 0); 12956 spin_unlock(&pring_s4->ring_lock); 12957 } else { 12958 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12959 abtsiocbq, 0); 12960 } 12961 12962 spin_unlock(&lpfc_cmd->buf_lock); 12963 12964 if (ret_val == IOCB_ERROR) 12965 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12966 else 12967 sum++; 12968 } 12969 spin_unlock_irqrestore(&phba->hbalock, iflags); 12970 return sum; 12971 } 12972 12973 /** 12974 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12975 * @phba: Pointer to HBA context object. 12976 * @cmdiocbq: Pointer to command iocb. 12977 * @rspiocbq: Pointer to response iocb. 12978 * 12979 * This function is the completion handler for iocbs issued using 12980 * lpfc_sli_issue_iocb_wait function. This function is called by the 12981 * ring event handler function without any lock held. This function 12982 * can be called from both worker thread context and interrupt 12983 * context. This function also can be called from other thread which 12984 * cleans up the SLI layer objects. 12985 * This function copy the contents of the response iocb to the 12986 * response iocb memory object provided by the caller of 12987 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12988 * sleeps for the iocb completion. 12989 **/ 12990 static void 12991 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12992 struct lpfc_iocbq *cmdiocbq, 12993 struct lpfc_iocbq *rspiocbq) 12994 { 12995 wait_queue_head_t *pdone_q; 12996 unsigned long iflags; 12997 struct lpfc_io_buf *lpfc_cmd; 12998 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12999 13000 spin_lock_irqsave(&phba->hbalock, iflags); 13001 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13002 13003 /* 13004 * A time out has occurred for the iocb. If a time out 13005 * completion handler has been supplied, call it. Otherwise, 13006 * just free the iocbq. 13007 */ 13008 13009 spin_unlock_irqrestore(&phba->hbalock, iflags); 13010 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13011 cmdiocbq->wait_cmd_cmpl = NULL; 13012 if (cmdiocbq->cmd_cmpl) 13013 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13014 else 13015 lpfc_sli_release_iocbq(phba, cmdiocbq); 13016 return; 13017 } 13018 13019 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13020 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13021 if (cmdiocbq->rsp_iocb && rspiocbq) 13022 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13023 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13024 13025 /* Set the exchange busy flag for task management commands */ 13026 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13027 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13028 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13029 cur_iocbq); 13030 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13031 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13032 else 13033 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13034 } 13035 13036 pdone_q = cmdiocbq->context_un.wait_queue; 13037 if (pdone_q) 13038 wake_up(pdone_q); 13039 spin_unlock_irqrestore(&phba->hbalock, iflags); 13040 return; 13041 } 13042 13043 /** 13044 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13045 * @phba: Pointer to HBA context object.. 13046 * @piocbq: Pointer to command iocb. 13047 * @flag: Flag to test. 13048 * 13049 * This routine grabs the hbalock and then test the cmd_flag to 13050 * see if the passed in flag is set. 13051 * Returns: 13052 * 1 if flag is set. 13053 * 0 if flag is not set. 13054 **/ 13055 static int 13056 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13057 struct lpfc_iocbq *piocbq, uint32_t flag) 13058 { 13059 unsigned long iflags; 13060 int ret; 13061 13062 spin_lock_irqsave(&phba->hbalock, iflags); 13063 ret = piocbq->cmd_flag & flag; 13064 spin_unlock_irqrestore(&phba->hbalock, iflags); 13065 return ret; 13066 13067 } 13068 13069 /** 13070 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13071 * @phba: Pointer to HBA context object.. 13072 * @ring_number: Ring number 13073 * @piocb: Pointer to command iocb. 13074 * @prspiocbq: Pointer to response iocb. 13075 * @timeout: Timeout in number of seconds. 13076 * 13077 * This function issues the iocb to firmware and waits for the 13078 * iocb to complete. The cmd_cmpl field of the shall be used 13079 * to handle iocbs which time out. If the field is NULL, the 13080 * function shall free the iocbq structure. If more clean up is 13081 * needed, the caller is expected to provide a completion function 13082 * that will provide the needed clean up. If the iocb command is 13083 * not completed within timeout seconds, the function will either 13084 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13085 * completion function set in the cmd_cmpl field and then return 13086 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13087 * resources if this function returns IOCB_TIMEDOUT. 13088 * The function waits for the iocb completion using an 13089 * non-interruptible wait. 13090 * This function will sleep while waiting for iocb completion. 13091 * So, this function should not be called from any context which 13092 * does not allow sleeping. Due to the same reason, this function 13093 * cannot be called with interrupt disabled. 13094 * This function assumes that the iocb completions occur while 13095 * this function sleep. So, this function cannot be called from 13096 * the thread which process iocb completion for this ring. 13097 * This function clears the cmd_flag of the iocb object before 13098 * issuing the iocb and the iocb completion handler sets this 13099 * flag and wakes this thread when the iocb completes. 13100 * The contents of the response iocb will be copied to prspiocbq 13101 * by the completion handler when the command completes. 13102 * This function returns IOCB_SUCCESS when success. 13103 * This function is called with no lock held. 13104 **/ 13105 int 13106 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13107 uint32_t ring_number, 13108 struct lpfc_iocbq *piocb, 13109 struct lpfc_iocbq *prspiocbq, 13110 uint32_t timeout) 13111 { 13112 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13113 long timeleft, timeout_req = 0; 13114 int retval = IOCB_SUCCESS; 13115 uint32_t creg_val; 13116 struct lpfc_iocbq *iocb; 13117 int txq_cnt = 0; 13118 int txcmplq_cnt = 0; 13119 struct lpfc_sli_ring *pring; 13120 unsigned long iflags; 13121 bool iocb_completed = true; 13122 13123 if (phba->sli_rev >= LPFC_SLI_REV4) { 13124 lpfc_sli_prep_wqe(phba, piocb); 13125 13126 pring = lpfc_sli4_calc_ring(phba, piocb); 13127 } else 13128 pring = &phba->sli.sli3_ring[ring_number]; 13129 /* 13130 * If the caller has provided a response iocbq buffer, then rsp_iocb 13131 * is NULL or its an error. 13132 */ 13133 if (prspiocbq) { 13134 if (piocb->rsp_iocb) 13135 return IOCB_ERROR; 13136 piocb->rsp_iocb = prspiocbq; 13137 } 13138 13139 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13140 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13141 piocb->context_un.wait_queue = &done_q; 13142 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13143 13144 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13145 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13146 return IOCB_ERROR; 13147 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13148 writel(creg_val, phba->HCregaddr); 13149 readl(phba->HCregaddr); /* flush */ 13150 } 13151 13152 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13153 SLI_IOCB_RET_IOCB); 13154 if (retval == IOCB_SUCCESS) { 13155 timeout_req = msecs_to_jiffies(timeout * 1000); 13156 timeleft = wait_event_timeout(done_q, 13157 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13158 timeout_req); 13159 spin_lock_irqsave(&phba->hbalock, iflags); 13160 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13161 13162 /* 13163 * IOCB timed out. Inform the wake iocb wait 13164 * completion function and set local status 13165 */ 13166 13167 iocb_completed = false; 13168 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13169 } 13170 spin_unlock_irqrestore(&phba->hbalock, iflags); 13171 if (iocb_completed) { 13172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13173 "0331 IOCB wake signaled\n"); 13174 /* Note: we are not indicating if the IOCB has a success 13175 * status or not - that's for the caller to check. 13176 * IOCB_SUCCESS means just that the command was sent and 13177 * completed. Not that it completed successfully. 13178 * */ 13179 } else if (timeleft == 0) { 13180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13181 "0338 IOCB wait timeout error - no " 13182 "wake response Data x%x\n", timeout); 13183 retval = IOCB_TIMEDOUT; 13184 } else { 13185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13186 "0330 IOCB wake NOT set, " 13187 "Data x%x x%lx\n", 13188 timeout, (timeleft / jiffies)); 13189 retval = IOCB_TIMEDOUT; 13190 } 13191 } else if (retval == IOCB_BUSY) { 13192 if (phba->cfg_log_verbose & LOG_SLI) { 13193 list_for_each_entry(iocb, &pring->txq, list) { 13194 txq_cnt++; 13195 } 13196 list_for_each_entry(iocb, &pring->txcmplq, list) { 13197 txcmplq_cnt++; 13198 } 13199 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13200 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13201 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13202 } 13203 return retval; 13204 } else { 13205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13206 "0332 IOCB wait issue failed, Data x%x\n", 13207 retval); 13208 retval = IOCB_ERROR; 13209 } 13210 13211 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13212 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13213 return IOCB_ERROR; 13214 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13215 writel(creg_val, phba->HCregaddr); 13216 readl(phba->HCregaddr); /* flush */ 13217 } 13218 13219 if (prspiocbq) 13220 piocb->rsp_iocb = NULL; 13221 13222 piocb->context_un.wait_queue = NULL; 13223 piocb->cmd_cmpl = NULL; 13224 return retval; 13225 } 13226 13227 /** 13228 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13229 * @phba: Pointer to HBA context object. 13230 * @pmboxq: Pointer to driver mailbox object. 13231 * @timeout: Timeout in number of seconds. 13232 * 13233 * This function issues the mailbox to firmware and waits for the 13234 * mailbox command to complete. If the mailbox command is not 13235 * completed within timeout seconds, it returns MBX_TIMEOUT. 13236 * The function waits for the mailbox completion using an 13237 * interruptible wait. If the thread is woken up due to a 13238 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13239 * should not free the mailbox resources, if this function returns 13240 * MBX_TIMEOUT. 13241 * This function will sleep while waiting for mailbox completion. 13242 * So, this function should not be called from any context which 13243 * does not allow sleeping. Due to the same reason, this function 13244 * cannot be called with interrupt disabled. 13245 * This function assumes that the mailbox completion occurs while 13246 * this function sleep. So, this function cannot be called from 13247 * the worker thread which processes mailbox completion. 13248 * This function is called in the context of HBA management 13249 * applications. 13250 * This function returns MBX_SUCCESS when successful. 13251 * This function is called with no lock held. 13252 **/ 13253 int 13254 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13255 uint32_t timeout) 13256 { 13257 struct completion mbox_done; 13258 int retval; 13259 unsigned long flag; 13260 13261 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13262 /* setup wake call as IOCB callback */ 13263 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13264 13265 /* setup context3 field to pass wait_queue pointer to wake function */ 13266 init_completion(&mbox_done); 13267 pmboxq->context3 = &mbox_done; 13268 /* now issue the command */ 13269 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13270 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13271 wait_for_completion_timeout(&mbox_done, 13272 msecs_to_jiffies(timeout * 1000)); 13273 13274 spin_lock_irqsave(&phba->hbalock, flag); 13275 pmboxq->context3 = NULL; 13276 /* 13277 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13278 * else do not free the resources. 13279 */ 13280 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13281 retval = MBX_SUCCESS; 13282 } else { 13283 retval = MBX_TIMEOUT; 13284 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13285 } 13286 spin_unlock_irqrestore(&phba->hbalock, flag); 13287 } 13288 return retval; 13289 } 13290 13291 /** 13292 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13293 * @phba: Pointer to HBA context. 13294 * @mbx_action: Mailbox shutdown options. 13295 * 13296 * This function is called to shutdown the driver's mailbox sub-system. 13297 * It first marks the mailbox sub-system is in a block state to prevent 13298 * the asynchronous mailbox command from issued off the pending mailbox 13299 * command queue. If the mailbox command sub-system shutdown is due to 13300 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13301 * the mailbox sub-system flush routine to forcefully bring down the 13302 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13303 * as with offline or HBA function reset), this routine will wait for the 13304 * outstanding mailbox command to complete before invoking the mailbox 13305 * sub-system flush routine to gracefully bring down mailbox sub-system. 13306 **/ 13307 void 13308 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13309 { 13310 struct lpfc_sli *psli = &phba->sli; 13311 unsigned long timeout; 13312 13313 if (mbx_action == LPFC_MBX_NO_WAIT) { 13314 /* delay 100ms for port state */ 13315 msleep(100); 13316 lpfc_sli_mbox_sys_flush(phba); 13317 return; 13318 } 13319 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13320 13321 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13322 local_bh_disable(); 13323 13324 spin_lock_irq(&phba->hbalock); 13325 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13326 13327 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13328 /* Determine how long we might wait for the active mailbox 13329 * command to be gracefully completed by firmware. 13330 */ 13331 if (phba->sli.mbox_active) 13332 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13333 phba->sli.mbox_active) * 13334 1000) + jiffies; 13335 spin_unlock_irq(&phba->hbalock); 13336 13337 /* Enable softirqs again, done with phba->hbalock */ 13338 local_bh_enable(); 13339 13340 while (phba->sli.mbox_active) { 13341 /* Check active mailbox complete status every 2ms */ 13342 msleep(2); 13343 if (time_after(jiffies, timeout)) 13344 /* Timeout, let the mailbox flush routine to 13345 * forcefully release active mailbox command 13346 */ 13347 break; 13348 } 13349 } else { 13350 spin_unlock_irq(&phba->hbalock); 13351 13352 /* Enable softirqs again, done with phba->hbalock */ 13353 local_bh_enable(); 13354 } 13355 13356 lpfc_sli_mbox_sys_flush(phba); 13357 } 13358 13359 /** 13360 * lpfc_sli_eratt_read - read sli-3 error attention events 13361 * @phba: Pointer to HBA context. 13362 * 13363 * This function is called to read the SLI3 device error attention registers 13364 * for possible error attention events. The caller must hold the hostlock 13365 * with spin_lock_irq(). 13366 * 13367 * This function returns 1 when there is Error Attention in the Host Attention 13368 * Register and returns 0 otherwise. 13369 **/ 13370 static int 13371 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13372 { 13373 uint32_t ha_copy; 13374 13375 /* Read chip Host Attention (HA) register */ 13376 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13377 goto unplug_err; 13378 13379 if (ha_copy & HA_ERATT) { 13380 /* Read host status register to retrieve error event */ 13381 if (lpfc_sli_read_hs(phba)) 13382 goto unplug_err; 13383 13384 /* Check if there is a deferred error condition is active */ 13385 if ((HS_FFER1 & phba->work_hs) && 13386 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13387 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13388 phba->hba_flag |= DEFER_ERATT; 13389 /* Clear all interrupt enable conditions */ 13390 writel(0, phba->HCregaddr); 13391 readl(phba->HCregaddr); 13392 } 13393 13394 /* Set the driver HA work bitmap */ 13395 phba->work_ha |= HA_ERATT; 13396 /* Indicate polling handles this ERATT */ 13397 phba->hba_flag |= HBA_ERATT_HANDLED; 13398 return 1; 13399 } 13400 return 0; 13401 13402 unplug_err: 13403 /* Set the driver HS work bitmap */ 13404 phba->work_hs |= UNPLUG_ERR; 13405 /* Set the driver HA work bitmap */ 13406 phba->work_ha |= HA_ERATT; 13407 /* Indicate polling handles this ERATT */ 13408 phba->hba_flag |= HBA_ERATT_HANDLED; 13409 return 1; 13410 } 13411 13412 /** 13413 * lpfc_sli4_eratt_read - read sli-4 error attention events 13414 * @phba: Pointer to HBA context. 13415 * 13416 * This function is called to read the SLI4 device error attention registers 13417 * for possible error attention events. The caller must hold the hostlock 13418 * with spin_lock_irq(). 13419 * 13420 * This function returns 1 when there is Error Attention in the Host Attention 13421 * Register and returns 0 otherwise. 13422 **/ 13423 static int 13424 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13425 { 13426 uint32_t uerr_sta_hi, uerr_sta_lo; 13427 uint32_t if_type, portsmphr; 13428 struct lpfc_register portstat_reg; 13429 u32 logmask; 13430 13431 /* 13432 * For now, use the SLI4 device internal unrecoverable error 13433 * registers for error attention. This can be changed later. 13434 */ 13435 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13436 switch (if_type) { 13437 case LPFC_SLI_INTF_IF_TYPE_0: 13438 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13439 &uerr_sta_lo) || 13440 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13441 &uerr_sta_hi)) { 13442 phba->work_hs |= UNPLUG_ERR; 13443 phba->work_ha |= HA_ERATT; 13444 phba->hba_flag |= HBA_ERATT_HANDLED; 13445 return 1; 13446 } 13447 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13448 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13450 "1423 HBA Unrecoverable error: " 13451 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13452 "ue_mask_lo_reg=0x%x, " 13453 "ue_mask_hi_reg=0x%x\n", 13454 uerr_sta_lo, uerr_sta_hi, 13455 phba->sli4_hba.ue_mask_lo, 13456 phba->sli4_hba.ue_mask_hi); 13457 phba->work_status[0] = uerr_sta_lo; 13458 phba->work_status[1] = uerr_sta_hi; 13459 phba->work_ha |= HA_ERATT; 13460 phba->hba_flag |= HBA_ERATT_HANDLED; 13461 return 1; 13462 } 13463 break; 13464 case LPFC_SLI_INTF_IF_TYPE_2: 13465 case LPFC_SLI_INTF_IF_TYPE_6: 13466 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13467 &portstat_reg.word0) || 13468 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13469 &portsmphr)){ 13470 phba->work_hs |= UNPLUG_ERR; 13471 phba->work_ha |= HA_ERATT; 13472 phba->hba_flag |= HBA_ERATT_HANDLED; 13473 return 1; 13474 } 13475 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13476 phba->work_status[0] = 13477 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13478 phba->work_status[1] = 13479 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13480 logmask = LOG_TRACE_EVENT; 13481 if (phba->work_status[0] == 13482 SLIPORT_ERR1_REG_ERR_CODE_2 && 13483 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13484 logmask = LOG_SLI; 13485 lpfc_printf_log(phba, KERN_ERR, logmask, 13486 "2885 Port Status Event: " 13487 "port status reg 0x%x, " 13488 "port smphr reg 0x%x, " 13489 "error 1=0x%x, error 2=0x%x\n", 13490 portstat_reg.word0, 13491 portsmphr, 13492 phba->work_status[0], 13493 phba->work_status[1]); 13494 phba->work_ha |= HA_ERATT; 13495 phba->hba_flag |= HBA_ERATT_HANDLED; 13496 return 1; 13497 } 13498 break; 13499 case LPFC_SLI_INTF_IF_TYPE_1: 13500 default: 13501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13502 "2886 HBA Error Attention on unsupported " 13503 "if type %d.", if_type); 13504 return 1; 13505 } 13506 13507 return 0; 13508 } 13509 13510 /** 13511 * lpfc_sli_check_eratt - check error attention events 13512 * @phba: Pointer to HBA context. 13513 * 13514 * This function is called from timer soft interrupt context to check HBA's 13515 * error attention register bit for error attention events. 13516 * 13517 * This function returns 1 when there is Error Attention in the Host Attention 13518 * Register and returns 0 otherwise. 13519 **/ 13520 int 13521 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13522 { 13523 uint32_t ha_copy; 13524 13525 /* If somebody is waiting to handle an eratt, don't process it 13526 * here. The brdkill function will do this. 13527 */ 13528 if (phba->link_flag & LS_IGNORE_ERATT) 13529 return 0; 13530 13531 /* Check if interrupt handler handles this ERATT */ 13532 spin_lock_irq(&phba->hbalock); 13533 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13534 /* Interrupt handler has handled ERATT */ 13535 spin_unlock_irq(&phba->hbalock); 13536 return 0; 13537 } 13538 13539 /* 13540 * If there is deferred error attention, do not check for error 13541 * attention 13542 */ 13543 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13544 spin_unlock_irq(&phba->hbalock); 13545 return 0; 13546 } 13547 13548 /* If PCI channel is offline, don't process it */ 13549 if (unlikely(pci_channel_offline(phba->pcidev))) { 13550 spin_unlock_irq(&phba->hbalock); 13551 return 0; 13552 } 13553 13554 switch (phba->sli_rev) { 13555 case LPFC_SLI_REV2: 13556 case LPFC_SLI_REV3: 13557 /* Read chip Host Attention (HA) register */ 13558 ha_copy = lpfc_sli_eratt_read(phba); 13559 break; 13560 case LPFC_SLI_REV4: 13561 /* Read device Uncoverable Error (UERR) registers */ 13562 ha_copy = lpfc_sli4_eratt_read(phba); 13563 break; 13564 default: 13565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13566 "0299 Invalid SLI revision (%d)\n", 13567 phba->sli_rev); 13568 ha_copy = 0; 13569 break; 13570 } 13571 spin_unlock_irq(&phba->hbalock); 13572 13573 return ha_copy; 13574 } 13575 13576 /** 13577 * lpfc_intr_state_check - Check device state for interrupt handling 13578 * @phba: Pointer to HBA context. 13579 * 13580 * This inline routine checks whether a device or its PCI slot is in a state 13581 * that the interrupt should be handled. 13582 * 13583 * This function returns 0 if the device or the PCI slot is in a state that 13584 * interrupt should be handled, otherwise -EIO. 13585 */ 13586 static inline int 13587 lpfc_intr_state_check(struct lpfc_hba *phba) 13588 { 13589 /* If the pci channel is offline, ignore all the interrupts */ 13590 if (unlikely(pci_channel_offline(phba->pcidev))) 13591 return -EIO; 13592 13593 /* Update device level interrupt statistics */ 13594 phba->sli.slistat.sli_intr++; 13595 13596 /* Ignore all interrupts during initialization. */ 13597 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13598 return -EIO; 13599 13600 return 0; 13601 } 13602 13603 /** 13604 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13605 * @irq: Interrupt number. 13606 * @dev_id: The device context pointer. 13607 * 13608 * This function is directly called from the PCI layer as an interrupt 13609 * service routine when device with SLI-3 interface spec is enabled with 13610 * MSI-X multi-message interrupt mode and there are slow-path events in 13611 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13612 * interrupt mode, this function is called as part of the device-level 13613 * interrupt handler. When the PCI slot is in error recovery or the HBA 13614 * is undergoing initialization, the interrupt handler will not process 13615 * the interrupt. The link attention and ELS ring attention events are 13616 * handled by the worker thread. The interrupt handler signals the worker 13617 * thread and returns for these events. This function is called without 13618 * any lock held. It gets the hbalock to access and update SLI data 13619 * structures. 13620 * 13621 * This function returns IRQ_HANDLED when interrupt is handled else it 13622 * returns IRQ_NONE. 13623 **/ 13624 irqreturn_t 13625 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13626 { 13627 struct lpfc_hba *phba; 13628 uint32_t ha_copy, hc_copy; 13629 uint32_t work_ha_copy; 13630 unsigned long status; 13631 unsigned long iflag; 13632 uint32_t control; 13633 13634 MAILBOX_t *mbox, *pmbox; 13635 struct lpfc_vport *vport; 13636 struct lpfc_nodelist *ndlp; 13637 struct lpfc_dmabuf *mp; 13638 LPFC_MBOXQ_t *pmb; 13639 int rc; 13640 13641 /* 13642 * Get the driver's phba structure from the dev_id and 13643 * assume the HBA is not interrupting. 13644 */ 13645 phba = (struct lpfc_hba *)dev_id; 13646 13647 if (unlikely(!phba)) 13648 return IRQ_NONE; 13649 13650 /* 13651 * Stuff needs to be attented to when this function is invoked as an 13652 * individual interrupt handler in MSI-X multi-message interrupt mode 13653 */ 13654 if (phba->intr_type == MSIX) { 13655 /* Check device state for handling interrupt */ 13656 if (lpfc_intr_state_check(phba)) 13657 return IRQ_NONE; 13658 /* Need to read HA REG for slow-path events */ 13659 spin_lock_irqsave(&phba->hbalock, iflag); 13660 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13661 goto unplug_error; 13662 /* If somebody is waiting to handle an eratt don't process it 13663 * here. The brdkill function will do this. 13664 */ 13665 if (phba->link_flag & LS_IGNORE_ERATT) 13666 ha_copy &= ~HA_ERATT; 13667 /* Check the need for handling ERATT in interrupt handler */ 13668 if (ha_copy & HA_ERATT) { 13669 if (phba->hba_flag & HBA_ERATT_HANDLED) 13670 /* ERATT polling has handled ERATT */ 13671 ha_copy &= ~HA_ERATT; 13672 else 13673 /* Indicate interrupt handler handles ERATT */ 13674 phba->hba_flag |= HBA_ERATT_HANDLED; 13675 } 13676 13677 /* 13678 * If there is deferred error attention, do not check for any 13679 * interrupt. 13680 */ 13681 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13682 spin_unlock_irqrestore(&phba->hbalock, iflag); 13683 return IRQ_NONE; 13684 } 13685 13686 /* Clear up only attention source related to slow-path */ 13687 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13688 goto unplug_error; 13689 13690 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13691 HC_LAINT_ENA | HC_ERINT_ENA), 13692 phba->HCregaddr); 13693 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13694 phba->HAregaddr); 13695 writel(hc_copy, phba->HCregaddr); 13696 readl(phba->HAregaddr); /* flush */ 13697 spin_unlock_irqrestore(&phba->hbalock, iflag); 13698 } else 13699 ha_copy = phba->ha_copy; 13700 13701 work_ha_copy = ha_copy & phba->work_ha_mask; 13702 13703 if (work_ha_copy) { 13704 if (work_ha_copy & HA_LATT) { 13705 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13706 /* 13707 * Turn off Link Attention interrupts 13708 * until CLEAR_LA done 13709 */ 13710 spin_lock_irqsave(&phba->hbalock, iflag); 13711 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13712 if (lpfc_readl(phba->HCregaddr, &control)) 13713 goto unplug_error; 13714 control &= ~HC_LAINT_ENA; 13715 writel(control, phba->HCregaddr); 13716 readl(phba->HCregaddr); /* flush */ 13717 spin_unlock_irqrestore(&phba->hbalock, iflag); 13718 } 13719 else 13720 work_ha_copy &= ~HA_LATT; 13721 } 13722 13723 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13724 /* 13725 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13726 * the only slow ring. 13727 */ 13728 status = (work_ha_copy & 13729 (HA_RXMASK << (4*LPFC_ELS_RING))); 13730 status >>= (4*LPFC_ELS_RING); 13731 if (status & HA_RXMASK) { 13732 spin_lock_irqsave(&phba->hbalock, iflag); 13733 if (lpfc_readl(phba->HCregaddr, &control)) 13734 goto unplug_error; 13735 13736 lpfc_debugfs_slow_ring_trc(phba, 13737 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13738 control, status, 13739 (uint32_t)phba->sli.slistat.sli_intr); 13740 13741 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13742 lpfc_debugfs_slow_ring_trc(phba, 13743 "ISR Disable ring:" 13744 "pwork:x%x hawork:x%x wait:x%x", 13745 phba->work_ha, work_ha_copy, 13746 (uint32_t)((unsigned long) 13747 &phba->work_waitq)); 13748 13749 control &= 13750 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13751 writel(control, phba->HCregaddr); 13752 readl(phba->HCregaddr); /* flush */ 13753 } 13754 else { 13755 lpfc_debugfs_slow_ring_trc(phba, 13756 "ISR slow ring: pwork:" 13757 "x%x hawork:x%x wait:x%x", 13758 phba->work_ha, work_ha_copy, 13759 (uint32_t)((unsigned long) 13760 &phba->work_waitq)); 13761 } 13762 spin_unlock_irqrestore(&phba->hbalock, iflag); 13763 } 13764 } 13765 spin_lock_irqsave(&phba->hbalock, iflag); 13766 if (work_ha_copy & HA_ERATT) { 13767 if (lpfc_sli_read_hs(phba)) 13768 goto unplug_error; 13769 /* 13770 * Check if there is a deferred error condition 13771 * is active 13772 */ 13773 if ((HS_FFER1 & phba->work_hs) && 13774 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13775 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13776 phba->work_hs)) { 13777 phba->hba_flag |= DEFER_ERATT; 13778 /* Clear all interrupt enable conditions */ 13779 writel(0, phba->HCregaddr); 13780 readl(phba->HCregaddr); 13781 } 13782 } 13783 13784 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13785 pmb = phba->sli.mbox_active; 13786 pmbox = &pmb->u.mb; 13787 mbox = phba->mbox; 13788 vport = pmb->vport; 13789 13790 /* First check out the status word */ 13791 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13792 if (pmbox->mbxOwner != OWN_HOST) { 13793 spin_unlock_irqrestore(&phba->hbalock, iflag); 13794 /* 13795 * Stray Mailbox Interrupt, mbxCommand <cmd> 13796 * mbxStatus <status> 13797 */ 13798 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13799 "(%d):0304 Stray Mailbox " 13800 "Interrupt mbxCommand x%x " 13801 "mbxStatus x%x\n", 13802 (vport ? vport->vpi : 0), 13803 pmbox->mbxCommand, 13804 pmbox->mbxStatus); 13805 /* clear mailbox attention bit */ 13806 work_ha_copy &= ~HA_MBATT; 13807 } else { 13808 phba->sli.mbox_active = NULL; 13809 spin_unlock_irqrestore(&phba->hbalock, iflag); 13810 phba->last_completion_time = jiffies; 13811 del_timer(&phba->sli.mbox_tmo); 13812 if (pmb->mbox_cmpl) { 13813 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13814 MAILBOX_CMD_SIZE); 13815 if (pmb->out_ext_byte_len && 13816 pmb->ctx_buf) 13817 lpfc_sli_pcimem_bcopy( 13818 phba->mbox_ext, 13819 pmb->ctx_buf, 13820 pmb->out_ext_byte_len); 13821 } 13822 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13823 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13824 13825 lpfc_debugfs_disc_trc(vport, 13826 LPFC_DISC_TRC_MBOX_VPORT, 13827 "MBOX dflt rpi: : " 13828 "status:x%x rpi:x%x", 13829 (uint32_t)pmbox->mbxStatus, 13830 pmbox->un.varWords[0], 0); 13831 13832 if (!pmbox->mbxStatus) { 13833 mp = (struct lpfc_dmabuf *) 13834 (pmb->ctx_buf); 13835 ndlp = (struct lpfc_nodelist *) 13836 pmb->ctx_ndlp; 13837 13838 /* Reg_LOGIN of dflt RPI was 13839 * successful. new lets get 13840 * rid of the RPI using the 13841 * same mbox buffer. 13842 */ 13843 lpfc_unreg_login(phba, 13844 vport->vpi, 13845 pmbox->un.varWords[0], 13846 pmb); 13847 pmb->mbox_cmpl = 13848 lpfc_mbx_cmpl_dflt_rpi; 13849 pmb->ctx_buf = mp; 13850 pmb->ctx_ndlp = ndlp; 13851 pmb->vport = vport; 13852 rc = lpfc_sli_issue_mbox(phba, 13853 pmb, 13854 MBX_NOWAIT); 13855 if (rc != MBX_BUSY) 13856 lpfc_printf_log(phba, 13857 KERN_ERR, 13858 LOG_TRACE_EVENT, 13859 "0350 rc should have" 13860 "been MBX_BUSY\n"); 13861 if (rc != MBX_NOT_FINISHED) 13862 goto send_current_mbox; 13863 } 13864 } 13865 spin_lock_irqsave( 13866 &phba->pport->work_port_lock, 13867 iflag); 13868 phba->pport->work_port_events &= 13869 ~WORKER_MBOX_TMO; 13870 spin_unlock_irqrestore( 13871 &phba->pport->work_port_lock, 13872 iflag); 13873 13874 /* Do NOT queue MBX_HEARTBEAT to the worker 13875 * thread for processing. 13876 */ 13877 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13878 /* Process mbox now */ 13879 phba->sli.mbox_active = NULL; 13880 phba->sli.sli_flag &= 13881 ~LPFC_SLI_MBOX_ACTIVE; 13882 if (pmb->mbox_cmpl) 13883 pmb->mbox_cmpl(phba, pmb); 13884 } else { 13885 /* Queue to worker thread to process */ 13886 lpfc_mbox_cmpl_put(phba, pmb); 13887 } 13888 } 13889 } else 13890 spin_unlock_irqrestore(&phba->hbalock, iflag); 13891 13892 if ((work_ha_copy & HA_MBATT) && 13893 (phba->sli.mbox_active == NULL)) { 13894 send_current_mbox: 13895 /* Process next mailbox command if there is one */ 13896 do { 13897 rc = lpfc_sli_issue_mbox(phba, NULL, 13898 MBX_NOWAIT); 13899 } while (rc == MBX_NOT_FINISHED); 13900 if (rc != MBX_SUCCESS) 13901 lpfc_printf_log(phba, KERN_ERR, 13902 LOG_TRACE_EVENT, 13903 "0349 rc should be " 13904 "MBX_SUCCESS\n"); 13905 } 13906 13907 spin_lock_irqsave(&phba->hbalock, iflag); 13908 phba->work_ha |= work_ha_copy; 13909 spin_unlock_irqrestore(&phba->hbalock, iflag); 13910 lpfc_worker_wake_up(phba); 13911 } 13912 return IRQ_HANDLED; 13913 unplug_error: 13914 spin_unlock_irqrestore(&phba->hbalock, iflag); 13915 return IRQ_HANDLED; 13916 13917 } /* lpfc_sli_sp_intr_handler */ 13918 13919 /** 13920 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13921 * @irq: Interrupt number. 13922 * @dev_id: The device context pointer. 13923 * 13924 * This function is directly called from the PCI layer as an interrupt 13925 * service routine when device with SLI-3 interface spec is enabled with 13926 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13927 * ring event in the HBA. However, when the device is enabled with either 13928 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13929 * device-level interrupt handler. When the PCI slot is in error recovery 13930 * or the HBA is undergoing initialization, the interrupt handler will not 13931 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13932 * the intrrupt context. This function is called without any lock held. 13933 * It gets the hbalock to access and update SLI data structures. 13934 * 13935 * This function returns IRQ_HANDLED when interrupt is handled else it 13936 * returns IRQ_NONE. 13937 **/ 13938 irqreturn_t 13939 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13940 { 13941 struct lpfc_hba *phba; 13942 uint32_t ha_copy; 13943 unsigned long status; 13944 unsigned long iflag; 13945 struct lpfc_sli_ring *pring; 13946 13947 /* Get the driver's phba structure from the dev_id and 13948 * assume the HBA is not interrupting. 13949 */ 13950 phba = (struct lpfc_hba *) dev_id; 13951 13952 if (unlikely(!phba)) 13953 return IRQ_NONE; 13954 13955 /* 13956 * Stuff needs to be attented to when this function is invoked as an 13957 * individual interrupt handler in MSI-X multi-message interrupt mode 13958 */ 13959 if (phba->intr_type == MSIX) { 13960 /* Check device state for handling interrupt */ 13961 if (lpfc_intr_state_check(phba)) 13962 return IRQ_NONE; 13963 /* Need to read HA REG for FCP ring and other ring events */ 13964 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13965 return IRQ_HANDLED; 13966 /* Clear up only attention source related to fast-path */ 13967 spin_lock_irqsave(&phba->hbalock, iflag); 13968 /* 13969 * If there is deferred error attention, do not check for 13970 * any interrupt. 13971 */ 13972 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13973 spin_unlock_irqrestore(&phba->hbalock, iflag); 13974 return IRQ_NONE; 13975 } 13976 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13977 phba->HAregaddr); 13978 readl(phba->HAregaddr); /* flush */ 13979 spin_unlock_irqrestore(&phba->hbalock, iflag); 13980 } else 13981 ha_copy = phba->ha_copy; 13982 13983 /* 13984 * Process all events on FCP ring. Take the optimized path for FCP IO. 13985 */ 13986 ha_copy &= ~(phba->work_ha_mask); 13987 13988 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13989 status >>= (4*LPFC_FCP_RING); 13990 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13991 if (status & HA_RXMASK) 13992 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13993 13994 if (phba->cfg_multi_ring_support == 2) { 13995 /* 13996 * Process all events on extra ring. Take the optimized path 13997 * for extra ring IO. 13998 */ 13999 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14000 status >>= (4*LPFC_EXTRA_RING); 14001 if (status & HA_RXMASK) { 14002 lpfc_sli_handle_fast_ring_event(phba, 14003 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14004 status); 14005 } 14006 } 14007 return IRQ_HANDLED; 14008 } /* lpfc_sli_fp_intr_handler */ 14009 14010 /** 14011 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14012 * @irq: Interrupt number. 14013 * @dev_id: The device context pointer. 14014 * 14015 * This function is the HBA device-level interrupt handler to device with 14016 * SLI-3 interface spec, called from the PCI layer when either MSI or 14017 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14018 * requires driver attention. This function invokes the slow-path interrupt 14019 * attention handling function and fast-path interrupt attention handling 14020 * function in turn to process the relevant HBA attention events. This 14021 * function is called without any lock held. It gets the hbalock to access 14022 * and update SLI data structures. 14023 * 14024 * This function returns IRQ_HANDLED when interrupt is handled, else it 14025 * returns IRQ_NONE. 14026 **/ 14027 irqreturn_t 14028 lpfc_sli_intr_handler(int irq, void *dev_id) 14029 { 14030 struct lpfc_hba *phba; 14031 irqreturn_t sp_irq_rc, fp_irq_rc; 14032 unsigned long status1, status2; 14033 uint32_t hc_copy; 14034 14035 /* 14036 * Get the driver's phba structure from the dev_id and 14037 * assume the HBA is not interrupting. 14038 */ 14039 phba = (struct lpfc_hba *) dev_id; 14040 14041 if (unlikely(!phba)) 14042 return IRQ_NONE; 14043 14044 /* Check device state for handling interrupt */ 14045 if (lpfc_intr_state_check(phba)) 14046 return IRQ_NONE; 14047 14048 spin_lock(&phba->hbalock); 14049 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14050 spin_unlock(&phba->hbalock); 14051 return IRQ_HANDLED; 14052 } 14053 14054 if (unlikely(!phba->ha_copy)) { 14055 spin_unlock(&phba->hbalock); 14056 return IRQ_NONE; 14057 } else if (phba->ha_copy & HA_ERATT) { 14058 if (phba->hba_flag & HBA_ERATT_HANDLED) 14059 /* ERATT polling has handled ERATT */ 14060 phba->ha_copy &= ~HA_ERATT; 14061 else 14062 /* Indicate interrupt handler handles ERATT */ 14063 phba->hba_flag |= HBA_ERATT_HANDLED; 14064 } 14065 14066 /* 14067 * If there is deferred error attention, do not check for any interrupt. 14068 */ 14069 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14070 spin_unlock(&phba->hbalock); 14071 return IRQ_NONE; 14072 } 14073 14074 /* Clear attention sources except link and error attentions */ 14075 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14076 spin_unlock(&phba->hbalock); 14077 return IRQ_HANDLED; 14078 } 14079 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14080 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14081 phba->HCregaddr); 14082 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14083 writel(hc_copy, phba->HCregaddr); 14084 readl(phba->HAregaddr); /* flush */ 14085 spin_unlock(&phba->hbalock); 14086 14087 /* 14088 * Invokes slow-path host attention interrupt handling as appropriate. 14089 */ 14090 14091 /* status of events with mailbox and link attention */ 14092 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14093 14094 /* status of events with ELS ring */ 14095 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14096 status2 >>= (4*LPFC_ELS_RING); 14097 14098 if (status1 || (status2 & HA_RXMASK)) 14099 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14100 else 14101 sp_irq_rc = IRQ_NONE; 14102 14103 /* 14104 * Invoke fast-path host attention interrupt handling as appropriate. 14105 */ 14106 14107 /* status of events with FCP ring */ 14108 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14109 status1 >>= (4*LPFC_FCP_RING); 14110 14111 /* status of events with extra ring */ 14112 if (phba->cfg_multi_ring_support == 2) { 14113 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14114 status2 >>= (4*LPFC_EXTRA_RING); 14115 } else 14116 status2 = 0; 14117 14118 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14119 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14120 else 14121 fp_irq_rc = IRQ_NONE; 14122 14123 /* Return device-level interrupt handling status */ 14124 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14125 } /* lpfc_sli_intr_handler */ 14126 14127 /** 14128 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14129 * @phba: pointer to lpfc hba data structure. 14130 * 14131 * This routine is invoked by the worker thread to process all the pending 14132 * SLI4 els abort xri events. 14133 **/ 14134 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14135 { 14136 struct lpfc_cq_event *cq_event; 14137 unsigned long iflags; 14138 14139 /* First, declare the els xri abort event has been handled */ 14140 spin_lock_irqsave(&phba->hbalock, iflags); 14141 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14142 spin_unlock_irqrestore(&phba->hbalock, iflags); 14143 14144 /* Now, handle all the els xri abort events */ 14145 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14146 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14147 /* Get the first event from the head of the event queue */ 14148 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14149 cq_event, struct lpfc_cq_event, list); 14150 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14151 iflags); 14152 /* Notify aborted XRI for ELS work queue */ 14153 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14154 14155 /* Free the event processed back to the free pool */ 14156 lpfc_sli4_cq_event_release(phba, cq_event); 14157 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14158 iflags); 14159 } 14160 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14161 } 14162 14163 /** 14164 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14165 * @phba: Pointer to HBA context object. 14166 * @irspiocbq: Pointer to work-queue completion queue entry. 14167 * 14168 * This routine handles an ELS work-queue completion event and construct 14169 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14170 * discovery engine to handle. 14171 * 14172 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14173 **/ 14174 static struct lpfc_iocbq * 14175 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14176 struct lpfc_iocbq *irspiocbq) 14177 { 14178 struct lpfc_sli_ring *pring; 14179 struct lpfc_iocbq *cmdiocbq; 14180 struct lpfc_wcqe_complete *wcqe; 14181 unsigned long iflags; 14182 14183 pring = lpfc_phba_elsring(phba); 14184 if (unlikely(!pring)) 14185 return NULL; 14186 14187 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14188 spin_lock_irqsave(&pring->ring_lock, iflags); 14189 pring->stats.iocb_event++; 14190 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14191 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14192 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14193 if (unlikely(!cmdiocbq)) { 14194 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14195 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14196 "0386 ELS complete with no corresponding " 14197 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14198 wcqe->word0, wcqe->total_data_placed, 14199 wcqe->parameter, wcqe->word3); 14200 lpfc_sli_release_iocbq(phba, irspiocbq); 14201 return NULL; 14202 } 14203 14204 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14205 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14206 14207 /* Put the iocb back on the txcmplq */ 14208 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14209 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14210 14211 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14212 spin_lock_irqsave(&phba->hbalock, iflags); 14213 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14214 spin_unlock_irqrestore(&phba->hbalock, iflags); 14215 } 14216 14217 return irspiocbq; 14218 } 14219 14220 inline struct lpfc_cq_event * 14221 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14222 { 14223 struct lpfc_cq_event *cq_event; 14224 14225 /* Allocate a new internal CQ_EVENT entry */ 14226 cq_event = lpfc_sli4_cq_event_alloc(phba); 14227 if (!cq_event) { 14228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14229 "0602 Failed to alloc CQ_EVENT entry\n"); 14230 return NULL; 14231 } 14232 14233 /* Move the CQE into the event */ 14234 memcpy(&cq_event->cqe, entry, size); 14235 return cq_event; 14236 } 14237 14238 /** 14239 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14240 * @phba: Pointer to HBA context object. 14241 * @mcqe: Pointer to mailbox completion queue entry. 14242 * 14243 * This routine process a mailbox completion queue entry with asynchronous 14244 * event. 14245 * 14246 * Return: true if work posted to worker thread, otherwise false. 14247 **/ 14248 static bool 14249 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14250 { 14251 struct lpfc_cq_event *cq_event; 14252 unsigned long iflags; 14253 14254 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14255 "0392 Async Event: word0:x%x, word1:x%x, " 14256 "word2:x%x, word3:x%x\n", mcqe->word0, 14257 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14258 14259 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14260 if (!cq_event) 14261 return false; 14262 14263 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14264 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14265 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14266 14267 /* Set the async event flag */ 14268 spin_lock_irqsave(&phba->hbalock, iflags); 14269 phba->hba_flag |= ASYNC_EVENT; 14270 spin_unlock_irqrestore(&phba->hbalock, iflags); 14271 14272 return true; 14273 } 14274 14275 /** 14276 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14277 * @phba: Pointer to HBA context object. 14278 * @mcqe: Pointer to mailbox completion queue entry. 14279 * 14280 * This routine process a mailbox completion queue entry with mailbox 14281 * completion event. 14282 * 14283 * Return: true if work posted to worker thread, otherwise false. 14284 **/ 14285 static bool 14286 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14287 { 14288 uint32_t mcqe_status; 14289 MAILBOX_t *mbox, *pmbox; 14290 struct lpfc_mqe *mqe; 14291 struct lpfc_vport *vport; 14292 struct lpfc_nodelist *ndlp; 14293 struct lpfc_dmabuf *mp; 14294 unsigned long iflags; 14295 LPFC_MBOXQ_t *pmb; 14296 bool workposted = false; 14297 int rc; 14298 14299 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14300 if (!bf_get(lpfc_trailer_completed, mcqe)) 14301 goto out_no_mqe_complete; 14302 14303 /* Get the reference to the active mbox command */ 14304 spin_lock_irqsave(&phba->hbalock, iflags); 14305 pmb = phba->sli.mbox_active; 14306 if (unlikely(!pmb)) { 14307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14308 "1832 No pending MBOX command to handle\n"); 14309 spin_unlock_irqrestore(&phba->hbalock, iflags); 14310 goto out_no_mqe_complete; 14311 } 14312 spin_unlock_irqrestore(&phba->hbalock, iflags); 14313 mqe = &pmb->u.mqe; 14314 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14315 mbox = phba->mbox; 14316 vport = pmb->vport; 14317 14318 /* Reset heartbeat timer */ 14319 phba->last_completion_time = jiffies; 14320 del_timer(&phba->sli.mbox_tmo); 14321 14322 /* Move mbox data to caller's mailbox region, do endian swapping */ 14323 if (pmb->mbox_cmpl && mbox) 14324 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14325 14326 /* 14327 * For mcqe errors, conditionally move a modified error code to 14328 * the mbox so that the error will not be missed. 14329 */ 14330 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14331 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14332 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14333 bf_set(lpfc_mqe_status, mqe, 14334 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14335 } 14336 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14337 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14338 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14339 "MBOX dflt rpi: status:x%x rpi:x%x", 14340 mcqe_status, 14341 pmbox->un.varWords[0], 0); 14342 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14343 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14344 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14345 14346 /* Reg_LOGIN of dflt RPI was successful. Mark the 14347 * node as having an UNREG_LOGIN in progress to stop 14348 * an unsolicited PLOGI from the same NPortId from 14349 * starting another mailbox transaction. 14350 */ 14351 spin_lock_irqsave(&ndlp->lock, iflags); 14352 ndlp->nlp_flag |= NLP_UNREG_INP; 14353 spin_unlock_irqrestore(&ndlp->lock, iflags); 14354 lpfc_unreg_login(phba, vport->vpi, 14355 pmbox->un.varWords[0], pmb); 14356 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14357 pmb->ctx_buf = mp; 14358 14359 /* No reference taken here. This is a default 14360 * RPI reg/immediate unreg cycle. The reference was 14361 * taken in the reg rpi path and is released when 14362 * this mailbox completes. 14363 */ 14364 pmb->ctx_ndlp = ndlp; 14365 pmb->vport = vport; 14366 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14367 if (rc != MBX_BUSY) 14368 lpfc_printf_log(phba, KERN_ERR, 14369 LOG_TRACE_EVENT, 14370 "0385 rc should " 14371 "have been MBX_BUSY\n"); 14372 if (rc != MBX_NOT_FINISHED) 14373 goto send_current_mbox; 14374 } 14375 } 14376 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14377 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14378 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14379 14380 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14381 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14382 spin_lock_irqsave(&phba->hbalock, iflags); 14383 /* Release the mailbox command posting token */ 14384 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14385 phba->sli.mbox_active = NULL; 14386 if (bf_get(lpfc_trailer_consumed, mcqe)) 14387 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14388 spin_unlock_irqrestore(&phba->hbalock, iflags); 14389 14390 /* Post the next mbox command, if there is one */ 14391 lpfc_sli4_post_async_mbox(phba); 14392 14393 /* Process cmpl now */ 14394 if (pmb->mbox_cmpl) 14395 pmb->mbox_cmpl(phba, pmb); 14396 return false; 14397 } 14398 14399 /* There is mailbox completion work to queue to the worker thread */ 14400 spin_lock_irqsave(&phba->hbalock, iflags); 14401 __lpfc_mbox_cmpl_put(phba, pmb); 14402 phba->work_ha |= HA_MBATT; 14403 spin_unlock_irqrestore(&phba->hbalock, iflags); 14404 workposted = true; 14405 14406 send_current_mbox: 14407 spin_lock_irqsave(&phba->hbalock, iflags); 14408 /* Release the mailbox command posting token */ 14409 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14410 /* Setting active mailbox pointer need to be in sync to flag clear */ 14411 phba->sli.mbox_active = NULL; 14412 if (bf_get(lpfc_trailer_consumed, mcqe)) 14413 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14414 spin_unlock_irqrestore(&phba->hbalock, iflags); 14415 /* Wake up worker thread to post the next pending mailbox command */ 14416 lpfc_worker_wake_up(phba); 14417 return workposted; 14418 14419 out_no_mqe_complete: 14420 spin_lock_irqsave(&phba->hbalock, iflags); 14421 if (bf_get(lpfc_trailer_consumed, mcqe)) 14422 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14423 spin_unlock_irqrestore(&phba->hbalock, iflags); 14424 return false; 14425 } 14426 14427 /** 14428 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14429 * @phba: Pointer to HBA context object. 14430 * @cq: Pointer to associated CQ 14431 * @cqe: Pointer to mailbox completion queue entry. 14432 * 14433 * This routine process a mailbox completion queue entry, it invokes the 14434 * proper mailbox complete handling or asynchronous event handling routine 14435 * according to the MCQE's async bit. 14436 * 14437 * Return: true if work posted to worker thread, otherwise false. 14438 **/ 14439 static bool 14440 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14441 struct lpfc_cqe *cqe) 14442 { 14443 struct lpfc_mcqe mcqe; 14444 bool workposted; 14445 14446 cq->CQ_mbox++; 14447 14448 /* Copy the mailbox MCQE and convert endian order as needed */ 14449 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14450 14451 /* Invoke the proper event handling routine */ 14452 if (!bf_get(lpfc_trailer_async, &mcqe)) 14453 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14454 else 14455 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14456 return workposted; 14457 } 14458 14459 /** 14460 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14461 * @phba: Pointer to HBA context object. 14462 * @cq: Pointer to associated CQ 14463 * @wcqe: Pointer to work-queue completion queue entry. 14464 * 14465 * This routine handles an ELS work-queue completion event. 14466 * 14467 * Return: true if work posted to worker thread, otherwise false. 14468 **/ 14469 static bool 14470 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14471 struct lpfc_wcqe_complete *wcqe) 14472 { 14473 struct lpfc_iocbq *irspiocbq; 14474 unsigned long iflags; 14475 struct lpfc_sli_ring *pring = cq->pring; 14476 int txq_cnt = 0; 14477 int txcmplq_cnt = 0; 14478 14479 /* Check for response status */ 14480 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14481 /* Log the error status */ 14482 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14483 "0357 ELS CQE error: status=x%x: " 14484 "CQE: %08x %08x %08x %08x\n", 14485 bf_get(lpfc_wcqe_c_status, wcqe), 14486 wcqe->word0, wcqe->total_data_placed, 14487 wcqe->parameter, wcqe->word3); 14488 } 14489 14490 /* Get an irspiocbq for later ELS response processing use */ 14491 irspiocbq = lpfc_sli_get_iocbq(phba); 14492 if (!irspiocbq) { 14493 if (!list_empty(&pring->txq)) 14494 txq_cnt++; 14495 if (!list_empty(&pring->txcmplq)) 14496 txcmplq_cnt++; 14497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14498 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14499 "els_txcmplq_cnt=%d\n", 14500 txq_cnt, phba->iocb_cnt, 14501 txcmplq_cnt); 14502 return false; 14503 } 14504 14505 /* Save off the slow-path queue event for work thread to process */ 14506 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14507 spin_lock_irqsave(&phba->hbalock, iflags); 14508 list_add_tail(&irspiocbq->cq_event.list, 14509 &phba->sli4_hba.sp_queue_event); 14510 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14511 spin_unlock_irqrestore(&phba->hbalock, iflags); 14512 14513 return true; 14514 } 14515 14516 /** 14517 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14518 * @phba: Pointer to HBA context object. 14519 * @wcqe: Pointer to work-queue completion queue entry. 14520 * 14521 * This routine handles slow-path WQ entry consumed event by invoking the 14522 * proper WQ release routine to the slow-path WQ. 14523 **/ 14524 static void 14525 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14526 struct lpfc_wcqe_release *wcqe) 14527 { 14528 /* sanity check on queue memory */ 14529 if (unlikely(!phba->sli4_hba.els_wq)) 14530 return; 14531 /* Check for the slow-path ELS work queue */ 14532 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14533 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14534 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14535 else 14536 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14537 "2579 Slow-path wqe consume event carries " 14538 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14539 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14540 phba->sli4_hba.els_wq->queue_id); 14541 } 14542 14543 /** 14544 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14545 * @phba: Pointer to HBA context object. 14546 * @cq: Pointer to a WQ completion queue. 14547 * @wcqe: Pointer to work-queue completion queue entry. 14548 * 14549 * This routine handles an XRI abort event. 14550 * 14551 * Return: true if work posted to worker thread, otherwise false. 14552 **/ 14553 static bool 14554 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14555 struct lpfc_queue *cq, 14556 struct sli4_wcqe_xri_aborted *wcqe) 14557 { 14558 bool workposted = false; 14559 struct lpfc_cq_event *cq_event; 14560 unsigned long iflags; 14561 14562 switch (cq->subtype) { 14563 case LPFC_IO: 14564 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14565 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14566 /* Notify aborted XRI for NVME work queue */ 14567 if (phba->nvmet_support) 14568 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14569 } 14570 workposted = false; 14571 break; 14572 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14573 case LPFC_ELS: 14574 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14575 if (!cq_event) { 14576 workposted = false; 14577 break; 14578 } 14579 cq_event->hdwq = cq->hdwq; 14580 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14581 iflags); 14582 list_add_tail(&cq_event->list, 14583 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14584 /* Set the els xri abort event flag */ 14585 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14586 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14587 iflags); 14588 workposted = true; 14589 break; 14590 default: 14591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14592 "0603 Invalid CQ subtype %d: " 14593 "%08x %08x %08x %08x\n", 14594 cq->subtype, wcqe->word0, wcqe->parameter, 14595 wcqe->word2, wcqe->word3); 14596 workposted = false; 14597 break; 14598 } 14599 return workposted; 14600 } 14601 14602 #define FC_RCTL_MDS_DIAGS 0xF4 14603 14604 /** 14605 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14606 * @phba: Pointer to HBA context object. 14607 * @rcqe: Pointer to receive-queue completion queue entry. 14608 * 14609 * This routine process a receive-queue completion queue entry. 14610 * 14611 * Return: true if work posted to worker thread, otherwise false. 14612 **/ 14613 static bool 14614 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14615 { 14616 bool workposted = false; 14617 struct fc_frame_header *fc_hdr; 14618 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14619 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14620 struct lpfc_nvmet_tgtport *tgtp; 14621 struct hbq_dmabuf *dma_buf; 14622 uint32_t status, rq_id; 14623 unsigned long iflags; 14624 14625 /* sanity check on queue memory */ 14626 if (unlikely(!hrq) || unlikely(!drq)) 14627 return workposted; 14628 14629 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14630 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14631 else 14632 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14633 if (rq_id != hrq->queue_id) 14634 goto out; 14635 14636 status = bf_get(lpfc_rcqe_status, rcqe); 14637 switch (status) { 14638 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14640 "2537 Receive Frame Truncated!!\n"); 14641 fallthrough; 14642 case FC_STATUS_RQ_SUCCESS: 14643 spin_lock_irqsave(&phba->hbalock, iflags); 14644 lpfc_sli4_rq_release(hrq, drq); 14645 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14646 if (!dma_buf) { 14647 hrq->RQ_no_buf_found++; 14648 spin_unlock_irqrestore(&phba->hbalock, iflags); 14649 goto out; 14650 } 14651 hrq->RQ_rcv_buf++; 14652 hrq->RQ_buf_posted--; 14653 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14654 14655 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14656 14657 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14658 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14659 spin_unlock_irqrestore(&phba->hbalock, iflags); 14660 /* Handle MDS Loopback frames */ 14661 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14662 lpfc_sli4_handle_mds_loopback(phba->pport, 14663 dma_buf); 14664 else 14665 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14666 break; 14667 } 14668 14669 /* save off the frame for the work thread to process */ 14670 list_add_tail(&dma_buf->cq_event.list, 14671 &phba->sli4_hba.sp_queue_event); 14672 /* Frame received */ 14673 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14674 spin_unlock_irqrestore(&phba->hbalock, iflags); 14675 workposted = true; 14676 break; 14677 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14678 if (phba->nvmet_support) { 14679 tgtp = phba->targetport->private; 14680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14681 "6402 RQE Error x%x, posted %d err_cnt " 14682 "%d: %x %x %x\n", 14683 status, hrq->RQ_buf_posted, 14684 hrq->RQ_no_posted_buf, 14685 atomic_read(&tgtp->rcv_fcp_cmd_in), 14686 atomic_read(&tgtp->rcv_fcp_cmd_out), 14687 atomic_read(&tgtp->xmt_fcp_release)); 14688 } 14689 fallthrough; 14690 14691 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14692 hrq->RQ_no_posted_buf++; 14693 /* Post more buffers if possible */ 14694 spin_lock_irqsave(&phba->hbalock, iflags); 14695 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14696 spin_unlock_irqrestore(&phba->hbalock, iflags); 14697 workposted = true; 14698 break; 14699 case FC_STATUS_RQ_DMA_FAILURE: 14700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14701 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14702 "x%08x\n", 14703 status, rcqe->word0, rcqe->word1, 14704 rcqe->word2, rcqe->word3); 14705 14706 /* If IV set, no further recovery */ 14707 if (bf_get(lpfc_rcqe_iv, rcqe)) 14708 break; 14709 14710 /* recycle consumed resource */ 14711 spin_lock_irqsave(&phba->hbalock, iflags); 14712 lpfc_sli4_rq_release(hrq, drq); 14713 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14714 if (!dma_buf) { 14715 hrq->RQ_no_buf_found++; 14716 spin_unlock_irqrestore(&phba->hbalock, iflags); 14717 break; 14718 } 14719 hrq->RQ_rcv_buf++; 14720 hrq->RQ_buf_posted--; 14721 spin_unlock_irqrestore(&phba->hbalock, iflags); 14722 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14723 break; 14724 default: 14725 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14726 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14727 "x%08x x%08x x%08x\n", 14728 status, rcqe->word0, rcqe->word1, 14729 rcqe->word2, rcqe->word3); 14730 break; 14731 } 14732 out: 14733 return workposted; 14734 } 14735 14736 /** 14737 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14738 * @phba: Pointer to HBA context object. 14739 * @cq: Pointer to the completion queue. 14740 * @cqe: Pointer to a completion queue entry. 14741 * 14742 * This routine process a slow-path work-queue or receive queue completion queue 14743 * entry. 14744 * 14745 * Return: true if work posted to worker thread, otherwise false. 14746 **/ 14747 static bool 14748 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14749 struct lpfc_cqe *cqe) 14750 { 14751 struct lpfc_cqe cqevt; 14752 bool workposted = false; 14753 14754 /* Copy the work queue CQE and convert endian order if needed */ 14755 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14756 14757 /* Check and process for different type of WCQE and dispatch */ 14758 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14759 case CQE_CODE_COMPL_WQE: 14760 /* Process the WQ/RQ complete event */ 14761 phba->last_completion_time = jiffies; 14762 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14763 (struct lpfc_wcqe_complete *)&cqevt); 14764 break; 14765 case CQE_CODE_RELEASE_WQE: 14766 /* Process the WQ release event */ 14767 lpfc_sli4_sp_handle_rel_wcqe(phba, 14768 (struct lpfc_wcqe_release *)&cqevt); 14769 break; 14770 case CQE_CODE_XRI_ABORTED: 14771 /* Process the WQ XRI abort event */ 14772 phba->last_completion_time = jiffies; 14773 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14774 (struct sli4_wcqe_xri_aborted *)&cqevt); 14775 break; 14776 case CQE_CODE_RECEIVE: 14777 case CQE_CODE_RECEIVE_V1: 14778 /* Process the RQ event */ 14779 phba->last_completion_time = jiffies; 14780 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14781 (struct lpfc_rcqe *)&cqevt); 14782 break; 14783 default: 14784 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14785 "0388 Not a valid WCQE code: x%x\n", 14786 bf_get(lpfc_cqe_code, &cqevt)); 14787 break; 14788 } 14789 return workposted; 14790 } 14791 14792 /** 14793 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14794 * @phba: Pointer to HBA context object. 14795 * @eqe: Pointer to fast-path event queue entry. 14796 * @speq: Pointer to slow-path event queue. 14797 * 14798 * This routine process a event queue entry from the slow-path event queue. 14799 * It will check the MajorCode and MinorCode to determine this is for a 14800 * completion event on a completion queue, if not, an error shall be logged 14801 * and just return. Otherwise, it will get to the corresponding completion 14802 * queue and process all the entries on that completion queue, rearm the 14803 * completion queue, and then return. 14804 * 14805 **/ 14806 static void 14807 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14808 struct lpfc_queue *speq) 14809 { 14810 struct lpfc_queue *cq = NULL, *childq; 14811 uint16_t cqid; 14812 int ret = 0; 14813 14814 /* Get the reference to the corresponding CQ */ 14815 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14816 14817 list_for_each_entry(childq, &speq->child_list, list) { 14818 if (childq->queue_id == cqid) { 14819 cq = childq; 14820 break; 14821 } 14822 } 14823 if (unlikely(!cq)) { 14824 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14825 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14826 "0365 Slow-path CQ identifier " 14827 "(%d) does not exist\n", cqid); 14828 return; 14829 } 14830 14831 /* Save EQ associated with this CQ */ 14832 cq->assoc_qp = speq; 14833 14834 if (is_kdump_kernel()) 14835 ret = queue_work(phba->wq, &cq->spwork); 14836 else 14837 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14838 14839 if (!ret) 14840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14841 "0390 Cannot schedule queue work " 14842 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14843 cqid, cq->queue_id, raw_smp_processor_id()); 14844 } 14845 14846 /** 14847 * __lpfc_sli4_process_cq - Process elements of a CQ 14848 * @phba: Pointer to HBA context object. 14849 * @cq: Pointer to CQ to be processed 14850 * @handler: Routine to process each cqe 14851 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14852 * 14853 * This routine processes completion queue entries in a CQ. While a valid 14854 * queue element is found, the handler is called. During processing checks 14855 * are made for periodic doorbell writes to let the hardware know of 14856 * element consumption. 14857 * 14858 * If the max limit on cqes to process is hit, or there are no more valid 14859 * entries, the loop stops. If we processed a sufficient number of elements, 14860 * meaning there is sufficient load, rather than rearming and generating 14861 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14862 * indicates no rescheduling. 14863 * 14864 * Returns True if work scheduled, False otherwise. 14865 **/ 14866 static bool 14867 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14868 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14869 struct lpfc_cqe *), unsigned long *delay) 14870 { 14871 struct lpfc_cqe *cqe; 14872 bool workposted = false; 14873 int count = 0, consumed = 0; 14874 bool arm = true; 14875 14876 /* default - no reschedule */ 14877 *delay = 0; 14878 14879 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14880 goto rearm_and_exit; 14881 14882 /* Process all the entries to the CQ */ 14883 cq->q_flag = 0; 14884 cqe = lpfc_sli4_cq_get(cq); 14885 while (cqe) { 14886 workposted |= handler(phba, cq, cqe); 14887 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14888 14889 consumed++; 14890 if (!(++count % cq->max_proc_limit)) 14891 break; 14892 14893 if (!(count % cq->notify_interval)) { 14894 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14895 LPFC_QUEUE_NOARM); 14896 consumed = 0; 14897 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14898 } 14899 14900 if (count == LPFC_NVMET_CQ_NOTIFY) 14901 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14902 14903 cqe = lpfc_sli4_cq_get(cq); 14904 } 14905 if (count >= phba->cfg_cq_poll_threshold) { 14906 *delay = 1; 14907 arm = false; 14908 } 14909 14910 /* Track the max number of CQEs processed in 1 EQ */ 14911 if (count > cq->CQ_max_cqe) 14912 cq->CQ_max_cqe = count; 14913 14914 cq->assoc_qp->EQ_cqe_cnt += count; 14915 14916 /* Catch the no cq entry condition */ 14917 if (unlikely(count == 0)) 14918 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14919 "0369 No entry from completion queue " 14920 "qid=%d\n", cq->queue_id); 14921 14922 xchg(&cq->queue_claimed, 0); 14923 14924 rearm_and_exit: 14925 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14926 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14927 14928 return workposted; 14929 } 14930 14931 /** 14932 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14933 * @cq: pointer to CQ to process 14934 * 14935 * This routine calls the cq processing routine with a handler specific 14936 * to the type of queue bound to it. 14937 * 14938 * The CQ routine returns two values: the first is the calling status, 14939 * which indicates whether work was queued to the background discovery 14940 * thread. If true, the routine should wakeup the discovery thread; 14941 * the second is the delay parameter. If non-zero, rather than rearming 14942 * the CQ and yet another interrupt, the CQ handler should be queued so 14943 * that it is processed in a subsequent polling action. The value of 14944 * the delay indicates when to reschedule it. 14945 **/ 14946 static void 14947 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14948 { 14949 struct lpfc_hba *phba = cq->phba; 14950 unsigned long delay; 14951 bool workposted = false; 14952 int ret = 0; 14953 14954 /* Process and rearm the CQ */ 14955 switch (cq->type) { 14956 case LPFC_MCQ: 14957 workposted |= __lpfc_sli4_process_cq(phba, cq, 14958 lpfc_sli4_sp_handle_mcqe, 14959 &delay); 14960 break; 14961 case LPFC_WCQ: 14962 if (cq->subtype == LPFC_IO) 14963 workposted |= __lpfc_sli4_process_cq(phba, cq, 14964 lpfc_sli4_fp_handle_cqe, 14965 &delay); 14966 else 14967 workposted |= __lpfc_sli4_process_cq(phba, cq, 14968 lpfc_sli4_sp_handle_cqe, 14969 &delay); 14970 break; 14971 default: 14972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14973 "0370 Invalid completion queue type (%d)\n", 14974 cq->type); 14975 return; 14976 } 14977 14978 if (delay) { 14979 if (is_kdump_kernel()) 14980 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14981 delay); 14982 else 14983 ret = queue_delayed_work_on(cq->chann, phba->wq, 14984 &cq->sched_spwork, delay); 14985 if (!ret) 14986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14987 "0394 Cannot schedule queue work " 14988 "for cqid=%d on CPU %d\n", 14989 cq->queue_id, cq->chann); 14990 } 14991 14992 /* wake up worker thread if there are works to be done */ 14993 if (workposted) 14994 lpfc_worker_wake_up(phba); 14995 } 14996 14997 /** 14998 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14999 * interrupt 15000 * @work: pointer to work element 15001 * 15002 * translates from the work handler and calls the slow-path handler. 15003 **/ 15004 static void 15005 lpfc_sli4_sp_process_cq(struct work_struct *work) 15006 { 15007 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15008 15009 __lpfc_sli4_sp_process_cq(cq); 15010 } 15011 15012 /** 15013 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15014 * @work: pointer to work element 15015 * 15016 * translates from the work handler and calls the slow-path handler. 15017 **/ 15018 static void 15019 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15020 { 15021 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15022 struct lpfc_queue, sched_spwork); 15023 15024 __lpfc_sli4_sp_process_cq(cq); 15025 } 15026 15027 /** 15028 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15029 * @phba: Pointer to HBA context object. 15030 * @cq: Pointer to associated CQ 15031 * @wcqe: Pointer to work-queue completion queue entry. 15032 * 15033 * This routine process a fast-path work queue completion entry from fast-path 15034 * event queue for FCP command response completion. 15035 **/ 15036 static void 15037 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15038 struct lpfc_wcqe_complete *wcqe) 15039 { 15040 struct lpfc_sli_ring *pring = cq->pring; 15041 struct lpfc_iocbq *cmdiocbq; 15042 unsigned long iflags; 15043 15044 /* Check for response status */ 15045 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15046 /* If resource errors reported from HBA, reduce queue 15047 * depth of the SCSI device. 15048 */ 15049 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15050 IOSTAT_LOCAL_REJECT)) && 15051 ((wcqe->parameter & IOERR_PARAM_MASK) == 15052 IOERR_NO_RESOURCES)) 15053 phba->lpfc_rampdown_queue_depth(phba); 15054 15055 /* Log the cmpl status */ 15056 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15057 "0373 FCP CQE cmpl: status=x%x: " 15058 "CQE: %08x %08x %08x %08x\n", 15059 bf_get(lpfc_wcqe_c_status, wcqe), 15060 wcqe->word0, wcqe->total_data_placed, 15061 wcqe->parameter, wcqe->word3); 15062 } 15063 15064 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15065 spin_lock_irqsave(&pring->ring_lock, iflags); 15066 pring->stats.iocb_event++; 15067 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15068 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15069 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15070 if (unlikely(!cmdiocbq)) { 15071 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15072 "0374 FCP complete with no corresponding " 15073 "cmdiocb: iotag (%d)\n", 15074 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15075 return; 15076 } 15077 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15078 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15079 #endif 15080 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15081 spin_lock_irqsave(&phba->hbalock, iflags); 15082 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15083 spin_unlock_irqrestore(&phba->hbalock, iflags); 15084 } 15085 15086 if (cmdiocbq->cmd_cmpl) { 15087 /* For FCP the flag is cleared in cmd_cmpl */ 15088 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15089 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15090 spin_lock_irqsave(&phba->hbalock, iflags); 15091 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15092 spin_unlock_irqrestore(&phba->hbalock, iflags); 15093 } 15094 15095 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15096 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15097 sizeof(struct lpfc_wcqe_complete)); 15098 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15099 } else { 15100 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15101 "0375 FCP cmdiocb not callback function " 15102 "iotag: (%d)\n", 15103 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15104 } 15105 } 15106 15107 /** 15108 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15109 * @phba: Pointer to HBA context object. 15110 * @cq: Pointer to completion queue. 15111 * @wcqe: Pointer to work-queue completion queue entry. 15112 * 15113 * This routine handles an fast-path WQ entry consumed event by invoking the 15114 * proper WQ release routine to the slow-path WQ. 15115 **/ 15116 static void 15117 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15118 struct lpfc_wcqe_release *wcqe) 15119 { 15120 struct lpfc_queue *childwq; 15121 bool wqid_matched = false; 15122 uint16_t hba_wqid; 15123 15124 /* Check for fast-path FCP work queue release */ 15125 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15126 list_for_each_entry(childwq, &cq->child_list, list) { 15127 if (childwq->queue_id == hba_wqid) { 15128 lpfc_sli4_wq_release(childwq, 15129 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15130 if (childwq->q_flag & HBA_NVMET_WQFULL) 15131 lpfc_nvmet_wqfull_process(phba, childwq); 15132 wqid_matched = true; 15133 break; 15134 } 15135 } 15136 /* Report warning log message if no match found */ 15137 if (wqid_matched != true) 15138 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15139 "2580 Fast-path wqe consume event carries " 15140 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15141 } 15142 15143 /** 15144 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15145 * @phba: Pointer to HBA context object. 15146 * @cq: Pointer to completion queue. 15147 * @rcqe: Pointer to receive-queue completion queue entry. 15148 * 15149 * This routine process a receive-queue completion queue entry. 15150 * 15151 * Return: true if work posted to worker thread, otherwise false. 15152 **/ 15153 static bool 15154 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15155 struct lpfc_rcqe *rcqe) 15156 { 15157 bool workposted = false; 15158 struct lpfc_queue *hrq; 15159 struct lpfc_queue *drq; 15160 struct rqb_dmabuf *dma_buf; 15161 struct fc_frame_header *fc_hdr; 15162 struct lpfc_nvmet_tgtport *tgtp; 15163 uint32_t status, rq_id; 15164 unsigned long iflags; 15165 uint32_t fctl, idx; 15166 15167 if ((phba->nvmet_support == 0) || 15168 (phba->sli4_hba.nvmet_cqset == NULL)) 15169 return workposted; 15170 15171 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15172 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15173 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15174 15175 /* sanity check on queue memory */ 15176 if (unlikely(!hrq) || unlikely(!drq)) 15177 return workposted; 15178 15179 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15180 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15181 else 15182 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15183 15184 if ((phba->nvmet_support == 0) || 15185 (rq_id != hrq->queue_id)) 15186 return workposted; 15187 15188 status = bf_get(lpfc_rcqe_status, rcqe); 15189 switch (status) { 15190 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15191 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15192 "6126 Receive Frame Truncated!!\n"); 15193 fallthrough; 15194 case FC_STATUS_RQ_SUCCESS: 15195 spin_lock_irqsave(&phba->hbalock, iflags); 15196 lpfc_sli4_rq_release(hrq, drq); 15197 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15198 if (!dma_buf) { 15199 hrq->RQ_no_buf_found++; 15200 spin_unlock_irqrestore(&phba->hbalock, iflags); 15201 goto out; 15202 } 15203 spin_unlock_irqrestore(&phba->hbalock, iflags); 15204 hrq->RQ_rcv_buf++; 15205 hrq->RQ_buf_posted--; 15206 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15207 15208 /* Just some basic sanity checks on FCP Command frame */ 15209 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15210 fc_hdr->fh_f_ctl[1] << 8 | 15211 fc_hdr->fh_f_ctl[2]); 15212 if (((fctl & 15213 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15214 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15215 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15216 goto drop; 15217 15218 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15219 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15220 lpfc_nvmet_unsol_fcp_event( 15221 phba, idx, dma_buf, cq->isr_timestamp, 15222 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15223 return false; 15224 } 15225 drop: 15226 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15227 break; 15228 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15229 if (phba->nvmet_support) { 15230 tgtp = phba->targetport->private; 15231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15232 "6401 RQE Error x%x, posted %d err_cnt " 15233 "%d: %x %x %x\n", 15234 status, hrq->RQ_buf_posted, 15235 hrq->RQ_no_posted_buf, 15236 atomic_read(&tgtp->rcv_fcp_cmd_in), 15237 atomic_read(&tgtp->rcv_fcp_cmd_out), 15238 atomic_read(&tgtp->xmt_fcp_release)); 15239 } 15240 fallthrough; 15241 15242 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15243 hrq->RQ_no_posted_buf++; 15244 /* Post more buffers if possible */ 15245 break; 15246 case FC_STATUS_RQ_DMA_FAILURE: 15247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15248 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15249 "x%08x\n", 15250 status, rcqe->word0, rcqe->word1, 15251 rcqe->word2, rcqe->word3); 15252 15253 /* If IV set, no further recovery */ 15254 if (bf_get(lpfc_rcqe_iv, rcqe)) 15255 break; 15256 15257 /* recycle consumed resource */ 15258 spin_lock_irqsave(&phba->hbalock, iflags); 15259 lpfc_sli4_rq_release(hrq, drq); 15260 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15261 if (!dma_buf) { 15262 hrq->RQ_no_buf_found++; 15263 spin_unlock_irqrestore(&phba->hbalock, iflags); 15264 break; 15265 } 15266 hrq->RQ_rcv_buf++; 15267 hrq->RQ_buf_posted--; 15268 spin_unlock_irqrestore(&phba->hbalock, iflags); 15269 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15270 break; 15271 default: 15272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15273 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15274 "x%08x x%08x x%08x\n", 15275 status, rcqe->word0, rcqe->word1, 15276 rcqe->word2, rcqe->word3); 15277 break; 15278 } 15279 out: 15280 return workposted; 15281 } 15282 15283 /** 15284 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15285 * @phba: adapter with cq 15286 * @cq: Pointer to the completion queue. 15287 * @cqe: Pointer to fast-path completion queue entry. 15288 * 15289 * This routine process a fast-path work queue completion entry from fast-path 15290 * event queue for FCP command response completion. 15291 * 15292 * Return: true if work posted to worker thread, otherwise false. 15293 **/ 15294 static bool 15295 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15296 struct lpfc_cqe *cqe) 15297 { 15298 struct lpfc_wcqe_release wcqe; 15299 bool workposted = false; 15300 15301 /* Copy the work queue CQE and convert endian order if needed */ 15302 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15303 15304 /* Check and process for different type of WCQE and dispatch */ 15305 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15306 case CQE_CODE_COMPL_WQE: 15307 case CQE_CODE_NVME_ERSP: 15308 cq->CQ_wq++; 15309 /* Process the WQ complete event */ 15310 phba->last_completion_time = jiffies; 15311 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15312 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15313 (struct lpfc_wcqe_complete *)&wcqe); 15314 break; 15315 case CQE_CODE_RELEASE_WQE: 15316 cq->CQ_release_wqe++; 15317 /* Process the WQ release event */ 15318 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15319 (struct lpfc_wcqe_release *)&wcqe); 15320 break; 15321 case CQE_CODE_XRI_ABORTED: 15322 cq->CQ_xri_aborted++; 15323 /* Process the WQ XRI abort event */ 15324 phba->last_completion_time = jiffies; 15325 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15326 (struct sli4_wcqe_xri_aborted *)&wcqe); 15327 break; 15328 case CQE_CODE_RECEIVE_V1: 15329 case CQE_CODE_RECEIVE: 15330 phba->last_completion_time = jiffies; 15331 if (cq->subtype == LPFC_NVMET) { 15332 workposted = lpfc_sli4_nvmet_handle_rcqe( 15333 phba, cq, (struct lpfc_rcqe *)&wcqe); 15334 } 15335 break; 15336 default: 15337 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15338 "0144 Not a valid CQE code: x%x\n", 15339 bf_get(lpfc_wcqe_c_code, &wcqe)); 15340 break; 15341 } 15342 return workposted; 15343 } 15344 15345 /** 15346 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15347 * @cq: Pointer to CQ to be processed 15348 * 15349 * This routine calls the cq processing routine with the handler for 15350 * fast path CQEs. 15351 * 15352 * The CQ routine returns two values: the first is the calling status, 15353 * which indicates whether work was queued to the background discovery 15354 * thread. If true, the routine should wakeup the discovery thread; 15355 * the second is the delay parameter. If non-zero, rather than rearming 15356 * the CQ and yet another interrupt, the CQ handler should be queued so 15357 * that it is processed in a subsequent polling action. The value of 15358 * the delay indicates when to reschedule it. 15359 **/ 15360 static void 15361 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15362 { 15363 struct lpfc_hba *phba = cq->phba; 15364 unsigned long delay; 15365 bool workposted = false; 15366 int ret; 15367 15368 /* process and rearm the CQ */ 15369 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15370 &delay); 15371 15372 if (delay) { 15373 if (is_kdump_kernel()) 15374 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15375 delay); 15376 else 15377 ret = queue_delayed_work_on(cq->chann, phba->wq, 15378 &cq->sched_irqwork, delay); 15379 if (!ret) 15380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15381 "0367 Cannot schedule queue work " 15382 "for cqid=%d on CPU %d\n", 15383 cq->queue_id, cq->chann); 15384 } 15385 15386 /* wake up worker thread if there are works to be done */ 15387 if (workposted) 15388 lpfc_worker_wake_up(phba); 15389 } 15390 15391 /** 15392 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15393 * interrupt 15394 * @work: pointer to work element 15395 * 15396 * translates from the work handler and calls the fast-path handler. 15397 **/ 15398 static void 15399 lpfc_sli4_hba_process_cq(struct work_struct *work) 15400 { 15401 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15402 15403 __lpfc_sli4_hba_process_cq(cq); 15404 } 15405 15406 /** 15407 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15408 * @phba: Pointer to HBA context object. 15409 * @eq: Pointer to the queue structure. 15410 * @eqe: Pointer to fast-path event queue entry. 15411 * @poll_mode: poll_mode to execute processing the cq. 15412 * 15413 * This routine process a event queue entry from the fast-path event queue. 15414 * It will check the MajorCode and MinorCode to determine this is for a 15415 * completion event on a completion queue, if not, an error shall be logged 15416 * and just return. Otherwise, it will get to the corresponding completion 15417 * queue and process all the entries on the completion queue, rearm the 15418 * completion queue, and then return. 15419 **/ 15420 static void 15421 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15422 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15423 { 15424 struct lpfc_queue *cq = NULL; 15425 uint32_t qidx = eq->hdwq; 15426 uint16_t cqid, id; 15427 int ret; 15428 15429 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15431 "0366 Not a valid completion " 15432 "event: majorcode=x%x, minorcode=x%x\n", 15433 bf_get_le32(lpfc_eqe_major_code, eqe), 15434 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15435 return; 15436 } 15437 15438 /* Get the reference to the corresponding CQ */ 15439 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15440 15441 /* Use the fast lookup method first */ 15442 if (cqid <= phba->sli4_hba.cq_max) { 15443 cq = phba->sli4_hba.cq_lookup[cqid]; 15444 if (cq) 15445 goto work_cq; 15446 } 15447 15448 /* Next check for NVMET completion */ 15449 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15450 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15451 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15452 /* Process NVMET unsol rcv */ 15453 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15454 goto process_cq; 15455 } 15456 } 15457 15458 if (phba->sli4_hba.nvmels_cq && 15459 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15460 /* Process NVME unsol rcv */ 15461 cq = phba->sli4_hba.nvmels_cq; 15462 } 15463 15464 /* Otherwise this is a Slow path event */ 15465 if (cq == NULL) { 15466 lpfc_sli4_sp_handle_eqe(phba, eqe, 15467 phba->sli4_hba.hdwq[qidx].hba_eq); 15468 return; 15469 } 15470 15471 process_cq: 15472 if (unlikely(cqid != cq->queue_id)) { 15473 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15474 "0368 Miss-matched fast-path completion " 15475 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15476 cqid, cq->queue_id); 15477 return; 15478 } 15479 15480 work_cq: 15481 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15482 if (phba->ktime_on) 15483 cq->isr_timestamp = ktime_get_ns(); 15484 else 15485 cq->isr_timestamp = 0; 15486 #endif 15487 15488 switch (poll_mode) { 15489 case LPFC_THREADED_IRQ: 15490 __lpfc_sli4_hba_process_cq(cq); 15491 break; 15492 case LPFC_QUEUE_WORK: 15493 default: 15494 if (is_kdump_kernel()) 15495 ret = queue_work(phba->wq, &cq->irqwork); 15496 else 15497 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15498 if (!ret) 15499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15500 "0383 Cannot schedule queue work " 15501 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15502 cqid, cq->queue_id, 15503 raw_smp_processor_id()); 15504 break; 15505 } 15506 } 15507 15508 /** 15509 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15510 * @work: pointer to work element 15511 * 15512 * translates from the work handler and calls the fast-path handler. 15513 **/ 15514 static void 15515 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15516 { 15517 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15518 struct lpfc_queue, sched_irqwork); 15519 15520 __lpfc_sli4_hba_process_cq(cq); 15521 } 15522 15523 /** 15524 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15525 * @irq: Interrupt number. 15526 * @dev_id: The device context pointer. 15527 * 15528 * This function is directly called from the PCI layer as an interrupt 15529 * service routine when device with SLI-4 interface spec is enabled with 15530 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15531 * ring event in the HBA. However, when the device is enabled with either 15532 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15533 * device-level interrupt handler. When the PCI slot is in error recovery 15534 * or the HBA is undergoing initialization, the interrupt handler will not 15535 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15536 * the intrrupt context. This function is called without any lock held. 15537 * It gets the hbalock to access and update SLI data structures. Note that, 15538 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15539 * equal to that of FCP CQ index. 15540 * 15541 * The link attention and ELS ring attention events are handled 15542 * by the worker thread. The interrupt handler signals the worker thread 15543 * and returns for these events. This function is called without any lock 15544 * held. It gets the hbalock to access and update SLI data structures. 15545 * 15546 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15547 * when interrupt is scheduled to be handled from a threaded irq context, or 15548 * else returns IRQ_NONE. 15549 **/ 15550 irqreturn_t 15551 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15552 { 15553 struct lpfc_hba *phba; 15554 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15555 struct lpfc_queue *fpeq; 15556 unsigned long iflag; 15557 int hba_eqidx; 15558 int ecount = 0; 15559 struct lpfc_eq_intr_info *eqi; 15560 15561 /* Get the driver's phba structure from the dev_id */ 15562 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15563 phba = hba_eq_hdl->phba; 15564 hba_eqidx = hba_eq_hdl->idx; 15565 15566 if (unlikely(!phba)) 15567 return IRQ_NONE; 15568 if (unlikely(!phba->sli4_hba.hdwq)) 15569 return IRQ_NONE; 15570 15571 /* Get to the EQ struct associated with this vector */ 15572 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15573 if (unlikely(!fpeq)) 15574 return IRQ_NONE; 15575 15576 /* Check device state for handling interrupt */ 15577 if (unlikely(lpfc_intr_state_check(phba))) { 15578 /* Check again for link_state with lock held */ 15579 spin_lock_irqsave(&phba->hbalock, iflag); 15580 if (phba->link_state < LPFC_LINK_DOWN) 15581 /* Flush, clear interrupt, and rearm the EQ */ 15582 lpfc_sli4_eqcq_flush(phba, fpeq); 15583 spin_unlock_irqrestore(&phba->hbalock, iflag); 15584 return IRQ_NONE; 15585 } 15586 15587 switch (fpeq->poll_mode) { 15588 case LPFC_THREADED_IRQ: 15589 /* CGN mgmt is mutually exclusive from irq processing */ 15590 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15591 return IRQ_WAKE_THREAD; 15592 fallthrough; 15593 case LPFC_QUEUE_WORK: 15594 default: 15595 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15596 eqi->icnt++; 15597 15598 fpeq->last_cpu = raw_smp_processor_id(); 15599 15600 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15601 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15602 phba->cfg_auto_imax && 15603 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15604 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15605 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15606 LPFC_MAX_AUTO_EQ_DELAY); 15607 15608 /* process and rearm the EQ */ 15609 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15610 LPFC_QUEUE_WORK); 15611 15612 if (unlikely(ecount == 0)) { 15613 fpeq->EQ_no_entry++; 15614 if (phba->intr_type == MSIX) 15615 /* MSI-X treated interrupt served as no EQ share INT */ 15616 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15617 "0358 MSI-X interrupt with no EQE\n"); 15618 else 15619 /* Non MSI-X treated on interrupt as EQ share INT */ 15620 return IRQ_NONE; 15621 } 15622 } 15623 15624 return IRQ_HANDLED; 15625 } /* lpfc_sli4_hba_intr_handler */ 15626 15627 /** 15628 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15629 * @irq: Interrupt number. 15630 * @dev_id: The device context pointer. 15631 * 15632 * This function is the device-level interrupt handler to device with SLI-4 15633 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15634 * interrupt mode is enabled and there is an event in the HBA which requires 15635 * driver attention. This function invokes the slow-path interrupt attention 15636 * handling function and fast-path interrupt attention handling function in 15637 * turn to process the relevant HBA attention events. This function is called 15638 * without any lock held. It gets the hbalock to access and update SLI data 15639 * structures. 15640 * 15641 * This function returns IRQ_HANDLED when interrupt is handled, else it 15642 * returns IRQ_NONE. 15643 **/ 15644 irqreturn_t 15645 lpfc_sli4_intr_handler(int irq, void *dev_id) 15646 { 15647 struct lpfc_hba *phba; 15648 irqreturn_t hba_irq_rc; 15649 bool hba_handled = false; 15650 int qidx; 15651 15652 /* Get the driver's phba structure from the dev_id */ 15653 phba = (struct lpfc_hba *)dev_id; 15654 15655 if (unlikely(!phba)) 15656 return IRQ_NONE; 15657 15658 /* 15659 * Invoke fast-path host attention interrupt handling as appropriate. 15660 */ 15661 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15662 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15663 &phba->sli4_hba.hba_eq_hdl[qidx]); 15664 if (hba_irq_rc == IRQ_HANDLED) 15665 hba_handled |= true; 15666 } 15667 15668 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15669 } /* lpfc_sli4_intr_handler */ 15670 15671 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15672 { 15673 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15674 struct lpfc_queue *eq; 15675 15676 rcu_read_lock(); 15677 15678 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15679 lpfc_sli4_poll_eq(eq); 15680 if (!list_empty(&phba->poll_list)) 15681 mod_timer(&phba->cpuhp_poll_timer, 15682 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15683 15684 rcu_read_unlock(); 15685 } 15686 15687 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15688 { 15689 struct lpfc_hba *phba = eq->phba; 15690 15691 /* kickstart slowpath processing if needed */ 15692 if (list_empty(&phba->poll_list)) 15693 mod_timer(&phba->cpuhp_poll_timer, 15694 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15695 15696 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15697 synchronize_rcu(); 15698 } 15699 15700 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15701 { 15702 struct lpfc_hba *phba = eq->phba; 15703 15704 /* Disable slowpath processing for this eq. Kick start the eq 15705 * by RE-ARMING the eq's ASAP 15706 */ 15707 list_del_rcu(&eq->_poll_list); 15708 synchronize_rcu(); 15709 15710 if (list_empty(&phba->poll_list)) 15711 del_timer_sync(&phba->cpuhp_poll_timer); 15712 } 15713 15714 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15715 { 15716 struct lpfc_queue *eq, *next; 15717 15718 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15719 list_del(&eq->_poll_list); 15720 15721 INIT_LIST_HEAD(&phba->poll_list); 15722 synchronize_rcu(); 15723 } 15724 15725 static inline void 15726 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15727 { 15728 if (mode == eq->mode) 15729 return; 15730 /* 15731 * currently this function is only called during a hotplug 15732 * event and the cpu on which this function is executing 15733 * is going offline. By now the hotplug has instructed 15734 * the scheduler to remove this cpu from cpu active mask. 15735 * So we don't need to work about being put aside by the 15736 * scheduler for a high priority process. Yes, the inte- 15737 * rrupts could come but they are known to retire ASAP. 15738 */ 15739 15740 /* Disable polling in the fastpath */ 15741 WRITE_ONCE(eq->mode, mode); 15742 /* flush out the store buffer */ 15743 smp_wmb(); 15744 15745 /* 15746 * Add this eq to the polling list and start polling. For 15747 * a grace period both interrupt handler and poller will 15748 * try to process the eq _but_ that's fine. We have a 15749 * synchronization mechanism in place (queue_claimed) to 15750 * deal with it. This is just a draining phase for int- 15751 * errupt handler (not eq's) as we have guranteed through 15752 * barrier that all the CPUs have seen the new CQ_POLLED 15753 * state. which will effectively disable the REARMING of 15754 * the EQ. The whole idea is eq's die off eventually as 15755 * we are not rearming EQ's anymore. 15756 */ 15757 mode ? lpfc_sli4_add_to_poll_list(eq) : 15758 lpfc_sli4_remove_from_poll_list(eq); 15759 } 15760 15761 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15762 { 15763 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15764 } 15765 15766 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15767 { 15768 struct lpfc_hba *phba = eq->phba; 15769 15770 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15771 15772 /* Kick start for the pending io's in h/w. 15773 * Once we switch back to interrupt processing on a eq 15774 * the io path completion will only arm eq's when it 15775 * receives a completion. But since eq's are in disa- 15776 * rmed state it doesn't receive a completion. This 15777 * creates a deadlock scenaro. 15778 */ 15779 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15780 } 15781 15782 /** 15783 * lpfc_sli4_queue_free - free a queue structure and associated memory 15784 * @queue: The queue structure to free. 15785 * 15786 * This function frees a queue structure and the DMAable memory used for 15787 * the host resident queue. This function must be called after destroying the 15788 * queue on the HBA. 15789 **/ 15790 void 15791 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15792 { 15793 struct lpfc_dmabuf *dmabuf; 15794 15795 if (!queue) 15796 return; 15797 15798 if (!list_empty(&queue->wq_list)) 15799 list_del(&queue->wq_list); 15800 15801 while (!list_empty(&queue->page_list)) { 15802 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15803 list); 15804 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15805 dmabuf->virt, dmabuf->phys); 15806 kfree(dmabuf); 15807 } 15808 if (queue->rqbp) { 15809 lpfc_free_rq_buffer(queue->phba, queue); 15810 kfree(queue->rqbp); 15811 } 15812 15813 if (!list_empty(&queue->cpu_list)) 15814 list_del(&queue->cpu_list); 15815 15816 kfree(queue); 15817 return; 15818 } 15819 15820 /** 15821 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15822 * @phba: The HBA that this queue is being created on. 15823 * @page_size: The size of a queue page 15824 * @entry_size: The size of each queue entry for this queue. 15825 * @entry_count: The number of entries that this queue will handle. 15826 * @cpu: The cpu that will primarily utilize this queue. 15827 * 15828 * This function allocates a queue structure and the DMAable memory used for 15829 * the host resident queue. This function must be called before creating the 15830 * queue on the HBA. 15831 **/ 15832 struct lpfc_queue * 15833 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15834 uint32_t entry_size, uint32_t entry_count, int cpu) 15835 { 15836 struct lpfc_queue *queue; 15837 struct lpfc_dmabuf *dmabuf; 15838 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15839 uint16_t x, pgcnt; 15840 15841 if (!phba->sli4_hba.pc_sli4_params.supported) 15842 hw_page_size = page_size; 15843 15844 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15845 15846 /* If needed, Adjust page count to match the max the adapter supports */ 15847 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15848 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15849 15850 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15851 GFP_KERNEL, cpu_to_node(cpu)); 15852 if (!queue) 15853 return NULL; 15854 15855 INIT_LIST_HEAD(&queue->list); 15856 INIT_LIST_HEAD(&queue->_poll_list); 15857 INIT_LIST_HEAD(&queue->wq_list); 15858 INIT_LIST_HEAD(&queue->wqfull_list); 15859 INIT_LIST_HEAD(&queue->page_list); 15860 INIT_LIST_HEAD(&queue->child_list); 15861 INIT_LIST_HEAD(&queue->cpu_list); 15862 15863 /* Set queue parameters now. If the system cannot provide memory 15864 * resources, the free routine needs to know what was allocated. 15865 */ 15866 queue->page_count = pgcnt; 15867 queue->q_pgs = (void **)&queue[1]; 15868 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15869 queue->entry_size = entry_size; 15870 queue->entry_count = entry_count; 15871 queue->page_size = hw_page_size; 15872 queue->phba = phba; 15873 15874 for (x = 0; x < queue->page_count; x++) { 15875 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15876 dev_to_node(&phba->pcidev->dev)); 15877 if (!dmabuf) 15878 goto out_fail; 15879 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15880 hw_page_size, &dmabuf->phys, 15881 GFP_KERNEL); 15882 if (!dmabuf->virt) { 15883 kfree(dmabuf); 15884 goto out_fail; 15885 } 15886 dmabuf->buffer_tag = x; 15887 list_add_tail(&dmabuf->list, &queue->page_list); 15888 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15889 queue->q_pgs[x] = dmabuf->virt; 15890 } 15891 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15892 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15893 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15894 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15895 15896 /* notify_interval will be set during q creation */ 15897 15898 return queue; 15899 out_fail: 15900 lpfc_sli4_queue_free(queue); 15901 return NULL; 15902 } 15903 15904 /** 15905 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15906 * @phba: HBA structure that indicates port to create a queue on. 15907 * @pci_barset: PCI BAR set flag. 15908 * 15909 * This function shall perform iomap of the specified PCI BAR address to host 15910 * memory address if not already done so and return it. The returned host 15911 * memory address can be NULL. 15912 */ 15913 static void __iomem * 15914 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15915 { 15916 if (!phba->pcidev) 15917 return NULL; 15918 15919 switch (pci_barset) { 15920 case WQ_PCI_BAR_0_AND_1: 15921 return phba->pci_bar0_memmap_p; 15922 case WQ_PCI_BAR_2_AND_3: 15923 return phba->pci_bar2_memmap_p; 15924 case WQ_PCI_BAR_4_AND_5: 15925 return phba->pci_bar4_memmap_p; 15926 default: 15927 break; 15928 } 15929 return NULL; 15930 } 15931 15932 /** 15933 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15934 * @phba: HBA structure that EQs are on. 15935 * @startq: The starting EQ index to modify 15936 * @numq: The number of EQs (consecutive indexes) to modify 15937 * @usdelay: amount of delay 15938 * 15939 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15940 * is set either by writing to a register (if supported by the SLI Port) 15941 * or by mailbox command. The mailbox command allows several EQs to be 15942 * updated at once. 15943 * 15944 * The @phba struct is used to send a mailbox command to HBA. The @startq 15945 * is used to get the starting EQ index to change. The @numq value is 15946 * used to specify how many consecutive EQ indexes, starting at EQ index, 15947 * are to be changed. This function is asynchronous and will wait for any 15948 * mailbox commands to finish before returning. 15949 * 15950 * On success this function will return a zero. If unable to allocate 15951 * enough memory this function will return -ENOMEM. If a mailbox command 15952 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15953 * have had their delay multipler changed. 15954 **/ 15955 void 15956 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15957 uint32_t numq, uint32_t usdelay) 15958 { 15959 struct lpfc_mbx_modify_eq_delay *eq_delay; 15960 LPFC_MBOXQ_t *mbox; 15961 struct lpfc_queue *eq; 15962 int cnt = 0, rc, length; 15963 uint32_t shdr_status, shdr_add_status; 15964 uint32_t dmult; 15965 int qidx; 15966 union lpfc_sli4_cfg_shdr *shdr; 15967 15968 if (startq >= phba->cfg_irq_chann) 15969 return; 15970 15971 if (usdelay > 0xFFFF) { 15972 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15973 "6429 usdelay %d too large. Scaled down to " 15974 "0xFFFF.\n", usdelay); 15975 usdelay = 0xFFFF; 15976 } 15977 15978 /* set values by EQ_DELAY register if supported */ 15979 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15980 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15981 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15982 if (!eq) 15983 continue; 15984 15985 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15986 15987 if (++cnt >= numq) 15988 break; 15989 } 15990 return; 15991 } 15992 15993 /* Otherwise, set values by mailbox cmd */ 15994 15995 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15996 if (!mbox) { 15997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15998 "6428 Failed allocating mailbox cmd buffer." 15999 " EQ delay was not set.\n"); 16000 return; 16001 } 16002 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16003 sizeof(struct lpfc_sli4_cfg_mhdr)); 16004 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16005 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16006 length, LPFC_SLI4_MBX_EMBED); 16007 eq_delay = &mbox->u.mqe.un.eq_delay; 16008 16009 /* Calculate delay multiper from maximum interrupt per second */ 16010 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16011 if (dmult) 16012 dmult--; 16013 if (dmult > LPFC_DMULT_MAX) 16014 dmult = LPFC_DMULT_MAX; 16015 16016 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16017 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16018 if (!eq) 16019 continue; 16020 eq->q_mode = usdelay; 16021 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16022 eq_delay->u.request.eq[cnt].phase = 0; 16023 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16024 16025 if (++cnt >= numq) 16026 break; 16027 } 16028 eq_delay->u.request.num_eq = cnt; 16029 16030 mbox->vport = phba->pport; 16031 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16032 mbox->ctx_ndlp = NULL; 16033 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16034 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16035 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16036 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16037 if (shdr_status || shdr_add_status || rc) { 16038 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16039 "2512 MODIFY_EQ_DELAY mailbox failed with " 16040 "status x%x add_status x%x, mbx status x%x\n", 16041 shdr_status, shdr_add_status, rc); 16042 } 16043 mempool_free(mbox, phba->mbox_mem_pool); 16044 return; 16045 } 16046 16047 /** 16048 * lpfc_eq_create - Create an Event Queue on the HBA 16049 * @phba: HBA structure that indicates port to create a queue on. 16050 * @eq: The queue structure to use to create the event queue. 16051 * @imax: The maximum interrupt per second limit. 16052 * 16053 * This function creates an event queue, as detailed in @eq, on a port, 16054 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16055 * 16056 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16057 * is used to get the entry count and entry size that are necessary to 16058 * determine the number of pages to allocate and use for this queue. This 16059 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16060 * event queue. This function is asynchronous and will wait for the mailbox 16061 * command to finish before continuing. 16062 * 16063 * On success this function will return a zero. If unable to allocate enough 16064 * memory this function will return -ENOMEM. If the queue create mailbox command 16065 * fails this function will return -ENXIO. 16066 **/ 16067 int 16068 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16069 { 16070 struct lpfc_mbx_eq_create *eq_create; 16071 LPFC_MBOXQ_t *mbox; 16072 int rc, length, status = 0; 16073 struct lpfc_dmabuf *dmabuf; 16074 uint32_t shdr_status, shdr_add_status; 16075 union lpfc_sli4_cfg_shdr *shdr; 16076 uint16_t dmult; 16077 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16078 16079 /* sanity check on queue memory */ 16080 if (!eq) 16081 return -ENODEV; 16082 if (!phba->sli4_hba.pc_sli4_params.supported) 16083 hw_page_size = SLI4_PAGE_SIZE; 16084 16085 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16086 if (!mbox) 16087 return -ENOMEM; 16088 length = (sizeof(struct lpfc_mbx_eq_create) - 16089 sizeof(struct lpfc_sli4_cfg_mhdr)); 16090 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16091 LPFC_MBOX_OPCODE_EQ_CREATE, 16092 length, LPFC_SLI4_MBX_EMBED); 16093 eq_create = &mbox->u.mqe.un.eq_create; 16094 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16095 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16096 eq->page_count); 16097 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16098 LPFC_EQE_SIZE); 16099 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16100 16101 /* Use version 2 of CREATE_EQ if eqav is set */ 16102 if (phba->sli4_hba.pc_sli4_params.eqav) { 16103 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16104 LPFC_Q_CREATE_VERSION_2); 16105 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16106 phba->sli4_hba.pc_sli4_params.eqav); 16107 } 16108 16109 /* don't setup delay multiplier using EQ_CREATE */ 16110 dmult = 0; 16111 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16112 dmult); 16113 switch (eq->entry_count) { 16114 default: 16115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16116 "0360 Unsupported EQ count. (%d)\n", 16117 eq->entry_count); 16118 if (eq->entry_count < 256) { 16119 status = -EINVAL; 16120 goto out; 16121 } 16122 fallthrough; /* otherwise default to smallest count */ 16123 case 256: 16124 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16125 LPFC_EQ_CNT_256); 16126 break; 16127 case 512: 16128 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16129 LPFC_EQ_CNT_512); 16130 break; 16131 case 1024: 16132 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16133 LPFC_EQ_CNT_1024); 16134 break; 16135 case 2048: 16136 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16137 LPFC_EQ_CNT_2048); 16138 break; 16139 case 4096: 16140 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16141 LPFC_EQ_CNT_4096); 16142 break; 16143 } 16144 list_for_each_entry(dmabuf, &eq->page_list, list) { 16145 memset(dmabuf->virt, 0, hw_page_size); 16146 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16147 putPaddrLow(dmabuf->phys); 16148 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16149 putPaddrHigh(dmabuf->phys); 16150 } 16151 mbox->vport = phba->pport; 16152 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16153 mbox->ctx_buf = NULL; 16154 mbox->ctx_ndlp = NULL; 16155 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16156 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16157 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16158 if (shdr_status || shdr_add_status || rc) { 16159 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16160 "2500 EQ_CREATE mailbox failed with " 16161 "status x%x add_status x%x, mbx status x%x\n", 16162 shdr_status, shdr_add_status, rc); 16163 status = -ENXIO; 16164 } 16165 eq->type = LPFC_EQ; 16166 eq->subtype = LPFC_NONE; 16167 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16168 if (eq->queue_id == 0xFFFF) 16169 status = -ENXIO; 16170 eq->host_index = 0; 16171 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16172 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16173 out: 16174 mempool_free(mbox, phba->mbox_mem_pool); 16175 return status; 16176 } 16177 16178 /** 16179 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16180 * @irq: Interrupt number. 16181 * @dev_id: The device context pointer. 16182 * 16183 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16184 * threaded irq context. 16185 * 16186 * Returns 16187 * IRQ_HANDLED - interrupt is handled 16188 * IRQ_NONE - otherwise 16189 **/ 16190 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16191 { 16192 struct lpfc_hba *phba; 16193 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16194 struct lpfc_queue *fpeq; 16195 int ecount = 0; 16196 int hba_eqidx; 16197 struct lpfc_eq_intr_info *eqi; 16198 16199 /* Get the driver's phba structure from the dev_id */ 16200 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16201 phba = hba_eq_hdl->phba; 16202 hba_eqidx = hba_eq_hdl->idx; 16203 16204 if (unlikely(!phba)) 16205 return IRQ_NONE; 16206 if (unlikely(!phba->sli4_hba.hdwq)) 16207 return IRQ_NONE; 16208 16209 /* Get to the EQ struct associated with this vector */ 16210 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16211 if (unlikely(!fpeq)) 16212 return IRQ_NONE; 16213 16214 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16215 eqi->icnt++; 16216 16217 fpeq->last_cpu = raw_smp_processor_id(); 16218 16219 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16220 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16221 phba->cfg_auto_imax && 16222 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16223 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16224 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16225 16226 /* process and rearm the EQ */ 16227 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16228 LPFC_THREADED_IRQ); 16229 16230 if (unlikely(ecount == 0)) { 16231 fpeq->EQ_no_entry++; 16232 if (phba->intr_type == MSIX) 16233 /* MSI-X treated interrupt served as no EQ share INT */ 16234 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16235 "3358 MSI-X interrupt with no EQE\n"); 16236 else 16237 /* Non MSI-X treated on interrupt as EQ share INT */ 16238 return IRQ_NONE; 16239 } 16240 return IRQ_HANDLED; 16241 } 16242 16243 /** 16244 * lpfc_cq_create - Create a Completion Queue on the HBA 16245 * @phba: HBA structure that indicates port to create a queue on. 16246 * @cq: The queue structure to use to create the completion queue. 16247 * @eq: The event queue to bind this completion queue to. 16248 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16249 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16250 * 16251 * This function creates a completion queue, as detailed in @wq, on a port, 16252 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16253 * 16254 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16255 * is used to get the entry count and entry size that are necessary to 16256 * determine the number of pages to allocate and use for this queue. The @eq 16257 * is used to indicate which event queue to bind this completion queue to. This 16258 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16259 * completion queue. This function is asynchronous and will wait for the mailbox 16260 * command to finish before continuing. 16261 * 16262 * On success this function will return a zero. If unable to allocate enough 16263 * memory this function will return -ENOMEM. If the queue create mailbox command 16264 * fails this function will return -ENXIO. 16265 **/ 16266 int 16267 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16268 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16269 { 16270 struct lpfc_mbx_cq_create *cq_create; 16271 struct lpfc_dmabuf *dmabuf; 16272 LPFC_MBOXQ_t *mbox; 16273 int rc, length, status = 0; 16274 uint32_t shdr_status, shdr_add_status; 16275 union lpfc_sli4_cfg_shdr *shdr; 16276 16277 /* sanity check on queue memory */ 16278 if (!cq || !eq) 16279 return -ENODEV; 16280 16281 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16282 if (!mbox) 16283 return -ENOMEM; 16284 length = (sizeof(struct lpfc_mbx_cq_create) - 16285 sizeof(struct lpfc_sli4_cfg_mhdr)); 16286 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16287 LPFC_MBOX_OPCODE_CQ_CREATE, 16288 length, LPFC_SLI4_MBX_EMBED); 16289 cq_create = &mbox->u.mqe.un.cq_create; 16290 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16291 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16292 cq->page_count); 16293 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16294 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16295 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16296 phba->sli4_hba.pc_sli4_params.cqv); 16297 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16298 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16299 (cq->page_size / SLI4_PAGE_SIZE)); 16300 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16301 eq->queue_id); 16302 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16303 phba->sli4_hba.pc_sli4_params.cqav); 16304 } else { 16305 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16306 eq->queue_id); 16307 } 16308 switch (cq->entry_count) { 16309 case 2048: 16310 case 4096: 16311 if (phba->sli4_hba.pc_sli4_params.cqv == 16312 LPFC_Q_CREATE_VERSION_2) { 16313 cq_create->u.request.context.lpfc_cq_context_count = 16314 cq->entry_count; 16315 bf_set(lpfc_cq_context_count, 16316 &cq_create->u.request.context, 16317 LPFC_CQ_CNT_WORD7); 16318 break; 16319 } 16320 fallthrough; 16321 default: 16322 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16323 "0361 Unsupported CQ count: " 16324 "entry cnt %d sz %d pg cnt %d\n", 16325 cq->entry_count, cq->entry_size, 16326 cq->page_count); 16327 if (cq->entry_count < 256) { 16328 status = -EINVAL; 16329 goto out; 16330 } 16331 fallthrough; /* otherwise default to smallest count */ 16332 case 256: 16333 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16334 LPFC_CQ_CNT_256); 16335 break; 16336 case 512: 16337 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16338 LPFC_CQ_CNT_512); 16339 break; 16340 case 1024: 16341 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16342 LPFC_CQ_CNT_1024); 16343 break; 16344 } 16345 list_for_each_entry(dmabuf, &cq->page_list, list) { 16346 memset(dmabuf->virt, 0, cq->page_size); 16347 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16348 putPaddrLow(dmabuf->phys); 16349 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16350 putPaddrHigh(dmabuf->phys); 16351 } 16352 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16353 16354 /* The IOCTL status is embedded in the mailbox subheader. */ 16355 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16356 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16357 if (shdr_status || shdr_add_status || rc) { 16358 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16359 "2501 CQ_CREATE mailbox failed with " 16360 "status x%x add_status x%x, mbx status x%x\n", 16361 shdr_status, shdr_add_status, rc); 16362 status = -ENXIO; 16363 goto out; 16364 } 16365 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16366 if (cq->queue_id == 0xFFFF) { 16367 status = -ENXIO; 16368 goto out; 16369 } 16370 /* link the cq onto the parent eq child list */ 16371 list_add_tail(&cq->list, &eq->child_list); 16372 /* Set up completion queue's type and subtype */ 16373 cq->type = type; 16374 cq->subtype = subtype; 16375 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16376 cq->assoc_qid = eq->queue_id; 16377 cq->assoc_qp = eq; 16378 cq->host_index = 0; 16379 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16380 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16381 16382 if (cq->queue_id > phba->sli4_hba.cq_max) 16383 phba->sli4_hba.cq_max = cq->queue_id; 16384 out: 16385 mempool_free(mbox, phba->mbox_mem_pool); 16386 return status; 16387 } 16388 16389 /** 16390 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16391 * @phba: HBA structure that indicates port to create a queue on. 16392 * @cqp: The queue structure array to use to create the completion queues. 16393 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16394 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16395 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16396 * 16397 * This function creates a set of completion queue, s to support MRQ 16398 * as detailed in @cqp, on a port, 16399 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16400 * 16401 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16402 * is used to get the entry count and entry size that are necessary to 16403 * determine the number of pages to allocate and use for this queue. The @eq 16404 * is used to indicate which event queue to bind this completion queue to. This 16405 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16406 * completion queue. This function is asynchronous and will wait for the mailbox 16407 * command to finish before continuing. 16408 * 16409 * On success this function will return a zero. If unable to allocate enough 16410 * memory this function will return -ENOMEM. If the queue create mailbox command 16411 * fails this function will return -ENXIO. 16412 **/ 16413 int 16414 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16415 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16416 uint32_t subtype) 16417 { 16418 struct lpfc_queue *cq; 16419 struct lpfc_queue *eq; 16420 struct lpfc_mbx_cq_create_set *cq_set; 16421 struct lpfc_dmabuf *dmabuf; 16422 LPFC_MBOXQ_t *mbox; 16423 int rc, length, alloclen, status = 0; 16424 int cnt, idx, numcq, page_idx = 0; 16425 uint32_t shdr_status, shdr_add_status; 16426 union lpfc_sli4_cfg_shdr *shdr; 16427 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16428 16429 /* sanity check on queue memory */ 16430 numcq = phba->cfg_nvmet_mrq; 16431 if (!cqp || !hdwq || !numcq) 16432 return -ENODEV; 16433 16434 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16435 if (!mbox) 16436 return -ENOMEM; 16437 16438 length = sizeof(struct lpfc_mbx_cq_create_set); 16439 length += ((numcq * cqp[0]->page_count) * 16440 sizeof(struct dma_address)); 16441 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16442 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16443 LPFC_SLI4_MBX_NEMBED); 16444 if (alloclen < length) { 16445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16446 "3098 Allocated DMA memory size (%d) is " 16447 "less than the requested DMA memory size " 16448 "(%d)\n", alloclen, length); 16449 status = -ENOMEM; 16450 goto out; 16451 } 16452 cq_set = mbox->sge_array->addr[0]; 16453 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16454 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16455 16456 for (idx = 0; idx < numcq; idx++) { 16457 cq = cqp[idx]; 16458 eq = hdwq[idx].hba_eq; 16459 if (!cq || !eq) { 16460 status = -ENOMEM; 16461 goto out; 16462 } 16463 if (!phba->sli4_hba.pc_sli4_params.supported) 16464 hw_page_size = cq->page_size; 16465 16466 switch (idx) { 16467 case 0: 16468 bf_set(lpfc_mbx_cq_create_set_page_size, 16469 &cq_set->u.request, 16470 (hw_page_size / SLI4_PAGE_SIZE)); 16471 bf_set(lpfc_mbx_cq_create_set_num_pages, 16472 &cq_set->u.request, cq->page_count); 16473 bf_set(lpfc_mbx_cq_create_set_evt, 16474 &cq_set->u.request, 1); 16475 bf_set(lpfc_mbx_cq_create_set_valid, 16476 &cq_set->u.request, 1); 16477 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16478 &cq_set->u.request, 0); 16479 bf_set(lpfc_mbx_cq_create_set_num_cq, 16480 &cq_set->u.request, numcq); 16481 bf_set(lpfc_mbx_cq_create_set_autovalid, 16482 &cq_set->u.request, 16483 phba->sli4_hba.pc_sli4_params.cqav); 16484 switch (cq->entry_count) { 16485 case 2048: 16486 case 4096: 16487 if (phba->sli4_hba.pc_sli4_params.cqv == 16488 LPFC_Q_CREATE_VERSION_2) { 16489 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16490 &cq_set->u.request, 16491 cq->entry_count); 16492 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16493 &cq_set->u.request, 16494 LPFC_CQ_CNT_WORD7); 16495 break; 16496 } 16497 fallthrough; 16498 default: 16499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16500 "3118 Bad CQ count. (%d)\n", 16501 cq->entry_count); 16502 if (cq->entry_count < 256) { 16503 status = -EINVAL; 16504 goto out; 16505 } 16506 fallthrough; /* otherwise default to smallest */ 16507 case 256: 16508 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16509 &cq_set->u.request, LPFC_CQ_CNT_256); 16510 break; 16511 case 512: 16512 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16513 &cq_set->u.request, LPFC_CQ_CNT_512); 16514 break; 16515 case 1024: 16516 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16517 &cq_set->u.request, LPFC_CQ_CNT_1024); 16518 break; 16519 } 16520 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16521 &cq_set->u.request, eq->queue_id); 16522 break; 16523 case 1: 16524 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16525 &cq_set->u.request, eq->queue_id); 16526 break; 16527 case 2: 16528 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16529 &cq_set->u.request, eq->queue_id); 16530 break; 16531 case 3: 16532 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16533 &cq_set->u.request, eq->queue_id); 16534 break; 16535 case 4: 16536 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16537 &cq_set->u.request, eq->queue_id); 16538 break; 16539 case 5: 16540 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16541 &cq_set->u.request, eq->queue_id); 16542 break; 16543 case 6: 16544 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16545 &cq_set->u.request, eq->queue_id); 16546 break; 16547 case 7: 16548 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16549 &cq_set->u.request, eq->queue_id); 16550 break; 16551 case 8: 16552 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16553 &cq_set->u.request, eq->queue_id); 16554 break; 16555 case 9: 16556 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16557 &cq_set->u.request, eq->queue_id); 16558 break; 16559 case 10: 16560 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16561 &cq_set->u.request, eq->queue_id); 16562 break; 16563 case 11: 16564 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16565 &cq_set->u.request, eq->queue_id); 16566 break; 16567 case 12: 16568 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16569 &cq_set->u.request, eq->queue_id); 16570 break; 16571 case 13: 16572 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16573 &cq_set->u.request, eq->queue_id); 16574 break; 16575 case 14: 16576 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16577 &cq_set->u.request, eq->queue_id); 16578 break; 16579 case 15: 16580 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16581 &cq_set->u.request, eq->queue_id); 16582 break; 16583 } 16584 16585 /* link the cq onto the parent eq child list */ 16586 list_add_tail(&cq->list, &eq->child_list); 16587 /* Set up completion queue's type and subtype */ 16588 cq->type = type; 16589 cq->subtype = subtype; 16590 cq->assoc_qid = eq->queue_id; 16591 cq->assoc_qp = eq; 16592 cq->host_index = 0; 16593 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16594 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16595 cq->entry_count); 16596 cq->chann = idx; 16597 16598 rc = 0; 16599 list_for_each_entry(dmabuf, &cq->page_list, list) { 16600 memset(dmabuf->virt, 0, hw_page_size); 16601 cnt = page_idx + dmabuf->buffer_tag; 16602 cq_set->u.request.page[cnt].addr_lo = 16603 putPaddrLow(dmabuf->phys); 16604 cq_set->u.request.page[cnt].addr_hi = 16605 putPaddrHigh(dmabuf->phys); 16606 rc++; 16607 } 16608 page_idx += rc; 16609 } 16610 16611 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16612 16613 /* The IOCTL status is embedded in the mailbox subheader. */ 16614 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16615 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16616 if (shdr_status || shdr_add_status || rc) { 16617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16618 "3119 CQ_CREATE_SET mailbox failed with " 16619 "status x%x add_status x%x, mbx status x%x\n", 16620 shdr_status, shdr_add_status, rc); 16621 status = -ENXIO; 16622 goto out; 16623 } 16624 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16625 if (rc == 0xFFFF) { 16626 status = -ENXIO; 16627 goto out; 16628 } 16629 16630 for (idx = 0; idx < numcq; idx++) { 16631 cq = cqp[idx]; 16632 cq->queue_id = rc + idx; 16633 if (cq->queue_id > phba->sli4_hba.cq_max) 16634 phba->sli4_hba.cq_max = cq->queue_id; 16635 } 16636 16637 out: 16638 lpfc_sli4_mbox_cmd_free(phba, mbox); 16639 return status; 16640 } 16641 16642 /** 16643 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16644 * @phba: HBA structure that indicates port to create a queue on. 16645 * @mq: The queue structure to use to create the mailbox queue. 16646 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16647 * @cq: The completion queue to associate with this cq. 16648 * 16649 * This function provides failback (fb) functionality when the 16650 * mq_create_ext fails on older FW generations. It's purpose is identical 16651 * to mq_create_ext otherwise. 16652 * 16653 * This routine cannot fail as all attributes were previously accessed and 16654 * initialized in mq_create_ext. 16655 **/ 16656 static void 16657 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16658 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16659 { 16660 struct lpfc_mbx_mq_create *mq_create; 16661 struct lpfc_dmabuf *dmabuf; 16662 int length; 16663 16664 length = (sizeof(struct lpfc_mbx_mq_create) - 16665 sizeof(struct lpfc_sli4_cfg_mhdr)); 16666 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16667 LPFC_MBOX_OPCODE_MQ_CREATE, 16668 length, LPFC_SLI4_MBX_EMBED); 16669 mq_create = &mbox->u.mqe.un.mq_create; 16670 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16671 mq->page_count); 16672 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16673 cq->queue_id); 16674 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16675 switch (mq->entry_count) { 16676 case 16: 16677 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16678 LPFC_MQ_RING_SIZE_16); 16679 break; 16680 case 32: 16681 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16682 LPFC_MQ_RING_SIZE_32); 16683 break; 16684 case 64: 16685 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16686 LPFC_MQ_RING_SIZE_64); 16687 break; 16688 case 128: 16689 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16690 LPFC_MQ_RING_SIZE_128); 16691 break; 16692 } 16693 list_for_each_entry(dmabuf, &mq->page_list, list) { 16694 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16695 putPaddrLow(dmabuf->phys); 16696 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16697 putPaddrHigh(dmabuf->phys); 16698 } 16699 } 16700 16701 /** 16702 * lpfc_mq_create - Create a mailbox Queue on the HBA 16703 * @phba: HBA structure that indicates port to create a queue on. 16704 * @mq: The queue structure to use to create the mailbox queue. 16705 * @cq: The completion queue to associate with this cq. 16706 * @subtype: The queue's subtype. 16707 * 16708 * This function creates a mailbox queue, as detailed in @mq, on a port, 16709 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16710 * 16711 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16712 * is used to get the entry count and entry size that are necessary to 16713 * determine the number of pages to allocate and use for this queue. This 16714 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16715 * mailbox queue. This function is asynchronous and will wait for the mailbox 16716 * command to finish before continuing. 16717 * 16718 * On success this function will return a zero. If unable to allocate enough 16719 * memory this function will return -ENOMEM. If the queue create mailbox command 16720 * fails this function will return -ENXIO. 16721 **/ 16722 int32_t 16723 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16724 struct lpfc_queue *cq, uint32_t subtype) 16725 { 16726 struct lpfc_mbx_mq_create *mq_create; 16727 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16728 struct lpfc_dmabuf *dmabuf; 16729 LPFC_MBOXQ_t *mbox; 16730 int rc, length, status = 0; 16731 uint32_t shdr_status, shdr_add_status; 16732 union lpfc_sli4_cfg_shdr *shdr; 16733 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16734 16735 /* sanity check on queue memory */ 16736 if (!mq || !cq) 16737 return -ENODEV; 16738 if (!phba->sli4_hba.pc_sli4_params.supported) 16739 hw_page_size = SLI4_PAGE_SIZE; 16740 16741 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16742 if (!mbox) 16743 return -ENOMEM; 16744 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16745 sizeof(struct lpfc_sli4_cfg_mhdr)); 16746 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16747 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16748 length, LPFC_SLI4_MBX_EMBED); 16749 16750 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16751 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16752 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16753 &mq_create_ext->u.request, mq->page_count); 16754 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16755 &mq_create_ext->u.request, 1); 16756 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16757 &mq_create_ext->u.request, 1); 16758 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16759 &mq_create_ext->u.request, 1); 16760 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16761 &mq_create_ext->u.request, 1); 16762 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16763 &mq_create_ext->u.request, 1); 16764 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16765 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16766 phba->sli4_hba.pc_sli4_params.mqv); 16767 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16768 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16769 cq->queue_id); 16770 else 16771 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16772 cq->queue_id); 16773 switch (mq->entry_count) { 16774 default: 16775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16776 "0362 Unsupported MQ count. (%d)\n", 16777 mq->entry_count); 16778 if (mq->entry_count < 16) { 16779 status = -EINVAL; 16780 goto out; 16781 } 16782 fallthrough; /* otherwise default to smallest count */ 16783 case 16: 16784 bf_set(lpfc_mq_context_ring_size, 16785 &mq_create_ext->u.request.context, 16786 LPFC_MQ_RING_SIZE_16); 16787 break; 16788 case 32: 16789 bf_set(lpfc_mq_context_ring_size, 16790 &mq_create_ext->u.request.context, 16791 LPFC_MQ_RING_SIZE_32); 16792 break; 16793 case 64: 16794 bf_set(lpfc_mq_context_ring_size, 16795 &mq_create_ext->u.request.context, 16796 LPFC_MQ_RING_SIZE_64); 16797 break; 16798 case 128: 16799 bf_set(lpfc_mq_context_ring_size, 16800 &mq_create_ext->u.request.context, 16801 LPFC_MQ_RING_SIZE_128); 16802 break; 16803 } 16804 list_for_each_entry(dmabuf, &mq->page_list, list) { 16805 memset(dmabuf->virt, 0, hw_page_size); 16806 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16807 putPaddrLow(dmabuf->phys); 16808 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16809 putPaddrHigh(dmabuf->phys); 16810 } 16811 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16812 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16813 &mq_create_ext->u.response); 16814 if (rc != MBX_SUCCESS) { 16815 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16816 "2795 MQ_CREATE_EXT failed with " 16817 "status x%x. Failback to MQ_CREATE.\n", 16818 rc); 16819 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16820 mq_create = &mbox->u.mqe.un.mq_create; 16821 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16822 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16823 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16824 &mq_create->u.response); 16825 } 16826 16827 /* The IOCTL status is embedded in the mailbox subheader. */ 16828 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16829 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16830 if (shdr_status || shdr_add_status || rc) { 16831 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16832 "2502 MQ_CREATE mailbox failed with " 16833 "status x%x add_status x%x, mbx status x%x\n", 16834 shdr_status, shdr_add_status, rc); 16835 status = -ENXIO; 16836 goto out; 16837 } 16838 if (mq->queue_id == 0xFFFF) { 16839 status = -ENXIO; 16840 goto out; 16841 } 16842 mq->type = LPFC_MQ; 16843 mq->assoc_qid = cq->queue_id; 16844 mq->subtype = subtype; 16845 mq->host_index = 0; 16846 mq->hba_index = 0; 16847 16848 /* link the mq onto the parent cq child list */ 16849 list_add_tail(&mq->list, &cq->child_list); 16850 out: 16851 mempool_free(mbox, phba->mbox_mem_pool); 16852 return status; 16853 } 16854 16855 /** 16856 * lpfc_wq_create - Create a Work Queue on the HBA 16857 * @phba: HBA structure that indicates port to create a queue on. 16858 * @wq: The queue structure to use to create the work queue. 16859 * @cq: The completion queue to bind this work queue to. 16860 * @subtype: The subtype of the work queue indicating its functionality. 16861 * 16862 * This function creates a work queue, as detailed in @wq, on a port, described 16863 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16864 * 16865 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16866 * is used to get the entry count and entry size that are necessary to 16867 * determine the number of pages to allocate and use for this queue. The @cq 16868 * is used to indicate which completion queue to bind this work queue to. This 16869 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16870 * work queue. This function is asynchronous and will wait for the mailbox 16871 * command to finish before continuing. 16872 * 16873 * On success this function will return a zero. If unable to allocate enough 16874 * memory this function will return -ENOMEM. If the queue create mailbox command 16875 * fails this function will return -ENXIO. 16876 **/ 16877 int 16878 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16879 struct lpfc_queue *cq, uint32_t subtype) 16880 { 16881 struct lpfc_mbx_wq_create *wq_create; 16882 struct lpfc_dmabuf *dmabuf; 16883 LPFC_MBOXQ_t *mbox; 16884 int rc, length, status = 0; 16885 uint32_t shdr_status, shdr_add_status; 16886 union lpfc_sli4_cfg_shdr *shdr; 16887 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16888 struct dma_address *page; 16889 void __iomem *bar_memmap_p; 16890 uint32_t db_offset; 16891 uint16_t pci_barset; 16892 uint8_t dpp_barset; 16893 uint32_t dpp_offset; 16894 uint8_t wq_create_version; 16895 #ifdef CONFIG_X86 16896 unsigned long pg_addr; 16897 #endif 16898 16899 /* sanity check on queue memory */ 16900 if (!wq || !cq) 16901 return -ENODEV; 16902 if (!phba->sli4_hba.pc_sli4_params.supported) 16903 hw_page_size = wq->page_size; 16904 16905 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16906 if (!mbox) 16907 return -ENOMEM; 16908 length = (sizeof(struct lpfc_mbx_wq_create) - 16909 sizeof(struct lpfc_sli4_cfg_mhdr)); 16910 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16911 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16912 length, LPFC_SLI4_MBX_EMBED); 16913 wq_create = &mbox->u.mqe.un.wq_create; 16914 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16915 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16916 wq->page_count); 16917 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16918 cq->queue_id); 16919 16920 /* wqv is the earliest version supported, NOT the latest */ 16921 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16922 phba->sli4_hba.pc_sli4_params.wqv); 16923 16924 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16925 (wq->page_size > SLI4_PAGE_SIZE)) 16926 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16927 else 16928 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16929 16930 switch (wq_create_version) { 16931 case LPFC_Q_CREATE_VERSION_1: 16932 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16933 wq->entry_count); 16934 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16935 LPFC_Q_CREATE_VERSION_1); 16936 16937 switch (wq->entry_size) { 16938 default: 16939 case 64: 16940 bf_set(lpfc_mbx_wq_create_wqe_size, 16941 &wq_create->u.request_1, 16942 LPFC_WQ_WQE_SIZE_64); 16943 break; 16944 case 128: 16945 bf_set(lpfc_mbx_wq_create_wqe_size, 16946 &wq_create->u.request_1, 16947 LPFC_WQ_WQE_SIZE_128); 16948 break; 16949 } 16950 /* Request DPP by default */ 16951 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16952 bf_set(lpfc_mbx_wq_create_page_size, 16953 &wq_create->u.request_1, 16954 (wq->page_size / SLI4_PAGE_SIZE)); 16955 page = wq_create->u.request_1.page; 16956 break; 16957 default: 16958 page = wq_create->u.request.page; 16959 break; 16960 } 16961 16962 list_for_each_entry(dmabuf, &wq->page_list, list) { 16963 memset(dmabuf->virt, 0, hw_page_size); 16964 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16965 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16966 } 16967 16968 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16969 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16970 16971 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16972 /* The IOCTL status is embedded in the mailbox subheader. */ 16973 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16974 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16975 if (shdr_status || shdr_add_status || rc) { 16976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16977 "2503 WQ_CREATE mailbox failed with " 16978 "status x%x add_status x%x, mbx status x%x\n", 16979 shdr_status, shdr_add_status, rc); 16980 status = -ENXIO; 16981 goto out; 16982 } 16983 16984 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16985 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16986 &wq_create->u.response); 16987 else 16988 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16989 &wq_create->u.response_1); 16990 16991 if (wq->queue_id == 0xFFFF) { 16992 status = -ENXIO; 16993 goto out; 16994 } 16995 16996 wq->db_format = LPFC_DB_LIST_FORMAT; 16997 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16998 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16999 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 17000 &wq_create->u.response); 17001 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 17002 (wq->db_format != LPFC_DB_RING_FORMAT)) { 17003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17004 "3265 WQ[%d] doorbell format " 17005 "not supported: x%x\n", 17006 wq->queue_id, wq->db_format); 17007 status = -EINVAL; 17008 goto out; 17009 } 17010 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17011 &wq_create->u.response); 17012 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17013 pci_barset); 17014 if (!bar_memmap_p) { 17015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17016 "3263 WQ[%d] failed to memmap " 17017 "pci barset:x%x\n", 17018 wq->queue_id, pci_barset); 17019 status = -ENOMEM; 17020 goto out; 17021 } 17022 db_offset = wq_create->u.response.doorbell_offset; 17023 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17024 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17025 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17026 "3252 WQ[%d] doorbell offset " 17027 "not supported: x%x\n", 17028 wq->queue_id, db_offset); 17029 status = -EINVAL; 17030 goto out; 17031 } 17032 wq->db_regaddr = bar_memmap_p + db_offset; 17033 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17034 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17035 "format:x%x\n", wq->queue_id, 17036 pci_barset, db_offset, wq->db_format); 17037 } else 17038 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17039 } else { 17040 /* Check if DPP was honored by the firmware */ 17041 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17042 &wq_create->u.response_1); 17043 if (wq->dpp_enable) { 17044 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17045 &wq_create->u.response_1); 17046 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17047 pci_barset); 17048 if (!bar_memmap_p) { 17049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17050 "3267 WQ[%d] failed to memmap " 17051 "pci barset:x%x\n", 17052 wq->queue_id, pci_barset); 17053 status = -ENOMEM; 17054 goto out; 17055 } 17056 db_offset = wq_create->u.response_1.doorbell_offset; 17057 wq->db_regaddr = bar_memmap_p + db_offset; 17058 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17059 &wq_create->u.response_1); 17060 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17061 &wq_create->u.response_1); 17062 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17063 dpp_barset); 17064 if (!bar_memmap_p) { 17065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17066 "3268 WQ[%d] failed to memmap " 17067 "pci barset:x%x\n", 17068 wq->queue_id, dpp_barset); 17069 status = -ENOMEM; 17070 goto out; 17071 } 17072 dpp_offset = wq_create->u.response_1.dpp_offset; 17073 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17074 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17075 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17076 "dpp_id:x%x dpp_barset:x%x " 17077 "dpp_offset:x%x\n", 17078 wq->queue_id, pci_barset, db_offset, 17079 wq->dpp_id, dpp_barset, dpp_offset); 17080 17081 #ifdef CONFIG_X86 17082 /* Enable combined writes for DPP aperture */ 17083 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17084 rc = set_memory_wc(pg_addr, 1); 17085 if (rc) { 17086 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17087 "3272 Cannot setup Combined " 17088 "Write on WQ[%d] - disable DPP\n", 17089 wq->queue_id); 17090 phba->cfg_enable_dpp = 0; 17091 } 17092 #else 17093 phba->cfg_enable_dpp = 0; 17094 #endif 17095 } else 17096 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17097 } 17098 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17099 if (wq->pring == NULL) { 17100 status = -ENOMEM; 17101 goto out; 17102 } 17103 wq->type = LPFC_WQ; 17104 wq->assoc_qid = cq->queue_id; 17105 wq->subtype = subtype; 17106 wq->host_index = 0; 17107 wq->hba_index = 0; 17108 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17109 17110 /* link the wq onto the parent cq child list */ 17111 list_add_tail(&wq->list, &cq->child_list); 17112 out: 17113 mempool_free(mbox, phba->mbox_mem_pool); 17114 return status; 17115 } 17116 17117 /** 17118 * lpfc_rq_create - Create a Receive Queue on the HBA 17119 * @phba: HBA structure that indicates port to create a queue on. 17120 * @hrq: The queue structure to use to create the header receive queue. 17121 * @drq: The queue structure to use to create the data receive queue. 17122 * @cq: The completion queue to bind this work queue to. 17123 * @subtype: The subtype of the work queue indicating its functionality. 17124 * 17125 * This function creates a receive buffer queue pair , as detailed in @hrq and 17126 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17127 * to the HBA. 17128 * 17129 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17130 * struct is used to get the entry count that is necessary to determine the 17131 * number of pages to use for this queue. The @cq is used to indicate which 17132 * completion queue to bind received buffers that are posted to these queues to. 17133 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17134 * receive queue pair. This function is asynchronous and will wait for the 17135 * mailbox command to finish before continuing. 17136 * 17137 * On success this function will return a zero. If unable to allocate enough 17138 * memory this function will return -ENOMEM. If the queue create mailbox command 17139 * fails this function will return -ENXIO. 17140 **/ 17141 int 17142 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17143 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17144 { 17145 struct lpfc_mbx_rq_create *rq_create; 17146 struct lpfc_dmabuf *dmabuf; 17147 LPFC_MBOXQ_t *mbox; 17148 int rc, length, status = 0; 17149 uint32_t shdr_status, shdr_add_status; 17150 union lpfc_sli4_cfg_shdr *shdr; 17151 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17152 void __iomem *bar_memmap_p; 17153 uint32_t db_offset; 17154 uint16_t pci_barset; 17155 17156 /* sanity check on queue memory */ 17157 if (!hrq || !drq || !cq) 17158 return -ENODEV; 17159 if (!phba->sli4_hba.pc_sli4_params.supported) 17160 hw_page_size = SLI4_PAGE_SIZE; 17161 17162 if (hrq->entry_count != drq->entry_count) 17163 return -EINVAL; 17164 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17165 if (!mbox) 17166 return -ENOMEM; 17167 length = (sizeof(struct lpfc_mbx_rq_create) - 17168 sizeof(struct lpfc_sli4_cfg_mhdr)); 17169 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17170 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17171 length, LPFC_SLI4_MBX_EMBED); 17172 rq_create = &mbox->u.mqe.un.rq_create; 17173 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17174 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17175 phba->sli4_hba.pc_sli4_params.rqv); 17176 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17177 bf_set(lpfc_rq_context_rqe_count_1, 17178 &rq_create->u.request.context, 17179 hrq->entry_count); 17180 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17181 bf_set(lpfc_rq_context_rqe_size, 17182 &rq_create->u.request.context, 17183 LPFC_RQE_SIZE_8); 17184 bf_set(lpfc_rq_context_page_size, 17185 &rq_create->u.request.context, 17186 LPFC_RQ_PAGE_SIZE_4096); 17187 } else { 17188 switch (hrq->entry_count) { 17189 default: 17190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17191 "2535 Unsupported RQ count. (%d)\n", 17192 hrq->entry_count); 17193 if (hrq->entry_count < 512) { 17194 status = -EINVAL; 17195 goto out; 17196 } 17197 fallthrough; /* otherwise default to smallest count */ 17198 case 512: 17199 bf_set(lpfc_rq_context_rqe_count, 17200 &rq_create->u.request.context, 17201 LPFC_RQ_RING_SIZE_512); 17202 break; 17203 case 1024: 17204 bf_set(lpfc_rq_context_rqe_count, 17205 &rq_create->u.request.context, 17206 LPFC_RQ_RING_SIZE_1024); 17207 break; 17208 case 2048: 17209 bf_set(lpfc_rq_context_rqe_count, 17210 &rq_create->u.request.context, 17211 LPFC_RQ_RING_SIZE_2048); 17212 break; 17213 case 4096: 17214 bf_set(lpfc_rq_context_rqe_count, 17215 &rq_create->u.request.context, 17216 LPFC_RQ_RING_SIZE_4096); 17217 break; 17218 } 17219 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17220 LPFC_HDR_BUF_SIZE); 17221 } 17222 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17223 cq->queue_id); 17224 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17225 hrq->page_count); 17226 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17227 memset(dmabuf->virt, 0, hw_page_size); 17228 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17229 putPaddrLow(dmabuf->phys); 17230 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17231 putPaddrHigh(dmabuf->phys); 17232 } 17233 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17234 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17235 17236 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17237 /* The IOCTL status is embedded in the mailbox subheader. */ 17238 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17239 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17240 if (shdr_status || shdr_add_status || rc) { 17241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17242 "2504 RQ_CREATE mailbox failed with " 17243 "status x%x add_status x%x, mbx status x%x\n", 17244 shdr_status, shdr_add_status, rc); 17245 status = -ENXIO; 17246 goto out; 17247 } 17248 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17249 if (hrq->queue_id == 0xFFFF) { 17250 status = -ENXIO; 17251 goto out; 17252 } 17253 17254 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17255 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17256 &rq_create->u.response); 17257 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17258 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17260 "3262 RQ [%d] doorbell format not " 17261 "supported: x%x\n", hrq->queue_id, 17262 hrq->db_format); 17263 status = -EINVAL; 17264 goto out; 17265 } 17266 17267 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17268 &rq_create->u.response); 17269 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17270 if (!bar_memmap_p) { 17271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17272 "3269 RQ[%d] failed to memmap pci " 17273 "barset:x%x\n", hrq->queue_id, 17274 pci_barset); 17275 status = -ENOMEM; 17276 goto out; 17277 } 17278 17279 db_offset = rq_create->u.response.doorbell_offset; 17280 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17281 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17283 "3270 RQ[%d] doorbell offset not " 17284 "supported: x%x\n", hrq->queue_id, 17285 db_offset); 17286 status = -EINVAL; 17287 goto out; 17288 } 17289 hrq->db_regaddr = bar_memmap_p + db_offset; 17290 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17291 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17292 "format:x%x\n", hrq->queue_id, pci_barset, 17293 db_offset, hrq->db_format); 17294 } else { 17295 hrq->db_format = LPFC_DB_RING_FORMAT; 17296 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17297 } 17298 hrq->type = LPFC_HRQ; 17299 hrq->assoc_qid = cq->queue_id; 17300 hrq->subtype = subtype; 17301 hrq->host_index = 0; 17302 hrq->hba_index = 0; 17303 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17304 17305 /* now create the data queue */ 17306 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17307 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17308 length, LPFC_SLI4_MBX_EMBED); 17309 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17310 phba->sli4_hba.pc_sli4_params.rqv); 17311 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17312 bf_set(lpfc_rq_context_rqe_count_1, 17313 &rq_create->u.request.context, hrq->entry_count); 17314 if (subtype == LPFC_NVMET) 17315 rq_create->u.request.context.buffer_size = 17316 LPFC_NVMET_DATA_BUF_SIZE; 17317 else 17318 rq_create->u.request.context.buffer_size = 17319 LPFC_DATA_BUF_SIZE; 17320 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17321 LPFC_RQE_SIZE_8); 17322 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17323 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17324 } else { 17325 switch (drq->entry_count) { 17326 default: 17327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17328 "2536 Unsupported RQ count. (%d)\n", 17329 drq->entry_count); 17330 if (drq->entry_count < 512) { 17331 status = -EINVAL; 17332 goto out; 17333 } 17334 fallthrough; /* otherwise default to smallest count */ 17335 case 512: 17336 bf_set(lpfc_rq_context_rqe_count, 17337 &rq_create->u.request.context, 17338 LPFC_RQ_RING_SIZE_512); 17339 break; 17340 case 1024: 17341 bf_set(lpfc_rq_context_rqe_count, 17342 &rq_create->u.request.context, 17343 LPFC_RQ_RING_SIZE_1024); 17344 break; 17345 case 2048: 17346 bf_set(lpfc_rq_context_rqe_count, 17347 &rq_create->u.request.context, 17348 LPFC_RQ_RING_SIZE_2048); 17349 break; 17350 case 4096: 17351 bf_set(lpfc_rq_context_rqe_count, 17352 &rq_create->u.request.context, 17353 LPFC_RQ_RING_SIZE_4096); 17354 break; 17355 } 17356 if (subtype == LPFC_NVMET) 17357 bf_set(lpfc_rq_context_buf_size, 17358 &rq_create->u.request.context, 17359 LPFC_NVMET_DATA_BUF_SIZE); 17360 else 17361 bf_set(lpfc_rq_context_buf_size, 17362 &rq_create->u.request.context, 17363 LPFC_DATA_BUF_SIZE); 17364 } 17365 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17366 cq->queue_id); 17367 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17368 drq->page_count); 17369 list_for_each_entry(dmabuf, &drq->page_list, list) { 17370 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17371 putPaddrLow(dmabuf->phys); 17372 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17373 putPaddrHigh(dmabuf->phys); 17374 } 17375 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17376 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17377 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17378 /* The IOCTL status is embedded in the mailbox subheader. */ 17379 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17380 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17381 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17382 if (shdr_status || shdr_add_status || rc) { 17383 status = -ENXIO; 17384 goto out; 17385 } 17386 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17387 if (drq->queue_id == 0xFFFF) { 17388 status = -ENXIO; 17389 goto out; 17390 } 17391 drq->type = LPFC_DRQ; 17392 drq->assoc_qid = cq->queue_id; 17393 drq->subtype = subtype; 17394 drq->host_index = 0; 17395 drq->hba_index = 0; 17396 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17397 17398 /* link the header and data RQs onto the parent cq child list */ 17399 list_add_tail(&hrq->list, &cq->child_list); 17400 list_add_tail(&drq->list, &cq->child_list); 17401 17402 out: 17403 mempool_free(mbox, phba->mbox_mem_pool); 17404 return status; 17405 } 17406 17407 /** 17408 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17409 * @phba: HBA structure that indicates port to create a queue on. 17410 * @hrqp: The queue structure array to use to create the header receive queues. 17411 * @drqp: The queue structure array to use to create the data receive queues. 17412 * @cqp: The completion queue array to bind these receive queues to. 17413 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17414 * 17415 * This function creates a receive buffer queue pair , as detailed in @hrq and 17416 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17417 * to the HBA. 17418 * 17419 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17420 * struct is used to get the entry count that is necessary to determine the 17421 * number of pages to use for this queue. The @cq is used to indicate which 17422 * completion queue to bind received buffers that are posted to these queues to. 17423 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17424 * receive queue pair. This function is asynchronous and will wait for the 17425 * mailbox command to finish before continuing. 17426 * 17427 * On success this function will return a zero. If unable to allocate enough 17428 * memory this function will return -ENOMEM. If the queue create mailbox command 17429 * fails this function will return -ENXIO. 17430 **/ 17431 int 17432 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17433 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17434 uint32_t subtype) 17435 { 17436 struct lpfc_queue *hrq, *drq, *cq; 17437 struct lpfc_mbx_rq_create_v2 *rq_create; 17438 struct lpfc_dmabuf *dmabuf; 17439 LPFC_MBOXQ_t *mbox; 17440 int rc, length, alloclen, status = 0; 17441 int cnt, idx, numrq, page_idx = 0; 17442 uint32_t shdr_status, shdr_add_status; 17443 union lpfc_sli4_cfg_shdr *shdr; 17444 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17445 17446 numrq = phba->cfg_nvmet_mrq; 17447 /* sanity check on array memory */ 17448 if (!hrqp || !drqp || !cqp || !numrq) 17449 return -ENODEV; 17450 if (!phba->sli4_hba.pc_sli4_params.supported) 17451 hw_page_size = SLI4_PAGE_SIZE; 17452 17453 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17454 if (!mbox) 17455 return -ENOMEM; 17456 17457 length = sizeof(struct lpfc_mbx_rq_create_v2); 17458 length += ((2 * numrq * hrqp[0]->page_count) * 17459 sizeof(struct dma_address)); 17460 17461 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17462 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17463 LPFC_SLI4_MBX_NEMBED); 17464 if (alloclen < length) { 17465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17466 "3099 Allocated DMA memory size (%d) is " 17467 "less than the requested DMA memory size " 17468 "(%d)\n", alloclen, length); 17469 status = -ENOMEM; 17470 goto out; 17471 } 17472 17473 17474 17475 rq_create = mbox->sge_array->addr[0]; 17476 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17477 17478 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17479 cnt = 0; 17480 17481 for (idx = 0; idx < numrq; idx++) { 17482 hrq = hrqp[idx]; 17483 drq = drqp[idx]; 17484 cq = cqp[idx]; 17485 17486 /* sanity check on queue memory */ 17487 if (!hrq || !drq || !cq) { 17488 status = -ENODEV; 17489 goto out; 17490 } 17491 17492 if (hrq->entry_count != drq->entry_count) { 17493 status = -EINVAL; 17494 goto out; 17495 } 17496 17497 if (idx == 0) { 17498 bf_set(lpfc_mbx_rq_create_num_pages, 17499 &rq_create->u.request, 17500 hrq->page_count); 17501 bf_set(lpfc_mbx_rq_create_rq_cnt, 17502 &rq_create->u.request, (numrq * 2)); 17503 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17504 1); 17505 bf_set(lpfc_rq_context_base_cq, 17506 &rq_create->u.request.context, 17507 cq->queue_id); 17508 bf_set(lpfc_rq_context_data_size, 17509 &rq_create->u.request.context, 17510 LPFC_NVMET_DATA_BUF_SIZE); 17511 bf_set(lpfc_rq_context_hdr_size, 17512 &rq_create->u.request.context, 17513 LPFC_HDR_BUF_SIZE); 17514 bf_set(lpfc_rq_context_rqe_count_1, 17515 &rq_create->u.request.context, 17516 hrq->entry_count); 17517 bf_set(lpfc_rq_context_rqe_size, 17518 &rq_create->u.request.context, 17519 LPFC_RQE_SIZE_8); 17520 bf_set(lpfc_rq_context_page_size, 17521 &rq_create->u.request.context, 17522 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17523 } 17524 rc = 0; 17525 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17526 memset(dmabuf->virt, 0, hw_page_size); 17527 cnt = page_idx + dmabuf->buffer_tag; 17528 rq_create->u.request.page[cnt].addr_lo = 17529 putPaddrLow(dmabuf->phys); 17530 rq_create->u.request.page[cnt].addr_hi = 17531 putPaddrHigh(dmabuf->phys); 17532 rc++; 17533 } 17534 page_idx += rc; 17535 17536 rc = 0; 17537 list_for_each_entry(dmabuf, &drq->page_list, list) { 17538 memset(dmabuf->virt, 0, hw_page_size); 17539 cnt = page_idx + dmabuf->buffer_tag; 17540 rq_create->u.request.page[cnt].addr_lo = 17541 putPaddrLow(dmabuf->phys); 17542 rq_create->u.request.page[cnt].addr_hi = 17543 putPaddrHigh(dmabuf->phys); 17544 rc++; 17545 } 17546 page_idx += rc; 17547 17548 hrq->db_format = LPFC_DB_RING_FORMAT; 17549 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17550 hrq->type = LPFC_HRQ; 17551 hrq->assoc_qid = cq->queue_id; 17552 hrq->subtype = subtype; 17553 hrq->host_index = 0; 17554 hrq->hba_index = 0; 17555 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17556 17557 drq->db_format = LPFC_DB_RING_FORMAT; 17558 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17559 drq->type = LPFC_DRQ; 17560 drq->assoc_qid = cq->queue_id; 17561 drq->subtype = subtype; 17562 drq->host_index = 0; 17563 drq->hba_index = 0; 17564 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17565 17566 list_add_tail(&hrq->list, &cq->child_list); 17567 list_add_tail(&drq->list, &cq->child_list); 17568 } 17569 17570 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17571 /* The IOCTL status is embedded in the mailbox subheader. */ 17572 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17573 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17574 if (shdr_status || shdr_add_status || rc) { 17575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17576 "3120 RQ_CREATE mailbox failed with " 17577 "status x%x add_status x%x, mbx status x%x\n", 17578 shdr_status, shdr_add_status, rc); 17579 status = -ENXIO; 17580 goto out; 17581 } 17582 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17583 if (rc == 0xFFFF) { 17584 status = -ENXIO; 17585 goto out; 17586 } 17587 17588 /* Initialize all RQs with associated queue id */ 17589 for (idx = 0; idx < numrq; idx++) { 17590 hrq = hrqp[idx]; 17591 hrq->queue_id = rc + (2 * idx); 17592 drq = drqp[idx]; 17593 drq->queue_id = rc + (2 * idx) + 1; 17594 } 17595 17596 out: 17597 lpfc_sli4_mbox_cmd_free(phba, mbox); 17598 return status; 17599 } 17600 17601 /** 17602 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17603 * @phba: HBA structure that indicates port to destroy a queue on. 17604 * @eq: The queue structure associated with the queue to destroy. 17605 * 17606 * This function destroys a queue, as detailed in @eq by sending an mailbox 17607 * command, specific to the type of queue, to the HBA. 17608 * 17609 * The @eq struct is used to get the queue ID of the queue to destroy. 17610 * 17611 * On success this function will return a zero. If the queue destroy mailbox 17612 * command fails this function will return -ENXIO. 17613 **/ 17614 int 17615 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17616 { 17617 LPFC_MBOXQ_t *mbox; 17618 int rc, length, status = 0; 17619 uint32_t shdr_status, shdr_add_status; 17620 union lpfc_sli4_cfg_shdr *shdr; 17621 17622 /* sanity check on queue memory */ 17623 if (!eq) 17624 return -ENODEV; 17625 17626 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17627 if (!mbox) 17628 return -ENOMEM; 17629 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17630 sizeof(struct lpfc_sli4_cfg_mhdr)); 17631 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17632 LPFC_MBOX_OPCODE_EQ_DESTROY, 17633 length, LPFC_SLI4_MBX_EMBED); 17634 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17635 eq->queue_id); 17636 mbox->vport = eq->phba->pport; 17637 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17638 17639 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17640 /* The IOCTL status is embedded in the mailbox subheader. */ 17641 shdr = (union lpfc_sli4_cfg_shdr *) 17642 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17643 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17644 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17645 if (shdr_status || shdr_add_status || rc) { 17646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17647 "2505 EQ_DESTROY mailbox failed with " 17648 "status x%x add_status x%x, mbx status x%x\n", 17649 shdr_status, shdr_add_status, rc); 17650 status = -ENXIO; 17651 } 17652 17653 /* Remove eq from any list */ 17654 list_del_init(&eq->list); 17655 mempool_free(mbox, eq->phba->mbox_mem_pool); 17656 return status; 17657 } 17658 17659 /** 17660 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17661 * @phba: HBA structure that indicates port to destroy a queue on. 17662 * @cq: The queue structure associated with the queue to destroy. 17663 * 17664 * This function destroys a queue, as detailed in @cq by sending an mailbox 17665 * command, specific to the type of queue, to the HBA. 17666 * 17667 * The @cq struct is used to get the queue ID of the queue to destroy. 17668 * 17669 * On success this function will return a zero. If the queue destroy mailbox 17670 * command fails this function will return -ENXIO. 17671 **/ 17672 int 17673 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17674 { 17675 LPFC_MBOXQ_t *mbox; 17676 int rc, length, status = 0; 17677 uint32_t shdr_status, shdr_add_status; 17678 union lpfc_sli4_cfg_shdr *shdr; 17679 17680 /* sanity check on queue memory */ 17681 if (!cq) 17682 return -ENODEV; 17683 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17684 if (!mbox) 17685 return -ENOMEM; 17686 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17687 sizeof(struct lpfc_sli4_cfg_mhdr)); 17688 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17689 LPFC_MBOX_OPCODE_CQ_DESTROY, 17690 length, LPFC_SLI4_MBX_EMBED); 17691 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17692 cq->queue_id); 17693 mbox->vport = cq->phba->pport; 17694 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17695 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17696 /* The IOCTL status is embedded in the mailbox subheader. */ 17697 shdr = (union lpfc_sli4_cfg_shdr *) 17698 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17699 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17700 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17701 if (shdr_status || shdr_add_status || rc) { 17702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17703 "2506 CQ_DESTROY mailbox failed with " 17704 "status x%x add_status x%x, mbx status x%x\n", 17705 shdr_status, shdr_add_status, rc); 17706 status = -ENXIO; 17707 } 17708 /* Remove cq from any list */ 17709 list_del_init(&cq->list); 17710 mempool_free(mbox, cq->phba->mbox_mem_pool); 17711 return status; 17712 } 17713 17714 /** 17715 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17716 * @phba: HBA structure that indicates port to destroy a queue on. 17717 * @mq: The queue structure associated with the queue to destroy. 17718 * 17719 * This function destroys a queue, as detailed in @mq by sending an mailbox 17720 * command, specific to the type of queue, to the HBA. 17721 * 17722 * The @mq struct is used to get the queue ID of the queue to destroy. 17723 * 17724 * On success this function will return a zero. If the queue destroy mailbox 17725 * command fails this function will return -ENXIO. 17726 **/ 17727 int 17728 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17729 { 17730 LPFC_MBOXQ_t *mbox; 17731 int rc, length, status = 0; 17732 uint32_t shdr_status, shdr_add_status; 17733 union lpfc_sli4_cfg_shdr *shdr; 17734 17735 /* sanity check on queue memory */ 17736 if (!mq) 17737 return -ENODEV; 17738 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17739 if (!mbox) 17740 return -ENOMEM; 17741 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17742 sizeof(struct lpfc_sli4_cfg_mhdr)); 17743 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17744 LPFC_MBOX_OPCODE_MQ_DESTROY, 17745 length, LPFC_SLI4_MBX_EMBED); 17746 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17747 mq->queue_id); 17748 mbox->vport = mq->phba->pport; 17749 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17750 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17751 /* The IOCTL status is embedded in the mailbox subheader. */ 17752 shdr = (union lpfc_sli4_cfg_shdr *) 17753 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17754 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17755 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17756 if (shdr_status || shdr_add_status || rc) { 17757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17758 "2507 MQ_DESTROY mailbox failed with " 17759 "status x%x add_status x%x, mbx status x%x\n", 17760 shdr_status, shdr_add_status, rc); 17761 status = -ENXIO; 17762 } 17763 /* Remove mq from any list */ 17764 list_del_init(&mq->list); 17765 mempool_free(mbox, mq->phba->mbox_mem_pool); 17766 return status; 17767 } 17768 17769 /** 17770 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17771 * @phba: HBA structure that indicates port to destroy a queue on. 17772 * @wq: The queue structure associated with the queue to destroy. 17773 * 17774 * This function destroys a queue, as detailed in @wq by sending an mailbox 17775 * command, specific to the type of queue, to the HBA. 17776 * 17777 * The @wq struct is used to get the queue ID of the queue to destroy. 17778 * 17779 * On success this function will return a zero. If the queue destroy mailbox 17780 * command fails this function will return -ENXIO. 17781 **/ 17782 int 17783 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17784 { 17785 LPFC_MBOXQ_t *mbox; 17786 int rc, length, status = 0; 17787 uint32_t shdr_status, shdr_add_status; 17788 union lpfc_sli4_cfg_shdr *shdr; 17789 17790 /* sanity check on queue memory */ 17791 if (!wq) 17792 return -ENODEV; 17793 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17794 if (!mbox) 17795 return -ENOMEM; 17796 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17797 sizeof(struct lpfc_sli4_cfg_mhdr)); 17798 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17799 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17800 length, LPFC_SLI4_MBX_EMBED); 17801 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17802 wq->queue_id); 17803 mbox->vport = wq->phba->pport; 17804 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17805 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17806 shdr = (union lpfc_sli4_cfg_shdr *) 17807 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17808 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17809 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17810 if (shdr_status || shdr_add_status || rc) { 17811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17812 "2508 WQ_DESTROY mailbox failed with " 17813 "status x%x add_status x%x, mbx status x%x\n", 17814 shdr_status, shdr_add_status, rc); 17815 status = -ENXIO; 17816 } 17817 /* Remove wq from any list */ 17818 list_del_init(&wq->list); 17819 kfree(wq->pring); 17820 wq->pring = NULL; 17821 mempool_free(mbox, wq->phba->mbox_mem_pool); 17822 return status; 17823 } 17824 17825 /** 17826 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17827 * @phba: HBA structure that indicates port to destroy a queue on. 17828 * @hrq: The queue structure associated with the queue to destroy. 17829 * @drq: The queue structure associated with the queue to destroy. 17830 * 17831 * This function destroys a queue, as detailed in @rq by sending an mailbox 17832 * command, specific to the type of queue, to the HBA. 17833 * 17834 * The @rq struct is used to get the queue ID of the queue to destroy. 17835 * 17836 * On success this function will return a zero. If the queue destroy mailbox 17837 * command fails this function will return -ENXIO. 17838 **/ 17839 int 17840 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17841 struct lpfc_queue *drq) 17842 { 17843 LPFC_MBOXQ_t *mbox; 17844 int rc, length, status = 0; 17845 uint32_t shdr_status, shdr_add_status; 17846 union lpfc_sli4_cfg_shdr *shdr; 17847 17848 /* sanity check on queue memory */ 17849 if (!hrq || !drq) 17850 return -ENODEV; 17851 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17852 if (!mbox) 17853 return -ENOMEM; 17854 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17855 sizeof(struct lpfc_sli4_cfg_mhdr)); 17856 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17857 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17858 length, LPFC_SLI4_MBX_EMBED); 17859 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17860 hrq->queue_id); 17861 mbox->vport = hrq->phba->pport; 17862 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17863 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17864 /* The IOCTL status is embedded in the mailbox subheader. */ 17865 shdr = (union lpfc_sli4_cfg_shdr *) 17866 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17867 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17868 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17869 if (shdr_status || shdr_add_status || rc) { 17870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17871 "2509 RQ_DESTROY mailbox failed with " 17872 "status x%x add_status x%x, mbx status x%x\n", 17873 shdr_status, shdr_add_status, rc); 17874 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17875 return -ENXIO; 17876 } 17877 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17878 drq->queue_id); 17879 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17880 shdr = (union lpfc_sli4_cfg_shdr *) 17881 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17882 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17883 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17884 if (shdr_status || shdr_add_status || rc) { 17885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17886 "2510 RQ_DESTROY mailbox failed with " 17887 "status x%x add_status x%x, mbx status x%x\n", 17888 shdr_status, shdr_add_status, rc); 17889 status = -ENXIO; 17890 } 17891 list_del_init(&hrq->list); 17892 list_del_init(&drq->list); 17893 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17894 return status; 17895 } 17896 17897 /** 17898 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17899 * @phba: The virtual port for which this call being executed. 17900 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17901 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17902 * @xritag: the xritag that ties this io to the SGL pages. 17903 * 17904 * This routine will post the sgl pages for the IO that has the xritag 17905 * that is in the iocbq structure. The xritag is assigned during iocbq 17906 * creation and persists for as long as the driver is loaded. 17907 * if the caller has fewer than 256 scatter gather segments to map then 17908 * pdma_phys_addr1 should be 0. 17909 * If the caller needs to map more than 256 scatter gather segment then 17910 * pdma_phys_addr1 should be a valid physical address. 17911 * physical address for SGLs must be 64 byte aligned. 17912 * If you are going to map 2 SGL's then the first one must have 256 entries 17913 * the second sgl can have between 1 and 256 entries. 17914 * 17915 * Return codes: 17916 * 0 - Success 17917 * -ENXIO, -ENOMEM - Failure 17918 **/ 17919 int 17920 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17921 dma_addr_t pdma_phys_addr0, 17922 dma_addr_t pdma_phys_addr1, 17923 uint16_t xritag) 17924 { 17925 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17926 LPFC_MBOXQ_t *mbox; 17927 int rc; 17928 uint32_t shdr_status, shdr_add_status; 17929 uint32_t mbox_tmo; 17930 union lpfc_sli4_cfg_shdr *shdr; 17931 17932 if (xritag == NO_XRI) { 17933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17934 "0364 Invalid param:\n"); 17935 return -EINVAL; 17936 } 17937 17938 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17939 if (!mbox) 17940 return -ENOMEM; 17941 17942 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17943 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17944 sizeof(struct lpfc_mbx_post_sgl_pages) - 17945 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17946 17947 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17948 &mbox->u.mqe.un.post_sgl_pages; 17949 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17950 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17951 17952 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17953 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17954 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17955 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17956 17957 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17958 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17959 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17960 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17961 if (!phba->sli4_hba.intr_enable) 17962 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17963 else { 17964 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17965 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17966 } 17967 /* The IOCTL status is embedded in the mailbox subheader. */ 17968 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17969 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17970 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17971 if (!phba->sli4_hba.intr_enable) 17972 mempool_free(mbox, phba->mbox_mem_pool); 17973 else if (rc != MBX_TIMEOUT) 17974 mempool_free(mbox, phba->mbox_mem_pool); 17975 if (shdr_status || shdr_add_status || rc) { 17976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17977 "2511 POST_SGL mailbox failed with " 17978 "status x%x add_status x%x, mbx status x%x\n", 17979 shdr_status, shdr_add_status, rc); 17980 } 17981 return 0; 17982 } 17983 17984 /** 17985 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17986 * @phba: pointer to lpfc hba data structure. 17987 * 17988 * This routine is invoked to post rpi header templates to the 17989 * HBA consistent with the SLI-4 interface spec. This routine 17990 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17991 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17992 * 17993 * Returns 17994 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17995 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17996 **/ 17997 static uint16_t 17998 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17999 { 18000 unsigned long xri; 18001 18002 /* 18003 * Fetch the next logical xri. Because this index is logical, 18004 * the driver starts at 0 each time. 18005 */ 18006 spin_lock_irq(&phba->hbalock); 18007 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18008 phba->sli4_hba.max_cfg_param.max_xri); 18009 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18010 spin_unlock_irq(&phba->hbalock); 18011 return NO_XRI; 18012 } else { 18013 set_bit(xri, phba->sli4_hba.xri_bmask); 18014 phba->sli4_hba.max_cfg_param.xri_used++; 18015 } 18016 spin_unlock_irq(&phba->hbalock); 18017 return xri; 18018 } 18019 18020 /** 18021 * __lpfc_sli4_free_xri - Release an xri for reuse. 18022 * @phba: pointer to lpfc hba data structure. 18023 * @xri: xri to release. 18024 * 18025 * This routine is invoked to release an xri to the pool of 18026 * available rpis maintained by the driver. 18027 **/ 18028 static void 18029 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18030 { 18031 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18032 phba->sli4_hba.max_cfg_param.xri_used--; 18033 } 18034 } 18035 18036 /** 18037 * lpfc_sli4_free_xri - Release an xri for reuse. 18038 * @phba: pointer to lpfc hba data structure. 18039 * @xri: xri to release. 18040 * 18041 * This routine is invoked to release an xri to the pool of 18042 * available rpis maintained by the driver. 18043 **/ 18044 void 18045 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18046 { 18047 spin_lock_irq(&phba->hbalock); 18048 __lpfc_sli4_free_xri(phba, xri); 18049 spin_unlock_irq(&phba->hbalock); 18050 } 18051 18052 /** 18053 * lpfc_sli4_next_xritag - Get an xritag for the io 18054 * @phba: Pointer to HBA context object. 18055 * 18056 * This function gets an xritag for the iocb. If there is no unused xritag 18057 * it will return 0xffff. 18058 * The function returns the allocated xritag if successful, else returns zero. 18059 * Zero is not a valid xritag. 18060 * The caller is not required to hold any lock. 18061 **/ 18062 uint16_t 18063 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18064 { 18065 uint16_t xri_index; 18066 18067 xri_index = lpfc_sli4_alloc_xri(phba); 18068 if (xri_index == NO_XRI) 18069 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18070 "2004 Failed to allocate XRI.last XRITAG is %d" 18071 " Max XRI is %d, Used XRI is %d\n", 18072 xri_index, 18073 phba->sli4_hba.max_cfg_param.max_xri, 18074 phba->sli4_hba.max_cfg_param.xri_used); 18075 return xri_index; 18076 } 18077 18078 /** 18079 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18080 * @phba: pointer to lpfc hba data structure. 18081 * @post_sgl_list: pointer to els sgl entry list. 18082 * @post_cnt: number of els sgl entries on the list. 18083 * 18084 * This routine is invoked to post a block of driver's sgl pages to the 18085 * HBA using non-embedded mailbox command. No Lock is held. This routine 18086 * is only called when the driver is loading and after all IO has been 18087 * stopped. 18088 **/ 18089 static int 18090 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18091 struct list_head *post_sgl_list, 18092 int post_cnt) 18093 { 18094 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18095 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18096 struct sgl_page_pairs *sgl_pg_pairs; 18097 void *viraddr; 18098 LPFC_MBOXQ_t *mbox; 18099 uint32_t reqlen, alloclen, pg_pairs; 18100 uint32_t mbox_tmo; 18101 uint16_t xritag_start = 0; 18102 int rc = 0; 18103 uint32_t shdr_status, shdr_add_status; 18104 union lpfc_sli4_cfg_shdr *shdr; 18105 18106 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18107 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18108 if (reqlen > SLI4_PAGE_SIZE) { 18109 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18110 "2559 Block sgl registration required DMA " 18111 "size (%d) great than a page\n", reqlen); 18112 return -ENOMEM; 18113 } 18114 18115 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18116 if (!mbox) 18117 return -ENOMEM; 18118 18119 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18120 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18121 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18122 LPFC_SLI4_MBX_NEMBED); 18123 18124 if (alloclen < reqlen) { 18125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18126 "0285 Allocated DMA memory size (%d) is " 18127 "less than the requested DMA memory " 18128 "size (%d)\n", alloclen, reqlen); 18129 lpfc_sli4_mbox_cmd_free(phba, mbox); 18130 return -ENOMEM; 18131 } 18132 /* Set up the SGL pages in the non-embedded DMA pages */ 18133 viraddr = mbox->sge_array->addr[0]; 18134 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18135 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18136 18137 pg_pairs = 0; 18138 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18139 /* Set up the sge entry */ 18140 sgl_pg_pairs->sgl_pg0_addr_lo = 18141 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18142 sgl_pg_pairs->sgl_pg0_addr_hi = 18143 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18144 sgl_pg_pairs->sgl_pg1_addr_lo = 18145 cpu_to_le32(putPaddrLow(0)); 18146 sgl_pg_pairs->sgl_pg1_addr_hi = 18147 cpu_to_le32(putPaddrHigh(0)); 18148 18149 /* Keep the first xritag on the list */ 18150 if (pg_pairs == 0) 18151 xritag_start = sglq_entry->sli4_xritag; 18152 sgl_pg_pairs++; 18153 pg_pairs++; 18154 } 18155 18156 /* Complete initialization and perform endian conversion. */ 18157 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18158 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18159 sgl->word0 = cpu_to_le32(sgl->word0); 18160 18161 if (!phba->sli4_hba.intr_enable) 18162 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18163 else { 18164 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18165 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18166 } 18167 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18168 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18169 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18170 if (!phba->sli4_hba.intr_enable) 18171 lpfc_sli4_mbox_cmd_free(phba, mbox); 18172 else if (rc != MBX_TIMEOUT) 18173 lpfc_sli4_mbox_cmd_free(phba, mbox); 18174 if (shdr_status || shdr_add_status || rc) { 18175 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18176 "2513 POST_SGL_BLOCK mailbox command failed " 18177 "status x%x add_status x%x mbx status x%x\n", 18178 shdr_status, shdr_add_status, rc); 18179 rc = -ENXIO; 18180 } 18181 return rc; 18182 } 18183 18184 /** 18185 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18186 * @phba: pointer to lpfc hba data structure. 18187 * @nblist: pointer to nvme buffer list. 18188 * @count: number of scsi buffers on the list. 18189 * 18190 * This routine is invoked to post a block of @count scsi sgl pages from a 18191 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18192 * No Lock is held. 18193 * 18194 **/ 18195 static int 18196 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18197 int count) 18198 { 18199 struct lpfc_io_buf *lpfc_ncmd; 18200 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18201 struct sgl_page_pairs *sgl_pg_pairs; 18202 void *viraddr; 18203 LPFC_MBOXQ_t *mbox; 18204 uint32_t reqlen, alloclen, pg_pairs; 18205 uint32_t mbox_tmo; 18206 uint16_t xritag_start = 0; 18207 int rc = 0; 18208 uint32_t shdr_status, shdr_add_status; 18209 dma_addr_t pdma_phys_bpl1; 18210 union lpfc_sli4_cfg_shdr *shdr; 18211 18212 /* Calculate the requested length of the dma memory */ 18213 reqlen = count * sizeof(struct sgl_page_pairs) + 18214 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18215 if (reqlen > SLI4_PAGE_SIZE) { 18216 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18217 "6118 Block sgl registration required DMA " 18218 "size (%d) great than a page\n", reqlen); 18219 return -ENOMEM; 18220 } 18221 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18222 if (!mbox) { 18223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18224 "6119 Failed to allocate mbox cmd memory\n"); 18225 return -ENOMEM; 18226 } 18227 18228 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18229 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18230 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18231 reqlen, LPFC_SLI4_MBX_NEMBED); 18232 18233 if (alloclen < reqlen) { 18234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18235 "6120 Allocated DMA memory size (%d) is " 18236 "less than the requested DMA memory " 18237 "size (%d)\n", alloclen, reqlen); 18238 lpfc_sli4_mbox_cmd_free(phba, mbox); 18239 return -ENOMEM; 18240 } 18241 18242 /* Get the first SGE entry from the non-embedded DMA memory */ 18243 viraddr = mbox->sge_array->addr[0]; 18244 18245 /* Set up the SGL pages in the non-embedded DMA pages */ 18246 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18247 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18248 18249 pg_pairs = 0; 18250 list_for_each_entry(lpfc_ncmd, nblist, list) { 18251 /* Set up the sge entry */ 18252 sgl_pg_pairs->sgl_pg0_addr_lo = 18253 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18254 sgl_pg_pairs->sgl_pg0_addr_hi = 18255 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18256 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18257 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18258 SGL_PAGE_SIZE; 18259 else 18260 pdma_phys_bpl1 = 0; 18261 sgl_pg_pairs->sgl_pg1_addr_lo = 18262 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18263 sgl_pg_pairs->sgl_pg1_addr_hi = 18264 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18265 /* Keep the first xritag on the list */ 18266 if (pg_pairs == 0) 18267 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18268 sgl_pg_pairs++; 18269 pg_pairs++; 18270 } 18271 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18272 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18273 /* Perform endian conversion if necessary */ 18274 sgl->word0 = cpu_to_le32(sgl->word0); 18275 18276 if (!phba->sli4_hba.intr_enable) { 18277 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18278 } else { 18279 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18280 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18281 } 18282 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18283 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18284 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18285 if (!phba->sli4_hba.intr_enable) 18286 lpfc_sli4_mbox_cmd_free(phba, mbox); 18287 else if (rc != MBX_TIMEOUT) 18288 lpfc_sli4_mbox_cmd_free(phba, mbox); 18289 if (shdr_status || shdr_add_status || rc) { 18290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18291 "6125 POST_SGL_BLOCK mailbox command failed " 18292 "status x%x add_status x%x mbx status x%x\n", 18293 shdr_status, shdr_add_status, rc); 18294 rc = -ENXIO; 18295 } 18296 return rc; 18297 } 18298 18299 /** 18300 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18301 * @phba: pointer to lpfc hba data structure. 18302 * @post_nblist: pointer to the nvme buffer list. 18303 * @sb_count: number of nvme buffers. 18304 * 18305 * This routine walks a list of nvme buffers that was passed in. It attempts 18306 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18307 * uses the non-embedded SGL block post mailbox commands to post to the port. 18308 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18309 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18310 * must be local list, thus no lock is needed when manipulate the list. 18311 * 18312 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18313 **/ 18314 int 18315 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18316 struct list_head *post_nblist, int sb_count) 18317 { 18318 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18319 int status, sgl_size; 18320 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18321 dma_addr_t pdma_phys_sgl1; 18322 int last_xritag = NO_XRI; 18323 int cur_xritag; 18324 LIST_HEAD(prep_nblist); 18325 LIST_HEAD(blck_nblist); 18326 LIST_HEAD(nvme_nblist); 18327 18328 /* sanity check */ 18329 if (sb_count <= 0) 18330 return -EINVAL; 18331 18332 sgl_size = phba->cfg_sg_dma_buf_size; 18333 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18334 list_del_init(&lpfc_ncmd->list); 18335 block_cnt++; 18336 if ((last_xritag != NO_XRI) && 18337 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18338 /* a hole in xri block, form a sgl posting block */ 18339 list_splice_init(&prep_nblist, &blck_nblist); 18340 post_cnt = block_cnt - 1; 18341 /* prepare list for next posting block */ 18342 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18343 block_cnt = 1; 18344 } else { 18345 /* prepare list for next posting block */ 18346 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18347 /* enough sgls for non-embed sgl mbox command */ 18348 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18349 list_splice_init(&prep_nblist, &blck_nblist); 18350 post_cnt = block_cnt; 18351 block_cnt = 0; 18352 } 18353 } 18354 num_posting++; 18355 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18356 18357 /* end of repost sgl list condition for NVME buffers */ 18358 if (num_posting == sb_count) { 18359 if (post_cnt == 0) { 18360 /* last sgl posting block */ 18361 list_splice_init(&prep_nblist, &blck_nblist); 18362 post_cnt = block_cnt; 18363 } else if (block_cnt == 1) { 18364 /* last single sgl with non-contiguous xri */ 18365 if (sgl_size > SGL_PAGE_SIZE) 18366 pdma_phys_sgl1 = 18367 lpfc_ncmd->dma_phys_sgl + 18368 SGL_PAGE_SIZE; 18369 else 18370 pdma_phys_sgl1 = 0; 18371 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18372 status = lpfc_sli4_post_sgl( 18373 phba, lpfc_ncmd->dma_phys_sgl, 18374 pdma_phys_sgl1, cur_xritag); 18375 if (status) { 18376 /* Post error. Buffer unavailable. */ 18377 lpfc_ncmd->flags |= 18378 LPFC_SBUF_NOT_POSTED; 18379 } else { 18380 /* Post success. Bffer available. */ 18381 lpfc_ncmd->flags &= 18382 ~LPFC_SBUF_NOT_POSTED; 18383 lpfc_ncmd->status = IOSTAT_SUCCESS; 18384 num_posted++; 18385 } 18386 /* success, put on NVME buffer sgl list */ 18387 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18388 } 18389 } 18390 18391 /* continue until a nembed page worth of sgls */ 18392 if (post_cnt == 0) 18393 continue; 18394 18395 /* post block of NVME buffer list sgls */ 18396 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18397 post_cnt); 18398 18399 /* don't reset xirtag due to hole in xri block */ 18400 if (block_cnt == 0) 18401 last_xritag = NO_XRI; 18402 18403 /* reset NVME buffer post count for next round of posting */ 18404 post_cnt = 0; 18405 18406 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18407 while (!list_empty(&blck_nblist)) { 18408 list_remove_head(&blck_nblist, lpfc_ncmd, 18409 struct lpfc_io_buf, list); 18410 if (status) { 18411 /* Post error. Mark buffer unavailable. */ 18412 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18413 } else { 18414 /* Post success, Mark buffer available. */ 18415 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18416 lpfc_ncmd->status = IOSTAT_SUCCESS; 18417 num_posted++; 18418 } 18419 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18420 } 18421 } 18422 /* Push NVME buffers with sgl posted to the available list */ 18423 lpfc_io_buf_replenish(phba, &nvme_nblist); 18424 18425 return num_posted; 18426 } 18427 18428 /** 18429 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18430 * @phba: pointer to lpfc_hba struct that the frame was received on 18431 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18432 * 18433 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18434 * valid type of frame that the LPFC driver will handle. This function will 18435 * return a zero if the frame is a valid frame or a non zero value when the 18436 * frame does not pass the check. 18437 **/ 18438 static int 18439 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18440 { 18441 /* make rctl_names static to save stack space */ 18442 struct fc_vft_header *fc_vft_hdr; 18443 uint32_t *header = (uint32_t *) fc_hdr; 18444 18445 #define FC_RCTL_MDS_DIAGS 0xF4 18446 18447 switch (fc_hdr->fh_r_ctl) { 18448 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18449 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18450 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18451 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18452 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18453 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18454 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18455 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18456 case FC_RCTL_ELS_REQ: /* extended link services request */ 18457 case FC_RCTL_ELS_REP: /* extended link services reply */ 18458 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18459 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18460 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18461 case FC_RCTL_BA_RMC: /* remove connection */ 18462 case FC_RCTL_BA_ACC: /* basic accept */ 18463 case FC_RCTL_BA_RJT: /* basic reject */ 18464 case FC_RCTL_BA_PRMT: 18465 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18466 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18467 case FC_RCTL_P_RJT: /* port reject */ 18468 case FC_RCTL_F_RJT: /* fabric reject */ 18469 case FC_RCTL_P_BSY: /* port busy */ 18470 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18471 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18472 case FC_RCTL_LCR: /* link credit reset */ 18473 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18474 case FC_RCTL_END: /* end */ 18475 break; 18476 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18477 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18478 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18479 return lpfc_fc_frame_check(phba, fc_hdr); 18480 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18481 default: 18482 goto drop; 18483 } 18484 18485 switch (fc_hdr->fh_type) { 18486 case FC_TYPE_BLS: 18487 case FC_TYPE_ELS: 18488 case FC_TYPE_FCP: 18489 case FC_TYPE_CT: 18490 case FC_TYPE_NVME: 18491 break; 18492 case FC_TYPE_IP: 18493 case FC_TYPE_ILS: 18494 default: 18495 goto drop; 18496 } 18497 18498 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18499 "2538 Received frame rctl:x%x, type:x%x, " 18500 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18501 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18502 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18503 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18504 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18505 be32_to_cpu(header[6])); 18506 return 0; 18507 drop: 18508 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18509 "2539 Dropped frame rctl:x%x type:x%x\n", 18510 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18511 return 1; 18512 } 18513 18514 /** 18515 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18516 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18517 * 18518 * This function processes the FC header to retrieve the VFI from the VF 18519 * header, if one exists. This function will return the VFI if one exists 18520 * or 0 if no VSAN Header exists. 18521 **/ 18522 static uint32_t 18523 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18524 { 18525 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18526 18527 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18528 return 0; 18529 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18530 } 18531 18532 /** 18533 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18534 * @phba: Pointer to the HBA structure to search for the vport on 18535 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18536 * @fcfi: The FC Fabric ID that the frame came from 18537 * @did: Destination ID to match against 18538 * 18539 * This function searches the @phba for a vport that matches the content of the 18540 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18541 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18542 * returns the matching vport pointer or NULL if unable to match frame to a 18543 * vport. 18544 **/ 18545 static struct lpfc_vport * 18546 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18547 uint16_t fcfi, uint32_t did) 18548 { 18549 struct lpfc_vport **vports; 18550 struct lpfc_vport *vport = NULL; 18551 int i; 18552 18553 if (did == Fabric_DID) 18554 return phba->pport; 18555 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18556 phba->link_state != LPFC_HBA_READY) 18557 return phba->pport; 18558 18559 vports = lpfc_create_vport_work_array(phba); 18560 if (vports != NULL) { 18561 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18562 if (phba->fcf.fcfi == fcfi && 18563 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18564 vports[i]->fc_myDID == did) { 18565 vport = vports[i]; 18566 break; 18567 } 18568 } 18569 } 18570 lpfc_destroy_vport_work_array(phba, vports); 18571 return vport; 18572 } 18573 18574 /** 18575 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18576 * @vport: The vport to work on. 18577 * 18578 * This function updates the receive sequence time stamp for this vport. The 18579 * receive sequence time stamp indicates the time that the last frame of the 18580 * the sequence that has been idle for the longest amount of time was received. 18581 * the driver uses this time stamp to indicate if any received sequences have 18582 * timed out. 18583 **/ 18584 static void 18585 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18586 { 18587 struct lpfc_dmabuf *h_buf; 18588 struct hbq_dmabuf *dmabuf = NULL; 18589 18590 /* get the oldest sequence on the rcv list */ 18591 h_buf = list_get_first(&vport->rcv_buffer_list, 18592 struct lpfc_dmabuf, list); 18593 if (!h_buf) 18594 return; 18595 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18596 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18597 } 18598 18599 /** 18600 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18601 * @vport: The vport that the received sequences were sent to. 18602 * 18603 * This function cleans up all outstanding received sequences. This is called 18604 * by the driver when a link event or user action invalidates all the received 18605 * sequences. 18606 **/ 18607 void 18608 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18609 { 18610 struct lpfc_dmabuf *h_buf, *hnext; 18611 struct lpfc_dmabuf *d_buf, *dnext; 18612 struct hbq_dmabuf *dmabuf = NULL; 18613 18614 /* start with the oldest sequence on the rcv list */ 18615 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18616 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18617 list_del_init(&dmabuf->hbuf.list); 18618 list_for_each_entry_safe(d_buf, dnext, 18619 &dmabuf->dbuf.list, list) { 18620 list_del_init(&d_buf->list); 18621 lpfc_in_buf_free(vport->phba, d_buf); 18622 } 18623 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18624 } 18625 } 18626 18627 /** 18628 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18629 * @vport: The vport that the received sequences were sent to. 18630 * 18631 * This function determines whether any received sequences have timed out by 18632 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18633 * indicates that there is at least one timed out sequence this routine will 18634 * go through the received sequences one at a time from most inactive to most 18635 * active to determine which ones need to be cleaned up. Once it has determined 18636 * that a sequence needs to be cleaned up it will simply free up the resources 18637 * without sending an abort. 18638 **/ 18639 void 18640 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18641 { 18642 struct lpfc_dmabuf *h_buf, *hnext; 18643 struct lpfc_dmabuf *d_buf, *dnext; 18644 struct hbq_dmabuf *dmabuf = NULL; 18645 unsigned long timeout; 18646 int abort_count = 0; 18647 18648 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18649 vport->rcv_buffer_time_stamp); 18650 if (list_empty(&vport->rcv_buffer_list) || 18651 time_before(jiffies, timeout)) 18652 return; 18653 /* start with the oldest sequence on the rcv list */ 18654 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18655 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18656 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18657 dmabuf->time_stamp); 18658 if (time_before(jiffies, timeout)) 18659 break; 18660 abort_count++; 18661 list_del_init(&dmabuf->hbuf.list); 18662 list_for_each_entry_safe(d_buf, dnext, 18663 &dmabuf->dbuf.list, list) { 18664 list_del_init(&d_buf->list); 18665 lpfc_in_buf_free(vport->phba, d_buf); 18666 } 18667 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18668 } 18669 if (abort_count) 18670 lpfc_update_rcv_time_stamp(vport); 18671 } 18672 18673 /** 18674 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18675 * @vport: pointer to a vitural port 18676 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18677 * 18678 * This function searches through the existing incomplete sequences that have 18679 * been sent to this @vport. If the frame matches one of the incomplete 18680 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18681 * make up that sequence. If no sequence is found that matches this frame then 18682 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18683 * This function returns a pointer to the first dmabuf in the sequence list that 18684 * the frame was linked to. 18685 **/ 18686 static struct hbq_dmabuf * 18687 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18688 { 18689 struct fc_frame_header *new_hdr; 18690 struct fc_frame_header *temp_hdr; 18691 struct lpfc_dmabuf *d_buf; 18692 struct lpfc_dmabuf *h_buf; 18693 struct hbq_dmabuf *seq_dmabuf = NULL; 18694 struct hbq_dmabuf *temp_dmabuf = NULL; 18695 uint8_t found = 0; 18696 18697 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18698 dmabuf->time_stamp = jiffies; 18699 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18700 18701 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18702 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18703 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18704 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18705 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18706 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18707 continue; 18708 /* found a pending sequence that matches this frame */ 18709 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18710 break; 18711 } 18712 if (!seq_dmabuf) { 18713 /* 18714 * This indicates first frame received for this sequence. 18715 * Queue the buffer on the vport's rcv_buffer_list. 18716 */ 18717 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18718 lpfc_update_rcv_time_stamp(vport); 18719 return dmabuf; 18720 } 18721 temp_hdr = seq_dmabuf->hbuf.virt; 18722 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18723 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18724 list_del_init(&seq_dmabuf->hbuf.list); 18725 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18726 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18727 lpfc_update_rcv_time_stamp(vport); 18728 return dmabuf; 18729 } 18730 /* move this sequence to the tail to indicate a young sequence */ 18731 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18732 seq_dmabuf->time_stamp = jiffies; 18733 lpfc_update_rcv_time_stamp(vport); 18734 if (list_empty(&seq_dmabuf->dbuf.list)) { 18735 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18736 return seq_dmabuf; 18737 } 18738 /* find the correct place in the sequence to insert this frame */ 18739 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18740 while (!found) { 18741 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18742 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18743 /* 18744 * If the frame's sequence count is greater than the frame on 18745 * the list then insert the frame right after this frame 18746 */ 18747 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18748 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18749 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18750 found = 1; 18751 break; 18752 } 18753 18754 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18755 break; 18756 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18757 } 18758 18759 if (found) 18760 return seq_dmabuf; 18761 return NULL; 18762 } 18763 18764 /** 18765 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18766 * @vport: pointer to a vitural port 18767 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18768 * 18769 * This function tries to abort from the partially assembed sequence, described 18770 * by the information from basic abbort @dmabuf. It checks to see whether such 18771 * partially assembled sequence held by the driver. If so, it shall free up all 18772 * the frames from the partially assembled sequence. 18773 * 18774 * Return 18775 * true -- if there is matching partially assembled sequence present and all 18776 * the frames freed with the sequence; 18777 * false -- if there is no matching partially assembled sequence present so 18778 * nothing got aborted in the lower layer driver 18779 **/ 18780 static bool 18781 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18782 struct hbq_dmabuf *dmabuf) 18783 { 18784 struct fc_frame_header *new_hdr; 18785 struct fc_frame_header *temp_hdr; 18786 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18787 struct hbq_dmabuf *seq_dmabuf = NULL; 18788 18789 /* Use the hdr_buf to find the sequence that matches this frame */ 18790 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18791 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18792 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18793 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18794 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18795 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18796 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18797 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18798 continue; 18799 /* found a pending sequence that matches this frame */ 18800 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18801 break; 18802 } 18803 18804 /* Free up all the frames from the partially assembled sequence */ 18805 if (seq_dmabuf) { 18806 list_for_each_entry_safe(d_buf, n_buf, 18807 &seq_dmabuf->dbuf.list, list) { 18808 list_del_init(&d_buf->list); 18809 lpfc_in_buf_free(vport->phba, d_buf); 18810 } 18811 return true; 18812 } 18813 return false; 18814 } 18815 18816 /** 18817 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18818 * @vport: pointer to a vitural port 18819 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18820 * 18821 * This function tries to abort from the assembed sequence from upper level 18822 * protocol, described by the information from basic abbort @dmabuf. It 18823 * checks to see whether such pending context exists at upper level protocol. 18824 * If so, it shall clean up the pending context. 18825 * 18826 * Return 18827 * true -- if there is matching pending context of the sequence cleaned 18828 * at ulp; 18829 * false -- if there is no matching pending context of the sequence present 18830 * at ulp. 18831 **/ 18832 static bool 18833 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18834 { 18835 struct lpfc_hba *phba = vport->phba; 18836 int handled; 18837 18838 /* Accepting abort at ulp with SLI4 only */ 18839 if (phba->sli_rev < LPFC_SLI_REV4) 18840 return false; 18841 18842 /* Register all caring upper level protocols to attend abort */ 18843 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18844 if (handled) 18845 return true; 18846 18847 return false; 18848 } 18849 18850 /** 18851 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18852 * @phba: Pointer to HBA context object. 18853 * @cmd_iocbq: pointer to the command iocbq structure. 18854 * @rsp_iocbq: pointer to the response iocbq structure. 18855 * 18856 * This function handles the sequence abort response iocb command complete 18857 * event. It properly releases the memory allocated to the sequence abort 18858 * accept iocb. 18859 **/ 18860 static void 18861 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18862 struct lpfc_iocbq *cmd_iocbq, 18863 struct lpfc_iocbq *rsp_iocbq) 18864 { 18865 if (cmd_iocbq) { 18866 lpfc_nlp_put(cmd_iocbq->ndlp); 18867 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18868 } 18869 18870 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18871 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18873 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18874 get_job_ulpstatus(phba, rsp_iocbq), 18875 get_job_word4(phba, rsp_iocbq)); 18876 } 18877 18878 /** 18879 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18880 * @phba: Pointer to HBA context object. 18881 * @xri: xri id in transaction. 18882 * 18883 * This function validates the xri maps to the known range of XRIs allocated an 18884 * used by the driver. 18885 **/ 18886 uint16_t 18887 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18888 uint16_t xri) 18889 { 18890 uint16_t i; 18891 18892 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18893 if (xri == phba->sli4_hba.xri_ids[i]) 18894 return i; 18895 } 18896 return NO_XRI; 18897 } 18898 18899 /** 18900 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18901 * @vport: pointer to a virtual port. 18902 * @fc_hdr: pointer to a FC frame header. 18903 * @aborted: was the partially assembled receive sequence successfully aborted 18904 * 18905 * This function sends a basic response to a previous unsol sequence abort 18906 * event after aborting the sequence handling. 18907 **/ 18908 void 18909 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18910 struct fc_frame_header *fc_hdr, bool aborted) 18911 { 18912 struct lpfc_hba *phba = vport->phba; 18913 struct lpfc_iocbq *ctiocb = NULL; 18914 struct lpfc_nodelist *ndlp; 18915 uint16_t oxid, rxid, xri, lxri; 18916 uint32_t sid, fctl; 18917 union lpfc_wqe128 *icmd; 18918 int rc; 18919 18920 if (!lpfc_is_link_up(phba)) 18921 return; 18922 18923 sid = sli4_sid_from_fc_hdr(fc_hdr); 18924 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18925 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18926 18927 ndlp = lpfc_findnode_did(vport, sid); 18928 if (!ndlp) { 18929 ndlp = lpfc_nlp_init(vport, sid); 18930 if (!ndlp) { 18931 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18932 "1268 Failed to allocate ndlp for " 18933 "oxid:x%x SID:x%x\n", oxid, sid); 18934 return; 18935 } 18936 /* Put ndlp onto vport node list */ 18937 lpfc_enqueue_node(vport, ndlp); 18938 } 18939 18940 /* Allocate buffer for rsp iocb */ 18941 ctiocb = lpfc_sli_get_iocbq(phba); 18942 if (!ctiocb) 18943 return; 18944 18945 icmd = &ctiocb->wqe; 18946 18947 /* Extract the F_CTL field from FC_HDR */ 18948 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18949 18950 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18951 if (!ctiocb->ndlp) { 18952 lpfc_sli_release_iocbq(phba, ctiocb); 18953 return; 18954 } 18955 18956 ctiocb->vport = vport; 18957 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18958 ctiocb->sli4_lxritag = NO_XRI; 18959 ctiocb->sli4_xritag = NO_XRI; 18960 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18961 18962 if (fctl & FC_FC_EX_CTX) 18963 /* Exchange responder sent the abort so we 18964 * own the oxid. 18965 */ 18966 xri = oxid; 18967 else 18968 xri = rxid; 18969 lxri = lpfc_sli4_xri_inrange(phba, xri); 18970 if (lxri != NO_XRI) 18971 lpfc_set_rrq_active(phba, ndlp, lxri, 18972 (xri == oxid) ? rxid : oxid, 0); 18973 /* For BA_ABTS from exchange responder, if the logical xri with 18974 * the oxid maps to the FCP XRI range, the port no longer has 18975 * that exchange context, send a BLS_RJT. Override the IOCB for 18976 * a BA_RJT. 18977 */ 18978 if ((fctl & FC_FC_EX_CTX) && 18979 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18980 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18981 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18982 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18983 FC_BA_RJT_INV_XID); 18984 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18985 FC_BA_RJT_UNABLE); 18986 } 18987 18988 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18989 * the driver no longer has that exchange, send a BLS_RJT. Override 18990 * the IOCB for a BA_RJT. 18991 */ 18992 if (aborted == false) { 18993 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18994 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18995 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18996 FC_BA_RJT_INV_XID); 18997 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18998 FC_BA_RJT_UNABLE); 18999 } 19000 19001 if (fctl & FC_FC_EX_CTX) { 19002 /* ABTS sent by responder to CT exchange, construction 19003 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19004 * field and RX_ID from ABTS for RX_ID field. 19005 */ 19006 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19007 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19008 } else { 19009 /* ABTS sent by initiator to CT exchange, construction 19010 * of BA_ACC will need to allocate a new XRI as for the 19011 * XRI_TAG field. 19012 */ 19013 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19014 } 19015 19016 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19017 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19018 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19019 19020 /* Use CT=VPI */ 19021 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19022 ndlp->nlp_DID); 19023 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19024 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19025 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19026 19027 /* Xmit CT abts response on exchange <xid> */ 19028 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19029 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19030 ctiocb->abort_rctl, oxid, phba->link_state); 19031 19032 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19033 if (rc == IOCB_ERROR) { 19034 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19035 "2925 Failed to issue CT ABTS RSP x%x on " 19036 "xri x%x, Data x%x\n", 19037 ctiocb->abort_rctl, oxid, 19038 phba->link_state); 19039 lpfc_nlp_put(ndlp); 19040 ctiocb->ndlp = NULL; 19041 lpfc_sli_release_iocbq(phba, ctiocb); 19042 } 19043 19044 /* if only usage of this nodelist is BLS response, release initial ref 19045 * to free ndlp when transmit completes 19046 */ 19047 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19048 !(ndlp->nlp_flag & NLP_DROPPED) && 19049 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19050 ndlp->nlp_flag |= NLP_DROPPED; 19051 lpfc_nlp_put(ndlp); 19052 } 19053 } 19054 19055 /** 19056 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19057 * @vport: Pointer to the vport on which this sequence was received 19058 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19059 * 19060 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19061 * receive sequence is only partially assembed by the driver, it shall abort 19062 * the partially assembled frames for the sequence. Otherwise, if the 19063 * unsolicited receive sequence has been completely assembled and passed to 19064 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19065 * unsolicited sequence has been aborted. After that, it will issue a basic 19066 * accept to accept the abort. 19067 **/ 19068 static void 19069 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19070 struct hbq_dmabuf *dmabuf) 19071 { 19072 struct lpfc_hba *phba = vport->phba; 19073 struct fc_frame_header fc_hdr; 19074 uint32_t fctl; 19075 bool aborted; 19076 19077 /* Make a copy of fc_hdr before the dmabuf being released */ 19078 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19079 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19080 19081 if (fctl & FC_FC_EX_CTX) { 19082 /* ABTS by responder to exchange, no cleanup needed */ 19083 aborted = true; 19084 } else { 19085 /* ABTS by initiator to exchange, need to do cleanup */ 19086 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19087 if (aborted == false) 19088 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19089 } 19090 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19091 19092 if (phba->nvmet_support) { 19093 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19094 return; 19095 } 19096 19097 /* Respond with BA_ACC or BA_RJT accordingly */ 19098 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19099 } 19100 19101 /** 19102 * lpfc_seq_complete - Indicates if a sequence is complete 19103 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19104 * 19105 * This function checks the sequence, starting with the frame described by 19106 * @dmabuf, to see if all the frames associated with this sequence are present. 19107 * the frames associated with this sequence are linked to the @dmabuf using the 19108 * dbuf list. This function looks for two major things. 1) That the first frame 19109 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19110 * set. 3) That there are no holes in the sequence count. The function will 19111 * return 1 when the sequence is complete, otherwise it will return 0. 19112 **/ 19113 static int 19114 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19115 { 19116 struct fc_frame_header *hdr; 19117 struct lpfc_dmabuf *d_buf; 19118 struct hbq_dmabuf *seq_dmabuf; 19119 uint32_t fctl; 19120 int seq_count = 0; 19121 19122 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19123 /* make sure first fame of sequence has a sequence count of zero */ 19124 if (hdr->fh_seq_cnt != seq_count) 19125 return 0; 19126 fctl = (hdr->fh_f_ctl[0] << 16 | 19127 hdr->fh_f_ctl[1] << 8 | 19128 hdr->fh_f_ctl[2]); 19129 /* If last frame of sequence we can return success. */ 19130 if (fctl & FC_FC_END_SEQ) 19131 return 1; 19132 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19133 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19134 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19135 /* If there is a hole in the sequence count then fail. */ 19136 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19137 return 0; 19138 fctl = (hdr->fh_f_ctl[0] << 16 | 19139 hdr->fh_f_ctl[1] << 8 | 19140 hdr->fh_f_ctl[2]); 19141 /* If last frame of sequence we can return success. */ 19142 if (fctl & FC_FC_END_SEQ) 19143 return 1; 19144 } 19145 return 0; 19146 } 19147 19148 /** 19149 * lpfc_prep_seq - Prep sequence for ULP processing 19150 * @vport: Pointer to the vport on which this sequence was received 19151 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19152 * 19153 * This function takes a sequence, described by a list of frames, and creates 19154 * a list of iocbq structures to describe the sequence. This iocbq list will be 19155 * used to issue to the generic unsolicited sequence handler. This routine 19156 * returns a pointer to the first iocbq in the list. If the function is unable 19157 * to allocate an iocbq then it throw out the received frames that were not 19158 * able to be described and return a pointer to the first iocbq. If unable to 19159 * allocate any iocbqs (including the first) this function will return NULL. 19160 **/ 19161 static struct lpfc_iocbq * 19162 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19163 { 19164 struct hbq_dmabuf *hbq_buf; 19165 struct lpfc_dmabuf *d_buf, *n_buf; 19166 struct lpfc_iocbq *first_iocbq, *iocbq; 19167 struct fc_frame_header *fc_hdr; 19168 uint32_t sid; 19169 uint32_t len, tot_len; 19170 19171 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19172 /* remove from receive buffer list */ 19173 list_del_init(&seq_dmabuf->hbuf.list); 19174 lpfc_update_rcv_time_stamp(vport); 19175 /* get the Remote Port's SID */ 19176 sid = sli4_sid_from_fc_hdr(fc_hdr); 19177 tot_len = 0; 19178 /* Get an iocbq struct to fill in. */ 19179 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19180 if (first_iocbq) { 19181 /* Initialize the first IOCB. */ 19182 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19183 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19184 IOSTAT_SUCCESS); 19185 first_iocbq->vport = vport; 19186 19187 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19188 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19189 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19190 sli4_did_from_fc_hdr(fc_hdr)); 19191 } 19192 19193 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19194 NO_XRI); 19195 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19196 be16_to_cpu(fc_hdr->fh_ox_id)); 19197 19198 /* put the first buffer into the first iocb */ 19199 tot_len = bf_get(lpfc_rcqe_length, 19200 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19201 19202 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19203 first_iocbq->bpl_dmabuf = NULL; 19204 /* Keep track of the BDE count */ 19205 first_iocbq->wcqe_cmpl.word3 = 1; 19206 19207 if (tot_len > LPFC_DATA_BUF_SIZE) 19208 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19209 LPFC_DATA_BUF_SIZE; 19210 else 19211 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19212 19213 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19214 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19215 sid); 19216 } 19217 iocbq = first_iocbq; 19218 /* 19219 * Each IOCBq can have two Buffers assigned, so go through the list 19220 * of buffers for this sequence and save two buffers in each IOCBq 19221 */ 19222 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19223 if (!iocbq) { 19224 lpfc_in_buf_free(vport->phba, d_buf); 19225 continue; 19226 } 19227 if (!iocbq->bpl_dmabuf) { 19228 iocbq->bpl_dmabuf = d_buf; 19229 iocbq->wcqe_cmpl.word3++; 19230 /* We need to get the size out of the right CQE */ 19231 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19232 len = bf_get(lpfc_rcqe_length, 19233 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19234 iocbq->unsol_rcv_len = len; 19235 iocbq->wcqe_cmpl.total_data_placed += len; 19236 tot_len += len; 19237 } else { 19238 iocbq = lpfc_sli_get_iocbq(vport->phba); 19239 if (!iocbq) { 19240 if (first_iocbq) { 19241 bf_set(lpfc_wcqe_c_status, 19242 &first_iocbq->wcqe_cmpl, 19243 IOSTAT_SUCCESS); 19244 first_iocbq->wcqe_cmpl.parameter = 19245 IOERR_NO_RESOURCES; 19246 } 19247 lpfc_in_buf_free(vport->phba, d_buf); 19248 continue; 19249 } 19250 /* We need to get the size out of the right CQE */ 19251 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19252 len = bf_get(lpfc_rcqe_length, 19253 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19254 iocbq->cmd_dmabuf = d_buf; 19255 iocbq->bpl_dmabuf = NULL; 19256 iocbq->wcqe_cmpl.word3 = 1; 19257 19258 if (len > LPFC_DATA_BUF_SIZE) 19259 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19260 LPFC_DATA_BUF_SIZE; 19261 else 19262 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19263 len; 19264 19265 tot_len += len; 19266 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19267 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19268 sid); 19269 list_add_tail(&iocbq->list, &first_iocbq->list); 19270 } 19271 } 19272 /* Free the sequence's header buffer */ 19273 if (!first_iocbq) 19274 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19275 19276 return first_iocbq; 19277 } 19278 19279 static void 19280 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19281 struct hbq_dmabuf *seq_dmabuf) 19282 { 19283 struct fc_frame_header *fc_hdr; 19284 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19285 struct lpfc_hba *phba = vport->phba; 19286 19287 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19288 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19289 if (!iocbq) { 19290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19291 "2707 Ring %d handler: Failed to allocate " 19292 "iocb Rctl x%x Type x%x received\n", 19293 LPFC_ELS_RING, 19294 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19295 return; 19296 } 19297 if (!lpfc_complete_unsol_iocb(phba, 19298 phba->sli4_hba.els_wq->pring, 19299 iocbq, fc_hdr->fh_r_ctl, 19300 fc_hdr->fh_type)) { 19301 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19302 "2540 Ring %d handler: unexpected Rctl " 19303 "x%x Type x%x received\n", 19304 LPFC_ELS_RING, 19305 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19306 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19307 } 19308 19309 /* Free iocb created in lpfc_prep_seq */ 19310 list_for_each_entry_safe(curr_iocb, next_iocb, 19311 &iocbq->list, list) { 19312 list_del_init(&curr_iocb->list); 19313 lpfc_sli_release_iocbq(phba, curr_iocb); 19314 } 19315 lpfc_sli_release_iocbq(phba, iocbq); 19316 } 19317 19318 static void 19319 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19320 struct lpfc_iocbq *rspiocb) 19321 { 19322 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19323 19324 if (pcmd && pcmd->virt) 19325 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19326 kfree(pcmd); 19327 lpfc_sli_release_iocbq(phba, cmdiocb); 19328 lpfc_drain_txq(phba); 19329 } 19330 19331 static void 19332 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19333 struct hbq_dmabuf *dmabuf) 19334 { 19335 struct fc_frame_header *fc_hdr; 19336 struct lpfc_hba *phba = vport->phba; 19337 struct lpfc_iocbq *iocbq = NULL; 19338 union lpfc_wqe128 *pwqe; 19339 struct lpfc_dmabuf *pcmd = NULL; 19340 uint32_t frame_len; 19341 int rc; 19342 unsigned long iflags; 19343 19344 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19345 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19346 19347 /* Send the received frame back */ 19348 iocbq = lpfc_sli_get_iocbq(phba); 19349 if (!iocbq) { 19350 /* Queue cq event and wakeup worker thread to process it */ 19351 spin_lock_irqsave(&phba->hbalock, iflags); 19352 list_add_tail(&dmabuf->cq_event.list, 19353 &phba->sli4_hba.sp_queue_event); 19354 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19355 spin_unlock_irqrestore(&phba->hbalock, iflags); 19356 lpfc_worker_wake_up(phba); 19357 return; 19358 } 19359 19360 /* Allocate buffer for command payload */ 19361 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19362 if (pcmd) 19363 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19364 &pcmd->phys); 19365 if (!pcmd || !pcmd->virt) 19366 goto exit; 19367 19368 INIT_LIST_HEAD(&pcmd->list); 19369 19370 /* copyin the payload */ 19371 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19372 19373 iocbq->cmd_dmabuf = pcmd; 19374 iocbq->vport = vport; 19375 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19376 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19377 iocbq->num_bdes = 0; 19378 19379 pwqe = &iocbq->wqe; 19380 /* fill in BDE's for command */ 19381 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19382 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19383 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19384 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19385 19386 pwqe->send_frame.frame_len = frame_len; 19387 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19388 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19389 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19390 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19391 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19392 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19393 19394 pwqe->generic.wqe_com.word7 = 0; 19395 pwqe->generic.wqe_com.word10 = 0; 19396 19397 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19398 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19399 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19400 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19401 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19402 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19403 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19404 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19405 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19406 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19407 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19408 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19409 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19410 19411 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19412 19413 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19414 if (rc == IOCB_ERROR) 19415 goto exit; 19416 19417 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19418 return; 19419 19420 exit: 19421 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19422 "2023 Unable to process MDS loopback frame\n"); 19423 if (pcmd && pcmd->virt) 19424 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19425 kfree(pcmd); 19426 if (iocbq) 19427 lpfc_sli_release_iocbq(phba, iocbq); 19428 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19429 } 19430 19431 /** 19432 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19433 * @phba: Pointer to HBA context object. 19434 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19435 * 19436 * This function is called with no lock held. This function processes all 19437 * the received buffers and gives it to upper layers when a received buffer 19438 * indicates that it is the final frame in the sequence. The interrupt 19439 * service routine processes received buffers at interrupt contexts. 19440 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19441 * appropriate receive function when the final frame in a sequence is received. 19442 **/ 19443 void 19444 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19445 struct hbq_dmabuf *dmabuf) 19446 { 19447 struct hbq_dmabuf *seq_dmabuf; 19448 struct fc_frame_header *fc_hdr; 19449 struct lpfc_vport *vport; 19450 uint32_t fcfi; 19451 uint32_t did; 19452 19453 /* Process each received buffer */ 19454 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19455 19456 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19457 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19458 vport = phba->pport; 19459 /* Handle MDS Loopback frames */ 19460 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19461 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19462 else 19463 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19464 return; 19465 } 19466 19467 /* check to see if this a valid type of frame */ 19468 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19469 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19470 return; 19471 } 19472 19473 if ((bf_get(lpfc_cqe_code, 19474 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19475 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19476 &dmabuf->cq_event.cqe.rcqe_cmpl); 19477 else 19478 fcfi = bf_get(lpfc_rcqe_fcf_id, 19479 &dmabuf->cq_event.cqe.rcqe_cmpl); 19480 19481 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19482 vport = phba->pport; 19483 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19484 "2023 MDS Loopback %d bytes\n", 19485 bf_get(lpfc_rcqe_length, 19486 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19487 /* Handle MDS Loopback frames */ 19488 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19489 return; 19490 } 19491 19492 /* d_id this frame is directed to */ 19493 did = sli4_did_from_fc_hdr(fc_hdr); 19494 19495 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19496 if (!vport) { 19497 /* throw out the frame */ 19498 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19499 return; 19500 } 19501 19502 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19503 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19504 (did != Fabric_DID)) { 19505 /* 19506 * Throw out the frame if we are not pt2pt. 19507 * The pt2pt protocol allows for discovery frames 19508 * to be received without a registered VPI. 19509 */ 19510 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19511 phba->link_state == LPFC_HBA_READY) { 19512 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19513 return; 19514 } 19515 } 19516 19517 /* Handle the basic abort sequence (BA_ABTS) event */ 19518 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19519 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19520 return; 19521 } 19522 19523 /* Link this frame */ 19524 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19525 if (!seq_dmabuf) { 19526 /* unable to add frame to vport - throw it out */ 19527 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19528 return; 19529 } 19530 /* If not last frame in sequence continue processing frames. */ 19531 if (!lpfc_seq_complete(seq_dmabuf)) 19532 return; 19533 19534 /* Send the complete sequence to the upper layer protocol */ 19535 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19536 } 19537 19538 /** 19539 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19540 * @phba: pointer to lpfc hba data structure. 19541 * 19542 * This routine is invoked to post rpi header templates to the 19543 * HBA consistent with the SLI-4 interface spec. This routine 19544 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19545 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19546 * 19547 * This routine does not require any locks. It's usage is expected 19548 * to be driver load or reset recovery when the driver is 19549 * sequential. 19550 * 19551 * Return codes 19552 * 0 - successful 19553 * -EIO - The mailbox failed to complete successfully. 19554 * When this error occurs, the driver is not guaranteed 19555 * to have any rpi regions posted to the device and 19556 * must either attempt to repost the regions or take a 19557 * fatal error. 19558 **/ 19559 int 19560 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19561 { 19562 struct lpfc_rpi_hdr *rpi_page; 19563 uint32_t rc = 0; 19564 uint16_t lrpi = 0; 19565 19566 /* SLI4 ports that support extents do not require RPI headers. */ 19567 if (!phba->sli4_hba.rpi_hdrs_in_use) 19568 goto exit; 19569 if (phba->sli4_hba.extents_in_use) 19570 return -EIO; 19571 19572 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19573 /* 19574 * Assign the rpi headers a physical rpi only if the driver 19575 * has not initialized those resources. A port reset only 19576 * needs the headers posted. 19577 */ 19578 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19579 LPFC_RPI_RSRC_RDY) 19580 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19581 19582 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19583 if (rc != MBX_SUCCESS) { 19584 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19585 "2008 Error %d posting all rpi " 19586 "headers\n", rc); 19587 rc = -EIO; 19588 break; 19589 } 19590 } 19591 19592 exit: 19593 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19594 LPFC_RPI_RSRC_RDY); 19595 return rc; 19596 } 19597 19598 /** 19599 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19600 * @phba: pointer to lpfc hba data structure. 19601 * @rpi_page: pointer to the rpi memory region. 19602 * 19603 * This routine is invoked to post a single rpi header to the 19604 * HBA consistent with the SLI-4 interface spec. This memory region 19605 * maps up to 64 rpi context regions. 19606 * 19607 * Return codes 19608 * 0 - successful 19609 * -ENOMEM - No available memory 19610 * -EIO - The mailbox failed to complete successfully. 19611 **/ 19612 int 19613 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19614 { 19615 LPFC_MBOXQ_t *mboxq; 19616 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19617 uint32_t rc = 0; 19618 uint32_t shdr_status, shdr_add_status; 19619 union lpfc_sli4_cfg_shdr *shdr; 19620 19621 /* SLI4 ports that support extents do not require RPI headers. */ 19622 if (!phba->sli4_hba.rpi_hdrs_in_use) 19623 return rc; 19624 if (phba->sli4_hba.extents_in_use) 19625 return -EIO; 19626 19627 /* The port is notified of the header region via a mailbox command. */ 19628 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19629 if (!mboxq) { 19630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19631 "2001 Unable to allocate memory for issuing " 19632 "SLI_CONFIG_SPECIAL mailbox command\n"); 19633 return -ENOMEM; 19634 } 19635 19636 /* Post all rpi memory regions to the port. */ 19637 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19638 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19639 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19640 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19641 sizeof(struct lpfc_sli4_cfg_mhdr), 19642 LPFC_SLI4_MBX_EMBED); 19643 19644 19645 /* Post the physical rpi to the port for this rpi header. */ 19646 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19647 rpi_page->start_rpi); 19648 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19649 hdr_tmpl, rpi_page->page_count); 19650 19651 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19652 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19654 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19655 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19656 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19657 mempool_free(mboxq, phba->mbox_mem_pool); 19658 if (shdr_status || shdr_add_status || rc) { 19659 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19660 "2514 POST_RPI_HDR mailbox failed with " 19661 "status x%x add_status x%x, mbx status x%x\n", 19662 shdr_status, shdr_add_status, rc); 19663 rc = -ENXIO; 19664 } else { 19665 /* 19666 * The next_rpi stores the next logical module-64 rpi value used 19667 * to post physical rpis in subsequent rpi postings. 19668 */ 19669 spin_lock_irq(&phba->hbalock); 19670 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19671 spin_unlock_irq(&phba->hbalock); 19672 } 19673 return rc; 19674 } 19675 19676 /** 19677 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19678 * @phba: pointer to lpfc hba data structure. 19679 * 19680 * This routine is invoked to post rpi header templates to the 19681 * HBA consistent with the SLI-4 interface spec. This routine 19682 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19683 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19684 * 19685 * Returns 19686 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19687 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19688 **/ 19689 int 19690 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19691 { 19692 unsigned long rpi; 19693 uint16_t max_rpi, rpi_limit; 19694 uint16_t rpi_remaining, lrpi = 0; 19695 struct lpfc_rpi_hdr *rpi_hdr; 19696 unsigned long iflag; 19697 19698 /* 19699 * Fetch the next logical rpi. Because this index is logical, 19700 * the driver starts at 0 each time. 19701 */ 19702 spin_lock_irqsave(&phba->hbalock, iflag); 19703 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19704 rpi_limit = phba->sli4_hba.next_rpi; 19705 19706 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19707 if (rpi >= rpi_limit) 19708 rpi = LPFC_RPI_ALLOC_ERROR; 19709 else { 19710 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19711 phba->sli4_hba.max_cfg_param.rpi_used++; 19712 phba->sli4_hba.rpi_count++; 19713 } 19714 lpfc_printf_log(phba, KERN_INFO, 19715 LOG_NODE | LOG_DISCOVERY, 19716 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19717 (int) rpi, max_rpi, rpi_limit); 19718 19719 /* 19720 * Don't try to allocate more rpi header regions if the device limit 19721 * has been exhausted. 19722 */ 19723 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19724 (phba->sli4_hba.rpi_count >= max_rpi)) { 19725 spin_unlock_irqrestore(&phba->hbalock, iflag); 19726 return rpi; 19727 } 19728 19729 /* 19730 * RPI header postings are not required for SLI4 ports capable of 19731 * extents. 19732 */ 19733 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19734 spin_unlock_irqrestore(&phba->hbalock, iflag); 19735 return rpi; 19736 } 19737 19738 /* 19739 * If the driver is running low on rpi resources, allocate another 19740 * page now. Note that the next_rpi value is used because 19741 * it represents how many are actually in use whereas max_rpi notes 19742 * how many are supported max by the device. 19743 */ 19744 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19745 spin_unlock_irqrestore(&phba->hbalock, iflag); 19746 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19747 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19748 if (!rpi_hdr) { 19749 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19750 "2002 Error Could not grow rpi " 19751 "count\n"); 19752 } else { 19753 lrpi = rpi_hdr->start_rpi; 19754 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19755 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19756 } 19757 } 19758 19759 return rpi; 19760 } 19761 19762 /** 19763 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19764 * @phba: pointer to lpfc hba data structure. 19765 * @rpi: rpi to free 19766 * 19767 * This routine is invoked to release an rpi to the pool of 19768 * available rpis maintained by the driver. 19769 **/ 19770 static void 19771 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19772 { 19773 /* 19774 * if the rpi value indicates a prior unreg has already 19775 * been done, skip the unreg. 19776 */ 19777 if (rpi == LPFC_RPI_ALLOC_ERROR) 19778 return; 19779 19780 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19781 phba->sli4_hba.rpi_count--; 19782 phba->sli4_hba.max_cfg_param.rpi_used--; 19783 } else { 19784 lpfc_printf_log(phba, KERN_INFO, 19785 LOG_NODE | LOG_DISCOVERY, 19786 "2016 rpi %x not inuse\n", 19787 rpi); 19788 } 19789 } 19790 19791 /** 19792 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19793 * @phba: pointer to lpfc hba data structure. 19794 * @rpi: rpi to free 19795 * 19796 * This routine is invoked to release an rpi to the pool of 19797 * available rpis maintained by the driver. 19798 **/ 19799 void 19800 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19801 { 19802 spin_lock_irq(&phba->hbalock); 19803 __lpfc_sli4_free_rpi(phba, rpi); 19804 spin_unlock_irq(&phba->hbalock); 19805 } 19806 19807 /** 19808 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19809 * @phba: pointer to lpfc hba data structure. 19810 * 19811 * This routine is invoked to remove the memory region that 19812 * provided rpi via a bitmask. 19813 **/ 19814 void 19815 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19816 { 19817 kfree(phba->sli4_hba.rpi_bmask); 19818 kfree(phba->sli4_hba.rpi_ids); 19819 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19820 } 19821 19822 /** 19823 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19824 * @ndlp: pointer to lpfc nodelist data structure. 19825 * @cmpl: completion call-back. 19826 * @arg: data to load as MBox 'caller buffer information' 19827 * 19828 * This routine is invoked to remove the memory region that 19829 * provided rpi via a bitmask. 19830 **/ 19831 int 19832 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19833 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19834 { 19835 LPFC_MBOXQ_t *mboxq; 19836 struct lpfc_hba *phba = ndlp->phba; 19837 int rc; 19838 19839 /* The port is notified of the header region via a mailbox command. */ 19840 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19841 if (!mboxq) 19842 return -ENOMEM; 19843 19844 /* If cmpl assigned, then this nlp_get pairs with 19845 * lpfc_mbx_cmpl_resume_rpi. 19846 * 19847 * Else cmpl is NULL, then this nlp_get pairs with 19848 * lpfc_sli_def_mbox_cmpl. 19849 */ 19850 if (!lpfc_nlp_get(ndlp)) { 19851 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19852 "2122 %s: Failed to get nlp ref\n", 19853 __func__); 19854 mempool_free(mboxq, phba->mbox_mem_pool); 19855 return -EIO; 19856 } 19857 19858 /* Post all rpi memory regions to the port. */ 19859 lpfc_resume_rpi(mboxq, ndlp); 19860 if (cmpl) { 19861 mboxq->mbox_cmpl = cmpl; 19862 mboxq->ctx_buf = arg; 19863 } else 19864 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19865 mboxq->ctx_ndlp = ndlp; 19866 mboxq->vport = ndlp->vport; 19867 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19868 if (rc == MBX_NOT_FINISHED) { 19869 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19870 "2010 Resume RPI Mailbox failed " 19871 "status %d, mbxStatus x%x\n", rc, 19872 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19873 lpfc_nlp_put(ndlp); 19874 mempool_free(mboxq, phba->mbox_mem_pool); 19875 return -EIO; 19876 } 19877 return 0; 19878 } 19879 19880 /** 19881 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19882 * @vport: Pointer to the vport for which the vpi is being initialized 19883 * 19884 * This routine is invoked to activate a vpi with the port. 19885 * 19886 * Returns: 19887 * 0 success 19888 * -Evalue otherwise 19889 **/ 19890 int 19891 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19892 { 19893 LPFC_MBOXQ_t *mboxq; 19894 int rc = 0; 19895 int retval = MBX_SUCCESS; 19896 uint32_t mbox_tmo; 19897 struct lpfc_hba *phba = vport->phba; 19898 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19899 if (!mboxq) 19900 return -ENOMEM; 19901 lpfc_init_vpi(phba, mboxq, vport->vpi); 19902 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19903 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19904 if (rc != MBX_SUCCESS) { 19905 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19906 "2022 INIT VPI Mailbox failed " 19907 "status %d, mbxStatus x%x\n", rc, 19908 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19909 retval = -EIO; 19910 } 19911 if (rc != MBX_TIMEOUT) 19912 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19913 19914 return retval; 19915 } 19916 19917 /** 19918 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19919 * @phba: pointer to lpfc hba data structure. 19920 * @mboxq: Pointer to mailbox object. 19921 * 19922 * This routine is invoked to manually add a single FCF record. The caller 19923 * must pass a completely initialized FCF_Record. This routine takes 19924 * care of the nonembedded mailbox operations. 19925 **/ 19926 static void 19927 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19928 { 19929 void *virt_addr; 19930 union lpfc_sli4_cfg_shdr *shdr; 19931 uint32_t shdr_status, shdr_add_status; 19932 19933 virt_addr = mboxq->sge_array->addr[0]; 19934 /* The IOCTL status is embedded in the mailbox subheader. */ 19935 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19936 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19937 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19938 19939 if ((shdr_status || shdr_add_status) && 19940 (shdr_status != STATUS_FCF_IN_USE)) 19941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19942 "2558 ADD_FCF_RECORD mailbox failed with " 19943 "status x%x add_status x%x\n", 19944 shdr_status, shdr_add_status); 19945 19946 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19947 } 19948 19949 /** 19950 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19951 * @phba: pointer to lpfc hba data structure. 19952 * @fcf_record: pointer to the initialized fcf record to add. 19953 * 19954 * This routine is invoked to manually add a single FCF record. The caller 19955 * must pass a completely initialized FCF_Record. This routine takes 19956 * care of the nonembedded mailbox operations. 19957 **/ 19958 int 19959 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19960 { 19961 int rc = 0; 19962 LPFC_MBOXQ_t *mboxq; 19963 uint8_t *bytep; 19964 void *virt_addr; 19965 struct lpfc_mbx_sge sge; 19966 uint32_t alloc_len, req_len; 19967 uint32_t fcfindex; 19968 19969 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19970 if (!mboxq) { 19971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19972 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19973 return -ENOMEM; 19974 } 19975 19976 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19977 sizeof(uint32_t); 19978 19979 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19980 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19981 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19982 req_len, LPFC_SLI4_MBX_NEMBED); 19983 if (alloc_len < req_len) { 19984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19985 "2523 Allocated DMA memory size (x%x) is " 19986 "less than the requested DMA memory " 19987 "size (x%x)\n", alloc_len, req_len); 19988 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19989 return -ENOMEM; 19990 } 19991 19992 /* 19993 * Get the first SGE entry from the non-embedded DMA memory. This 19994 * routine only uses a single SGE. 19995 */ 19996 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19997 virt_addr = mboxq->sge_array->addr[0]; 19998 /* 19999 * Configure the FCF record for FCFI 0. This is the driver's 20000 * hardcoded default and gets used in nonFIP mode. 20001 */ 20002 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20003 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20004 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20005 20006 /* 20007 * Copy the fcf_index and the FCF Record Data. The data starts after 20008 * the FCoE header plus word10. The data copy needs to be endian 20009 * correct. 20010 */ 20011 bytep += sizeof(uint32_t); 20012 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20013 mboxq->vport = phba->pport; 20014 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20015 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20016 if (rc == MBX_NOT_FINISHED) { 20017 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20018 "2515 ADD_FCF_RECORD mailbox failed with " 20019 "status 0x%x\n", rc); 20020 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20021 rc = -EIO; 20022 } else 20023 rc = 0; 20024 20025 return rc; 20026 } 20027 20028 /** 20029 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20030 * @phba: pointer to lpfc hba data structure. 20031 * @fcf_record: pointer to the fcf record to write the default data. 20032 * @fcf_index: FCF table entry index. 20033 * 20034 * This routine is invoked to build the driver's default FCF record. The 20035 * values used are hardcoded. This routine handles memory initialization. 20036 * 20037 **/ 20038 void 20039 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20040 struct fcf_record *fcf_record, 20041 uint16_t fcf_index) 20042 { 20043 memset(fcf_record, 0, sizeof(struct fcf_record)); 20044 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20045 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20046 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20047 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20048 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20049 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20050 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20051 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20052 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20053 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20054 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20055 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20056 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20057 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20058 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20059 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20060 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20061 /* Set the VLAN bit map */ 20062 if (phba->valid_vlan) { 20063 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20064 = 1 << (phba->vlan_id % 8); 20065 } 20066 } 20067 20068 /** 20069 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20070 * @phba: pointer to lpfc hba data structure. 20071 * @fcf_index: FCF table entry offset. 20072 * 20073 * This routine is invoked to scan the entire FCF table by reading FCF 20074 * record and processing it one at a time starting from the @fcf_index 20075 * for initial FCF discovery or fast FCF failover rediscovery. 20076 * 20077 * Return 0 if the mailbox command is submitted successfully, none 0 20078 * otherwise. 20079 **/ 20080 int 20081 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20082 { 20083 int rc = 0, error; 20084 LPFC_MBOXQ_t *mboxq; 20085 20086 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20087 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20088 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20089 if (!mboxq) { 20090 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20091 "2000 Failed to allocate mbox for " 20092 "READ_FCF cmd\n"); 20093 error = -ENOMEM; 20094 goto fail_fcf_scan; 20095 } 20096 /* Construct the read FCF record mailbox command */ 20097 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20098 if (rc) { 20099 error = -EINVAL; 20100 goto fail_fcf_scan; 20101 } 20102 /* Issue the mailbox command asynchronously */ 20103 mboxq->vport = phba->pport; 20104 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20105 20106 spin_lock_irq(&phba->hbalock); 20107 phba->hba_flag |= FCF_TS_INPROG; 20108 spin_unlock_irq(&phba->hbalock); 20109 20110 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20111 if (rc == MBX_NOT_FINISHED) 20112 error = -EIO; 20113 else { 20114 /* Reset eligible FCF count for new scan */ 20115 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20116 phba->fcf.eligible_fcf_cnt = 0; 20117 error = 0; 20118 } 20119 fail_fcf_scan: 20120 if (error) { 20121 if (mboxq) 20122 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20123 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20124 spin_lock_irq(&phba->hbalock); 20125 phba->hba_flag &= ~FCF_TS_INPROG; 20126 spin_unlock_irq(&phba->hbalock); 20127 } 20128 return error; 20129 } 20130 20131 /** 20132 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20133 * @phba: pointer to lpfc hba data structure. 20134 * @fcf_index: FCF table entry offset. 20135 * 20136 * This routine is invoked to read an FCF record indicated by @fcf_index 20137 * and to use it for FLOGI roundrobin FCF failover. 20138 * 20139 * Return 0 if the mailbox command is submitted successfully, none 0 20140 * otherwise. 20141 **/ 20142 int 20143 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20144 { 20145 int rc = 0, error; 20146 LPFC_MBOXQ_t *mboxq; 20147 20148 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20149 if (!mboxq) { 20150 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20151 "2763 Failed to allocate mbox for " 20152 "READ_FCF cmd\n"); 20153 error = -ENOMEM; 20154 goto fail_fcf_read; 20155 } 20156 /* Construct the read FCF record mailbox command */ 20157 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20158 if (rc) { 20159 error = -EINVAL; 20160 goto fail_fcf_read; 20161 } 20162 /* Issue the mailbox command asynchronously */ 20163 mboxq->vport = phba->pport; 20164 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20165 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20166 if (rc == MBX_NOT_FINISHED) 20167 error = -EIO; 20168 else 20169 error = 0; 20170 20171 fail_fcf_read: 20172 if (error && mboxq) 20173 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20174 return error; 20175 } 20176 20177 /** 20178 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20179 * @phba: pointer to lpfc hba data structure. 20180 * @fcf_index: FCF table entry offset. 20181 * 20182 * This routine is invoked to read an FCF record indicated by @fcf_index to 20183 * determine whether it's eligible for FLOGI roundrobin failover list. 20184 * 20185 * Return 0 if the mailbox command is submitted successfully, none 0 20186 * otherwise. 20187 **/ 20188 int 20189 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20190 { 20191 int rc = 0, error; 20192 LPFC_MBOXQ_t *mboxq; 20193 20194 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20195 if (!mboxq) { 20196 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20197 "2758 Failed to allocate mbox for " 20198 "READ_FCF cmd\n"); 20199 error = -ENOMEM; 20200 goto fail_fcf_read; 20201 } 20202 /* Construct the read FCF record mailbox command */ 20203 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20204 if (rc) { 20205 error = -EINVAL; 20206 goto fail_fcf_read; 20207 } 20208 /* Issue the mailbox command asynchronously */ 20209 mboxq->vport = phba->pport; 20210 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20211 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20212 if (rc == MBX_NOT_FINISHED) 20213 error = -EIO; 20214 else 20215 error = 0; 20216 20217 fail_fcf_read: 20218 if (error && mboxq) 20219 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20220 return error; 20221 } 20222 20223 /** 20224 * lpfc_check_next_fcf_pri_level 20225 * @phba: pointer to the lpfc_hba struct for this port. 20226 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20227 * routine when the rr_bmask is empty. The FCF indecies are put into the 20228 * rr_bmask based on their priority level. Starting from the highest priority 20229 * to the lowest. The most likely FCF candidate will be in the highest 20230 * priority group. When this routine is called it searches the fcf_pri list for 20231 * next lowest priority group and repopulates the rr_bmask with only those 20232 * fcf_indexes. 20233 * returns: 20234 * 1=success 0=failure 20235 **/ 20236 static int 20237 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20238 { 20239 uint16_t next_fcf_pri; 20240 uint16_t last_index; 20241 struct lpfc_fcf_pri *fcf_pri; 20242 int rc; 20243 int ret = 0; 20244 20245 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20246 LPFC_SLI4_FCF_TBL_INDX_MAX); 20247 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20248 "3060 Last IDX %d\n", last_index); 20249 20250 /* Verify the priority list has 2 or more entries */ 20251 spin_lock_irq(&phba->hbalock); 20252 if (list_empty(&phba->fcf.fcf_pri_list) || 20253 list_is_singular(&phba->fcf.fcf_pri_list)) { 20254 spin_unlock_irq(&phba->hbalock); 20255 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20256 "3061 Last IDX %d\n", last_index); 20257 return 0; /* Empty rr list */ 20258 } 20259 spin_unlock_irq(&phba->hbalock); 20260 20261 next_fcf_pri = 0; 20262 /* 20263 * Clear the rr_bmask and set all of the bits that are at this 20264 * priority. 20265 */ 20266 memset(phba->fcf.fcf_rr_bmask, 0, 20267 sizeof(*phba->fcf.fcf_rr_bmask)); 20268 spin_lock_irq(&phba->hbalock); 20269 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20270 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20271 continue; 20272 /* 20273 * the 1st priority that has not FLOGI failed 20274 * will be the highest. 20275 */ 20276 if (!next_fcf_pri) 20277 next_fcf_pri = fcf_pri->fcf_rec.priority; 20278 spin_unlock_irq(&phba->hbalock); 20279 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20280 rc = lpfc_sli4_fcf_rr_index_set(phba, 20281 fcf_pri->fcf_rec.fcf_index); 20282 if (rc) 20283 return 0; 20284 } 20285 spin_lock_irq(&phba->hbalock); 20286 } 20287 /* 20288 * if next_fcf_pri was not set above and the list is not empty then 20289 * we have failed flogis on all of them. So reset flogi failed 20290 * and start at the beginning. 20291 */ 20292 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20293 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20294 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20295 /* 20296 * the 1st priority that has not FLOGI failed 20297 * will be the highest. 20298 */ 20299 if (!next_fcf_pri) 20300 next_fcf_pri = fcf_pri->fcf_rec.priority; 20301 spin_unlock_irq(&phba->hbalock); 20302 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20303 rc = lpfc_sli4_fcf_rr_index_set(phba, 20304 fcf_pri->fcf_rec.fcf_index); 20305 if (rc) 20306 return 0; 20307 } 20308 spin_lock_irq(&phba->hbalock); 20309 } 20310 } else 20311 ret = 1; 20312 spin_unlock_irq(&phba->hbalock); 20313 20314 return ret; 20315 } 20316 /** 20317 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20318 * @phba: pointer to lpfc hba data structure. 20319 * 20320 * This routine is to get the next eligible FCF record index in a round 20321 * robin fashion. If the next eligible FCF record index equals to the 20322 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20323 * shall be returned, otherwise, the next eligible FCF record's index 20324 * shall be returned. 20325 **/ 20326 uint16_t 20327 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20328 { 20329 uint16_t next_fcf_index; 20330 20331 initial_priority: 20332 /* Search start from next bit of currently registered FCF index */ 20333 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20334 20335 next_priority: 20336 /* Determine the next fcf index to check */ 20337 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20338 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20339 LPFC_SLI4_FCF_TBL_INDX_MAX, 20340 next_fcf_index); 20341 20342 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20343 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20344 /* 20345 * If we have wrapped then we need to clear the bits that 20346 * have been tested so that we can detect when we should 20347 * change the priority level. 20348 */ 20349 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20350 LPFC_SLI4_FCF_TBL_INDX_MAX); 20351 } 20352 20353 20354 /* Check roundrobin failover list empty condition */ 20355 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20356 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20357 /* 20358 * If next fcf index is not found check if there are lower 20359 * Priority level fcf's in the fcf_priority list. 20360 * Set up the rr_bmask with all of the avaiable fcf bits 20361 * at that level and continue the selection process. 20362 */ 20363 if (lpfc_check_next_fcf_pri_level(phba)) 20364 goto initial_priority; 20365 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20366 "2844 No roundrobin failover FCF available\n"); 20367 20368 return LPFC_FCOE_FCF_NEXT_NONE; 20369 } 20370 20371 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20372 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20373 LPFC_FCF_FLOGI_FAILED) { 20374 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20375 return LPFC_FCOE_FCF_NEXT_NONE; 20376 20377 goto next_priority; 20378 } 20379 20380 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20381 "2845 Get next roundrobin failover FCF (x%x)\n", 20382 next_fcf_index); 20383 20384 return next_fcf_index; 20385 } 20386 20387 /** 20388 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20389 * @phba: pointer to lpfc hba data structure. 20390 * @fcf_index: index into the FCF table to 'set' 20391 * 20392 * This routine sets the FCF record index in to the eligible bmask for 20393 * roundrobin failover search. It checks to make sure that the index 20394 * does not go beyond the range of the driver allocated bmask dimension 20395 * before setting the bit. 20396 * 20397 * Returns 0 if the index bit successfully set, otherwise, it returns 20398 * -EINVAL. 20399 **/ 20400 int 20401 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20402 { 20403 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20404 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20405 "2610 FCF (x%x) reached driver's book " 20406 "keeping dimension:x%x\n", 20407 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20408 return -EINVAL; 20409 } 20410 /* Set the eligible FCF record index bmask */ 20411 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20412 20413 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20414 "2790 Set FCF (x%x) to roundrobin FCF failover " 20415 "bmask\n", fcf_index); 20416 20417 return 0; 20418 } 20419 20420 /** 20421 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20422 * @phba: pointer to lpfc hba data structure. 20423 * @fcf_index: index into the FCF table to 'clear' 20424 * 20425 * This routine clears the FCF record index from the eligible bmask for 20426 * roundrobin failover search. It checks to make sure that the index 20427 * does not go beyond the range of the driver allocated bmask dimension 20428 * before clearing the bit. 20429 **/ 20430 void 20431 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20432 { 20433 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20434 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20435 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20436 "2762 FCF (x%x) reached driver's book " 20437 "keeping dimension:x%x\n", 20438 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20439 return; 20440 } 20441 /* Clear the eligible FCF record index bmask */ 20442 spin_lock_irq(&phba->hbalock); 20443 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20444 list) { 20445 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20446 list_del_init(&fcf_pri->list); 20447 break; 20448 } 20449 } 20450 spin_unlock_irq(&phba->hbalock); 20451 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20452 20453 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20454 "2791 Clear FCF (x%x) from roundrobin failover " 20455 "bmask\n", fcf_index); 20456 } 20457 20458 /** 20459 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20460 * @phba: pointer to lpfc hba data structure. 20461 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20462 * 20463 * This routine is the completion routine for the rediscover FCF table mailbox 20464 * command. If the mailbox command returned failure, it will try to stop the 20465 * FCF rediscover wait timer. 20466 **/ 20467 static void 20468 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20469 { 20470 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20471 uint32_t shdr_status, shdr_add_status; 20472 20473 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20474 20475 shdr_status = bf_get(lpfc_mbox_hdr_status, 20476 &redisc_fcf->header.cfg_shdr.response); 20477 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20478 &redisc_fcf->header.cfg_shdr.response); 20479 if (shdr_status || shdr_add_status) { 20480 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20481 "2746 Requesting for FCF rediscovery failed " 20482 "status x%x add_status x%x\n", 20483 shdr_status, shdr_add_status); 20484 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20485 spin_lock_irq(&phba->hbalock); 20486 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20487 spin_unlock_irq(&phba->hbalock); 20488 /* 20489 * CVL event triggered FCF rediscover request failed, 20490 * last resort to re-try current registered FCF entry. 20491 */ 20492 lpfc_retry_pport_discovery(phba); 20493 } else { 20494 spin_lock_irq(&phba->hbalock); 20495 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20496 spin_unlock_irq(&phba->hbalock); 20497 /* 20498 * DEAD FCF event triggered FCF rediscover request 20499 * failed, last resort to fail over as a link down 20500 * to FCF registration. 20501 */ 20502 lpfc_sli4_fcf_dead_failthrough(phba); 20503 } 20504 } else { 20505 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20506 "2775 Start FCF rediscover quiescent timer\n"); 20507 /* 20508 * Start FCF rediscovery wait timer for pending FCF 20509 * before rescan FCF record table. 20510 */ 20511 lpfc_fcf_redisc_wait_start_timer(phba); 20512 } 20513 20514 mempool_free(mbox, phba->mbox_mem_pool); 20515 } 20516 20517 /** 20518 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20519 * @phba: pointer to lpfc hba data structure. 20520 * 20521 * This routine is invoked to request for rediscovery of the entire FCF table 20522 * by the port. 20523 **/ 20524 int 20525 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20526 { 20527 LPFC_MBOXQ_t *mbox; 20528 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20529 int rc, length; 20530 20531 /* Cancel retry delay timers to all vports before FCF rediscover */ 20532 lpfc_cancel_all_vport_retry_delay_timer(phba); 20533 20534 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20535 if (!mbox) { 20536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20537 "2745 Failed to allocate mbox for " 20538 "requesting FCF rediscover.\n"); 20539 return -ENOMEM; 20540 } 20541 20542 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20543 sizeof(struct lpfc_sli4_cfg_mhdr)); 20544 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20545 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20546 length, LPFC_SLI4_MBX_EMBED); 20547 20548 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20549 /* Set count to 0 for invalidating the entire FCF database */ 20550 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20551 20552 /* Issue the mailbox command asynchronously */ 20553 mbox->vport = phba->pport; 20554 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20555 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20556 20557 if (rc == MBX_NOT_FINISHED) { 20558 mempool_free(mbox, phba->mbox_mem_pool); 20559 return -EIO; 20560 } 20561 return 0; 20562 } 20563 20564 /** 20565 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20566 * @phba: pointer to lpfc hba data structure. 20567 * 20568 * This function is the failover routine as a last resort to the FCF DEAD 20569 * event when driver failed to perform fast FCF failover. 20570 **/ 20571 void 20572 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20573 { 20574 uint32_t link_state; 20575 20576 /* 20577 * Last resort as FCF DEAD event failover will treat this as 20578 * a link down, but save the link state because we don't want 20579 * it to be changed to Link Down unless it is already down. 20580 */ 20581 link_state = phba->link_state; 20582 lpfc_linkdown(phba); 20583 phba->link_state = link_state; 20584 20585 /* Unregister FCF if no devices connected to it */ 20586 lpfc_unregister_unused_fcf(phba); 20587 } 20588 20589 /** 20590 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20591 * @phba: pointer to lpfc hba data structure. 20592 * @rgn23_data: pointer to configure region 23 data. 20593 * 20594 * This function gets SLI3 port configure region 23 data through memory dump 20595 * mailbox command. When it successfully retrieves data, the size of the data 20596 * will be returned, otherwise, 0 will be returned. 20597 **/ 20598 static uint32_t 20599 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20600 { 20601 LPFC_MBOXQ_t *pmb = NULL; 20602 MAILBOX_t *mb; 20603 uint32_t offset = 0; 20604 int rc; 20605 20606 if (!rgn23_data) 20607 return 0; 20608 20609 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20610 if (!pmb) { 20611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20612 "2600 failed to allocate mailbox memory\n"); 20613 return 0; 20614 } 20615 mb = &pmb->u.mb; 20616 20617 do { 20618 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20619 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20620 20621 if (rc != MBX_SUCCESS) { 20622 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20623 "2601 failed to read config " 20624 "region 23, rc 0x%x Status 0x%x\n", 20625 rc, mb->mbxStatus); 20626 mb->un.varDmp.word_cnt = 0; 20627 } 20628 /* 20629 * dump mem may return a zero when finished or we got a 20630 * mailbox error, either way we are done. 20631 */ 20632 if (mb->un.varDmp.word_cnt == 0) 20633 break; 20634 20635 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20636 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20637 20638 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20639 rgn23_data + offset, 20640 mb->un.varDmp.word_cnt); 20641 offset += mb->un.varDmp.word_cnt; 20642 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20643 20644 mempool_free(pmb, phba->mbox_mem_pool); 20645 return offset; 20646 } 20647 20648 /** 20649 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20650 * @phba: pointer to lpfc hba data structure. 20651 * @rgn23_data: pointer to configure region 23 data. 20652 * 20653 * This function gets SLI4 port configure region 23 data through memory dump 20654 * mailbox command. When it successfully retrieves data, the size of the data 20655 * will be returned, otherwise, 0 will be returned. 20656 **/ 20657 static uint32_t 20658 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20659 { 20660 LPFC_MBOXQ_t *mboxq = NULL; 20661 struct lpfc_dmabuf *mp = NULL; 20662 struct lpfc_mqe *mqe; 20663 uint32_t data_length = 0; 20664 int rc; 20665 20666 if (!rgn23_data) 20667 return 0; 20668 20669 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20670 if (!mboxq) { 20671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20672 "3105 failed to allocate mailbox memory\n"); 20673 return 0; 20674 } 20675 20676 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20677 goto out; 20678 mqe = &mboxq->u.mqe; 20679 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20680 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20681 if (rc) 20682 goto out; 20683 data_length = mqe->un.mb_words[5]; 20684 if (data_length == 0) 20685 goto out; 20686 if (data_length > DMP_RGN23_SIZE) { 20687 data_length = 0; 20688 goto out; 20689 } 20690 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20691 out: 20692 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20693 return data_length; 20694 } 20695 20696 /** 20697 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20698 * @phba: pointer to lpfc hba data structure. 20699 * 20700 * This function read region 23 and parse TLV for port status to 20701 * decide if the user disaled the port. If the TLV indicates the 20702 * port is disabled, the hba_flag is set accordingly. 20703 **/ 20704 void 20705 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20706 { 20707 uint8_t *rgn23_data = NULL; 20708 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20709 uint32_t offset = 0; 20710 20711 /* Get adapter Region 23 data */ 20712 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20713 if (!rgn23_data) 20714 goto out; 20715 20716 if (phba->sli_rev < LPFC_SLI_REV4) 20717 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20718 else { 20719 if_type = bf_get(lpfc_sli_intf_if_type, 20720 &phba->sli4_hba.sli_intf); 20721 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20722 goto out; 20723 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20724 } 20725 20726 if (!data_size) 20727 goto out; 20728 20729 /* Check the region signature first */ 20730 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20732 "2619 Config region 23 has bad signature\n"); 20733 goto out; 20734 } 20735 offset += 4; 20736 20737 /* Check the data structure version */ 20738 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20739 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20740 "2620 Config region 23 has bad version\n"); 20741 goto out; 20742 } 20743 offset += 4; 20744 20745 /* Parse TLV entries in the region */ 20746 while (offset < data_size) { 20747 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20748 break; 20749 /* 20750 * If the TLV is not driver specific TLV or driver id is 20751 * not linux driver id, skip the record. 20752 */ 20753 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20754 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20755 (rgn23_data[offset + 3] != 0)) { 20756 offset += rgn23_data[offset + 1] * 4 + 4; 20757 continue; 20758 } 20759 20760 /* Driver found a driver specific TLV in the config region */ 20761 sub_tlv_len = rgn23_data[offset + 1] * 4; 20762 offset += 4; 20763 tlv_offset = 0; 20764 20765 /* 20766 * Search for configured port state sub-TLV. 20767 */ 20768 while ((offset < data_size) && 20769 (tlv_offset < sub_tlv_len)) { 20770 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20771 offset += 4; 20772 tlv_offset += 4; 20773 break; 20774 } 20775 if (rgn23_data[offset] != PORT_STE_TYPE) { 20776 offset += rgn23_data[offset + 1] * 4 + 4; 20777 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20778 continue; 20779 } 20780 20781 /* This HBA contains PORT_STE configured */ 20782 if (!rgn23_data[offset + 2]) 20783 phba->hba_flag |= LINK_DISABLED; 20784 20785 goto out; 20786 } 20787 } 20788 20789 out: 20790 kfree(rgn23_data); 20791 return; 20792 } 20793 20794 /** 20795 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20796 * @phba: pointer to lpfc hba data structure 20797 * @shdr_status: wr_object rsp's status field 20798 * @shdr_add_status: wr_object rsp's add_status field 20799 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20800 * @shdr_change_status: wr_object rsp's change_status field 20801 * @shdr_csf: wr_object rsp's csf bit 20802 * 20803 * This routine is intended to be called after a firmware write completes. 20804 * It will log next action items to be performed by the user to instantiate 20805 * the newly downloaded firmware or reason for incompatibility. 20806 **/ 20807 static void 20808 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20809 u32 shdr_add_status, u32 shdr_add_status_2, 20810 u32 shdr_change_status, u32 shdr_csf) 20811 { 20812 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20813 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20814 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20815 "change_status x%02x, csf %01x\n", __func__, 20816 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20817 shdr_status, shdr_add_status, shdr_add_status_2, 20818 shdr_change_status, shdr_csf); 20819 20820 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20821 switch (shdr_add_status_2) { 20822 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20823 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20824 "4199 Firmware write failed: " 20825 "image incompatible with flash x%02x\n", 20826 phba->sli4_hba.flash_id); 20827 break; 20828 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20829 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20830 "4200 Firmware write failed: " 20831 "image incompatible with ASIC " 20832 "architecture x%02x\n", 20833 phba->sli4_hba.asic_rev); 20834 break; 20835 default: 20836 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20837 "4210 Firmware write failed: " 20838 "add_status_2 x%02x\n", 20839 shdr_add_status_2); 20840 break; 20841 } 20842 } else if (!shdr_status && !shdr_add_status) { 20843 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20844 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20845 if (shdr_csf) 20846 shdr_change_status = 20847 LPFC_CHANGE_STATUS_PCI_RESET; 20848 } 20849 20850 switch (shdr_change_status) { 20851 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20852 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20853 "3198 Firmware write complete: System " 20854 "reboot required to instantiate\n"); 20855 break; 20856 case (LPFC_CHANGE_STATUS_FW_RESET): 20857 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20858 "3199 Firmware write complete: " 20859 "Firmware reset required to " 20860 "instantiate\n"); 20861 break; 20862 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20863 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20864 "3200 Firmware write complete: Port " 20865 "Migration or PCI Reset required to " 20866 "instantiate\n"); 20867 break; 20868 case (LPFC_CHANGE_STATUS_PCI_RESET): 20869 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20870 "3201 Firmware write complete: PCI " 20871 "Reset required to instantiate\n"); 20872 break; 20873 default: 20874 break; 20875 } 20876 } 20877 } 20878 20879 /** 20880 * lpfc_wr_object - write an object to the firmware 20881 * @phba: HBA structure that indicates port to create a queue on. 20882 * @dmabuf_list: list of dmabufs to write to the port. 20883 * @size: the total byte value of the objects to write to the port. 20884 * @offset: the current offset to be used to start the transfer. 20885 * 20886 * This routine will create a wr_object mailbox command to send to the port. 20887 * the mailbox command will be constructed using the dma buffers described in 20888 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20889 * BDEs that the imbedded mailbox can support. The @offset variable will be 20890 * used to indicate the starting offset of the transfer and will also return 20891 * the offset after the write object mailbox has completed. @size is used to 20892 * determine the end of the object and whether the eof bit should be set. 20893 * 20894 * Return 0 is successful and offset will contain the new offset to use 20895 * for the next write. 20896 * Return negative value for error cases. 20897 **/ 20898 int 20899 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20900 uint32_t size, uint32_t *offset) 20901 { 20902 struct lpfc_mbx_wr_object *wr_object; 20903 LPFC_MBOXQ_t *mbox; 20904 int rc = 0, i = 0; 20905 int mbox_status = 0; 20906 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20907 uint32_t shdr_change_status = 0, shdr_csf = 0; 20908 uint32_t mbox_tmo; 20909 struct lpfc_dmabuf *dmabuf; 20910 uint32_t written = 0; 20911 bool check_change_status = false; 20912 20913 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20914 if (!mbox) 20915 return -ENOMEM; 20916 20917 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20918 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20919 sizeof(struct lpfc_mbx_wr_object) - 20920 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20921 20922 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20923 wr_object->u.request.write_offset = *offset; 20924 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20925 wr_object->u.request.object_name[0] = 20926 cpu_to_le32(wr_object->u.request.object_name[0]); 20927 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20928 list_for_each_entry(dmabuf, dmabuf_list, list) { 20929 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20930 break; 20931 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20932 wr_object->u.request.bde[i].addrHigh = 20933 putPaddrHigh(dmabuf->phys); 20934 if (written + SLI4_PAGE_SIZE >= size) { 20935 wr_object->u.request.bde[i].tus.f.bdeSize = 20936 (size - written); 20937 written += (size - written); 20938 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20939 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20940 check_change_status = true; 20941 } else { 20942 wr_object->u.request.bde[i].tus.f.bdeSize = 20943 SLI4_PAGE_SIZE; 20944 written += SLI4_PAGE_SIZE; 20945 } 20946 i++; 20947 } 20948 wr_object->u.request.bde_count = i; 20949 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20950 if (!phba->sli4_hba.intr_enable) 20951 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20952 else { 20953 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20954 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20955 } 20956 20957 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20958 rc = mbox_status; 20959 20960 /* The IOCTL status is embedded in the mailbox subheader. */ 20961 shdr_status = bf_get(lpfc_mbox_hdr_status, 20962 &wr_object->header.cfg_shdr.response); 20963 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20964 &wr_object->header.cfg_shdr.response); 20965 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20966 &wr_object->header.cfg_shdr.response); 20967 if (check_change_status) { 20968 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20969 &wr_object->u.response); 20970 shdr_csf = bf_get(lpfc_wr_object_csf, 20971 &wr_object->u.response); 20972 } 20973 20974 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20975 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20976 "3025 Write Object mailbox failed with " 20977 "status x%x add_status x%x, add_status_2 x%x, " 20978 "mbx status x%x\n", 20979 shdr_status, shdr_add_status, shdr_add_status_2, 20980 rc); 20981 rc = -ENXIO; 20982 *offset = shdr_add_status; 20983 } else { 20984 *offset += wr_object->u.response.actual_write_length; 20985 } 20986 20987 if (rc || check_change_status) 20988 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20989 shdr_add_status_2, shdr_change_status, 20990 shdr_csf); 20991 20992 if (!phba->sli4_hba.intr_enable) 20993 mempool_free(mbox, phba->mbox_mem_pool); 20994 else if (mbox_status != MBX_TIMEOUT) 20995 mempool_free(mbox, phba->mbox_mem_pool); 20996 20997 return rc; 20998 } 20999 21000 /** 21001 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21002 * @vport: pointer to vport data structure. 21003 * 21004 * This function iterate through the mailboxq and clean up all REG_LOGIN 21005 * and REG_VPI mailbox commands associated with the vport. This function 21006 * is called when driver want to restart discovery of the vport due to 21007 * a Clear Virtual Link event. 21008 **/ 21009 void 21010 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21011 { 21012 struct lpfc_hba *phba = vport->phba; 21013 LPFC_MBOXQ_t *mb, *nextmb; 21014 struct lpfc_nodelist *ndlp; 21015 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21016 LIST_HEAD(mbox_cmd_list); 21017 uint8_t restart_loop; 21018 21019 /* Clean up internally queued mailbox commands with the vport */ 21020 spin_lock_irq(&phba->hbalock); 21021 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21022 if (mb->vport != vport) 21023 continue; 21024 21025 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21026 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21027 continue; 21028 21029 list_move_tail(&mb->list, &mbox_cmd_list); 21030 } 21031 /* Clean up active mailbox command with the vport */ 21032 mb = phba->sli.mbox_active; 21033 if (mb && (mb->vport == vport)) { 21034 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21035 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21036 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21037 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21038 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21039 21040 /* This reference is local to this routine. The 21041 * reference is removed at routine exit. 21042 */ 21043 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21044 21045 /* Unregister the RPI when mailbox complete */ 21046 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21047 } 21048 } 21049 /* Cleanup any mailbox completions which are not yet processed */ 21050 do { 21051 restart_loop = 0; 21052 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21053 /* 21054 * If this mailox is already processed or it is 21055 * for another vport ignore it. 21056 */ 21057 if ((mb->vport != vport) || 21058 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21059 continue; 21060 21061 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21062 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21063 continue; 21064 21065 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21066 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21067 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21068 /* Unregister the RPI when mailbox complete */ 21069 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21070 restart_loop = 1; 21071 spin_unlock_irq(&phba->hbalock); 21072 spin_lock(&ndlp->lock); 21073 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21074 spin_unlock(&ndlp->lock); 21075 spin_lock_irq(&phba->hbalock); 21076 break; 21077 } 21078 } 21079 } while (restart_loop); 21080 21081 spin_unlock_irq(&phba->hbalock); 21082 21083 /* Release the cleaned-up mailbox commands */ 21084 while (!list_empty(&mbox_cmd_list)) { 21085 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21086 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21087 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 21088 mb->ctx_ndlp = NULL; 21089 if (ndlp) { 21090 spin_lock(&ndlp->lock); 21091 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21092 spin_unlock(&ndlp->lock); 21093 lpfc_nlp_put(ndlp); 21094 } 21095 } 21096 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21097 } 21098 21099 /* Release the ndlp with the cleaned-up active mailbox command */ 21100 if (act_mbx_ndlp) { 21101 spin_lock(&act_mbx_ndlp->lock); 21102 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21103 spin_unlock(&act_mbx_ndlp->lock); 21104 lpfc_nlp_put(act_mbx_ndlp); 21105 } 21106 } 21107 21108 /** 21109 * lpfc_drain_txq - Drain the txq 21110 * @phba: Pointer to HBA context object. 21111 * 21112 * This function attempt to submit IOCBs on the txq 21113 * to the adapter. For SLI4 adapters, the txq contains 21114 * ELS IOCBs that have been deferred because the there 21115 * are no SGLs. This congestion can occur with large 21116 * vport counts during node discovery. 21117 **/ 21118 21119 uint32_t 21120 lpfc_drain_txq(struct lpfc_hba *phba) 21121 { 21122 LIST_HEAD(completions); 21123 struct lpfc_sli_ring *pring; 21124 struct lpfc_iocbq *piocbq = NULL; 21125 unsigned long iflags = 0; 21126 char *fail_msg = NULL; 21127 uint32_t txq_cnt = 0; 21128 struct lpfc_queue *wq; 21129 int ret = 0; 21130 21131 if (phba->link_flag & LS_MDS_LOOPBACK) { 21132 /* MDS WQE are posted only to first WQ*/ 21133 wq = phba->sli4_hba.hdwq[0].io_wq; 21134 if (unlikely(!wq)) 21135 return 0; 21136 pring = wq->pring; 21137 } else { 21138 wq = phba->sli4_hba.els_wq; 21139 if (unlikely(!wq)) 21140 return 0; 21141 pring = lpfc_phba_elsring(phba); 21142 } 21143 21144 if (unlikely(!pring) || list_empty(&pring->txq)) 21145 return 0; 21146 21147 spin_lock_irqsave(&pring->ring_lock, iflags); 21148 list_for_each_entry(piocbq, &pring->txq, list) { 21149 txq_cnt++; 21150 } 21151 21152 if (txq_cnt > pring->txq_max) 21153 pring->txq_max = txq_cnt; 21154 21155 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21156 21157 while (!list_empty(&pring->txq)) { 21158 spin_lock_irqsave(&pring->ring_lock, iflags); 21159 21160 piocbq = lpfc_sli_ringtx_get(phba, pring); 21161 if (!piocbq) { 21162 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21164 "2823 txq empty and txq_cnt is %d\n ", 21165 txq_cnt); 21166 break; 21167 } 21168 txq_cnt--; 21169 21170 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21171 21172 if (ret && ret != IOCB_BUSY) { 21173 fail_msg = " - Cannot send IO "; 21174 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21175 } 21176 if (fail_msg) { 21177 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21178 /* Failed means we can't issue and need to cancel */ 21179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21180 "2822 IOCB failed %s iotag 0x%x " 21181 "xri 0x%x %d flg x%x\n", 21182 fail_msg, piocbq->iotag, 21183 piocbq->sli4_xritag, ret, 21184 piocbq->cmd_flag); 21185 list_add_tail(&piocbq->list, &completions); 21186 fail_msg = NULL; 21187 } 21188 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21189 if (txq_cnt == 0 || ret == IOCB_BUSY) 21190 break; 21191 } 21192 /* Cancel all the IOCBs that cannot be issued */ 21193 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21194 IOERR_SLI_ABORTED); 21195 21196 return txq_cnt; 21197 } 21198 21199 /** 21200 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21201 * @phba: Pointer to HBA context object. 21202 * @pwqeq: Pointer to command WQE. 21203 * @sglq: Pointer to the scatter gather queue object. 21204 * 21205 * This routine converts the bpl or bde that is in the WQE 21206 * to a sgl list for the sli4 hardware. The physical address 21207 * of the bpl/bde is converted back to a virtual address. 21208 * If the WQE contains a BPL then the list of BDE's is 21209 * converted to sli4_sge's. If the WQE contains a single 21210 * BDE then it is converted to a single sli_sge. 21211 * The WQE is still in cpu endianness so the contents of 21212 * the bpl can be used without byte swapping. 21213 * 21214 * Returns valid XRI = Success, NO_XRI = Failure. 21215 */ 21216 static uint16_t 21217 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21218 struct lpfc_sglq *sglq) 21219 { 21220 uint16_t xritag = NO_XRI; 21221 struct ulp_bde64 *bpl = NULL; 21222 struct ulp_bde64 bde; 21223 struct sli4_sge *sgl = NULL; 21224 struct lpfc_dmabuf *dmabuf; 21225 union lpfc_wqe128 *wqe; 21226 int numBdes = 0; 21227 int i = 0; 21228 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21229 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21230 uint32_t cmd; 21231 21232 if (!pwqeq || !sglq) 21233 return xritag; 21234 21235 sgl = (struct sli4_sge *)sglq->sgl; 21236 wqe = &pwqeq->wqe; 21237 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21238 21239 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21240 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21241 return sglq->sli4_xritag; 21242 numBdes = pwqeq->num_bdes; 21243 if (numBdes) { 21244 /* The addrHigh and addrLow fields within the WQE 21245 * have not been byteswapped yet so there is no 21246 * need to swap them back. 21247 */ 21248 if (pwqeq->bpl_dmabuf) 21249 dmabuf = pwqeq->bpl_dmabuf; 21250 else 21251 return xritag; 21252 21253 bpl = (struct ulp_bde64 *)dmabuf->virt; 21254 if (!bpl) 21255 return xritag; 21256 21257 for (i = 0; i < numBdes; i++) { 21258 /* Should already be byte swapped. */ 21259 sgl->addr_hi = bpl->addrHigh; 21260 sgl->addr_lo = bpl->addrLow; 21261 21262 sgl->word2 = le32_to_cpu(sgl->word2); 21263 if ((i+1) == numBdes) 21264 bf_set(lpfc_sli4_sge_last, sgl, 1); 21265 else 21266 bf_set(lpfc_sli4_sge_last, sgl, 0); 21267 /* swap the size field back to the cpu so we 21268 * can assign it to the sgl. 21269 */ 21270 bde.tus.w = le32_to_cpu(bpl->tus.w); 21271 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21272 /* The offsets in the sgl need to be accumulated 21273 * separately for the request and reply lists. 21274 * The request is always first, the reply follows. 21275 */ 21276 switch (cmd) { 21277 case CMD_GEN_REQUEST64_WQE: 21278 /* add up the reply sg entries */ 21279 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21280 inbound++; 21281 /* first inbound? reset the offset */ 21282 if (inbound == 1) 21283 offset = 0; 21284 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21285 bf_set(lpfc_sli4_sge_type, sgl, 21286 LPFC_SGE_TYPE_DATA); 21287 offset += bde.tus.f.bdeSize; 21288 break; 21289 case CMD_FCP_TRSP64_WQE: 21290 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21291 bf_set(lpfc_sli4_sge_type, sgl, 21292 LPFC_SGE_TYPE_DATA); 21293 break; 21294 case CMD_FCP_TSEND64_WQE: 21295 case CMD_FCP_TRECEIVE64_WQE: 21296 bf_set(lpfc_sli4_sge_type, sgl, 21297 bpl->tus.f.bdeFlags); 21298 if (i < 3) 21299 offset = 0; 21300 else 21301 offset += bde.tus.f.bdeSize; 21302 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21303 break; 21304 } 21305 sgl->word2 = cpu_to_le32(sgl->word2); 21306 bpl++; 21307 sgl++; 21308 } 21309 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21310 /* The addrHigh and addrLow fields of the BDE have not 21311 * been byteswapped yet so they need to be swapped 21312 * before putting them in the sgl. 21313 */ 21314 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21315 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21316 sgl->word2 = le32_to_cpu(sgl->word2); 21317 bf_set(lpfc_sli4_sge_last, sgl, 1); 21318 sgl->word2 = cpu_to_le32(sgl->word2); 21319 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21320 } 21321 return sglq->sli4_xritag; 21322 } 21323 21324 /** 21325 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21326 * @phba: Pointer to HBA context object. 21327 * @qp: Pointer to HDW queue. 21328 * @pwqe: Pointer to command WQE. 21329 **/ 21330 int 21331 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21332 struct lpfc_iocbq *pwqe) 21333 { 21334 union lpfc_wqe128 *wqe = &pwqe->wqe; 21335 struct lpfc_async_xchg_ctx *ctxp; 21336 struct lpfc_queue *wq; 21337 struct lpfc_sglq *sglq; 21338 struct lpfc_sli_ring *pring; 21339 unsigned long iflags; 21340 uint32_t ret = 0; 21341 21342 /* NVME_LS and NVME_LS ABTS requests. */ 21343 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21344 pring = phba->sli4_hba.nvmels_wq->pring; 21345 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21346 qp, wq_access); 21347 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21348 if (!sglq) { 21349 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21350 return WQE_BUSY; 21351 } 21352 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21353 pwqe->sli4_xritag = sglq->sli4_xritag; 21354 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21355 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21356 return WQE_ERROR; 21357 } 21358 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21359 pwqe->sli4_xritag); 21360 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21361 if (ret) { 21362 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21363 return ret; 21364 } 21365 21366 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21367 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21368 21369 lpfc_sli4_poll_eq(qp->hba_eq); 21370 return 0; 21371 } 21372 21373 /* NVME_FCREQ and NVME_ABTS requests */ 21374 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21375 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21376 wq = qp->io_wq; 21377 pring = wq->pring; 21378 21379 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21380 21381 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21382 qp, wq_access); 21383 ret = lpfc_sli4_wq_put(wq, wqe); 21384 if (ret) { 21385 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21386 return ret; 21387 } 21388 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21389 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21390 21391 lpfc_sli4_poll_eq(qp->hba_eq); 21392 return 0; 21393 } 21394 21395 /* NVMET requests */ 21396 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21397 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21398 wq = qp->io_wq; 21399 pring = wq->pring; 21400 21401 ctxp = pwqe->context_un.axchg; 21402 sglq = ctxp->ctxbuf->sglq; 21403 if (pwqe->sli4_xritag == NO_XRI) { 21404 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21405 pwqe->sli4_xritag = sglq->sli4_xritag; 21406 } 21407 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21408 pwqe->sli4_xritag); 21409 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21410 21411 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21412 qp, wq_access); 21413 ret = lpfc_sli4_wq_put(wq, wqe); 21414 if (ret) { 21415 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21416 return ret; 21417 } 21418 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21419 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21420 21421 lpfc_sli4_poll_eq(qp->hba_eq); 21422 return 0; 21423 } 21424 return WQE_ERROR; 21425 } 21426 21427 /** 21428 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21429 * @phba: Pointer to HBA context object. 21430 * @cmdiocb: Pointer to driver command iocb object. 21431 * @cmpl: completion function. 21432 * 21433 * Fill the appropriate fields for the abort WQE and call 21434 * internal routine lpfc_sli4_issue_wqe to send the WQE 21435 * This function is called with hbalock held and no ring_lock held. 21436 * 21437 * RETURNS 0 - SUCCESS 21438 **/ 21439 21440 int 21441 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21442 void *cmpl) 21443 { 21444 struct lpfc_vport *vport = cmdiocb->vport; 21445 struct lpfc_iocbq *abtsiocb = NULL; 21446 union lpfc_wqe128 *abtswqe; 21447 struct lpfc_io_buf *lpfc_cmd; 21448 int retval = IOCB_ERROR; 21449 u16 xritag = cmdiocb->sli4_xritag; 21450 21451 /* 21452 * The scsi command can not be in txq and it is in flight because the 21453 * pCmd is still pointing at the SCSI command we have to abort. There 21454 * is no need to search the txcmplq. Just send an abort to the FW. 21455 */ 21456 21457 abtsiocb = __lpfc_sli_get_iocbq(phba); 21458 if (!abtsiocb) 21459 return WQE_NORESOURCE; 21460 21461 /* Indicate the IO is being aborted by the driver. */ 21462 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21463 21464 abtswqe = &abtsiocb->wqe; 21465 memset(abtswqe, 0, sizeof(*abtswqe)); 21466 21467 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21468 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21469 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21470 abtswqe->abort_cmd.rsrvd5 = 0; 21471 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21472 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21473 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21474 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21475 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21476 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21477 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21478 21479 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21480 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21481 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21482 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21483 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21484 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21485 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21486 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21487 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21488 abtsiocb->vport = vport; 21489 abtsiocb->cmd_cmpl = cmpl; 21490 21491 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21492 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21493 21494 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21495 "0359 Abort xri x%x, original iotag x%x, " 21496 "abort cmd iotag x%x retval x%x\n", 21497 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21498 21499 if (retval) { 21500 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21501 __lpfc_sli_release_iocbq(phba, abtsiocb); 21502 } 21503 21504 return retval; 21505 } 21506 21507 #ifdef LPFC_MXP_STAT 21508 /** 21509 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21510 * @phba: pointer to lpfc hba data structure. 21511 * @hwqid: belong to which HWQ. 21512 * 21513 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21514 * 15 seconds after a test case is running. 21515 * 21516 * The user should call lpfc_debugfs_multixripools_write before running a test 21517 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21518 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21519 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21520 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21521 **/ 21522 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21523 { 21524 struct lpfc_sli4_hdw_queue *qp; 21525 struct lpfc_multixri_pool *multixri_pool; 21526 struct lpfc_pvt_pool *pvt_pool; 21527 struct lpfc_pbl_pool *pbl_pool; 21528 u32 txcmplq_cnt; 21529 21530 qp = &phba->sli4_hba.hdwq[hwqid]; 21531 multixri_pool = qp->p_multixri_pool; 21532 if (!multixri_pool) 21533 return; 21534 21535 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21536 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21537 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21538 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21539 21540 multixri_pool->stat_pbl_count = pbl_pool->count; 21541 multixri_pool->stat_pvt_count = pvt_pool->count; 21542 multixri_pool->stat_busy_count = txcmplq_cnt; 21543 } 21544 21545 multixri_pool->stat_snapshot_taken++; 21546 } 21547 #endif 21548 21549 /** 21550 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21551 * @phba: pointer to lpfc hba data structure. 21552 * @hwqid: belong to which HWQ. 21553 * 21554 * This routine moves some XRIs from private to public pool when private pool 21555 * is not busy. 21556 **/ 21557 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21558 { 21559 struct lpfc_multixri_pool *multixri_pool; 21560 u32 io_req_count; 21561 u32 prev_io_req_count; 21562 21563 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21564 if (!multixri_pool) 21565 return; 21566 io_req_count = multixri_pool->io_req_count; 21567 prev_io_req_count = multixri_pool->prev_io_req_count; 21568 21569 if (prev_io_req_count != io_req_count) { 21570 /* Private pool is busy */ 21571 multixri_pool->prev_io_req_count = io_req_count; 21572 } else { 21573 /* Private pool is not busy. 21574 * Move XRIs from private to public pool. 21575 */ 21576 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21577 } 21578 } 21579 21580 /** 21581 * lpfc_adjust_high_watermark - Adjust high watermark 21582 * @phba: pointer to lpfc hba data structure. 21583 * @hwqid: belong to which HWQ. 21584 * 21585 * This routine sets high watermark as number of outstanding XRIs, 21586 * but make sure the new value is between xri_limit/2 and xri_limit. 21587 **/ 21588 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21589 { 21590 u32 new_watermark; 21591 u32 watermark_max; 21592 u32 watermark_min; 21593 u32 xri_limit; 21594 u32 txcmplq_cnt; 21595 u32 abts_io_bufs; 21596 struct lpfc_multixri_pool *multixri_pool; 21597 struct lpfc_sli4_hdw_queue *qp; 21598 21599 qp = &phba->sli4_hba.hdwq[hwqid]; 21600 multixri_pool = qp->p_multixri_pool; 21601 if (!multixri_pool) 21602 return; 21603 xri_limit = multixri_pool->xri_limit; 21604 21605 watermark_max = xri_limit; 21606 watermark_min = xri_limit / 2; 21607 21608 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21609 abts_io_bufs = qp->abts_scsi_io_bufs; 21610 abts_io_bufs += qp->abts_nvme_io_bufs; 21611 21612 new_watermark = txcmplq_cnt + abts_io_bufs; 21613 new_watermark = min(watermark_max, new_watermark); 21614 new_watermark = max(watermark_min, new_watermark); 21615 multixri_pool->pvt_pool.high_watermark = new_watermark; 21616 21617 #ifdef LPFC_MXP_STAT 21618 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21619 new_watermark); 21620 #endif 21621 } 21622 21623 /** 21624 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21625 * @phba: pointer to lpfc hba data structure. 21626 * @hwqid: belong to which HWQ. 21627 * 21628 * This routine is called from hearbeat timer when pvt_pool is idle. 21629 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21630 * The first step moves (all - low_watermark) amount of XRIs. 21631 * The second step moves the rest of XRIs. 21632 **/ 21633 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21634 { 21635 struct lpfc_pbl_pool *pbl_pool; 21636 struct lpfc_pvt_pool *pvt_pool; 21637 struct lpfc_sli4_hdw_queue *qp; 21638 struct lpfc_io_buf *lpfc_ncmd; 21639 struct lpfc_io_buf *lpfc_ncmd_next; 21640 unsigned long iflag; 21641 struct list_head tmp_list; 21642 u32 tmp_count; 21643 21644 qp = &phba->sli4_hba.hdwq[hwqid]; 21645 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21646 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21647 tmp_count = 0; 21648 21649 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21650 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21651 21652 if (pvt_pool->count > pvt_pool->low_watermark) { 21653 /* Step 1: move (all - low_watermark) from pvt_pool 21654 * to pbl_pool 21655 */ 21656 21657 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21658 INIT_LIST_HEAD(&tmp_list); 21659 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21660 &pvt_pool->list, list) { 21661 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21662 tmp_count++; 21663 if (tmp_count >= pvt_pool->low_watermark) 21664 break; 21665 } 21666 21667 /* Move all bufs from pvt_pool to pbl_pool */ 21668 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21669 21670 /* Move all bufs from tmp_list to pvt_pool */ 21671 list_splice(&tmp_list, &pvt_pool->list); 21672 21673 pbl_pool->count += (pvt_pool->count - tmp_count); 21674 pvt_pool->count = tmp_count; 21675 } else { 21676 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21677 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21678 pbl_pool->count += pvt_pool->count; 21679 pvt_pool->count = 0; 21680 } 21681 21682 spin_unlock(&pvt_pool->lock); 21683 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21684 } 21685 21686 /** 21687 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21688 * @phba: pointer to lpfc hba data structure 21689 * @qp: pointer to HDW queue 21690 * @pbl_pool: specified public free XRI pool 21691 * @pvt_pool: specified private free XRI pool 21692 * @count: number of XRIs to move 21693 * 21694 * This routine tries to move some free common bufs from the specified pbl_pool 21695 * to the specified pvt_pool. It might move less than count XRIs if there's not 21696 * enough in public pool. 21697 * 21698 * Return: 21699 * true - if XRIs are successfully moved from the specified pbl_pool to the 21700 * specified pvt_pool 21701 * false - if the specified pbl_pool is empty or locked by someone else 21702 **/ 21703 static bool 21704 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21705 struct lpfc_pbl_pool *pbl_pool, 21706 struct lpfc_pvt_pool *pvt_pool, u32 count) 21707 { 21708 struct lpfc_io_buf *lpfc_ncmd; 21709 struct lpfc_io_buf *lpfc_ncmd_next; 21710 unsigned long iflag; 21711 int ret; 21712 21713 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21714 if (ret) { 21715 if (pbl_pool->count) { 21716 /* Move a batch of XRIs from public to private pool */ 21717 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21718 list_for_each_entry_safe(lpfc_ncmd, 21719 lpfc_ncmd_next, 21720 &pbl_pool->list, 21721 list) { 21722 list_move_tail(&lpfc_ncmd->list, 21723 &pvt_pool->list); 21724 pvt_pool->count++; 21725 pbl_pool->count--; 21726 count--; 21727 if (count == 0) 21728 break; 21729 } 21730 21731 spin_unlock(&pvt_pool->lock); 21732 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21733 return true; 21734 } 21735 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21736 } 21737 21738 return false; 21739 } 21740 21741 /** 21742 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21743 * @phba: pointer to lpfc hba data structure. 21744 * @hwqid: belong to which HWQ. 21745 * @count: number of XRIs to move 21746 * 21747 * This routine tries to find some free common bufs in one of public pools with 21748 * Round Robin method. The search always starts from local hwqid, then the next 21749 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21750 * a batch of free common bufs are moved to private pool on hwqid. 21751 * It might move less than count XRIs if there's not enough in public pool. 21752 **/ 21753 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21754 { 21755 struct lpfc_multixri_pool *multixri_pool; 21756 struct lpfc_multixri_pool *next_multixri_pool; 21757 struct lpfc_pvt_pool *pvt_pool; 21758 struct lpfc_pbl_pool *pbl_pool; 21759 struct lpfc_sli4_hdw_queue *qp; 21760 u32 next_hwqid; 21761 u32 hwq_count; 21762 int ret; 21763 21764 qp = &phba->sli4_hba.hdwq[hwqid]; 21765 multixri_pool = qp->p_multixri_pool; 21766 pvt_pool = &multixri_pool->pvt_pool; 21767 pbl_pool = &multixri_pool->pbl_pool; 21768 21769 /* Check if local pbl_pool is available */ 21770 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21771 if (ret) { 21772 #ifdef LPFC_MXP_STAT 21773 multixri_pool->local_pbl_hit_count++; 21774 #endif 21775 return; 21776 } 21777 21778 hwq_count = phba->cfg_hdw_queue; 21779 21780 /* Get the next hwqid which was found last time */ 21781 next_hwqid = multixri_pool->rrb_next_hwqid; 21782 21783 do { 21784 /* Go to next hwq */ 21785 next_hwqid = (next_hwqid + 1) % hwq_count; 21786 21787 next_multixri_pool = 21788 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21789 pbl_pool = &next_multixri_pool->pbl_pool; 21790 21791 /* Check if the public free xri pool is available */ 21792 ret = _lpfc_move_xri_pbl_to_pvt( 21793 phba, qp, pbl_pool, pvt_pool, count); 21794 21795 /* Exit while-loop if success or all hwqid are checked */ 21796 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21797 21798 /* Starting point for the next time */ 21799 multixri_pool->rrb_next_hwqid = next_hwqid; 21800 21801 if (!ret) { 21802 /* stats: all public pools are empty*/ 21803 multixri_pool->pbl_empty_count++; 21804 } 21805 21806 #ifdef LPFC_MXP_STAT 21807 if (ret) { 21808 if (next_hwqid == hwqid) 21809 multixri_pool->local_pbl_hit_count++; 21810 else 21811 multixri_pool->other_pbl_hit_count++; 21812 } 21813 #endif 21814 } 21815 21816 /** 21817 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21818 * @phba: pointer to lpfc hba data structure. 21819 * @hwqid: belong to which HWQ. 21820 * 21821 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21822 * low watermark. 21823 **/ 21824 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21825 { 21826 struct lpfc_multixri_pool *multixri_pool; 21827 struct lpfc_pvt_pool *pvt_pool; 21828 21829 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21830 pvt_pool = &multixri_pool->pvt_pool; 21831 21832 if (pvt_pool->count < pvt_pool->low_watermark) 21833 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21834 } 21835 21836 /** 21837 * lpfc_release_io_buf - Return one IO buf back to free pool 21838 * @phba: pointer to lpfc hba data structure. 21839 * @lpfc_ncmd: IO buf to be returned. 21840 * @qp: belong to which HWQ. 21841 * 21842 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21843 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21844 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21845 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21846 * lpfc_io_buf_list_put. 21847 **/ 21848 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21849 struct lpfc_sli4_hdw_queue *qp) 21850 { 21851 unsigned long iflag; 21852 struct lpfc_pbl_pool *pbl_pool; 21853 struct lpfc_pvt_pool *pvt_pool; 21854 struct lpfc_epd_pool *epd_pool; 21855 u32 txcmplq_cnt; 21856 u32 xri_owned; 21857 u32 xri_limit; 21858 u32 abts_io_bufs; 21859 21860 /* MUST zero fields if buffer is reused by another protocol */ 21861 lpfc_ncmd->nvmeCmd = NULL; 21862 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21863 21864 if (phba->cfg_xpsgl && !phba->nvmet_support && 21865 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21866 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21867 21868 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21869 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21870 21871 if (phba->cfg_xri_rebalancing) { 21872 if (lpfc_ncmd->expedite) { 21873 /* Return to expedite pool */ 21874 epd_pool = &phba->epd_pool; 21875 spin_lock_irqsave(&epd_pool->lock, iflag); 21876 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21877 epd_pool->count++; 21878 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21879 return; 21880 } 21881 21882 /* Avoid invalid access if an IO sneaks in and is being rejected 21883 * just _after_ xri pools are destroyed in lpfc_offline. 21884 * Nothing much can be done at this point. 21885 */ 21886 if (!qp->p_multixri_pool) 21887 return; 21888 21889 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21890 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21891 21892 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21893 abts_io_bufs = qp->abts_scsi_io_bufs; 21894 abts_io_bufs += qp->abts_nvme_io_bufs; 21895 21896 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21897 xri_limit = qp->p_multixri_pool->xri_limit; 21898 21899 #ifdef LPFC_MXP_STAT 21900 if (xri_owned <= xri_limit) 21901 qp->p_multixri_pool->below_limit_count++; 21902 else 21903 qp->p_multixri_pool->above_limit_count++; 21904 #endif 21905 21906 /* XRI goes to either public or private free xri pool 21907 * based on watermark and xri_limit 21908 */ 21909 if ((pvt_pool->count < pvt_pool->low_watermark) || 21910 (xri_owned < xri_limit && 21911 pvt_pool->count < pvt_pool->high_watermark)) { 21912 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21913 qp, free_pvt_pool); 21914 list_add_tail(&lpfc_ncmd->list, 21915 &pvt_pool->list); 21916 pvt_pool->count++; 21917 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21918 } else { 21919 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21920 qp, free_pub_pool); 21921 list_add_tail(&lpfc_ncmd->list, 21922 &pbl_pool->list); 21923 pbl_pool->count++; 21924 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21925 } 21926 } else { 21927 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21928 qp, free_xri); 21929 list_add_tail(&lpfc_ncmd->list, 21930 &qp->lpfc_io_buf_list_put); 21931 qp->put_io_bufs++; 21932 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21933 iflag); 21934 } 21935 } 21936 21937 /** 21938 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21939 * @phba: pointer to lpfc hba data structure. 21940 * @qp: pointer to HDW queue 21941 * @pvt_pool: pointer to private pool data structure. 21942 * @ndlp: pointer to lpfc nodelist data structure. 21943 * 21944 * This routine tries to get one free IO buf from private pool. 21945 * 21946 * Return: 21947 * pointer to one free IO buf - if private pool is not empty 21948 * NULL - if private pool is empty 21949 **/ 21950 static struct lpfc_io_buf * 21951 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21952 struct lpfc_sli4_hdw_queue *qp, 21953 struct lpfc_pvt_pool *pvt_pool, 21954 struct lpfc_nodelist *ndlp) 21955 { 21956 struct lpfc_io_buf *lpfc_ncmd; 21957 struct lpfc_io_buf *lpfc_ncmd_next; 21958 unsigned long iflag; 21959 21960 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21961 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21962 &pvt_pool->list, list) { 21963 if (lpfc_test_rrq_active( 21964 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21965 continue; 21966 list_del(&lpfc_ncmd->list); 21967 pvt_pool->count--; 21968 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21969 return lpfc_ncmd; 21970 } 21971 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21972 21973 return NULL; 21974 } 21975 21976 /** 21977 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21978 * @phba: pointer to lpfc hba data structure. 21979 * 21980 * This routine tries to get one free IO buf from expedite pool. 21981 * 21982 * Return: 21983 * pointer to one free IO buf - if expedite pool is not empty 21984 * NULL - if expedite pool is empty 21985 **/ 21986 static struct lpfc_io_buf * 21987 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21988 { 21989 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21990 struct lpfc_io_buf *lpfc_ncmd_next; 21991 unsigned long iflag; 21992 struct lpfc_epd_pool *epd_pool; 21993 21994 epd_pool = &phba->epd_pool; 21995 21996 spin_lock_irqsave(&epd_pool->lock, iflag); 21997 if (epd_pool->count > 0) { 21998 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21999 &epd_pool->list, list) { 22000 list_del(&iter->list); 22001 epd_pool->count--; 22002 lpfc_ncmd = iter; 22003 break; 22004 } 22005 } 22006 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22007 22008 return lpfc_ncmd; 22009 } 22010 22011 /** 22012 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22013 * @phba: pointer to lpfc hba data structure. 22014 * @ndlp: pointer to lpfc nodelist data structure. 22015 * @hwqid: belong to which HWQ 22016 * @expedite: 1 means this request is urgent. 22017 * 22018 * This routine will do the following actions and then return a pointer to 22019 * one free IO buf. 22020 * 22021 * 1. If private free xri count is empty, move some XRIs from public to 22022 * private pool. 22023 * 2. Get one XRI from private free xri pool. 22024 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22025 * get one free xri from expedite pool. 22026 * 22027 * Note: ndlp is only used on SCSI side for RRQ testing. 22028 * The caller should pass NULL for ndlp on NVME side. 22029 * 22030 * Return: 22031 * pointer to one free IO buf - if private pool is not empty 22032 * NULL - if private pool is empty 22033 **/ 22034 static struct lpfc_io_buf * 22035 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22036 struct lpfc_nodelist *ndlp, 22037 int hwqid, int expedite) 22038 { 22039 struct lpfc_sli4_hdw_queue *qp; 22040 struct lpfc_multixri_pool *multixri_pool; 22041 struct lpfc_pvt_pool *pvt_pool; 22042 struct lpfc_io_buf *lpfc_ncmd; 22043 22044 qp = &phba->sli4_hba.hdwq[hwqid]; 22045 lpfc_ncmd = NULL; 22046 if (!qp) { 22047 lpfc_printf_log(phba, KERN_INFO, 22048 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22049 "5556 NULL qp for hwqid x%x\n", hwqid); 22050 return lpfc_ncmd; 22051 } 22052 multixri_pool = qp->p_multixri_pool; 22053 if (!multixri_pool) { 22054 lpfc_printf_log(phba, KERN_INFO, 22055 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22056 "5557 NULL multixri for hwqid x%x\n", hwqid); 22057 return lpfc_ncmd; 22058 } 22059 pvt_pool = &multixri_pool->pvt_pool; 22060 if (!pvt_pool) { 22061 lpfc_printf_log(phba, KERN_INFO, 22062 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22063 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22064 return lpfc_ncmd; 22065 } 22066 multixri_pool->io_req_count++; 22067 22068 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22069 if (pvt_pool->count == 0) 22070 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22071 22072 /* Get one XRI from private free xri pool */ 22073 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22074 22075 if (lpfc_ncmd) { 22076 lpfc_ncmd->hdwq = qp; 22077 lpfc_ncmd->hdwq_no = hwqid; 22078 } else if (expedite) { 22079 /* If we fail to get one from pvt_pool and this is an expedite 22080 * request, get one free xri from expedite pool. 22081 */ 22082 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22083 } 22084 22085 return lpfc_ncmd; 22086 } 22087 22088 static inline struct lpfc_io_buf * 22089 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22090 { 22091 struct lpfc_sli4_hdw_queue *qp; 22092 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22093 22094 qp = &phba->sli4_hba.hdwq[idx]; 22095 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22096 &qp->lpfc_io_buf_list_get, list) { 22097 if (lpfc_test_rrq_active(phba, ndlp, 22098 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22099 continue; 22100 22101 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22102 continue; 22103 22104 list_del_init(&lpfc_cmd->list); 22105 qp->get_io_bufs--; 22106 lpfc_cmd->hdwq = qp; 22107 lpfc_cmd->hdwq_no = idx; 22108 return lpfc_cmd; 22109 } 22110 return NULL; 22111 } 22112 22113 /** 22114 * lpfc_get_io_buf - Get one IO buffer from free pool 22115 * @phba: The HBA for which this call is being executed. 22116 * @ndlp: pointer to lpfc nodelist data structure. 22117 * @hwqid: belong to which HWQ 22118 * @expedite: 1 means this request is urgent. 22119 * 22120 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22121 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22122 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22123 * 22124 * Note: ndlp is only used on SCSI side for RRQ testing. 22125 * The caller should pass NULL for ndlp on NVME side. 22126 * 22127 * Return codes: 22128 * NULL - Error 22129 * Pointer to lpfc_io_buf - Success 22130 **/ 22131 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22132 struct lpfc_nodelist *ndlp, 22133 u32 hwqid, int expedite) 22134 { 22135 struct lpfc_sli4_hdw_queue *qp; 22136 unsigned long iflag; 22137 struct lpfc_io_buf *lpfc_cmd; 22138 22139 qp = &phba->sli4_hba.hdwq[hwqid]; 22140 lpfc_cmd = NULL; 22141 if (!qp) { 22142 lpfc_printf_log(phba, KERN_WARNING, 22143 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22144 "5555 NULL qp for hwqid x%x\n", hwqid); 22145 return lpfc_cmd; 22146 } 22147 22148 if (phba->cfg_xri_rebalancing) 22149 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22150 phba, ndlp, hwqid, expedite); 22151 else { 22152 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22153 qp, alloc_xri_get); 22154 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22155 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22156 if (!lpfc_cmd) { 22157 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22158 qp, alloc_xri_put); 22159 list_splice(&qp->lpfc_io_buf_list_put, 22160 &qp->lpfc_io_buf_list_get); 22161 qp->get_io_bufs += qp->put_io_bufs; 22162 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22163 qp->put_io_bufs = 0; 22164 spin_unlock(&qp->io_buf_list_put_lock); 22165 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22166 expedite) 22167 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22168 } 22169 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22170 } 22171 22172 return lpfc_cmd; 22173 } 22174 22175 /** 22176 * lpfc_read_object - Retrieve object data from HBA 22177 * @phba: The HBA for which this call is being executed. 22178 * @rdobject: Pathname of object data we want to read. 22179 * @datap: Pointer to where data will be copied to. 22180 * @datasz: size of data area 22181 * 22182 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22183 * The data will be truncated if datasz is not large enough. 22184 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22185 * Returns the actual bytes read from the object. 22186 * 22187 * This routine is hard coded to use a poll completion. Unlike other 22188 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22189 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22190 * to use interrupt-based completions, code is needed to fully cleanup 22191 * the memory. 22192 */ 22193 int 22194 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22195 uint32_t datasz) 22196 { 22197 struct lpfc_mbx_read_object *read_object; 22198 LPFC_MBOXQ_t *mbox; 22199 int rc, length, eof, j, byte_cnt = 0; 22200 uint32_t shdr_status, shdr_add_status; 22201 union lpfc_sli4_cfg_shdr *shdr; 22202 struct lpfc_dmabuf *pcmd; 22203 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22204 22205 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22206 if (!mbox) 22207 return -ENOMEM; 22208 length = (sizeof(struct lpfc_mbx_read_object) - 22209 sizeof(struct lpfc_sli4_cfg_mhdr)); 22210 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22211 LPFC_MBOX_OPCODE_READ_OBJECT, 22212 length, LPFC_SLI4_MBX_EMBED); 22213 read_object = &mbox->u.mqe.un.read_object; 22214 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22215 22216 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22217 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22218 read_object->u.request.rd_object_offset = 0; 22219 read_object->u.request.rd_object_cnt = 1; 22220 22221 memset((void *)read_object->u.request.rd_object_name, 0, 22222 LPFC_OBJ_NAME_SZ); 22223 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22224 for (j = 0; j < strlen(rdobject); j++) 22225 read_object->u.request.rd_object_name[j] = 22226 cpu_to_le32(rd_object_name[j]); 22227 22228 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22229 if (pcmd) 22230 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22231 if (!pcmd || !pcmd->virt) { 22232 kfree(pcmd); 22233 mempool_free(mbox, phba->mbox_mem_pool); 22234 return -ENOMEM; 22235 } 22236 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22237 read_object->u.request.rd_object_hbuf[0].pa_lo = 22238 putPaddrLow(pcmd->phys); 22239 read_object->u.request.rd_object_hbuf[0].pa_hi = 22240 putPaddrHigh(pcmd->phys); 22241 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22242 22243 mbox->vport = phba->pport; 22244 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22245 mbox->ctx_ndlp = NULL; 22246 22247 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22248 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22249 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22250 22251 if (shdr_status == STATUS_FAILED && 22252 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22253 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22254 "4674 No port cfg file in FW.\n"); 22255 byte_cnt = -ENOENT; 22256 } else if (shdr_status || shdr_add_status || rc) { 22257 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22258 "2625 READ_OBJECT mailbox failed with " 22259 "status x%x add_status x%x, mbx status x%x\n", 22260 shdr_status, shdr_add_status, rc); 22261 byte_cnt = -ENXIO; 22262 } else { 22263 /* Success */ 22264 length = read_object->u.response.rd_object_actual_rlen; 22265 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22266 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22267 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22268 length, datasz, eof); 22269 22270 /* Detect the port config file exists but is empty */ 22271 if (!length && eof) { 22272 byte_cnt = 0; 22273 goto exit; 22274 } 22275 22276 byte_cnt = length; 22277 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22278 } 22279 22280 exit: 22281 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22282 * Free the pcmd and then cleanup with the correct routine. 22283 */ 22284 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22285 kfree(pcmd); 22286 lpfc_sli4_mbox_cmd_free(phba, mbox); 22287 return byte_cnt; 22288 } 22289 22290 /** 22291 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22292 * @phba: The HBA for which this call is being executed. 22293 * @lpfc_buf: IO buf structure to append the SGL chunk 22294 * 22295 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22296 * and will allocate an SGL chunk if the pool is empty. 22297 * 22298 * Return codes: 22299 * NULL - Error 22300 * Pointer to sli4_hybrid_sgl - Success 22301 **/ 22302 struct sli4_hybrid_sgl * 22303 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22304 { 22305 struct sli4_hybrid_sgl *list_entry = NULL; 22306 struct sli4_hybrid_sgl *tmp = NULL; 22307 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22308 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22309 struct list_head *buf_list = &hdwq->sgl_list; 22310 unsigned long iflags; 22311 22312 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22313 22314 if (likely(!list_empty(buf_list))) { 22315 /* break off 1 chunk from the sgl_list */ 22316 list_for_each_entry_safe(list_entry, tmp, 22317 buf_list, list_node) { 22318 list_move_tail(&list_entry->list_node, 22319 &lpfc_buf->dma_sgl_xtra_list); 22320 break; 22321 } 22322 } else { 22323 /* allocate more */ 22324 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22325 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22326 cpu_to_node(hdwq->io_wq->chann)); 22327 if (!tmp) { 22328 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22329 "8353 error kmalloc memory for HDWQ " 22330 "%d %s\n", 22331 lpfc_buf->hdwq_no, __func__); 22332 return NULL; 22333 } 22334 22335 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22336 GFP_ATOMIC, &tmp->dma_phys_sgl); 22337 if (!tmp->dma_sgl) { 22338 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22339 "8354 error pool_alloc memory for HDWQ " 22340 "%d %s\n", 22341 lpfc_buf->hdwq_no, __func__); 22342 kfree(tmp); 22343 return NULL; 22344 } 22345 22346 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22347 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22348 } 22349 22350 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22351 struct sli4_hybrid_sgl, 22352 list_node); 22353 22354 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22355 22356 return allocated_sgl; 22357 } 22358 22359 /** 22360 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22361 * @phba: The HBA for which this call is being executed. 22362 * @lpfc_buf: IO buf structure with the SGL chunk 22363 * 22364 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22365 * 22366 * Return codes: 22367 * 0 - Success 22368 * -EINVAL - Error 22369 **/ 22370 int 22371 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22372 { 22373 int rc = 0; 22374 struct sli4_hybrid_sgl *list_entry = NULL; 22375 struct sli4_hybrid_sgl *tmp = NULL; 22376 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22377 struct list_head *buf_list = &hdwq->sgl_list; 22378 unsigned long iflags; 22379 22380 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22381 22382 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22383 list_for_each_entry_safe(list_entry, tmp, 22384 &lpfc_buf->dma_sgl_xtra_list, 22385 list_node) { 22386 list_move_tail(&list_entry->list_node, 22387 buf_list); 22388 } 22389 } else { 22390 rc = -EINVAL; 22391 } 22392 22393 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22394 return rc; 22395 } 22396 22397 /** 22398 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22399 * @phba: phba object 22400 * @hdwq: hdwq to cleanup sgl buff resources on 22401 * 22402 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22403 * 22404 * Return codes: 22405 * None 22406 **/ 22407 void 22408 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22409 struct lpfc_sli4_hdw_queue *hdwq) 22410 { 22411 struct list_head *buf_list = &hdwq->sgl_list; 22412 struct sli4_hybrid_sgl *list_entry = NULL; 22413 struct sli4_hybrid_sgl *tmp = NULL; 22414 unsigned long iflags; 22415 22416 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22417 22418 /* Free sgl pool */ 22419 list_for_each_entry_safe(list_entry, tmp, 22420 buf_list, list_node) { 22421 list_del(&list_entry->list_node); 22422 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22423 list_entry->dma_sgl, 22424 list_entry->dma_phys_sgl); 22425 kfree(list_entry); 22426 } 22427 22428 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22429 } 22430 22431 /** 22432 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22433 * @phba: The HBA for which this call is being executed. 22434 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22435 * 22436 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22437 * and will allocate an CMD/RSP buffer if the pool is empty. 22438 * 22439 * Return codes: 22440 * NULL - Error 22441 * Pointer to fcp_cmd_rsp_buf - Success 22442 **/ 22443 struct fcp_cmd_rsp_buf * 22444 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22445 struct lpfc_io_buf *lpfc_buf) 22446 { 22447 struct fcp_cmd_rsp_buf *list_entry = NULL; 22448 struct fcp_cmd_rsp_buf *tmp = NULL; 22449 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22450 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22451 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22452 unsigned long iflags; 22453 22454 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22455 22456 if (likely(!list_empty(buf_list))) { 22457 /* break off 1 chunk from the list */ 22458 list_for_each_entry_safe(list_entry, tmp, 22459 buf_list, 22460 list_node) { 22461 list_move_tail(&list_entry->list_node, 22462 &lpfc_buf->dma_cmd_rsp_list); 22463 break; 22464 } 22465 } else { 22466 /* allocate more */ 22467 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22468 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22469 cpu_to_node(hdwq->io_wq->chann)); 22470 if (!tmp) { 22471 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22472 "8355 error kmalloc memory for HDWQ " 22473 "%d %s\n", 22474 lpfc_buf->hdwq_no, __func__); 22475 return NULL; 22476 } 22477 22478 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22479 GFP_ATOMIC, 22480 &tmp->fcp_cmd_rsp_dma_handle); 22481 22482 if (!tmp->fcp_cmnd) { 22483 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22484 "8356 error pool_alloc memory for HDWQ " 22485 "%d %s\n", 22486 lpfc_buf->hdwq_no, __func__); 22487 kfree(tmp); 22488 return NULL; 22489 } 22490 22491 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22492 sizeof(struct fcp_cmnd)); 22493 22494 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22495 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22496 } 22497 22498 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22499 struct fcp_cmd_rsp_buf, 22500 list_node); 22501 22502 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22503 22504 return allocated_buf; 22505 } 22506 22507 /** 22508 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22509 * @phba: The HBA for which this call is being executed. 22510 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22511 * 22512 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22513 * 22514 * Return codes: 22515 * 0 - Success 22516 * -EINVAL - Error 22517 **/ 22518 int 22519 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22520 struct lpfc_io_buf *lpfc_buf) 22521 { 22522 int rc = 0; 22523 struct fcp_cmd_rsp_buf *list_entry = NULL; 22524 struct fcp_cmd_rsp_buf *tmp = NULL; 22525 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22526 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22527 unsigned long iflags; 22528 22529 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22530 22531 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22532 list_for_each_entry_safe(list_entry, tmp, 22533 &lpfc_buf->dma_cmd_rsp_list, 22534 list_node) { 22535 list_move_tail(&list_entry->list_node, 22536 buf_list); 22537 } 22538 } else { 22539 rc = -EINVAL; 22540 } 22541 22542 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22543 return rc; 22544 } 22545 22546 /** 22547 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22548 * @phba: phba object 22549 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22550 * 22551 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22552 * 22553 * Return codes: 22554 * None 22555 **/ 22556 void 22557 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22558 struct lpfc_sli4_hdw_queue *hdwq) 22559 { 22560 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22561 struct fcp_cmd_rsp_buf *list_entry = NULL; 22562 struct fcp_cmd_rsp_buf *tmp = NULL; 22563 unsigned long iflags; 22564 22565 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22566 22567 /* Free cmd_rsp buf pool */ 22568 list_for_each_entry_safe(list_entry, tmp, 22569 buf_list, 22570 list_node) { 22571 list_del(&list_entry->list_node); 22572 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22573 list_entry->fcp_cmnd, 22574 list_entry->fcp_cmd_rsp_dma_handle); 22575 kfree(list_entry); 22576 } 22577 22578 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22579 } 22580 22581 /** 22582 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22583 * @phba: phba object 22584 * @job: job entry of the command to be posted. 22585 * 22586 * Fill the common fields of the wqe for each of the command. 22587 * 22588 * Return codes: 22589 * None 22590 **/ 22591 void 22592 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22593 { 22594 u8 cmnd; 22595 u32 *pcmd; 22596 u32 if_type = 0; 22597 u32 fip, abort_tag; 22598 struct lpfc_nodelist *ndlp = NULL; 22599 union lpfc_wqe128 *wqe = &job->wqe; 22600 u8 command_type = ELS_COMMAND_NON_FIP; 22601 22602 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22603 /* The fcp commands will set command type */ 22604 if (job->cmd_flag & LPFC_IO_FCP) 22605 command_type = FCP_COMMAND; 22606 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22607 command_type = ELS_COMMAND_FIP; 22608 else 22609 command_type = ELS_COMMAND_NON_FIP; 22610 22611 abort_tag = job->iotag; 22612 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22613 22614 switch (cmnd) { 22615 case CMD_ELS_REQUEST64_WQE: 22616 ndlp = job->ndlp; 22617 22618 if_type = bf_get(lpfc_sli_intf_if_type, 22619 &phba->sli4_hba.sli_intf); 22620 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22621 pcmd = (u32 *)job->cmd_dmabuf->virt; 22622 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22623 *pcmd == ELS_CMD_SCR || 22624 *pcmd == ELS_CMD_RDF || 22625 *pcmd == ELS_CMD_EDC || 22626 *pcmd == ELS_CMD_RSCN_XMT || 22627 *pcmd == ELS_CMD_FDISC || 22628 *pcmd == ELS_CMD_LOGO || 22629 *pcmd == ELS_CMD_QFPA || 22630 *pcmd == ELS_CMD_UVEM || 22631 *pcmd == ELS_CMD_PLOGI)) { 22632 bf_set(els_req64_sp, &wqe->els_req, 1); 22633 bf_set(els_req64_sid, &wqe->els_req, 22634 job->vport->fc_myDID); 22635 22636 if ((*pcmd == ELS_CMD_FLOGI) && 22637 !(phba->fc_topology == 22638 LPFC_TOPOLOGY_LOOP)) 22639 bf_set(els_req64_sid, &wqe->els_req, 0); 22640 22641 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22642 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22643 phba->vpi_ids[job->vport->vpi]); 22644 } else if (pcmd) { 22645 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22646 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22647 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22648 } 22649 } 22650 22651 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22652 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22653 22654 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22655 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22656 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22657 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22658 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22659 break; 22660 case CMD_XMIT_ELS_RSP64_WQE: 22661 ndlp = job->ndlp; 22662 22663 /* word4 */ 22664 wqe->xmit_els_rsp.word4 = 0; 22665 22666 if_type = bf_get(lpfc_sli_intf_if_type, 22667 &phba->sli4_hba.sli_intf); 22668 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22669 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22670 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22671 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22672 job->vport->fc_myDID); 22673 if (job->vport->fc_myDID == Fabric_DID) { 22674 bf_set(wqe_els_did, 22675 &wqe->xmit_els_rsp.wqe_dest, 0); 22676 } 22677 } 22678 } 22679 22680 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22681 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22682 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22683 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22684 LPFC_WQE_LENLOC_WORD3); 22685 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22686 22687 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22688 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22689 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22690 job->vport->fc_myDID); 22691 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22692 } 22693 22694 if (phba->sli_rev == LPFC_SLI_REV4) { 22695 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22696 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22697 22698 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22699 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22700 phba->vpi_ids[job->vport->vpi]); 22701 } 22702 command_type = OTHER_COMMAND; 22703 break; 22704 case CMD_GEN_REQUEST64_WQE: 22705 /* Word 10 */ 22706 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22707 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22708 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22709 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22710 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22711 command_type = OTHER_COMMAND; 22712 break; 22713 case CMD_XMIT_SEQUENCE64_WQE: 22714 if (phba->link_flag & LS_LOOPBACK_MODE) 22715 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22716 22717 wqe->xmit_sequence.rsvd3 = 0; 22718 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22719 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22720 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22721 LPFC_WQE_IOD_WRITE); 22722 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22723 LPFC_WQE_LENLOC_WORD12); 22724 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22725 command_type = OTHER_COMMAND; 22726 break; 22727 case CMD_XMIT_BLS_RSP64_WQE: 22728 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22729 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22730 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22731 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22732 phba->vpi_ids[phba->pport->vpi]); 22733 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22734 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22735 LPFC_WQE_LENLOC_NONE); 22736 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22737 command_type = OTHER_COMMAND; 22738 break; 22739 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22740 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22741 case CMD_SEND_FRAME: /* mds loopback */ 22742 /* cases already formatted for sli4 wqe - no chgs necessary */ 22743 return; 22744 default: 22745 dump_stack(); 22746 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22747 "6207 Invalid command 0x%x\n", 22748 cmnd); 22749 break; 22750 } 22751 22752 wqe->generic.wqe_com.abort_tag = abort_tag; 22753 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22754 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22755 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22756 } 22757