1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + secs_to_jiffies(phba->fc_ratov + 1); 1212 rrq->nlp_DID = ndlp->nlp_DID; 1213 rrq->vport = ndlp->vport; 1214 rrq->rxid = rxid; 1215 1216 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1220 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1221 if (empty) 1222 lpfc_worker_wake_up(phba); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 outnl: 1227 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1228 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1229 " DID:0x%x Send:%d\n", 1230 xritag, rxid, ndlp->nlp_DID, send_rrq); 1231 return -EINVAL; 1232 } 1233 1234 /** 1235 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1236 * @phba: Pointer to HBA context object. 1237 * @piocbq: Pointer to the iocbq. 1238 * 1239 * The driver calls this function with either the nvme ls ring lock 1240 * or the fc els ring lock held depending on the iocb usage. This function 1241 * gets a new driver sglq object from the sglq list. If the list is not empty 1242 * then it is successful, it returns pointer to the newly allocated sglq 1243 * object else it returns NULL. 1244 **/ 1245 static struct lpfc_sglq * 1246 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1247 { 1248 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1249 struct lpfc_sglq *sglq = NULL; 1250 struct lpfc_sglq *start_sglq = NULL; 1251 struct lpfc_io_buf *lpfc_cmd; 1252 struct lpfc_nodelist *ndlp; 1253 int found = 0; 1254 u8 cmnd; 1255 1256 cmnd = get_job_cmnd(phba, piocbq); 1257 1258 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1259 lpfc_cmd = piocbq->io_buf; 1260 ndlp = lpfc_cmd->rdata->pnode; 1261 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1262 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1263 ndlp = piocbq->ndlp; 1264 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1265 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1266 ndlp = NULL; 1267 else 1268 ndlp = piocbq->ndlp; 1269 } else { 1270 ndlp = piocbq->ndlp; 1271 } 1272 1273 spin_lock(&phba->sli4_hba.sgl_list_lock); 1274 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1275 start_sglq = sglq; 1276 while (!found) { 1277 if (!sglq) 1278 break; 1279 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1280 test_bit(sglq->sli4_lxritag, 1281 ndlp->active_rrqs_xri_bitmap)) { 1282 /* This xri has an rrq outstanding for this DID. 1283 * put it back in the list and get another xri. 1284 */ 1285 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1286 sglq = NULL; 1287 list_remove_head(lpfc_els_sgl_list, sglq, 1288 struct lpfc_sglq, list); 1289 if (sglq == start_sglq) { 1290 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1291 sglq = NULL; 1292 break; 1293 } else 1294 continue; 1295 } 1296 sglq->ndlp = ndlp; 1297 found = 1; 1298 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1299 sglq->state = SGL_ALLOCATED; 1300 } 1301 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1302 return sglq; 1303 } 1304 1305 /** 1306 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1307 * @phba: Pointer to HBA context object. 1308 * @piocbq: Pointer to the iocbq. 1309 * 1310 * This function is called with the sgl_list lock held. This function 1311 * gets a new driver sglq object from the sglq list. If the 1312 * list is not empty then it is successful, it returns pointer to the newly 1313 * allocated sglq object else it returns NULL. 1314 **/ 1315 struct lpfc_sglq * 1316 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1317 { 1318 struct list_head *lpfc_nvmet_sgl_list; 1319 struct lpfc_sglq *sglq = NULL; 1320 1321 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1322 1323 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1324 1325 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1326 if (!sglq) 1327 return NULL; 1328 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1329 sglq->state = SGL_ALLOCATED; 1330 return sglq; 1331 } 1332 1333 /** 1334 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1335 * @phba: Pointer to HBA context object. 1336 * 1337 * This function is called with no lock held. This function 1338 * allocates a new driver iocb object from the iocb pool. If the 1339 * allocation is successful, it returns pointer to the newly 1340 * allocated iocb object else it returns NULL. 1341 **/ 1342 struct lpfc_iocbq * 1343 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1344 { 1345 struct lpfc_iocbq * iocbq = NULL; 1346 unsigned long iflags; 1347 1348 spin_lock_irqsave(&phba->hbalock, iflags); 1349 iocbq = __lpfc_sli_get_iocbq(phba); 1350 spin_unlock_irqrestore(&phba->hbalock, iflags); 1351 return iocbq; 1352 } 1353 1354 /** 1355 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1356 * @phba: Pointer to HBA context object. 1357 * @iocbq: Pointer to driver iocb object. 1358 * 1359 * This function is called to release the driver iocb object 1360 * to the iocb pool. The iotag in the iocb object 1361 * does not change for each use of the iocb object. This function 1362 * clears all other fields of the iocb object when it is freed. 1363 * The sqlq structure that holds the xritag and phys and virtual 1364 * mappings for the scatter gather list is retrieved from the 1365 * active array of sglq. The get of the sglq pointer also clears 1366 * the entry in the array. If the status of the IO indiactes that 1367 * this IO was aborted then the sglq entry it put on the 1368 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1369 * IO has good status or fails for any other reason then the sglq 1370 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1371 * asserted held in the code path calling this routine. 1372 **/ 1373 static void 1374 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1375 { 1376 struct lpfc_sglq *sglq; 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset_startat(iocbq, 0, wqe); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 1457 /* 1458 * Clean all volatile data fields, preserve iotag and node struct. 1459 */ 1460 memset_startat(iocbq, 0, iocb); 1461 iocbq->sli4_xritag = NO_XRI; 1462 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1463 } 1464 1465 /** 1466 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1467 * @phba: Pointer to HBA context object. 1468 * @iocbq: Pointer to driver iocb object. 1469 * 1470 * This function is called with hbalock held to release driver 1471 * iocb object to the iocb pool. The iotag in the iocb object 1472 * does not change for each use of the iocb object. This function 1473 * clears all other fields of the iocb object when it is freed. 1474 **/ 1475 static void 1476 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1477 { 1478 lockdep_assert_held(&phba->hbalock); 1479 1480 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1481 phba->iocb_cnt--; 1482 } 1483 1484 /** 1485 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1486 * @phba: Pointer to HBA context object. 1487 * @iocbq: Pointer to driver iocb object. 1488 * 1489 * This function is called with no lock held to release the iocb to 1490 * iocb pool. 1491 **/ 1492 void 1493 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1494 { 1495 unsigned long iflags; 1496 1497 /* 1498 * Clean all volatile data fields, preserve iotag and node struct. 1499 */ 1500 spin_lock_irqsave(&phba->hbalock, iflags); 1501 __lpfc_sli_release_iocbq(phba, iocbq); 1502 spin_unlock_irqrestore(&phba->hbalock, iflags); 1503 } 1504 1505 /** 1506 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1507 * @phba: Pointer to HBA context object. 1508 * @iocblist: List of IOCBs. 1509 * @ulpstatus: ULP status in IOCB command field. 1510 * @ulpWord4: ULP word-4 in IOCB command field. 1511 * 1512 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1513 * on the list by invoking the complete callback function associated with the 1514 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1515 * fields. 1516 **/ 1517 void 1518 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1519 uint32_t ulpstatus, uint32_t ulpWord4) 1520 { 1521 struct lpfc_iocbq *piocb; 1522 1523 while (!list_empty(iocblist)) { 1524 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1525 if (piocb->cmd_cmpl) { 1526 if (piocb->cmd_flag & LPFC_IO_NVME) { 1527 lpfc_nvme_cancel_iocb(phba, piocb, 1528 ulpstatus, ulpWord4); 1529 } else { 1530 if (phba->sli_rev == LPFC_SLI_REV4) { 1531 bf_set(lpfc_wcqe_c_status, 1532 &piocb->wcqe_cmpl, ulpstatus); 1533 piocb->wcqe_cmpl.parameter = ulpWord4; 1534 } else { 1535 piocb->iocb.ulpStatus = ulpstatus; 1536 piocb->iocb.un.ulpWord[4] = ulpWord4; 1537 } 1538 (piocb->cmd_cmpl) (phba, piocb, piocb); 1539 } 1540 } else { 1541 lpfc_sli_release_iocbq(phba, piocb); 1542 } 1543 } 1544 return; 1545 } 1546 1547 /** 1548 * lpfc_sli_iocb_cmd_type - Get the iocb type 1549 * @iocb_cmnd: iocb command code. 1550 * 1551 * This function is called by ring event handler function to get the iocb type. 1552 * This function translates the iocb command to an iocb command type used to 1553 * decide the final disposition of each completed IOCB. 1554 * The function returns 1555 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1556 * LPFC_SOL_IOCB if it is a solicited iocb completion 1557 * LPFC_ABORT_IOCB if it is an abort iocb 1558 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1559 * 1560 * The caller is not required to hold any lock. 1561 **/ 1562 static lpfc_iocb_type 1563 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1564 { 1565 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1566 1567 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1568 return 0; 1569 1570 switch (iocb_cmnd) { 1571 case CMD_XMIT_SEQUENCE_CR: 1572 case CMD_XMIT_SEQUENCE_CX: 1573 case CMD_XMIT_BCAST_CN: 1574 case CMD_XMIT_BCAST_CX: 1575 case CMD_ELS_REQUEST_CR: 1576 case CMD_ELS_REQUEST_CX: 1577 case CMD_CREATE_XRI_CR: 1578 case CMD_CREATE_XRI_CX: 1579 case CMD_GET_RPI_CN: 1580 case CMD_XMIT_ELS_RSP_CX: 1581 case CMD_GET_RPI_CR: 1582 case CMD_FCP_IWRITE_CR: 1583 case CMD_FCP_IWRITE_CX: 1584 case CMD_FCP_IREAD_CR: 1585 case CMD_FCP_IREAD_CX: 1586 case CMD_FCP_ICMND_CR: 1587 case CMD_FCP_ICMND_CX: 1588 case CMD_FCP_TSEND_CX: 1589 case CMD_FCP_TRSP_CX: 1590 case CMD_FCP_TRECEIVE_CX: 1591 case CMD_FCP_AUTO_TRSP_CX: 1592 case CMD_ADAPTER_MSG: 1593 case CMD_ADAPTER_DUMP: 1594 case CMD_XMIT_SEQUENCE64_CR: 1595 case CMD_XMIT_SEQUENCE64_CX: 1596 case CMD_XMIT_BCAST64_CN: 1597 case CMD_XMIT_BCAST64_CX: 1598 case CMD_ELS_REQUEST64_CR: 1599 case CMD_ELS_REQUEST64_CX: 1600 case CMD_FCP_IWRITE64_CR: 1601 case CMD_FCP_IWRITE64_CX: 1602 case CMD_FCP_IREAD64_CR: 1603 case CMD_FCP_IREAD64_CX: 1604 case CMD_FCP_ICMND64_CR: 1605 case CMD_FCP_ICMND64_CX: 1606 case CMD_FCP_TSEND64_CX: 1607 case CMD_FCP_TRSP64_CX: 1608 case CMD_FCP_TRECEIVE64_CX: 1609 case CMD_GEN_REQUEST64_CR: 1610 case CMD_GEN_REQUEST64_CX: 1611 case CMD_XMIT_ELS_RSP64_CX: 1612 case DSSCMD_IWRITE64_CR: 1613 case DSSCMD_IWRITE64_CX: 1614 case DSSCMD_IREAD64_CR: 1615 case DSSCMD_IREAD64_CX: 1616 case CMD_SEND_FRAME: 1617 type = LPFC_SOL_IOCB; 1618 break; 1619 case CMD_ABORT_XRI_CN: 1620 case CMD_ABORT_XRI_CX: 1621 case CMD_CLOSE_XRI_CN: 1622 case CMD_CLOSE_XRI_CX: 1623 case CMD_XRI_ABORTED_CX: 1624 case CMD_ABORT_MXRI64_CN: 1625 case CMD_XMIT_BLS_RSP64_CX: 1626 type = LPFC_ABORT_IOCB; 1627 break; 1628 case CMD_RCV_SEQUENCE_CX: 1629 case CMD_RCV_ELS_REQ_CX: 1630 case CMD_RCV_SEQUENCE64_CX: 1631 case CMD_RCV_ELS_REQ64_CX: 1632 case CMD_ASYNC_STATUS: 1633 case CMD_IOCB_RCV_SEQ64_CX: 1634 case CMD_IOCB_RCV_ELS64_CX: 1635 case CMD_IOCB_RCV_CONT64_CX: 1636 case CMD_IOCB_RET_XRI64_CX: 1637 type = LPFC_UNSOL_IOCB; 1638 break; 1639 case CMD_IOCB_XMIT_MSEQ64_CR: 1640 case CMD_IOCB_XMIT_MSEQ64_CX: 1641 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1642 case CMD_IOCB_RCV_ELS_LIST64_CX: 1643 case CMD_IOCB_CLOSE_EXTENDED_CN: 1644 case CMD_IOCB_ABORT_EXTENDED_CN: 1645 case CMD_IOCB_RET_HBQE64_CN: 1646 case CMD_IOCB_FCP_IBIDIR64_CR: 1647 case CMD_IOCB_FCP_IBIDIR64_CX: 1648 case CMD_IOCB_FCP_ITASKMGT64_CX: 1649 case CMD_IOCB_LOGENTRY_CN: 1650 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1651 printk("%s - Unhandled SLI-3 Command x%x\n", 1652 __func__, iocb_cmnd); 1653 type = LPFC_UNKNOWN_IOCB; 1654 break; 1655 default: 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 } 1659 1660 return type; 1661 } 1662 1663 /** 1664 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1665 * @phba: Pointer to HBA context object. 1666 * 1667 * This function is called from SLI initialization code 1668 * to configure every ring of the HBA's SLI interface. The 1669 * caller is not required to hold any lock. This function issues 1670 * a config_ring mailbox command for each ring. 1671 * This function returns zero if successful else returns a negative 1672 * error code. 1673 **/ 1674 static int 1675 lpfc_sli_ring_map(struct lpfc_hba *phba) 1676 { 1677 struct lpfc_sli *psli = &phba->sli; 1678 LPFC_MBOXQ_t *pmb; 1679 MAILBOX_t *pmbox; 1680 int i, rc, ret = 0; 1681 1682 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1683 if (!pmb) 1684 return -ENOMEM; 1685 pmbox = &pmb->u.mb; 1686 phba->link_state = LPFC_INIT_MBX_CMDS; 1687 for (i = 0; i < psli->num_rings; i++) { 1688 lpfc_config_ring(phba, i, pmb); 1689 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1690 if (rc != MBX_SUCCESS) { 1691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1692 "0446 Adapter failed to init (%d), " 1693 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1694 "ring %d\n", 1695 rc, pmbox->mbxCommand, 1696 pmbox->mbxStatus, i); 1697 phba->link_state = LPFC_HBA_ERROR; 1698 ret = -ENXIO; 1699 break; 1700 } 1701 } 1702 mempool_free(pmb, phba->mbox_mem_pool); 1703 return ret; 1704 } 1705 1706 /** 1707 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1708 * @phba: Pointer to HBA context object. 1709 * @pring: Pointer to driver SLI ring object. 1710 * @piocb: Pointer to the driver iocb object. 1711 * 1712 * The driver calls this function with the hbalock held for SLI3 ports or 1713 * the ring lock held for SLI4 ports. The function adds the 1714 * new iocb to txcmplq of the given ring. This function always returns 1715 * 0. If this function is called for ELS ring, this function checks if 1716 * there is a vport associated with the ELS command. This function also 1717 * starts els_tmofunc timer if this is an ELS command. 1718 **/ 1719 static int 1720 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1721 struct lpfc_iocbq *piocb) 1722 { 1723 u32 ulp_command = 0; 1724 1725 BUG_ON(!piocb); 1726 ulp_command = get_job_cmnd(phba, piocb); 1727 1728 list_add_tail(&piocb->list, &pring->txcmplq); 1729 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1730 pring->txcmplq_cnt++; 1731 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1732 (ulp_command != CMD_ABORT_XRI_WQE) && 1733 (ulp_command != CMD_ABORT_XRI_CN) && 1734 (ulp_command != CMD_CLOSE_XRI_CN)) { 1735 BUG_ON(!piocb->vport); 1736 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1737 mod_timer(&piocb->vport->els_tmofunc, 1738 jiffies + secs_to_jiffies(phba->fc_ratov << 1)); 1739 } 1740 1741 return 0; 1742 } 1743 1744 /** 1745 * lpfc_sli_ringtx_get - Get first element of the txq 1746 * @phba: Pointer to HBA context object. 1747 * @pring: Pointer to driver SLI ring object. 1748 * 1749 * This function is called with hbalock held to get next 1750 * iocb in txq of the given ring. If there is any iocb in 1751 * the txq, the function returns first iocb in the list after 1752 * removing the iocb from the list, else it returns NULL. 1753 **/ 1754 struct lpfc_iocbq * 1755 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1756 { 1757 struct lpfc_iocbq *cmd_iocb; 1758 1759 lockdep_assert_held(&phba->hbalock); 1760 1761 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1762 return cmd_iocb; 1763 } 1764 1765 /** 1766 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1767 * @phba: Pointer to HBA context object. 1768 * @cmdiocb: Pointer to driver command iocb object. 1769 * @rspiocb: Pointer to driver response iocb object. 1770 * 1771 * This routine will inform the driver of any BW adjustments we need 1772 * to make. These changes will be picked up during the next CMF 1773 * timer interrupt. In addition, any BW changes will be logged 1774 * with LOG_CGN_MGMT. 1775 **/ 1776 static void 1777 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1778 struct lpfc_iocbq *rspiocb) 1779 { 1780 union lpfc_wqe128 *wqe; 1781 uint32_t status, info; 1782 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1783 uint64_t bw, bwdif, slop; 1784 uint64_t pcent, bwpcent; 1785 int asig, afpin, sigcnt, fpincnt; 1786 int wsigmax, wfpinmax, cg, tdp; 1787 char *s; 1788 1789 /* First check for error */ 1790 status = bf_get(lpfc_wcqe_c_status, wcqe); 1791 if (status) { 1792 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1793 "6211 CMF_SYNC_WQE Error " 1794 "req_tag x%x status x%x hwstatus x%x " 1795 "tdatap x%x parm x%x\n", 1796 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1797 bf_get(lpfc_wcqe_c_status, wcqe), 1798 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1799 wcqe->total_data_placed, 1800 wcqe->parameter); 1801 goto out; 1802 } 1803 1804 /* Gather congestion information on a successful cmpl */ 1805 info = wcqe->parameter; 1806 phba->cmf_active_info = info; 1807 1808 /* See if firmware info count is valid or has changed */ 1809 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1810 info = 0; 1811 else 1812 phba->cmf_info_per_interval = info; 1813 1814 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1815 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1816 1817 /* Get BW requirement from firmware */ 1818 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1819 if (!bw) { 1820 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1821 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1822 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1823 goto out; 1824 } 1825 1826 /* Gather information needed for logging if a BW change is required */ 1827 wqe = &cmdiocb->wqe; 1828 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1829 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1830 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1831 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1832 if (phba->cmf_max_bytes_per_interval != bw || 1833 (asig || afpin || sigcnt || fpincnt)) { 1834 /* Are we increasing or decreasing BW */ 1835 if (phba->cmf_max_bytes_per_interval < bw) { 1836 bwdif = bw - phba->cmf_max_bytes_per_interval; 1837 s = "Increase"; 1838 } else { 1839 bwdif = phba->cmf_max_bytes_per_interval - bw; 1840 s = "Decrease"; 1841 } 1842 1843 /* What is the change percentage */ 1844 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1845 pcent = div64_u64(bwdif * 100 + slop, 1846 phba->cmf_link_byte_count); 1847 bwpcent = div64_u64(bw * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 /* Because of bytes adjustment due to shorter timer in 1850 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1851 * may seem like BW is above 100%. 1852 */ 1853 if (bwpcent > 100) 1854 bwpcent = 100; 1855 1856 if (phba->cmf_max_bytes_per_interval < bw && 1857 bwpcent > 95) 1858 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1859 "6208 Congestion bandwidth " 1860 "limits removed\n"); 1861 else if ((phba->cmf_max_bytes_per_interval > bw) && 1862 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1863 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1864 "6209 Congestion bandwidth " 1865 "limits in effect\n"); 1866 1867 if (asig) { 1868 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1869 "6237 BW Threshold %lld%% (%lld): " 1870 "%lld%% %s: Signal Alarm: cg:%d " 1871 "Info:%u\n", 1872 bwpcent, bw, pcent, s, cg, 1873 phba->cmf_active_info); 1874 } else if (afpin) { 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6238 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Alarm: cg:%d " 1878 "Info:%u\n", 1879 bwpcent, bw, pcent, s, cg, 1880 phba->cmf_active_info); 1881 } else if (sigcnt) { 1882 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1883 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1884 "6239 BW Threshold %lld%% (%lld): " 1885 "%lld%% %s: Signal Warning: " 1886 "Cnt %d Max %d: cg:%d Info:%u\n", 1887 bwpcent, bw, pcent, s, sigcnt, 1888 wsigmax, cg, phba->cmf_active_info); 1889 } else if (fpincnt) { 1890 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1891 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1892 "6240 BW Threshold %lld%% (%lld): " 1893 "%lld%% %s: FPIN Warning: " 1894 "Cnt %d Max %d: cg:%d Info:%u\n", 1895 bwpcent, bw, pcent, s, fpincnt, 1896 wfpinmax, cg, phba->cmf_active_info); 1897 } else { 1898 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1899 "6241 BW Threshold %lld%% (%lld): " 1900 "CMF %lld%% %s: cg:%d Info:%u\n", 1901 bwpcent, bw, pcent, s, cg, 1902 phba->cmf_active_info); 1903 } 1904 } else if (info) { 1905 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1906 "6246 Info Threshold %u\n", info); 1907 } 1908 1909 /* Save BW change to be picked up during next timer interrupt */ 1910 phba->cmf_last_sync_bw = bw; 1911 out: 1912 lpfc_sli_release_iocbq(phba, cmdiocb); 1913 } 1914 1915 /** 1916 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1917 * @phba: Pointer to HBA context object. 1918 * @ms: ms to set in WQE interval, 0 means use init op 1919 * @total: Total rcv bytes for this interval 1920 * 1921 * This routine is called every CMF timer interrupt. Its purpose is 1922 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1923 * that may indicate we have congestion (FPINs or Signals). Upon 1924 * completion, the firmware will indicate any BW restrictions the 1925 * driver may need to take. 1926 **/ 1927 int 1928 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1929 { 1930 union lpfc_wqe128 *wqe; 1931 struct lpfc_iocbq *sync_buf; 1932 unsigned long iflags; 1933 u32 ret_val, cgn_sig_freq; 1934 u32 atot, wtot, max; 1935 u8 warn_sync_period = 0; 1936 1937 /* First address any alarm / warning activity */ 1938 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1939 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1940 1941 spin_lock_irqsave(&phba->hbalock, iflags); 1942 1943 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1944 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1945 phba->link_state < LPFC_LINK_UP) { 1946 ret_val = 0; 1947 goto out_unlock; 1948 } 1949 1950 sync_buf = __lpfc_sli_get_iocbq(phba); 1951 if (!sync_buf) { 1952 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1953 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1954 ret_val = ENOMEM; 1955 goto out_unlock; 1956 } 1957 1958 wqe = &sync_buf->wqe; 1959 1960 /* WQEs are reused. Clear stale data and set key fields to zero */ 1961 memset(wqe, 0, sizeof(*wqe)); 1962 1963 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1964 if (!ms) { 1965 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1966 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1967 phba->fc_eventTag); 1968 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1969 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1970 goto initpath; 1971 } 1972 1973 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1974 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1975 1976 /* Check for alarms / warnings */ 1977 if (atot) { 1978 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1979 /* We hit an Signal alarm condition */ 1980 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1981 } else { 1982 /* We hit a FPIN alarm condition */ 1983 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1984 } 1985 } else if (wtot) { 1986 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1987 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1988 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq : 1989 lpfc_fabric_cgn_frequency; 1990 /* We hit an Signal warning condition */ 1991 max = LPFC_SEC_TO_MSEC / cgn_sig_freq * 1992 lpfc_acqe_cgn_frequency; 1993 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1994 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1995 warn_sync_period = lpfc_acqe_cgn_frequency; 1996 } else { 1997 /* We hit a FPIN warning condition */ 1998 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 2000 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 2001 warn_sync_period = 2002 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2003 } 2004 } 2005 2006 /* Update total read blocks during previous timer interval */ 2007 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2008 2009 initpath: 2010 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2011 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2012 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2013 2014 /* Setup reqtag to match the wqe completion. */ 2015 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2016 2017 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2018 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2019 2020 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2021 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2022 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2023 2024 sync_buf->vport = phba->pport; 2025 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2026 sync_buf->cmd_dmabuf = NULL; 2027 sync_buf->rsp_dmabuf = NULL; 2028 sync_buf->bpl_dmabuf = NULL; 2029 sync_buf->sli4_xritag = NO_XRI; 2030 2031 sync_buf->cmd_flag |= LPFC_IO_CMF; 2032 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2033 if (ret_val) { 2034 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2035 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2036 ret_val); 2037 __lpfc_sli_release_iocbq(phba, sync_buf); 2038 } 2039 out_unlock: 2040 spin_unlock_irqrestore(&phba->hbalock, iflags); 2041 return ret_val; 2042 } 2043 2044 /** 2045 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2046 * @phba: Pointer to HBA context object. 2047 * @pring: Pointer to driver SLI ring object. 2048 * 2049 * This function is called with hbalock held and the caller must post the 2050 * iocb without releasing the lock. If the caller releases the lock, 2051 * iocb slot returned by the function is not guaranteed to be available. 2052 * The function returns pointer to the next available iocb slot if there 2053 * is available slot in the ring, else it returns NULL. 2054 * If the get index of the ring is ahead of the put index, the function 2055 * will post an error attention event to the worker thread to take the 2056 * HBA to offline state. 2057 **/ 2058 static IOCB_t * 2059 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2060 { 2061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2062 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2063 2064 lockdep_assert_held(&phba->hbalock); 2065 2066 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2067 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2068 pring->sli.sli3.next_cmdidx = 0; 2069 2070 if (unlikely(pring->sli.sli3.local_getidx == 2071 pring->sli.sli3.next_cmdidx)) { 2072 2073 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2074 2075 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2077 "0315 Ring %d issue: portCmdGet %d " 2078 "is bigger than cmd ring %d\n", 2079 pring->ringno, 2080 pring->sli.sli3.local_getidx, 2081 max_cmd_idx); 2082 2083 phba->link_state = LPFC_HBA_ERROR; 2084 /* 2085 * All error attention handlers are posted to 2086 * worker thread 2087 */ 2088 phba->work_ha |= HA_ERATT; 2089 phba->work_hs = HS_FFER3; 2090 2091 lpfc_worker_wake_up(phba); 2092 2093 return NULL; 2094 } 2095 2096 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2097 return NULL; 2098 } 2099 2100 return lpfc_cmd_iocb(phba, pring); 2101 } 2102 2103 /** 2104 * lpfc_sli_next_iotag - Get an iotag for the iocb 2105 * @phba: Pointer to HBA context object. 2106 * @iocbq: Pointer to driver iocb object. 2107 * 2108 * This function gets an iotag for the iocb. If there is no unused iotag and 2109 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2110 * array and assigns a new iotag. 2111 * The function returns the allocated iotag if successful, else returns zero. 2112 * Zero is not a valid iotag. 2113 * The caller is not required to hold any lock. 2114 **/ 2115 uint16_t 2116 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2117 { 2118 struct lpfc_iocbq **new_arr; 2119 struct lpfc_iocbq **old_arr; 2120 size_t new_len; 2121 struct lpfc_sli *psli = &phba->sli; 2122 uint16_t iotag; 2123 2124 spin_lock_irq(&phba->hbalock); 2125 iotag = psli->last_iotag; 2126 if(++iotag < psli->iocbq_lookup_len) { 2127 psli->last_iotag = iotag; 2128 psli->iocbq_lookup[iotag] = iocbq; 2129 spin_unlock_irq(&phba->hbalock); 2130 iocbq->iotag = iotag; 2131 return iotag; 2132 } else if (psli->iocbq_lookup_len < (0xffff 2133 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2134 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2135 spin_unlock_irq(&phba->hbalock); 2136 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2137 GFP_KERNEL); 2138 if (new_arr) { 2139 spin_lock_irq(&phba->hbalock); 2140 old_arr = psli->iocbq_lookup; 2141 if (new_len <= psli->iocbq_lookup_len) { 2142 /* highly unprobable case */ 2143 kfree(new_arr); 2144 iotag = psli->last_iotag; 2145 if(++iotag < psli->iocbq_lookup_len) { 2146 psli->last_iotag = iotag; 2147 psli->iocbq_lookup[iotag] = iocbq; 2148 spin_unlock_irq(&phba->hbalock); 2149 iocbq->iotag = iotag; 2150 return iotag; 2151 } 2152 spin_unlock_irq(&phba->hbalock); 2153 return 0; 2154 } 2155 if (psli->iocbq_lookup) 2156 memcpy(new_arr, old_arr, 2157 ((psli->last_iotag + 1) * 2158 sizeof (struct lpfc_iocbq *))); 2159 psli->iocbq_lookup = new_arr; 2160 psli->iocbq_lookup_len = new_len; 2161 psli->last_iotag = iotag; 2162 psli->iocbq_lookup[iotag] = iocbq; 2163 spin_unlock_irq(&phba->hbalock); 2164 iocbq->iotag = iotag; 2165 kfree(old_arr); 2166 return iotag; 2167 } 2168 } else 2169 spin_unlock_irq(&phba->hbalock); 2170 2171 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2172 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2173 psli->last_iotag); 2174 2175 return 0; 2176 } 2177 2178 /** 2179 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2180 * @phba: Pointer to HBA context object. 2181 * @pring: Pointer to driver SLI ring object. 2182 * @iocb: Pointer to iocb slot in the ring. 2183 * @nextiocb: Pointer to driver iocb object which need to be 2184 * posted to firmware. 2185 * 2186 * This function is called to post a new iocb to the firmware. This 2187 * function copies the new iocb to ring iocb slot and updates the 2188 * ring pointers. It adds the new iocb to txcmplq if there is 2189 * a completion call back for this iocb else the function will free the 2190 * iocb object. The hbalock is asserted held in the code path calling 2191 * this routine. 2192 **/ 2193 static void 2194 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2195 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2196 { 2197 /* 2198 * Set up an iotag 2199 */ 2200 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2201 2202 2203 if (pring->ringno == LPFC_ELS_RING) { 2204 lpfc_debugfs_slow_ring_trc(phba, 2205 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2206 *(((uint32_t *) &nextiocb->iocb) + 4), 2207 *(((uint32_t *) &nextiocb->iocb) + 6), 2208 *(((uint32_t *) &nextiocb->iocb) + 7)); 2209 } 2210 2211 /* 2212 * Issue iocb command to adapter 2213 */ 2214 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2215 wmb(); 2216 pring->stats.iocb_cmd++; 2217 2218 /* 2219 * If there is no completion routine to call, we can release the 2220 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2221 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2222 */ 2223 if (nextiocb->cmd_cmpl) 2224 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2225 else 2226 __lpfc_sli_release_iocbq(phba, nextiocb); 2227 2228 /* 2229 * Let the HBA know what IOCB slot will be the next one the 2230 * driver will put a command into. 2231 */ 2232 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2233 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2234 } 2235 2236 /** 2237 * lpfc_sli_update_full_ring - Update the chip attention register 2238 * @phba: Pointer to HBA context object. 2239 * @pring: Pointer to driver SLI ring object. 2240 * 2241 * The caller is not required to hold any lock for calling this function. 2242 * This function updates the chip attention bits for the ring to inform firmware 2243 * that there are pending work to be done for this ring and requests an 2244 * interrupt when there is space available in the ring. This function is 2245 * called when the driver is unable to post more iocbs to the ring due 2246 * to unavailability of space in the ring. 2247 **/ 2248 static void 2249 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2250 { 2251 int ringno = pring->ringno; 2252 2253 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2254 2255 wmb(); 2256 2257 /* 2258 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2259 * The HBA will tell us when an IOCB entry is available. 2260 */ 2261 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2262 readl(phba->CAregaddr); /* flush */ 2263 2264 pring->stats.iocb_cmd_full++; 2265 } 2266 2267 /** 2268 * lpfc_sli_update_ring - Update chip attention register 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function updates the chip attention register bit for the 2273 * given ring to inform HBA that there is more work to be done 2274 * in this ring. The caller is not required to hold any lock. 2275 **/ 2276 static void 2277 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 int ringno = pring->ringno; 2280 2281 /* 2282 * Tell the HBA that there is work to do in this ring. 2283 */ 2284 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2285 wmb(); 2286 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2287 readl(phba->CAregaddr); /* flush */ 2288 } 2289 } 2290 2291 /** 2292 * lpfc_sli_resume_iocb - Process iocbs in the txq 2293 * @phba: Pointer to HBA context object. 2294 * @pring: Pointer to driver SLI ring object. 2295 * 2296 * This function is called with hbalock held to post pending iocbs 2297 * in the txq to the firmware. This function is called when driver 2298 * detects space available in the ring. 2299 **/ 2300 static void 2301 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2302 { 2303 IOCB_t *iocb; 2304 struct lpfc_iocbq *nextiocb; 2305 2306 lockdep_assert_held(&phba->hbalock); 2307 2308 /* 2309 * Check to see if: 2310 * (a) there is anything on the txq to send 2311 * (b) link is up 2312 * (c) link attention events can be processed (fcp ring only) 2313 * (d) IOCB processing is not blocked by the outstanding mbox command. 2314 */ 2315 2316 if (lpfc_is_link_up(phba) && 2317 (!list_empty(&pring->txq)) && 2318 (pring->ringno != LPFC_FCP_RING || 2319 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2320 2321 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2322 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2323 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2324 2325 if (iocb) 2326 lpfc_sli_update_ring(phba, pring); 2327 else 2328 lpfc_sli_update_full_ring(phba, pring); 2329 } 2330 2331 return; 2332 } 2333 2334 /** 2335 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2336 * @phba: Pointer to HBA context object. 2337 * @hbqno: HBQ number. 2338 * 2339 * This function is called with hbalock held to get the next 2340 * available slot for the given HBQ. If there is free slot 2341 * available for the HBQ it will return pointer to the next available 2342 * HBQ entry else it will return NULL. 2343 **/ 2344 static struct lpfc_hbq_entry * 2345 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2346 { 2347 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2348 2349 lockdep_assert_held(&phba->hbalock); 2350 2351 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2352 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2353 hbqp->next_hbqPutIdx = 0; 2354 2355 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2356 uint32_t raw_index = phba->hbq_get[hbqno]; 2357 uint32_t getidx = le32_to_cpu(raw_index); 2358 2359 hbqp->local_hbqGetIdx = getidx; 2360 2361 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2363 "1802 HBQ %d: local_hbqGetIdx " 2364 "%u is > than hbqp->entry_count %u\n", 2365 hbqno, hbqp->local_hbqGetIdx, 2366 hbqp->entry_count); 2367 2368 phba->link_state = LPFC_HBA_ERROR; 2369 return NULL; 2370 } 2371 2372 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2373 return NULL; 2374 } 2375 2376 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2377 hbqp->hbqPutIdx; 2378 } 2379 2380 /** 2381 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2382 * @phba: Pointer to HBA context object. 2383 * 2384 * This function is called with no lock held to free all the 2385 * hbq buffers while uninitializing the SLI interface. It also 2386 * frees the HBQ buffers returned by the firmware but not yet 2387 * processed by the upper layers. 2388 **/ 2389 void 2390 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2391 { 2392 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2393 struct hbq_dmabuf *hbq_buf; 2394 unsigned long flags; 2395 int i, hbq_count; 2396 2397 hbq_count = lpfc_sli_hbq_count(); 2398 /* Return all memory used by all HBQs */ 2399 spin_lock_irqsave(&phba->hbalock, flags); 2400 for (i = 0; i < hbq_count; ++i) { 2401 list_for_each_entry_safe(dmabuf, next_dmabuf, 2402 &phba->hbqs[i].hbq_buffer_list, list) { 2403 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2404 list_del(&hbq_buf->dbuf.list); 2405 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2406 } 2407 phba->hbqs[i].buffer_count = 0; 2408 } 2409 2410 /* Mark the HBQs not in use */ 2411 phba->hbq_in_use = 0; 2412 spin_unlock_irqrestore(&phba->hbalock, flags); 2413 } 2414 2415 /** 2416 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2417 * @phba: Pointer to HBA context object. 2418 * @hbqno: HBQ number. 2419 * @hbq_buf: Pointer to HBQ buffer. 2420 * 2421 * This function is called with the hbalock held to post a 2422 * hbq buffer to the firmware. If the function finds an empty 2423 * slot in the HBQ, it will post the buffer. The function will return 2424 * pointer to the hbq entry if it successfully post the buffer 2425 * else it will return NULL. 2426 **/ 2427 static int 2428 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2429 struct hbq_dmabuf *hbq_buf) 2430 { 2431 lockdep_assert_held(&phba->hbalock); 2432 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2433 } 2434 2435 /** 2436 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2437 * @phba: Pointer to HBA context object. 2438 * @hbqno: HBQ number. 2439 * @hbq_buf: Pointer to HBQ buffer. 2440 * 2441 * This function is called with the hbalock held to post a hbq buffer to the 2442 * firmware. If the function finds an empty slot in the HBQ, it will post the 2443 * buffer and place it on the hbq_buffer_list. The function will return zero if 2444 * it successfully post the buffer else it will return an error. 2445 **/ 2446 static int 2447 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2448 struct hbq_dmabuf *hbq_buf) 2449 { 2450 struct lpfc_hbq_entry *hbqe; 2451 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2452 2453 lockdep_assert_held(&phba->hbalock); 2454 /* Get next HBQ entry slot to use */ 2455 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2456 if (hbqe) { 2457 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2458 2459 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2460 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2461 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2462 hbqe->bde.tus.f.bdeFlags = 0; 2463 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2464 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2465 /* Sync SLIM */ 2466 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2467 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2468 /* flush */ 2469 readl(phba->hbq_put + hbqno); 2470 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2471 return 0; 2472 } else 2473 return -ENOMEM; 2474 } 2475 2476 /** 2477 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2478 * @phba: Pointer to HBA context object. 2479 * @hbqno: HBQ number. 2480 * @hbq_buf: Pointer to HBQ buffer. 2481 * 2482 * This function is called with the hbalock held to post an RQE to the SLI4 2483 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2484 * the hbq_buffer_list and return zero, otherwise it will return an error. 2485 **/ 2486 static int 2487 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2488 struct hbq_dmabuf *hbq_buf) 2489 { 2490 int rc; 2491 struct lpfc_rqe hrqe; 2492 struct lpfc_rqe drqe; 2493 struct lpfc_queue *hrq; 2494 struct lpfc_queue *drq; 2495 2496 if (hbqno != LPFC_ELS_HBQ) 2497 return 1; 2498 hrq = phba->sli4_hba.hdr_rq; 2499 drq = phba->sli4_hba.dat_rq; 2500 2501 lockdep_assert_held(&phba->hbalock); 2502 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2503 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2504 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2505 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2506 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2507 if (rc < 0) 2508 return rc; 2509 hbq_buf->tag = (rc | (hbqno << 16)); 2510 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2511 return 0; 2512 } 2513 2514 /* HBQ for ELS and CT traffic. */ 2515 static struct lpfc_hbq_init lpfc_els_hbq = { 2516 .rn = 1, 2517 .entry_count = 256, 2518 .mask_count = 0, 2519 .profile = 0, 2520 .ring_mask = (1 << LPFC_ELS_RING), 2521 .buffer_count = 0, 2522 .init_count = 40, 2523 .add_count = 40, 2524 }; 2525 2526 /* Array of HBQs */ 2527 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2528 &lpfc_els_hbq, 2529 }; 2530 2531 /** 2532 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2533 * @phba: Pointer to HBA context object. 2534 * @hbqno: HBQ number. 2535 * @count: Number of HBQ buffers to be posted. 2536 * 2537 * This function is called with no lock held to post more hbq buffers to the 2538 * given HBQ. The function returns the number of HBQ buffers successfully 2539 * posted. 2540 **/ 2541 static int 2542 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2543 { 2544 uint32_t i, posted = 0; 2545 unsigned long flags; 2546 struct hbq_dmabuf *hbq_buffer; 2547 LIST_HEAD(hbq_buf_list); 2548 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2549 return 0; 2550 2551 if ((phba->hbqs[hbqno].buffer_count + count) > 2552 lpfc_hbq_defs[hbqno]->entry_count) 2553 count = lpfc_hbq_defs[hbqno]->entry_count - 2554 phba->hbqs[hbqno].buffer_count; 2555 if (!count) 2556 return 0; 2557 /* Allocate HBQ entries */ 2558 for (i = 0; i < count; i++) { 2559 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2560 if (!hbq_buffer) 2561 break; 2562 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2563 } 2564 /* Check whether HBQ is still in use */ 2565 spin_lock_irqsave(&phba->hbalock, flags); 2566 if (!phba->hbq_in_use) 2567 goto err; 2568 while (!list_empty(&hbq_buf_list)) { 2569 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2570 dbuf.list); 2571 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2572 (hbqno << 16)); 2573 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2574 phba->hbqs[hbqno].buffer_count++; 2575 posted++; 2576 } else 2577 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2578 } 2579 spin_unlock_irqrestore(&phba->hbalock, flags); 2580 return posted; 2581 err: 2582 spin_unlock_irqrestore(&phba->hbalock, flags); 2583 while (!list_empty(&hbq_buf_list)) { 2584 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2585 dbuf.list); 2586 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2587 } 2588 return 0; 2589 } 2590 2591 /** 2592 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2593 * @phba: Pointer to HBA context object. 2594 * @qno: HBQ number. 2595 * 2596 * This function posts more buffers to the HBQ. This function 2597 * is called with no lock held. The function returns the number of HBQ entries 2598 * successfully allocated. 2599 **/ 2600 int 2601 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2602 { 2603 if (phba->sli_rev == LPFC_SLI_REV4) 2604 return 0; 2605 else 2606 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2607 lpfc_hbq_defs[qno]->add_count); 2608 } 2609 2610 /** 2611 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2612 * @phba: Pointer to HBA context object. 2613 * @qno: HBQ queue number. 2614 * 2615 * This function is called from SLI initialization code path with 2616 * no lock held to post initial HBQ buffers to firmware. The 2617 * function returns the number of HBQ entries successfully allocated. 2618 **/ 2619 static int 2620 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2621 { 2622 if (phba->sli_rev == LPFC_SLI_REV4) 2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2624 lpfc_hbq_defs[qno]->entry_count); 2625 else 2626 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2627 lpfc_hbq_defs[qno]->init_count); 2628 } 2629 2630 /* 2631 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2632 * 2633 * This function removes the first hbq buffer on an hbq list and returns a 2634 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2635 **/ 2636 static struct hbq_dmabuf * 2637 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2638 { 2639 struct lpfc_dmabuf *d_buf; 2640 2641 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2642 if (!d_buf) 2643 return NULL; 2644 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2645 } 2646 2647 /** 2648 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2649 * @phba: Pointer to HBA context object. 2650 * @hrq: HBQ number. 2651 * 2652 * This function removes the first RQ buffer on an RQ buffer list and returns a 2653 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2654 **/ 2655 static struct rqb_dmabuf * 2656 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2657 { 2658 struct lpfc_dmabuf *h_buf; 2659 struct lpfc_rqb *rqbp; 2660 2661 rqbp = hrq->rqbp; 2662 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2663 struct lpfc_dmabuf, list); 2664 if (!h_buf) 2665 return NULL; 2666 rqbp->buffer_count--; 2667 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2668 } 2669 2670 /** 2671 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2672 * @phba: Pointer to HBA context object. 2673 * @tag: Tag of the hbq buffer. 2674 * 2675 * This function searches for the hbq buffer associated with the given tag in 2676 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2677 * otherwise it returns NULL. 2678 **/ 2679 static struct hbq_dmabuf * 2680 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2681 { 2682 struct lpfc_dmabuf *d_buf; 2683 struct hbq_dmabuf *hbq_buf; 2684 uint32_t hbqno; 2685 2686 hbqno = tag >> 16; 2687 if (hbqno >= LPFC_MAX_HBQS) 2688 return NULL; 2689 2690 spin_lock_irq(&phba->hbalock); 2691 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2692 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2693 if (hbq_buf->tag == tag) { 2694 spin_unlock_irq(&phba->hbalock); 2695 return hbq_buf; 2696 } 2697 } 2698 spin_unlock_irq(&phba->hbalock); 2699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2700 "1803 Bad hbq tag. Data: x%x x%x\n", 2701 tag, phba->hbqs[tag >> 16].buffer_count); 2702 return NULL; 2703 } 2704 2705 /** 2706 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2707 * @phba: Pointer to HBA context object. 2708 * @hbq_buffer: Pointer to HBQ buffer. 2709 * 2710 * This function is called with hbalock. This function gives back 2711 * the hbq buffer to firmware. If the HBQ does not have space to 2712 * post the buffer, it will free the buffer. 2713 **/ 2714 void 2715 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2716 { 2717 uint32_t hbqno; 2718 2719 if (hbq_buffer) { 2720 hbqno = hbq_buffer->tag >> 16; 2721 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2722 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2723 } 2724 } 2725 2726 /** 2727 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2728 * @mbxCommand: mailbox command code. 2729 * 2730 * This function is called by the mailbox event handler function to verify 2731 * that the completed mailbox command is a legitimate mailbox command. If the 2732 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2733 * and the mailbox event handler will take the HBA offline. 2734 **/ 2735 static int 2736 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2737 { 2738 uint8_t ret; 2739 2740 switch (mbxCommand) { 2741 case MBX_LOAD_SM: 2742 case MBX_READ_NV: 2743 case MBX_WRITE_NV: 2744 case MBX_WRITE_VPARMS: 2745 case MBX_RUN_BIU_DIAG: 2746 case MBX_INIT_LINK: 2747 case MBX_DOWN_LINK: 2748 case MBX_CONFIG_LINK: 2749 case MBX_CONFIG_RING: 2750 case MBX_RESET_RING: 2751 case MBX_READ_CONFIG: 2752 case MBX_READ_RCONFIG: 2753 case MBX_READ_SPARM: 2754 case MBX_READ_STATUS: 2755 case MBX_READ_RPI: 2756 case MBX_READ_XRI: 2757 case MBX_READ_REV: 2758 case MBX_READ_LNK_STAT: 2759 case MBX_REG_LOGIN: 2760 case MBX_UNREG_LOGIN: 2761 case MBX_CLEAR_LA: 2762 case MBX_DUMP_MEMORY: 2763 case MBX_DUMP_CONTEXT: 2764 case MBX_RUN_DIAGS: 2765 case MBX_RESTART: 2766 case MBX_UPDATE_CFG: 2767 case MBX_DOWN_LOAD: 2768 case MBX_DEL_LD_ENTRY: 2769 case MBX_RUN_PROGRAM: 2770 case MBX_SET_MASK: 2771 case MBX_SET_VARIABLE: 2772 case MBX_UNREG_D_ID: 2773 case MBX_KILL_BOARD: 2774 case MBX_CONFIG_FARP: 2775 case MBX_BEACON: 2776 case MBX_LOAD_AREA: 2777 case MBX_RUN_BIU_DIAG64: 2778 case MBX_CONFIG_PORT: 2779 case MBX_READ_SPARM64: 2780 case MBX_READ_RPI64: 2781 case MBX_REG_LOGIN64: 2782 case MBX_READ_TOPOLOGY: 2783 case MBX_WRITE_WWN: 2784 case MBX_SET_DEBUG: 2785 case MBX_LOAD_EXP_ROM: 2786 case MBX_ASYNCEVT_ENABLE: 2787 case MBX_REG_VPI: 2788 case MBX_UNREG_VPI: 2789 case MBX_HEARTBEAT: 2790 case MBX_PORT_CAPABILITIES: 2791 case MBX_PORT_IOV_CONTROL: 2792 case MBX_SLI4_CONFIG: 2793 case MBX_SLI4_REQ_FTRS: 2794 case MBX_REG_FCFI: 2795 case MBX_UNREG_FCFI: 2796 case MBX_REG_VFI: 2797 case MBX_UNREG_VFI: 2798 case MBX_INIT_VPI: 2799 case MBX_INIT_VFI: 2800 case MBX_RESUME_RPI: 2801 case MBX_READ_EVENT_LOG_STATUS: 2802 case MBX_READ_EVENT_LOG: 2803 case MBX_SECURITY_MGMT: 2804 case MBX_AUTH_PORT: 2805 case MBX_ACCESS_VDATA: 2806 ret = mbxCommand; 2807 break; 2808 default: 2809 ret = MBX_SHUTDOWN; 2810 break; 2811 } 2812 return ret; 2813 } 2814 2815 /** 2816 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2817 * @phba: Pointer to HBA context object. 2818 * @pmboxq: Pointer to mailbox command. 2819 * 2820 * This is completion handler function for mailbox commands issued from 2821 * lpfc_sli_issue_mbox_wait function. This function is called by the 2822 * mailbox event handler function with no lock held. This function 2823 * will wake up thread waiting on the wait queue pointed by context1 2824 * of the mailbox. 2825 **/ 2826 void 2827 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2828 { 2829 unsigned long drvr_flag; 2830 struct completion *pmbox_done; 2831 2832 /* 2833 * If pmbox_done is empty, the driver thread gave up waiting and 2834 * continued running. 2835 */ 2836 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2837 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2838 pmbox_done = pmboxq->ctx_u.mbox_wait; 2839 if (pmbox_done) 2840 complete(pmbox_done); 2841 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2842 return; 2843 } 2844 2845 /** 2846 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2847 * @phba: Pointer to HBA context object. 2848 * @pmb: Pointer to mailbox object. 2849 * 2850 * This function is the default mailbox completion handler. It 2851 * frees the memory resources associated with the completed mailbox 2852 * command. If the completed command is a REG_LOGIN mailbox command, 2853 * this function will issue a UREG_LOGIN to re-claim the RPI. 2854 **/ 2855 void 2856 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2857 { 2858 struct lpfc_vport *vport = pmb->vport; 2859 struct lpfc_dmabuf *mp; 2860 struct lpfc_nodelist *ndlp; 2861 struct Scsi_Host *shost; 2862 uint16_t rpi, vpi; 2863 int rc; 2864 2865 /* 2866 * If a REG_LOGIN succeeded after node is destroyed or node 2867 * is in re-discovery driver need to cleanup the RPI. 2868 */ 2869 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2870 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2871 !pmb->u.mb.mbxStatus) { 2872 mp = pmb->ctx_buf; 2873 if (mp) { 2874 pmb->ctx_buf = NULL; 2875 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2876 kfree(mp); 2877 } 2878 rpi = pmb->u.mb.un.varWords[0]; 2879 vpi = pmb->u.mb.un.varRegLogin.vpi; 2880 if (phba->sli_rev == LPFC_SLI_REV4) 2881 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2882 lpfc_unreg_login(phba, vpi, rpi, pmb); 2883 pmb->vport = vport; 2884 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2885 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2886 if (rc != MBX_NOT_FINISHED) 2887 return; 2888 } 2889 2890 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2891 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2892 !pmb->u.mb.mbxStatus) { 2893 shost = lpfc_shost_from_vport(vport); 2894 spin_lock_irq(shost->host_lock); 2895 vport->vpi_state |= LPFC_VPI_REGISTERED; 2896 spin_unlock_irq(shost->host_lock); 2897 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2898 } 2899 2900 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2901 ndlp = pmb->ctx_ndlp; 2902 lpfc_nlp_put(ndlp); 2903 } 2904 2905 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2906 ndlp = pmb->ctx_ndlp; 2907 2908 /* Check to see if there are any deferred events to process */ 2909 if (ndlp) { 2910 lpfc_printf_vlog( 2911 vport, 2912 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2913 "1438 UNREG cmpl deferred mbox x%x " 2914 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n", 2915 ndlp->nlp_rpi, ndlp->nlp_DID, 2916 ndlp->nlp_flag, ndlp->nlp_defer_did, 2917 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2918 2919 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) && 2920 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) { 2921 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2922 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2923 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2924 } else { 2925 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2926 } 2927 2928 /* The unreg_login mailbox is complete and had a 2929 * reference that has to be released. The PLOGI 2930 * got its own ref. 2931 */ 2932 lpfc_nlp_put(ndlp); 2933 pmb->ctx_ndlp = NULL; 2934 } 2935 } 2936 2937 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2938 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2939 ndlp = pmb->ctx_ndlp; 2940 lpfc_nlp_put(ndlp); 2941 } 2942 2943 /* Check security permission status on INIT_LINK mailbox command */ 2944 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2945 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2947 "2860 SLI authentication is required " 2948 "for INIT_LINK but has not done yet\n"); 2949 2950 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2951 lpfc_sli4_mbox_cmd_free(phba, pmb); 2952 else 2953 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2954 } 2955 /** 2956 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2957 * @phba: Pointer to HBA context object. 2958 * @pmb: Pointer to mailbox object. 2959 * 2960 * This function is the unreg rpi mailbox completion handler. It 2961 * frees the memory resources associated with the completed mailbox 2962 * command. An additional reference is put on the ndlp to prevent 2963 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2964 * the unreg mailbox command completes, this routine puts the 2965 * reference back. 2966 * 2967 **/ 2968 void 2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2970 { 2971 struct lpfc_vport *vport = pmb->vport; 2972 struct lpfc_nodelist *ndlp; 2973 bool unreg_inp; 2974 2975 ndlp = pmb->ctx_ndlp; 2976 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2977 if (phba->sli_rev == LPFC_SLI_REV4 && 2978 (bf_get(lpfc_sli_intf_if_type, 2979 &phba->sli4_hba.sli_intf) >= 2980 LPFC_SLI_INTF_IF_TYPE_2)) { 2981 if (ndlp) { 2982 lpfc_printf_vlog( 2983 vport, KERN_INFO, 2984 LOG_MBOX | LOG_SLI | LOG_NODE, 2985 "0010 UNREG_LOGIN vpi:x%x " 2986 "rpi:%x DID:%x defer x%x flg x%lx " 2987 "x%px\n", 2988 vport->vpi, ndlp->nlp_rpi, 2989 ndlp->nlp_DID, ndlp->nlp_defer_did, 2990 ndlp->nlp_flag, 2991 ndlp); 2992 2993 /* Cleanup the nlp_flag now that the UNREG RPI 2994 * has completed. 2995 */ 2996 unreg_inp = test_and_clear_bit(NLP_UNREG_INP, 2997 &ndlp->nlp_flag); 2998 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag); 2999 3000 /* Check to see if there are any deferred 3001 * events to process 3002 */ 3003 if (unreg_inp && 3004 ndlp->nlp_defer_did != 3005 NLP_EVT_NOTHING_PENDING) { 3006 lpfc_printf_vlog( 3007 vport, KERN_INFO, 3008 LOG_MBOX | LOG_SLI | LOG_NODE, 3009 "4111 UNREG cmpl deferred " 3010 "clr x%x on " 3011 "NPort x%x Data: x%x x%px\n", 3012 ndlp->nlp_rpi, ndlp->nlp_DID, 3013 ndlp->nlp_defer_did, ndlp); 3014 ndlp->nlp_defer_did = 3015 NLP_EVT_NOTHING_PENDING; 3016 lpfc_issue_els_plogi( 3017 vport, ndlp->nlp_DID, 0); 3018 } 3019 3020 lpfc_nlp_put(ndlp); 3021 } 3022 } 3023 } 3024 3025 mempool_free(pmb, phba->mbox_mem_pool); 3026 } 3027 3028 /** 3029 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3030 * @phba: Pointer to HBA context object. 3031 * 3032 * This function is called with no lock held. This function processes all 3033 * the completed mailbox commands and gives it to upper layers. The interrupt 3034 * service routine processes mailbox completion interrupt and adds completed 3035 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3036 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3037 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3038 * function returns the mailbox commands to the upper layer by calling the 3039 * completion handler function of each mailbox. 3040 **/ 3041 int 3042 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3043 { 3044 MAILBOX_t *pmbox; 3045 LPFC_MBOXQ_t *pmb; 3046 int rc; 3047 LIST_HEAD(cmplq); 3048 3049 phba->sli.slistat.mbox_event++; 3050 3051 /* Get all completed mailboxe buffers into the cmplq */ 3052 spin_lock_irq(&phba->hbalock); 3053 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3054 spin_unlock_irq(&phba->hbalock); 3055 3056 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3057 do { 3058 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3059 if (pmb == NULL) 3060 break; 3061 3062 pmbox = &pmb->u.mb; 3063 3064 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3065 if (pmb->vport) { 3066 lpfc_debugfs_disc_trc(pmb->vport, 3067 LPFC_DISC_TRC_MBOX_VPORT, 3068 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3069 (uint32_t)pmbox->mbxCommand, 3070 pmbox->un.varWords[0], 3071 pmbox->un.varWords[1]); 3072 } 3073 else { 3074 lpfc_debugfs_disc_trc(phba->pport, 3075 LPFC_DISC_TRC_MBOX, 3076 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3077 (uint32_t)pmbox->mbxCommand, 3078 pmbox->un.varWords[0], 3079 pmbox->un.varWords[1]); 3080 } 3081 } 3082 3083 /* 3084 * It is a fatal error if unknown mbox command completion. 3085 */ 3086 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3087 MBX_SHUTDOWN) { 3088 /* Unknown mailbox command compl */ 3089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3090 "(%d):0323 Unknown Mailbox command " 3091 "x%x (x%x/x%x) Cmpl\n", 3092 pmb->vport ? pmb->vport->vpi : 3093 LPFC_VPORT_UNKNOWN, 3094 pmbox->mbxCommand, 3095 lpfc_sli_config_mbox_subsys_get(phba, 3096 pmb), 3097 lpfc_sli_config_mbox_opcode_get(phba, 3098 pmb)); 3099 phba->link_state = LPFC_HBA_ERROR; 3100 phba->work_hs = HS_FFER3; 3101 lpfc_handle_eratt(phba); 3102 continue; 3103 } 3104 3105 if (pmbox->mbxStatus) { 3106 phba->sli.slistat.mbox_stat_err++; 3107 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3108 /* Mbox cmd cmpl error - RETRYing */ 3109 lpfc_printf_log(phba, KERN_INFO, 3110 LOG_MBOX | LOG_SLI, 3111 "(%d):0305 Mbox cmd cmpl " 3112 "error - RETRYing Data: x%x " 3113 "(x%x/x%x) x%x x%x x%x\n", 3114 pmb->vport ? pmb->vport->vpi : 3115 LPFC_VPORT_UNKNOWN, 3116 pmbox->mbxCommand, 3117 lpfc_sli_config_mbox_subsys_get(phba, 3118 pmb), 3119 lpfc_sli_config_mbox_opcode_get(phba, 3120 pmb), 3121 pmbox->mbxStatus, 3122 pmbox->un.varWords[0], 3123 pmb->vport ? pmb->vport->port_state : 3124 LPFC_VPORT_UNKNOWN); 3125 pmbox->mbxStatus = 0; 3126 pmbox->mbxOwner = OWN_HOST; 3127 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3128 if (rc != MBX_NOT_FINISHED) 3129 continue; 3130 } 3131 } 3132 3133 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3134 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3135 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3136 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3137 "x%x x%x x%x\n", 3138 pmb->vport ? pmb->vport->vpi : 0, 3139 pmbox->mbxCommand, 3140 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3141 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3142 pmb->mbox_cmpl, 3143 *((uint32_t *) pmbox), 3144 pmbox->un.varWords[0], 3145 pmbox->un.varWords[1], 3146 pmbox->un.varWords[2], 3147 pmbox->un.varWords[3], 3148 pmbox->un.varWords[4], 3149 pmbox->un.varWords[5], 3150 pmbox->un.varWords[6], 3151 pmbox->un.varWords[7], 3152 pmbox->un.varWords[8], 3153 pmbox->un.varWords[9], 3154 pmbox->un.varWords[10]); 3155 3156 if (pmb->mbox_cmpl) 3157 pmb->mbox_cmpl(phba,pmb); 3158 } while (1); 3159 return 0; 3160 } 3161 3162 /** 3163 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3164 * @phba: Pointer to HBA context object. 3165 * @pring: Pointer to driver SLI ring object. 3166 * @tag: buffer tag. 3167 * 3168 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3169 * is set in the tag the buffer is posted for a particular exchange, 3170 * the function will return the buffer without replacing the buffer. 3171 * If the buffer is for unsolicited ELS or CT traffic, this function 3172 * returns the buffer and also posts another buffer to the firmware. 3173 **/ 3174 static struct lpfc_dmabuf * 3175 lpfc_sli_get_buff(struct lpfc_hba *phba, 3176 struct lpfc_sli_ring *pring, 3177 uint32_t tag) 3178 { 3179 struct hbq_dmabuf *hbq_entry; 3180 3181 if (tag & QUE_BUFTAG_BIT) 3182 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3183 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3184 if (!hbq_entry) 3185 return NULL; 3186 return &hbq_entry->dbuf; 3187 } 3188 3189 /** 3190 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3191 * containing a NVME LS request. 3192 * @phba: pointer to lpfc hba data structure. 3193 * @piocb: pointer to the iocbq struct representing the sequence starting 3194 * frame. 3195 * 3196 * This routine initially validates the NVME LS, validates there is a login 3197 * with the port that sent the LS, and then calls the appropriate nvme host 3198 * or target LS request handler. 3199 **/ 3200 static void 3201 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3202 { 3203 struct lpfc_nodelist *ndlp; 3204 struct lpfc_dmabuf *d_buf; 3205 struct hbq_dmabuf *nvmebuf; 3206 struct fc_frame_header *fc_hdr; 3207 struct lpfc_async_xchg_ctx *axchg = NULL; 3208 char *failwhy = NULL; 3209 uint32_t oxid, sid, did, fctl, size; 3210 int ret = 1; 3211 3212 d_buf = piocb->cmd_dmabuf; 3213 3214 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3215 fc_hdr = nvmebuf->hbuf.virt; 3216 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3217 sid = sli4_sid_from_fc_hdr(fc_hdr); 3218 did = sli4_did_from_fc_hdr(fc_hdr); 3219 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3220 fc_hdr->fh_f_ctl[1] << 8 | 3221 fc_hdr->fh_f_ctl[2]); 3222 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3223 3224 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3225 oxid, size, sid); 3226 3227 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3228 failwhy = "Driver Unloading"; 3229 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3230 failwhy = "NVME FC4 Disabled"; 3231 } else if (!phba->nvmet_support && !phba->pport->localport) { 3232 failwhy = "No Localport"; 3233 } else if (phba->nvmet_support && !phba->targetport) { 3234 failwhy = "No Targetport"; 3235 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3236 failwhy = "Bad NVME LS R_CTL"; 3237 } else if (unlikely((fctl & 0x00FF0000) != 3238 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3239 failwhy = "Bad NVME LS F_CTL"; 3240 } else { 3241 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3242 if (!axchg) 3243 failwhy = "No CTX memory"; 3244 } 3245 3246 if (unlikely(failwhy)) { 3247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3248 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3249 sid, oxid, failwhy); 3250 goto out_fail; 3251 } 3252 3253 /* validate the source of the LS is logged in */ 3254 ndlp = lpfc_findnode_did(phba->pport, sid); 3255 if (!ndlp || 3256 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3257 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3258 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3259 "6216 NVME Unsol rcv: No ndlp: " 3260 "NPort_ID x%x oxid x%x\n", 3261 sid, oxid); 3262 goto out_fail; 3263 } 3264 3265 axchg->phba = phba; 3266 axchg->ndlp = ndlp; 3267 axchg->size = size; 3268 axchg->oxid = oxid; 3269 axchg->sid = sid; 3270 axchg->wqeq = NULL; 3271 axchg->state = LPFC_NVME_STE_LS_RCV; 3272 axchg->entry_cnt = 1; 3273 axchg->rqb_buffer = (void *)nvmebuf; 3274 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3275 axchg->payload = nvmebuf->dbuf.virt; 3276 INIT_LIST_HEAD(&axchg->list); 3277 3278 if (phba->nvmet_support) { 3279 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3280 spin_lock_irq(&ndlp->lock); 3281 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3282 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3283 spin_unlock_irq(&ndlp->lock); 3284 3285 /* This reference is a single occurrence to hold the 3286 * node valid until the nvmet transport calls 3287 * host_release. 3288 */ 3289 if (!lpfc_nlp_get(ndlp)) 3290 goto out_fail; 3291 3292 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3293 "6206 NVMET unsol ls_req ndlp x%px " 3294 "DID x%x xflags x%x refcnt %d\n", 3295 ndlp, ndlp->nlp_DID, 3296 ndlp->fc4_xpt_flags, 3297 kref_read(&ndlp->kref)); 3298 } else { 3299 spin_unlock_irq(&ndlp->lock); 3300 } 3301 } else { 3302 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3303 } 3304 3305 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3306 if (!ret) 3307 return; 3308 3309 out_fail: 3310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3311 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3312 "NVMe%s handler failed %d\n", 3313 did, sid, oxid, 3314 (phba->nvmet_support) ? "T" : "I", ret); 3315 3316 /* recycle receive buffer */ 3317 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3318 3319 /* If start of new exchange, abort it */ 3320 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3321 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3322 3323 if (ret) 3324 kfree(axchg); 3325 } 3326 3327 /** 3328 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3329 * @phba: Pointer to HBA context object. 3330 * @pring: Pointer to driver SLI ring object. 3331 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3332 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3333 * @fch_type: the type for the first frame of the sequence. 3334 * 3335 * This function is called with no lock held. This function uses the r_ctl and 3336 * type of the received sequence to find the correct callback function to call 3337 * to process the sequence. 3338 **/ 3339 static int 3340 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3341 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3342 uint32_t fch_type) 3343 { 3344 int i; 3345 3346 switch (fch_type) { 3347 case FC_TYPE_NVME: 3348 lpfc_nvme_unsol_ls_handler(phba, saveq); 3349 return 1; 3350 default: 3351 break; 3352 } 3353 3354 /* unSolicited Responses */ 3355 if (pring->prt[0].profile) { 3356 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3357 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3358 saveq); 3359 return 1; 3360 } 3361 /* We must search, based on rctl / type 3362 for the right routine */ 3363 for (i = 0; i < pring->num_mask; i++) { 3364 if ((pring->prt[i].rctl == fch_r_ctl) && 3365 (pring->prt[i].type == fch_type)) { 3366 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3367 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3368 (phba, pring, saveq); 3369 return 1; 3370 } 3371 } 3372 return 0; 3373 } 3374 3375 static void 3376 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3377 struct lpfc_iocbq *saveq) 3378 { 3379 IOCB_t *irsp; 3380 union lpfc_wqe128 *wqe; 3381 u16 i = 0; 3382 3383 irsp = &saveq->iocb; 3384 wqe = &saveq->wqe; 3385 3386 /* Fill wcqe with the IOCB status fields */ 3387 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3388 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3389 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3390 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3391 3392 /* Source ID */ 3393 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3394 3395 /* rx-id of the response frame */ 3396 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3397 3398 /* ox-id of the frame */ 3399 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3400 irsp->unsli3.rcvsli3.ox_id); 3401 3402 /* DID */ 3403 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3404 irsp->un.rcvels.remoteID); 3405 3406 /* unsol data len */ 3407 for (i = 0; i < irsp->ulpBdeCount; i++) { 3408 struct lpfc_hbq_entry *hbqe = NULL; 3409 3410 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3411 if (i == 0) { 3412 hbqe = (struct lpfc_hbq_entry *) 3413 &irsp->un.ulpWord[0]; 3414 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3415 hbqe->bde.tus.f.bdeSize; 3416 } else if (i == 1) { 3417 hbqe = (struct lpfc_hbq_entry *) 3418 &irsp->unsli3.sli3Words[4]; 3419 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3420 } 3421 } 3422 } 3423 } 3424 3425 /** 3426 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3427 * @phba: Pointer to HBA context object. 3428 * @pring: Pointer to driver SLI ring object. 3429 * @saveq: Pointer to the unsolicited iocb. 3430 * 3431 * This function is called with no lock held by the ring event handler 3432 * when there is an unsolicited iocb posted to the response ring by the 3433 * firmware. This function gets the buffer associated with the iocbs 3434 * and calls the event handler for the ring. This function handles both 3435 * qring buffers and hbq buffers. 3436 * When the function returns 1 the caller can free the iocb object otherwise 3437 * upper layer functions will free the iocb objects. 3438 **/ 3439 static int 3440 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3441 struct lpfc_iocbq *saveq) 3442 { 3443 IOCB_t * irsp; 3444 WORD5 * w5p; 3445 dma_addr_t paddr; 3446 uint32_t Rctl, Type; 3447 struct lpfc_iocbq *iocbq; 3448 struct lpfc_dmabuf *dmzbuf; 3449 3450 irsp = &saveq->iocb; 3451 saveq->vport = phba->pport; 3452 3453 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3454 if (pring->lpfc_sli_rcv_async_status) 3455 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3456 else 3457 lpfc_printf_log(phba, 3458 KERN_WARNING, 3459 LOG_SLI, 3460 "0316 Ring %d handler: unexpected " 3461 "ASYNC_STATUS iocb received evt_code " 3462 "0x%x\n", 3463 pring->ringno, 3464 irsp->un.asyncstat.evt_code); 3465 return 1; 3466 } 3467 3468 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3469 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3470 if (irsp->ulpBdeCount > 0) { 3471 dmzbuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->un.ulpWord[3]); 3473 lpfc_in_buf_free(phba, dmzbuf); 3474 } 3475 3476 if (irsp->ulpBdeCount > 1) { 3477 dmzbuf = lpfc_sli_get_buff(phba, pring, 3478 irsp->unsli3.sli3Words[3]); 3479 lpfc_in_buf_free(phba, dmzbuf); 3480 } 3481 3482 if (irsp->ulpBdeCount > 2) { 3483 dmzbuf = lpfc_sli_get_buff(phba, pring, 3484 irsp->unsli3.sli3Words[7]); 3485 lpfc_in_buf_free(phba, dmzbuf); 3486 } 3487 3488 return 1; 3489 } 3490 3491 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3492 if (irsp->ulpBdeCount != 0) { 3493 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3494 irsp->un.ulpWord[3]); 3495 if (!saveq->cmd_dmabuf) 3496 lpfc_printf_log(phba, 3497 KERN_ERR, 3498 LOG_SLI, 3499 "0341 Ring %d Cannot find buffer for " 3500 "an unsolicited iocb. tag 0x%x\n", 3501 pring->ringno, 3502 irsp->un.ulpWord[3]); 3503 } 3504 if (irsp->ulpBdeCount == 2) { 3505 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3506 irsp->unsli3.sli3Words[7]); 3507 if (!saveq->bpl_dmabuf) 3508 lpfc_printf_log(phba, 3509 KERN_ERR, 3510 LOG_SLI, 3511 "0342 Ring %d Cannot find buffer for an" 3512 " unsolicited iocb. tag 0x%x\n", 3513 pring->ringno, 3514 irsp->unsli3.sli3Words[7]); 3515 } 3516 list_for_each_entry(iocbq, &saveq->list, list) { 3517 irsp = &iocbq->iocb; 3518 if (irsp->ulpBdeCount != 0) { 3519 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3520 pring, 3521 irsp->un.ulpWord[3]); 3522 if (!iocbq->cmd_dmabuf) 3523 lpfc_printf_log(phba, 3524 KERN_ERR, 3525 LOG_SLI, 3526 "0343 Ring %d Cannot find " 3527 "buffer for an unsolicited iocb" 3528 ". tag 0x%x\n", pring->ringno, 3529 irsp->un.ulpWord[3]); 3530 } 3531 if (irsp->ulpBdeCount == 2) { 3532 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3533 pring, 3534 irsp->unsli3.sli3Words[7]); 3535 if (!iocbq->bpl_dmabuf) 3536 lpfc_printf_log(phba, 3537 KERN_ERR, 3538 LOG_SLI, 3539 "0344 Ring %d Cannot find " 3540 "buffer for an unsolicited " 3541 "iocb. tag 0x%x\n", 3542 pring->ringno, 3543 irsp->unsli3.sli3Words[7]); 3544 } 3545 } 3546 } else { 3547 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3548 irsp->un.cont64[0].addrLow); 3549 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3550 paddr); 3551 if (irsp->ulpBdeCount == 2) { 3552 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3553 irsp->un.cont64[1].addrLow); 3554 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3555 pring, 3556 paddr); 3557 } 3558 } 3559 3560 if (irsp->ulpBdeCount != 0 && 3561 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3562 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3563 int found = 0; 3564 3565 /* search continue save q for same XRI */ 3566 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3567 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3568 saveq->iocb.unsli3.rcvsli3.ox_id) { 3569 list_add_tail(&saveq->list, &iocbq->list); 3570 found = 1; 3571 break; 3572 } 3573 } 3574 if (!found) 3575 list_add_tail(&saveq->clist, 3576 &pring->iocb_continue_saveq); 3577 3578 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3579 list_del_init(&iocbq->clist); 3580 saveq = iocbq; 3581 irsp = &saveq->iocb; 3582 } else { 3583 return 0; 3584 } 3585 } 3586 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3587 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3588 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3589 Rctl = FC_RCTL_ELS_REQ; 3590 Type = FC_TYPE_ELS; 3591 } else { 3592 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3593 Rctl = w5p->hcsw.Rctl; 3594 Type = w5p->hcsw.Type; 3595 3596 /* Firmware Workaround */ 3597 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3598 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3599 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3600 Rctl = FC_RCTL_ELS_REQ; 3601 Type = FC_TYPE_ELS; 3602 w5p->hcsw.Rctl = Rctl; 3603 w5p->hcsw.Type = Type; 3604 } 3605 } 3606 3607 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3608 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3609 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3610 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3611 saveq->vport = phba->pport; 3612 else 3613 saveq->vport = lpfc_find_vport_by_vpid(phba, 3614 irsp->unsli3.rcvsli3.vpi); 3615 } 3616 3617 /* Prepare WQE with Unsol frame */ 3618 lpfc_sli_prep_unsol_wqe(phba, saveq); 3619 3620 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3621 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3622 "0313 Ring %d handler: unexpected Rctl x%x " 3623 "Type x%x received\n", 3624 pring->ringno, Rctl, Type); 3625 3626 return 1; 3627 } 3628 3629 /** 3630 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3631 * @phba: Pointer to HBA context object. 3632 * @pring: Pointer to driver SLI ring object. 3633 * @prspiocb: Pointer to response iocb object. 3634 * 3635 * This function looks up the iocb_lookup table to get the command iocb 3636 * corresponding to the given response iocb using the iotag of the 3637 * response iocb. The driver calls this function with the hbalock held 3638 * for SLI3 ports or the ring lock held for SLI4 ports. 3639 * This function returns the command iocb object if it finds the command 3640 * iocb else returns NULL. 3641 **/ 3642 static struct lpfc_iocbq * 3643 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3644 struct lpfc_sli_ring *pring, 3645 struct lpfc_iocbq *prspiocb) 3646 { 3647 struct lpfc_iocbq *cmd_iocb = NULL; 3648 u16 iotag; 3649 3650 if (phba->sli_rev == LPFC_SLI_REV4) 3651 iotag = get_wqe_reqtag(prspiocb); 3652 else 3653 iotag = prspiocb->iocb.ulpIoTag; 3654 3655 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3656 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3657 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3658 /* remove from txcmpl queue list */ 3659 list_del_init(&cmd_iocb->list); 3660 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3661 pring->txcmplq_cnt--; 3662 return cmd_iocb; 3663 } 3664 } 3665 3666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3667 "0317 iotag x%x is out of " 3668 "range: max iotag x%x\n", 3669 iotag, phba->sli.last_iotag); 3670 return NULL; 3671 } 3672 3673 /** 3674 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3675 * @phba: Pointer to HBA context object. 3676 * @pring: Pointer to driver SLI ring object. 3677 * @iotag: IOCB tag. 3678 * 3679 * This function looks up the iocb_lookup table to get the command iocb 3680 * corresponding to the given iotag. The driver calls this function with 3681 * the ring lock held because this function is an SLI4 port only helper. 3682 * This function returns the command iocb object if it finds the command 3683 * iocb else returns NULL. 3684 **/ 3685 static struct lpfc_iocbq * 3686 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3687 struct lpfc_sli_ring *pring, uint16_t iotag) 3688 { 3689 struct lpfc_iocbq *cmd_iocb = NULL; 3690 3691 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3692 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3693 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3694 /* remove from txcmpl queue list */ 3695 list_del_init(&cmd_iocb->list); 3696 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3697 pring->txcmplq_cnt--; 3698 return cmd_iocb; 3699 } 3700 } 3701 3702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3703 "0372 iotag x%x lookup error: max iotag (x%x) " 3704 "cmd_flag x%x\n", 3705 iotag, phba->sli.last_iotag, 3706 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3707 return NULL; 3708 } 3709 3710 /** 3711 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3712 * @phba: Pointer to HBA context object. 3713 * @pring: Pointer to driver SLI ring object. 3714 * @saveq: Pointer to the response iocb to be processed. 3715 * 3716 * This function is called by the ring event handler for non-fcp 3717 * rings when there is a new response iocb in the response ring. 3718 * The caller is not required to hold any locks. This function 3719 * gets the command iocb associated with the response iocb and 3720 * calls the completion handler for the command iocb. If there 3721 * is no completion handler, the function will free the resources 3722 * associated with command iocb. If the response iocb is for 3723 * an already aborted command iocb, the status of the completion 3724 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3725 * This function always returns 1. 3726 **/ 3727 static int 3728 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3729 struct lpfc_iocbq *saveq) 3730 { 3731 struct lpfc_iocbq *cmdiocbp; 3732 unsigned long iflag; 3733 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3734 3735 if (phba->sli_rev == LPFC_SLI_REV4) 3736 spin_lock_irqsave(&pring->ring_lock, iflag); 3737 else 3738 spin_lock_irqsave(&phba->hbalock, iflag); 3739 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3740 if (phba->sli_rev == LPFC_SLI_REV4) 3741 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3742 else 3743 spin_unlock_irqrestore(&phba->hbalock, iflag); 3744 3745 ulp_command = get_job_cmnd(phba, saveq); 3746 ulp_status = get_job_ulpstatus(phba, saveq); 3747 ulp_word4 = get_job_word4(phba, saveq); 3748 ulp_context = get_job_ulpcontext(phba, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 iotag = get_wqe_reqtag(saveq); 3751 else 3752 iotag = saveq->iocb.ulpIoTag; 3753 3754 if (cmdiocbp) { 3755 ulp_command = get_job_cmnd(phba, cmdiocbp); 3756 if (cmdiocbp->cmd_cmpl) { 3757 /* 3758 * If an ELS command failed send an event to mgmt 3759 * application. 3760 */ 3761 if (ulp_status && 3762 (pring->ringno == LPFC_ELS_RING) && 3763 (ulp_command == CMD_ELS_REQUEST64_CR)) 3764 lpfc_send_els_failure_event(phba, 3765 cmdiocbp, saveq); 3766 3767 /* 3768 * Post all ELS completions to the worker thread. 3769 * All other are passed to the completion callback. 3770 */ 3771 if (pring->ringno == LPFC_ELS_RING) { 3772 if ((phba->sli_rev < LPFC_SLI_REV4) && 3773 (cmdiocbp->cmd_flag & 3774 LPFC_DRIVER_ABORTED)) { 3775 spin_lock_irqsave(&phba->hbalock, 3776 iflag); 3777 cmdiocbp->cmd_flag &= 3778 ~LPFC_DRIVER_ABORTED; 3779 spin_unlock_irqrestore(&phba->hbalock, 3780 iflag); 3781 saveq->iocb.ulpStatus = 3782 IOSTAT_LOCAL_REJECT; 3783 saveq->iocb.un.ulpWord[4] = 3784 IOERR_SLI_ABORTED; 3785 3786 /* Firmware could still be in progress 3787 * of DMAing payload, so don't free data 3788 * buffer till after a hbeat. 3789 */ 3790 spin_lock_irqsave(&phba->hbalock, 3791 iflag); 3792 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3793 spin_unlock_irqrestore(&phba->hbalock, 3794 iflag); 3795 } 3796 if (phba->sli_rev == LPFC_SLI_REV4) { 3797 if (saveq->cmd_flag & 3798 LPFC_EXCHANGE_BUSY) { 3799 /* Set cmdiocb flag for the 3800 * exchange busy so sgl (xri) 3801 * will not be released until 3802 * the abort xri is received 3803 * from hba. 3804 */ 3805 spin_lock_irqsave( 3806 &phba->hbalock, iflag); 3807 cmdiocbp->cmd_flag |= 3808 LPFC_EXCHANGE_BUSY; 3809 spin_unlock_irqrestore( 3810 &phba->hbalock, iflag); 3811 } 3812 if (cmdiocbp->cmd_flag & 3813 LPFC_DRIVER_ABORTED) { 3814 /* 3815 * Clear LPFC_DRIVER_ABORTED 3816 * bit in case it was driver 3817 * initiated abort. 3818 */ 3819 spin_lock_irqsave( 3820 &phba->hbalock, iflag); 3821 cmdiocbp->cmd_flag &= 3822 ~LPFC_DRIVER_ABORTED; 3823 spin_unlock_irqrestore( 3824 &phba->hbalock, iflag); 3825 set_job_ulpstatus(cmdiocbp, 3826 IOSTAT_LOCAL_REJECT); 3827 set_job_ulpword4(cmdiocbp, 3828 IOERR_ABORT_REQUESTED); 3829 /* 3830 * For SLI4, irspiocb contains 3831 * NO_XRI in sli_xritag, it 3832 * shall not affect releasing 3833 * sgl (xri) process. 3834 */ 3835 set_job_ulpstatus(saveq, 3836 IOSTAT_LOCAL_REJECT); 3837 set_job_ulpword4(saveq, 3838 IOERR_SLI_ABORTED); 3839 spin_lock_irqsave( 3840 &phba->hbalock, iflag); 3841 saveq->cmd_flag |= 3842 LPFC_DELAY_MEM_FREE; 3843 spin_unlock_irqrestore( 3844 &phba->hbalock, iflag); 3845 } 3846 } 3847 } 3848 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3849 } else 3850 lpfc_sli_release_iocbq(phba, cmdiocbp); 3851 } else { 3852 /* 3853 * Unknown initiating command based on the response iotag. 3854 * This could be the case on the ELS ring because of 3855 * lpfc_els_abort(). 3856 */ 3857 if (pring->ringno != LPFC_ELS_RING) { 3858 /* 3859 * Ring <ringno> handler: unexpected completion IoTag 3860 * <IoTag> 3861 */ 3862 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3863 "0322 Ring %d handler: " 3864 "unexpected completion IoTag x%x " 3865 "Data: x%x x%x x%x x%x\n", 3866 pring->ringno, iotag, ulp_status, 3867 ulp_word4, ulp_command, ulp_context); 3868 } 3869 } 3870 3871 return 1; 3872 } 3873 3874 /** 3875 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3876 * @phba: Pointer to HBA context object. 3877 * @pring: Pointer to driver SLI ring object. 3878 * 3879 * This function is called from the iocb ring event handlers when 3880 * put pointer is ahead of the get pointer for a ring. This function signal 3881 * an error attention condition to the worker thread and the worker 3882 * thread will transition the HBA to offline state. 3883 **/ 3884 static void 3885 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3886 { 3887 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3888 /* 3889 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3890 * rsp ring <portRspMax> 3891 */ 3892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3893 "0312 Ring %d handler: portRspPut %d " 3894 "is bigger than rsp ring %d\n", 3895 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3896 pring->sli.sli3.numRiocb); 3897 3898 phba->link_state = LPFC_HBA_ERROR; 3899 3900 /* 3901 * All error attention handlers are posted to 3902 * worker thread 3903 */ 3904 phba->work_ha |= HA_ERATT; 3905 phba->work_hs = HS_FFER3; 3906 3907 lpfc_worker_wake_up(phba); 3908 3909 return; 3910 } 3911 3912 /** 3913 * lpfc_poll_eratt - Error attention polling timer timeout handler 3914 * @t: Context to fetch pointer to address of HBA context object from. 3915 * 3916 * This function is invoked by the Error Attention polling timer when the 3917 * timer times out. It will check the SLI Error Attention register for 3918 * possible attention events. If so, it will post an Error Attention event 3919 * and wake up worker thread to process it. Otherwise, it will set up the 3920 * Error Attention polling timer for the next poll. 3921 **/ 3922 void lpfc_poll_eratt(struct timer_list *t) 3923 { 3924 struct lpfc_hba *phba; 3925 uint32_t eratt = 0; 3926 uint64_t sli_intr, cnt; 3927 3928 phba = from_timer(phba, t, eratt_poll); 3929 if (!test_bit(HBA_SETUP, &phba->hba_flag)) 3930 return; 3931 3932 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3933 return; 3934 3935 /* Here we will also keep track of interrupts per sec of the hba */ 3936 sli_intr = phba->sli.slistat.sli_intr; 3937 3938 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3939 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3940 sli_intr); 3941 else 3942 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3943 3944 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3945 do_div(cnt, phba->eratt_poll_interval); 3946 phba->sli.slistat.sli_ips = cnt; 3947 3948 phba->sli.slistat.sli_prev_intr = sli_intr; 3949 3950 /* Check chip HA register for error event */ 3951 eratt = lpfc_sli_check_eratt(phba); 3952 3953 if (eratt) 3954 /* Tell the worker thread there is work to do */ 3955 lpfc_worker_wake_up(phba); 3956 else 3957 /* Restart the timer for next eratt poll */ 3958 mod_timer(&phba->eratt_poll, 3959 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 3960 return; 3961 } 3962 3963 3964 /** 3965 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3966 * @phba: Pointer to HBA context object. 3967 * @pring: Pointer to driver SLI ring object. 3968 * @mask: Host attention register mask for this ring. 3969 * 3970 * This function is called from the interrupt context when there is a ring 3971 * event for the fcp ring. The caller does not hold any lock. 3972 * The function processes each response iocb in the response ring until it 3973 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3974 * LE bit set. The function will call the completion handler of the command iocb 3975 * if the response iocb indicates a completion for a command iocb or it is 3976 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3977 * function if this is an unsolicited iocb. 3978 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3979 * to check it explicitly. 3980 */ 3981 int 3982 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3983 struct lpfc_sli_ring *pring, uint32_t mask) 3984 { 3985 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3986 IOCB_t *irsp = NULL; 3987 IOCB_t *entry = NULL; 3988 struct lpfc_iocbq *cmdiocbq = NULL; 3989 struct lpfc_iocbq rspiocbq; 3990 uint32_t status; 3991 uint32_t portRspPut, portRspMax; 3992 int rc = 1; 3993 lpfc_iocb_type type; 3994 unsigned long iflag; 3995 uint32_t rsp_cmpl = 0; 3996 3997 spin_lock_irqsave(&phba->hbalock, iflag); 3998 pring->stats.iocb_event++; 3999 4000 /* 4001 * The next available response entry should never exceed the maximum 4002 * entries. If it does, treat it as an adapter hardware error. 4003 */ 4004 portRspMax = pring->sli.sli3.numRiocb; 4005 portRspPut = le32_to_cpu(pgp->rspPutInx); 4006 if (unlikely(portRspPut >= portRspMax)) { 4007 lpfc_sli_rsp_pointers_error(phba, pring); 4008 spin_unlock_irqrestore(&phba->hbalock, iflag); 4009 return 1; 4010 } 4011 if (phba->fcp_ring_in_use) { 4012 spin_unlock_irqrestore(&phba->hbalock, iflag); 4013 return 1; 4014 } else 4015 phba->fcp_ring_in_use = 1; 4016 4017 rmb(); 4018 while (pring->sli.sli3.rspidx != portRspPut) { 4019 /* 4020 * Fetch an entry off the ring and copy it into a local data 4021 * structure. The copy involves a byte-swap since the 4022 * network byte order and pci byte orders are different. 4023 */ 4024 entry = lpfc_resp_iocb(phba, pring); 4025 phba->last_completion_time = jiffies; 4026 4027 if (++pring->sli.sli3.rspidx >= portRspMax) 4028 pring->sli.sli3.rspidx = 0; 4029 4030 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4031 (uint32_t *) &rspiocbq.iocb, 4032 phba->iocb_rsp_size); 4033 INIT_LIST_HEAD(&(rspiocbq.list)); 4034 irsp = &rspiocbq.iocb; 4035 4036 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4037 pring->stats.iocb_rsp++; 4038 rsp_cmpl++; 4039 4040 if (unlikely(irsp->ulpStatus)) { 4041 /* 4042 * If resource errors reported from HBA, reduce 4043 * queuedepths of the SCSI device. 4044 */ 4045 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4046 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4047 IOERR_NO_RESOURCES)) { 4048 spin_unlock_irqrestore(&phba->hbalock, iflag); 4049 phba->lpfc_rampdown_queue_depth(phba); 4050 spin_lock_irqsave(&phba->hbalock, iflag); 4051 } 4052 4053 /* Rsp ring <ringno> error: IOCB */ 4054 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4055 "0336 Rsp Ring %d error: IOCB Data: " 4056 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4057 pring->ringno, 4058 irsp->un.ulpWord[0], 4059 irsp->un.ulpWord[1], 4060 irsp->un.ulpWord[2], 4061 irsp->un.ulpWord[3], 4062 irsp->un.ulpWord[4], 4063 irsp->un.ulpWord[5], 4064 *(uint32_t *)&irsp->un1, 4065 *((uint32_t *)&irsp->un1 + 1)); 4066 } 4067 4068 switch (type) { 4069 case LPFC_ABORT_IOCB: 4070 case LPFC_SOL_IOCB: 4071 /* 4072 * Idle exchange closed via ABTS from port. No iocb 4073 * resources need to be recovered. 4074 */ 4075 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4076 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4077 "0333 IOCB cmd 0x%x" 4078 " processed. Skipping" 4079 " completion\n", 4080 irsp->ulpCommand); 4081 break; 4082 } 4083 4084 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4085 &rspiocbq); 4086 if (unlikely(!cmdiocbq)) 4087 break; 4088 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4089 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4090 if (cmdiocbq->cmd_cmpl) { 4091 spin_unlock_irqrestore(&phba->hbalock, iflag); 4092 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4093 spin_lock_irqsave(&phba->hbalock, iflag); 4094 } 4095 break; 4096 case LPFC_UNSOL_IOCB: 4097 spin_unlock_irqrestore(&phba->hbalock, iflag); 4098 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4099 spin_lock_irqsave(&phba->hbalock, iflag); 4100 break; 4101 default: 4102 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4103 char adaptermsg[LPFC_MAX_ADPTMSG]; 4104 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4105 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4106 MAX_MSG_DATA); 4107 dev_warn(&((phba->pcidev)->dev), 4108 "lpfc%d: %s\n", 4109 phba->brd_no, adaptermsg); 4110 } else { 4111 /* Unknown IOCB command */ 4112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4113 "0334 Unknown IOCB command " 4114 "Data: x%x, x%x x%x x%x x%x\n", 4115 type, irsp->ulpCommand, 4116 irsp->ulpStatus, 4117 irsp->ulpIoTag, 4118 irsp->ulpContext); 4119 } 4120 break; 4121 } 4122 4123 /* 4124 * The response IOCB has been processed. Update the ring 4125 * pointer in SLIM. If the port response put pointer has not 4126 * been updated, sync the pgp->rspPutInx and fetch the new port 4127 * response put pointer. 4128 */ 4129 writel(pring->sli.sli3.rspidx, 4130 &phba->host_gp[pring->ringno].rspGetInx); 4131 4132 if (pring->sli.sli3.rspidx == portRspPut) 4133 portRspPut = le32_to_cpu(pgp->rspPutInx); 4134 } 4135 4136 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4137 pring->stats.iocb_rsp_full++; 4138 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4139 writel(status, phba->CAregaddr); 4140 readl(phba->CAregaddr); 4141 } 4142 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4143 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4144 pring->stats.iocb_cmd_empty++; 4145 4146 /* Force update of the local copy of cmdGetInx */ 4147 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4148 lpfc_sli_resume_iocb(phba, pring); 4149 4150 if ((pring->lpfc_sli_cmd_available)) 4151 (pring->lpfc_sli_cmd_available) (phba, pring); 4152 4153 } 4154 4155 phba->fcp_ring_in_use = 0; 4156 spin_unlock_irqrestore(&phba->hbalock, iflag); 4157 return rc; 4158 } 4159 4160 /** 4161 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4162 * @phba: Pointer to HBA context object. 4163 * @pring: Pointer to driver SLI ring object. 4164 * @rspiocbp: Pointer to driver response IOCB object. 4165 * 4166 * This function is called from the worker thread when there is a slow-path 4167 * response IOCB to process. This function chains all the response iocbs until 4168 * seeing the iocb with the LE bit set. The function will call 4169 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4170 * completion of a command iocb. The function will call the 4171 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4172 * The function frees the resources or calls the completion handler if this 4173 * iocb is an abort completion. The function returns NULL when the response 4174 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4175 * this function shall chain the iocb on to the iocb_continueq and return the 4176 * response iocb passed in. 4177 **/ 4178 static struct lpfc_iocbq * 4179 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4180 struct lpfc_iocbq *rspiocbp) 4181 { 4182 struct lpfc_iocbq *saveq; 4183 struct lpfc_iocbq *cmdiocb; 4184 struct lpfc_iocbq *next_iocb; 4185 IOCB_t *irsp; 4186 uint32_t free_saveq; 4187 u8 cmd_type; 4188 lpfc_iocb_type type; 4189 unsigned long iflag; 4190 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4191 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4192 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4193 int rc; 4194 4195 spin_lock_irqsave(&phba->hbalock, iflag); 4196 /* First add the response iocb to the countinueq list */ 4197 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4198 pring->iocb_continueq_cnt++; 4199 4200 /* 4201 * By default, the driver expects to free all resources 4202 * associated with this iocb completion. 4203 */ 4204 free_saveq = 1; 4205 saveq = list_get_first(&pring->iocb_continueq, 4206 struct lpfc_iocbq, list); 4207 list_del_init(&pring->iocb_continueq); 4208 pring->iocb_continueq_cnt = 0; 4209 4210 pring->stats.iocb_rsp++; 4211 4212 /* 4213 * If resource errors reported from HBA, reduce 4214 * queuedepths of the SCSI device. 4215 */ 4216 if (ulp_status == IOSTAT_LOCAL_REJECT && 4217 ((ulp_word4 & IOERR_PARAM_MASK) == 4218 IOERR_NO_RESOURCES)) { 4219 spin_unlock_irqrestore(&phba->hbalock, iflag); 4220 phba->lpfc_rampdown_queue_depth(phba); 4221 spin_lock_irqsave(&phba->hbalock, iflag); 4222 } 4223 4224 if (ulp_status) { 4225 /* Rsp ring <ringno> error: IOCB */ 4226 if (phba->sli_rev < LPFC_SLI_REV4) { 4227 irsp = &rspiocbp->iocb; 4228 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4229 "0328 Rsp Ring %d error: ulp_status x%x " 4230 "IOCB Data: " 4231 "x%08x x%08x x%08x x%08x " 4232 "x%08x x%08x x%08x x%08x " 4233 "x%08x x%08x x%08x x%08x " 4234 "x%08x x%08x x%08x x%08x\n", 4235 pring->ringno, ulp_status, 4236 get_job_ulpword(rspiocbp, 0), 4237 get_job_ulpword(rspiocbp, 1), 4238 get_job_ulpword(rspiocbp, 2), 4239 get_job_ulpword(rspiocbp, 3), 4240 get_job_ulpword(rspiocbp, 4), 4241 get_job_ulpword(rspiocbp, 5), 4242 *(((uint32_t *)irsp) + 6), 4243 *(((uint32_t *)irsp) + 7), 4244 *(((uint32_t *)irsp) + 8), 4245 *(((uint32_t *)irsp) + 9), 4246 *(((uint32_t *)irsp) + 10), 4247 *(((uint32_t *)irsp) + 11), 4248 *(((uint32_t *)irsp) + 12), 4249 *(((uint32_t *)irsp) + 13), 4250 *(((uint32_t *)irsp) + 14), 4251 *(((uint32_t *)irsp) + 15)); 4252 } else { 4253 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4254 "0321 Rsp Ring %d error: " 4255 "IOCB Data: " 4256 "x%x x%x x%x x%x\n", 4257 pring->ringno, 4258 rspiocbp->wcqe_cmpl.word0, 4259 rspiocbp->wcqe_cmpl.total_data_placed, 4260 rspiocbp->wcqe_cmpl.parameter, 4261 rspiocbp->wcqe_cmpl.word3); 4262 } 4263 } 4264 4265 4266 /* 4267 * Fetch the iocb command type and call the correct completion 4268 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4269 * get freed back to the lpfc_iocb_list by the discovery 4270 * kernel thread. 4271 */ 4272 cmd_type = ulp_command & CMD_IOCB_MASK; 4273 type = lpfc_sli_iocb_cmd_type(cmd_type); 4274 switch (type) { 4275 case LPFC_SOL_IOCB: 4276 spin_unlock_irqrestore(&phba->hbalock, iflag); 4277 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4278 spin_lock_irqsave(&phba->hbalock, iflag); 4279 break; 4280 case LPFC_UNSOL_IOCB: 4281 spin_unlock_irqrestore(&phba->hbalock, iflag); 4282 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4283 spin_lock_irqsave(&phba->hbalock, iflag); 4284 if (!rc) 4285 free_saveq = 0; 4286 break; 4287 case LPFC_ABORT_IOCB: 4288 cmdiocb = NULL; 4289 if (ulp_command != CMD_XRI_ABORTED_CX) 4290 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4291 saveq); 4292 if (cmdiocb) { 4293 /* Call the specified completion routine */ 4294 if (cmdiocb->cmd_cmpl) { 4295 spin_unlock_irqrestore(&phba->hbalock, iflag); 4296 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4297 spin_lock_irqsave(&phba->hbalock, iflag); 4298 } else { 4299 __lpfc_sli_release_iocbq(phba, cmdiocb); 4300 } 4301 } 4302 break; 4303 case LPFC_UNKNOWN_IOCB: 4304 if (ulp_command == CMD_ADAPTER_MSG) { 4305 char adaptermsg[LPFC_MAX_ADPTMSG]; 4306 4307 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4308 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4309 MAX_MSG_DATA); 4310 dev_warn(&((phba->pcidev)->dev), 4311 "lpfc%d: %s\n", 4312 phba->brd_no, adaptermsg); 4313 } else { 4314 /* Unknown command */ 4315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4316 "0335 Unknown IOCB " 4317 "command Data: x%x " 4318 "x%x x%x x%x\n", 4319 ulp_command, 4320 ulp_status, 4321 get_wqe_reqtag(rspiocbp), 4322 get_job_ulpcontext(phba, rspiocbp)); 4323 } 4324 break; 4325 } 4326 4327 if (free_saveq) { 4328 list_for_each_entry_safe(rspiocbp, next_iocb, 4329 &saveq->list, list) { 4330 list_del_init(&rspiocbp->list); 4331 __lpfc_sli_release_iocbq(phba, rspiocbp); 4332 } 4333 __lpfc_sli_release_iocbq(phba, saveq); 4334 } 4335 rspiocbp = NULL; 4336 spin_unlock_irqrestore(&phba->hbalock, iflag); 4337 return rspiocbp; 4338 } 4339 4340 /** 4341 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4342 * @phba: Pointer to HBA context object. 4343 * @pring: Pointer to driver SLI ring object. 4344 * @mask: Host attention register mask for this ring. 4345 * 4346 * This routine wraps the actual slow_ring event process routine from the 4347 * API jump table function pointer from the lpfc_hba struct. 4348 **/ 4349 void 4350 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4351 struct lpfc_sli_ring *pring, uint32_t mask) 4352 { 4353 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4354 } 4355 4356 /** 4357 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4358 * @phba: Pointer to HBA context object. 4359 * @pring: Pointer to driver SLI ring object. 4360 * @mask: Host attention register mask for this ring. 4361 * 4362 * This function is called from the worker thread when there is a ring event 4363 * for non-fcp rings. The caller does not hold any lock. The function will 4364 * remove each response iocb in the response ring and calls the handle 4365 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4366 **/ 4367 static void 4368 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4369 struct lpfc_sli_ring *pring, uint32_t mask) 4370 { 4371 struct lpfc_pgp *pgp; 4372 IOCB_t *entry; 4373 IOCB_t *irsp = NULL; 4374 struct lpfc_iocbq *rspiocbp = NULL; 4375 uint32_t portRspPut, portRspMax; 4376 unsigned long iflag; 4377 uint32_t status; 4378 4379 pgp = &phba->port_gp[pring->ringno]; 4380 spin_lock_irqsave(&phba->hbalock, iflag); 4381 pring->stats.iocb_event++; 4382 4383 /* 4384 * The next available response entry should never exceed the maximum 4385 * entries. If it does, treat it as an adapter hardware error. 4386 */ 4387 portRspMax = pring->sli.sli3.numRiocb; 4388 portRspPut = le32_to_cpu(pgp->rspPutInx); 4389 if (portRspPut >= portRspMax) { 4390 /* 4391 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4392 * rsp ring <portRspMax> 4393 */ 4394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4395 "0303 Ring %d handler: portRspPut %d " 4396 "is bigger than rsp ring %d\n", 4397 pring->ringno, portRspPut, portRspMax); 4398 4399 phba->link_state = LPFC_HBA_ERROR; 4400 spin_unlock_irqrestore(&phba->hbalock, iflag); 4401 4402 phba->work_hs = HS_FFER3; 4403 lpfc_handle_eratt(phba); 4404 4405 return; 4406 } 4407 4408 rmb(); 4409 while (pring->sli.sli3.rspidx != portRspPut) { 4410 /* 4411 * Build a completion list and call the appropriate handler. 4412 * The process is to get the next available response iocb, get 4413 * a free iocb from the list, copy the response data into the 4414 * free iocb, insert to the continuation list, and update the 4415 * next response index to slim. This process makes response 4416 * iocb's in the ring available to DMA as fast as possible but 4417 * pays a penalty for a copy operation. Since the iocb is 4418 * only 32 bytes, this penalty is considered small relative to 4419 * the PCI reads for register values and a slim write. When 4420 * the ulpLe field is set, the entire Command has been 4421 * received. 4422 */ 4423 entry = lpfc_resp_iocb(phba, pring); 4424 4425 phba->last_completion_time = jiffies; 4426 rspiocbp = __lpfc_sli_get_iocbq(phba); 4427 if (rspiocbp == NULL) { 4428 printk(KERN_ERR "%s: out of buffers! Failing " 4429 "completion.\n", __func__); 4430 break; 4431 } 4432 4433 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4434 phba->iocb_rsp_size); 4435 irsp = &rspiocbp->iocb; 4436 4437 if (++pring->sli.sli3.rspidx >= portRspMax) 4438 pring->sli.sli3.rspidx = 0; 4439 4440 if (pring->ringno == LPFC_ELS_RING) { 4441 lpfc_debugfs_slow_ring_trc(phba, 4442 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4443 *(((uint32_t *) irsp) + 4), 4444 *(((uint32_t *) irsp) + 6), 4445 *(((uint32_t *) irsp) + 7)); 4446 } 4447 4448 writel(pring->sli.sli3.rspidx, 4449 &phba->host_gp[pring->ringno].rspGetInx); 4450 4451 spin_unlock_irqrestore(&phba->hbalock, iflag); 4452 /* Handle the response IOCB */ 4453 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4454 spin_lock_irqsave(&phba->hbalock, iflag); 4455 4456 /* 4457 * If the port response put pointer has not been updated, sync 4458 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4459 * response put pointer. 4460 */ 4461 if (pring->sli.sli3.rspidx == portRspPut) { 4462 portRspPut = le32_to_cpu(pgp->rspPutInx); 4463 } 4464 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4465 4466 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4467 /* At least one response entry has been freed */ 4468 pring->stats.iocb_rsp_full++; 4469 /* SET RxRE_RSP in Chip Att register */ 4470 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4471 writel(status, phba->CAregaddr); 4472 readl(phba->CAregaddr); /* flush */ 4473 } 4474 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4475 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4476 pring->stats.iocb_cmd_empty++; 4477 4478 /* Force update of the local copy of cmdGetInx */ 4479 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4480 lpfc_sli_resume_iocb(phba, pring); 4481 4482 if ((pring->lpfc_sli_cmd_available)) 4483 (pring->lpfc_sli_cmd_available) (phba, pring); 4484 4485 } 4486 4487 spin_unlock_irqrestore(&phba->hbalock, iflag); 4488 return; 4489 } 4490 4491 /** 4492 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4493 * @phba: Pointer to HBA context object. 4494 * @pring: Pointer to driver SLI ring object. 4495 * @mask: Host attention register mask for this ring. 4496 * 4497 * This function is called from the worker thread when there is a pending 4498 * ELS response iocb on the driver internal slow-path response iocb worker 4499 * queue. The caller does not hold any lock. The function will remove each 4500 * response iocb from the response worker queue and calls the handle 4501 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4502 **/ 4503 static void 4504 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4505 struct lpfc_sli_ring *pring, uint32_t mask) 4506 { 4507 struct lpfc_iocbq *irspiocbq; 4508 struct hbq_dmabuf *dmabuf; 4509 struct lpfc_cq_event *cq_event; 4510 unsigned long iflag; 4511 int count = 0; 4512 4513 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4514 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4515 /* Get the response iocb from the head of work queue */ 4516 spin_lock_irqsave(&phba->hbalock, iflag); 4517 list_remove_head(&phba->sli4_hba.sp_queue_event, 4518 cq_event, struct lpfc_cq_event, list); 4519 spin_unlock_irqrestore(&phba->hbalock, iflag); 4520 4521 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4522 case CQE_CODE_COMPL_WQE: 4523 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4524 cq_event); 4525 /* Translate ELS WCQE to response IOCBQ */ 4526 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4527 irspiocbq); 4528 if (irspiocbq) 4529 lpfc_sli_sp_handle_rspiocb(phba, pring, 4530 irspiocbq); 4531 count++; 4532 break; 4533 case CQE_CODE_RECEIVE: 4534 case CQE_CODE_RECEIVE_V1: 4535 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4536 cq_event); 4537 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4538 count++; 4539 break; 4540 default: 4541 break; 4542 } 4543 4544 /* Limit the number of events to 64 to avoid soft lockups */ 4545 if (count == 64) 4546 break; 4547 } 4548 } 4549 4550 /** 4551 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4552 * @phba: Pointer to HBA context object. 4553 * @pring: Pointer to driver SLI ring object. 4554 * 4555 * This function aborts all iocbs in the given ring and frees all the iocb 4556 * objects in txq. This function issues an abort iocb for all the iocb commands 4557 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4558 * the return of this function. The caller is not required to hold any locks. 4559 **/ 4560 void 4561 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4562 { 4563 LIST_HEAD(tx_completions); 4564 LIST_HEAD(txcmplq_completions); 4565 struct lpfc_iocbq *iocb, *next_iocb; 4566 int offline; 4567 4568 if (pring->ringno == LPFC_ELS_RING) { 4569 lpfc_fabric_abort_hba(phba); 4570 } 4571 offline = pci_channel_offline(phba->pcidev); 4572 4573 /* Error everything on txq and txcmplq 4574 * First do the txq. 4575 */ 4576 if (phba->sli_rev >= LPFC_SLI_REV4) { 4577 spin_lock_irq(&pring->ring_lock); 4578 list_splice_init(&pring->txq, &tx_completions); 4579 pring->txq_cnt = 0; 4580 4581 if (offline) { 4582 list_splice_init(&pring->txcmplq, 4583 &txcmplq_completions); 4584 } else { 4585 /* Next issue ABTS for everything on the txcmplq */ 4586 list_for_each_entry_safe(iocb, next_iocb, 4587 &pring->txcmplq, list) 4588 lpfc_sli_issue_abort_iotag(phba, pring, 4589 iocb, NULL); 4590 } 4591 spin_unlock_irq(&pring->ring_lock); 4592 } else { 4593 spin_lock_irq(&phba->hbalock); 4594 list_splice_init(&pring->txq, &tx_completions); 4595 pring->txq_cnt = 0; 4596 4597 if (offline) { 4598 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4599 } else { 4600 /* Next issue ABTS for everything on the txcmplq */ 4601 list_for_each_entry_safe(iocb, next_iocb, 4602 &pring->txcmplq, list) 4603 lpfc_sli_issue_abort_iotag(phba, pring, 4604 iocb, NULL); 4605 } 4606 spin_unlock_irq(&phba->hbalock); 4607 } 4608 4609 if (offline) { 4610 /* Cancel all the IOCBs from the completions list */ 4611 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4612 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4613 } else { 4614 /* Make sure HBA is alive */ 4615 lpfc_issue_hb_tmo(phba); 4616 } 4617 /* Cancel all the IOCBs from the completions list */ 4618 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4619 IOERR_SLI_ABORTED); 4620 } 4621 4622 /** 4623 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4624 * @phba: Pointer to HBA context object. 4625 * 4626 * This function aborts all iocbs in FCP rings and frees all the iocb 4627 * objects in txq. This function issues an abort iocb for all the iocb commands 4628 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4629 * the return of this function. The caller is not required to hold any locks. 4630 **/ 4631 void 4632 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4633 { 4634 struct lpfc_sli *psli = &phba->sli; 4635 struct lpfc_sli_ring *pring; 4636 uint32_t i; 4637 4638 /* Look on all the FCP Rings for the iotag */ 4639 if (phba->sli_rev >= LPFC_SLI_REV4) { 4640 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4641 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4642 lpfc_sli_abort_iocb_ring(phba, pring); 4643 } 4644 } else { 4645 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4646 lpfc_sli_abort_iocb_ring(phba, pring); 4647 } 4648 } 4649 4650 /** 4651 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4652 * @phba: Pointer to HBA context object. 4653 * 4654 * This function flushes all iocbs in the IO ring and frees all the iocb 4655 * objects in txq and txcmplq. This function will not issue abort iocbs 4656 * for all the iocb commands in txcmplq, they will just be returned with 4657 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4658 * slot has been permanently disabled. 4659 **/ 4660 void 4661 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4662 { 4663 LIST_HEAD(txq); 4664 LIST_HEAD(txcmplq); 4665 struct lpfc_sli *psli = &phba->sli; 4666 struct lpfc_sli_ring *pring; 4667 uint32_t i; 4668 struct lpfc_iocbq *piocb, *next_iocb; 4669 4670 /* Indicate the I/O queues are flushed */ 4671 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4672 4673 /* Look on all the FCP Rings for the iotag */ 4674 if (phba->sli_rev >= LPFC_SLI_REV4) { 4675 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4676 if (!phba->sli4_hba.hdwq || 4677 !phba->sli4_hba.hdwq[i].io_wq) { 4678 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4679 "7777 hdwq's deleted %lx " 4680 "%lx %x %x\n", 4681 phba->pport->load_flag, 4682 phba->hba_flag, 4683 phba->link_state, 4684 phba->sli.sli_flag); 4685 return; 4686 } 4687 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4688 4689 spin_lock_irq(&pring->ring_lock); 4690 /* Retrieve everything on txq */ 4691 list_splice_init(&pring->txq, &txq); 4692 list_for_each_entry_safe(piocb, next_iocb, 4693 &pring->txcmplq, list) 4694 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4695 /* Retrieve everything on the txcmplq */ 4696 list_splice_init(&pring->txcmplq, &txcmplq); 4697 pring->txq_cnt = 0; 4698 pring->txcmplq_cnt = 0; 4699 spin_unlock_irq(&pring->ring_lock); 4700 4701 /* Flush the txq */ 4702 lpfc_sli_cancel_iocbs(phba, &txq, 4703 IOSTAT_LOCAL_REJECT, 4704 IOERR_SLI_DOWN); 4705 /* Flush the txcmplq */ 4706 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4707 IOSTAT_LOCAL_REJECT, 4708 IOERR_SLI_DOWN); 4709 if (unlikely(pci_channel_offline(phba->pcidev))) 4710 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4711 } 4712 } else { 4713 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4714 4715 spin_lock_irq(&phba->hbalock); 4716 /* Retrieve everything on txq */ 4717 list_splice_init(&pring->txq, &txq); 4718 list_for_each_entry_safe(piocb, next_iocb, 4719 &pring->txcmplq, list) 4720 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4721 /* Retrieve everything on the txcmplq */ 4722 list_splice_init(&pring->txcmplq, &txcmplq); 4723 pring->txq_cnt = 0; 4724 pring->txcmplq_cnt = 0; 4725 spin_unlock_irq(&phba->hbalock); 4726 4727 /* Flush the txq */ 4728 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4729 IOERR_SLI_DOWN); 4730 /* Flush the txcmpq */ 4731 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4732 IOERR_SLI_DOWN); 4733 } 4734 } 4735 4736 /** 4737 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4738 * @phba: Pointer to HBA context object. 4739 * @mask: Bit mask to be checked. 4740 * 4741 * This function reads the host status register and compares 4742 * with the provided bit mask to check if HBA completed 4743 * the restart. This function will wait in a loop for the 4744 * HBA to complete restart. If the HBA does not restart within 4745 * 15 iterations, the function will reset the HBA again. The 4746 * function returns 1 when HBA fail to restart otherwise returns 4747 * zero. 4748 **/ 4749 static int 4750 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4751 { 4752 uint32_t status; 4753 int i = 0; 4754 int retval = 0; 4755 4756 /* Read the HBA Host Status Register */ 4757 if (lpfc_readl(phba->HSregaddr, &status)) 4758 return 1; 4759 4760 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4761 4762 /* 4763 * Check status register every 100ms for 5 retries, then every 4764 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4765 * every 2.5 sec for 4. 4766 * Break our of the loop if errors occurred during init. 4767 */ 4768 while (((status & mask) != mask) && 4769 !(status & HS_FFERM) && 4770 i++ < 20) { 4771 4772 if (i <= 5) 4773 msleep(10); 4774 else if (i <= 10) 4775 msleep(500); 4776 else 4777 msleep(2500); 4778 4779 if (i == 15) { 4780 /* Do post */ 4781 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4782 lpfc_sli_brdrestart(phba); 4783 } 4784 /* Read the HBA Host Status Register */ 4785 if (lpfc_readl(phba->HSregaddr, &status)) { 4786 retval = 1; 4787 break; 4788 } 4789 } 4790 4791 /* Check to see if any errors occurred during init */ 4792 if ((status & HS_FFERM) || (i >= 20)) { 4793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4794 "2751 Adapter failed to restart, " 4795 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4796 status, 4797 readl(phba->MBslimaddr + 0xa8), 4798 readl(phba->MBslimaddr + 0xac)); 4799 phba->link_state = LPFC_HBA_ERROR; 4800 retval = 1; 4801 } 4802 4803 return retval; 4804 } 4805 4806 /** 4807 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4808 * @phba: Pointer to HBA context object. 4809 * @mask: Bit mask to be checked. 4810 * 4811 * This function checks the host status register to check if HBA is 4812 * ready. This function will wait in a loop for the HBA to be ready 4813 * If the HBA is not ready , the function will will reset the HBA PCI 4814 * function again. The function returns 1 when HBA fail to be ready 4815 * otherwise returns zero. 4816 **/ 4817 static int 4818 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4819 { 4820 uint32_t status; 4821 int retval = 0; 4822 4823 /* Read the HBA Host Status Register */ 4824 status = lpfc_sli4_post_status_check(phba); 4825 4826 if (status) { 4827 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4828 lpfc_sli_brdrestart(phba); 4829 status = lpfc_sli4_post_status_check(phba); 4830 } 4831 4832 /* Check to see if any errors occurred during init */ 4833 if (status) { 4834 phba->link_state = LPFC_HBA_ERROR; 4835 retval = 1; 4836 } else 4837 phba->sli4_hba.intr_enable = 0; 4838 4839 clear_bit(HBA_SETUP, &phba->hba_flag); 4840 return retval; 4841 } 4842 4843 /** 4844 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4845 * @phba: Pointer to HBA context object. 4846 * @mask: Bit mask to be checked. 4847 * 4848 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4849 * from the API jump table function pointer from the lpfc_hba struct. 4850 **/ 4851 int 4852 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4853 { 4854 return phba->lpfc_sli_brdready(phba, mask); 4855 } 4856 4857 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4858 4859 /** 4860 * lpfc_reset_barrier - Make HBA ready for HBA reset 4861 * @phba: Pointer to HBA context object. 4862 * 4863 * This function is called before resetting an HBA. This function is called 4864 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4865 **/ 4866 void lpfc_reset_barrier(struct lpfc_hba *phba) 4867 { 4868 uint32_t __iomem *resp_buf; 4869 uint32_t __iomem *mbox_buf; 4870 volatile struct MAILBOX_word0 mbox; 4871 uint32_t hc_copy, ha_copy, resp_data; 4872 int i; 4873 uint8_t hdrtype; 4874 4875 lockdep_assert_held(&phba->hbalock); 4876 4877 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4878 if (hdrtype != PCI_HEADER_TYPE_MFD || 4879 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4880 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4881 return; 4882 4883 /* 4884 * Tell the other part of the chip to suspend temporarily all 4885 * its DMA activity. 4886 */ 4887 resp_buf = phba->MBslimaddr; 4888 4889 /* Disable the error attention */ 4890 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4891 return; 4892 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4893 readl(phba->HCregaddr); /* flush */ 4894 phba->link_flag |= LS_IGNORE_ERATT; 4895 4896 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4897 return; 4898 if (ha_copy & HA_ERATT) { 4899 /* Clear Chip error bit */ 4900 writel(HA_ERATT, phba->HAregaddr); 4901 phba->pport->stopped = 1; 4902 } 4903 4904 mbox.word0 = 0; 4905 mbox.mbxCommand = MBX_KILL_BOARD; 4906 mbox.mbxOwner = OWN_CHIP; 4907 4908 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4909 mbox_buf = phba->MBslimaddr; 4910 writel(mbox.word0, mbox_buf); 4911 4912 for (i = 0; i < 50; i++) { 4913 if (lpfc_readl((resp_buf + 1), &resp_data)) 4914 return; 4915 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4916 mdelay(1); 4917 else 4918 break; 4919 } 4920 resp_data = 0; 4921 if (lpfc_readl((resp_buf + 1), &resp_data)) 4922 return; 4923 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4924 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4925 phba->pport->stopped) 4926 goto restore_hc; 4927 else 4928 goto clear_errat; 4929 } 4930 4931 mbox.mbxOwner = OWN_HOST; 4932 resp_data = 0; 4933 for (i = 0; i < 500; i++) { 4934 if (lpfc_readl(resp_buf, &resp_data)) 4935 return; 4936 if (resp_data != mbox.word0) 4937 mdelay(1); 4938 else 4939 break; 4940 } 4941 4942 clear_errat: 4943 4944 while (++i < 500) { 4945 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4946 return; 4947 if (!(ha_copy & HA_ERATT)) 4948 mdelay(1); 4949 else 4950 break; 4951 } 4952 4953 if (readl(phba->HAregaddr) & HA_ERATT) { 4954 writel(HA_ERATT, phba->HAregaddr); 4955 phba->pport->stopped = 1; 4956 } 4957 4958 restore_hc: 4959 phba->link_flag &= ~LS_IGNORE_ERATT; 4960 writel(hc_copy, phba->HCregaddr); 4961 readl(phba->HCregaddr); /* flush */ 4962 } 4963 4964 /** 4965 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4966 * @phba: Pointer to HBA context object. 4967 * 4968 * This function issues a kill_board mailbox command and waits for 4969 * the error attention interrupt. This function is called for stopping 4970 * the firmware processing. The caller is not required to hold any 4971 * locks. This function calls lpfc_hba_down_post function to free 4972 * any pending commands after the kill. The function will return 1 when it 4973 * fails to kill the board else will return 0. 4974 **/ 4975 int 4976 lpfc_sli_brdkill(struct lpfc_hba *phba) 4977 { 4978 struct lpfc_sli *psli; 4979 LPFC_MBOXQ_t *pmb; 4980 uint32_t status; 4981 uint32_t ha_copy; 4982 int retval; 4983 int i = 0; 4984 4985 psli = &phba->sli; 4986 4987 /* Kill HBA */ 4988 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4989 "0329 Kill HBA Data: x%x x%x\n", 4990 phba->pport->port_state, psli->sli_flag); 4991 4992 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4993 if (!pmb) 4994 return 1; 4995 4996 /* Disable the error attention */ 4997 spin_lock_irq(&phba->hbalock); 4998 if (lpfc_readl(phba->HCregaddr, &status)) { 4999 spin_unlock_irq(&phba->hbalock); 5000 mempool_free(pmb, phba->mbox_mem_pool); 5001 return 1; 5002 } 5003 status &= ~HC_ERINT_ENA; 5004 writel(status, phba->HCregaddr); 5005 readl(phba->HCregaddr); /* flush */ 5006 phba->link_flag |= LS_IGNORE_ERATT; 5007 spin_unlock_irq(&phba->hbalock); 5008 5009 lpfc_kill_board(phba, pmb); 5010 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5011 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5012 5013 if (retval != MBX_SUCCESS) { 5014 if (retval != MBX_BUSY) 5015 mempool_free(pmb, phba->mbox_mem_pool); 5016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5017 "2752 KILL_BOARD command failed retval %d\n", 5018 retval); 5019 spin_lock_irq(&phba->hbalock); 5020 phba->link_flag &= ~LS_IGNORE_ERATT; 5021 spin_unlock_irq(&phba->hbalock); 5022 return 1; 5023 } 5024 5025 spin_lock_irq(&phba->hbalock); 5026 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5027 spin_unlock_irq(&phba->hbalock); 5028 5029 mempool_free(pmb, phba->mbox_mem_pool); 5030 5031 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5032 * attention every 100ms for 3 seconds. If we don't get ERATT after 5033 * 3 seconds we still set HBA_ERROR state because the status of the 5034 * board is now undefined. 5035 */ 5036 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5037 return 1; 5038 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5039 mdelay(100); 5040 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5041 return 1; 5042 } 5043 5044 timer_delete_sync(&psli->mbox_tmo); 5045 if (ha_copy & HA_ERATT) { 5046 writel(HA_ERATT, phba->HAregaddr); 5047 phba->pport->stopped = 1; 5048 } 5049 spin_lock_irq(&phba->hbalock); 5050 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5051 psli->mbox_active = NULL; 5052 phba->link_flag &= ~LS_IGNORE_ERATT; 5053 spin_unlock_irq(&phba->hbalock); 5054 5055 lpfc_hba_down_post(phba); 5056 phba->link_state = LPFC_HBA_ERROR; 5057 5058 return ha_copy & HA_ERATT ? 0 : 1; 5059 } 5060 5061 /** 5062 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5063 * @phba: Pointer to HBA context object. 5064 * 5065 * This function resets the HBA by writing HC_INITFF to the control 5066 * register. After the HBA resets, this function resets all the iocb ring 5067 * indices. This function disables PCI layer parity checking during 5068 * the reset. 5069 * This function returns 0 always. 5070 * The caller is not required to hold any locks. 5071 **/ 5072 int 5073 lpfc_sli_brdreset(struct lpfc_hba *phba) 5074 { 5075 struct lpfc_sli *psli; 5076 struct lpfc_sli_ring *pring; 5077 uint16_t cfg_value; 5078 int i; 5079 5080 psli = &phba->sli; 5081 5082 /* Reset HBA */ 5083 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5084 "0325 Reset HBA Data: x%x x%x\n", 5085 (phba->pport) ? phba->pport->port_state : 0, 5086 psli->sli_flag); 5087 5088 /* perform board reset */ 5089 phba->fc_eventTag = 0; 5090 phba->link_events = 0; 5091 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5092 if (phba->pport) { 5093 phba->pport->fc_myDID = 0; 5094 phba->pport->fc_prevDID = 0; 5095 } 5096 5097 /* Turn off parity checking and serr during the physical reset */ 5098 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5099 return -EIO; 5100 5101 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5102 (cfg_value & 5103 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5104 5105 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5106 5107 /* Now toggle INITFF bit in the Host Control Register */ 5108 writel(HC_INITFF, phba->HCregaddr); 5109 mdelay(1); 5110 readl(phba->HCregaddr); /* flush */ 5111 writel(0, phba->HCregaddr); 5112 readl(phba->HCregaddr); /* flush */ 5113 5114 /* Restore PCI cmd register */ 5115 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5116 5117 /* Initialize relevant SLI info */ 5118 for (i = 0; i < psli->num_rings; i++) { 5119 pring = &psli->sli3_ring[i]; 5120 pring->flag = 0; 5121 pring->sli.sli3.rspidx = 0; 5122 pring->sli.sli3.next_cmdidx = 0; 5123 pring->sli.sli3.local_getidx = 0; 5124 pring->sli.sli3.cmdidx = 0; 5125 pring->missbufcnt = 0; 5126 } 5127 5128 phba->link_state = LPFC_WARM_START; 5129 return 0; 5130 } 5131 5132 /** 5133 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5134 * @phba: Pointer to HBA context object. 5135 * 5136 * This function resets a SLI4 HBA. This function disables PCI layer parity 5137 * checking during resets the device. The caller is not required to hold 5138 * any locks. 5139 * 5140 * This function returns 0 on success else returns negative error code. 5141 **/ 5142 int 5143 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5144 { 5145 struct lpfc_sli *psli = &phba->sli; 5146 uint16_t cfg_value; 5147 int rc = 0; 5148 5149 /* Reset HBA */ 5150 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5151 "0295 Reset HBA Data: x%x x%x x%lx\n", 5152 phba->pport->port_state, psli->sli_flag, 5153 phba->hba_flag); 5154 5155 /* perform board reset */ 5156 phba->fc_eventTag = 0; 5157 phba->link_events = 0; 5158 phba->pport->fc_myDID = 0; 5159 phba->pport->fc_prevDID = 0; 5160 clear_bit(HBA_SETUP, &phba->hba_flag); 5161 5162 spin_lock_irq(&phba->hbalock); 5163 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5164 phba->fcf.fcf_flag = 0; 5165 spin_unlock_irq(&phba->hbalock); 5166 5167 /* Now physically reset the device */ 5168 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5169 "0389 Performing PCI function reset!\n"); 5170 5171 /* Turn off parity checking and serr during the physical reset */ 5172 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5173 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5174 "3205 PCI read Config failed\n"); 5175 return -EIO; 5176 } 5177 5178 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5179 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5180 5181 /* Perform FCoE PCI function reset before freeing queue memory */ 5182 rc = lpfc_pci_function_reset(phba); 5183 5184 /* Restore PCI cmd register */ 5185 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5186 5187 return rc; 5188 } 5189 5190 /** 5191 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5192 * @phba: Pointer to HBA context object. 5193 * 5194 * This function is called in the SLI initialization code path to 5195 * restart the HBA. The caller is not required to hold any lock. 5196 * This function writes MBX_RESTART mailbox command to the SLIM and 5197 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5198 * function to free any pending commands. The function enables 5199 * POST only during the first initialization. The function returns zero. 5200 * The function does not guarantee completion of MBX_RESTART mailbox 5201 * command before the return of this function. 5202 **/ 5203 static int 5204 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5205 { 5206 volatile struct MAILBOX_word0 mb; 5207 struct lpfc_sli *psli; 5208 void __iomem *to_slim; 5209 5210 spin_lock_irq(&phba->hbalock); 5211 5212 psli = &phba->sli; 5213 5214 /* Restart HBA */ 5215 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5216 "0337 Restart HBA Data: x%x x%x\n", 5217 (phba->pport) ? phba->pport->port_state : 0, 5218 psli->sli_flag); 5219 5220 mb.word0 = 0; 5221 mb.mbxCommand = MBX_RESTART; 5222 mb.mbxHc = 1; 5223 5224 lpfc_reset_barrier(phba); 5225 5226 to_slim = phba->MBslimaddr; 5227 writel(mb.word0, to_slim); 5228 readl(to_slim); /* flush */ 5229 5230 /* Only skip post after fc_ffinit is completed */ 5231 if (phba->pport && phba->pport->port_state) 5232 mb.word0 = 1; /* This is really setting up word1 */ 5233 else 5234 mb.word0 = 0; /* This is really setting up word1 */ 5235 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5236 writel(mb.word0, to_slim); 5237 readl(to_slim); /* flush */ 5238 5239 lpfc_sli_brdreset(phba); 5240 if (phba->pport) 5241 phba->pport->stopped = 0; 5242 phba->link_state = LPFC_INIT_START; 5243 phba->hba_flag = 0; 5244 spin_unlock_irq(&phba->hbalock); 5245 5246 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5247 psli->stats_start = ktime_get_seconds(); 5248 5249 /* Give the INITFF and Post time to settle. */ 5250 mdelay(100); 5251 5252 lpfc_hba_down_post(phba); 5253 5254 return 0; 5255 } 5256 5257 /** 5258 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5259 * @phba: Pointer to HBA context object. 5260 * 5261 * This function is called in the SLI initialization code path to restart 5262 * a SLI4 HBA. The caller is not required to hold any lock. 5263 * At the end of the function, it calls lpfc_hba_down_post function to 5264 * free any pending commands. 5265 **/ 5266 static int 5267 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5268 { 5269 struct lpfc_sli *psli = &phba->sli; 5270 int rc; 5271 5272 /* Restart HBA */ 5273 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5274 "0296 Restart HBA Data: x%x x%x\n", 5275 phba->pport->port_state, psli->sli_flag); 5276 5277 lpfc_sli4_queue_unset(phba); 5278 5279 rc = lpfc_sli4_brdreset(phba); 5280 if (rc) { 5281 phba->link_state = LPFC_HBA_ERROR; 5282 goto hba_down_queue; 5283 } 5284 5285 spin_lock_irq(&phba->hbalock); 5286 phba->pport->stopped = 0; 5287 phba->link_state = LPFC_INIT_START; 5288 phba->hba_flag = 0; 5289 /* Preserve FA-PWWN expectation */ 5290 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5291 spin_unlock_irq(&phba->hbalock); 5292 5293 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5294 psli->stats_start = ktime_get_seconds(); 5295 5296 hba_down_queue: 5297 lpfc_hba_down_post(phba); 5298 lpfc_sli4_queue_destroy(phba); 5299 5300 return rc; 5301 } 5302 5303 /** 5304 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5305 * @phba: Pointer to HBA context object. 5306 * 5307 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5308 * API jump table function pointer from the lpfc_hba struct. 5309 **/ 5310 int 5311 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5312 { 5313 return phba->lpfc_sli_brdrestart(phba); 5314 } 5315 5316 /** 5317 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5318 * @phba: Pointer to HBA context object. 5319 * 5320 * This function is called after a HBA restart to wait for successful 5321 * restart of the HBA. Successful restart of the HBA is indicated by 5322 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5323 * iteration, the function will restart the HBA again. The function returns 5324 * zero if HBA successfully restarted else returns negative error code. 5325 **/ 5326 int 5327 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5328 { 5329 uint32_t status, i = 0; 5330 5331 /* Read the HBA Host Status Register */ 5332 if (lpfc_readl(phba->HSregaddr, &status)) 5333 return -EIO; 5334 5335 /* Check status register to see what current state is */ 5336 i = 0; 5337 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5338 5339 /* Check every 10ms for 10 retries, then every 100ms for 90 5340 * retries, then every 1 sec for 50 retires for a total of 5341 * ~60 seconds before reset the board again and check every 5342 * 1 sec for 50 retries. The up to 60 seconds before the 5343 * board ready is required by the Falcon FIPS zeroization 5344 * complete, and any reset the board in between shall cause 5345 * restart of zeroization, further delay the board ready. 5346 */ 5347 if (i++ >= 200) { 5348 /* Adapter failed to init, timeout, status reg 5349 <status> */ 5350 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5351 "0436 Adapter failed to init, " 5352 "timeout, status reg x%x, " 5353 "FW Data: A8 x%x AC x%x\n", status, 5354 readl(phba->MBslimaddr + 0xa8), 5355 readl(phba->MBslimaddr + 0xac)); 5356 phba->link_state = LPFC_HBA_ERROR; 5357 return -ETIMEDOUT; 5358 } 5359 5360 /* Check to see if any errors occurred during init */ 5361 if (status & HS_FFERM) { 5362 /* ERROR: During chipset initialization */ 5363 /* Adapter failed to init, chipset, status reg 5364 <status> */ 5365 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5366 "0437 Adapter failed to init, " 5367 "chipset, status reg x%x, " 5368 "FW Data: A8 x%x AC x%x\n", status, 5369 readl(phba->MBslimaddr + 0xa8), 5370 readl(phba->MBslimaddr + 0xac)); 5371 phba->link_state = LPFC_HBA_ERROR; 5372 return -EIO; 5373 } 5374 5375 if (i <= 10) 5376 msleep(10); 5377 else if (i <= 100) 5378 msleep(100); 5379 else 5380 msleep(1000); 5381 5382 if (i == 150) { 5383 /* Do post */ 5384 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5385 lpfc_sli_brdrestart(phba); 5386 } 5387 /* Read the HBA Host Status Register */ 5388 if (lpfc_readl(phba->HSregaddr, &status)) 5389 return -EIO; 5390 } 5391 5392 /* Check to see if any errors occurred during init */ 5393 if (status & HS_FFERM) { 5394 /* ERROR: During chipset initialization */ 5395 /* Adapter failed to init, chipset, status reg <status> */ 5396 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5397 "0438 Adapter failed to init, chipset, " 5398 "status reg x%x, " 5399 "FW Data: A8 x%x AC x%x\n", status, 5400 readl(phba->MBslimaddr + 0xa8), 5401 readl(phba->MBslimaddr + 0xac)); 5402 phba->link_state = LPFC_HBA_ERROR; 5403 return -EIO; 5404 } 5405 5406 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5407 5408 /* Clear all interrupt enable conditions */ 5409 writel(0, phba->HCregaddr); 5410 readl(phba->HCregaddr); /* flush */ 5411 5412 /* setup host attn register */ 5413 writel(0xffffffff, phba->HAregaddr); 5414 readl(phba->HAregaddr); /* flush */ 5415 return 0; 5416 } 5417 5418 /** 5419 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5420 * 5421 * This function calculates and returns the number of HBQs required to be 5422 * configured. 5423 **/ 5424 int 5425 lpfc_sli_hbq_count(void) 5426 { 5427 return ARRAY_SIZE(lpfc_hbq_defs); 5428 } 5429 5430 /** 5431 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5432 * 5433 * This function adds the number of hbq entries in every HBQ to get 5434 * the total number of hbq entries required for the HBA and returns 5435 * the total count. 5436 **/ 5437 static int 5438 lpfc_sli_hbq_entry_count(void) 5439 { 5440 int hbq_count = lpfc_sli_hbq_count(); 5441 int count = 0; 5442 int i; 5443 5444 for (i = 0; i < hbq_count; ++i) 5445 count += lpfc_hbq_defs[i]->entry_count; 5446 return count; 5447 } 5448 5449 /** 5450 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5451 * 5452 * This function calculates amount of memory required for all hbq entries 5453 * to be configured and returns the total memory required. 5454 **/ 5455 int 5456 lpfc_sli_hbq_size(void) 5457 { 5458 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5459 } 5460 5461 /** 5462 * lpfc_sli_hbq_setup - configure and initialize HBQs 5463 * @phba: Pointer to HBA context object. 5464 * 5465 * This function is called during the SLI initialization to configure 5466 * all the HBQs and post buffers to the HBQ. The caller is not 5467 * required to hold any locks. This function will return zero if successful 5468 * else it will return negative error code. 5469 **/ 5470 static int 5471 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5472 { 5473 int hbq_count = lpfc_sli_hbq_count(); 5474 LPFC_MBOXQ_t *pmb; 5475 MAILBOX_t *pmbox; 5476 uint32_t hbqno; 5477 uint32_t hbq_entry_index; 5478 5479 /* Get a Mailbox buffer to setup mailbox 5480 * commands for HBA initialization 5481 */ 5482 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5483 5484 if (!pmb) 5485 return -ENOMEM; 5486 5487 pmbox = &pmb->u.mb; 5488 5489 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5490 phba->link_state = LPFC_INIT_MBX_CMDS; 5491 phba->hbq_in_use = 1; 5492 5493 hbq_entry_index = 0; 5494 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5495 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5496 phba->hbqs[hbqno].hbqPutIdx = 0; 5497 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5498 phba->hbqs[hbqno].entry_count = 5499 lpfc_hbq_defs[hbqno]->entry_count; 5500 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5501 hbq_entry_index, pmb); 5502 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5503 5504 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5505 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5506 mbxStatus <status>, ring <num> */ 5507 5508 lpfc_printf_log(phba, KERN_ERR, 5509 LOG_SLI | LOG_VPORT, 5510 "1805 Adapter failed to init. " 5511 "Data: x%x x%x x%x\n", 5512 pmbox->mbxCommand, 5513 pmbox->mbxStatus, hbqno); 5514 5515 phba->link_state = LPFC_HBA_ERROR; 5516 mempool_free(pmb, phba->mbox_mem_pool); 5517 return -ENXIO; 5518 } 5519 } 5520 phba->hbq_count = hbq_count; 5521 5522 mempool_free(pmb, phba->mbox_mem_pool); 5523 5524 /* Initially populate or replenish the HBQs */ 5525 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5526 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5527 return 0; 5528 } 5529 5530 /** 5531 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5532 * @phba: Pointer to HBA context object. 5533 * 5534 * This function is called during the SLI initialization to configure 5535 * all the HBQs and post buffers to the HBQ. The caller is not 5536 * required to hold any locks. This function will return zero if successful 5537 * else it will return negative error code. 5538 **/ 5539 static int 5540 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5541 { 5542 phba->hbq_in_use = 1; 5543 /** 5544 * Specific case when the MDS diagnostics is enabled and supported. 5545 * The receive buffer count is truncated to manage the incoming 5546 * traffic. 5547 **/ 5548 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5549 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5550 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5551 else 5552 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5553 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5554 phba->hbq_count = 1; 5555 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5556 /* Initially populate or replenish the HBQs */ 5557 return 0; 5558 } 5559 5560 /** 5561 * lpfc_sli_config_port - Issue config port mailbox command 5562 * @phba: Pointer to HBA context object. 5563 * @sli_mode: sli mode - 2/3 5564 * 5565 * This function is called by the sli initialization code path 5566 * to issue config_port mailbox command. This function restarts the 5567 * HBA firmware and issues a config_port mailbox command to configure 5568 * the SLI interface in the sli mode specified by sli_mode 5569 * variable. The caller is not required to hold any locks. 5570 * The function returns 0 if successful, else returns negative error 5571 * code. 5572 **/ 5573 int 5574 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5575 { 5576 LPFC_MBOXQ_t *pmb; 5577 uint32_t resetcount = 0, rc = 0, done = 0; 5578 5579 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5580 if (!pmb) { 5581 phba->link_state = LPFC_HBA_ERROR; 5582 return -ENOMEM; 5583 } 5584 5585 phba->sli_rev = sli_mode; 5586 while (resetcount < 2 && !done) { 5587 spin_lock_irq(&phba->hbalock); 5588 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5589 spin_unlock_irq(&phba->hbalock); 5590 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5591 lpfc_sli_brdrestart(phba); 5592 rc = lpfc_sli_chipset_init(phba); 5593 if (rc) 5594 break; 5595 5596 spin_lock_irq(&phba->hbalock); 5597 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5598 spin_unlock_irq(&phba->hbalock); 5599 resetcount++; 5600 5601 /* Call pre CONFIG_PORT mailbox command initialization. A 5602 * value of 0 means the call was successful. Any other 5603 * nonzero value is a failure, but if ERESTART is returned, 5604 * the driver may reset the HBA and try again. 5605 */ 5606 rc = lpfc_config_port_prep(phba); 5607 if (rc == -ERESTART) { 5608 phba->link_state = LPFC_LINK_UNKNOWN; 5609 continue; 5610 } else if (rc) 5611 break; 5612 5613 phba->link_state = LPFC_INIT_MBX_CMDS; 5614 lpfc_config_port(phba, pmb); 5615 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5616 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5617 LPFC_SLI3_HBQ_ENABLED | 5618 LPFC_SLI3_CRP_ENABLED | 5619 LPFC_SLI3_DSS_ENABLED); 5620 if (rc != MBX_SUCCESS) { 5621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5622 "0442 Adapter failed to init, mbxCmd x%x " 5623 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5624 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5625 spin_lock_irq(&phba->hbalock); 5626 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5627 spin_unlock_irq(&phba->hbalock); 5628 rc = -ENXIO; 5629 } else { 5630 /* Allow asynchronous mailbox command to go through */ 5631 spin_lock_irq(&phba->hbalock); 5632 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5633 spin_unlock_irq(&phba->hbalock); 5634 done = 1; 5635 5636 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5637 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5638 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5639 "3110 Port did not grant ASABT\n"); 5640 } 5641 } 5642 if (!done) { 5643 rc = -EINVAL; 5644 goto do_prep_failed; 5645 } 5646 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5647 if (!pmb->u.mb.un.varCfgPort.cMA) { 5648 rc = -ENXIO; 5649 goto do_prep_failed; 5650 } 5651 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5652 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5653 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5654 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5655 phba->max_vpi : phba->max_vports; 5656 5657 } else 5658 phba->max_vpi = 0; 5659 if (pmb->u.mb.un.varCfgPort.gerbm) 5660 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5661 if (pmb->u.mb.un.varCfgPort.gcrp) 5662 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5663 5664 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5665 phba->port_gp = phba->mbox->us.s3_pgp.port; 5666 5667 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5668 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5669 phba->cfg_enable_bg = 0; 5670 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5671 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5672 "0443 Adapter did not grant " 5673 "BlockGuard\n"); 5674 } 5675 } 5676 } else { 5677 phba->hbq_get = NULL; 5678 phba->port_gp = phba->mbox->us.s2.port; 5679 phba->max_vpi = 0; 5680 } 5681 do_prep_failed: 5682 mempool_free(pmb, phba->mbox_mem_pool); 5683 return rc; 5684 } 5685 5686 5687 /** 5688 * lpfc_sli_hba_setup - SLI initialization function 5689 * @phba: Pointer to HBA context object. 5690 * 5691 * This function is the main SLI initialization function. This function 5692 * is called by the HBA initialization code, HBA reset code and HBA 5693 * error attention handler code. Caller is not required to hold any 5694 * locks. This function issues config_port mailbox command to configure 5695 * the SLI, setup iocb rings and HBQ rings. In the end the function 5696 * calls the config_port_post function to issue init_link mailbox 5697 * command and to start the discovery. The function will return zero 5698 * if successful, else it will return negative error code. 5699 **/ 5700 int 5701 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5702 { 5703 uint32_t rc; 5704 int i; 5705 int longs; 5706 5707 /* Enable ISR already does config_port because of config_msi mbx */ 5708 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5709 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5710 if (rc) 5711 return -EIO; 5712 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5713 } 5714 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5715 5716 if (phba->sli_rev == 3) { 5717 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5718 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5719 } else { 5720 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5721 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5722 phba->sli3_options = 0; 5723 } 5724 5725 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5726 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5727 phba->sli_rev, phba->max_vpi); 5728 rc = lpfc_sli_ring_map(phba); 5729 5730 if (rc) 5731 goto lpfc_sli_hba_setup_error; 5732 5733 /* Initialize VPIs. */ 5734 if (phba->sli_rev == LPFC_SLI_REV3) { 5735 /* 5736 * The VPI bitmask and physical ID array are allocated 5737 * and initialized once only - at driver load. A port 5738 * reset doesn't need to reinitialize this memory. 5739 */ 5740 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5741 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5742 phba->vpi_bmask = kcalloc(longs, 5743 sizeof(unsigned long), 5744 GFP_KERNEL); 5745 if (!phba->vpi_bmask) { 5746 rc = -ENOMEM; 5747 goto lpfc_sli_hba_setup_error; 5748 } 5749 5750 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5751 sizeof(uint16_t), 5752 GFP_KERNEL); 5753 if (!phba->vpi_ids) { 5754 kfree(phba->vpi_bmask); 5755 rc = -ENOMEM; 5756 goto lpfc_sli_hba_setup_error; 5757 } 5758 for (i = 0; i < phba->max_vpi; i++) 5759 phba->vpi_ids[i] = i; 5760 } 5761 } 5762 5763 /* Init HBQs */ 5764 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5765 rc = lpfc_sli_hbq_setup(phba); 5766 if (rc) 5767 goto lpfc_sli_hba_setup_error; 5768 } 5769 spin_lock_irq(&phba->hbalock); 5770 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5771 spin_unlock_irq(&phba->hbalock); 5772 5773 rc = lpfc_config_port_post(phba); 5774 if (rc) 5775 goto lpfc_sli_hba_setup_error; 5776 5777 return rc; 5778 5779 lpfc_sli_hba_setup_error: 5780 phba->link_state = LPFC_HBA_ERROR; 5781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5782 "0445 Firmware initialization failed\n"); 5783 return rc; 5784 } 5785 5786 /** 5787 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5788 * @phba: Pointer to HBA context object. 5789 * 5790 * This function issue a dump mailbox command to read config region 5791 * 23 and parse the records in the region and populate driver 5792 * data structure. 5793 **/ 5794 static int 5795 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5796 { 5797 LPFC_MBOXQ_t *mboxq; 5798 struct lpfc_dmabuf *mp; 5799 struct lpfc_mqe *mqe; 5800 uint32_t data_length; 5801 int rc; 5802 5803 /* Program the default value of vlan_id and fc_map */ 5804 phba->valid_vlan = 0; 5805 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5806 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5807 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5808 5809 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5810 if (!mboxq) 5811 return -ENOMEM; 5812 5813 mqe = &mboxq->u.mqe; 5814 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5815 rc = -ENOMEM; 5816 goto out_free_mboxq; 5817 } 5818 5819 mp = mboxq->ctx_buf; 5820 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5821 5822 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5823 "(%d):2571 Mailbox cmd x%x Status x%x " 5824 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5825 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5826 "CQ: x%x x%x x%x x%x\n", 5827 mboxq->vport ? mboxq->vport->vpi : 0, 5828 bf_get(lpfc_mqe_command, mqe), 5829 bf_get(lpfc_mqe_status, mqe), 5830 mqe->un.mb_words[0], mqe->un.mb_words[1], 5831 mqe->un.mb_words[2], mqe->un.mb_words[3], 5832 mqe->un.mb_words[4], mqe->un.mb_words[5], 5833 mqe->un.mb_words[6], mqe->un.mb_words[7], 5834 mqe->un.mb_words[8], mqe->un.mb_words[9], 5835 mqe->un.mb_words[10], mqe->un.mb_words[11], 5836 mqe->un.mb_words[12], mqe->un.mb_words[13], 5837 mqe->un.mb_words[14], mqe->un.mb_words[15], 5838 mqe->un.mb_words[16], mqe->un.mb_words[50], 5839 mboxq->mcqe.word0, 5840 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5841 mboxq->mcqe.trailer); 5842 5843 if (rc) { 5844 rc = -EIO; 5845 goto out_free_mboxq; 5846 } 5847 data_length = mqe->un.mb_words[5]; 5848 if (data_length > DMP_RGN23_SIZE) { 5849 rc = -EIO; 5850 goto out_free_mboxq; 5851 } 5852 5853 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5854 rc = 0; 5855 5856 out_free_mboxq: 5857 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5858 return rc; 5859 } 5860 5861 /** 5862 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5863 * @phba: pointer to lpfc hba data structure. 5864 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5865 * @vpd: pointer to the memory to hold resulting port vpd data. 5866 * @vpd_size: On input, the number of bytes allocated to @vpd. 5867 * On output, the number of data bytes in @vpd. 5868 * 5869 * This routine executes a READ_REV SLI4 mailbox command. In 5870 * addition, this routine gets the port vpd data. 5871 * 5872 * Return codes 5873 * 0 - successful 5874 * -ENOMEM - could not allocated memory. 5875 **/ 5876 static int 5877 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5878 uint8_t *vpd, uint32_t *vpd_size) 5879 { 5880 int rc = 0; 5881 uint32_t dma_size; 5882 struct lpfc_dmabuf *dmabuf; 5883 struct lpfc_mqe *mqe; 5884 5885 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5886 if (!dmabuf) 5887 return -ENOMEM; 5888 5889 /* 5890 * Get a DMA buffer for the vpd data resulting from the READ_REV 5891 * mailbox command. 5892 */ 5893 dma_size = *vpd_size; 5894 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5895 &dmabuf->phys, GFP_KERNEL); 5896 if (!dmabuf->virt) { 5897 kfree(dmabuf); 5898 return -ENOMEM; 5899 } 5900 5901 /* 5902 * The SLI4 implementation of READ_REV conflicts at word1, 5903 * bits 31:16 and SLI4 adds vpd functionality not present 5904 * in SLI3. This code corrects the conflicts. 5905 */ 5906 lpfc_read_rev(phba, mboxq); 5907 mqe = &mboxq->u.mqe; 5908 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5909 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5910 mqe->un.read_rev.word1 &= 0x0000FFFF; 5911 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5912 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5913 5914 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5915 if (rc) { 5916 dma_free_coherent(&phba->pcidev->dev, dma_size, 5917 dmabuf->virt, dmabuf->phys); 5918 kfree(dmabuf); 5919 return -EIO; 5920 } 5921 5922 /* 5923 * The available vpd length cannot be bigger than the 5924 * DMA buffer passed to the port. Catch the less than 5925 * case and update the caller's size. 5926 */ 5927 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5928 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5929 5930 memcpy(vpd, dmabuf->virt, *vpd_size); 5931 5932 dma_free_coherent(&phba->pcidev->dev, dma_size, 5933 dmabuf->virt, dmabuf->phys); 5934 kfree(dmabuf); 5935 return 0; 5936 } 5937 5938 /** 5939 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5940 * @phba: pointer to lpfc hba data structure. 5941 * 5942 * This routine retrieves SLI4 device physical port name this PCI function 5943 * is attached to. 5944 * 5945 * Return codes 5946 * 0 - successful 5947 * otherwise - failed to retrieve controller attributes 5948 **/ 5949 static int 5950 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5951 { 5952 LPFC_MBOXQ_t *mboxq; 5953 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5954 struct lpfc_controller_attribute *cntl_attr; 5955 void *virtaddr = NULL; 5956 uint32_t alloclen, reqlen; 5957 uint32_t shdr_status, shdr_add_status; 5958 union lpfc_sli4_cfg_shdr *shdr; 5959 int rc; 5960 5961 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5962 if (!mboxq) 5963 return -ENOMEM; 5964 5965 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5966 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5967 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5968 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5969 LPFC_SLI4_MBX_NEMBED); 5970 5971 if (alloclen < reqlen) { 5972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5973 "3084 Allocated DMA memory size (%d) is " 5974 "less than the requested DMA memory size " 5975 "(%d)\n", alloclen, reqlen); 5976 rc = -ENOMEM; 5977 goto out_free_mboxq; 5978 } 5979 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5980 virtaddr = mboxq->sge_array->addr[0]; 5981 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5982 shdr = &mbx_cntl_attr->cfg_shdr; 5983 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5984 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5985 if (shdr_status || shdr_add_status || rc) { 5986 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5987 "3085 Mailbox x%x (x%x/x%x) failed, " 5988 "rc:x%x, status:x%x, add_status:x%x\n", 5989 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5990 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5991 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5992 rc, shdr_status, shdr_add_status); 5993 rc = -ENXIO; 5994 goto out_free_mboxq; 5995 } 5996 5997 cntl_attr = &mbx_cntl_attr->cntl_attr; 5998 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5999 phba->sli4_hba.lnk_info.lnk_tp = 6000 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6001 phba->sli4_hba.lnk_info.lnk_no = 6002 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6003 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6004 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6005 6006 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6007 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6008 sizeof(phba->BIOSVersion)); 6009 6010 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6011 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6012 "flash_id: x%02x, asic_rev: x%02x\n", 6013 phba->sli4_hba.lnk_info.lnk_tp, 6014 phba->sli4_hba.lnk_info.lnk_no, 6015 phba->BIOSVersion, phba->sli4_hba.flash_id, 6016 phba->sli4_hba.asic_rev); 6017 out_free_mboxq: 6018 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6019 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6020 else 6021 mempool_free(mboxq, phba->mbox_mem_pool); 6022 return rc; 6023 } 6024 6025 /** 6026 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6027 * @phba: pointer to lpfc hba data structure. 6028 * 6029 * This routine retrieves SLI4 device physical port name this PCI function 6030 * is attached to. 6031 * 6032 * Return codes 6033 * 0 - successful 6034 * otherwise - failed to retrieve physical port name 6035 **/ 6036 static int 6037 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6038 { 6039 LPFC_MBOXQ_t *mboxq; 6040 struct lpfc_mbx_get_port_name *get_port_name; 6041 uint32_t shdr_status, shdr_add_status; 6042 union lpfc_sli4_cfg_shdr *shdr; 6043 char cport_name = 0; 6044 int rc; 6045 6046 /* We assume nothing at this point */ 6047 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6048 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6049 6050 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6051 if (!mboxq) 6052 return -ENOMEM; 6053 /* obtain link type and link number via READ_CONFIG */ 6054 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6055 lpfc_sli4_read_config(phba); 6056 6057 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6058 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6059 6060 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6061 goto retrieve_ppname; 6062 6063 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6064 rc = lpfc_sli4_get_ctl_attr(phba); 6065 if (rc) 6066 goto out_free_mboxq; 6067 6068 retrieve_ppname: 6069 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6070 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6071 sizeof(struct lpfc_mbx_get_port_name) - 6072 sizeof(struct lpfc_sli4_cfg_mhdr), 6073 LPFC_SLI4_MBX_EMBED); 6074 get_port_name = &mboxq->u.mqe.un.get_port_name; 6075 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6076 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6077 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6078 phba->sli4_hba.lnk_info.lnk_tp); 6079 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6080 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6081 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6082 if (shdr_status || shdr_add_status || rc) { 6083 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6084 "3087 Mailbox x%x (x%x/x%x) failed: " 6085 "rc:x%x, status:x%x, add_status:x%x\n", 6086 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6087 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6088 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6089 rc, shdr_status, shdr_add_status); 6090 rc = -ENXIO; 6091 goto out_free_mboxq; 6092 } 6093 switch (phba->sli4_hba.lnk_info.lnk_no) { 6094 case LPFC_LINK_NUMBER_0: 6095 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6096 &get_port_name->u.response); 6097 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6098 break; 6099 case LPFC_LINK_NUMBER_1: 6100 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6101 &get_port_name->u.response); 6102 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6103 break; 6104 case LPFC_LINK_NUMBER_2: 6105 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6106 &get_port_name->u.response); 6107 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6108 break; 6109 case LPFC_LINK_NUMBER_3: 6110 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6111 &get_port_name->u.response); 6112 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6113 break; 6114 default: 6115 break; 6116 } 6117 6118 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6119 phba->Port[0] = cport_name; 6120 phba->Port[1] = '\0'; 6121 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6122 "3091 SLI get port name: %s\n", phba->Port); 6123 } 6124 6125 out_free_mboxq: 6126 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6127 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6128 else 6129 mempool_free(mboxq, phba->mbox_mem_pool); 6130 return rc; 6131 } 6132 6133 /** 6134 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6135 * @phba: pointer to lpfc hba data structure. 6136 * 6137 * This routine is called to explicitly arm the SLI4 device's completion and 6138 * event queues 6139 **/ 6140 static void 6141 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6142 { 6143 int qidx; 6144 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6145 struct lpfc_sli4_hdw_queue *qp; 6146 struct lpfc_queue *eq; 6147 6148 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6149 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6150 if (sli4_hba->nvmels_cq) 6151 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6152 LPFC_QUEUE_REARM); 6153 6154 if (sli4_hba->hdwq) { 6155 /* Loop thru all Hardware Queues */ 6156 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6157 qp = &sli4_hba->hdwq[qidx]; 6158 /* ARM the corresponding CQ */ 6159 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6160 LPFC_QUEUE_REARM); 6161 } 6162 6163 /* Loop thru all IRQ vectors */ 6164 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6165 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6166 /* ARM the corresponding EQ */ 6167 sli4_hba->sli4_write_eq_db(phba, eq, 6168 0, LPFC_QUEUE_REARM); 6169 } 6170 } 6171 6172 if (phba->nvmet_support) { 6173 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6174 sli4_hba->sli4_write_cq_db(phba, 6175 sli4_hba->nvmet_cqset[qidx], 0, 6176 LPFC_QUEUE_REARM); 6177 } 6178 } 6179 } 6180 6181 /** 6182 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6183 * @phba: Pointer to HBA context object. 6184 * @type: The resource extent type. 6185 * @extnt_count: buffer to hold port available extent count. 6186 * @extnt_size: buffer to hold element count per extent. 6187 * 6188 * This function calls the port and retrievs the number of available 6189 * extents and their size for a particular extent type. 6190 * 6191 * Returns: 0 if successful. Nonzero otherwise. 6192 **/ 6193 int 6194 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6195 uint16_t *extnt_count, uint16_t *extnt_size) 6196 { 6197 int rc = 0; 6198 uint32_t length; 6199 uint32_t mbox_tmo; 6200 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6201 LPFC_MBOXQ_t *mbox; 6202 6203 *extnt_count = 0; 6204 *extnt_size = 0; 6205 6206 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6207 if (!mbox) 6208 return -ENOMEM; 6209 6210 /* Find out how many extents are available for this resource type */ 6211 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6212 sizeof(struct lpfc_sli4_cfg_mhdr)); 6213 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6214 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6215 length, LPFC_SLI4_MBX_EMBED); 6216 6217 /* Send an extents count of 0 - the GET doesn't use it. */ 6218 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6219 LPFC_SLI4_MBX_EMBED); 6220 if (unlikely(rc)) { 6221 rc = -EIO; 6222 goto err_exit; 6223 } 6224 6225 if (!phba->sli4_hba.intr_enable) 6226 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6227 else { 6228 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6229 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6230 } 6231 if (unlikely(rc)) { 6232 rc = -EIO; 6233 goto err_exit; 6234 } 6235 6236 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6237 if (bf_get(lpfc_mbox_hdr_status, 6238 &rsrc_info->header.cfg_shdr.response)) { 6239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6240 "2930 Failed to get resource extents " 6241 "Status 0x%x Add'l Status 0x%x\n", 6242 bf_get(lpfc_mbox_hdr_status, 6243 &rsrc_info->header.cfg_shdr.response), 6244 bf_get(lpfc_mbox_hdr_add_status, 6245 &rsrc_info->header.cfg_shdr.response)); 6246 rc = -EIO; 6247 goto err_exit; 6248 } 6249 6250 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6251 &rsrc_info->u.rsp); 6252 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6253 &rsrc_info->u.rsp); 6254 6255 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6256 "3162 Retrieved extents type-%d from port: count:%d, " 6257 "size:%d\n", type, *extnt_count, *extnt_size); 6258 6259 err_exit: 6260 mempool_free(mbox, phba->mbox_mem_pool); 6261 return rc; 6262 } 6263 6264 /** 6265 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6266 * @phba: Pointer to HBA context object. 6267 * @type: The extent type to check. 6268 * 6269 * This function reads the current available extents from the port and checks 6270 * if the extent count or extent size has changed since the last access. 6271 * Callers use this routine post port reset to understand if there is a 6272 * extent reprovisioning requirement. 6273 * 6274 * Returns: 6275 * -Error: error indicates problem. 6276 * 1: Extent count or size has changed. 6277 * 0: No changes. 6278 **/ 6279 static int 6280 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6281 { 6282 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6283 uint16_t size_diff, rsrc_ext_size; 6284 int rc = 0; 6285 struct lpfc_rsrc_blks *rsrc_entry; 6286 struct list_head *rsrc_blk_list = NULL; 6287 6288 size_diff = 0; 6289 curr_ext_cnt = 0; 6290 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6291 &rsrc_ext_cnt, 6292 &rsrc_ext_size); 6293 if (unlikely(rc)) 6294 return -EIO; 6295 6296 switch (type) { 6297 case LPFC_RSC_TYPE_FCOE_RPI: 6298 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6299 break; 6300 case LPFC_RSC_TYPE_FCOE_VPI: 6301 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6302 break; 6303 case LPFC_RSC_TYPE_FCOE_XRI: 6304 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6305 break; 6306 case LPFC_RSC_TYPE_FCOE_VFI: 6307 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6308 break; 6309 default: 6310 break; 6311 } 6312 6313 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6314 curr_ext_cnt++; 6315 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6316 size_diff++; 6317 } 6318 6319 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6320 rc = 1; 6321 6322 return rc; 6323 } 6324 6325 /** 6326 * lpfc_sli4_cfg_post_extnts - 6327 * @phba: Pointer to HBA context object. 6328 * @extnt_cnt: number of available extents. 6329 * @type: the extent type (rpi, xri, vfi, vpi). 6330 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6331 * @mbox: pointer to the caller's allocated mailbox structure. 6332 * 6333 * This function executes the extents allocation request. It also 6334 * takes care of the amount of memory needed to allocate or get the 6335 * allocated extents. It is the caller's responsibility to evaluate 6336 * the response. 6337 * 6338 * Returns: 6339 * -Error: Error value describes the condition found. 6340 * 0: if successful 6341 **/ 6342 static int 6343 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6344 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6345 { 6346 int rc = 0; 6347 uint32_t req_len; 6348 uint32_t emb_len; 6349 uint32_t alloc_len, mbox_tmo; 6350 6351 /* Calculate the total requested length of the dma memory */ 6352 req_len = extnt_cnt * sizeof(uint16_t); 6353 6354 /* 6355 * Calculate the size of an embedded mailbox. The uint32_t 6356 * accounts for extents-specific word. 6357 */ 6358 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6359 sizeof(uint32_t); 6360 6361 /* 6362 * Presume the allocation and response will fit into an embedded 6363 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6364 */ 6365 *emb = LPFC_SLI4_MBX_EMBED; 6366 if (req_len > emb_len) { 6367 req_len = extnt_cnt * sizeof(uint16_t) + 6368 sizeof(union lpfc_sli4_cfg_shdr) + 6369 sizeof(uint32_t); 6370 *emb = LPFC_SLI4_MBX_NEMBED; 6371 } 6372 6373 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6374 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6375 req_len, *emb); 6376 if (alloc_len < req_len) { 6377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6378 "2982 Allocated DMA memory size (x%x) is " 6379 "less than the requested DMA memory " 6380 "size (x%x)\n", alloc_len, req_len); 6381 return -ENOMEM; 6382 } 6383 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6384 if (unlikely(rc)) 6385 return -EIO; 6386 6387 if (!phba->sli4_hba.intr_enable) 6388 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6389 else { 6390 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6391 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6392 } 6393 6394 if (unlikely(rc)) 6395 rc = -EIO; 6396 return rc; 6397 } 6398 6399 /** 6400 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6401 * @phba: Pointer to HBA context object. 6402 * @type: The resource extent type to allocate. 6403 * 6404 * This function allocates the number of elements for the specified 6405 * resource type. 6406 **/ 6407 static int 6408 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6409 { 6410 bool emb = false; 6411 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6412 uint16_t rsrc_id, rsrc_start, j, k; 6413 uint16_t *ids; 6414 int i, rc; 6415 unsigned long longs; 6416 unsigned long *bmask; 6417 struct lpfc_rsrc_blks *rsrc_blks; 6418 LPFC_MBOXQ_t *mbox; 6419 uint32_t length; 6420 struct lpfc_id_range *id_array = NULL; 6421 void *virtaddr = NULL; 6422 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6423 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6424 struct list_head *ext_blk_list; 6425 6426 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6427 &rsrc_cnt, 6428 &rsrc_size); 6429 if (unlikely(rc)) 6430 return -EIO; 6431 6432 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6434 "3009 No available Resource Extents " 6435 "for resource type 0x%x: Count: 0x%x, " 6436 "Size 0x%x\n", type, rsrc_cnt, 6437 rsrc_size); 6438 return -ENOMEM; 6439 } 6440 6441 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6442 "2903 Post resource extents type-0x%x: " 6443 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6444 6445 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6446 if (!mbox) 6447 return -ENOMEM; 6448 6449 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6450 if (unlikely(rc)) { 6451 rc = -EIO; 6452 goto err_exit; 6453 } 6454 6455 /* 6456 * Figure out where the response is located. Then get local pointers 6457 * to the response data. The port does not guarantee to respond to 6458 * all extents counts request so update the local variable with the 6459 * allocated count from the port. 6460 */ 6461 if (emb == LPFC_SLI4_MBX_EMBED) { 6462 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6463 id_array = &rsrc_ext->u.rsp.id[0]; 6464 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6465 } else { 6466 virtaddr = mbox->sge_array->addr[0]; 6467 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6468 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6469 id_array = &n_rsrc->id; 6470 } 6471 6472 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6473 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6474 6475 /* 6476 * Based on the resource size and count, correct the base and max 6477 * resource values. 6478 */ 6479 length = sizeof(struct lpfc_rsrc_blks); 6480 switch (type) { 6481 case LPFC_RSC_TYPE_FCOE_RPI: 6482 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6483 sizeof(unsigned long), 6484 GFP_KERNEL); 6485 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6486 rc = -ENOMEM; 6487 goto err_exit; 6488 } 6489 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6490 sizeof(uint16_t), 6491 GFP_KERNEL); 6492 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6493 kfree(phba->sli4_hba.rpi_bmask); 6494 rc = -ENOMEM; 6495 goto err_exit; 6496 } 6497 6498 /* 6499 * The next_rpi was initialized with the maximum available 6500 * count but the port may allocate a smaller number. Catch 6501 * that case and update the next_rpi. 6502 */ 6503 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6504 6505 /* Initialize local ptrs for common extent processing later. */ 6506 bmask = phba->sli4_hba.rpi_bmask; 6507 ids = phba->sli4_hba.rpi_ids; 6508 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6509 break; 6510 case LPFC_RSC_TYPE_FCOE_VPI: 6511 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6512 GFP_KERNEL); 6513 if (unlikely(!phba->vpi_bmask)) { 6514 rc = -ENOMEM; 6515 goto err_exit; 6516 } 6517 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6518 GFP_KERNEL); 6519 if (unlikely(!phba->vpi_ids)) { 6520 kfree(phba->vpi_bmask); 6521 rc = -ENOMEM; 6522 goto err_exit; 6523 } 6524 6525 /* Initialize local ptrs for common extent processing later. */ 6526 bmask = phba->vpi_bmask; 6527 ids = phba->vpi_ids; 6528 ext_blk_list = &phba->lpfc_vpi_blk_list; 6529 break; 6530 case LPFC_RSC_TYPE_FCOE_XRI: 6531 phba->sli4_hba.xri_bmask = kcalloc(longs, 6532 sizeof(unsigned long), 6533 GFP_KERNEL); 6534 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6535 rc = -ENOMEM; 6536 goto err_exit; 6537 } 6538 phba->sli4_hba.max_cfg_param.xri_used = 0; 6539 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6540 sizeof(uint16_t), 6541 GFP_KERNEL); 6542 if (unlikely(!phba->sli4_hba.xri_ids)) { 6543 kfree(phba->sli4_hba.xri_bmask); 6544 rc = -ENOMEM; 6545 goto err_exit; 6546 } 6547 6548 /* Initialize local ptrs for common extent processing later. */ 6549 bmask = phba->sli4_hba.xri_bmask; 6550 ids = phba->sli4_hba.xri_ids; 6551 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6552 break; 6553 case LPFC_RSC_TYPE_FCOE_VFI: 6554 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6555 sizeof(unsigned long), 6556 GFP_KERNEL); 6557 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6558 rc = -ENOMEM; 6559 goto err_exit; 6560 } 6561 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6562 sizeof(uint16_t), 6563 GFP_KERNEL); 6564 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6565 kfree(phba->sli4_hba.vfi_bmask); 6566 rc = -ENOMEM; 6567 goto err_exit; 6568 } 6569 6570 /* Initialize local ptrs for common extent processing later. */ 6571 bmask = phba->sli4_hba.vfi_bmask; 6572 ids = phba->sli4_hba.vfi_ids; 6573 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6574 break; 6575 default: 6576 /* Unsupported Opcode. Fail call. */ 6577 id_array = NULL; 6578 bmask = NULL; 6579 ids = NULL; 6580 ext_blk_list = NULL; 6581 goto err_exit; 6582 } 6583 6584 /* 6585 * Complete initializing the extent configuration with the 6586 * allocated ids assigned to this function. The bitmask serves 6587 * as an index into the array and manages the available ids. The 6588 * array just stores the ids communicated to the port via the wqes. 6589 */ 6590 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6591 if ((i % 2) == 0) 6592 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6593 &id_array[k]); 6594 else 6595 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6596 &id_array[k]); 6597 6598 rsrc_blks = kzalloc(length, GFP_KERNEL); 6599 if (unlikely(!rsrc_blks)) { 6600 rc = -ENOMEM; 6601 kfree(bmask); 6602 kfree(ids); 6603 goto err_exit; 6604 } 6605 rsrc_blks->rsrc_start = rsrc_id; 6606 rsrc_blks->rsrc_size = rsrc_size; 6607 list_add_tail(&rsrc_blks->list, ext_blk_list); 6608 rsrc_start = rsrc_id; 6609 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6610 phba->sli4_hba.io_xri_start = rsrc_start + 6611 lpfc_sli4_get_iocb_cnt(phba); 6612 } 6613 6614 while (rsrc_id < (rsrc_start + rsrc_size)) { 6615 ids[j] = rsrc_id; 6616 rsrc_id++; 6617 j++; 6618 } 6619 /* Entire word processed. Get next word.*/ 6620 if ((i % 2) == 1) 6621 k++; 6622 } 6623 err_exit: 6624 lpfc_sli4_mbox_cmd_free(phba, mbox); 6625 return rc; 6626 } 6627 6628 6629 6630 /** 6631 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6632 * @phba: Pointer to HBA context object. 6633 * @type: the extent's type. 6634 * 6635 * This function deallocates all extents of a particular resource type. 6636 * SLI4 does not allow for deallocating a particular extent range. It 6637 * is the caller's responsibility to release all kernel memory resources. 6638 **/ 6639 static int 6640 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6641 { 6642 int rc; 6643 uint32_t length, mbox_tmo = 0; 6644 LPFC_MBOXQ_t *mbox; 6645 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6646 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6647 6648 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6649 if (!mbox) 6650 return -ENOMEM; 6651 6652 /* 6653 * This function sends an embedded mailbox because it only sends the 6654 * the resource type. All extents of this type are released by the 6655 * port. 6656 */ 6657 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6658 sizeof(struct lpfc_sli4_cfg_mhdr)); 6659 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6660 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6661 length, LPFC_SLI4_MBX_EMBED); 6662 6663 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6664 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6665 LPFC_SLI4_MBX_EMBED); 6666 if (unlikely(rc)) { 6667 rc = -EIO; 6668 goto out_free_mbox; 6669 } 6670 if (!phba->sli4_hba.intr_enable) 6671 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6672 else { 6673 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6674 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6675 } 6676 if (unlikely(rc)) { 6677 rc = -EIO; 6678 goto out_free_mbox; 6679 } 6680 6681 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6682 if (bf_get(lpfc_mbox_hdr_status, 6683 &dealloc_rsrc->header.cfg_shdr.response)) { 6684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6685 "2919 Failed to release resource extents " 6686 "for type %d - Status 0x%x Add'l Status 0x%x. " 6687 "Resource memory not released.\n", 6688 type, 6689 bf_get(lpfc_mbox_hdr_status, 6690 &dealloc_rsrc->header.cfg_shdr.response), 6691 bf_get(lpfc_mbox_hdr_add_status, 6692 &dealloc_rsrc->header.cfg_shdr.response)); 6693 rc = -EIO; 6694 goto out_free_mbox; 6695 } 6696 6697 /* Release kernel memory resources for the specific type. */ 6698 switch (type) { 6699 case LPFC_RSC_TYPE_FCOE_VPI: 6700 kfree(phba->vpi_bmask); 6701 kfree(phba->vpi_ids); 6702 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6703 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6704 &phba->lpfc_vpi_blk_list, list) { 6705 list_del_init(&rsrc_blk->list); 6706 kfree(rsrc_blk); 6707 } 6708 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6709 break; 6710 case LPFC_RSC_TYPE_FCOE_XRI: 6711 kfree(phba->sli4_hba.xri_bmask); 6712 kfree(phba->sli4_hba.xri_ids); 6713 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6714 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6715 list_del_init(&rsrc_blk->list); 6716 kfree(rsrc_blk); 6717 } 6718 break; 6719 case LPFC_RSC_TYPE_FCOE_VFI: 6720 kfree(phba->sli4_hba.vfi_bmask); 6721 kfree(phba->sli4_hba.vfi_ids); 6722 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6723 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6724 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6725 list_del_init(&rsrc_blk->list); 6726 kfree(rsrc_blk); 6727 } 6728 break; 6729 case LPFC_RSC_TYPE_FCOE_RPI: 6730 /* RPI bitmask and physical id array are cleaned up earlier. */ 6731 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6732 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6733 list_del_init(&rsrc_blk->list); 6734 kfree(rsrc_blk); 6735 } 6736 break; 6737 default: 6738 break; 6739 } 6740 6741 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6742 6743 out_free_mbox: 6744 mempool_free(mbox, phba->mbox_mem_pool); 6745 return rc; 6746 } 6747 6748 static void 6749 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6750 uint32_t feature) 6751 { 6752 uint32_t len; 6753 u32 sig_freq = 0; 6754 6755 len = sizeof(struct lpfc_mbx_set_feature) - 6756 sizeof(struct lpfc_sli4_cfg_mhdr); 6757 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6758 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6759 LPFC_SLI4_MBX_EMBED); 6760 6761 switch (feature) { 6762 case LPFC_SET_UE_RECOVERY: 6763 bf_set(lpfc_mbx_set_feature_UER, 6764 &mbox->u.mqe.un.set_feature, 1); 6765 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6766 mbox->u.mqe.un.set_feature.param_len = 8; 6767 break; 6768 case LPFC_SET_MDS_DIAGS: 6769 bf_set(lpfc_mbx_set_feature_mds, 6770 &mbox->u.mqe.un.set_feature, 1); 6771 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6772 &mbox->u.mqe.un.set_feature, 1); 6773 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6774 mbox->u.mqe.un.set_feature.param_len = 8; 6775 break; 6776 case LPFC_SET_CGN_SIGNAL: 6777 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6778 sig_freq = 0; 6779 else 6780 sig_freq = phba->cgn_sig_freq; 6781 6782 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6783 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6784 &mbox->u.mqe.un.set_feature, sig_freq); 6785 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6786 &mbox->u.mqe.un.set_feature, sig_freq); 6787 } 6788 6789 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6790 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6791 &mbox->u.mqe.un.set_feature, sig_freq); 6792 6793 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6794 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6795 sig_freq = 0; 6796 else 6797 sig_freq = lpfc_acqe_cgn_frequency; 6798 6799 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6800 &mbox->u.mqe.un.set_feature, sig_freq); 6801 6802 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6803 mbox->u.mqe.un.set_feature.param_len = 12; 6804 break; 6805 case LPFC_SET_DUAL_DUMP: 6806 bf_set(lpfc_mbx_set_feature_dd, 6807 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6808 bf_set(lpfc_mbx_set_feature_ddquery, 6809 &mbox->u.mqe.un.set_feature, 0); 6810 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6811 mbox->u.mqe.un.set_feature.param_len = 4; 6812 break; 6813 case LPFC_SET_ENABLE_MI: 6814 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6815 mbox->u.mqe.un.set_feature.param_len = 4; 6816 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6817 phba->pport->cfg_lun_queue_depth); 6818 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6819 phba->sli4_hba.pc_sli4_params.mi_ver); 6820 break; 6821 case LPFC_SET_LD_SIGNAL: 6822 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6823 mbox->u.mqe.un.set_feature.param_len = 16; 6824 bf_set(lpfc_mbx_set_feature_lds_qry, 6825 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6826 break; 6827 case LPFC_SET_ENABLE_CMF: 6828 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6829 mbox->u.mqe.un.set_feature.param_len = 4; 6830 bf_set(lpfc_mbx_set_feature_cmf, 6831 &mbox->u.mqe.un.set_feature, 1); 6832 break; 6833 } 6834 return; 6835 } 6836 6837 /** 6838 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6839 * @phba: Pointer to HBA context object. 6840 * 6841 * Disable FW logging into host memory on the adapter. To 6842 * be done before reading logs from the host memory. 6843 **/ 6844 void 6845 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6846 { 6847 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6848 6849 spin_lock_irq(&phba->ras_fwlog_lock); 6850 ras_fwlog->state = INACTIVE; 6851 spin_unlock_irq(&phba->ras_fwlog_lock); 6852 6853 /* Disable FW logging to host memory */ 6854 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6855 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6856 6857 /* Wait 10ms for firmware to stop using DMA buffer */ 6858 usleep_range(10 * 1000, 20 * 1000); 6859 } 6860 6861 /** 6862 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6863 * @phba: Pointer to HBA context object. 6864 * 6865 * This function is called to free memory allocated for RAS FW logging 6866 * support in the driver. 6867 **/ 6868 void 6869 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6870 { 6871 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6872 struct lpfc_dmabuf *dmabuf, *next; 6873 6874 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6875 list_for_each_entry_safe(dmabuf, next, 6876 &ras_fwlog->fwlog_buff_list, 6877 list) { 6878 list_del(&dmabuf->list); 6879 dma_free_coherent(&phba->pcidev->dev, 6880 LPFC_RAS_MAX_ENTRY_SIZE, 6881 dmabuf->virt, dmabuf->phys); 6882 kfree(dmabuf); 6883 } 6884 } 6885 6886 if (ras_fwlog->lwpd.virt) { 6887 dma_free_coherent(&phba->pcidev->dev, 6888 sizeof(uint32_t) * 2, 6889 ras_fwlog->lwpd.virt, 6890 ras_fwlog->lwpd.phys); 6891 ras_fwlog->lwpd.virt = NULL; 6892 } 6893 6894 spin_lock_irq(&phba->ras_fwlog_lock); 6895 ras_fwlog->state = INACTIVE; 6896 spin_unlock_irq(&phba->ras_fwlog_lock); 6897 } 6898 6899 /** 6900 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6901 * @phba: Pointer to HBA context object. 6902 * @fwlog_buff_count: Count of buffers to be created. 6903 * 6904 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6905 * to update FW log is posted to the adapter. 6906 * Buffer count is calculated based on module param ras_fwlog_buffsize 6907 * Size of each buffer posted to FW is 64K. 6908 **/ 6909 6910 static int 6911 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6912 uint32_t fwlog_buff_count) 6913 { 6914 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6915 struct lpfc_dmabuf *dmabuf; 6916 int rc = 0, i = 0; 6917 6918 /* Initialize List */ 6919 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6920 6921 /* Allocate memory for the LWPD */ 6922 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6923 sizeof(uint32_t) * 2, 6924 &ras_fwlog->lwpd.phys, 6925 GFP_KERNEL); 6926 if (!ras_fwlog->lwpd.virt) { 6927 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6928 "6185 LWPD Memory Alloc Failed\n"); 6929 6930 return -ENOMEM; 6931 } 6932 6933 ras_fwlog->fw_buffcount = fwlog_buff_count; 6934 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6935 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6936 GFP_KERNEL); 6937 if (!dmabuf) { 6938 rc = -ENOMEM; 6939 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6940 "6186 Memory Alloc failed FW logging"); 6941 goto free_mem; 6942 } 6943 6944 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6945 LPFC_RAS_MAX_ENTRY_SIZE, 6946 &dmabuf->phys, GFP_KERNEL); 6947 if (!dmabuf->virt) { 6948 kfree(dmabuf); 6949 rc = -ENOMEM; 6950 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6951 "6187 DMA Alloc Failed FW logging"); 6952 goto free_mem; 6953 } 6954 dmabuf->buffer_tag = i; 6955 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6956 } 6957 6958 free_mem: 6959 if (rc) 6960 lpfc_sli4_ras_dma_free(phba); 6961 6962 return rc; 6963 } 6964 6965 /** 6966 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6967 * @phba: pointer to lpfc hba data structure. 6968 * @pmb: pointer to the driver internal queue element for mailbox command. 6969 * 6970 * Completion handler for driver's RAS MBX command to the device. 6971 **/ 6972 static void 6973 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6974 { 6975 MAILBOX_t *mb; 6976 union lpfc_sli4_cfg_shdr *shdr; 6977 uint32_t shdr_status, shdr_add_status; 6978 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6979 6980 mb = &pmb->u.mb; 6981 6982 shdr = (union lpfc_sli4_cfg_shdr *) 6983 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6984 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6985 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6986 6987 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6989 "6188 FW LOG mailbox " 6990 "completed with status x%x add_status x%x," 6991 " mbx status x%x\n", 6992 shdr_status, shdr_add_status, mb->mbxStatus); 6993 6994 ras_fwlog->ras_hwsupport = false; 6995 goto disable_ras; 6996 } 6997 6998 spin_lock_irq(&phba->ras_fwlog_lock); 6999 ras_fwlog->state = ACTIVE; 7000 spin_unlock_irq(&phba->ras_fwlog_lock); 7001 mempool_free(pmb, phba->mbox_mem_pool); 7002 7003 return; 7004 7005 disable_ras: 7006 /* Free RAS DMA memory */ 7007 lpfc_sli4_ras_dma_free(phba); 7008 mempool_free(pmb, phba->mbox_mem_pool); 7009 } 7010 7011 /** 7012 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7013 * @phba: pointer to lpfc hba data structure. 7014 * @fwlog_level: Logging verbosity level. 7015 * @fwlog_enable: Enable/Disable logging. 7016 * 7017 * Initialize memory and post mailbox command to enable FW logging in host 7018 * memory. 7019 **/ 7020 int 7021 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7022 uint32_t fwlog_level, 7023 uint32_t fwlog_enable) 7024 { 7025 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7026 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7027 struct lpfc_dmabuf *dmabuf; 7028 LPFC_MBOXQ_t *mbox; 7029 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7030 int rc = 0; 7031 7032 spin_lock_irq(&phba->ras_fwlog_lock); 7033 ras_fwlog->state = INACTIVE; 7034 spin_unlock_irq(&phba->ras_fwlog_lock); 7035 7036 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7037 phba->cfg_ras_fwlog_buffsize); 7038 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7039 7040 /* 7041 * If re-enabling FW logging support use earlier allocated 7042 * DMA buffers while posting MBX command. 7043 **/ 7044 if (!ras_fwlog->lwpd.virt) { 7045 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7046 if (rc) { 7047 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7048 "6189 FW Log Memory Allocation Failed"); 7049 return rc; 7050 } 7051 } 7052 7053 /* Setup Mailbox command */ 7054 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7055 if (!mbox) { 7056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7057 "6190 RAS MBX Alloc Failed"); 7058 rc = -ENOMEM; 7059 goto mem_free; 7060 } 7061 7062 ras_fwlog->fw_loglevel = fwlog_level; 7063 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7064 sizeof(struct lpfc_sli4_cfg_mhdr)); 7065 7066 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7067 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7068 len, LPFC_SLI4_MBX_EMBED); 7069 7070 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7071 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7072 fwlog_enable); 7073 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7074 ras_fwlog->fw_loglevel); 7075 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7076 ras_fwlog->fw_buffcount); 7077 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7078 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7079 7080 /* Update DMA buffer address */ 7081 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7082 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7083 7084 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7085 putPaddrLow(dmabuf->phys); 7086 7087 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7088 putPaddrHigh(dmabuf->phys); 7089 } 7090 7091 /* Update LPWD address */ 7092 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7093 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7094 7095 spin_lock_irq(&phba->ras_fwlog_lock); 7096 ras_fwlog->state = REG_INPROGRESS; 7097 spin_unlock_irq(&phba->ras_fwlog_lock); 7098 mbox->vport = phba->pport; 7099 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7100 7101 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7102 7103 if (rc == MBX_NOT_FINISHED) { 7104 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7105 "6191 FW-Log Mailbox failed. " 7106 "status %d mbxStatus : x%x", rc, 7107 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7108 mempool_free(mbox, phba->mbox_mem_pool); 7109 rc = -EIO; 7110 goto mem_free; 7111 } else 7112 rc = 0; 7113 mem_free: 7114 if (rc) 7115 lpfc_sli4_ras_dma_free(phba); 7116 7117 return rc; 7118 } 7119 7120 /** 7121 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7122 * @phba: Pointer to HBA context object. 7123 * 7124 * Check if RAS is supported on the adapter and initialize it. 7125 **/ 7126 void 7127 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7128 { 7129 /* Check RAS FW Log needs to be enabled or not */ 7130 if (lpfc_check_fwlog_support(phba)) 7131 return; 7132 7133 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7134 LPFC_RAS_ENABLE_LOGGING); 7135 } 7136 7137 /** 7138 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7139 * @phba: Pointer to HBA context object. 7140 * 7141 * This function allocates all SLI4 resource identifiers. 7142 **/ 7143 int 7144 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7145 { 7146 int i, rc, error = 0; 7147 uint16_t count, base; 7148 unsigned long longs; 7149 7150 if (!phba->sli4_hba.rpi_hdrs_in_use) 7151 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7152 if (phba->sli4_hba.extents_in_use) { 7153 /* 7154 * The port supports resource extents. The XRI, VPI, VFI, RPI 7155 * resource extent count must be read and allocated before 7156 * provisioning the resource id arrays. 7157 */ 7158 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7159 LPFC_IDX_RSRC_RDY) { 7160 /* 7161 * Extent-based resources are set - the driver could 7162 * be in a port reset. Figure out if any corrective 7163 * actions need to be taken. 7164 */ 7165 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7166 LPFC_RSC_TYPE_FCOE_VFI); 7167 if (rc != 0) 7168 error++; 7169 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7170 LPFC_RSC_TYPE_FCOE_VPI); 7171 if (rc != 0) 7172 error++; 7173 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7174 LPFC_RSC_TYPE_FCOE_XRI); 7175 if (rc != 0) 7176 error++; 7177 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7178 LPFC_RSC_TYPE_FCOE_RPI); 7179 if (rc != 0) 7180 error++; 7181 7182 /* 7183 * It's possible that the number of resources 7184 * provided to this port instance changed between 7185 * resets. Detect this condition and reallocate 7186 * resources. Otherwise, there is no action. 7187 */ 7188 if (error) { 7189 lpfc_printf_log(phba, KERN_INFO, 7190 LOG_MBOX | LOG_INIT, 7191 "2931 Detected extent resource " 7192 "change. Reallocating all " 7193 "extents.\n"); 7194 rc = lpfc_sli4_dealloc_extent(phba, 7195 LPFC_RSC_TYPE_FCOE_VFI); 7196 rc = lpfc_sli4_dealloc_extent(phba, 7197 LPFC_RSC_TYPE_FCOE_VPI); 7198 rc = lpfc_sli4_dealloc_extent(phba, 7199 LPFC_RSC_TYPE_FCOE_XRI); 7200 rc = lpfc_sli4_dealloc_extent(phba, 7201 LPFC_RSC_TYPE_FCOE_RPI); 7202 } else 7203 return 0; 7204 } 7205 7206 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7207 if (unlikely(rc)) 7208 goto err_exit; 7209 7210 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7211 if (unlikely(rc)) 7212 goto err_exit; 7213 7214 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7215 if (unlikely(rc)) 7216 goto err_exit; 7217 7218 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7219 if (unlikely(rc)) 7220 goto err_exit; 7221 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7222 LPFC_IDX_RSRC_RDY); 7223 return rc; 7224 } else { 7225 /* 7226 * The port does not support resource extents. The XRI, VPI, 7227 * VFI, RPI resource ids were determined from READ_CONFIG. 7228 * Just allocate the bitmasks and provision the resource id 7229 * arrays. If a port reset is active, the resources don't 7230 * need any action - just exit. 7231 */ 7232 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7233 LPFC_IDX_RSRC_RDY) { 7234 lpfc_sli4_dealloc_resource_identifiers(phba); 7235 lpfc_sli4_remove_rpis(phba); 7236 } 7237 /* RPIs. */ 7238 count = phba->sli4_hba.max_cfg_param.max_rpi; 7239 if (count <= 0) { 7240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7241 "3279 Invalid provisioning of " 7242 "rpi:%d\n", count); 7243 rc = -EINVAL; 7244 goto err_exit; 7245 } 7246 base = phba->sli4_hba.max_cfg_param.rpi_base; 7247 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7248 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7249 sizeof(unsigned long), 7250 GFP_KERNEL); 7251 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7252 rc = -ENOMEM; 7253 goto err_exit; 7254 } 7255 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7256 GFP_KERNEL); 7257 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7258 rc = -ENOMEM; 7259 goto free_rpi_bmask; 7260 } 7261 7262 for (i = 0; i < count; i++) 7263 phba->sli4_hba.rpi_ids[i] = base + i; 7264 7265 /* VPIs. */ 7266 count = phba->sli4_hba.max_cfg_param.max_vpi; 7267 if (count <= 0) { 7268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7269 "3280 Invalid provisioning of " 7270 "vpi:%d\n", count); 7271 rc = -EINVAL; 7272 goto free_rpi_ids; 7273 } 7274 base = phba->sli4_hba.max_cfg_param.vpi_base; 7275 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7276 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7277 GFP_KERNEL); 7278 if (unlikely(!phba->vpi_bmask)) { 7279 rc = -ENOMEM; 7280 goto free_rpi_ids; 7281 } 7282 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7283 GFP_KERNEL); 7284 if (unlikely(!phba->vpi_ids)) { 7285 rc = -ENOMEM; 7286 goto free_vpi_bmask; 7287 } 7288 7289 for (i = 0; i < count; i++) 7290 phba->vpi_ids[i] = base + i; 7291 7292 /* XRIs. */ 7293 count = phba->sli4_hba.max_cfg_param.max_xri; 7294 if (count <= 0) { 7295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7296 "3281 Invalid provisioning of " 7297 "xri:%d\n", count); 7298 rc = -EINVAL; 7299 goto free_vpi_ids; 7300 } 7301 base = phba->sli4_hba.max_cfg_param.xri_base; 7302 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7303 phba->sli4_hba.xri_bmask = kcalloc(longs, 7304 sizeof(unsigned long), 7305 GFP_KERNEL); 7306 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7307 rc = -ENOMEM; 7308 goto free_vpi_ids; 7309 } 7310 phba->sli4_hba.max_cfg_param.xri_used = 0; 7311 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7312 GFP_KERNEL); 7313 if (unlikely(!phba->sli4_hba.xri_ids)) { 7314 rc = -ENOMEM; 7315 goto free_xri_bmask; 7316 } 7317 7318 for (i = 0; i < count; i++) 7319 phba->sli4_hba.xri_ids[i] = base + i; 7320 7321 /* VFIs. */ 7322 count = phba->sli4_hba.max_cfg_param.max_vfi; 7323 if (count <= 0) { 7324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7325 "3282 Invalid provisioning of " 7326 "vfi:%d\n", count); 7327 rc = -EINVAL; 7328 goto free_xri_ids; 7329 } 7330 base = phba->sli4_hba.max_cfg_param.vfi_base; 7331 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7332 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7333 sizeof(unsigned long), 7334 GFP_KERNEL); 7335 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7336 rc = -ENOMEM; 7337 goto free_xri_ids; 7338 } 7339 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7340 GFP_KERNEL); 7341 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7342 rc = -ENOMEM; 7343 goto free_vfi_bmask; 7344 } 7345 7346 for (i = 0; i < count; i++) 7347 phba->sli4_hba.vfi_ids[i] = base + i; 7348 7349 /* 7350 * Mark all resources ready. An HBA reset doesn't need 7351 * to reset the initialization. 7352 */ 7353 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7354 LPFC_IDX_RSRC_RDY); 7355 return 0; 7356 } 7357 7358 free_vfi_bmask: 7359 kfree(phba->sli4_hba.vfi_bmask); 7360 phba->sli4_hba.vfi_bmask = NULL; 7361 free_xri_ids: 7362 kfree(phba->sli4_hba.xri_ids); 7363 phba->sli4_hba.xri_ids = NULL; 7364 free_xri_bmask: 7365 kfree(phba->sli4_hba.xri_bmask); 7366 phba->sli4_hba.xri_bmask = NULL; 7367 free_vpi_ids: 7368 kfree(phba->vpi_ids); 7369 phba->vpi_ids = NULL; 7370 free_vpi_bmask: 7371 kfree(phba->vpi_bmask); 7372 phba->vpi_bmask = NULL; 7373 free_rpi_ids: 7374 kfree(phba->sli4_hba.rpi_ids); 7375 phba->sli4_hba.rpi_ids = NULL; 7376 free_rpi_bmask: 7377 kfree(phba->sli4_hba.rpi_bmask); 7378 phba->sli4_hba.rpi_bmask = NULL; 7379 err_exit: 7380 return rc; 7381 } 7382 7383 /** 7384 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7385 * @phba: Pointer to HBA context object. 7386 * 7387 * This function allocates the number of elements for the specified 7388 * resource type. 7389 **/ 7390 int 7391 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7392 { 7393 if (phba->sli4_hba.extents_in_use) { 7394 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7395 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7396 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7397 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7398 } else { 7399 kfree(phba->vpi_bmask); 7400 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7401 kfree(phba->vpi_ids); 7402 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7403 kfree(phba->sli4_hba.xri_bmask); 7404 kfree(phba->sli4_hba.xri_ids); 7405 kfree(phba->sli4_hba.vfi_bmask); 7406 kfree(phba->sli4_hba.vfi_ids); 7407 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7408 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7409 } 7410 7411 return 0; 7412 } 7413 7414 /** 7415 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7416 * @phba: Pointer to HBA context object. 7417 * @type: The resource extent type. 7418 * @extnt_cnt: buffer to hold port extent count response 7419 * @extnt_size: buffer to hold port extent size response. 7420 * 7421 * This function calls the port to read the host allocated extents 7422 * for a particular type. 7423 **/ 7424 int 7425 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7426 uint16_t *extnt_cnt, uint16_t *extnt_size) 7427 { 7428 bool emb; 7429 int rc = 0; 7430 uint16_t curr_blks = 0; 7431 uint32_t req_len, emb_len; 7432 uint32_t alloc_len, mbox_tmo; 7433 struct list_head *blk_list_head; 7434 struct lpfc_rsrc_blks *rsrc_blk; 7435 LPFC_MBOXQ_t *mbox; 7436 void *virtaddr = NULL; 7437 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7438 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7439 union lpfc_sli4_cfg_shdr *shdr; 7440 7441 switch (type) { 7442 case LPFC_RSC_TYPE_FCOE_VPI: 7443 blk_list_head = &phba->lpfc_vpi_blk_list; 7444 break; 7445 case LPFC_RSC_TYPE_FCOE_XRI: 7446 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7447 break; 7448 case LPFC_RSC_TYPE_FCOE_VFI: 7449 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7450 break; 7451 case LPFC_RSC_TYPE_FCOE_RPI: 7452 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7453 break; 7454 default: 7455 return -EIO; 7456 } 7457 7458 /* Count the number of extents currently allocatd for this type. */ 7459 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7460 if (curr_blks == 0) { 7461 /* 7462 * The GET_ALLOCATED mailbox does not return the size, 7463 * just the count. The size should be just the size 7464 * stored in the current allocated block and all sizes 7465 * for an extent type are the same so set the return 7466 * value now. 7467 */ 7468 *extnt_size = rsrc_blk->rsrc_size; 7469 } 7470 curr_blks++; 7471 } 7472 7473 /* 7474 * Calculate the size of an embedded mailbox. The uint32_t 7475 * accounts for extents-specific word. 7476 */ 7477 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7478 sizeof(uint32_t); 7479 7480 /* 7481 * Presume the allocation and response will fit into an embedded 7482 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7483 */ 7484 emb = LPFC_SLI4_MBX_EMBED; 7485 req_len = emb_len; 7486 if (req_len > emb_len) { 7487 req_len = curr_blks * sizeof(uint16_t) + 7488 sizeof(union lpfc_sli4_cfg_shdr) + 7489 sizeof(uint32_t); 7490 emb = LPFC_SLI4_MBX_NEMBED; 7491 } 7492 7493 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7494 if (!mbox) 7495 return -ENOMEM; 7496 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7497 7498 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7499 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7500 req_len, emb); 7501 if (alloc_len < req_len) { 7502 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7503 "2983 Allocated DMA memory size (x%x) is " 7504 "less than the requested DMA memory " 7505 "size (x%x)\n", alloc_len, req_len); 7506 rc = -ENOMEM; 7507 goto err_exit; 7508 } 7509 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7510 if (unlikely(rc)) { 7511 rc = -EIO; 7512 goto err_exit; 7513 } 7514 7515 if (!phba->sli4_hba.intr_enable) 7516 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7517 else { 7518 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7519 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7520 } 7521 7522 if (unlikely(rc)) { 7523 rc = -EIO; 7524 goto err_exit; 7525 } 7526 7527 /* 7528 * Figure out where the response is located. Then get local pointers 7529 * to the response data. The port does not guarantee to respond to 7530 * all extents counts request so update the local variable with the 7531 * allocated count from the port. 7532 */ 7533 if (emb == LPFC_SLI4_MBX_EMBED) { 7534 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7535 shdr = &rsrc_ext->header.cfg_shdr; 7536 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7537 } else { 7538 virtaddr = mbox->sge_array->addr[0]; 7539 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7540 shdr = &n_rsrc->cfg_shdr; 7541 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7542 } 7543 7544 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7545 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7546 "2984 Failed to read allocated resources " 7547 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7548 type, 7549 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7550 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7551 rc = -EIO; 7552 goto err_exit; 7553 } 7554 err_exit: 7555 lpfc_sli4_mbox_cmd_free(phba, mbox); 7556 return rc; 7557 } 7558 7559 /** 7560 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7561 * @phba: pointer to lpfc hba data structure. 7562 * @sgl_list: linked link of sgl buffers to post 7563 * @cnt: number of linked list buffers 7564 * 7565 * This routine walks the list of buffers that have been allocated and 7566 * repost them to the port by using SGL block post. This is needed after a 7567 * pci_function_reset/warm_start or start. It attempts to construct blocks 7568 * of buffer sgls which contains contiguous xris and uses the non-embedded 7569 * SGL block post mailbox commands to post them to the port. For single 7570 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7571 * mailbox command for posting. 7572 * 7573 * Returns: 0 = success, non-zero failure. 7574 **/ 7575 static int 7576 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7577 struct list_head *sgl_list, int cnt) 7578 { 7579 struct lpfc_sglq *sglq_entry = NULL; 7580 struct lpfc_sglq *sglq_entry_next = NULL; 7581 struct lpfc_sglq *sglq_entry_first = NULL; 7582 int status = 0, total_cnt; 7583 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7584 int last_xritag = NO_XRI; 7585 LIST_HEAD(prep_sgl_list); 7586 LIST_HEAD(blck_sgl_list); 7587 LIST_HEAD(allc_sgl_list); 7588 LIST_HEAD(post_sgl_list); 7589 LIST_HEAD(free_sgl_list); 7590 7591 spin_lock_irq(&phba->hbalock); 7592 spin_lock(&phba->sli4_hba.sgl_list_lock); 7593 list_splice_init(sgl_list, &allc_sgl_list); 7594 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7595 spin_unlock_irq(&phba->hbalock); 7596 7597 total_cnt = cnt; 7598 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7599 &allc_sgl_list, list) { 7600 list_del_init(&sglq_entry->list); 7601 block_cnt++; 7602 if ((last_xritag != NO_XRI) && 7603 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7604 /* a hole in xri block, form a sgl posting block */ 7605 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7606 post_cnt = block_cnt - 1; 7607 /* prepare list for next posting block */ 7608 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7609 block_cnt = 1; 7610 } else { 7611 /* prepare list for next posting block */ 7612 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7613 /* enough sgls for non-embed sgl mbox command */ 7614 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7615 list_splice_init(&prep_sgl_list, 7616 &blck_sgl_list); 7617 post_cnt = block_cnt; 7618 block_cnt = 0; 7619 } 7620 } 7621 num_posted++; 7622 7623 /* keep track of last sgl's xritag */ 7624 last_xritag = sglq_entry->sli4_xritag; 7625 7626 /* end of repost sgl list condition for buffers */ 7627 if (num_posted == total_cnt) { 7628 if (post_cnt == 0) { 7629 list_splice_init(&prep_sgl_list, 7630 &blck_sgl_list); 7631 post_cnt = block_cnt; 7632 } else if (block_cnt == 1) { 7633 status = lpfc_sli4_post_sgl(phba, 7634 sglq_entry->phys, 0, 7635 sglq_entry->sli4_xritag); 7636 if (!status) { 7637 /* successful, put sgl to posted list */ 7638 list_add_tail(&sglq_entry->list, 7639 &post_sgl_list); 7640 } else { 7641 /* Failure, put sgl to free list */ 7642 lpfc_printf_log(phba, KERN_WARNING, 7643 LOG_SLI, 7644 "3159 Failed to post " 7645 "sgl, xritag:x%x\n", 7646 sglq_entry->sli4_xritag); 7647 list_add_tail(&sglq_entry->list, 7648 &free_sgl_list); 7649 total_cnt--; 7650 } 7651 } 7652 } 7653 7654 /* continue until a nembed page worth of sgls */ 7655 if (post_cnt == 0) 7656 continue; 7657 7658 /* post the buffer list sgls as a block */ 7659 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7660 post_cnt); 7661 7662 if (!status) { 7663 /* success, put sgl list to posted sgl list */ 7664 list_splice_init(&blck_sgl_list, &post_sgl_list); 7665 } else { 7666 /* Failure, put sgl list to free sgl list */ 7667 sglq_entry_first = list_first_entry(&blck_sgl_list, 7668 struct lpfc_sglq, 7669 list); 7670 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7671 "3160 Failed to post sgl-list, " 7672 "xritag:x%x-x%x\n", 7673 sglq_entry_first->sli4_xritag, 7674 (sglq_entry_first->sli4_xritag + 7675 post_cnt - 1)); 7676 list_splice_init(&blck_sgl_list, &free_sgl_list); 7677 total_cnt -= post_cnt; 7678 } 7679 7680 /* don't reset xirtag due to hole in xri block */ 7681 if (block_cnt == 0) 7682 last_xritag = NO_XRI; 7683 7684 /* reset sgl post count for next round of posting */ 7685 post_cnt = 0; 7686 } 7687 7688 /* free the sgls failed to post */ 7689 lpfc_free_sgl_list(phba, &free_sgl_list); 7690 7691 /* push sgls posted to the available list */ 7692 if (!list_empty(&post_sgl_list)) { 7693 spin_lock_irq(&phba->hbalock); 7694 spin_lock(&phba->sli4_hba.sgl_list_lock); 7695 list_splice_init(&post_sgl_list, sgl_list); 7696 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7697 spin_unlock_irq(&phba->hbalock); 7698 } else { 7699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7700 "3161 Failure to post sgl to port,status %x " 7701 "blkcnt %d totalcnt %d postcnt %d\n", 7702 status, block_cnt, total_cnt, post_cnt); 7703 return -EIO; 7704 } 7705 7706 /* return the number of XRIs actually posted */ 7707 return total_cnt; 7708 } 7709 7710 /** 7711 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7712 * @phba: pointer to lpfc hba data structure. 7713 * 7714 * This routine walks the list of nvme buffers that have been allocated and 7715 * repost them to the port by using SGL block post. This is needed after a 7716 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7717 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7718 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7719 * 7720 * Returns: 0 = success, non-zero failure. 7721 **/ 7722 static int 7723 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7724 { 7725 LIST_HEAD(post_nblist); 7726 int num_posted, rc = 0; 7727 7728 /* get all NVME buffers need to repost to a local list */ 7729 lpfc_io_buf_flush(phba, &post_nblist); 7730 7731 /* post the list of nvme buffer sgls to port if available */ 7732 if (!list_empty(&post_nblist)) { 7733 num_posted = lpfc_sli4_post_io_sgl_list( 7734 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7735 /* failed to post any nvme buffer, return error */ 7736 if (num_posted == 0) 7737 rc = -EIO; 7738 } 7739 return rc; 7740 } 7741 7742 static void 7743 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7744 { 7745 uint32_t len; 7746 7747 len = sizeof(struct lpfc_mbx_set_host_data) - 7748 sizeof(struct lpfc_sli4_cfg_mhdr); 7749 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7750 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7751 LPFC_SLI4_MBX_EMBED); 7752 7753 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7754 mbox->u.mqe.un.set_host_data.param_len = 7755 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7756 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7757 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7758 "Linux %s v"LPFC_DRIVER_VERSION, 7759 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7760 } 7761 7762 int 7763 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7764 struct lpfc_queue *drq, int count, int idx) 7765 { 7766 int rc, i; 7767 struct lpfc_rqe hrqe; 7768 struct lpfc_rqe drqe; 7769 struct lpfc_rqb *rqbp; 7770 unsigned long flags; 7771 struct rqb_dmabuf *rqb_buffer; 7772 LIST_HEAD(rqb_buf_list); 7773 7774 rqbp = hrq->rqbp; 7775 for (i = 0; i < count; i++) { 7776 spin_lock_irqsave(&phba->hbalock, flags); 7777 /* IF RQ is already full, don't bother */ 7778 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7779 spin_unlock_irqrestore(&phba->hbalock, flags); 7780 break; 7781 } 7782 spin_unlock_irqrestore(&phba->hbalock, flags); 7783 7784 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7785 if (!rqb_buffer) 7786 break; 7787 rqb_buffer->hrq = hrq; 7788 rqb_buffer->drq = drq; 7789 rqb_buffer->idx = idx; 7790 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7791 } 7792 7793 spin_lock_irqsave(&phba->hbalock, flags); 7794 while (!list_empty(&rqb_buf_list)) { 7795 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7796 hbuf.list); 7797 7798 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7799 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7800 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7801 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7802 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7803 if (rc < 0) { 7804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7805 "6421 Cannot post to HRQ %d: %x %x %x " 7806 "DRQ %x %x\n", 7807 hrq->queue_id, 7808 hrq->host_index, 7809 hrq->hba_index, 7810 hrq->entry_count, 7811 drq->host_index, 7812 drq->hba_index); 7813 rqbp->rqb_free_buffer(phba, rqb_buffer); 7814 } else { 7815 list_add_tail(&rqb_buffer->hbuf.list, 7816 &rqbp->rqb_buffer_list); 7817 rqbp->buffer_count++; 7818 } 7819 } 7820 spin_unlock_irqrestore(&phba->hbalock, flags); 7821 return 1; 7822 } 7823 7824 static void 7825 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7826 { 7827 union lpfc_sli4_cfg_shdr *shdr; 7828 u32 shdr_status, shdr_add_status; 7829 7830 shdr = (union lpfc_sli4_cfg_shdr *) 7831 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7832 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7833 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7834 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7835 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7836 "4622 SET_FEATURE (x%x) mbox failed, " 7837 "status x%x add_status x%x, mbx status x%x\n", 7838 LPFC_SET_LD_SIGNAL, shdr_status, 7839 shdr_add_status, pmb->u.mb.mbxStatus); 7840 phba->degrade_activate_threshold = 0; 7841 phba->degrade_deactivate_threshold = 0; 7842 phba->fec_degrade_interval = 0; 7843 goto out; 7844 } 7845 7846 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7847 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7848 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7849 7850 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7851 "4624 Success: da x%x dd x%x interval x%x\n", 7852 phba->degrade_activate_threshold, 7853 phba->degrade_deactivate_threshold, 7854 phba->fec_degrade_interval); 7855 out: 7856 mempool_free(pmb, phba->mbox_mem_pool); 7857 } 7858 7859 int 7860 lpfc_read_lds_params(struct lpfc_hba *phba) 7861 { 7862 LPFC_MBOXQ_t *mboxq; 7863 int rc; 7864 7865 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7866 if (!mboxq) 7867 return -ENOMEM; 7868 7869 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7870 mboxq->vport = phba->pport; 7871 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7872 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7873 if (rc == MBX_NOT_FINISHED) { 7874 mempool_free(mboxq, phba->mbox_mem_pool); 7875 return -EIO; 7876 } 7877 return 0; 7878 } 7879 7880 static void 7881 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7882 { 7883 struct lpfc_vport *vport = pmb->vport; 7884 union lpfc_sli4_cfg_shdr *shdr; 7885 u32 shdr_status, shdr_add_status; 7886 u32 sig, acqe; 7887 7888 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7889 * is done. (2) Mailbox failed and send FPIN support only. 7890 */ 7891 shdr = (union lpfc_sli4_cfg_shdr *) 7892 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7893 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7894 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7895 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7896 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7897 "2516 CGN SET_FEATURE mbox failed with " 7898 "status x%x add_status x%x, mbx status x%x " 7899 "Reset Congestion to FPINs only\n", 7900 shdr_status, shdr_add_status, 7901 pmb->u.mb.mbxStatus); 7902 /* If there is a mbox error, move on to RDF */ 7903 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7904 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7905 goto out; 7906 } 7907 7908 /* Zero out Congestion Signal ACQE counter */ 7909 phba->cgn_acqe_cnt = 0; 7910 7911 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7912 &pmb->u.mqe.un.set_feature); 7913 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7914 &pmb->u.mqe.un.set_feature); 7915 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7916 "4620 SET_FEATURES Success: Freq: %ds %dms " 7917 " Reg: x%x x%x\n", acqe, sig, 7918 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7919 out: 7920 mempool_free(pmb, phba->mbox_mem_pool); 7921 7922 /* Register for FPIN events from the fabric now that the 7923 * EDC common_set_features has completed. 7924 */ 7925 lpfc_issue_els_rdf(vport, 0); 7926 } 7927 7928 int 7929 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7930 { 7931 LPFC_MBOXQ_t *mboxq; 7932 u32 rc; 7933 7934 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7935 if (!mboxq) 7936 goto out_rdf; 7937 7938 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7939 mboxq->vport = phba->pport; 7940 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7941 7942 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7943 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7944 "Reg: x%x x%x\n", 7945 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7946 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7947 7948 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7949 if (rc == MBX_NOT_FINISHED) 7950 goto out; 7951 return 0; 7952 7953 out: 7954 mempool_free(mboxq, phba->mbox_mem_pool); 7955 out_rdf: 7956 /* If there is a mbox error, move on to RDF */ 7957 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7958 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7959 lpfc_issue_els_rdf(phba->pport, 0); 7960 return -EIO; 7961 } 7962 7963 /** 7964 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7965 * @phba: pointer to lpfc hba data structure. 7966 * 7967 * This routine initializes the per-eq idle_stat to dynamically dictate 7968 * polling decisions. 7969 * 7970 * Return codes: 7971 * None 7972 **/ 7973 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7974 { 7975 int i; 7976 struct lpfc_sli4_hdw_queue *hdwq; 7977 struct lpfc_queue *eq; 7978 struct lpfc_idle_stat *idle_stat; 7979 u64 wall; 7980 7981 for_each_present_cpu(i) { 7982 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7983 eq = hdwq->hba_eq; 7984 7985 /* Skip if we've already handled this eq's primary CPU */ 7986 if (eq->chann != i) 7987 continue; 7988 7989 idle_stat = &phba->sli4_hba.idle_stat[i]; 7990 7991 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7992 idle_stat->prev_wall = wall; 7993 7994 if (phba->nvmet_support || 7995 phba->cmf_active_mode != LPFC_CFG_OFF || 7996 phba->intr_type != MSIX) 7997 eq->poll_mode = LPFC_QUEUE_WORK; 7998 else 7999 eq->poll_mode = LPFC_THREADED_IRQ; 8000 } 8001 8002 if (!phba->nvmet_support && phba->intr_type == MSIX) 8003 schedule_delayed_work(&phba->idle_stat_delay_work, 8004 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8005 } 8006 8007 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8008 { 8009 uint32_t if_type; 8010 8011 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8012 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8013 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8014 struct lpfc_register reg_data; 8015 8016 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8017 ®_data.word0)) 8018 return; 8019 8020 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8021 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8022 "2904 Firmware Dump Image Present" 8023 " on Adapter"); 8024 } 8025 } 8026 8027 /** 8028 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8029 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8030 * @entries: Number of rx_info_entry objects to allocate in ring 8031 * 8032 * Return: 8033 * 0 - Success 8034 * ENOMEM - Failure to kmalloc 8035 **/ 8036 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8037 u32 entries) 8038 { 8039 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8040 GFP_KERNEL); 8041 if (!rx_monitor->ring) 8042 return -ENOMEM; 8043 8044 rx_monitor->head_idx = 0; 8045 rx_monitor->tail_idx = 0; 8046 spin_lock_init(&rx_monitor->lock); 8047 rx_monitor->entries = entries; 8048 8049 return 0; 8050 } 8051 8052 /** 8053 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8054 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8055 * 8056 * Called after cancellation of cmf_timer. 8057 **/ 8058 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8059 { 8060 kfree(rx_monitor->ring); 8061 rx_monitor->ring = NULL; 8062 rx_monitor->entries = 0; 8063 rx_monitor->head_idx = 0; 8064 rx_monitor->tail_idx = 0; 8065 } 8066 8067 /** 8068 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8069 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8070 * @entry: Pointer to rx_info_entry 8071 * 8072 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8073 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8074 * 8075 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8076 * 8077 * In cases of old data overflow, we do a best effort of FIFO order. 8078 **/ 8079 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8080 struct rx_info_entry *entry) 8081 { 8082 struct rx_info_entry *ring = rx_monitor->ring; 8083 u32 *head_idx = &rx_monitor->head_idx; 8084 u32 *tail_idx = &rx_monitor->tail_idx; 8085 spinlock_t *ring_lock = &rx_monitor->lock; 8086 u32 ring_size = rx_monitor->entries; 8087 8088 spin_lock(ring_lock); 8089 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8090 *tail_idx = (*tail_idx + 1) % ring_size; 8091 8092 /* Best effort of FIFO saved data */ 8093 if (*tail_idx == *head_idx) 8094 *head_idx = (*head_idx + 1) % ring_size; 8095 8096 spin_unlock(ring_lock); 8097 } 8098 8099 /** 8100 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8101 * @phba: Pointer to lpfc_hba object 8102 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8103 * @buf: Pointer to char buffer that will contain rx monitor info data 8104 * @buf_len: Length buf including null char 8105 * @max_read_entries: Maximum number of entries to read out of ring 8106 * 8107 * Used to dump/read what's in rx_monitor's ring buffer. 8108 * 8109 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8110 * information to kmsg instead of filling out buf. 8111 * 8112 * Return: 8113 * Number of entries read out of the ring 8114 **/ 8115 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8116 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8117 u32 buf_len, u32 max_read_entries) 8118 { 8119 struct rx_info_entry *ring = rx_monitor->ring; 8120 struct rx_info_entry *entry; 8121 u32 *head_idx = &rx_monitor->head_idx; 8122 u32 *tail_idx = &rx_monitor->tail_idx; 8123 spinlock_t *ring_lock = &rx_monitor->lock; 8124 u32 ring_size = rx_monitor->entries; 8125 u32 cnt = 0; 8126 char tmp[DBG_LOG_STR_SZ] = {0}; 8127 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8128 8129 if (!log_to_kmsg) { 8130 /* clear the buffer to be sure */ 8131 memset(buf, 0, buf_len); 8132 8133 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8134 "%-8s%-8s%-8s%-16s\n", 8135 "MaxBPI", "Tot_Data_CMF", 8136 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8137 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8138 "IO_cnt", "Info", "BWutil(ms)"); 8139 } 8140 8141 /* Needs to be _irq because record is called from timer interrupt 8142 * context 8143 */ 8144 spin_lock_irq(ring_lock); 8145 while (*head_idx != *tail_idx) { 8146 entry = &ring[*head_idx]; 8147 8148 /* Read out this entry's data. */ 8149 if (!log_to_kmsg) { 8150 /* If !log_to_kmsg, then store to buf. */ 8151 scnprintf(tmp, sizeof(tmp), 8152 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8153 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8154 *head_idx, entry->max_bytes_per_interval, 8155 entry->cmf_bytes, entry->total_bytes, 8156 entry->rcv_bytes, entry->avg_io_latency, 8157 entry->avg_io_size, entry->max_read_cnt, 8158 entry->cmf_busy, entry->io_cnt, 8159 entry->cmf_info, entry->timer_utilization, 8160 entry->timer_interval); 8161 8162 /* Check for buffer overflow */ 8163 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8164 break; 8165 8166 /* Append entry's data to buffer */ 8167 strlcat(buf, tmp, buf_len); 8168 } else { 8169 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8170 "4410 %02u: MBPI %llu Xmit %llu " 8171 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8172 "BWUtil %u Int %u slot %u\n", 8173 cnt, entry->max_bytes_per_interval, 8174 entry->total_bytes, entry->rcv_bytes, 8175 entry->avg_io_latency, 8176 entry->avg_io_size, entry->cmf_info, 8177 entry->timer_utilization, 8178 entry->timer_interval, *head_idx); 8179 } 8180 8181 *head_idx = (*head_idx + 1) % ring_size; 8182 8183 /* Don't feed more than max_read_entries */ 8184 cnt++; 8185 if (cnt >= max_read_entries) 8186 break; 8187 } 8188 spin_unlock_irq(ring_lock); 8189 8190 return cnt; 8191 } 8192 8193 /** 8194 * lpfc_cmf_setup - Initialize idle_stat tracking 8195 * @phba: Pointer to HBA context object. 8196 * 8197 * This is called from HBA setup during driver load or when the HBA 8198 * comes online. this does all the initialization to support CMF and MI. 8199 **/ 8200 static int 8201 lpfc_cmf_setup(struct lpfc_hba *phba) 8202 { 8203 LPFC_MBOXQ_t *mboxq; 8204 struct lpfc_dmabuf *mp; 8205 struct lpfc_pc_sli4_params *sli4_params; 8206 int rc, cmf, mi_ver; 8207 8208 rc = lpfc_sli4_refresh_params(phba); 8209 if (unlikely(rc)) 8210 return rc; 8211 8212 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8213 if (!mboxq) 8214 return -ENOMEM; 8215 8216 sli4_params = &phba->sli4_hba.pc_sli4_params; 8217 8218 /* Always try to enable MI feature if we can */ 8219 if (sli4_params->mi_ver) { 8220 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8221 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8222 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8223 &mboxq->u.mqe.un.set_feature); 8224 8225 if (rc == MBX_SUCCESS) { 8226 if (mi_ver) { 8227 lpfc_printf_log(phba, 8228 KERN_WARNING, LOG_CGN_MGMT, 8229 "6215 MI is enabled\n"); 8230 sli4_params->mi_ver = mi_ver; 8231 } else { 8232 lpfc_printf_log(phba, 8233 KERN_WARNING, LOG_CGN_MGMT, 8234 "6338 MI is disabled\n"); 8235 sli4_params->mi_ver = 0; 8236 } 8237 } else { 8238 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8239 lpfc_printf_log(phba, KERN_INFO, 8240 LOG_CGN_MGMT | LOG_INIT, 8241 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8242 "failed, rc:x%x mi:x%x\n", 8243 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8244 lpfc_sli_config_mbox_subsys_get 8245 (phba, mboxq), 8246 lpfc_sli_config_mbox_opcode_get 8247 (phba, mboxq), 8248 rc, sli4_params->mi_ver); 8249 } 8250 } else { 8251 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8252 "6217 MI is disabled\n"); 8253 } 8254 8255 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8256 if (sli4_params->mi_ver) 8257 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8258 8259 /* Always try to enable CMF feature if we can */ 8260 if (sli4_params->cmf) { 8261 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8262 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8263 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8264 &mboxq->u.mqe.un.set_feature); 8265 if (rc == MBX_SUCCESS && cmf) { 8266 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8267 "6218 CMF is enabled: mode %d\n", 8268 phba->cmf_active_mode); 8269 } else { 8270 lpfc_printf_log(phba, KERN_WARNING, 8271 LOG_CGN_MGMT | LOG_INIT, 8272 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8273 "failed, rc:x%x dd:x%x\n", 8274 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8275 lpfc_sli_config_mbox_subsys_get 8276 (phba, mboxq), 8277 lpfc_sli_config_mbox_opcode_get 8278 (phba, mboxq), 8279 rc, cmf); 8280 sli4_params->cmf = 0; 8281 phba->cmf_active_mode = LPFC_CFG_OFF; 8282 goto no_cmf; 8283 } 8284 8285 /* Allocate Congestion Information Buffer */ 8286 if (!phba->cgn_i) { 8287 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8288 if (mp) 8289 mp->virt = dma_alloc_coherent 8290 (&phba->pcidev->dev, 8291 sizeof(struct lpfc_cgn_info), 8292 &mp->phys, GFP_KERNEL); 8293 if (!mp || !mp->virt) { 8294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8295 "2640 Failed to alloc memory " 8296 "for Congestion Info\n"); 8297 kfree(mp); 8298 sli4_params->cmf = 0; 8299 phba->cmf_active_mode = LPFC_CFG_OFF; 8300 goto no_cmf; 8301 } 8302 phba->cgn_i = mp; 8303 8304 /* initialize congestion buffer info */ 8305 lpfc_init_congestion_buf(phba); 8306 lpfc_init_congestion_stat(phba); 8307 8308 /* Zero out Congestion Signal counters */ 8309 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8310 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8311 } 8312 8313 rc = lpfc_sli4_cgn_params_read(phba); 8314 if (rc < 0) { 8315 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8316 "6242 Error reading Cgn Params (%d)\n", 8317 rc); 8318 /* Ensure CGN Mode is off */ 8319 sli4_params->cmf = 0; 8320 } else if (!rc) { 8321 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8322 "6243 CGN Event empty object.\n"); 8323 /* Ensure CGN Mode is off */ 8324 sli4_params->cmf = 0; 8325 } 8326 } else { 8327 no_cmf: 8328 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8329 "6220 CMF is disabled\n"); 8330 } 8331 8332 /* Only register congestion buffer with firmware if BOTH 8333 * CMF and E2E are enabled. 8334 */ 8335 if (sli4_params->cmf && sli4_params->mi_ver) { 8336 rc = lpfc_reg_congestion_buf(phba); 8337 if (rc) { 8338 dma_free_coherent(&phba->pcidev->dev, 8339 sizeof(struct lpfc_cgn_info), 8340 phba->cgn_i->virt, phba->cgn_i->phys); 8341 kfree(phba->cgn_i); 8342 phba->cgn_i = NULL; 8343 /* Ensure CGN Mode is off */ 8344 phba->cmf_active_mode = LPFC_CFG_OFF; 8345 sli4_params->cmf = 0; 8346 return 0; 8347 } 8348 } 8349 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8350 "6470 Setup MI version %d CMF %d mode %d\n", 8351 sli4_params->mi_ver, sli4_params->cmf, 8352 phba->cmf_active_mode); 8353 8354 mempool_free(mboxq, phba->mbox_mem_pool); 8355 8356 /* Initialize atomic counters */ 8357 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8358 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8359 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8360 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8361 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8362 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8363 atomic64_set(&phba->cgn_latency_evt, 0); 8364 8365 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8366 8367 /* Allocate RX Monitor Buffer */ 8368 if (!phba->rx_monitor) { 8369 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8370 GFP_KERNEL); 8371 8372 if (!phba->rx_monitor) { 8373 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8374 "2644 Failed to alloc memory " 8375 "for RX Monitor Buffer\n"); 8376 return -ENOMEM; 8377 } 8378 8379 /* Instruct the rx_monitor object to instantiate its ring */ 8380 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8381 LPFC_MAX_RXMONITOR_ENTRY)) { 8382 kfree(phba->rx_monitor); 8383 phba->rx_monitor = NULL; 8384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8385 "2645 Failed to alloc memory " 8386 "for RX Monitor's Ring\n"); 8387 return -ENOMEM; 8388 } 8389 } 8390 8391 return 0; 8392 } 8393 8394 static int 8395 lpfc_set_host_tm(struct lpfc_hba *phba) 8396 { 8397 LPFC_MBOXQ_t *mboxq; 8398 uint32_t len, rc; 8399 struct timespec64 cur_time; 8400 struct tm broken; 8401 uint32_t month, day, year; 8402 uint32_t hour, minute, second; 8403 struct lpfc_mbx_set_host_date_time *tm; 8404 8405 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8406 if (!mboxq) 8407 return -ENOMEM; 8408 8409 len = sizeof(struct lpfc_mbx_set_host_data) - 8410 sizeof(struct lpfc_sli4_cfg_mhdr); 8411 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8412 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8413 LPFC_SLI4_MBX_EMBED); 8414 8415 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8416 mboxq->u.mqe.un.set_host_data.param_len = 8417 sizeof(struct lpfc_mbx_set_host_date_time); 8418 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8419 ktime_get_real_ts64(&cur_time); 8420 time64_to_tm(cur_time.tv_sec, 0, &broken); 8421 month = broken.tm_mon + 1; 8422 day = broken.tm_mday; 8423 year = broken.tm_year - 100; 8424 hour = broken.tm_hour; 8425 minute = broken.tm_min; 8426 second = broken.tm_sec; 8427 bf_set(lpfc_mbx_set_host_month, tm, month); 8428 bf_set(lpfc_mbx_set_host_day, tm, day); 8429 bf_set(lpfc_mbx_set_host_year, tm, year); 8430 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8431 bf_set(lpfc_mbx_set_host_min, tm, minute); 8432 bf_set(lpfc_mbx_set_host_sec, tm, second); 8433 8434 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8435 mempool_free(mboxq, phba->mbox_mem_pool); 8436 return rc; 8437 } 8438 8439 /** 8440 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8441 * @phba: Pointer to HBA context object. 8442 * 8443 * This function is the main SLI4 device initialization PCI function. This 8444 * function is called by the HBA initialization code, HBA reset code and 8445 * HBA error attention handler code. Caller is not required to hold any 8446 * locks. 8447 **/ 8448 int 8449 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8450 { 8451 int rc, i, cnt, len, dd; 8452 LPFC_MBOXQ_t *mboxq; 8453 struct lpfc_mqe *mqe; 8454 uint8_t *vpd; 8455 uint32_t vpd_size; 8456 uint32_t ftr_rsp = 0; 8457 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8458 struct lpfc_vport *vport = phba->pport; 8459 struct lpfc_dmabuf *mp; 8460 struct lpfc_rqb *rqbp; 8461 u32 flg; 8462 8463 /* Perform a PCI function reset to start from clean */ 8464 rc = lpfc_pci_function_reset(phba); 8465 if (unlikely(rc)) 8466 return -ENODEV; 8467 8468 /* Check the HBA Host Status Register for readyness */ 8469 rc = lpfc_sli4_post_status_check(phba); 8470 if (unlikely(rc)) 8471 return -ENODEV; 8472 else { 8473 spin_lock_irq(&phba->hbalock); 8474 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8475 flg = phba->sli.sli_flag; 8476 spin_unlock_irq(&phba->hbalock); 8477 /* Allow a little time after setting SLI_ACTIVE for any polled 8478 * MBX commands to complete via BSG. 8479 */ 8480 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8481 msleep(20); 8482 spin_lock_irq(&phba->hbalock); 8483 flg = phba->sli.sli_flag; 8484 spin_unlock_irq(&phba->hbalock); 8485 } 8486 } 8487 clear_bit(HBA_SETUP, &phba->hba_flag); 8488 8489 lpfc_sli4_dip(phba); 8490 8491 /* 8492 * Allocate a single mailbox container for initializing the 8493 * port. 8494 */ 8495 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8496 if (!mboxq) 8497 return -ENOMEM; 8498 8499 /* Issue READ_REV to collect vpd and FW information. */ 8500 vpd_size = SLI4_PAGE_SIZE; 8501 vpd = kzalloc(vpd_size, GFP_KERNEL); 8502 if (!vpd) { 8503 rc = -ENOMEM; 8504 goto out_free_mbox; 8505 } 8506 8507 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8508 if (unlikely(rc)) { 8509 kfree(vpd); 8510 goto out_free_mbox; 8511 } 8512 8513 mqe = &mboxq->u.mqe; 8514 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8515 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8516 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8517 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8518 } else { 8519 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8520 } 8521 8522 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8523 LPFC_DCBX_CEE_MODE) 8524 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8525 else 8526 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8527 8528 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8529 8530 if (phba->sli_rev != LPFC_SLI_REV4) { 8531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8532 "0376 READ_REV Error. SLI Level %d " 8533 "FCoE enabled %d\n", 8534 phba->sli_rev, 8535 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8536 rc = -EIO; 8537 kfree(vpd); 8538 goto out_free_mbox; 8539 } 8540 8541 rc = lpfc_set_host_tm(phba); 8542 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8543 "6468 Set host date / time: Status x%x:\n", rc); 8544 8545 /* 8546 * Continue initialization with default values even if driver failed 8547 * to read FCoE param config regions, only read parameters if the 8548 * board is FCoE 8549 */ 8550 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8551 lpfc_sli4_read_fcoe_params(phba)) 8552 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8553 "2570 Failed to read FCoE parameters\n"); 8554 8555 /* 8556 * Retrieve sli4 device physical port name, failure of doing it 8557 * is considered as non-fatal. 8558 */ 8559 rc = lpfc_sli4_retrieve_pport_name(phba); 8560 if (!rc) 8561 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8562 "3080 Successful retrieving SLI4 device " 8563 "physical port name: %s.\n", phba->Port); 8564 8565 rc = lpfc_sli4_get_ctl_attr(phba); 8566 if (!rc) 8567 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8568 "8351 Successful retrieving SLI4 device " 8569 "CTL ATTR\n"); 8570 8571 /* 8572 * Evaluate the read rev and vpd data. Populate the driver 8573 * state with the results. If this routine fails, the failure 8574 * is not fatal as the driver will use generic values. 8575 */ 8576 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8577 if (unlikely(!rc)) 8578 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8579 "0377 Error %d parsing vpd. " 8580 "Using defaults.\n", rc); 8581 kfree(vpd); 8582 8583 /* Save information as VPD data */ 8584 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8585 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8586 8587 /* 8588 * This is because first G7 ASIC doesn't support the standard 8589 * 0x5a NVME cmd descriptor type/subtype 8590 */ 8591 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8592 LPFC_SLI_INTF_IF_TYPE_6) && 8593 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8594 (phba->vpd.rev.smRev == 0) && 8595 (phba->cfg_nvme_embed_cmd == 1)) 8596 phba->cfg_nvme_embed_cmd = 0; 8597 8598 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8599 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8600 &mqe->un.read_rev); 8601 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8602 &mqe->un.read_rev); 8603 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8604 &mqe->un.read_rev); 8605 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8606 &mqe->un.read_rev); 8607 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8608 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8609 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8610 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8611 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8612 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8613 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8614 "(%d):0380 READ_REV Status x%x " 8615 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8616 mboxq->vport ? mboxq->vport->vpi : 0, 8617 bf_get(lpfc_mqe_status, mqe), 8618 phba->vpd.rev.opFwName, 8619 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8620 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8621 8622 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8623 LPFC_SLI_INTF_IF_TYPE_0) { 8624 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8625 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8626 if (rc == MBX_SUCCESS) { 8627 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8628 /* Set 1Sec interval to detect UE */ 8629 phba->eratt_poll_interval = 1; 8630 phba->sli4_hba.ue_to_sr = bf_get( 8631 lpfc_mbx_set_feature_UESR, 8632 &mboxq->u.mqe.un.set_feature); 8633 phba->sli4_hba.ue_to_rp = bf_get( 8634 lpfc_mbx_set_feature_UERP, 8635 &mboxq->u.mqe.un.set_feature); 8636 } 8637 } 8638 8639 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8640 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8641 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8642 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8643 if (rc != MBX_SUCCESS) 8644 phba->mds_diags_support = 0; 8645 } 8646 8647 /* 8648 * Discover the port's supported feature set and match it against the 8649 * hosts requests. 8650 */ 8651 lpfc_request_features(phba, mboxq); 8652 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8653 if (unlikely(rc)) { 8654 rc = -EIO; 8655 goto out_free_mbox; 8656 } 8657 8658 /* Disable VMID if app header is not supported */ 8659 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8660 &mqe->un.req_ftrs))) { 8661 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8662 phba->cfg_vmid_app_header = 0; 8663 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8664 "1242 vmid feature not supported\n"); 8665 } 8666 8667 /* 8668 * The port must support FCP initiator mode as this is the 8669 * only mode running in the host. 8670 */ 8671 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8672 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8673 "0378 No support for fcpi mode.\n"); 8674 ftr_rsp++; 8675 } 8676 8677 /* Performance Hints are ONLY for FCoE */ 8678 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8679 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8680 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8681 else 8682 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8683 } 8684 8685 /* 8686 * If the port cannot support the host's requested features 8687 * then turn off the global config parameters to disable the 8688 * feature in the driver. This is not a fatal error. 8689 */ 8690 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8691 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8692 phba->cfg_enable_bg = 0; 8693 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8694 ftr_rsp++; 8695 } 8696 } 8697 8698 if (phba->max_vpi && phba->cfg_enable_npiv && 8699 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8700 ftr_rsp++; 8701 8702 if (ftr_rsp) { 8703 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8704 "0379 Feature Mismatch Data: x%08x %08x " 8705 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8706 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8707 phba->cfg_enable_npiv, phba->max_vpi); 8708 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8709 phba->cfg_enable_bg = 0; 8710 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8711 phba->cfg_enable_npiv = 0; 8712 } 8713 8714 /* These SLI3 features are assumed in SLI4 */ 8715 spin_lock_irq(&phba->hbalock); 8716 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8717 spin_unlock_irq(&phba->hbalock); 8718 8719 /* Always try to enable dual dump feature if we can */ 8720 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8721 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8722 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8723 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8724 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8725 "6448 Dual Dump is enabled\n"); 8726 else 8727 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8728 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8729 "rc:x%x dd:x%x\n", 8730 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8731 lpfc_sli_config_mbox_subsys_get( 8732 phba, mboxq), 8733 lpfc_sli_config_mbox_opcode_get( 8734 phba, mboxq), 8735 rc, dd); 8736 8737 /* 8738 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8739 * calls depends on these resources to complete port setup. 8740 */ 8741 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8742 if (rc) { 8743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8744 "2920 Failed to alloc Resource IDs " 8745 "rc = x%x\n", rc); 8746 goto out_free_mbox; 8747 } 8748 8749 lpfc_sli4_node_rpi_restore(phba); 8750 8751 lpfc_set_host_data(phba, mboxq); 8752 8753 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8754 if (rc) { 8755 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8756 "2134 Failed to set host os driver version %x", 8757 rc); 8758 } 8759 8760 /* Read the port's service parameters. */ 8761 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8762 if (rc) { 8763 phba->link_state = LPFC_HBA_ERROR; 8764 rc = -ENOMEM; 8765 goto out_free_mbox; 8766 } 8767 8768 mboxq->vport = vport; 8769 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8770 mp = mboxq->ctx_buf; 8771 if (rc == MBX_SUCCESS) { 8772 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8773 rc = 0; 8774 } 8775 8776 /* 8777 * This memory was allocated by the lpfc_read_sparam routine but is 8778 * no longer needed. It is released and ctx_buf NULLed to prevent 8779 * unintended pointer access as the mbox is reused. 8780 */ 8781 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8782 kfree(mp); 8783 mboxq->ctx_buf = NULL; 8784 if (unlikely(rc)) { 8785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8786 "0382 READ_SPARAM command failed " 8787 "status %d, mbxStatus x%x\n", 8788 rc, bf_get(lpfc_mqe_status, mqe)); 8789 phba->link_state = LPFC_HBA_ERROR; 8790 rc = -EIO; 8791 goto out_free_mbox; 8792 } 8793 8794 lpfc_update_vport_wwn(vport); 8795 8796 /* Update the fc_host data structures with new wwn. */ 8797 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8798 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8799 8800 /* Create all the SLI4 queues */ 8801 rc = lpfc_sli4_queue_create(phba); 8802 if (rc) { 8803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8804 "3089 Failed to allocate queues\n"); 8805 rc = -ENODEV; 8806 goto out_free_mbox; 8807 } 8808 /* Set up all the queues to the device */ 8809 rc = lpfc_sli4_queue_setup(phba); 8810 if (unlikely(rc)) { 8811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8812 "0381 Error %d during queue setup.\n", rc); 8813 goto out_stop_timers; 8814 } 8815 /* Initialize the driver internal SLI layer lists. */ 8816 lpfc_sli4_setup(phba); 8817 lpfc_sli4_queue_init(phba); 8818 8819 /* update host els xri-sgl sizes and mappings */ 8820 rc = lpfc_sli4_els_sgl_update(phba); 8821 if (unlikely(rc)) { 8822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8823 "1400 Failed to update xri-sgl size and " 8824 "mapping: %d\n", rc); 8825 goto out_destroy_queue; 8826 } 8827 8828 /* register the els sgl pool to the port */ 8829 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8830 phba->sli4_hba.els_xri_cnt); 8831 if (unlikely(rc < 0)) { 8832 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8833 "0582 Error %d during els sgl post " 8834 "operation\n", rc); 8835 rc = -ENODEV; 8836 goto out_destroy_queue; 8837 } 8838 phba->sli4_hba.els_xri_cnt = rc; 8839 8840 if (phba->nvmet_support) { 8841 /* update host nvmet xri-sgl sizes and mappings */ 8842 rc = lpfc_sli4_nvmet_sgl_update(phba); 8843 if (unlikely(rc)) { 8844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8845 "6308 Failed to update nvmet-sgl size " 8846 "and mapping: %d\n", rc); 8847 goto out_destroy_queue; 8848 } 8849 8850 /* register the nvmet sgl pool to the port */ 8851 rc = lpfc_sli4_repost_sgl_list( 8852 phba, 8853 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8854 phba->sli4_hba.nvmet_xri_cnt); 8855 if (unlikely(rc < 0)) { 8856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8857 "3117 Error %d during nvmet " 8858 "sgl post\n", rc); 8859 rc = -ENODEV; 8860 goto out_destroy_queue; 8861 } 8862 phba->sli4_hba.nvmet_xri_cnt = rc; 8863 8864 /* We allocate an iocbq for every receive context SGL. 8865 * The additional allocation is for abort and ls handling. 8866 */ 8867 cnt = phba->sli4_hba.nvmet_xri_cnt + 8868 phba->sli4_hba.max_cfg_param.max_xri; 8869 } else { 8870 /* update host common xri-sgl sizes and mappings */ 8871 rc = lpfc_sli4_io_sgl_update(phba); 8872 if (unlikely(rc)) { 8873 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8874 "6082 Failed to update nvme-sgl size " 8875 "and mapping: %d\n", rc); 8876 goto out_destroy_queue; 8877 } 8878 8879 /* register the allocated common sgl pool to the port */ 8880 rc = lpfc_sli4_repost_io_sgl_list(phba); 8881 if (unlikely(rc)) { 8882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8883 "6116 Error %d during nvme sgl post " 8884 "operation\n", rc); 8885 /* Some NVME buffers were moved to abort nvme list */ 8886 /* A pci function reset will repost them */ 8887 rc = -ENODEV; 8888 goto out_destroy_queue; 8889 } 8890 /* Each lpfc_io_buf job structure has an iocbq element. 8891 * This cnt provides for abort, els, ct and ls requests. 8892 */ 8893 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8894 } 8895 8896 if (!phba->sli.iocbq_lookup) { 8897 /* Initialize and populate the iocb list per host */ 8898 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8899 "2821 initialize iocb list with %d entries\n", 8900 cnt); 8901 rc = lpfc_init_iocb_list(phba, cnt); 8902 if (rc) { 8903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8904 "1413 Failed to init iocb list.\n"); 8905 goto out_destroy_queue; 8906 } 8907 } 8908 8909 if (phba->nvmet_support) 8910 lpfc_nvmet_create_targetport(phba); 8911 8912 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8913 /* Post initial buffers to all RQs created */ 8914 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8915 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8916 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8917 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8918 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8919 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8920 rqbp->buffer_count = 0; 8921 8922 lpfc_post_rq_buffer( 8923 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8924 phba->sli4_hba.nvmet_mrq_data[i], 8925 phba->cfg_nvmet_mrq_post, i); 8926 } 8927 } 8928 8929 /* Post the rpi header region to the device. */ 8930 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8931 if (unlikely(rc)) { 8932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8933 "0393 Error %d during rpi post operation\n", 8934 rc); 8935 rc = -ENODEV; 8936 goto out_free_iocblist; 8937 } 8938 8939 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8940 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8941 /* 8942 * The FC Port needs to register FCFI (index 0) 8943 */ 8944 lpfc_reg_fcfi(phba, mboxq); 8945 mboxq->vport = phba->pport; 8946 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8947 if (rc != MBX_SUCCESS) 8948 goto out_unset_queue; 8949 rc = 0; 8950 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8951 &mboxq->u.mqe.un.reg_fcfi); 8952 } else { 8953 /* We are a NVME Target mode with MRQ > 1 */ 8954 8955 /* First register the FCFI */ 8956 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8957 mboxq->vport = phba->pport; 8958 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8959 if (rc != MBX_SUCCESS) 8960 goto out_unset_queue; 8961 rc = 0; 8962 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8963 &mboxq->u.mqe.un.reg_fcfi_mrq); 8964 8965 /* Next register the MRQs */ 8966 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8967 mboxq->vport = phba->pport; 8968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8969 if (rc != MBX_SUCCESS) 8970 goto out_unset_queue; 8971 rc = 0; 8972 } 8973 /* Check if the port is configured to be disabled */ 8974 lpfc_sli_read_link_ste(phba); 8975 } 8976 8977 /* Don't post more new bufs if repost already recovered 8978 * the nvme sgls. 8979 */ 8980 if (phba->nvmet_support == 0) { 8981 if (phba->sli4_hba.io_xri_cnt == 0) { 8982 len = lpfc_new_io_buf( 8983 phba, phba->sli4_hba.io_xri_max); 8984 if (len == 0) { 8985 rc = -ENOMEM; 8986 goto out_unset_queue; 8987 } 8988 8989 if (phba->cfg_xri_rebalancing) 8990 lpfc_create_multixri_pools(phba); 8991 } 8992 } else { 8993 phba->cfg_xri_rebalancing = 0; 8994 } 8995 8996 /* Allow asynchronous mailbox command to go through */ 8997 spin_lock_irq(&phba->hbalock); 8998 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8999 spin_unlock_irq(&phba->hbalock); 9000 9001 /* Post receive buffers to the device */ 9002 lpfc_sli4_rb_setup(phba); 9003 9004 /* Reset HBA FCF states after HBA reset */ 9005 phba->fcf.fcf_flag = 0; 9006 phba->fcf.current_rec.flag = 0; 9007 9008 /* Start the ELS watchdog timer */ 9009 mod_timer(&vport->els_tmofunc, 9010 jiffies + secs_to_jiffies(phba->fc_ratov * 2)); 9011 9012 /* Start heart beat timer */ 9013 mod_timer(&phba->hb_tmofunc, 9014 jiffies + secs_to_jiffies(LPFC_HB_MBOX_INTERVAL)); 9015 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9016 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9017 phba->last_completion_time = jiffies; 9018 9019 /* start eq_delay heartbeat */ 9020 if (phba->cfg_auto_imax) 9021 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9022 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9023 9024 /* start per phba idle_stat_delay heartbeat */ 9025 lpfc_init_idle_stat_hb(phba); 9026 9027 /* Start error attention (ERATT) polling timer */ 9028 mod_timer(&phba->eratt_poll, 9029 jiffies + secs_to_jiffies(phba->eratt_poll_interval)); 9030 9031 /* 9032 * The port is ready, set the host's link state to LINK_DOWN 9033 * in preparation for link interrupts. 9034 */ 9035 spin_lock_irq(&phba->hbalock); 9036 phba->link_state = LPFC_LINK_DOWN; 9037 9038 /* Check if physical ports are trunked */ 9039 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9040 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9041 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9042 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9043 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9044 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9045 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9046 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9047 spin_unlock_irq(&phba->hbalock); 9048 9049 /* Arm the CQs and then EQs on device */ 9050 lpfc_sli4_arm_cqeq_intr(phba); 9051 9052 /* Indicate device interrupt mode */ 9053 phba->sli4_hba.intr_enable = 1; 9054 9055 /* Setup CMF after HBA is initialized */ 9056 lpfc_cmf_setup(phba); 9057 9058 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9059 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9061 "3103 Adapter Link is disabled.\n"); 9062 lpfc_down_link(phba, mboxq); 9063 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9064 if (rc != MBX_SUCCESS) { 9065 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9066 "3104 Adapter failed to issue " 9067 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9068 goto out_io_buff_free; 9069 } 9070 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9071 /* don't perform init_link on SLI4 FC port loopback test */ 9072 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9073 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9074 if (rc) 9075 goto out_io_buff_free; 9076 } 9077 } 9078 mempool_free(mboxq, phba->mbox_mem_pool); 9079 9080 /* Enable RAS FW log support */ 9081 lpfc_sli4_ras_setup(phba); 9082 9083 set_bit(HBA_SETUP, &phba->hba_flag); 9084 return rc; 9085 9086 out_io_buff_free: 9087 /* Free allocated IO Buffers */ 9088 lpfc_io_free(phba); 9089 out_unset_queue: 9090 /* Unset all the queues set up in this routine when error out */ 9091 lpfc_sli4_queue_unset(phba); 9092 out_free_iocblist: 9093 lpfc_free_iocb_list(phba); 9094 out_destroy_queue: 9095 lpfc_sli4_queue_destroy(phba); 9096 out_stop_timers: 9097 lpfc_stop_hba_timers(phba); 9098 out_free_mbox: 9099 mempool_free(mboxq, phba->mbox_mem_pool); 9100 return rc; 9101 } 9102 9103 /** 9104 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9105 * @t: Context to fetch pointer to hba structure from. 9106 * 9107 * This is the callback function for mailbox timer. The mailbox 9108 * timer is armed when a new mailbox command is issued and the timer 9109 * is deleted when the mailbox complete. The function is called by 9110 * the kernel timer code when a mailbox does not complete within 9111 * expected time. This function wakes up the worker thread to 9112 * process the mailbox timeout and returns. All the processing is 9113 * done by the worker thread function lpfc_mbox_timeout_handler. 9114 **/ 9115 void 9116 lpfc_mbox_timeout(struct timer_list *t) 9117 { 9118 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9119 unsigned long iflag; 9120 uint32_t tmo_posted; 9121 9122 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9123 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9124 if (!tmo_posted) 9125 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9126 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9127 9128 if (!tmo_posted) 9129 lpfc_worker_wake_up(phba); 9130 return; 9131 } 9132 9133 /** 9134 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9135 * are pending 9136 * @phba: Pointer to HBA context object. 9137 * 9138 * This function checks if any mailbox completions are present on the mailbox 9139 * completion queue. 9140 **/ 9141 static bool 9142 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9143 { 9144 9145 uint32_t idx; 9146 struct lpfc_queue *mcq; 9147 struct lpfc_mcqe *mcqe; 9148 bool pending_completions = false; 9149 uint8_t qe_valid; 9150 9151 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9152 return false; 9153 9154 /* Check for completions on mailbox completion queue */ 9155 9156 mcq = phba->sli4_hba.mbx_cq; 9157 idx = mcq->hba_index; 9158 qe_valid = mcq->qe_valid; 9159 while (bf_get_le32(lpfc_cqe_valid, 9160 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9161 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9162 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9163 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9164 pending_completions = true; 9165 break; 9166 } 9167 idx = (idx + 1) % mcq->entry_count; 9168 if (mcq->hba_index == idx) 9169 break; 9170 9171 /* if the index wrapped around, toggle the valid bit */ 9172 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9173 qe_valid = (qe_valid) ? 0 : 1; 9174 } 9175 return pending_completions; 9176 9177 } 9178 9179 /** 9180 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9181 * that were missed. 9182 * @phba: Pointer to HBA context object. 9183 * 9184 * For sli4, it is possible to miss an interrupt. As such mbox completions 9185 * maybe missed causing erroneous mailbox timeouts to occur. This function 9186 * checks to see if mbox completions are on the mailbox completion queue 9187 * and will process all the completions associated with the eq for the 9188 * mailbox completion queue. 9189 **/ 9190 static bool 9191 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9192 { 9193 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9194 uint32_t eqidx; 9195 struct lpfc_queue *fpeq = NULL; 9196 struct lpfc_queue *eq; 9197 bool mbox_pending; 9198 9199 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9200 return false; 9201 9202 /* Find the EQ associated with the mbox CQ */ 9203 if (sli4_hba->hdwq) { 9204 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9205 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9206 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9207 fpeq = eq; 9208 break; 9209 } 9210 } 9211 } 9212 if (!fpeq) 9213 return false; 9214 9215 /* Turn off interrupts from this EQ */ 9216 9217 sli4_hba->sli4_eq_clr_intr(fpeq); 9218 9219 /* Check to see if a mbox completion is pending */ 9220 9221 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9222 9223 /* 9224 * If a mbox completion is pending, process all the events on EQ 9225 * associated with the mbox completion queue (this could include 9226 * mailbox commands, async events, els commands, receive queue data 9227 * and fcp commands) 9228 */ 9229 9230 if (mbox_pending) 9231 /* process and rearm the EQ */ 9232 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9233 LPFC_QUEUE_WORK); 9234 else 9235 /* Always clear and re-arm the EQ */ 9236 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9237 9238 return mbox_pending; 9239 9240 } 9241 9242 /** 9243 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9244 * @phba: Pointer to HBA context object. 9245 * 9246 * This function is called from worker thread when a mailbox command times out. 9247 * The caller is not required to hold any locks. This function will reset the 9248 * HBA and recover all the pending commands. 9249 **/ 9250 void 9251 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9252 { 9253 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9254 MAILBOX_t *mb = NULL; 9255 9256 struct lpfc_sli *psli = &phba->sli; 9257 9258 /* If the mailbox completed, process the completion */ 9259 lpfc_sli4_process_missed_mbox_completions(phba); 9260 9261 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9262 return; 9263 9264 if (pmbox != NULL) 9265 mb = &pmbox->u.mb; 9266 /* Check the pmbox pointer first. There is a race condition 9267 * between the mbox timeout handler getting executed in the 9268 * worklist and the mailbox actually completing. When this 9269 * race condition occurs, the mbox_active will be NULL. 9270 */ 9271 spin_lock_irq(&phba->hbalock); 9272 if (pmbox == NULL) { 9273 lpfc_printf_log(phba, KERN_WARNING, 9274 LOG_MBOX | LOG_SLI, 9275 "0353 Active Mailbox cleared - mailbox timeout " 9276 "exiting\n"); 9277 spin_unlock_irq(&phba->hbalock); 9278 return; 9279 } 9280 9281 /* Mbox cmd <mbxCommand> timeout */ 9282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9283 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9284 mb->mbxCommand, 9285 phba->pport->port_state, 9286 phba->sli.sli_flag, 9287 phba->sli.mbox_active); 9288 spin_unlock_irq(&phba->hbalock); 9289 9290 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9291 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9292 * it to fail all outstanding SCSI IO. 9293 */ 9294 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9295 spin_lock_irq(&phba->pport->work_port_lock); 9296 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9297 spin_unlock_irq(&phba->pport->work_port_lock); 9298 spin_lock_irq(&phba->hbalock); 9299 phba->link_state = LPFC_LINK_UNKNOWN; 9300 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9301 spin_unlock_irq(&phba->hbalock); 9302 9303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9304 "0345 Resetting board due to mailbox timeout\n"); 9305 9306 /* Reset the HBA device */ 9307 lpfc_reset_hba(phba); 9308 } 9309 9310 /** 9311 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9312 * @phba: Pointer to HBA context object. 9313 * @pmbox: Pointer to mailbox object. 9314 * @flag: Flag indicating how the mailbox need to be processed. 9315 * 9316 * This function is called by discovery code and HBA management code 9317 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9318 * function gets the hbalock to protect the data structures. 9319 * The mailbox command can be submitted in polling mode, in which case 9320 * this function will wait in a polling loop for the completion of the 9321 * mailbox. 9322 * If the mailbox is submitted in no_wait mode (not polling) the 9323 * function will submit the command and returns immediately without waiting 9324 * for the mailbox completion. The no_wait is supported only when HBA 9325 * is in SLI2/SLI3 mode - interrupts are enabled. 9326 * The SLI interface allows only one mailbox pending at a time. If the 9327 * mailbox is issued in polling mode and there is already a mailbox 9328 * pending, then the function will return an error. If the mailbox is issued 9329 * in NO_WAIT mode and there is a mailbox pending already, the function 9330 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9331 * The sli layer owns the mailbox object until the completion of mailbox 9332 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9333 * return codes the caller owns the mailbox command after the return of 9334 * the function. 9335 **/ 9336 static int 9337 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9338 uint32_t flag) 9339 { 9340 MAILBOX_t *mbx; 9341 struct lpfc_sli *psli = &phba->sli; 9342 uint32_t status, evtctr; 9343 uint32_t ha_copy, hc_copy; 9344 int i; 9345 unsigned long timeout; 9346 unsigned long drvr_flag = 0; 9347 uint32_t word0, ldata; 9348 void __iomem *to_slim; 9349 int processing_queue = 0; 9350 9351 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9352 if (!pmbox) { 9353 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9354 /* processing mbox queue from intr_handler */ 9355 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9356 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9357 return MBX_SUCCESS; 9358 } 9359 processing_queue = 1; 9360 pmbox = lpfc_mbox_get(phba); 9361 if (!pmbox) { 9362 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9363 return MBX_SUCCESS; 9364 } 9365 } 9366 9367 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9368 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9369 if(!pmbox->vport) { 9370 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9371 lpfc_printf_log(phba, KERN_ERR, 9372 LOG_MBOX | LOG_VPORT, 9373 "1806 Mbox x%x failed. No vport\n", 9374 pmbox->u.mb.mbxCommand); 9375 dump_stack(); 9376 goto out_not_finished; 9377 } 9378 } 9379 9380 /* If the PCI channel is in offline state, do not post mbox. */ 9381 if (unlikely(pci_channel_offline(phba->pcidev))) { 9382 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9383 goto out_not_finished; 9384 } 9385 9386 /* If HBA has a deferred error attention, fail the iocb. */ 9387 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9388 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9389 goto out_not_finished; 9390 } 9391 9392 psli = &phba->sli; 9393 9394 mbx = &pmbox->u.mb; 9395 status = MBX_SUCCESS; 9396 9397 if (phba->link_state == LPFC_HBA_ERROR) { 9398 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9399 9400 /* Mbox command <mbxCommand> cannot issue */ 9401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9402 "(%d):0311 Mailbox command x%x cannot " 9403 "issue Data: x%x x%x\n", 9404 pmbox->vport ? pmbox->vport->vpi : 0, 9405 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9406 goto out_not_finished; 9407 } 9408 9409 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9410 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9411 !(hc_copy & HC_MBINT_ENA)) { 9412 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9413 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9414 "(%d):2528 Mailbox command x%x cannot " 9415 "issue Data: x%x x%x\n", 9416 pmbox->vport ? pmbox->vport->vpi : 0, 9417 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9418 goto out_not_finished; 9419 } 9420 } 9421 9422 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9423 /* Polling for a mbox command when another one is already active 9424 * is not allowed in SLI. Also, the driver must have established 9425 * SLI2 mode to queue and process multiple mbox commands. 9426 */ 9427 9428 if (flag & MBX_POLL) { 9429 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9430 9431 /* Mbox command <mbxCommand> cannot issue */ 9432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9433 "(%d):2529 Mailbox command x%x " 9434 "cannot issue Data: x%x x%x\n", 9435 pmbox->vport ? pmbox->vport->vpi : 0, 9436 pmbox->u.mb.mbxCommand, 9437 psli->sli_flag, flag); 9438 goto out_not_finished; 9439 } 9440 9441 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9442 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9443 /* Mbox command <mbxCommand> cannot issue */ 9444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9445 "(%d):2530 Mailbox command x%x " 9446 "cannot issue Data: x%x x%x\n", 9447 pmbox->vport ? pmbox->vport->vpi : 0, 9448 pmbox->u.mb.mbxCommand, 9449 psli->sli_flag, flag); 9450 goto out_not_finished; 9451 } 9452 9453 /* Another mailbox command is still being processed, queue this 9454 * command to be processed later. 9455 */ 9456 lpfc_mbox_put(phba, pmbox); 9457 9458 /* Mbox cmd issue - BUSY */ 9459 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9460 "(%d):0308 Mbox cmd issue - BUSY Data: " 9461 "x%x x%x x%x x%x\n", 9462 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9463 mbx->mbxCommand, 9464 phba->pport ? phba->pport->port_state : 0xff, 9465 psli->sli_flag, flag); 9466 9467 psli->slistat.mbox_busy++; 9468 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9469 9470 if (pmbox->vport) { 9471 lpfc_debugfs_disc_trc(pmbox->vport, 9472 LPFC_DISC_TRC_MBOX_VPORT, 9473 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9474 (uint32_t)mbx->mbxCommand, 9475 mbx->un.varWords[0], mbx->un.varWords[1]); 9476 } 9477 else { 9478 lpfc_debugfs_disc_trc(phba->pport, 9479 LPFC_DISC_TRC_MBOX, 9480 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9481 (uint32_t)mbx->mbxCommand, 9482 mbx->un.varWords[0], mbx->un.varWords[1]); 9483 } 9484 9485 return MBX_BUSY; 9486 } 9487 9488 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9489 9490 /* If we are not polling, we MUST be in SLI2 mode */ 9491 if (flag != MBX_POLL) { 9492 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9493 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9494 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9495 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9496 /* Mbox command <mbxCommand> cannot issue */ 9497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9498 "(%d):2531 Mailbox command x%x " 9499 "cannot issue Data: x%x x%x\n", 9500 pmbox->vport ? pmbox->vport->vpi : 0, 9501 pmbox->u.mb.mbxCommand, 9502 psli->sli_flag, flag); 9503 goto out_not_finished; 9504 } 9505 /* timeout active mbox command */ 9506 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)); 9507 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9508 } 9509 9510 /* Mailbox cmd <cmd> issue */ 9511 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9512 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9513 "x%x\n", 9514 pmbox->vport ? pmbox->vport->vpi : 0, 9515 mbx->mbxCommand, 9516 phba->pport ? phba->pport->port_state : 0xff, 9517 psli->sli_flag, flag); 9518 9519 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9520 if (pmbox->vport) { 9521 lpfc_debugfs_disc_trc(pmbox->vport, 9522 LPFC_DISC_TRC_MBOX_VPORT, 9523 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9524 (uint32_t)mbx->mbxCommand, 9525 mbx->un.varWords[0], mbx->un.varWords[1]); 9526 } 9527 else { 9528 lpfc_debugfs_disc_trc(phba->pport, 9529 LPFC_DISC_TRC_MBOX, 9530 "MBOX Send: cmd:x%x mb:x%x x%x", 9531 (uint32_t)mbx->mbxCommand, 9532 mbx->un.varWords[0], mbx->un.varWords[1]); 9533 } 9534 } 9535 9536 psli->slistat.mbox_cmd++; 9537 evtctr = psli->slistat.mbox_event; 9538 9539 /* next set own bit for the adapter and copy over command word */ 9540 mbx->mbxOwner = OWN_CHIP; 9541 9542 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9543 /* Populate mbox extension offset word. */ 9544 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9545 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9546 = (uint8_t *)phba->mbox_ext 9547 - (uint8_t *)phba->mbox; 9548 } 9549 9550 /* Copy the mailbox extension data */ 9551 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9552 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9553 (uint8_t *)phba->mbox_ext, 9554 pmbox->in_ext_byte_len); 9555 } 9556 /* Copy command data to host SLIM area */ 9557 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9558 } else { 9559 /* Populate mbox extension offset word. */ 9560 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9561 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9562 = MAILBOX_HBA_EXT_OFFSET; 9563 9564 /* Copy the mailbox extension data */ 9565 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9566 lpfc_memcpy_to_slim(phba->MBslimaddr + 9567 MAILBOX_HBA_EXT_OFFSET, 9568 pmbox->ext_buf, pmbox->in_ext_byte_len); 9569 9570 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9571 /* copy command data into host mbox for cmpl */ 9572 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9573 MAILBOX_CMD_SIZE); 9574 9575 /* First copy mbox command data to HBA SLIM, skip past first 9576 word */ 9577 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9578 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9579 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9580 9581 /* Next copy over first word, with mbxOwner set */ 9582 ldata = *((uint32_t *)mbx); 9583 to_slim = phba->MBslimaddr; 9584 writel(ldata, to_slim); 9585 readl(to_slim); /* flush */ 9586 9587 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9588 /* switch over to host mailbox */ 9589 psli->sli_flag |= LPFC_SLI_ACTIVE; 9590 } 9591 9592 wmb(); 9593 9594 switch (flag) { 9595 case MBX_NOWAIT: 9596 /* Set up reference to mailbox command */ 9597 psli->mbox_active = pmbox; 9598 /* Interrupt board to do it */ 9599 writel(CA_MBATT, phba->CAregaddr); 9600 readl(phba->CAregaddr); /* flush */ 9601 /* Don't wait for it to finish, just return */ 9602 break; 9603 9604 case MBX_POLL: 9605 /* Set up null reference to mailbox command */ 9606 psli->mbox_active = NULL; 9607 /* Interrupt board to do it */ 9608 writel(CA_MBATT, phba->CAregaddr); 9609 readl(phba->CAregaddr); /* flush */ 9610 9611 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9612 /* First read mbox status word */ 9613 word0 = *((uint32_t *)phba->mbox); 9614 word0 = le32_to_cpu(word0); 9615 } else { 9616 /* First read mbox status word */ 9617 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9618 spin_unlock_irqrestore(&phba->hbalock, 9619 drvr_flag); 9620 goto out_not_finished; 9621 } 9622 } 9623 9624 /* Read the HBA Host Attention Register */ 9625 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9626 spin_unlock_irqrestore(&phba->hbalock, 9627 drvr_flag); 9628 goto out_not_finished; 9629 } 9630 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox)) + jiffies; 9631 i = 0; 9632 /* Wait for command to complete */ 9633 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9634 (!(ha_copy & HA_MBATT) && 9635 (phba->link_state > LPFC_WARM_START))) { 9636 if (time_after(jiffies, timeout)) { 9637 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9638 spin_unlock_irqrestore(&phba->hbalock, 9639 drvr_flag); 9640 goto out_not_finished; 9641 } 9642 9643 /* Check if we took a mbox interrupt while we were 9644 polling */ 9645 if (((word0 & OWN_CHIP) != OWN_CHIP) 9646 && (evtctr != psli->slistat.mbox_event)) 9647 break; 9648 9649 if (i++ > 10) { 9650 spin_unlock_irqrestore(&phba->hbalock, 9651 drvr_flag); 9652 msleep(1); 9653 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9654 } 9655 9656 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9657 /* First copy command data */ 9658 word0 = *((uint32_t *)phba->mbox); 9659 word0 = le32_to_cpu(word0); 9660 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9661 MAILBOX_t *slimmb; 9662 uint32_t slimword0; 9663 /* Check real SLIM for any errors */ 9664 slimword0 = readl(phba->MBslimaddr); 9665 slimmb = (MAILBOX_t *) & slimword0; 9666 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9667 && slimmb->mbxStatus) { 9668 psli->sli_flag &= 9669 ~LPFC_SLI_ACTIVE; 9670 word0 = slimword0; 9671 } 9672 } 9673 } else { 9674 /* First copy command data */ 9675 word0 = readl(phba->MBslimaddr); 9676 } 9677 /* Read the HBA Host Attention Register */ 9678 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9679 spin_unlock_irqrestore(&phba->hbalock, 9680 drvr_flag); 9681 goto out_not_finished; 9682 } 9683 } 9684 9685 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9686 /* copy results back to user */ 9687 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9688 MAILBOX_CMD_SIZE); 9689 /* Copy the mailbox extension data */ 9690 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9691 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9692 pmbox->ext_buf, 9693 pmbox->out_ext_byte_len); 9694 } 9695 } else { 9696 /* First copy command data */ 9697 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9698 MAILBOX_CMD_SIZE); 9699 /* Copy the mailbox extension data */ 9700 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9701 lpfc_memcpy_from_slim( 9702 pmbox->ext_buf, 9703 phba->MBslimaddr + 9704 MAILBOX_HBA_EXT_OFFSET, 9705 pmbox->out_ext_byte_len); 9706 } 9707 } 9708 9709 writel(HA_MBATT, phba->HAregaddr); 9710 readl(phba->HAregaddr); /* flush */ 9711 9712 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9713 status = mbx->mbxStatus; 9714 } 9715 9716 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9717 return status; 9718 9719 out_not_finished: 9720 if (processing_queue) { 9721 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9722 lpfc_mbox_cmpl_put(phba, pmbox); 9723 } 9724 return MBX_NOT_FINISHED; 9725 } 9726 9727 /** 9728 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9729 * @phba: Pointer to HBA context object. 9730 * 9731 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9732 * the driver internal pending mailbox queue. It will then try to wait out the 9733 * possible outstanding mailbox command before return. 9734 * 9735 * Returns: 9736 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9737 * the outstanding mailbox command timed out. 9738 **/ 9739 static int 9740 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9741 { 9742 struct lpfc_sli *psli = &phba->sli; 9743 LPFC_MBOXQ_t *mboxq; 9744 int rc = 0; 9745 unsigned long timeout = 0; 9746 u32 sli_flag; 9747 u8 cmd, subsys, opcode; 9748 9749 /* Mark the asynchronous mailbox command posting as blocked */ 9750 spin_lock_irq(&phba->hbalock); 9751 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9752 /* Determine how long we might wait for the active mailbox 9753 * command to be gracefully completed by firmware. 9754 */ 9755 if (phba->sli.mbox_active) 9756 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 9757 phba->sli.mbox_active)) + jiffies; 9758 spin_unlock_irq(&phba->hbalock); 9759 9760 /* Make sure the mailbox is really active */ 9761 if (timeout) 9762 lpfc_sli4_process_missed_mbox_completions(phba); 9763 9764 /* Wait for the outstanding mailbox command to complete */ 9765 while (phba->sli.mbox_active) { 9766 /* Check active mailbox complete status every 2ms */ 9767 msleep(2); 9768 if (time_after(jiffies, timeout)) { 9769 /* Timeout, mark the outstanding cmd not complete */ 9770 9771 /* Sanity check sli.mbox_active has not completed or 9772 * cancelled from another context during last 2ms sleep, 9773 * so take hbalock to be sure before logging. 9774 */ 9775 spin_lock_irq(&phba->hbalock); 9776 if (phba->sli.mbox_active) { 9777 mboxq = phba->sli.mbox_active; 9778 cmd = mboxq->u.mb.mbxCommand; 9779 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9780 mboxq); 9781 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9782 mboxq); 9783 sli_flag = psli->sli_flag; 9784 spin_unlock_irq(&phba->hbalock); 9785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9786 "2352 Mailbox command x%x " 9787 "(x%x/x%x) sli_flag x%x could " 9788 "not complete\n", 9789 cmd, subsys, opcode, 9790 sli_flag); 9791 } else { 9792 spin_unlock_irq(&phba->hbalock); 9793 } 9794 9795 rc = 1; 9796 break; 9797 } 9798 } 9799 9800 /* Can not cleanly block async mailbox command, fails it */ 9801 if (rc) { 9802 spin_lock_irq(&phba->hbalock); 9803 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9804 spin_unlock_irq(&phba->hbalock); 9805 } 9806 return rc; 9807 } 9808 9809 /** 9810 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9811 * @phba: Pointer to HBA context object. 9812 * 9813 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9814 * commands from the driver internal pending mailbox queue. It makes sure 9815 * that there is no outstanding mailbox command before resuming posting 9816 * asynchronous mailbox commands. If, for any reason, there is outstanding 9817 * mailbox command, it will try to wait it out before resuming asynchronous 9818 * mailbox command posting. 9819 **/ 9820 static void 9821 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9822 { 9823 struct lpfc_sli *psli = &phba->sli; 9824 9825 spin_lock_irq(&phba->hbalock); 9826 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9827 /* Asynchronous mailbox posting is not blocked, do nothing */ 9828 spin_unlock_irq(&phba->hbalock); 9829 return; 9830 } 9831 9832 /* Outstanding synchronous mailbox command is guaranteed to be done, 9833 * successful or timeout, after timing-out the outstanding mailbox 9834 * command shall always be removed, so just unblock posting async 9835 * mailbox command and resume 9836 */ 9837 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9838 spin_unlock_irq(&phba->hbalock); 9839 9840 /* wake up worker thread to post asynchronous mailbox command */ 9841 lpfc_worker_wake_up(phba); 9842 } 9843 9844 /** 9845 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9846 * @phba: Pointer to HBA context object. 9847 * @mboxq: Pointer to mailbox object. 9848 * 9849 * The function waits for the bootstrap mailbox register ready bit from 9850 * port for twice the regular mailbox command timeout value. 9851 * 9852 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9853 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9854 * is in an unrecoverable state. 9855 **/ 9856 static int 9857 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9858 { 9859 uint32_t db_ready; 9860 unsigned long timeout; 9861 struct lpfc_register bmbx_reg; 9862 struct lpfc_register portstat_reg = {-1}; 9863 9864 /* Sanity check - there is no point to wait if the port is in an 9865 * unrecoverable state. 9866 */ 9867 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9868 LPFC_SLI_INTF_IF_TYPE_2) { 9869 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9870 &portstat_reg.word0) || 9871 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9872 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9873 "3858 Skipping bmbx ready because " 9874 "Port Status x%x\n", 9875 portstat_reg.word0); 9876 return MBXERR_ERROR; 9877 } 9878 } 9879 9880 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)) + jiffies; 9881 9882 do { 9883 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9884 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9885 if (!db_ready) 9886 mdelay(2); 9887 9888 if (time_after(jiffies, timeout)) 9889 return MBXERR_ERROR; 9890 } while (!db_ready); 9891 9892 return 0; 9893 } 9894 9895 /** 9896 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9897 * @phba: Pointer to HBA context object. 9898 * @mboxq: Pointer to mailbox object. 9899 * 9900 * The function posts a mailbox to the port. The mailbox is expected 9901 * to be comletely filled in and ready for the port to operate on it. 9902 * This routine executes a synchronous completion operation on the 9903 * mailbox by polling for its completion. 9904 * 9905 * The caller must not be holding any locks when calling this routine. 9906 * 9907 * Returns: 9908 * MBX_SUCCESS - mailbox posted successfully 9909 * Any of the MBX error values. 9910 **/ 9911 static int 9912 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9913 { 9914 int rc = MBX_SUCCESS; 9915 unsigned long iflag; 9916 uint32_t mcqe_status; 9917 uint32_t mbx_cmnd; 9918 struct lpfc_sli *psli = &phba->sli; 9919 struct lpfc_mqe *mb = &mboxq->u.mqe; 9920 struct lpfc_bmbx_create *mbox_rgn; 9921 struct dma_address *dma_address; 9922 9923 /* 9924 * Only one mailbox can be active to the bootstrap mailbox region 9925 * at a time and there is no queueing provided. 9926 */ 9927 spin_lock_irqsave(&phba->hbalock, iflag); 9928 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9929 spin_unlock_irqrestore(&phba->hbalock, iflag); 9930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9931 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9932 "cannot issue Data: x%x x%x\n", 9933 mboxq->vport ? mboxq->vport->vpi : 0, 9934 mboxq->u.mb.mbxCommand, 9935 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9936 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9937 psli->sli_flag, MBX_POLL); 9938 return MBXERR_ERROR; 9939 } 9940 /* The server grabs the token and owns it until release */ 9941 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9942 phba->sli.mbox_active = mboxq; 9943 spin_unlock_irqrestore(&phba->hbalock, iflag); 9944 9945 /* wait for bootstrap mbox register for readyness */ 9946 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9947 if (rc) 9948 goto exit; 9949 /* 9950 * Initialize the bootstrap memory region to avoid stale data areas 9951 * in the mailbox post. Then copy the caller's mailbox contents to 9952 * the bmbx mailbox region. 9953 */ 9954 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9955 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9956 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9957 sizeof(struct lpfc_mqe)); 9958 9959 /* Post the high mailbox dma address to the port and wait for ready. */ 9960 dma_address = &phba->sli4_hba.bmbx.dma_address; 9961 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9962 9963 /* wait for bootstrap mbox register for hi-address write done */ 9964 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9965 if (rc) 9966 goto exit; 9967 9968 /* Post the low mailbox dma address to the port. */ 9969 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9970 9971 /* wait for bootstrap mbox register for low address write done */ 9972 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9973 if (rc) 9974 goto exit; 9975 9976 /* 9977 * Read the CQ to ensure the mailbox has completed. 9978 * If so, update the mailbox status so that the upper layers 9979 * can complete the request normally. 9980 */ 9981 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9982 sizeof(struct lpfc_mqe)); 9983 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9984 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9985 sizeof(struct lpfc_mcqe)); 9986 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9987 /* 9988 * When the CQE status indicates a failure and the mailbox status 9989 * indicates success then copy the CQE status into the mailbox status 9990 * (and prefix it with x4000). 9991 */ 9992 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9993 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9994 bf_set(lpfc_mqe_status, mb, 9995 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9996 rc = MBXERR_ERROR; 9997 } else 9998 lpfc_sli4_swap_str(phba, mboxq); 9999 10000 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10001 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10002 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10003 " x%x x%x CQ: x%x x%x x%x x%x\n", 10004 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10005 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10006 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10007 bf_get(lpfc_mqe_status, mb), 10008 mb->un.mb_words[0], mb->un.mb_words[1], 10009 mb->un.mb_words[2], mb->un.mb_words[3], 10010 mb->un.mb_words[4], mb->un.mb_words[5], 10011 mb->un.mb_words[6], mb->un.mb_words[7], 10012 mb->un.mb_words[8], mb->un.mb_words[9], 10013 mb->un.mb_words[10], mb->un.mb_words[11], 10014 mb->un.mb_words[12], mboxq->mcqe.word0, 10015 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10016 mboxq->mcqe.trailer); 10017 exit: 10018 /* We are holding the token, no needed for lock when release */ 10019 spin_lock_irqsave(&phba->hbalock, iflag); 10020 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10021 phba->sli.mbox_active = NULL; 10022 spin_unlock_irqrestore(&phba->hbalock, iflag); 10023 return rc; 10024 } 10025 10026 /** 10027 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10028 * @phba: Pointer to HBA context object. 10029 * @mboxq: Pointer to mailbox object. 10030 * @flag: Flag indicating how the mailbox need to be processed. 10031 * 10032 * This function is called by discovery code and HBA management code to submit 10033 * a mailbox command to firmware with SLI-4 interface spec. 10034 * 10035 * Return codes the caller owns the mailbox command after the return of the 10036 * function. 10037 **/ 10038 static int 10039 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10040 uint32_t flag) 10041 { 10042 struct lpfc_sli *psli = &phba->sli; 10043 unsigned long iflags; 10044 int rc; 10045 10046 /* dump from issue mailbox command if setup */ 10047 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10048 10049 rc = lpfc_mbox_dev_check(phba); 10050 if (unlikely(rc)) { 10051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10052 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10053 "cannot issue Data: x%x x%x\n", 10054 mboxq->vport ? mboxq->vport->vpi : 0, 10055 mboxq->u.mb.mbxCommand, 10056 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10057 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10058 psli->sli_flag, flag); 10059 goto out_not_finished; 10060 } 10061 10062 /* Detect polling mode and jump to a handler */ 10063 if (!phba->sli4_hba.intr_enable) { 10064 if (flag == MBX_POLL) 10065 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10066 else 10067 rc = -EIO; 10068 if (rc != MBX_SUCCESS) 10069 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10070 "(%d):2541 Mailbox command x%x " 10071 "(x%x/x%x) failure: " 10072 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10073 "Data: x%x x%x\n", 10074 mboxq->vport ? mboxq->vport->vpi : 0, 10075 mboxq->u.mb.mbxCommand, 10076 lpfc_sli_config_mbox_subsys_get(phba, 10077 mboxq), 10078 lpfc_sli_config_mbox_opcode_get(phba, 10079 mboxq), 10080 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10081 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10082 bf_get(lpfc_mcqe_ext_status, 10083 &mboxq->mcqe), 10084 psli->sli_flag, flag); 10085 return rc; 10086 } else if (flag == MBX_POLL) { 10087 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10088 "(%d):2542 Try to issue mailbox command " 10089 "x%x (x%x/x%x) synchronously ahead of async " 10090 "mailbox command queue: x%x x%x\n", 10091 mboxq->vport ? mboxq->vport->vpi : 0, 10092 mboxq->u.mb.mbxCommand, 10093 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10094 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10095 psli->sli_flag, flag); 10096 /* Try to block the asynchronous mailbox posting */ 10097 rc = lpfc_sli4_async_mbox_block(phba); 10098 if (!rc) { 10099 /* Successfully blocked, now issue sync mbox cmd */ 10100 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10101 if (rc != MBX_SUCCESS) 10102 lpfc_printf_log(phba, KERN_WARNING, 10103 LOG_MBOX | LOG_SLI, 10104 "(%d):2597 Sync Mailbox command " 10105 "x%x (x%x/x%x) failure: " 10106 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10107 "Data: x%x x%x\n", 10108 mboxq->vport ? mboxq->vport->vpi : 0, 10109 mboxq->u.mb.mbxCommand, 10110 lpfc_sli_config_mbox_subsys_get(phba, 10111 mboxq), 10112 lpfc_sli_config_mbox_opcode_get(phba, 10113 mboxq), 10114 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10115 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10116 bf_get(lpfc_mcqe_ext_status, 10117 &mboxq->mcqe), 10118 psli->sli_flag, flag); 10119 /* Unblock the async mailbox posting afterward */ 10120 lpfc_sli4_async_mbox_unblock(phba); 10121 } 10122 return rc; 10123 } 10124 10125 /* Now, interrupt mode asynchronous mailbox command */ 10126 rc = lpfc_mbox_cmd_check(phba, mboxq); 10127 if (rc) { 10128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10129 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10130 "cannot issue Data: x%x x%x\n", 10131 mboxq->vport ? mboxq->vport->vpi : 0, 10132 mboxq->u.mb.mbxCommand, 10133 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10134 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10135 psli->sli_flag, flag); 10136 goto out_not_finished; 10137 } 10138 10139 /* Put the mailbox command to the driver internal FIFO */ 10140 psli->slistat.mbox_busy++; 10141 spin_lock_irqsave(&phba->hbalock, iflags); 10142 lpfc_mbox_put(phba, mboxq); 10143 spin_unlock_irqrestore(&phba->hbalock, iflags); 10144 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10145 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10146 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10147 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10148 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10149 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10150 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10151 mboxq->u.mb.un.varUnregLogin.rpi, 10152 phba->pport->port_state, 10153 psli->sli_flag, MBX_NOWAIT); 10154 /* Wake up worker thread to transport mailbox command from head */ 10155 lpfc_worker_wake_up(phba); 10156 10157 return MBX_BUSY; 10158 10159 out_not_finished: 10160 return MBX_NOT_FINISHED; 10161 } 10162 10163 /** 10164 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10165 * @phba: Pointer to HBA context object. 10166 * 10167 * This function is called by worker thread to send a mailbox command to 10168 * SLI4 HBA firmware. 10169 * 10170 **/ 10171 int 10172 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10173 { 10174 struct lpfc_sli *psli = &phba->sli; 10175 LPFC_MBOXQ_t *mboxq; 10176 int rc = MBX_SUCCESS; 10177 unsigned long iflags; 10178 struct lpfc_mqe *mqe; 10179 uint32_t mbx_cmnd; 10180 10181 /* Check interrupt mode before post async mailbox command */ 10182 if (unlikely(!phba->sli4_hba.intr_enable)) 10183 return MBX_NOT_FINISHED; 10184 10185 /* Check for mailbox command service token */ 10186 spin_lock_irqsave(&phba->hbalock, iflags); 10187 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10188 spin_unlock_irqrestore(&phba->hbalock, iflags); 10189 return MBX_NOT_FINISHED; 10190 } 10191 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10192 spin_unlock_irqrestore(&phba->hbalock, iflags); 10193 return MBX_NOT_FINISHED; 10194 } 10195 if (unlikely(phba->sli.mbox_active)) { 10196 spin_unlock_irqrestore(&phba->hbalock, iflags); 10197 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10198 "0384 There is pending active mailbox cmd\n"); 10199 return MBX_NOT_FINISHED; 10200 } 10201 /* Take the mailbox command service token */ 10202 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10203 10204 /* Get the next mailbox command from head of queue */ 10205 mboxq = lpfc_mbox_get(phba); 10206 10207 /* If no more mailbox command waiting for post, we're done */ 10208 if (!mboxq) { 10209 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10210 spin_unlock_irqrestore(&phba->hbalock, iflags); 10211 return MBX_SUCCESS; 10212 } 10213 phba->sli.mbox_active = mboxq; 10214 spin_unlock_irqrestore(&phba->hbalock, iflags); 10215 10216 /* Check device readiness for posting mailbox command */ 10217 rc = lpfc_mbox_dev_check(phba); 10218 if (unlikely(rc)) 10219 /* Driver clean routine will clean up pending mailbox */ 10220 goto out_not_finished; 10221 10222 /* Prepare the mbox command to be posted */ 10223 mqe = &mboxq->u.mqe; 10224 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10225 10226 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10227 mod_timer(&psli->mbox_tmo, (jiffies + 10228 secs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)))); 10229 10230 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10231 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10232 "x%x x%x\n", 10233 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10234 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10235 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10236 phba->pport->port_state, psli->sli_flag); 10237 10238 if (mbx_cmnd != MBX_HEARTBEAT) { 10239 if (mboxq->vport) { 10240 lpfc_debugfs_disc_trc(mboxq->vport, 10241 LPFC_DISC_TRC_MBOX_VPORT, 10242 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10243 mbx_cmnd, mqe->un.mb_words[0], 10244 mqe->un.mb_words[1]); 10245 } else { 10246 lpfc_debugfs_disc_trc(phba->pport, 10247 LPFC_DISC_TRC_MBOX, 10248 "MBOX Send: cmd:x%x mb:x%x x%x", 10249 mbx_cmnd, mqe->un.mb_words[0], 10250 mqe->un.mb_words[1]); 10251 } 10252 } 10253 psli->slistat.mbox_cmd++; 10254 10255 /* Post the mailbox command to the port */ 10256 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10257 if (rc != MBX_SUCCESS) { 10258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10259 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10260 "cannot issue Data: x%x x%x\n", 10261 mboxq->vport ? mboxq->vport->vpi : 0, 10262 mboxq->u.mb.mbxCommand, 10263 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10264 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10265 psli->sli_flag, MBX_NOWAIT); 10266 goto out_not_finished; 10267 } 10268 10269 return rc; 10270 10271 out_not_finished: 10272 spin_lock_irqsave(&phba->hbalock, iflags); 10273 if (phba->sli.mbox_active) { 10274 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10275 __lpfc_mbox_cmpl_put(phba, mboxq); 10276 /* Release the token */ 10277 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10278 phba->sli.mbox_active = NULL; 10279 } 10280 spin_unlock_irqrestore(&phba->hbalock, iflags); 10281 10282 return MBX_NOT_FINISHED; 10283 } 10284 10285 /** 10286 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10287 * @phba: Pointer to HBA context object. 10288 * @pmbox: Pointer to mailbox object. 10289 * @flag: Flag indicating how the mailbox need to be processed. 10290 * 10291 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10292 * the API jump table function pointer from the lpfc_hba struct. 10293 * 10294 * Return codes the caller owns the mailbox command after the return of the 10295 * function. 10296 **/ 10297 int 10298 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10299 { 10300 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10301 } 10302 10303 /** 10304 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10305 * @phba: The hba struct for which this call is being executed. 10306 * @dev_grp: The HBA PCI-Device group number. 10307 * 10308 * This routine sets up the mbox interface API function jump table in @phba 10309 * struct. 10310 * Returns: 0 - success, -ENODEV - failure. 10311 **/ 10312 int 10313 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10314 { 10315 10316 switch (dev_grp) { 10317 case LPFC_PCI_DEV_LP: 10318 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10319 phba->lpfc_sli_handle_slow_ring_event = 10320 lpfc_sli_handle_slow_ring_event_s3; 10321 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10322 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10323 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10324 break; 10325 case LPFC_PCI_DEV_OC: 10326 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10327 phba->lpfc_sli_handle_slow_ring_event = 10328 lpfc_sli_handle_slow_ring_event_s4; 10329 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10330 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10331 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10332 break; 10333 default: 10334 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10335 "1420 Invalid HBA PCI-device group: 0x%x\n", 10336 dev_grp); 10337 return -ENODEV; 10338 } 10339 return 0; 10340 } 10341 10342 /** 10343 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10344 * @phba: Pointer to HBA context object. 10345 * @pring: Pointer to driver SLI ring object. 10346 * @piocb: Pointer to address of newly added command iocb. 10347 * 10348 * This function is called with hbalock held for SLI3 ports or 10349 * the ring lock held for SLI4 ports to add a command 10350 * iocb to the txq when SLI layer cannot submit the command iocb 10351 * to the ring. 10352 **/ 10353 void 10354 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10355 struct lpfc_iocbq *piocb) 10356 { 10357 if (phba->sli_rev == LPFC_SLI_REV4) 10358 lockdep_assert_held(&pring->ring_lock); 10359 else 10360 lockdep_assert_held(&phba->hbalock); 10361 /* Insert the caller's iocb in the txq tail for later processing. */ 10362 list_add_tail(&piocb->list, &pring->txq); 10363 } 10364 10365 /** 10366 * lpfc_sli_next_iocb - Get the next iocb in the txq 10367 * @phba: Pointer to HBA context object. 10368 * @pring: Pointer to driver SLI ring object. 10369 * @piocb: Pointer to address of newly added command iocb. 10370 * 10371 * This function is called with hbalock held before a new 10372 * iocb is submitted to the firmware. This function checks 10373 * txq to flush the iocbs in txq to Firmware before 10374 * submitting new iocbs to the Firmware. 10375 * If there are iocbs in the txq which need to be submitted 10376 * to firmware, lpfc_sli_next_iocb returns the first element 10377 * of the txq after dequeuing it from txq. 10378 * If there is no iocb in the txq then the function will return 10379 * *piocb and *piocb is set to NULL. Caller needs to check 10380 * *piocb to find if there are more commands in the txq. 10381 **/ 10382 static struct lpfc_iocbq * 10383 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10384 struct lpfc_iocbq **piocb) 10385 { 10386 struct lpfc_iocbq * nextiocb; 10387 10388 lockdep_assert_held(&phba->hbalock); 10389 10390 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10391 if (!nextiocb) { 10392 nextiocb = *piocb; 10393 *piocb = NULL; 10394 } 10395 10396 return nextiocb; 10397 } 10398 10399 /** 10400 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10401 * @phba: Pointer to HBA context object. 10402 * @ring_number: SLI ring number to issue iocb on. 10403 * @piocb: Pointer to command iocb. 10404 * @flag: Flag indicating if this command can be put into txq. 10405 * 10406 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10407 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10408 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10409 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10410 * this function allows only iocbs for posting buffers. This function finds 10411 * next available slot in the command ring and posts the command to the 10412 * available slot and writes the port attention register to request HBA start 10413 * processing new iocb. If there is no slot available in the ring and 10414 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10415 * the function returns IOCB_BUSY. 10416 * 10417 * This function is called with hbalock held. The function will return success 10418 * after it successfully submit the iocb to firmware or after adding to the 10419 * txq. 10420 **/ 10421 static int 10422 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10423 struct lpfc_iocbq *piocb, uint32_t flag) 10424 { 10425 struct lpfc_iocbq *nextiocb; 10426 IOCB_t *iocb; 10427 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10428 10429 lockdep_assert_held(&phba->hbalock); 10430 10431 if (piocb->cmd_cmpl && (!piocb->vport) && 10432 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10433 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10435 "1807 IOCB x%x failed. No vport\n", 10436 piocb->iocb.ulpCommand); 10437 dump_stack(); 10438 return IOCB_ERROR; 10439 } 10440 10441 10442 /* If the PCI channel is in offline state, do not post iocbs. */ 10443 if (unlikely(pci_channel_offline(phba->pcidev))) 10444 return IOCB_ERROR; 10445 10446 /* If HBA has a deferred error attention, fail the iocb. */ 10447 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10448 return IOCB_ERROR; 10449 10450 /* 10451 * We should never get an IOCB if we are in a < LINK_DOWN state 10452 */ 10453 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10454 return IOCB_ERROR; 10455 10456 /* 10457 * Check to see if we are blocking IOCB processing because of a 10458 * outstanding event. 10459 */ 10460 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10461 goto iocb_busy; 10462 10463 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10464 /* 10465 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10466 * can be issued if the link is not up. 10467 */ 10468 switch (piocb->iocb.ulpCommand) { 10469 case CMD_QUE_RING_BUF_CN: 10470 case CMD_QUE_RING_BUF64_CN: 10471 /* 10472 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10473 * completion, cmd_cmpl MUST be 0. 10474 */ 10475 if (piocb->cmd_cmpl) 10476 piocb->cmd_cmpl = NULL; 10477 fallthrough; 10478 case CMD_CREATE_XRI_CR: 10479 case CMD_CLOSE_XRI_CN: 10480 case CMD_CLOSE_XRI_CX: 10481 break; 10482 default: 10483 goto iocb_busy; 10484 } 10485 10486 /* 10487 * For FCP commands, we must be in a state where we can process link 10488 * attention events. 10489 */ 10490 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10491 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10492 goto iocb_busy; 10493 } 10494 10495 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10496 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10497 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10498 10499 if (iocb) 10500 lpfc_sli_update_ring(phba, pring); 10501 else 10502 lpfc_sli_update_full_ring(phba, pring); 10503 10504 if (!piocb) 10505 return IOCB_SUCCESS; 10506 10507 goto out_busy; 10508 10509 iocb_busy: 10510 pring->stats.iocb_cmd_delay++; 10511 10512 out_busy: 10513 10514 if (!(flag & SLI_IOCB_RET_IOCB)) { 10515 __lpfc_sli_ringtx_put(phba, pring, piocb); 10516 return IOCB_SUCCESS; 10517 } 10518 10519 return IOCB_BUSY; 10520 } 10521 10522 /** 10523 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10524 * @phba: Pointer to HBA context object. 10525 * @ring_number: SLI ring number to issue wqe on. 10526 * @piocb: Pointer to command iocb. 10527 * @flag: Flag indicating if this command can be put into txq. 10528 * 10529 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10530 * send an iocb command to an HBA with SLI-3 interface spec. 10531 * 10532 * This function takes the hbalock before invoking the lockless version. 10533 * The function will return success after it successfully submit the wqe to 10534 * firmware or after adding to the txq. 10535 **/ 10536 static int 10537 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10538 struct lpfc_iocbq *piocb, uint32_t flag) 10539 { 10540 unsigned long iflags; 10541 int rc; 10542 10543 spin_lock_irqsave(&phba->hbalock, iflags); 10544 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10545 spin_unlock_irqrestore(&phba->hbalock, iflags); 10546 10547 return rc; 10548 } 10549 10550 /** 10551 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10552 * @phba: Pointer to HBA context object. 10553 * @ring_number: SLI ring number to issue wqe on. 10554 * @piocb: Pointer to command iocb. 10555 * @flag: Flag indicating if this command can be put into txq. 10556 * 10557 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10558 * an wqe command to an HBA with SLI-4 interface spec. 10559 * 10560 * This function is a lockless version. The function will return success 10561 * after it successfully submit the wqe to firmware or after adding to the 10562 * txq. 10563 **/ 10564 static int 10565 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10566 struct lpfc_iocbq *piocb, uint32_t flag) 10567 { 10568 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10569 10570 lpfc_prep_embed_io(phba, lpfc_cmd); 10571 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10572 } 10573 10574 void 10575 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10576 { 10577 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10578 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10579 struct sli4_sge_le *sgl; 10580 u32 type_size; 10581 10582 /* 128 byte wqe support here */ 10583 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10584 10585 if (phba->fcp_embed_io) { 10586 struct fcp_cmnd *fcp_cmnd; 10587 u32 *ptr; 10588 10589 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10590 10591 /* Word 0-2 - FCP_CMND */ 10592 type_size = le32_to_cpu(sgl->sge_len); 10593 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10594 wqe->generic.bde.tus.w = type_size; 10595 wqe->generic.bde.addrHigh = 0; 10596 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10597 10598 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10599 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10600 10601 /* Word 18-29 FCP CMND Payload */ 10602 ptr = &wqe->words[18]; 10603 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10604 } else { 10605 /* Word 0-2 - Inline BDE */ 10606 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10607 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10608 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10609 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10610 10611 /* Word 10 */ 10612 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10613 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10614 } 10615 10616 /* add the VMID tags as per switch response */ 10617 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10618 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10619 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10620 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10621 (piocb->vmid_tag.cs_ctl_vmid)); 10622 } else if (phba->cfg_vmid_app_header) { 10623 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10624 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10625 wqe->words[31] = piocb->vmid_tag.app_id; 10626 } 10627 } 10628 } 10629 10630 /** 10631 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10632 * @phba: Pointer to HBA context object. 10633 * @ring_number: SLI ring number to issue iocb on. 10634 * @piocb: Pointer to command iocb. 10635 * @flag: Flag indicating if this command can be put into txq. 10636 * 10637 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10638 * an iocb command to an HBA with SLI-4 interface spec. 10639 * 10640 * This function is called with ringlock held. The function will return success 10641 * after it successfully submit the iocb to firmware or after adding to the 10642 * txq. 10643 **/ 10644 static int 10645 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10646 struct lpfc_iocbq *piocb, uint32_t flag) 10647 { 10648 struct lpfc_sglq *sglq; 10649 union lpfc_wqe128 *wqe; 10650 struct lpfc_queue *wq; 10651 struct lpfc_sli_ring *pring; 10652 u32 ulp_command = get_job_cmnd(phba, piocb); 10653 10654 /* Get the WQ */ 10655 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10656 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10657 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10658 } else { 10659 wq = phba->sli4_hba.els_wq; 10660 } 10661 10662 /* Get corresponding ring */ 10663 pring = wq->pring; 10664 10665 /* 10666 * The WQE can be either 64 or 128 bytes, 10667 */ 10668 10669 lockdep_assert_held(&pring->ring_lock); 10670 wqe = &piocb->wqe; 10671 if (piocb->sli4_xritag == NO_XRI) { 10672 if (ulp_command == CMD_ABORT_XRI_CX) 10673 sglq = NULL; 10674 else { 10675 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10676 if (!sglq) { 10677 if (!(flag & SLI_IOCB_RET_IOCB)) { 10678 __lpfc_sli_ringtx_put(phba, 10679 pring, 10680 piocb); 10681 return IOCB_SUCCESS; 10682 } else { 10683 return IOCB_BUSY; 10684 } 10685 } 10686 } 10687 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10688 /* These IO's already have an XRI and a mapped sgl. */ 10689 sglq = NULL; 10690 } 10691 else { 10692 /* 10693 * This is a continuation of a commandi,(CX) so this 10694 * sglq is on the active list 10695 */ 10696 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10697 if (!sglq) 10698 return IOCB_ERROR; 10699 } 10700 10701 if (sglq) { 10702 piocb->sli4_lxritag = sglq->sli4_lxritag; 10703 piocb->sli4_xritag = sglq->sli4_xritag; 10704 10705 /* ABTS sent by initiator to CT exchange, the 10706 * RX_ID field will be filled with the newly 10707 * allocated responder XRI. 10708 */ 10709 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10710 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10711 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10712 piocb->sli4_xritag); 10713 10714 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10715 piocb->sli4_xritag); 10716 10717 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10718 return IOCB_ERROR; 10719 } 10720 10721 if (lpfc_sli4_wq_put(wq, wqe)) 10722 return IOCB_ERROR; 10723 10724 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10725 10726 return 0; 10727 } 10728 10729 /* 10730 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10731 * 10732 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10733 * or IOCB for sli-3 function. 10734 * pointer from the lpfc_hba struct. 10735 * 10736 * Return codes: 10737 * IOCB_ERROR - Error 10738 * IOCB_SUCCESS - Success 10739 * IOCB_BUSY - Busy 10740 **/ 10741 int 10742 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10743 struct lpfc_iocbq *piocb, uint32_t flag) 10744 { 10745 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10746 } 10747 10748 /* 10749 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10750 * 10751 * This routine wraps the actual lockless version for issusing IOCB function 10752 * pointer from the lpfc_hba struct. 10753 * 10754 * Return codes: 10755 * IOCB_ERROR - Error 10756 * IOCB_SUCCESS - Success 10757 * IOCB_BUSY - Busy 10758 **/ 10759 int 10760 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10761 struct lpfc_iocbq *piocb, uint32_t flag) 10762 { 10763 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10764 } 10765 10766 static void 10767 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10768 struct lpfc_vport *vport, 10769 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10770 u32 elscmd, u8 tmo, u8 expect_rsp) 10771 { 10772 struct lpfc_hba *phba = vport->phba; 10773 IOCB_t *cmd; 10774 10775 cmd = &cmdiocbq->iocb; 10776 memset(cmd, 0, sizeof(*cmd)); 10777 10778 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10779 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10780 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10781 10782 if (expect_rsp) { 10783 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10784 cmd->un.elsreq64.remoteID = did; /* DID */ 10785 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10786 cmd->ulpTimeout = tmo; 10787 } else { 10788 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10789 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10790 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10791 cmd->ulpPU = PARM_NPIV_DID; 10792 } 10793 cmd->ulpBdeCount = 1; 10794 cmd->ulpLe = 1; 10795 cmd->ulpClass = CLASS3; 10796 10797 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10798 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10799 if (expect_rsp) { 10800 cmd->un.elsreq64.myID = vport->fc_myDID; 10801 10802 /* For ELS_REQUEST64_CR, use the VPI by default */ 10803 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10804 } 10805 10806 cmd->ulpCt_h = 0; 10807 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10808 if (elscmd == ELS_CMD_ECHO) 10809 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10810 else 10811 cmd->ulpCt_l = 1; /* context = VPI */ 10812 } 10813 } 10814 10815 static void 10816 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10817 struct lpfc_vport *vport, 10818 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10819 u32 elscmd, u8 tmo, u8 expect_rsp) 10820 { 10821 struct lpfc_hba *phba = vport->phba; 10822 union lpfc_wqe128 *wqe; 10823 struct ulp_bde64_le *bde; 10824 u8 els_id; 10825 10826 wqe = &cmdiocbq->wqe; 10827 memset(wqe, 0, sizeof(*wqe)); 10828 10829 /* Word 0 - 2 BDE */ 10830 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10831 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10832 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10833 bde->type_size = cpu_to_le32(cmd_size); 10834 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10835 10836 if (expect_rsp) { 10837 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10838 10839 /* Transfer length */ 10840 wqe->els_req.payload_len = cmd_size; 10841 wqe->els_req.max_response_payload_len = FCELSSIZE; 10842 10843 /* DID */ 10844 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10845 10846 /* Word 11 - ELS_ID */ 10847 switch (elscmd) { 10848 case ELS_CMD_PLOGI: 10849 els_id = LPFC_ELS_ID_PLOGI; 10850 break; 10851 case ELS_CMD_FLOGI: 10852 els_id = LPFC_ELS_ID_FLOGI; 10853 break; 10854 case ELS_CMD_LOGO: 10855 els_id = LPFC_ELS_ID_LOGO; 10856 break; 10857 case ELS_CMD_FDISC: 10858 if (!vport->fc_myDID) { 10859 els_id = LPFC_ELS_ID_FDISC; 10860 break; 10861 } 10862 fallthrough; 10863 default: 10864 els_id = LPFC_ELS_ID_DEFAULT; 10865 break; 10866 } 10867 10868 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10869 } else { 10870 /* DID */ 10871 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10872 10873 /* Transfer length */ 10874 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10875 10876 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10877 CMD_XMIT_ELS_RSP64_WQE); 10878 } 10879 10880 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10881 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10882 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10883 10884 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10885 * For SLI4, since the driver controls VPIs we also want to include 10886 * all ELS pt2pt protocol traffic as well. 10887 */ 10888 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10889 test_bit(FC_PT2PT, &vport->fc_flag)) { 10890 if (expect_rsp) { 10891 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10892 10893 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10894 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10895 phba->vpi_ids[vport->vpi]); 10896 } 10897 10898 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10899 if (elscmd == ELS_CMD_ECHO) 10900 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10901 else 10902 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10903 } 10904 } 10905 10906 void 10907 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10908 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10909 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10910 u8 expect_rsp) 10911 { 10912 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10913 elscmd, tmo, expect_rsp); 10914 } 10915 10916 static void 10917 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10918 u16 rpi, u32 num_entry, u8 tmo) 10919 { 10920 IOCB_t *cmd; 10921 10922 cmd = &cmdiocbq->iocb; 10923 memset(cmd, 0, sizeof(*cmd)); 10924 10925 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10926 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10927 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10928 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10929 10930 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10931 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10932 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10933 10934 cmd->ulpContext = rpi; 10935 cmd->ulpClass = CLASS3; 10936 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10937 cmd->ulpBdeCount = 1; 10938 cmd->ulpLe = 1; 10939 cmd->ulpOwner = OWN_CHIP; 10940 cmd->ulpTimeout = tmo; 10941 } 10942 10943 static void 10944 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10945 u16 rpi, u32 num_entry, u8 tmo) 10946 { 10947 union lpfc_wqe128 *cmdwqe; 10948 struct ulp_bde64_le *bde, *bpl; 10949 u32 xmit_len = 0, total_len = 0, size, type, i; 10950 10951 cmdwqe = &cmdiocbq->wqe; 10952 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10953 10954 /* Calculate total_len and xmit_len */ 10955 bpl = (struct ulp_bde64_le *)bmp->virt; 10956 for (i = 0; i < num_entry; i++) { 10957 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10958 total_len += size; 10959 } 10960 for (i = 0; i < num_entry; i++) { 10961 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10962 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10963 if (type != ULP_BDE64_TYPE_BDE_64) 10964 break; 10965 xmit_len += size; 10966 } 10967 10968 /* Words 0 - 2 */ 10969 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10970 bde->addr_low = bpl->addr_low; 10971 bde->addr_high = bpl->addr_high; 10972 bde->type_size = cpu_to_le32(xmit_len); 10973 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10974 10975 /* Word 3 */ 10976 cmdwqe->gen_req.request_payload_len = xmit_len; 10977 10978 /* Word 5 */ 10979 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10980 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10981 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10982 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10983 10984 /* Word 6 */ 10985 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10986 10987 /* Word 7 */ 10988 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10989 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10990 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10991 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10992 10993 /* Word 12 */ 10994 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10995 } 10996 10997 void 10998 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10999 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11000 { 11001 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11002 } 11003 11004 static void 11005 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11006 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11007 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11008 { 11009 IOCB_t *icmd; 11010 11011 icmd = &cmdiocbq->iocb; 11012 memset(icmd, 0, sizeof(*icmd)); 11013 11014 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11015 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11016 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11017 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11018 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11019 if (last_seq) 11020 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11021 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11022 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11023 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11024 11025 icmd->ulpBdeCount = 1; 11026 icmd->ulpLe = 1; 11027 icmd->ulpClass = CLASS3; 11028 11029 switch (cr_cx_cmd) { 11030 case CMD_XMIT_SEQUENCE64_CR: 11031 icmd->ulpContext = rpi; 11032 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11033 break; 11034 case CMD_XMIT_SEQUENCE64_CX: 11035 icmd->ulpContext = ox_id; 11036 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11037 break; 11038 default: 11039 break; 11040 } 11041 } 11042 11043 static void 11044 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11045 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11046 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11047 { 11048 union lpfc_wqe128 *wqe; 11049 struct ulp_bde64 *bpl; 11050 11051 wqe = &cmdiocbq->wqe; 11052 memset(wqe, 0, sizeof(*wqe)); 11053 11054 /* Words 0 - 2 */ 11055 bpl = (struct ulp_bde64 *)bmp->virt; 11056 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11057 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11058 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11059 11060 /* Word 5 */ 11061 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11062 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11063 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11064 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11065 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11066 11067 /* Word 6 */ 11068 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11069 11070 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11071 CMD_XMIT_SEQUENCE64_WQE); 11072 11073 /* Word 7 */ 11074 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11075 11076 /* Word 9 */ 11077 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11078 11079 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 11080 /* Word 10 */ 11081 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) { 11082 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1); 11083 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1); 11084 wqe->words[31] = LOOPBACK_SRC_APPID; 11085 } 11086 11087 /* Word 12 */ 11088 wqe->xmit_sequence.xmit_len = full_size; 11089 } 11090 else 11091 wqe->xmit_sequence.xmit_len = 11092 wqe->xmit_sequence.bde.tus.f.bdeSize; 11093 } 11094 11095 void 11096 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11097 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11098 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11099 { 11100 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11101 rctl, last_seq, cr_cx_cmd); 11102 } 11103 11104 static void 11105 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11106 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11107 bool wqec) 11108 { 11109 IOCB_t *icmd = NULL; 11110 11111 icmd = &cmdiocbq->iocb; 11112 memset(icmd, 0, sizeof(*icmd)); 11113 11114 /* Word 5 */ 11115 icmd->un.acxri.abortContextTag = ulp_context; 11116 icmd->un.acxri.abortIoTag = iotag; 11117 11118 if (ia) { 11119 /* Word 7 */ 11120 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11121 } else { 11122 /* Word 3 */ 11123 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11124 11125 /* Word 7 */ 11126 icmd->ulpClass = ulp_class; 11127 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11128 } 11129 11130 /* Word 7 */ 11131 icmd->ulpLe = 1; 11132 } 11133 11134 static void 11135 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11136 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11137 bool wqec) 11138 { 11139 union lpfc_wqe128 *wqe; 11140 11141 wqe = &cmdiocbq->wqe; 11142 memset(wqe, 0, sizeof(*wqe)); 11143 11144 /* Word 3 */ 11145 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11146 if (ia) 11147 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11148 else 11149 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11150 11151 /* Word 7 */ 11152 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11153 11154 /* Word 8 */ 11155 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11156 11157 /* Word 9 */ 11158 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11159 11160 /* Word 10 */ 11161 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11162 11163 /* Word 11 */ 11164 if (wqec) 11165 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11166 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11167 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11168 } 11169 11170 void 11171 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11172 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11173 bool ia, bool wqec) 11174 { 11175 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11176 cqid, ia, wqec); 11177 } 11178 11179 /** 11180 * lpfc_sli_api_table_setup - Set up sli api function jump table 11181 * @phba: The hba struct for which this call is being executed. 11182 * @dev_grp: The HBA PCI-Device group number. 11183 * 11184 * This routine sets up the SLI interface API function jump table in @phba 11185 * struct. 11186 * Returns: 0 - success, -ENODEV - failure. 11187 **/ 11188 int 11189 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11190 { 11191 11192 switch (dev_grp) { 11193 case LPFC_PCI_DEV_LP: 11194 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11195 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11196 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11197 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11198 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11199 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11200 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11201 break; 11202 case LPFC_PCI_DEV_OC: 11203 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11204 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11205 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11206 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11207 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11208 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11209 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11210 break; 11211 default: 11212 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11213 "1419 Invalid HBA PCI-device group: 0x%x\n", 11214 dev_grp); 11215 return -ENODEV; 11216 } 11217 return 0; 11218 } 11219 11220 /** 11221 * lpfc_sli4_calc_ring - Calculates which ring to use 11222 * @phba: Pointer to HBA context object. 11223 * @piocb: Pointer to command iocb. 11224 * 11225 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11226 * hba_wqidx, thus we need to calculate the corresponding ring. 11227 * Since ABORTS must go on the same WQ of the command they are 11228 * aborting, we use command's hba_wqidx. 11229 */ 11230 struct lpfc_sli_ring * 11231 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11232 { 11233 struct lpfc_io_buf *lpfc_cmd; 11234 11235 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11236 if (unlikely(!phba->sli4_hba.hdwq)) 11237 return NULL; 11238 /* 11239 * for abort iocb hba_wqidx should already 11240 * be setup based on what work queue we used. 11241 */ 11242 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11243 lpfc_cmd = piocb->io_buf; 11244 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11245 } 11246 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11247 } else { 11248 if (unlikely(!phba->sli4_hba.els_wq)) 11249 return NULL; 11250 piocb->hba_wqidx = 0; 11251 return phba->sli4_hba.els_wq->pring; 11252 } 11253 } 11254 11255 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11256 { 11257 struct lpfc_hba *phba = eq->phba; 11258 11259 /* 11260 * Unlocking an irq is one of the entry point to check 11261 * for re-schedule, but we are good for io submission 11262 * path as midlayer does a get_cpu to glue us in. Flush 11263 * out the invalidate queue so we can see the updated 11264 * value for flag. 11265 */ 11266 smp_rmb(); 11267 11268 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11269 /* We will not likely get the completion for the caller 11270 * during this iteration but i guess that's fine. 11271 * Future io's coming on this eq should be able to 11272 * pick it up. As for the case of single io's, they 11273 * will be handled through a sched from polling timer 11274 * function which is currently triggered every 1msec. 11275 */ 11276 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11277 LPFC_QUEUE_WORK); 11278 } 11279 11280 /** 11281 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11282 * @phba: Pointer to HBA context object. 11283 * @ring_number: Ring number 11284 * @piocb: Pointer to command iocb. 11285 * @flag: Flag indicating if this command can be put into txq. 11286 * 11287 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11288 * function. This function gets the hbalock and calls 11289 * __lpfc_sli_issue_iocb function and will return the error returned 11290 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11291 * functions which do not hold hbalock. 11292 **/ 11293 int 11294 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11295 struct lpfc_iocbq *piocb, uint32_t flag) 11296 { 11297 struct lpfc_sli_ring *pring; 11298 struct lpfc_queue *eq; 11299 unsigned long iflags; 11300 int rc; 11301 11302 /* If the PCI channel is in offline state, do not post iocbs. */ 11303 if (unlikely(pci_channel_offline(phba->pcidev))) 11304 return IOCB_ERROR; 11305 11306 if (phba->sli_rev == LPFC_SLI_REV4) { 11307 lpfc_sli_prep_wqe(phba, piocb); 11308 11309 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11310 11311 pring = lpfc_sli4_calc_ring(phba, piocb); 11312 if (unlikely(pring == NULL)) 11313 return IOCB_ERROR; 11314 11315 spin_lock_irqsave(&pring->ring_lock, iflags); 11316 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11317 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11318 11319 lpfc_sli4_poll_eq(eq); 11320 } else { 11321 /* For now, SLI2/3 will still use hbalock */ 11322 spin_lock_irqsave(&phba->hbalock, iflags); 11323 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11324 spin_unlock_irqrestore(&phba->hbalock, iflags); 11325 } 11326 return rc; 11327 } 11328 11329 /** 11330 * lpfc_extra_ring_setup - Extra ring setup function 11331 * @phba: Pointer to HBA context object. 11332 * 11333 * This function is called while driver attaches with the 11334 * HBA to setup the extra ring. The extra ring is used 11335 * only when driver needs to support target mode functionality 11336 * or IP over FC functionalities. 11337 * 11338 * This function is called with no lock held. SLI3 only. 11339 **/ 11340 static int 11341 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11342 { 11343 struct lpfc_sli *psli; 11344 struct lpfc_sli_ring *pring; 11345 11346 psli = &phba->sli; 11347 11348 /* Adjust cmd/rsp ring iocb entries more evenly */ 11349 11350 /* Take some away from the FCP ring */ 11351 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11352 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11353 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11354 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11355 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11356 11357 /* and give them to the extra ring */ 11358 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11359 11360 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11361 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11362 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11363 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11364 11365 /* Setup default profile for this ring */ 11366 pring->iotag_max = 4096; 11367 pring->num_mask = 1; 11368 pring->prt[0].profile = 0; /* Mask 0 */ 11369 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11370 pring->prt[0].type = phba->cfg_multi_ring_type; 11371 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11372 return 0; 11373 } 11374 11375 static void 11376 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11377 struct lpfc_nodelist *ndlp) 11378 { 11379 unsigned long iflags; 11380 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11381 11382 /* Hold a node reference for outstanding queued work */ 11383 if (!lpfc_nlp_get(ndlp)) 11384 return; 11385 11386 spin_lock_irqsave(&phba->hbalock, iflags); 11387 if (!list_empty(&evtp->evt_listp)) { 11388 spin_unlock_irqrestore(&phba->hbalock, iflags); 11389 lpfc_nlp_put(ndlp); 11390 return; 11391 } 11392 11393 evtp->evt_arg1 = ndlp; 11394 evtp->evt = LPFC_EVT_RECOVER_PORT; 11395 list_add_tail(&evtp->evt_listp, &phba->work_list); 11396 spin_unlock_irqrestore(&phba->hbalock, iflags); 11397 11398 lpfc_worker_wake_up(phba); 11399 } 11400 11401 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11402 * @phba: Pointer to HBA context object. 11403 * @iocbq: Pointer to iocb object. 11404 * 11405 * The async_event handler calls this routine when it receives 11406 * an ASYNC_STATUS_CN event from the port. The port generates 11407 * this event when an Abort Sequence request to an rport fails 11408 * twice in succession. The abort could be originated by the 11409 * driver or by the port. The ABTS could have been for an ELS 11410 * or FCP IO. The port only generates this event when an ABTS 11411 * fails to complete after one retry. 11412 */ 11413 static void 11414 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11415 struct lpfc_iocbq *iocbq) 11416 { 11417 struct lpfc_nodelist *ndlp = NULL; 11418 uint16_t rpi = 0, vpi = 0; 11419 struct lpfc_vport *vport = NULL; 11420 11421 /* The rpi in the ulpContext is vport-sensitive. */ 11422 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11423 rpi = iocbq->iocb.ulpContext; 11424 11425 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11426 "3092 Port generated ABTS async event " 11427 "on vpi %d rpi %d status 0x%x\n", 11428 vpi, rpi, iocbq->iocb.ulpStatus); 11429 11430 vport = lpfc_find_vport_by_vpid(phba, vpi); 11431 if (!vport) 11432 goto err_exit; 11433 ndlp = lpfc_findnode_rpi(vport, rpi); 11434 if (!ndlp) 11435 goto err_exit; 11436 11437 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11438 lpfc_sli_abts_recover_port(vport, ndlp); 11439 return; 11440 11441 err_exit: 11442 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11443 "3095 Event Context not found, no " 11444 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11445 vpi, rpi, iocbq->iocb.ulpStatus, 11446 iocbq->iocb.ulpContext); 11447 } 11448 11449 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11450 * @phba: pointer to HBA context object. 11451 * @ndlp: nodelist pointer for the impacted rport. 11452 * @axri: pointer to the wcqe containing the failed exchange. 11453 * 11454 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11455 * port. The port generates this event when an abort exchange request to an 11456 * rport fails twice in succession with no reply. The abort could be originated 11457 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11458 */ 11459 void 11460 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11461 struct lpfc_nodelist *ndlp, 11462 struct sli4_wcqe_xri_aborted *axri) 11463 { 11464 uint32_t ext_status = 0; 11465 11466 if (!ndlp) { 11467 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11468 "3115 Node Context not found, driver " 11469 "ignoring abts err event\n"); 11470 return; 11471 } 11472 11473 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11474 "3116 Port generated FCP XRI ABORT event on " 11475 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11476 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11477 bf_get(lpfc_wcqe_xa_xri, axri), 11478 bf_get(lpfc_wcqe_xa_status, axri), 11479 axri->parameter); 11480 11481 /* 11482 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11483 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11484 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11485 */ 11486 ext_status = axri->parameter & IOERR_PARAM_MASK; 11487 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11488 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11489 lpfc_sli_post_recovery_event(phba, ndlp); 11490 } 11491 11492 /** 11493 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11494 * @phba: Pointer to HBA context object. 11495 * @pring: Pointer to driver SLI ring object. 11496 * @iocbq: Pointer to iocb object. 11497 * 11498 * This function is called by the slow ring event handler 11499 * function when there is an ASYNC event iocb in the ring. 11500 * This function is called with no lock held. 11501 * Currently this function handles only temperature related 11502 * ASYNC events. The function decodes the temperature sensor 11503 * event message and posts events for the management applications. 11504 **/ 11505 static void 11506 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11507 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11508 { 11509 IOCB_t *icmd; 11510 uint16_t evt_code; 11511 struct temp_event temp_event_data; 11512 struct Scsi_Host *shost; 11513 uint32_t *iocb_w; 11514 11515 icmd = &iocbq->iocb; 11516 evt_code = icmd->un.asyncstat.evt_code; 11517 11518 switch (evt_code) { 11519 case ASYNC_TEMP_WARN: 11520 case ASYNC_TEMP_SAFE: 11521 temp_event_data.data = (uint32_t) icmd->ulpContext; 11522 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11523 if (evt_code == ASYNC_TEMP_WARN) { 11524 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11525 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11526 "0347 Adapter is very hot, please take " 11527 "corrective action. temperature : %d Celsius\n", 11528 (uint32_t) icmd->ulpContext); 11529 } else { 11530 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11532 "0340 Adapter temperature is OK now. " 11533 "temperature : %d Celsius\n", 11534 (uint32_t) icmd->ulpContext); 11535 } 11536 11537 /* Send temperature change event to applications */ 11538 shost = lpfc_shost_from_vport(phba->pport); 11539 fc_host_post_vendor_event(shost, fc_get_event_number(), 11540 sizeof(temp_event_data), (char *) &temp_event_data, 11541 LPFC_NL_VENDOR_ID); 11542 break; 11543 case ASYNC_STATUS_CN: 11544 lpfc_sli_abts_err_handler(phba, iocbq); 11545 break; 11546 default: 11547 iocb_w = (uint32_t *) icmd; 11548 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11549 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11550 " evt_code 0x%x\n" 11551 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11552 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11553 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11554 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11555 pring->ringno, icmd->un.asyncstat.evt_code, 11556 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11557 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11558 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11559 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11560 11561 break; 11562 } 11563 } 11564 11565 11566 /** 11567 * lpfc_sli4_setup - SLI ring setup function 11568 * @phba: Pointer to HBA context object. 11569 * 11570 * lpfc_sli_setup sets up rings of the SLI interface with 11571 * number of iocbs per ring and iotags. This function is 11572 * called while driver attach to the HBA and before the 11573 * interrupts are enabled. So there is no need for locking. 11574 * 11575 * This function always returns 0. 11576 **/ 11577 int 11578 lpfc_sli4_setup(struct lpfc_hba *phba) 11579 { 11580 struct lpfc_sli_ring *pring; 11581 11582 pring = phba->sli4_hba.els_wq->pring; 11583 pring->num_mask = LPFC_MAX_RING_MASK; 11584 pring->prt[0].profile = 0; /* Mask 0 */ 11585 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11586 pring->prt[0].type = FC_TYPE_ELS; 11587 pring->prt[0].lpfc_sli_rcv_unsol_event = 11588 lpfc_els_unsol_event; 11589 pring->prt[1].profile = 0; /* Mask 1 */ 11590 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11591 pring->prt[1].type = FC_TYPE_ELS; 11592 pring->prt[1].lpfc_sli_rcv_unsol_event = 11593 lpfc_els_unsol_event; 11594 pring->prt[2].profile = 0; /* Mask 2 */ 11595 /* NameServer Inquiry */ 11596 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11597 /* NameServer */ 11598 pring->prt[2].type = FC_TYPE_CT; 11599 pring->prt[2].lpfc_sli_rcv_unsol_event = 11600 lpfc_ct_unsol_event; 11601 pring->prt[3].profile = 0; /* Mask 3 */ 11602 /* NameServer response */ 11603 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11604 /* NameServer */ 11605 pring->prt[3].type = FC_TYPE_CT; 11606 pring->prt[3].lpfc_sli_rcv_unsol_event = 11607 lpfc_ct_unsol_event; 11608 return 0; 11609 } 11610 11611 /** 11612 * lpfc_sli_setup - SLI ring setup function 11613 * @phba: Pointer to HBA context object. 11614 * 11615 * lpfc_sli_setup sets up rings of the SLI interface with 11616 * number of iocbs per ring and iotags. This function is 11617 * called while driver attach to the HBA and before the 11618 * interrupts are enabled. So there is no need for locking. 11619 * 11620 * This function always returns 0. SLI3 only. 11621 **/ 11622 int 11623 lpfc_sli_setup(struct lpfc_hba *phba) 11624 { 11625 int i, totiocbsize = 0; 11626 struct lpfc_sli *psli = &phba->sli; 11627 struct lpfc_sli_ring *pring; 11628 11629 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11630 psli->sli_flag = 0; 11631 11632 psli->iocbq_lookup = NULL; 11633 psli->iocbq_lookup_len = 0; 11634 psli->last_iotag = 0; 11635 11636 for (i = 0; i < psli->num_rings; i++) { 11637 pring = &psli->sli3_ring[i]; 11638 switch (i) { 11639 case LPFC_FCP_RING: /* ring 0 - FCP */ 11640 /* numCiocb and numRiocb are used in config_port */ 11641 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11642 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11643 pring->sli.sli3.numCiocb += 11644 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11645 pring->sli.sli3.numRiocb += 11646 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11647 pring->sli.sli3.numCiocb += 11648 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11649 pring->sli.sli3.numRiocb += 11650 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11651 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11652 SLI3_IOCB_CMD_SIZE : 11653 SLI2_IOCB_CMD_SIZE; 11654 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11655 SLI3_IOCB_RSP_SIZE : 11656 SLI2_IOCB_RSP_SIZE; 11657 pring->iotag_ctr = 0; 11658 pring->iotag_max = 11659 (phba->cfg_hba_queue_depth * 2); 11660 pring->fast_iotag = pring->iotag_max; 11661 pring->num_mask = 0; 11662 break; 11663 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11664 /* numCiocb and numRiocb are used in config_port */ 11665 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11666 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11667 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11668 SLI3_IOCB_CMD_SIZE : 11669 SLI2_IOCB_CMD_SIZE; 11670 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11671 SLI3_IOCB_RSP_SIZE : 11672 SLI2_IOCB_RSP_SIZE; 11673 pring->iotag_max = phba->cfg_hba_queue_depth; 11674 pring->num_mask = 0; 11675 break; 11676 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11677 /* numCiocb and numRiocb are used in config_port */ 11678 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11679 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11680 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11681 SLI3_IOCB_CMD_SIZE : 11682 SLI2_IOCB_CMD_SIZE; 11683 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11684 SLI3_IOCB_RSP_SIZE : 11685 SLI2_IOCB_RSP_SIZE; 11686 pring->fast_iotag = 0; 11687 pring->iotag_ctr = 0; 11688 pring->iotag_max = 4096; 11689 pring->lpfc_sli_rcv_async_status = 11690 lpfc_sli_async_event_handler; 11691 pring->num_mask = LPFC_MAX_RING_MASK; 11692 pring->prt[0].profile = 0; /* Mask 0 */ 11693 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11694 pring->prt[0].type = FC_TYPE_ELS; 11695 pring->prt[0].lpfc_sli_rcv_unsol_event = 11696 lpfc_els_unsol_event; 11697 pring->prt[1].profile = 0; /* Mask 1 */ 11698 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11699 pring->prt[1].type = FC_TYPE_ELS; 11700 pring->prt[1].lpfc_sli_rcv_unsol_event = 11701 lpfc_els_unsol_event; 11702 pring->prt[2].profile = 0; /* Mask 2 */ 11703 /* NameServer Inquiry */ 11704 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11705 /* NameServer */ 11706 pring->prt[2].type = FC_TYPE_CT; 11707 pring->prt[2].lpfc_sli_rcv_unsol_event = 11708 lpfc_ct_unsol_event; 11709 pring->prt[3].profile = 0; /* Mask 3 */ 11710 /* NameServer response */ 11711 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11712 /* NameServer */ 11713 pring->prt[3].type = FC_TYPE_CT; 11714 pring->prt[3].lpfc_sli_rcv_unsol_event = 11715 lpfc_ct_unsol_event; 11716 break; 11717 } 11718 totiocbsize += (pring->sli.sli3.numCiocb * 11719 pring->sli.sli3.sizeCiocb) + 11720 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11721 } 11722 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11723 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11724 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11725 "SLI2 SLIM Data: x%x x%lx\n", 11726 phba->brd_no, totiocbsize, 11727 (unsigned long) MAX_SLIM_IOCB_SIZE); 11728 } 11729 if (phba->cfg_multi_ring_support == 2) 11730 lpfc_extra_ring_setup(phba); 11731 11732 return 0; 11733 } 11734 11735 /** 11736 * lpfc_sli4_queue_init - Queue initialization function 11737 * @phba: Pointer to HBA context object. 11738 * 11739 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11740 * ring. This function also initializes ring indices of each ring. 11741 * This function is called during the initialization of the SLI 11742 * interface of an HBA. 11743 * This function is called with no lock held and always returns 11744 * 1. 11745 **/ 11746 void 11747 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11748 { 11749 struct lpfc_sli *psli; 11750 struct lpfc_sli_ring *pring; 11751 int i; 11752 11753 psli = &phba->sli; 11754 spin_lock_irq(&phba->hbalock); 11755 INIT_LIST_HEAD(&psli->mboxq); 11756 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11757 /* Initialize list headers for txq and txcmplq as double linked lists */ 11758 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11759 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11760 pring->flag = 0; 11761 pring->ringno = LPFC_FCP_RING; 11762 pring->txcmplq_cnt = 0; 11763 INIT_LIST_HEAD(&pring->txq); 11764 INIT_LIST_HEAD(&pring->txcmplq); 11765 INIT_LIST_HEAD(&pring->iocb_continueq); 11766 spin_lock_init(&pring->ring_lock); 11767 } 11768 pring = phba->sli4_hba.els_wq->pring; 11769 pring->flag = 0; 11770 pring->ringno = LPFC_ELS_RING; 11771 pring->txcmplq_cnt = 0; 11772 INIT_LIST_HEAD(&pring->txq); 11773 INIT_LIST_HEAD(&pring->txcmplq); 11774 INIT_LIST_HEAD(&pring->iocb_continueq); 11775 spin_lock_init(&pring->ring_lock); 11776 11777 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11778 pring = phba->sli4_hba.nvmels_wq->pring; 11779 pring->flag = 0; 11780 pring->ringno = LPFC_ELS_RING; 11781 pring->txcmplq_cnt = 0; 11782 INIT_LIST_HEAD(&pring->txq); 11783 INIT_LIST_HEAD(&pring->txcmplq); 11784 INIT_LIST_HEAD(&pring->iocb_continueq); 11785 spin_lock_init(&pring->ring_lock); 11786 } 11787 11788 spin_unlock_irq(&phba->hbalock); 11789 } 11790 11791 /** 11792 * lpfc_sli_queue_init - Queue initialization function 11793 * @phba: Pointer to HBA context object. 11794 * 11795 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11796 * ring. This function also initializes ring indices of each ring. 11797 * This function is called during the initialization of the SLI 11798 * interface of an HBA. 11799 * This function is called with no lock held and always returns 11800 * 1. 11801 **/ 11802 void 11803 lpfc_sli_queue_init(struct lpfc_hba *phba) 11804 { 11805 struct lpfc_sli *psli; 11806 struct lpfc_sli_ring *pring; 11807 int i; 11808 11809 psli = &phba->sli; 11810 spin_lock_irq(&phba->hbalock); 11811 INIT_LIST_HEAD(&psli->mboxq); 11812 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11813 /* Initialize list headers for txq and txcmplq as double linked lists */ 11814 for (i = 0; i < psli->num_rings; i++) { 11815 pring = &psli->sli3_ring[i]; 11816 pring->ringno = i; 11817 pring->sli.sli3.next_cmdidx = 0; 11818 pring->sli.sli3.local_getidx = 0; 11819 pring->sli.sli3.cmdidx = 0; 11820 INIT_LIST_HEAD(&pring->iocb_continueq); 11821 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11822 INIT_LIST_HEAD(&pring->postbufq); 11823 pring->flag = 0; 11824 INIT_LIST_HEAD(&pring->txq); 11825 INIT_LIST_HEAD(&pring->txcmplq); 11826 spin_lock_init(&pring->ring_lock); 11827 } 11828 spin_unlock_irq(&phba->hbalock); 11829 } 11830 11831 /** 11832 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11833 * @phba: Pointer to HBA context object. 11834 * 11835 * This routine flushes the mailbox command subsystem. It will unconditionally 11836 * flush all the mailbox commands in the three possible stages in the mailbox 11837 * command sub-system: pending mailbox command queue; the outstanding mailbox 11838 * command; and completed mailbox command queue. It is caller's responsibility 11839 * to make sure that the driver is in the proper state to flush the mailbox 11840 * command sub-system. Namely, the posting of mailbox commands into the 11841 * pending mailbox command queue from the various clients must be stopped; 11842 * either the HBA is in a state that it will never works on the outstanding 11843 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11844 * mailbox command has been completed. 11845 **/ 11846 static void 11847 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11848 { 11849 LIST_HEAD(completions); 11850 struct lpfc_sli *psli = &phba->sli; 11851 LPFC_MBOXQ_t *pmb; 11852 unsigned long iflag; 11853 11854 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11855 local_bh_disable(); 11856 11857 /* Flush all the mailbox commands in the mbox system */ 11858 spin_lock_irqsave(&phba->hbalock, iflag); 11859 11860 /* The pending mailbox command queue */ 11861 list_splice_init(&phba->sli.mboxq, &completions); 11862 /* The outstanding active mailbox command */ 11863 if (psli->mbox_active) { 11864 list_add_tail(&psli->mbox_active->list, &completions); 11865 psli->mbox_active = NULL; 11866 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11867 } 11868 /* The completed mailbox command queue */ 11869 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11870 spin_unlock_irqrestore(&phba->hbalock, iflag); 11871 11872 /* Enable softirqs again, done with phba->hbalock */ 11873 local_bh_enable(); 11874 11875 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11876 while (!list_empty(&completions)) { 11877 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11878 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11879 if (pmb->mbox_cmpl) 11880 pmb->mbox_cmpl(phba, pmb); 11881 } 11882 } 11883 11884 /** 11885 * lpfc_sli_host_down - Vport cleanup function 11886 * @vport: Pointer to virtual port object. 11887 * 11888 * lpfc_sli_host_down is called to clean up the resources 11889 * associated with a vport before destroying virtual 11890 * port data structures. 11891 * This function does following operations: 11892 * - Free discovery resources associated with this virtual 11893 * port. 11894 * - Free iocbs associated with this virtual port in 11895 * the txq. 11896 * - Send abort for all iocb commands associated with this 11897 * vport in txcmplq. 11898 * 11899 * This function is called with no lock held and always returns 1. 11900 **/ 11901 int 11902 lpfc_sli_host_down(struct lpfc_vport *vport) 11903 { 11904 LIST_HEAD(completions); 11905 struct lpfc_hba *phba = vport->phba; 11906 struct lpfc_sli *psli = &phba->sli; 11907 struct lpfc_queue *qp = NULL; 11908 struct lpfc_sli_ring *pring; 11909 struct lpfc_iocbq *iocb, *next_iocb; 11910 int i; 11911 unsigned long flags = 0; 11912 uint16_t prev_pring_flag; 11913 11914 lpfc_cleanup_discovery_resources(vport); 11915 11916 spin_lock_irqsave(&phba->hbalock, flags); 11917 11918 /* 11919 * Error everything on the txq since these iocbs 11920 * have not been given to the FW yet. 11921 * Also issue ABTS for everything on the txcmplq 11922 */ 11923 if (phba->sli_rev != LPFC_SLI_REV4) { 11924 for (i = 0; i < psli->num_rings; i++) { 11925 pring = &psli->sli3_ring[i]; 11926 prev_pring_flag = pring->flag; 11927 /* Only slow rings */ 11928 if (pring->ringno == LPFC_ELS_RING) { 11929 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11930 /* Set the lpfc data pending flag */ 11931 set_bit(LPFC_DATA_READY, &phba->data_flags); 11932 } 11933 list_for_each_entry_safe(iocb, next_iocb, 11934 &pring->txq, list) { 11935 if (iocb->vport != vport) 11936 continue; 11937 list_move_tail(&iocb->list, &completions); 11938 } 11939 list_for_each_entry_safe(iocb, next_iocb, 11940 &pring->txcmplq, list) { 11941 if (iocb->vport != vport) 11942 continue; 11943 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11944 NULL); 11945 } 11946 pring->flag = prev_pring_flag; 11947 } 11948 } else { 11949 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11950 pring = qp->pring; 11951 if (!pring) 11952 continue; 11953 if (pring == phba->sli4_hba.els_wq->pring) { 11954 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11955 /* Set the lpfc data pending flag */ 11956 set_bit(LPFC_DATA_READY, &phba->data_flags); 11957 } 11958 prev_pring_flag = pring->flag; 11959 spin_lock(&pring->ring_lock); 11960 list_for_each_entry_safe(iocb, next_iocb, 11961 &pring->txq, list) { 11962 if (iocb->vport != vport) 11963 continue; 11964 list_move_tail(&iocb->list, &completions); 11965 } 11966 spin_unlock(&pring->ring_lock); 11967 list_for_each_entry_safe(iocb, next_iocb, 11968 &pring->txcmplq, list) { 11969 if (iocb->vport != vport) 11970 continue; 11971 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11972 NULL); 11973 } 11974 pring->flag = prev_pring_flag; 11975 } 11976 } 11977 spin_unlock_irqrestore(&phba->hbalock, flags); 11978 11979 /* Make sure HBA is alive */ 11980 lpfc_issue_hb_tmo(phba); 11981 11982 /* Cancel all the IOCBs from the completions list */ 11983 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11984 IOERR_SLI_DOWN); 11985 return 1; 11986 } 11987 11988 /** 11989 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11990 * @phba: Pointer to HBA context object. 11991 * 11992 * This function cleans up all iocb, buffers, mailbox commands 11993 * while shutting down the HBA. This function is called with no 11994 * lock held and always returns 1. 11995 * This function does the following to cleanup driver resources: 11996 * - Free discovery resources for each virtual port 11997 * - Cleanup any pending fabric iocbs 11998 * - Iterate through the iocb txq and free each entry 11999 * in the list. 12000 * - Free up any buffer posted to the HBA 12001 * - Free mailbox commands in the mailbox queue. 12002 **/ 12003 int 12004 lpfc_sli_hba_down(struct lpfc_hba *phba) 12005 { 12006 LIST_HEAD(completions); 12007 struct lpfc_sli *psli = &phba->sli; 12008 struct lpfc_queue *qp = NULL; 12009 struct lpfc_sli_ring *pring; 12010 struct lpfc_dmabuf *buf_ptr; 12011 unsigned long flags = 0; 12012 int i; 12013 12014 /* Shutdown the mailbox command sub-system */ 12015 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12016 12017 lpfc_hba_down_prep(phba); 12018 12019 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12020 local_bh_disable(); 12021 12022 lpfc_fabric_abort_hba(phba); 12023 12024 spin_lock_irqsave(&phba->hbalock, flags); 12025 12026 /* 12027 * Error everything on the txq since these iocbs 12028 * have not been given to the FW yet. 12029 */ 12030 if (phba->sli_rev != LPFC_SLI_REV4) { 12031 for (i = 0; i < psli->num_rings; i++) { 12032 pring = &psli->sli3_ring[i]; 12033 /* Only slow rings */ 12034 if (pring->ringno == LPFC_ELS_RING) { 12035 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12036 /* Set the lpfc data pending flag */ 12037 set_bit(LPFC_DATA_READY, &phba->data_flags); 12038 } 12039 list_splice_init(&pring->txq, &completions); 12040 } 12041 } else { 12042 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12043 pring = qp->pring; 12044 if (!pring) 12045 continue; 12046 spin_lock(&pring->ring_lock); 12047 list_splice_init(&pring->txq, &completions); 12048 spin_unlock(&pring->ring_lock); 12049 if (pring == phba->sli4_hba.els_wq->pring) { 12050 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12051 /* Set the lpfc data pending flag */ 12052 set_bit(LPFC_DATA_READY, &phba->data_flags); 12053 } 12054 } 12055 } 12056 spin_unlock_irqrestore(&phba->hbalock, flags); 12057 12058 /* Cancel all the IOCBs from the completions list */ 12059 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12060 IOERR_SLI_DOWN); 12061 12062 spin_lock_irqsave(&phba->hbalock, flags); 12063 list_splice_init(&phba->elsbuf, &completions); 12064 phba->elsbuf_cnt = 0; 12065 phba->elsbuf_prev_cnt = 0; 12066 spin_unlock_irqrestore(&phba->hbalock, flags); 12067 12068 while (!list_empty(&completions)) { 12069 list_remove_head(&completions, buf_ptr, 12070 struct lpfc_dmabuf, list); 12071 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12072 kfree(buf_ptr); 12073 } 12074 12075 /* Enable softirqs again, done with phba->hbalock */ 12076 local_bh_enable(); 12077 12078 /* Return any active mbox cmds */ 12079 timer_delete_sync(&psli->mbox_tmo); 12080 12081 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12082 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12083 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12084 12085 return 1; 12086 } 12087 12088 /** 12089 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12090 * @srcp: Source memory pointer. 12091 * @destp: Destination memory pointer. 12092 * @cnt: Number of words required to be copied. 12093 * 12094 * This function is used for copying data between driver memory 12095 * and the SLI memory. This function also changes the endianness 12096 * of each word if native endianness is different from SLI 12097 * endianness. This function can be called with or without 12098 * lock. 12099 **/ 12100 void 12101 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12102 { 12103 uint32_t *src = srcp; 12104 uint32_t *dest = destp; 12105 uint32_t ldata; 12106 int i; 12107 12108 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12109 ldata = *src; 12110 ldata = le32_to_cpu(ldata); 12111 *dest = ldata; 12112 src++; 12113 dest++; 12114 } 12115 } 12116 12117 12118 /** 12119 * lpfc_sli_bemem_bcopy - SLI memory copy function 12120 * @srcp: Source memory pointer. 12121 * @destp: Destination memory pointer. 12122 * @cnt: Number of words required to be copied. 12123 * 12124 * This function is used for copying data between a data structure 12125 * with big endian representation to local endianness. 12126 * This function can be called with or without lock. 12127 **/ 12128 void 12129 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12130 { 12131 uint32_t *src = srcp; 12132 uint32_t *dest = destp; 12133 uint32_t ldata; 12134 int i; 12135 12136 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12137 ldata = *src; 12138 ldata = be32_to_cpu(ldata); 12139 *dest = ldata; 12140 src++; 12141 dest++; 12142 } 12143 } 12144 12145 /** 12146 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12147 * @phba: Pointer to HBA context object. 12148 * @pring: Pointer to driver SLI ring object. 12149 * @mp: Pointer to driver buffer object. 12150 * 12151 * This function is called with no lock held. 12152 * It always return zero after adding the buffer to the postbufq 12153 * buffer list. 12154 **/ 12155 int 12156 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12157 struct lpfc_dmabuf *mp) 12158 { 12159 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12160 later */ 12161 spin_lock_irq(&phba->hbalock); 12162 list_add_tail(&mp->list, &pring->postbufq); 12163 pring->postbufq_cnt++; 12164 spin_unlock_irq(&phba->hbalock); 12165 return 0; 12166 } 12167 12168 /** 12169 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12170 * @phba: Pointer to HBA context object. 12171 * 12172 * When HBQ is enabled, buffers are searched based on tags. This function 12173 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12174 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12175 * does not conflict with tags of buffer posted for unsolicited events. 12176 * The function returns the allocated tag. The function is called with 12177 * no locks held. 12178 **/ 12179 uint32_t 12180 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12181 { 12182 spin_lock_irq(&phba->hbalock); 12183 phba->buffer_tag_count++; 12184 /* 12185 * Always set the QUE_BUFTAG_BIT to distiguish between 12186 * a tag assigned by HBQ. 12187 */ 12188 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12189 spin_unlock_irq(&phba->hbalock); 12190 return phba->buffer_tag_count; 12191 } 12192 12193 /** 12194 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12195 * @phba: Pointer to HBA context object. 12196 * @pring: Pointer to driver SLI ring object. 12197 * @tag: Buffer tag. 12198 * 12199 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12200 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12201 * iocb is posted to the response ring with the tag of the buffer. 12202 * This function searches the pring->postbufq list using the tag 12203 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12204 * iocb. If the buffer is found then lpfc_dmabuf object of the 12205 * buffer is returned to the caller else NULL is returned. 12206 * This function is called with no lock held. 12207 **/ 12208 struct lpfc_dmabuf * 12209 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12210 uint32_t tag) 12211 { 12212 struct lpfc_dmabuf *mp, *next_mp; 12213 struct list_head *slp = &pring->postbufq; 12214 12215 /* Search postbufq, from the beginning, looking for a match on tag */ 12216 spin_lock_irq(&phba->hbalock); 12217 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12218 if (mp->buffer_tag == tag) { 12219 list_del_init(&mp->list); 12220 pring->postbufq_cnt--; 12221 spin_unlock_irq(&phba->hbalock); 12222 return mp; 12223 } 12224 } 12225 12226 spin_unlock_irq(&phba->hbalock); 12227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12228 "0402 Cannot find virtual addr for buffer tag on " 12229 "ring %d Data x%lx x%px x%px x%x\n", 12230 pring->ringno, (unsigned long) tag, 12231 slp->next, slp->prev, pring->postbufq_cnt); 12232 12233 return NULL; 12234 } 12235 12236 /** 12237 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12238 * @phba: Pointer to HBA context object. 12239 * @pring: Pointer to driver SLI ring object. 12240 * @phys: DMA address of the buffer. 12241 * 12242 * This function searches the buffer list using the dma_address 12243 * of unsolicited event to find the driver's lpfc_dmabuf object 12244 * corresponding to the dma_address. The function returns the 12245 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12246 * This function is called by the ct and els unsolicited event 12247 * handlers to get the buffer associated with the unsolicited 12248 * event. 12249 * 12250 * This function is called with no lock held. 12251 **/ 12252 struct lpfc_dmabuf * 12253 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12254 dma_addr_t phys) 12255 { 12256 struct lpfc_dmabuf *mp, *next_mp; 12257 struct list_head *slp = &pring->postbufq; 12258 12259 /* Search postbufq, from the beginning, looking for a match on phys */ 12260 spin_lock_irq(&phba->hbalock); 12261 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12262 if (mp->phys == phys) { 12263 list_del_init(&mp->list); 12264 pring->postbufq_cnt--; 12265 spin_unlock_irq(&phba->hbalock); 12266 return mp; 12267 } 12268 } 12269 12270 spin_unlock_irq(&phba->hbalock); 12271 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12272 "0410 Cannot find virtual addr for mapped buf on " 12273 "ring %d Data x%llx x%px x%px x%x\n", 12274 pring->ringno, (unsigned long long)phys, 12275 slp->next, slp->prev, pring->postbufq_cnt); 12276 return NULL; 12277 } 12278 12279 /** 12280 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12281 * @phba: Pointer to HBA context object. 12282 * @cmdiocb: Pointer to driver command iocb object. 12283 * @rspiocb: Pointer to driver response iocb object. 12284 * 12285 * This function is the completion handler for the abort iocbs for 12286 * ELS commands. This function is called from the ELS ring event 12287 * handler with no lock held. This function frees memory resources 12288 * associated with the abort iocb. 12289 **/ 12290 static void 12291 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12292 struct lpfc_iocbq *rspiocb) 12293 { 12294 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12295 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12296 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12297 12298 if (ulp_status) { 12299 /* 12300 * Assume that the port already completed and returned, or 12301 * will return the iocb. Just Log the message. 12302 */ 12303 if (phba->sli_rev < LPFC_SLI_REV4) { 12304 if (cmnd == CMD_ABORT_XRI_CX && 12305 ulp_status == IOSTAT_LOCAL_REJECT && 12306 ulp_word4 == IOERR_ABORT_REQUESTED) { 12307 goto release_iocb; 12308 } 12309 } 12310 } 12311 12312 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12313 "0327 Abort els iocb complete x%px with io cmd xri %x " 12314 "abort tag x%x abort status %x abort code %x\n", 12315 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12316 (phba->sli_rev == LPFC_SLI_REV4) ? 12317 get_wqe_reqtag(cmdiocb) : 12318 cmdiocb->iocb.ulpIoTag, 12319 ulp_status, ulp_word4); 12320 release_iocb: 12321 lpfc_sli_release_iocbq(phba, cmdiocb); 12322 return; 12323 } 12324 12325 /** 12326 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12327 * @phba: Pointer to HBA context object. 12328 * @cmdiocb: Pointer to driver command iocb object. 12329 * @rspiocb: Pointer to driver response iocb object. 12330 * 12331 * The function is called from SLI ring event handler with no 12332 * lock held. This function is the completion handler for ELS commands 12333 * which are aborted. The function frees memory resources used for 12334 * the aborted ELS commands. 12335 **/ 12336 void 12337 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12338 struct lpfc_iocbq *rspiocb) 12339 { 12340 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12341 IOCB_t *irsp; 12342 LPFC_MBOXQ_t *mbox; 12343 u32 ulp_command, ulp_status, ulp_word4, iotag; 12344 12345 ulp_command = get_job_cmnd(phba, cmdiocb); 12346 ulp_status = get_job_ulpstatus(phba, rspiocb); 12347 ulp_word4 = get_job_word4(phba, rspiocb); 12348 12349 if (phba->sli_rev == LPFC_SLI_REV4) { 12350 iotag = get_wqe_reqtag(cmdiocb); 12351 } else { 12352 irsp = &rspiocb->iocb; 12353 iotag = irsp->ulpIoTag; 12354 12355 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12356 * The MBX_REG_LOGIN64 mbox command is freed back to the 12357 * mbox_mem_pool here. 12358 */ 12359 if (cmdiocb->context_un.mbox) { 12360 mbox = cmdiocb->context_un.mbox; 12361 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12362 cmdiocb->context_un.mbox = NULL; 12363 } 12364 } 12365 12366 /* ELS cmd tag <ulpIoTag> completes */ 12367 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12368 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12369 "x%x x%x x%x x%px\n", 12370 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12371 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12372 /* 12373 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12374 * if exchange is busy. 12375 */ 12376 if (ulp_command == CMD_GEN_REQUEST64_CR) 12377 lpfc_ct_free_iocb(phba, cmdiocb); 12378 else 12379 lpfc_els_free_iocb(phba, cmdiocb); 12380 12381 lpfc_nlp_put(ndlp); 12382 } 12383 12384 /** 12385 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12386 * @phba: Pointer to HBA context object. 12387 * @pring: Pointer to driver SLI ring object. 12388 * @cmdiocb: Pointer to driver command iocb object. 12389 * @cmpl: completion function. 12390 * 12391 * This function issues an abort iocb for the provided command iocb. In case 12392 * of unloading, the abort iocb will not be issued to commands on the ELS 12393 * ring. Instead, the callback function shall be changed to those commands 12394 * so that nothing happens when them finishes. This function is called with 12395 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12396 * when the command iocb is an abort request. 12397 * 12398 **/ 12399 int 12400 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12401 struct lpfc_iocbq *cmdiocb, void *cmpl) 12402 { 12403 struct lpfc_vport *vport = cmdiocb->vport; 12404 struct lpfc_iocbq *abtsiocbp; 12405 int retval = IOCB_ERROR; 12406 unsigned long iflags; 12407 struct lpfc_nodelist *ndlp = NULL; 12408 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12409 u16 ulp_context, iotag; 12410 bool ia; 12411 12412 /* 12413 * There are certain command types we don't want to abort. And we 12414 * don't want to abort commands that are already in the process of 12415 * being aborted. 12416 */ 12417 if (ulp_command == CMD_ABORT_XRI_WQE || 12418 ulp_command == CMD_ABORT_XRI_CN || 12419 ulp_command == CMD_CLOSE_XRI_CN || 12420 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12421 return IOCB_ABORTING; 12422 12423 if (!pring) { 12424 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12425 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12426 else 12427 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12428 return retval; 12429 } 12430 12431 /* 12432 * If we're unloading, don't abort iocb on the ELS ring, but change 12433 * the callback so that nothing happens when it finishes. 12434 */ 12435 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12436 pring->ringno == LPFC_ELS_RING) { 12437 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12438 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12439 else 12440 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12441 return retval; 12442 } 12443 12444 /* issue ABTS for this IOCB based on iotag */ 12445 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12446 if (abtsiocbp == NULL) 12447 return IOCB_NORESOURCE; 12448 12449 /* This signals the response to set the correct status 12450 * before calling the completion handler 12451 */ 12452 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12453 12454 if (phba->sli_rev == LPFC_SLI_REV4) { 12455 ulp_context = cmdiocb->sli4_xritag; 12456 iotag = abtsiocbp->iotag; 12457 } else { 12458 iotag = cmdiocb->iocb.ulpIoTag; 12459 if (pring->ringno == LPFC_ELS_RING) { 12460 ndlp = cmdiocb->ndlp; 12461 ulp_context = ndlp->nlp_rpi; 12462 } else { 12463 ulp_context = cmdiocb->iocb.ulpContext; 12464 } 12465 } 12466 12467 /* Just close the exchange under certain conditions. */ 12468 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12469 phba->link_state < LPFC_LINK_UP || 12470 (phba->sli_rev == LPFC_SLI_REV4 && 12471 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12472 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12473 ia = true; 12474 else 12475 ia = false; 12476 12477 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12478 cmdiocb->iocb.ulpClass, 12479 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12480 12481 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12482 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12483 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12484 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12485 12486 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12487 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12488 12489 if (cmpl) 12490 abtsiocbp->cmd_cmpl = cmpl; 12491 else 12492 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12493 abtsiocbp->vport = vport; 12494 12495 if (phba->sli_rev == LPFC_SLI_REV4) { 12496 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12497 if (unlikely(pring == NULL)) 12498 goto abort_iotag_exit; 12499 /* Note: both hbalock and ring_lock need to be set here */ 12500 spin_lock_irqsave(&pring->ring_lock, iflags); 12501 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12502 abtsiocbp, 0); 12503 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12504 } else { 12505 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12506 abtsiocbp, 0); 12507 } 12508 12509 abort_iotag_exit: 12510 12511 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12512 "0339 Abort IO XRI x%x, Original iotag x%x, " 12513 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12514 "retval x%x : IA %d cmd_cmpl %ps\n", 12515 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12516 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12517 retval, ia, abtsiocbp->cmd_cmpl); 12518 if (retval) { 12519 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12520 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12521 } 12522 12523 /* 12524 * Caller to this routine should check for IOCB_ERROR 12525 * and handle it properly. This routine no longer removes 12526 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12527 */ 12528 return retval; 12529 } 12530 12531 /** 12532 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12533 * @phba: pointer to lpfc HBA data structure. 12534 * 12535 * This routine will abort all pending and outstanding iocbs to an HBA. 12536 **/ 12537 void 12538 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12539 { 12540 struct lpfc_sli *psli = &phba->sli; 12541 struct lpfc_sli_ring *pring; 12542 struct lpfc_queue *qp = NULL; 12543 int i; 12544 12545 if (phba->sli_rev != LPFC_SLI_REV4) { 12546 for (i = 0; i < psli->num_rings; i++) { 12547 pring = &psli->sli3_ring[i]; 12548 lpfc_sli_abort_iocb_ring(phba, pring); 12549 } 12550 return; 12551 } 12552 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12553 pring = qp->pring; 12554 if (!pring) 12555 continue; 12556 lpfc_sli_abort_iocb_ring(phba, pring); 12557 } 12558 } 12559 12560 /** 12561 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12562 * @iocbq: Pointer to iocb object. 12563 * @vport: Pointer to driver virtual port object. 12564 * 12565 * This function acts as an iocb filter for functions which abort FCP iocbs. 12566 * 12567 * Return values 12568 * -ENODEV, if a null iocb or vport ptr is encountered 12569 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12570 * driver already started the abort process, or is an abort iocb itself 12571 * 0, passes criteria for aborting the FCP I/O iocb 12572 **/ 12573 static int 12574 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12575 struct lpfc_vport *vport) 12576 { 12577 u8 ulp_command; 12578 12579 /* No null ptr vports */ 12580 if (!iocbq || iocbq->vport != vport) 12581 return -ENODEV; 12582 12583 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12584 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12585 */ 12586 ulp_command = get_job_cmnd(vport->phba, iocbq); 12587 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12588 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12589 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12590 (ulp_command == CMD_ABORT_XRI_CN || 12591 ulp_command == CMD_CLOSE_XRI_CN || 12592 ulp_command == CMD_ABORT_XRI_WQE)) 12593 return -EINVAL; 12594 12595 return 0; 12596 } 12597 12598 /** 12599 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12600 * @iocbq: Pointer to driver iocb object. 12601 * @vport: Pointer to driver virtual port object. 12602 * @tgt_id: SCSI ID of the target. 12603 * @lun_id: LUN ID of the scsi device. 12604 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12605 * 12606 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12607 * host. 12608 * 12609 * It will return 12610 * 0 if the filtering criteria is met for the given iocb and will return 12611 * 1 if the filtering criteria is not met. 12612 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12613 * given iocb is for the SCSI device specified by vport, tgt_id and 12614 * lun_id parameter. 12615 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12616 * given iocb is for the SCSI target specified by vport and tgt_id 12617 * parameters. 12618 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12619 * given iocb is for the SCSI host associated with the given vport. 12620 * This function is called with no locks held. 12621 **/ 12622 static int 12623 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12624 uint16_t tgt_id, uint64_t lun_id, 12625 lpfc_ctx_cmd ctx_cmd) 12626 { 12627 struct lpfc_io_buf *lpfc_cmd; 12628 int rc = 1; 12629 12630 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12631 12632 if (lpfc_cmd->pCmd == NULL) 12633 return rc; 12634 12635 switch (ctx_cmd) { 12636 case LPFC_CTX_LUN: 12637 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12638 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12639 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12640 rc = 0; 12641 break; 12642 case LPFC_CTX_TGT: 12643 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12644 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12645 rc = 0; 12646 break; 12647 case LPFC_CTX_HOST: 12648 rc = 0; 12649 break; 12650 default: 12651 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12652 __func__, ctx_cmd); 12653 break; 12654 } 12655 12656 return rc; 12657 } 12658 12659 /** 12660 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12661 * @vport: Pointer to virtual port. 12662 * @tgt_id: SCSI ID of the target. 12663 * @lun_id: LUN ID of the scsi device. 12664 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12665 * 12666 * This function returns number of FCP commands pending for the vport. 12667 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12668 * commands pending on the vport associated with SCSI device specified 12669 * by tgt_id and lun_id parameters. 12670 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12671 * commands pending on the vport associated with SCSI target specified 12672 * by tgt_id parameter. 12673 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12674 * commands pending on the vport. 12675 * This function returns the number of iocbs which satisfy the filter. 12676 * This function is called without any lock held. 12677 **/ 12678 int 12679 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12680 lpfc_ctx_cmd ctx_cmd) 12681 { 12682 struct lpfc_hba *phba = vport->phba; 12683 struct lpfc_iocbq *iocbq; 12684 int sum, i; 12685 unsigned long iflags; 12686 u8 ulp_command; 12687 12688 spin_lock_irqsave(&phba->hbalock, iflags); 12689 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12690 iocbq = phba->sli.iocbq_lookup[i]; 12691 12692 if (!iocbq || iocbq->vport != vport) 12693 continue; 12694 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12695 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12696 continue; 12697 12698 /* Include counting outstanding aborts */ 12699 ulp_command = get_job_cmnd(phba, iocbq); 12700 if (ulp_command == CMD_ABORT_XRI_CN || 12701 ulp_command == CMD_CLOSE_XRI_CN || 12702 ulp_command == CMD_ABORT_XRI_WQE) { 12703 sum++; 12704 continue; 12705 } 12706 12707 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12708 ctx_cmd) == 0) 12709 sum++; 12710 } 12711 spin_unlock_irqrestore(&phba->hbalock, iflags); 12712 12713 return sum; 12714 } 12715 12716 /** 12717 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12718 * @phba: Pointer to HBA context object 12719 * @cmdiocb: Pointer to command iocb object. 12720 * @rspiocb: Pointer to response iocb object. 12721 * 12722 * This function is called when an aborted FCP iocb completes. This 12723 * function is called by the ring event handler with no lock held. 12724 * This function frees the iocb. 12725 **/ 12726 void 12727 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12728 struct lpfc_iocbq *rspiocb) 12729 { 12730 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12731 "3096 ABORT_XRI_CX completing on rpi x%x " 12732 "original iotag x%x, abort cmd iotag x%x " 12733 "status 0x%x, reason 0x%x\n", 12734 (phba->sli_rev == LPFC_SLI_REV4) ? 12735 cmdiocb->sli4_xritag : 12736 cmdiocb->iocb.un.acxri.abortContextTag, 12737 get_job_abtsiotag(phba, cmdiocb), 12738 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12739 get_job_word4(phba, rspiocb)); 12740 lpfc_sli_release_iocbq(phba, cmdiocb); 12741 return; 12742 } 12743 12744 /** 12745 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12746 * @vport: Pointer to virtual port. 12747 * @tgt_id: SCSI ID of the target. 12748 * @lun_id: LUN ID of the scsi device. 12749 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12750 * 12751 * This function sends an abort command for every SCSI command 12752 * associated with the given virtual port pending on the ring 12753 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12754 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12755 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12756 * followed by lpfc_sli_validate_fcp_iocb. 12757 * 12758 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12759 * FCP iocbs associated with lun specified by tgt_id and lun_id 12760 * parameters 12761 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12762 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12763 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12764 * FCP iocbs associated with virtual port. 12765 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12766 * lpfc_sli4_calc_ring is used. 12767 * This function returns number of iocbs it failed to abort. 12768 * This function is called with no locks held. 12769 **/ 12770 int 12771 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12772 lpfc_ctx_cmd abort_cmd) 12773 { 12774 struct lpfc_hba *phba = vport->phba; 12775 struct lpfc_sli_ring *pring = NULL; 12776 struct lpfc_iocbq *iocbq; 12777 int errcnt = 0, ret_val = 0; 12778 unsigned long iflags; 12779 int i; 12780 12781 /* all I/Os are in process of being flushed */ 12782 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12783 return errcnt; 12784 12785 for (i = 1; i <= phba->sli.last_iotag; i++) { 12786 iocbq = phba->sli.iocbq_lookup[i]; 12787 12788 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12789 continue; 12790 12791 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12792 abort_cmd) != 0) 12793 continue; 12794 12795 spin_lock_irqsave(&phba->hbalock, iflags); 12796 if (phba->sli_rev == LPFC_SLI_REV3) { 12797 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12798 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12799 pring = lpfc_sli4_calc_ring(phba, iocbq); 12800 } 12801 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12802 lpfc_sli_abort_fcp_cmpl); 12803 spin_unlock_irqrestore(&phba->hbalock, iflags); 12804 if (ret_val != IOCB_SUCCESS) 12805 errcnt++; 12806 } 12807 12808 return errcnt; 12809 } 12810 12811 /** 12812 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12813 * @vport: Pointer to virtual port. 12814 * @pring: Pointer to driver SLI ring object. 12815 * @tgt_id: SCSI ID of the target. 12816 * @lun_id: LUN ID of the scsi device. 12817 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12818 * 12819 * This function sends an abort command for every SCSI command 12820 * associated with the given virtual port pending on the ring 12821 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12822 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12823 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12824 * followed by lpfc_sli_validate_fcp_iocb. 12825 * 12826 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12827 * FCP iocbs associated with lun specified by tgt_id and lun_id 12828 * parameters 12829 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12830 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12831 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12832 * FCP iocbs associated with virtual port. 12833 * This function returns number of iocbs it aborted . 12834 * This function is called with no locks held right after a taskmgmt 12835 * command is sent. 12836 **/ 12837 int 12838 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12839 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12840 { 12841 struct lpfc_hba *phba = vport->phba; 12842 struct lpfc_io_buf *lpfc_cmd; 12843 struct lpfc_iocbq *abtsiocbq; 12844 struct lpfc_nodelist *ndlp = NULL; 12845 struct lpfc_iocbq *iocbq; 12846 int sum, i, ret_val; 12847 unsigned long iflags; 12848 struct lpfc_sli_ring *pring_s4 = NULL; 12849 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12850 bool ia; 12851 12852 /* all I/Os are in process of being flushed */ 12853 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12854 return 0; 12855 12856 sum = 0; 12857 12858 spin_lock_irqsave(&phba->hbalock, iflags); 12859 for (i = 1; i <= phba->sli.last_iotag; i++) { 12860 iocbq = phba->sli.iocbq_lookup[i]; 12861 12862 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12863 continue; 12864 12865 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12866 cmd) != 0) 12867 continue; 12868 12869 /* Guard against IO completion being called at same time */ 12870 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12871 spin_lock(&lpfc_cmd->buf_lock); 12872 12873 if (!lpfc_cmd->pCmd) { 12874 spin_unlock(&lpfc_cmd->buf_lock); 12875 continue; 12876 } 12877 12878 if (phba->sli_rev == LPFC_SLI_REV4) { 12879 pring_s4 = 12880 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12881 if (!pring_s4) { 12882 spin_unlock(&lpfc_cmd->buf_lock); 12883 continue; 12884 } 12885 /* Note: both hbalock and ring_lock must be set here */ 12886 spin_lock(&pring_s4->ring_lock); 12887 } 12888 12889 /* 12890 * If the iocbq is already being aborted, don't take a second 12891 * action, but do count it. 12892 */ 12893 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12894 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12895 if (phba->sli_rev == LPFC_SLI_REV4) 12896 spin_unlock(&pring_s4->ring_lock); 12897 spin_unlock(&lpfc_cmd->buf_lock); 12898 continue; 12899 } 12900 12901 /* issue ABTS for this IOCB based on iotag */ 12902 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12903 if (!abtsiocbq) { 12904 if (phba->sli_rev == LPFC_SLI_REV4) 12905 spin_unlock(&pring_s4->ring_lock); 12906 spin_unlock(&lpfc_cmd->buf_lock); 12907 continue; 12908 } 12909 12910 if (phba->sli_rev == LPFC_SLI_REV4) { 12911 iotag = abtsiocbq->iotag; 12912 ulp_context = iocbq->sli4_xritag; 12913 cqid = lpfc_cmd->hdwq->io_cq_map; 12914 } else { 12915 iotag = iocbq->iocb.ulpIoTag; 12916 if (pring->ringno == LPFC_ELS_RING) { 12917 ndlp = iocbq->ndlp; 12918 ulp_context = ndlp->nlp_rpi; 12919 } else { 12920 ulp_context = iocbq->iocb.ulpContext; 12921 } 12922 } 12923 12924 ndlp = lpfc_cmd->rdata->pnode; 12925 12926 if (lpfc_is_link_up(phba) && 12927 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12928 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12929 ia = false; 12930 else 12931 ia = true; 12932 12933 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12934 iocbq->iocb.ulpClass, cqid, 12935 ia, false); 12936 12937 abtsiocbq->vport = vport; 12938 12939 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12940 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12941 if (iocbq->cmd_flag & LPFC_IO_FCP) 12942 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12943 if (iocbq->cmd_flag & LPFC_IO_FOF) 12944 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12945 12946 /* Setup callback routine and issue the command. */ 12947 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12948 12949 /* 12950 * Indicate the IO is being aborted by the driver and set 12951 * the caller's flag into the aborted IO. 12952 */ 12953 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12954 12955 if (phba->sli_rev == LPFC_SLI_REV4) { 12956 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12957 abtsiocbq, 0); 12958 spin_unlock(&pring_s4->ring_lock); 12959 } else { 12960 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12961 abtsiocbq, 0); 12962 } 12963 12964 spin_unlock(&lpfc_cmd->buf_lock); 12965 12966 if (ret_val == IOCB_ERROR) 12967 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12968 else 12969 sum++; 12970 } 12971 spin_unlock_irqrestore(&phba->hbalock, iflags); 12972 return sum; 12973 } 12974 12975 /** 12976 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12977 * @phba: Pointer to HBA context object. 12978 * @cmdiocbq: Pointer to command iocb. 12979 * @rspiocbq: Pointer to response iocb. 12980 * 12981 * This function is the completion handler for iocbs issued using 12982 * lpfc_sli_issue_iocb_wait function. This function is called by the 12983 * ring event handler function without any lock held. This function 12984 * can be called from both worker thread context and interrupt 12985 * context. This function also can be called from other thread which 12986 * cleans up the SLI layer objects. 12987 * This function copy the contents of the response iocb to the 12988 * response iocb memory object provided by the caller of 12989 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12990 * sleeps for the iocb completion. 12991 **/ 12992 static void 12993 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12994 struct lpfc_iocbq *cmdiocbq, 12995 struct lpfc_iocbq *rspiocbq) 12996 { 12997 wait_queue_head_t *pdone_q; 12998 unsigned long iflags; 12999 struct lpfc_io_buf *lpfc_cmd; 13000 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13001 13002 spin_lock_irqsave(&phba->hbalock, iflags); 13003 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13004 13005 /* 13006 * A time out has occurred for the iocb. If a time out 13007 * completion handler has been supplied, call it. Otherwise, 13008 * just free the iocbq. 13009 */ 13010 13011 spin_unlock_irqrestore(&phba->hbalock, iflags); 13012 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13013 cmdiocbq->wait_cmd_cmpl = NULL; 13014 if (cmdiocbq->cmd_cmpl) 13015 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13016 else 13017 lpfc_sli_release_iocbq(phba, cmdiocbq); 13018 return; 13019 } 13020 13021 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13022 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13023 if (cmdiocbq->rsp_iocb && rspiocbq) 13024 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13025 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13026 13027 /* Set the exchange busy flag for task management commands */ 13028 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13029 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13030 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13031 cur_iocbq); 13032 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13033 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13034 else 13035 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13036 } 13037 13038 pdone_q = cmdiocbq->context_un.wait_queue; 13039 if (pdone_q) 13040 wake_up(pdone_q); 13041 spin_unlock_irqrestore(&phba->hbalock, iflags); 13042 return; 13043 } 13044 13045 /** 13046 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13047 * @phba: Pointer to HBA context object.. 13048 * @piocbq: Pointer to command iocb. 13049 * @flag: Flag to test. 13050 * 13051 * This routine grabs the hbalock and then test the cmd_flag to 13052 * see if the passed in flag is set. 13053 * Returns: 13054 * 1 if flag is set. 13055 * 0 if flag is not set. 13056 **/ 13057 static int 13058 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13059 struct lpfc_iocbq *piocbq, uint32_t flag) 13060 { 13061 unsigned long iflags; 13062 int ret; 13063 13064 spin_lock_irqsave(&phba->hbalock, iflags); 13065 ret = piocbq->cmd_flag & flag; 13066 spin_unlock_irqrestore(&phba->hbalock, iflags); 13067 return ret; 13068 13069 } 13070 13071 /** 13072 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13073 * @phba: Pointer to HBA context object.. 13074 * @ring_number: Ring number 13075 * @piocb: Pointer to command iocb. 13076 * @prspiocbq: Pointer to response iocb. 13077 * @timeout: Timeout in number of seconds. 13078 * 13079 * This function issues the iocb to firmware and waits for the 13080 * iocb to complete. The cmd_cmpl field of the shall be used 13081 * to handle iocbs which time out. If the field is NULL, the 13082 * function shall free the iocbq structure. If more clean up is 13083 * needed, the caller is expected to provide a completion function 13084 * that will provide the needed clean up. If the iocb command is 13085 * not completed within timeout seconds, the function will either 13086 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13087 * completion function set in the cmd_cmpl field and then return 13088 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13089 * resources if this function returns IOCB_TIMEDOUT. 13090 * The function waits for the iocb completion using an 13091 * non-interruptible wait. 13092 * This function will sleep while waiting for iocb completion. 13093 * So, this function should not be called from any context which 13094 * does not allow sleeping. Due to the same reason, this function 13095 * cannot be called with interrupt disabled. 13096 * This function assumes that the iocb completions occur while 13097 * this function sleep. So, this function cannot be called from 13098 * the thread which process iocb completion for this ring. 13099 * This function clears the cmd_flag of the iocb object before 13100 * issuing the iocb and the iocb completion handler sets this 13101 * flag and wakes this thread when the iocb completes. 13102 * The contents of the response iocb will be copied to prspiocbq 13103 * by the completion handler when the command completes. 13104 * This function returns IOCB_SUCCESS when success. 13105 * This function is called with no lock held. 13106 **/ 13107 int 13108 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13109 uint32_t ring_number, 13110 struct lpfc_iocbq *piocb, 13111 struct lpfc_iocbq *prspiocbq, 13112 uint32_t timeout) 13113 { 13114 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13115 long timeleft, timeout_req = 0; 13116 int retval = IOCB_SUCCESS; 13117 uint32_t creg_val; 13118 struct lpfc_iocbq *iocb; 13119 int txq_cnt = 0; 13120 int txcmplq_cnt = 0; 13121 struct lpfc_sli_ring *pring; 13122 unsigned long iflags; 13123 bool iocb_completed = true; 13124 13125 if (phba->sli_rev >= LPFC_SLI_REV4) { 13126 lpfc_sli_prep_wqe(phba, piocb); 13127 13128 pring = lpfc_sli4_calc_ring(phba, piocb); 13129 } else 13130 pring = &phba->sli.sli3_ring[ring_number]; 13131 /* 13132 * If the caller has provided a response iocbq buffer, then rsp_iocb 13133 * is NULL or its an error. 13134 */ 13135 if (prspiocbq) { 13136 if (piocb->rsp_iocb) 13137 return IOCB_ERROR; 13138 piocb->rsp_iocb = prspiocbq; 13139 } 13140 13141 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13142 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13143 piocb->context_un.wait_queue = &done_q; 13144 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13145 13146 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13147 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13148 return IOCB_ERROR; 13149 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13150 writel(creg_val, phba->HCregaddr); 13151 readl(phba->HCregaddr); /* flush */ 13152 } 13153 13154 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13155 SLI_IOCB_RET_IOCB); 13156 if (retval == IOCB_SUCCESS) { 13157 timeout_req = secs_to_jiffies(timeout); 13158 timeleft = wait_event_timeout(done_q, 13159 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13160 timeout_req); 13161 spin_lock_irqsave(&phba->hbalock, iflags); 13162 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13163 13164 /* 13165 * IOCB timed out. Inform the wake iocb wait 13166 * completion function and set local status 13167 */ 13168 13169 iocb_completed = false; 13170 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13171 } 13172 spin_unlock_irqrestore(&phba->hbalock, iflags); 13173 if (iocb_completed) { 13174 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13175 "0331 IOCB wake signaled\n"); 13176 /* Note: we are not indicating if the IOCB has a success 13177 * status or not - that's for the caller to check. 13178 * IOCB_SUCCESS means just that the command was sent and 13179 * completed. Not that it completed successfully. 13180 * */ 13181 } else if (timeleft == 0) { 13182 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13183 "0338 IOCB wait timeout error - no " 13184 "wake response Data x%x\n", timeout); 13185 retval = IOCB_TIMEDOUT; 13186 } else { 13187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13188 "0330 IOCB wake NOT set, " 13189 "Data x%x x%lx\n", 13190 timeout, (timeleft / jiffies)); 13191 retval = IOCB_TIMEDOUT; 13192 } 13193 } else if (retval == IOCB_BUSY) { 13194 if (phba->cfg_log_verbose & LOG_SLI) { 13195 list_for_each_entry(iocb, &pring->txq, list) { 13196 txq_cnt++; 13197 } 13198 list_for_each_entry(iocb, &pring->txcmplq, list) { 13199 txcmplq_cnt++; 13200 } 13201 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13202 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13203 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13204 } 13205 return retval; 13206 } else { 13207 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13208 "0332 IOCB wait issue failed, Data x%x\n", 13209 retval); 13210 retval = IOCB_ERROR; 13211 } 13212 13213 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13214 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13215 return IOCB_ERROR; 13216 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13217 writel(creg_val, phba->HCregaddr); 13218 readl(phba->HCregaddr); /* flush */ 13219 } 13220 13221 if (prspiocbq) 13222 piocb->rsp_iocb = NULL; 13223 13224 piocb->context_un.wait_queue = NULL; 13225 piocb->cmd_cmpl = NULL; 13226 return retval; 13227 } 13228 13229 /** 13230 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13231 * @phba: Pointer to HBA context object. 13232 * @pmboxq: Pointer to driver mailbox object. 13233 * @timeout: Timeout in number of seconds. 13234 * 13235 * This function issues the mailbox to firmware and waits for the 13236 * mailbox command to complete. If the mailbox command is not 13237 * completed within timeout seconds, it returns MBX_TIMEOUT. 13238 * The function waits for the mailbox completion using an 13239 * interruptible wait. If the thread is woken up due to a 13240 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13241 * should not free the mailbox resources, if this function returns 13242 * MBX_TIMEOUT. 13243 * This function will sleep while waiting for mailbox completion. 13244 * So, this function should not be called from any context which 13245 * does not allow sleeping. Due to the same reason, this function 13246 * cannot be called with interrupt disabled. 13247 * This function assumes that the mailbox completion occurs while 13248 * this function sleep. So, this function cannot be called from 13249 * the worker thread which processes mailbox completion. 13250 * This function is called in the context of HBA management 13251 * applications. 13252 * This function returns MBX_SUCCESS when successful. 13253 * This function is called with no lock held. 13254 **/ 13255 int 13256 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13257 uint32_t timeout) 13258 { 13259 struct completion mbox_done; 13260 int retval; 13261 unsigned long flag; 13262 13263 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13264 /* setup wake call as IOCB callback */ 13265 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13266 13267 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13268 init_completion(&mbox_done); 13269 pmboxq->ctx_u.mbox_wait = &mbox_done; 13270 /* now issue the command */ 13271 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13272 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13273 wait_for_completion_timeout(&mbox_done, secs_to_jiffies(timeout)); 13274 13275 spin_lock_irqsave(&phba->hbalock, flag); 13276 pmboxq->ctx_u.mbox_wait = NULL; 13277 /* 13278 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13279 * else do not free the resources. 13280 */ 13281 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13282 retval = MBX_SUCCESS; 13283 } else { 13284 retval = MBX_TIMEOUT; 13285 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13286 } 13287 spin_unlock_irqrestore(&phba->hbalock, flag); 13288 } 13289 return retval; 13290 } 13291 13292 /** 13293 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13294 * @phba: Pointer to HBA context. 13295 * @mbx_action: Mailbox shutdown options. 13296 * 13297 * This function is called to shutdown the driver's mailbox sub-system. 13298 * It first marks the mailbox sub-system is in a block state to prevent 13299 * the asynchronous mailbox command from issued off the pending mailbox 13300 * command queue. If the mailbox command sub-system shutdown is due to 13301 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13302 * the mailbox sub-system flush routine to forcefully bring down the 13303 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13304 * as with offline or HBA function reset), this routine will wait for the 13305 * outstanding mailbox command to complete before invoking the mailbox 13306 * sub-system flush routine to gracefully bring down mailbox sub-system. 13307 **/ 13308 void 13309 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13310 { 13311 struct lpfc_sli *psli = &phba->sli; 13312 unsigned long timeout; 13313 13314 if (mbx_action == LPFC_MBX_NO_WAIT) { 13315 /* delay 100ms for port state */ 13316 msleep(100); 13317 lpfc_sli_mbox_sys_flush(phba); 13318 return; 13319 } 13320 timeout = secs_to_jiffies(LPFC_MBOX_TMO) + jiffies; 13321 13322 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13323 local_bh_disable(); 13324 13325 spin_lock_irq(&phba->hbalock); 13326 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13327 13328 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13329 /* Determine how long we might wait for the active mailbox 13330 * command to be gracefully completed by firmware. 13331 */ 13332 if (phba->sli.mbox_active) 13333 timeout = secs_to_jiffies(lpfc_mbox_tmo_val(phba, 13334 phba->sli.mbox_active)) + jiffies; 13335 spin_unlock_irq(&phba->hbalock); 13336 13337 /* Enable softirqs again, done with phba->hbalock */ 13338 local_bh_enable(); 13339 13340 while (phba->sli.mbox_active) { 13341 /* Check active mailbox complete status every 2ms */ 13342 msleep(2); 13343 if (time_after(jiffies, timeout)) 13344 /* Timeout, let the mailbox flush routine to 13345 * forcefully release active mailbox command 13346 */ 13347 break; 13348 } 13349 } else { 13350 spin_unlock_irq(&phba->hbalock); 13351 13352 /* Enable softirqs again, done with phba->hbalock */ 13353 local_bh_enable(); 13354 } 13355 13356 lpfc_sli_mbox_sys_flush(phba); 13357 } 13358 13359 /** 13360 * lpfc_sli_eratt_read - read sli-3 error attention events 13361 * @phba: Pointer to HBA context. 13362 * 13363 * This function is called to read the SLI3 device error attention registers 13364 * for possible error attention events. The caller must hold the hostlock 13365 * with spin_lock_irq(). 13366 * 13367 * This function returns 1 when there is Error Attention in the Host Attention 13368 * Register and returns 0 otherwise. 13369 **/ 13370 static int 13371 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13372 { 13373 uint32_t ha_copy; 13374 13375 /* Read chip Host Attention (HA) register */ 13376 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13377 goto unplug_err; 13378 13379 if (ha_copy & HA_ERATT) { 13380 /* Read host status register to retrieve error event */ 13381 if (lpfc_sli_read_hs(phba)) 13382 goto unplug_err; 13383 13384 /* Check if there is a deferred error condition is active */ 13385 if ((HS_FFER1 & phba->work_hs) && 13386 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13387 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13388 set_bit(DEFER_ERATT, &phba->hba_flag); 13389 /* Clear all interrupt enable conditions */ 13390 writel(0, phba->HCregaddr); 13391 readl(phba->HCregaddr); 13392 } 13393 13394 /* Set the driver HA work bitmap */ 13395 phba->work_ha |= HA_ERATT; 13396 /* Indicate polling handles this ERATT */ 13397 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13398 return 1; 13399 } 13400 return 0; 13401 13402 unplug_err: 13403 /* Set the driver HS work bitmap */ 13404 phba->work_hs |= UNPLUG_ERR; 13405 /* Set the driver HA work bitmap */ 13406 phba->work_ha |= HA_ERATT; 13407 /* Indicate polling handles this ERATT */ 13408 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13409 return 1; 13410 } 13411 13412 /** 13413 * lpfc_sli4_eratt_read - read sli-4 error attention events 13414 * @phba: Pointer to HBA context. 13415 * 13416 * This function is called to read the SLI4 device error attention registers 13417 * for possible error attention events. The caller must hold the hostlock 13418 * with spin_lock_irq(). 13419 * 13420 * This function returns 1 when there is Error Attention in the Host Attention 13421 * Register and returns 0 otherwise. 13422 **/ 13423 static int 13424 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13425 { 13426 uint32_t uerr_sta_hi, uerr_sta_lo; 13427 uint32_t if_type, portsmphr; 13428 struct lpfc_register portstat_reg; 13429 u32 logmask; 13430 13431 /* 13432 * For now, use the SLI4 device internal unrecoverable error 13433 * registers for error attention. This can be changed later. 13434 */ 13435 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13436 switch (if_type) { 13437 case LPFC_SLI_INTF_IF_TYPE_0: 13438 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13439 &uerr_sta_lo) || 13440 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13441 &uerr_sta_hi)) { 13442 phba->work_hs |= UNPLUG_ERR; 13443 phba->work_ha |= HA_ERATT; 13444 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13445 return 1; 13446 } 13447 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13448 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13450 "1423 HBA Unrecoverable error: " 13451 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13452 "ue_mask_lo_reg=0x%x, " 13453 "ue_mask_hi_reg=0x%x\n", 13454 uerr_sta_lo, uerr_sta_hi, 13455 phba->sli4_hba.ue_mask_lo, 13456 phba->sli4_hba.ue_mask_hi); 13457 phba->work_status[0] = uerr_sta_lo; 13458 phba->work_status[1] = uerr_sta_hi; 13459 phba->work_ha |= HA_ERATT; 13460 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13461 return 1; 13462 } 13463 break; 13464 case LPFC_SLI_INTF_IF_TYPE_2: 13465 case LPFC_SLI_INTF_IF_TYPE_6: 13466 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13467 &portstat_reg.word0) || 13468 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13469 &portsmphr)){ 13470 phba->work_hs |= UNPLUG_ERR; 13471 phba->work_ha |= HA_ERATT; 13472 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13473 return 1; 13474 } 13475 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13476 phba->work_status[0] = 13477 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13478 phba->work_status[1] = 13479 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13480 logmask = LOG_TRACE_EVENT; 13481 if (phba->work_status[0] == 13482 SLIPORT_ERR1_REG_ERR_CODE_2 && 13483 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13484 logmask = LOG_SLI; 13485 lpfc_printf_log(phba, KERN_ERR, logmask, 13486 "2885 Port Status Event: " 13487 "port status reg 0x%x, " 13488 "port smphr reg 0x%x, " 13489 "error 1=0x%x, error 2=0x%x\n", 13490 portstat_reg.word0, 13491 portsmphr, 13492 phba->work_status[0], 13493 phba->work_status[1]); 13494 phba->work_ha |= HA_ERATT; 13495 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13496 return 1; 13497 } 13498 break; 13499 case LPFC_SLI_INTF_IF_TYPE_1: 13500 default: 13501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13502 "2886 HBA Error Attention on unsupported " 13503 "if type %d.", if_type); 13504 return 1; 13505 } 13506 13507 return 0; 13508 } 13509 13510 /** 13511 * lpfc_sli_check_eratt - check error attention events 13512 * @phba: Pointer to HBA context. 13513 * 13514 * This function is called from timer soft interrupt context to check HBA's 13515 * error attention register bit for error attention events. 13516 * 13517 * This function returns 1 when there is Error Attention in the Host Attention 13518 * Register and returns 0 otherwise. 13519 **/ 13520 int 13521 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13522 { 13523 uint32_t ha_copy; 13524 13525 /* If somebody is waiting to handle an eratt, don't process it 13526 * here. The brdkill function will do this. 13527 */ 13528 if (phba->link_flag & LS_IGNORE_ERATT) 13529 return 0; 13530 13531 /* Check if interrupt handler handles this ERATT */ 13532 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13533 /* Interrupt handler has handled ERATT */ 13534 return 0; 13535 13536 /* 13537 * If there is deferred error attention, do not check for error 13538 * attention 13539 */ 13540 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13541 return 0; 13542 13543 spin_lock_irq(&phba->hbalock); 13544 /* If PCI channel is offline, don't process it */ 13545 if (unlikely(pci_channel_offline(phba->pcidev))) { 13546 spin_unlock_irq(&phba->hbalock); 13547 return 0; 13548 } 13549 13550 switch (phba->sli_rev) { 13551 case LPFC_SLI_REV2: 13552 case LPFC_SLI_REV3: 13553 /* Read chip Host Attention (HA) register */ 13554 ha_copy = lpfc_sli_eratt_read(phba); 13555 break; 13556 case LPFC_SLI_REV4: 13557 /* Read device Uncoverable Error (UERR) registers */ 13558 ha_copy = lpfc_sli4_eratt_read(phba); 13559 break; 13560 default: 13561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13562 "0299 Invalid SLI revision (%d)\n", 13563 phba->sli_rev); 13564 ha_copy = 0; 13565 break; 13566 } 13567 spin_unlock_irq(&phba->hbalock); 13568 13569 return ha_copy; 13570 } 13571 13572 /** 13573 * lpfc_intr_state_check - Check device state for interrupt handling 13574 * @phba: Pointer to HBA context. 13575 * 13576 * This inline routine checks whether a device or its PCI slot is in a state 13577 * that the interrupt should be handled. 13578 * 13579 * This function returns 0 if the device or the PCI slot is in a state that 13580 * interrupt should be handled, otherwise -EIO. 13581 */ 13582 static inline int 13583 lpfc_intr_state_check(struct lpfc_hba *phba) 13584 { 13585 /* If the pci channel is offline, ignore all the interrupts */ 13586 if (unlikely(pci_channel_offline(phba->pcidev))) 13587 return -EIO; 13588 13589 /* Update device level interrupt statistics */ 13590 phba->sli.slistat.sli_intr++; 13591 13592 /* Ignore all interrupts during initialization. */ 13593 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13594 return -EIO; 13595 13596 return 0; 13597 } 13598 13599 /** 13600 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13601 * @irq: Interrupt number. 13602 * @dev_id: The device context pointer. 13603 * 13604 * This function is directly called from the PCI layer as an interrupt 13605 * service routine when device with SLI-3 interface spec is enabled with 13606 * MSI-X multi-message interrupt mode and there are slow-path events in 13607 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13608 * interrupt mode, this function is called as part of the device-level 13609 * interrupt handler. When the PCI slot is in error recovery or the HBA 13610 * is undergoing initialization, the interrupt handler will not process 13611 * the interrupt. The link attention and ELS ring attention events are 13612 * handled by the worker thread. The interrupt handler signals the worker 13613 * thread and returns for these events. This function is called without 13614 * any lock held. It gets the hbalock to access and update SLI data 13615 * structures. 13616 * 13617 * This function returns IRQ_HANDLED when interrupt is handled else it 13618 * returns IRQ_NONE. 13619 **/ 13620 irqreturn_t 13621 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13622 { 13623 struct lpfc_hba *phba; 13624 uint32_t ha_copy, hc_copy; 13625 uint32_t work_ha_copy; 13626 unsigned long status; 13627 unsigned long iflag; 13628 uint32_t control; 13629 13630 MAILBOX_t *mbox, *pmbox; 13631 struct lpfc_vport *vport; 13632 struct lpfc_nodelist *ndlp; 13633 struct lpfc_dmabuf *mp; 13634 LPFC_MBOXQ_t *pmb; 13635 int rc; 13636 13637 /* 13638 * Get the driver's phba structure from the dev_id and 13639 * assume the HBA is not interrupting. 13640 */ 13641 phba = (struct lpfc_hba *)dev_id; 13642 13643 if (unlikely(!phba)) 13644 return IRQ_NONE; 13645 13646 /* 13647 * Stuff needs to be attented to when this function is invoked as an 13648 * individual interrupt handler in MSI-X multi-message interrupt mode 13649 */ 13650 if (phba->intr_type == MSIX) { 13651 /* Check device state for handling interrupt */ 13652 if (lpfc_intr_state_check(phba)) 13653 return IRQ_NONE; 13654 /* Need to read HA REG for slow-path events */ 13655 spin_lock_irqsave(&phba->hbalock, iflag); 13656 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13657 goto unplug_error; 13658 /* If somebody is waiting to handle an eratt don't process it 13659 * here. The brdkill function will do this. 13660 */ 13661 if (phba->link_flag & LS_IGNORE_ERATT) 13662 ha_copy &= ~HA_ERATT; 13663 /* Check the need for handling ERATT in interrupt handler */ 13664 if (ha_copy & HA_ERATT) { 13665 if (test_and_set_bit(HBA_ERATT_HANDLED, 13666 &phba->hba_flag)) 13667 /* ERATT polling has handled ERATT */ 13668 ha_copy &= ~HA_ERATT; 13669 } 13670 13671 /* 13672 * If there is deferred error attention, do not check for any 13673 * interrupt. 13674 */ 13675 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13676 spin_unlock_irqrestore(&phba->hbalock, iflag); 13677 return IRQ_NONE; 13678 } 13679 13680 /* Clear up only attention source related to slow-path */ 13681 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13682 goto unplug_error; 13683 13684 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13685 HC_LAINT_ENA | HC_ERINT_ENA), 13686 phba->HCregaddr); 13687 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13688 phba->HAregaddr); 13689 writel(hc_copy, phba->HCregaddr); 13690 readl(phba->HAregaddr); /* flush */ 13691 spin_unlock_irqrestore(&phba->hbalock, iflag); 13692 } else 13693 ha_copy = phba->ha_copy; 13694 13695 work_ha_copy = ha_copy & phba->work_ha_mask; 13696 13697 if (work_ha_copy) { 13698 if (work_ha_copy & HA_LATT) { 13699 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13700 /* 13701 * Turn off Link Attention interrupts 13702 * until CLEAR_LA done 13703 */ 13704 spin_lock_irqsave(&phba->hbalock, iflag); 13705 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13706 if (lpfc_readl(phba->HCregaddr, &control)) 13707 goto unplug_error; 13708 control &= ~HC_LAINT_ENA; 13709 writel(control, phba->HCregaddr); 13710 readl(phba->HCregaddr); /* flush */ 13711 spin_unlock_irqrestore(&phba->hbalock, iflag); 13712 } 13713 else 13714 work_ha_copy &= ~HA_LATT; 13715 } 13716 13717 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13718 /* 13719 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13720 * the only slow ring. 13721 */ 13722 status = (work_ha_copy & 13723 (HA_RXMASK << (4*LPFC_ELS_RING))); 13724 status >>= (4*LPFC_ELS_RING); 13725 if (status & HA_RXMASK) { 13726 spin_lock_irqsave(&phba->hbalock, iflag); 13727 if (lpfc_readl(phba->HCregaddr, &control)) 13728 goto unplug_error; 13729 13730 lpfc_debugfs_slow_ring_trc(phba, 13731 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13732 control, status, 13733 (uint32_t)phba->sli.slistat.sli_intr); 13734 13735 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13736 lpfc_debugfs_slow_ring_trc(phba, 13737 "ISR Disable ring:" 13738 "pwork:x%x hawork:x%x wait:x%x", 13739 phba->work_ha, work_ha_copy, 13740 (uint32_t)((unsigned long) 13741 &phba->work_waitq)); 13742 13743 control &= 13744 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13745 writel(control, phba->HCregaddr); 13746 readl(phba->HCregaddr); /* flush */ 13747 } 13748 else { 13749 lpfc_debugfs_slow_ring_trc(phba, 13750 "ISR slow ring: pwork:" 13751 "x%x hawork:x%x wait:x%x", 13752 phba->work_ha, work_ha_copy, 13753 (uint32_t)((unsigned long) 13754 &phba->work_waitq)); 13755 } 13756 spin_unlock_irqrestore(&phba->hbalock, iflag); 13757 } 13758 } 13759 spin_lock_irqsave(&phba->hbalock, iflag); 13760 if (work_ha_copy & HA_ERATT) { 13761 if (lpfc_sli_read_hs(phba)) 13762 goto unplug_error; 13763 /* 13764 * Check if there is a deferred error condition 13765 * is active 13766 */ 13767 if ((HS_FFER1 & phba->work_hs) && 13768 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13769 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13770 phba->work_hs)) { 13771 set_bit(DEFER_ERATT, &phba->hba_flag); 13772 /* Clear all interrupt enable conditions */ 13773 writel(0, phba->HCregaddr); 13774 readl(phba->HCregaddr); 13775 } 13776 } 13777 13778 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13779 pmb = phba->sli.mbox_active; 13780 pmbox = &pmb->u.mb; 13781 mbox = phba->mbox; 13782 vport = pmb->vport; 13783 13784 /* First check out the status word */ 13785 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13786 if (pmbox->mbxOwner != OWN_HOST) { 13787 spin_unlock_irqrestore(&phba->hbalock, iflag); 13788 /* 13789 * Stray Mailbox Interrupt, mbxCommand <cmd> 13790 * mbxStatus <status> 13791 */ 13792 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13793 "(%d):0304 Stray Mailbox " 13794 "Interrupt mbxCommand x%x " 13795 "mbxStatus x%x\n", 13796 (vport ? vport->vpi : 0), 13797 pmbox->mbxCommand, 13798 pmbox->mbxStatus); 13799 /* clear mailbox attention bit */ 13800 work_ha_copy &= ~HA_MBATT; 13801 } else { 13802 phba->sli.mbox_active = NULL; 13803 spin_unlock_irqrestore(&phba->hbalock, iflag); 13804 phba->last_completion_time = jiffies; 13805 timer_delete(&phba->sli.mbox_tmo); 13806 if (pmb->mbox_cmpl) { 13807 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13808 MAILBOX_CMD_SIZE); 13809 if (pmb->out_ext_byte_len && 13810 pmb->ext_buf) 13811 lpfc_sli_pcimem_bcopy( 13812 phba->mbox_ext, 13813 pmb->ext_buf, 13814 pmb->out_ext_byte_len); 13815 } 13816 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13817 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13818 13819 lpfc_debugfs_disc_trc(vport, 13820 LPFC_DISC_TRC_MBOX_VPORT, 13821 "MBOX dflt rpi: : " 13822 "status:x%x rpi:x%x", 13823 (uint32_t)pmbox->mbxStatus, 13824 pmbox->un.varWords[0], 0); 13825 13826 if (!pmbox->mbxStatus) { 13827 mp = pmb->ctx_buf; 13828 ndlp = pmb->ctx_ndlp; 13829 13830 /* Reg_LOGIN of dflt RPI was 13831 * successful. new lets get 13832 * rid of the RPI using the 13833 * same mbox buffer. 13834 */ 13835 lpfc_unreg_login(phba, 13836 vport->vpi, 13837 pmbox->un.varWords[0], 13838 pmb); 13839 pmb->mbox_cmpl = 13840 lpfc_mbx_cmpl_dflt_rpi; 13841 pmb->ctx_buf = mp; 13842 pmb->ctx_ndlp = ndlp; 13843 pmb->vport = vport; 13844 rc = lpfc_sli_issue_mbox(phba, 13845 pmb, 13846 MBX_NOWAIT); 13847 if (rc != MBX_BUSY) 13848 lpfc_printf_log(phba, 13849 KERN_ERR, 13850 LOG_TRACE_EVENT, 13851 "0350 rc should have" 13852 "been MBX_BUSY\n"); 13853 if (rc != MBX_NOT_FINISHED) 13854 goto send_current_mbox; 13855 } 13856 } 13857 spin_lock_irqsave( 13858 &phba->pport->work_port_lock, 13859 iflag); 13860 phba->pport->work_port_events &= 13861 ~WORKER_MBOX_TMO; 13862 spin_unlock_irqrestore( 13863 &phba->pport->work_port_lock, 13864 iflag); 13865 13866 /* Do NOT queue MBX_HEARTBEAT to the worker 13867 * thread for processing. 13868 */ 13869 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13870 /* Process mbox now */ 13871 phba->sli.mbox_active = NULL; 13872 phba->sli.sli_flag &= 13873 ~LPFC_SLI_MBOX_ACTIVE; 13874 if (pmb->mbox_cmpl) 13875 pmb->mbox_cmpl(phba, pmb); 13876 } else { 13877 /* Queue to worker thread to process */ 13878 lpfc_mbox_cmpl_put(phba, pmb); 13879 } 13880 } 13881 } else 13882 spin_unlock_irqrestore(&phba->hbalock, iflag); 13883 13884 if ((work_ha_copy & HA_MBATT) && 13885 (phba->sli.mbox_active == NULL)) { 13886 send_current_mbox: 13887 /* Process next mailbox command if there is one */ 13888 do { 13889 rc = lpfc_sli_issue_mbox(phba, NULL, 13890 MBX_NOWAIT); 13891 } while (rc == MBX_NOT_FINISHED); 13892 if (rc != MBX_SUCCESS) 13893 lpfc_printf_log(phba, KERN_ERR, 13894 LOG_TRACE_EVENT, 13895 "0349 rc should be " 13896 "MBX_SUCCESS\n"); 13897 } 13898 13899 spin_lock_irqsave(&phba->hbalock, iflag); 13900 phba->work_ha |= work_ha_copy; 13901 spin_unlock_irqrestore(&phba->hbalock, iflag); 13902 lpfc_worker_wake_up(phba); 13903 } 13904 return IRQ_HANDLED; 13905 unplug_error: 13906 spin_unlock_irqrestore(&phba->hbalock, iflag); 13907 return IRQ_HANDLED; 13908 13909 } /* lpfc_sli_sp_intr_handler */ 13910 13911 /** 13912 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13913 * @irq: Interrupt number. 13914 * @dev_id: The device context pointer. 13915 * 13916 * This function is directly called from the PCI layer as an interrupt 13917 * service routine when device with SLI-3 interface spec is enabled with 13918 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13919 * ring event in the HBA. However, when the device is enabled with either 13920 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13921 * device-level interrupt handler. When the PCI slot is in error recovery 13922 * or the HBA is undergoing initialization, the interrupt handler will not 13923 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13924 * the intrrupt context. This function is called without any lock held. 13925 * It gets the hbalock to access and update SLI data structures. 13926 * 13927 * This function returns IRQ_HANDLED when interrupt is handled else it 13928 * returns IRQ_NONE. 13929 **/ 13930 irqreturn_t 13931 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13932 { 13933 struct lpfc_hba *phba; 13934 uint32_t ha_copy; 13935 unsigned long status; 13936 unsigned long iflag; 13937 struct lpfc_sli_ring *pring; 13938 13939 /* Get the driver's phba structure from the dev_id and 13940 * assume the HBA is not interrupting. 13941 */ 13942 phba = (struct lpfc_hba *) dev_id; 13943 13944 if (unlikely(!phba)) 13945 return IRQ_NONE; 13946 13947 /* 13948 * Stuff needs to be attented to when this function is invoked as an 13949 * individual interrupt handler in MSI-X multi-message interrupt mode 13950 */ 13951 if (phba->intr_type == MSIX) { 13952 /* Check device state for handling interrupt */ 13953 if (lpfc_intr_state_check(phba)) 13954 return IRQ_NONE; 13955 /* Need to read HA REG for FCP ring and other ring events */ 13956 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13957 return IRQ_HANDLED; 13958 13959 /* 13960 * If there is deferred error attention, do not check for 13961 * any interrupt. 13962 */ 13963 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13964 return IRQ_NONE; 13965 13966 /* Clear up only attention source related to fast-path */ 13967 spin_lock_irqsave(&phba->hbalock, iflag); 13968 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13969 phba->HAregaddr); 13970 readl(phba->HAregaddr); /* flush */ 13971 spin_unlock_irqrestore(&phba->hbalock, iflag); 13972 } else 13973 ha_copy = phba->ha_copy; 13974 13975 /* 13976 * Process all events on FCP ring. Take the optimized path for FCP IO. 13977 */ 13978 ha_copy &= ~(phba->work_ha_mask); 13979 13980 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13981 status >>= (4*LPFC_FCP_RING); 13982 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13983 if (status & HA_RXMASK) 13984 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13985 13986 if (phba->cfg_multi_ring_support == 2) { 13987 /* 13988 * Process all events on extra ring. Take the optimized path 13989 * for extra ring IO. 13990 */ 13991 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13992 status >>= (4*LPFC_EXTRA_RING); 13993 if (status & HA_RXMASK) { 13994 lpfc_sli_handle_fast_ring_event(phba, 13995 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13996 status); 13997 } 13998 } 13999 return IRQ_HANDLED; 14000 } /* lpfc_sli_fp_intr_handler */ 14001 14002 /** 14003 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14004 * @irq: Interrupt number. 14005 * @dev_id: The device context pointer. 14006 * 14007 * This function is the HBA device-level interrupt handler to device with 14008 * SLI-3 interface spec, called from the PCI layer when either MSI or 14009 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14010 * requires driver attention. This function invokes the slow-path interrupt 14011 * attention handling function and fast-path interrupt attention handling 14012 * function in turn to process the relevant HBA attention events. This 14013 * function is called without any lock held. It gets the hbalock to access 14014 * and update SLI data structures. 14015 * 14016 * This function returns IRQ_HANDLED when interrupt is handled, else it 14017 * returns IRQ_NONE. 14018 **/ 14019 irqreturn_t 14020 lpfc_sli_intr_handler(int irq, void *dev_id) 14021 { 14022 struct lpfc_hba *phba; 14023 irqreturn_t sp_irq_rc, fp_irq_rc; 14024 unsigned long status1, status2; 14025 uint32_t hc_copy; 14026 14027 /* 14028 * Get the driver's phba structure from the dev_id and 14029 * assume the HBA is not interrupting. 14030 */ 14031 phba = (struct lpfc_hba *) dev_id; 14032 14033 if (unlikely(!phba)) 14034 return IRQ_NONE; 14035 14036 /* Check device state for handling interrupt */ 14037 if (lpfc_intr_state_check(phba)) 14038 return IRQ_NONE; 14039 14040 spin_lock(&phba->hbalock); 14041 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14042 spin_unlock(&phba->hbalock); 14043 return IRQ_HANDLED; 14044 } 14045 14046 if (unlikely(!phba->ha_copy)) { 14047 spin_unlock(&phba->hbalock); 14048 return IRQ_NONE; 14049 } else if (phba->ha_copy & HA_ERATT) { 14050 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14051 /* ERATT polling has handled ERATT */ 14052 phba->ha_copy &= ~HA_ERATT; 14053 } 14054 14055 /* 14056 * If there is deferred error attention, do not check for any interrupt. 14057 */ 14058 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14059 spin_unlock(&phba->hbalock); 14060 return IRQ_NONE; 14061 } 14062 14063 /* Clear attention sources except link and error attentions */ 14064 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14065 spin_unlock(&phba->hbalock); 14066 return IRQ_HANDLED; 14067 } 14068 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14069 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14070 phba->HCregaddr); 14071 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14072 writel(hc_copy, phba->HCregaddr); 14073 readl(phba->HAregaddr); /* flush */ 14074 spin_unlock(&phba->hbalock); 14075 14076 /* 14077 * Invokes slow-path host attention interrupt handling as appropriate. 14078 */ 14079 14080 /* status of events with mailbox and link attention */ 14081 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14082 14083 /* status of events with ELS ring */ 14084 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14085 status2 >>= (4*LPFC_ELS_RING); 14086 14087 if (status1 || (status2 & HA_RXMASK)) 14088 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14089 else 14090 sp_irq_rc = IRQ_NONE; 14091 14092 /* 14093 * Invoke fast-path host attention interrupt handling as appropriate. 14094 */ 14095 14096 /* status of events with FCP ring */ 14097 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14098 status1 >>= (4*LPFC_FCP_RING); 14099 14100 /* status of events with extra ring */ 14101 if (phba->cfg_multi_ring_support == 2) { 14102 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14103 status2 >>= (4*LPFC_EXTRA_RING); 14104 } else 14105 status2 = 0; 14106 14107 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14108 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14109 else 14110 fp_irq_rc = IRQ_NONE; 14111 14112 /* Return device-level interrupt handling status */ 14113 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14114 } /* lpfc_sli_intr_handler */ 14115 14116 /** 14117 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14118 * @phba: pointer to lpfc hba data structure. 14119 * 14120 * This routine is invoked by the worker thread to process all the pending 14121 * SLI4 els abort xri events. 14122 **/ 14123 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14124 { 14125 struct lpfc_cq_event *cq_event; 14126 unsigned long iflags; 14127 14128 /* First, declare the els xri abort event has been handled */ 14129 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14130 14131 /* Now, handle all the els xri abort events */ 14132 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14133 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14134 /* Get the first event from the head of the event queue */ 14135 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14136 cq_event, struct lpfc_cq_event, list); 14137 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14138 iflags); 14139 /* Notify aborted XRI for ELS work queue */ 14140 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14141 14142 /* Free the event processed back to the free pool */ 14143 lpfc_sli4_cq_event_release(phba, cq_event); 14144 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14145 iflags); 14146 } 14147 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14148 } 14149 14150 /** 14151 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14152 * @phba: Pointer to HBA context object. 14153 * @irspiocbq: Pointer to work-queue completion queue entry. 14154 * 14155 * This routine handles an ELS work-queue completion event and construct 14156 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14157 * discovery engine to handle. 14158 * 14159 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14160 **/ 14161 static struct lpfc_iocbq * 14162 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14163 struct lpfc_iocbq *irspiocbq) 14164 { 14165 struct lpfc_sli_ring *pring; 14166 struct lpfc_iocbq *cmdiocbq; 14167 struct lpfc_wcqe_complete *wcqe; 14168 unsigned long iflags; 14169 14170 pring = lpfc_phba_elsring(phba); 14171 if (unlikely(!pring)) 14172 return NULL; 14173 14174 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14175 spin_lock_irqsave(&pring->ring_lock, iflags); 14176 pring->stats.iocb_event++; 14177 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14178 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14179 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14180 if (unlikely(!cmdiocbq)) { 14181 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14182 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14183 "0386 ELS complete with no corresponding " 14184 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14185 wcqe->word0, wcqe->total_data_placed, 14186 wcqe->parameter, wcqe->word3); 14187 lpfc_sli_release_iocbq(phba, irspiocbq); 14188 return NULL; 14189 } 14190 14191 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14192 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14193 14194 /* Put the iocb back on the txcmplq */ 14195 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14196 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14197 14198 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14199 spin_lock_irqsave(&phba->hbalock, iflags); 14200 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14201 spin_unlock_irqrestore(&phba->hbalock, iflags); 14202 } 14203 14204 return irspiocbq; 14205 } 14206 14207 inline struct lpfc_cq_event * 14208 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14209 { 14210 struct lpfc_cq_event *cq_event; 14211 14212 /* Allocate a new internal CQ_EVENT entry */ 14213 cq_event = lpfc_sli4_cq_event_alloc(phba); 14214 if (!cq_event) { 14215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14216 "0602 Failed to alloc CQ_EVENT entry\n"); 14217 return NULL; 14218 } 14219 14220 /* Move the CQE into the event */ 14221 memcpy(&cq_event->cqe, entry, size); 14222 return cq_event; 14223 } 14224 14225 /** 14226 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14227 * @phba: Pointer to HBA context object. 14228 * @mcqe: Pointer to mailbox completion queue entry. 14229 * 14230 * This routine process a mailbox completion queue entry with asynchronous 14231 * event. 14232 * 14233 * Return: true if work posted to worker thread, otherwise false. 14234 **/ 14235 static bool 14236 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14237 { 14238 struct lpfc_cq_event *cq_event; 14239 unsigned long iflags; 14240 14241 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14242 "0392 Async Event: word0:x%x, word1:x%x, " 14243 "word2:x%x, word3:x%x\n", mcqe->word0, 14244 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14245 14246 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14247 if (!cq_event) 14248 return false; 14249 14250 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14251 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14252 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14253 14254 /* Set the async event flag */ 14255 set_bit(ASYNC_EVENT, &phba->hba_flag); 14256 14257 return true; 14258 } 14259 14260 /** 14261 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14262 * @phba: Pointer to HBA context object. 14263 * @mcqe: Pointer to mailbox completion queue entry. 14264 * 14265 * This routine process a mailbox completion queue entry with mailbox 14266 * completion event. 14267 * 14268 * Return: true if work posted to worker thread, otherwise false. 14269 **/ 14270 static bool 14271 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14272 { 14273 uint32_t mcqe_status; 14274 MAILBOX_t *mbox, *pmbox; 14275 struct lpfc_mqe *mqe; 14276 struct lpfc_vport *vport; 14277 struct lpfc_nodelist *ndlp; 14278 struct lpfc_dmabuf *mp; 14279 unsigned long iflags; 14280 LPFC_MBOXQ_t *pmb; 14281 bool workposted = false; 14282 int rc; 14283 14284 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14285 if (!bf_get(lpfc_trailer_completed, mcqe)) 14286 goto out_no_mqe_complete; 14287 14288 /* Get the reference to the active mbox command */ 14289 spin_lock_irqsave(&phba->hbalock, iflags); 14290 pmb = phba->sli.mbox_active; 14291 if (unlikely(!pmb)) { 14292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14293 "1832 No pending MBOX command to handle\n"); 14294 spin_unlock_irqrestore(&phba->hbalock, iflags); 14295 goto out_no_mqe_complete; 14296 } 14297 spin_unlock_irqrestore(&phba->hbalock, iflags); 14298 mqe = &pmb->u.mqe; 14299 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14300 mbox = phba->mbox; 14301 vport = pmb->vport; 14302 14303 /* Reset heartbeat timer */ 14304 phba->last_completion_time = jiffies; 14305 timer_delete(&phba->sli.mbox_tmo); 14306 14307 /* Move mbox data to caller's mailbox region, do endian swapping */ 14308 if (pmb->mbox_cmpl && mbox) 14309 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14310 14311 /* 14312 * For mcqe errors, conditionally move a modified error code to 14313 * the mbox so that the error will not be missed. 14314 */ 14315 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14316 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14317 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14318 bf_set(lpfc_mqe_status, mqe, 14319 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14320 } 14321 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14322 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14323 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14324 "MBOX dflt rpi: status:x%x rpi:x%x", 14325 mcqe_status, 14326 pmbox->un.varWords[0], 0); 14327 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14328 mp = pmb->ctx_buf; 14329 ndlp = pmb->ctx_ndlp; 14330 14331 /* Reg_LOGIN of dflt RPI was successful. Mark the 14332 * node as having an UNREG_LOGIN in progress to stop 14333 * an unsolicited PLOGI from the same NPortId from 14334 * starting another mailbox transaction. 14335 */ 14336 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 14337 lpfc_unreg_login(phba, vport->vpi, 14338 pmbox->un.varWords[0], pmb); 14339 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14340 pmb->ctx_buf = mp; 14341 14342 /* No reference taken here. This is a default 14343 * RPI reg/immediate unreg cycle. The reference was 14344 * taken in the reg rpi path and is released when 14345 * this mailbox completes. 14346 */ 14347 pmb->ctx_ndlp = ndlp; 14348 pmb->vport = vport; 14349 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14350 if (rc != MBX_BUSY) 14351 lpfc_printf_log(phba, KERN_ERR, 14352 LOG_TRACE_EVENT, 14353 "0385 rc should " 14354 "have been MBX_BUSY\n"); 14355 if (rc != MBX_NOT_FINISHED) 14356 goto send_current_mbox; 14357 } 14358 } 14359 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14360 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14361 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14362 14363 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14364 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14365 spin_lock_irqsave(&phba->hbalock, iflags); 14366 /* Release the mailbox command posting token */ 14367 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14368 phba->sli.mbox_active = NULL; 14369 if (bf_get(lpfc_trailer_consumed, mcqe)) 14370 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14371 spin_unlock_irqrestore(&phba->hbalock, iflags); 14372 14373 /* Post the next mbox command, if there is one */ 14374 lpfc_sli4_post_async_mbox(phba); 14375 14376 /* Process cmpl now */ 14377 if (pmb->mbox_cmpl) 14378 pmb->mbox_cmpl(phba, pmb); 14379 return false; 14380 } 14381 14382 /* There is mailbox completion work to queue to the worker thread */ 14383 spin_lock_irqsave(&phba->hbalock, iflags); 14384 __lpfc_mbox_cmpl_put(phba, pmb); 14385 phba->work_ha |= HA_MBATT; 14386 spin_unlock_irqrestore(&phba->hbalock, iflags); 14387 workposted = true; 14388 14389 send_current_mbox: 14390 spin_lock_irqsave(&phba->hbalock, iflags); 14391 /* Release the mailbox command posting token */ 14392 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14393 /* Setting active mailbox pointer need to be in sync to flag clear */ 14394 phba->sli.mbox_active = NULL; 14395 if (bf_get(lpfc_trailer_consumed, mcqe)) 14396 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14397 spin_unlock_irqrestore(&phba->hbalock, iflags); 14398 /* Wake up worker thread to post the next pending mailbox command */ 14399 lpfc_worker_wake_up(phba); 14400 return workposted; 14401 14402 out_no_mqe_complete: 14403 spin_lock_irqsave(&phba->hbalock, iflags); 14404 if (bf_get(lpfc_trailer_consumed, mcqe)) 14405 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14406 spin_unlock_irqrestore(&phba->hbalock, iflags); 14407 return false; 14408 } 14409 14410 /** 14411 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14412 * @phba: Pointer to HBA context object. 14413 * @cq: Pointer to associated CQ 14414 * @cqe: Pointer to mailbox completion queue entry. 14415 * 14416 * This routine process a mailbox completion queue entry, it invokes the 14417 * proper mailbox complete handling or asynchronous event handling routine 14418 * according to the MCQE's async bit. 14419 * 14420 * Return: true if work posted to worker thread, otherwise false. 14421 **/ 14422 static bool 14423 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14424 struct lpfc_cqe *cqe) 14425 { 14426 struct lpfc_mcqe mcqe; 14427 bool workposted; 14428 14429 cq->CQ_mbox++; 14430 14431 /* Copy the mailbox MCQE and convert endian order as needed */ 14432 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14433 14434 /* Invoke the proper event handling routine */ 14435 if (!bf_get(lpfc_trailer_async, &mcqe)) 14436 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14437 else 14438 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14439 return workposted; 14440 } 14441 14442 /** 14443 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14444 * @phba: Pointer to HBA context object. 14445 * @cq: Pointer to associated CQ 14446 * @wcqe: Pointer to work-queue completion queue entry. 14447 * 14448 * This routine handles an ELS work-queue completion event. 14449 * 14450 * Return: true if work posted to worker thread, otherwise false. 14451 **/ 14452 static bool 14453 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14454 struct lpfc_wcqe_complete *wcqe) 14455 { 14456 struct lpfc_iocbq *irspiocbq; 14457 unsigned long iflags; 14458 struct lpfc_sli_ring *pring = cq->pring; 14459 int txq_cnt = 0; 14460 int txcmplq_cnt = 0; 14461 14462 /* Check for response status */ 14463 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14464 /* Log the error status */ 14465 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14466 "0357 ELS CQE error: status=x%x: " 14467 "CQE: %08x %08x %08x %08x\n", 14468 bf_get(lpfc_wcqe_c_status, wcqe), 14469 wcqe->word0, wcqe->total_data_placed, 14470 wcqe->parameter, wcqe->word3); 14471 } 14472 14473 /* Get an irspiocbq for later ELS response processing use */ 14474 irspiocbq = lpfc_sli_get_iocbq(phba); 14475 if (!irspiocbq) { 14476 if (!list_empty(&pring->txq)) 14477 txq_cnt++; 14478 if (!list_empty(&pring->txcmplq)) 14479 txcmplq_cnt++; 14480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14481 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14482 "els_txcmplq_cnt=%d\n", 14483 txq_cnt, phba->iocb_cnt, 14484 txcmplq_cnt); 14485 return false; 14486 } 14487 14488 /* Save off the slow-path queue event for work thread to process */ 14489 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14490 spin_lock_irqsave(&phba->hbalock, iflags); 14491 list_add_tail(&irspiocbq->cq_event.list, 14492 &phba->sli4_hba.sp_queue_event); 14493 spin_unlock_irqrestore(&phba->hbalock, iflags); 14494 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14495 14496 return true; 14497 } 14498 14499 /** 14500 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14501 * @phba: Pointer to HBA context object. 14502 * @wcqe: Pointer to work-queue completion queue entry. 14503 * 14504 * This routine handles slow-path WQ entry consumed event by invoking the 14505 * proper WQ release routine to the slow-path WQ. 14506 **/ 14507 static void 14508 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14509 struct lpfc_wcqe_release *wcqe) 14510 { 14511 /* sanity check on queue memory */ 14512 if (unlikely(!phba->sli4_hba.els_wq)) 14513 return; 14514 /* Check for the slow-path ELS work queue */ 14515 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14516 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14517 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14518 else 14519 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14520 "2579 Slow-path wqe consume event carries " 14521 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14522 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14523 phba->sli4_hba.els_wq->queue_id); 14524 } 14525 14526 /** 14527 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14528 * @phba: Pointer to HBA context object. 14529 * @cq: Pointer to a WQ completion queue. 14530 * @wcqe: Pointer to work-queue completion queue entry. 14531 * 14532 * This routine handles an XRI abort event. 14533 * 14534 * Return: true if work posted to worker thread, otherwise false. 14535 **/ 14536 static bool 14537 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14538 struct lpfc_queue *cq, 14539 struct sli4_wcqe_xri_aborted *wcqe) 14540 { 14541 bool workposted = false; 14542 struct lpfc_cq_event *cq_event; 14543 unsigned long iflags; 14544 14545 switch (cq->subtype) { 14546 case LPFC_IO: 14547 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14548 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14549 /* Notify aborted XRI for NVME work queue */ 14550 if (phba->nvmet_support) 14551 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14552 } 14553 workposted = false; 14554 break; 14555 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14556 case LPFC_ELS: 14557 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14558 if (!cq_event) { 14559 workposted = false; 14560 break; 14561 } 14562 cq_event->hdwq = cq->hdwq; 14563 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14564 iflags); 14565 list_add_tail(&cq_event->list, 14566 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14567 /* Set the els xri abort event flag */ 14568 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14569 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14570 iflags); 14571 workposted = true; 14572 break; 14573 default: 14574 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14575 "0603 Invalid CQ subtype %d: " 14576 "%08x %08x %08x %08x\n", 14577 cq->subtype, wcqe->word0, wcqe->parameter, 14578 wcqe->word2, wcqe->word3); 14579 workposted = false; 14580 break; 14581 } 14582 return workposted; 14583 } 14584 14585 #define FC_RCTL_MDS_DIAGS 0xF4 14586 14587 /** 14588 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14589 * @phba: Pointer to HBA context object. 14590 * @rcqe: Pointer to receive-queue completion queue entry. 14591 * 14592 * This routine process a receive-queue completion queue entry. 14593 * 14594 * Return: true if work posted to worker thread, otherwise false. 14595 **/ 14596 static bool 14597 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14598 { 14599 bool workposted = false; 14600 struct fc_frame_header *fc_hdr; 14601 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14602 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14603 struct lpfc_nvmet_tgtport *tgtp; 14604 struct hbq_dmabuf *dma_buf; 14605 uint32_t status, rq_id; 14606 unsigned long iflags; 14607 14608 /* sanity check on queue memory */ 14609 if (unlikely(!hrq) || unlikely(!drq)) 14610 return workposted; 14611 14612 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14613 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14614 else 14615 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14616 if (rq_id != hrq->queue_id) 14617 goto out; 14618 14619 status = bf_get(lpfc_rcqe_status, rcqe); 14620 switch (status) { 14621 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14623 "2537 Receive Frame Truncated!!\n"); 14624 fallthrough; 14625 case FC_STATUS_RQ_SUCCESS: 14626 spin_lock_irqsave(&phba->hbalock, iflags); 14627 lpfc_sli4_rq_release(hrq, drq); 14628 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14629 if (!dma_buf) { 14630 hrq->RQ_no_buf_found++; 14631 spin_unlock_irqrestore(&phba->hbalock, iflags); 14632 goto out; 14633 } 14634 hrq->RQ_rcv_buf++; 14635 hrq->RQ_buf_posted--; 14636 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14637 14638 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14639 14640 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14641 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14642 spin_unlock_irqrestore(&phba->hbalock, iflags); 14643 /* Handle MDS Loopback frames */ 14644 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14645 lpfc_sli4_handle_mds_loopback(phba->pport, 14646 dma_buf); 14647 else 14648 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14649 break; 14650 } 14651 14652 /* save off the frame for the work thread to process */ 14653 list_add_tail(&dma_buf->cq_event.list, 14654 &phba->sli4_hba.sp_queue_event); 14655 spin_unlock_irqrestore(&phba->hbalock, iflags); 14656 /* Frame received */ 14657 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14658 workposted = true; 14659 break; 14660 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14661 if (phba->nvmet_support) { 14662 tgtp = phba->targetport->private; 14663 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14664 "6402 RQE Error x%x, posted %d err_cnt " 14665 "%d: %x %x %x\n", 14666 status, hrq->RQ_buf_posted, 14667 hrq->RQ_no_posted_buf, 14668 atomic_read(&tgtp->rcv_fcp_cmd_in), 14669 atomic_read(&tgtp->rcv_fcp_cmd_out), 14670 atomic_read(&tgtp->xmt_fcp_release)); 14671 } 14672 fallthrough; 14673 14674 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14675 hrq->RQ_no_posted_buf++; 14676 /* Post more buffers if possible */ 14677 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14678 workposted = true; 14679 break; 14680 case FC_STATUS_RQ_DMA_FAILURE: 14681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14682 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14683 "x%08x\n", 14684 status, rcqe->word0, rcqe->word1, 14685 rcqe->word2, rcqe->word3); 14686 14687 /* If IV set, no further recovery */ 14688 if (bf_get(lpfc_rcqe_iv, rcqe)) 14689 break; 14690 14691 /* recycle consumed resource */ 14692 spin_lock_irqsave(&phba->hbalock, iflags); 14693 lpfc_sli4_rq_release(hrq, drq); 14694 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14695 if (!dma_buf) { 14696 hrq->RQ_no_buf_found++; 14697 spin_unlock_irqrestore(&phba->hbalock, iflags); 14698 break; 14699 } 14700 hrq->RQ_rcv_buf++; 14701 hrq->RQ_buf_posted--; 14702 spin_unlock_irqrestore(&phba->hbalock, iflags); 14703 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14704 break; 14705 default: 14706 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14707 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14708 "x%08x x%08x x%08x\n", 14709 status, rcqe->word0, rcqe->word1, 14710 rcqe->word2, rcqe->word3); 14711 break; 14712 } 14713 out: 14714 return workposted; 14715 } 14716 14717 /** 14718 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14719 * @phba: Pointer to HBA context object. 14720 * @cq: Pointer to the completion queue. 14721 * @cqe: Pointer to a completion queue entry. 14722 * 14723 * This routine process a slow-path work-queue or receive queue completion queue 14724 * entry. 14725 * 14726 * Return: true if work posted to worker thread, otherwise false. 14727 **/ 14728 static bool 14729 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14730 struct lpfc_cqe *cqe) 14731 { 14732 struct lpfc_cqe cqevt; 14733 bool workposted = false; 14734 14735 /* Copy the work queue CQE and convert endian order if needed */ 14736 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14737 14738 /* Check and process for different type of WCQE and dispatch */ 14739 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14740 case CQE_CODE_COMPL_WQE: 14741 /* Process the WQ/RQ complete event */ 14742 phba->last_completion_time = jiffies; 14743 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14744 (struct lpfc_wcqe_complete *)&cqevt); 14745 break; 14746 case CQE_CODE_RELEASE_WQE: 14747 /* Process the WQ release event */ 14748 lpfc_sli4_sp_handle_rel_wcqe(phba, 14749 (struct lpfc_wcqe_release *)&cqevt); 14750 break; 14751 case CQE_CODE_XRI_ABORTED: 14752 /* Process the WQ XRI abort event */ 14753 phba->last_completion_time = jiffies; 14754 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14755 (struct sli4_wcqe_xri_aborted *)&cqevt); 14756 break; 14757 case CQE_CODE_RECEIVE: 14758 case CQE_CODE_RECEIVE_V1: 14759 /* Process the RQ event */ 14760 phba->last_completion_time = jiffies; 14761 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14762 (struct lpfc_rcqe *)&cqevt); 14763 break; 14764 default: 14765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14766 "0388 Not a valid WCQE code: x%x\n", 14767 bf_get(lpfc_cqe_code, &cqevt)); 14768 break; 14769 } 14770 return workposted; 14771 } 14772 14773 /** 14774 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14775 * @phba: Pointer to HBA context object. 14776 * @eqe: Pointer to fast-path event queue entry. 14777 * @speq: Pointer to slow-path event queue. 14778 * 14779 * This routine process a event queue entry from the slow-path event queue. 14780 * It will check the MajorCode and MinorCode to determine this is for a 14781 * completion event on a completion queue, if not, an error shall be logged 14782 * and just return. Otherwise, it will get to the corresponding completion 14783 * queue and process all the entries on that completion queue, rearm the 14784 * completion queue, and then return. 14785 * 14786 **/ 14787 static void 14788 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14789 struct lpfc_queue *speq) 14790 { 14791 struct lpfc_queue *cq = NULL, *childq; 14792 uint16_t cqid; 14793 int ret = 0; 14794 14795 /* Get the reference to the corresponding CQ */ 14796 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14797 14798 list_for_each_entry(childq, &speq->child_list, list) { 14799 if (childq->queue_id == cqid) { 14800 cq = childq; 14801 break; 14802 } 14803 } 14804 if (unlikely(!cq)) { 14805 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14806 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14807 "0365 Slow-path CQ identifier " 14808 "(%d) does not exist\n", cqid); 14809 return; 14810 } 14811 14812 /* Save EQ associated with this CQ */ 14813 cq->assoc_qp = speq; 14814 14815 if (is_kdump_kernel()) 14816 ret = queue_work(phba->wq, &cq->spwork); 14817 else 14818 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14819 14820 if (!ret) 14821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14822 "0390 Cannot schedule queue work " 14823 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14824 cqid, cq->queue_id, raw_smp_processor_id()); 14825 } 14826 14827 /** 14828 * __lpfc_sli4_process_cq - Process elements of a CQ 14829 * @phba: Pointer to HBA context object. 14830 * @cq: Pointer to CQ to be processed 14831 * @handler: Routine to process each cqe 14832 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14833 * 14834 * This routine processes completion queue entries in a CQ. While a valid 14835 * queue element is found, the handler is called. During processing checks 14836 * are made for periodic doorbell writes to let the hardware know of 14837 * element consumption. 14838 * 14839 * If the max limit on cqes to process is hit, or there are no more valid 14840 * entries, the loop stops. If we processed a sufficient number of elements, 14841 * meaning there is sufficient load, rather than rearming and generating 14842 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14843 * indicates no rescheduling. 14844 * 14845 * Returns True if work scheduled, False otherwise. 14846 **/ 14847 static bool 14848 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14849 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14850 struct lpfc_cqe *), unsigned long *delay) 14851 { 14852 struct lpfc_cqe *cqe; 14853 bool workposted = false; 14854 int count = 0, consumed = 0; 14855 bool arm = true; 14856 14857 /* default - no reschedule */ 14858 *delay = 0; 14859 14860 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14861 goto rearm_and_exit; 14862 14863 /* Process all the entries to the CQ */ 14864 cq->q_flag = 0; 14865 cqe = lpfc_sli4_cq_get(cq); 14866 while (cqe) { 14867 workposted |= handler(phba, cq, cqe); 14868 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14869 14870 consumed++; 14871 if (!(++count % cq->max_proc_limit)) 14872 break; 14873 14874 if (!(count % cq->notify_interval)) { 14875 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14876 LPFC_QUEUE_NOARM); 14877 consumed = 0; 14878 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14879 } 14880 14881 if (count == LPFC_NVMET_CQ_NOTIFY) 14882 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14883 14884 cqe = lpfc_sli4_cq_get(cq); 14885 } 14886 if (count >= phba->cfg_cq_poll_threshold) { 14887 *delay = 1; 14888 arm = false; 14889 } 14890 14891 /* Track the max number of CQEs processed in 1 EQ */ 14892 if (count > cq->CQ_max_cqe) 14893 cq->CQ_max_cqe = count; 14894 14895 cq->assoc_qp->EQ_cqe_cnt += count; 14896 14897 /* Catch the no cq entry condition */ 14898 if (unlikely(count == 0)) 14899 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14900 "0369 No entry from completion queue " 14901 "qid=%d\n", cq->queue_id); 14902 14903 xchg(&cq->queue_claimed, 0); 14904 14905 rearm_and_exit: 14906 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14907 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14908 14909 return workposted; 14910 } 14911 14912 /** 14913 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14914 * @cq: pointer to CQ to process 14915 * 14916 * This routine calls the cq processing routine with a handler specific 14917 * to the type of queue bound to it. 14918 * 14919 * The CQ routine returns two values: the first is the calling status, 14920 * which indicates whether work was queued to the background discovery 14921 * thread. If true, the routine should wakeup the discovery thread; 14922 * the second is the delay parameter. If non-zero, rather than rearming 14923 * the CQ and yet another interrupt, the CQ handler should be queued so 14924 * that it is processed in a subsequent polling action. The value of 14925 * the delay indicates when to reschedule it. 14926 **/ 14927 static void 14928 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14929 { 14930 struct lpfc_hba *phba = cq->phba; 14931 unsigned long delay; 14932 bool workposted = false; 14933 int ret = 0; 14934 14935 /* Process and rearm the CQ */ 14936 switch (cq->type) { 14937 case LPFC_MCQ: 14938 workposted |= __lpfc_sli4_process_cq(phba, cq, 14939 lpfc_sli4_sp_handle_mcqe, 14940 &delay); 14941 break; 14942 case LPFC_WCQ: 14943 if (cq->subtype == LPFC_IO) 14944 workposted |= __lpfc_sli4_process_cq(phba, cq, 14945 lpfc_sli4_fp_handle_cqe, 14946 &delay); 14947 else 14948 workposted |= __lpfc_sli4_process_cq(phba, cq, 14949 lpfc_sli4_sp_handle_cqe, 14950 &delay); 14951 break; 14952 default: 14953 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14954 "0370 Invalid completion queue type (%d)\n", 14955 cq->type); 14956 return; 14957 } 14958 14959 if (delay) { 14960 if (is_kdump_kernel()) 14961 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14962 delay); 14963 else 14964 ret = queue_delayed_work_on(cq->chann, phba->wq, 14965 &cq->sched_spwork, delay); 14966 if (!ret) 14967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14968 "0394 Cannot schedule queue work " 14969 "for cqid=%d on CPU %d\n", 14970 cq->queue_id, cq->chann); 14971 } 14972 14973 /* wake up worker thread if there are works to be done */ 14974 if (workposted) 14975 lpfc_worker_wake_up(phba); 14976 } 14977 14978 /** 14979 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14980 * interrupt 14981 * @work: pointer to work element 14982 * 14983 * translates from the work handler and calls the slow-path handler. 14984 **/ 14985 static void 14986 lpfc_sli4_sp_process_cq(struct work_struct *work) 14987 { 14988 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14989 14990 __lpfc_sli4_sp_process_cq(cq); 14991 } 14992 14993 /** 14994 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14995 * @work: pointer to work element 14996 * 14997 * translates from the work handler and calls the slow-path handler. 14998 **/ 14999 static void 15000 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15001 { 15002 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15003 struct lpfc_queue, sched_spwork); 15004 15005 __lpfc_sli4_sp_process_cq(cq); 15006 } 15007 15008 /** 15009 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15010 * @phba: Pointer to HBA context object. 15011 * @cq: Pointer to associated CQ 15012 * @wcqe: Pointer to work-queue completion queue entry. 15013 * 15014 * This routine process a fast-path work queue completion entry from fast-path 15015 * event queue for FCP command response completion. 15016 **/ 15017 static void 15018 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15019 struct lpfc_wcqe_complete *wcqe) 15020 { 15021 struct lpfc_sli_ring *pring = cq->pring; 15022 struct lpfc_iocbq *cmdiocbq; 15023 unsigned long iflags; 15024 15025 /* Check for response status */ 15026 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15027 /* If resource errors reported from HBA, reduce queue 15028 * depth of the SCSI device. 15029 */ 15030 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15031 IOSTAT_LOCAL_REJECT)) && 15032 ((wcqe->parameter & IOERR_PARAM_MASK) == 15033 IOERR_NO_RESOURCES)) 15034 phba->lpfc_rampdown_queue_depth(phba); 15035 15036 /* Log the cmpl status */ 15037 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15038 "0373 FCP CQE cmpl: status=x%x: " 15039 "CQE: %08x %08x %08x %08x\n", 15040 bf_get(lpfc_wcqe_c_status, wcqe), 15041 wcqe->word0, wcqe->total_data_placed, 15042 wcqe->parameter, wcqe->word3); 15043 } 15044 15045 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15046 spin_lock_irqsave(&pring->ring_lock, iflags); 15047 pring->stats.iocb_event++; 15048 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15049 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15050 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15051 if (unlikely(!cmdiocbq)) { 15052 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15053 "0374 FCP complete with no corresponding " 15054 "cmdiocb: iotag (%d)\n", 15055 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15056 return; 15057 } 15058 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15059 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15060 #endif 15061 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15062 spin_lock_irqsave(&phba->hbalock, iflags); 15063 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15064 spin_unlock_irqrestore(&phba->hbalock, iflags); 15065 } 15066 15067 if (cmdiocbq->cmd_cmpl) { 15068 /* For FCP the flag is cleared in cmd_cmpl */ 15069 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15070 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15071 spin_lock_irqsave(&phba->hbalock, iflags); 15072 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15073 spin_unlock_irqrestore(&phba->hbalock, iflags); 15074 } 15075 15076 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15077 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15078 sizeof(struct lpfc_wcqe_complete)); 15079 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15080 } else { 15081 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15082 "0375 FCP cmdiocb not callback function " 15083 "iotag: (%d)\n", 15084 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15085 } 15086 } 15087 15088 /** 15089 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15090 * @phba: Pointer to HBA context object. 15091 * @cq: Pointer to completion queue. 15092 * @wcqe: Pointer to work-queue completion queue entry. 15093 * 15094 * This routine handles an fast-path WQ entry consumed event by invoking the 15095 * proper WQ release routine to the slow-path WQ. 15096 **/ 15097 static void 15098 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15099 struct lpfc_wcqe_release *wcqe) 15100 { 15101 struct lpfc_queue *childwq; 15102 bool wqid_matched = false; 15103 uint16_t hba_wqid; 15104 15105 /* Check for fast-path FCP work queue release */ 15106 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15107 list_for_each_entry(childwq, &cq->child_list, list) { 15108 if (childwq->queue_id == hba_wqid) { 15109 lpfc_sli4_wq_release(childwq, 15110 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15111 if (childwq->q_flag & HBA_NVMET_WQFULL) 15112 lpfc_nvmet_wqfull_process(phba, childwq); 15113 wqid_matched = true; 15114 break; 15115 } 15116 } 15117 /* Report warning log message if no match found */ 15118 if (wqid_matched != true) 15119 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15120 "2580 Fast-path wqe consume event carries " 15121 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15122 } 15123 15124 /** 15125 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15126 * @phba: Pointer to HBA context object. 15127 * @cq: Pointer to completion queue. 15128 * @rcqe: Pointer to receive-queue completion queue entry. 15129 * 15130 * This routine process a receive-queue completion queue entry. 15131 * 15132 * Return: true if work posted to worker thread, otherwise false. 15133 **/ 15134 static bool 15135 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15136 struct lpfc_rcqe *rcqe) 15137 { 15138 bool workposted = false; 15139 struct lpfc_queue *hrq; 15140 struct lpfc_queue *drq; 15141 struct rqb_dmabuf *dma_buf; 15142 struct fc_frame_header *fc_hdr; 15143 struct lpfc_nvmet_tgtport *tgtp; 15144 uint32_t status, rq_id; 15145 unsigned long iflags; 15146 uint32_t fctl, idx; 15147 15148 if ((phba->nvmet_support == 0) || 15149 (phba->sli4_hba.nvmet_cqset == NULL)) 15150 return workposted; 15151 15152 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15153 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15154 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15155 15156 /* sanity check on queue memory */ 15157 if (unlikely(!hrq) || unlikely(!drq)) 15158 return workposted; 15159 15160 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15161 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15162 else 15163 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15164 15165 if ((phba->nvmet_support == 0) || 15166 (rq_id != hrq->queue_id)) 15167 return workposted; 15168 15169 status = bf_get(lpfc_rcqe_status, rcqe); 15170 switch (status) { 15171 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15173 "6126 Receive Frame Truncated!!\n"); 15174 fallthrough; 15175 case FC_STATUS_RQ_SUCCESS: 15176 spin_lock_irqsave(&phba->hbalock, iflags); 15177 lpfc_sli4_rq_release(hrq, drq); 15178 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15179 if (!dma_buf) { 15180 hrq->RQ_no_buf_found++; 15181 spin_unlock_irqrestore(&phba->hbalock, iflags); 15182 goto out; 15183 } 15184 spin_unlock_irqrestore(&phba->hbalock, iflags); 15185 hrq->RQ_rcv_buf++; 15186 hrq->RQ_buf_posted--; 15187 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15188 15189 /* Just some basic sanity checks on FCP Command frame */ 15190 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15191 fc_hdr->fh_f_ctl[1] << 8 | 15192 fc_hdr->fh_f_ctl[2]); 15193 if (((fctl & 15194 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15195 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15196 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15197 goto drop; 15198 15199 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15200 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15201 lpfc_nvmet_unsol_fcp_event( 15202 phba, idx, dma_buf, cq->isr_timestamp, 15203 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15204 return false; 15205 } 15206 drop: 15207 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15208 break; 15209 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15210 if (phba->nvmet_support) { 15211 tgtp = phba->targetport->private; 15212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15213 "6401 RQE Error x%x, posted %d err_cnt " 15214 "%d: %x %x %x\n", 15215 status, hrq->RQ_buf_posted, 15216 hrq->RQ_no_posted_buf, 15217 atomic_read(&tgtp->rcv_fcp_cmd_in), 15218 atomic_read(&tgtp->rcv_fcp_cmd_out), 15219 atomic_read(&tgtp->xmt_fcp_release)); 15220 } 15221 fallthrough; 15222 15223 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15224 hrq->RQ_no_posted_buf++; 15225 /* Post more buffers if possible */ 15226 break; 15227 case FC_STATUS_RQ_DMA_FAILURE: 15228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15229 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15230 "x%08x\n", 15231 status, rcqe->word0, rcqe->word1, 15232 rcqe->word2, rcqe->word3); 15233 15234 /* If IV set, no further recovery */ 15235 if (bf_get(lpfc_rcqe_iv, rcqe)) 15236 break; 15237 15238 /* recycle consumed resource */ 15239 spin_lock_irqsave(&phba->hbalock, iflags); 15240 lpfc_sli4_rq_release(hrq, drq); 15241 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15242 if (!dma_buf) { 15243 hrq->RQ_no_buf_found++; 15244 spin_unlock_irqrestore(&phba->hbalock, iflags); 15245 break; 15246 } 15247 hrq->RQ_rcv_buf++; 15248 hrq->RQ_buf_posted--; 15249 spin_unlock_irqrestore(&phba->hbalock, iflags); 15250 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15251 break; 15252 default: 15253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15254 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15255 "x%08x x%08x x%08x\n", 15256 status, rcqe->word0, rcqe->word1, 15257 rcqe->word2, rcqe->word3); 15258 break; 15259 } 15260 out: 15261 return workposted; 15262 } 15263 15264 /** 15265 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15266 * @phba: adapter with cq 15267 * @cq: Pointer to the completion queue. 15268 * @cqe: Pointer to fast-path completion queue entry. 15269 * 15270 * This routine process a fast-path work queue completion entry from fast-path 15271 * event queue for FCP command response completion. 15272 * 15273 * Return: true if work posted to worker thread, otherwise false. 15274 **/ 15275 static bool 15276 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15277 struct lpfc_cqe *cqe) 15278 { 15279 struct lpfc_wcqe_release wcqe; 15280 bool workposted = false; 15281 15282 /* Copy the work queue CQE and convert endian order if needed */ 15283 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15284 15285 /* Check and process for different type of WCQE and dispatch */ 15286 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15287 case CQE_CODE_COMPL_WQE: 15288 case CQE_CODE_NVME_ERSP: 15289 cq->CQ_wq++; 15290 /* Process the WQ complete event */ 15291 phba->last_completion_time = jiffies; 15292 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15293 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15294 (struct lpfc_wcqe_complete *)&wcqe); 15295 break; 15296 case CQE_CODE_RELEASE_WQE: 15297 cq->CQ_release_wqe++; 15298 /* Process the WQ release event */ 15299 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15300 (struct lpfc_wcqe_release *)&wcqe); 15301 break; 15302 case CQE_CODE_XRI_ABORTED: 15303 cq->CQ_xri_aborted++; 15304 /* Process the WQ XRI abort event */ 15305 phba->last_completion_time = jiffies; 15306 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15307 (struct sli4_wcqe_xri_aborted *)&wcqe); 15308 break; 15309 case CQE_CODE_RECEIVE_V1: 15310 case CQE_CODE_RECEIVE: 15311 phba->last_completion_time = jiffies; 15312 if (cq->subtype == LPFC_NVMET) { 15313 workposted = lpfc_sli4_nvmet_handle_rcqe( 15314 phba, cq, (struct lpfc_rcqe *)&wcqe); 15315 } 15316 break; 15317 default: 15318 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15319 "0144 Not a valid CQE code: x%x\n", 15320 bf_get(lpfc_wcqe_c_code, &wcqe)); 15321 break; 15322 } 15323 return workposted; 15324 } 15325 15326 /** 15327 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15328 * @cq: Pointer to CQ to be processed 15329 * 15330 * This routine calls the cq processing routine with the handler for 15331 * fast path CQEs. 15332 * 15333 * The CQ routine returns two values: the first is the calling status, 15334 * which indicates whether work was queued to the background discovery 15335 * thread. If true, the routine should wakeup the discovery thread; 15336 * the second is the delay parameter. If non-zero, rather than rearming 15337 * the CQ and yet another interrupt, the CQ handler should be queued so 15338 * that it is processed in a subsequent polling action. The value of 15339 * the delay indicates when to reschedule it. 15340 **/ 15341 static void 15342 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15343 { 15344 struct lpfc_hba *phba = cq->phba; 15345 unsigned long delay; 15346 bool workposted = false; 15347 int ret; 15348 15349 /* process and rearm the CQ */ 15350 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15351 &delay); 15352 15353 if (delay) { 15354 if (is_kdump_kernel()) 15355 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15356 delay); 15357 else 15358 ret = queue_delayed_work_on(cq->chann, phba->wq, 15359 &cq->sched_irqwork, delay); 15360 if (!ret) 15361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15362 "0367 Cannot schedule queue work " 15363 "for cqid=%d on CPU %d\n", 15364 cq->queue_id, cq->chann); 15365 } 15366 15367 /* wake up worker thread if there are works to be done */ 15368 if (workposted) 15369 lpfc_worker_wake_up(phba); 15370 } 15371 15372 /** 15373 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15374 * interrupt 15375 * @work: pointer to work element 15376 * 15377 * translates from the work handler and calls the fast-path handler. 15378 **/ 15379 static void 15380 lpfc_sli4_hba_process_cq(struct work_struct *work) 15381 { 15382 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15383 15384 __lpfc_sli4_hba_process_cq(cq); 15385 } 15386 15387 /** 15388 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15389 * @phba: Pointer to HBA context object. 15390 * @eq: Pointer to the queue structure. 15391 * @eqe: Pointer to fast-path event queue entry. 15392 * @poll_mode: poll_mode to execute processing the cq. 15393 * 15394 * This routine process a event queue entry from the fast-path event queue. 15395 * It will check the MajorCode and MinorCode to determine this is for a 15396 * completion event on a completion queue, if not, an error shall be logged 15397 * and just return. Otherwise, it will get to the corresponding completion 15398 * queue and process all the entries on the completion queue, rearm the 15399 * completion queue, and then return. 15400 **/ 15401 static void 15402 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15403 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15404 { 15405 struct lpfc_queue *cq = NULL; 15406 uint32_t qidx = eq->hdwq; 15407 uint16_t cqid, id; 15408 int ret; 15409 15410 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15412 "0366 Not a valid completion " 15413 "event: majorcode=x%x, minorcode=x%x\n", 15414 bf_get_le32(lpfc_eqe_major_code, eqe), 15415 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15416 return; 15417 } 15418 15419 /* Get the reference to the corresponding CQ */ 15420 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15421 15422 /* Use the fast lookup method first */ 15423 if (cqid <= phba->sli4_hba.cq_max) { 15424 cq = phba->sli4_hba.cq_lookup[cqid]; 15425 if (cq) 15426 goto work_cq; 15427 } 15428 15429 /* Next check for NVMET completion */ 15430 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15431 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15432 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15433 /* Process NVMET unsol rcv */ 15434 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15435 goto process_cq; 15436 } 15437 } 15438 15439 if (phba->sli4_hba.nvmels_cq && 15440 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15441 /* Process NVME unsol rcv */ 15442 cq = phba->sli4_hba.nvmels_cq; 15443 } 15444 15445 /* Otherwise this is a Slow path event */ 15446 if (cq == NULL) { 15447 lpfc_sli4_sp_handle_eqe(phba, eqe, 15448 phba->sli4_hba.hdwq[qidx].hba_eq); 15449 return; 15450 } 15451 15452 process_cq: 15453 if (unlikely(cqid != cq->queue_id)) { 15454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15455 "0368 Miss-matched fast-path completion " 15456 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15457 cqid, cq->queue_id); 15458 return; 15459 } 15460 15461 work_cq: 15462 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15463 if (phba->ktime_on) 15464 cq->isr_timestamp = ktime_get_ns(); 15465 else 15466 cq->isr_timestamp = 0; 15467 #endif 15468 15469 switch (poll_mode) { 15470 case LPFC_THREADED_IRQ: 15471 __lpfc_sli4_hba_process_cq(cq); 15472 break; 15473 case LPFC_QUEUE_WORK: 15474 default: 15475 if (is_kdump_kernel()) 15476 ret = queue_work(phba->wq, &cq->irqwork); 15477 else 15478 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15479 if (!ret) 15480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15481 "0383 Cannot schedule queue work " 15482 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15483 cqid, cq->queue_id, 15484 raw_smp_processor_id()); 15485 break; 15486 } 15487 } 15488 15489 /** 15490 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15491 * @work: pointer to work element 15492 * 15493 * translates from the work handler and calls the fast-path handler. 15494 **/ 15495 static void 15496 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15497 { 15498 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15499 struct lpfc_queue, sched_irqwork); 15500 15501 __lpfc_sli4_hba_process_cq(cq); 15502 } 15503 15504 /** 15505 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15506 * @irq: Interrupt number. 15507 * @dev_id: The device context pointer. 15508 * 15509 * This function is directly called from the PCI layer as an interrupt 15510 * service routine when device with SLI-4 interface spec is enabled with 15511 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15512 * ring event in the HBA. However, when the device is enabled with either 15513 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15514 * device-level interrupt handler. When the PCI slot is in error recovery 15515 * or the HBA is undergoing initialization, the interrupt handler will not 15516 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15517 * the intrrupt context. This function is called without any lock held. 15518 * It gets the hbalock to access and update SLI data structures. Note that, 15519 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15520 * equal to that of FCP CQ index. 15521 * 15522 * The link attention and ELS ring attention events are handled 15523 * by the worker thread. The interrupt handler signals the worker thread 15524 * and returns for these events. This function is called without any lock 15525 * held. It gets the hbalock to access and update SLI data structures. 15526 * 15527 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15528 * when interrupt is scheduled to be handled from a threaded irq context, or 15529 * else returns IRQ_NONE. 15530 **/ 15531 irqreturn_t 15532 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15533 { 15534 struct lpfc_hba *phba; 15535 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15536 struct lpfc_queue *fpeq; 15537 unsigned long iflag; 15538 int hba_eqidx; 15539 int ecount = 0; 15540 struct lpfc_eq_intr_info *eqi; 15541 15542 /* Get the driver's phba structure from the dev_id */ 15543 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15544 phba = hba_eq_hdl->phba; 15545 hba_eqidx = hba_eq_hdl->idx; 15546 15547 if (unlikely(!phba)) 15548 return IRQ_NONE; 15549 if (unlikely(!phba->sli4_hba.hdwq)) 15550 return IRQ_NONE; 15551 15552 /* Get to the EQ struct associated with this vector */ 15553 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15554 if (unlikely(!fpeq)) 15555 return IRQ_NONE; 15556 15557 /* Check device state for handling interrupt */ 15558 if (unlikely(lpfc_intr_state_check(phba))) { 15559 /* Check again for link_state with lock held */ 15560 spin_lock_irqsave(&phba->hbalock, iflag); 15561 if (phba->link_state < LPFC_LINK_DOWN) 15562 /* Flush, clear interrupt, and rearm the EQ */ 15563 lpfc_sli4_eqcq_flush(phba, fpeq); 15564 spin_unlock_irqrestore(&phba->hbalock, iflag); 15565 return IRQ_NONE; 15566 } 15567 15568 switch (fpeq->poll_mode) { 15569 case LPFC_THREADED_IRQ: 15570 /* CGN mgmt is mutually exclusive from irq processing */ 15571 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15572 return IRQ_WAKE_THREAD; 15573 fallthrough; 15574 case LPFC_QUEUE_WORK: 15575 default: 15576 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15577 eqi->icnt++; 15578 15579 fpeq->last_cpu = raw_smp_processor_id(); 15580 15581 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15582 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15583 phba->cfg_auto_imax && 15584 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15585 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15586 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15587 LPFC_MAX_AUTO_EQ_DELAY); 15588 15589 /* process and rearm the EQ */ 15590 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15591 LPFC_QUEUE_WORK); 15592 15593 if (unlikely(ecount == 0)) { 15594 fpeq->EQ_no_entry++; 15595 if (phba->intr_type == MSIX) 15596 /* MSI-X treated interrupt served as no EQ share INT */ 15597 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15598 "0358 MSI-X interrupt with no EQE\n"); 15599 else 15600 /* Non MSI-X treated on interrupt as EQ share INT */ 15601 return IRQ_NONE; 15602 } 15603 } 15604 15605 return IRQ_HANDLED; 15606 } /* lpfc_sli4_hba_intr_handler */ 15607 15608 /** 15609 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15610 * @irq: Interrupt number. 15611 * @dev_id: The device context pointer. 15612 * 15613 * This function is the device-level interrupt handler to device with SLI-4 15614 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15615 * interrupt mode is enabled and there is an event in the HBA which requires 15616 * driver attention. This function invokes the slow-path interrupt attention 15617 * handling function and fast-path interrupt attention handling function in 15618 * turn to process the relevant HBA attention events. This function is called 15619 * without any lock held. It gets the hbalock to access and update SLI data 15620 * structures. 15621 * 15622 * This function returns IRQ_HANDLED when interrupt is handled, else it 15623 * returns IRQ_NONE. 15624 **/ 15625 irqreturn_t 15626 lpfc_sli4_intr_handler(int irq, void *dev_id) 15627 { 15628 struct lpfc_hba *phba; 15629 irqreturn_t hba_irq_rc; 15630 bool hba_handled = false; 15631 int qidx; 15632 15633 /* Get the driver's phba structure from the dev_id */ 15634 phba = (struct lpfc_hba *)dev_id; 15635 15636 if (unlikely(!phba)) 15637 return IRQ_NONE; 15638 15639 /* 15640 * Invoke fast-path host attention interrupt handling as appropriate. 15641 */ 15642 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15643 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15644 &phba->sli4_hba.hba_eq_hdl[qidx]); 15645 if (hba_irq_rc == IRQ_HANDLED) 15646 hba_handled |= true; 15647 } 15648 15649 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15650 } /* lpfc_sli4_intr_handler */ 15651 15652 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15653 { 15654 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15655 struct lpfc_queue *eq; 15656 15657 rcu_read_lock(); 15658 15659 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15660 lpfc_sli4_poll_eq(eq); 15661 if (!list_empty(&phba->poll_list)) 15662 mod_timer(&phba->cpuhp_poll_timer, 15663 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15664 15665 rcu_read_unlock(); 15666 } 15667 15668 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15669 { 15670 struct lpfc_hba *phba = eq->phba; 15671 15672 /* kickstart slowpath processing if needed */ 15673 if (list_empty(&phba->poll_list)) 15674 mod_timer(&phba->cpuhp_poll_timer, 15675 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15676 15677 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15678 synchronize_rcu(); 15679 } 15680 15681 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15682 { 15683 struct lpfc_hba *phba = eq->phba; 15684 15685 /* Disable slowpath processing for this eq. Kick start the eq 15686 * by RE-ARMING the eq's ASAP 15687 */ 15688 list_del_rcu(&eq->_poll_list); 15689 synchronize_rcu(); 15690 15691 if (list_empty(&phba->poll_list)) 15692 timer_delete_sync(&phba->cpuhp_poll_timer); 15693 } 15694 15695 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15696 { 15697 struct lpfc_queue *eq, *next; 15698 15699 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15700 list_del(&eq->_poll_list); 15701 15702 INIT_LIST_HEAD(&phba->poll_list); 15703 synchronize_rcu(); 15704 } 15705 15706 static inline void 15707 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15708 { 15709 if (mode == eq->mode) 15710 return; 15711 /* 15712 * currently this function is only called during a hotplug 15713 * event and the cpu on which this function is executing 15714 * is going offline. By now the hotplug has instructed 15715 * the scheduler to remove this cpu from cpu active mask. 15716 * So we don't need to work about being put aside by the 15717 * scheduler for a high priority process. Yes, the inte- 15718 * rrupts could come but they are known to retire ASAP. 15719 */ 15720 15721 /* Disable polling in the fastpath */ 15722 WRITE_ONCE(eq->mode, mode); 15723 /* flush out the store buffer */ 15724 smp_wmb(); 15725 15726 /* 15727 * Add this eq to the polling list and start polling. For 15728 * a grace period both interrupt handler and poller will 15729 * try to process the eq _but_ that's fine. We have a 15730 * synchronization mechanism in place (queue_claimed) to 15731 * deal with it. This is just a draining phase for int- 15732 * errupt handler (not eq's) as we have guranteed through 15733 * barrier that all the CPUs have seen the new CQ_POLLED 15734 * state. which will effectively disable the REARMING of 15735 * the EQ. The whole idea is eq's die off eventually as 15736 * we are not rearming EQ's anymore. 15737 */ 15738 mode ? lpfc_sli4_add_to_poll_list(eq) : 15739 lpfc_sli4_remove_from_poll_list(eq); 15740 } 15741 15742 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15743 { 15744 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15745 } 15746 15747 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15748 { 15749 struct lpfc_hba *phba = eq->phba; 15750 15751 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15752 15753 /* Kick start for the pending io's in h/w. 15754 * Once we switch back to interrupt processing on a eq 15755 * the io path completion will only arm eq's when it 15756 * receives a completion. But since eq's are in disa- 15757 * rmed state it doesn't receive a completion. This 15758 * creates a deadlock scenaro. 15759 */ 15760 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15761 } 15762 15763 /** 15764 * lpfc_sli4_queue_free - free a queue structure and associated memory 15765 * @queue: The queue structure to free. 15766 * 15767 * This function frees a queue structure and the DMAable memory used for 15768 * the host resident queue. This function must be called after destroying the 15769 * queue on the HBA. 15770 **/ 15771 void 15772 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15773 { 15774 struct lpfc_dmabuf *dmabuf; 15775 15776 if (!queue) 15777 return; 15778 15779 if (!list_empty(&queue->wq_list)) 15780 list_del(&queue->wq_list); 15781 15782 while (!list_empty(&queue->page_list)) { 15783 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15784 list); 15785 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15786 dmabuf->virt, dmabuf->phys); 15787 kfree(dmabuf); 15788 } 15789 if (queue->rqbp) { 15790 lpfc_free_rq_buffer(queue->phba, queue); 15791 kfree(queue->rqbp); 15792 } 15793 15794 if (!list_empty(&queue->cpu_list)) 15795 list_del(&queue->cpu_list); 15796 15797 kfree(queue); 15798 return; 15799 } 15800 15801 /** 15802 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15803 * @phba: The HBA that this queue is being created on. 15804 * @page_size: The size of a queue page 15805 * @entry_size: The size of each queue entry for this queue. 15806 * @entry_count: The number of entries that this queue will handle. 15807 * @cpu: The cpu that will primarily utilize this queue. 15808 * 15809 * This function allocates a queue structure and the DMAable memory used for 15810 * the host resident queue. This function must be called before creating the 15811 * queue on the HBA. 15812 **/ 15813 struct lpfc_queue * 15814 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15815 uint32_t entry_size, uint32_t entry_count, int cpu) 15816 { 15817 struct lpfc_queue *queue; 15818 struct lpfc_dmabuf *dmabuf; 15819 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15820 uint16_t x, pgcnt; 15821 15822 if (!phba->sli4_hba.pc_sli4_params.supported) 15823 hw_page_size = page_size; 15824 15825 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15826 15827 /* If needed, Adjust page count to match the max the adapter supports */ 15828 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15829 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15830 15831 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15832 GFP_KERNEL, cpu_to_node(cpu)); 15833 if (!queue) 15834 return NULL; 15835 15836 INIT_LIST_HEAD(&queue->list); 15837 INIT_LIST_HEAD(&queue->_poll_list); 15838 INIT_LIST_HEAD(&queue->wq_list); 15839 INIT_LIST_HEAD(&queue->wqfull_list); 15840 INIT_LIST_HEAD(&queue->page_list); 15841 INIT_LIST_HEAD(&queue->child_list); 15842 INIT_LIST_HEAD(&queue->cpu_list); 15843 15844 /* Set queue parameters now. If the system cannot provide memory 15845 * resources, the free routine needs to know what was allocated. 15846 */ 15847 queue->page_count = pgcnt; 15848 queue->q_pgs = (void **)&queue[1]; 15849 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15850 queue->entry_size = entry_size; 15851 queue->entry_count = entry_count; 15852 queue->page_size = hw_page_size; 15853 queue->phba = phba; 15854 15855 for (x = 0; x < queue->page_count; x++) { 15856 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15857 dev_to_node(&phba->pcidev->dev)); 15858 if (!dmabuf) 15859 goto out_fail; 15860 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15861 hw_page_size, &dmabuf->phys, 15862 GFP_KERNEL); 15863 if (!dmabuf->virt) { 15864 kfree(dmabuf); 15865 goto out_fail; 15866 } 15867 dmabuf->buffer_tag = x; 15868 list_add_tail(&dmabuf->list, &queue->page_list); 15869 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15870 queue->q_pgs[x] = dmabuf->virt; 15871 } 15872 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15873 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15874 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15875 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15876 15877 /* notify_interval will be set during q creation */ 15878 15879 return queue; 15880 out_fail: 15881 lpfc_sli4_queue_free(queue); 15882 return NULL; 15883 } 15884 15885 /** 15886 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15887 * @phba: HBA structure that indicates port to create a queue on. 15888 * @pci_barset: PCI BAR set flag. 15889 * 15890 * This function shall perform iomap of the specified PCI BAR address to host 15891 * memory address if not already done so and return it. The returned host 15892 * memory address can be NULL. 15893 */ 15894 static void __iomem * 15895 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15896 { 15897 if (!phba->pcidev) 15898 return NULL; 15899 15900 switch (pci_barset) { 15901 case WQ_PCI_BAR_0_AND_1: 15902 return phba->pci_bar0_memmap_p; 15903 case WQ_PCI_BAR_2_AND_3: 15904 return phba->pci_bar2_memmap_p; 15905 case WQ_PCI_BAR_4_AND_5: 15906 return phba->pci_bar4_memmap_p; 15907 default: 15908 break; 15909 } 15910 return NULL; 15911 } 15912 15913 /** 15914 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15915 * @phba: HBA structure that EQs are on. 15916 * @startq: The starting EQ index to modify 15917 * @numq: The number of EQs (consecutive indexes) to modify 15918 * @usdelay: amount of delay 15919 * 15920 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15921 * is set either by writing to a register (if supported by the SLI Port) 15922 * or by mailbox command. The mailbox command allows several EQs to be 15923 * updated at once. 15924 * 15925 * The @phba struct is used to send a mailbox command to HBA. The @startq 15926 * is used to get the starting EQ index to change. The @numq value is 15927 * used to specify how many consecutive EQ indexes, starting at EQ index, 15928 * are to be changed. This function is asynchronous and will wait for any 15929 * mailbox commands to finish before returning. 15930 * 15931 * On success this function will return a zero. If unable to allocate 15932 * enough memory this function will return -ENOMEM. If a mailbox command 15933 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15934 * have had their delay multipler changed. 15935 **/ 15936 void 15937 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15938 uint32_t numq, uint32_t usdelay) 15939 { 15940 struct lpfc_mbx_modify_eq_delay *eq_delay; 15941 LPFC_MBOXQ_t *mbox; 15942 struct lpfc_queue *eq; 15943 int cnt = 0, rc, length; 15944 uint32_t shdr_status, shdr_add_status; 15945 uint32_t dmult; 15946 int qidx; 15947 union lpfc_sli4_cfg_shdr *shdr; 15948 15949 if (startq >= phba->cfg_irq_chann) 15950 return; 15951 15952 if (usdelay > 0xFFFF) { 15953 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15954 "6429 usdelay %d too large. Scaled down to " 15955 "0xFFFF.\n", usdelay); 15956 usdelay = 0xFFFF; 15957 } 15958 15959 /* set values by EQ_DELAY register if supported */ 15960 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15961 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15962 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15963 if (!eq) 15964 continue; 15965 15966 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15967 15968 if (++cnt >= numq) 15969 break; 15970 } 15971 return; 15972 } 15973 15974 /* Otherwise, set values by mailbox cmd */ 15975 15976 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15977 if (!mbox) { 15978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15979 "6428 Failed allocating mailbox cmd buffer." 15980 " EQ delay was not set.\n"); 15981 return; 15982 } 15983 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15984 sizeof(struct lpfc_sli4_cfg_mhdr)); 15985 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15986 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15987 length, LPFC_SLI4_MBX_EMBED); 15988 eq_delay = &mbox->u.mqe.un.eq_delay; 15989 15990 /* Calculate delay multiper from maximum interrupt per second */ 15991 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15992 if (dmult) 15993 dmult--; 15994 if (dmult > LPFC_DMULT_MAX) 15995 dmult = LPFC_DMULT_MAX; 15996 15997 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15998 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15999 if (!eq) 16000 continue; 16001 eq->q_mode = usdelay; 16002 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16003 eq_delay->u.request.eq[cnt].phase = 0; 16004 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16005 16006 if (++cnt >= numq) 16007 break; 16008 } 16009 eq_delay->u.request.num_eq = cnt; 16010 16011 mbox->vport = phba->pport; 16012 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16013 mbox->ctx_ndlp = NULL; 16014 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16015 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16016 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16017 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16018 if (shdr_status || shdr_add_status || rc) { 16019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16020 "2512 MODIFY_EQ_DELAY mailbox failed with " 16021 "status x%x add_status x%x, mbx status x%x\n", 16022 shdr_status, shdr_add_status, rc); 16023 } 16024 mempool_free(mbox, phba->mbox_mem_pool); 16025 return; 16026 } 16027 16028 /** 16029 * lpfc_eq_create - Create an Event Queue on the HBA 16030 * @phba: HBA structure that indicates port to create a queue on. 16031 * @eq: The queue structure to use to create the event queue. 16032 * @imax: The maximum interrupt per second limit. 16033 * 16034 * This function creates an event queue, as detailed in @eq, on a port, 16035 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16036 * 16037 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16038 * is used to get the entry count and entry size that are necessary to 16039 * determine the number of pages to allocate and use for this queue. This 16040 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16041 * event queue. This function is asynchronous and will wait for the mailbox 16042 * command to finish before continuing. 16043 * 16044 * On success this function will return a zero. If unable to allocate enough 16045 * memory this function will return -ENOMEM. If the queue create mailbox command 16046 * fails this function will return -ENXIO. 16047 **/ 16048 int 16049 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16050 { 16051 struct lpfc_mbx_eq_create *eq_create; 16052 LPFC_MBOXQ_t *mbox; 16053 int rc, length, status = 0; 16054 struct lpfc_dmabuf *dmabuf; 16055 uint32_t shdr_status, shdr_add_status; 16056 union lpfc_sli4_cfg_shdr *shdr; 16057 uint16_t dmult; 16058 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16059 16060 /* sanity check on queue memory */ 16061 if (!eq) 16062 return -ENODEV; 16063 if (!phba->sli4_hba.pc_sli4_params.supported) 16064 hw_page_size = SLI4_PAGE_SIZE; 16065 16066 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16067 if (!mbox) 16068 return -ENOMEM; 16069 length = (sizeof(struct lpfc_mbx_eq_create) - 16070 sizeof(struct lpfc_sli4_cfg_mhdr)); 16071 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16072 LPFC_MBOX_OPCODE_EQ_CREATE, 16073 length, LPFC_SLI4_MBX_EMBED); 16074 eq_create = &mbox->u.mqe.un.eq_create; 16075 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16076 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16077 eq->page_count); 16078 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16079 LPFC_EQE_SIZE); 16080 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16081 16082 /* Use version 2 of CREATE_EQ if eqav is set */ 16083 if (phba->sli4_hba.pc_sli4_params.eqav) { 16084 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16085 LPFC_Q_CREATE_VERSION_2); 16086 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16087 phba->sli4_hba.pc_sli4_params.eqav); 16088 } 16089 16090 /* don't setup delay multiplier using EQ_CREATE */ 16091 dmult = 0; 16092 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16093 dmult); 16094 switch (eq->entry_count) { 16095 default: 16096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16097 "0360 Unsupported EQ count. (%d)\n", 16098 eq->entry_count); 16099 if (eq->entry_count < 256) { 16100 status = -EINVAL; 16101 goto out; 16102 } 16103 fallthrough; /* otherwise default to smallest count */ 16104 case 256: 16105 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16106 LPFC_EQ_CNT_256); 16107 break; 16108 case 512: 16109 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16110 LPFC_EQ_CNT_512); 16111 break; 16112 case 1024: 16113 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16114 LPFC_EQ_CNT_1024); 16115 break; 16116 case 2048: 16117 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16118 LPFC_EQ_CNT_2048); 16119 break; 16120 case 4096: 16121 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16122 LPFC_EQ_CNT_4096); 16123 break; 16124 } 16125 list_for_each_entry(dmabuf, &eq->page_list, list) { 16126 memset(dmabuf->virt, 0, hw_page_size); 16127 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16128 putPaddrLow(dmabuf->phys); 16129 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16130 putPaddrHigh(dmabuf->phys); 16131 } 16132 mbox->vport = phba->pport; 16133 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16134 mbox->ctx_buf = NULL; 16135 mbox->ctx_ndlp = NULL; 16136 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16137 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16138 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16139 if (shdr_status || shdr_add_status || rc) { 16140 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16141 "2500 EQ_CREATE mailbox failed with " 16142 "status x%x add_status x%x, mbx status x%x\n", 16143 shdr_status, shdr_add_status, rc); 16144 status = -ENXIO; 16145 } 16146 eq->type = LPFC_EQ; 16147 eq->subtype = LPFC_NONE; 16148 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16149 if (eq->queue_id == 0xFFFF) 16150 status = -ENXIO; 16151 eq->host_index = 0; 16152 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16153 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16154 out: 16155 mempool_free(mbox, phba->mbox_mem_pool); 16156 return status; 16157 } 16158 16159 /** 16160 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16161 * @irq: Interrupt number. 16162 * @dev_id: The device context pointer. 16163 * 16164 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16165 * threaded irq context. 16166 * 16167 * Returns 16168 * IRQ_HANDLED - interrupt is handled 16169 * IRQ_NONE - otherwise 16170 **/ 16171 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16172 { 16173 struct lpfc_hba *phba; 16174 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16175 struct lpfc_queue *fpeq; 16176 int ecount = 0; 16177 int hba_eqidx; 16178 struct lpfc_eq_intr_info *eqi; 16179 16180 /* Get the driver's phba structure from the dev_id */ 16181 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16182 phba = hba_eq_hdl->phba; 16183 hba_eqidx = hba_eq_hdl->idx; 16184 16185 if (unlikely(!phba)) 16186 return IRQ_NONE; 16187 if (unlikely(!phba->sli4_hba.hdwq)) 16188 return IRQ_NONE; 16189 16190 /* Get to the EQ struct associated with this vector */ 16191 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16192 if (unlikely(!fpeq)) 16193 return IRQ_NONE; 16194 16195 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16196 eqi->icnt++; 16197 16198 fpeq->last_cpu = raw_smp_processor_id(); 16199 16200 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16201 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16202 phba->cfg_auto_imax && 16203 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16204 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16205 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16206 16207 /* process and rearm the EQ */ 16208 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16209 LPFC_THREADED_IRQ); 16210 16211 if (unlikely(ecount == 0)) { 16212 fpeq->EQ_no_entry++; 16213 if (phba->intr_type == MSIX) 16214 /* MSI-X treated interrupt served as no EQ share INT */ 16215 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16216 "3358 MSI-X interrupt with no EQE\n"); 16217 else 16218 /* Non MSI-X treated on interrupt as EQ share INT */ 16219 return IRQ_NONE; 16220 } 16221 return IRQ_HANDLED; 16222 } 16223 16224 /** 16225 * lpfc_cq_create - Create a Completion Queue on the HBA 16226 * @phba: HBA structure that indicates port to create a queue on. 16227 * @cq: The queue structure to use to create the completion queue. 16228 * @eq: The event queue to bind this completion queue to. 16229 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16230 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16231 * 16232 * This function creates a completion queue, as detailed in @wq, on a port, 16233 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16234 * 16235 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16236 * is used to get the entry count and entry size that are necessary to 16237 * determine the number of pages to allocate and use for this queue. The @eq 16238 * is used to indicate which event queue to bind this completion queue to. This 16239 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16240 * completion queue. This function is asynchronous and will wait for the mailbox 16241 * command to finish before continuing. 16242 * 16243 * On success this function will return a zero. If unable to allocate enough 16244 * memory this function will return -ENOMEM. If the queue create mailbox command 16245 * fails this function will return -ENXIO. 16246 **/ 16247 int 16248 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16249 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16250 { 16251 struct lpfc_mbx_cq_create *cq_create; 16252 struct lpfc_dmabuf *dmabuf; 16253 LPFC_MBOXQ_t *mbox; 16254 int rc, length, status = 0; 16255 uint32_t shdr_status, shdr_add_status; 16256 union lpfc_sli4_cfg_shdr *shdr; 16257 16258 /* sanity check on queue memory */ 16259 if (!cq || !eq) 16260 return -ENODEV; 16261 16262 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16263 if (!mbox) 16264 return -ENOMEM; 16265 length = (sizeof(struct lpfc_mbx_cq_create) - 16266 sizeof(struct lpfc_sli4_cfg_mhdr)); 16267 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16268 LPFC_MBOX_OPCODE_CQ_CREATE, 16269 length, LPFC_SLI4_MBX_EMBED); 16270 cq_create = &mbox->u.mqe.un.cq_create; 16271 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16272 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16273 cq->page_count); 16274 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16275 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16276 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16277 phba->sli4_hba.pc_sli4_params.cqv); 16278 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16279 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16280 (cq->page_size / SLI4_PAGE_SIZE)); 16281 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16282 eq->queue_id); 16283 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16284 phba->sli4_hba.pc_sli4_params.cqav); 16285 } else { 16286 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16287 eq->queue_id); 16288 } 16289 switch (cq->entry_count) { 16290 case 2048: 16291 case 4096: 16292 if (phba->sli4_hba.pc_sli4_params.cqv == 16293 LPFC_Q_CREATE_VERSION_2) { 16294 cq_create->u.request.context.lpfc_cq_context_count = 16295 cq->entry_count; 16296 bf_set(lpfc_cq_context_count, 16297 &cq_create->u.request.context, 16298 LPFC_CQ_CNT_WORD7); 16299 break; 16300 } 16301 fallthrough; 16302 default: 16303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16304 "0361 Unsupported CQ count: " 16305 "entry cnt %d sz %d pg cnt %d\n", 16306 cq->entry_count, cq->entry_size, 16307 cq->page_count); 16308 if (cq->entry_count < 256) { 16309 status = -EINVAL; 16310 goto out; 16311 } 16312 fallthrough; /* otherwise default to smallest count */ 16313 case 256: 16314 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16315 LPFC_CQ_CNT_256); 16316 break; 16317 case 512: 16318 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16319 LPFC_CQ_CNT_512); 16320 break; 16321 case 1024: 16322 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16323 LPFC_CQ_CNT_1024); 16324 break; 16325 } 16326 list_for_each_entry(dmabuf, &cq->page_list, list) { 16327 memset(dmabuf->virt, 0, cq->page_size); 16328 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16329 putPaddrLow(dmabuf->phys); 16330 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16331 putPaddrHigh(dmabuf->phys); 16332 } 16333 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16334 16335 /* The IOCTL status is embedded in the mailbox subheader. */ 16336 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16337 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16338 if (shdr_status || shdr_add_status || rc) { 16339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16340 "2501 CQ_CREATE mailbox failed with " 16341 "status x%x add_status x%x, mbx status x%x\n", 16342 shdr_status, shdr_add_status, rc); 16343 status = -ENXIO; 16344 goto out; 16345 } 16346 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16347 if (cq->queue_id == 0xFFFF) { 16348 status = -ENXIO; 16349 goto out; 16350 } 16351 /* link the cq onto the parent eq child list */ 16352 list_add_tail(&cq->list, &eq->child_list); 16353 /* Set up completion queue's type and subtype */ 16354 cq->type = type; 16355 cq->subtype = subtype; 16356 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16357 cq->assoc_qid = eq->queue_id; 16358 cq->assoc_qp = eq; 16359 cq->host_index = 0; 16360 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16361 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16362 16363 if (cq->queue_id > phba->sli4_hba.cq_max) 16364 phba->sli4_hba.cq_max = cq->queue_id; 16365 out: 16366 mempool_free(mbox, phba->mbox_mem_pool); 16367 return status; 16368 } 16369 16370 /** 16371 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16372 * @phba: HBA structure that indicates port to create a queue on. 16373 * @cqp: The queue structure array to use to create the completion queues. 16374 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16375 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16376 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16377 * 16378 * This function creates a set of completion queue, s to support MRQ 16379 * as detailed in @cqp, on a port, 16380 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16381 * 16382 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16383 * is used to get the entry count and entry size that are necessary to 16384 * determine the number of pages to allocate and use for this queue. The @eq 16385 * is used to indicate which event queue to bind this completion queue to. This 16386 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16387 * completion queue. This function is asynchronous and will wait for the mailbox 16388 * command to finish before continuing. 16389 * 16390 * On success this function will return a zero. If unable to allocate enough 16391 * memory this function will return -ENOMEM. If the queue create mailbox command 16392 * fails this function will return -ENXIO. 16393 **/ 16394 int 16395 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16396 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16397 uint32_t subtype) 16398 { 16399 struct lpfc_queue *cq; 16400 struct lpfc_queue *eq; 16401 struct lpfc_mbx_cq_create_set *cq_set; 16402 struct lpfc_dmabuf *dmabuf; 16403 LPFC_MBOXQ_t *mbox; 16404 int rc, length, alloclen, status = 0; 16405 int cnt, idx, numcq, page_idx = 0; 16406 uint32_t shdr_status, shdr_add_status; 16407 union lpfc_sli4_cfg_shdr *shdr; 16408 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16409 16410 /* sanity check on queue memory */ 16411 numcq = phba->cfg_nvmet_mrq; 16412 if (!cqp || !hdwq || !numcq) 16413 return -ENODEV; 16414 16415 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16416 if (!mbox) 16417 return -ENOMEM; 16418 16419 length = sizeof(struct lpfc_mbx_cq_create_set); 16420 length += ((numcq * cqp[0]->page_count) * 16421 sizeof(struct dma_address)); 16422 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16423 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16424 LPFC_SLI4_MBX_NEMBED); 16425 if (alloclen < length) { 16426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16427 "3098 Allocated DMA memory size (%d) is " 16428 "less than the requested DMA memory size " 16429 "(%d)\n", alloclen, length); 16430 status = -ENOMEM; 16431 goto out; 16432 } 16433 cq_set = mbox->sge_array->addr[0]; 16434 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16435 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16436 16437 for (idx = 0; idx < numcq; idx++) { 16438 cq = cqp[idx]; 16439 eq = hdwq[idx].hba_eq; 16440 if (!cq || !eq) { 16441 status = -ENOMEM; 16442 goto out; 16443 } 16444 if (!phba->sli4_hba.pc_sli4_params.supported) 16445 hw_page_size = cq->page_size; 16446 16447 switch (idx) { 16448 case 0: 16449 bf_set(lpfc_mbx_cq_create_set_page_size, 16450 &cq_set->u.request, 16451 (hw_page_size / SLI4_PAGE_SIZE)); 16452 bf_set(lpfc_mbx_cq_create_set_num_pages, 16453 &cq_set->u.request, cq->page_count); 16454 bf_set(lpfc_mbx_cq_create_set_evt, 16455 &cq_set->u.request, 1); 16456 bf_set(lpfc_mbx_cq_create_set_valid, 16457 &cq_set->u.request, 1); 16458 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16459 &cq_set->u.request, 0); 16460 bf_set(lpfc_mbx_cq_create_set_num_cq, 16461 &cq_set->u.request, numcq); 16462 bf_set(lpfc_mbx_cq_create_set_autovalid, 16463 &cq_set->u.request, 16464 phba->sli4_hba.pc_sli4_params.cqav); 16465 switch (cq->entry_count) { 16466 case 2048: 16467 case 4096: 16468 if (phba->sli4_hba.pc_sli4_params.cqv == 16469 LPFC_Q_CREATE_VERSION_2) { 16470 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16471 &cq_set->u.request, 16472 cq->entry_count); 16473 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16474 &cq_set->u.request, 16475 LPFC_CQ_CNT_WORD7); 16476 break; 16477 } 16478 fallthrough; 16479 default: 16480 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16481 "3118 Bad CQ count. (%d)\n", 16482 cq->entry_count); 16483 if (cq->entry_count < 256) { 16484 status = -EINVAL; 16485 goto out; 16486 } 16487 fallthrough; /* otherwise default to smallest */ 16488 case 256: 16489 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16490 &cq_set->u.request, LPFC_CQ_CNT_256); 16491 break; 16492 case 512: 16493 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16494 &cq_set->u.request, LPFC_CQ_CNT_512); 16495 break; 16496 case 1024: 16497 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16498 &cq_set->u.request, LPFC_CQ_CNT_1024); 16499 break; 16500 } 16501 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16502 &cq_set->u.request, eq->queue_id); 16503 break; 16504 case 1: 16505 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16506 &cq_set->u.request, eq->queue_id); 16507 break; 16508 case 2: 16509 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16510 &cq_set->u.request, eq->queue_id); 16511 break; 16512 case 3: 16513 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16514 &cq_set->u.request, eq->queue_id); 16515 break; 16516 case 4: 16517 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16518 &cq_set->u.request, eq->queue_id); 16519 break; 16520 case 5: 16521 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16522 &cq_set->u.request, eq->queue_id); 16523 break; 16524 case 6: 16525 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16526 &cq_set->u.request, eq->queue_id); 16527 break; 16528 case 7: 16529 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16530 &cq_set->u.request, eq->queue_id); 16531 break; 16532 case 8: 16533 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16534 &cq_set->u.request, eq->queue_id); 16535 break; 16536 case 9: 16537 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16538 &cq_set->u.request, eq->queue_id); 16539 break; 16540 case 10: 16541 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16542 &cq_set->u.request, eq->queue_id); 16543 break; 16544 case 11: 16545 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16546 &cq_set->u.request, eq->queue_id); 16547 break; 16548 case 12: 16549 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16550 &cq_set->u.request, eq->queue_id); 16551 break; 16552 case 13: 16553 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16554 &cq_set->u.request, eq->queue_id); 16555 break; 16556 case 14: 16557 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16558 &cq_set->u.request, eq->queue_id); 16559 break; 16560 case 15: 16561 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16562 &cq_set->u.request, eq->queue_id); 16563 break; 16564 } 16565 16566 /* link the cq onto the parent eq child list */ 16567 list_add_tail(&cq->list, &eq->child_list); 16568 /* Set up completion queue's type and subtype */ 16569 cq->type = type; 16570 cq->subtype = subtype; 16571 cq->assoc_qid = eq->queue_id; 16572 cq->assoc_qp = eq; 16573 cq->host_index = 0; 16574 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16575 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16576 cq->entry_count); 16577 cq->chann = idx; 16578 16579 rc = 0; 16580 list_for_each_entry(dmabuf, &cq->page_list, list) { 16581 memset(dmabuf->virt, 0, hw_page_size); 16582 cnt = page_idx + dmabuf->buffer_tag; 16583 cq_set->u.request.page[cnt].addr_lo = 16584 putPaddrLow(dmabuf->phys); 16585 cq_set->u.request.page[cnt].addr_hi = 16586 putPaddrHigh(dmabuf->phys); 16587 rc++; 16588 } 16589 page_idx += rc; 16590 } 16591 16592 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16593 16594 /* The IOCTL status is embedded in the mailbox subheader. */ 16595 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16596 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16597 if (shdr_status || shdr_add_status || rc) { 16598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16599 "3119 CQ_CREATE_SET mailbox failed with " 16600 "status x%x add_status x%x, mbx status x%x\n", 16601 shdr_status, shdr_add_status, rc); 16602 status = -ENXIO; 16603 goto out; 16604 } 16605 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16606 if (rc == 0xFFFF) { 16607 status = -ENXIO; 16608 goto out; 16609 } 16610 16611 for (idx = 0; idx < numcq; idx++) { 16612 cq = cqp[idx]; 16613 cq->queue_id = rc + idx; 16614 if (cq->queue_id > phba->sli4_hba.cq_max) 16615 phba->sli4_hba.cq_max = cq->queue_id; 16616 } 16617 16618 out: 16619 lpfc_sli4_mbox_cmd_free(phba, mbox); 16620 return status; 16621 } 16622 16623 /** 16624 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16625 * @phba: HBA structure that indicates port to create a queue on. 16626 * @mq: The queue structure to use to create the mailbox queue. 16627 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16628 * @cq: The completion queue to associate with this cq. 16629 * 16630 * This function provides failback (fb) functionality when the 16631 * mq_create_ext fails on older FW generations. It's purpose is identical 16632 * to mq_create_ext otherwise. 16633 * 16634 * This routine cannot fail as all attributes were previously accessed and 16635 * initialized in mq_create_ext. 16636 **/ 16637 static void 16638 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16639 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16640 { 16641 struct lpfc_mbx_mq_create *mq_create; 16642 struct lpfc_dmabuf *dmabuf; 16643 int length; 16644 16645 length = (sizeof(struct lpfc_mbx_mq_create) - 16646 sizeof(struct lpfc_sli4_cfg_mhdr)); 16647 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16648 LPFC_MBOX_OPCODE_MQ_CREATE, 16649 length, LPFC_SLI4_MBX_EMBED); 16650 mq_create = &mbox->u.mqe.un.mq_create; 16651 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16652 mq->page_count); 16653 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16654 cq->queue_id); 16655 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16656 switch (mq->entry_count) { 16657 case 16: 16658 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16659 LPFC_MQ_RING_SIZE_16); 16660 break; 16661 case 32: 16662 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16663 LPFC_MQ_RING_SIZE_32); 16664 break; 16665 case 64: 16666 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16667 LPFC_MQ_RING_SIZE_64); 16668 break; 16669 case 128: 16670 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16671 LPFC_MQ_RING_SIZE_128); 16672 break; 16673 } 16674 list_for_each_entry(dmabuf, &mq->page_list, list) { 16675 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16676 putPaddrLow(dmabuf->phys); 16677 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16678 putPaddrHigh(dmabuf->phys); 16679 } 16680 } 16681 16682 /** 16683 * lpfc_mq_create - Create a mailbox Queue on the HBA 16684 * @phba: HBA structure that indicates port to create a queue on. 16685 * @mq: The queue structure to use to create the mailbox queue. 16686 * @cq: The completion queue to associate with this cq. 16687 * @subtype: The queue's subtype. 16688 * 16689 * This function creates a mailbox queue, as detailed in @mq, on a port, 16690 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16691 * 16692 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16693 * is used to get the entry count and entry size that are necessary to 16694 * determine the number of pages to allocate and use for this queue. This 16695 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16696 * mailbox queue. This function is asynchronous and will wait for the mailbox 16697 * command to finish before continuing. 16698 * 16699 * On success this function will return a zero. If unable to allocate enough 16700 * memory this function will return -ENOMEM. If the queue create mailbox command 16701 * fails this function will return -ENXIO. 16702 **/ 16703 int32_t 16704 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16705 struct lpfc_queue *cq, uint32_t subtype) 16706 { 16707 struct lpfc_mbx_mq_create *mq_create; 16708 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16709 struct lpfc_dmabuf *dmabuf; 16710 LPFC_MBOXQ_t *mbox; 16711 int rc, length, status = 0; 16712 uint32_t shdr_status, shdr_add_status; 16713 union lpfc_sli4_cfg_shdr *shdr; 16714 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16715 16716 /* sanity check on queue memory */ 16717 if (!mq || !cq) 16718 return -ENODEV; 16719 if (!phba->sli4_hba.pc_sli4_params.supported) 16720 hw_page_size = SLI4_PAGE_SIZE; 16721 16722 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16723 if (!mbox) 16724 return -ENOMEM; 16725 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16726 sizeof(struct lpfc_sli4_cfg_mhdr)); 16727 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16728 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16729 length, LPFC_SLI4_MBX_EMBED); 16730 16731 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16732 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16733 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16734 &mq_create_ext->u.request, mq->page_count); 16735 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16736 &mq_create_ext->u.request, 1); 16737 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16738 &mq_create_ext->u.request, 1); 16739 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16740 &mq_create_ext->u.request, 1); 16741 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16742 &mq_create_ext->u.request, 1); 16743 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16744 &mq_create_ext->u.request, 1); 16745 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16746 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16747 phba->sli4_hba.pc_sli4_params.mqv); 16748 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16749 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16750 cq->queue_id); 16751 else 16752 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16753 cq->queue_id); 16754 switch (mq->entry_count) { 16755 default: 16756 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16757 "0362 Unsupported MQ count. (%d)\n", 16758 mq->entry_count); 16759 if (mq->entry_count < 16) { 16760 status = -EINVAL; 16761 goto out; 16762 } 16763 fallthrough; /* otherwise default to smallest count */ 16764 case 16: 16765 bf_set(lpfc_mq_context_ring_size, 16766 &mq_create_ext->u.request.context, 16767 LPFC_MQ_RING_SIZE_16); 16768 break; 16769 case 32: 16770 bf_set(lpfc_mq_context_ring_size, 16771 &mq_create_ext->u.request.context, 16772 LPFC_MQ_RING_SIZE_32); 16773 break; 16774 case 64: 16775 bf_set(lpfc_mq_context_ring_size, 16776 &mq_create_ext->u.request.context, 16777 LPFC_MQ_RING_SIZE_64); 16778 break; 16779 case 128: 16780 bf_set(lpfc_mq_context_ring_size, 16781 &mq_create_ext->u.request.context, 16782 LPFC_MQ_RING_SIZE_128); 16783 break; 16784 } 16785 list_for_each_entry(dmabuf, &mq->page_list, list) { 16786 memset(dmabuf->virt, 0, hw_page_size); 16787 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16788 putPaddrLow(dmabuf->phys); 16789 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16790 putPaddrHigh(dmabuf->phys); 16791 } 16792 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16793 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16794 &mq_create_ext->u.response); 16795 if (rc != MBX_SUCCESS) { 16796 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16797 "2795 MQ_CREATE_EXT failed with " 16798 "status x%x. Failback to MQ_CREATE.\n", 16799 rc); 16800 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16801 mq_create = &mbox->u.mqe.un.mq_create; 16802 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16803 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16804 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16805 &mq_create->u.response); 16806 } 16807 16808 /* The IOCTL status is embedded in the mailbox subheader. */ 16809 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16810 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16811 if (shdr_status || shdr_add_status || rc) { 16812 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16813 "2502 MQ_CREATE mailbox failed with " 16814 "status x%x add_status x%x, mbx status x%x\n", 16815 shdr_status, shdr_add_status, rc); 16816 status = -ENXIO; 16817 goto out; 16818 } 16819 if (mq->queue_id == 0xFFFF) { 16820 status = -ENXIO; 16821 goto out; 16822 } 16823 mq->type = LPFC_MQ; 16824 mq->assoc_qid = cq->queue_id; 16825 mq->subtype = subtype; 16826 mq->host_index = 0; 16827 mq->hba_index = 0; 16828 16829 /* link the mq onto the parent cq child list */ 16830 list_add_tail(&mq->list, &cq->child_list); 16831 out: 16832 mempool_free(mbox, phba->mbox_mem_pool); 16833 return status; 16834 } 16835 16836 /** 16837 * lpfc_wq_create - Create a Work Queue on the HBA 16838 * @phba: HBA structure that indicates port to create a queue on. 16839 * @wq: The queue structure to use to create the work queue. 16840 * @cq: The completion queue to bind this work queue to. 16841 * @subtype: The subtype of the work queue indicating its functionality. 16842 * 16843 * This function creates a work queue, as detailed in @wq, on a port, described 16844 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16845 * 16846 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16847 * is used to get the entry count and entry size that are necessary to 16848 * determine the number of pages to allocate and use for this queue. The @cq 16849 * is used to indicate which completion queue to bind this work queue to. This 16850 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16851 * work queue. This function is asynchronous and will wait for the mailbox 16852 * command to finish before continuing. 16853 * 16854 * On success this function will return a zero. If unable to allocate enough 16855 * memory this function will return -ENOMEM. If the queue create mailbox command 16856 * fails this function will return -ENXIO. 16857 **/ 16858 int 16859 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16860 struct lpfc_queue *cq, uint32_t subtype) 16861 { 16862 struct lpfc_mbx_wq_create *wq_create; 16863 struct lpfc_dmabuf *dmabuf; 16864 LPFC_MBOXQ_t *mbox; 16865 int rc, length, status = 0; 16866 uint32_t shdr_status, shdr_add_status; 16867 union lpfc_sli4_cfg_shdr *shdr; 16868 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16869 struct dma_address *page; 16870 void __iomem *bar_memmap_p; 16871 uint32_t db_offset; 16872 uint16_t pci_barset; 16873 uint8_t dpp_barset; 16874 uint32_t dpp_offset; 16875 uint8_t wq_create_version; 16876 #ifdef CONFIG_X86 16877 unsigned long pg_addr; 16878 #endif 16879 16880 /* sanity check on queue memory */ 16881 if (!wq || !cq) 16882 return -ENODEV; 16883 if (!phba->sli4_hba.pc_sli4_params.supported) 16884 hw_page_size = wq->page_size; 16885 16886 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16887 if (!mbox) 16888 return -ENOMEM; 16889 length = (sizeof(struct lpfc_mbx_wq_create) - 16890 sizeof(struct lpfc_sli4_cfg_mhdr)); 16891 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16892 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16893 length, LPFC_SLI4_MBX_EMBED); 16894 wq_create = &mbox->u.mqe.un.wq_create; 16895 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16896 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16897 wq->page_count); 16898 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16899 cq->queue_id); 16900 16901 /* wqv is the earliest version supported, NOT the latest */ 16902 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16903 phba->sli4_hba.pc_sli4_params.wqv); 16904 16905 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16906 (wq->page_size > SLI4_PAGE_SIZE)) 16907 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16908 else 16909 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16910 16911 switch (wq_create_version) { 16912 case LPFC_Q_CREATE_VERSION_1: 16913 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16914 wq->entry_count); 16915 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16916 LPFC_Q_CREATE_VERSION_1); 16917 16918 switch (wq->entry_size) { 16919 default: 16920 case 64: 16921 bf_set(lpfc_mbx_wq_create_wqe_size, 16922 &wq_create->u.request_1, 16923 LPFC_WQ_WQE_SIZE_64); 16924 break; 16925 case 128: 16926 bf_set(lpfc_mbx_wq_create_wqe_size, 16927 &wq_create->u.request_1, 16928 LPFC_WQ_WQE_SIZE_128); 16929 break; 16930 } 16931 /* Request DPP by default */ 16932 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16933 bf_set(lpfc_mbx_wq_create_page_size, 16934 &wq_create->u.request_1, 16935 (wq->page_size / SLI4_PAGE_SIZE)); 16936 page = wq_create->u.request_1.page; 16937 break; 16938 default: 16939 page = wq_create->u.request.page; 16940 break; 16941 } 16942 16943 list_for_each_entry(dmabuf, &wq->page_list, list) { 16944 memset(dmabuf->virt, 0, hw_page_size); 16945 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16946 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16947 } 16948 16949 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16950 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16951 16952 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16953 /* The IOCTL status is embedded in the mailbox subheader. */ 16954 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16955 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16956 if (shdr_status || shdr_add_status || rc) { 16957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16958 "2503 WQ_CREATE mailbox failed with " 16959 "status x%x add_status x%x, mbx status x%x\n", 16960 shdr_status, shdr_add_status, rc); 16961 status = -ENXIO; 16962 goto out; 16963 } 16964 16965 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16966 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16967 &wq_create->u.response); 16968 else 16969 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16970 &wq_create->u.response_1); 16971 16972 if (wq->queue_id == 0xFFFF) { 16973 status = -ENXIO; 16974 goto out; 16975 } 16976 16977 wq->db_format = LPFC_DB_LIST_FORMAT; 16978 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16979 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16980 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16981 &wq_create->u.response); 16982 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16983 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16985 "3265 WQ[%d] doorbell format " 16986 "not supported: x%x\n", 16987 wq->queue_id, wq->db_format); 16988 status = -EINVAL; 16989 goto out; 16990 } 16991 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16992 &wq_create->u.response); 16993 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16994 pci_barset); 16995 if (!bar_memmap_p) { 16996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16997 "3263 WQ[%d] failed to memmap " 16998 "pci barset:x%x\n", 16999 wq->queue_id, pci_barset); 17000 status = -ENOMEM; 17001 goto out; 17002 } 17003 db_offset = wq_create->u.response.doorbell_offset; 17004 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17005 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17006 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17007 "3252 WQ[%d] doorbell offset " 17008 "not supported: x%x\n", 17009 wq->queue_id, db_offset); 17010 status = -EINVAL; 17011 goto out; 17012 } 17013 wq->db_regaddr = bar_memmap_p + db_offset; 17014 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17015 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17016 "format:x%x\n", wq->queue_id, 17017 pci_barset, db_offset, wq->db_format); 17018 } else 17019 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17020 } else { 17021 /* Check if DPP was honored by the firmware */ 17022 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17023 &wq_create->u.response_1); 17024 if (wq->dpp_enable) { 17025 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17026 &wq_create->u.response_1); 17027 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17028 pci_barset); 17029 if (!bar_memmap_p) { 17030 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17031 "3267 WQ[%d] failed to memmap " 17032 "pci barset:x%x\n", 17033 wq->queue_id, pci_barset); 17034 status = -ENOMEM; 17035 goto out; 17036 } 17037 db_offset = wq_create->u.response_1.doorbell_offset; 17038 wq->db_regaddr = bar_memmap_p + db_offset; 17039 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17040 &wq_create->u.response_1); 17041 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17042 &wq_create->u.response_1); 17043 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17044 dpp_barset); 17045 if (!bar_memmap_p) { 17046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17047 "3268 WQ[%d] failed to memmap " 17048 "pci barset:x%x\n", 17049 wq->queue_id, dpp_barset); 17050 status = -ENOMEM; 17051 goto out; 17052 } 17053 dpp_offset = wq_create->u.response_1.dpp_offset; 17054 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17055 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17056 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17057 "dpp_id:x%x dpp_barset:x%x " 17058 "dpp_offset:x%x\n", 17059 wq->queue_id, pci_barset, db_offset, 17060 wq->dpp_id, dpp_barset, dpp_offset); 17061 17062 #ifdef CONFIG_X86 17063 /* Enable combined writes for DPP aperture */ 17064 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17065 rc = set_memory_wc(pg_addr, 1); 17066 if (rc) { 17067 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17068 "3272 Cannot setup Combined " 17069 "Write on WQ[%d] - disable DPP\n", 17070 wq->queue_id); 17071 phba->cfg_enable_dpp = 0; 17072 } 17073 #else 17074 phba->cfg_enable_dpp = 0; 17075 #endif 17076 } else 17077 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17078 } 17079 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17080 if (wq->pring == NULL) { 17081 status = -ENOMEM; 17082 goto out; 17083 } 17084 wq->type = LPFC_WQ; 17085 wq->assoc_qid = cq->queue_id; 17086 wq->subtype = subtype; 17087 wq->host_index = 0; 17088 wq->hba_index = 0; 17089 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17090 17091 /* link the wq onto the parent cq child list */ 17092 list_add_tail(&wq->list, &cq->child_list); 17093 out: 17094 mempool_free(mbox, phba->mbox_mem_pool); 17095 return status; 17096 } 17097 17098 /** 17099 * lpfc_rq_create - Create a Receive Queue on the HBA 17100 * @phba: HBA structure that indicates port to create a queue on. 17101 * @hrq: The queue structure to use to create the header receive queue. 17102 * @drq: The queue structure to use to create the data receive queue. 17103 * @cq: The completion queue to bind this work queue to. 17104 * @subtype: The subtype of the work queue indicating its functionality. 17105 * 17106 * This function creates a receive buffer queue pair , as detailed in @hrq and 17107 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17108 * to the HBA. 17109 * 17110 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17111 * struct is used to get the entry count that is necessary to determine the 17112 * number of pages to use for this queue. The @cq is used to indicate which 17113 * completion queue to bind received buffers that are posted to these queues to. 17114 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17115 * receive queue pair. This function is asynchronous and will wait for the 17116 * mailbox command to finish before continuing. 17117 * 17118 * On success this function will return a zero. If unable to allocate enough 17119 * memory this function will return -ENOMEM. If the queue create mailbox command 17120 * fails this function will return -ENXIO. 17121 **/ 17122 int 17123 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17124 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17125 { 17126 struct lpfc_mbx_rq_create *rq_create; 17127 struct lpfc_dmabuf *dmabuf; 17128 LPFC_MBOXQ_t *mbox; 17129 int rc, length, status = 0; 17130 uint32_t shdr_status, shdr_add_status; 17131 union lpfc_sli4_cfg_shdr *shdr; 17132 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17133 void __iomem *bar_memmap_p; 17134 uint32_t db_offset; 17135 uint16_t pci_barset; 17136 17137 /* sanity check on queue memory */ 17138 if (!hrq || !drq || !cq) 17139 return -ENODEV; 17140 if (!phba->sli4_hba.pc_sli4_params.supported) 17141 hw_page_size = SLI4_PAGE_SIZE; 17142 17143 if (hrq->entry_count != drq->entry_count) 17144 return -EINVAL; 17145 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17146 if (!mbox) 17147 return -ENOMEM; 17148 length = (sizeof(struct lpfc_mbx_rq_create) - 17149 sizeof(struct lpfc_sli4_cfg_mhdr)); 17150 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17151 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17152 length, LPFC_SLI4_MBX_EMBED); 17153 rq_create = &mbox->u.mqe.un.rq_create; 17154 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17155 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17156 phba->sli4_hba.pc_sli4_params.rqv); 17157 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17158 bf_set(lpfc_rq_context_rqe_count_1, 17159 &rq_create->u.request.context, 17160 hrq->entry_count); 17161 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17162 bf_set(lpfc_rq_context_rqe_size, 17163 &rq_create->u.request.context, 17164 LPFC_RQE_SIZE_8); 17165 bf_set(lpfc_rq_context_page_size, 17166 &rq_create->u.request.context, 17167 LPFC_RQ_PAGE_SIZE_4096); 17168 } else { 17169 switch (hrq->entry_count) { 17170 default: 17171 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17172 "2535 Unsupported RQ count. (%d)\n", 17173 hrq->entry_count); 17174 if (hrq->entry_count < 512) { 17175 status = -EINVAL; 17176 goto out; 17177 } 17178 fallthrough; /* otherwise default to smallest count */ 17179 case 512: 17180 bf_set(lpfc_rq_context_rqe_count, 17181 &rq_create->u.request.context, 17182 LPFC_RQ_RING_SIZE_512); 17183 break; 17184 case 1024: 17185 bf_set(lpfc_rq_context_rqe_count, 17186 &rq_create->u.request.context, 17187 LPFC_RQ_RING_SIZE_1024); 17188 break; 17189 case 2048: 17190 bf_set(lpfc_rq_context_rqe_count, 17191 &rq_create->u.request.context, 17192 LPFC_RQ_RING_SIZE_2048); 17193 break; 17194 case 4096: 17195 bf_set(lpfc_rq_context_rqe_count, 17196 &rq_create->u.request.context, 17197 LPFC_RQ_RING_SIZE_4096); 17198 break; 17199 } 17200 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17201 LPFC_HDR_BUF_SIZE); 17202 } 17203 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17204 cq->queue_id); 17205 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17206 hrq->page_count); 17207 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17208 memset(dmabuf->virt, 0, hw_page_size); 17209 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17210 putPaddrLow(dmabuf->phys); 17211 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17212 putPaddrHigh(dmabuf->phys); 17213 } 17214 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17215 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17216 17217 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17218 /* The IOCTL status is embedded in the mailbox subheader. */ 17219 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17220 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17221 if (shdr_status || shdr_add_status || rc) { 17222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17223 "2504 RQ_CREATE mailbox failed with " 17224 "status x%x add_status x%x, mbx status x%x\n", 17225 shdr_status, shdr_add_status, rc); 17226 status = -ENXIO; 17227 goto out; 17228 } 17229 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17230 if (hrq->queue_id == 0xFFFF) { 17231 status = -ENXIO; 17232 goto out; 17233 } 17234 17235 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17236 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17237 &rq_create->u.response); 17238 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17239 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17241 "3262 RQ [%d] doorbell format not " 17242 "supported: x%x\n", hrq->queue_id, 17243 hrq->db_format); 17244 status = -EINVAL; 17245 goto out; 17246 } 17247 17248 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17249 &rq_create->u.response); 17250 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17251 if (!bar_memmap_p) { 17252 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17253 "3269 RQ[%d] failed to memmap pci " 17254 "barset:x%x\n", hrq->queue_id, 17255 pci_barset); 17256 status = -ENOMEM; 17257 goto out; 17258 } 17259 17260 db_offset = rq_create->u.response.doorbell_offset; 17261 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17262 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17264 "3270 RQ[%d] doorbell offset not " 17265 "supported: x%x\n", hrq->queue_id, 17266 db_offset); 17267 status = -EINVAL; 17268 goto out; 17269 } 17270 hrq->db_regaddr = bar_memmap_p + db_offset; 17271 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17272 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17273 "format:x%x\n", hrq->queue_id, pci_barset, 17274 db_offset, hrq->db_format); 17275 } else { 17276 hrq->db_format = LPFC_DB_RING_FORMAT; 17277 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17278 } 17279 hrq->type = LPFC_HRQ; 17280 hrq->assoc_qid = cq->queue_id; 17281 hrq->subtype = subtype; 17282 hrq->host_index = 0; 17283 hrq->hba_index = 0; 17284 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17285 17286 /* now create the data queue */ 17287 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17288 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17289 length, LPFC_SLI4_MBX_EMBED); 17290 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17291 phba->sli4_hba.pc_sli4_params.rqv); 17292 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17293 bf_set(lpfc_rq_context_rqe_count_1, 17294 &rq_create->u.request.context, hrq->entry_count); 17295 if (subtype == LPFC_NVMET) 17296 rq_create->u.request.context.buffer_size = 17297 LPFC_NVMET_DATA_BUF_SIZE; 17298 else 17299 rq_create->u.request.context.buffer_size = 17300 LPFC_DATA_BUF_SIZE; 17301 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17302 LPFC_RQE_SIZE_8); 17303 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17304 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17305 } else { 17306 switch (drq->entry_count) { 17307 default: 17308 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17309 "2536 Unsupported RQ count. (%d)\n", 17310 drq->entry_count); 17311 if (drq->entry_count < 512) { 17312 status = -EINVAL; 17313 goto out; 17314 } 17315 fallthrough; /* otherwise default to smallest count */ 17316 case 512: 17317 bf_set(lpfc_rq_context_rqe_count, 17318 &rq_create->u.request.context, 17319 LPFC_RQ_RING_SIZE_512); 17320 break; 17321 case 1024: 17322 bf_set(lpfc_rq_context_rqe_count, 17323 &rq_create->u.request.context, 17324 LPFC_RQ_RING_SIZE_1024); 17325 break; 17326 case 2048: 17327 bf_set(lpfc_rq_context_rqe_count, 17328 &rq_create->u.request.context, 17329 LPFC_RQ_RING_SIZE_2048); 17330 break; 17331 case 4096: 17332 bf_set(lpfc_rq_context_rqe_count, 17333 &rq_create->u.request.context, 17334 LPFC_RQ_RING_SIZE_4096); 17335 break; 17336 } 17337 if (subtype == LPFC_NVMET) 17338 bf_set(lpfc_rq_context_buf_size, 17339 &rq_create->u.request.context, 17340 LPFC_NVMET_DATA_BUF_SIZE); 17341 else 17342 bf_set(lpfc_rq_context_buf_size, 17343 &rq_create->u.request.context, 17344 LPFC_DATA_BUF_SIZE); 17345 } 17346 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17347 cq->queue_id); 17348 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17349 drq->page_count); 17350 list_for_each_entry(dmabuf, &drq->page_list, list) { 17351 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17352 putPaddrLow(dmabuf->phys); 17353 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17354 putPaddrHigh(dmabuf->phys); 17355 } 17356 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17357 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17358 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17359 /* The IOCTL status is embedded in the mailbox subheader. */ 17360 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17361 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17362 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17363 if (shdr_status || shdr_add_status || rc) { 17364 status = -ENXIO; 17365 goto out; 17366 } 17367 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17368 if (drq->queue_id == 0xFFFF) { 17369 status = -ENXIO; 17370 goto out; 17371 } 17372 drq->type = LPFC_DRQ; 17373 drq->assoc_qid = cq->queue_id; 17374 drq->subtype = subtype; 17375 drq->host_index = 0; 17376 drq->hba_index = 0; 17377 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17378 17379 /* link the header and data RQs onto the parent cq child list */ 17380 list_add_tail(&hrq->list, &cq->child_list); 17381 list_add_tail(&drq->list, &cq->child_list); 17382 17383 out: 17384 mempool_free(mbox, phba->mbox_mem_pool); 17385 return status; 17386 } 17387 17388 /** 17389 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17390 * @phba: HBA structure that indicates port to create a queue on. 17391 * @hrqp: The queue structure array to use to create the header receive queues. 17392 * @drqp: The queue structure array to use to create the data receive queues. 17393 * @cqp: The completion queue array to bind these receive queues to. 17394 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17395 * 17396 * This function creates a receive buffer queue pair , as detailed in @hrq and 17397 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17398 * to the HBA. 17399 * 17400 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17401 * struct is used to get the entry count that is necessary to determine the 17402 * number of pages to use for this queue. The @cq is used to indicate which 17403 * completion queue to bind received buffers that are posted to these queues to. 17404 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17405 * receive queue pair. This function is asynchronous and will wait for the 17406 * mailbox command to finish before continuing. 17407 * 17408 * On success this function will return a zero. If unable to allocate enough 17409 * memory this function will return -ENOMEM. If the queue create mailbox command 17410 * fails this function will return -ENXIO. 17411 **/ 17412 int 17413 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17414 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17415 uint32_t subtype) 17416 { 17417 struct lpfc_queue *hrq, *drq, *cq; 17418 struct lpfc_mbx_rq_create_v2 *rq_create; 17419 struct lpfc_dmabuf *dmabuf; 17420 LPFC_MBOXQ_t *mbox; 17421 int rc, length, alloclen, status = 0; 17422 int cnt, idx, numrq, page_idx = 0; 17423 uint32_t shdr_status, shdr_add_status; 17424 union lpfc_sli4_cfg_shdr *shdr; 17425 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17426 17427 numrq = phba->cfg_nvmet_mrq; 17428 /* sanity check on array memory */ 17429 if (!hrqp || !drqp || !cqp || !numrq) 17430 return -ENODEV; 17431 if (!phba->sli4_hba.pc_sli4_params.supported) 17432 hw_page_size = SLI4_PAGE_SIZE; 17433 17434 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17435 if (!mbox) 17436 return -ENOMEM; 17437 17438 length = sizeof(struct lpfc_mbx_rq_create_v2); 17439 length += ((2 * numrq * hrqp[0]->page_count) * 17440 sizeof(struct dma_address)); 17441 17442 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17443 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17444 LPFC_SLI4_MBX_NEMBED); 17445 if (alloclen < length) { 17446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17447 "3099 Allocated DMA memory size (%d) is " 17448 "less than the requested DMA memory size " 17449 "(%d)\n", alloclen, length); 17450 status = -ENOMEM; 17451 goto out; 17452 } 17453 17454 17455 17456 rq_create = mbox->sge_array->addr[0]; 17457 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17458 17459 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17460 cnt = 0; 17461 17462 for (idx = 0; idx < numrq; idx++) { 17463 hrq = hrqp[idx]; 17464 drq = drqp[idx]; 17465 cq = cqp[idx]; 17466 17467 /* sanity check on queue memory */ 17468 if (!hrq || !drq || !cq) { 17469 status = -ENODEV; 17470 goto out; 17471 } 17472 17473 if (hrq->entry_count != drq->entry_count) { 17474 status = -EINVAL; 17475 goto out; 17476 } 17477 17478 if (idx == 0) { 17479 bf_set(lpfc_mbx_rq_create_num_pages, 17480 &rq_create->u.request, 17481 hrq->page_count); 17482 bf_set(lpfc_mbx_rq_create_rq_cnt, 17483 &rq_create->u.request, (numrq * 2)); 17484 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17485 1); 17486 bf_set(lpfc_rq_context_base_cq, 17487 &rq_create->u.request.context, 17488 cq->queue_id); 17489 bf_set(lpfc_rq_context_data_size, 17490 &rq_create->u.request.context, 17491 LPFC_NVMET_DATA_BUF_SIZE); 17492 bf_set(lpfc_rq_context_hdr_size, 17493 &rq_create->u.request.context, 17494 LPFC_HDR_BUF_SIZE); 17495 bf_set(lpfc_rq_context_rqe_count_1, 17496 &rq_create->u.request.context, 17497 hrq->entry_count); 17498 bf_set(lpfc_rq_context_rqe_size, 17499 &rq_create->u.request.context, 17500 LPFC_RQE_SIZE_8); 17501 bf_set(lpfc_rq_context_page_size, 17502 &rq_create->u.request.context, 17503 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17504 } 17505 rc = 0; 17506 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17507 memset(dmabuf->virt, 0, hw_page_size); 17508 cnt = page_idx + dmabuf->buffer_tag; 17509 rq_create->u.request.page[cnt].addr_lo = 17510 putPaddrLow(dmabuf->phys); 17511 rq_create->u.request.page[cnt].addr_hi = 17512 putPaddrHigh(dmabuf->phys); 17513 rc++; 17514 } 17515 page_idx += rc; 17516 17517 rc = 0; 17518 list_for_each_entry(dmabuf, &drq->page_list, list) { 17519 memset(dmabuf->virt, 0, hw_page_size); 17520 cnt = page_idx + dmabuf->buffer_tag; 17521 rq_create->u.request.page[cnt].addr_lo = 17522 putPaddrLow(dmabuf->phys); 17523 rq_create->u.request.page[cnt].addr_hi = 17524 putPaddrHigh(dmabuf->phys); 17525 rc++; 17526 } 17527 page_idx += rc; 17528 17529 hrq->db_format = LPFC_DB_RING_FORMAT; 17530 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17531 hrq->type = LPFC_HRQ; 17532 hrq->assoc_qid = cq->queue_id; 17533 hrq->subtype = subtype; 17534 hrq->host_index = 0; 17535 hrq->hba_index = 0; 17536 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17537 17538 drq->db_format = LPFC_DB_RING_FORMAT; 17539 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17540 drq->type = LPFC_DRQ; 17541 drq->assoc_qid = cq->queue_id; 17542 drq->subtype = subtype; 17543 drq->host_index = 0; 17544 drq->hba_index = 0; 17545 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17546 17547 list_add_tail(&hrq->list, &cq->child_list); 17548 list_add_tail(&drq->list, &cq->child_list); 17549 } 17550 17551 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17552 /* The IOCTL status is embedded in the mailbox subheader. */ 17553 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17554 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17555 if (shdr_status || shdr_add_status || rc) { 17556 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17557 "3120 RQ_CREATE mailbox failed with " 17558 "status x%x add_status x%x, mbx status x%x\n", 17559 shdr_status, shdr_add_status, rc); 17560 status = -ENXIO; 17561 goto out; 17562 } 17563 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17564 if (rc == 0xFFFF) { 17565 status = -ENXIO; 17566 goto out; 17567 } 17568 17569 /* Initialize all RQs with associated queue id */ 17570 for (idx = 0; idx < numrq; idx++) { 17571 hrq = hrqp[idx]; 17572 hrq->queue_id = rc + (2 * idx); 17573 drq = drqp[idx]; 17574 drq->queue_id = rc + (2 * idx) + 1; 17575 } 17576 17577 out: 17578 lpfc_sli4_mbox_cmd_free(phba, mbox); 17579 return status; 17580 } 17581 17582 /** 17583 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17584 * @phba: HBA structure that indicates port to destroy a queue on. 17585 * @eq: The queue structure associated with the queue to destroy. 17586 * 17587 * This function destroys a queue, as detailed in @eq by sending an mailbox 17588 * command, specific to the type of queue, to the HBA. 17589 * 17590 * The @eq struct is used to get the queue ID of the queue to destroy. 17591 * 17592 * On success this function will return a zero. If the queue destroy mailbox 17593 * command fails this function will return -ENXIO. 17594 **/ 17595 int 17596 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17597 { 17598 LPFC_MBOXQ_t *mbox; 17599 int rc, length, status = 0; 17600 uint32_t shdr_status, shdr_add_status; 17601 union lpfc_sli4_cfg_shdr *shdr; 17602 17603 /* sanity check on queue memory */ 17604 if (!eq) 17605 return -ENODEV; 17606 17607 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17608 goto list_remove; 17609 17610 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17611 if (!mbox) 17612 return -ENOMEM; 17613 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17614 sizeof(struct lpfc_sli4_cfg_mhdr)); 17615 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17616 LPFC_MBOX_OPCODE_EQ_DESTROY, 17617 length, LPFC_SLI4_MBX_EMBED); 17618 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17619 eq->queue_id); 17620 mbox->vport = eq->phba->pport; 17621 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17622 17623 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17624 /* The IOCTL status is embedded in the mailbox subheader. */ 17625 shdr = (union lpfc_sli4_cfg_shdr *) 17626 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17627 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17628 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17629 if (shdr_status || shdr_add_status || rc) { 17630 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17631 "2505 EQ_DESTROY mailbox failed with " 17632 "status x%x add_status x%x, mbx status x%x\n", 17633 shdr_status, shdr_add_status, rc); 17634 status = -ENXIO; 17635 } 17636 mempool_free(mbox, eq->phba->mbox_mem_pool); 17637 17638 list_remove: 17639 /* Remove eq from any list */ 17640 list_del_init(&eq->list); 17641 17642 return status; 17643 } 17644 17645 /** 17646 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17647 * @phba: HBA structure that indicates port to destroy a queue on. 17648 * @cq: The queue structure associated with the queue to destroy. 17649 * 17650 * This function destroys a queue, as detailed in @cq by sending an mailbox 17651 * command, specific to the type of queue, to the HBA. 17652 * 17653 * The @cq struct is used to get the queue ID of the queue to destroy. 17654 * 17655 * On success this function will return a zero. If the queue destroy mailbox 17656 * command fails this function will return -ENXIO. 17657 **/ 17658 int 17659 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17660 { 17661 LPFC_MBOXQ_t *mbox; 17662 int rc, length, status = 0; 17663 uint32_t shdr_status, shdr_add_status; 17664 union lpfc_sli4_cfg_shdr *shdr; 17665 17666 /* sanity check on queue memory */ 17667 if (!cq) 17668 return -ENODEV; 17669 17670 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17671 goto list_remove; 17672 17673 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17674 if (!mbox) 17675 return -ENOMEM; 17676 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17677 sizeof(struct lpfc_sli4_cfg_mhdr)); 17678 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17679 LPFC_MBOX_OPCODE_CQ_DESTROY, 17680 length, LPFC_SLI4_MBX_EMBED); 17681 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17682 cq->queue_id); 17683 mbox->vport = cq->phba->pport; 17684 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17685 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17686 /* The IOCTL status is embedded in the mailbox subheader. */ 17687 shdr = (union lpfc_sli4_cfg_shdr *) 17688 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17689 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17690 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17691 if (shdr_status || shdr_add_status || rc) { 17692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17693 "2506 CQ_DESTROY mailbox failed with " 17694 "status x%x add_status x%x, mbx status x%x\n", 17695 shdr_status, shdr_add_status, rc); 17696 status = -ENXIO; 17697 } 17698 mempool_free(mbox, cq->phba->mbox_mem_pool); 17699 17700 list_remove: 17701 /* Remove cq from any list */ 17702 list_del_init(&cq->list); 17703 return status; 17704 } 17705 17706 /** 17707 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17708 * @phba: HBA structure that indicates port to destroy a queue on. 17709 * @mq: The queue structure associated with the queue to destroy. 17710 * 17711 * This function destroys a queue, as detailed in @mq by sending an mailbox 17712 * command, specific to the type of queue, to the HBA. 17713 * 17714 * The @mq struct is used to get the queue ID of the queue to destroy. 17715 * 17716 * On success this function will return a zero. If the queue destroy mailbox 17717 * command fails this function will return -ENXIO. 17718 **/ 17719 int 17720 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17721 { 17722 LPFC_MBOXQ_t *mbox; 17723 int rc, length, status = 0; 17724 uint32_t shdr_status, shdr_add_status; 17725 union lpfc_sli4_cfg_shdr *shdr; 17726 17727 /* sanity check on queue memory */ 17728 if (!mq) 17729 return -ENODEV; 17730 17731 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17732 goto list_remove; 17733 17734 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17735 if (!mbox) 17736 return -ENOMEM; 17737 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17738 sizeof(struct lpfc_sli4_cfg_mhdr)); 17739 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17740 LPFC_MBOX_OPCODE_MQ_DESTROY, 17741 length, LPFC_SLI4_MBX_EMBED); 17742 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17743 mq->queue_id); 17744 mbox->vport = mq->phba->pport; 17745 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17746 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17747 /* The IOCTL status is embedded in the mailbox subheader. */ 17748 shdr = (union lpfc_sli4_cfg_shdr *) 17749 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17752 if (shdr_status || shdr_add_status || rc) { 17753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17754 "2507 MQ_DESTROY mailbox failed with " 17755 "status x%x add_status x%x, mbx status x%x\n", 17756 shdr_status, shdr_add_status, rc); 17757 status = -ENXIO; 17758 } 17759 mempool_free(mbox, mq->phba->mbox_mem_pool); 17760 17761 list_remove: 17762 /* Remove mq from any list */ 17763 list_del_init(&mq->list); 17764 return status; 17765 } 17766 17767 /** 17768 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17769 * @phba: HBA structure that indicates port to destroy a queue on. 17770 * @wq: The queue structure associated with the queue to destroy. 17771 * 17772 * This function destroys a queue, as detailed in @wq by sending an mailbox 17773 * command, specific to the type of queue, to the HBA. 17774 * 17775 * The @wq struct is used to get the queue ID of the queue to destroy. 17776 * 17777 * On success this function will return a zero. If the queue destroy mailbox 17778 * command fails this function will return -ENXIO. 17779 **/ 17780 int 17781 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17782 { 17783 LPFC_MBOXQ_t *mbox; 17784 int rc, length, status = 0; 17785 uint32_t shdr_status, shdr_add_status; 17786 union lpfc_sli4_cfg_shdr *shdr; 17787 17788 /* sanity check on queue memory */ 17789 if (!wq) 17790 return -ENODEV; 17791 17792 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17793 goto list_remove; 17794 17795 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17796 if (!mbox) 17797 return -ENOMEM; 17798 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17799 sizeof(struct lpfc_sli4_cfg_mhdr)); 17800 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17801 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17802 length, LPFC_SLI4_MBX_EMBED); 17803 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17804 wq->queue_id); 17805 mbox->vport = wq->phba->pport; 17806 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17807 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17808 shdr = (union lpfc_sli4_cfg_shdr *) 17809 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17810 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17811 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17812 if (shdr_status || shdr_add_status || rc) { 17813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17814 "2508 WQ_DESTROY mailbox failed with " 17815 "status x%x add_status x%x, mbx status x%x\n", 17816 shdr_status, shdr_add_status, rc); 17817 status = -ENXIO; 17818 } 17819 mempool_free(mbox, wq->phba->mbox_mem_pool); 17820 17821 list_remove: 17822 /* Remove wq from any list */ 17823 list_del_init(&wq->list); 17824 kfree(wq->pring); 17825 wq->pring = NULL; 17826 return status; 17827 } 17828 17829 /** 17830 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17831 * @phba: HBA structure that indicates port to destroy a queue on. 17832 * @hrq: The queue structure associated with the queue to destroy. 17833 * @drq: The queue structure associated with the queue to destroy. 17834 * 17835 * This function destroys a queue, as detailed in @rq by sending an mailbox 17836 * command, specific to the type of queue, to the HBA. 17837 * 17838 * The @rq struct is used to get the queue ID of the queue to destroy. 17839 * 17840 * On success this function will return a zero. If the queue destroy mailbox 17841 * command fails this function will return -ENXIO. 17842 **/ 17843 int 17844 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17845 struct lpfc_queue *drq) 17846 { 17847 LPFC_MBOXQ_t *mbox; 17848 int rc, length, status = 0; 17849 uint32_t shdr_status, shdr_add_status; 17850 union lpfc_sli4_cfg_shdr *shdr; 17851 17852 /* sanity check on queue memory */ 17853 if (!hrq || !drq) 17854 return -ENODEV; 17855 17856 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17857 goto list_remove; 17858 17859 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17860 if (!mbox) 17861 return -ENOMEM; 17862 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17863 sizeof(struct lpfc_sli4_cfg_mhdr)); 17864 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17865 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17866 length, LPFC_SLI4_MBX_EMBED); 17867 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17868 hrq->queue_id); 17869 mbox->vport = hrq->phba->pport; 17870 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17871 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17872 /* The IOCTL status is embedded in the mailbox subheader. */ 17873 shdr = (union lpfc_sli4_cfg_shdr *) 17874 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17875 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17876 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17877 if (shdr_status || shdr_add_status || rc) { 17878 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17879 "2509 RQ_DESTROY mailbox failed with " 17880 "status x%x add_status x%x, mbx status x%x\n", 17881 shdr_status, shdr_add_status, rc); 17882 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17883 return -ENXIO; 17884 } 17885 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17886 drq->queue_id); 17887 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17888 shdr = (union lpfc_sli4_cfg_shdr *) 17889 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17890 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17891 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17892 if (shdr_status || shdr_add_status || rc) { 17893 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17894 "2510 RQ_DESTROY mailbox failed with " 17895 "status x%x add_status x%x, mbx status x%x\n", 17896 shdr_status, shdr_add_status, rc); 17897 status = -ENXIO; 17898 } 17899 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17900 17901 list_remove: 17902 list_del_init(&hrq->list); 17903 list_del_init(&drq->list); 17904 return status; 17905 } 17906 17907 /** 17908 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17909 * @phba: The virtual port for which this call being executed. 17910 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17911 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17912 * @xritag: the xritag that ties this io to the SGL pages. 17913 * 17914 * This routine will post the sgl pages for the IO that has the xritag 17915 * that is in the iocbq structure. The xritag is assigned during iocbq 17916 * creation and persists for as long as the driver is loaded. 17917 * if the caller has fewer than 256 scatter gather segments to map then 17918 * pdma_phys_addr1 should be 0. 17919 * If the caller needs to map more than 256 scatter gather segment then 17920 * pdma_phys_addr1 should be a valid physical address. 17921 * physical address for SGLs must be 64 byte aligned. 17922 * If you are going to map 2 SGL's then the first one must have 256 entries 17923 * the second sgl can have between 1 and 256 entries. 17924 * 17925 * Return codes: 17926 * 0 - Success 17927 * -ENXIO, -ENOMEM - Failure 17928 **/ 17929 int 17930 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17931 dma_addr_t pdma_phys_addr0, 17932 dma_addr_t pdma_phys_addr1, 17933 uint16_t xritag) 17934 { 17935 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17936 LPFC_MBOXQ_t *mbox; 17937 int rc; 17938 uint32_t shdr_status, shdr_add_status; 17939 uint32_t mbox_tmo; 17940 union lpfc_sli4_cfg_shdr *shdr; 17941 17942 if (xritag == NO_XRI) { 17943 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17944 "0364 Invalid param:\n"); 17945 return -EINVAL; 17946 } 17947 17948 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17949 if (!mbox) 17950 return -ENOMEM; 17951 17952 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17953 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17954 sizeof(struct lpfc_mbx_post_sgl_pages) - 17955 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17956 17957 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17958 &mbox->u.mqe.un.post_sgl_pages; 17959 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17960 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17961 17962 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17963 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17964 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17965 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17966 17967 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17968 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17969 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17970 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17971 if (!phba->sli4_hba.intr_enable) 17972 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17973 else { 17974 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17975 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17976 } 17977 /* The IOCTL status is embedded in the mailbox subheader. */ 17978 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17979 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17980 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17981 if (!phba->sli4_hba.intr_enable) 17982 mempool_free(mbox, phba->mbox_mem_pool); 17983 else if (rc != MBX_TIMEOUT) 17984 mempool_free(mbox, phba->mbox_mem_pool); 17985 if (shdr_status || shdr_add_status || rc) { 17986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17987 "2511 POST_SGL mailbox failed with " 17988 "status x%x add_status x%x, mbx status x%x\n", 17989 shdr_status, shdr_add_status, rc); 17990 } 17991 return 0; 17992 } 17993 17994 /** 17995 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17996 * @phba: pointer to lpfc hba data structure. 17997 * 17998 * This routine is invoked to post rpi header templates to the 17999 * HBA consistent with the SLI-4 interface spec. This routine 18000 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18001 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18002 * 18003 * Returns 18004 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18005 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18006 **/ 18007 static uint16_t 18008 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18009 { 18010 unsigned long xri; 18011 18012 /* 18013 * Fetch the next logical xri. Because this index is logical, 18014 * the driver starts at 0 each time. 18015 */ 18016 spin_lock_irq(&phba->hbalock); 18017 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18018 phba->sli4_hba.max_cfg_param.max_xri); 18019 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18020 spin_unlock_irq(&phba->hbalock); 18021 return NO_XRI; 18022 } else { 18023 set_bit(xri, phba->sli4_hba.xri_bmask); 18024 phba->sli4_hba.max_cfg_param.xri_used++; 18025 } 18026 spin_unlock_irq(&phba->hbalock); 18027 return xri; 18028 } 18029 18030 /** 18031 * __lpfc_sli4_free_xri - Release an xri for reuse. 18032 * @phba: pointer to lpfc hba data structure. 18033 * @xri: xri to release. 18034 * 18035 * This routine is invoked to release an xri to the pool of 18036 * available rpis maintained by the driver. 18037 **/ 18038 static void 18039 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18040 { 18041 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18042 phba->sli4_hba.max_cfg_param.xri_used--; 18043 } 18044 } 18045 18046 /** 18047 * lpfc_sli4_free_xri - Release an xri for reuse. 18048 * @phba: pointer to lpfc hba data structure. 18049 * @xri: xri to release. 18050 * 18051 * This routine is invoked to release an xri to the pool of 18052 * available rpis maintained by the driver. 18053 **/ 18054 void 18055 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18056 { 18057 spin_lock_irq(&phba->hbalock); 18058 __lpfc_sli4_free_xri(phba, xri); 18059 spin_unlock_irq(&phba->hbalock); 18060 } 18061 18062 /** 18063 * lpfc_sli4_next_xritag - Get an xritag for the io 18064 * @phba: Pointer to HBA context object. 18065 * 18066 * This function gets an xritag for the iocb. If there is no unused xritag 18067 * it will return 0xffff. 18068 * The function returns the allocated xritag if successful, else returns zero. 18069 * Zero is not a valid xritag. 18070 * The caller is not required to hold any lock. 18071 **/ 18072 uint16_t 18073 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18074 { 18075 uint16_t xri_index; 18076 18077 xri_index = lpfc_sli4_alloc_xri(phba); 18078 if (xri_index == NO_XRI) 18079 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18080 "2004 Failed to allocate XRI.last XRITAG is %d" 18081 " Max XRI is %d, Used XRI is %d\n", 18082 xri_index, 18083 phba->sli4_hba.max_cfg_param.max_xri, 18084 phba->sli4_hba.max_cfg_param.xri_used); 18085 return xri_index; 18086 } 18087 18088 /** 18089 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18090 * @phba: pointer to lpfc hba data structure. 18091 * @post_sgl_list: pointer to els sgl entry list. 18092 * @post_cnt: number of els sgl entries on the list. 18093 * 18094 * This routine is invoked to post a block of driver's sgl pages to the 18095 * HBA using non-embedded mailbox command. No Lock is held. This routine 18096 * is only called when the driver is loading and after all IO has been 18097 * stopped. 18098 **/ 18099 static int 18100 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18101 struct list_head *post_sgl_list, 18102 int post_cnt) 18103 { 18104 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18105 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18106 struct sgl_page_pairs *sgl_pg_pairs; 18107 void *viraddr; 18108 LPFC_MBOXQ_t *mbox; 18109 uint32_t reqlen, alloclen, pg_pairs; 18110 uint32_t mbox_tmo; 18111 uint16_t xritag_start = 0; 18112 int rc = 0; 18113 uint32_t shdr_status, shdr_add_status; 18114 union lpfc_sli4_cfg_shdr *shdr; 18115 18116 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18117 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18118 if (reqlen > SLI4_PAGE_SIZE) { 18119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18120 "2559 Block sgl registration required DMA " 18121 "size (%d) great than a page\n", reqlen); 18122 return -ENOMEM; 18123 } 18124 18125 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18126 if (!mbox) 18127 return -ENOMEM; 18128 18129 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18130 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18131 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18132 LPFC_SLI4_MBX_NEMBED); 18133 18134 if (alloclen < reqlen) { 18135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18136 "0285 Allocated DMA memory size (%d) is " 18137 "less than the requested DMA memory " 18138 "size (%d)\n", alloclen, reqlen); 18139 lpfc_sli4_mbox_cmd_free(phba, mbox); 18140 return -ENOMEM; 18141 } 18142 /* Set up the SGL pages in the non-embedded DMA pages */ 18143 viraddr = mbox->sge_array->addr[0]; 18144 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18145 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18146 18147 pg_pairs = 0; 18148 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18149 /* Set up the sge entry */ 18150 sgl_pg_pairs->sgl_pg0_addr_lo = 18151 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18152 sgl_pg_pairs->sgl_pg0_addr_hi = 18153 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18154 sgl_pg_pairs->sgl_pg1_addr_lo = 18155 cpu_to_le32(putPaddrLow(0)); 18156 sgl_pg_pairs->sgl_pg1_addr_hi = 18157 cpu_to_le32(putPaddrHigh(0)); 18158 18159 /* Keep the first xritag on the list */ 18160 if (pg_pairs == 0) 18161 xritag_start = sglq_entry->sli4_xritag; 18162 sgl_pg_pairs++; 18163 pg_pairs++; 18164 } 18165 18166 /* Complete initialization and perform endian conversion. */ 18167 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18168 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18169 sgl->word0 = cpu_to_le32(sgl->word0); 18170 18171 if (!phba->sli4_hba.intr_enable) 18172 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18173 else { 18174 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18175 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18176 } 18177 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18178 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18179 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18180 if (!phba->sli4_hba.intr_enable) 18181 lpfc_sli4_mbox_cmd_free(phba, mbox); 18182 else if (rc != MBX_TIMEOUT) 18183 lpfc_sli4_mbox_cmd_free(phba, mbox); 18184 if (shdr_status || shdr_add_status || rc) { 18185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18186 "2513 POST_SGL_BLOCK mailbox command failed " 18187 "status x%x add_status x%x mbx status x%x\n", 18188 shdr_status, shdr_add_status, rc); 18189 rc = -ENXIO; 18190 } 18191 return rc; 18192 } 18193 18194 /** 18195 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18196 * @phba: pointer to lpfc hba data structure. 18197 * @nblist: pointer to nvme buffer list. 18198 * @count: number of scsi buffers on the list. 18199 * 18200 * This routine is invoked to post a block of @count scsi sgl pages from a 18201 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18202 * No Lock is held. 18203 * 18204 **/ 18205 static int 18206 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18207 int count) 18208 { 18209 struct lpfc_io_buf *lpfc_ncmd; 18210 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18211 struct sgl_page_pairs *sgl_pg_pairs; 18212 void *viraddr; 18213 LPFC_MBOXQ_t *mbox; 18214 uint32_t reqlen, alloclen, pg_pairs; 18215 uint32_t mbox_tmo; 18216 uint16_t xritag_start = 0; 18217 int rc = 0; 18218 uint32_t shdr_status, shdr_add_status; 18219 dma_addr_t pdma_phys_bpl1; 18220 union lpfc_sli4_cfg_shdr *shdr; 18221 18222 /* Calculate the requested length of the dma memory */ 18223 reqlen = count * sizeof(struct sgl_page_pairs) + 18224 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18225 if (reqlen > SLI4_PAGE_SIZE) { 18226 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18227 "6118 Block sgl registration required DMA " 18228 "size (%d) great than a page\n", reqlen); 18229 return -ENOMEM; 18230 } 18231 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18232 if (!mbox) { 18233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18234 "6119 Failed to allocate mbox cmd memory\n"); 18235 return -ENOMEM; 18236 } 18237 18238 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18239 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18240 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18241 reqlen, LPFC_SLI4_MBX_NEMBED); 18242 18243 if (alloclen < reqlen) { 18244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18245 "6120 Allocated DMA memory size (%d) is " 18246 "less than the requested DMA memory " 18247 "size (%d)\n", alloclen, reqlen); 18248 lpfc_sli4_mbox_cmd_free(phba, mbox); 18249 return -ENOMEM; 18250 } 18251 18252 /* Get the first SGE entry from the non-embedded DMA memory */ 18253 viraddr = mbox->sge_array->addr[0]; 18254 18255 /* Set up the SGL pages in the non-embedded DMA pages */ 18256 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18257 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18258 18259 pg_pairs = 0; 18260 list_for_each_entry(lpfc_ncmd, nblist, list) { 18261 /* Set up the sge entry */ 18262 sgl_pg_pairs->sgl_pg0_addr_lo = 18263 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18264 sgl_pg_pairs->sgl_pg0_addr_hi = 18265 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18266 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18267 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18268 SGL_PAGE_SIZE; 18269 else 18270 pdma_phys_bpl1 = 0; 18271 sgl_pg_pairs->sgl_pg1_addr_lo = 18272 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18273 sgl_pg_pairs->sgl_pg1_addr_hi = 18274 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18275 /* Keep the first xritag on the list */ 18276 if (pg_pairs == 0) 18277 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18278 sgl_pg_pairs++; 18279 pg_pairs++; 18280 } 18281 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18282 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18283 /* Perform endian conversion if necessary */ 18284 sgl->word0 = cpu_to_le32(sgl->word0); 18285 18286 if (!phba->sli4_hba.intr_enable) { 18287 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18288 } else { 18289 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18290 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18291 } 18292 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18293 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18294 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18295 if (!phba->sli4_hba.intr_enable) 18296 lpfc_sli4_mbox_cmd_free(phba, mbox); 18297 else if (rc != MBX_TIMEOUT) 18298 lpfc_sli4_mbox_cmd_free(phba, mbox); 18299 if (shdr_status || shdr_add_status || rc) { 18300 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18301 "6125 POST_SGL_BLOCK mailbox command failed " 18302 "status x%x add_status x%x mbx status x%x\n", 18303 shdr_status, shdr_add_status, rc); 18304 rc = -ENXIO; 18305 } 18306 return rc; 18307 } 18308 18309 /** 18310 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18311 * @phba: pointer to lpfc hba data structure. 18312 * @post_nblist: pointer to the nvme buffer list. 18313 * @sb_count: number of nvme buffers. 18314 * 18315 * This routine walks a list of nvme buffers that was passed in. It attempts 18316 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18317 * uses the non-embedded SGL block post mailbox commands to post to the port. 18318 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18319 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18320 * must be local list, thus no lock is needed when manipulate the list. 18321 * 18322 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18323 **/ 18324 int 18325 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18326 struct list_head *post_nblist, int sb_count) 18327 { 18328 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18329 int status, sgl_size; 18330 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18331 dma_addr_t pdma_phys_sgl1; 18332 int last_xritag = NO_XRI; 18333 int cur_xritag; 18334 LIST_HEAD(prep_nblist); 18335 LIST_HEAD(blck_nblist); 18336 LIST_HEAD(nvme_nblist); 18337 18338 /* sanity check */ 18339 if (sb_count <= 0) 18340 return -EINVAL; 18341 18342 sgl_size = phba->cfg_sg_dma_buf_size; 18343 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18344 list_del_init(&lpfc_ncmd->list); 18345 block_cnt++; 18346 if ((last_xritag != NO_XRI) && 18347 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18348 /* a hole in xri block, form a sgl posting block */ 18349 list_splice_init(&prep_nblist, &blck_nblist); 18350 post_cnt = block_cnt - 1; 18351 /* prepare list for next posting block */ 18352 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18353 block_cnt = 1; 18354 } else { 18355 /* prepare list for next posting block */ 18356 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18357 /* enough sgls for non-embed sgl mbox command */ 18358 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18359 list_splice_init(&prep_nblist, &blck_nblist); 18360 post_cnt = block_cnt; 18361 block_cnt = 0; 18362 } 18363 } 18364 num_posting++; 18365 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18366 18367 /* end of repost sgl list condition for NVME buffers */ 18368 if (num_posting == sb_count) { 18369 if (post_cnt == 0) { 18370 /* last sgl posting block */ 18371 list_splice_init(&prep_nblist, &blck_nblist); 18372 post_cnt = block_cnt; 18373 } else if (block_cnt == 1) { 18374 /* last single sgl with non-contiguous xri */ 18375 if (sgl_size > SGL_PAGE_SIZE) 18376 pdma_phys_sgl1 = 18377 lpfc_ncmd->dma_phys_sgl + 18378 SGL_PAGE_SIZE; 18379 else 18380 pdma_phys_sgl1 = 0; 18381 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18382 status = lpfc_sli4_post_sgl( 18383 phba, lpfc_ncmd->dma_phys_sgl, 18384 pdma_phys_sgl1, cur_xritag); 18385 if (status) { 18386 /* Post error. Buffer unavailable. */ 18387 lpfc_ncmd->flags |= 18388 LPFC_SBUF_NOT_POSTED; 18389 } else { 18390 /* Post success. Bffer available. */ 18391 lpfc_ncmd->flags &= 18392 ~LPFC_SBUF_NOT_POSTED; 18393 lpfc_ncmd->status = IOSTAT_SUCCESS; 18394 num_posted++; 18395 } 18396 /* success, put on NVME buffer sgl list */ 18397 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18398 } 18399 } 18400 18401 /* continue until a nembed page worth of sgls */ 18402 if (post_cnt == 0) 18403 continue; 18404 18405 /* post block of NVME buffer list sgls */ 18406 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18407 post_cnt); 18408 18409 /* don't reset xirtag due to hole in xri block */ 18410 if (block_cnt == 0) 18411 last_xritag = NO_XRI; 18412 18413 /* reset NVME buffer post count for next round of posting */ 18414 post_cnt = 0; 18415 18416 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18417 while (!list_empty(&blck_nblist)) { 18418 list_remove_head(&blck_nblist, lpfc_ncmd, 18419 struct lpfc_io_buf, list); 18420 if (status) { 18421 /* Post error. Mark buffer unavailable. */ 18422 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18423 } else { 18424 /* Post success, Mark buffer available. */ 18425 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18426 lpfc_ncmd->status = IOSTAT_SUCCESS; 18427 num_posted++; 18428 } 18429 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18430 } 18431 } 18432 /* Push NVME buffers with sgl posted to the available list */ 18433 lpfc_io_buf_replenish(phba, &nvme_nblist); 18434 18435 return num_posted; 18436 } 18437 18438 /** 18439 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18440 * @phba: pointer to lpfc_hba struct that the frame was received on 18441 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18442 * 18443 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18444 * valid type of frame that the LPFC driver will handle. This function will 18445 * return a zero if the frame is a valid frame or a non zero value when the 18446 * frame does not pass the check. 18447 **/ 18448 static int 18449 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18450 { 18451 /* make rctl_names static to save stack space */ 18452 struct fc_vft_header *fc_vft_hdr; 18453 struct fc_app_header *fc_app_hdr; 18454 uint32_t *header = (uint32_t *) fc_hdr; 18455 18456 #define FC_RCTL_MDS_DIAGS 0xF4 18457 18458 switch (fc_hdr->fh_r_ctl) { 18459 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18460 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18461 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18462 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18463 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18464 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18465 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18466 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18467 case FC_RCTL_ELS_REQ: /* extended link services request */ 18468 case FC_RCTL_ELS_REP: /* extended link services reply */ 18469 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18470 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18471 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18472 case FC_RCTL_BA_RMC: /* remove connection */ 18473 case FC_RCTL_BA_ACC: /* basic accept */ 18474 case FC_RCTL_BA_RJT: /* basic reject */ 18475 case FC_RCTL_BA_PRMT: 18476 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18477 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18478 case FC_RCTL_P_RJT: /* port reject */ 18479 case FC_RCTL_F_RJT: /* fabric reject */ 18480 case FC_RCTL_P_BSY: /* port busy */ 18481 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18482 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18483 case FC_RCTL_LCR: /* link credit reset */ 18484 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18485 case FC_RCTL_END: /* end */ 18486 break; 18487 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18488 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18489 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18490 return lpfc_fc_frame_check(phba, fc_hdr); 18491 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18492 default: 18493 goto drop; 18494 } 18495 18496 switch (fc_hdr->fh_type) { 18497 case FC_TYPE_BLS: 18498 case FC_TYPE_ELS: 18499 case FC_TYPE_FCP: 18500 case FC_TYPE_CT: 18501 case FC_TYPE_NVME: 18502 break; 18503 case FC_TYPE_IP: 18504 case FC_TYPE_ILS: 18505 default: 18506 goto drop; 18507 } 18508 18509 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE && 18510 phba->cfg_vmid_app_header)) { 18511 /* Application header is 16B device header */ 18512 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) { 18513 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1); 18514 if (be32_to_cpu(fc_app_hdr->src_app_id) != 18515 LOOPBACK_SRC_APPID) { 18516 lpfc_printf_log(phba, KERN_WARNING, 18517 LOG_ELS | LOG_LIBDFC, 18518 "1932 Loopback src app id " 18519 "not matched, app_id:x%x\n", 18520 be32_to_cpu(fc_app_hdr->src_app_id)); 18521 18522 goto drop; 18523 } 18524 } else { 18525 lpfc_printf_log(phba, KERN_WARNING, 18526 LOG_ELS | LOG_LIBDFC, 18527 "1933 Loopback df_ctl bit not set, " 18528 "df_ctl:x%x\n", 18529 fc_hdr->fh_df_ctl); 18530 18531 goto drop; 18532 } 18533 } 18534 18535 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18536 "2538 Received frame rctl:x%x, type:x%x, " 18537 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18538 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18539 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18540 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18541 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18542 be32_to_cpu(header[6])); 18543 return 0; 18544 drop: 18545 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18546 "2539 Dropped frame rctl:x%x type:x%x\n", 18547 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18548 return 1; 18549 } 18550 18551 /** 18552 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18553 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18554 * 18555 * This function processes the FC header to retrieve the VFI from the VF 18556 * header, if one exists. This function will return the VFI if one exists 18557 * or 0 if no VSAN Header exists. 18558 **/ 18559 static uint32_t 18560 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18561 { 18562 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18563 18564 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18565 return 0; 18566 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18567 } 18568 18569 /** 18570 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18571 * @phba: Pointer to the HBA structure to search for the vport on 18572 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18573 * @fcfi: The FC Fabric ID that the frame came from 18574 * @did: Destination ID to match against 18575 * 18576 * This function searches the @phba for a vport that matches the content of the 18577 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18578 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18579 * returns the matching vport pointer or NULL if unable to match frame to a 18580 * vport. 18581 **/ 18582 static struct lpfc_vport * 18583 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18584 uint16_t fcfi, uint32_t did) 18585 { 18586 struct lpfc_vport **vports; 18587 struct lpfc_vport *vport = NULL; 18588 int i; 18589 18590 if (did == Fabric_DID) 18591 return phba->pport; 18592 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18593 phba->link_state != LPFC_HBA_READY) 18594 return phba->pport; 18595 18596 vports = lpfc_create_vport_work_array(phba); 18597 if (vports != NULL) { 18598 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18599 if (phba->fcf.fcfi == fcfi && 18600 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18601 vports[i]->fc_myDID == did) { 18602 vport = vports[i]; 18603 break; 18604 } 18605 } 18606 } 18607 lpfc_destroy_vport_work_array(phba, vports); 18608 return vport; 18609 } 18610 18611 /** 18612 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18613 * @vport: The vport to work on. 18614 * 18615 * This function updates the receive sequence time stamp for this vport. The 18616 * receive sequence time stamp indicates the time that the last frame of the 18617 * the sequence that has been idle for the longest amount of time was received. 18618 * the driver uses this time stamp to indicate if any received sequences have 18619 * timed out. 18620 **/ 18621 static void 18622 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18623 { 18624 struct lpfc_dmabuf *h_buf; 18625 struct hbq_dmabuf *dmabuf = NULL; 18626 18627 /* get the oldest sequence on the rcv list */ 18628 h_buf = list_get_first(&vport->rcv_buffer_list, 18629 struct lpfc_dmabuf, list); 18630 if (!h_buf) 18631 return; 18632 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18633 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18634 } 18635 18636 /** 18637 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18638 * @vport: The vport that the received sequences were sent to. 18639 * 18640 * This function cleans up all outstanding received sequences. This is called 18641 * by the driver when a link event or user action invalidates all the received 18642 * sequences. 18643 **/ 18644 void 18645 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18646 { 18647 struct lpfc_dmabuf *h_buf, *hnext; 18648 struct lpfc_dmabuf *d_buf, *dnext; 18649 struct hbq_dmabuf *dmabuf = NULL; 18650 18651 /* start with the oldest sequence on the rcv list */ 18652 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18653 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18654 list_del_init(&dmabuf->hbuf.list); 18655 list_for_each_entry_safe(d_buf, dnext, 18656 &dmabuf->dbuf.list, list) { 18657 list_del_init(&d_buf->list); 18658 lpfc_in_buf_free(vport->phba, d_buf); 18659 } 18660 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18661 } 18662 } 18663 18664 /** 18665 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18666 * @vport: The vport that the received sequences were sent to. 18667 * 18668 * This function determines whether any received sequences have timed out by 18669 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18670 * indicates that there is at least one timed out sequence this routine will 18671 * go through the received sequences one at a time from most inactive to most 18672 * active to determine which ones need to be cleaned up. Once it has determined 18673 * that a sequence needs to be cleaned up it will simply free up the resources 18674 * without sending an abort. 18675 **/ 18676 void 18677 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18678 { 18679 struct lpfc_dmabuf *h_buf, *hnext; 18680 struct lpfc_dmabuf *d_buf, *dnext; 18681 struct hbq_dmabuf *dmabuf = NULL; 18682 unsigned long timeout; 18683 int abort_count = 0; 18684 18685 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18686 vport->rcv_buffer_time_stamp); 18687 if (list_empty(&vport->rcv_buffer_list) || 18688 time_before(jiffies, timeout)) 18689 return; 18690 /* start with the oldest sequence on the rcv list */ 18691 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18692 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18693 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18694 dmabuf->time_stamp); 18695 if (time_before(jiffies, timeout)) 18696 break; 18697 abort_count++; 18698 list_del_init(&dmabuf->hbuf.list); 18699 list_for_each_entry_safe(d_buf, dnext, 18700 &dmabuf->dbuf.list, list) { 18701 list_del_init(&d_buf->list); 18702 lpfc_in_buf_free(vport->phba, d_buf); 18703 } 18704 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18705 } 18706 if (abort_count) 18707 lpfc_update_rcv_time_stamp(vport); 18708 } 18709 18710 /** 18711 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18712 * @vport: pointer to a vitural port 18713 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18714 * 18715 * This function searches through the existing incomplete sequences that have 18716 * been sent to this @vport. If the frame matches one of the incomplete 18717 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18718 * make up that sequence. If no sequence is found that matches this frame then 18719 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18720 * This function returns a pointer to the first dmabuf in the sequence list that 18721 * the frame was linked to. 18722 **/ 18723 static struct hbq_dmabuf * 18724 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18725 { 18726 struct fc_frame_header *new_hdr; 18727 struct fc_frame_header *temp_hdr; 18728 struct lpfc_dmabuf *d_buf; 18729 struct lpfc_dmabuf *h_buf; 18730 struct hbq_dmabuf *seq_dmabuf = NULL; 18731 struct hbq_dmabuf *temp_dmabuf = NULL; 18732 uint8_t found = 0; 18733 18734 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18735 dmabuf->time_stamp = jiffies; 18736 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18737 18738 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18739 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18740 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18741 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18742 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18743 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18744 continue; 18745 /* found a pending sequence that matches this frame */ 18746 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18747 break; 18748 } 18749 if (!seq_dmabuf) { 18750 /* 18751 * This indicates first frame received for this sequence. 18752 * Queue the buffer on the vport's rcv_buffer_list. 18753 */ 18754 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18755 lpfc_update_rcv_time_stamp(vport); 18756 return dmabuf; 18757 } 18758 temp_hdr = seq_dmabuf->hbuf.virt; 18759 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18760 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18761 list_del_init(&seq_dmabuf->hbuf.list); 18762 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18763 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18764 lpfc_update_rcv_time_stamp(vport); 18765 return dmabuf; 18766 } 18767 /* move this sequence to the tail to indicate a young sequence */ 18768 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18769 seq_dmabuf->time_stamp = jiffies; 18770 lpfc_update_rcv_time_stamp(vport); 18771 if (list_empty(&seq_dmabuf->dbuf.list)) { 18772 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18773 return seq_dmabuf; 18774 } 18775 /* find the correct place in the sequence to insert this frame */ 18776 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18777 while (!found) { 18778 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18779 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18780 /* 18781 * If the frame's sequence count is greater than the frame on 18782 * the list then insert the frame right after this frame 18783 */ 18784 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18785 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18786 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18787 found = 1; 18788 break; 18789 } 18790 18791 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18792 break; 18793 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18794 } 18795 18796 if (found) 18797 return seq_dmabuf; 18798 return NULL; 18799 } 18800 18801 /** 18802 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18803 * @vport: pointer to a vitural port 18804 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18805 * 18806 * This function tries to abort from the partially assembed sequence, described 18807 * by the information from basic abbort @dmabuf. It checks to see whether such 18808 * partially assembled sequence held by the driver. If so, it shall free up all 18809 * the frames from the partially assembled sequence. 18810 * 18811 * Return 18812 * true -- if there is matching partially assembled sequence present and all 18813 * the frames freed with the sequence; 18814 * false -- if there is no matching partially assembled sequence present so 18815 * nothing got aborted in the lower layer driver 18816 **/ 18817 static bool 18818 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18819 struct hbq_dmabuf *dmabuf) 18820 { 18821 struct fc_frame_header *new_hdr; 18822 struct fc_frame_header *temp_hdr; 18823 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18824 struct hbq_dmabuf *seq_dmabuf = NULL; 18825 18826 /* Use the hdr_buf to find the sequence that matches this frame */ 18827 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18828 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18829 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18830 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18831 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18832 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18833 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18834 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18835 continue; 18836 /* found a pending sequence that matches this frame */ 18837 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18838 break; 18839 } 18840 18841 /* Free up all the frames from the partially assembled sequence */ 18842 if (seq_dmabuf) { 18843 list_for_each_entry_safe(d_buf, n_buf, 18844 &seq_dmabuf->dbuf.list, list) { 18845 list_del_init(&d_buf->list); 18846 lpfc_in_buf_free(vport->phba, d_buf); 18847 } 18848 return true; 18849 } 18850 return false; 18851 } 18852 18853 /** 18854 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18855 * @vport: pointer to a vitural port 18856 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18857 * 18858 * This function tries to abort from the assembed sequence from upper level 18859 * protocol, described by the information from basic abbort @dmabuf. It 18860 * checks to see whether such pending context exists at upper level protocol. 18861 * If so, it shall clean up the pending context. 18862 * 18863 * Return 18864 * true -- if there is matching pending context of the sequence cleaned 18865 * at ulp; 18866 * false -- if there is no matching pending context of the sequence present 18867 * at ulp. 18868 **/ 18869 static bool 18870 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18871 { 18872 struct lpfc_hba *phba = vport->phba; 18873 int handled; 18874 18875 /* Accepting abort at ulp with SLI4 only */ 18876 if (phba->sli_rev < LPFC_SLI_REV4) 18877 return false; 18878 18879 /* Register all caring upper level protocols to attend abort */ 18880 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18881 if (handled) 18882 return true; 18883 18884 return false; 18885 } 18886 18887 /** 18888 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18889 * @phba: Pointer to HBA context object. 18890 * @cmd_iocbq: pointer to the command iocbq structure. 18891 * @rsp_iocbq: pointer to the response iocbq structure. 18892 * 18893 * This function handles the sequence abort response iocb command complete 18894 * event. It properly releases the memory allocated to the sequence abort 18895 * accept iocb. 18896 **/ 18897 static void 18898 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18899 struct lpfc_iocbq *cmd_iocbq, 18900 struct lpfc_iocbq *rsp_iocbq) 18901 { 18902 if (cmd_iocbq) { 18903 lpfc_nlp_put(cmd_iocbq->ndlp); 18904 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18905 } 18906 18907 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18908 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18910 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18911 get_job_ulpstatus(phba, rsp_iocbq), 18912 get_job_word4(phba, rsp_iocbq)); 18913 } 18914 18915 /** 18916 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18917 * @phba: Pointer to HBA context object. 18918 * @xri: xri id in transaction. 18919 * 18920 * This function validates the xri maps to the known range of XRIs allocated an 18921 * used by the driver. 18922 **/ 18923 uint16_t 18924 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18925 uint16_t xri) 18926 { 18927 uint16_t i; 18928 18929 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18930 if (xri == phba->sli4_hba.xri_ids[i]) 18931 return i; 18932 } 18933 return NO_XRI; 18934 } 18935 18936 /** 18937 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18938 * @vport: pointer to a virtual port. 18939 * @fc_hdr: pointer to a FC frame header. 18940 * @aborted: was the partially assembled receive sequence successfully aborted 18941 * 18942 * This function sends a basic response to a previous unsol sequence abort 18943 * event after aborting the sequence handling. 18944 **/ 18945 void 18946 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18947 struct fc_frame_header *fc_hdr, bool aborted) 18948 { 18949 struct lpfc_hba *phba = vport->phba; 18950 struct lpfc_iocbq *ctiocb = NULL; 18951 struct lpfc_nodelist *ndlp; 18952 uint16_t oxid, rxid, xri, lxri; 18953 uint32_t sid, fctl; 18954 union lpfc_wqe128 *icmd; 18955 int rc; 18956 18957 if (!lpfc_is_link_up(phba)) 18958 return; 18959 18960 sid = sli4_sid_from_fc_hdr(fc_hdr); 18961 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18962 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18963 18964 ndlp = lpfc_findnode_did(vport, sid); 18965 if (!ndlp) { 18966 ndlp = lpfc_nlp_init(vport, sid); 18967 if (!ndlp) { 18968 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18969 "1268 Failed to allocate ndlp for " 18970 "oxid:x%x SID:x%x\n", oxid, sid); 18971 return; 18972 } 18973 /* Put ndlp onto vport node list */ 18974 lpfc_enqueue_node(vport, ndlp); 18975 } 18976 18977 /* Allocate buffer for rsp iocb */ 18978 ctiocb = lpfc_sli_get_iocbq(phba); 18979 if (!ctiocb) 18980 return; 18981 18982 icmd = &ctiocb->wqe; 18983 18984 /* Extract the F_CTL field from FC_HDR */ 18985 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18986 18987 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18988 if (!ctiocb->ndlp) { 18989 lpfc_sli_release_iocbq(phba, ctiocb); 18990 return; 18991 } 18992 18993 ctiocb->vport = vport; 18994 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18995 ctiocb->sli4_lxritag = NO_XRI; 18996 ctiocb->sli4_xritag = NO_XRI; 18997 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18998 18999 if (fctl & FC_FC_EX_CTX) 19000 /* Exchange responder sent the abort so we 19001 * own the oxid. 19002 */ 19003 xri = oxid; 19004 else 19005 xri = rxid; 19006 lxri = lpfc_sli4_xri_inrange(phba, xri); 19007 if (lxri != NO_XRI) 19008 lpfc_set_rrq_active(phba, ndlp, lxri, 19009 (xri == oxid) ? rxid : oxid, 0); 19010 /* For BA_ABTS from exchange responder, if the logical xri with 19011 * the oxid maps to the FCP XRI range, the port no longer has 19012 * that exchange context, send a BLS_RJT. Override the IOCB for 19013 * a BA_RJT. 19014 */ 19015 if ((fctl & FC_FC_EX_CTX) && 19016 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19017 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19018 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19019 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19020 FC_BA_RJT_INV_XID); 19021 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19022 FC_BA_RJT_UNABLE); 19023 } 19024 19025 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19026 * the driver no longer has that exchange, send a BLS_RJT. Override 19027 * the IOCB for a BA_RJT. 19028 */ 19029 if (aborted == false) { 19030 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19031 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19032 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19033 FC_BA_RJT_INV_XID); 19034 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19035 FC_BA_RJT_UNABLE); 19036 } 19037 19038 if (fctl & FC_FC_EX_CTX) { 19039 /* ABTS sent by responder to CT exchange, construction 19040 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19041 * field and RX_ID from ABTS for RX_ID field. 19042 */ 19043 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19044 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19045 } else { 19046 /* ABTS sent by initiator to CT exchange, construction 19047 * of BA_ACC will need to allocate a new XRI as for the 19048 * XRI_TAG field. 19049 */ 19050 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19051 } 19052 19053 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19054 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19055 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19056 19057 /* Use CT=VPI */ 19058 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19059 ndlp->nlp_DID); 19060 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19061 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19062 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19063 19064 /* Xmit CT abts response on exchange <xid> */ 19065 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19066 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19067 ctiocb->abort_rctl, oxid, phba->link_state); 19068 19069 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19070 if (rc == IOCB_ERROR) { 19071 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19072 "2925 Failed to issue CT ABTS RSP x%x on " 19073 "xri x%x, Data x%x\n", 19074 ctiocb->abort_rctl, oxid, 19075 phba->link_state); 19076 lpfc_nlp_put(ndlp); 19077 ctiocb->ndlp = NULL; 19078 lpfc_sli_release_iocbq(phba, ctiocb); 19079 } 19080 19081 /* if only usage of this nodelist is BLS response, release initial ref 19082 * to free ndlp when transmit completes 19083 */ 19084 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19085 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) && 19086 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19087 set_bit(NLP_DROPPED, &ndlp->nlp_flag); 19088 lpfc_nlp_put(ndlp); 19089 } 19090 } 19091 19092 /** 19093 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19094 * @vport: Pointer to the vport on which this sequence was received 19095 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19096 * 19097 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19098 * receive sequence is only partially assembed by the driver, it shall abort 19099 * the partially assembled frames for the sequence. Otherwise, if the 19100 * unsolicited receive sequence has been completely assembled and passed to 19101 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19102 * unsolicited sequence has been aborted. After that, it will issue a basic 19103 * accept to accept the abort. 19104 **/ 19105 static void 19106 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19107 struct hbq_dmabuf *dmabuf) 19108 { 19109 struct lpfc_hba *phba = vport->phba; 19110 struct fc_frame_header fc_hdr; 19111 uint32_t fctl; 19112 bool aborted; 19113 19114 /* Make a copy of fc_hdr before the dmabuf being released */ 19115 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19116 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19117 19118 if (fctl & FC_FC_EX_CTX) { 19119 /* ABTS by responder to exchange, no cleanup needed */ 19120 aborted = true; 19121 } else { 19122 /* ABTS by initiator to exchange, need to do cleanup */ 19123 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19124 if (aborted == false) 19125 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19126 } 19127 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19128 19129 if (phba->nvmet_support) { 19130 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19131 return; 19132 } 19133 19134 /* Respond with BA_ACC or BA_RJT accordingly */ 19135 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19136 } 19137 19138 /** 19139 * lpfc_seq_complete - Indicates if a sequence is complete 19140 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19141 * 19142 * This function checks the sequence, starting with the frame described by 19143 * @dmabuf, to see if all the frames associated with this sequence are present. 19144 * the frames associated with this sequence are linked to the @dmabuf using the 19145 * dbuf list. This function looks for two major things. 1) That the first frame 19146 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19147 * set. 3) That there are no holes in the sequence count. The function will 19148 * return 1 when the sequence is complete, otherwise it will return 0. 19149 **/ 19150 static int 19151 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19152 { 19153 struct fc_frame_header *hdr; 19154 struct lpfc_dmabuf *d_buf; 19155 struct hbq_dmabuf *seq_dmabuf; 19156 uint32_t fctl; 19157 int seq_count = 0; 19158 19159 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19160 /* make sure first fame of sequence has a sequence count of zero */ 19161 if (hdr->fh_seq_cnt != seq_count) 19162 return 0; 19163 fctl = (hdr->fh_f_ctl[0] << 16 | 19164 hdr->fh_f_ctl[1] << 8 | 19165 hdr->fh_f_ctl[2]); 19166 /* If last frame of sequence we can return success. */ 19167 if (fctl & FC_FC_END_SEQ) 19168 return 1; 19169 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19170 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19171 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19172 /* If there is a hole in the sequence count then fail. */ 19173 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19174 return 0; 19175 fctl = (hdr->fh_f_ctl[0] << 16 | 19176 hdr->fh_f_ctl[1] << 8 | 19177 hdr->fh_f_ctl[2]); 19178 /* If last frame of sequence we can return success. */ 19179 if (fctl & FC_FC_END_SEQ) 19180 return 1; 19181 } 19182 return 0; 19183 } 19184 19185 /** 19186 * lpfc_prep_seq - Prep sequence for ULP processing 19187 * @vport: Pointer to the vport on which this sequence was received 19188 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19189 * 19190 * This function takes a sequence, described by a list of frames, and creates 19191 * a list of iocbq structures to describe the sequence. This iocbq list will be 19192 * used to issue to the generic unsolicited sequence handler. This routine 19193 * returns a pointer to the first iocbq in the list. If the function is unable 19194 * to allocate an iocbq then it throw out the received frames that were not 19195 * able to be described and return a pointer to the first iocbq. If unable to 19196 * allocate any iocbqs (including the first) this function will return NULL. 19197 **/ 19198 static struct lpfc_iocbq * 19199 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19200 { 19201 struct hbq_dmabuf *hbq_buf; 19202 struct lpfc_dmabuf *d_buf, *n_buf; 19203 struct lpfc_iocbq *first_iocbq, *iocbq; 19204 struct fc_frame_header *fc_hdr; 19205 uint32_t sid; 19206 uint32_t len, tot_len; 19207 19208 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19209 /* remove from receive buffer list */ 19210 list_del_init(&seq_dmabuf->hbuf.list); 19211 lpfc_update_rcv_time_stamp(vport); 19212 /* get the Remote Port's SID */ 19213 sid = sli4_sid_from_fc_hdr(fc_hdr); 19214 tot_len = 0; 19215 /* Get an iocbq struct to fill in. */ 19216 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19217 if (first_iocbq) { 19218 /* Initialize the first IOCB. */ 19219 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19220 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19221 IOSTAT_SUCCESS); 19222 first_iocbq->vport = vport; 19223 19224 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19225 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19226 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19227 sli4_did_from_fc_hdr(fc_hdr)); 19228 } 19229 19230 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19231 NO_XRI); 19232 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19233 be16_to_cpu(fc_hdr->fh_ox_id)); 19234 19235 /* put the first buffer into the first iocb */ 19236 tot_len = bf_get(lpfc_rcqe_length, 19237 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19238 19239 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19240 first_iocbq->bpl_dmabuf = NULL; 19241 /* Keep track of the BDE count */ 19242 first_iocbq->wcqe_cmpl.word3 = 1; 19243 19244 if (tot_len > LPFC_DATA_BUF_SIZE) 19245 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19246 LPFC_DATA_BUF_SIZE; 19247 else 19248 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19249 19250 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19251 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19252 sid); 19253 } 19254 iocbq = first_iocbq; 19255 /* 19256 * Each IOCBq can have two Buffers assigned, so go through the list 19257 * of buffers for this sequence and save two buffers in each IOCBq 19258 */ 19259 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19260 if (!iocbq) { 19261 lpfc_in_buf_free(vport->phba, d_buf); 19262 continue; 19263 } 19264 if (!iocbq->bpl_dmabuf) { 19265 iocbq->bpl_dmabuf = d_buf; 19266 iocbq->wcqe_cmpl.word3++; 19267 /* We need to get the size out of the right CQE */ 19268 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19269 len = bf_get(lpfc_rcqe_length, 19270 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19271 iocbq->unsol_rcv_len = len; 19272 iocbq->wcqe_cmpl.total_data_placed += len; 19273 tot_len += len; 19274 } else { 19275 iocbq = lpfc_sli_get_iocbq(vport->phba); 19276 if (!iocbq) { 19277 if (first_iocbq) { 19278 bf_set(lpfc_wcqe_c_status, 19279 &first_iocbq->wcqe_cmpl, 19280 IOSTAT_SUCCESS); 19281 first_iocbq->wcqe_cmpl.parameter = 19282 IOERR_NO_RESOURCES; 19283 } 19284 lpfc_in_buf_free(vport->phba, d_buf); 19285 continue; 19286 } 19287 /* We need to get the size out of the right CQE */ 19288 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19289 len = bf_get(lpfc_rcqe_length, 19290 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19291 iocbq->cmd_dmabuf = d_buf; 19292 iocbq->bpl_dmabuf = NULL; 19293 iocbq->wcqe_cmpl.word3 = 1; 19294 19295 if (len > LPFC_DATA_BUF_SIZE) 19296 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19297 LPFC_DATA_BUF_SIZE; 19298 else 19299 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19300 len; 19301 19302 tot_len += len; 19303 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19304 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19305 sid); 19306 list_add_tail(&iocbq->list, &first_iocbq->list); 19307 } 19308 } 19309 /* Free the sequence's header buffer */ 19310 if (!first_iocbq) 19311 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19312 19313 return first_iocbq; 19314 } 19315 19316 static void 19317 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19318 struct hbq_dmabuf *seq_dmabuf) 19319 { 19320 struct fc_frame_header *fc_hdr; 19321 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19322 struct lpfc_hba *phba = vport->phba; 19323 19324 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19325 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19326 if (!iocbq) { 19327 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19328 "2707 Ring %d handler: Failed to allocate " 19329 "iocb Rctl x%x Type x%x received\n", 19330 LPFC_ELS_RING, 19331 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19332 return; 19333 } 19334 if (!lpfc_complete_unsol_iocb(phba, 19335 phba->sli4_hba.els_wq->pring, 19336 iocbq, fc_hdr->fh_r_ctl, 19337 fc_hdr->fh_type)) { 19338 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19339 "2540 Ring %d handler: unexpected Rctl " 19340 "x%x Type x%x received\n", 19341 LPFC_ELS_RING, 19342 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19343 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19344 } 19345 19346 /* Free iocb created in lpfc_prep_seq */ 19347 list_for_each_entry_safe(curr_iocb, next_iocb, 19348 &iocbq->list, list) { 19349 list_del_init(&curr_iocb->list); 19350 lpfc_sli_release_iocbq(phba, curr_iocb); 19351 } 19352 lpfc_sli_release_iocbq(phba, iocbq); 19353 } 19354 19355 static void 19356 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19357 struct lpfc_iocbq *rspiocb) 19358 { 19359 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19360 19361 if (pcmd && pcmd->virt) 19362 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19363 kfree(pcmd); 19364 lpfc_sli_release_iocbq(phba, cmdiocb); 19365 lpfc_drain_txq(phba); 19366 } 19367 19368 static void 19369 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19370 struct hbq_dmabuf *dmabuf) 19371 { 19372 struct fc_frame_header *fc_hdr; 19373 struct lpfc_hba *phba = vport->phba; 19374 struct lpfc_iocbq *iocbq = NULL; 19375 union lpfc_wqe128 *pwqe; 19376 struct lpfc_dmabuf *pcmd = NULL; 19377 uint32_t frame_len; 19378 int rc; 19379 unsigned long iflags; 19380 19381 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19382 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19383 19384 /* Send the received frame back */ 19385 iocbq = lpfc_sli_get_iocbq(phba); 19386 if (!iocbq) { 19387 /* Queue cq event and wakeup worker thread to process it */ 19388 spin_lock_irqsave(&phba->hbalock, iflags); 19389 list_add_tail(&dmabuf->cq_event.list, 19390 &phba->sli4_hba.sp_queue_event); 19391 spin_unlock_irqrestore(&phba->hbalock, iflags); 19392 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19393 lpfc_worker_wake_up(phba); 19394 return; 19395 } 19396 19397 /* Allocate buffer for command payload */ 19398 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19399 if (pcmd) 19400 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19401 &pcmd->phys); 19402 if (!pcmd || !pcmd->virt) 19403 goto exit; 19404 19405 INIT_LIST_HEAD(&pcmd->list); 19406 19407 /* copyin the payload */ 19408 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19409 19410 iocbq->cmd_dmabuf = pcmd; 19411 iocbq->vport = vport; 19412 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19413 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19414 iocbq->num_bdes = 0; 19415 19416 pwqe = &iocbq->wqe; 19417 /* fill in BDE's for command */ 19418 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19419 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19420 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19421 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19422 19423 pwqe->send_frame.frame_len = frame_len; 19424 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19425 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19426 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19427 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19428 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19429 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19430 19431 pwqe->generic.wqe_com.word7 = 0; 19432 pwqe->generic.wqe_com.word10 = 0; 19433 19434 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19435 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19436 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19437 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19438 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19439 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19440 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19441 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19442 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19443 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19444 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19445 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19446 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19447 19448 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19449 19450 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19451 if (rc == IOCB_ERROR) 19452 goto exit; 19453 19454 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19455 return; 19456 19457 exit: 19458 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19459 "2023 Unable to process MDS loopback frame\n"); 19460 if (pcmd && pcmd->virt) 19461 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19462 kfree(pcmd); 19463 if (iocbq) 19464 lpfc_sli_release_iocbq(phba, iocbq); 19465 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19466 } 19467 19468 /** 19469 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19470 * @phba: Pointer to HBA context object. 19471 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19472 * 19473 * This function is called with no lock held. This function processes all 19474 * the received buffers and gives it to upper layers when a received buffer 19475 * indicates that it is the final frame in the sequence. The interrupt 19476 * service routine processes received buffers at interrupt contexts. 19477 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19478 * appropriate receive function when the final frame in a sequence is received. 19479 **/ 19480 void 19481 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19482 struct hbq_dmabuf *dmabuf) 19483 { 19484 struct hbq_dmabuf *seq_dmabuf; 19485 struct fc_frame_header *fc_hdr; 19486 struct lpfc_vport *vport; 19487 uint32_t fcfi; 19488 uint32_t did; 19489 19490 /* Process each received buffer */ 19491 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19492 19493 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19494 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19495 vport = phba->pport; 19496 /* Handle MDS Loopback frames */ 19497 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19498 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19499 else 19500 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19501 return; 19502 } 19503 19504 /* check to see if this a valid type of frame */ 19505 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19506 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19507 return; 19508 } 19509 19510 if ((bf_get(lpfc_cqe_code, 19511 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19512 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19513 &dmabuf->cq_event.cqe.rcqe_cmpl); 19514 else 19515 fcfi = bf_get(lpfc_rcqe_fcf_id, 19516 &dmabuf->cq_event.cqe.rcqe_cmpl); 19517 19518 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19519 vport = phba->pport; 19520 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19521 "2023 MDS Loopback %d bytes\n", 19522 bf_get(lpfc_rcqe_length, 19523 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19524 /* Handle MDS Loopback frames */ 19525 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19526 return; 19527 } 19528 19529 /* d_id this frame is directed to */ 19530 did = sli4_did_from_fc_hdr(fc_hdr); 19531 19532 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19533 if (!vport) { 19534 /* throw out the frame */ 19535 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19536 return; 19537 } 19538 19539 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19540 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19541 (did != Fabric_DID)) { 19542 /* 19543 * Throw out the frame if we are not pt2pt. 19544 * The pt2pt protocol allows for discovery frames 19545 * to be received without a registered VPI. 19546 */ 19547 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19548 phba->link_state == LPFC_HBA_READY) { 19549 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19550 return; 19551 } 19552 } 19553 19554 /* Handle the basic abort sequence (BA_ABTS) event */ 19555 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19556 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19557 return; 19558 } 19559 19560 /* Link this frame */ 19561 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19562 if (!seq_dmabuf) { 19563 /* unable to add frame to vport - throw it out */ 19564 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19565 return; 19566 } 19567 /* If not last frame in sequence continue processing frames. */ 19568 if (!lpfc_seq_complete(seq_dmabuf)) 19569 return; 19570 19571 /* Send the complete sequence to the upper layer protocol */ 19572 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19573 } 19574 19575 /** 19576 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19577 * @phba: pointer to lpfc hba data structure. 19578 * 19579 * This routine is invoked to post rpi header templates to the 19580 * HBA consistent with the SLI-4 interface spec. This routine 19581 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19582 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19583 * 19584 * This routine does not require any locks. It's usage is expected 19585 * to be driver load or reset recovery when the driver is 19586 * sequential. 19587 * 19588 * Return codes 19589 * 0 - successful 19590 * -EIO - The mailbox failed to complete successfully. 19591 * When this error occurs, the driver is not guaranteed 19592 * to have any rpi regions posted to the device and 19593 * must either attempt to repost the regions or take a 19594 * fatal error. 19595 **/ 19596 int 19597 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19598 { 19599 struct lpfc_rpi_hdr *rpi_page; 19600 uint32_t rc = 0; 19601 uint16_t lrpi = 0; 19602 19603 /* SLI4 ports that support extents do not require RPI headers. */ 19604 if (!phba->sli4_hba.rpi_hdrs_in_use) 19605 goto exit; 19606 if (phba->sli4_hba.extents_in_use) 19607 return -EIO; 19608 19609 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19610 /* 19611 * Assign the rpi headers a physical rpi only if the driver 19612 * has not initialized those resources. A port reset only 19613 * needs the headers posted. 19614 */ 19615 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19616 LPFC_RPI_RSRC_RDY) 19617 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19618 19619 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19620 if (rc != MBX_SUCCESS) { 19621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19622 "2008 Error %d posting all rpi " 19623 "headers\n", rc); 19624 rc = -EIO; 19625 break; 19626 } 19627 } 19628 19629 exit: 19630 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19631 LPFC_RPI_RSRC_RDY); 19632 return rc; 19633 } 19634 19635 /** 19636 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19637 * @phba: pointer to lpfc hba data structure. 19638 * @rpi_page: pointer to the rpi memory region. 19639 * 19640 * This routine is invoked to post a single rpi header to the 19641 * HBA consistent with the SLI-4 interface spec. This memory region 19642 * maps up to 64 rpi context regions. 19643 * 19644 * Return codes 19645 * 0 - successful 19646 * -ENOMEM - No available memory 19647 * -EIO - The mailbox failed to complete successfully. 19648 **/ 19649 int 19650 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19651 { 19652 LPFC_MBOXQ_t *mboxq; 19653 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19654 uint32_t rc = 0; 19655 uint32_t shdr_status, shdr_add_status; 19656 union lpfc_sli4_cfg_shdr *shdr; 19657 19658 /* SLI4 ports that support extents do not require RPI headers. */ 19659 if (!phba->sli4_hba.rpi_hdrs_in_use) 19660 return rc; 19661 if (phba->sli4_hba.extents_in_use) 19662 return -EIO; 19663 19664 /* The port is notified of the header region via a mailbox command. */ 19665 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19666 if (!mboxq) { 19667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19668 "2001 Unable to allocate memory for issuing " 19669 "SLI_CONFIG_SPECIAL mailbox command\n"); 19670 return -ENOMEM; 19671 } 19672 19673 /* Post all rpi memory regions to the port. */ 19674 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19675 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19676 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19677 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19678 sizeof(struct lpfc_sli4_cfg_mhdr), 19679 LPFC_SLI4_MBX_EMBED); 19680 19681 19682 /* Post the physical rpi to the port for this rpi header. */ 19683 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19684 rpi_page->start_rpi); 19685 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19686 hdr_tmpl, rpi_page->page_count); 19687 19688 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19689 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19690 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19691 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19692 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19693 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19694 mempool_free(mboxq, phba->mbox_mem_pool); 19695 if (shdr_status || shdr_add_status || rc) { 19696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19697 "2514 POST_RPI_HDR mailbox failed with " 19698 "status x%x add_status x%x, mbx status x%x\n", 19699 shdr_status, shdr_add_status, rc); 19700 rc = -ENXIO; 19701 } else { 19702 /* 19703 * The next_rpi stores the next logical module-64 rpi value used 19704 * to post physical rpis in subsequent rpi postings. 19705 */ 19706 spin_lock_irq(&phba->hbalock); 19707 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19708 spin_unlock_irq(&phba->hbalock); 19709 } 19710 return rc; 19711 } 19712 19713 /** 19714 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19715 * @phba: pointer to lpfc hba data structure. 19716 * 19717 * This routine is invoked to post rpi header templates to the 19718 * HBA consistent with the SLI-4 interface spec. This routine 19719 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19720 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19721 * 19722 * Returns 19723 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19724 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19725 **/ 19726 int 19727 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19728 { 19729 unsigned long rpi; 19730 uint16_t max_rpi, rpi_limit; 19731 uint16_t rpi_remaining, lrpi = 0; 19732 struct lpfc_rpi_hdr *rpi_hdr; 19733 unsigned long iflag; 19734 19735 /* 19736 * Fetch the next logical rpi. Because this index is logical, 19737 * the driver starts at 0 each time. 19738 */ 19739 spin_lock_irqsave(&phba->hbalock, iflag); 19740 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19741 rpi_limit = phba->sli4_hba.next_rpi; 19742 19743 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19744 if (rpi >= rpi_limit) 19745 rpi = LPFC_RPI_ALLOC_ERROR; 19746 else { 19747 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19748 phba->sli4_hba.max_cfg_param.rpi_used++; 19749 phba->sli4_hba.rpi_count++; 19750 } 19751 lpfc_printf_log(phba, KERN_INFO, 19752 LOG_NODE | LOG_DISCOVERY, 19753 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19754 (int) rpi, max_rpi, rpi_limit); 19755 19756 /* 19757 * Don't try to allocate more rpi header regions if the device limit 19758 * has been exhausted. 19759 */ 19760 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19761 (phba->sli4_hba.rpi_count >= max_rpi)) { 19762 spin_unlock_irqrestore(&phba->hbalock, iflag); 19763 return rpi; 19764 } 19765 19766 /* 19767 * RPI header postings are not required for SLI4 ports capable of 19768 * extents. 19769 */ 19770 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19771 spin_unlock_irqrestore(&phba->hbalock, iflag); 19772 return rpi; 19773 } 19774 19775 /* 19776 * If the driver is running low on rpi resources, allocate another 19777 * page now. Note that the next_rpi value is used because 19778 * it represents how many are actually in use whereas max_rpi notes 19779 * how many are supported max by the device. 19780 */ 19781 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19782 spin_unlock_irqrestore(&phba->hbalock, iflag); 19783 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19784 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19785 if (!rpi_hdr) { 19786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19787 "2002 Error Could not grow rpi " 19788 "count\n"); 19789 } else { 19790 lrpi = rpi_hdr->start_rpi; 19791 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19792 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19793 } 19794 } 19795 19796 return rpi; 19797 } 19798 19799 /** 19800 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19801 * @phba: pointer to lpfc hba data structure. 19802 * @rpi: rpi to free 19803 * 19804 * This routine is invoked to release an rpi to the pool of 19805 * available rpis maintained by the driver. 19806 **/ 19807 static void 19808 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19809 { 19810 /* 19811 * if the rpi value indicates a prior unreg has already 19812 * been done, skip the unreg. 19813 */ 19814 if (rpi == LPFC_RPI_ALLOC_ERROR) 19815 return; 19816 19817 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19818 phba->sli4_hba.rpi_count--; 19819 phba->sli4_hba.max_cfg_param.rpi_used--; 19820 } else { 19821 lpfc_printf_log(phba, KERN_INFO, 19822 LOG_NODE | LOG_DISCOVERY, 19823 "2016 rpi %x not inuse\n", 19824 rpi); 19825 } 19826 } 19827 19828 /** 19829 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19830 * @phba: pointer to lpfc hba data structure. 19831 * @rpi: rpi to free 19832 * 19833 * This routine is invoked to release an rpi to the pool of 19834 * available rpis maintained by the driver. 19835 **/ 19836 void 19837 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19838 { 19839 spin_lock_irq(&phba->hbalock); 19840 __lpfc_sli4_free_rpi(phba, rpi); 19841 spin_unlock_irq(&phba->hbalock); 19842 } 19843 19844 /** 19845 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19846 * @phba: pointer to lpfc hba data structure. 19847 * 19848 * This routine is invoked to remove the memory region that 19849 * provided rpi via a bitmask. 19850 **/ 19851 void 19852 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19853 { 19854 kfree(phba->sli4_hba.rpi_bmask); 19855 kfree(phba->sli4_hba.rpi_ids); 19856 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19857 } 19858 19859 /** 19860 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19861 * @ndlp: pointer to lpfc nodelist data structure. 19862 * @cmpl: completion call-back. 19863 * @iocbq: data to load as mbox ctx_u information 19864 * 19865 * This routine is invoked to remove the memory region that 19866 * provided rpi via a bitmask. 19867 **/ 19868 int 19869 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19870 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19871 struct lpfc_iocbq *iocbq) 19872 { 19873 LPFC_MBOXQ_t *mboxq; 19874 struct lpfc_hba *phba = ndlp->phba; 19875 int rc; 19876 19877 /* The port is notified of the header region via a mailbox command. */ 19878 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19879 if (!mboxq) 19880 return -ENOMEM; 19881 19882 /* If cmpl assigned, then this nlp_get pairs with 19883 * lpfc_mbx_cmpl_resume_rpi. 19884 * 19885 * Else cmpl is NULL, then this nlp_get pairs with 19886 * lpfc_sli_def_mbox_cmpl. 19887 */ 19888 if (!lpfc_nlp_get(ndlp)) { 19889 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19890 "2122 %s: Failed to get nlp ref\n", 19891 __func__); 19892 mempool_free(mboxq, phba->mbox_mem_pool); 19893 return -EIO; 19894 } 19895 19896 /* Post all rpi memory regions to the port. */ 19897 lpfc_resume_rpi(mboxq, ndlp); 19898 if (cmpl) { 19899 mboxq->mbox_cmpl = cmpl; 19900 mboxq->ctx_u.save_iocb = iocbq; 19901 } else 19902 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19903 mboxq->ctx_ndlp = ndlp; 19904 mboxq->vport = ndlp->vport; 19905 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19906 if (rc == MBX_NOT_FINISHED) { 19907 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19908 "2010 Resume RPI Mailbox failed " 19909 "status %d, mbxStatus x%x\n", rc, 19910 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19911 lpfc_nlp_put(ndlp); 19912 mempool_free(mboxq, phba->mbox_mem_pool); 19913 return -EIO; 19914 } 19915 return 0; 19916 } 19917 19918 /** 19919 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19920 * @vport: Pointer to the vport for which the vpi is being initialized 19921 * 19922 * This routine is invoked to activate a vpi with the port. 19923 * 19924 * Returns: 19925 * 0 success 19926 * -Evalue otherwise 19927 **/ 19928 int 19929 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19930 { 19931 LPFC_MBOXQ_t *mboxq; 19932 int rc = 0; 19933 int retval = MBX_SUCCESS; 19934 uint32_t mbox_tmo; 19935 struct lpfc_hba *phba = vport->phba; 19936 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19937 if (!mboxq) 19938 return -ENOMEM; 19939 lpfc_init_vpi(phba, mboxq, vport->vpi); 19940 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19941 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19942 if (rc != MBX_SUCCESS) { 19943 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19944 "2022 INIT VPI Mailbox failed " 19945 "status %d, mbxStatus x%x\n", rc, 19946 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19947 retval = -EIO; 19948 } 19949 if (rc != MBX_TIMEOUT) 19950 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19951 19952 return retval; 19953 } 19954 19955 /** 19956 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19957 * @phba: pointer to lpfc hba data structure. 19958 * @mboxq: Pointer to mailbox object. 19959 * 19960 * This routine is invoked to manually add a single FCF record. The caller 19961 * must pass a completely initialized FCF_Record. This routine takes 19962 * care of the nonembedded mailbox operations. 19963 **/ 19964 static void 19965 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19966 { 19967 void *virt_addr; 19968 union lpfc_sli4_cfg_shdr *shdr; 19969 uint32_t shdr_status, shdr_add_status; 19970 19971 virt_addr = mboxq->sge_array->addr[0]; 19972 /* The IOCTL status is embedded in the mailbox subheader. */ 19973 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19974 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19975 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19976 19977 if ((shdr_status || shdr_add_status) && 19978 (shdr_status != STATUS_FCF_IN_USE)) 19979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19980 "2558 ADD_FCF_RECORD mailbox failed with " 19981 "status x%x add_status x%x\n", 19982 shdr_status, shdr_add_status); 19983 19984 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19985 } 19986 19987 /** 19988 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19989 * @phba: pointer to lpfc hba data structure. 19990 * @fcf_record: pointer to the initialized fcf record to add. 19991 * 19992 * This routine is invoked to manually add a single FCF record. The caller 19993 * must pass a completely initialized FCF_Record. This routine takes 19994 * care of the nonembedded mailbox operations. 19995 **/ 19996 int 19997 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19998 { 19999 int rc = 0; 20000 LPFC_MBOXQ_t *mboxq; 20001 uint8_t *bytep; 20002 void *virt_addr; 20003 struct lpfc_mbx_sge sge; 20004 uint32_t alloc_len, req_len; 20005 uint32_t fcfindex; 20006 20007 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20008 if (!mboxq) { 20009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20010 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20011 return -ENOMEM; 20012 } 20013 20014 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20015 sizeof(uint32_t); 20016 20017 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20018 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20019 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20020 req_len, LPFC_SLI4_MBX_NEMBED); 20021 if (alloc_len < req_len) { 20022 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20023 "2523 Allocated DMA memory size (x%x) is " 20024 "less than the requested DMA memory " 20025 "size (x%x)\n", alloc_len, req_len); 20026 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20027 return -ENOMEM; 20028 } 20029 20030 /* 20031 * Get the first SGE entry from the non-embedded DMA memory. This 20032 * routine only uses a single SGE. 20033 */ 20034 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20035 virt_addr = mboxq->sge_array->addr[0]; 20036 /* 20037 * Configure the FCF record for FCFI 0. This is the driver's 20038 * hardcoded default and gets used in nonFIP mode. 20039 */ 20040 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20041 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20042 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20043 20044 /* 20045 * Copy the fcf_index and the FCF Record Data. The data starts after 20046 * the FCoE header plus word10. The data copy needs to be endian 20047 * correct. 20048 */ 20049 bytep += sizeof(uint32_t); 20050 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20051 mboxq->vport = phba->pport; 20052 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20053 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20054 if (rc == MBX_NOT_FINISHED) { 20055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20056 "2515 ADD_FCF_RECORD mailbox failed with " 20057 "status 0x%x\n", rc); 20058 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20059 rc = -EIO; 20060 } else 20061 rc = 0; 20062 20063 return rc; 20064 } 20065 20066 /** 20067 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20068 * @phba: pointer to lpfc hba data structure. 20069 * @fcf_record: pointer to the fcf record to write the default data. 20070 * @fcf_index: FCF table entry index. 20071 * 20072 * This routine is invoked to build the driver's default FCF record. The 20073 * values used are hardcoded. This routine handles memory initialization. 20074 * 20075 **/ 20076 void 20077 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20078 struct fcf_record *fcf_record, 20079 uint16_t fcf_index) 20080 { 20081 memset(fcf_record, 0, sizeof(struct fcf_record)); 20082 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20083 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20084 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20085 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20086 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20087 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20088 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20089 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20090 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20091 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20092 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20093 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20094 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20095 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20096 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20097 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20098 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20099 /* Set the VLAN bit map */ 20100 if (phba->valid_vlan) { 20101 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20102 = 1 << (phba->vlan_id % 8); 20103 } 20104 } 20105 20106 /** 20107 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20108 * @phba: pointer to lpfc hba data structure. 20109 * @fcf_index: FCF table entry offset. 20110 * 20111 * This routine is invoked to scan the entire FCF table by reading FCF 20112 * record and processing it one at a time starting from the @fcf_index 20113 * for initial FCF discovery or fast FCF failover rediscovery. 20114 * 20115 * Return 0 if the mailbox command is submitted successfully, none 0 20116 * otherwise. 20117 **/ 20118 int 20119 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20120 { 20121 int rc = 0, error; 20122 LPFC_MBOXQ_t *mboxq; 20123 20124 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20125 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20126 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20127 if (!mboxq) { 20128 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20129 "2000 Failed to allocate mbox for " 20130 "READ_FCF cmd\n"); 20131 error = -ENOMEM; 20132 goto fail_fcf_scan; 20133 } 20134 /* Construct the read FCF record mailbox command */ 20135 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20136 if (rc) { 20137 error = -EINVAL; 20138 goto fail_fcf_scan; 20139 } 20140 /* Issue the mailbox command asynchronously */ 20141 mboxq->vport = phba->pport; 20142 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20143 20144 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20145 20146 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20147 if (rc == MBX_NOT_FINISHED) 20148 error = -EIO; 20149 else { 20150 /* Reset eligible FCF count for new scan */ 20151 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20152 phba->fcf.eligible_fcf_cnt = 0; 20153 error = 0; 20154 } 20155 fail_fcf_scan: 20156 if (error) { 20157 if (mboxq) 20158 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20159 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20160 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20161 } 20162 return error; 20163 } 20164 20165 /** 20166 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20167 * @phba: pointer to lpfc hba data structure. 20168 * @fcf_index: FCF table entry offset. 20169 * 20170 * This routine is invoked to read an FCF record indicated by @fcf_index 20171 * and to use it for FLOGI roundrobin FCF failover. 20172 * 20173 * Return 0 if the mailbox command is submitted successfully, none 0 20174 * otherwise. 20175 **/ 20176 int 20177 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20178 { 20179 int rc = 0, error; 20180 LPFC_MBOXQ_t *mboxq; 20181 20182 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20183 if (!mboxq) { 20184 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20185 "2763 Failed to allocate mbox for " 20186 "READ_FCF cmd\n"); 20187 error = -ENOMEM; 20188 goto fail_fcf_read; 20189 } 20190 /* Construct the read FCF record mailbox command */ 20191 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20192 if (rc) { 20193 error = -EINVAL; 20194 goto fail_fcf_read; 20195 } 20196 /* Issue the mailbox command asynchronously */ 20197 mboxq->vport = phba->pport; 20198 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20199 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20200 if (rc == MBX_NOT_FINISHED) 20201 error = -EIO; 20202 else 20203 error = 0; 20204 20205 fail_fcf_read: 20206 if (error && mboxq) 20207 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20208 return error; 20209 } 20210 20211 /** 20212 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20213 * @phba: pointer to lpfc hba data structure. 20214 * @fcf_index: FCF table entry offset. 20215 * 20216 * This routine is invoked to read an FCF record indicated by @fcf_index to 20217 * determine whether it's eligible for FLOGI roundrobin failover list. 20218 * 20219 * Return 0 if the mailbox command is submitted successfully, none 0 20220 * otherwise. 20221 **/ 20222 int 20223 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20224 { 20225 int rc = 0, error; 20226 LPFC_MBOXQ_t *mboxq; 20227 20228 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20229 if (!mboxq) { 20230 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20231 "2758 Failed to allocate mbox for " 20232 "READ_FCF cmd\n"); 20233 error = -ENOMEM; 20234 goto fail_fcf_read; 20235 } 20236 /* Construct the read FCF record mailbox command */ 20237 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20238 if (rc) { 20239 error = -EINVAL; 20240 goto fail_fcf_read; 20241 } 20242 /* Issue the mailbox command asynchronously */ 20243 mboxq->vport = phba->pport; 20244 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20245 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20246 if (rc == MBX_NOT_FINISHED) 20247 error = -EIO; 20248 else 20249 error = 0; 20250 20251 fail_fcf_read: 20252 if (error && mboxq) 20253 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20254 return error; 20255 } 20256 20257 /** 20258 * lpfc_check_next_fcf_pri_level 20259 * @phba: pointer to the lpfc_hba struct for this port. 20260 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20261 * routine when the rr_bmask is empty. The FCF indecies are put into the 20262 * rr_bmask based on their priority level. Starting from the highest priority 20263 * to the lowest. The most likely FCF candidate will be in the highest 20264 * priority group. When this routine is called it searches the fcf_pri list for 20265 * next lowest priority group and repopulates the rr_bmask with only those 20266 * fcf_indexes. 20267 * returns: 20268 * 1=success 0=failure 20269 **/ 20270 static int 20271 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20272 { 20273 uint16_t next_fcf_pri; 20274 uint16_t last_index; 20275 struct lpfc_fcf_pri *fcf_pri; 20276 int rc; 20277 int ret = 0; 20278 20279 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20280 LPFC_SLI4_FCF_TBL_INDX_MAX); 20281 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20282 "3060 Last IDX %d\n", last_index); 20283 20284 /* Verify the priority list has 2 or more entries */ 20285 spin_lock_irq(&phba->hbalock); 20286 if (list_empty(&phba->fcf.fcf_pri_list) || 20287 list_is_singular(&phba->fcf.fcf_pri_list)) { 20288 spin_unlock_irq(&phba->hbalock); 20289 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20290 "3061 Last IDX %d\n", last_index); 20291 return 0; /* Empty rr list */ 20292 } 20293 spin_unlock_irq(&phba->hbalock); 20294 20295 next_fcf_pri = 0; 20296 /* 20297 * Clear the rr_bmask and set all of the bits that are at this 20298 * priority. 20299 */ 20300 memset(phba->fcf.fcf_rr_bmask, 0, 20301 sizeof(*phba->fcf.fcf_rr_bmask)); 20302 spin_lock_irq(&phba->hbalock); 20303 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20304 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20305 continue; 20306 /* 20307 * the 1st priority that has not FLOGI failed 20308 * will be the highest. 20309 */ 20310 if (!next_fcf_pri) 20311 next_fcf_pri = fcf_pri->fcf_rec.priority; 20312 spin_unlock_irq(&phba->hbalock); 20313 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20314 rc = lpfc_sli4_fcf_rr_index_set(phba, 20315 fcf_pri->fcf_rec.fcf_index); 20316 if (rc) 20317 return 0; 20318 } 20319 spin_lock_irq(&phba->hbalock); 20320 } 20321 /* 20322 * if next_fcf_pri was not set above and the list is not empty then 20323 * we have failed flogis on all of them. So reset flogi failed 20324 * and start at the beginning. 20325 */ 20326 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20327 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20328 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20329 /* 20330 * the 1st priority that has not FLOGI failed 20331 * will be the highest. 20332 */ 20333 if (!next_fcf_pri) 20334 next_fcf_pri = fcf_pri->fcf_rec.priority; 20335 spin_unlock_irq(&phba->hbalock); 20336 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20337 rc = lpfc_sli4_fcf_rr_index_set(phba, 20338 fcf_pri->fcf_rec.fcf_index); 20339 if (rc) 20340 return 0; 20341 } 20342 spin_lock_irq(&phba->hbalock); 20343 } 20344 } else 20345 ret = 1; 20346 spin_unlock_irq(&phba->hbalock); 20347 20348 return ret; 20349 } 20350 /** 20351 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20352 * @phba: pointer to lpfc hba data structure. 20353 * 20354 * This routine is to get the next eligible FCF record index in a round 20355 * robin fashion. If the next eligible FCF record index equals to the 20356 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20357 * shall be returned, otherwise, the next eligible FCF record's index 20358 * shall be returned. 20359 **/ 20360 uint16_t 20361 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20362 { 20363 uint16_t next_fcf_index; 20364 20365 initial_priority: 20366 /* Search start from next bit of currently registered FCF index */ 20367 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20368 20369 next_priority: 20370 /* Determine the next fcf index to check */ 20371 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20372 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20373 LPFC_SLI4_FCF_TBL_INDX_MAX, 20374 next_fcf_index); 20375 20376 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20377 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20378 /* 20379 * If we have wrapped then we need to clear the bits that 20380 * have been tested so that we can detect when we should 20381 * change the priority level. 20382 */ 20383 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20384 LPFC_SLI4_FCF_TBL_INDX_MAX); 20385 } 20386 20387 20388 /* Check roundrobin failover list empty condition */ 20389 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20390 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20391 /* 20392 * If next fcf index is not found check if there are lower 20393 * Priority level fcf's in the fcf_priority list. 20394 * Set up the rr_bmask with all of the avaiable fcf bits 20395 * at that level and continue the selection process. 20396 */ 20397 if (lpfc_check_next_fcf_pri_level(phba)) 20398 goto initial_priority; 20399 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20400 "2844 No roundrobin failover FCF available\n"); 20401 20402 return LPFC_FCOE_FCF_NEXT_NONE; 20403 } 20404 20405 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20406 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20407 LPFC_FCF_FLOGI_FAILED) { 20408 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20409 return LPFC_FCOE_FCF_NEXT_NONE; 20410 20411 goto next_priority; 20412 } 20413 20414 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20415 "2845 Get next roundrobin failover FCF (x%x)\n", 20416 next_fcf_index); 20417 20418 return next_fcf_index; 20419 } 20420 20421 /** 20422 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20423 * @phba: pointer to lpfc hba data structure. 20424 * @fcf_index: index into the FCF table to 'set' 20425 * 20426 * This routine sets the FCF record index in to the eligible bmask for 20427 * roundrobin failover search. It checks to make sure that the index 20428 * does not go beyond the range of the driver allocated bmask dimension 20429 * before setting the bit. 20430 * 20431 * Returns 0 if the index bit successfully set, otherwise, it returns 20432 * -EINVAL. 20433 **/ 20434 int 20435 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20436 { 20437 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20438 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20439 "2610 FCF (x%x) reached driver's book " 20440 "keeping dimension:x%x\n", 20441 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20442 return -EINVAL; 20443 } 20444 /* Set the eligible FCF record index bmask */ 20445 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20446 20447 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20448 "2790 Set FCF (x%x) to roundrobin FCF failover " 20449 "bmask\n", fcf_index); 20450 20451 return 0; 20452 } 20453 20454 /** 20455 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20456 * @phba: pointer to lpfc hba data structure. 20457 * @fcf_index: index into the FCF table to 'clear' 20458 * 20459 * This routine clears the FCF record index from the eligible bmask for 20460 * roundrobin failover search. It checks to make sure that the index 20461 * does not go beyond the range of the driver allocated bmask dimension 20462 * before clearing the bit. 20463 **/ 20464 void 20465 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20466 { 20467 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20468 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20469 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20470 "2762 FCF (x%x) reached driver's book " 20471 "keeping dimension:x%x\n", 20472 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20473 return; 20474 } 20475 /* Clear the eligible FCF record index bmask */ 20476 spin_lock_irq(&phba->hbalock); 20477 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20478 list) { 20479 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20480 list_del_init(&fcf_pri->list); 20481 break; 20482 } 20483 } 20484 spin_unlock_irq(&phba->hbalock); 20485 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20486 20487 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20488 "2791 Clear FCF (x%x) from roundrobin failover " 20489 "bmask\n", fcf_index); 20490 } 20491 20492 /** 20493 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20494 * @phba: pointer to lpfc hba data structure. 20495 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20496 * 20497 * This routine is the completion routine for the rediscover FCF table mailbox 20498 * command. If the mailbox command returned failure, it will try to stop the 20499 * FCF rediscover wait timer. 20500 **/ 20501 static void 20502 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20503 { 20504 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20505 uint32_t shdr_status, shdr_add_status; 20506 20507 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20508 20509 shdr_status = bf_get(lpfc_mbox_hdr_status, 20510 &redisc_fcf->header.cfg_shdr.response); 20511 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20512 &redisc_fcf->header.cfg_shdr.response); 20513 if (shdr_status || shdr_add_status) { 20514 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20515 "2746 Requesting for FCF rediscovery failed " 20516 "status x%x add_status x%x\n", 20517 shdr_status, shdr_add_status); 20518 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20519 spin_lock_irq(&phba->hbalock); 20520 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20521 spin_unlock_irq(&phba->hbalock); 20522 /* 20523 * CVL event triggered FCF rediscover request failed, 20524 * last resort to re-try current registered FCF entry. 20525 */ 20526 lpfc_retry_pport_discovery(phba); 20527 } else { 20528 spin_lock_irq(&phba->hbalock); 20529 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20530 spin_unlock_irq(&phba->hbalock); 20531 /* 20532 * DEAD FCF event triggered FCF rediscover request 20533 * failed, last resort to fail over as a link down 20534 * to FCF registration. 20535 */ 20536 lpfc_sli4_fcf_dead_failthrough(phba); 20537 } 20538 } else { 20539 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20540 "2775 Start FCF rediscover quiescent timer\n"); 20541 /* 20542 * Start FCF rediscovery wait timer for pending FCF 20543 * before rescan FCF record table. 20544 */ 20545 lpfc_fcf_redisc_wait_start_timer(phba); 20546 } 20547 20548 mempool_free(mbox, phba->mbox_mem_pool); 20549 } 20550 20551 /** 20552 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20553 * @phba: pointer to lpfc hba data structure. 20554 * 20555 * This routine is invoked to request for rediscovery of the entire FCF table 20556 * by the port. 20557 **/ 20558 int 20559 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20560 { 20561 LPFC_MBOXQ_t *mbox; 20562 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20563 int rc, length; 20564 20565 /* Cancel retry delay timers to all vports before FCF rediscover */ 20566 lpfc_cancel_all_vport_retry_delay_timer(phba); 20567 20568 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20569 if (!mbox) { 20570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20571 "2745 Failed to allocate mbox for " 20572 "requesting FCF rediscover.\n"); 20573 return -ENOMEM; 20574 } 20575 20576 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20577 sizeof(struct lpfc_sli4_cfg_mhdr)); 20578 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20579 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20580 length, LPFC_SLI4_MBX_EMBED); 20581 20582 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20583 /* Set count to 0 for invalidating the entire FCF database */ 20584 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20585 20586 /* Issue the mailbox command asynchronously */ 20587 mbox->vport = phba->pport; 20588 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20589 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20590 20591 if (rc == MBX_NOT_FINISHED) { 20592 mempool_free(mbox, phba->mbox_mem_pool); 20593 return -EIO; 20594 } 20595 return 0; 20596 } 20597 20598 /** 20599 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20600 * @phba: pointer to lpfc hba data structure. 20601 * 20602 * This function is the failover routine as a last resort to the FCF DEAD 20603 * event when driver failed to perform fast FCF failover. 20604 **/ 20605 void 20606 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20607 { 20608 uint32_t link_state; 20609 20610 /* 20611 * Last resort as FCF DEAD event failover will treat this as 20612 * a link down, but save the link state because we don't want 20613 * it to be changed to Link Down unless it is already down. 20614 */ 20615 link_state = phba->link_state; 20616 lpfc_linkdown(phba); 20617 phba->link_state = link_state; 20618 20619 /* Unregister FCF if no devices connected to it */ 20620 lpfc_unregister_unused_fcf(phba); 20621 } 20622 20623 /** 20624 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20625 * @phba: pointer to lpfc hba data structure. 20626 * @rgn23_data: pointer to configure region 23 data. 20627 * 20628 * This function gets SLI3 port configure region 23 data through memory dump 20629 * mailbox command. When it successfully retrieves data, the size of the data 20630 * will be returned, otherwise, 0 will be returned. 20631 **/ 20632 static uint32_t 20633 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20634 { 20635 LPFC_MBOXQ_t *pmb = NULL; 20636 MAILBOX_t *mb; 20637 uint32_t offset = 0; 20638 int rc; 20639 20640 if (!rgn23_data) 20641 return 0; 20642 20643 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20644 if (!pmb) { 20645 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20646 "2600 failed to allocate mailbox memory\n"); 20647 return 0; 20648 } 20649 mb = &pmb->u.mb; 20650 20651 do { 20652 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20653 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20654 20655 if (rc != MBX_SUCCESS) { 20656 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20657 "2601 failed to read config " 20658 "region 23, rc 0x%x Status 0x%x\n", 20659 rc, mb->mbxStatus); 20660 mb->un.varDmp.word_cnt = 0; 20661 } 20662 /* 20663 * dump mem may return a zero when finished or we got a 20664 * mailbox error, either way we are done. 20665 */ 20666 if (mb->un.varDmp.word_cnt == 0) 20667 break; 20668 20669 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20670 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20671 20672 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20673 rgn23_data + offset, 20674 mb->un.varDmp.word_cnt); 20675 offset += mb->un.varDmp.word_cnt; 20676 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20677 20678 mempool_free(pmb, phba->mbox_mem_pool); 20679 return offset; 20680 } 20681 20682 /** 20683 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20684 * @phba: pointer to lpfc hba data structure. 20685 * @rgn23_data: pointer to configure region 23 data. 20686 * 20687 * This function gets SLI4 port configure region 23 data through memory dump 20688 * mailbox command. When it successfully retrieves data, the size of the data 20689 * will be returned, otherwise, 0 will be returned. 20690 **/ 20691 static uint32_t 20692 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20693 { 20694 LPFC_MBOXQ_t *mboxq = NULL; 20695 struct lpfc_dmabuf *mp = NULL; 20696 struct lpfc_mqe *mqe; 20697 uint32_t data_length = 0; 20698 int rc; 20699 20700 if (!rgn23_data) 20701 return 0; 20702 20703 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20704 if (!mboxq) { 20705 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20706 "3105 failed to allocate mailbox memory\n"); 20707 return 0; 20708 } 20709 20710 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20711 goto out; 20712 mqe = &mboxq->u.mqe; 20713 mp = mboxq->ctx_buf; 20714 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20715 if (rc) 20716 goto out; 20717 data_length = mqe->un.mb_words[5]; 20718 if (data_length == 0) 20719 goto out; 20720 if (data_length > DMP_RGN23_SIZE) { 20721 data_length = 0; 20722 goto out; 20723 } 20724 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20725 out: 20726 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20727 return data_length; 20728 } 20729 20730 /** 20731 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20732 * @phba: pointer to lpfc hba data structure. 20733 * 20734 * This function read region 23 and parse TLV for port status to 20735 * decide if the user disaled the port. If the TLV indicates the 20736 * port is disabled, the hba_flag is set accordingly. 20737 **/ 20738 void 20739 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20740 { 20741 uint8_t *rgn23_data = NULL; 20742 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20743 uint32_t offset = 0; 20744 20745 /* Get adapter Region 23 data */ 20746 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20747 if (!rgn23_data) 20748 goto out; 20749 20750 if (phba->sli_rev < LPFC_SLI_REV4) 20751 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20752 else { 20753 if_type = bf_get(lpfc_sli_intf_if_type, 20754 &phba->sli4_hba.sli_intf); 20755 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20756 goto out; 20757 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20758 } 20759 20760 if (!data_size) 20761 goto out; 20762 20763 /* Check the region signature first */ 20764 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20766 "2619 Config region 23 has bad signature\n"); 20767 goto out; 20768 } 20769 offset += 4; 20770 20771 /* Check the data structure version */ 20772 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20773 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20774 "2620 Config region 23 has bad version\n"); 20775 goto out; 20776 } 20777 offset += 4; 20778 20779 /* Parse TLV entries in the region */ 20780 while (offset < data_size) { 20781 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20782 break; 20783 /* 20784 * If the TLV is not driver specific TLV or driver id is 20785 * not linux driver id, skip the record. 20786 */ 20787 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20788 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20789 (rgn23_data[offset + 3] != 0)) { 20790 offset += rgn23_data[offset + 1] * 4 + 4; 20791 continue; 20792 } 20793 20794 /* Driver found a driver specific TLV in the config region */ 20795 sub_tlv_len = rgn23_data[offset + 1] * 4; 20796 offset += 4; 20797 tlv_offset = 0; 20798 20799 /* 20800 * Search for configured port state sub-TLV. 20801 */ 20802 while ((offset < data_size) && 20803 (tlv_offset < sub_tlv_len)) { 20804 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20805 offset += 4; 20806 tlv_offset += 4; 20807 break; 20808 } 20809 if (rgn23_data[offset] != PORT_STE_TYPE) { 20810 offset += rgn23_data[offset + 1] * 4 + 4; 20811 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20812 continue; 20813 } 20814 20815 /* This HBA contains PORT_STE configured */ 20816 if (!rgn23_data[offset + 2]) 20817 set_bit(LINK_DISABLED, &phba->hba_flag); 20818 20819 goto out; 20820 } 20821 } 20822 20823 out: 20824 kfree(rgn23_data); 20825 return; 20826 } 20827 20828 /** 20829 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20830 * @phba: pointer to lpfc hba data structure 20831 * @shdr_status: wr_object rsp's status field 20832 * @shdr_add_status: wr_object rsp's add_status field 20833 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20834 * @shdr_change_status: wr_object rsp's change_status field 20835 * @shdr_csf: wr_object rsp's csf bit 20836 * 20837 * This routine is intended to be called after a firmware write completes. 20838 * It will log next action items to be performed by the user to instantiate 20839 * the newly downloaded firmware or reason for incompatibility. 20840 **/ 20841 static void 20842 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20843 u32 shdr_add_status, u32 shdr_add_status_2, 20844 u32 shdr_change_status, u32 shdr_csf) 20845 { 20846 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20847 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20848 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20849 "change_status x%02x, csf %01x\n", __func__, 20850 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20851 shdr_status, shdr_add_status, shdr_add_status_2, 20852 shdr_change_status, shdr_csf); 20853 20854 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20855 switch (shdr_add_status_2) { 20856 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20857 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20858 "4199 Firmware write failed: " 20859 "image incompatible with flash x%02x\n", 20860 phba->sli4_hba.flash_id); 20861 break; 20862 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20863 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20864 "4200 Firmware write failed: " 20865 "image incompatible with ASIC " 20866 "architecture x%02x\n", 20867 phba->sli4_hba.asic_rev); 20868 break; 20869 default: 20870 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20871 "4210 Firmware write failed: " 20872 "add_status_2 x%02x\n", 20873 shdr_add_status_2); 20874 break; 20875 } 20876 } else if (!shdr_status && !shdr_add_status) { 20877 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20878 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20879 if (shdr_csf) 20880 shdr_change_status = 20881 LPFC_CHANGE_STATUS_PCI_RESET; 20882 } 20883 20884 switch (shdr_change_status) { 20885 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20886 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20887 "3198 Firmware write complete: System " 20888 "reboot required to instantiate\n"); 20889 break; 20890 case (LPFC_CHANGE_STATUS_FW_RESET): 20891 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20892 "3199 Firmware write complete: " 20893 "Firmware reset required to " 20894 "instantiate\n"); 20895 break; 20896 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20897 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20898 "3200 Firmware write complete: Port " 20899 "Migration or PCI Reset required to " 20900 "instantiate\n"); 20901 break; 20902 case (LPFC_CHANGE_STATUS_PCI_RESET): 20903 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20904 "3201 Firmware write complete: PCI " 20905 "Reset required to instantiate\n"); 20906 break; 20907 default: 20908 break; 20909 } 20910 } 20911 } 20912 20913 /** 20914 * lpfc_wr_object - write an object to the firmware 20915 * @phba: HBA structure that indicates port to create a queue on. 20916 * @dmabuf_list: list of dmabufs to write to the port. 20917 * @size: the total byte value of the objects to write to the port. 20918 * @offset: the current offset to be used to start the transfer. 20919 * 20920 * This routine will create a wr_object mailbox command to send to the port. 20921 * the mailbox command will be constructed using the dma buffers described in 20922 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20923 * BDEs that the imbedded mailbox can support. The @offset variable will be 20924 * used to indicate the starting offset of the transfer and will also return 20925 * the offset after the write object mailbox has completed. @size is used to 20926 * determine the end of the object and whether the eof bit should be set. 20927 * 20928 * Return 0 is successful and offset will contain the new offset to use 20929 * for the next write. 20930 * Return negative value for error cases. 20931 **/ 20932 int 20933 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20934 uint32_t size, uint32_t *offset) 20935 { 20936 struct lpfc_mbx_wr_object *wr_object; 20937 LPFC_MBOXQ_t *mbox; 20938 int rc = 0, i = 0; 20939 int mbox_status = 0; 20940 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20941 uint32_t shdr_change_status = 0, shdr_csf = 0; 20942 uint32_t mbox_tmo; 20943 struct lpfc_dmabuf *dmabuf; 20944 uint32_t written = 0; 20945 bool check_change_status = false; 20946 20947 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20948 if (!mbox) 20949 return -ENOMEM; 20950 20951 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20952 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20953 sizeof(struct lpfc_mbx_wr_object) - 20954 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20955 20956 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20957 wr_object->u.request.write_offset = *offset; 20958 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20959 wr_object->u.request.object_name[0] = 20960 cpu_to_le32(wr_object->u.request.object_name[0]); 20961 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20962 list_for_each_entry(dmabuf, dmabuf_list, list) { 20963 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20964 break; 20965 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20966 wr_object->u.request.bde[i].addrHigh = 20967 putPaddrHigh(dmabuf->phys); 20968 if (written + SLI4_PAGE_SIZE >= size) { 20969 wr_object->u.request.bde[i].tus.f.bdeSize = 20970 (size - written); 20971 written += (size - written); 20972 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20973 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20974 check_change_status = true; 20975 } else { 20976 wr_object->u.request.bde[i].tus.f.bdeSize = 20977 SLI4_PAGE_SIZE; 20978 written += SLI4_PAGE_SIZE; 20979 } 20980 i++; 20981 } 20982 wr_object->u.request.bde_count = i; 20983 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20984 if (!phba->sli4_hba.intr_enable) 20985 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20986 else { 20987 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20988 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20989 } 20990 20991 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20992 rc = mbox_status; 20993 20994 /* The IOCTL status is embedded in the mailbox subheader. */ 20995 shdr_status = bf_get(lpfc_mbox_hdr_status, 20996 &wr_object->header.cfg_shdr.response); 20997 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20998 &wr_object->header.cfg_shdr.response); 20999 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 21000 &wr_object->header.cfg_shdr.response); 21001 if (check_change_status) { 21002 shdr_change_status = bf_get(lpfc_wr_object_change_status, 21003 &wr_object->u.response); 21004 shdr_csf = bf_get(lpfc_wr_object_csf, 21005 &wr_object->u.response); 21006 } 21007 21008 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21010 "3025 Write Object mailbox failed with " 21011 "status x%x add_status x%x, add_status_2 x%x, " 21012 "mbx status x%x\n", 21013 shdr_status, shdr_add_status, shdr_add_status_2, 21014 rc); 21015 rc = -ENXIO; 21016 *offset = shdr_add_status; 21017 } else { 21018 *offset += wr_object->u.response.actual_write_length; 21019 } 21020 21021 if (rc || check_change_status) 21022 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21023 shdr_add_status_2, shdr_change_status, 21024 shdr_csf); 21025 21026 if (!phba->sli4_hba.intr_enable) 21027 mempool_free(mbox, phba->mbox_mem_pool); 21028 else if (mbox_status != MBX_TIMEOUT) 21029 mempool_free(mbox, phba->mbox_mem_pool); 21030 21031 return rc; 21032 } 21033 21034 /** 21035 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21036 * @vport: pointer to vport data structure. 21037 * 21038 * This function iterate through the mailboxq and clean up all REG_LOGIN 21039 * and REG_VPI mailbox commands associated with the vport. This function 21040 * is called when driver want to restart discovery of the vport due to 21041 * a Clear Virtual Link event. 21042 **/ 21043 void 21044 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21045 { 21046 struct lpfc_hba *phba = vport->phba; 21047 LPFC_MBOXQ_t *mb, *nextmb; 21048 struct lpfc_nodelist *ndlp; 21049 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21050 LIST_HEAD(mbox_cmd_list); 21051 uint8_t restart_loop; 21052 21053 /* Clean up internally queued mailbox commands with the vport */ 21054 spin_lock_irq(&phba->hbalock); 21055 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21056 if (mb->vport != vport) 21057 continue; 21058 21059 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21060 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21061 continue; 21062 21063 list_move_tail(&mb->list, &mbox_cmd_list); 21064 } 21065 /* Clean up active mailbox command with the vport */ 21066 mb = phba->sli.mbox_active; 21067 if (mb && (mb->vport == vport)) { 21068 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21069 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21070 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21071 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21072 act_mbx_ndlp = mb->ctx_ndlp; 21073 21074 /* This reference is local to this routine. The 21075 * reference is removed at routine exit. 21076 */ 21077 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21078 21079 /* Unregister the RPI when mailbox complete */ 21080 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21081 } 21082 } 21083 /* Cleanup any mailbox completions which are not yet processed */ 21084 do { 21085 restart_loop = 0; 21086 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21087 /* 21088 * If this mailox is already processed or it is 21089 * for another vport ignore it. 21090 */ 21091 if ((mb->vport != vport) || 21092 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21093 continue; 21094 21095 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21096 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21097 continue; 21098 21099 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21100 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21101 ndlp = mb->ctx_ndlp; 21102 /* Unregister the RPI when mailbox complete */ 21103 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21104 restart_loop = 1; 21105 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21106 break; 21107 } 21108 } 21109 } while (restart_loop); 21110 21111 spin_unlock_irq(&phba->hbalock); 21112 21113 /* Release the cleaned-up mailbox commands */ 21114 while (!list_empty(&mbox_cmd_list)) { 21115 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21116 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21117 ndlp = mb->ctx_ndlp; 21118 mb->ctx_ndlp = NULL; 21119 if (ndlp) { 21120 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21121 lpfc_nlp_put(ndlp); 21122 } 21123 } 21124 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21125 } 21126 21127 /* Release the ndlp with the cleaned-up active mailbox command */ 21128 if (act_mbx_ndlp) { 21129 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag); 21130 lpfc_nlp_put(act_mbx_ndlp); 21131 } 21132 } 21133 21134 /** 21135 * lpfc_drain_txq - Drain the txq 21136 * @phba: Pointer to HBA context object. 21137 * 21138 * This function attempt to submit IOCBs on the txq 21139 * to the adapter. For SLI4 adapters, the txq contains 21140 * ELS IOCBs that have been deferred because the there 21141 * are no SGLs. This congestion can occur with large 21142 * vport counts during node discovery. 21143 **/ 21144 21145 uint32_t 21146 lpfc_drain_txq(struct lpfc_hba *phba) 21147 { 21148 LIST_HEAD(completions); 21149 struct lpfc_sli_ring *pring; 21150 struct lpfc_iocbq *piocbq = NULL; 21151 unsigned long iflags = 0; 21152 char *fail_msg = NULL; 21153 uint32_t txq_cnt = 0; 21154 struct lpfc_queue *wq; 21155 int ret = 0; 21156 21157 if (phba->link_flag & LS_MDS_LOOPBACK) { 21158 /* MDS WQE are posted only to first WQ*/ 21159 wq = phba->sli4_hba.hdwq[0].io_wq; 21160 if (unlikely(!wq)) 21161 return 0; 21162 pring = wq->pring; 21163 } else { 21164 wq = phba->sli4_hba.els_wq; 21165 if (unlikely(!wq)) 21166 return 0; 21167 pring = lpfc_phba_elsring(phba); 21168 } 21169 21170 if (unlikely(!pring) || list_empty(&pring->txq)) 21171 return 0; 21172 21173 spin_lock_irqsave(&pring->ring_lock, iflags); 21174 list_for_each_entry(piocbq, &pring->txq, list) { 21175 txq_cnt++; 21176 } 21177 21178 if (txq_cnt > pring->txq_max) 21179 pring->txq_max = txq_cnt; 21180 21181 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21182 21183 while (!list_empty(&pring->txq)) { 21184 spin_lock_irqsave(&pring->ring_lock, iflags); 21185 21186 piocbq = lpfc_sli_ringtx_get(phba, pring); 21187 if (!piocbq) { 21188 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21190 "2823 txq empty and txq_cnt is %d\n", 21191 txq_cnt); 21192 break; 21193 } 21194 txq_cnt--; 21195 21196 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21197 21198 if (ret && ret != IOCB_BUSY) { 21199 fail_msg = " - Cannot send IO "; 21200 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21201 } 21202 if (fail_msg) { 21203 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21204 /* Failed means we can't issue and need to cancel */ 21205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21206 "2822 IOCB failed %s iotag 0x%x " 21207 "xri 0x%x %d flg x%x\n", 21208 fail_msg, piocbq->iotag, 21209 piocbq->sli4_xritag, ret, 21210 piocbq->cmd_flag); 21211 list_add_tail(&piocbq->list, &completions); 21212 fail_msg = NULL; 21213 } 21214 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21215 if (txq_cnt == 0 || ret == IOCB_BUSY) 21216 break; 21217 } 21218 /* Cancel all the IOCBs that cannot be issued */ 21219 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21220 IOERR_SLI_ABORTED); 21221 21222 return txq_cnt; 21223 } 21224 21225 /** 21226 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21227 * @phba: Pointer to HBA context object. 21228 * @pwqeq: Pointer to command WQE. 21229 * @sglq: Pointer to the scatter gather queue object. 21230 * 21231 * This routine converts the bpl or bde that is in the WQE 21232 * to a sgl list for the sli4 hardware. The physical address 21233 * of the bpl/bde is converted back to a virtual address. 21234 * If the WQE contains a BPL then the list of BDE's is 21235 * converted to sli4_sge's. If the WQE contains a single 21236 * BDE then it is converted to a single sli_sge. 21237 * The WQE is still in cpu endianness so the contents of 21238 * the bpl can be used without byte swapping. 21239 * 21240 * Returns valid XRI = Success, NO_XRI = Failure. 21241 */ 21242 static uint16_t 21243 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21244 struct lpfc_sglq *sglq) 21245 { 21246 uint16_t xritag = NO_XRI; 21247 struct ulp_bde64 *bpl = NULL; 21248 struct ulp_bde64 bde; 21249 struct sli4_sge *sgl = NULL; 21250 struct lpfc_dmabuf *dmabuf; 21251 union lpfc_wqe128 *wqe; 21252 int numBdes = 0; 21253 int i = 0; 21254 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21255 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21256 uint32_t cmd; 21257 21258 if (!pwqeq || !sglq) 21259 return xritag; 21260 21261 sgl = (struct sli4_sge *)sglq->sgl; 21262 wqe = &pwqeq->wqe; 21263 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21264 21265 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21266 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21267 return sglq->sli4_xritag; 21268 numBdes = pwqeq->num_bdes; 21269 if (numBdes) { 21270 /* The addrHigh and addrLow fields within the WQE 21271 * have not been byteswapped yet so there is no 21272 * need to swap them back. 21273 */ 21274 if (pwqeq->bpl_dmabuf) 21275 dmabuf = pwqeq->bpl_dmabuf; 21276 else 21277 return xritag; 21278 21279 bpl = (struct ulp_bde64 *)dmabuf->virt; 21280 if (!bpl) 21281 return xritag; 21282 21283 for (i = 0; i < numBdes; i++) { 21284 /* Should already be byte swapped. */ 21285 sgl->addr_hi = bpl->addrHigh; 21286 sgl->addr_lo = bpl->addrLow; 21287 21288 sgl->word2 = le32_to_cpu(sgl->word2); 21289 if ((i+1) == numBdes) 21290 bf_set(lpfc_sli4_sge_last, sgl, 1); 21291 else 21292 bf_set(lpfc_sli4_sge_last, sgl, 0); 21293 /* swap the size field back to the cpu so we 21294 * can assign it to the sgl. 21295 */ 21296 bde.tus.w = le32_to_cpu(bpl->tus.w); 21297 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21298 /* The offsets in the sgl need to be accumulated 21299 * separately for the request and reply lists. 21300 * The request is always first, the reply follows. 21301 */ 21302 switch (cmd) { 21303 case CMD_GEN_REQUEST64_WQE: 21304 /* add up the reply sg entries */ 21305 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21306 inbound++; 21307 /* first inbound? reset the offset */ 21308 if (inbound == 1) 21309 offset = 0; 21310 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21311 bf_set(lpfc_sli4_sge_type, sgl, 21312 LPFC_SGE_TYPE_DATA); 21313 offset += bde.tus.f.bdeSize; 21314 break; 21315 case CMD_FCP_TRSP64_WQE: 21316 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21317 bf_set(lpfc_sli4_sge_type, sgl, 21318 LPFC_SGE_TYPE_DATA); 21319 break; 21320 case CMD_FCP_TSEND64_WQE: 21321 case CMD_FCP_TRECEIVE64_WQE: 21322 bf_set(lpfc_sli4_sge_type, sgl, 21323 bpl->tus.f.bdeFlags); 21324 if (i < 3) 21325 offset = 0; 21326 else 21327 offset += bde.tus.f.bdeSize; 21328 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21329 break; 21330 } 21331 sgl->word2 = cpu_to_le32(sgl->word2); 21332 bpl++; 21333 sgl++; 21334 } 21335 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21336 /* The addrHigh and addrLow fields of the BDE have not 21337 * been byteswapped yet so they need to be swapped 21338 * before putting them in the sgl. 21339 */ 21340 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21341 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21342 sgl->word2 = le32_to_cpu(sgl->word2); 21343 bf_set(lpfc_sli4_sge_last, sgl, 1); 21344 sgl->word2 = cpu_to_le32(sgl->word2); 21345 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21346 } 21347 return sglq->sli4_xritag; 21348 } 21349 21350 /** 21351 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21352 * @phba: Pointer to HBA context object. 21353 * @qp: Pointer to HDW queue. 21354 * @pwqe: Pointer to command WQE. 21355 **/ 21356 int 21357 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21358 struct lpfc_iocbq *pwqe) 21359 { 21360 union lpfc_wqe128 *wqe = &pwqe->wqe; 21361 struct lpfc_async_xchg_ctx *ctxp; 21362 struct lpfc_queue *wq; 21363 struct lpfc_sglq *sglq; 21364 struct lpfc_sli_ring *pring; 21365 unsigned long iflags; 21366 uint32_t ret = 0; 21367 21368 /* NVME_LS and NVME_LS ABTS requests. */ 21369 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21370 pring = phba->sli4_hba.nvmels_wq->pring; 21371 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21372 qp, wq_access); 21373 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21374 if (!sglq) { 21375 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21376 return WQE_BUSY; 21377 } 21378 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21379 pwqe->sli4_xritag = sglq->sli4_xritag; 21380 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21381 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21382 return WQE_ERROR; 21383 } 21384 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21385 pwqe->sli4_xritag); 21386 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21387 if (ret) { 21388 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21389 return ret; 21390 } 21391 21392 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21393 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21394 21395 lpfc_sli4_poll_eq(qp->hba_eq); 21396 return 0; 21397 } 21398 21399 /* NVME_FCREQ and NVME_ABTS requests */ 21400 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21401 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21402 wq = qp->io_wq; 21403 pring = wq->pring; 21404 21405 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21406 21407 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21408 qp, wq_access); 21409 ret = lpfc_sli4_wq_put(wq, wqe); 21410 if (ret) { 21411 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21412 return ret; 21413 } 21414 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21415 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21416 21417 lpfc_sli4_poll_eq(qp->hba_eq); 21418 return 0; 21419 } 21420 21421 /* NVMET requests */ 21422 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21423 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21424 wq = qp->io_wq; 21425 pring = wq->pring; 21426 21427 ctxp = pwqe->context_un.axchg; 21428 sglq = ctxp->ctxbuf->sglq; 21429 if (pwqe->sli4_xritag == NO_XRI) { 21430 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21431 pwqe->sli4_xritag = sglq->sli4_xritag; 21432 } 21433 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21434 pwqe->sli4_xritag); 21435 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21436 21437 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21438 qp, wq_access); 21439 ret = lpfc_sli4_wq_put(wq, wqe); 21440 if (ret) { 21441 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21442 return ret; 21443 } 21444 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21445 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21446 21447 lpfc_sli4_poll_eq(qp->hba_eq); 21448 return 0; 21449 } 21450 return WQE_ERROR; 21451 } 21452 21453 /** 21454 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21455 * @phba: Pointer to HBA context object. 21456 * @cmdiocb: Pointer to driver command iocb object. 21457 * @cmpl: completion function. 21458 * 21459 * Fill the appropriate fields for the abort WQE and call 21460 * internal routine lpfc_sli4_issue_wqe to send the WQE 21461 * This function is called with hbalock held and no ring_lock held. 21462 * 21463 * RETURNS 0 - SUCCESS 21464 **/ 21465 21466 int 21467 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21468 void *cmpl) 21469 { 21470 struct lpfc_vport *vport = cmdiocb->vport; 21471 struct lpfc_iocbq *abtsiocb = NULL; 21472 union lpfc_wqe128 *abtswqe; 21473 struct lpfc_io_buf *lpfc_cmd; 21474 int retval = IOCB_ERROR; 21475 u16 xritag = cmdiocb->sli4_xritag; 21476 21477 /* 21478 * The scsi command can not be in txq and it is in flight because the 21479 * pCmd is still pointing at the SCSI command we have to abort. There 21480 * is no need to search the txcmplq. Just send an abort to the FW. 21481 */ 21482 21483 abtsiocb = __lpfc_sli_get_iocbq(phba); 21484 if (!abtsiocb) 21485 return WQE_NORESOURCE; 21486 21487 /* Indicate the IO is being aborted by the driver. */ 21488 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21489 21490 abtswqe = &abtsiocb->wqe; 21491 memset(abtswqe, 0, sizeof(*abtswqe)); 21492 21493 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21494 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21495 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21496 abtswqe->abort_cmd.rsrvd5 = 0; 21497 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21498 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21499 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21500 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21501 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21502 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21503 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21504 21505 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21506 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21507 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21508 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21509 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21510 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21511 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21512 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21513 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21514 abtsiocb->vport = vport; 21515 abtsiocb->cmd_cmpl = cmpl; 21516 21517 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21518 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21519 21520 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21521 "0359 Abort xri x%x, original iotag x%x, " 21522 "abort cmd iotag x%x retval x%x\n", 21523 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21524 21525 if (retval) { 21526 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21527 __lpfc_sli_release_iocbq(phba, abtsiocb); 21528 } 21529 21530 return retval; 21531 } 21532 21533 #ifdef LPFC_MXP_STAT 21534 /** 21535 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21536 * @phba: pointer to lpfc hba data structure. 21537 * @hwqid: belong to which HWQ. 21538 * 21539 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21540 * 15 seconds after a test case is running. 21541 * 21542 * The user should call lpfc_debugfs_multixripools_write before running a test 21543 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21544 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21545 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21546 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21547 **/ 21548 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21549 { 21550 struct lpfc_sli4_hdw_queue *qp; 21551 struct lpfc_multixri_pool *multixri_pool; 21552 struct lpfc_pvt_pool *pvt_pool; 21553 struct lpfc_pbl_pool *pbl_pool; 21554 u32 txcmplq_cnt; 21555 21556 qp = &phba->sli4_hba.hdwq[hwqid]; 21557 multixri_pool = qp->p_multixri_pool; 21558 if (!multixri_pool) 21559 return; 21560 21561 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21562 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21563 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21564 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21565 21566 multixri_pool->stat_pbl_count = pbl_pool->count; 21567 multixri_pool->stat_pvt_count = pvt_pool->count; 21568 multixri_pool->stat_busy_count = txcmplq_cnt; 21569 } 21570 21571 multixri_pool->stat_snapshot_taken++; 21572 } 21573 #endif 21574 21575 /** 21576 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21577 * @phba: pointer to lpfc hba data structure. 21578 * @hwqid: belong to which HWQ. 21579 * 21580 * This routine moves some XRIs from private to public pool when private pool 21581 * is not busy. 21582 **/ 21583 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21584 { 21585 struct lpfc_multixri_pool *multixri_pool; 21586 u32 io_req_count; 21587 u32 prev_io_req_count; 21588 21589 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21590 if (!multixri_pool) 21591 return; 21592 io_req_count = multixri_pool->io_req_count; 21593 prev_io_req_count = multixri_pool->prev_io_req_count; 21594 21595 if (prev_io_req_count != io_req_count) { 21596 /* Private pool is busy */ 21597 multixri_pool->prev_io_req_count = io_req_count; 21598 } else { 21599 /* Private pool is not busy. 21600 * Move XRIs from private to public pool. 21601 */ 21602 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21603 } 21604 } 21605 21606 /** 21607 * lpfc_adjust_high_watermark - Adjust high watermark 21608 * @phba: pointer to lpfc hba data structure. 21609 * @hwqid: belong to which HWQ. 21610 * 21611 * This routine sets high watermark as number of outstanding XRIs, 21612 * but make sure the new value is between xri_limit/2 and xri_limit. 21613 **/ 21614 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21615 { 21616 u32 new_watermark; 21617 u32 watermark_max; 21618 u32 watermark_min; 21619 u32 xri_limit; 21620 u32 txcmplq_cnt; 21621 u32 abts_io_bufs; 21622 struct lpfc_multixri_pool *multixri_pool; 21623 struct lpfc_sli4_hdw_queue *qp; 21624 21625 qp = &phba->sli4_hba.hdwq[hwqid]; 21626 multixri_pool = qp->p_multixri_pool; 21627 if (!multixri_pool) 21628 return; 21629 xri_limit = multixri_pool->xri_limit; 21630 21631 watermark_max = xri_limit; 21632 watermark_min = xri_limit / 2; 21633 21634 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21635 abts_io_bufs = qp->abts_scsi_io_bufs; 21636 abts_io_bufs += qp->abts_nvme_io_bufs; 21637 21638 new_watermark = txcmplq_cnt + abts_io_bufs; 21639 new_watermark = min(watermark_max, new_watermark); 21640 new_watermark = max(watermark_min, new_watermark); 21641 multixri_pool->pvt_pool.high_watermark = new_watermark; 21642 21643 #ifdef LPFC_MXP_STAT 21644 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21645 new_watermark); 21646 #endif 21647 } 21648 21649 /** 21650 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21651 * @phba: pointer to lpfc hba data structure. 21652 * @hwqid: belong to which HWQ. 21653 * 21654 * This routine is called from hearbeat timer when pvt_pool is idle. 21655 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21656 * The first step moves (all - low_watermark) amount of XRIs. 21657 * The second step moves the rest of XRIs. 21658 **/ 21659 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21660 { 21661 struct lpfc_pbl_pool *pbl_pool; 21662 struct lpfc_pvt_pool *pvt_pool; 21663 struct lpfc_sli4_hdw_queue *qp; 21664 struct lpfc_io_buf *lpfc_ncmd; 21665 struct lpfc_io_buf *lpfc_ncmd_next; 21666 unsigned long iflag; 21667 struct list_head tmp_list; 21668 u32 tmp_count; 21669 21670 qp = &phba->sli4_hba.hdwq[hwqid]; 21671 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21672 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21673 tmp_count = 0; 21674 21675 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21676 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21677 21678 if (pvt_pool->count > pvt_pool->low_watermark) { 21679 /* Step 1: move (all - low_watermark) from pvt_pool 21680 * to pbl_pool 21681 */ 21682 21683 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21684 INIT_LIST_HEAD(&tmp_list); 21685 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21686 &pvt_pool->list, list) { 21687 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21688 tmp_count++; 21689 if (tmp_count >= pvt_pool->low_watermark) 21690 break; 21691 } 21692 21693 /* Move all bufs from pvt_pool to pbl_pool */ 21694 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21695 21696 /* Move all bufs from tmp_list to pvt_pool */ 21697 list_splice(&tmp_list, &pvt_pool->list); 21698 21699 pbl_pool->count += (pvt_pool->count - tmp_count); 21700 pvt_pool->count = tmp_count; 21701 } else { 21702 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21703 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21704 pbl_pool->count += pvt_pool->count; 21705 pvt_pool->count = 0; 21706 } 21707 21708 spin_unlock(&pvt_pool->lock); 21709 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21710 } 21711 21712 /** 21713 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21714 * @phba: pointer to lpfc hba data structure 21715 * @qp: pointer to HDW queue 21716 * @pbl_pool: specified public free XRI pool 21717 * @pvt_pool: specified private free XRI pool 21718 * @count: number of XRIs to move 21719 * 21720 * This routine tries to move some free common bufs from the specified pbl_pool 21721 * to the specified pvt_pool. It might move less than count XRIs if there's not 21722 * enough in public pool. 21723 * 21724 * Return: 21725 * true - if XRIs are successfully moved from the specified pbl_pool to the 21726 * specified pvt_pool 21727 * false - if the specified pbl_pool is empty or locked by someone else 21728 **/ 21729 static bool 21730 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21731 struct lpfc_pbl_pool *pbl_pool, 21732 struct lpfc_pvt_pool *pvt_pool, u32 count) 21733 { 21734 struct lpfc_io_buf *lpfc_ncmd; 21735 struct lpfc_io_buf *lpfc_ncmd_next; 21736 unsigned long iflag; 21737 int ret; 21738 21739 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21740 if (ret) { 21741 if (pbl_pool->count) { 21742 /* Move a batch of XRIs from public to private pool */ 21743 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21744 list_for_each_entry_safe(lpfc_ncmd, 21745 lpfc_ncmd_next, 21746 &pbl_pool->list, 21747 list) { 21748 list_move_tail(&lpfc_ncmd->list, 21749 &pvt_pool->list); 21750 pvt_pool->count++; 21751 pbl_pool->count--; 21752 count--; 21753 if (count == 0) 21754 break; 21755 } 21756 21757 spin_unlock(&pvt_pool->lock); 21758 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21759 return true; 21760 } 21761 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21762 } 21763 21764 return false; 21765 } 21766 21767 /** 21768 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21769 * @phba: pointer to lpfc hba data structure. 21770 * @hwqid: belong to which HWQ. 21771 * @count: number of XRIs to move 21772 * 21773 * This routine tries to find some free common bufs in one of public pools with 21774 * Round Robin method. The search always starts from local hwqid, then the next 21775 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21776 * a batch of free common bufs are moved to private pool on hwqid. 21777 * It might move less than count XRIs if there's not enough in public pool. 21778 **/ 21779 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21780 { 21781 struct lpfc_multixri_pool *multixri_pool; 21782 struct lpfc_multixri_pool *next_multixri_pool; 21783 struct lpfc_pvt_pool *pvt_pool; 21784 struct lpfc_pbl_pool *pbl_pool; 21785 struct lpfc_sli4_hdw_queue *qp; 21786 u32 next_hwqid; 21787 u32 hwq_count; 21788 int ret; 21789 21790 qp = &phba->sli4_hba.hdwq[hwqid]; 21791 multixri_pool = qp->p_multixri_pool; 21792 pvt_pool = &multixri_pool->pvt_pool; 21793 pbl_pool = &multixri_pool->pbl_pool; 21794 21795 /* Check if local pbl_pool is available */ 21796 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21797 if (ret) { 21798 #ifdef LPFC_MXP_STAT 21799 multixri_pool->local_pbl_hit_count++; 21800 #endif 21801 return; 21802 } 21803 21804 hwq_count = phba->cfg_hdw_queue; 21805 21806 /* Get the next hwqid which was found last time */ 21807 next_hwqid = multixri_pool->rrb_next_hwqid; 21808 21809 do { 21810 /* Go to next hwq */ 21811 next_hwqid = (next_hwqid + 1) % hwq_count; 21812 21813 next_multixri_pool = 21814 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21815 pbl_pool = &next_multixri_pool->pbl_pool; 21816 21817 /* Check if the public free xri pool is available */ 21818 ret = _lpfc_move_xri_pbl_to_pvt( 21819 phba, qp, pbl_pool, pvt_pool, count); 21820 21821 /* Exit while-loop if success or all hwqid are checked */ 21822 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21823 21824 /* Starting point for the next time */ 21825 multixri_pool->rrb_next_hwqid = next_hwqid; 21826 21827 if (!ret) { 21828 /* stats: all public pools are empty*/ 21829 multixri_pool->pbl_empty_count++; 21830 } 21831 21832 #ifdef LPFC_MXP_STAT 21833 if (ret) { 21834 if (next_hwqid == hwqid) 21835 multixri_pool->local_pbl_hit_count++; 21836 else 21837 multixri_pool->other_pbl_hit_count++; 21838 } 21839 #endif 21840 } 21841 21842 /** 21843 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21844 * @phba: pointer to lpfc hba data structure. 21845 * @hwqid: belong to which HWQ. 21846 * 21847 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21848 * low watermark. 21849 **/ 21850 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21851 { 21852 struct lpfc_multixri_pool *multixri_pool; 21853 struct lpfc_pvt_pool *pvt_pool; 21854 21855 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21856 pvt_pool = &multixri_pool->pvt_pool; 21857 21858 if (pvt_pool->count < pvt_pool->low_watermark) 21859 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21860 } 21861 21862 /** 21863 * lpfc_release_io_buf - Return one IO buf back to free pool 21864 * @phba: pointer to lpfc hba data structure. 21865 * @lpfc_ncmd: IO buf to be returned. 21866 * @qp: belong to which HWQ. 21867 * 21868 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21869 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21870 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21871 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21872 * lpfc_io_buf_list_put. 21873 **/ 21874 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21875 struct lpfc_sli4_hdw_queue *qp) 21876 { 21877 unsigned long iflag; 21878 struct lpfc_pbl_pool *pbl_pool; 21879 struct lpfc_pvt_pool *pvt_pool; 21880 struct lpfc_epd_pool *epd_pool; 21881 u32 txcmplq_cnt; 21882 u32 xri_owned; 21883 u32 xri_limit; 21884 u32 abts_io_bufs; 21885 21886 /* MUST zero fields if buffer is reused by another protocol */ 21887 lpfc_ncmd->nvmeCmd = NULL; 21888 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21889 21890 if (phba->cfg_xpsgl && !phba->nvmet_support && 21891 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21892 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21893 21894 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21895 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21896 21897 if (phba->cfg_xri_rebalancing) { 21898 if (lpfc_ncmd->expedite) { 21899 /* Return to expedite pool */ 21900 epd_pool = &phba->epd_pool; 21901 spin_lock_irqsave(&epd_pool->lock, iflag); 21902 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21903 epd_pool->count++; 21904 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21905 return; 21906 } 21907 21908 /* Avoid invalid access if an IO sneaks in and is being rejected 21909 * just _after_ xri pools are destroyed in lpfc_offline. 21910 * Nothing much can be done at this point. 21911 */ 21912 if (!qp->p_multixri_pool) 21913 return; 21914 21915 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21916 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21917 21918 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21919 abts_io_bufs = qp->abts_scsi_io_bufs; 21920 abts_io_bufs += qp->abts_nvme_io_bufs; 21921 21922 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21923 xri_limit = qp->p_multixri_pool->xri_limit; 21924 21925 #ifdef LPFC_MXP_STAT 21926 if (xri_owned <= xri_limit) 21927 qp->p_multixri_pool->below_limit_count++; 21928 else 21929 qp->p_multixri_pool->above_limit_count++; 21930 #endif 21931 21932 /* XRI goes to either public or private free xri pool 21933 * based on watermark and xri_limit 21934 */ 21935 if ((pvt_pool->count < pvt_pool->low_watermark) || 21936 (xri_owned < xri_limit && 21937 pvt_pool->count < pvt_pool->high_watermark)) { 21938 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21939 qp, free_pvt_pool); 21940 list_add_tail(&lpfc_ncmd->list, 21941 &pvt_pool->list); 21942 pvt_pool->count++; 21943 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21944 } else { 21945 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21946 qp, free_pub_pool); 21947 list_add_tail(&lpfc_ncmd->list, 21948 &pbl_pool->list); 21949 pbl_pool->count++; 21950 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21951 } 21952 } else { 21953 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21954 qp, free_xri); 21955 list_add_tail(&lpfc_ncmd->list, 21956 &qp->lpfc_io_buf_list_put); 21957 qp->put_io_bufs++; 21958 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21959 iflag); 21960 } 21961 } 21962 21963 /** 21964 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21965 * @phba: pointer to lpfc hba data structure. 21966 * @qp: pointer to HDW queue 21967 * @pvt_pool: pointer to private pool data structure. 21968 * @ndlp: pointer to lpfc nodelist data structure. 21969 * 21970 * This routine tries to get one free IO buf from private pool. 21971 * 21972 * Return: 21973 * pointer to one free IO buf - if private pool is not empty 21974 * NULL - if private pool is empty 21975 **/ 21976 static struct lpfc_io_buf * 21977 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21978 struct lpfc_sli4_hdw_queue *qp, 21979 struct lpfc_pvt_pool *pvt_pool, 21980 struct lpfc_nodelist *ndlp) 21981 { 21982 struct lpfc_io_buf *lpfc_ncmd; 21983 struct lpfc_io_buf *lpfc_ncmd_next; 21984 unsigned long iflag; 21985 21986 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21987 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21988 &pvt_pool->list, list) { 21989 if (lpfc_test_rrq_active( 21990 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21991 continue; 21992 list_del(&lpfc_ncmd->list); 21993 pvt_pool->count--; 21994 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21995 return lpfc_ncmd; 21996 } 21997 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21998 21999 return NULL; 22000 } 22001 22002 /** 22003 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22004 * @phba: pointer to lpfc hba data structure. 22005 * 22006 * This routine tries to get one free IO buf from expedite pool. 22007 * 22008 * Return: 22009 * pointer to one free IO buf - if expedite pool is not empty 22010 * NULL - if expedite pool is empty 22011 **/ 22012 static struct lpfc_io_buf * 22013 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22014 { 22015 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22016 struct lpfc_io_buf *lpfc_ncmd_next; 22017 unsigned long iflag; 22018 struct lpfc_epd_pool *epd_pool; 22019 22020 epd_pool = &phba->epd_pool; 22021 22022 spin_lock_irqsave(&epd_pool->lock, iflag); 22023 if (epd_pool->count > 0) { 22024 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22025 &epd_pool->list, list) { 22026 list_del(&iter->list); 22027 epd_pool->count--; 22028 lpfc_ncmd = iter; 22029 break; 22030 } 22031 } 22032 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22033 22034 return lpfc_ncmd; 22035 } 22036 22037 /** 22038 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22039 * @phba: pointer to lpfc hba data structure. 22040 * @ndlp: pointer to lpfc nodelist data structure. 22041 * @hwqid: belong to which HWQ 22042 * @expedite: 1 means this request is urgent. 22043 * 22044 * This routine will do the following actions and then return a pointer to 22045 * one free IO buf. 22046 * 22047 * 1. If private free xri count is empty, move some XRIs from public to 22048 * private pool. 22049 * 2. Get one XRI from private free xri pool. 22050 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22051 * get one free xri from expedite pool. 22052 * 22053 * Note: ndlp is only used on SCSI side for RRQ testing. 22054 * The caller should pass NULL for ndlp on NVME side. 22055 * 22056 * Return: 22057 * pointer to one free IO buf - if private pool is not empty 22058 * NULL - if private pool is empty 22059 **/ 22060 static struct lpfc_io_buf * 22061 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22062 struct lpfc_nodelist *ndlp, 22063 int hwqid, int expedite) 22064 { 22065 struct lpfc_sli4_hdw_queue *qp; 22066 struct lpfc_multixri_pool *multixri_pool; 22067 struct lpfc_pvt_pool *pvt_pool; 22068 struct lpfc_io_buf *lpfc_ncmd; 22069 22070 qp = &phba->sli4_hba.hdwq[hwqid]; 22071 lpfc_ncmd = NULL; 22072 if (!qp) { 22073 lpfc_printf_log(phba, KERN_INFO, 22074 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22075 "5556 NULL qp for hwqid x%x\n", hwqid); 22076 return lpfc_ncmd; 22077 } 22078 multixri_pool = qp->p_multixri_pool; 22079 if (!multixri_pool) { 22080 lpfc_printf_log(phba, KERN_INFO, 22081 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22082 "5557 NULL multixri for hwqid x%x\n", hwqid); 22083 return lpfc_ncmd; 22084 } 22085 pvt_pool = &multixri_pool->pvt_pool; 22086 if (!pvt_pool) { 22087 lpfc_printf_log(phba, KERN_INFO, 22088 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22089 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22090 return lpfc_ncmd; 22091 } 22092 multixri_pool->io_req_count++; 22093 22094 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22095 if (pvt_pool->count == 0) 22096 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22097 22098 /* Get one XRI from private free xri pool */ 22099 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22100 22101 if (lpfc_ncmd) { 22102 lpfc_ncmd->hdwq = qp; 22103 lpfc_ncmd->hdwq_no = hwqid; 22104 } else if (expedite) { 22105 /* If we fail to get one from pvt_pool and this is an expedite 22106 * request, get one free xri from expedite pool. 22107 */ 22108 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22109 } 22110 22111 return lpfc_ncmd; 22112 } 22113 22114 static inline struct lpfc_io_buf * 22115 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22116 { 22117 struct lpfc_sli4_hdw_queue *qp; 22118 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22119 22120 qp = &phba->sli4_hba.hdwq[idx]; 22121 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22122 &qp->lpfc_io_buf_list_get, list) { 22123 if (lpfc_test_rrq_active(phba, ndlp, 22124 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22125 continue; 22126 22127 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22128 continue; 22129 22130 list_del_init(&lpfc_cmd->list); 22131 qp->get_io_bufs--; 22132 lpfc_cmd->hdwq = qp; 22133 lpfc_cmd->hdwq_no = idx; 22134 return lpfc_cmd; 22135 } 22136 return NULL; 22137 } 22138 22139 /** 22140 * lpfc_get_io_buf - Get one IO buffer from free pool 22141 * @phba: The HBA for which this call is being executed. 22142 * @ndlp: pointer to lpfc nodelist data structure. 22143 * @hwqid: belong to which HWQ 22144 * @expedite: 1 means this request is urgent. 22145 * 22146 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22147 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22148 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22149 * 22150 * Note: ndlp is only used on SCSI side for RRQ testing. 22151 * The caller should pass NULL for ndlp on NVME side. 22152 * 22153 * Return codes: 22154 * NULL - Error 22155 * Pointer to lpfc_io_buf - Success 22156 **/ 22157 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22158 struct lpfc_nodelist *ndlp, 22159 u32 hwqid, int expedite) 22160 { 22161 struct lpfc_sli4_hdw_queue *qp; 22162 unsigned long iflag; 22163 struct lpfc_io_buf *lpfc_cmd; 22164 22165 qp = &phba->sli4_hba.hdwq[hwqid]; 22166 lpfc_cmd = NULL; 22167 if (!qp) { 22168 lpfc_printf_log(phba, KERN_WARNING, 22169 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22170 "5555 NULL qp for hwqid x%x\n", hwqid); 22171 return lpfc_cmd; 22172 } 22173 22174 if (phba->cfg_xri_rebalancing) 22175 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22176 phba, ndlp, hwqid, expedite); 22177 else { 22178 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22179 qp, alloc_xri_get); 22180 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22181 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22182 if (!lpfc_cmd) { 22183 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22184 qp, alloc_xri_put); 22185 list_splice(&qp->lpfc_io_buf_list_put, 22186 &qp->lpfc_io_buf_list_get); 22187 qp->get_io_bufs += qp->put_io_bufs; 22188 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22189 qp->put_io_bufs = 0; 22190 spin_unlock(&qp->io_buf_list_put_lock); 22191 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22192 expedite) 22193 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22194 } 22195 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22196 } 22197 22198 return lpfc_cmd; 22199 } 22200 22201 /** 22202 * lpfc_read_object - Retrieve object data from HBA 22203 * @phba: The HBA for which this call is being executed. 22204 * @rdobject: Pathname of object data we want to read. 22205 * @datap: Pointer to where data will be copied to. 22206 * @datasz: size of data area 22207 * 22208 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22209 * The data will be truncated if datasz is not large enough. 22210 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22211 * Returns the actual bytes read from the object. 22212 * 22213 * This routine is hard coded to use a poll completion. Unlike other 22214 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22215 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22216 * to use interrupt-based completions, code is needed to fully cleanup 22217 * the memory. 22218 */ 22219 int 22220 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22221 uint32_t datasz) 22222 { 22223 struct lpfc_mbx_read_object *read_object; 22224 LPFC_MBOXQ_t *mbox; 22225 int rc, length, eof, j, byte_cnt = 0; 22226 uint32_t shdr_status, shdr_add_status; 22227 union lpfc_sli4_cfg_shdr *shdr; 22228 struct lpfc_dmabuf *pcmd; 22229 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22230 22231 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22232 if (!mbox) 22233 return -ENOMEM; 22234 length = (sizeof(struct lpfc_mbx_read_object) - 22235 sizeof(struct lpfc_sli4_cfg_mhdr)); 22236 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22237 LPFC_MBOX_OPCODE_READ_OBJECT, 22238 length, LPFC_SLI4_MBX_EMBED); 22239 read_object = &mbox->u.mqe.un.read_object; 22240 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22241 22242 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22243 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22244 read_object->u.request.rd_object_offset = 0; 22245 read_object->u.request.rd_object_cnt = 1; 22246 22247 memset((void *)read_object->u.request.rd_object_name, 0, 22248 LPFC_OBJ_NAME_SZ); 22249 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22250 for (j = 0; j < strlen(rdobject); j++) 22251 read_object->u.request.rd_object_name[j] = 22252 cpu_to_le32(rd_object_name[j]); 22253 22254 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22255 if (pcmd) 22256 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22257 if (!pcmd || !pcmd->virt) { 22258 kfree(pcmd); 22259 mempool_free(mbox, phba->mbox_mem_pool); 22260 return -ENOMEM; 22261 } 22262 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22263 read_object->u.request.rd_object_hbuf[0].pa_lo = 22264 putPaddrLow(pcmd->phys); 22265 read_object->u.request.rd_object_hbuf[0].pa_hi = 22266 putPaddrHigh(pcmd->phys); 22267 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22268 22269 mbox->vport = phba->pport; 22270 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22271 mbox->ctx_ndlp = NULL; 22272 22273 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22274 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22275 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22276 22277 if (shdr_status == STATUS_FAILED && 22278 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22279 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22280 "4674 No port cfg file in FW.\n"); 22281 byte_cnt = -ENOENT; 22282 } else if (shdr_status || shdr_add_status || rc) { 22283 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22284 "2625 READ_OBJECT mailbox failed with " 22285 "status x%x add_status x%x, mbx status x%x\n", 22286 shdr_status, shdr_add_status, rc); 22287 byte_cnt = -ENXIO; 22288 } else { 22289 /* Success */ 22290 length = read_object->u.response.rd_object_actual_rlen; 22291 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22292 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22293 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22294 length, datasz, eof); 22295 22296 /* Detect the port config file exists but is empty */ 22297 if (!length && eof) { 22298 byte_cnt = 0; 22299 goto exit; 22300 } 22301 22302 byte_cnt = length; 22303 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22304 } 22305 22306 exit: 22307 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22308 * Free the pcmd and then cleanup with the correct routine. 22309 */ 22310 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22311 kfree(pcmd); 22312 lpfc_sli4_mbox_cmd_free(phba, mbox); 22313 return byte_cnt; 22314 } 22315 22316 /** 22317 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22318 * @phba: The HBA for which this call is being executed. 22319 * @lpfc_buf: IO buf structure to append the SGL chunk 22320 * 22321 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22322 * and will allocate an SGL chunk if the pool is empty. 22323 * 22324 * Return codes: 22325 * NULL - Error 22326 * Pointer to sli4_hybrid_sgl - Success 22327 **/ 22328 struct sli4_hybrid_sgl * 22329 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22330 { 22331 struct sli4_hybrid_sgl *list_entry = NULL; 22332 struct sli4_hybrid_sgl *tmp = NULL; 22333 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22334 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22335 struct list_head *buf_list = &hdwq->sgl_list; 22336 unsigned long iflags; 22337 22338 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22339 22340 if (likely(!list_empty(buf_list))) { 22341 /* break off 1 chunk from the sgl_list */ 22342 list_for_each_entry_safe(list_entry, tmp, 22343 buf_list, list_node) { 22344 list_move_tail(&list_entry->list_node, 22345 &lpfc_buf->dma_sgl_xtra_list); 22346 break; 22347 } 22348 } else { 22349 /* allocate more */ 22350 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22351 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22352 cpu_to_node(hdwq->io_wq->chann)); 22353 if (!tmp) { 22354 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22355 "8353 error kmalloc memory for HDWQ " 22356 "%d %s\n", 22357 lpfc_buf->hdwq_no, __func__); 22358 return NULL; 22359 } 22360 22361 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22362 GFP_ATOMIC, &tmp->dma_phys_sgl); 22363 if (!tmp->dma_sgl) { 22364 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22365 "8354 error pool_alloc memory for HDWQ " 22366 "%d %s\n", 22367 lpfc_buf->hdwq_no, __func__); 22368 kfree(tmp); 22369 return NULL; 22370 } 22371 22372 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22373 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22374 } 22375 22376 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22377 struct sli4_hybrid_sgl, 22378 list_node); 22379 22380 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22381 22382 return allocated_sgl; 22383 } 22384 22385 /** 22386 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22387 * @phba: The HBA for which this call is being executed. 22388 * @lpfc_buf: IO buf structure with the SGL chunk 22389 * 22390 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22391 * 22392 * Return codes: 22393 * 0 - Success 22394 * -EINVAL - Error 22395 **/ 22396 int 22397 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22398 { 22399 int rc = 0; 22400 struct sli4_hybrid_sgl *list_entry = NULL; 22401 struct sli4_hybrid_sgl *tmp = NULL; 22402 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22403 struct list_head *buf_list = &hdwq->sgl_list; 22404 unsigned long iflags; 22405 22406 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22407 22408 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22409 list_for_each_entry_safe(list_entry, tmp, 22410 &lpfc_buf->dma_sgl_xtra_list, 22411 list_node) { 22412 list_move_tail(&list_entry->list_node, 22413 buf_list); 22414 } 22415 } else { 22416 rc = -EINVAL; 22417 } 22418 22419 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22420 return rc; 22421 } 22422 22423 /** 22424 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22425 * @phba: phba object 22426 * @hdwq: hdwq to cleanup sgl buff resources on 22427 * 22428 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22429 * 22430 * Return codes: 22431 * None 22432 **/ 22433 void 22434 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22435 struct lpfc_sli4_hdw_queue *hdwq) 22436 { 22437 struct list_head *buf_list = &hdwq->sgl_list; 22438 struct sli4_hybrid_sgl *list_entry = NULL; 22439 struct sli4_hybrid_sgl *tmp = NULL; 22440 unsigned long iflags; 22441 22442 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22443 22444 /* Free sgl pool */ 22445 list_for_each_entry_safe(list_entry, tmp, 22446 buf_list, list_node) { 22447 list_del(&list_entry->list_node); 22448 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22449 list_entry->dma_sgl, 22450 list_entry->dma_phys_sgl); 22451 kfree(list_entry); 22452 } 22453 22454 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22455 } 22456 22457 /** 22458 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22459 * @phba: The HBA for which this call is being executed. 22460 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22461 * 22462 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22463 * and will allocate an CMD/RSP buffer if the pool is empty. 22464 * 22465 * Return codes: 22466 * NULL - Error 22467 * Pointer to fcp_cmd_rsp_buf - Success 22468 **/ 22469 struct fcp_cmd_rsp_buf * 22470 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22471 struct lpfc_io_buf *lpfc_buf) 22472 { 22473 struct fcp_cmd_rsp_buf *list_entry = NULL; 22474 struct fcp_cmd_rsp_buf *tmp = NULL; 22475 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22476 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22477 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22478 unsigned long iflags; 22479 22480 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22481 22482 if (likely(!list_empty(buf_list))) { 22483 /* break off 1 chunk from the list */ 22484 list_for_each_entry_safe(list_entry, tmp, 22485 buf_list, 22486 list_node) { 22487 list_move_tail(&list_entry->list_node, 22488 &lpfc_buf->dma_cmd_rsp_list); 22489 break; 22490 } 22491 } else { 22492 /* allocate more */ 22493 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22494 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22495 cpu_to_node(hdwq->io_wq->chann)); 22496 if (!tmp) { 22497 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22498 "8355 error kmalloc memory for HDWQ " 22499 "%d %s\n", 22500 lpfc_buf->hdwq_no, __func__); 22501 return NULL; 22502 } 22503 22504 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22505 GFP_ATOMIC, 22506 &tmp->fcp_cmd_rsp_dma_handle); 22507 22508 if (!tmp->fcp_cmnd) { 22509 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22510 "8356 error pool_alloc memory for HDWQ " 22511 "%d %s\n", 22512 lpfc_buf->hdwq_no, __func__); 22513 kfree(tmp); 22514 return NULL; 22515 } 22516 22517 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22518 sizeof(struct fcp_cmnd32)); 22519 22520 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22521 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22522 } 22523 22524 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22525 struct fcp_cmd_rsp_buf, 22526 list_node); 22527 22528 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22529 22530 return allocated_buf; 22531 } 22532 22533 /** 22534 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22535 * @phba: The HBA for which this call is being executed. 22536 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22537 * 22538 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22539 * 22540 * Return codes: 22541 * 0 - Success 22542 * -EINVAL - Error 22543 **/ 22544 int 22545 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22546 struct lpfc_io_buf *lpfc_buf) 22547 { 22548 int rc = 0; 22549 struct fcp_cmd_rsp_buf *list_entry = NULL; 22550 struct fcp_cmd_rsp_buf *tmp = NULL; 22551 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22552 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22553 unsigned long iflags; 22554 22555 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22556 22557 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22558 list_for_each_entry_safe(list_entry, tmp, 22559 &lpfc_buf->dma_cmd_rsp_list, 22560 list_node) { 22561 list_move_tail(&list_entry->list_node, 22562 buf_list); 22563 } 22564 } else { 22565 rc = -EINVAL; 22566 } 22567 22568 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22569 return rc; 22570 } 22571 22572 /** 22573 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22574 * @phba: phba object 22575 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22576 * 22577 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22578 * 22579 * Return codes: 22580 * None 22581 **/ 22582 void 22583 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22584 struct lpfc_sli4_hdw_queue *hdwq) 22585 { 22586 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22587 struct fcp_cmd_rsp_buf *list_entry = NULL; 22588 struct fcp_cmd_rsp_buf *tmp = NULL; 22589 unsigned long iflags; 22590 22591 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22592 22593 /* Free cmd_rsp buf pool */ 22594 list_for_each_entry_safe(list_entry, tmp, 22595 buf_list, 22596 list_node) { 22597 list_del(&list_entry->list_node); 22598 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22599 list_entry->fcp_cmnd, 22600 list_entry->fcp_cmd_rsp_dma_handle); 22601 kfree(list_entry); 22602 } 22603 22604 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22605 } 22606 22607 /** 22608 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22609 * @phba: phba object 22610 * @job: job entry of the command to be posted. 22611 * 22612 * Fill the common fields of the wqe for each of the command. 22613 * 22614 * Return codes: 22615 * None 22616 **/ 22617 void 22618 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22619 { 22620 u8 cmnd; 22621 u32 *pcmd; 22622 u32 if_type = 0; 22623 u32 abort_tag; 22624 bool fip; 22625 struct lpfc_nodelist *ndlp = NULL; 22626 union lpfc_wqe128 *wqe = &job->wqe; 22627 u8 command_type = ELS_COMMAND_NON_FIP; 22628 22629 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22630 /* The fcp commands will set command type */ 22631 if (job->cmd_flag & LPFC_IO_FCP) 22632 command_type = FCP_COMMAND; 22633 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22634 command_type = ELS_COMMAND_FIP; 22635 else 22636 command_type = ELS_COMMAND_NON_FIP; 22637 22638 abort_tag = job->iotag; 22639 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22640 22641 switch (cmnd) { 22642 case CMD_ELS_REQUEST64_WQE: 22643 ndlp = job->ndlp; 22644 22645 if_type = bf_get(lpfc_sli_intf_if_type, 22646 &phba->sli4_hba.sli_intf); 22647 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22648 pcmd = (u32 *)job->cmd_dmabuf->virt; 22649 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22650 *pcmd == ELS_CMD_SCR || 22651 *pcmd == ELS_CMD_RDF || 22652 *pcmd == ELS_CMD_EDC || 22653 *pcmd == ELS_CMD_RSCN_XMT || 22654 *pcmd == ELS_CMD_FDISC || 22655 *pcmd == ELS_CMD_LOGO || 22656 *pcmd == ELS_CMD_QFPA || 22657 *pcmd == ELS_CMD_UVEM || 22658 *pcmd == ELS_CMD_PLOGI)) { 22659 bf_set(els_req64_sp, &wqe->els_req, 1); 22660 bf_set(els_req64_sid, &wqe->els_req, 22661 job->vport->fc_myDID); 22662 22663 if ((*pcmd == ELS_CMD_FLOGI) && 22664 !(phba->fc_topology == 22665 LPFC_TOPOLOGY_LOOP)) 22666 bf_set(els_req64_sid, &wqe->els_req, 0); 22667 22668 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22669 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22670 phba->vpi_ids[job->vport->vpi]); 22671 } else if (pcmd) { 22672 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22673 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22674 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22675 } 22676 } 22677 22678 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22679 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22680 22681 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22682 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22683 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22684 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22685 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22686 break; 22687 case CMD_XMIT_ELS_RSP64_WQE: 22688 ndlp = job->ndlp; 22689 22690 /* word4 */ 22691 wqe->xmit_els_rsp.word4 = 0; 22692 22693 if_type = bf_get(lpfc_sli_intf_if_type, 22694 &phba->sli4_hba.sli_intf); 22695 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22696 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22697 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22698 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22699 job->vport->fc_myDID); 22700 if (job->vport->fc_myDID == Fabric_DID) { 22701 bf_set(wqe_els_did, 22702 &wqe->xmit_els_rsp.wqe_dest, 0); 22703 } 22704 } 22705 } 22706 22707 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22708 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22709 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22710 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22711 LPFC_WQE_LENLOC_WORD3); 22712 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22713 22714 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22715 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22716 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22717 job->vport->fc_myDID); 22718 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22719 } 22720 22721 if (phba->sli_rev == LPFC_SLI_REV4) { 22722 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22723 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22724 22725 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22726 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22727 phba->vpi_ids[job->vport->vpi]); 22728 } 22729 command_type = OTHER_COMMAND; 22730 break; 22731 case CMD_GEN_REQUEST64_WQE: 22732 /* Word 10 */ 22733 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22734 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22735 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22736 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22737 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22738 command_type = OTHER_COMMAND; 22739 break; 22740 case CMD_XMIT_SEQUENCE64_WQE: 22741 if (phba->link_flag & LS_LOOPBACK_MODE) 22742 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22743 22744 wqe->xmit_sequence.rsvd3 = 0; 22745 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22746 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22747 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22748 LPFC_WQE_IOD_WRITE); 22749 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22750 LPFC_WQE_LENLOC_WORD12); 22751 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22752 command_type = OTHER_COMMAND; 22753 break; 22754 case CMD_XMIT_BLS_RSP64_WQE: 22755 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22756 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22757 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22758 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22759 phba->vpi_ids[phba->pport->vpi]); 22760 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22761 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22762 LPFC_WQE_LENLOC_NONE); 22763 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22764 command_type = OTHER_COMMAND; 22765 break; 22766 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22767 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22768 case CMD_SEND_FRAME: /* mds loopback */ 22769 /* cases already formatted for sli4 wqe - no chgs necessary */ 22770 return; 22771 default: 22772 dump_stack(); 22773 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22774 "6207 Invalid command 0x%x\n", 22775 cmnd); 22776 break; 22777 } 22778 22779 wqe->generic.wqe_com.abort_tag = abort_tag; 22780 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22781 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22782 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22783 } 22784