1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <linux/lockdep.h> 28 29 #include <scsi/scsi.h> 30 #include <scsi/scsi_cmnd.h> 31 #include <scsi/scsi_device.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport_fc.h> 34 #include <scsi/fc/fc_fs.h> 35 #include <linux/aer.h> 36 37 #include "lpfc_hw4.h" 38 #include "lpfc_hw.h" 39 #include "lpfc_sli.h" 40 #include "lpfc_sli4.h" 41 #include "lpfc_nl.h" 42 #include "lpfc_disc.h" 43 #include "lpfc_scsi.h" 44 #include "lpfc.h" 45 #include "lpfc_crtn.h" 46 #include "lpfc_logmsg.h" 47 #include "lpfc_compat.h" 48 #include "lpfc_debugfs.h" 49 #include "lpfc_vport.h" 50 #include "lpfc_version.h" 51 52 /* There are only four IOCB completion types. */ 53 typedef enum _lpfc_iocb_type { 54 LPFC_UNKNOWN_IOCB, 55 LPFC_UNSOL_IOCB, 56 LPFC_SOL_IOCB, 57 LPFC_ABORT_IOCB 58 } lpfc_iocb_type; 59 60 61 /* Provide function prototypes local to this module. */ 62 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 63 uint32_t); 64 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 65 uint8_t *, uint32_t *); 66 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 67 struct lpfc_iocbq *); 68 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 69 struct hbq_dmabuf *); 70 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 71 struct lpfc_cqe *); 72 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 73 int); 74 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 75 uint32_t); 76 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 77 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 78 79 static IOCB_t * 80 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 81 { 82 return &iocbq->iocb; 83 } 84 85 /** 86 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 87 * @q: The Work Queue to operate on. 88 * @wqe: The work Queue Entry to put on the Work queue. 89 * 90 * This routine will copy the contents of @wqe to the next available entry on 91 * the @q. This function will then ring the Work Queue Doorbell to signal the 92 * HBA to start processing the Work Queue Entry. This function returns 0 if 93 * successful. If no entries are available on @q then this function will return 94 * -ENOMEM. 95 * The caller is expected to hold the hbalock when calling this routine. 96 **/ 97 static uint32_t 98 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 99 { 100 union lpfc_wqe *temp_wqe; 101 struct lpfc_register doorbell; 102 uint32_t host_index; 103 uint32_t idx; 104 105 /* sanity check on queue memory */ 106 if (unlikely(!q)) 107 return -ENOMEM; 108 temp_wqe = q->qe[q->host_index].wqe; 109 110 /* If the host has not yet processed the next entry then we are done */ 111 idx = ((q->host_index + 1) % q->entry_count); 112 if (idx == q->hba_index) { 113 q->WQ_overflow++; 114 return -ENOMEM; 115 } 116 q->WQ_posted++; 117 /* set consumption flag every once in a while */ 118 if (!((q->host_index + 1) % q->entry_repost)) 119 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 120 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 121 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 122 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 123 124 /* Update the host index before invoking device */ 125 host_index = q->host_index; 126 127 q->host_index = idx; 128 129 /* Ring Doorbell */ 130 doorbell.word0 = 0; 131 if (q->db_format == LPFC_DB_LIST_FORMAT) { 132 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 133 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 134 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 135 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 136 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 137 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 138 } else { 139 return -EINVAL; 140 } 141 writel(doorbell.word0, q->db_regaddr); 142 143 return 0; 144 } 145 146 /** 147 * lpfc_sli4_wq_release - Updates internal hba index for WQ 148 * @q: The Work Queue to operate on. 149 * @index: The index to advance the hba index to. 150 * 151 * This routine will update the HBA index of a queue to reflect consumption of 152 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 153 * an entry the host calls this function to update the queue's internal 154 * pointers. This routine returns the number of entries that were consumed by 155 * the HBA. 156 **/ 157 static uint32_t 158 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 159 { 160 uint32_t released = 0; 161 162 /* sanity check on queue memory */ 163 if (unlikely(!q)) 164 return 0; 165 166 if (q->hba_index == index) 167 return 0; 168 do { 169 q->hba_index = ((q->hba_index + 1) % q->entry_count); 170 released++; 171 } while (q->hba_index != index); 172 return released; 173 } 174 175 /** 176 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 177 * @q: The Mailbox Queue to operate on. 178 * @wqe: The Mailbox Queue Entry to put on the Work queue. 179 * 180 * This routine will copy the contents of @mqe to the next available entry on 181 * the @q. This function will then ring the Work Queue Doorbell to signal the 182 * HBA to start processing the Work Queue Entry. This function returns 0 if 183 * successful. If no entries are available on @q then this function will return 184 * -ENOMEM. 185 * The caller is expected to hold the hbalock when calling this routine. 186 **/ 187 static uint32_t 188 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 189 { 190 struct lpfc_mqe *temp_mqe; 191 struct lpfc_register doorbell; 192 193 /* sanity check on queue memory */ 194 if (unlikely(!q)) 195 return -ENOMEM; 196 temp_mqe = q->qe[q->host_index].mqe; 197 198 /* If the host has not yet processed the next entry then we are done */ 199 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 200 return -ENOMEM; 201 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 202 /* Save off the mailbox pointer for completion */ 203 q->phba->mbox = (MAILBOX_t *)temp_mqe; 204 205 /* Update the host index before invoking device */ 206 q->host_index = ((q->host_index + 1) % q->entry_count); 207 208 /* Ring Doorbell */ 209 doorbell.word0 = 0; 210 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 211 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 212 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 213 return 0; 214 } 215 216 /** 217 * lpfc_sli4_mq_release - Updates internal hba index for MQ 218 * @q: The Mailbox Queue to operate on. 219 * 220 * This routine will update the HBA index of a queue to reflect consumption of 221 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 222 * an entry the host calls this function to update the queue's internal 223 * pointers. This routine returns the number of entries that were consumed by 224 * the HBA. 225 **/ 226 static uint32_t 227 lpfc_sli4_mq_release(struct lpfc_queue *q) 228 { 229 /* sanity check on queue memory */ 230 if (unlikely(!q)) 231 return 0; 232 233 /* Clear the mailbox pointer for completion */ 234 q->phba->mbox = NULL; 235 q->hba_index = ((q->hba_index + 1) % q->entry_count); 236 return 1; 237 } 238 239 /** 240 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 241 * @q: The Event Queue to get the first valid EQE from 242 * 243 * This routine will get the first valid Event Queue Entry from @q, update 244 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 245 * the Queue (no more work to do), or the Queue is full of EQEs that have been 246 * processed, but not popped back to the HBA then this routine will return NULL. 247 **/ 248 static struct lpfc_eqe * 249 lpfc_sli4_eq_get(struct lpfc_queue *q) 250 { 251 struct lpfc_eqe *eqe; 252 uint32_t idx; 253 254 /* sanity check on queue memory */ 255 if (unlikely(!q)) 256 return NULL; 257 eqe = q->qe[q->hba_index].eqe; 258 259 /* If the next EQE is not valid then we are done */ 260 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 261 return NULL; 262 /* If the host has not yet processed the next entry then we are done */ 263 idx = ((q->hba_index + 1) % q->entry_count); 264 if (idx == q->host_index) 265 return NULL; 266 267 q->hba_index = idx; 268 269 /* 270 * insert barrier for instruction interlock : data from the hardware 271 * must have the valid bit checked before it can be copied and acted 272 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 273 * instructions allowing action on content before valid bit checked, 274 * add barrier here as well. May not be needed as "content" is a 275 * single 32-bit entity here (vs multi word structure for cq's). 276 */ 277 mb(); 278 return eqe; 279 } 280 281 /** 282 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 283 * @q: The Event Queue to disable interrupts 284 * 285 **/ 286 static inline void 287 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 288 { 289 struct lpfc_register doorbell; 290 291 doorbell.word0 = 0; 292 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 293 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 294 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 295 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 296 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 297 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 298 } 299 300 /** 301 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 302 * @q: The Event Queue that the host has completed processing for. 303 * @arm: Indicates whether the host wants to arms this CQ. 304 * 305 * This routine will mark all Event Queue Entries on @q, from the last 306 * known completed entry to the last entry that was processed, as completed 307 * by clearing the valid bit for each completion queue entry. Then it will 308 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 309 * The internal host index in the @q will be updated by this routine to indicate 310 * that the host has finished processing the entries. The @arm parameter 311 * indicates that the queue should be rearmed when ringing the doorbell. 312 * 313 * This function will return the number of EQEs that were popped. 314 **/ 315 uint32_t 316 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 317 { 318 uint32_t released = 0; 319 struct lpfc_eqe *temp_eqe; 320 struct lpfc_register doorbell; 321 322 /* sanity check on queue memory */ 323 if (unlikely(!q)) 324 return 0; 325 326 /* while there are valid entries */ 327 while (q->hba_index != q->host_index) { 328 temp_eqe = q->qe[q->host_index].eqe; 329 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 330 released++; 331 q->host_index = ((q->host_index + 1) % q->entry_count); 332 } 333 if (unlikely(released == 0 && !arm)) 334 return 0; 335 336 /* ring doorbell for number popped */ 337 doorbell.word0 = 0; 338 if (arm) { 339 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 340 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 341 } 342 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 343 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 344 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 345 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 346 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 347 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 348 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 349 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 350 readl(q->phba->sli4_hba.EQCQDBregaddr); 351 return released; 352 } 353 354 /** 355 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 356 * @q: The Completion Queue to get the first valid CQE from 357 * 358 * This routine will get the first valid Completion Queue Entry from @q, update 359 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 360 * the Queue (no more work to do), or the Queue is full of CQEs that have been 361 * processed, but not popped back to the HBA then this routine will return NULL. 362 **/ 363 static struct lpfc_cqe * 364 lpfc_sli4_cq_get(struct lpfc_queue *q) 365 { 366 struct lpfc_cqe *cqe; 367 uint32_t idx; 368 369 /* sanity check on queue memory */ 370 if (unlikely(!q)) 371 return NULL; 372 373 /* If the next CQE is not valid then we are done */ 374 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 375 return NULL; 376 /* If the host has not yet processed the next entry then we are done */ 377 idx = ((q->hba_index + 1) % q->entry_count); 378 if (idx == q->host_index) 379 return NULL; 380 381 cqe = q->qe[q->hba_index].cqe; 382 q->hba_index = idx; 383 384 /* 385 * insert barrier for instruction interlock : data from the hardware 386 * must have the valid bit checked before it can be copied and acted 387 * upon. Speculative instructions were allowing a bcopy at the start 388 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 389 * after our return, to copy data before the valid bit check above 390 * was done. As such, some of the copied data was stale. The barrier 391 * ensures the check is before any data is copied. 392 */ 393 mb(); 394 return cqe; 395 } 396 397 /** 398 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 399 * @q: The Completion Queue that the host has completed processing for. 400 * @arm: Indicates whether the host wants to arms this CQ. 401 * 402 * This routine will mark all Completion queue entries on @q, from the last 403 * known completed entry to the last entry that was processed, as completed 404 * by clearing the valid bit for each completion queue entry. Then it will 405 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 406 * The internal host index in the @q will be updated by this routine to indicate 407 * that the host has finished processing the entries. The @arm parameter 408 * indicates that the queue should be rearmed when ringing the doorbell. 409 * 410 * This function will return the number of CQEs that were released. 411 **/ 412 uint32_t 413 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 414 { 415 uint32_t released = 0; 416 struct lpfc_cqe *temp_qe; 417 struct lpfc_register doorbell; 418 419 /* sanity check on queue memory */ 420 if (unlikely(!q)) 421 return 0; 422 /* while there are valid entries */ 423 while (q->hba_index != q->host_index) { 424 temp_qe = q->qe[q->host_index].cqe; 425 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 426 released++; 427 q->host_index = ((q->host_index + 1) % q->entry_count); 428 } 429 if (unlikely(released == 0 && !arm)) 430 return 0; 431 432 /* ring doorbell for number popped */ 433 doorbell.word0 = 0; 434 if (arm) 435 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 436 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 437 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 438 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 439 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 440 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 441 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 442 return released; 443 } 444 445 /** 446 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 447 * @q: The Header Receive Queue to operate on. 448 * @wqe: The Receive Queue Entry to put on the Receive queue. 449 * 450 * This routine will copy the contents of @wqe to the next available entry on 451 * the @q. This function will then ring the Receive Queue Doorbell to signal the 452 * HBA to start processing the Receive Queue Entry. This function returns the 453 * index that the rqe was copied to if successful. If no entries are available 454 * on @q then this function will return -ENOMEM. 455 * The caller is expected to hold the hbalock when calling this routine. 456 **/ 457 static int 458 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 459 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 460 { 461 struct lpfc_rqe *temp_hrqe; 462 struct lpfc_rqe *temp_drqe; 463 struct lpfc_register doorbell; 464 int put_index; 465 466 /* sanity check on queue memory */ 467 if (unlikely(!hq) || unlikely(!dq)) 468 return -ENOMEM; 469 put_index = hq->host_index; 470 temp_hrqe = hq->qe[hq->host_index].rqe; 471 temp_drqe = dq->qe[dq->host_index].rqe; 472 473 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 474 return -EINVAL; 475 if (hq->host_index != dq->host_index) 476 return -EINVAL; 477 /* If the host has not yet processed the next entry then we are done */ 478 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 479 return -EBUSY; 480 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 481 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 482 483 /* Update the host index to point to the next slot */ 484 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 485 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 486 487 /* Ring The Header Receive Queue Doorbell */ 488 if (!(hq->host_index % hq->entry_repost)) { 489 doorbell.word0 = 0; 490 if (hq->db_format == LPFC_DB_RING_FORMAT) { 491 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 492 hq->entry_repost); 493 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 494 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 495 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 496 hq->entry_repost); 497 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 498 hq->host_index); 499 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 500 } else { 501 return -EINVAL; 502 } 503 writel(doorbell.word0, hq->db_regaddr); 504 } 505 return put_index; 506 } 507 508 /** 509 * lpfc_sli4_rq_release - Updates internal hba index for RQ 510 * @q: The Header Receive Queue to operate on. 511 * 512 * This routine will update the HBA index of a queue to reflect consumption of 513 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 514 * consumed an entry the host calls this function to update the queue's 515 * internal pointers. This routine returns the number of entries that were 516 * consumed by the HBA. 517 **/ 518 static uint32_t 519 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 520 { 521 /* sanity check on queue memory */ 522 if (unlikely(!hq) || unlikely(!dq)) 523 return 0; 524 525 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 526 return 0; 527 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 528 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 529 return 1; 530 } 531 532 /** 533 * lpfc_cmd_iocb - Get next command iocb entry in the ring 534 * @phba: Pointer to HBA context object. 535 * @pring: Pointer to driver SLI ring object. 536 * 537 * This function returns pointer to next command iocb entry 538 * in the command ring. The caller must hold hbalock to prevent 539 * other threads consume the next command iocb. 540 * SLI-2/SLI-3 provide different sized iocbs. 541 **/ 542 static inline IOCB_t * 543 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 544 { 545 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 546 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 547 } 548 549 /** 550 * lpfc_resp_iocb - Get next response iocb entry in the ring 551 * @phba: Pointer to HBA context object. 552 * @pring: Pointer to driver SLI ring object. 553 * 554 * This function returns pointer to next response iocb entry 555 * in the response ring. The caller must hold hbalock to make sure 556 * that no other thread consume the next response iocb. 557 * SLI-2/SLI-3 provide different sized iocbs. 558 **/ 559 static inline IOCB_t * 560 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 561 { 562 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 563 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 564 } 565 566 /** 567 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 568 * @phba: Pointer to HBA context object. 569 * 570 * This function is called with hbalock held. This function 571 * allocates a new driver iocb object from the iocb pool. If the 572 * allocation is successful, it returns pointer to the newly 573 * allocated iocb object else it returns NULL. 574 **/ 575 struct lpfc_iocbq * 576 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 577 { 578 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 579 struct lpfc_iocbq * iocbq = NULL; 580 581 lockdep_assert_held(&phba->hbalock); 582 583 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 584 if (iocbq) 585 phba->iocb_cnt++; 586 if (phba->iocb_cnt > phba->iocb_max) 587 phba->iocb_max = phba->iocb_cnt; 588 return iocbq; 589 } 590 591 /** 592 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 593 * @phba: Pointer to HBA context object. 594 * @xritag: XRI value. 595 * 596 * This function clears the sglq pointer from the array of acive 597 * sglq's. The xritag that is passed in is used to index into the 598 * array. Before the xritag can be used it needs to be adjusted 599 * by subtracting the xribase. 600 * 601 * Returns sglq ponter = success, NULL = Failure. 602 **/ 603 static struct lpfc_sglq * 604 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 605 { 606 struct lpfc_sglq *sglq; 607 608 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 609 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 610 return sglq; 611 } 612 613 /** 614 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 615 * @phba: Pointer to HBA context object. 616 * @xritag: XRI value. 617 * 618 * This function returns the sglq pointer from the array of acive 619 * sglq's. The xritag that is passed in is used to index into the 620 * array. Before the xritag can be used it needs to be adjusted 621 * by subtracting the xribase. 622 * 623 * Returns sglq ponter = success, NULL = Failure. 624 **/ 625 struct lpfc_sglq * 626 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 627 { 628 struct lpfc_sglq *sglq; 629 630 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 631 return sglq; 632 } 633 634 /** 635 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 636 * @phba: Pointer to HBA context object. 637 * @xritag: xri used in this exchange. 638 * @rrq: The RRQ to be cleared. 639 * 640 **/ 641 void 642 lpfc_clr_rrq_active(struct lpfc_hba *phba, 643 uint16_t xritag, 644 struct lpfc_node_rrq *rrq) 645 { 646 struct lpfc_nodelist *ndlp = NULL; 647 648 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 649 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 650 651 /* The target DID could have been swapped (cable swap) 652 * we should use the ndlp from the findnode if it is 653 * available. 654 */ 655 if ((!ndlp) && rrq->ndlp) 656 ndlp = rrq->ndlp; 657 658 if (!ndlp) 659 goto out; 660 661 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 662 rrq->send_rrq = 0; 663 rrq->xritag = 0; 664 rrq->rrq_stop_time = 0; 665 } 666 out: 667 mempool_free(rrq, phba->rrq_pool); 668 } 669 670 /** 671 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 672 * @phba: Pointer to HBA context object. 673 * 674 * This function is called with hbalock held. This function 675 * Checks if stop_time (ratov from setting rrq active) has 676 * been reached, if it has and the send_rrq flag is set then 677 * it will call lpfc_send_rrq. If the send_rrq flag is not set 678 * then it will just call the routine to clear the rrq and 679 * free the rrq resource. 680 * The timer is set to the next rrq that is going to expire before 681 * leaving the routine. 682 * 683 **/ 684 void 685 lpfc_handle_rrq_active(struct lpfc_hba *phba) 686 { 687 struct lpfc_node_rrq *rrq; 688 struct lpfc_node_rrq *nextrrq; 689 unsigned long next_time; 690 unsigned long iflags; 691 LIST_HEAD(send_rrq); 692 693 spin_lock_irqsave(&phba->hbalock, iflags); 694 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 695 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 696 list_for_each_entry_safe(rrq, nextrrq, 697 &phba->active_rrq_list, list) { 698 if (time_after(jiffies, rrq->rrq_stop_time)) 699 list_move(&rrq->list, &send_rrq); 700 else if (time_before(rrq->rrq_stop_time, next_time)) 701 next_time = rrq->rrq_stop_time; 702 } 703 spin_unlock_irqrestore(&phba->hbalock, iflags); 704 if ((!list_empty(&phba->active_rrq_list)) && 705 (!(phba->pport->load_flag & FC_UNLOADING))) 706 mod_timer(&phba->rrq_tmr, next_time); 707 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 708 list_del(&rrq->list); 709 if (!rrq->send_rrq) 710 /* this call will free the rrq */ 711 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 712 else if (lpfc_send_rrq(phba, rrq)) { 713 /* if we send the rrq then the completion handler 714 * will clear the bit in the xribitmap. 715 */ 716 lpfc_clr_rrq_active(phba, rrq->xritag, 717 rrq); 718 } 719 } 720 } 721 722 /** 723 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 724 * @vport: Pointer to vport context object. 725 * @xri: The xri used in the exchange. 726 * @did: The targets DID for this exchange. 727 * 728 * returns NULL = rrq not found in the phba->active_rrq_list. 729 * rrq = rrq for this xri and target. 730 **/ 731 struct lpfc_node_rrq * 732 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 733 { 734 struct lpfc_hba *phba = vport->phba; 735 struct lpfc_node_rrq *rrq; 736 struct lpfc_node_rrq *nextrrq; 737 unsigned long iflags; 738 739 if (phba->sli_rev != LPFC_SLI_REV4) 740 return NULL; 741 spin_lock_irqsave(&phba->hbalock, iflags); 742 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 743 if (rrq->vport == vport && rrq->xritag == xri && 744 rrq->nlp_DID == did){ 745 list_del(&rrq->list); 746 spin_unlock_irqrestore(&phba->hbalock, iflags); 747 return rrq; 748 } 749 } 750 spin_unlock_irqrestore(&phba->hbalock, iflags); 751 return NULL; 752 } 753 754 /** 755 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 756 * @vport: Pointer to vport context object. 757 * @ndlp: Pointer to the lpfc_node_list structure. 758 * If ndlp is NULL Remove all active RRQs for this vport from the 759 * phba->active_rrq_list and clear the rrq. 760 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 761 **/ 762 void 763 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 764 765 { 766 struct lpfc_hba *phba = vport->phba; 767 struct lpfc_node_rrq *rrq; 768 struct lpfc_node_rrq *nextrrq; 769 unsigned long iflags; 770 LIST_HEAD(rrq_list); 771 772 if (phba->sli_rev != LPFC_SLI_REV4) 773 return; 774 if (!ndlp) { 775 lpfc_sli4_vport_delete_els_xri_aborted(vport); 776 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 777 } 778 spin_lock_irqsave(&phba->hbalock, iflags); 779 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 780 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 781 list_move(&rrq->list, &rrq_list); 782 spin_unlock_irqrestore(&phba->hbalock, iflags); 783 784 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 785 list_del(&rrq->list); 786 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 787 } 788 } 789 790 /** 791 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 792 * @phba: Pointer to HBA context object. 793 * @ndlp: Targets nodelist pointer for this exchange. 794 * @xritag the xri in the bitmap to test. 795 * 796 * This function is called with hbalock held. This function 797 * returns 0 = rrq not active for this xri 798 * 1 = rrq is valid for this xri. 799 **/ 800 int 801 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 802 uint16_t xritag) 803 { 804 lockdep_assert_held(&phba->hbalock); 805 if (!ndlp) 806 return 0; 807 if (!ndlp->active_rrqs_xri_bitmap) 808 return 0; 809 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 810 return 1; 811 else 812 return 0; 813 } 814 815 /** 816 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 817 * @phba: Pointer to HBA context object. 818 * @ndlp: nodelist pointer for this target. 819 * @xritag: xri used in this exchange. 820 * @rxid: Remote Exchange ID. 821 * @send_rrq: Flag used to determine if we should send rrq els cmd. 822 * 823 * This function takes the hbalock. 824 * The active bit is always set in the active rrq xri_bitmap even 825 * if there is no slot avaiable for the other rrq information. 826 * 827 * returns 0 rrq actived for this xri 828 * < 0 No memory or invalid ndlp. 829 **/ 830 int 831 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 832 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 833 { 834 unsigned long iflags; 835 struct lpfc_node_rrq *rrq; 836 int empty; 837 838 if (!ndlp) 839 return -EINVAL; 840 841 if (!phba->cfg_enable_rrq) 842 return -EINVAL; 843 844 spin_lock_irqsave(&phba->hbalock, iflags); 845 if (phba->pport->load_flag & FC_UNLOADING) { 846 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 847 goto out; 848 } 849 850 /* 851 * set the active bit even if there is no mem available. 852 */ 853 if (NLP_CHK_FREE_REQ(ndlp)) 854 goto out; 855 856 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 857 goto out; 858 859 if (!ndlp->active_rrqs_xri_bitmap) 860 goto out; 861 862 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 863 goto out; 864 865 spin_unlock_irqrestore(&phba->hbalock, iflags); 866 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 867 if (!rrq) { 868 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 869 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 870 " DID:0x%x Send:%d\n", 871 xritag, rxid, ndlp->nlp_DID, send_rrq); 872 return -EINVAL; 873 } 874 if (phba->cfg_enable_rrq == 1) 875 rrq->send_rrq = send_rrq; 876 else 877 rrq->send_rrq = 0; 878 rrq->xritag = xritag; 879 rrq->rrq_stop_time = jiffies + 880 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 881 rrq->ndlp = ndlp; 882 rrq->nlp_DID = ndlp->nlp_DID; 883 rrq->vport = ndlp->vport; 884 rrq->rxid = rxid; 885 spin_lock_irqsave(&phba->hbalock, iflags); 886 empty = list_empty(&phba->active_rrq_list); 887 list_add_tail(&rrq->list, &phba->active_rrq_list); 888 phba->hba_flag |= HBA_RRQ_ACTIVE; 889 if (empty) 890 lpfc_worker_wake_up(phba); 891 spin_unlock_irqrestore(&phba->hbalock, iflags); 892 return 0; 893 out: 894 spin_unlock_irqrestore(&phba->hbalock, iflags); 895 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 896 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 897 " DID:0x%x Send:%d\n", 898 xritag, rxid, ndlp->nlp_DID, send_rrq); 899 return -EINVAL; 900 } 901 902 /** 903 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 904 * @phba: Pointer to HBA context object. 905 * @piocb: Pointer to the iocbq. 906 * 907 * This function is called with the ring lock held. This function 908 * gets a new driver sglq object from the sglq list. If the 909 * list is not empty then it is successful, it returns pointer to the newly 910 * allocated sglq object else it returns NULL. 911 **/ 912 static struct lpfc_sglq * 913 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 914 { 915 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 916 struct lpfc_sglq *sglq = NULL; 917 struct lpfc_sglq *start_sglq = NULL; 918 struct lpfc_scsi_buf *lpfc_cmd; 919 struct lpfc_nodelist *ndlp; 920 int found = 0; 921 922 lockdep_assert_held(&phba->hbalock); 923 924 if (piocbq->iocb_flag & LPFC_IO_FCP) { 925 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 926 ndlp = lpfc_cmd->rdata->pnode; 927 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 928 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 929 ndlp = piocbq->context_un.ndlp; 930 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 931 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 932 ndlp = NULL; 933 else 934 ndlp = piocbq->context_un.ndlp; 935 } else { 936 ndlp = piocbq->context1; 937 } 938 939 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 940 start_sglq = sglq; 941 while (!found) { 942 if (!sglq) 943 return NULL; 944 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 945 /* This xri has an rrq outstanding for this DID. 946 * put it back in the list and get another xri. 947 */ 948 list_add_tail(&sglq->list, lpfc_sgl_list); 949 sglq = NULL; 950 list_remove_head(lpfc_sgl_list, sglq, 951 struct lpfc_sglq, list); 952 if (sglq == start_sglq) { 953 sglq = NULL; 954 break; 955 } else 956 continue; 957 } 958 sglq->ndlp = ndlp; 959 found = 1; 960 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 961 sglq->state = SGL_ALLOCATED; 962 } 963 return sglq; 964 } 965 966 /** 967 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 968 * @phba: Pointer to HBA context object. 969 * 970 * This function is called with no lock held. This function 971 * allocates a new driver iocb object from the iocb pool. If the 972 * allocation is successful, it returns pointer to the newly 973 * allocated iocb object else it returns NULL. 974 **/ 975 struct lpfc_iocbq * 976 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 977 { 978 struct lpfc_iocbq * iocbq = NULL; 979 unsigned long iflags; 980 981 spin_lock_irqsave(&phba->hbalock, iflags); 982 iocbq = __lpfc_sli_get_iocbq(phba); 983 spin_unlock_irqrestore(&phba->hbalock, iflags); 984 return iocbq; 985 } 986 987 /** 988 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 989 * @phba: Pointer to HBA context object. 990 * @iocbq: Pointer to driver iocb object. 991 * 992 * This function is called with hbalock held to release driver 993 * iocb object to the iocb pool. The iotag in the iocb object 994 * does not change for each use of the iocb object. This function 995 * clears all other fields of the iocb object when it is freed. 996 * The sqlq structure that holds the xritag and phys and virtual 997 * mappings for the scatter gather list is retrieved from the 998 * active array of sglq. The get of the sglq pointer also clears 999 * the entry in the array. If the status of the IO indiactes that 1000 * this IO was aborted then the sglq entry it put on the 1001 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1002 * IO has good status or fails for any other reason then the sglq 1003 * entry is added to the free list (lpfc_sgl_list). 1004 **/ 1005 static void 1006 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1007 { 1008 struct lpfc_sglq *sglq; 1009 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1010 unsigned long iflag = 0; 1011 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1012 1013 lockdep_assert_held(&phba->hbalock); 1014 1015 if (iocbq->sli4_xritag == NO_XRI) 1016 sglq = NULL; 1017 else 1018 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1019 1020 1021 if (sglq) { 1022 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1023 (sglq->state != SGL_XRI_ABORTED)) { 1024 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1025 iflag); 1026 list_add(&sglq->list, 1027 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1028 spin_unlock_irqrestore( 1029 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1030 } else { 1031 spin_lock_irqsave(&pring->ring_lock, iflag); 1032 sglq->state = SGL_FREED; 1033 sglq->ndlp = NULL; 1034 list_add_tail(&sglq->list, 1035 &phba->sli4_hba.lpfc_sgl_list); 1036 spin_unlock_irqrestore(&pring->ring_lock, iflag); 1037 1038 /* Check if TXQ queue needs to be serviced */ 1039 if (!list_empty(&pring->txq)) 1040 lpfc_worker_wake_up(phba); 1041 } 1042 } 1043 1044 1045 /* 1046 * Clean all volatile data fields, preserve iotag and node struct. 1047 */ 1048 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1049 iocbq->sli4_lxritag = NO_XRI; 1050 iocbq->sli4_xritag = NO_XRI; 1051 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1052 } 1053 1054 1055 /** 1056 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1057 * @phba: Pointer to HBA context object. 1058 * @iocbq: Pointer to driver iocb object. 1059 * 1060 * This function is called with hbalock held to release driver 1061 * iocb object to the iocb pool. The iotag in the iocb object 1062 * does not change for each use of the iocb object. This function 1063 * clears all other fields of the iocb object when it is freed. 1064 **/ 1065 static void 1066 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1067 { 1068 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1069 1070 lockdep_assert_held(&phba->hbalock); 1071 1072 /* 1073 * Clean all volatile data fields, preserve iotag and node struct. 1074 */ 1075 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1076 iocbq->sli4_xritag = NO_XRI; 1077 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1078 } 1079 1080 /** 1081 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1082 * @phba: Pointer to HBA context object. 1083 * @iocbq: Pointer to driver iocb object. 1084 * 1085 * This function is called with hbalock held to release driver 1086 * iocb object to the iocb pool. The iotag in the iocb object 1087 * does not change for each use of the iocb object. This function 1088 * clears all other fields of the iocb object when it is freed. 1089 **/ 1090 static void 1091 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1092 { 1093 lockdep_assert_held(&phba->hbalock); 1094 1095 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1096 phba->iocb_cnt--; 1097 } 1098 1099 /** 1100 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1101 * @phba: Pointer to HBA context object. 1102 * @iocbq: Pointer to driver iocb object. 1103 * 1104 * This function is called with no lock held to release the iocb to 1105 * iocb pool. 1106 **/ 1107 void 1108 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1109 { 1110 unsigned long iflags; 1111 1112 /* 1113 * Clean all volatile data fields, preserve iotag and node struct. 1114 */ 1115 spin_lock_irqsave(&phba->hbalock, iflags); 1116 __lpfc_sli_release_iocbq(phba, iocbq); 1117 spin_unlock_irqrestore(&phba->hbalock, iflags); 1118 } 1119 1120 /** 1121 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1122 * @phba: Pointer to HBA context object. 1123 * @iocblist: List of IOCBs. 1124 * @ulpstatus: ULP status in IOCB command field. 1125 * @ulpWord4: ULP word-4 in IOCB command field. 1126 * 1127 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1128 * on the list by invoking the complete callback function associated with the 1129 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1130 * fields. 1131 **/ 1132 void 1133 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1134 uint32_t ulpstatus, uint32_t ulpWord4) 1135 { 1136 struct lpfc_iocbq *piocb; 1137 1138 while (!list_empty(iocblist)) { 1139 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1140 if (!piocb->iocb_cmpl) 1141 lpfc_sli_release_iocbq(phba, piocb); 1142 else { 1143 piocb->iocb.ulpStatus = ulpstatus; 1144 piocb->iocb.un.ulpWord[4] = ulpWord4; 1145 (piocb->iocb_cmpl) (phba, piocb, piocb); 1146 } 1147 } 1148 return; 1149 } 1150 1151 /** 1152 * lpfc_sli_iocb_cmd_type - Get the iocb type 1153 * @iocb_cmnd: iocb command code. 1154 * 1155 * This function is called by ring event handler function to get the iocb type. 1156 * This function translates the iocb command to an iocb command type used to 1157 * decide the final disposition of each completed IOCB. 1158 * The function returns 1159 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1160 * LPFC_SOL_IOCB if it is a solicited iocb completion 1161 * LPFC_ABORT_IOCB if it is an abort iocb 1162 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1163 * 1164 * The caller is not required to hold any lock. 1165 **/ 1166 static lpfc_iocb_type 1167 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1168 { 1169 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1170 1171 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1172 return 0; 1173 1174 switch (iocb_cmnd) { 1175 case CMD_XMIT_SEQUENCE_CR: 1176 case CMD_XMIT_SEQUENCE_CX: 1177 case CMD_XMIT_BCAST_CN: 1178 case CMD_XMIT_BCAST_CX: 1179 case CMD_ELS_REQUEST_CR: 1180 case CMD_ELS_REQUEST_CX: 1181 case CMD_CREATE_XRI_CR: 1182 case CMD_CREATE_XRI_CX: 1183 case CMD_GET_RPI_CN: 1184 case CMD_XMIT_ELS_RSP_CX: 1185 case CMD_GET_RPI_CR: 1186 case CMD_FCP_IWRITE_CR: 1187 case CMD_FCP_IWRITE_CX: 1188 case CMD_FCP_IREAD_CR: 1189 case CMD_FCP_IREAD_CX: 1190 case CMD_FCP_ICMND_CR: 1191 case CMD_FCP_ICMND_CX: 1192 case CMD_FCP_TSEND_CX: 1193 case CMD_FCP_TRSP_CX: 1194 case CMD_FCP_TRECEIVE_CX: 1195 case CMD_FCP_AUTO_TRSP_CX: 1196 case CMD_ADAPTER_MSG: 1197 case CMD_ADAPTER_DUMP: 1198 case CMD_XMIT_SEQUENCE64_CR: 1199 case CMD_XMIT_SEQUENCE64_CX: 1200 case CMD_XMIT_BCAST64_CN: 1201 case CMD_XMIT_BCAST64_CX: 1202 case CMD_ELS_REQUEST64_CR: 1203 case CMD_ELS_REQUEST64_CX: 1204 case CMD_FCP_IWRITE64_CR: 1205 case CMD_FCP_IWRITE64_CX: 1206 case CMD_FCP_IREAD64_CR: 1207 case CMD_FCP_IREAD64_CX: 1208 case CMD_FCP_ICMND64_CR: 1209 case CMD_FCP_ICMND64_CX: 1210 case CMD_FCP_TSEND64_CX: 1211 case CMD_FCP_TRSP64_CX: 1212 case CMD_FCP_TRECEIVE64_CX: 1213 case CMD_GEN_REQUEST64_CR: 1214 case CMD_GEN_REQUEST64_CX: 1215 case CMD_XMIT_ELS_RSP64_CX: 1216 case DSSCMD_IWRITE64_CR: 1217 case DSSCMD_IWRITE64_CX: 1218 case DSSCMD_IREAD64_CR: 1219 case DSSCMD_IREAD64_CX: 1220 type = LPFC_SOL_IOCB; 1221 break; 1222 case CMD_ABORT_XRI_CN: 1223 case CMD_ABORT_XRI_CX: 1224 case CMD_CLOSE_XRI_CN: 1225 case CMD_CLOSE_XRI_CX: 1226 case CMD_XRI_ABORTED_CX: 1227 case CMD_ABORT_MXRI64_CN: 1228 case CMD_XMIT_BLS_RSP64_CX: 1229 type = LPFC_ABORT_IOCB; 1230 break; 1231 case CMD_RCV_SEQUENCE_CX: 1232 case CMD_RCV_ELS_REQ_CX: 1233 case CMD_RCV_SEQUENCE64_CX: 1234 case CMD_RCV_ELS_REQ64_CX: 1235 case CMD_ASYNC_STATUS: 1236 case CMD_IOCB_RCV_SEQ64_CX: 1237 case CMD_IOCB_RCV_ELS64_CX: 1238 case CMD_IOCB_RCV_CONT64_CX: 1239 case CMD_IOCB_RET_XRI64_CX: 1240 type = LPFC_UNSOL_IOCB; 1241 break; 1242 case CMD_IOCB_XMIT_MSEQ64_CR: 1243 case CMD_IOCB_XMIT_MSEQ64_CX: 1244 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1245 case CMD_IOCB_RCV_ELS_LIST64_CX: 1246 case CMD_IOCB_CLOSE_EXTENDED_CN: 1247 case CMD_IOCB_ABORT_EXTENDED_CN: 1248 case CMD_IOCB_RET_HBQE64_CN: 1249 case CMD_IOCB_FCP_IBIDIR64_CR: 1250 case CMD_IOCB_FCP_IBIDIR64_CX: 1251 case CMD_IOCB_FCP_ITASKMGT64_CX: 1252 case CMD_IOCB_LOGENTRY_CN: 1253 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1254 printk("%s - Unhandled SLI-3 Command x%x\n", 1255 __func__, iocb_cmnd); 1256 type = LPFC_UNKNOWN_IOCB; 1257 break; 1258 default: 1259 type = LPFC_UNKNOWN_IOCB; 1260 break; 1261 } 1262 1263 return type; 1264 } 1265 1266 /** 1267 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1268 * @phba: Pointer to HBA context object. 1269 * 1270 * This function is called from SLI initialization code 1271 * to configure every ring of the HBA's SLI interface. The 1272 * caller is not required to hold any lock. This function issues 1273 * a config_ring mailbox command for each ring. 1274 * This function returns zero if successful else returns a negative 1275 * error code. 1276 **/ 1277 static int 1278 lpfc_sli_ring_map(struct lpfc_hba *phba) 1279 { 1280 struct lpfc_sli *psli = &phba->sli; 1281 LPFC_MBOXQ_t *pmb; 1282 MAILBOX_t *pmbox; 1283 int i, rc, ret = 0; 1284 1285 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1286 if (!pmb) 1287 return -ENOMEM; 1288 pmbox = &pmb->u.mb; 1289 phba->link_state = LPFC_INIT_MBX_CMDS; 1290 for (i = 0; i < psli->num_rings; i++) { 1291 lpfc_config_ring(phba, i, pmb); 1292 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1293 if (rc != MBX_SUCCESS) { 1294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1295 "0446 Adapter failed to init (%d), " 1296 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1297 "ring %d\n", 1298 rc, pmbox->mbxCommand, 1299 pmbox->mbxStatus, i); 1300 phba->link_state = LPFC_HBA_ERROR; 1301 ret = -ENXIO; 1302 break; 1303 } 1304 } 1305 mempool_free(pmb, phba->mbox_mem_pool); 1306 return ret; 1307 } 1308 1309 /** 1310 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1311 * @phba: Pointer to HBA context object. 1312 * @pring: Pointer to driver SLI ring object. 1313 * @piocb: Pointer to the driver iocb object. 1314 * 1315 * This function is called with hbalock held. The function adds the 1316 * new iocb to txcmplq of the given ring. This function always returns 1317 * 0. If this function is called for ELS ring, this function checks if 1318 * there is a vport associated with the ELS command. This function also 1319 * starts els_tmofunc timer if this is an ELS command. 1320 **/ 1321 static int 1322 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1323 struct lpfc_iocbq *piocb) 1324 { 1325 lockdep_assert_held(&phba->hbalock); 1326 1327 BUG_ON(!piocb); 1328 1329 list_add_tail(&piocb->list, &pring->txcmplq); 1330 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1331 1332 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1333 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1334 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1335 BUG_ON(!piocb->vport); 1336 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1337 mod_timer(&piocb->vport->els_tmofunc, 1338 jiffies + 1339 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1340 } 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * lpfc_sli_ringtx_get - Get first element of the txq 1347 * @phba: Pointer to HBA context object. 1348 * @pring: Pointer to driver SLI ring object. 1349 * 1350 * This function is called with hbalock held to get next 1351 * iocb in txq of the given ring. If there is any iocb in 1352 * the txq, the function returns first iocb in the list after 1353 * removing the iocb from the list, else it returns NULL. 1354 **/ 1355 struct lpfc_iocbq * 1356 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1357 { 1358 struct lpfc_iocbq *cmd_iocb; 1359 1360 lockdep_assert_held(&phba->hbalock); 1361 1362 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1363 return cmd_iocb; 1364 } 1365 1366 /** 1367 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1368 * @phba: Pointer to HBA context object. 1369 * @pring: Pointer to driver SLI ring object. 1370 * 1371 * This function is called with hbalock held and the caller must post the 1372 * iocb without releasing the lock. If the caller releases the lock, 1373 * iocb slot returned by the function is not guaranteed to be available. 1374 * The function returns pointer to the next available iocb slot if there 1375 * is available slot in the ring, else it returns NULL. 1376 * If the get index of the ring is ahead of the put index, the function 1377 * will post an error attention event to the worker thread to take the 1378 * HBA to offline state. 1379 **/ 1380 static IOCB_t * 1381 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1382 { 1383 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1384 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1385 1386 lockdep_assert_held(&phba->hbalock); 1387 1388 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1389 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1390 pring->sli.sli3.next_cmdidx = 0; 1391 1392 if (unlikely(pring->sli.sli3.local_getidx == 1393 pring->sli.sli3.next_cmdidx)) { 1394 1395 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1396 1397 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1398 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1399 "0315 Ring %d issue: portCmdGet %d " 1400 "is bigger than cmd ring %d\n", 1401 pring->ringno, 1402 pring->sli.sli3.local_getidx, 1403 max_cmd_idx); 1404 1405 phba->link_state = LPFC_HBA_ERROR; 1406 /* 1407 * All error attention handlers are posted to 1408 * worker thread 1409 */ 1410 phba->work_ha |= HA_ERATT; 1411 phba->work_hs = HS_FFER3; 1412 1413 lpfc_worker_wake_up(phba); 1414 1415 return NULL; 1416 } 1417 1418 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1419 return NULL; 1420 } 1421 1422 return lpfc_cmd_iocb(phba, pring); 1423 } 1424 1425 /** 1426 * lpfc_sli_next_iotag - Get an iotag for the iocb 1427 * @phba: Pointer to HBA context object. 1428 * @iocbq: Pointer to driver iocb object. 1429 * 1430 * This function gets an iotag for the iocb. If there is no unused iotag and 1431 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1432 * array and assigns a new iotag. 1433 * The function returns the allocated iotag if successful, else returns zero. 1434 * Zero is not a valid iotag. 1435 * The caller is not required to hold any lock. 1436 **/ 1437 uint16_t 1438 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1439 { 1440 struct lpfc_iocbq **new_arr; 1441 struct lpfc_iocbq **old_arr; 1442 size_t new_len; 1443 struct lpfc_sli *psli = &phba->sli; 1444 uint16_t iotag; 1445 1446 spin_lock_irq(&phba->hbalock); 1447 iotag = psli->last_iotag; 1448 if(++iotag < psli->iocbq_lookup_len) { 1449 psli->last_iotag = iotag; 1450 psli->iocbq_lookup[iotag] = iocbq; 1451 spin_unlock_irq(&phba->hbalock); 1452 iocbq->iotag = iotag; 1453 return iotag; 1454 } else if (psli->iocbq_lookup_len < (0xffff 1455 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1456 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1457 spin_unlock_irq(&phba->hbalock); 1458 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1459 GFP_KERNEL); 1460 if (new_arr) { 1461 spin_lock_irq(&phba->hbalock); 1462 old_arr = psli->iocbq_lookup; 1463 if (new_len <= psli->iocbq_lookup_len) { 1464 /* highly unprobable case */ 1465 kfree(new_arr); 1466 iotag = psli->last_iotag; 1467 if(++iotag < psli->iocbq_lookup_len) { 1468 psli->last_iotag = iotag; 1469 psli->iocbq_lookup[iotag] = iocbq; 1470 spin_unlock_irq(&phba->hbalock); 1471 iocbq->iotag = iotag; 1472 return iotag; 1473 } 1474 spin_unlock_irq(&phba->hbalock); 1475 return 0; 1476 } 1477 if (psli->iocbq_lookup) 1478 memcpy(new_arr, old_arr, 1479 ((psli->last_iotag + 1) * 1480 sizeof (struct lpfc_iocbq *))); 1481 psli->iocbq_lookup = new_arr; 1482 psli->iocbq_lookup_len = new_len; 1483 psli->last_iotag = iotag; 1484 psli->iocbq_lookup[iotag] = iocbq; 1485 spin_unlock_irq(&phba->hbalock); 1486 iocbq->iotag = iotag; 1487 kfree(old_arr); 1488 return iotag; 1489 } 1490 } else 1491 spin_unlock_irq(&phba->hbalock); 1492 1493 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1494 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1495 psli->last_iotag); 1496 1497 return 0; 1498 } 1499 1500 /** 1501 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1502 * @phba: Pointer to HBA context object. 1503 * @pring: Pointer to driver SLI ring object. 1504 * @iocb: Pointer to iocb slot in the ring. 1505 * @nextiocb: Pointer to driver iocb object which need to be 1506 * posted to firmware. 1507 * 1508 * This function is called with hbalock held to post a new iocb to 1509 * the firmware. This function copies the new iocb to ring iocb slot and 1510 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1511 * a completion call back for this iocb else the function will free the 1512 * iocb object. 1513 **/ 1514 static void 1515 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1516 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1517 { 1518 lockdep_assert_held(&phba->hbalock); 1519 /* 1520 * Set up an iotag 1521 */ 1522 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1523 1524 1525 if (pring->ringno == LPFC_ELS_RING) { 1526 lpfc_debugfs_slow_ring_trc(phba, 1527 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1528 *(((uint32_t *) &nextiocb->iocb) + 4), 1529 *(((uint32_t *) &nextiocb->iocb) + 6), 1530 *(((uint32_t *) &nextiocb->iocb) + 7)); 1531 } 1532 1533 /* 1534 * Issue iocb command to adapter 1535 */ 1536 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1537 wmb(); 1538 pring->stats.iocb_cmd++; 1539 1540 /* 1541 * If there is no completion routine to call, we can release the 1542 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1543 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1544 */ 1545 if (nextiocb->iocb_cmpl) 1546 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1547 else 1548 __lpfc_sli_release_iocbq(phba, nextiocb); 1549 1550 /* 1551 * Let the HBA know what IOCB slot will be the next one the 1552 * driver will put a command into. 1553 */ 1554 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1555 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1556 } 1557 1558 /** 1559 * lpfc_sli_update_full_ring - Update the chip attention register 1560 * @phba: Pointer to HBA context object. 1561 * @pring: Pointer to driver SLI ring object. 1562 * 1563 * The caller is not required to hold any lock for calling this function. 1564 * This function updates the chip attention bits for the ring to inform firmware 1565 * that there are pending work to be done for this ring and requests an 1566 * interrupt when there is space available in the ring. This function is 1567 * called when the driver is unable to post more iocbs to the ring due 1568 * to unavailability of space in the ring. 1569 **/ 1570 static void 1571 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1572 { 1573 int ringno = pring->ringno; 1574 1575 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1576 1577 wmb(); 1578 1579 /* 1580 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1581 * The HBA will tell us when an IOCB entry is available. 1582 */ 1583 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1584 readl(phba->CAregaddr); /* flush */ 1585 1586 pring->stats.iocb_cmd_full++; 1587 } 1588 1589 /** 1590 * lpfc_sli_update_ring - Update chip attention register 1591 * @phba: Pointer to HBA context object. 1592 * @pring: Pointer to driver SLI ring object. 1593 * 1594 * This function updates the chip attention register bit for the 1595 * given ring to inform HBA that there is more work to be done 1596 * in this ring. The caller is not required to hold any lock. 1597 **/ 1598 static void 1599 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1600 { 1601 int ringno = pring->ringno; 1602 1603 /* 1604 * Tell the HBA that there is work to do in this ring. 1605 */ 1606 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1607 wmb(); 1608 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1609 readl(phba->CAregaddr); /* flush */ 1610 } 1611 } 1612 1613 /** 1614 * lpfc_sli_resume_iocb - Process iocbs in the txq 1615 * @phba: Pointer to HBA context object. 1616 * @pring: Pointer to driver SLI ring object. 1617 * 1618 * This function is called with hbalock held to post pending iocbs 1619 * in the txq to the firmware. This function is called when driver 1620 * detects space available in the ring. 1621 **/ 1622 static void 1623 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1624 { 1625 IOCB_t *iocb; 1626 struct lpfc_iocbq *nextiocb; 1627 1628 lockdep_assert_held(&phba->hbalock); 1629 1630 /* 1631 * Check to see if: 1632 * (a) there is anything on the txq to send 1633 * (b) link is up 1634 * (c) link attention events can be processed (fcp ring only) 1635 * (d) IOCB processing is not blocked by the outstanding mbox command. 1636 */ 1637 1638 if (lpfc_is_link_up(phba) && 1639 (!list_empty(&pring->txq)) && 1640 (pring->ringno != phba->sli.fcp_ring || 1641 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1642 1643 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1644 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1645 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1646 1647 if (iocb) 1648 lpfc_sli_update_ring(phba, pring); 1649 else 1650 lpfc_sli_update_full_ring(phba, pring); 1651 } 1652 1653 return; 1654 } 1655 1656 /** 1657 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1658 * @phba: Pointer to HBA context object. 1659 * @hbqno: HBQ number. 1660 * 1661 * This function is called with hbalock held to get the next 1662 * available slot for the given HBQ. If there is free slot 1663 * available for the HBQ it will return pointer to the next available 1664 * HBQ entry else it will return NULL. 1665 **/ 1666 static struct lpfc_hbq_entry * 1667 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1668 { 1669 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1670 1671 lockdep_assert_held(&phba->hbalock); 1672 1673 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1674 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1675 hbqp->next_hbqPutIdx = 0; 1676 1677 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1678 uint32_t raw_index = phba->hbq_get[hbqno]; 1679 uint32_t getidx = le32_to_cpu(raw_index); 1680 1681 hbqp->local_hbqGetIdx = getidx; 1682 1683 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1684 lpfc_printf_log(phba, KERN_ERR, 1685 LOG_SLI | LOG_VPORT, 1686 "1802 HBQ %d: local_hbqGetIdx " 1687 "%u is > than hbqp->entry_count %u\n", 1688 hbqno, hbqp->local_hbqGetIdx, 1689 hbqp->entry_count); 1690 1691 phba->link_state = LPFC_HBA_ERROR; 1692 return NULL; 1693 } 1694 1695 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1696 return NULL; 1697 } 1698 1699 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1700 hbqp->hbqPutIdx; 1701 } 1702 1703 /** 1704 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1705 * @phba: Pointer to HBA context object. 1706 * 1707 * This function is called with no lock held to free all the 1708 * hbq buffers while uninitializing the SLI interface. It also 1709 * frees the HBQ buffers returned by the firmware but not yet 1710 * processed by the upper layers. 1711 **/ 1712 void 1713 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1714 { 1715 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1716 struct hbq_dmabuf *hbq_buf; 1717 unsigned long flags; 1718 int i, hbq_count; 1719 uint32_t hbqno; 1720 1721 hbq_count = lpfc_sli_hbq_count(); 1722 /* Return all memory used by all HBQs */ 1723 spin_lock_irqsave(&phba->hbalock, flags); 1724 for (i = 0; i < hbq_count; ++i) { 1725 list_for_each_entry_safe(dmabuf, next_dmabuf, 1726 &phba->hbqs[i].hbq_buffer_list, list) { 1727 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1728 list_del(&hbq_buf->dbuf.list); 1729 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1730 } 1731 phba->hbqs[i].buffer_count = 0; 1732 } 1733 /* Return all HBQ buffer that are in-fly */ 1734 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1735 list) { 1736 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1737 list_del(&hbq_buf->dbuf.list); 1738 if (hbq_buf->tag == -1) { 1739 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1740 (phba, hbq_buf); 1741 } else { 1742 hbqno = hbq_buf->tag >> 16; 1743 if (hbqno >= LPFC_MAX_HBQS) 1744 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1745 (phba, hbq_buf); 1746 else 1747 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1748 hbq_buf); 1749 } 1750 } 1751 1752 /* Mark the HBQs not in use */ 1753 phba->hbq_in_use = 0; 1754 spin_unlock_irqrestore(&phba->hbalock, flags); 1755 } 1756 1757 /** 1758 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1759 * @phba: Pointer to HBA context object. 1760 * @hbqno: HBQ number. 1761 * @hbq_buf: Pointer to HBQ buffer. 1762 * 1763 * This function is called with the hbalock held to post a 1764 * hbq buffer to the firmware. If the function finds an empty 1765 * slot in the HBQ, it will post the buffer. The function will return 1766 * pointer to the hbq entry if it successfully post the buffer 1767 * else it will return NULL. 1768 **/ 1769 static int 1770 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1771 struct hbq_dmabuf *hbq_buf) 1772 { 1773 lockdep_assert_held(&phba->hbalock); 1774 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1775 } 1776 1777 /** 1778 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1779 * @phba: Pointer to HBA context object. 1780 * @hbqno: HBQ number. 1781 * @hbq_buf: Pointer to HBQ buffer. 1782 * 1783 * This function is called with the hbalock held to post a hbq buffer to the 1784 * firmware. If the function finds an empty slot in the HBQ, it will post the 1785 * buffer and place it on the hbq_buffer_list. The function will return zero if 1786 * it successfully post the buffer else it will return an error. 1787 **/ 1788 static int 1789 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1790 struct hbq_dmabuf *hbq_buf) 1791 { 1792 struct lpfc_hbq_entry *hbqe; 1793 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1794 1795 lockdep_assert_held(&phba->hbalock); 1796 /* Get next HBQ entry slot to use */ 1797 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1798 if (hbqe) { 1799 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1800 1801 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1802 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1803 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1804 hbqe->bde.tus.f.bdeFlags = 0; 1805 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1806 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1807 /* Sync SLIM */ 1808 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1809 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1810 /* flush */ 1811 readl(phba->hbq_put + hbqno); 1812 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1813 return 0; 1814 } else 1815 return -ENOMEM; 1816 } 1817 1818 /** 1819 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1820 * @phba: Pointer to HBA context object. 1821 * @hbqno: HBQ number. 1822 * @hbq_buf: Pointer to HBQ buffer. 1823 * 1824 * This function is called with the hbalock held to post an RQE to the SLI4 1825 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1826 * the hbq_buffer_list and return zero, otherwise it will return an error. 1827 **/ 1828 static int 1829 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1830 struct hbq_dmabuf *hbq_buf) 1831 { 1832 int rc; 1833 struct lpfc_rqe hrqe; 1834 struct lpfc_rqe drqe; 1835 1836 lockdep_assert_held(&phba->hbalock); 1837 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1838 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1839 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1840 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1841 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1842 &hrqe, &drqe); 1843 if (rc < 0) 1844 return rc; 1845 hbq_buf->tag = rc; 1846 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1847 return 0; 1848 } 1849 1850 /* HBQ for ELS and CT traffic. */ 1851 static struct lpfc_hbq_init lpfc_els_hbq = { 1852 .rn = 1, 1853 .entry_count = 256, 1854 .mask_count = 0, 1855 .profile = 0, 1856 .ring_mask = (1 << LPFC_ELS_RING), 1857 .buffer_count = 0, 1858 .init_count = 40, 1859 .add_count = 40, 1860 }; 1861 1862 /* HBQ for the extra ring if needed */ 1863 static struct lpfc_hbq_init lpfc_extra_hbq = { 1864 .rn = 1, 1865 .entry_count = 200, 1866 .mask_count = 0, 1867 .profile = 0, 1868 .ring_mask = (1 << LPFC_EXTRA_RING), 1869 .buffer_count = 0, 1870 .init_count = 0, 1871 .add_count = 5, 1872 }; 1873 1874 /* Array of HBQs */ 1875 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1876 &lpfc_els_hbq, 1877 &lpfc_extra_hbq, 1878 }; 1879 1880 /** 1881 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1882 * @phba: Pointer to HBA context object. 1883 * @hbqno: HBQ number. 1884 * @count: Number of HBQ buffers to be posted. 1885 * 1886 * This function is called with no lock held to post more hbq buffers to the 1887 * given HBQ. The function returns the number of HBQ buffers successfully 1888 * posted. 1889 **/ 1890 static int 1891 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1892 { 1893 uint32_t i, posted = 0; 1894 unsigned long flags; 1895 struct hbq_dmabuf *hbq_buffer; 1896 LIST_HEAD(hbq_buf_list); 1897 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1898 return 0; 1899 1900 if ((phba->hbqs[hbqno].buffer_count + count) > 1901 lpfc_hbq_defs[hbqno]->entry_count) 1902 count = lpfc_hbq_defs[hbqno]->entry_count - 1903 phba->hbqs[hbqno].buffer_count; 1904 if (!count) 1905 return 0; 1906 /* Allocate HBQ entries */ 1907 for (i = 0; i < count; i++) { 1908 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1909 if (!hbq_buffer) 1910 break; 1911 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1912 } 1913 /* Check whether HBQ is still in use */ 1914 spin_lock_irqsave(&phba->hbalock, flags); 1915 if (!phba->hbq_in_use) 1916 goto err; 1917 while (!list_empty(&hbq_buf_list)) { 1918 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1919 dbuf.list); 1920 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1921 (hbqno << 16)); 1922 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1923 phba->hbqs[hbqno].buffer_count++; 1924 posted++; 1925 } else 1926 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1927 } 1928 spin_unlock_irqrestore(&phba->hbalock, flags); 1929 return posted; 1930 err: 1931 spin_unlock_irqrestore(&phba->hbalock, flags); 1932 while (!list_empty(&hbq_buf_list)) { 1933 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1934 dbuf.list); 1935 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1936 } 1937 return 0; 1938 } 1939 1940 /** 1941 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1942 * @phba: Pointer to HBA context object. 1943 * @qno: HBQ number. 1944 * 1945 * This function posts more buffers to the HBQ. This function 1946 * is called with no lock held. The function returns the number of HBQ entries 1947 * successfully allocated. 1948 **/ 1949 int 1950 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1951 { 1952 if (phba->sli_rev == LPFC_SLI_REV4) 1953 return 0; 1954 else 1955 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1956 lpfc_hbq_defs[qno]->add_count); 1957 } 1958 1959 /** 1960 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1961 * @phba: Pointer to HBA context object. 1962 * @qno: HBQ queue number. 1963 * 1964 * This function is called from SLI initialization code path with 1965 * no lock held to post initial HBQ buffers to firmware. The 1966 * function returns the number of HBQ entries successfully allocated. 1967 **/ 1968 static int 1969 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1970 { 1971 if (phba->sli_rev == LPFC_SLI_REV4) 1972 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1973 lpfc_hbq_defs[qno]->entry_count); 1974 else 1975 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1976 lpfc_hbq_defs[qno]->init_count); 1977 } 1978 1979 /** 1980 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1981 * @phba: Pointer to HBA context object. 1982 * @hbqno: HBQ number. 1983 * 1984 * This function removes the first hbq buffer on an hbq list and returns a 1985 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1986 **/ 1987 static struct hbq_dmabuf * 1988 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1989 { 1990 struct lpfc_dmabuf *d_buf; 1991 1992 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1993 if (!d_buf) 1994 return NULL; 1995 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1996 } 1997 1998 /** 1999 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2000 * @phba: Pointer to HBA context object. 2001 * @tag: Tag of the hbq buffer. 2002 * 2003 * This function searches for the hbq buffer associated with the given tag in 2004 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2005 * otherwise it returns NULL. 2006 **/ 2007 static struct hbq_dmabuf * 2008 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2009 { 2010 struct lpfc_dmabuf *d_buf; 2011 struct hbq_dmabuf *hbq_buf; 2012 uint32_t hbqno; 2013 2014 hbqno = tag >> 16; 2015 if (hbqno >= LPFC_MAX_HBQS) 2016 return NULL; 2017 2018 spin_lock_irq(&phba->hbalock); 2019 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2020 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2021 if (hbq_buf->tag == tag) { 2022 spin_unlock_irq(&phba->hbalock); 2023 return hbq_buf; 2024 } 2025 } 2026 spin_unlock_irq(&phba->hbalock); 2027 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2028 "1803 Bad hbq tag. Data: x%x x%x\n", 2029 tag, phba->hbqs[tag >> 16].buffer_count); 2030 return NULL; 2031 } 2032 2033 /** 2034 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2035 * @phba: Pointer to HBA context object. 2036 * @hbq_buffer: Pointer to HBQ buffer. 2037 * 2038 * This function is called with hbalock. This function gives back 2039 * the hbq buffer to firmware. If the HBQ does not have space to 2040 * post the buffer, it will free the buffer. 2041 **/ 2042 void 2043 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2044 { 2045 uint32_t hbqno; 2046 2047 if (hbq_buffer) { 2048 hbqno = hbq_buffer->tag >> 16; 2049 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2050 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2051 } 2052 } 2053 2054 /** 2055 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2056 * @mbxCommand: mailbox command code. 2057 * 2058 * This function is called by the mailbox event handler function to verify 2059 * that the completed mailbox command is a legitimate mailbox command. If the 2060 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2061 * and the mailbox event handler will take the HBA offline. 2062 **/ 2063 static int 2064 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2065 { 2066 uint8_t ret; 2067 2068 switch (mbxCommand) { 2069 case MBX_LOAD_SM: 2070 case MBX_READ_NV: 2071 case MBX_WRITE_NV: 2072 case MBX_WRITE_VPARMS: 2073 case MBX_RUN_BIU_DIAG: 2074 case MBX_INIT_LINK: 2075 case MBX_DOWN_LINK: 2076 case MBX_CONFIG_LINK: 2077 case MBX_CONFIG_RING: 2078 case MBX_RESET_RING: 2079 case MBX_READ_CONFIG: 2080 case MBX_READ_RCONFIG: 2081 case MBX_READ_SPARM: 2082 case MBX_READ_STATUS: 2083 case MBX_READ_RPI: 2084 case MBX_READ_XRI: 2085 case MBX_READ_REV: 2086 case MBX_READ_LNK_STAT: 2087 case MBX_REG_LOGIN: 2088 case MBX_UNREG_LOGIN: 2089 case MBX_CLEAR_LA: 2090 case MBX_DUMP_MEMORY: 2091 case MBX_DUMP_CONTEXT: 2092 case MBX_RUN_DIAGS: 2093 case MBX_RESTART: 2094 case MBX_UPDATE_CFG: 2095 case MBX_DOWN_LOAD: 2096 case MBX_DEL_LD_ENTRY: 2097 case MBX_RUN_PROGRAM: 2098 case MBX_SET_MASK: 2099 case MBX_SET_VARIABLE: 2100 case MBX_UNREG_D_ID: 2101 case MBX_KILL_BOARD: 2102 case MBX_CONFIG_FARP: 2103 case MBX_BEACON: 2104 case MBX_LOAD_AREA: 2105 case MBX_RUN_BIU_DIAG64: 2106 case MBX_CONFIG_PORT: 2107 case MBX_READ_SPARM64: 2108 case MBX_READ_RPI64: 2109 case MBX_REG_LOGIN64: 2110 case MBX_READ_TOPOLOGY: 2111 case MBX_WRITE_WWN: 2112 case MBX_SET_DEBUG: 2113 case MBX_LOAD_EXP_ROM: 2114 case MBX_ASYNCEVT_ENABLE: 2115 case MBX_REG_VPI: 2116 case MBX_UNREG_VPI: 2117 case MBX_HEARTBEAT: 2118 case MBX_PORT_CAPABILITIES: 2119 case MBX_PORT_IOV_CONTROL: 2120 case MBX_SLI4_CONFIG: 2121 case MBX_SLI4_REQ_FTRS: 2122 case MBX_REG_FCFI: 2123 case MBX_UNREG_FCFI: 2124 case MBX_REG_VFI: 2125 case MBX_UNREG_VFI: 2126 case MBX_INIT_VPI: 2127 case MBX_INIT_VFI: 2128 case MBX_RESUME_RPI: 2129 case MBX_READ_EVENT_LOG_STATUS: 2130 case MBX_READ_EVENT_LOG: 2131 case MBX_SECURITY_MGMT: 2132 case MBX_AUTH_PORT: 2133 case MBX_ACCESS_VDATA: 2134 ret = mbxCommand; 2135 break; 2136 default: 2137 ret = MBX_SHUTDOWN; 2138 break; 2139 } 2140 return ret; 2141 } 2142 2143 /** 2144 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2145 * @phba: Pointer to HBA context object. 2146 * @pmboxq: Pointer to mailbox command. 2147 * 2148 * This is completion handler function for mailbox commands issued from 2149 * lpfc_sli_issue_mbox_wait function. This function is called by the 2150 * mailbox event handler function with no lock held. This function 2151 * will wake up thread waiting on the wait queue pointed by context1 2152 * of the mailbox. 2153 **/ 2154 void 2155 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2156 { 2157 wait_queue_head_t *pdone_q; 2158 unsigned long drvr_flag; 2159 2160 /* 2161 * If pdone_q is empty, the driver thread gave up waiting and 2162 * continued running. 2163 */ 2164 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2165 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2166 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2167 if (pdone_q) 2168 wake_up_interruptible(pdone_q); 2169 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2170 return; 2171 } 2172 2173 2174 /** 2175 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2176 * @phba: Pointer to HBA context object. 2177 * @pmb: Pointer to mailbox object. 2178 * 2179 * This function is the default mailbox completion handler. It 2180 * frees the memory resources associated with the completed mailbox 2181 * command. If the completed command is a REG_LOGIN mailbox command, 2182 * this function will issue a UREG_LOGIN to re-claim the RPI. 2183 **/ 2184 void 2185 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2186 { 2187 struct lpfc_vport *vport = pmb->vport; 2188 struct lpfc_dmabuf *mp; 2189 struct lpfc_nodelist *ndlp; 2190 struct Scsi_Host *shost; 2191 uint16_t rpi, vpi; 2192 int rc; 2193 2194 mp = (struct lpfc_dmabuf *) (pmb->context1); 2195 2196 if (mp) { 2197 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2198 kfree(mp); 2199 } 2200 2201 /* 2202 * If a REG_LOGIN succeeded after node is destroyed or node 2203 * is in re-discovery driver need to cleanup the RPI. 2204 */ 2205 if (!(phba->pport->load_flag & FC_UNLOADING) && 2206 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2207 !pmb->u.mb.mbxStatus) { 2208 rpi = pmb->u.mb.un.varWords[0]; 2209 vpi = pmb->u.mb.un.varRegLogin.vpi; 2210 lpfc_unreg_login(phba, vpi, rpi, pmb); 2211 pmb->vport = vport; 2212 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2213 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2214 if (rc != MBX_NOT_FINISHED) 2215 return; 2216 } 2217 2218 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2219 !(phba->pport->load_flag & FC_UNLOADING) && 2220 !pmb->u.mb.mbxStatus) { 2221 shost = lpfc_shost_from_vport(vport); 2222 spin_lock_irq(shost->host_lock); 2223 vport->vpi_state |= LPFC_VPI_REGISTERED; 2224 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2225 spin_unlock_irq(shost->host_lock); 2226 } 2227 2228 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2229 ndlp = (struct lpfc_nodelist *)pmb->context2; 2230 lpfc_nlp_put(ndlp); 2231 pmb->context2 = NULL; 2232 } 2233 2234 /* Check security permission status on INIT_LINK mailbox command */ 2235 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2236 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2237 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2238 "2860 SLI authentication is required " 2239 "for INIT_LINK but has not done yet\n"); 2240 2241 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2242 lpfc_sli4_mbox_cmd_free(phba, pmb); 2243 else 2244 mempool_free(pmb, phba->mbox_mem_pool); 2245 } 2246 /** 2247 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2248 * @phba: Pointer to HBA context object. 2249 * @pmb: Pointer to mailbox object. 2250 * 2251 * This function is the unreg rpi mailbox completion handler. It 2252 * frees the memory resources associated with the completed mailbox 2253 * command. An additional refrenece is put on the ndlp to prevent 2254 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2255 * the unreg mailbox command completes, this routine puts the 2256 * reference back. 2257 * 2258 **/ 2259 void 2260 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2261 { 2262 struct lpfc_vport *vport = pmb->vport; 2263 struct lpfc_nodelist *ndlp; 2264 2265 ndlp = pmb->context1; 2266 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2267 if (phba->sli_rev == LPFC_SLI_REV4 && 2268 (bf_get(lpfc_sli_intf_if_type, 2269 &phba->sli4_hba.sli_intf) == 2270 LPFC_SLI_INTF_IF_TYPE_2)) { 2271 if (ndlp) { 2272 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2273 "0010 UNREG_LOGIN vpi:%x " 2274 "rpi:%x DID:%x map:%x %p\n", 2275 vport->vpi, ndlp->nlp_rpi, 2276 ndlp->nlp_DID, 2277 ndlp->nlp_usg_map, ndlp); 2278 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2279 lpfc_nlp_put(ndlp); 2280 } 2281 } 2282 } 2283 2284 mempool_free(pmb, phba->mbox_mem_pool); 2285 } 2286 2287 /** 2288 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2289 * @phba: Pointer to HBA context object. 2290 * 2291 * This function is called with no lock held. This function processes all 2292 * the completed mailbox commands and gives it to upper layers. The interrupt 2293 * service routine processes mailbox completion interrupt and adds completed 2294 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2295 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2296 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2297 * function returns the mailbox commands to the upper layer by calling the 2298 * completion handler function of each mailbox. 2299 **/ 2300 int 2301 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2302 { 2303 MAILBOX_t *pmbox; 2304 LPFC_MBOXQ_t *pmb; 2305 int rc; 2306 LIST_HEAD(cmplq); 2307 2308 phba->sli.slistat.mbox_event++; 2309 2310 /* Get all completed mailboxe buffers into the cmplq */ 2311 spin_lock_irq(&phba->hbalock); 2312 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2313 spin_unlock_irq(&phba->hbalock); 2314 2315 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2316 do { 2317 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2318 if (pmb == NULL) 2319 break; 2320 2321 pmbox = &pmb->u.mb; 2322 2323 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2324 if (pmb->vport) { 2325 lpfc_debugfs_disc_trc(pmb->vport, 2326 LPFC_DISC_TRC_MBOX_VPORT, 2327 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2328 (uint32_t)pmbox->mbxCommand, 2329 pmbox->un.varWords[0], 2330 pmbox->un.varWords[1]); 2331 } 2332 else { 2333 lpfc_debugfs_disc_trc(phba->pport, 2334 LPFC_DISC_TRC_MBOX, 2335 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2336 (uint32_t)pmbox->mbxCommand, 2337 pmbox->un.varWords[0], 2338 pmbox->un.varWords[1]); 2339 } 2340 } 2341 2342 /* 2343 * It is a fatal error if unknown mbox command completion. 2344 */ 2345 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2346 MBX_SHUTDOWN) { 2347 /* Unknown mailbox command compl */ 2348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2349 "(%d):0323 Unknown Mailbox command " 2350 "x%x (x%x/x%x) Cmpl\n", 2351 pmb->vport ? pmb->vport->vpi : 0, 2352 pmbox->mbxCommand, 2353 lpfc_sli_config_mbox_subsys_get(phba, 2354 pmb), 2355 lpfc_sli_config_mbox_opcode_get(phba, 2356 pmb)); 2357 phba->link_state = LPFC_HBA_ERROR; 2358 phba->work_hs = HS_FFER3; 2359 lpfc_handle_eratt(phba); 2360 continue; 2361 } 2362 2363 if (pmbox->mbxStatus) { 2364 phba->sli.slistat.mbox_stat_err++; 2365 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2366 /* Mbox cmd cmpl error - RETRYing */ 2367 lpfc_printf_log(phba, KERN_INFO, 2368 LOG_MBOX | LOG_SLI, 2369 "(%d):0305 Mbox cmd cmpl " 2370 "error - RETRYing Data: x%x " 2371 "(x%x/x%x) x%x x%x x%x\n", 2372 pmb->vport ? pmb->vport->vpi : 0, 2373 pmbox->mbxCommand, 2374 lpfc_sli_config_mbox_subsys_get(phba, 2375 pmb), 2376 lpfc_sli_config_mbox_opcode_get(phba, 2377 pmb), 2378 pmbox->mbxStatus, 2379 pmbox->un.varWords[0], 2380 pmb->vport->port_state); 2381 pmbox->mbxStatus = 0; 2382 pmbox->mbxOwner = OWN_HOST; 2383 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2384 if (rc != MBX_NOT_FINISHED) 2385 continue; 2386 } 2387 } 2388 2389 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2390 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2391 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2392 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2393 "x%x x%x x%x\n", 2394 pmb->vport ? pmb->vport->vpi : 0, 2395 pmbox->mbxCommand, 2396 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2397 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2398 pmb->mbox_cmpl, 2399 *((uint32_t *) pmbox), 2400 pmbox->un.varWords[0], 2401 pmbox->un.varWords[1], 2402 pmbox->un.varWords[2], 2403 pmbox->un.varWords[3], 2404 pmbox->un.varWords[4], 2405 pmbox->un.varWords[5], 2406 pmbox->un.varWords[6], 2407 pmbox->un.varWords[7], 2408 pmbox->un.varWords[8], 2409 pmbox->un.varWords[9], 2410 pmbox->un.varWords[10]); 2411 2412 if (pmb->mbox_cmpl) 2413 pmb->mbox_cmpl(phba,pmb); 2414 } while (1); 2415 return 0; 2416 } 2417 2418 /** 2419 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2420 * @phba: Pointer to HBA context object. 2421 * @pring: Pointer to driver SLI ring object. 2422 * @tag: buffer tag. 2423 * 2424 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2425 * is set in the tag the buffer is posted for a particular exchange, 2426 * the function will return the buffer without replacing the buffer. 2427 * If the buffer is for unsolicited ELS or CT traffic, this function 2428 * returns the buffer and also posts another buffer to the firmware. 2429 **/ 2430 static struct lpfc_dmabuf * 2431 lpfc_sli_get_buff(struct lpfc_hba *phba, 2432 struct lpfc_sli_ring *pring, 2433 uint32_t tag) 2434 { 2435 struct hbq_dmabuf *hbq_entry; 2436 2437 if (tag & QUE_BUFTAG_BIT) 2438 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2439 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2440 if (!hbq_entry) 2441 return NULL; 2442 return &hbq_entry->dbuf; 2443 } 2444 2445 /** 2446 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2447 * @phba: Pointer to HBA context object. 2448 * @pring: Pointer to driver SLI ring object. 2449 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2450 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2451 * @fch_type: the type for the first frame of the sequence. 2452 * 2453 * This function is called with no lock held. This function uses the r_ctl and 2454 * type of the received sequence to find the correct callback function to call 2455 * to process the sequence. 2456 **/ 2457 static int 2458 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2459 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2460 uint32_t fch_type) 2461 { 2462 int i; 2463 2464 /* unSolicited Responses */ 2465 if (pring->prt[0].profile) { 2466 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2467 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2468 saveq); 2469 return 1; 2470 } 2471 /* We must search, based on rctl / type 2472 for the right routine */ 2473 for (i = 0; i < pring->num_mask; i++) { 2474 if ((pring->prt[i].rctl == fch_r_ctl) && 2475 (pring->prt[i].type == fch_type)) { 2476 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2477 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2478 (phba, pring, saveq); 2479 return 1; 2480 } 2481 } 2482 return 0; 2483 } 2484 2485 /** 2486 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2487 * @phba: Pointer to HBA context object. 2488 * @pring: Pointer to driver SLI ring object. 2489 * @saveq: Pointer to the unsolicited iocb. 2490 * 2491 * This function is called with no lock held by the ring event handler 2492 * when there is an unsolicited iocb posted to the response ring by the 2493 * firmware. This function gets the buffer associated with the iocbs 2494 * and calls the event handler for the ring. This function handles both 2495 * qring buffers and hbq buffers. 2496 * When the function returns 1 the caller can free the iocb object otherwise 2497 * upper layer functions will free the iocb objects. 2498 **/ 2499 static int 2500 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2501 struct lpfc_iocbq *saveq) 2502 { 2503 IOCB_t * irsp; 2504 WORD5 * w5p; 2505 uint32_t Rctl, Type; 2506 struct lpfc_iocbq *iocbq; 2507 struct lpfc_dmabuf *dmzbuf; 2508 2509 irsp = &(saveq->iocb); 2510 2511 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2512 if (pring->lpfc_sli_rcv_async_status) 2513 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2514 else 2515 lpfc_printf_log(phba, 2516 KERN_WARNING, 2517 LOG_SLI, 2518 "0316 Ring %d handler: unexpected " 2519 "ASYNC_STATUS iocb received evt_code " 2520 "0x%x\n", 2521 pring->ringno, 2522 irsp->un.asyncstat.evt_code); 2523 return 1; 2524 } 2525 2526 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2527 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2528 if (irsp->ulpBdeCount > 0) { 2529 dmzbuf = lpfc_sli_get_buff(phba, pring, 2530 irsp->un.ulpWord[3]); 2531 lpfc_in_buf_free(phba, dmzbuf); 2532 } 2533 2534 if (irsp->ulpBdeCount > 1) { 2535 dmzbuf = lpfc_sli_get_buff(phba, pring, 2536 irsp->unsli3.sli3Words[3]); 2537 lpfc_in_buf_free(phba, dmzbuf); 2538 } 2539 2540 if (irsp->ulpBdeCount > 2) { 2541 dmzbuf = lpfc_sli_get_buff(phba, pring, 2542 irsp->unsli3.sli3Words[7]); 2543 lpfc_in_buf_free(phba, dmzbuf); 2544 } 2545 2546 return 1; 2547 } 2548 2549 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2550 if (irsp->ulpBdeCount != 0) { 2551 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2552 irsp->un.ulpWord[3]); 2553 if (!saveq->context2) 2554 lpfc_printf_log(phba, 2555 KERN_ERR, 2556 LOG_SLI, 2557 "0341 Ring %d Cannot find buffer for " 2558 "an unsolicited iocb. tag 0x%x\n", 2559 pring->ringno, 2560 irsp->un.ulpWord[3]); 2561 } 2562 if (irsp->ulpBdeCount == 2) { 2563 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2564 irsp->unsli3.sli3Words[7]); 2565 if (!saveq->context3) 2566 lpfc_printf_log(phba, 2567 KERN_ERR, 2568 LOG_SLI, 2569 "0342 Ring %d Cannot find buffer for an" 2570 " unsolicited iocb. tag 0x%x\n", 2571 pring->ringno, 2572 irsp->unsli3.sli3Words[7]); 2573 } 2574 list_for_each_entry(iocbq, &saveq->list, list) { 2575 irsp = &(iocbq->iocb); 2576 if (irsp->ulpBdeCount != 0) { 2577 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2578 irsp->un.ulpWord[3]); 2579 if (!iocbq->context2) 2580 lpfc_printf_log(phba, 2581 KERN_ERR, 2582 LOG_SLI, 2583 "0343 Ring %d Cannot find " 2584 "buffer for an unsolicited iocb" 2585 ". tag 0x%x\n", pring->ringno, 2586 irsp->un.ulpWord[3]); 2587 } 2588 if (irsp->ulpBdeCount == 2) { 2589 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2590 irsp->unsli3.sli3Words[7]); 2591 if (!iocbq->context3) 2592 lpfc_printf_log(phba, 2593 KERN_ERR, 2594 LOG_SLI, 2595 "0344 Ring %d Cannot find " 2596 "buffer for an unsolicited " 2597 "iocb. tag 0x%x\n", 2598 pring->ringno, 2599 irsp->unsli3.sli3Words[7]); 2600 } 2601 } 2602 } 2603 if (irsp->ulpBdeCount != 0 && 2604 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2605 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2606 int found = 0; 2607 2608 /* search continue save q for same XRI */ 2609 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2610 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2611 saveq->iocb.unsli3.rcvsli3.ox_id) { 2612 list_add_tail(&saveq->list, &iocbq->list); 2613 found = 1; 2614 break; 2615 } 2616 } 2617 if (!found) 2618 list_add_tail(&saveq->clist, 2619 &pring->iocb_continue_saveq); 2620 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2621 list_del_init(&iocbq->clist); 2622 saveq = iocbq; 2623 irsp = &(saveq->iocb); 2624 } else 2625 return 0; 2626 } 2627 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2628 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2629 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2630 Rctl = FC_RCTL_ELS_REQ; 2631 Type = FC_TYPE_ELS; 2632 } else { 2633 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2634 Rctl = w5p->hcsw.Rctl; 2635 Type = w5p->hcsw.Type; 2636 2637 /* Firmware Workaround */ 2638 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2639 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2640 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2641 Rctl = FC_RCTL_ELS_REQ; 2642 Type = FC_TYPE_ELS; 2643 w5p->hcsw.Rctl = Rctl; 2644 w5p->hcsw.Type = Type; 2645 } 2646 } 2647 2648 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2649 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2650 "0313 Ring %d handler: unexpected Rctl x%x " 2651 "Type x%x received\n", 2652 pring->ringno, Rctl, Type); 2653 2654 return 1; 2655 } 2656 2657 /** 2658 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2659 * @phba: Pointer to HBA context object. 2660 * @pring: Pointer to driver SLI ring object. 2661 * @prspiocb: Pointer to response iocb object. 2662 * 2663 * This function looks up the iocb_lookup table to get the command iocb 2664 * corresponding to the given response iocb using the iotag of the 2665 * response iocb. This function is called with the hbalock held. 2666 * This function returns the command iocb object if it finds the command 2667 * iocb else returns NULL. 2668 **/ 2669 static struct lpfc_iocbq * 2670 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2671 struct lpfc_sli_ring *pring, 2672 struct lpfc_iocbq *prspiocb) 2673 { 2674 struct lpfc_iocbq *cmd_iocb = NULL; 2675 uint16_t iotag; 2676 lockdep_assert_held(&phba->hbalock); 2677 2678 iotag = prspiocb->iocb.ulpIoTag; 2679 2680 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2681 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2682 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2683 /* remove from txcmpl queue list */ 2684 list_del_init(&cmd_iocb->list); 2685 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2686 return cmd_iocb; 2687 } 2688 } 2689 2690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2691 "0317 iotag x%x is out of " 2692 "range: max iotag x%x wd0 x%x\n", 2693 iotag, phba->sli.last_iotag, 2694 *(((uint32_t *) &prspiocb->iocb) + 7)); 2695 return NULL; 2696 } 2697 2698 /** 2699 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2700 * @phba: Pointer to HBA context object. 2701 * @pring: Pointer to driver SLI ring object. 2702 * @iotag: IOCB tag. 2703 * 2704 * This function looks up the iocb_lookup table to get the command iocb 2705 * corresponding to the given iotag. This function is called with the 2706 * hbalock held. 2707 * This function returns the command iocb object if it finds the command 2708 * iocb else returns NULL. 2709 **/ 2710 static struct lpfc_iocbq * 2711 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2712 struct lpfc_sli_ring *pring, uint16_t iotag) 2713 { 2714 struct lpfc_iocbq *cmd_iocb; 2715 2716 lockdep_assert_held(&phba->hbalock); 2717 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2718 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2719 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2720 /* remove from txcmpl queue list */ 2721 list_del_init(&cmd_iocb->list); 2722 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2723 return cmd_iocb; 2724 } 2725 } 2726 2727 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2728 "0372 iotag x%x is out of range: max iotag (x%x)\n", 2729 iotag, phba->sli.last_iotag); 2730 return NULL; 2731 } 2732 2733 /** 2734 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2735 * @phba: Pointer to HBA context object. 2736 * @pring: Pointer to driver SLI ring object. 2737 * @saveq: Pointer to the response iocb to be processed. 2738 * 2739 * This function is called by the ring event handler for non-fcp 2740 * rings when there is a new response iocb in the response ring. 2741 * The caller is not required to hold any locks. This function 2742 * gets the command iocb associated with the response iocb and 2743 * calls the completion handler for the command iocb. If there 2744 * is no completion handler, the function will free the resources 2745 * associated with command iocb. If the response iocb is for 2746 * an already aborted command iocb, the status of the completion 2747 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2748 * This function always returns 1. 2749 **/ 2750 static int 2751 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2752 struct lpfc_iocbq *saveq) 2753 { 2754 struct lpfc_iocbq *cmdiocbp; 2755 int rc = 1; 2756 unsigned long iflag; 2757 2758 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2759 spin_lock_irqsave(&phba->hbalock, iflag); 2760 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2761 spin_unlock_irqrestore(&phba->hbalock, iflag); 2762 2763 if (cmdiocbp) { 2764 if (cmdiocbp->iocb_cmpl) { 2765 /* 2766 * If an ELS command failed send an event to mgmt 2767 * application. 2768 */ 2769 if (saveq->iocb.ulpStatus && 2770 (pring->ringno == LPFC_ELS_RING) && 2771 (cmdiocbp->iocb.ulpCommand == 2772 CMD_ELS_REQUEST64_CR)) 2773 lpfc_send_els_failure_event(phba, 2774 cmdiocbp, saveq); 2775 2776 /* 2777 * Post all ELS completions to the worker thread. 2778 * All other are passed to the completion callback. 2779 */ 2780 if (pring->ringno == LPFC_ELS_RING) { 2781 if ((phba->sli_rev < LPFC_SLI_REV4) && 2782 (cmdiocbp->iocb_flag & 2783 LPFC_DRIVER_ABORTED)) { 2784 spin_lock_irqsave(&phba->hbalock, 2785 iflag); 2786 cmdiocbp->iocb_flag &= 2787 ~LPFC_DRIVER_ABORTED; 2788 spin_unlock_irqrestore(&phba->hbalock, 2789 iflag); 2790 saveq->iocb.ulpStatus = 2791 IOSTAT_LOCAL_REJECT; 2792 saveq->iocb.un.ulpWord[4] = 2793 IOERR_SLI_ABORTED; 2794 2795 /* Firmware could still be in progress 2796 * of DMAing payload, so don't free data 2797 * buffer till after a hbeat. 2798 */ 2799 spin_lock_irqsave(&phba->hbalock, 2800 iflag); 2801 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2802 spin_unlock_irqrestore(&phba->hbalock, 2803 iflag); 2804 } 2805 if (phba->sli_rev == LPFC_SLI_REV4) { 2806 if (saveq->iocb_flag & 2807 LPFC_EXCHANGE_BUSY) { 2808 /* Set cmdiocb flag for the 2809 * exchange busy so sgl (xri) 2810 * will not be released until 2811 * the abort xri is received 2812 * from hba. 2813 */ 2814 spin_lock_irqsave( 2815 &phba->hbalock, iflag); 2816 cmdiocbp->iocb_flag |= 2817 LPFC_EXCHANGE_BUSY; 2818 spin_unlock_irqrestore( 2819 &phba->hbalock, iflag); 2820 } 2821 if (cmdiocbp->iocb_flag & 2822 LPFC_DRIVER_ABORTED) { 2823 /* 2824 * Clear LPFC_DRIVER_ABORTED 2825 * bit in case it was driver 2826 * initiated abort. 2827 */ 2828 spin_lock_irqsave( 2829 &phba->hbalock, iflag); 2830 cmdiocbp->iocb_flag &= 2831 ~LPFC_DRIVER_ABORTED; 2832 spin_unlock_irqrestore( 2833 &phba->hbalock, iflag); 2834 cmdiocbp->iocb.ulpStatus = 2835 IOSTAT_LOCAL_REJECT; 2836 cmdiocbp->iocb.un.ulpWord[4] = 2837 IOERR_ABORT_REQUESTED; 2838 /* 2839 * For SLI4, irsiocb contains 2840 * NO_XRI in sli_xritag, it 2841 * shall not affect releasing 2842 * sgl (xri) process. 2843 */ 2844 saveq->iocb.ulpStatus = 2845 IOSTAT_LOCAL_REJECT; 2846 saveq->iocb.un.ulpWord[4] = 2847 IOERR_SLI_ABORTED; 2848 spin_lock_irqsave( 2849 &phba->hbalock, iflag); 2850 saveq->iocb_flag |= 2851 LPFC_DELAY_MEM_FREE; 2852 spin_unlock_irqrestore( 2853 &phba->hbalock, iflag); 2854 } 2855 } 2856 } 2857 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2858 } else 2859 lpfc_sli_release_iocbq(phba, cmdiocbp); 2860 } else { 2861 /* 2862 * Unknown initiating command based on the response iotag. 2863 * This could be the case on the ELS ring because of 2864 * lpfc_els_abort(). 2865 */ 2866 if (pring->ringno != LPFC_ELS_RING) { 2867 /* 2868 * Ring <ringno> handler: unexpected completion IoTag 2869 * <IoTag> 2870 */ 2871 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2872 "0322 Ring %d handler: " 2873 "unexpected completion IoTag x%x " 2874 "Data: x%x x%x x%x x%x\n", 2875 pring->ringno, 2876 saveq->iocb.ulpIoTag, 2877 saveq->iocb.ulpStatus, 2878 saveq->iocb.un.ulpWord[4], 2879 saveq->iocb.ulpCommand, 2880 saveq->iocb.ulpContext); 2881 } 2882 } 2883 2884 return rc; 2885 } 2886 2887 /** 2888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2889 * @phba: Pointer to HBA context object. 2890 * @pring: Pointer to driver SLI ring object. 2891 * 2892 * This function is called from the iocb ring event handlers when 2893 * put pointer is ahead of the get pointer for a ring. This function signal 2894 * an error attention condition to the worker thread and the worker 2895 * thread will transition the HBA to offline state. 2896 **/ 2897 static void 2898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2899 { 2900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2901 /* 2902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2903 * rsp ring <portRspMax> 2904 */ 2905 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2906 "0312 Ring %d handler: portRspPut %d " 2907 "is bigger than rsp ring %d\n", 2908 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2909 pring->sli.sli3.numRiocb); 2910 2911 phba->link_state = LPFC_HBA_ERROR; 2912 2913 /* 2914 * All error attention handlers are posted to 2915 * worker thread 2916 */ 2917 phba->work_ha |= HA_ERATT; 2918 phba->work_hs = HS_FFER3; 2919 2920 lpfc_worker_wake_up(phba); 2921 2922 return; 2923 } 2924 2925 /** 2926 * lpfc_poll_eratt - Error attention polling timer timeout handler 2927 * @ptr: Pointer to address of HBA context object. 2928 * 2929 * This function is invoked by the Error Attention polling timer when the 2930 * timer times out. It will check the SLI Error Attention register for 2931 * possible attention events. If so, it will post an Error Attention event 2932 * and wake up worker thread to process it. Otherwise, it will set up the 2933 * Error Attention polling timer for the next poll. 2934 **/ 2935 void lpfc_poll_eratt(unsigned long ptr) 2936 { 2937 struct lpfc_hba *phba; 2938 uint32_t eratt = 0; 2939 uint64_t sli_intr, cnt; 2940 2941 phba = (struct lpfc_hba *)ptr; 2942 2943 /* Here we will also keep track of interrupts per sec of the hba */ 2944 sli_intr = phba->sli.slistat.sli_intr; 2945 2946 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2947 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2948 sli_intr); 2949 else 2950 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2951 2952 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 2953 do_div(cnt, phba->eratt_poll_interval); 2954 phba->sli.slistat.sli_ips = cnt; 2955 2956 phba->sli.slistat.sli_prev_intr = sli_intr; 2957 2958 /* Check chip HA register for error event */ 2959 eratt = lpfc_sli_check_eratt(phba); 2960 2961 if (eratt) 2962 /* Tell the worker thread there is work to do */ 2963 lpfc_worker_wake_up(phba); 2964 else 2965 /* Restart the timer for next eratt poll */ 2966 mod_timer(&phba->eratt_poll, 2967 jiffies + 2968 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 2969 return; 2970 } 2971 2972 2973 /** 2974 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2975 * @phba: Pointer to HBA context object. 2976 * @pring: Pointer to driver SLI ring object. 2977 * @mask: Host attention register mask for this ring. 2978 * 2979 * This function is called from the interrupt context when there is a ring 2980 * event for the fcp ring. The caller does not hold any lock. 2981 * The function processes each response iocb in the response ring until it 2982 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2983 * LE bit set. The function will call the completion handler of the command iocb 2984 * if the response iocb indicates a completion for a command iocb or it is 2985 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2986 * function if this is an unsolicited iocb. 2987 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2988 * to check it explicitly. 2989 */ 2990 int 2991 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2992 struct lpfc_sli_ring *pring, uint32_t mask) 2993 { 2994 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2995 IOCB_t *irsp = NULL; 2996 IOCB_t *entry = NULL; 2997 struct lpfc_iocbq *cmdiocbq = NULL; 2998 struct lpfc_iocbq rspiocbq; 2999 uint32_t status; 3000 uint32_t portRspPut, portRspMax; 3001 int rc = 1; 3002 lpfc_iocb_type type; 3003 unsigned long iflag; 3004 uint32_t rsp_cmpl = 0; 3005 3006 spin_lock_irqsave(&phba->hbalock, iflag); 3007 pring->stats.iocb_event++; 3008 3009 /* 3010 * The next available response entry should never exceed the maximum 3011 * entries. If it does, treat it as an adapter hardware error. 3012 */ 3013 portRspMax = pring->sli.sli3.numRiocb; 3014 portRspPut = le32_to_cpu(pgp->rspPutInx); 3015 if (unlikely(portRspPut >= portRspMax)) { 3016 lpfc_sli_rsp_pointers_error(phba, pring); 3017 spin_unlock_irqrestore(&phba->hbalock, iflag); 3018 return 1; 3019 } 3020 if (phba->fcp_ring_in_use) { 3021 spin_unlock_irqrestore(&phba->hbalock, iflag); 3022 return 1; 3023 } else 3024 phba->fcp_ring_in_use = 1; 3025 3026 rmb(); 3027 while (pring->sli.sli3.rspidx != portRspPut) { 3028 /* 3029 * Fetch an entry off the ring and copy it into a local data 3030 * structure. The copy involves a byte-swap since the 3031 * network byte order and pci byte orders are different. 3032 */ 3033 entry = lpfc_resp_iocb(phba, pring); 3034 phba->last_completion_time = jiffies; 3035 3036 if (++pring->sli.sli3.rspidx >= portRspMax) 3037 pring->sli.sli3.rspidx = 0; 3038 3039 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3040 (uint32_t *) &rspiocbq.iocb, 3041 phba->iocb_rsp_size); 3042 INIT_LIST_HEAD(&(rspiocbq.list)); 3043 irsp = &rspiocbq.iocb; 3044 3045 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3046 pring->stats.iocb_rsp++; 3047 rsp_cmpl++; 3048 3049 if (unlikely(irsp->ulpStatus)) { 3050 /* 3051 * If resource errors reported from HBA, reduce 3052 * queuedepths of the SCSI device. 3053 */ 3054 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3055 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3056 IOERR_NO_RESOURCES)) { 3057 spin_unlock_irqrestore(&phba->hbalock, iflag); 3058 phba->lpfc_rampdown_queue_depth(phba); 3059 spin_lock_irqsave(&phba->hbalock, iflag); 3060 } 3061 3062 /* Rsp ring <ringno> error: IOCB */ 3063 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3064 "0336 Rsp Ring %d error: IOCB Data: " 3065 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3066 pring->ringno, 3067 irsp->un.ulpWord[0], 3068 irsp->un.ulpWord[1], 3069 irsp->un.ulpWord[2], 3070 irsp->un.ulpWord[3], 3071 irsp->un.ulpWord[4], 3072 irsp->un.ulpWord[5], 3073 *(uint32_t *)&irsp->un1, 3074 *((uint32_t *)&irsp->un1 + 1)); 3075 } 3076 3077 switch (type) { 3078 case LPFC_ABORT_IOCB: 3079 case LPFC_SOL_IOCB: 3080 /* 3081 * Idle exchange closed via ABTS from port. No iocb 3082 * resources need to be recovered. 3083 */ 3084 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3085 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3086 "0333 IOCB cmd 0x%x" 3087 " processed. Skipping" 3088 " completion\n", 3089 irsp->ulpCommand); 3090 break; 3091 } 3092 3093 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3094 &rspiocbq); 3095 if (unlikely(!cmdiocbq)) 3096 break; 3097 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3098 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3099 if (cmdiocbq->iocb_cmpl) { 3100 spin_unlock_irqrestore(&phba->hbalock, iflag); 3101 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3102 &rspiocbq); 3103 spin_lock_irqsave(&phba->hbalock, iflag); 3104 } 3105 break; 3106 case LPFC_UNSOL_IOCB: 3107 spin_unlock_irqrestore(&phba->hbalock, iflag); 3108 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3109 spin_lock_irqsave(&phba->hbalock, iflag); 3110 break; 3111 default: 3112 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3113 char adaptermsg[LPFC_MAX_ADPTMSG]; 3114 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3115 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3116 MAX_MSG_DATA); 3117 dev_warn(&((phba->pcidev)->dev), 3118 "lpfc%d: %s\n", 3119 phba->brd_no, adaptermsg); 3120 } else { 3121 /* Unknown IOCB command */ 3122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3123 "0334 Unknown IOCB command " 3124 "Data: x%x, x%x x%x x%x x%x\n", 3125 type, irsp->ulpCommand, 3126 irsp->ulpStatus, 3127 irsp->ulpIoTag, 3128 irsp->ulpContext); 3129 } 3130 break; 3131 } 3132 3133 /* 3134 * The response IOCB has been processed. Update the ring 3135 * pointer in SLIM. If the port response put pointer has not 3136 * been updated, sync the pgp->rspPutInx and fetch the new port 3137 * response put pointer. 3138 */ 3139 writel(pring->sli.sli3.rspidx, 3140 &phba->host_gp[pring->ringno].rspGetInx); 3141 3142 if (pring->sli.sli3.rspidx == portRspPut) 3143 portRspPut = le32_to_cpu(pgp->rspPutInx); 3144 } 3145 3146 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3147 pring->stats.iocb_rsp_full++; 3148 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3149 writel(status, phba->CAregaddr); 3150 readl(phba->CAregaddr); 3151 } 3152 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3153 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3154 pring->stats.iocb_cmd_empty++; 3155 3156 /* Force update of the local copy of cmdGetInx */ 3157 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3158 lpfc_sli_resume_iocb(phba, pring); 3159 3160 if ((pring->lpfc_sli_cmd_available)) 3161 (pring->lpfc_sli_cmd_available) (phba, pring); 3162 3163 } 3164 3165 phba->fcp_ring_in_use = 0; 3166 spin_unlock_irqrestore(&phba->hbalock, iflag); 3167 return rc; 3168 } 3169 3170 /** 3171 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3172 * @phba: Pointer to HBA context object. 3173 * @pring: Pointer to driver SLI ring object. 3174 * @rspiocbp: Pointer to driver response IOCB object. 3175 * 3176 * This function is called from the worker thread when there is a slow-path 3177 * response IOCB to process. This function chains all the response iocbs until 3178 * seeing the iocb with the LE bit set. The function will call 3179 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3180 * completion of a command iocb. The function will call the 3181 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3182 * The function frees the resources or calls the completion handler if this 3183 * iocb is an abort completion. The function returns NULL when the response 3184 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3185 * this function shall chain the iocb on to the iocb_continueq and return the 3186 * response iocb passed in. 3187 **/ 3188 static struct lpfc_iocbq * 3189 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3190 struct lpfc_iocbq *rspiocbp) 3191 { 3192 struct lpfc_iocbq *saveq; 3193 struct lpfc_iocbq *cmdiocbp; 3194 struct lpfc_iocbq *next_iocb; 3195 IOCB_t *irsp = NULL; 3196 uint32_t free_saveq; 3197 uint8_t iocb_cmd_type; 3198 lpfc_iocb_type type; 3199 unsigned long iflag; 3200 int rc; 3201 3202 spin_lock_irqsave(&phba->hbalock, iflag); 3203 /* First add the response iocb to the countinueq list */ 3204 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3205 pring->iocb_continueq_cnt++; 3206 3207 /* Now, determine whether the list is completed for processing */ 3208 irsp = &rspiocbp->iocb; 3209 if (irsp->ulpLe) { 3210 /* 3211 * By default, the driver expects to free all resources 3212 * associated with this iocb completion. 3213 */ 3214 free_saveq = 1; 3215 saveq = list_get_first(&pring->iocb_continueq, 3216 struct lpfc_iocbq, list); 3217 irsp = &(saveq->iocb); 3218 list_del_init(&pring->iocb_continueq); 3219 pring->iocb_continueq_cnt = 0; 3220 3221 pring->stats.iocb_rsp++; 3222 3223 /* 3224 * If resource errors reported from HBA, reduce 3225 * queuedepths of the SCSI device. 3226 */ 3227 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3228 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3229 IOERR_NO_RESOURCES)) { 3230 spin_unlock_irqrestore(&phba->hbalock, iflag); 3231 phba->lpfc_rampdown_queue_depth(phba); 3232 spin_lock_irqsave(&phba->hbalock, iflag); 3233 } 3234 3235 if (irsp->ulpStatus) { 3236 /* Rsp ring <ringno> error: IOCB */ 3237 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3238 "0328 Rsp Ring %d error: " 3239 "IOCB Data: " 3240 "x%x x%x x%x x%x " 3241 "x%x x%x x%x x%x " 3242 "x%x x%x x%x x%x " 3243 "x%x x%x x%x x%x\n", 3244 pring->ringno, 3245 irsp->un.ulpWord[0], 3246 irsp->un.ulpWord[1], 3247 irsp->un.ulpWord[2], 3248 irsp->un.ulpWord[3], 3249 irsp->un.ulpWord[4], 3250 irsp->un.ulpWord[5], 3251 *(((uint32_t *) irsp) + 6), 3252 *(((uint32_t *) irsp) + 7), 3253 *(((uint32_t *) irsp) + 8), 3254 *(((uint32_t *) irsp) + 9), 3255 *(((uint32_t *) irsp) + 10), 3256 *(((uint32_t *) irsp) + 11), 3257 *(((uint32_t *) irsp) + 12), 3258 *(((uint32_t *) irsp) + 13), 3259 *(((uint32_t *) irsp) + 14), 3260 *(((uint32_t *) irsp) + 15)); 3261 } 3262 3263 /* 3264 * Fetch the IOCB command type and call the correct completion 3265 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3266 * get freed back to the lpfc_iocb_list by the discovery 3267 * kernel thread. 3268 */ 3269 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3270 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3271 switch (type) { 3272 case LPFC_SOL_IOCB: 3273 spin_unlock_irqrestore(&phba->hbalock, iflag); 3274 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3275 spin_lock_irqsave(&phba->hbalock, iflag); 3276 break; 3277 3278 case LPFC_UNSOL_IOCB: 3279 spin_unlock_irqrestore(&phba->hbalock, iflag); 3280 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3281 spin_lock_irqsave(&phba->hbalock, iflag); 3282 if (!rc) 3283 free_saveq = 0; 3284 break; 3285 3286 case LPFC_ABORT_IOCB: 3287 cmdiocbp = NULL; 3288 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3289 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3290 saveq); 3291 if (cmdiocbp) { 3292 /* Call the specified completion routine */ 3293 if (cmdiocbp->iocb_cmpl) { 3294 spin_unlock_irqrestore(&phba->hbalock, 3295 iflag); 3296 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3297 saveq); 3298 spin_lock_irqsave(&phba->hbalock, 3299 iflag); 3300 } else 3301 __lpfc_sli_release_iocbq(phba, 3302 cmdiocbp); 3303 } 3304 break; 3305 3306 case LPFC_UNKNOWN_IOCB: 3307 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3308 char adaptermsg[LPFC_MAX_ADPTMSG]; 3309 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3310 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3311 MAX_MSG_DATA); 3312 dev_warn(&((phba->pcidev)->dev), 3313 "lpfc%d: %s\n", 3314 phba->brd_no, adaptermsg); 3315 } else { 3316 /* Unknown IOCB command */ 3317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3318 "0335 Unknown IOCB " 3319 "command Data: x%x " 3320 "x%x x%x x%x\n", 3321 irsp->ulpCommand, 3322 irsp->ulpStatus, 3323 irsp->ulpIoTag, 3324 irsp->ulpContext); 3325 } 3326 break; 3327 } 3328 3329 if (free_saveq) { 3330 list_for_each_entry_safe(rspiocbp, next_iocb, 3331 &saveq->list, list) { 3332 list_del_init(&rspiocbp->list); 3333 __lpfc_sli_release_iocbq(phba, rspiocbp); 3334 } 3335 __lpfc_sli_release_iocbq(phba, saveq); 3336 } 3337 rspiocbp = NULL; 3338 } 3339 spin_unlock_irqrestore(&phba->hbalock, iflag); 3340 return rspiocbp; 3341 } 3342 3343 /** 3344 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3345 * @phba: Pointer to HBA context object. 3346 * @pring: Pointer to driver SLI ring object. 3347 * @mask: Host attention register mask for this ring. 3348 * 3349 * This routine wraps the actual slow_ring event process routine from the 3350 * API jump table function pointer from the lpfc_hba struct. 3351 **/ 3352 void 3353 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3354 struct lpfc_sli_ring *pring, uint32_t mask) 3355 { 3356 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3357 } 3358 3359 /** 3360 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3361 * @phba: Pointer to HBA context object. 3362 * @pring: Pointer to driver SLI ring object. 3363 * @mask: Host attention register mask for this ring. 3364 * 3365 * This function is called from the worker thread when there is a ring event 3366 * for non-fcp rings. The caller does not hold any lock. The function will 3367 * remove each response iocb in the response ring and calls the handle 3368 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3369 **/ 3370 static void 3371 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3372 struct lpfc_sli_ring *pring, uint32_t mask) 3373 { 3374 struct lpfc_pgp *pgp; 3375 IOCB_t *entry; 3376 IOCB_t *irsp = NULL; 3377 struct lpfc_iocbq *rspiocbp = NULL; 3378 uint32_t portRspPut, portRspMax; 3379 unsigned long iflag; 3380 uint32_t status; 3381 3382 pgp = &phba->port_gp[pring->ringno]; 3383 spin_lock_irqsave(&phba->hbalock, iflag); 3384 pring->stats.iocb_event++; 3385 3386 /* 3387 * The next available response entry should never exceed the maximum 3388 * entries. If it does, treat it as an adapter hardware error. 3389 */ 3390 portRspMax = pring->sli.sli3.numRiocb; 3391 portRspPut = le32_to_cpu(pgp->rspPutInx); 3392 if (portRspPut >= portRspMax) { 3393 /* 3394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3395 * rsp ring <portRspMax> 3396 */ 3397 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3398 "0303 Ring %d handler: portRspPut %d " 3399 "is bigger than rsp ring %d\n", 3400 pring->ringno, portRspPut, portRspMax); 3401 3402 phba->link_state = LPFC_HBA_ERROR; 3403 spin_unlock_irqrestore(&phba->hbalock, iflag); 3404 3405 phba->work_hs = HS_FFER3; 3406 lpfc_handle_eratt(phba); 3407 3408 return; 3409 } 3410 3411 rmb(); 3412 while (pring->sli.sli3.rspidx != portRspPut) { 3413 /* 3414 * Build a completion list and call the appropriate handler. 3415 * The process is to get the next available response iocb, get 3416 * a free iocb from the list, copy the response data into the 3417 * free iocb, insert to the continuation list, and update the 3418 * next response index to slim. This process makes response 3419 * iocb's in the ring available to DMA as fast as possible but 3420 * pays a penalty for a copy operation. Since the iocb is 3421 * only 32 bytes, this penalty is considered small relative to 3422 * the PCI reads for register values and a slim write. When 3423 * the ulpLe field is set, the entire Command has been 3424 * received. 3425 */ 3426 entry = lpfc_resp_iocb(phba, pring); 3427 3428 phba->last_completion_time = jiffies; 3429 rspiocbp = __lpfc_sli_get_iocbq(phba); 3430 if (rspiocbp == NULL) { 3431 printk(KERN_ERR "%s: out of buffers! Failing " 3432 "completion.\n", __func__); 3433 break; 3434 } 3435 3436 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3437 phba->iocb_rsp_size); 3438 irsp = &rspiocbp->iocb; 3439 3440 if (++pring->sli.sli3.rspidx >= portRspMax) 3441 pring->sli.sli3.rspidx = 0; 3442 3443 if (pring->ringno == LPFC_ELS_RING) { 3444 lpfc_debugfs_slow_ring_trc(phba, 3445 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3446 *(((uint32_t *) irsp) + 4), 3447 *(((uint32_t *) irsp) + 6), 3448 *(((uint32_t *) irsp) + 7)); 3449 } 3450 3451 writel(pring->sli.sli3.rspidx, 3452 &phba->host_gp[pring->ringno].rspGetInx); 3453 3454 spin_unlock_irqrestore(&phba->hbalock, iflag); 3455 /* Handle the response IOCB */ 3456 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3457 spin_lock_irqsave(&phba->hbalock, iflag); 3458 3459 /* 3460 * If the port response put pointer has not been updated, sync 3461 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3462 * response put pointer. 3463 */ 3464 if (pring->sli.sli3.rspidx == portRspPut) { 3465 portRspPut = le32_to_cpu(pgp->rspPutInx); 3466 } 3467 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3468 3469 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3470 /* At least one response entry has been freed */ 3471 pring->stats.iocb_rsp_full++; 3472 /* SET RxRE_RSP in Chip Att register */ 3473 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3474 writel(status, phba->CAregaddr); 3475 readl(phba->CAregaddr); /* flush */ 3476 } 3477 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3478 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3479 pring->stats.iocb_cmd_empty++; 3480 3481 /* Force update of the local copy of cmdGetInx */ 3482 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3483 lpfc_sli_resume_iocb(phba, pring); 3484 3485 if ((pring->lpfc_sli_cmd_available)) 3486 (pring->lpfc_sli_cmd_available) (phba, pring); 3487 3488 } 3489 3490 spin_unlock_irqrestore(&phba->hbalock, iflag); 3491 return; 3492 } 3493 3494 /** 3495 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3496 * @phba: Pointer to HBA context object. 3497 * @pring: Pointer to driver SLI ring object. 3498 * @mask: Host attention register mask for this ring. 3499 * 3500 * This function is called from the worker thread when there is a pending 3501 * ELS response iocb on the driver internal slow-path response iocb worker 3502 * queue. The caller does not hold any lock. The function will remove each 3503 * response iocb from the response worker queue and calls the handle 3504 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3505 **/ 3506 static void 3507 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3508 struct lpfc_sli_ring *pring, uint32_t mask) 3509 { 3510 struct lpfc_iocbq *irspiocbq; 3511 struct hbq_dmabuf *dmabuf; 3512 struct lpfc_cq_event *cq_event; 3513 unsigned long iflag; 3514 3515 spin_lock_irqsave(&phba->hbalock, iflag); 3516 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3517 spin_unlock_irqrestore(&phba->hbalock, iflag); 3518 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3519 /* Get the response iocb from the head of work queue */ 3520 spin_lock_irqsave(&phba->hbalock, iflag); 3521 list_remove_head(&phba->sli4_hba.sp_queue_event, 3522 cq_event, struct lpfc_cq_event, list); 3523 spin_unlock_irqrestore(&phba->hbalock, iflag); 3524 3525 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3526 case CQE_CODE_COMPL_WQE: 3527 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3528 cq_event); 3529 /* Translate ELS WCQE to response IOCBQ */ 3530 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3531 irspiocbq); 3532 if (irspiocbq) 3533 lpfc_sli_sp_handle_rspiocb(phba, pring, 3534 irspiocbq); 3535 break; 3536 case CQE_CODE_RECEIVE: 3537 case CQE_CODE_RECEIVE_V1: 3538 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3539 cq_event); 3540 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3541 break; 3542 default: 3543 break; 3544 } 3545 } 3546 } 3547 3548 /** 3549 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3550 * @phba: Pointer to HBA context object. 3551 * @pring: Pointer to driver SLI ring object. 3552 * 3553 * This function aborts all iocbs in the given ring and frees all the iocb 3554 * objects in txq. This function issues an abort iocb for all the iocb commands 3555 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3556 * the return of this function. The caller is not required to hold any locks. 3557 **/ 3558 void 3559 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3560 { 3561 LIST_HEAD(completions); 3562 struct lpfc_iocbq *iocb, *next_iocb; 3563 3564 if (pring->ringno == LPFC_ELS_RING) { 3565 lpfc_fabric_abort_hba(phba); 3566 } 3567 3568 /* Error everything on txq and txcmplq 3569 * First do the txq. 3570 */ 3571 if (phba->sli_rev >= LPFC_SLI_REV4) { 3572 spin_lock_irq(&pring->ring_lock); 3573 list_splice_init(&pring->txq, &completions); 3574 pring->txq_cnt = 0; 3575 spin_unlock_irq(&pring->ring_lock); 3576 3577 spin_lock_irq(&phba->hbalock); 3578 /* Next issue ABTS for everything on the txcmplq */ 3579 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3580 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3581 spin_unlock_irq(&phba->hbalock); 3582 } else { 3583 spin_lock_irq(&phba->hbalock); 3584 list_splice_init(&pring->txq, &completions); 3585 pring->txq_cnt = 0; 3586 3587 /* Next issue ABTS for everything on the txcmplq */ 3588 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3589 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3590 spin_unlock_irq(&phba->hbalock); 3591 } 3592 3593 /* Cancel all the IOCBs from the completions list */ 3594 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3595 IOERR_SLI_ABORTED); 3596 } 3597 3598 /** 3599 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3600 * @phba: Pointer to HBA context object. 3601 * @pring: Pointer to driver SLI ring object. 3602 * 3603 * This function aborts all iocbs in FCP rings and frees all the iocb 3604 * objects in txq. This function issues an abort iocb for all the iocb commands 3605 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3606 * the return of this function. The caller is not required to hold any locks. 3607 **/ 3608 void 3609 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3610 { 3611 struct lpfc_sli *psli = &phba->sli; 3612 struct lpfc_sli_ring *pring; 3613 uint32_t i; 3614 3615 /* Look on all the FCP Rings for the iotag */ 3616 if (phba->sli_rev >= LPFC_SLI_REV4) { 3617 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3618 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3619 lpfc_sli_abort_iocb_ring(phba, pring); 3620 } 3621 } else { 3622 pring = &psli->ring[psli->fcp_ring]; 3623 lpfc_sli_abort_iocb_ring(phba, pring); 3624 } 3625 } 3626 3627 3628 /** 3629 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3630 * @phba: Pointer to HBA context object. 3631 * 3632 * This function flushes all iocbs in the fcp ring and frees all the iocb 3633 * objects in txq and txcmplq. This function will not issue abort iocbs 3634 * for all the iocb commands in txcmplq, they will just be returned with 3635 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3636 * slot has been permanently disabled. 3637 **/ 3638 void 3639 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3640 { 3641 LIST_HEAD(txq); 3642 LIST_HEAD(txcmplq); 3643 struct lpfc_sli *psli = &phba->sli; 3644 struct lpfc_sli_ring *pring; 3645 uint32_t i; 3646 3647 spin_lock_irq(&phba->hbalock); 3648 /* Indicate the I/O queues are flushed */ 3649 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3650 spin_unlock_irq(&phba->hbalock); 3651 3652 /* Look on all the FCP Rings for the iotag */ 3653 if (phba->sli_rev >= LPFC_SLI_REV4) { 3654 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3655 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3656 3657 spin_lock_irq(&pring->ring_lock); 3658 /* Retrieve everything on txq */ 3659 list_splice_init(&pring->txq, &txq); 3660 /* Retrieve everything on the txcmplq */ 3661 list_splice_init(&pring->txcmplq, &txcmplq); 3662 pring->txq_cnt = 0; 3663 pring->txcmplq_cnt = 0; 3664 spin_unlock_irq(&pring->ring_lock); 3665 3666 /* Flush the txq */ 3667 lpfc_sli_cancel_iocbs(phba, &txq, 3668 IOSTAT_LOCAL_REJECT, 3669 IOERR_SLI_DOWN); 3670 /* Flush the txcmpq */ 3671 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3672 IOSTAT_LOCAL_REJECT, 3673 IOERR_SLI_DOWN); 3674 } 3675 } else { 3676 pring = &psli->ring[psli->fcp_ring]; 3677 3678 spin_lock_irq(&phba->hbalock); 3679 /* Retrieve everything on txq */ 3680 list_splice_init(&pring->txq, &txq); 3681 /* Retrieve everything on the txcmplq */ 3682 list_splice_init(&pring->txcmplq, &txcmplq); 3683 pring->txq_cnt = 0; 3684 pring->txcmplq_cnt = 0; 3685 spin_unlock_irq(&phba->hbalock); 3686 3687 /* Flush the txq */ 3688 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3689 IOERR_SLI_DOWN); 3690 /* Flush the txcmpq */ 3691 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3692 IOERR_SLI_DOWN); 3693 } 3694 } 3695 3696 /** 3697 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3698 * @phba: Pointer to HBA context object. 3699 * @mask: Bit mask to be checked. 3700 * 3701 * This function reads the host status register and compares 3702 * with the provided bit mask to check if HBA completed 3703 * the restart. This function will wait in a loop for the 3704 * HBA to complete restart. If the HBA does not restart within 3705 * 15 iterations, the function will reset the HBA again. The 3706 * function returns 1 when HBA fail to restart otherwise returns 3707 * zero. 3708 **/ 3709 static int 3710 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3711 { 3712 uint32_t status; 3713 int i = 0; 3714 int retval = 0; 3715 3716 /* Read the HBA Host Status Register */ 3717 if (lpfc_readl(phba->HSregaddr, &status)) 3718 return 1; 3719 3720 /* 3721 * Check status register every 100ms for 5 retries, then every 3722 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3723 * every 2.5 sec for 4. 3724 * Break our of the loop if errors occurred during init. 3725 */ 3726 while (((status & mask) != mask) && 3727 !(status & HS_FFERM) && 3728 i++ < 20) { 3729 3730 if (i <= 5) 3731 msleep(10); 3732 else if (i <= 10) 3733 msleep(500); 3734 else 3735 msleep(2500); 3736 3737 if (i == 15) { 3738 /* Do post */ 3739 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3740 lpfc_sli_brdrestart(phba); 3741 } 3742 /* Read the HBA Host Status Register */ 3743 if (lpfc_readl(phba->HSregaddr, &status)) { 3744 retval = 1; 3745 break; 3746 } 3747 } 3748 3749 /* Check to see if any errors occurred during init */ 3750 if ((status & HS_FFERM) || (i >= 20)) { 3751 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3752 "2751 Adapter failed to restart, " 3753 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3754 status, 3755 readl(phba->MBslimaddr + 0xa8), 3756 readl(phba->MBslimaddr + 0xac)); 3757 phba->link_state = LPFC_HBA_ERROR; 3758 retval = 1; 3759 } 3760 3761 return retval; 3762 } 3763 3764 /** 3765 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3766 * @phba: Pointer to HBA context object. 3767 * @mask: Bit mask to be checked. 3768 * 3769 * This function checks the host status register to check if HBA is 3770 * ready. This function will wait in a loop for the HBA to be ready 3771 * If the HBA is not ready , the function will will reset the HBA PCI 3772 * function again. The function returns 1 when HBA fail to be ready 3773 * otherwise returns zero. 3774 **/ 3775 static int 3776 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3777 { 3778 uint32_t status; 3779 int retval = 0; 3780 3781 /* Read the HBA Host Status Register */ 3782 status = lpfc_sli4_post_status_check(phba); 3783 3784 if (status) { 3785 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3786 lpfc_sli_brdrestart(phba); 3787 status = lpfc_sli4_post_status_check(phba); 3788 } 3789 3790 /* Check to see if any errors occurred during init */ 3791 if (status) { 3792 phba->link_state = LPFC_HBA_ERROR; 3793 retval = 1; 3794 } else 3795 phba->sli4_hba.intr_enable = 0; 3796 3797 return retval; 3798 } 3799 3800 /** 3801 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3802 * @phba: Pointer to HBA context object. 3803 * @mask: Bit mask to be checked. 3804 * 3805 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3806 * from the API jump table function pointer from the lpfc_hba struct. 3807 **/ 3808 int 3809 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3810 { 3811 return phba->lpfc_sli_brdready(phba, mask); 3812 } 3813 3814 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3815 3816 /** 3817 * lpfc_reset_barrier - Make HBA ready for HBA reset 3818 * @phba: Pointer to HBA context object. 3819 * 3820 * This function is called before resetting an HBA. This function is called 3821 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3822 **/ 3823 void lpfc_reset_barrier(struct lpfc_hba *phba) 3824 { 3825 uint32_t __iomem *resp_buf; 3826 uint32_t __iomem *mbox_buf; 3827 volatile uint32_t mbox; 3828 uint32_t hc_copy, ha_copy, resp_data; 3829 int i; 3830 uint8_t hdrtype; 3831 3832 lockdep_assert_held(&phba->hbalock); 3833 3834 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3835 if (hdrtype != 0x80 || 3836 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3837 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3838 return; 3839 3840 /* 3841 * Tell the other part of the chip to suspend temporarily all 3842 * its DMA activity. 3843 */ 3844 resp_buf = phba->MBslimaddr; 3845 3846 /* Disable the error attention */ 3847 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3848 return; 3849 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3850 readl(phba->HCregaddr); /* flush */ 3851 phba->link_flag |= LS_IGNORE_ERATT; 3852 3853 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3854 return; 3855 if (ha_copy & HA_ERATT) { 3856 /* Clear Chip error bit */ 3857 writel(HA_ERATT, phba->HAregaddr); 3858 phba->pport->stopped = 1; 3859 } 3860 3861 mbox = 0; 3862 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3863 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3864 3865 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3866 mbox_buf = phba->MBslimaddr; 3867 writel(mbox, mbox_buf); 3868 3869 for (i = 0; i < 50; i++) { 3870 if (lpfc_readl((resp_buf + 1), &resp_data)) 3871 return; 3872 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3873 mdelay(1); 3874 else 3875 break; 3876 } 3877 resp_data = 0; 3878 if (lpfc_readl((resp_buf + 1), &resp_data)) 3879 return; 3880 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3881 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3882 phba->pport->stopped) 3883 goto restore_hc; 3884 else 3885 goto clear_errat; 3886 } 3887 3888 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3889 resp_data = 0; 3890 for (i = 0; i < 500; i++) { 3891 if (lpfc_readl(resp_buf, &resp_data)) 3892 return; 3893 if (resp_data != mbox) 3894 mdelay(1); 3895 else 3896 break; 3897 } 3898 3899 clear_errat: 3900 3901 while (++i < 500) { 3902 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3903 return; 3904 if (!(ha_copy & HA_ERATT)) 3905 mdelay(1); 3906 else 3907 break; 3908 } 3909 3910 if (readl(phba->HAregaddr) & HA_ERATT) { 3911 writel(HA_ERATT, phba->HAregaddr); 3912 phba->pport->stopped = 1; 3913 } 3914 3915 restore_hc: 3916 phba->link_flag &= ~LS_IGNORE_ERATT; 3917 writel(hc_copy, phba->HCregaddr); 3918 readl(phba->HCregaddr); /* flush */ 3919 } 3920 3921 /** 3922 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3923 * @phba: Pointer to HBA context object. 3924 * 3925 * This function issues a kill_board mailbox command and waits for 3926 * the error attention interrupt. This function is called for stopping 3927 * the firmware processing. The caller is not required to hold any 3928 * locks. This function calls lpfc_hba_down_post function to free 3929 * any pending commands after the kill. The function will return 1 when it 3930 * fails to kill the board else will return 0. 3931 **/ 3932 int 3933 lpfc_sli_brdkill(struct lpfc_hba *phba) 3934 { 3935 struct lpfc_sli *psli; 3936 LPFC_MBOXQ_t *pmb; 3937 uint32_t status; 3938 uint32_t ha_copy; 3939 int retval; 3940 int i = 0; 3941 3942 psli = &phba->sli; 3943 3944 /* Kill HBA */ 3945 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3946 "0329 Kill HBA Data: x%x x%x\n", 3947 phba->pport->port_state, psli->sli_flag); 3948 3949 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3950 if (!pmb) 3951 return 1; 3952 3953 /* Disable the error attention */ 3954 spin_lock_irq(&phba->hbalock); 3955 if (lpfc_readl(phba->HCregaddr, &status)) { 3956 spin_unlock_irq(&phba->hbalock); 3957 mempool_free(pmb, phba->mbox_mem_pool); 3958 return 1; 3959 } 3960 status &= ~HC_ERINT_ENA; 3961 writel(status, phba->HCregaddr); 3962 readl(phba->HCregaddr); /* flush */ 3963 phba->link_flag |= LS_IGNORE_ERATT; 3964 spin_unlock_irq(&phba->hbalock); 3965 3966 lpfc_kill_board(phba, pmb); 3967 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3968 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3969 3970 if (retval != MBX_SUCCESS) { 3971 if (retval != MBX_BUSY) 3972 mempool_free(pmb, phba->mbox_mem_pool); 3973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3974 "2752 KILL_BOARD command failed retval %d\n", 3975 retval); 3976 spin_lock_irq(&phba->hbalock); 3977 phba->link_flag &= ~LS_IGNORE_ERATT; 3978 spin_unlock_irq(&phba->hbalock); 3979 return 1; 3980 } 3981 3982 spin_lock_irq(&phba->hbalock); 3983 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3984 spin_unlock_irq(&phba->hbalock); 3985 3986 mempool_free(pmb, phba->mbox_mem_pool); 3987 3988 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3989 * attention every 100ms for 3 seconds. If we don't get ERATT after 3990 * 3 seconds we still set HBA_ERROR state because the status of the 3991 * board is now undefined. 3992 */ 3993 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3994 return 1; 3995 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3996 mdelay(100); 3997 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3998 return 1; 3999 } 4000 4001 del_timer_sync(&psli->mbox_tmo); 4002 if (ha_copy & HA_ERATT) { 4003 writel(HA_ERATT, phba->HAregaddr); 4004 phba->pport->stopped = 1; 4005 } 4006 spin_lock_irq(&phba->hbalock); 4007 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4008 psli->mbox_active = NULL; 4009 phba->link_flag &= ~LS_IGNORE_ERATT; 4010 spin_unlock_irq(&phba->hbalock); 4011 4012 lpfc_hba_down_post(phba); 4013 phba->link_state = LPFC_HBA_ERROR; 4014 4015 return ha_copy & HA_ERATT ? 0 : 1; 4016 } 4017 4018 /** 4019 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4020 * @phba: Pointer to HBA context object. 4021 * 4022 * This function resets the HBA by writing HC_INITFF to the control 4023 * register. After the HBA resets, this function resets all the iocb ring 4024 * indices. This function disables PCI layer parity checking during 4025 * the reset. 4026 * This function returns 0 always. 4027 * The caller is not required to hold any locks. 4028 **/ 4029 int 4030 lpfc_sli_brdreset(struct lpfc_hba *phba) 4031 { 4032 struct lpfc_sli *psli; 4033 struct lpfc_sli_ring *pring; 4034 uint16_t cfg_value; 4035 int i; 4036 4037 psli = &phba->sli; 4038 4039 /* Reset HBA */ 4040 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4041 "0325 Reset HBA Data: x%x x%x\n", 4042 phba->pport->port_state, psli->sli_flag); 4043 4044 /* perform board reset */ 4045 phba->fc_eventTag = 0; 4046 phba->link_events = 0; 4047 phba->pport->fc_myDID = 0; 4048 phba->pport->fc_prevDID = 0; 4049 4050 /* Turn off parity checking and serr during the physical reset */ 4051 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4052 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4053 (cfg_value & 4054 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4055 4056 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4057 4058 /* Now toggle INITFF bit in the Host Control Register */ 4059 writel(HC_INITFF, phba->HCregaddr); 4060 mdelay(1); 4061 readl(phba->HCregaddr); /* flush */ 4062 writel(0, phba->HCregaddr); 4063 readl(phba->HCregaddr); /* flush */ 4064 4065 /* Restore PCI cmd register */ 4066 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4067 4068 /* Initialize relevant SLI info */ 4069 for (i = 0; i < psli->num_rings; i++) { 4070 pring = &psli->ring[i]; 4071 pring->flag = 0; 4072 pring->sli.sli3.rspidx = 0; 4073 pring->sli.sli3.next_cmdidx = 0; 4074 pring->sli.sli3.local_getidx = 0; 4075 pring->sli.sli3.cmdidx = 0; 4076 pring->missbufcnt = 0; 4077 } 4078 4079 phba->link_state = LPFC_WARM_START; 4080 return 0; 4081 } 4082 4083 /** 4084 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4085 * @phba: Pointer to HBA context object. 4086 * 4087 * This function resets a SLI4 HBA. This function disables PCI layer parity 4088 * checking during resets the device. The caller is not required to hold 4089 * any locks. 4090 * 4091 * This function returns 0 always. 4092 **/ 4093 int 4094 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4095 { 4096 struct lpfc_sli *psli = &phba->sli; 4097 uint16_t cfg_value; 4098 int rc = 0; 4099 4100 /* Reset HBA */ 4101 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4102 "0295 Reset HBA Data: x%x x%x x%x\n", 4103 phba->pport->port_state, psli->sli_flag, 4104 phba->hba_flag); 4105 4106 /* perform board reset */ 4107 phba->fc_eventTag = 0; 4108 phba->link_events = 0; 4109 phba->pport->fc_myDID = 0; 4110 phba->pport->fc_prevDID = 0; 4111 4112 spin_lock_irq(&phba->hbalock); 4113 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4114 phba->fcf.fcf_flag = 0; 4115 spin_unlock_irq(&phba->hbalock); 4116 4117 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4118 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4119 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4120 return rc; 4121 } 4122 4123 /* Now physically reset the device */ 4124 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4125 "0389 Performing PCI function reset!\n"); 4126 4127 /* Turn off parity checking and serr during the physical reset */ 4128 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4129 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4130 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4131 4132 /* Perform FCoE PCI function reset before freeing queue memory */ 4133 rc = lpfc_pci_function_reset(phba); 4134 lpfc_sli4_queue_destroy(phba); 4135 4136 /* Restore PCI cmd register */ 4137 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4138 4139 return rc; 4140 } 4141 4142 /** 4143 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4144 * @phba: Pointer to HBA context object. 4145 * 4146 * This function is called in the SLI initialization code path to 4147 * restart the HBA. The caller is not required to hold any lock. 4148 * This function writes MBX_RESTART mailbox command to the SLIM and 4149 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4150 * function to free any pending commands. The function enables 4151 * POST only during the first initialization. The function returns zero. 4152 * The function does not guarantee completion of MBX_RESTART mailbox 4153 * command before the return of this function. 4154 **/ 4155 static int 4156 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4157 { 4158 MAILBOX_t *mb; 4159 struct lpfc_sli *psli; 4160 volatile uint32_t word0; 4161 void __iomem *to_slim; 4162 uint32_t hba_aer_enabled; 4163 4164 spin_lock_irq(&phba->hbalock); 4165 4166 /* Take PCIe device Advanced Error Reporting (AER) state */ 4167 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4168 4169 psli = &phba->sli; 4170 4171 /* Restart HBA */ 4172 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4173 "0337 Restart HBA Data: x%x x%x\n", 4174 phba->pport->port_state, psli->sli_flag); 4175 4176 word0 = 0; 4177 mb = (MAILBOX_t *) &word0; 4178 mb->mbxCommand = MBX_RESTART; 4179 mb->mbxHc = 1; 4180 4181 lpfc_reset_barrier(phba); 4182 4183 to_slim = phba->MBslimaddr; 4184 writel(*(uint32_t *) mb, to_slim); 4185 readl(to_slim); /* flush */ 4186 4187 /* Only skip post after fc_ffinit is completed */ 4188 if (phba->pport->port_state) 4189 word0 = 1; /* This is really setting up word1 */ 4190 else 4191 word0 = 0; /* This is really setting up word1 */ 4192 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4193 writel(*(uint32_t *) mb, to_slim); 4194 readl(to_slim); /* flush */ 4195 4196 lpfc_sli_brdreset(phba); 4197 phba->pport->stopped = 0; 4198 phba->link_state = LPFC_INIT_START; 4199 phba->hba_flag = 0; 4200 spin_unlock_irq(&phba->hbalock); 4201 4202 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4203 psli->stats_start = get_seconds(); 4204 4205 /* Give the INITFF and Post time to settle. */ 4206 mdelay(100); 4207 4208 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4209 if (hba_aer_enabled) 4210 pci_disable_pcie_error_reporting(phba->pcidev); 4211 4212 lpfc_hba_down_post(phba); 4213 4214 return 0; 4215 } 4216 4217 /** 4218 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4219 * @phba: Pointer to HBA context object. 4220 * 4221 * This function is called in the SLI initialization code path to restart 4222 * a SLI4 HBA. The caller is not required to hold any lock. 4223 * At the end of the function, it calls lpfc_hba_down_post function to 4224 * free any pending commands. 4225 **/ 4226 static int 4227 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4228 { 4229 struct lpfc_sli *psli = &phba->sli; 4230 uint32_t hba_aer_enabled; 4231 int rc; 4232 4233 /* Restart HBA */ 4234 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4235 "0296 Restart HBA Data: x%x x%x\n", 4236 phba->pport->port_state, psli->sli_flag); 4237 4238 /* Take PCIe device Advanced Error Reporting (AER) state */ 4239 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4240 4241 rc = lpfc_sli4_brdreset(phba); 4242 4243 spin_lock_irq(&phba->hbalock); 4244 phba->pport->stopped = 0; 4245 phba->link_state = LPFC_INIT_START; 4246 phba->hba_flag = 0; 4247 spin_unlock_irq(&phba->hbalock); 4248 4249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4250 psli->stats_start = get_seconds(); 4251 4252 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4253 if (hba_aer_enabled) 4254 pci_disable_pcie_error_reporting(phba->pcidev); 4255 4256 lpfc_hba_down_post(phba); 4257 4258 return rc; 4259 } 4260 4261 /** 4262 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4263 * @phba: Pointer to HBA context object. 4264 * 4265 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4266 * API jump table function pointer from the lpfc_hba struct. 4267 **/ 4268 int 4269 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4270 { 4271 return phba->lpfc_sli_brdrestart(phba); 4272 } 4273 4274 /** 4275 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4276 * @phba: Pointer to HBA context object. 4277 * 4278 * This function is called after a HBA restart to wait for successful 4279 * restart of the HBA. Successful restart of the HBA is indicated by 4280 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4281 * iteration, the function will restart the HBA again. The function returns 4282 * zero if HBA successfully restarted else returns negative error code. 4283 **/ 4284 static int 4285 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4286 { 4287 uint32_t status, i = 0; 4288 4289 /* Read the HBA Host Status Register */ 4290 if (lpfc_readl(phba->HSregaddr, &status)) 4291 return -EIO; 4292 4293 /* Check status register to see what current state is */ 4294 i = 0; 4295 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4296 4297 /* Check every 10ms for 10 retries, then every 100ms for 90 4298 * retries, then every 1 sec for 50 retires for a total of 4299 * ~60 seconds before reset the board again and check every 4300 * 1 sec for 50 retries. The up to 60 seconds before the 4301 * board ready is required by the Falcon FIPS zeroization 4302 * complete, and any reset the board in between shall cause 4303 * restart of zeroization, further delay the board ready. 4304 */ 4305 if (i++ >= 200) { 4306 /* Adapter failed to init, timeout, status reg 4307 <status> */ 4308 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4309 "0436 Adapter failed to init, " 4310 "timeout, status reg x%x, " 4311 "FW Data: A8 x%x AC x%x\n", status, 4312 readl(phba->MBslimaddr + 0xa8), 4313 readl(phba->MBslimaddr + 0xac)); 4314 phba->link_state = LPFC_HBA_ERROR; 4315 return -ETIMEDOUT; 4316 } 4317 4318 /* Check to see if any errors occurred during init */ 4319 if (status & HS_FFERM) { 4320 /* ERROR: During chipset initialization */ 4321 /* Adapter failed to init, chipset, status reg 4322 <status> */ 4323 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4324 "0437 Adapter failed to init, " 4325 "chipset, status reg x%x, " 4326 "FW Data: A8 x%x AC x%x\n", status, 4327 readl(phba->MBslimaddr + 0xa8), 4328 readl(phba->MBslimaddr + 0xac)); 4329 phba->link_state = LPFC_HBA_ERROR; 4330 return -EIO; 4331 } 4332 4333 if (i <= 10) 4334 msleep(10); 4335 else if (i <= 100) 4336 msleep(100); 4337 else 4338 msleep(1000); 4339 4340 if (i == 150) { 4341 /* Do post */ 4342 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4343 lpfc_sli_brdrestart(phba); 4344 } 4345 /* Read the HBA Host Status Register */ 4346 if (lpfc_readl(phba->HSregaddr, &status)) 4347 return -EIO; 4348 } 4349 4350 /* Check to see if any errors occurred during init */ 4351 if (status & HS_FFERM) { 4352 /* ERROR: During chipset initialization */ 4353 /* Adapter failed to init, chipset, status reg <status> */ 4354 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4355 "0438 Adapter failed to init, chipset, " 4356 "status reg x%x, " 4357 "FW Data: A8 x%x AC x%x\n", status, 4358 readl(phba->MBslimaddr + 0xa8), 4359 readl(phba->MBslimaddr + 0xac)); 4360 phba->link_state = LPFC_HBA_ERROR; 4361 return -EIO; 4362 } 4363 4364 /* Clear all interrupt enable conditions */ 4365 writel(0, phba->HCregaddr); 4366 readl(phba->HCregaddr); /* flush */ 4367 4368 /* setup host attn register */ 4369 writel(0xffffffff, phba->HAregaddr); 4370 readl(phba->HAregaddr); /* flush */ 4371 return 0; 4372 } 4373 4374 /** 4375 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4376 * 4377 * This function calculates and returns the number of HBQs required to be 4378 * configured. 4379 **/ 4380 int 4381 lpfc_sli_hbq_count(void) 4382 { 4383 return ARRAY_SIZE(lpfc_hbq_defs); 4384 } 4385 4386 /** 4387 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4388 * 4389 * This function adds the number of hbq entries in every HBQ to get 4390 * the total number of hbq entries required for the HBA and returns 4391 * the total count. 4392 **/ 4393 static int 4394 lpfc_sli_hbq_entry_count(void) 4395 { 4396 int hbq_count = lpfc_sli_hbq_count(); 4397 int count = 0; 4398 int i; 4399 4400 for (i = 0; i < hbq_count; ++i) 4401 count += lpfc_hbq_defs[i]->entry_count; 4402 return count; 4403 } 4404 4405 /** 4406 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4407 * 4408 * This function calculates amount of memory required for all hbq entries 4409 * to be configured and returns the total memory required. 4410 **/ 4411 int 4412 lpfc_sli_hbq_size(void) 4413 { 4414 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4415 } 4416 4417 /** 4418 * lpfc_sli_hbq_setup - configure and initialize HBQs 4419 * @phba: Pointer to HBA context object. 4420 * 4421 * This function is called during the SLI initialization to configure 4422 * all the HBQs and post buffers to the HBQ. The caller is not 4423 * required to hold any locks. This function will return zero if successful 4424 * else it will return negative error code. 4425 **/ 4426 static int 4427 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4428 { 4429 int hbq_count = lpfc_sli_hbq_count(); 4430 LPFC_MBOXQ_t *pmb; 4431 MAILBOX_t *pmbox; 4432 uint32_t hbqno; 4433 uint32_t hbq_entry_index; 4434 4435 /* Get a Mailbox buffer to setup mailbox 4436 * commands for HBA initialization 4437 */ 4438 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4439 4440 if (!pmb) 4441 return -ENOMEM; 4442 4443 pmbox = &pmb->u.mb; 4444 4445 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4446 phba->link_state = LPFC_INIT_MBX_CMDS; 4447 phba->hbq_in_use = 1; 4448 4449 hbq_entry_index = 0; 4450 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4451 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4452 phba->hbqs[hbqno].hbqPutIdx = 0; 4453 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4454 phba->hbqs[hbqno].entry_count = 4455 lpfc_hbq_defs[hbqno]->entry_count; 4456 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4457 hbq_entry_index, pmb); 4458 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4459 4460 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4461 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4462 mbxStatus <status>, ring <num> */ 4463 4464 lpfc_printf_log(phba, KERN_ERR, 4465 LOG_SLI | LOG_VPORT, 4466 "1805 Adapter failed to init. " 4467 "Data: x%x x%x x%x\n", 4468 pmbox->mbxCommand, 4469 pmbox->mbxStatus, hbqno); 4470 4471 phba->link_state = LPFC_HBA_ERROR; 4472 mempool_free(pmb, phba->mbox_mem_pool); 4473 return -ENXIO; 4474 } 4475 } 4476 phba->hbq_count = hbq_count; 4477 4478 mempool_free(pmb, phba->mbox_mem_pool); 4479 4480 /* Initially populate or replenish the HBQs */ 4481 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4482 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4483 return 0; 4484 } 4485 4486 /** 4487 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4488 * @phba: Pointer to HBA context object. 4489 * 4490 * This function is called during the SLI initialization to configure 4491 * all the HBQs and post buffers to the HBQ. The caller is not 4492 * required to hold any locks. This function will return zero if successful 4493 * else it will return negative error code. 4494 **/ 4495 static int 4496 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4497 { 4498 phba->hbq_in_use = 1; 4499 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4500 phba->hbq_count = 1; 4501 /* Initially populate or replenish the HBQs */ 4502 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4503 return 0; 4504 } 4505 4506 /** 4507 * lpfc_sli_config_port - Issue config port mailbox command 4508 * @phba: Pointer to HBA context object. 4509 * @sli_mode: sli mode - 2/3 4510 * 4511 * This function is called by the sli intialization code path 4512 * to issue config_port mailbox command. This function restarts the 4513 * HBA firmware and issues a config_port mailbox command to configure 4514 * the SLI interface in the sli mode specified by sli_mode 4515 * variable. The caller is not required to hold any locks. 4516 * The function returns 0 if successful, else returns negative error 4517 * code. 4518 **/ 4519 int 4520 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4521 { 4522 LPFC_MBOXQ_t *pmb; 4523 uint32_t resetcount = 0, rc = 0, done = 0; 4524 4525 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4526 if (!pmb) { 4527 phba->link_state = LPFC_HBA_ERROR; 4528 return -ENOMEM; 4529 } 4530 4531 phba->sli_rev = sli_mode; 4532 while (resetcount < 2 && !done) { 4533 spin_lock_irq(&phba->hbalock); 4534 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4535 spin_unlock_irq(&phba->hbalock); 4536 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4537 lpfc_sli_brdrestart(phba); 4538 rc = lpfc_sli_chipset_init(phba); 4539 if (rc) 4540 break; 4541 4542 spin_lock_irq(&phba->hbalock); 4543 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4544 spin_unlock_irq(&phba->hbalock); 4545 resetcount++; 4546 4547 /* Call pre CONFIG_PORT mailbox command initialization. A 4548 * value of 0 means the call was successful. Any other 4549 * nonzero value is a failure, but if ERESTART is returned, 4550 * the driver may reset the HBA and try again. 4551 */ 4552 rc = lpfc_config_port_prep(phba); 4553 if (rc == -ERESTART) { 4554 phba->link_state = LPFC_LINK_UNKNOWN; 4555 continue; 4556 } else if (rc) 4557 break; 4558 4559 phba->link_state = LPFC_INIT_MBX_CMDS; 4560 lpfc_config_port(phba, pmb); 4561 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4562 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4563 LPFC_SLI3_HBQ_ENABLED | 4564 LPFC_SLI3_CRP_ENABLED | 4565 LPFC_SLI3_BG_ENABLED | 4566 LPFC_SLI3_DSS_ENABLED); 4567 if (rc != MBX_SUCCESS) { 4568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4569 "0442 Adapter failed to init, mbxCmd x%x " 4570 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4571 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4572 spin_lock_irq(&phba->hbalock); 4573 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4574 spin_unlock_irq(&phba->hbalock); 4575 rc = -ENXIO; 4576 } else { 4577 /* Allow asynchronous mailbox command to go through */ 4578 spin_lock_irq(&phba->hbalock); 4579 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4580 spin_unlock_irq(&phba->hbalock); 4581 done = 1; 4582 4583 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4584 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4585 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4586 "3110 Port did not grant ASABT\n"); 4587 } 4588 } 4589 if (!done) { 4590 rc = -EINVAL; 4591 goto do_prep_failed; 4592 } 4593 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4594 if (!pmb->u.mb.un.varCfgPort.cMA) { 4595 rc = -ENXIO; 4596 goto do_prep_failed; 4597 } 4598 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4599 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4600 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4601 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4602 phba->max_vpi : phba->max_vports; 4603 4604 } else 4605 phba->max_vpi = 0; 4606 phba->fips_level = 0; 4607 phba->fips_spec_rev = 0; 4608 if (pmb->u.mb.un.varCfgPort.gdss) { 4609 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4610 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4611 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4612 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4613 "2850 Security Crypto Active. FIPS x%d " 4614 "(Spec Rev: x%d)", 4615 phba->fips_level, phba->fips_spec_rev); 4616 } 4617 if (pmb->u.mb.un.varCfgPort.sec_err) { 4618 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4619 "2856 Config Port Security Crypto " 4620 "Error: x%x ", 4621 pmb->u.mb.un.varCfgPort.sec_err); 4622 } 4623 if (pmb->u.mb.un.varCfgPort.gerbm) 4624 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4625 if (pmb->u.mb.un.varCfgPort.gcrp) 4626 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4627 4628 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4629 phba->port_gp = phba->mbox->us.s3_pgp.port; 4630 4631 if (phba->cfg_enable_bg) { 4632 if (pmb->u.mb.un.varCfgPort.gbg) 4633 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4634 else 4635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4636 "0443 Adapter did not grant " 4637 "BlockGuard\n"); 4638 } 4639 } else { 4640 phba->hbq_get = NULL; 4641 phba->port_gp = phba->mbox->us.s2.port; 4642 phba->max_vpi = 0; 4643 } 4644 do_prep_failed: 4645 mempool_free(pmb, phba->mbox_mem_pool); 4646 return rc; 4647 } 4648 4649 4650 /** 4651 * lpfc_sli_hba_setup - SLI intialization function 4652 * @phba: Pointer to HBA context object. 4653 * 4654 * This function is the main SLI intialization function. This function 4655 * is called by the HBA intialization code, HBA reset code and HBA 4656 * error attention handler code. Caller is not required to hold any 4657 * locks. This function issues config_port mailbox command to configure 4658 * the SLI, setup iocb rings and HBQ rings. In the end the function 4659 * calls the config_port_post function to issue init_link mailbox 4660 * command and to start the discovery. The function will return zero 4661 * if successful, else it will return negative error code. 4662 **/ 4663 int 4664 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4665 { 4666 uint32_t rc; 4667 int mode = 3, i; 4668 int longs; 4669 4670 switch (phba->cfg_sli_mode) { 4671 case 2: 4672 if (phba->cfg_enable_npiv) { 4673 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4674 "1824 NPIV enabled: Override sli_mode " 4675 "parameter (%d) to auto (0).\n", 4676 phba->cfg_sli_mode); 4677 break; 4678 } 4679 mode = 2; 4680 break; 4681 case 0: 4682 case 3: 4683 break; 4684 default: 4685 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4686 "1819 Unrecognized sli_mode parameter: %d.\n", 4687 phba->cfg_sli_mode); 4688 4689 break; 4690 } 4691 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4692 4693 rc = lpfc_sli_config_port(phba, mode); 4694 4695 if (rc && phba->cfg_sli_mode == 3) 4696 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4697 "1820 Unable to select SLI-3. " 4698 "Not supported by adapter.\n"); 4699 if (rc && mode != 2) 4700 rc = lpfc_sli_config_port(phba, 2); 4701 else if (rc && mode == 2) 4702 rc = lpfc_sli_config_port(phba, 3); 4703 if (rc) 4704 goto lpfc_sli_hba_setup_error; 4705 4706 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4707 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4708 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4709 if (!rc) { 4710 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4711 "2709 This device supports " 4712 "Advanced Error Reporting (AER)\n"); 4713 spin_lock_irq(&phba->hbalock); 4714 phba->hba_flag |= HBA_AER_ENABLED; 4715 spin_unlock_irq(&phba->hbalock); 4716 } else { 4717 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4718 "2708 This device does not support " 4719 "Advanced Error Reporting (AER): %d\n", 4720 rc); 4721 phba->cfg_aer_support = 0; 4722 } 4723 } 4724 4725 if (phba->sli_rev == 3) { 4726 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4727 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4728 } else { 4729 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4730 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4731 phba->sli3_options = 0; 4732 } 4733 4734 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4735 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4736 phba->sli_rev, phba->max_vpi); 4737 rc = lpfc_sli_ring_map(phba); 4738 4739 if (rc) 4740 goto lpfc_sli_hba_setup_error; 4741 4742 /* Initialize VPIs. */ 4743 if (phba->sli_rev == LPFC_SLI_REV3) { 4744 /* 4745 * The VPI bitmask and physical ID array are allocated 4746 * and initialized once only - at driver load. A port 4747 * reset doesn't need to reinitialize this memory. 4748 */ 4749 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4750 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4751 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4752 GFP_KERNEL); 4753 if (!phba->vpi_bmask) { 4754 rc = -ENOMEM; 4755 goto lpfc_sli_hba_setup_error; 4756 } 4757 4758 phba->vpi_ids = kzalloc( 4759 (phba->max_vpi+1) * sizeof(uint16_t), 4760 GFP_KERNEL); 4761 if (!phba->vpi_ids) { 4762 kfree(phba->vpi_bmask); 4763 rc = -ENOMEM; 4764 goto lpfc_sli_hba_setup_error; 4765 } 4766 for (i = 0; i < phba->max_vpi; i++) 4767 phba->vpi_ids[i] = i; 4768 } 4769 } 4770 4771 /* Init HBQs */ 4772 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4773 rc = lpfc_sli_hbq_setup(phba); 4774 if (rc) 4775 goto lpfc_sli_hba_setup_error; 4776 } 4777 spin_lock_irq(&phba->hbalock); 4778 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4779 spin_unlock_irq(&phba->hbalock); 4780 4781 rc = lpfc_config_port_post(phba); 4782 if (rc) 4783 goto lpfc_sli_hba_setup_error; 4784 4785 return rc; 4786 4787 lpfc_sli_hba_setup_error: 4788 phba->link_state = LPFC_HBA_ERROR; 4789 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4790 "0445 Firmware initialization failed\n"); 4791 return rc; 4792 } 4793 4794 /** 4795 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4796 * @phba: Pointer to HBA context object. 4797 * @mboxq: mailbox pointer. 4798 * This function issue a dump mailbox command to read config region 4799 * 23 and parse the records in the region and populate driver 4800 * data structure. 4801 **/ 4802 static int 4803 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4804 { 4805 LPFC_MBOXQ_t *mboxq; 4806 struct lpfc_dmabuf *mp; 4807 struct lpfc_mqe *mqe; 4808 uint32_t data_length; 4809 int rc; 4810 4811 /* Program the default value of vlan_id and fc_map */ 4812 phba->valid_vlan = 0; 4813 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4814 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4815 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4816 4817 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4818 if (!mboxq) 4819 return -ENOMEM; 4820 4821 mqe = &mboxq->u.mqe; 4822 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4823 rc = -ENOMEM; 4824 goto out_free_mboxq; 4825 } 4826 4827 mp = (struct lpfc_dmabuf *) mboxq->context1; 4828 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4829 4830 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4831 "(%d):2571 Mailbox cmd x%x Status x%x " 4832 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4833 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4834 "CQ: x%x x%x x%x x%x\n", 4835 mboxq->vport ? mboxq->vport->vpi : 0, 4836 bf_get(lpfc_mqe_command, mqe), 4837 bf_get(lpfc_mqe_status, mqe), 4838 mqe->un.mb_words[0], mqe->un.mb_words[1], 4839 mqe->un.mb_words[2], mqe->un.mb_words[3], 4840 mqe->un.mb_words[4], mqe->un.mb_words[5], 4841 mqe->un.mb_words[6], mqe->un.mb_words[7], 4842 mqe->un.mb_words[8], mqe->un.mb_words[9], 4843 mqe->un.mb_words[10], mqe->un.mb_words[11], 4844 mqe->un.mb_words[12], mqe->un.mb_words[13], 4845 mqe->un.mb_words[14], mqe->un.mb_words[15], 4846 mqe->un.mb_words[16], mqe->un.mb_words[50], 4847 mboxq->mcqe.word0, 4848 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4849 mboxq->mcqe.trailer); 4850 4851 if (rc) { 4852 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4853 kfree(mp); 4854 rc = -EIO; 4855 goto out_free_mboxq; 4856 } 4857 data_length = mqe->un.mb_words[5]; 4858 if (data_length > DMP_RGN23_SIZE) { 4859 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4860 kfree(mp); 4861 rc = -EIO; 4862 goto out_free_mboxq; 4863 } 4864 4865 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4866 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4867 kfree(mp); 4868 rc = 0; 4869 4870 out_free_mboxq: 4871 mempool_free(mboxq, phba->mbox_mem_pool); 4872 return rc; 4873 } 4874 4875 /** 4876 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4877 * @phba: pointer to lpfc hba data structure. 4878 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4879 * @vpd: pointer to the memory to hold resulting port vpd data. 4880 * @vpd_size: On input, the number of bytes allocated to @vpd. 4881 * On output, the number of data bytes in @vpd. 4882 * 4883 * This routine executes a READ_REV SLI4 mailbox command. In 4884 * addition, this routine gets the port vpd data. 4885 * 4886 * Return codes 4887 * 0 - successful 4888 * -ENOMEM - could not allocated memory. 4889 **/ 4890 static int 4891 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4892 uint8_t *vpd, uint32_t *vpd_size) 4893 { 4894 int rc = 0; 4895 uint32_t dma_size; 4896 struct lpfc_dmabuf *dmabuf; 4897 struct lpfc_mqe *mqe; 4898 4899 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4900 if (!dmabuf) 4901 return -ENOMEM; 4902 4903 /* 4904 * Get a DMA buffer for the vpd data resulting from the READ_REV 4905 * mailbox command. 4906 */ 4907 dma_size = *vpd_size; 4908 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 4909 &dmabuf->phys, GFP_KERNEL); 4910 if (!dmabuf->virt) { 4911 kfree(dmabuf); 4912 return -ENOMEM; 4913 } 4914 4915 /* 4916 * The SLI4 implementation of READ_REV conflicts at word1, 4917 * bits 31:16 and SLI4 adds vpd functionality not present 4918 * in SLI3. This code corrects the conflicts. 4919 */ 4920 lpfc_read_rev(phba, mboxq); 4921 mqe = &mboxq->u.mqe; 4922 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4923 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4924 mqe->un.read_rev.word1 &= 0x0000FFFF; 4925 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4926 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4927 4928 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4929 if (rc) { 4930 dma_free_coherent(&phba->pcidev->dev, dma_size, 4931 dmabuf->virt, dmabuf->phys); 4932 kfree(dmabuf); 4933 return -EIO; 4934 } 4935 4936 /* 4937 * The available vpd length cannot be bigger than the 4938 * DMA buffer passed to the port. Catch the less than 4939 * case and update the caller's size. 4940 */ 4941 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4942 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4943 4944 memcpy(vpd, dmabuf->virt, *vpd_size); 4945 4946 dma_free_coherent(&phba->pcidev->dev, dma_size, 4947 dmabuf->virt, dmabuf->phys); 4948 kfree(dmabuf); 4949 return 0; 4950 } 4951 4952 /** 4953 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4954 * @phba: pointer to lpfc hba data structure. 4955 * 4956 * This routine retrieves SLI4 device physical port name this PCI function 4957 * is attached to. 4958 * 4959 * Return codes 4960 * 0 - successful 4961 * otherwise - failed to retrieve physical port name 4962 **/ 4963 static int 4964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4965 { 4966 LPFC_MBOXQ_t *mboxq; 4967 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4968 struct lpfc_controller_attribute *cntl_attr; 4969 struct lpfc_mbx_get_port_name *get_port_name; 4970 void *virtaddr = NULL; 4971 uint32_t alloclen, reqlen; 4972 uint32_t shdr_status, shdr_add_status; 4973 union lpfc_sli4_cfg_shdr *shdr; 4974 char cport_name = 0; 4975 int rc; 4976 4977 /* We assume nothing at this point */ 4978 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4979 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4980 4981 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4982 if (!mboxq) 4983 return -ENOMEM; 4984 /* obtain link type and link number via READ_CONFIG */ 4985 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4986 lpfc_sli4_read_config(phba); 4987 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4988 goto retrieve_ppname; 4989 4990 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4991 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4992 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4993 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4994 LPFC_SLI4_MBX_NEMBED); 4995 if (alloclen < reqlen) { 4996 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4997 "3084 Allocated DMA memory size (%d) is " 4998 "less than the requested DMA memory size " 4999 "(%d)\n", alloclen, reqlen); 5000 rc = -ENOMEM; 5001 goto out_free_mboxq; 5002 } 5003 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5004 virtaddr = mboxq->sge_array->addr[0]; 5005 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5006 shdr = &mbx_cntl_attr->cfg_shdr; 5007 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5008 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5009 if (shdr_status || shdr_add_status || rc) { 5010 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5011 "3085 Mailbox x%x (x%x/x%x) failed, " 5012 "rc:x%x, status:x%x, add_status:x%x\n", 5013 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5014 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5015 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5016 rc, shdr_status, shdr_add_status); 5017 rc = -ENXIO; 5018 goto out_free_mboxq; 5019 } 5020 cntl_attr = &mbx_cntl_attr->cntl_attr; 5021 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5022 phba->sli4_hba.lnk_info.lnk_tp = 5023 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5024 phba->sli4_hba.lnk_info.lnk_no = 5025 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5026 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5027 "3086 lnk_type:%d, lnk_numb:%d\n", 5028 phba->sli4_hba.lnk_info.lnk_tp, 5029 phba->sli4_hba.lnk_info.lnk_no); 5030 5031 retrieve_ppname: 5032 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5033 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5034 sizeof(struct lpfc_mbx_get_port_name) - 5035 sizeof(struct lpfc_sli4_cfg_mhdr), 5036 LPFC_SLI4_MBX_EMBED); 5037 get_port_name = &mboxq->u.mqe.un.get_port_name; 5038 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5039 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5040 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5041 phba->sli4_hba.lnk_info.lnk_tp); 5042 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5043 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5045 if (shdr_status || shdr_add_status || rc) { 5046 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5047 "3087 Mailbox x%x (x%x/x%x) failed: " 5048 "rc:x%x, status:x%x, add_status:x%x\n", 5049 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5050 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5051 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5052 rc, shdr_status, shdr_add_status); 5053 rc = -ENXIO; 5054 goto out_free_mboxq; 5055 } 5056 switch (phba->sli4_hba.lnk_info.lnk_no) { 5057 case LPFC_LINK_NUMBER_0: 5058 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5059 &get_port_name->u.response); 5060 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5061 break; 5062 case LPFC_LINK_NUMBER_1: 5063 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5064 &get_port_name->u.response); 5065 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5066 break; 5067 case LPFC_LINK_NUMBER_2: 5068 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5069 &get_port_name->u.response); 5070 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5071 break; 5072 case LPFC_LINK_NUMBER_3: 5073 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5074 &get_port_name->u.response); 5075 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5076 break; 5077 default: 5078 break; 5079 } 5080 5081 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5082 phba->Port[0] = cport_name; 5083 phba->Port[1] = '\0'; 5084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5085 "3091 SLI get port name: %s\n", phba->Port); 5086 } 5087 5088 out_free_mboxq: 5089 if (rc != MBX_TIMEOUT) { 5090 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5091 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5092 else 5093 mempool_free(mboxq, phba->mbox_mem_pool); 5094 } 5095 return rc; 5096 } 5097 5098 /** 5099 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5100 * @phba: pointer to lpfc hba data structure. 5101 * 5102 * This routine is called to explicitly arm the SLI4 device's completion and 5103 * event queues 5104 **/ 5105 static void 5106 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5107 { 5108 int fcp_eqidx; 5109 5110 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5111 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5112 fcp_eqidx = 0; 5113 if (phba->sli4_hba.fcp_cq) { 5114 do { 5115 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 5116 LPFC_QUEUE_REARM); 5117 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 5118 } 5119 5120 if (phba->cfg_fof) 5121 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5122 5123 if (phba->sli4_hba.hba_eq) { 5124 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 5125 fcp_eqidx++) 5126 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 5127 LPFC_QUEUE_REARM); 5128 } 5129 5130 if (phba->cfg_fof) 5131 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5132 } 5133 5134 /** 5135 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5136 * @phba: Pointer to HBA context object. 5137 * @type: The resource extent type. 5138 * @extnt_count: buffer to hold port available extent count. 5139 * @extnt_size: buffer to hold element count per extent. 5140 * 5141 * This function calls the port and retrievs the number of available 5142 * extents and their size for a particular extent type. 5143 * 5144 * Returns: 0 if successful. Nonzero otherwise. 5145 **/ 5146 int 5147 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5148 uint16_t *extnt_count, uint16_t *extnt_size) 5149 { 5150 int rc = 0; 5151 uint32_t length; 5152 uint32_t mbox_tmo; 5153 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5154 LPFC_MBOXQ_t *mbox; 5155 5156 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5157 if (!mbox) 5158 return -ENOMEM; 5159 5160 /* Find out how many extents are available for this resource type */ 5161 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5162 sizeof(struct lpfc_sli4_cfg_mhdr)); 5163 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5164 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5165 length, LPFC_SLI4_MBX_EMBED); 5166 5167 /* Send an extents count of 0 - the GET doesn't use it. */ 5168 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5169 LPFC_SLI4_MBX_EMBED); 5170 if (unlikely(rc)) { 5171 rc = -EIO; 5172 goto err_exit; 5173 } 5174 5175 if (!phba->sli4_hba.intr_enable) 5176 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5177 else { 5178 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5179 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5180 } 5181 if (unlikely(rc)) { 5182 rc = -EIO; 5183 goto err_exit; 5184 } 5185 5186 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5187 if (bf_get(lpfc_mbox_hdr_status, 5188 &rsrc_info->header.cfg_shdr.response)) { 5189 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5190 "2930 Failed to get resource extents " 5191 "Status 0x%x Add'l Status 0x%x\n", 5192 bf_get(lpfc_mbox_hdr_status, 5193 &rsrc_info->header.cfg_shdr.response), 5194 bf_get(lpfc_mbox_hdr_add_status, 5195 &rsrc_info->header.cfg_shdr.response)); 5196 rc = -EIO; 5197 goto err_exit; 5198 } 5199 5200 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5201 &rsrc_info->u.rsp); 5202 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5203 &rsrc_info->u.rsp); 5204 5205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5206 "3162 Retrieved extents type-%d from port: count:%d, " 5207 "size:%d\n", type, *extnt_count, *extnt_size); 5208 5209 err_exit: 5210 mempool_free(mbox, phba->mbox_mem_pool); 5211 return rc; 5212 } 5213 5214 /** 5215 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5216 * @phba: Pointer to HBA context object. 5217 * @type: The extent type to check. 5218 * 5219 * This function reads the current available extents from the port and checks 5220 * if the extent count or extent size has changed since the last access. 5221 * Callers use this routine post port reset to understand if there is a 5222 * extent reprovisioning requirement. 5223 * 5224 * Returns: 5225 * -Error: error indicates problem. 5226 * 1: Extent count or size has changed. 5227 * 0: No changes. 5228 **/ 5229 static int 5230 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5231 { 5232 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5233 uint16_t size_diff, rsrc_ext_size; 5234 int rc = 0; 5235 struct lpfc_rsrc_blks *rsrc_entry; 5236 struct list_head *rsrc_blk_list = NULL; 5237 5238 size_diff = 0; 5239 curr_ext_cnt = 0; 5240 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5241 &rsrc_ext_cnt, 5242 &rsrc_ext_size); 5243 if (unlikely(rc)) 5244 return -EIO; 5245 5246 switch (type) { 5247 case LPFC_RSC_TYPE_FCOE_RPI: 5248 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5249 break; 5250 case LPFC_RSC_TYPE_FCOE_VPI: 5251 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5252 break; 5253 case LPFC_RSC_TYPE_FCOE_XRI: 5254 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5255 break; 5256 case LPFC_RSC_TYPE_FCOE_VFI: 5257 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5258 break; 5259 default: 5260 break; 5261 } 5262 5263 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5264 curr_ext_cnt++; 5265 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5266 size_diff++; 5267 } 5268 5269 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5270 rc = 1; 5271 5272 return rc; 5273 } 5274 5275 /** 5276 * lpfc_sli4_cfg_post_extnts - 5277 * @phba: Pointer to HBA context object. 5278 * @extnt_cnt - number of available extents. 5279 * @type - the extent type (rpi, xri, vfi, vpi). 5280 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5281 * @mbox - pointer to the caller's allocated mailbox structure. 5282 * 5283 * This function executes the extents allocation request. It also 5284 * takes care of the amount of memory needed to allocate or get the 5285 * allocated extents. It is the caller's responsibility to evaluate 5286 * the response. 5287 * 5288 * Returns: 5289 * -Error: Error value describes the condition found. 5290 * 0: if successful 5291 **/ 5292 static int 5293 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5294 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5295 { 5296 int rc = 0; 5297 uint32_t req_len; 5298 uint32_t emb_len; 5299 uint32_t alloc_len, mbox_tmo; 5300 5301 /* Calculate the total requested length of the dma memory */ 5302 req_len = extnt_cnt * sizeof(uint16_t); 5303 5304 /* 5305 * Calculate the size of an embedded mailbox. The uint32_t 5306 * accounts for extents-specific word. 5307 */ 5308 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5309 sizeof(uint32_t); 5310 5311 /* 5312 * Presume the allocation and response will fit into an embedded 5313 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5314 */ 5315 *emb = LPFC_SLI4_MBX_EMBED; 5316 if (req_len > emb_len) { 5317 req_len = extnt_cnt * sizeof(uint16_t) + 5318 sizeof(union lpfc_sli4_cfg_shdr) + 5319 sizeof(uint32_t); 5320 *emb = LPFC_SLI4_MBX_NEMBED; 5321 } 5322 5323 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5324 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5325 req_len, *emb); 5326 if (alloc_len < req_len) { 5327 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5328 "2982 Allocated DMA memory size (x%x) is " 5329 "less than the requested DMA memory " 5330 "size (x%x)\n", alloc_len, req_len); 5331 return -ENOMEM; 5332 } 5333 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5334 if (unlikely(rc)) 5335 return -EIO; 5336 5337 if (!phba->sli4_hba.intr_enable) 5338 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5339 else { 5340 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5341 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5342 } 5343 5344 if (unlikely(rc)) 5345 rc = -EIO; 5346 return rc; 5347 } 5348 5349 /** 5350 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5351 * @phba: Pointer to HBA context object. 5352 * @type: The resource extent type to allocate. 5353 * 5354 * This function allocates the number of elements for the specified 5355 * resource type. 5356 **/ 5357 static int 5358 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5359 { 5360 bool emb = false; 5361 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5362 uint16_t rsrc_id, rsrc_start, j, k; 5363 uint16_t *ids; 5364 int i, rc; 5365 unsigned long longs; 5366 unsigned long *bmask; 5367 struct lpfc_rsrc_blks *rsrc_blks; 5368 LPFC_MBOXQ_t *mbox; 5369 uint32_t length; 5370 struct lpfc_id_range *id_array = NULL; 5371 void *virtaddr = NULL; 5372 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5373 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5374 struct list_head *ext_blk_list; 5375 5376 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5377 &rsrc_cnt, 5378 &rsrc_size); 5379 if (unlikely(rc)) 5380 return -EIO; 5381 5382 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5383 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5384 "3009 No available Resource Extents " 5385 "for resource type 0x%x: Count: 0x%x, " 5386 "Size 0x%x\n", type, rsrc_cnt, 5387 rsrc_size); 5388 return -ENOMEM; 5389 } 5390 5391 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5392 "2903 Post resource extents type-0x%x: " 5393 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5394 5395 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5396 if (!mbox) 5397 return -ENOMEM; 5398 5399 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5400 if (unlikely(rc)) { 5401 rc = -EIO; 5402 goto err_exit; 5403 } 5404 5405 /* 5406 * Figure out where the response is located. Then get local pointers 5407 * to the response data. The port does not guarantee to respond to 5408 * all extents counts request so update the local variable with the 5409 * allocated count from the port. 5410 */ 5411 if (emb == LPFC_SLI4_MBX_EMBED) { 5412 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5413 id_array = &rsrc_ext->u.rsp.id[0]; 5414 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5415 } else { 5416 virtaddr = mbox->sge_array->addr[0]; 5417 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5418 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5419 id_array = &n_rsrc->id; 5420 } 5421 5422 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5423 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5424 5425 /* 5426 * Based on the resource size and count, correct the base and max 5427 * resource values. 5428 */ 5429 length = sizeof(struct lpfc_rsrc_blks); 5430 switch (type) { 5431 case LPFC_RSC_TYPE_FCOE_RPI: 5432 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5433 sizeof(unsigned long), 5434 GFP_KERNEL); 5435 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5436 rc = -ENOMEM; 5437 goto err_exit; 5438 } 5439 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5440 sizeof(uint16_t), 5441 GFP_KERNEL); 5442 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5443 kfree(phba->sli4_hba.rpi_bmask); 5444 rc = -ENOMEM; 5445 goto err_exit; 5446 } 5447 5448 /* 5449 * The next_rpi was initialized with the maximum available 5450 * count but the port may allocate a smaller number. Catch 5451 * that case and update the next_rpi. 5452 */ 5453 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5454 5455 /* Initialize local ptrs for common extent processing later. */ 5456 bmask = phba->sli4_hba.rpi_bmask; 5457 ids = phba->sli4_hba.rpi_ids; 5458 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5459 break; 5460 case LPFC_RSC_TYPE_FCOE_VPI: 5461 phba->vpi_bmask = kzalloc(longs * 5462 sizeof(unsigned long), 5463 GFP_KERNEL); 5464 if (unlikely(!phba->vpi_bmask)) { 5465 rc = -ENOMEM; 5466 goto err_exit; 5467 } 5468 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5469 sizeof(uint16_t), 5470 GFP_KERNEL); 5471 if (unlikely(!phba->vpi_ids)) { 5472 kfree(phba->vpi_bmask); 5473 rc = -ENOMEM; 5474 goto err_exit; 5475 } 5476 5477 /* Initialize local ptrs for common extent processing later. */ 5478 bmask = phba->vpi_bmask; 5479 ids = phba->vpi_ids; 5480 ext_blk_list = &phba->lpfc_vpi_blk_list; 5481 break; 5482 case LPFC_RSC_TYPE_FCOE_XRI: 5483 phba->sli4_hba.xri_bmask = kzalloc(longs * 5484 sizeof(unsigned long), 5485 GFP_KERNEL); 5486 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5487 rc = -ENOMEM; 5488 goto err_exit; 5489 } 5490 phba->sli4_hba.max_cfg_param.xri_used = 0; 5491 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5492 sizeof(uint16_t), 5493 GFP_KERNEL); 5494 if (unlikely(!phba->sli4_hba.xri_ids)) { 5495 kfree(phba->sli4_hba.xri_bmask); 5496 rc = -ENOMEM; 5497 goto err_exit; 5498 } 5499 5500 /* Initialize local ptrs for common extent processing later. */ 5501 bmask = phba->sli4_hba.xri_bmask; 5502 ids = phba->sli4_hba.xri_ids; 5503 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5504 break; 5505 case LPFC_RSC_TYPE_FCOE_VFI: 5506 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5507 sizeof(unsigned long), 5508 GFP_KERNEL); 5509 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5510 rc = -ENOMEM; 5511 goto err_exit; 5512 } 5513 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5514 sizeof(uint16_t), 5515 GFP_KERNEL); 5516 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5517 kfree(phba->sli4_hba.vfi_bmask); 5518 rc = -ENOMEM; 5519 goto err_exit; 5520 } 5521 5522 /* Initialize local ptrs for common extent processing later. */ 5523 bmask = phba->sli4_hba.vfi_bmask; 5524 ids = phba->sli4_hba.vfi_ids; 5525 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5526 break; 5527 default: 5528 /* Unsupported Opcode. Fail call. */ 5529 id_array = NULL; 5530 bmask = NULL; 5531 ids = NULL; 5532 ext_blk_list = NULL; 5533 goto err_exit; 5534 } 5535 5536 /* 5537 * Complete initializing the extent configuration with the 5538 * allocated ids assigned to this function. The bitmask serves 5539 * as an index into the array and manages the available ids. The 5540 * array just stores the ids communicated to the port via the wqes. 5541 */ 5542 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5543 if ((i % 2) == 0) 5544 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5545 &id_array[k]); 5546 else 5547 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5548 &id_array[k]); 5549 5550 rsrc_blks = kzalloc(length, GFP_KERNEL); 5551 if (unlikely(!rsrc_blks)) { 5552 rc = -ENOMEM; 5553 kfree(bmask); 5554 kfree(ids); 5555 goto err_exit; 5556 } 5557 rsrc_blks->rsrc_start = rsrc_id; 5558 rsrc_blks->rsrc_size = rsrc_size; 5559 list_add_tail(&rsrc_blks->list, ext_blk_list); 5560 rsrc_start = rsrc_id; 5561 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5562 phba->sli4_hba.scsi_xri_start = rsrc_start + 5563 lpfc_sli4_get_els_iocb_cnt(phba); 5564 5565 while (rsrc_id < (rsrc_start + rsrc_size)) { 5566 ids[j] = rsrc_id; 5567 rsrc_id++; 5568 j++; 5569 } 5570 /* Entire word processed. Get next word.*/ 5571 if ((i % 2) == 1) 5572 k++; 5573 } 5574 err_exit: 5575 lpfc_sli4_mbox_cmd_free(phba, mbox); 5576 return rc; 5577 } 5578 5579 /** 5580 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5581 * @phba: Pointer to HBA context object. 5582 * @type: the extent's type. 5583 * 5584 * This function deallocates all extents of a particular resource type. 5585 * SLI4 does not allow for deallocating a particular extent range. It 5586 * is the caller's responsibility to release all kernel memory resources. 5587 **/ 5588 static int 5589 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5590 { 5591 int rc; 5592 uint32_t length, mbox_tmo = 0; 5593 LPFC_MBOXQ_t *mbox; 5594 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5595 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5596 5597 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5598 if (!mbox) 5599 return -ENOMEM; 5600 5601 /* 5602 * This function sends an embedded mailbox because it only sends the 5603 * the resource type. All extents of this type are released by the 5604 * port. 5605 */ 5606 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5607 sizeof(struct lpfc_sli4_cfg_mhdr)); 5608 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5609 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5610 length, LPFC_SLI4_MBX_EMBED); 5611 5612 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5613 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5614 LPFC_SLI4_MBX_EMBED); 5615 if (unlikely(rc)) { 5616 rc = -EIO; 5617 goto out_free_mbox; 5618 } 5619 if (!phba->sli4_hba.intr_enable) 5620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5621 else { 5622 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5623 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5624 } 5625 if (unlikely(rc)) { 5626 rc = -EIO; 5627 goto out_free_mbox; 5628 } 5629 5630 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5631 if (bf_get(lpfc_mbox_hdr_status, 5632 &dealloc_rsrc->header.cfg_shdr.response)) { 5633 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5634 "2919 Failed to release resource extents " 5635 "for type %d - Status 0x%x Add'l Status 0x%x. " 5636 "Resource memory not released.\n", 5637 type, 5638 bf_get(lpfc_mbox_hdr_status, 5639 &dealloc_rsrc->header.cfg_shdr.response), 5640 bf_get(lpfc_mbox_hdr_add_status, 5641 &dealloc_rsrc->header.cfg_shdr.response)); 5642 rc = -EIO; 5643 goto out_free_mbox; 5644 } 5645 5646 /* Release kernel memory resources for the specific type. */ 5647 switch (type) { 5648 case LPFC_RSC_TYPE_FCOE_VPI: 5649 kfree(phba->vpi_bmask); 5650 kfree(phba->vpi_ids); 5651 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5652 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5653 &phba->lpfc_vpi_blk_list, list) { 5654 list_del_init(&rsrc_blk->list); 5655 kfree(rsrc_blk); 5656 } 5657 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5658 break; 5659 case LPFC_RSC_TYPE_FCOE_XRI: 5660 kfree(phba->sli4_hba.xri_bmask); 5661 kfree(phba->sli4_hba.xri_ids); 5662 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5663 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5664 list_del_init(&rsrc_blk->list); 5665 kfree(rsrc_blk); 5666 } 5667 break; 5668 case LPFC_RSC_TYPE_FCOE_VFI: 5669 kfree(phba->sli4_hba.vfi_bmask); 5670 kfree(phba->sli4_hba.vfi_ids); 5671 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5672 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5673 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5674 list_del_init(&rsrc_blk->list); 5675 kfree(rsrc_blk); 5676 } 5677 break; 5678 case LPFC_RSC_TYPE_FCOE_RPI: 5679 /* RPI bitmask and physical id array are cleaned up earlier. */ 5680 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5681 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5682 list_del_init(&rsrc_blk->list); 5683 kfree(rsrc_blk); 5684 } 5685 break; 5686 default: 5687 break; 5688 } 5689 5690 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5691 5692 out_free_mbox: 5693 mempool_free(mbox, phba->mbox_mem_pool); 5694 return rc; 5695 } 5696 5697 static void 5698 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5699 uint32_t feature) 5700 { 5701 uint32_t len; 5702 5703 len = sizeof(struct lpfc_mbx_set_feature) - 5704 sizeof(struct lpfc_sli4_cfg_mhdr); 5705 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5706 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5707 LPFC_SLI4_MBX_EMBED); 5708 5709 switch (feature) { 5710 case LPFC_SET_UE_RECOVERY: 5711 bf_set(lpfc_mbx_set_feature_UER, 5712 &mbox->u.mqe.un.set_feature, 1); 5713 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5714 mbox->u.mqe.un.set_feature.param_len = 8; 5715 break; 5716 case LPFC_SET_MDS_DIAGS: 5717 bf_set(lpfc_mbx_set_feature_mds, 5718 &mbox->u.mqe.un.set_feature, 1); 5719 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5720 &mbox->u.mqe.un.set_feature, 0); 5721 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5722 mbox->u.mqe.un.set_feature.param_len = 8; 5723 break; 5724 } 5725 5726 return; 5727 } 5728 5729 /** 5730 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5731 * @phba: Pointer to HBA context object. 5732 * 5733 * This function allocates all SLI4 resource identifiers. 5734 **/ 5735 int 5736 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5737 { 5738 int i, rc, error = 0; 5739 uint16_t count, base; 5740 unsigned long longs; 5741 5742 if (!phba->sli4_hba.rpi_hdrs_in_use) 5743 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5744 if (phba->sli4_hba.extents_in_use) { 5745 /* 5746 * The port supports resource extents. The XRI, VPI, VFI, RPI 5747 * resource extent count must be read and allocated before 5748 * provisioning the resource id arrays. 5749 */ 5750 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5751 LPFC_IDX_RSRC_RDY) { 5752 /* 5753 * Extent-based resources are set - the driver could 5754 * be in a port reset. Figure out if any corrective 5755 * actions need to be taken. 5756 */ 5757 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5758 LPFC_RSC_TYPE_FCOE_VFI); 5759 if (rc != 0) 5760 error++; 5761 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5762 LPFC_RSC_TYPE_FCOE_VPI); 5763 if (rc != 0) 5764 error++; 5765 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5766 LPFC_RSC_TYPE_FCOE_XRI); 5767 if (rc != 0) 5768 error++; 5769 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5770 LPFC_RSC_TYPE_FCOE_RPI); 5771 if (rc != 0) 5772 error++; 5773 5774 /* 5775 * It's possible that the number of resources 5776 * provided to this port instance changed between 5777 * resets. Detect this condition and reallocate 5778 * resources. Otherwise, there is no action. 5779 */ 5780 if (error) { 5781 lpfc_printf_log(phba, KERN_INFO, 5782 LOG_MBOX | LOG_INIT, 5783 "2931 Detected extent resource " 5784 "change. Reallocating all " 5785 "extents.\n"); 5786 rc = lpfc_sli4_dealloc_extent(phba, 5787 LPFC_RSC_TYPE_FCOE_VFI); 5788 rc = lpfc_sli4_dealloc_extent(phba, 5789 LPFC_RSC_TYPE_FCOE_VPI); 5790 rc = lpfc_sli4_dealloc_extent(phba, 5791 LPFC_RSC_TYPE_FCOE_XRI); 5792 rc = lpfc_sli4_dealloc_extent(phba, 5793 LPFC_RSC_TYPE_FCOE_RPI); 5794 } else 5795 return 0; 5796 } 5797 5798 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5799 if (unlikely(rc)) 5800 goto err_exit; 5801 5802 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5803 if (unlikely(rc)) 5804 goto err_exit; 5805 5806 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5807 if (unlikely(rc)) 5808 goto err_exit; 5809 5810 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5811 if (unlikely(rc)) 5812 goto err_exit; 5813 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5814 LPFC_IDX_RSRC_RDY); 5815 return rc; 5816 } else { 5817 /* 5818 * The port does not support resource extents. The XRI, VPI, 5819 * VFI, RPI resource ids were determined from READ_CONFIG. 5820 * Just allocate the bitmasks and provision the resource id 5821 * arrays. If a port reset is active, the resources don't 5822 * need any action - just exit. 5823 */ 5824 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5825 LPFC_IDX_RSRC_RDY) { 5826 lpfc_sli4_dealloc_resource_identifiers(phba); 5827 lpfc_sli4_remove_rpis(phba); 5828 } 5829 /* RPIs. */ 5830 count = phba->sli4_hba.max_cfg_param.max_rpi; 5831 if (count <= 0) { 5832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5833 "3279 Invalid provisioning of " 5834 "rpi:%d\n", count); 5835 rc = -EINVAL; 5836 goto err_exit; 5837 } 5838 base = phba->sli4_hba.max_cfg_param.rpi_base; 5839 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5840 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5841 sizeof(unsigned long), 5842 GFP_KERNEL); 5843 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5844 rc = -ENOMEM; 5845 goto err_exit; 5846 } 5847 phba->sli4_hba.rpi_ids = kzalloc(count * 5848 sizeof(uint16_t), 5849 GFP_KERNEL); 5850 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5851 rc = -ENOMEM; 5852 goto free_rpi_bmask; 5853 } 5854 5855 for (i = 0; i < count; i++) 5856 phba->sli4_hba.rpi_ids[i] = base + i; 5857 5858 /* VPIs. */ 5859 count = phba->sli4_hba.max_cfg_param.max_vpi; 5860 if (count <= 0) { 5861 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5862 "3280 Invalid provisioning of " 5863 "vpi:%d\n", count); 5864 rc = -EINVAL; 5865 goto free_rpi_ids; 5866 } 5867 base = phba->sli4_hba.max_cfg_param.vpi_base; 5868 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5869 phba->vpi_bmask = kzalloc(longs * 5870 sizeof(unsigned long), 5871 GFP_KERNEL); 5872 if (unlikely(!phba->vpi_bmask)) { 5873 rc = -ENOMEM; 5874 goto free_rpi_ids; 5875 } 5876 phba->vpi_ids = kzalloc(count * 5877 sizeof(uint16_t), 5878 GFP_KERNEL); 5879 if (unlikely(!phba->vpi_ids)) { 5880 rc = -ENOMEM; 5881 goto free_vpi_bmask; 5882 } 5883 5884 for (i = 0; i < count; i++) 5885 phba->vpi_ids[i] = base + i; 5886 5887 /* XRIs. */ 5888 count = phba->sli4_hba.max_cfg_param.max_xri; 5889 if (count <= 0) { 5890 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5891 "3281 Invalid provisioning of " 5892 "xri:%d\n", count); 5893 rc = -EINVAL; 5894 goto free_vpi_ids; 5895 } 5896 base = phba->sli4_hba.max_cfg_param.xri_base; 5897 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5898 phba->sli4_hba.xri_bmask = kzalloc(longs * 5899 sizeof(unsigned long), 5900 GFP_KERNEL); 5901 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5902 rc = -ENOMEM; 5903 goto free_vpi_ids; 5904 } 5905 phba->sli4_hba.max_cfg_param.xri_used = 0; 5906 phba->sli4_hba.xri_ids = kzalloc(count * 5907 sizeof(uint16_t), 5908 GFP_KERNEL); 5909 if (unlikely(!phba->sli4_hba.xri_ids)) { 5910 rc = -ENOMEM; 5911 goto free_xri_bmask; 5912 } 5913 5914 for (i = 0; i < count; i++) 5915 phba->sli4_hba.xri_ids[i] = base + i; 5916 5917 /* VFIs. */ 5918 count = phba->sli4_hba.max_cfg_param.max_vfi; 5919 if (count <= 0) { 5920 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5921 "3282 Invalid provisioning of " 5922 "vfi:%d\n", count); 5923 rc = -EINVAL; 5924 goto free_xri_ids; 5925 } 5926 base = phba->sli4_hba.max_cfg_param.vfi_base; 5927 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5928 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5929 sizeof(unsigned long), 5930 GFP_KERNEL); 5931 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5932 rc = -ENOMEM; 5933 goto free_xri_ids; 5934 } 5935 phba->sli4_hba.vfi_ids = kzalloc(count * 5936 sizeof(uint16_t), 5937 GFP_KERNEL); 5938 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5939 rc = -ENOMEM; 5940 goto free_vfi_bmask; 5941 } 5942 5943 for (i = 0; i < count; i++) 5944 phba->sli4_hba.vfi_ids[i] = base + i; 5945 5946 /* 5947 * Mark all resources ready. An HBA reset doesn't need 5948 * to reset the initialization. 5949 */ 5950 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5951 LPFC_IDX_RSRC_RDY); 5952 return 0; 5953 } 5954 5955 free_vfi_bmask: 5956 kfree(phba->sli4_hba.vfi_bmask); 5957 phba->sli4_hba.vfi_bmask = NULL; 5958 free_xri_ids: 5959 kfree(phba->sli4_hba.xri_ids); 5960 phba->sli4_hba.xri_ids = NULL; 5961 free_xri_bmask: 5962 kfree(phba->sli4_hba.xri_bmask); 5963 phba->sli4_hba.xri_bmask = NULL; 5964 free_vpi_ids: 5965 kfree(phba->vpi_ids); 5966 phba->vpi_ids = NULL; 5967 free_vpi_bmask: 5968 kfree(phba->vpi_bmask); 5969 phba->vpi_bmask = NULL; 5970 free_rpi_ids: 5971 kfree(phba->sli4_hba.rpi_ids); 5972 phba->sli4_hba.rpi_ids = NULL; 5973 free_rpi_bmask: 5974 kfree(phba->sli4_hba.rpi_bmask); 5975 phba->sli4_hba.rpi_bmask = NULL; 5976 err_exit: 5977 return rc; 5978 } 5979 5980 /** 5981 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5982 * @phba: Pointer to HBA context object. 5983 * 5984 * This function allocates the number of elements for the specified 5985 * resource type. 5986 **/ 5987 int 5988 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5989 { 5990 if (phba->sli4_hba.extents_in_use) { 5991 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5992 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5993 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5994 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5995 } else { 5996 kfree(phba->vpi_bmask); 5997 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5998 kfree(phba->vpi_ids); 5999 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6000 kfree(phba->sli4_hba.xri_bmask); 6001 kfree(phba->sli4_hba.xri_ids); 6002 kfree(phba->sli4_hba.vfi_bmask); 6003 kfree(phba->sli4_hba.vfi_ids); 6004 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6005 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6006 } 6007 6008 return 0; 6009 } 6010 6011 /** 6012 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6013 * @phba: Pointer to HBA context object. 6014 * @type: The resource extent type. 6015 * @extnt_count: buffer to hold port extent count response 6016 * @extnt_size: buffer to hold port extent size response. 6017 * 6018 * This function calls the port to read the host allocated extents 6019 * for a particular type. 6020 **/ 6021 int 6022 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6023 uint16_t *extnt_cnt, uint16_t *extnt_size) 6024 { 6025 bool emb; 6026 int rc = 0; 6027 uint16_t curr_blks = 0; 6028 uint32_t req_len, emb_len; 6029 uint32_t alloc_len, mbox_tmo; 6030 struct list_head *blk_list_head; 6031 struct lpfc_rsrc_blks *rsrc_blk; 6032 LPFC_MBOXQ_t *mbox; 6033 void *virtaddr = NULL; 6034 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6035 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6036 union lpfc_sli4_cfg_shdr *shdr; 6037 6038 switch (type) { 6039 case LPFC_RSC_TYPE_FCOE_VPI: 6040 blk_list_head = &phba->lpfc_vpi_blk_list; 6041 break; 6042 case LPFC_RSC_TYPE_FCOE_XRI: 6043 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6044 break; 6045 case LPFC_RSC_TYPE_FCOE_VFI: 6046 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6047 break; 6048 case LPFC_RSC_TYPE_FCOE_RPI: 6049 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6050 break; 6051 default: 6052 return -EIO; 6053 } 6054 6055 /* Count the number of extents currently allocatd for this type. */ 6056 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6057 if (curr_blks == 0) { 6058 /* 6059 * The GET_ALLOCATED mailbox does not return the size, 6060 * just the count. The size should be just the size 6061 * stored in the current allocated block and all sizes 6062 * for an extent type are the same so set the return 6063 * value now. 6064 */ 6065 *extnt_size = rsrc_blk->rsrc_size; 6066 } 6067 curr_blks++; 6068 } 6069 6070 /* 6071 * Calculate the size of an embedded mailbox. The uint32_t 6072 * accounts for extents-specific word. 6073 */ 6074 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6075 sizeof(uint32_t); 6076 6077 /* 6078 * Presume the allocation and response will fit into an embedded 6079 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6080 */ 6081 emb = LPFC_SLI4_MBX_EMBED; 6082 req_len = emb_len; 6083 if (req_len > emb_len) { 6084 req_len = curr_blks * sizeof(uint16_t) + 6085 sizeof(union lpfc_sli4_cfg_shdr) + 6086 sizeof(uint32_t); 6087 emb = LPFC_SLI4_MBX_NEMBED; 6088 } 6089 6090 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6091 if (!mbox) 6092 return -ENOMEM; 6093 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6094 6095 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6096 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6097 req_len, emb); 6098 if (alloc_len < req_len) { 6099 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6100 "2983 Allocated DMA memory size (x%x) is " 6101 "less than the requested DMA memory " 6102 "size (x%x)\n", alloc_len, req_len); 6103 rc = -ENOMEM; 6104 goto err_exit; 6105 } 6106 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6107 if (unlikely(rc)) { 6108 rc = -EIO; 6109 goto err_exit; 6110 } 6111 6112 if (!phba->sli4_hba.intr_enable) 6113 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6114 else { 6115 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6116 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6117 } 6118 6119 if (unlikely(rc)) { 6120 rc = -EIO; 6121 goto err_exit; 6122 } 6123 6124 /* 6125 * Figure out where the response is located. Then get local pointers 6126 * to the response data. The port does not guarantee to respond to 6127 * all extents counts request so update the local variable with the 6128 * allocated count from the port. 6129 */ 6130 if (emb == LPFC_SLI4_MBX_EMBED) { 6131 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6132 shdr = &rsrc_ext->header.cfg_shdr; 6133 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6134 } else { 6135 virtaddr = mbox->sge_array->addr[0]; 6136 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6137 shdr = &n_rsrc->cfg_shdr; 6138 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6139 } 6140 6141 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6142 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6143 "2984 Failed to read allocated resources " 6144 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6145 type, 6146 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6147 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6148 rc = -EIO; 6149 goto err_exit; 6150 } 6151 err_exit: 6152 lpfc_sli4_mbox_cmd_free(phba, mbox); 6153 return rc; 6154 } 6155 6156 /** 6157 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 6158 * @phba: pointer to lpfc hba data structure. 6159 * 6160 * This routine walks the list of els buffers that have been allocated and 6161 * repost them to the port by using SGL block post. This is needed after a 6162 * pci_function_reset/warm_start or start. It attempts to construct blocks 6163 * of els buffer sgls which contains contiguous xris and uses the non-embedded 6164 * SGL block post mailbox commands to post them to the port. For single els 6165 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6166 * mailbox command for posting. 6167 * 6168 * Returns: 0 = success, non-zero failure. 6169 **/ 6170 static int 6171 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 6172 { 6173 struct lpfc_sglq *sglq_entry = NULL; 6174 struct lpfc_sglq *sglq_entry_next = NULL; 6175 struct lpfc_sglq *sglq_entry_first = NULL; 6176 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6177 int last_xritag = NO_XRI; 6178 struct lpfc_sli_ring *pring; 6179 LIST_HEAD(prep_sgl_list); 6180 LIST_HEAD(blck_sgl_list); 6181 LIST_HEAD(allc_sgl_list); 6182 LIST_HEAD(post_sgl_list); 6183 LIST_HEAD(free_sgl_list); 6184 6185 pring = &phba->sli.ring[LPFC_ELS_RING]; 6186 spin_lock_irq(&phba->hbalock); 6187 spin_lock(&pring->ring_lock); 6188 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6189 spin_unlock(&pring->ring_lock); 6190 spin_unlock_irq(&phba->hbalock); 6191 6192 total_cnt = phba->sli4_hba.els_xri_cnt; 6193 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6194 &allc_sgl_list, list) { 6195 list_del_init(&sglq_entry->list); 6196 block_cnt++; 6197 if ((last_xritag != NO_XRI) && 6198 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6199 /* a hole in xri block, form a sgl posting block */ 6200 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6201 post_cnt = block_cnt - 1; 6202 /* prepare list for next posting block */ 6203 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6204 block_cnt = 1; 6205 } else { 6206 /* prepare list for next posting block */ 6207 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6208 /* enough sgls for non-embed sgl mbox command */ 6209 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6210 list_splice_init(&prep_sgl_list, 6211 &blck_sgl_list); 6212 post_cnt = block_cnt; 6213 block_cnt = 0; 6214 } 6215 } 6216 num_posted++; 6217 6218 /* keep track of last sgl's xritag */ 6219 last_xritag = sglq_entry->sli4_xritag; 6220 6221 /* end of repost sgl list condition for els buffers */ 6222 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6223 if (post_cnt == 0) { 6224 list_splice_init(&prep_sgl_list, 6225 &blck_sgl_list); 6226 post_cnt = block_cnt; 6227 } else if (block_cnt == 1) { 6228 status = lpfc_sli4_post_sgl(phba, 6229 sglq_entry->phys, 0, 6230 sglq_entry->sli4_xritag); 6231 if (!status) { 6232 /* successful, put sgl to posted list */ 6233 list_add_tail(&sglq_entry->list, 6234 &post_sgl_list); 6235 } else { 6236 /* Failure, put sgl to free list */ 6237 lpfc_printf_log(phba, KERN_WARNING, 6238 LOG_SLI, 6239 "3159 Failed to post els " 6240 "sgl, xritag:x%x\n", 6241 sglq_entry->sli4_xritag); 6242 list_add_tail(&sglq_entry->list, 6243 &free_sgl_list); 6244 total_cnt--; 6245 } 6246 } 6247 } 6248 6249 /* continue until a nembed page worth of sgls */ 6250 if (post_cnt == 0) 6251 continue; 6252 6253 /* post the els buffer list sgls as a block */ 6254 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6255 post_cnt); 6256 6257 if (!status) { 6258 /* success, put sgl list to posted sgl list */ 6259 list_splice_init(&blck_sgl_list, &post_sgl_list); 6260 } else { 6261 /* Failure, put sgl list to free sgl list */ 6262 sglq_entry_first = list_first_entry(&blck_sgl_list, 6263 struct lpfc_sglq, 6264 list); 6265 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6266 "3160 Failed to post els sgl-list, " 6267 "xritag:x%x-x%x\n", 6268 sglq_entry_first->sli4_xritag, 6269 (sglq_entry_first->sli4_xritag + 6270 post_cnt - 1)); 6271 list_splice_init(&blck_sgl_list, &free_sgl_list); 6272 total_cnt -= post_cnt; 6273 } 6274 6275 /* don't reset xirtag due to hole in xri block */ 6276 if (block_cnt == 0) 6277 last_xritag = NO_XRI; 6278 6279 /* reset els sgl post count for next round of posting */ 6280 post_cnt = 0; 6281 } 6282 /* update the number of XRIs posted for ELS */ 6283 phba->sli4_hba.els_xri_cnt = total_cnt; 6284 6285 /* free the els sgls failed to post */ 6286 lpfc_free_sgl_list(phba, &free_sgl_list); 6287 6288 /* push els sgls posted to the availble list */ 6289 if (!list_empty(&post_sgl_list)) { 6290 spin_lock_irq(&phba->hbalock); 6291 spin_lock(&pring->ring_lock); 6292 list_splice_init(&post_sgl_list, 6293 &phba->sli4_hba.lpfc_sgl_list); 6294 spin_unlock(&pring->ring_lock); 6295 spin_unlock_irq(&phba->hbalock); 6296 } else { 6297 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6298 "3161 Failure to post els sgl to port.\n"); 6299 return -EIO; 6300 } 6301 return 0; 6302 } 6303 6304 void 6305 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6306 { 6307 uint32_t len; 6308 6309 len = sizeof(struct lpfc_mbx_set_host_data) - 6310 sizeof(struct lpfc_sli4_cfg_mhdr); 6311 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6312 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6313 LPFC_SLI4_MBX_EMBED); 6314 6315 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6316 mbox->u.mqe.un.set_host_data.param_len = 8; 6317 snprintf(mbox->u.mqe.un.set_host_data.data, 6318 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6319 "Linux %s v"LPFC_DRIVER_VERSION, 6320 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6321 } 6322 6323 /** 6324 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function 6325 * @phba: Pointer to HBA context object. 6326 * 6327 * This function is the main SLI4 device intialization PCI function. This 6328 * function is called by the HBA intialization code, HBA reset code and 6329 * HBA error attention handler code. Caller is not required to hold any 6330 * locks. 6331 **/ 6332 int 6333 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6334 { 6335 int rc; 6336 LPFC_MBOXQ_t *mboxq; 6337 struct lpfc_mqe *mqe; 6338 uint8_t *vpd; 6339 uint32_t vpd_size; 6340 uint32_t ftr_rsp = 0; 6341 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6342 struct lpfc_vport *vport = phba->pport; 6343 struct lpfc_dmabuf *mp; 6344 6345 /* Perform a PCI function reset to start from clean */ 6346 rc = lpfc_pci_function_reset(phba); 6347 if (unlikely(rc)) 6348 return -ENODEV; 6349 6350 /* Check the HBA Host Status Register for readyness */ 6351 rc = lpfc_sli4_post_status_check(phba); 6352 if (unlikely(rc)) 6353 return -ENODEV; 6354 else { 6355 spin_lock_irq(&phba->hbalock); 6356 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6357 spin_unlock_irq(&phba->hbalock); 6358 } 6359 6360 /* 6361 * Allocate a single mailbox container for initializing the 6362 * port. 6363 */ 6364 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6365 if (!mboxq) 6366 return -ENOMEM; 6367 6368 /* Issue READ_REV to collect vpd and FW information. */ 6369 vpd_size = SLI4_PAGE_SIZE; 6370 vpd = kzalloc(vpd_size, GFP_KERNEL); 6371 if (!vpd) { 6372 rc = -ENOMEM; 6373 goto out_free_mbox; 6374 } 6375 6376 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6377 if (unlikely(rc)) { 6378 kfree(vpd); 6379 goto out_free_mbox; 6380 } 6381 6382 mqe = &mboxq->u.mqe; 6383 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6384 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6385 phba->hba_flag |= HBA_FCOE_MODE; 6386 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6387 } else { 6388 phba->hba_flag &= ~HBA_FCOE_MODE; 6389 } 6390 6391 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6392 LPFC_DCBX_CEE_MODE) 6393 phba->hba_flag |= HBA_FIP_SUPPORT; 6394 else 6395 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6396 6397 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6398 6399 if (phba->sli_rev != LPFC_SLI_REV4) { 6400 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6401 "0376 READ_REV Error. SLI Level %d " 6402 "FCoE enabled %d\n", 6403 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6404 rc = -EIO; 6405 kfree(vpd); 6406 goto out_free_mbox; 6407 } 6408 6409 /* 6410 * Continue initialization with default values even if driver failed 6411 * to read FCoE param config regions, only read parameters if the 6412 * board is FCoE 6413 */ 6414 if (phba->hba_flag & HBA_FCOE_MODE && 6415 lpfc_sli4_read_fcoe_params(phba)) 6416 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6417 "2570 Failed to read FCoE parameters\n"); 6418 6419 /* 6420 * Retrieve sli4 device physical port name, failure of doing it 6421 * is considered as non-fatal. 6422 */ 6423 rc = lpfc_sli4_retrieve_pport_name(phba); 6424 if (!rc) 6425 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6426 "3080 Successful retrieving SLI4 device " 6427 "physical port name: %s.\n", phba->Port); 6428 6429 /* 6430 * Evaluate the read rev and vpd data. Populate the driver 6431 * state with the results. If this routine fails, the failure 6432 * is not fatal as the driver will use generic values. 6433 */ 6434 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6435 if (unlikely(!rc)) { 6436 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6437 "0377 Error %d parsing vpd. " 6438 "Using defaults.\n", rc); 6439 rc = 0; 6440 } 6441 kfree(vpd); 6442 6443 /* Save information as VPD data */ 6444 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6445 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6446 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6447 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6448 &mqe->un.read_rev); 6449 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6450 &mqe->un.read_rev); 6451 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6452 &mqe->un.read_rev); 6453 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6454 &mqe->un.read_rev); 6455 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6456 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6457 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6458 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6459 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6460 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6461 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6462 "(%d):0380 READ_REV Status x%x " 6463 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6464 mboxq->vport ? mboxq->vport->vpi : 0, 6465 bf_get(lpfc_mqe_status, mqe), 6466 phba->vpd.rev.opFwName, 6467 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6468 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6469 6470 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6471 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6472 if (phba->pport->cfg_lun_queue_depth > rc) { 6473 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6474 "3362 LUN queue depth changed from %d to %d\n", 6475 phba->pport->cfg_lun_queue_depth, rc); 6476 phba->pport->cfg_lun_queue_depth = rc; 6477 } 6478 6479 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6480 LPFC_SLI_INTF_IF_TYPE_0) { 6481 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6482 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6483 if (rc == MBX_SUCCESS) { 6484 phba->hba_flag |= HBA_RECOVERABLE_UE; 6485 /* Set 1Sec interval to detect UE */ 6486 phba->eratt_poll_interval = 1; 6487 phba->sli4_hba.ue_to_sr = bf_get( 6488 lpfc_mbx_set_feature_UESR, 6489 &mboxq->u.mqe.un.set_feature); 6490 phba->sli4_hba.ue_to_rp = bf_get( 6491 lpfc_mbx_set_feature_UERP, 6492 &mboxq->u.mqe.un.set_feature); 6493 } 6494 } 6495 6496 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6497 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6498 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6499 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6500 if (rc != MBX_SUCCESS) 6501 phba->mds_diags_support = 0; 6502 } 6503 6504 /* 6505 * Discover the port's supported feature set and match it against the 6506 * hosts requests. 6507 */ 6508 lpfc_request_features(phba, mboxq); 6509 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6510 if (unlikely(rc)) { 6511 rc = -EIO; 6512 goto out_free_mbox; 6513 } 6514 6515 /* 6516 * The port must support FCP initiator mode as this is the 6517 * only mode running in the host. 6518 */ 6519 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6520 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6521 "0378 No support for fcpi mode.\n"); 6522 ftr_rsp++; 6523 } 6524 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6525 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6526 else 6527 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6528 /* 6529 * If the port cannot support the host's requested features 6530 * then turn off the global config parameters to disable the 6531 * feature in the driver. This is not a fatal error. 6532 */ 6533 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6534 if (phba->cfg_enable_bg) { 6535 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6536 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6537 else 6538 ftr_rsp++; 6539 } 6540 6541 if (phba->max_vpi && phba->cfg_enable_npiv && 6542 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6543 ftr_rsp++; 6544 6545 if (ftr_rsp) { 6546 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6547 "0379 Feature Mismatch Data: x%08x %08x " 6548 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6549 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6550 phba->cfg_enable_npiv, phba->max_vpi); 6551 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6552 phba->cfg_enable_bg = 0; 6553 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6554 phba->cfg_enable_npiv = 0; 6555 } 6556 6557 /* These SLI3 features are assumed in SLI4 */ 6558 spin_lock_irq(&phba->hbalock); 6559 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6560 spin_unlock_irq(&phba->hbalock); 6561 6562 /* 6563 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6564 * calls depends on these resources to complete port setup. 6565 */ 6566 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6567 if (rc) { 6568 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6569 "2920 Failed to alloc Resource IDs " 6570 "rc = x%x\n", rc); 6571 goto out_free_mbox; 6572 } 6573 6574 lpfc_set_host_data(phba, mboxq); 6575 6576 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6577 if (rc) { 6578 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6579 "2134 Failed to set host os driver version %x", 6580 rc); 6581 } 6582 6583 /* Read the port's service parameters. */ 6584 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6585 if (rc) { 6586 phba->link_state = LPFC_HBA_ERROR; 6587 rc = -ENOMEM; 6588 goto out_free_mbox; 6589 } 6590 6591 mboxq->vport = vport; 6592 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6593 mp = (struct lpfc_dmabuf *) mboxq->context1; 6594 if (rc == MBX_SUCCESS) { 6595 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6596 rc = 0; 6597 } 6598 6599 /* 6600 * This memory was allocated by the lpfc_read_sparam routine. Release 6601 * it to the mbuf pool. 6602 */ 6603 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6604 kfree(mp); 6605 mboxq->context1 = NULL; 6606 if (unlikely(rc)) { 6607 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6608 "0382 READ_SPARAM command failed " 6609 "status %d, mbxStatus x%x\n", 6610 rc, bf_get(lpfc_mqe_status, mqe)); 6611 phba->link_state = LPFC_HBA_ERROR; 6612 rc = -EIO; 6613 goto out_free_mbox; 6614 } 6615 6616 lpfc_update_vport_wwn(vport); 6617 6618 /* Update the fc_host data structures with new wwn. */ 6619 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6620 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6621 6622 /* update host els and scsi xri-sgl sizes and mappings */ 6623 rc = lpfc_sli4_xri_sgl_update(phba); 6624 if (unlikely(rc)) { 6625 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6626 "1400 Failed to update xri-sgl size and " 6627 "mapping: %d\n", rc); 6628 goto out_free_mbox; 6629 } 6630 6631 /* register the els sgl pool to the port */ 6632 rc = lpfc_sli4_repost_els_sgl_list(phba); 6633 if (unlikely(rc)) { 6634 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6635 "0582 Error %d during els sgl post " 6636 "operation\n", rc); 6637 rc = -ENODEV; 6638 goto out_free_mbox; 6639 } 6640 6641 /* register the allocated scsi sgl pool to the port */ 6642 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6643 if (unlikely(rc)) { 6644 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6645 "0383 Error %d during scsi sgl post " 6646 "operation\n", rc); 6647 /* Some Scsi buffers were moved to the abort scsi list */ 6648 /* A pci function reset will repost them */ 6649 rc = -ENODEV; 6650 goto out_free_mbox; 6651 } 6652 6653 /* Post the rpi header region to the device. */ 6654 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6655 if (unlikely(rc)) { 6656 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6657 "0393 Error %d during rpi post operation\n", 6658 rc); 6659 rc = -ENODEV; 6660 goto out_free_mbox; 6661 } 6662 lpfc_sli4_node_prep(phba); 6663 6664 /* Create all the SLI4 queues */ 6665 rc = lpfc_sli4_queue_create(phba); 6666 if (rc) { 6667 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6668 "3089 Failed to allocate queues\n"); 6669 rc = -ENODEV; 6670 goto out_stop_timers; 6671 } 6672 /* Set up all the queues to the device */ 6673 rc = lpfc_sli4_queue_setup(phba); 6674 if (unlikely(rc)) { 6675 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6676 "0381 Error %d during queue setup.\n ", rc); 6677 goto out_destroy_queue; 6678 } 6679 6680 /* Arm the CQs and then EQs on device */ 6681 lpfc_sli4_arm_cqeq_intr(phba); 6682 6683 /* Indicate device interrupt mode */ 6684 phba->sli4_hba.intr_enable = 1; 6685 6686 /* Allow asynchronous mailbox command to go through */ 6687 spin_lock_irq(&phba->hbalock); 6688 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6689 spin_unlock_irq(&phba->hbalock); 6690 6691 /* Post receive buffers to the device */ 6692 lpfc_sli4_rb_setup(phba); 6693 6694 /* Reset HBA FCF states after HBA reset */ 6695 phba->fcf.fcf_flag = 0; 6696 phba->fcf.current_rec.flag = 0; 6697 6698 /* Start the ELS watchdog timer */ 6699 mod_timer(&vport->els_tmofunc, 6700 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6701 6702 /* Start heart beat timer */ 6703 mod_timer(&phba->hb_tmofunc, 6704 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6705 phba->hb_outstanding = 0; 6706 phba->last_completion_time = jiffies; 6707 6708 /* Start error attention (ERATT) polling timer */ 6709 mod_timer(&phba->eratt_poll, 6710 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 6711 6712 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6713 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6714 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6715 if (!rc) { 6716 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6717 "2829 This device supports " 6718 "Advanced Error Reporting (AER)\n"); 6719 spin_lock_irq(&phba->hbalock); 6720 phba->hba_flag |= HBA_AER_ENABLED; 6721 spin_unlock_irq(&phba->hbalock); 6722 } else { 6723 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6724 "2830 This device does not support " 6725 "Advanced Error Reporting (AER)\n"); 6726 phba->cfg_aer_support = 0; 6727 } 6728 rc = 0; 6729 } 6730 6731 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6732 /* 6733 * The FC Port needs to register FCFI (index 0) 6734 */ 6735 lpfc_reg_fcfi(phba, mboxq); 6736 mboxq->vport = phba->pport; 6737 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6738 if (rc != MBX_SUCCESS) 6739 goto out_unset_queue; 6740 rc = 0; 6741 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6742 &mboxq->u.mqe.un.reg_fcfi); 6743 6744 /* Check if the port is configured to be disabled */ 6745 lpfc_sli_read_link_ste(phba); 6746 } 6747 6748 /* 6749 * The port is ready, set the host's link state to LINK_DOWN 6750 * in preparation for link interrupts. 6751 */ 6752 spin_lock_irq(&phba->hbalock); 6753 phba->link_state = LPFC_LINK_DOWN; 6754 spin_unlock_irq(&phba->hbalock); 6755 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6756 (phba->hba_flag & LINK_DISABLED)) { 6757 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6758 "3103 Adapter Link is disabled.\n"); 6759 lpfc_down_link(phba, mboxq); 6760 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6761 if (rc != MBX_SUCCESS) { 6762 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6763 "3104 Adapter failed to issue " 6764 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6765 goto out_unset_queue; 6766 } 6767 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6768 /* don't perform init_link on SLI4 FC port loopback test */ 6769 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6770 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6771 if (rc) 6772 goto out_unset_queue; 6773 } 6774 } 6775 mempool_free(mboxq, phba->mbox_mem_pool); 6776 return rc; 6777 out_unset_queue: 6778 /* Unset all the queues set up in this routine when error out */ 6779 lpfc_sli4_queue_unset(phba); 6780 out_destroy_queue: 6781 lpfc_sli4_queue_destroy(phba); 6782 out_stop_timers: 6783 lpfc_stop_hba_timers(phba); 6784 out_free_mbox: 6785 mempool_free(mboxq, phba->mbox_mem_pool); 6786 return rc; 6787 } 6788 6789 /** 6790 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6791 * @ptr: context object - pointer to hba structure. 6792 * 6793 * This is the callback function for mailbox timer. The mailbox 6794 * timer is armed when a new mailbox command is issued and the timer 6795 * is deleted when the mailbox complete. The function is called by 6796 * the kernel timer code when a mailbox does not complete within 6797 * expected time. This function wakes up the worker thread to 6798 * process the mailbox timeout and returns. All the processing is 6799 * done by the worker thread function lpfc_mbox_timeout_handler. 6800 **/ 6801 void 6802 lpfc_mbox_timeout(unsigned long ptr) 6803 { 6804 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6805 unsigned long iflag; 6806 uint32_t tmo_posted; 6807 6808 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6809 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6810 if (!tmo_posted) 6811 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6812 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6813 6814 if (!tmo_posted) 6815 lpfc_worker_wake_up(phba); 6816 return; 6817 } 6818 6819 /** 6820 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 6821 * are pending 6822 * @phba: Pointer to HBA context object. 6823 * 6824 * This function checks if any mailbox completions are present on the mailbox 6825 * completion queue. 6826 **/ 6827 static bool 6828 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 6829 { 6830 6831 uint32_t idx; 6832 struct lpfc_queue *mcq; 6833 struct lpfc_mcqe *mcqe; 6834 bool pending_completions = false; 6835 6836 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6837 return false; 6838 6839 /* Check for completions on mailbox completion queue */ 6840 6841 mcq = phba->sli4_hba.mbx_cq; 6842 idx = mcq->hba_index; 6843 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 6844 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 6845 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 6846 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 6847 pending_completions = true; 6848 break; 6849 } 6850 idx = (idx + 1) % mcq->entry_count; 6851 if (mcq->hba_index == idx) 6852 break; 6853 } 6854 return pending_completions; 6855 6856 } 6857 6858 /** 6859 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 6860 * that were missed. 6861 * @phba: Pointer to HBA context object. 6862 * 6863 * For sli4, it is possible to miss an interrupt. As such mbox completions 6864 * maybe missed causing erroneous mailbox timeouts to occur. This function 6865 * checks to see if mbox completions are on the mailbox completion queue 6866 * and will process all the completions associated with the eq for the 6867 * mailbox completion queue. 6868 **/ 6869 bool 6870 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 6871 { 6872 6873 uint32_t eqidx; 6874 struct lpfc_queue *fpeq = NULL; 6875 struct lpfc_eqe *eqe; 6876 bool mbox_pending; 6877 6878 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6879 return false; 6880 6881 /* Find the eq associated with the mcq */ 6882 6883 if (phba->sli4_hba.hba_eq) 6884 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++) 6885 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 6886 phba->sli4_hba.mbx_cq->assoc_qid) { 6887 fpeq = phba->sli4_hba.hba_eq[eqidx]; 6888 break; 6889 } 6890 if (!fpeq) 6891 return false; 6892 6893 /* Turn off interrupts from this EQ */ 6894 6895 lpfc_sli4_eq_clr_intr(fpeq); 6896 6897 /* Check to see if a mbox completion is pending */ 6898 6899 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 6900 6901 /* 6902 * If a mbox completion is pending, process all the events on EQ 6903 * associated with the mbox completion queue (this could include 6904 * mailbox commands, async events, els commands, receive queue data 6905 * and fcp commands) 6906 */ 6907 6908 if (mbox_pending) 6909 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 6910 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 6911 fpeq->EQ_processed++; 6912 } 6913 6914 /* Always clear and re-arm the EQ */ 6915 6916 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 6917 6918 return mbox_pending; 6919 6920 } 6921 6922 /** 6923 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6924 * @phba: Pointer to HBA context object. 6925 * 6926 * This function is called from worker thread when a mailbox command times out. 6927 * The caller is not required to hold any locks. This function will reset the 6928 * HBA and recover all the pending commands. 6929 **/ 6930 void 6931 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6932 { 6933 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6934 MAILBOX_t *mb = NULL; 6935 6936 struct lpfc_sli *psli = &phba->sli; 6937 6938 /* If the mailbox completed, process the completion and return */ 6939 if (lpfc_sli4_process_missed_mbox_completions(phba)) 6940 return; 6941 6942 if (pmbox != NULL) 6943 mb = &pmbox->u.mb; 6944 /* Check the pmbox pointer first. There is a race condition 6945 * between the mbox timeout handler getting executed in the 6946 * worklist and the mailbox actually completing. When this 6947 * race condition occurs, the mbox_active will be NULL. 6948 */ 6949 spin_lock_irq(&phba->hbalock); 6950 if (pmbox == NULL) { 6951 lpfc_printf_log(phba, KERN_WARNING, 6952 LOG_MBOX | LOG_SLI, 6953 "0353 Active Mailbox cleared - mailbox timeout " 6954 "exiting\n"); 6955 spin_unlock_irq(&phba->hbalock); 6956 return; 6957 } 6958 6959 /* Mbox cmd <mbxCommand> timeout */ 6960 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6961 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6962 mb->mbxCommand, 6963 phba->pport->port_state, 6964 phba->sli.sli_flag, 6965 phba->sli.mbox_active); 6966 spin_unlock_irq(&phba->hbalock); 6967 6968 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6969 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6970 * it to fail all outstanding SCSI IO. 6971 */ 6972 spin_lock_irq(&phba->pport->work_port_lock); 6973 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6974 spin_unlock_irq(&phba->pport->work_port_lock); 6975 spin_lock_irq(&phba->hbalock); 6976 phba->link_state = LPFC_LINK_UNKNOWN; 6977 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6978 spin_unlock_irq(&phba->hbalock); 6979 6980 lpfc_sli_abort_fcp_rings(phba); 6981 6982 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6983 "0345 Resetting board due to mailbox timeout\n"); 6984 6985 /* Reset the HBA device */ 6986 lpfc_reset_hba(phba); 6987 } 6988 6989 /** 6990 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6991 * @phba: Pointer to HBA context object. 6992 * @pmbox: Pointer to mailbox object. 6993 * @flag: Flag indicating how the mailbox need to be processed. 6994 * 6995 * This function is called by discovery code and HBA management code 6996 * to submit a mailbox command to firmware with SLI-3 interface spec. This 6997 * function gets the hbalock to protect the data structures. 6998 * The mailbox command can be submitted in polling mode, in which case 6999 * this function will wait in a polling loop for the completion of the 7000 * mailbox. 7001 * If the mailbox is submitted in no_wait mode (not polling) the 7002 * function will submit the command and returns immediately without waiting 7003 * for the mailbox completion. The no_wait is supported only when HBA 7004 * is in SLI2/SLI3 mode - interrupts are enabled. 7005 * The SLI interface allows only one mailbox pending at a time. If the 7006 * mailbox is issued in polling mode and there is already a mailbox 7007 * pending, then the function will return an error. If the mailbox is issued 7008 * in NO_WAIT mode and there is a mailbox pending already, the function 7009 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7010 * The sli layer owns the mailbox object until the completion of mailbox 7011 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7012 * return codes the caller owns the mailbox command after the return of 7013 * the function. 7014 **/ 7015 static int 7016 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7017 uint32_t flag) 7018 { 7019 MAILBOX_t *mbx; 7020 struct lpfc_sli *psli = &phba->sli; 7021 uint32_t status, evtctr; 7022 uint32_t ha_copy, hc_copy; 7023 int i; 7024 unsigned long timeout; 7025 unsigned long drvr_flag = 0; 7026 uint32_t word0, ldata; 7027 void __iomem *to_slim; 7028 int processing_queue = 0; 7029 7030 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7031 if (!pmbox) { 7032 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7033 /* processing mbox queue from intr_handler */ 7034 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7035 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7036 return MBX_SUCCESS; 7037 } 7038 processing_queue = 1; 7039 pmbox = lpfc_mbox_get(phba); 7040 if (!pmbox) { 7041 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7042 return MBX_SUCCESS; 7043 } 7044 } 7045 7046 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7047 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7048 if(!pmbox->vport) { 7049 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7050 lpfc_printf_log(phba, KERN_ERR, 7051 LOG_MBOX | LOG_VPORT, 7052 "1806 Mbox x%x failed. No vport\n", 7053 pmbox->u.mb.mbxCommand); 7054 dump_stack(); 7055 goto out_not_finished; 7056 } 7057 } 7058 7059 /* If the PCI channel is in offline state, do not post mbox. */ 7060 if (unlikely(pci_channel_offline(phba->pcidev))) { 7061 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7062 goto out_not_finished; 7063 } 7064 7065 /* If HBA has a deferred error attention, fail the iocb. */ 7066 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7067 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7068 goto out_not_finished; 7069 } 7070 7071 psli = &phba->sli; 7072 7073 mbx = &pmbox->u.mb; 7074 status = MBX_SUCCESS; 7075 7076 if (phba->link_state == LPFC_HBA_ERROR) { 7077 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7078 7079 /* Mbox command <mbxCommand> cannot issue */ 7080 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7081 "(%d):0311 Mailbox command x%x cannot " 7082 "issue Data: x%x x%x\n", 7083 pmbox->vport ? pmbox->vport->vpi : 0, 7084 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7085 goto out_not_finished; 7086 } 7087 7088 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7089 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7090 !(hc_copy & HC_MBINT_ENA)) { 7091 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7092 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7093 "(%d):2528 Mailbox command x%x cannot " 7094 "issue Data: x%x x%x\n", 7095 pmbox->vport ? pmbox->vport->vpi : 0, 7096 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7097 goto out_not_finished; 7098 } 7099 } 7100 7101 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7102 /* Polling for a mbox command when another one is already active 7103 * is not allowed in SLI. Also, the driver must have established 7104 * SLI2 mode to queue and process multiple mbox commands. 7105 */ 7106 7107 if (flag & MBX_POLL) { 7108 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7109 7110 /* Mbox command <mbxCommand> cannot issue */ 7111 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7112 "(%d):2529 Mailbox command x%x " 7113 "cannot issue Data: x%x x%x\n", 7114 pmbox->vport ? pmbox->vport->vpi : 0, 7115 pmbox->u.mb.mbxCommand, 7116 psli->sli_flag, flag); 7117 goto out_not_finished; 7118 } 7119 7120 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7121 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7122 /* Mbox command <mbxCommand> cannot issue */ 7123 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7124 "(%d):2530 Mailbox command x%x " 7125 "cannot issue Data: x%x x%x\n", 7126 pmbox->vport ? pmbox->vport->vpi : 0, 7127 pmbox->u.mb.mbxCommand, 7128 psli->sli_flag, flag); 7129 goto out_not_finished; 7130 } 7131 7132 /* Another mailbox command is still being processed, queue this 7133 * command to be processed later. 7134 */ 7135 lpfc_mbox_put(phba, pmbox); 7136 7137 /* Mbox cmd issue - BUSY */ 7138 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7139 "(%d):0308 Mbox cmd issue - BUSY Data: " 7140 "x%x x%x x%x x%x\n", 7141 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7142 mbx->mbxCommand, phba->pport->port_state, 7143 psli->sli_flag, flag); 7144 7145 psli->slistat.mbox_busy++; 7146 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7147 7148 if (pmbox->vport) { 7149 lpfc_debugfs_disc_trc(pmbox->vport, 7150 LPFC_DISC_TRC_MBOX_VPORT, 7151 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7152 (uint32_t)mbx->mbxCommand, 7153 mbx->un.varWords[0], mbx->un.varWords[1]); 7154 } 7155 else { 7156 lpfc_debugfs_disc_trc(phba->pport, 7157 LPFC_DISC_TRC_MBOX, 7158 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7159 (uint32_t)mbx->mbxCommand, 7160 mbx->un.varWords[0], mbx->un.varWords[1]); 7161 } 7162 7163 return MBX_BUSY; 7164 } 7165 7166 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7167 7168 /* If we are not polling, we MUST be in SLI2 mode */ 7169 if (flag != MBX_POLL) { 7170 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7171 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7172 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7173 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7174 /* Mbox command <mbxCommand> cannot issue */ 7175 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7176 "(%d):2531 Mailbox command x%x " 7177 "cannot issue Data: x%x x%x\n", 7178 pmbox->vport ? pmbox->vport->vpi : 0, 7179 pmbox->u.mb.mbxCommand, 7180 psli->sli_flag, flag); 7181 goto out_not_finished; 7182 } 7183 /* timeout active mbox command */ 7184 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7185 1000); 7186 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7187 } 7188 7189 /* Mailbox cmd <cmd> issue */ 7190 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7191 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7192 "x%x\n", 7193 pmbox->vport ? pmbox->vport->vpi : 0, 7194 mbx->mbxCommand, phba->pport->port_state, 7195 psli->sli_flag, flag); 7196 7197 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7198 if (pmbox->vport) { 7199 lpfc_debugfs_disc_trc(pmbox->vport, 7200 LPFC_DISC_TRC_MBOX_VPORT, 7201 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7202 (uint32_t)mbx->mbxCommand, 7203 mbx->un.varWords[0], mbx->un.varWords[1]); 7204 } 7205 else { 7206 lpfc_debugfs_disc_trc(phba->pport, 7207 LPFC_DISC_TRC_MBOX, 7208 "MBOX Send: cmd:x%x mb:x%x x%x", 7209 (uint32_t)mbx->mbxCommand, 7210 mbx->un.varWords[0], mbx->un.varWords[1]); 7211 } 7212 } 7213 7214 psli->slistat.mbox_cmd++; 7215 evtctr = psli->slistat.mbox_event; 7216 7217 /* next set own bit for the adapter and copy over command word */ 7218 mbx->mbxOwner = OWN_CHIP; 7219 7220 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7221 /* Populate mbox extension offset word. */ 7222 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7223 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7224 = (uint8_t *)phba->mbox_ext 7225 - (uint8_t *)phba->mbox; 7226 } 7227 7228 /* Copy the mailbox extension data */ 7229 if (pmbox->in_ext_byte_len && pmbox->context2) { 7230 lpfc_sli_pcimem_bcopy(pmbox->context2, 7231 (uint8_t *)phba->mbox_ext, 7232 pmbox->in_ext_byte_len); 7233 } 7234 /* Copy command data to host SLIM area */ 7235 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7236 } else { 7237 /* Populate mbox extension offset word. */ 7238 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7239 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7240 = MAILBOX_HBA_EXT_OFFSET; 7241 7242 /* Copy the mailbox extension data */ 7243 if (pmbox->in_ext_byte_len && pmbox->context2) { 7244 lpfc_memcpy_to_slim(phba->MBslimaddr + 7245 MAILBOX_HBA_EXT_OFFSET, 7246 pmbox->context2, pmbox->in_ext_byte_len); 7247 7248 } 7249 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7250 /* copy command data into host mbox for cmpl */ 7251 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7252 } 7253 7254 /* First copy mbox command data to HBA SLIM, skip past first 7255 word */ 7256 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7257 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7258 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7259 7260 /* Next copy over first word, with mbxOwner set */ 7261 ldata = *((uint32_t *)mbx); 7262 to_slim = phba->MBslimaddr; 7263 writel(ldata, to_slim); 7264 readl(to_slim); /* flush */ 7265 7266 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7267 /* switch over to host mailbox */ 7268 psli->sli_flag |= LPFC_SLI_ACTIVE; 7269 } 7270 } 7271 7272 wmb(); 7273 7274 switch (flag) { 7275 case MBX_NOWAIT: 7276 /* Set up reference to mailbox command */ 7277 psli->mbox_active = pmbox; 7278 /* Interrupt board to do it */ 7279 writel(CA_MBATT, phba->CAregaddr); 7280 readl(phba->CAregaddr); /* flush */ 7281 /* Don't wait for it to finish, just return */ 7282 break; 7283 7284 case MBX_POLL: 7285 /* Set up null reference to mailbox command */ 7286 psli->mbox_active = NULL; 7287 /* Interrupt board to do it */ 7288 writel(CA_MBATT, phba->CAregaddr); 7289 readl(phba->CAregaddr); /* flush */ 7290 7291 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7292 /* First read mbox status word */ 7293 word0 = *((uint32_t *)phba->mbox); 7294 word0 = le32_to_cpu(word0); 7295 } else { 7296 /* First read mbox status word */ 7297 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7298 spin_unlock_irqrestore(&phba->hbalock, 7299 drvr_flag); 7300 goto out_not_finished; 7301 } 7302 } 7303 7304 /* Read the HBA Host Attention Register */ 7305 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7306 spin_unlock_irqrestore(&phba->hbalock, 7307 drvr_flag); 7308 goto out_not_finished; 7309 } 7310 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7311 1000) + jiffies; 7312 i = 0; 7313 /* Wait for command to complete */ 7314 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7315 (!(ha_copy & HA_MBATT) && 7316 (phba->link_state > LPFC_WARM_START))) { 7317 if (time_after(jiffies, timeout)) { 7318 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7319 spin_unlock_irqrestore(&phba->hbalock, 7320 drvr_flag); 7321 goto out_not_finished; 7322 } 7323 7324 /* Check if we took a mbox interrupt while we were 7325 polling */ 7326 if (((word0 & OWN_CHIP) != OWN_CHIP) 7327 && (evtctr != psli->slistat.mbox_event)) 7328 break; 7329 7330 if (i++ > 10) { 7331 spin_unlock_irqrestore(&phba->hbalock, 7332 drvr_flag); 7333 msleep(1); 7334 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7335 } 7336 7337 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7338 /* First copy command data */ 7339 word0 = *((uint32_t *)phba->mbox); 7340 word0 = le32_to_cpu(word0); 7341 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7342 MAILBOX_t *slimmb; 7343 uint32_t slimword0; 7344 /* Check real SLIM for any errors */ 7345 slimword0 = readl(phba->MBslimaddr); 7346 slimmb = (MAILBOX_t *) & slimword0; 7347 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7348 && slimmb->mbxStatus) { 7349 psli->sli_flag &= 7350 ~LPFC_SLI_ACTIVE; 7351 word0 = slimword0; 7352 } 7353 } 7354 } else { 7355 /* First copy command data */ 7356 word0 = readl(phba->MBslimaddr); 7357 } 7358 /* Read the HBA Host Attention Register */ 7359 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7360 spin_unlock_irqrestore(&phba->hbalock, 7361 drvr_flag); 7362 goto out_not_finished; 7363 } 7364 } 7365 7366 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7367 /* copy results back to user */ 7368 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7369 /* Copy the mailbox extension data */ 7370 if (pmbox->out_ext_byte_len && pmbox->context2) { 7371 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7372 pmbox->context2, 7373 pmbox->out_ext_byte_len); 7374 } 7375 } else { 7376 /* First copy command data */ 7377 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7378 MAILBOX_CMD_SIZE); 7379 /* Copy the mailbox extension data */ 7380 if (pmbox->out_ext_byte_len && pmbox->context2) { 7381 lpfc_memcpy_from_slim(pmbox->context2, 7382 phba->MBslimaddr + 7383 MAILBOX_HBA_EXT_OFFSET, 7384 pmbox->out_ext_byte_len); 7385 } 7386 } 7387 7388 writel(HA_MBATT, phba->HAregaddr); 7389 readl(phba->HAregaddr); /* flush */ 7390 7391 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7392 status = mbx->mbxStatus; 7393 } 7394 7395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7396 return status; 7397 7398 out_not_finished: 7399 if (processing_queue) { 7400 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7401 lpfc_mbox_cmpl_put(phba, pmbox); 7402 } 7403 return MBX_NOT_FINISHED; 7404 } 7405 7406 /** 7407 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7408 * @phba: Pointer to HBA context object. 7409 * 7410 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7411 * the driver internal pending mailbox queue. It will then try to wait out the 7412 * possible outstanding mailbox command before return. 7413 * 7414 * Returns: 7415 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7416 * the outstanding mailbox command timed out. 7417 **/ 7418 static int 7419 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7420 { 7421 struct lpfc_sli *psli = &phba->sli; 7422 int rc = 0; 7423 unsigned long timeout = 0; 7424 7425 /* Mark the asynchronous mailbox command posting as blocked */ 7426 spin_lock_irq(&phba->hbalock); 7427 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7428 /* Determine how long we might wait for the active mailbox 7429 * command to be gracefully completed by firmware. 7430 */ 7431 if (phba->sli.mbox_active) 7432 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7433 phba->sli.mbox_active) * 7434 1000) + jiffies; 7435 spin_unlock_irq(&phba->hbalock); 7436 7437 /* Make sure the mailbox is really active */ 7438 if (timeout) 7439 lpfc_sli4_process_missed_mbox_completions(phba); 7440 7441 /* Wait for the outstnading mailbox command to complete */ 7442 while (phba->sli.mbox_active) { 7443 /* Check active mailbox complete status every 2ms */ 7444 msleep(2); 7445 if (time_after(jiffies, timeout)) { 7446 /* Timeout, marked the outstanding cmd not complete */ 7447 rc = 1; 7448 break; 7449 } 7450 } 7451 7452 /* Can not cleanly block async mailbox command, fails it */ 7453 if (rc) { 7454 spin_lock_irq(&phba->hbalock); 7455 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7456 spin_unlock_irq(&phba->hbalock); 7457 } 7458 return rc; 7459 } 7460 7461 /** 7462 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7463 * @phba: Pointer to HBA context object. 7464 * 7465 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7466 * commands from the driver internal pending mailbox queue. It makes sure 7467 * that there is no outstanding mailbox command before resuming posting 7468 * asynchronous mailbox commands. If, for any reason, there is outstanding 7469 * mailbox command, it will try to wait it out before resuming asynchronous 7470 * mailbox command posting. 7471 **/ 7472 static void 7473 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7474 { 7475 struct lpfc_sli *psli = &phba->sli; 7476 7477 spin_lock_irq(&phba->hbalock); 7478 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7479 /* Asynchronous mailbox posting is not blocked, do nothing */ 7480 spin_unlock_irq(&phba->hbalock); 7481 return; 7482 } 7483 7484 /* Outstanding synchronous mailbox command is guaranteed to be done, 7485 * successful or timeout, after timing-out the outstanding mailbox 7486 * command shall always be removed, so just unblock posting async 7487 * mailbox command and resume 7488 */ 7489 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7490 spin_unlock_irq(&phba->hbalock); 7491 7492 /* wake up worker thread to post asynchronlous mailbox command */ 7493 lpfc_worker_wake_up(phba); 7494 } 7495 7496 /** 7497 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7498 * @phba: Pointer to HBA context object. 7499 * @mboxq: Pointer to mailbox object. 7500 * 7501 * The function waits for the bootstrap mailbox register ready bit from 7502 * port for twice the regular mailbox command timeout value. 7503 * 7504 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7505 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7506 **/ 7507 static int 7508 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7509 { 7510 uint32_t db_ready; 7511 unsigned long timeout; 7512 struct lpfc_register bmbx_reg; 7513 7514 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7515 * 1000) + jiffies; 7516 7517 do { 7518 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7519 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7520 if (!db_ready) 7521 msleep(2); 7522 7523 if (time_after(jiffies, timeout)) 7524 return MBXERR_ERROR; 7525 } while (!db_ready); 7526 7527 return 0; 7528 } 7529 7530 /** 7531 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7532 * @phba: Pointer to HBA context object. 7533 * @mboxq: Pointer to mailbox object. 7534 * 7535 * The function posts a mailbox to the port. The mailbox is expected 7536 * to be comletely filled in and ready for the port to operate on it. 7537 * This routine executes a synchronous completion operation on the 7538 * mailbox by polling for its completion. 7539 * 7540 * The caller must not be holding any locks when calling this routine. 7541 * 7542 * Returns: 7543 * MBX_SUCCESS - mailbox posted successfully 7544 * Any of the MBX error values. 7545 **/ 7546 static int 7547 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7548 { 7549 int rc = MBX_SUCCESS; 7550 unsigned long iflag; 7551 uint32_t mcqe_status; 7552 uint32_t mbx_cmnd; 7553 struct lpfc_sli *psli = &phba->sli; 7554 struct lpfc_mqe *mb = &mboxq->u.mqe; 7555 struct lpfc_bmbx_create *mbox_rgn; 7556 struct dma_address *dma_address; 7557 7558 /* 7559 * Only one mailbox can be active to the bootstrap mailbox region 7560 * at a time and there is no queueing provided. 7561 */ 7562 spin_lock_irqsave(&phba->hbalock, iflag); 7563 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7564 spin_unlock_irqrestore(&phba->hbalock, iflag); 7565 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7566 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7567 "cannot issue Data: x%x x%x\n", 7568 mboxq->vport ? mboxq->vport->vpi : 0, 7569 mboxq->u.mb.mbxCommand, 7570 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7571 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7572 psli->sli_flag, MBX_POLL); 7573 return MBXERR_ERROR; 7574 } 7575 /* The server grabs the token and owns it until release */ 7576 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7577 phba->sli.mbox_active = mboxq; 7578 spin_unlock_irqrestore(&phba->hbalock, iflag); 7579 7580 /* wait for bootstrap mbox register for readyness */ 7581 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7582 if (rc) 7583 goto exit; 7584 7585 /* 7586 * Initialize the bootstrap memory region to avoid stale data areas 7587 * in the mailbox post. Then copy the caller's mailbox contents to 7588 * the bmbx mailbox region. 7589 */ 7590 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7591 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7592 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7593 sizeof(struct lpfc_mqe)); 7594 7595 /* Post the high mailbox dma address to the port and wait for ready. */ 7596 dma_address = &phba->sli4_hba.bmbx.dma_address; 7597 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7598 7599 /* wait for bootstrap mbox register for hi-address write done */ 7600 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7601 if (rc) 7602 goto exit; 7603 7604 /* Post the low mailbox dma address to the port. */ 7605 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7606 7607 /* wait for bootstrap mbox register for low address write done */ 7608 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7609 if (rc) 7610 goto exit; 7611 7612 /* 7613 * Read the CQ to ensure the mailbox has completed. 7614 * If so, update the mailbox status so that the upper layers 7615 * can complete the request normally. 7616 */ 7617 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7618 sizeof(struct lpfc_mqe)); 7619 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7620 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7621 sizeof(struct lpfc_mcqe)); 7622 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7623 /* 7624 * When the CQE status indicates a failure and the mailbox status 7625 * indicates success then copy the CQE status into the mailbox status 7626 * (and prefix it with x4000). 7627 */ 7628 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7629 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7630 bf_set(lpfc_mqe_status, mb, 7631 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7632 rc = MBXERR_ERROR; 7633 } else 7634 lpfc_sli4_swap_str(phba, mboxq); 7635 7636 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7637 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7638 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7639 " x%x x%x CQ: x%x x%x x%x x%x\n", 7640 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7641 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7642 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7643 bf_get(lpfc_mqe_status, mb), 7644 mb->un.mb_words[0], mb->un.mb_words[1], 7645 mb->un.mb_words[2], mb->un.mb_words[3], 7646 mb->un.mb_words[4], mb->un.mb_words[5], 7647 mb->un.mb_words[6], mb->un.mb_words[7], 7648 mb->un.mb_words[8], mb->un.mb_words[9], 7649 mb->un.mb_words[10], mb->un.mb_words[11], 7650 mb->un.mb_words[12], mboxq->mcqe.word0, 7651 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7652 mboxq->mcqe.trailer); 7653 exit: 7654 /* We are holding the token, no needed for lock when release */ 7655 spin_lock_irqsave(&phba->hbalock, iflag); 7656 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7657 phba->sli.mbox_active = NULL; 7658 spin_unlock_irqrestore(&phba->hbalock, iflag); 7659 return rc; 7660 } 7661 7662 /** 7663 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7664 * @phba: Pointer to HBA context object. 7665 * @pmbox: Pointer to mailbox object. 7666 * @flag: Flag indicating how the mailbox need to be processed. 7667 * 7668 * This function is called by discovery code and HBA management code to submit 7669 * a mailbox command to firmware with SLI-4 interface spec. 7670 * 7671 * Return codes the caller owns the mailbox command after the return of the 7672 * function. 7673 **/ 7674 static int 7675 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7676 uint32_t flag) 7677 { 7678 struct lpfc_sli *psli = &phba->sli; 7679 unsigned long iflags; 7680 int rc; 7681 7682 /* dump from issue mailbox command if setup */ 7683 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7684 7685 rc = lpfc_mbox_dev_check(phba); 7686 if (unlikely(rc)) { 7687 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7688 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7689 "cannot issue Data: x%x x%x\n", 7690 mboxq->vport ? mboxq->vport->vpi : 0, 7691 mboxq->u.mb.mbxCommand, 7692 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7693 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7694 psli->sli_flag, flag); 7695 goto out_not_finished; 7696 } 7697 7698 /* Detect polling mode and jump to a handler */ 7699 if (!phba->sli4_hba.intr_enable) { 7700 if (flag == MBX_POLL) 7701 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7702 else 7703 rc = -EIO; 7704 if (rc != MBX_SUCCESS) 7705 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7706 "(%d):2541 Mailbox command x%x " 7707 "(x%x/x%x) failure: " 7708 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7709 "Data: x%x x%x\n,", 7710 mboxq->vport ? mboxq->vport->vpi : 0, 7711 mboxq->u.mb.mbxCommand, 7712 lpfc_sli_config_mbox_subsys_get(phba, 7713 mboxq), 7714 lpfc_sli_config_mbox_opcode_get(phba, 7715 mboxq), 7716 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7717 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7718 bf_get(lpfc_mcqe_ext_status, 7719 &mboxq->mcqe), 7720 psli->sli_flag, flag); 7721 return rc; 7722 } else if (flag == MBX_POLL) { 7723 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7724 "(%d):2542 Try to issue mailbox command " 7725 "x%x (x%x/x%x) synchronously ahead of async" 7726 "mailbox command queue: x%x x%x\n", 7727 mboxq->vport ? mboxq->vport->vpi : 0, 7728 mboxq->u.mb.mbxCommand, 7729 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7730 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7731 psli->sli_flag, flag); 7732 /* Try to block the asynchronous mailbox posting */ 7733 rc = lpfc_sli4_async_mbox_block(phba); 7734 if (!rc) { 7735 /* Successfully blocked, now issue sync mbox cmd */ 7736 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7737 if (rc != MBX_SUCCESS) 7738 lpfc_printf_log(phba, KERN_WARNING, 7739 LOG_MBOX | LOG_SLI, 7740 "(%d):2597 Sync Mailbox command " 7741 "x%x (x%x/x%x) failure: " 7742 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7743 "Data: x%x x%x\n,", 7744 mboxq->vport ? mboxq->vport->vpi : 0, 7745 mboxq->u.mb.mbxCommand, 7746 lpfc_sli_config_mbox_subsys_get(phba, 7747 mboxq), 7748 lpfc_sli_config_mbox_opcode_get(phba, 7749 mboxq), 7750 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7751 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7752 bf_get(lpfc_mcqe_ext_status, 7753 &mboxq->mcqe), 7754 psli->sli_flag, flag); 7755 /* Unblock the async mailbox posting afterward */ 7756 lpfc_sli4_async_mbox_unblock(phba); 7757 } 7758 return rc; 7759 } 7760 7761 /* Now, interrupt mode asynchrous mailbox command */ 7762 rc = lpfc_mbox_cmd_check(phba, mboxq); 7763 if (rc) { 7764 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7765 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7766 "cannot issue Data: x%x x%x\n", 7767 mboxq->vport ? mboxq->vport->vpi : 0, 7768 mboxq->u.mb.mbxCommand, 7769 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7770 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7771 psli->sli_flag, flag); 7772 goto out_not_finished; 7773 } 7774 7775 /* Put the mailbox command to the driver internal FIFO */ 7776 psli->slistat.mbox_busy++; 7777 spin_lock_irqsave(&phba->hbalock, iflags); 7778 lpfc_mbox_put(phba, mboxq); 7779 spin_unlock_irqrestore(&phba->hbalock, iflags); 7780 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7781 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7782 "x%x (x%x/x%x) x%x x%x x%x\n", 7783 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7784 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7785 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7786 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7787 phba->pport->port_state, 7788 psli->sli_flag, MBX_NOWAIT); 7789 /* Wake up worker thread to transport mailbox command from head */ 7790 lpfc_worker_wake_up(phba); 7791 7792 return MBX_BUSY; 7793 7794 out_not_finished: 7795 return MBX_NOT_FINISHED; 7796 } 7797 7798 /** 7799 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7800 * @phba: Pointer to HBA context object. 7801 * 7802 * This function is called by worker thread to send a mailbox command to 7803 * SLI4 HBA firmware. 7804 * 7805 **/ 7806 int 7807 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7808 { 7809 struct lpfc_sli *psli = &phba->sli; 7810 LPFC_MBOXQ_t *mboxq; 7811 int rc = MBX_SUCCESS; 7812 unsigned long iflags; 7813 struct lpfc_mqe *mqe; 7814 uint32_t mbx_cmnd; 7815 7816 /* Check interrupt mode before post async mailbox command */ 7817 if (unlikely(!phba->sli4_hba.intr_enable)) 7818 return MBX_NOT_FINISHED; 7819 7820 /* Check for mailbox command service token */ 7821 spin_lock_irqsave(&phba->hbalock, iflags); 7822 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7823 spin_unlock_irqrestore(&phba->hbalock, iflags); 7824 return MBX_NOT_FINISHED; 7825 } 7826 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7827 spin_unlock_irqrestore(&phba->hbalock, iflags); 7828 return MBX_NOT_FINISHED; 7829 } 7830 if (unlikely(phba->sli.mbox_active)) { 7831 spin_unlock_irqrestore(&phba->hbalock, iflags); 7832 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7833 "0384 There is pending active mailbox cmd\n"); 7834 return MBX_NOT_FINISHED; 7835 } 7836 /* Take the mailbox command service token */ 7837 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7838 7839 /* Get the next mailbox command from head of queue */ 7840 mboxq = lpfc_mbox_get(phba); 7841 7842 /* If no more mailbox command waiting for post, we're done */ 7843 if (!mboxq) { 7844 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7845 spin_unlock_irqrestore(&phba->hbalock, iflags); 7846 return MBX_SUCCESS; 7847 } 7848 phba->sli.mbox_active = mboxq; 7849 spin_unlock_irqrestore(&phba->hbalock, iflags); 7850 7851 /* Check device readiness for posting mailbox command */ 7852 rc = lpfc_mbox_dev_check(phba); 7853 if (unlikely(rc)) 7854 /* Driver clean routine will clean up pending mailbox */ 7855 goto out_not_finished; 7856 7857 /* Prepare the mbox command to be posted */ 7858 mqe = &mboxq->u.mqe; 7859 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7860 7861 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7862 mod_timer(&psli->mbox_tmo, (jiffies + 7863 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7864 7865 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7866 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7867 "x%x x%x\n", 7868 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7869 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7870 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7871 phba->pport->port_state, psli->sli_flag); 7872 7873 if (mbx_cmnd != MBX_HEARTBEAT) { 7874 if (mboxq->vport) { 7875 lpfc_debugfs_disc_trc(mboxq->vport, 7876 LPFC_DISC_TRC_MBOX_VPORT, 7877 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7878 mbx_cmnd, mqe->un.mb_words[0], 7879 mqe->un.mb_words[1]); 7880 } else { 7881 lpfc_debugfs_disc_trc(phba->pport, 7882 LPFC_DISC_TRC_MBOX, 7883 "MBOX Send: cmd:x%x mb:x%x x%x", 7884 mbx_cmnd, mqe->un.mb_words[0], 7885 mqe->un.mb_words[1]); 7886 } 7887 } 7888 psli->slistat.mbox_cmd++; 7889 7890 /* Post the mailbox command to the port */ 7891 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7892 if (rc != MBX_SUCCESS) { 7893 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7894 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7895 "cannot issue Data: x%x x%x\n", 7896 mboxq->vport ? mboxq->vport->vpi : 0, 7897 mboxq->u.mb.mbxCommand, 7898 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7899 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7900 psli->sli_flag, MBX_NOWAIT); 7901 goto out_not_finished; 7902 } 7903 7904 return rc; 7905 7906 out_not_finished: 7907 spin_lock_irqsave(&phba->hbalock, iflags); 7908 if (phba->sli.mbox_active) { 7909 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7910 __lpfc_mbox_cmpl_put(phba, mboxq); 7911 /* Release the token */ 7912 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7913 phba->sli.mbox_active = NULL; 7914 } 7915 spin_unlock_irqrestore(&phba->hbalock, iflags); 7916 7917 return MBX_NOT_FINISHED; 7918 } 7919 7920 /** 7921 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7922 * @phba: Pointer to HBA context object. 7923 * @pmbox: Pointer to mailbox object. 7924 * @flag: Flag indicating how the mailbox need to be processed. 7925 * 7926 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7927 * the API jump table function pointer from the lpfc_hba struct. 7928 * 7929 * Return codes the caller owns the mailbox command after the return of the 7930 * function. 7931 **/ 7932 int 7933 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7934 { 7935 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7936 } 7937 7938 /** 7939 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7940 * @phba: The hba struct for which this call is being executed. 7941 * @dev_grp: The HBA PCI-Device group number. 7942 * 7943 * This routine sets up the mbox interface API function jump table in @phba 7944 * struct. 7945 * Returns: 0 - success, -ENODEV - failure. 7946 **/ 7947 int 7948 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7949 { 7950 7951 switch (dev_grp) { 7952 case LPFC_PCI_DEV_LP: 7953 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7954 phba->lpfc_sli_handle_slow_ring_event = 7955 lpfc_sli_handle_slow_ring_event_s3; 7956 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7957 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7958 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7959 break; 7960 case LPFC_PCI_DEV_OC: 7961 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7962 phba->lpfc_sli_handle_slow_ring_event = 7963 lpfc_sli_handle_slow_ring_event_s4; 7964 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7965 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7966 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7967 break; 7968 default: 7969 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7970 "1420 Invalid HBA PCI-device group: 0x%x\n", 7971 dev_grp); 7972 return -ENODEV; 7973 break; 7974 } 7975 return 0; 7976 } 7977 7978 /** 7979 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7980 * @phba: Pointer to HBA context object. 7981 * @pring: Pointer to driver SLI ring object. 7982 * @piocb: Pointer to address of newly added command iocb. 7983 * 7984 * This function is called with hbalock held to add a command 7985 * iocb to the txq when SLI layer cannot submit the command iocb 7986 * to the ring. 7987 **/ 7988 void 7989 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7990 struct lpfc_iocbq *piocb) 7991 { 7992 lockdep_assert_held(&phba->hbalock); 7993 /* Insert the caller's iocb in the txq tail for later processing. */ 7994 list_add_tail(&piocb->list, &pring->txq); 7995 } 7996 7997 /** 7998 * lpfc_sli_next_iocb - Get the next iocb in the txq 7999 * @phba: Pointer to HBA context object. 8000 * @pring: Pointer to driver SLI ring object. 8001 * @piocb: Pointer to address of newly added command iocb. 8002 * 8003 * This function is called with hbalock held before a new 8004 * iocb is submitted to the firmware. This function checks 8005 * txq to flush the iocbs in txq to Firmware before 8006 * submitting new iocbs to the Firmware. 8007 * If there are iocbs in the txq which need to be submitted 8008 * to firmware, lpfc_sli_next_iocb returns the first element 8009 * of the txq after dequeuing it from txq. 8010 * If there is no iocb in the txq then the function will return 8011 * *piocb and *piocb is set to NULL. Caller needs to check 8012 * *piocb to find if there are more commands in the txq. 8013 **/ 8014 static struct lpfc_iocbq * 8015 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8016 struct lpfc_iocbq **piocb) 8017 { 8018 struct lpfc_iocbq * nextiocb; 8019 8020 lockdep_assert_held(&phba->hbalock); 8021 8022 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8023 if (!nextiocb) { 8024 nextiocb = *piocb; 8025 *piocb = NULL; 8026 } 8027 8028 return nextiocb; 8029 } 8030 8031 /** 8032 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8033 * @phba: Pointer to HBA context object. 8034 * @ring_number: SLI ring number to issue iocb on. 8035 * @piocb: Pointer to command iocb. 8036 * @flag: Flag indicating if this command can be put into txq. 8037 * 8038 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8039 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8040 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8041 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8042 * this function allows only iocbs for posting buffers. This function finds 8043 * next available slot in the command ring and posts the command to the 8044 * available slot and writes the port attention register to request HBA start 8045 * processing new iocb. If there is no slot available in the ring and 8046 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8047 * the function returns IOCB_BUSY. 8048 * 8049 * This function is called with hbalock held. The function will return success 8050 * after it successfully submit the iocb to firmware or after adding to the 8051 * txq. 8052 **/ 8053 static int 8054 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8055 struct lpfc_iocbq *piocb, uint32_t flag) 8056 { 8057 struct lpfc_iocbq *nextiocb; 8058 IOCB_t *iocb; 8059 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8060 8061 lockdep_assert_held(&phba->hbalock); 8062 8063 if (piocb->iocb_cmpl && (!piocb->vport) && 8064 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8065 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8066 lpfc_printf_log(phba, KERN_ERR, 8067 LOG_SLI | LOG_VPORT, 8068 "1807 IOCB x%x failed. No vport\n", 8069 piocb->iocb.ulpCommand); 8070 dump_stack(); 8071 return IOCB_ERROR; 8072 } 8073 8074 8075 /* If the PCI channel is in offline state, do not post iocbs. */ 8076 if (unlikely(pci_channel_offline(phba->pcidev))) 8077 return IOCB_ERROR; 8078 8079 /* If HBA has a deferred error attention, fail the iocb. */ 8080 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8081 return IOCB_ERROR; 8082 8083 /* 8084 * We should never get an IOCB if we are in a < LINK_DOWN state 8085 */ 8086 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8087 return IOCB_ERROR; 8088 8089 /* 8090 * Check to see if we are blocking IOCB processing because of a 8091 * outstanding event. 8092 */ 8093 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8094 goto iocb_busy; 8095 8096 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8097 /* 8098 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8099 * can be issued if the link is not up. 8100 */ 8101 switch (piocb->iocb.ulpCommand) { 8102 case CMD_GEN_REQUEST64_CR: 8103 case CMD_GEN_REQUEST64_CX: 8104 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8105 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8106 FC_RCTL_DD_UNSOL_CMD) || 8107 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8108 MENLO_TRANSPORT_TYPE)) 8109 8110 goto iocb_busy; 8111 break; 8112 case CMD_QUE_RING_BUF_CN: 8113 case CMD_QUE_RING_BUF64_CN: 8114 /* 8115 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8116 * completion, iocb_cmpl MUST be 0. 8117 */ 8118 if (piocb->iocb_cmpl) 8119 piocb->iocb_cmpl = NULL; 8120 /*FALLTHROUGH*/ 8121 case CMD_CREATE_XRI_CR: 8122 case CMD_CLOSE_XRI_CN: 8123 case CMD_CLOSE_XRI_CX: 8124 break; 8125 default: 8126 goto iocb_busy; 8127 } 8128 8129 /* 8130 * For FCP commands, we must be in a state where we can process link 8131 * attention events. 8132 */ 8133 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 8134 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8135 goto iocb_busy; 8136 } 8137 8138 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8139 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8140 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8141 8142 if (iocb) 8143 lpfc_sli_update_ring(phba, pring); 8144 else 8145 lpfc_sli_update_full_ring(phba, pring); 8146 8147 if (!piocb) 8148 return IOCB_SUCCESS; 8149 8150 goto out_busy; 8151 8152 iocb_busy: 8153 pring->stats.iocb_cmd_delay++; 8154 8155 out_busy: 8156 8157 if (!(flag & SLI_IOCB_RET_IOCB)) { 8158 __lpfc_sli_ringtx_put(phba, pring, piocb); 8159 return IOCB_SUCCESS; 8160 } 8161 8162 return IOCB_BUSY; 8163 } 8164 8165 /** 8166 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8167 * @phba: Pointer to HBA context object. 8168 * @piocb: Pointer to command iocb. 8169 * @sglq: Pointer to the scatter gather queue object. 8170 * 8171 * This routine converts the bpl or bde that is in the IOCB 8172 * to a sgl list for the sli4 hardware. The physical address 8173 * of the bpl/bde is converted back to a virtual address. 8174 * If the IOCB contains a BPL then the list of BDE's is 8175 * converted to sli4_sge's. If the IOCB contains a single 8176 * BDE then it is converted to a single sli_sge. 8177 * The IOCB is still in cpu endianess so the contents of 8178 * the bpl can be used without byte swapping. 8179 * 8180 * Returns valid XRI = Success, NO_XRI = Failure. 8181 **/ 8182 static uint16_t 8183 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8184 struct lpfc_sglq *sglq) 8185 { 8186 uint16_t xritag = NO_XRI; 8187 struct ulp_bde64 *bpl = NULL; 8188 struct ulp_bde64 bde; 8189 struct sli4_sge *sgl = NULL; 8190 struct lpfc_dmabuf *dmabuf; 8191 IOCB_t *icmd; 8192 int numBdes = 0; 8193 int i = 0; 8194 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8195 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8196 8197 if (!piocbq || !sglq) 8198 return xritag; 8199 8200 sgl = (struct sli4_sge *)sglq->sgl; 8201 icmd = &piocbq->iocb; 8202 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8203 return sglq->sli4_xritag; 8204 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8205 numBdes = icmd->un.genreq64.bdl.bdeSize / 8206 sizeof(struct ulp_bde64); 8207 /* The addrHigh and addrLow fields within the IOCB 8208 * have not been byteswapped yet so there is no 8209 * need to swap them back. 8210 */ 8211 if (piocbq->context3) 8212 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8213 else 8214 return xritag; 8215 8216 bpl = (struct ulp_bde64 *)dmabuf->virt; 8217 if (!bpl) 8218 return xritag; 8219 8220 for (i = 0; i < numBdes; i++) { 8221 /* Should already be byte swapped. */ 8222 sgl->addr_hi = bpl->addrHigh; 8223 sgl->addr_lo = bpl->addrLow; 8224 8225 sgl->word2 = le32_to_cpu(sgl->word2); 8226 if ((i+1) == numBdes) 8227 bf_set(lpfc_sli4_sge_last, sgl, 1); 8228 else 8229 bf_set(lpfc_sli4_sge_last, sgl, 0); 8230 /* swap the size field back to the cpu so we 8231 * can assign it to the sgl. 8232 */ 8233 bde.tus.w = le32_to_cpu(bpl->tus.w); 8234 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8235 /* The offsets in the sgl need to be accumulated 8236 * separately for the request and reply lists. 8237 * The request is always first, the reply follows. 8238 */ 8239 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8240 /* add up the reply sg entries */ 8241 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8242 inbound++; 8243 /* first inbound? reset the offset */ 8244 if (inbound == 1) 8245 offset = 0; 8246 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8247 bf_set(lpfc_sli4_sge_type, sgl, 8248 LPFC_SGE_TYPE_DATA); 8249 offset += bde.tus.f.bdeSize; 8250 } 8251 sgl->word2 = cpu_to_le32(sgl->word2); 8252 bpl++; 8253 sgl++; 8254 } 8255 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8256 /* The addrHigh and addrLow fields of the BDE have not 8257 * been byteswapped yet so they need to be swapped 8258 * before putting them in the sgl. 8259 */ 8260 sgl->addr_hi = 8261 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8262 sgl->addr_lo = 8263 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8264 sgl->word2 = le32_to_cpu(sgl->word2); 8265 bf_set(lpfc_sli4_sge_last, sgl, 1); 8266 sgl->word2 = cpu_to_le32(sgl->word2); 8267 sgl->sge_len = 8268 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8269 } 8270 return sglq->sli4_xritag; 8271 } 8272 8273 /** 8274 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8275 * @phba: Pointer to HBA context object. 8276 * @piocb: Pointer to command iocb. 8277 * @wqe: Pointer to the work queue entry. 8278 * 8279 * This routine converts the iocb command to its Work Queue Entry 8280 * equivalent. The wqe pointer should not have any fields set when 8281 * this routine is called because it will memcpy over them. 8282 * This routine does not set the CQ_ID or the WQEC bits in the 8283 * wqe. 8284 * 8285 * Returns: 0 = Success, IOCB_ERROR = Failure. 8286 **/ 8287 static int 8288 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8289 union lpfc_wqe *wqe) 8290 { 8291 uint32_t xmit_len = 0, total_len = 0; 8292 uint8_t ct = 0; 8293 uint32_t fip; 8294 uint32_t abort_tag; 8295 uint8_t command_type = ELS_COMMAND_NON_FIP; 8296 uint8_t cmnd; 8297 uint16_t xritag; 8298 uint16_t abrt_iotag; 8299 struct lpfc_iocbq *abrtiocbq; 8300 struct ulp_bde64 *bpl = NULL; 8301 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8302 int numBdes, i; 8303 struct ulp_bde64 bde; 8304 struct lpfc_nodelist *ndlp; 8305 uint32_t *pcmd; 8306 uint32_t if_type; 8307 8308 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8309 /* The fcp commands will set command type */ 8310 if (iocbq->iocb_flag & LPFC_IO_FCP) 8311 command_type = FCP_COMMAND; 8312 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8313 command_type = ELS_COMMAND_FIP; 8314 else 8315 command_type = ELS_COMMAND_NON_FIP; 8316 8317 if (phba->fcp_embed_io) 8318 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8319 /* Some of the fields are in the right position already */ 8320 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8321 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8322 wqe->generic.wqe_com.word10 = 0; 8323 8324 abort_tag = (uint32_t) iocbq->iotag; 8325 xritag = iocbq->sli4_xritag; 8326 /* words0-2 bpl convert bde */ 8327 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8328 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8329 sizeof(struct ulp_bde64); 8330 bpl = (struct ulp_bde64 *) 8331 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8332 if (!bpl) 8333 return IOCB_ERROR; 8334 8335 /* Should already be byte swapped. */ 8336 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8337 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8338 /* swap the size field back to the cpu so we 8339 * can assign it to the sgl. 8340 */ 8341 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8342 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8343 total_len = 0; 8344 for (i = 0; i < numBdes; i++) { 8345 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8346 total_len += bde.tus.f.bdeSize; 8347 } 8348 } else 8349 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8350 8351 iocbq->iocb.ulpIoTag = iocbq->iotag; 8352 cmnd = iocbq->iocb.ulpCommand; 8353 8354 switch (iocbq->iocb.ulpCommand) { 8355 case CMD_ELS_REQUEST64_CR: 8356 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8357 ndlp = iocbq->context_un.ndlp; 8358 else 8359 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8360 if (!iocbq->iocb.ulpLe) { 8361 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8362 "2007 Only Limited Edition cmd Format" 8363 " supported 0x%x\n", 8364 iocbq->iocb.ulpCommand); 8365 return IOCB_ERROR; 8366 } 8367 8368 wqe->els_req.payload_len = xmit_len; 8369 /* Els_reguest64 has a TMO */ 8370 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8371 iocbq->iocb.ulpTimeout); 8372 /* Need a VF for word 4 set the vf bit*/ 8373 bf_set(els_req64_vf, &wqe->els_req, 0); 8374 /* And a VFID for word 12 */ 8375 bf_set(els_req64_vfid, &wqe->els_req, 0); 8376 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8377 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8378 iocbq->iocb.ulpContext); 8379 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8380 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8381 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8382 if (command_type == ELS_COMMAND_FIP) 8383 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8384 >> LPFC_FIP_ELS_ID_SHIFT); 8385 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8386 iocbq->context2)->virt); 8387 if_type = bf_get(lpfc_sli_intf_if_type, 8388 &phba->sli4_hba.sli_intf); 8389 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8390 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8391 *pcmd == ELS_CMD_SCR || 8392 *pcmd == ELS_CMD_FDISC || 8393 *pcmd == ELS_CMD_LOGO || 8394 *pcmd == ELS_CMD_PLOGI)) { 8395 bf_set(els_req64_sp, &wqe->els_req, 1); 8396 bf_set(els_req64_sid, &wqe->els_req, 8397 iocbq->vport->fc_myDID); 8398 if ((*pcmd == ELS_CMD_FLOGI) && 8399 !(phba->fc_topology == 8400 LPFC_TOPOLOGY_LOOP)) 8401 bf_set(els_req64_sid, &wqe->els_req, 0); 8402 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8403 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8404 phba->vpi_ids[iocbq->vport->vpi]); 8405 } else if (pcmd && iocbq->context1) { 8406 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8407 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8408 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8409 } 8410 } 8411 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8412 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8413 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8414 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8415 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8416 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8417 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8418 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8419 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8420 break; 8421 case CMD_XMIT_SEQUENCE64_CX: 8422 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8423 iocbq->iocb.un.ulpWord[3]); 8424 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8425 iocbq->iocb.unsli3.rcvsli3.ox_id); 8426 /* The entire sequence is transmitted for this IOCB */ 8427 xmit_len = total_len; 8428 cmnd = CMD_XMIT_SEQUENCE64_CR; 8429 if (phba->link_flag & LS_LOOPBACK_MODE) 8430 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8431 case CMD_XMIT_SEQUENCE64_CR: 8432 /* word3 iocb=io_tag32 wqe=reserved */ 8433 wqe->xmit_sequence.rsvd3 = 0; 8434 /* word4 relative_offset memcpy */ 8435 /* word5 r_ctl/df_ctl memcpy */ 8436 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8437 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8438 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8439 LPFC_WQE_IOD_WRITE); 8440 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8441 LPFC_WQE_LENLOC_WORD12); 8442 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8443 wqe->xmit_sequence.xmit_len = xmit_len; 8444 command_type = OTHER_COMMAND; 8445 break; 8446 case CMD_XMIT_BCAST64_CN: 8447 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8448 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8449 /* word4 iocb=rsvd wqe=rsvd */ 8450 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8451 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8452 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8453 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8454 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8455 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8456 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8457 LPFC_WQE_LENLOC_WORD3); 8458 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8459 break; 8460 case CMD_FCP_IWRITE64_CR: 8461 command_type = FCP_COMMAND_DATA_OUT; 8462 /* word3 iocb=iotag wqe=payload_offset_len */ 8463 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8464 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8465 xmit_len + sizeof(struct fcp_rsp)); 8466 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8467 0); 8468 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8469 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8470 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8471 iocbq->iocb.ulpFCP2Rcvy); 8472 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8473 /* Always open the exchange */ 8474 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8475 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8476 LPFC_WQE_LENLOC_WORD4); 8477 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8478 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8479 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8480 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8481 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8482 if (iocbq->priority) { 8483 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8484 (iocbq->priority << 1)); 8485 } else { 8486 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8487 (phba->cfg_XLanePriority << 1)); 8488 } 8489 } 8490 /* Note, word 10 is already initialized to 0 */ 8491 8492 if (phba->fcp_embed_io) { 8493 struct lpfc_scsi_buf *lpfc_cmd; 8494 struct sli4_sge *sgl; 8495 union lpfc_wqe128 *wqe128; 8496 struct fcp_cmnd *fcp_cmnd; 8497 uint32_t *ptr; 8498 8499 /* 128 byte wqe support here */ 8500 wqe128 = (union lpfc_wqe128 *)wqe; 8501 8502 lpfc_cmd = iocbq->context1; 8503 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8504 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8505 8506 /* Word 0-2 - FCP_CMND */ 8507 wqe128->generic.bde.tus.f.bdeFlags = 8508 BUFF_TYPE_BDE_IMMED; 8509 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8510 wqe128->generic.bde.addrHigh = 0; 8511 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8512 8513 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8514 8515 /* Word 22-29 FCP CMND Payload */ 8516 ptr = &wqe128->words[22]; 8517 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8518 } 8519 break; 8520 case CMD_FCP_IREAD64_CR: 8521 /* word3 iocb=iotag wqe=payload_offset_len */ 8522 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8523 bf_set(payload_offset_len, &wqe->fcp_iread, 8524 xmit_len + sizeof(struct fcp_rsp)); 8525 bf_set(cmd_buff_len, &wqe->fcp_iread, 8526 0); 8527 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8528 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8529 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8530 iocbq->iocb.ulpFCP2Rcvy); 8531 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8532 /* Always open the exchange */ 8533 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8534 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8535 LPFC_WQE_LENLOC_WORD4); 8536 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8537 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8538 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8539 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8540 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8541 if (iocbq->priority) { 8542 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8543 (iocbq->priority << 1)); 8544 } else { 8545 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8546 (phba->cfg_XLanePriority << 1)); 8547 } 8548 } 8549 /* Note, word 10 is already initialized to 0 */ 8550 8551 if (phba->fcp_embed_io) { 8552 struct lpfc_scsi_buf *lpfc_cmd; 8553 struct sli4_sge *sgl; 8554 union lpfc_wqe128 *wqe128; 8555 struct fcp_cmnd *fcp_cmnd; 8556 uint32_t *ptr; 8557 8558 /* 128 byte wqe support here */ 8559 wqe128 = (union lpfc_wqe128 *)wqe; 8560 8561 lpfc_cmd = iocbq->context1; 8562 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8563 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8564 8565 /* Word 0-2 - FCP_CMND */ 8566 wqe128->generic.bde.tus.f.bdeFlags = 8567 BUFF_TYPE_BDE_IMMED; 8568 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8569 wqe128->generic.bde.addrHigh = 0; 8570 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8571 8572 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8573 8574 /* Word 22-29 FCP CMND Payload */ 8575 ptr = &wqe128->words[22]; 8576 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8577 } 8578 break; 8579 case CMD_FCP_ICMND64_CR: 8580 /* word3 iocb=iotag wqe=payload_offset_len */ 8581 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8582 bf_set(payload_offset_len, &wqe->fcp_icmd, 8583 xmit_len + sizeof(struct fcp_rsp)); 8584 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8585 0); 8586 /* word3 iocb=IO_TAG wqe=reserved */ 8587 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8588 /* Always open the exchange */ 8589 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8590 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8591 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8592 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8593 LPFC_WQE_LENLOC_NONE); 8594 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8595 iocbq->iocb.ulpFCP2Rcvy); 8596 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8597 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8598 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8599 if (iocbq->priority) { 8600 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8601 (iocbq->priority << 1)); 8602 } else { 8603 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8604 (phba->cfg_XLanePriority << 1)); 8605 } 8606 } 8607 /* Note, word 10 is already initialized to 0 */ 8608 8609 if (phba->fcp_embed_io) { 8610 struct lpfc_scsi_buf *lpfc_cmd; 8611 struct sli4_sge *sgl; 8612 union lpfc_wqe128 *wqe128; 8613 struct fcp_cmnd *fcp_cmnd; 8614 uint32_t *ptr; 8615 8616 /* 128 byte wqe support here */ 8617 wqe128 = (union lpfc_wqe128 *)wqe; 8618 8619 lpfc_cmd = iocbq->context1; 8620 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8621 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8622 8623 /* Word 0-2 - FCP_CMND */ 8624 wqe128->generic.bde.tus.f.bdeFlags = 8625 BUFF_TYPE_BDE_IMMED; 8626 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8627 wqe128->generic.bde.addrHigh = 0; 8628 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8629 8630 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 8631 8632 /* Word 22-29 FCP CMND Payload */ 8633 ptr = &wqe128->words[22]; 8634 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8635 } 8636 break; 8637 case CMD_GEN_REQUEST64_CR: 8638 /* For this command calculate the xmit length of the 8639 * request bde. 8640 */ 8641 xmit_len = 0; 8642 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8643 sizeof(struct ulp_bde64); 8644 for (i = 0; i < numBdes; i++) { 8645 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8646 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8647 break; 8648 xmit_len += bde.tus.f.bdeSize; 8649 } 8650 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8651 wqe->gen_req.request_payload_len = xmit_len; 8652 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8653 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8654 /* word6 context tag copied in memcpy */ 8655 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8656 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8657 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8658 "2015 Invalid CT %x command 0x%x\n", 8659 ct, iocbq->iocb.ulpCommand); 8660 return IOCB_ERROR; 8661 } 8662 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8663 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8664 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8665 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8666 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8667 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8668 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8669 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8670 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8671 command_type = OTHER_COMMAND; 8672 break; 8673 case CMD_XMIT_ELS_RSP64_CX: 8674 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8675 /* words0-2 BDE memcpy */ 8676 /* word3 iocb=iotag32 wqe=response_payload_len */ 8677 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8678 /* word4 */ 8679 wqe->xmit_els_rsp.word4 = 0; 8680 /* word5 iocb=rsvd wge=did */ 8681 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8682 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8683 8684 if_type = bf_get(lpfc_sli_intf_if_type, 8685 &phba->sli4_hba.sli_intf); 8686 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8687 if (iocbq->vport->fc_flag & FC_PT2PT) { 8688 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8689 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8690 iocbq->vport->fc_myDID); 8691 if (iocbq->vport->fc_myDID == Fabric_DID) { 8692 bf_set(wqe_els_did, 8693 &wqe->xmit_els_rsp.wqe_dest, 0); 8694 } 8695 } 8696 } 8697 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8698 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8699 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8700 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8701 iocbq->iocb.unsli3.rcvsli3.ox_id); 8702 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8703 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8704 phba->vpi_ids[iocbq->vport->vpi]); 8705 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8706 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8707 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8708 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8709 LPFC_WQE_LENLOC_WORD3); 8710 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8711 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8712 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8713 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8714 iocbq->context2)->virt); 8715 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8716 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8717 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8718 iocbq->vport->fc_myDID); 8719 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8720 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8721 phba->vpi_ids[phba->pport->vpi]); 8722 } 8723 command_type = OTHER_COMMAND; 8724 break; 8725 case CMD_CLOSE_XRI_CN: 8726 case CMD_ABORT_XRI_CN: 8727 case CMD_ABORT_XRI_CX: 8728 /* words 0-2 memcpy should be 0 rserved */ 8729 /* port will send abts */ 8730 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8731 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8732 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8733 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8734 } else 8735 fip = 0; 8736 8737 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8738 /* 8739 * The link is down, or the command was ELS_FIP 8740 * so the fw does not need to send abts 8741 * on the wire. 8742 */ 8743 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8744 else 8745 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8746 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8747 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8748 wqe->abort_cmd.rsrvd5 = 0; 8749 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8750 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8751 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8752 /* 8753 * The abort handler will send us CMD_ABORT_XRI_CN or 8754 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8755 */ 8756 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8757 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8758 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8759 LPFC_WQE_LENLOC_NONE); 8760 cmnd = CMD_ABORT_XRI_CX; 8761 command_type = OTHER_COMMAND; 8762 xritag = 0; 8763 break; 8764 case CMD_XMIT_BLS_RSP64_CX: 8765 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8766 /* As BLS ABTS RSP WQE is very different from other WQEs, 8767 * we re-construct this WQE here based on information in 8768 * iocbq from scratch. 8769 */ 8770 memset(wqe, 0, sizeof(union lpfc_wqe)); 8771 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8772 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8773 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8774 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8775 LPFC_ABTS_UNSOL_INT) { 8776 /* ABTS sent by initiator to CT exchange, the 8777 * RX_ID field will be filled with the newly 8778 * allocated responder XRI. 8779 */ 8780 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8781 iocbq->sli4_xritag); 8782 } else { 8783 /* ABTS sent by responder to CT exchange, the 8784 * RX_ID field will be filled with the responder 8785 * RX_ID from ABTS. 8786 */ 8787 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8788 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8789 } 8790 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8791 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8792 8793 /* Use CT=VPI */ 8794 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8795 ndlp->nlp_DID); 8796 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8797 iocbq->iocb.ulpContext); 8798 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8799 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8800 phba->vpi_ids[phba->pport->vpi]); 8801 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8802 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8803 LPFC_WQE_LENLOC_NONE); 8804 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8805 command_type = OTHER_COMMAND; 8806 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8807 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8808 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8809 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8810 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8811 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8812 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8813 } 8814 8815 break; 8816 case CMD_XRI_ABORTED_CX: 8817 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8818 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8819 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8820 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8821 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8822 default: 8823 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8824 "2014 Invalid command 0x%x\n", 8825 iocbq->iocb.ulpCommand); 8826 return IOCB_ERROR; 8827 break; 8828 } 8829 8830 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8831 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8832 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8833 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8834 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8835 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8836 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8837 LPFC_IO_DIF_INSERT); 8838 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8839 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8840 wqe->generic.wqe_com.abort_tag = abort_tag; 8841 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8842 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8843 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8844 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8845 return 0; 8846 } 8847 8848 /** 8849 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8850 * @phba: Pointer to HBA context object. 8851 * @ring_number: SLI ring number to issue iocb on. 8852 * @piocb: Pointer to command iocb. 8853 * @flag: Flag indicating if this command can be put into txq. 8854 * 8855 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8856 * an iocb command to an HBA with SLI-4 interface spec. 8857 * 8858 * This function is called with hbalock held. The function will return success 8859 * after it successfully submit the iocb to firmware or after adding to the 8860 * txq. 8861 **/ 8862 static int 8863 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8864 struct lpfc_iocbq *piocb, uint32_t flag) 8865 { 8866 struct lpfc_sglq *sglq; 8867 union lpfc_wqe *wqe; 8868 union lpfc_wqe128 wqe128; 8869 struct lpfc_queue *wq; 8870 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8871 8872 lockdep_assert_held(&phba->hbalock); 8873 8874 /* 8875 * The WQE can be either 64 or 128 bytes, 8876 * so allocate space on the stack assuming the largest. 8877 */ 8878 wqe = (union lpfc_wqe *)&wqe128; 8879 8880 if (piocb->sli4_xritag == NO_XRI) { 8881 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8882 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8883 sglq = NULL; 8884 else { 8885 if (!list_empty(&pring->txq)) { 8886 if (!(flag & SLI_IOCB_RET_IOCB)) { 8887 __lpfc_sli_ringtx_put(phba, 8888 pring, piocb); 8889 return IOCB_SUCCESS; 8890 } else { 8891 return IOCB_BUSY; 8892 } 8893 } else { 8894 sglq = __lpfc_sli_get_sglq(phba, piocb); 8895 if (!sglq) { 8896 if (!(flag & SLI_IOCB_RET_IOCB)) { 8897 __lpfc_sli_ringtx_put(phba, 8898 pring, 8899 piocb); 8900 return IOCB_SUCCESS; 8901 } else 8902 return IOCB_BUSY; 8903 } 8904 } 8905 } 8906 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8907 /* These IO's already have an XRI and a mapped sgl. */ 8908 sglq = NULL; 8909 } else { 8910 /* 8911 * This is a continuation of a commandi,(CX) so this 8912 * sglq is on the active list 8913 */ 8914 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8915 if (!sglq) 8916 return IOCB_ERROR; 8917 } 8918 8919 if (sglq) { 8920 piocb->sli4_lxritag = sglq->sli4_lxritag; 8921 piocb->sli4_xritag = sglq->sli4_xritag; 8922 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8923 return IOCB_ERROR; 8924 } 8925 8926 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 8927 return IOCB_ERROR; 8928 8929 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8930 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8931 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) { 8932 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx]; 8933 } else { 8934 wq = phba->sli4_hba.oas_wq; 8935 } 8936 if (lpfc_sli4_wq_put(wq, wqe)) 8937 return IOCB_ERROR; 8938 } else { 8939 if (unlikely(!phba->sli4_hba.els_wq)) 8940 return IOCB_ERROR; 8941 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 8942 return IOCB_ERROR; 8943 } 8944 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8945 8946 return 0; 8947 } 8948 8949 /** 8950 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8951 * 8952 * This routine wraps the actual lockless version for issusing IOCB function 8953 * pointer from the lpfc_hba struct. 8954 * 8955 * Return codes: 8956 * IOCB_ERROR - Error 8957 * IOCB_SUCCESS - Success 8958 * IOCB_BUSY - Busy 8959 **/ 8960 int 8961 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8962 struct lpfc_iocbq *piocb, uint32_t flag) 8963 { 8964 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8965 } 8966 8967 /** 8968 * lpfc_sli_api_table_setup - Set up sli api function jump table 8969 * @phba: The hba struct for which this call is being executed. 8970 * @dev_grp: The HBA PCI-Device group number. 8971 * 8972 * This routine sets up the SLI interface API function jump table in @phba 8973 * struct. 8974 * Returns: 0 - success, -ENODEV - failure. 8975 **/ 8976 int 8977 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8978 { 8979 8980 switch (dev_grp) { 8981 case LPFC_PCI_DEV_LP: 8982 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8983 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8984 break; 8985 case LPFC_PCI_DEV_OC: 8986 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8987 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8988 break; 8989 default: 8990 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8991 "1419 Invalid HBA PCI-device group: 0x%x\n", 8992 dev_grp); 8993 return -ENODEV; 8994 break; 8995 } 8996 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 8997 return 0; 8998 } 8999 9000 /** 9001 * lpfc_sli_calc_ring - Calculates which ring to use 9002 * @phba: Pointer to HBA context object. 9003 * @ring_number: Initial ring 9004 * @piocb: Pointer to command iocb. 9005 * 9006 * For SLI4, FCP IO can deferred to one fo many WQs, based on 9007 * fcp_wqidx, thus we need to calculate the corresponding ring. 9008 * Since ABORTS must go on the same WQ of the command they are 9009 * aborting, we use command's fcp_wqidx. 9010 */ 9011 static int 9012 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number, 9013 struct lpfc_iocbq *piocb) 9014 { 9015 if (phba->sli_rev < LPFC_SLI_REV4) 9016 return ring_number; 9017 9018 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9019 if (!(phba->cfg_fof) || 9020 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9021 if (unlikely(!phba->sli4_hba.fcp_wq)) 9022 return LPFC_HBA_ERROR; 9023 /* 9024 * for abort iocb fcp_wqidx should already 9025 * be setup based on what work queue we used. 9026 */ 9027 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9028 piocb->fcp_wqidx = 9029 lpfc_sli4_scmd_to_wqidx_distr(phba, 9030 piocb->context1); 9031 ring_number = MAX_SLI3_CONFIGURED_RINGS + 9032 piocb->fcp_wqidx; 9033 } else { 9034 if (unlikely(!phba->sli4_hba.oas_wq)) 9035 return LPFC_HBA_ERROR; 9036 piocb->fcp_wqidx = 0; 9037 ring_number = LPFC_FCP_OAS_RING; 9038 } 9039 } 9040 return ring_number; 9041 } 9042 9043 /** 9044 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9045 * @phba: Pointer to HBA context object. 9046 * @pring: Pointer to driver SLI ring object. 9047 * @piocb: Pointer to command iocb. 9048 * @flag: Flag indicating if this command can be put into txq. 9049 * 9050 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9051 * function. This function gets the hbalock and calls 9052 * __lpfc_sli_issue_iocb function and will return the error returned 9053 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9054 * functions which do not hold hbalock. 9055 **/ 9056 int 9057 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9058 struct lpfc_iocbq *piocb, uint32_t flag) 9059 { 9060 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 9061 struct lpfc_sli_ring *pring; 9062 struct lpfc_queue *fpeq; 9063 struct lpfc_eqe *eqe; 9064 unsigned long iflags; 9065 int rc, idx; 9066 9067 if (phba->sli_rev == LPFC_SLI_REV4) { 9068 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb); 9069 if (unlikely(ring_number == LPFC_HBA_ERROR)) 9070 return IOCB_ERROR; 9071 idx = piocb->fcp_wqidx; 9072 9073 pring = &phba->sli.ring[ring_number]; 9074 spin_lock_irqsave(&pring->ring_lock, iflags); 9075 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9076 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9077 9078 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9079 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 9080 9081 if (atomic_dec_and_test(&fcp_eq_hdl-> 9082 fcp_eq_in_use)) { 9083 9084 /* Get associated EQ with this index */ 9085 fpeq = phba->sli4_hba.hba_eq[idx]; 9086 9087 /* Turn off interrupts from this EQ */ 9088 lpfc_sli4_eq_clr_intr(fpeq); 9089 9090 /* 9091 * Process all the events on FCP EQ 9092 */ 9093 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9094 lpfc_sli4_hba_handle_eqe(phba, 9095 eqe, idx); 9096 fpeq->EQ_processed++; 9097 } 9098 9099 /* Always clear and re-arm the EQ */ 9100 lpfc_sli4_eq_release(fpeq, 9101 LPFC_QUEUE_REARM); 9102 } 9103 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 9104 } 9105 } else { 9106 /* For now, SLI2/3 will still use hbalock */ 9107 spin_lock_irqsave(&phba->hbalock, iflags); 9108 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9109 spin_unlock_irqrestore(&phba->hbalock, iflags); 9110 } 9111 return rc; 9112 } 9113 9114 /** 9115 * lpfc_extra_ring_setup - Extra ring setup function 9116 * @phba: Pointer to HBA context object. 9117 * 9118 * This function is called while driver attaches with the 9119 * HBA to setup the extra ring. The extra ring is used 9120 * only when driver needs to support target mode functionality 9121 * or IP over FC functionalities. 9122 * 9123 * This function is called with no lock held. 9124 **/ 9125 static int 9126 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9127 { 9128 struct lpfc_sli *psli; 9129 struct lpfc_sli_ring *pring; 9130 9131 psli = &phba->sli; 9132 9133 /* Adjust cmd/rsp ring iocb entries more evenly */ 9134 9135 /* Take some away from the FCP ring */ 9136 pring = &psli->ring[psli->fcp_ring]; 9137 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9138 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9139 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9140 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9141 9142 /* and give them to the extra ring */ 9143 pring = &psli->ring[psli->extra_ring]; 9144 9145 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9146 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9147 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9148 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9149 9150 /* Setup default profile for this ring */ 9151 pring->iotag_max = 4096; 9152 pring->num_mask = 1; 9153 pring->prt[0].profile = 0; /* Mask 0 */ 9154 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9155 pring->prt[0].type = phba->cfg_multi_ring_type; 9156 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9157 return 0; 9158 } 9159 9160 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9161 * @phba: Pointer to HBA context object. 9162 * @iocbq: Pointer to iocb object. 9163 * 9164 * The async_event handler calls this routine when it receives 9165 * an ASYNC_STATUS_CN event from the port. The port generates 9166 * this event when an Abort Sequence request to an rport fails 9167 * twice in succession. The abort could be originated by the 9168 * driver or by the port. The ABTS could have been for an ELS 9169 * or FCP IO. The port only generates this event when an ABTS 9170 * fails to complete after one retry. 9171 */ 9172 static void 9173 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9174 struct lpfc_iocbq *iocbq) 9175 { 9176 struct lpfc_nodelist *ndlp = NULL; 9177 uint16_t rpi = 0, vpi = 0; 9178 struct lpfc_vport *vport = NULL; 9179 9180 /* The rpi in the ulpContext is vport-sensitive. */ 9181 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9182 rpi = iocbq->iocb.ulpContext; 9183 9184 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9185 "3092 Port generated ABTS async event " 9186 "on vpi %d rpi %d status 0x%x\n", 9187 vpi, rpi, iocbq->iocb.ulpStatus); 9188 9189 vport = lpfc_find_vport_by_vpid(phba, vpi); 9190 if (!vport) 9191 goto err_exit; 9192 ndlp = lpfc_findnode_rpi(vport, rpi); 9193 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9194 goto err_exit; 9195 9196 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9197 lpfc_sli_abts_recover_port(vport, ndlp); 9198 return; 9199 9200 err_exit: 9201 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9202 "3095 Event Context not found, no " 9203 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9204 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9205 vpi, rpi); 9206 } 9207 9208 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9209 * @phba: pointer to HBA context object. 9210 * @ndlp: nodelist pointer for the impacted rport. 9211 * @axri: pointer to the wcqe containing the failed exchange. 9212 * 9213 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9214 * port. The port generates this event when an abort exchange request to an 9215 * rport fails twice in succession with no reply. The abort could be originated 9216 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9217 */ 9218 void 9219 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9220 struct lpfc_nodelist *ndlp, 9221 struct sli4_wcqe_xri_aborted *axri) 9222 { 9223 struct lpfc_vport *vport; 9224 uint32_t ext_status = 0; 9225 9226 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9227 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9228 "3115 Node Context not found, driver " 9229 "ignoring abts err event\n"); 9230 return; 9231 } 9232 9233 vport = ndlp->vport; 9234 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9235 "3116 Port generated FCP XRI ABORT event on " 9236 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9237 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9238 bf_get(lpfc_wcqe_xa_xri, axri), 9239 bf_get(lpfc_wcqe_xa_status, axri), 9240 axri->parameter); 9241 9242 /* 9243 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9244 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9245 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9246 */ 9247 ext_status = axri->parameter & IOERR_PARAM_MASK; 9248 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9249 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9250 lpfc_sli_abts_recover_port(vport, ndlp); 9251 } 9252 9253 /** 9254 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9255 * @phba: Pointer to HBA context object. 9256 * @pring: Pointer to driver SLI ring object. 9257 * @iocbq: Pointer to iocb object. 9258 * 9259 * This function is called by the slow ring event handler 9260 * function when there is an ASYNC event iocb in the ring. 9261 * This function is called with no lock held. 9262 * Currently this function handles only temperature related 9263 * ASYNC events. The function decodes the temperature sensor 9264 * event message and posts events for the management applications. 9265 **/ 9266 static void 9267 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9268 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9269 { 9270 IOCB_t *icmd; 9271 uint16_t evt_code; 9272 struct temp_event temp_event_data; 9273 struct Scsi_Host *shost; 9274 uint32_t *iocb_w; 9275 9276 icmd = &iocbq->iocb; 9277 evt_code = icmd->un.asyncstat.evt_code; 9278 9279 switch (evt_code) { 9280 case ASYNC_TEMP_WARN: 9281 case ASYNC_TEMP_SAFE: 9282 temp_event_data.data = (uint32_t) icmd->ulpContext; 9283 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9284 if (evt_code == ASYNC_TEMP_WARN) { 9285 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9286 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9287 "0347 Adapter is very hot, please take " 9288 "corrective action. temperature : %d Celsius\n", 9289 (uint32_t) icmd->ulpContext); 9290 } else { 9291 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9292 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9293 "0340 Adapter temperature is OK now. " 9294 "temperature : %d Celsius\n", 9295 (uint32_t) icmd->ulpContext); 9296 } 9297 9298 /* Send temperature change event to applications */ 9299 shost = lpfc_shost_from_vport(phba->pport); 9300 fc_host_post_vendor_event(shost, fc_get_event_number(), 9301 sizeof(temp_event_data), (char *) &temp_event_data, 9302 LPFC_NL_VENDOR_ID); 9303 break; 9304 case ASYNC_STATUS_CN: 9305 lpfc_sli_abts_err_handler(phba, iocbq); 9306 break; 9307 default: 9308 iocb_w = (uint32_t *) icmd; 9309 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9310 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9311 " evt_code 0x%x\n" 9312 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9313 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9314 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9315 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9316 pring->ringno, icmd->un.asyncstat.evt_code, 9317 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9318 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9319 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9320 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9321 9322 break; 9323 } 9324 } 9325 9326 9327 /** 9328 * lpfc_sli_setup - SLI ring setup function 9329 * @phba: Pointer to HBA context object. 9330 * 9331 * lpfc_sli_setup sets up rings of the SLI interface with 9332 * number of iocbs per ring and iotags. This function is 9333 * called while driver attach to the HBA and before the 9334 * interrupts are enabled. So there is no need for locking. 9335 * 9336 * This function always returns 0. 9337 **/ 9338 int 9339 lpfc_sli_setup(struct lpfc_hba *phba) 9340 { 9341 int i, totiocbsize = 0; 9342 struct lpfc_sli *psli = &phba->sli; 9343 struct lpfc_sli_ring *pring; 9344 9345 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9346 if (phba->sli_rev == LPFC_SLI_REV4) 9347 psli->num_rings += phba->cfg_fcp_io_channel; 9348 psli->sli_flag = 0; 9349 psli->fcp_ring = LPFC_FCP_RING; 9350 psli->next_ring = LPFC_FCP_NEXT_RING; 9351 psli->extra_ring = LPFC_EXTRA_RING; 9352 9353 psli->iocbq_lookup = NULL; 9354 psli->iocbq_lookup_len = 0; 9355 psli->last_iotag = 0; 9356 9357 for (i = 0; i < psli->num_rings; i++) { 9358 pring = &psli->ring[i]; 9359 switch (i) { 9360 case LPFC_FCP_RING: /* ring 0 - FCP */ 9361 /* numCiocb and numRiocb are used in config_port */ 9362 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9363 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9364 pring->sli.sli3.numCiocb += 9365 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9366 pring->sli.sli3.numRiocb += 9367 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9368 pring->sli.sli3.numCiocb += 9369 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9370 pring->sli.sli3.numRiocb += 9371 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9372 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9373 SLI3_IOCB_CMD_SIZE : 9374 SLI2_IOCB_CMD_SIZE; 9375 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9376 SLI3_IOCB_RSP_SIZE : 9377 SLI2_IOCB_RSP_SIZE; 9378 pring->iotag_ctr = 0; 9379 pring->iotag_max = 9380 (phba->cfg_hba_queue_depth * 2); 9381 pring->fast_iotag = pring->iotag_max; 9382 pring->num_mask = 0; 9383 break; 9384 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9385 /* numCiocb and numRiocb are used in config_port */ 9386 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9387 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9388 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9389 SLI3_IOCB_CMD_SIZE : 9390 SLI2_IOCB_CMD_SIZE; 9391 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9392 SLI3_IOCB_RSP_SIZE : 9393 SLI2_IOCB_RSP_SIZE; 9394 pring->iotag_max = phba->cfg_hba_queue_depth; 9395 pring->num_mask = 0; 9396 break; 9397 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9398 /* numCiocb and numRiocb are used in config_port */ 9399 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9400 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9401 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9402 SLI3_IOCB_CMD_SIZE : 9403 SLI2_IOCB_CMD_SIZE; 9404 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9405 SLI3_IOCB_RSP_SIZE : 9406 SLI2_IOCB_RSP_SIZE; 9407 pring->fast_iotag = 0; 9408 pring->iotag_ctr = 0; 9409 pring->iotag_max = 4096; 9410 pring->lpfc_sli_rcv_async_status = 9411 lpfc_sli_async_event_handler; 9412 pring->num_mask = LPFC_MAX_RING_MASK; 9413 pring->prt[0].profile = 0; /* Mask 0 */ 9414 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9415 pring->prt[0].type = FC_TYPE_ELS; 9416 pring->prt[0].lpfc_sli_rcv_unsol_event = 9417 lpfc_els_unsol_event; 9418 pring->prt[1].profile = 0; /* Mask 1 */ 9419 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9420 pring->prt[1].type = FC_TYPE_ELS; 9421 pring->prt[1].lpfc_sli_rcv_unsol_event = 9422 lpfc_els_unsol_event; 9423 pring->prt[2].profile = 0; /* Mask 2 */ 9424 /* NameServer Inquiry */ 9425 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9426 /* NameServer */ 9427 pring->prt[2].type = FC_TYPE_CT; 9428 pring->prt[2].lpfc_sli_rcv_unsol_event = 9429 lpfc_ct_unsol_event; 9430 pring->prt[3].profile = 0; /* Mask 3 */ 9431 /* NameServer response */ 9432 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9433 /* NameServer */ 9434 pring->prt[3].type = FC_TYPE_CT; 9435 pring->prt[3].lpfc_sli_rcv_unsol_event = 9436 lpfc_ct_unsol_event; 9437 break; 9438 } 9439 totiocbsize += (pring->sli.sli3.numCiocb * 9440 pring->sli.sli3.sizeCiocb) + 9441 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9442 } 9443 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9444 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9445 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9446 "SLI2 SLIM Data: x%x x%lx\n", 9447 phba->brd_no, totiocbsize, 9448 (unsigned long) MAX_SLIM_IOCB_SIZE); 9449 } 9450 if (phba->cfg_multi_ring_support == 2) 9451 lpfc_extra_ring_setup(phba); 9452 9453 return 0; 9454 } 9455 9456 /** 9457 * lpfc_sli_queue_setup - Queue initialization function 9458 * @phba: Pointer to HBA context object. 9459 * 9460 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 9461 * ring. This function also initializes ring indices of each ring. 9462 * This function is called during the initialization of the SLI 9463 * interface of an HBA. 9464 * This function is called with no lock held and always returns 9465 * 1. 9466 **/ 9467 int 9468 lpfc_sli_queue_setup(struct lpfc_hba *phba) 9469 { 9470 struct lpfc_sli *psli; 9471 struct lpfc_sli_ring *pring; 9472 int i; 9473 9474 psli = &phba->sli; 9475 spin_lock_irq(&phba->hbalock); 9476 INIT_LIST_HEAD(&psli->mboxq); 9477 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9478 /* Initialize list headers for txq and txcmplq as double linked lists */ 9479 for (i = 0; i < psli->num_rings; i++) { 9480 pring = &psli->ring[i]; 9481 pring->ringno = i; 9482 pring->sli.sli3.next_cmdidx = 0; 9483 pring->sli.sli3.local_getidx = 0; 9484 pring->sli.sli3.cmdidx = 0; 9485 pring->flag = 0; 9486 INIT_LIST_HEAD(&pring->txq); 9487 INIT_LIST_HEAD(&pring->txcmplq); 9488 INIT_LIST_HEAD(&pring->iocb_continueq); 9489 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9490 INIT_LIST_HEAD(&pring->postbufq); 9491 spin_lock_init(&pring->ring_lock); 9492 } 9493 spin_unlock_irq(&phba->hbalock); 9494 return 1; 9495 } 9496 9497 /** 9498 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9499 * @phba: Pointer to HBA context object. 9500 * 9501 * This routine flushes the mailbox command subsystem. It will unconditionally 9502 * flush all the mailbox commands in the three possible stages in the mailbox 9503 * command sub-system: pending mailbox command queue; the outstanding mailbox 9504 * command; and completed mailbox command queue. It is caller's responsibility 9505 * to make sure that the driver is in the proper state to flush the mailbox 9506 * command sub-system. Namely, the posting of mailbox commands into the 9507 * pending mailbox command queue from the various clients must be stopped; 9508 * either the HBA is in a state that it will never works on the outstanding 9509 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9510 * mailbox command has been completed. 9511 **/ 9512 static void 9513 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9514 { 9515 LIST_HEAD(completions); 9516 struct lpfc_sli *psli = &phba->sli; 9517 LPFC_MBOXQ_t *pmb; 9518 unsigned long iflag; 9519 9520 /* Flush all the mailbox commands in the mbox system */ 9521 spin_lock_irqsave(&phba->hbalock, iflag); 9522 /* The pending mailbox command queue */ 9523 list_splice_init(&phba->sli.mboxq, &completions); 9524 /* The outstanding active mailbox command */ 9525 if (psli->mbox_active) { 9526 list_add_tail(&psli->mbox_active->list, &completions); 9527 psli->mbox_active = NULL; 9528 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9529 } 9530 /* The completed mailbox command queue */ 9531 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9532 spin_unlock_irqrestore(&phba->hbalock, iflag); 9533 9534 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9535 while (!list_empty(&completions)) { 9536 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9537 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9538 if (pmb->mbox_cmpl) 9539 pmb->mbox_cmpl(phba, pmb); 9540 } 9541 } 9542 9543 /** 9544 * lpfc_sli_host_down - Vport cleanup function 9545 * @vport: Pointer to virtual port object. 9546 * 9547 * lpfc_sli_host_down is called to clean up the resources 9548 * associated with a vport before destroying virtual 9549 * port data structures. 9550 * This function does following operations: 9551 * - Free discovery resources associated with this virtual 9552 * port. 9553 * - Free iocbs associated with this virtual port in 9554 * the txq. 9555 * - Send abort for all iocb commands associated with this 9556 * vport in txcmplq. 9557 * 9558 * This function is called with no lock held and always returns 1. 9559 **/ 9560 int 9561 lpfc_sli_host_down(struct lpfc_vport *vport) 9562 { 9563 LIST_HEAD(completions); 9564 struct lpfc_hba *phba = vport->phba; 9565 struct lpfc_sli *psli = &phba->sli; 9566 struct lpfc_sli_ring *pring; 9567 struct lpfc_iocbq *iocb, *next_iocb; 9568 int i; 9569 unsigned long flags = 0; 9570 uint16_t prev_pring_flag; 9571 9572 lpfc_cleanup_discovery_resources(vport); 9573 9574 spin_lock_irqsave(&phba->hbalock, flags); 9575 for (i = 0; i < psli->num_rings; i++) { 9576 pring = &psli->ring[i]; 9577 prev_pring_flag = pring->flag; 9578 /* Only slow rings */ 9579 if (pring->ringno == LPFC_ELS_RING) { 9580 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9581 /* Set the lpfc data pending flag */ 9582 set_bit(LPFC_DATA_READY, &phba->data_flags); 9583 } 9584 /* 9585 * Error everything on the txq since these iocbs have not been 9586 * given to the FW yet. 9587 */ 9588 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9589 if (iocb->vport != vport) 9590 continue; 9591 list_move_tail(&iocb->list, &completions); 9592 } 9593 9594 /* Next issue ABTS for everything on the txcmplq */ 9595 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9596 list) { 9597 if (iocb->vport != vport) 9598 continue; 9599 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9600 } 9601 9602 pring->flag = prev_pring_flag; 9603 } 9604 9605 spin_unlock_irqrestore(&phba->hbalock, flags); 9606 9607 /* Cancel all the IOCBs from the completions list */ 9608 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9609 IOERR_SLI_DOWN); 9610 return 1; 9611 } 9612 9613 /** 9614 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9615 * @phba: Pointer to HBA context object. 9616 * 9617 * This function cleans up all iocb, buffers, mailbox commands 9618 * while shutting down the HBA. This function is called with no 9619 * lock held and always returns 1. 9620 * This function does the following to cleanup driver resources: 9621 * - Free discovery resources for each virtual port 9622 * - Cleanup any pending fabric iocbs 9623 * - Iterate through the iocb txq and free each entry 9624 * in the list. 9625 * - Free up any buffer posted to the HBA 9626 * - Free mailbox commands in the mailbox queue. 9627 **/ 9628 int 9629 lpfc_sli_hba_down(struct lpfc_hba *phba) 9630 { 9631 LIST_HEAD(completions); 9632 struct lpfc_sli *psli = &phba->sli; 9633 struct lpfc_sli_ring *pring; 9634 struct lpfc_dmabuf *buf_ptr; 9635 unsigned long flags = 0; 9636 int i; 9637 9638 /* Shutdown the mailbox command sub-system */ 9639 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9640 9641 lpfc_hba_down_prep(phba); 9642 9643 lpfc_fabric_abort_hba(phba); 9644 9645 spin_lock_irqsave(&phba->hbalock, flags); 9646 for (i = 0; i < psli->num_rings; i++) { 9647 pring = &psli->ring[i]; 9648 /* Only slow rings */ 9649 if (pring->ringno == LPFC_ELS_RING) { 9650 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9651 /* Set the lpfc data pending flag */ 9652 set_bit(LPFC_DATA_READY, &phba->data_flags); 9653 } 9654 9655 /* 9656 * Error everything on the txq since these iocbs have not been 9657 * given to the FW yet. 9658 */ 9659 list_splice_init(&pring->txq, &completions); 9660 } 9661 spin_unlock_irqrestore(&phba->hbalock, flags); 9662 9663 /* Cancel all the IOCBs from the completions list */ 9664 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9665 IOERR_SLI_DOWN); 9666 9667 spin_lock_irqsave(&phba->hbalock, flags); 9668 list_splice_init(&phba->elsbuf, &completions); 9669 phba->elsbuf_cnt = 0; 9670 phba->elsbuf_prev_cnt = 0; 9671 spin_unlock_irqrestore(&phba->hbalock, flags); 9672 9673 while (!list_empty(&completions)) { 9674 list_remove_head(&completions, buf_ptr, 9675 struct lpfc_dmabuf, list); 9676 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9677 kfree(buf_ptr); 9678 } 9679 9680 /* Return any active mbox cmds */ 9681 del_timer_sync(&psli->mbox_tmo); 9682 9683 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9684 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9685 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9686 9687 return 1; 9688 } 9689 9690 /** 9691 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9692 * @srcp: Source memory pointer. 9693 * @destp: Destination memory pointer. 9694 * @cnt: Number of words required to be copied. 9695 * 9696 * This function is used for copying data between driver memory 9697 * and the SLI memory. This function also changes the endianness 9698 * of each word if native endianness is different from SLI 9699 * endianness. This function can be called with or without 9700 * lock. 9701 **/ 9702 void 9703 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9704 { 9705 uint32_t *src = srcp; 9706 uint32_t *dest = destp; 9707 uint32_t ldata; 9708 int i; 9709 9710 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9711 ldata = *src; 9712 ldata = le32_to_cpu(ldata); 9713 *dest = ldata; 9714 src++; 9715 dest++; 9716 } 9717 } 9718 9719 9720 /** 9721 * lpfc_sli_bemem_bcopy - SLI memory copy function 9722 * @srcp: Source memory pointer. 9723 * @destp: Destination memory pointer. 9724 * @cnt: Number of words required to be copied. 9725 * 9726 * This function is used for copying data between a data structure 9727 * with big endian representation to local endianness. 9728 * This function can be called with or without lock. 9729 **/ 9730 void 9731 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9732 { 9733 uint32_t *src = srcp; 9734 uint32_t *dest = destp; 9735 uint32_t ldata; 9736 int i; 9737 9738 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9739 ldata = *src; 9740 ldata = be32_to_cpu(ldata); 9741 *dest = ldata; 9742 src++; 9743 dest++; 9744 } 9745 } 9746 9747 /** 9748 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9749 * @phba: Pointer to HBA context object. 9750 * @pring: Pointer to driver SLI ring object. 9751 * @mp: Pointer to driver buffer object. 9752 * 9753 * This function is called with no lock held. 9754 * It always return zero after adding the buffer to the postbufq 9755 * buffer list. 9756 **/ 9757 int 9758 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9759 struct lpfc_dmabuf *mp) 9760 { 9761 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9762 later */ 9763 spin_lock_irq(&phba->hbalock); 9764 list_add_tail(&mp->list, &pring->postbufq); 9765 pring->postbufq_cnt++; 9766 spin_unlock_irq(&phba->hbalock); 9767 return 0; 9768 } 9769 9770 /** 9771 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9772 * @phba: Pointer to HBA context object. 9773 * 9774 * When HBQ is enabled, buffers are searched based on tags. This function 9775 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9776 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9777 * does not conflict with tags of buffer posted for unsolicited events. 9778 * The function returns the allocated tag. The function is called with 9779 * no locks held. 9780 **/ 9781 uint32_t 9782 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9783 { 9784 spin_lock_irq(&phba->hbalock); 9785 phba->buffer_tag_count++; 9786 /* 9787 * Always set the QUE_BUFTAG_BIT to distiguish between 9788 * a tag assigned by HBQ. 9789 */ 9790 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9791 spin_unlock_irq(&phba->hbalock); 9792 return phba->buffer_tag_count; 9793 } 9794 9795 /** 9796 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9797 * @phba: Pointer to HBA context object. 9798 * @pring: Pointer to driver SLI ring object. 9799 * @tag: Buffer tag. 9800 * 9801 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9802 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9803 * iocb is posted to the response ring with the tag of the buffer. 9804 * This function searches the pring->postbufq list using the tag 9805 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9806 * iocb. If the buffer is found then lpfc_dmabuf object of the 9807 * buffer is returned to the caller else NULL is returned. 9808 * This function is called with no lock held. 9809 **/ 9810 struct lpfc_dmabuf * 9811 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9812 uint32_t tag) 9813 { 9814 struct lpfc_dmabuf *mp, *next_mp; 9815 struct list_head *slp = &pring->postbufq; 9816 9817 /* Search postbufq, from the beginning, looking for a match on tag */ 9818 spin_lock_irq(&phba->hbalock); 9819 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9820 if (mp->buffer_tag == tag) { 9821 list_del_init(&mp->list); 9822 pring->postbufq_cnt--; 9823 spin_unlock_irq(&phba->hbalock); 9824 return mp; 9825 } 9826 } 9827 9828 spin_unlock_irq(&phba->hbalock); 9829 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9830 "0402 Cannot find virtual addr for buffer tag on " 9831 "ring %d Data x%lx x%p x%p x%x\n", 9832 pring->ringno, (unsigned long) tag, 9833 slp->next, slp->prev, pring->postbufq_cnt); 9834 9835 return NULL; 9836 } 9837 9838 /** 9839 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9840 * @phba: Pointer to HBA context object. 9841 * @pring: Pointer to driver SLI ring object. 9842 * @phys: DMA address of the buffer. 9843 * 9844 * This function searches the buffer list using the dma_address 9845 * of unsolicited event to find the driver's lpfc_dmabuf object 9846 * corresponding to the dma_address. The function returns the 9847 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9848 * This function is called by the ct and els unsolicited event 9849 * handlers to get the buffer associated with the unsolicited 9850 * event. 9851 * 9852 * This function is called with no lock held. 9853 **/ 9854 struct lpfc_dmabuf * 9855 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9856 dma_addr_t phys) 9857 { 9858 struct lpfc_dmabuf *mp, *next_mp; 9859 struct list_head *slp = &pring->postbufq; 9860 9861 /* Search postbufq, from the beginning, looking for a match on phys */ 9862 spin_lock_irq(&phba->hbalock); 9863 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9864 if (mp->phys == phys) { 9865 list_del_init(&mp->list); 9866 pring->postbufq_cnt--; 9867 spin_unlock_irq(&phba->hbalock); 9868 return mp; 9869 } 9870 } 9871 9872 spin_unlock_irq(&phba->hbalock); 9873 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9874 "0410 Cannot find virtual addr for mapped buf on " 9875 "ring %d Data x%llx x%p x%p x%x\n", 9876 pring->ringno, (unsigned long long)phys, 9877 slp->next, slp->prev, pring->postbufq_cnt); 9878 return NULL; 9879 } 9880 9881 /** 9882 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9883 * @phba: Pointer to HBA context object. 9884 * @cmdiocb: Pointer to driver command iocb object. 9885 * @rspiocb: Pointer to driver response iocb object. 9886 * 9887 * This function is the completion handler for the abort iocbs for 9888 * ELS commands. This function is called from the ELS ring event 9889 * handler with no lock held. This function frees memory resources 9890 * associated with the abort iocb. 9891 **/ 9892 static void 9893 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9894 struct lpfc_iocbq *rspiocb) 9895 { 9896 IOCB_t *irsp = &rspiocb->iocb; 9897 uint16_t abort_iotag, abort_context; 9898 struct lpfc_iocbq *abort_iocb = NULL; 9899 9900 if (irsp->ulpStatus) { 9901 9902 /* 9903 * Assume that the port already completed and returned, or 9904 * will return the iocb. Just Log the message. 9905 */ 9906 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9907 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9908 9909 spin_lock_irq(&phba->hbalock); 9910 if (phba->sli_rev < LPFC_SLI_REV4) { 9911 if (abort_iotag != 0 && 9912 abort_iotag <= phba->sli.last_iotag) 9913 abort_iocb = 9914 phba->sli.iocbq_lookup[abort_iotag]; 9915 } else 9916 /* For sli4 the abort_tag is the XRI, 9917 * so the abort routine puts the iotag of the iocb 9918 * being aborted in the context field of the abort 9919 * IOCB. 9920 */ 9921 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9922 9923 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9924 "0327 Cannot abort els iocb %p " 9925 "with tag %x context %x, abort status %x, " 9926 "abort code %x\n", 9927 abort_iocb, abort_iotag, abort_context, 9928 irsp->ulpStatus, irsp->un.ulpWord[4]); 9929 9930 spin_unlock_irq(&phba->hbalock); 9931 } 9932 lpfc_sli_release_iocbq(phba, cmdiocb); 9933 return; 9934 } 9935 9936 /** 9937 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9938 * @phba: Pointer to HBA context object. 9939 * @cmdiocb: Pointer to driver command iocb object. 9940 * @rspiocb: Pointer to driver response iocb object. 9941 * 9942 * The function is called from SLI ring event handler with no 9943 * lock held. This function is the completion handler for ELS commands 9944 * which are aborted. The function frees memory resources used for 9945 * the aborted ELS commands. 9946 **/ 9947 static void 9948 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9949 struct lpfc_iocbq *rspiocb) 9950 { 9951 IOCB_t *irsp = &rspiocb->iocb; 9952 9953 /* ELS cmd tag <ulpIoTag> completes */ 9954 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9955 "0139 Ignoring ELS cmd tag x%x completion Data: " 9956 "x%x x%x x%x\n", 9957 irsp->ulpIoTag, irsp->ulpStatus, 9958 irsp->un.ulpWord[4], irsp->ulpTimeout); 9959 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9960 lpfc_ct_free_iocb(phba, cmdiocb); 9961 else 9962 lpfc_els_free_iocb(phba, cmdiocb); 9963 return; 9964 } 9965 9966 /** 9967 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9968 * @phba: Pointer to HBA context object. 9969 * @pring: Pointer to driver SLI ring object. 9970 * @cmdiocb: Pointer to driver command iocb object. 9971 * 9972 * This function issues an abort iocb for the provided command iocb down to 9973 * the port. Other than the case the outstanding command iocb is an abort 9974 * request, this function issues abort out unconditionally. This function is 9975 * called with hbalock held. The function returns 0 when it fails due to 9976 * memory allocation failure or when the command iocb is an abort request. 9977 **/ 9978 static int 9979 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9980 struct lpfc_iocbq *cmdiocb) 9981 { 9982 struct lpfc_vport *vport = cmdiocb->vport; 9983 struct lpfc_iocbq *abtsiocbp; 9984 IOCB_t *icmd = NULL; 9985 IOCB_t *iabt = NULL; 9986 int ring_number; 9987 int retval; 9988 unsigned long iflags; 9989 9990 lockdep_assert_held(&phba->hbalock); 9991 9992 /* 9993 * There are certain command types we don't want to abort. And we 9994 * don't want to abort commands that are already in the process of 9995 * being aborted. 9996 */ 9997 icmd = &cmdiocb->iocb; 9998 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9999 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10000 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10001 return 0; 10002 10003 /* issue ABTS for this IOCB based on iotag */ 10004 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10005 if (abtsiocbp == NULL) 10006 return 0; 10007 10008 /* This signals the response to set the correct status 10009 * before calling the completion handler 10010 */ 10011 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10012 10013 iabt = &abtsiocbp->iocb; 10014 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10015 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10016 if (phba->sli_rev == LPFC_SLI_REV4) { 10017 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10018 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10019 } 10020 else 10021 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10022 iabt->ulpLe = 1; 10023 iabt->ulpClass = icmd->ulpClass; 10024 10025 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10026 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 10027 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10028 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10029 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10030 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10031 10032 if (phba->link_state >= LPFC_LINK_UP) 10033 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10034 else 10035 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10036 10037 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10038 10039 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10040 "0339 Abort xri x%x, original iotag x%x, " 10041 "abort cmd iotag x%x\n", 10042 iabt->un.acxri.abortIoTag, 10043 iabt->un.acxri.abortContextTag, 10044 abtsiocbp->iotag); 10045 10046 if (phba->sli_rev == LPFC_SLI_REV4) { 10047 ring_number = 10048 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp); 10049 if (unlikely(ring_number == LPFC_HBA_ERROR)) 10050 return 0; 10051 pring = &phba->sli.ring[ring_number]; 10052 /* Note: both hbalock and ring_lock need to be set here */ 10053 spin_lock_irqsave(&pring->ring_lock, iflags); 10054 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10055 abtsiocbp, 0); 10056 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10057 } else { 10058 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10059 abtsiocbp, 0); 10060 } 10061 10062 if (retval) 10063 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10064 10065 /* 10066 * Caller to this routine should check for IOCB_ERROR 10067 * and handle it properly. This routine no longer removes 10068 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10069 */ 10070 return retval; 10071 } 10072 10073 /** 10074 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10075 * @phba: Pointer to HBA context object. 10076 * @pring: Pointer to driver SLI ring object. 10077 * @cmdiocb: Pointer to driver command iocb object. 10078 * 10079 * This function issues an abort iocb for the provided command iocb. In case 10080 * of unloading, the abort iocb will not be issued to commands on the ELS 10081 * ring. Instead, the callback function shall be changed to those commands 10082 * so that nothing happens when them finishes. This function is called with 10083 * hbalock held. The function returns 0 when the command iocb is an abort 10084 * request. 10085 **/ 10086 int 10087 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10088 struct lpfc_iocbq *cmdiocb) 10089 { 10090 struct lpfc_vport *vport = cmdiocb->vport; 10091 int retval = IOCB_ERROR; 10092 IOCB_t *icmd = NULL; 10093 10094 lockdep_assert_held(&phba->hbalock); 10095 10096 /* 10097 * There are certain command types we don't want to abort. And we 10098 * don't want to abort commands that are already in the process of 10099 * being aborted. 10100 */ 10101 icmd = &cmdiocb->iocb; 10102 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10103 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10104 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10105 return 0; 10106 10107 /* 10108 * If we're unloading, don't abort iocb on the ELS ring, but change 10109 * the callback so that nothing happens when it finishes. 10110 */ 10111 if ((vport->load_flag & FC_UNLOADING) && 10112 (pring->ringno == LPFC_ELS_RING)) { 10113 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10114 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10115 else 10116 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10117 goto abort_iotag_exit; 10118 } 10119 10120 /* Now, we try to issue the abort to the cmdiocb out */ 10121 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10122 10123 abort_iotag_exit: 10124 /* 10125 * Caller to this routine should check for IOCB_ERROR 10126 * and handle it properly. This routine no longer removes 10127 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10128 */ 10129 return retval; 10130 } 10131 10132 /** 10133 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10134 * @phba: pointer to lpfc HBA data structure. 10135 * 10136 * This routine will abort all pending and outstanding iocbs to an HBA. 10137 **/ 10138 void 10139 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10140 { 10141 struct lpfc_sli *psli = &phba->sli; 10142 struct lpfc_sli_ring *pring; 10143 int i; 10144 10145 for (i = 0; i < psli->num_rings; i++) { 10146 pring = &psli->ring[i]; 10147 lpfc_sli_abort_iocb_ring(phba, pring); 10148 } 10149 } 10150 10151 /** 10152 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10153 * @iocbq: Pointer to driver iocb object. 10154 * @vport: Pointer to driver virtual port object. 10155 * @tgt_id: SCSI ID of the target. 10156 * @lun_id: LUN ID of the scsi device. 10157 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10158 * 10159 * This function acts as an iocb filter for functions which abort or count 10160 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10161 * 0 if the filtering criteria is met for the given iocb and will return 10162 * 1 if the filtering criteria is not met. 10163 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10164 * given iocb is for the SCSI device specified by vport, tgt_id and 10165 * lun_id parameter. 10166 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10167 * given iocb is for the SCSI target specified by vport and tgt_id 10168 * parameters. 10169 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10170 * given iocb is for the SCSI host associated with the given vport. 10171 * This function is called with no locks held. 10172 **/ 10173 static int 10174 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10175 uint16_t tgt_id, uint64_t lun_id, 10176 lpfc_ctx_cmd ctx_cmd) 10177 { 10178 struct lpfc_scsi_buf *lpfc_cmd; 10179 int rc = 1; 10180 10181 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10182 return rc; 10183 10184 if (iocbq->vport != vport) 10185 return rc; 10186 10187 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10188 10189 if (lpfc_cmd->pCmd == NULL) 10190 return rc; 10191 10192 switch (ctx_cmd) { 10193 case LPFC_CTX_LUN: 10194 if ((lpfc_cmd->rdata->pnode) && 10195 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10196 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10197 rc = 0; 10198 break; 10199 case LPFC_CTX_TGT: 10200 if ((lpfc_cmd->rdata->pnode) && 10201 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10202 rc = 0; 10203 break; 10204 case LPFC_CTX_HOST: 10205 rc = 0; 10206 break; 10207 default: 10208 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10209 __func__, ctx_cmd); 10210 break; 10211 } 10212 10213 return rc; 10214 } 10215 10216 /** 10217 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10218 * @vport: Pointer to virtual port. 10219 * @tgt_id: SCSI ID of the target. 10220 * @lun_id: LUN ID of the scsi device. 10221 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10222 * 10223 * This function returns number of FCP commands pending for the vport. 10224 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10225 * commands pending on the vport associated with SCSI device specified 10226 * by tgt_id and lun_id parameters. 10227 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10228 * commands pending on the vport associated with SCSI target specified 10229 * by tgt_id parameter. 10230 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10231 * commands pending on the vport. 10232 * This function returns the number of iocbs which satisfy the filter. 10233 * This function is called without any lock held. 10234 **/ 10235 int 10236 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10237 lpfc_ctx_cmd ctx_cmd) 10238 { 10239 struct lpfc_hba *phba = vport->phba; 10240 struct lpfc_iocbq *iocbq; 10241 int sum, i; 10242 10243 spin_lock_irq(&phba->hbalock); 10244 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10245 iocbq = phba->sli.iocbq_lookup[i]; 10246 10247 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10248 ctx_cmd) == 0) 10249 sum++; 10250 } 10251 spin_unlock_irq(&phba->hbalock); 10252 10253 return sum; 10254 } 10255 10256 /** 10257 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10258 * @phba: Pointer to HBA context object 10259 * @cmdiocb: Pointer to command iocb object. 10260 * @rspiocb: Pointer to response iocb object. 10261 * 10262 * This function is called when an aborted FCP iocb completes. This 10263 * function is called by the ring event handler with no lock held. 10264 * This function frees the iocb. 10265 **/ 10266 void 10267 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10268 struct lpfc_iocbq *rspiocb) 10269 { 10270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10271 "3096 ABORT_XRI_CN completing on rpi x%x " 10272 "original iotag x%x, abort cmd iotag x%x " 10273 "status 0x%x, reason 0x%x\n", 10274 cmdiocb->iocb.un.acxri.abortContextTag, 10275 cmdiocb->iocb.un.acxri.abortIoTag, 10276 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10277 rspiocb->iocb.un.ulpWord[4]); 10278 lpfc_sli_release_iocbq(phba, cmdiocb); 10279 return; 10280 } 10281 10282 /** 10283 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10284 * @vport: Pointer to virtual port. 10285 * @pring: Pointer to driver SLI ring object. 10286 * @tgt_id: SCSI ID of the target. 10287 * @lun_id: LUN ID of the scsi device. 10288 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10289 * 10290 * This function sends an abort command for every SCSI command 10291 * associated with the given virtual port pending on the ring 10292 * filtered by lpfc_sli_validate_fcp_iocb function. 10293 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10294 * FCP iocbs associated with lun specified by tgt_id and lun_id 10295 * parameters 10296 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10297 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10298 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10299 * FCP iocbs associated with virtual port. 10300 * This function returns number of iocbs it failed to abort. 10301 * This function is called with no locks held. 10302 **/ 10303 int 10304 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10305 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10306 { 10307 struct lpfc_hba *phba = vport->phba; 10308 struct lpfc_iocbq *iocbq; 10309 struct lpfc_iocbq *abtsiocb; 10310 IOCB_t *cmd = NULL; 10311 int errcnt = 0, ret_val = 0; 10312 int i; 10313 10314 for (i = 1; i <= phba->sli.last_iotag; i++) { 10315 iocbq = phba->sli.iocbq_lookup[i]; 10316 10317 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10318 abort_cmd) != 0) 10319 continue; 10320 10321 /* 10322 * If the iocbq is already being aborted, don't take a second 10323 * action, but do count it. 10324 */ 10325 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10326 continue; 10327 10328 /* issue ABTS for this IOCB based on iotag */ 10329 abtsiocb = lpfc_sli_get_iocbq(phba); 10330 if (abtsiocb == NULL) { 10331 errcnt++; 10332 continue; 10333 } 10334 10335 /* indicate the IO is being aborted by the driver. */ 10336 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10337 10338 cmd = &iocbq->iocb; 10339 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10340 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10341 if (phba->sli_rev == LPFC_SLI_REV4) 10342 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10343 else 10344 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10345 abtsiocb->iocb.ulpLe = 1; 10346 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10347 abtsiocb->vport = vport; 10348 10349 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10350 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 10351 if (iocbq->iocb_flag & LPFC_IO_FCP) 10352 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10353 if (iocbq->iocb_flag & LPFC_IO_FOF) 10354 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10355 10356 if (lpfc_is_link_up(phba)) 10357 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10358 else 10359 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10360 10361 /* Setup callback routine and issue the command. */ 10362 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10363 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10364 abtsiocb, 0); 10365 if (ret_val == IOCB_ERROR) { 10366 lpfc_sli_release_iocbq(phba, abtsiocb); 10367 errcnt++; 10368 continue; 10369 } 10370 } 10371 10372 return errcnt; 10373 } 10374 10375 /** 10376 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10377 * @vport: Pointer to virtual port. 10378 * @pring: Pointer to driver SLI ring object. 10379 * @tgt_id: SCSI ID of the target. 10380 * @lun_id: LUN ID of the scsi device. 10381 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10382 * 10383 * This function sends an abort command for every SCSI command 10384 * associated with the given virtual port pending on the ring 10385 * filtered by lpfc_sli_validate_fcp_iocb function. 10386 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10387 * FCP iocbs associated with lun specified by tgt_id and lun_id 10388 * parameters 10389 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10390 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10391 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10392 * FCP iocbs associated with virtual port. 10393 * This function returns number of iocbs it aborted . 10394 * This function is called with no locks held right after a taskmgmt 10395 * command is sent. 10396 **/ 10397 int 10398 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10399 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10400 { 10401 struct lpfc_hba *phba = vport->phba; 10402 struct lpfc_scsi_buf *lpfc_cmd; 10403 struct lpfc_iocbq *abtsiocbq; 10404 struct lpfc_nodelist *ndlp; 10405 struct lpfc_iocbq *iocbq; 10406 IOCB_t *icmd; 10407 int sum, i, ret_val; 10408 unsigned long iflags; 10409 struct lpfc_sli_ring *pring_s4; 10410 uint32_t ring_number; 10411 10412 spin_lock_irq(&phba->hbalock); 10413 10414 /* all I/Os are in process of being flushed */ 10415 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10416 spin_unlock_irq(&phba->hbalock); 10417 return 0; 10418 } 10419 sum = 0; 10420 10421 for (i = 1; i <= phba->sli.last_iotag; i++) { 10422 iocbq = phba->sli.iocbq_lookup[i]; 10423 10424 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10425 cmd) != 0) 10426 continue; 10427 10428 /* 10429 * If the iocbq is already being aborted, don't take a second 10430 * action, but do count it. 10431 */ 10432 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10433 continue; 10434 10435 /* issue ABTS for this IOCB based on iotag */ 10436 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10437 if (abtsiocbq == NULL) 10438 continue; 10439 10440 icmd = &iocbq->iocb; 10441 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10442 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 10443 if (phba->sli_rev == LPFC_SLI_REV4) 10444 abtsiocbq->iocb.un.acxri.abortIoTag = 10445 iocbq->sli4_xritag; 10446 else 10447 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 10448 abtsiocbq->iocb.ulpLe = 1; 10449 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 10450 abtsiocbq->vport = vport; 10451 10452 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10453 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx; 10454 if (iocbq->iocb_flag & LPFC_IO_FCP) 10455 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 10456 if (iocbq->iocb_flag & LPFC_IO_FOF) 10457 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 10458 10459 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10460 ndlp = lpfc_cmd->rdata->pnode; 10461 10462 if (lpfc_is_link_up(phba) && 10463 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 10464 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10465 else 10466 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10467 10468 /* Setup callback routine and issue the command. */ 10469 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10470 10471 /* 10472 * Indicate the IO is being aborted by the driver and set 10473 * the caller's flag into the aborted IO. 10474 */ 10475 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10476 10477 if (phba->sli_rev == LPFC_SLI_REV4) { 10478 ring_number = MAX_SLI3_CONFIGURED_RINGS + 10479 iocbq->fcp_wqidx; 10480 pring_s4 = &phba->sli.ring[ring_number]; 10481 /* Note: both hbalock and ring_lock must be set here */ 10482 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 10483 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 10484 abtsiocbq, 0); 10485 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 10486 } else { 10487 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 10488 abtsiocbq, 0); 10489 } 10490 10491 10492 if (ret_val == IOCB_ERROR) 10493 __lpfc_sli_release_iocbq(phba, abtsiocbq); 10494 else 10495 sum++; 10496 } 10497 spin_unlock_irq(&phba->hbalock); 10498 return sum; 10499 } 10500 10501 /** 10502 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 10503 * @phba: Pointer to HBA context object. 10504 * @cmdiocbq: Pointer to command iocb. 10505 * @rspiocbq: Pointer to response iocb. 10506 * 10507 * This function is the completion handler for iocbs issued using 10508 * lpfc_sli_issue_iocb_wait function. This function is called by the 10509 * ring event handler function without any lock held. This function 10510 * can be called from both worker thread context and interrupt 10511 * context. This function also can be called from other thread which 10512 * cleans up the SLI layer objects. 10513 * This function copy the contents of the response iocb to the 10514 * response iocb memory object provided by the caller of 10515 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 10516 * sleeps for the iocb completion. 10517 **/ 10518 static void 10519 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 10520 struct lpfc_iocbq *cmdiocbq, 10521 struct lpfc_iocbq *rspiocbq) 10522 { 10523 wait_queue_head_t *pdone_q; 10524 unsigned long iflags; 10525 struct lpfc_scsi_buf *lpfc_cmd; 10526 10527 spin_lock_irqsave(&phba->hbalock, iflags); 10528 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 10529 10530 /* 10531 * A time out has occurred for the iocb. If a time out 10532 * completion handler has been supplied, call it. Otherwise, 10533 * just free the iocbq. 10534 */ 10535 10536 spin_unlock_irqrestore(&phba->hbalock, iflags); 10537 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 10538 cmdiocbq->wait_iocb_cmpl = NULL; 10539 if (cmdiocbq->iocb_cmpl) 10540 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 10541 else 10542 lpfc_sli_release_iocbq(phba, cmdiocbq); 10543 return; 10544 } 10545 10546 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 10547 if (cmdiocbq->context2 && rspiocbq) 10548 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 10549 &rspiocbq->iocb, sizeof(IOCB_t)); 10550 10551 /* Set the exchange busy flag for task management commands */ 10552 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 10553 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 10554 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 10555 cur_iocbq); 10556 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 10557 } 10558 10559 pdone_q = cmdiocbq->context_un.wait_queue; 10560 if (pdone_q) 10561 wake_up(pdone_q); 10562 spin_unlock_irqrestore(&phba->hbalock, iflags); 10563 return; 10564 } 10565 10566 /** 10567 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 10568 * @phba: Pointer to HBA context object.. 10569 * @piocbq: Pointer to command iocb. 10570 * @flag: Flag to test. 10571 * 10572 * This routine grabs the hbalock and then test the iocb_flag to 10573 * see if the passed in flag is set. 10574 * Returns: 10575 * 1 if flag is set. 10576 * 0 if flag is not set. 10577 **/ 10578 static int 10579 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 10580 struct lpfc_iocbq *piocbq, uint32_t flag) 10581 { 10582 unsigned long iflags; 10583 int ret; 10584 10585 spin_lock_irqsave(&phba->hbalock, iflags); 10586 ret = piocbq->iocb_flag & flag; 10587 spin_unlock_irqrestore(&phba->hbalock, iflags); 10588 return ret; 10589 10590 } 10591 10592 /** 10593 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 10594 * @phba: Pointer to HBA context object.. 10595 * @pring: Pointer to sli ring. 10596 * @piocb: Pointer to command iocb. 10597 * @prspiocbq: Pointer to response iocb. 10598 * @timeout: Timeout in number of seconds. 10599 * 10600 * This function issues the iocb to firmware and waits for the 10601 * iocb to complete. The iocb_cmpl field of the shall be used 10602 * to handle iocbs which time out. If the field is NULL, the 10603 * function shall free the iocbq structure. If more clean up is 10604 * needed, the caller is expected to provide a completion function 10605 * that will provide the needed clean up. If the iocb command is 10606 * not completed within timeout seconds, the function will either 10607 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 10608 * completion function set in the iocb_cmpl field and then return 10609 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 10610 * resources if this function returns IOCB_TIMEDOUT. 10611 * The function waits for the iocb completion using an 10612 * non-interruptible wait. 10613 * This function will sleep while waiting for iocb completion. 10614 * So, this function should not be called from any context which 10615 * does not allow sleeping. Due to the same reason, this function 10616 * cannot be called with interrupt disabled. 10617 * This function assumes that the iocb completions occur while 10618 * this function sleep. So, this function cannot be called from 10619 * the thread which process iocb completion for this ring. 10620 * This function clears the iocb_flag of the iocb object before 10621 * issuing the iocb and the iocb completion handler sets this 10622 * flag and wakes this thread when the iocb completes. 10623 * The contents of the response iocb will be copied to prspiocbq 10624 * by the completion handler when the command completes. 10625 * This function returns IOCB_SUCCESS when success. 10626 * This function is called with no lock held. 10627 **/ 10628 int 10629 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 10630 uint32_t ring_number, 10631 struct lpfc_iocbq *piocb, 10632 struct lpfc_iocbq *prspiocbq, 10633 uint32_t timeout) 10634 { 10635 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10636 long timeleft, timeout_req = 0; 10637 int retval = IOCB_SUCCESS; 10638 uint32_t creg_val; 10639 struct lpfc_iocbq *iocb; 10640 int txq_cnt = 0; 10641 int txcmplq_cnt = 0; 10642 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10643 unsigned long iflags; 10644 bool iocb_completed = true; 10645 10646 /* 10647 * If the caller has provided a response iocbq buffer, then context2 10648 * is NULL or its an error. 10649 */ 10650 if (prspiocbq) { 10651 if (piocb->context2) 10652 return IOCB_ERROR; 10653 piocb->context2 = prspiocbq; 10654 } 10655 10656 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 10657 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10658 piocb->context_un.wait_queue = &done_q; 10659 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 10660 10661 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10662 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10663 return IOCB_ERROR; 10664 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10665 writel(creg_val, phba->HCregaddr); 10666 readl(phba->HCregaddr); /* flush */ 10667 } 10668 10669 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10670 SLI_IOCB_RET_IOCB); 10671 if (retval == IOCB_SUCCESS) { 10672 timeout_req = msecs_to_jiffies(timeout * 1000); 10673 timeleft = wait_event_timeout(done_q, 10674 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10675 timeout_req); 10676 spin_lock_irqsave(&phba->hbalock, iflags); 10677 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 10678 10679 /* 10680 * IOCB timed out. Inform the wake iocb wait 10681 * completion function and set local status 10682 */ 10683 10684 iocb_completed = false; 10685 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 10686 } 10687 spin_unlock_irqrestore(&phba->hbalock, iflags); 10688 if (iocb_completed) { 10689 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10690 "0331 IOCB wake signaled\n"); 10691 /* Note: we are not indicating if the IOCB has a success 10692 * status or not - that's for the caller to check. 10693 * IOCB_SUCCESS means just that the command was sent and 10694 * completed. Not that it completed successfully. 10695 * */ 10696 } else if (timeleft == 0) { 10697 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10698 "0338 IOCB wait timeout error - no " 10699 "wake response Data x%x\n", timeout); 10700 retval = IOCB_TIMEDOUT; 10701 } else { 10702 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10703 "0330 IOCB wake NOT set, " 10704 "Data x%x x%lx\n", 10705 timeout, (timeleft / jiffies)); 10706 retval = IOCB_TIMEDOUT; 10707 } 10708 } else if (retval == IOCB_BUSY) { 10709 if (phba->cfg_log_verbose & LOG_SLI) { 10710 list_for_each_entry(iocb, &pring->txq, list) { 10711 txq_cnt++; 10712 } 10713 list_for_each_entry(iocb, &pring->txcmplq, list) { 10714 txcmplq_cnt++; 10715 } 10716 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10717 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10718 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10719 } 10720 return retval; 10721 } else { 10722 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10723 "0332 IOCB wait issue failed, Data x%x\n", 10724 retval); 10725 retval = IOCB_ERROR; 10726 } 10727 10728 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10729 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10730 return IOCB_ERROR; 10731 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10732 writel(creg_val, phba->HCregaddr); 10733 readl(phba->HCregaddr); /* flush */ 10734 } 10735 10736 if (prspiocbq) 10737 piocb->context2 = NULL; 10738 10739 piocb->context_un.wait_queue = NULL; 10740 piocb->iocb_cmpl = NULL; 10741 return retval; 10742 } 10743 10744 /** 10745 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10746 * @phba: Pointer to HBA context object. 10747 * @pmboxq: Pointer to driver mailbox object. 10748 * @timeout: Timeout in number of seconds. 10749 * 10750 * This function issues the mailbox to firmware and waits for the 10751 * mailbox command to complete. If the mailbox command is not 10752 * completed within timeout seconds, it returns MBX_TIMEOUT. 10753 * The function waits for the mailbox completion using an 10754 * interruptible wait. If the thread is woken up due to a 10755 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10756 * should not free the mailbox resources, if this function returns 10757 * MBX_TIMEOUT. 10758 * This function will sleep while waiting for mailbox completion. 10759 * So, this function should not be called from any context which 10760 * does not allow sleeping. Due to the same reason, this function 10761 * cannot be called with interrupt disabled. 10762 * This function assumes that the mailbox completion occurs while 10763 * this function sleep. So, this function cannot be called from 10764 * the worker thread which processes mailbox completion. 10765 * This function is called in the context of HBA management 10766 * applications. 10767 * This function returns MBX_SUCCESS when successful. 10768 * This function is called with no lock held. 10769 **/ 10770 int 10771 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10772 uint32_t timeout) 10773 { 10774 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10775 MAILBOX_t *mb = NULL; 10776 int retval; 10777 unsigned long flag; 10778 10779 /* The caller might set context1 for extended buffer */ 10780 if (pmboxq->context1) 10781 mb = (MAILBOX_t *)pmboxq->context1; 10782 10783 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10784 /* setup wake call as IOCB callback */ 10785 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10786 /* setup context field to pass wait_queue pointer to wake function */ 10787 pmboxq->context1 = &done_q; 10788 10789 /* now issue the command */ 10790 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10791 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10792 wait_event_interruptible_timeout(done_q, 10793 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10794 msecs_to_jiffies(timeout * 1000)); 10795 10796 spin_lock_irqsave(&phba->hbalock, flag); 10797 /* restore the possible extended buffer for free resource */ 10798 pmboxq->context1 = (uint8_t *)mb; 10799 /* 10800 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10801 * else do not free the resources. 10802 */ 10803 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10804 retval = MBX_SUCCESS; 10805 } else { 10806 retval = MBX_TIMEOUT; 10807 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10808 } 10809 spin_unlock_irqrestore(&phba->hbalock, flag); 10810 } else { 10811 /* restore the possible extended buffer for free resource */ 10812 pmboxq->context1 = (uint8_t *)mb; 10813 } 10814 10815 return retval; 10816 } 10817 10818 /** 10819 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10820 * @phba: Pointer to HBA context. 10821 * 10822 * This function is called to shutdown the driver's mailbox sub-system. 10823 * It first marks the mailbox sub-system is in a block state to prevent 10824 * the asynchronous mailbox command from issued off the pending mailbox 10825 * command queue. If the mailbox command sub-system shutdown is due to 10826 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10827 * the mailbox sub-system flush routine to forcefully bring down the 10828 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10829 * as with offline or HBA function reset), this routine will wait for the 10830 * outstanding mailbox command to complete before invoking the mailbox 10831 * sub-system flush routine to gracefully bring down mailbox sub-system. 10832 **/ 10833 void 10834 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10835 { 10836 struct lpfc_sli *psli = &phba->sli; 10837 unsigned long timeout; 10838 10839 if (mbx_action == LPFC_MBX_NO_WAIT) { 10840 /* delay 100ms for port state */ 10841 msleep(100); 10842 lpfc_sli_mbox_sys_flush(phba); 10843 return; 10844 } 10845 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10846 10847 spin_lock_irq(&phba->hbalock); 10848 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10849 10850 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10851 /* Determine how long we might wait for the active mailbox 10852 * command to be gracefully completed by firmware. 10853 */ 10854 if (phba->sli.mbox_active) 10855 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10856 phba->sli.mbox_active) * 10857 1000) + jiffies; 10858 spin_unlock_irq(&phba->hbalock); 10859 10860 while (phba->sli.mbox_active) { 10861 /* Check active mailbox complete status every 2ms */ 10862 msleep(2); 10863 if (time_after(jiffies, timeout)) 10864 /* Timeout, let the mailbox flush routine to 10865 * forcefully release active mailbox command 10866 */ 10867 break; 10868 } 10869 } else 10870 spin_unlock_irq(&phba->hbalock); 10871 10872 lpfc_sli_mbox_sys_flush(phba); 10873 } 10874 10875 /** 10876 * lpfc_sli_eratt_read - read sli-3 error attention events 10877 * @phba: Pointer to HBA context. 10878 * 10879 * This function is called to read the SLI3 device error attention registers 10880 * for possible error attention events. The caller must hold the hostlock 10881 * with spin_lock_irq(). 10882 * 10883 * This function returns 1 when there is Error Attention in the Host Attention 10884 * Register and returns 0 otherwise. 10885 **/ 10886 static int 10887 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10888 { 10889 uint32_t ha_copy; 10890 10891 /* Read chip Host Attention (HA) register */ 10892 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10893 goto unplug_err; 10894 10895 if (ha_copy & HA_ERATT) { 10896 /* Read host status register to retrieve error event */ 10897 if (lpfc_sli_read_hs(phba)) 10898 goto unplug_err; 10899 10900 /* Check if there is a deferred error condition is active */ 10901 if ((HS_FFER1 & phba->work_hs) && 10902 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10903 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10904 phba->hba_flag |= DEFER_ERATT; 10905 /* Clear all interrupt enable conditions */ 10906 writel(0, phba->HCregaddr); 10907 readl(phba->HCregaddr); 10908 } 10909 10910 /* Set the driver HA work bitmap */ 10911 phba->work_ha |= HA_ERATT; 10912 /* Indicate polling handles this ERATT */ 10913 phba->hba_flag |= HBA_ERATT_HANDLED; 10914 return 1; 10915 } 10916 return 0; 10917 10918 unplug_err: 10919 /* Set the driver HS work bitmap */ 10920 phba->work_hs |= UNPLUG_ERR; 10921 /* Set the driver HA work bitmap */ 10922 phba->work_ha |= HA_ERATT; 10923 /* Indicate polling handles this ERATT */ 10924 phba->hba_flag |= HBA_ERATT_HANDLED; 10925 return 1; 10926 } 10927 10928 /** 10929 * lpfc_sli4_eratt_read - read sli-4 error attention events 10930 * @phba: Pointer to HBA context. 10931 * 10932 * This function is called to read the SLI4 device error attention registers 10933 * for possible error attention events. The caller must hold the hostlock 10934 * with spin_lock_irq(). 10935 * 10936 * This function returns 1 when there is Error Attention in the Host Attention 10937 * Register and returns 0 otherwise. 10938 **/ 10939 static int 10940 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10941 { 10942 uint32_t uerr_sta_hi, uerr_sta_lo; 10943 uint32_t if_type, portsmphr; 10944 struct lpfc_register portstat_reg; 10945 10946 /* 10947 * For now, use the SLI4 device internal unrecoverable error 10948 * registers for error attention. This can be changed later. 10949 */ 10950 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10951 switch (if_type) { 10952 case LPFC_SLI_INTF_IF_TYPE_0: 10953 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10954 &uerr_sta_lo) || 10955 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10956 &uerr_sta_hi)) { 10957 phba->work_hs |= UNPLUG_ERR; 10958 phba->work_ha |= HA_ERATT; 10959 phba->hba_flag |= HBA_ERATT_HANDLED; 10960 return 1; 10961 } 10962 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10963 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10964 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10965 "1423 HBA Unrecoverable error: " 10966 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10967 "ue_mask_lo_reg=0x%x, " 10968 "ue_mask_hi_reg=0x%x\n", 10969 uerr_sta_lo, uerr_sta_hi, 10970 phba->sli4_hba.ue_mask_lo, 10971 phba->sli4_hba.ue_mask_hi); 10972 phba->work_status[0] = uerr_sta_lo; 10973 phba->work_status[1] = uerr_sta_hi; 10974 phba->work_ha |= HA_ERATT; 10975 phba->hba_flag |= HBA_ERATT_HANDLED; 10976 return 1; 10977 } 10978 break; 10979 case LPFC_SLI_INTF_IF_TYPE_2: 10980 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10981 &portstat_reg.word0) || 10982 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10983 &portsmphr)){ 10984 phba->work_hs |= UNPLUG_ERR; 10985 phba->work_ha |= HA_ERATT; 10986 phba->hba_flag |= HBA_ERATT_HANDLED; 10987 return 1; 10988 } 10989 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10990 phba->work_status[0] = 10991 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10992 phba->work_status[1] = 10993 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10994 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10995 "2885 Port Status Event: " 10996 "port status reg 0x%x, " 10997 "port smphr reg 0x%x, " 10998 "error 1=0x%x, error 2=0x%x\n", 10999 portstat_reg.word0, 11000 portsmphr, 11001 phba->work_status[0], 11002 phba->work_status[1]); 11003 phba->work_ha |= HA_ERATT; 11004 phba->hba_flag |= HBA_ERATT_HANDLED; 11005 return 1; 11006 } 11007 break; 11008 case LPFC_SLI_INTF_IF_TYPE_1: 11009 default: 11010 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11011 "2886 HBA Error Attention on unsupported " 11012 "if type %d.", if_type); 11013 return 1; 11014 } 11015 11016 return 0; 11017 } 11018 11019 /** 11020 * lpfc_sli_check_eratt - check error attention events 11021 * @phba: Pointer to HBA context. 11022 * 11023 * This function is called from timer soft interrupt context to check HBA's 11024 * error attention register bit for error attention events. 11025 * 11026 * This function returns 1 when there is Error Attention in the Host Attention 11027 * Register and returns 0 otherwise. 11028 **/ 11029 int 11030 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11031 { 11032 uint32_t ha_copy; 11033 11034 /* If somebody is waiting to handle an eratt, don't process it 11035 * here. The brdkill function will do this. 11036 */ 11037 if (phba->link_flag & LS_IGNORE_ERATT) 11038 return 0; 11039 11040 /* Check if interrupt handler handles this ERATT */ 11041 spin_lock_irq(&phba->hbalock); 11042 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11043 /* Interrupt handler has handled ERATT */ 11044 spin_unlock_irq(&phba->hbalock); 11045 return 0; 11046 } 11047 11048 /* 11049 * If there is deferred error attention, do not check for error 11050 * attention 11051 */ 11052 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11053 spin_unlock_irq(&phba->hbalock); 11054 return 0; 11055 } 11056 11057 /* If PCI channel is offline, don't process it */ 11058 if (unlikely(pci_channel_offline(phba->pcidev))) { 11059 spin_unlock_irq(&phba->hbalock); 11060 return 0; 11061 } 11062 11063 switch (phba->sli_rev) { 11064 case LPFC_SLI_REV2: 11065 case LPFC_SLI_REV3: 11066 /* Read chip Host Attention (HA) register */ 11067 ha_copy = lpfc_sli_eratt_read(phba); 11068 break; 11069 case LPFC_SLI_REV4: 11070 /* Read device Uncoverable Error (UERR) registers */ 11071 ha_copy = lpfc_sli4_eratt_read(phba); 11072 break; 11073 default: 11074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11075 "0299 Invalid SLI revision (%d)\n", 11076 phba->sli_rev); 11077 ha_copy = 0; 11078 break; 11079 } 11080 spin_unlock_irq(&phba->hbalock); 11081 11082 return ha_copy; 11083 } 11084 11085 /** 11086 * lpfc_intr_state_check - Check device state for interrupt handling 11087 * @phba: Pointer to HBA context. 11088 * 11089 * This inline routine checks whether a device or its PCI slot is in a state 11090 * that the interrupt should be handled. 11091 * 11092 * This function returns 0 if the device or the PCI slot is in a state that 11093 * interrupt should be handled, otherwise -EIO. 11094 */ 11095 static inline int 11096 lpfc_intr_state_check(struct lpfc_hba *phba) 11097 { 11098 /* If the pci channel is offline, ignore all the interrupts */ 11099 if (unlikely(pci_channel_offline(phba->pcidev))) 11100 return -EIO; 11101 11102 /* Update device level interrupt statistics */ 11103 phba->sli.slistat.sli_intr++; 11104 11105 /* Ignore all interrupts during initialization. */ 11106 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11107 return -EIO; 11108 11109 return 0; 11110 } 11111 11112 /** 11113 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11114 * @irq: Interrupt number. 11115 * @dev_id: The device context pointer. 11116 * 11117 * This function is directly called from the PCI layer as an interrupt 11118 * service routine when device with SLI-3 interface spec is enabled with 11119 * MSI-X multi-message interrupt mode and there are slow-path events in 11120 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11121 * interrupt mode, this function is called as part of the device-level 11122 * interrupt handler. When the PCI slot is in error recovery or the HBA 11123 * is undergoing initialization, the interrupt handler will not process 11124 * the interrupt. The link attention and ELS ring attention events are 11125 * handled by the worker thread. The interrupt handler signals the worker 11126 * thread and returns for these events. This function is called without 11127 * any lock held. It gets the hbalock to access and update SLI data 11128 * structures. 11129 * 11130 * This function returns IRQ_HANDLED when interrupt is handled else it 11131 * returns IRQ_NONE. 11132 **/ 11133 irqreturn_t 11134 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11135 { 11136 struct lpfc_hba *phba; 11137 uint32_t ha_copy, hc_copy; 11138 uint32_t work_ha_copy; 11139 unsigned long status; 11140 unsigned long iflag; 11141 uint32_t control; 11142 11143 MAILBOX_t *mbox, *pmbox; 11144 struct lpfc_vport *vport; 11145 struct lpfc_nodelist *ndlp; 11146 struct lpfc_dmabuf *mp; 11147 LPFC_MBOXQ_t *pmb; 11148 int rc; 11149 11150 /* 11151 * Get the driver's phba structure from the dev_id and 11152 * assume the HBA is not interrupting. 11153 */ 11154 phba = (struct lpfc_hba *)dev_id; 11155 11156 if (unlikely(!phba)) 11157 return IRQ_NONE; 11158 11159 /* 11160 * Stuff needs to be attented to when this function is invoked as an 11161 * individual interrupt handler in MSI-X multi-message interrupt mode 11162 */ 11163 if (phba->intr_type == MSIX) { 11164 /* Check device state for handling interrupt */ 11165 if (lpfc_intr_state_check(phba)) 11166 return IRQ_NONE; 11167 /* Need to read HA REG for slow-path events */ 11168 spin_lock_irqsave(&phba->hbalock, iflag); 11169 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11170 goto unplug_error; 11171 /* If somebody is waiting to handle an eratt don't process it 11172 * here. The brdkill function will do this. 11173 */ 11174 if (phba->link_flag & LS_IGNORE_ERATT) 11175 ha_copy &= ~HA_ERATT; 11176 /* Check the need for handling ERATT in interrupt handler */ 11177 if (ha_copy & HA_ERATT) { 11178 if (phba->hba_flag & HBA_ERATT_HANDLED) 11179 /* ERATT polling has handled ERATT */ 11180 ha_copy &= ~HA_ERATT; 11181 else 11182 /* Indicate interrupt handler handles ERATT */ 11183 phba->hba_flag |= HBA_ERATT_HANDLED; 11184 } 11185 11186 /* 11187 * If there is deferred error attention, do not check for any 11188 * interrupt. 11189 */ 11190 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11191 spin_unlock_irqrestore(&phba->hbalock, iflag); 11192 return IRQ_NONE; 11193 } 11194 11195 /* Clear up only attention source related to slow-path */ 11196 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11197 goto unplug_error; 11198 11199 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11200 HC_LAINT_ENA | HC_ERINT_ENA), 11201 phba->HCregaddr); 11202 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11203 phba->HAregaddr); 11204 writel(hc_copy, phba->HCregaddr); 11205 readl(phba->HAregaddr); /* flush */ 11206 spin_unlock_irqrestore(&phba->hbalock, iflag); 11207 } else 11208 ha_copy = phba->ha_copy; 11209 11210 work_ha_copy = ha_copy & phba->work_ha_mask; 11211 11212 if (work_ha_copy) { 11213 if (work_ha_copy & HA_LATT) { 11214 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11215 /* 11216 * Turn off Link Attention interrupts 11217 * until CLEAR_LA done 11218 */ 11219 spin_lock_irqsave(&phba->hbalock, iflag); 11220 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11221 if (lpfc_readl(phba->HCregaddr, &control)) 11222 goto unplug_error; 11223 control &= ~HC_LAINT_ENA; 11224 writel(control, phba->HCregaddr); 11225 readl(phba->HCregaddr); /* flush */ 11226 spin_unlock_irqrestore(&phba->hbalock, iflag); 11227 } 11228 else 11229 work_ha_copy &= ~HA_LATT; 11230 } 11231 11232 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11233 /* 11234 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11235 * the only slow ring. 11236 */ 11237 status = (work_ha_copy & 11238 (HA_RXMASK << (4*LPFC_ELS_RING))); 11239 status >>= (4*LPFC_ELS_RING); 11240 if (status & HA_RXMASK) { 11241 spin_lock_irqsave(&phba->hbalock, iflag); 11242 if (lpfc_readl(phba->HCregaddr, &control)) 11243 goto unplug_error; 11244 11245 lpfc_debugfs_slow_ring_trc(phba, 11246 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11247 control, status, 11248 (uint32_t)phba->sli.slistat.sli_intr); 11249 11250 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11251 lpfc_debugfs_slow_ring_trc(phba, 11252 "ISR Disable ring:" 11253 "pwork:x%x hawork:x%x wait:x%x", 11254 phba->work_ha, work_ha_copy, 11255 (uint32_t)((unsigned long) 11256 &phba->work_waitq)); 11257 11258 control &= 11259 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11260 writel(control, phba->HCregaddr); 11261 readl(phba->HCregaddr); /* flush */ 11262 } 11263 else { 11264 lpfc_debugfs_slow_ring_trc(phba, 11265 "ISR slow ring: pwork:" 11266 "x%x hawork:x%x wait:x%x", 11267 phba->work_ha, work_ha_copy, 11268 (uint32_t)((unsigned long) 11269 &phba->work_waitq)); 11270 } 11271 spin_unlock_irqrestore(&phba->hbalock, iflag); 11272 } 11273 } 11274 spin_lock_irqsave(&phba->hbalock, iflag); 11275 if (work_ha_copy & HA_ERATT) { 11276 if (lpfc_sli_read_hs(phba)) 11277 goto unplug_error; 11278 /* 11279 * Check if there is a deferred error condition 11280 * is active 11281 */ 11282 if ((HS_FFER1 & phba->work_hs) && 11283 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11284 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11285 phba->work_hs)) { 11286 phba->hba_flag |= DEFER_ERATT; 11287 /* Clear all interrupt enable conditions */ 11288 writel(0, phba->HCregaddr); 11289 readl(phba->HCregaddr); 11290 } 11291 } 11292 11293 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11294 pmb = phba->sli.mbox_active; 11295 pmbox = &pmb->u.mb; 11296 mbox = phba->mbox; 11297 vport = pmb->vport; 11298 11299 /* First check out the status word */ 11300 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11301 if (pmbox->mbxOwner != OWN_HOST) { 11302 spin_unlock_irqrestore(&phba->hbalock, iflag); 11303 /* 11304 * Stray Mailbox Interrupt, mbxCommand <cmd> 11305 * mbxStatus <status> 11306 */ 11307 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11308 LOG_SLI, 11309 "(%d):0304 Stray Mailbox " 11310 "Interrupt mbxCommand x%x " 11311 "mbxStatus x%x\n", 11312 (vport ? vport->vpi : 0), 11313 pmbox->mbxCommand, 11314 pmbox->mbxStatus); 11315 /* clear mailbox attention bit */ 11316 work_ha_copy &= ~HA_MBATT; 11317 } else { 11318 phba->sli.mbox_active = NULL; 11319 spin_unlock_irqrestore(&phba->hbalock, iflag); 11320 phba->last_completion_time = jiffies; 11321 del_timer(&phba->sli.mbox_tmo); 11322 if (pmb->mbox_cmpl) { 11323 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11324 MAILBOX_CMD_SIZE); 11325 if (pmb->out_ext_byte_len && 11326 pmb->context2) 11327 lpfc_sli_pcimem_bcopy( 11328 phba->mbox_ext, 11329 pmb->context2, 11330 pmb->out_ext_byte_len); 11331 } 11332 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11333 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11334 11335 lpfc_debugfs_disc_trc(vport, 11336 LPFC_DISC_TRC_MBOX_VPORT, 11337 "MBOX dflt rpi: : " 11338 "status:x%x rpi:x%x", 11339 (uint32_t)pmbox->mbxStatus, 11340 pmbox->un.varWords[0], 0); 11341 11342 if (!pmbox->mbxStatus) { 11343 mp = (struct lpfc_dmabuf *) 11344 (pmb->context1); 11345 ndlp = (struct lpfc_nodelist *) 11346 pmb->context2; 11347 11348 /* Reg_LOGIN of dflt RPI was 11349 * successful. new lets get 11350 * rid of the RPI using the 11351 * same mbox buffer. 11352 */ 11353 lpfc_unreg_login(phba, 11354 vport->vpi, 11355 pmbox->un.varWords[0], 11356 pmb); 11357 pmb->mbox_cmpl = 11358 lpfc_mbx_cmpl_dflt_rpi; 11359 pmb->context1 = mp; 11360 pmb->context2 = ndlp; 11361 pmb->vport = vport; 11362 rc = lpfc_sli_issue_mbox(phba, 11363 pmb, 11364 MBX_NOWAIT); 11365 if (rc != MBX_BUSY) 11366 lpfc_printf_log(phba, 11367 KERN_ERR, 11368 LOG_MBOX | LOG_SLI, 11369 "0350 rc should have" 11370 "been MBX_BUSY\n"); 11371 if (rc != MBX_NOT_FINISHED) 11372 goto send_current_mbox; 11373 } 11374 } 11375 spin_lock_irqsave( 11376 &phba->pport->work_port_lock, 11377 iflag); 11378 phba->pport->work_port_events &= 11379 ~WORKER_MBOX_TMO; 11380 spin_unlock_irqrestore( 11381 &phba->pport->work_port_lock, 11382 iflag); 11383 lpfc_mbox_cmpl_put(phba, pmb); 11384 } 11385 } else 11386 spin_unlock_irqrestore(&phba->hbalock, iflag); 11387 11388 if ((work_ha_copy & HA_MBATT) && 11389 (phba->sli.mbox_active == NULL)) { 11390 send_current_mbox: 11391 /* Process next mailbox command if there is one */ 11392 do { 11393 rc = lpfc_sli_issue_mbox(phba, NULL, 11394 MBX_NOWAIT); 11395 } while (rc == MBX_NOT_FINISHED); 11396 if (rc != MBX_SUCCESS) 11397 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11398 LOG_SLI, "0349 rc should be " 11399 "MBX_SUCCESS\n"); 11400 } 11401 11402 spin_lock_irqsave(&phba->hbalock, iflag); 11403 phba->work_ha |= work_ha_copy; 11404 spin_unlock_irqrestore(&phba->hbalock, iflag); 11405 lpfc_worker_wake_up(phba); 11406 } 11407 return IRQ_HANDLED; 11408 unplug_error: 11409 spin_unlock_irqrestore(&phba->hbalock, iflag); 11410 return IRQ_HANDLED; 11411 11412 } /* lpfc_sli_sp_intr_handler */ 11413 11414 /** 11415 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11416 * @irq: Interrupt number. 11417 * @dev_id: The device context pointer. 11418 * 11419 * This function is directly called from the PCI layer as an interrupt 11420 * service routine when device with SLI-3 interface spec is enabled with 11421 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11422 * ring event in the HBA. However, when the device is enabled with either 11423 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11424 * device-level interrupt handler. When the PCI slot is in error recovery 11425 * or the HBA is undergoing initialization, the interrupt handler will not 11426 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11427 * the intrrupt context. This function is called without any lock held. 11428 * It gets the hbalock to access and update SLI data structures. 11429 * 11430 * This function returns IRQ_HANDLED when interrupt is handled else it 11431 * returns IRQ_NONE. 11432 **/ 11433 irqreturn_t 11434 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11435 { 11436 struct lpfc_hba *phba; 11437 uint32_t ha_copy; 11438 unsigned long status; 11439 unsigned long iflag; 11440 11441 /* Get the driver's phba structure from the dev_id and 11442 * assume the HBA is not interrupting. 11443 */ 11444 phba = (struct lpfc_hba *) dev_id; 11445 11446 if (unlikely(!phba)) 11447 return IRQ_NONE; 11448 11449 /* 11450 * Stuff needs to be attented to when this function is invoked as an 11451 * individual interrupt handler in MSI-X multi-message interrupt mode 11452 */ 11453 if (phba->intr_type == MSIX) { 11454 /* Check device state for handling interrupt */ 11455 if (lpfc_intr_state_check(phba)) 11456 return IRQ_NONE; 11457 /* Need to read HA REG for FCP ring and other ring events */ 11458 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11459 return IRQ_HANDLED; 11460 /* Clear up only attention source related to fast-path */ 11461 spin_lock_irqsave(&phba->hbalock, iflag); 11462 /* 11463 * If there is deferred error attention, do not check for 11464 * any interrupt. 11465 */ 11466 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11467 spin_unlock_irqrestore(&phba->hbalock, iflag); 11468 return IRQ_NONE; 11469 } 11470 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 11471 phba->HAregaddr); 11472 readl(phba->HAregaddr); /* flush */ 11473 spin_unlock_irqrestore(&phba->hbalock, iflag); 11474 } else 11475 ha_copy = phba->ha_copy; 11476 11477 /* 11478 * Process all events on FCP ring. Take the optimized path for FCP IO. 11479 */ 11480 ha_copy &= ~(phba->work_ha_mask); 11481 11482 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11483 status >>= (4*LPFC_FCP_RING); 11484 if (status & HA_RXMASK) 11485 lpfc_sli_handle_fast_ring_event(phba, 11486 &phba->sli.ring[LPFC_FCP_RING], 11487 status); 11488 11489 if (phba->cfg_multi_ring_support == 2) { 11490 /* 11491 * Process all events on extra ring. Take the optimized path 11492 * for extra ring IO. 11493 */ 11494 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11495 status >>= (4*LPFC_EXTRA_RING); 11496 if (status & HA_RXMASK) { 11497 lpfc_sli_handle_fast_ring_event(phba, 11498 &phba->sli.ring[LPFC_EXTRA_RING], 11499 status); 11500 } 11501 } 11502 return IRQ_HANDLED; 11503 } /* lpfc_sli_fp_intr_handler */ 11504 11505 /** 11506 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 11507 * @irq: Interrupt number. 11508 * @dev_id: The device context pointer. 11509 * 11510 * This function is the HBA device-level interrupt handler to device with 11511 * SLI-3 interface spec, called from the PCI layer when either MSI or 11512 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 11513 * requires driver attention. This function invokes the slow-path interrupt 11514 * attention handling function and fast-path interrupt attention handling 11515 * function in turn to process the relevant HBA attention events. This 11516 * function is called without any lock held. It gets the hbalock to access 11517 * and update SLI data structures. 11518 * 11519 * This function returns IRQ_HANDLED when interrupt is handled, else it 11520 * returns IRQ_NONE. 11521 **/ 11522 irqreturn_t 11523 lpfc_sli_intr_handler(int irq, void *dev_id) 11524 { 11525 struct lpfc_hba *phba; 11526 irqreturn_t sp_irq_rc, fp_irq_rc; 11527 unsigned long status1, status2; 11528 uint32_t hc_copy; 11529 11530 /* 11531 * Get the driver's phba structure from the dev_id and 11532 * assume the HBA is not interrupting. 11533 */ 11534 phba = (struct lpfc_hba *) dev_id; 11535 11536 if (unlikely(!phba)) 11537 return IRQ_NONE; 11538 11539 /* Check device state for handling interrupt */ 11540 if (lpfc_intr_state_check(phba)) 11541 return IRQ_NONE; 11542 11543 spin_lock(&phba->hbalock); 11544 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 11545 spin_unlock(&phba->hbalock); 11546 return IRQ_HANDLED; 11547 } 11548 11549 if (unlikely(!phba->ha_copy)) { 11550 spin_unlock(&phba->hbalock); 11551 return IRQ_NONE; 11552 } else if (phba->ha_copy & HA_ERATT) { 11553 if (phba->hba_flag & HBA_ERATT_HANDLED) 11554 /* ERATT polling has handled ERATT */ 11555 phba->ha_copy &= ~HA_ERATT; 11556 else 11557 /* Indicate interrupt handler handles ERATT */ 11558 phba->hba_flag |= HBA_ERATT_HANDLED; 11559 } 11560 11561 /* 11562 * If there is deferred error attention, do not check for any interrupt. 11563 */ 11564 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11565 spin_unlock(&phba->hbalock); 11566 return IRQ_NONE; 11567 } 11568 11569 /* Clear attention sources except link and error attentions */ 11570 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 11571 spin_unlock(&phba->hbalock); 11572 return IRQ_HANDLED; 11573 } 11574 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 11575 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 11576 phba->HCregaddr); 11577 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 11578 writel(hc_copy, phba->HCregaddr); 11579 readl(phba->HAregaddr); /* flush */ 11580 spin_unlock(&phba->hbalock); 11581 11582 /* 11583 * Invokes slow-path host attention interrupt handling as appropriate. 11584 */ 11585 11586 /* status of events with mailbox and link attention */ 11587 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 11588 11589 /* status of events with ELS ring */ 11590 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 11591 status2 >>= (4*LPFC_ELS_RING); 11592 11593 if (status1 || (status2 & HA_RXMASK)) 11594 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 11595 else 11596 sp_irq_rc = IRQ_NONE; 11597 11598 /* 11599 * Invoke fast-path host attention interrupt handling as appropriate. 11600 */ 11601 11602 /* status of events with FCP ring */ 11603 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11604 status1 >>= (4*LPFC_FCP_RING); 11605 11606 /* status of events with extra ring */ 11607 if (phba->cfg_multi_ring_support == 2) { 11608 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11609 status2 >>= (4*LPFC_EXTRA_RING); 11610 } else 11611 status2 = 0; 11612 11613 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 11614 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 11615 else 11616 fp_irq_rc = IRQ_NONE; 11617 11618 /* Return device-level interrupt handling status */ 11619 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 11620 } /* lpfc_sli_intr_handler */ 11621 11622 /** 11623 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 11624 * @phba: pointer to lpfc hba data structure. 11625 * 11626 * This routine is invoked by the worker thread to process all the pending 11627 * SLI4 FCP abort XRI events. 11628 **/ 11629 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 11630 { 11631 struct lpfc_cq_event *cq_event; 11632 11633 /* First, declare the fcp xri abort event has been handled */ 11634 spin_lock_irq(&phba->hbalock); 11635 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 11636 spin_unlock_irq(&phba->hbalock); 11637 /* Now, handle all the fcp xri abort events */ 11638 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 11639 /* Get the first event from the head of the event queue */ 11640 spin_lock_irq(&phba->hbalock); 11641 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 11642 cq_event, struct lpfc_cq_event, list); 11643 spin_unlock_irq(&phba->hbalock); 11644 /* Notify aborted XRI for FCP work queue */ 11645 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11646 /* Free the event processed back to the free pool */ 11647 lpfc_sli4_cq_event_release(phba, cq_event); 11648 } 11649 } 11650 11651 /** 11652 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 11653 * @phba: pointer to lpfc hba data structure. 11654 * 11655 * This routine is invoked by the worker thread to process all the pending 11656 * SLI4 els abort xri events. 11657 **/ 11658 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 11659 { 11660 struct lpfc_cq_event *cq_event; 11661 11662 /* First, declare the els xri abort event has been handled */ 11663 spin_lock_irq(&phba->hbalock); 11664 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 11665 spin_unlock_irq(&phba->hbalock); 11666 /* Now, handle all the els xri abort events */ 11667 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11668 /* Get the first event from the head of the event queue */ 11669 spin_lock_irq(&phba->hbalock); 11670 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11671 cq_event, struct lpfc_cq_event, list); 11672 spin_unlock_irq(&phba->hbalock); 11673 /* Notify aborted XRI for ELS work queue */ 11674 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11675 /* Free the event processed back to the free pool */ 11676 lpfc_sli4_cq_event_release(phba, cq_event); 11677 } 11678 } 11679 11680 /** 11681 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11682 * @phba: pointer to lpfc hba data structure 11683 * @pIocbIn: pointer to the rspiocbq 11684 * @pIocbOut: pointer to the cmdiocbq 11685 * @wcqe: pointer to the complete wcqe 11686 * 11687 * This routine transfers the fields of a command iocbq to a response iocbq 11688 * by copying all the IOCB fields from command iocbq and transferring the 11689 * completion status information from the complete wcqe. 11690 **/ 11691 static void 11692 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11693 struct lpfc_iocbq *pIocbIn, 11694 struct lpfc_iocbq *pIocbOut, 11695 struct lpfc_wcqe_complete *wcqe) 11696 { 11697 int numBdes, i; 11698 unsigned long iflags; 11699 uint32_t status, max_response; 11700 struct lpfc_dmabuf *dmabuf; 11701 struct ulp_bde64 *bpl, bde; 11702 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11703 11704 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11705 sizeof(struct lpfc_iocbq) - offset); 11706 /* Map WCQE parameters into irspiocb parameters */ 11707 status = bf_get(lpfc_wcqe_c_status, wcqe); 11708 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11709 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11710 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11711 pIocbIn->iocb.un.fcpi.fcpi_parm = 11712 pIocbOut->iocb.un.fcpi.fcpi_parm - 11713 wcqe->total_data_placed; 11714 else 11715 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11716 else { 11717 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11718 switch (pIocbOut->iocb.ulpCommand) { 11719 case CMD_ELS_REQUEST64_CR: 11720 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11721 bpl = (struct ulp_bde64 *)dmabuf->virt; 11722 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 11723 max_response = bde.tus.f.bdeSize; 11724 break; 11725 case CMD_GEN_REQUEST64_CR: 11726 max_response = 0; 11727 if (!pIocbOut->context3) 11728 break; 11729 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 11730 sizeof(struct ulp_bde64); 11731 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11732 bpl = (struct ulp_bde64 *)dmabuf->virt; 11733 for (i = 0; i < numBdes; i++) { 11734 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 11735 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 11736 max_response += bde.tus.f.bdeSize; 11737 } 11738 break; 11739 default: 11740 max_response = wcqe->total_data_placed; 11741 break; 11742 } 11743 if (max_response < wcqe->total_data_placed) 11744 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 11745 else 11746 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 11747 wcqe->total_data_placed; 11748 } 11749 11750 /* Convert BG errors for completion status */ 11751 if (status == CQE_STATUS_DI_ERROR) { 11752 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11753 11754 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11755 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11756 else 11757 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11758 11759 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11760 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11761 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11762 BGS_GUARD_ERR_MASK; 11763 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11764 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11765 BGS_APPTAG_ERR_MASK; 11766 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11767 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11768 BGS_REFTAG_ERR_MASK; 11769 11770 /* Check to see if there was any good data before the error */ 11771 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11772 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11773 BGS_HI_WATER_MARK_PRESENT_MASK; 11774 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11775 wcqe->total_data_placed; 11776 } 11777 11778 /* 11779 * Set ALL the error bits to indicate we don't know what 11780 * type of error it is. 11781 */ 11782 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11783 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11784 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11785 BGS_GUARD_ERR_MASK); 11786 } 11787 11788 /* Pick up HBA exchange busy condition */ 11789 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11790 spin_lock_irqsave(&phba->hbalock, iflags); 11791 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11792 spin_unlock_irqrestore(&phba->hbalock, iflags); 11793 } 11794 } 11795 11796 /** 11797 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11798 * @phba: Pointer to HBA context object. 11799 * @wcqe: Pointer to work-queue completion queue entry. 11800 * 11801 * This routine handles an ELS work-queue completion event and construct 11802 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11803 * discovery engine to handle. 11804 * 11805 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11806 **/ 11807 static struct lpfc_iocbq * 11808 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11809 struct lpfc_iocbq *irspiocbq) 11810 { 11811 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11812 struct lpfc_iocbq *cmdiocbq; 11813 struct lpfc_wcqe_complete *wcqe; 11814 unsigned long iflags; 11815 11816 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11817 spin_lock_irqsave(&pring->ring_lock, iflags); 11818 pring->stats.iocb_event++; 11819 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11820 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11821 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11822 /* Put the iocb back on the txcmplq */ 11823 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 11824 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11825 11826 if (unlikely(!cmdiocbq)) { 11827 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11828 "0386 ELS complete with no corresponding " 11829 "cmdiocb: iotag (%d)\n", 11830 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11831 lpfc_sli_release_iocbq(phba, irspiocbq); 11832 return NULL; 11833 } 11834 11835 /* Fake the irspiocbq and copy necessary response information */ 11836 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11837 11838 return irspiocbq; 11839 } 11840 11841 /** 11842 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11843 * @phba: Pointer to HBA context object. 11844 * @cqe: Pointer to mailbox completion queue entry. 11845 * 11846 * This routine process a mailbox completion queue entry with asynchrous 11847 * event. 11848 * 11849 * Return: true if work posted to worker thread, otherwise false. 11850 **/ 11851 static bool 11852 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11853 { 11854 struct lpfc_cq_event *cq_event; 11855 unsigned long iflags; 11856 11857 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11858 "0392 Async Event: word0:x%x, word1:x%x, " 11859 "word2:x%x, word3:x%x\n", mcqe->word0, 11860 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11861 11862 /* Allocate a new internal CQ_EVENT entry */ 11863 cq_event = lpfc_sli4_cq_event_alloc(phba); 11864 if (!cq_event) { 11865 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11866 "0394 Failed to allocate CQ_EVENT entry\n"); 11867 return false; 11868 } 11869 11870 /* Move the CQE into an asynchronous event entry */ 11871 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11872 spin_lock_irqsave(&phba->hbalock, iflags); 11873 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11874 /* Set the async event flag */ 11875 phba->hba_flag |= ASYNC_EVENT; 11876 spin_unlock_irqrestore(&phba->hbalock, iflags); 11877 11878 return true; 11879 } 11880 11881 /** 11882 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11883 * @phba: Pointer to HBA context object. 11884 * @cqe: Pointer to mailbox completion queue entry. 11885 * 11886 * This routine process a mailbox completion queue entry with mailbox 11887 * completion event. 11888 * 11889 * Return: true if work posted to worker thread, otherwise false. 11890 **/ 11891 static bool 11892 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11893 { 11894 uint32_t mcqe_status; 11895 MAILBOX_t *mbox, *pmbox; 11896 struct lpfc_mqe *mqe; 11897 struct lpfc_vport *vport; 11898 struct lpfc_nodelist *ndlp; 11899 struct lpfc_dmabuf *mp; 11900 unsigned long iflags; 11901 LPFC_MBOXQ_t *pmb; 11902 bool workposted = false; 11903 int rc; 11904 11905 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11906 if (!bf_get(lpfc_trailer_completed, mcqe)) 11907 goto out_no_mqe_complete; 11908 11909 /* Get the reference to the active mbox command */ 11910 spin_lock_irqsave(&phba->hbalock, iflags); 11911 pmb = phba->sli.mbox_active; 11912 if (unlikely(!pmb)) { 11913 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11914 "1832 No pending MBOX command to handle\n"); 11915 spin_unlock_irqrestore(&phba->hbalock, iflags); 11916 goto out_no_mqe_complete; 11917 } 11918 spin_unlock_irqrestore(&phba->hbalock, iflags); 11919 mqe = &pmb->u.mqe; 11920 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11921 mbox = phba->mbox; 11922 vport = pmb->vport; 11923 11924 /* Reset heartbeat timer */ 11925 phba->last_completion_time = jiffies; 11926 del_timer(&phba->sli.mbox_tmo); 11927 11928 /* Move mbox data to caller's mailbox region, do endian swapping */ 11929 if (pmb->mbox_cmpl && mbox) 11930 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11931 11932 /* 11933 * For mcqe errors, conditionally move a modified error code to 11934 * the mbox so that the error will not be missed. 11935 */ 11936 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11937 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11938 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11939 bf_set(lpfc_mqe_status, mqe, 11940 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11941 } 11942 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11943 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11944 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11945 "MBOX dflt rpi: status:x%x rpi:x%x", 11946 mcqe_status, 11947 pmbox->un.varWords[0], 0); 11948 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11949 mp = (struct lpfc_dmabuf *)(pmb->context1); 11950 ndlp = (struct lpfc_nodelist *)pmb->context2; 11951 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11952 * RID of the PPI using the same mbox buffer. 11953 */ 11954 lpfc_unreg_login(phba, vport->vpi, 11955 pmbox->un.varWords[0], pmb); 11956 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11957 pmb->context1 = mp; 11958 pmb->context2 = ndlp; 11959 pmb->vport = vport; 11960 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11961 if (rc != MBX_BUSY) 11962 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11963 LOG_SLI, "0385 rc should " 11964 "have been MBX_BUSY\n"); 11965 if (rc != MBX_NOT_FINISHED) 11966 goto send_current_mbox; 11967 } 11968 } 11969 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11970 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11971 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11972 11973 /* There is mailbox completion work to do */ 11974 spin_lock_irqsave(&phba->hbalock, iflags); 11975 __lpfc_mbox_cmpl_put(phba, pmb); 11976 phba->work_ha |= HA_MBATT; 11977 spin_unlock_irqrestore(&phba->hbalock, iflags); 11978 workposted = true; 11979 11980 send_current_mbox: 11981 spin_lock_irqsave(&phba->hbalock, iflags); 11982 /* Release the mailbox command posting token */ 11983 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11984 /* Setting active mailbox pointer need to be in sync to flag clear */ 11985 phba->sli.mbox_active = NULL; 11986 spin_unlock_irqrestore(&phba->hbalock, iflags); 11987 /* Wake up worker thread to post the next pending mailbox command */ 11988 lpfc_worker_wake_up(phba); 11989 out_no_mqe_complete: 11990 if (bf_get(lpfc_trailer_consumed, mcqe)) 11991 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11992 return workposted; 11993 } 11994 11995 /** 11996 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 11997 * @phba: Pointer to HBA context object. 11998 * @cqe: Pointer to mailbox completion queue entry. 11999 * 12000 * This routine process a mailbox completion queue entry, it invokes the 12001 * proper mailbox complete handling or asynchrous event handling routine 12002 * according to the MCQE's async bit. 12003 * 12004 * Return: true if work posted to worker thread, otherwise false. 12005 **/ 12006 static bool 12007 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12008 { 12009 struct lpfc_mcqe mcqe; 12010 bool workposted; 12011 12012 /* Copy the mailbox MCQE and convert endian order as needed */ 12013 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12014 12015 /* Invoke the proper event handling routine */ 12016 if (!bf_get(lpfc_trailer_async, &mcqe)) 12017 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12018 else 12019 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12020 return workposted; 12021 } 12022 12023 /** 12024 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12025 * @phba: Pointer to HBA context object. 12026 * @cq: Pointer to associated CQ 12027 * @wcqe: Pointer to work-queue completion queue entry. 12028 * 12029 * This routine handles an ELS work-queue completion event. 12030 * 12031 * Return: true if work posted to worker thread, otherwise false. 12032 **/ 12033 static bool 12034 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12035 struct lpfc_wcqe_complete *wcqe) 12036 { 12037 struct lpfc_iocbq *irspiocbq; 12038 unsigned long iflags; 12039 struct lpfc_sli_ring *pring = cq->pring; 12040 int txq_cnt = 0; 12041 int txcmplq_cnt = 0; 12042 int fcp_txcmplq_cnt = 0; 12043 12044 /* Get an irspiocbq for later ELS response processing use */ 12045 irspiocbq = lpfc_sli_get_iocbq(phba); 12046 if (!irspiocbq) { 12047 if (!list_empty(&pring->txq)) 12048 txq_cnt++; 12049 if (!list_empty(&pring->txcmplq)) 12050 txcmplq_cnt++; 12051 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 12052 fcp_txcmplq_cnt++; 12053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12054 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12055 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12056 txq_cnt, phba->iocb_cnt, 12057 fcp_txcmplq_cnt, 12058 txcmplq_cnt); 12059 return false; 12060 } 12061 12062 /* Save off the slow-path queue event for work thread to process */ 12063 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12064 spin_lock_irqsave(&phba->hbalock, iflags); 12065 list_add_tail(&irspiocbq->cq_event.list, 12066 &phba->sli4_hba.sp_queue_event); 12067 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12068 spin_unlock_irqrestore(&phba->hbalock, iflags); 12069 12070 return true; 12071 } 12072 12073 /** 12074 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12075 * @phba: Pointer to HBA context object. 12076 * @wcqe: Pointer to work-queue completion queue entry. 12077 * 12078 * This routine handles slow-path WQ entry comsumed event by invoking the 12079 * proper WQ release routine to the slow-path WQ. 12080 **/ 12081 static void 12082 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12083 struct lpfc_wcqe_release *wcqe) 12084 { 12085 /* sanity check on queue memory */ 12086 if (unlikely(!phba->sli4_hba.els_wq)) 12087 return; 12088 /* Check for the slow-path ELS work queue */ 12089 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12090 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12091 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12092 else 12093 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12094 "2579 Slow-path wqe consume event carries " 12095 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12096 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12097 phba->sli4_hba.els_wq->queue_id); 12098 } 12099 12100 /** 12101 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12102 * @phba: Pointer to HBA context object. 12103 * @cq: Pointer to a WQ completion queue. 12104 * @wcqe: Pointer to work-queue completion queue entry. 12105 * 12106 * This routine handles an XRI abort event. 12107 * 12108 * Return: true if work posted to worker thread, otherwise false. 12109 **/ 12110 static bool 12111 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12112 struct lpfc_queue *cq, 12113 struct sli4_wcqe_xri_aborted *wcqe) 12114 { 12115 bool workposted = false; 12116 struct lpfc_cq_event *cq_event; 12117 unsigned long iflags; 12118 12119 /* Allocate a new internal CQ_EVENT entry */ 12120 cq_event = lpfc_sli4_cq_event_alloc(phba); 12121 if (!cq_event) { 12122 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12123 "0602 Failed to allocate CQ_EVENT entry\n"); 12124 return false; 12125 } 12126 12127 /* Move the CQE into the proper xri abort event list */ 12128 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12129 switch (cq->subtype) { 12130 case LPFC_FCP: 12131 spin_lock_irqsave(&phba->hbalock, iflags); 12132 list_add_tail(&cq_event->list, 12133 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12134 /* Set the fcp xri abort event flag */ 12135 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12136 spin_unlock_irqrestore(&phba->hbalock, iflags); 12137 workposted = true; 12138 break; 12139 case LPFC_ELS: 12140 spin_lock_irqsave(&phba->hbalock, iflags); 12141 list_add_tail(&cq_event->list, 12142 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12143 /* Set the els xri abort event flag */ 12144 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12145 spin_unlock_irqrestore(&phba->hbalock, iflags); 12146 workposted = true; 12147 break; 12148 default: 12149 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12150 "0603 Invalid work queue CQE subtype (x%x)\n", 12151 cq->subtype); 12152 workposted = false; 12153 break; 12154 } 12155 return workposted; 12156 } 12157 12158 /** 12159 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12160 * @phba: Pointer to HBA context object. 12161 * @rcqe: Pointer to receive-queue completion queue entry. 12162 * 12163 * This routine process a receive-queue completion queue entry. 12164 * 12165 * Return: true if work posted to worker thread, otherwise false. 12166 **/ 12167 static bool 12168 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12169 { 12170 bool workposted = false; 12171 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12172 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12173 struct hbq_dmabuf *dma_buf; 12174 uint32_t status, rq_id; 12175 unsigned long iflags; 12176 12177 /* sanity check on queue memory */ 12178 if (unlikely(!hrq) || unlikely(!drq)) 12179 return workposted; 12180 12181 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12182 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12183 else 12184 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12185 if (rq_id != hrq->queue_id) 12186 goto out; 12187 12188 status = bf_get(lpfc_rcqe_status, rcqe); 12189 switch (status) { 12190 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12191 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12192 "2537 Receive Frame Truncated!!\n"); 12193 hrq->RQ_buf_trunc++; 12194 case FC_STATUS_RQ_SUCCESS: 12195 lpfc_sli4_rq_release(hrq, drq); 12196 spin_lock_irqsave(&phba->hbalock, iflags); 12197 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12198 if (!dma_buf) { 12199 hrq->RQ_no_buf_found++; 12200 spin_unlock_irqrestore(&phba->hbalock, iflags); 12201 goto out; 12202 } 12203 hrq->RQ_rcv_buf++; 12204 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12205 /* save off the frame for the word thread to process */ 12206 list_add_tail(&dma_buf->cq_event.list, 12207 &phba->sli4_hba.sp_queue_event); 12208 /* Frame received */ 12209 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12210 spin_unlock_irqrestore(&phba->hbalock, iflags); 12211 workposted = true; 12212 break; 12213 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12214 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12215 hrq->RQ_no_posted_buf++; 12216 /* Post more buffers if possible */ 12217 spin_lock_irqsave(&phba->hbalock, iflags); 12218 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12219 spin_unlock_irqrestore(&phba->hbalock, iflags); 12220 workposted = true; 12221 break; 12222 } 12223 out: 12224 return workposted; 12225 } 12226 12227 /** 12228 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12229 * @phba: Pointer to HBA context object. 12230 * @cq: Pointer to the completion queue. 12231 * @wcqe: Pointer to a completion queue entry. 12232 * 12233 * This routine process a slow-path work-queue or receive queue completion queue 12234 * entry. 12235 * 12236 * Return: true if work posted to worker thread, otherwise false. 12237 **/ 12238 static bool 12239 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12240 struct lpfc_cqe *cqe) 12241 { 12242 struct lpfc_cqe cqevt; 12243 bool workposted = false; 12244 12245 /* Copy the work queue CQE and convert endian order if needed */ 12246 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12247 12248 /* Check and process for different type of WCQE and dispatch */ 12249 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12250 case CQE_CODE_COMPL_WQE: 12251 /* Process the WQ/RQ complete event */ 12252 phba->last_completion_time = jiffies; 12253 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12254 (struct lpfc_wcqe_complete *)&cqevt); 12255 break; 12256 case CQE_CODE_RELEASE_WQE: 12257 /* Process the WQ release event */ 12258 lpfc_sli4_sp_handle_rel_wcqe(phba, 12259 (struct lpfc_wcqe_release *)&cqevt); 12260 break; 12261 case CQE_CODE_XRI_ABORTED: 12262 /* Process the WQ XRI abort event */ 12263 phba->last_completion_time = jiffies; 12264 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12265 (struct sli4_wcqe_xri_aborted *)&cqevt); 12266 break; 12267 case CQE_CODE_RECEIVE: 12268 case CQE_CODE_RECEIVE_V1: 12269 /* Process the RQ event */ 12270 phba->last_completion_time = jiffies; 12271 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12272 (struct lpfc_rcqe *)&cqevt); 12273 break; 12274 default: 12275 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12276 "0388 Not a valid WCQE code: x%x\n", 12277 bf_get(lpfc_cqe_code, &cqevt)); 12278 break; 12279 } 12280 return workposted; 12281 } 12282 12283 /** 12284 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12285 * @phba: Pointer to HBA context object. 12286 * @eqe: Pointer to fast-path event queue entry. 12287 * 12288 * This routine process a event queue entry from the slow-path event queue. 12289 * It will check the MajorCode and MinorCode to determine this is for a 12290 * completion event on a completion queue, if not, an error shall be logged 12291 * and just return. Otherwise, it will get to the corresponding completion 12292 * queue and process all the entries on that completion queue, rearm the 12293 * completion queue, and then return. 12294 * 12295 **/ 12296 static void 12297 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12298 struct lpfc_queue *speq) 12299 { 12300 struct lpfc_queue *cq = NULL, *childq; 12301 struct lpfc_cqe *cqe; 12302 bool workposted = false; 12303 int ecount = 0; 12304 uint16_t cqid; 12305 12306 /* Get the reference to the corresponding CQ */ 12307 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12308 12309 list_for_each_entry(childq, &speq->child_list, list) { 12310 if (childq->queue_id == cqid) { 12311 cq = childq; 12312 break; 12313 } 12314 } 12315 if (unlikely(!cq)) { 12316 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12317 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12318 "0365 Slow-path CQ identifier " 12319 "(%d) does not exist\n", cqid); 12320 return; 12321 } 12322 12323 /* Process all the entries to the CQ */ 12324 switch (cq->type) { 12325 case LPFC_MCQ: 12326 while ((cqe = lpfc_sli4_cq_get(cq))) { 12327 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12328 if (!(++ecount % cq->entry_repost)) 12329 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12330 cq->CQ_mbox++; 12331 } 12332 break; 12333 case LPFC_WCQ: 12334 while ((cqe = lpfc_sli4_cq_get(cq))) { 12335 if (cq->subtype == LPFC_FCP) 12336 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 12337 cqe); 12338 else 12339 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12340 cqe); 12341 if (!(++ecount % cq->entry_repost)) 12342 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12343 } 12344 12345 /* Track the max number of CQEs processed in 1 EQ */ 12346 if (ecount > cq->CQ_max_cqe) 12347 cq->CQ_max_cqe = ecount; 12348 break; 12349 default: 12350 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12351 "0370 Invalid completion queue type (%d)\n", 12352 cq->type); 12353 return; 12354 } 12355 12356 /* Catch the no cq entry condition, log an error */ 12357 if (unlikely(ecount == 0)) 12358 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12359 "0371 No entry from the CQ: identifier " 12360 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12361 12362 /* In any case, flash and re-arm the RCQ */ 12363 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12364 12365 /* wake up worker thread if there are works to be done */ 12366 if (workposted) 12367 lpfc_worker_wake_up(phba); 12368 } 12369 12370 /** 12371 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12372 * @phba: Pointer to HBA context object. 12373 * @cq: Pointer to associated CQ 12374 * @wcqe: Pointer to work-queue completion queue entry. 12375 * 12376 * This routine process a fast-path work queue completion entry from fast-path 12377 * event queue for FCP command response completion. 12378 **/ 12379 static void 12380 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12381 struct lpfc_wcqe_complete *wcqe) 12382 { 12383 struct lpfc_sli_ring *pring = cq->pring; 12384 struct lpfc_iocbq *cmdiocbq; 12385 struct lpfc_iocbq irspiocbq; 12386 unsigned long iflags; 12387 12388 /* Check for response status */ 12389 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12390 /* If resource errors reported from HBA, reduce queue 12391 * depth of the SCSI device. 12392 */ 12393 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12394 IOSTAT_LOCAL_REJECT)) && 12395 ((wcqe->parameter & IOERR_PARAM_MASK) == 12396 IOERR_NO_RESOURCES)) 12397 phba->lpfc_rampdown_queue_depth(phba); 12398 12399 /* Log the error status */ 12400 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12401 "0373 FCP complete error: status=x%x, " 12402 "hw_status=x%x, total_data_specified=%d, " 12403 "parameter=x%x, word3=x%x\n", 12404 bf_get(lpfc_wcqe_c_status, wcqe), 12405 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12406 wcqe->total_data_placed, wcqe->parameter, 12407 wcqe->word3); 12408 } 12409 12410 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12411 spin_lock_irqsave(&pring->ring_lock, iflags); 12412 pring->stats.iocb_event++; 12413 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12414 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12415 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12416 if (unlikely(!cmdiocbq)) { 12417 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12418 "0374 FCP complete with no corresponding " 12419 "cmdiocb: iotag (%d)\n", 12420 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12421 return; 12422 } 12423 if (unlikely(!cmdiocbq->iocb_cmpl)) { 12424 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12425 "0375 FCP cmdiocb not callback function " 12426 "iotag: (%d)\n", 12427 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12428 return; 12429 } 12430 12431 /* Fake the irspiocb and copy necessary response information */ 12432 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 12433 12434 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 12435 spin_lock_irqsave(&phba->hbalock, iflags); 12436 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12437 spin_unlock_irqrestore(&phba->hbalock, iflags); 12438 } 12439 12440 /* Pass the cmd_iocb and the rsp state to the upper layer */ 12441 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 12442 } 12443 12444 /** 12445 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 12446 * @phba: Pointer to HBA context object. 12447 * @cq: Pointer to completion queue. 12448 * @wcqe: Pointer to work-queue completion queue entry. 12449 * 12450 * This routine handles an fast-path WQ entry comsumed event by invoking the 12451 * proper WQ release routine to the slow-path WQ. 12452 **/ 12453 static void 12454 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12455 struct lpfc_wcqe_release *wcqe) 12456 { 12457 struct lpfc_queue *childwq; 12458 bool wqid_matched = false; 12459 uint16_t fcp_wqid; 12460 12461 /* Check for fast-path FCP work queue release */ 12462 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 12463 list_for_each_entry(childwq, &cq->child_list, list) { 12464 if (childwq->queue_id == fcp_wqid) { 12465 lpfc_sli4_wq_release(childwq, 12466 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12467 wqid_matched = true; 12468 break; 12469 } 12470 } 12471 /* Report warning log message if no match found */ 12472 if (wqid_matched != true) 12473 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12474 "2580 Fast-path wqe consume event carries " 12475 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 12476 } 12477 12478 /** 12479 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 12480 * @cq: Pointer to the completion queue. 12481 * @eqe: Pointer to fast-path completion queue entry. 12482 * 12483 * This routine process a fast-path work queue completion entry from fast-path 12484 * event queue for FCP command response completion. 12485 **/ 12486 static int 12487 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12488 struct lpfc_cqe *cqe) 12489 { 12490 struct lpfc_wcqe_release wcqe; 12491 bool workposted = false; 12492 12493 /* Copy the work queue CQE and convert endian order if needed */ 12494 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 12495 12496 /* Check and process for different type of WCQE and dispatch */ 12497 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 12498 case CQE_CODE_COMPL_WQE: 12499 cq->CQ_wq++; 12500 /* Process the WQ complete event */ 12501 phba->last_completion_time = jiffies; 12502 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 12503 (struct lpfc_wcqe_complete *)&wcqe); 12504 break; 12505 case CQE_CODE_RELEASE_WQE: 12506 cq->CQ_release_wqe++; 12507 /* Process the WQ release event */ 12508 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 12509 (struct lpfc_wcqe_release *)&wcqe); 12510 break; 12511 case CQE_CODE_XRI_ABORTED: 12512 cq->CQ_xri_aborted++; 12513 /* Process the WQ XRI abort event */ 12514 phba->last_completion_time = jiffies; 12515 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12516 (struct sli4_wcqe_xri_aborted *)&wcqe); 12517 break; 12518 default: 12519 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12520 "0144 Not a valid WCQE code: x%x\n", 12521 bf_get(lpfc_wcqe_c_code, &wcqe)); 12522 break; 12523 } 12524 return workposted; 12525 } 12526 12527 /** 12528 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 12529 * @phba: Pointer to HBA context object. 12530 * @eqe: Pointer to fast-path event queue entry. 12531 * 12532 * This routine process a event queue entry from the fast-path event queue. 12533 * It will check the MajorCode and MinorCode to determine this is for a 12534 * completion event on a completion queue, if not, an error shall be logged 12535 * and just return. Otherwise, it will get to the corresponding completion 12536 * queue and process all the entries on the completion queue, rearm the 12537 * completion queue, and then return. 12538 **/ 12539 static void 12540 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12541 uint32_t qidx) 12542 { 12543 struct lpfc_queue *cq; 12544 struct lpfc_cqe *cqe; 12545 bool workposted = false; 12546 uint16_t cqid; 12547 int ecount = 0; 12548 12549 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12550 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12551 "0366 Not a valid completion " 12552 "event: majorcode=x%x, minorcode=x%x\n", 12553 bf_get_le32(lpfc_eqe_major_code, eqe), 12554 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12555 return; 12556 } 12557 12558 /* Get the reference to the corresponding CQ */ 12559 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12560 12561 /* Check if this is a Slow path event */ 12562 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 12563 lpfc_sli4_sp_handle_eqe(phba, eqe, 12564 phba->sli4_hba.hba_eq[qidx]); 12565 return; 12566 } 12567 12568 if (unlikely(!phba->sli4_hba.fcp_cq)) { 12569 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12570 "3146 Fast-path completion queues " 12571 "does not exist\n"); 12572 return; 12573 } 12574 cq = phba->sli4_hba.fcp_cq[qidx]; 12575 if (unlikely(!cq)) { 12576 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12577 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12578 "0367 Fast-path completion queue " 12579 "(%d) does not exist\n", qidx); 12580 return; 12581 } 12582 12583 if (unlikely(cqid != cq->queue_id)) { 12584 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12585 "0368 Miss-matched fast-path completion " 12586 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 12587 cqid, cq->queue_id); 12588 return; 12589 } 12590 12591 /* Process all the entries to the CQ */ 12592 while ((cqe = lpfc_sli4_cq_get(cq))) { 12593 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12594 if (!(++ecount % cq->entry_repost)) 12595 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12596 } 12597 12598 /* Track the max number of CQEs processed in 1 EQ */ 12599 if (ecount > cq->CQ_max_cqe) 12600 cq->CQ_max_cqe = ecount; 12601 12602 /* Catch the no cq entry condition */ 12603 if (unlikely(ecount == 0)) 12604 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12605 "0369 No entry from fast-path completion " 12606 "queue fcpcqid=%d\n", cq->queue_id); 12607 12608 /* In any case, flash and re-arm the CQ */ 12609 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12610 12611 /* wake up worker thread if there are works to be done */ 12612 if (workposted) 12613 lpfc_worker_wake_up(phba); 12614 } 12615 12616 static void 12617 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 12618 { 12619 struct lpfc_eqe *eqe; 12620 12621 /* walk all the EQ entries and drop on the floor */ 12622 while ((eqe = lpfc_sli4_eq_get(eq))) 12623 ; 12624 12625 /* Clear and re-arm the EQ */ 12626 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12627 } 12628 12629 12630 /** 12631 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 12632 * entry 12633 * @phba: Pointer to HBA context object. 12634 * @eqe: Pointer to fast-path event queue entry. 12635 * 12636 * This routine process a event queue entry from the Flash Optimized Fabric 12637 * event queue. It will check the MajorCode and MinorCode to determine this 12638 * is for a completion event on a completion queue, if not, an error shall be 12639 * logged and just return. Otherwise, it will get to the corresponding 12640 * completion queue and process all the entries on the completion queue, rearm 12641 * the completion queue, and then return. 12642 **/ 12643 static void 12644 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 12645 { 12646 struct lpfc_queue *cq; 12647 struct lpfc_cqe *cqe; 12648 bool workposted = false; 12649 uint16_t cqid; 12650 int ecount = 0; 12651 12652 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12654 "9147 Not a valid completion " 12655 "event: majorcode=x%x, minorcode=x%x\n", 12656 bf_get_le32(lpfc_eqe_major_code, eqe), 12657 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12658 return; 12659 } 12660 12661 /* Get the reference to the corresponding CQ */ 12662 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12663 12664 /* Next check for OAS */ 12665 cq = phba->sli4_hba.oas_cq; 12666 if (unlikely(!cq)) { 12667 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12668 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12669 "9148 OAS completion queue " 12670 "does not exist\n"); 12671 return; 12672 } 12673 12674 if (unlikely(cqid != cq->queue_id)) { 12675 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12676 "9149 Miss-matched fast-path compl " 12677 "queue id: eqcqid=%d, fcpcqid=%d\n", 12678 cqid, cq->queue_id); 12679 return; 12680 } 12681 12682 /* Process all the entries to the OAS CQ */ 12683 while ((cqe = lpfc_sli4_cq_get(cq))) { 12684 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12685 if (!(++ecount % cq->entry_repost)) 12686 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12687 } 12688 12689 /* Track the max number of CQEs processed in 1 EQ */ 12690 if (ecount > cq->CQ_max_cqe) 12691 cq->CQ_max_cqe = ecount; 12692 12693 /* Catch the no cq entry condition */ 12694 if (unlikely(ecount == 0)) 12695 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12696 "9153 No entry from fast-path completion " 12697 "queue fcpcqid=%d\n", cq->queue_id); 12698 12699 /* In any case, flash and re-arm the CQ */ 12700 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12701 12702 /* wake up worker thread if there are works to be done */ 12703 if (workposted) 12704 lpfc_worker_wake_up(phba); 12705 } 12706 12707 /** 12708 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 12709 * @irq: Interrupt number. 12710 * @dev_id: The device context pointer. 12711 * 12712 * This function is directly called from the PCI layer as an interrupt 12713 * service routine when device with SLI-4 interface spec is enabled with 12714 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 12715 * IOCB ring event in the HBA. However, when the device is enabled with either 12716 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12717 * device-level interrupt handler. When the PCI slot is in error recovery 12718 * or the HBA is undergoing initialization, the interrupt handler will not 12719 * process the interrupt. The Flash Optimized Fabric ring event are handled in 12720 * the intrrupt context. This function is called without any lock held. 12721 * It gets the hbalock to access and update SLI data structures. Note that, 12722 * the EQ to CQ are one-to-one map such that the EQ index is 12723 * equal to that of CQ index. 12724 * 12725 * This function returns IRQ_HANDLED when interrupt is handled else it 12726 * returns IRQ_NONE. 12727 **/ 12728 irqreturn_t 12729 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 12730 { 12731 struct lpfc_hba *phba; 12732 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12733 struct lpfc_queue *eq; 12734 struct lpfc_eqe *eqe; 12735 unsigned long iflag; 12736 int ecount = 0; 12737 12738 /* Get the driver's phba structure from the dev_id */ 12739 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12740 phba = fcp_eq_hdl->phba; 12741 12742 if (unlikely(!phba)) 12743 return IRQ_NONE; 12744 12745 /* Get to the EQ struct associated with this vector */ 12746 eq = phba->sli4_hba.fof_eq; 12747 if (unlikely(!eq)) 12748 return IRQ_NONE; 12749 12750 /* Check device state for handling interrupt */ 12751 if (unlikely(lpfc_intr_state_check(phba))) { 12752 eq->EQ_badstate++; 12753 /* Check again for link_state with lock held */ 12754 spin_lock_irqsave(&phba->hbalock, iflag); 12755 if (phba->link_state < LPFC_LINK_DOWN) 12756 /* Flush, clear interrupt, and rearm the EQ */ 12757 lpfc_sli4_eq_flush(phba, eq); 12758 spin_unlock_irqrestore(&phba->hbalock, iflag); 12759 return IRQ_NONE; 12760 } 12761 12762 /* 12763 * Process all the event on FCP fast-path EQ 12764 */ 12765 while ((eqe = lpfc_sli4_eq_get(eq))) { 12766 lpfc_sli4_fof_handle_eqe(phba, eqe); 12767 if (!(++ecount % eq->entry_repost)) 12768 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 12769 eq->EQ_processed++; 12770 } 12771 12772 /* Track the max number of EQEs processed in 1 intr */ 12773 if (ecount > eq->EQ_max_eqe) 12774 eq->EQ_max_eqe = ecount; 12775 12776 12777 if (unlikely(ecount == 0)) { 12778 eq->EQ_no_entry++; 12779 12780 if (phba->intr_type == MSIX) 12781 /* MSI-X treated interrupt served as no EQ share INT */ 12782 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12783 "9145 MSI-X interrupt with no EQE\n"); 12784 else { 12785 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12786 "9146 ISR interrupt with no EQE\n"); 12787 /* Non MSI-X treated on interrupt as EQ share INT */ 12788 return IRQ_NONE; 12789 } 12790 } 12791 /* Always clear and re-arm the fast-path EQ */ 12792 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12793 return IRQ_HANDLED; 12794 } 12795 12796 /** 12797 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 12798 * @irq: Interrupt number. 12799 * @dev_id: The device context pointer. 12800 * 12801 * This function is directly called from the PCI layer as an interrupt 12802 * service routine when device with SLI-4 interface spec is enabled with 12803 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12804 * ring event in the HBA. However, when the device is enabled with either 12805 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12806 * device-level interrupt handler. When the PCI slot is in error recovery 12807 * or the HBA is undergoing initialization, the interrupt handler will not 12808 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12809 * the intrrupt context. This function is called without any lock held. 12810 * It gets the hbalock to access and update SLI data structures. Note that, 12811 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 12812 * equal to that of FCP CQ index. 12813 * 12814 * The link attention and ELS ring attention events are handled 12815 * by the worker thread. The interrupt handler signals the worker thread 12816 * and returns for these events. This function is called without any lock 12817 * held. It gets the hbalock to access and update SLI data structures. 12818 * 12819 * This function returns IRQ_HANDLED when interrupt is handled else it 12820 * returns IRQ_NONE. 12821 **/ 12822 irqreturn_t 12823 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 12824 { 12825 struct lpfc_hba *phba; 12826 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12827 struct lpfc_queue *fpeq; 12828 struct lpfc_eqe *eqe; 12829 unsigned long iflag; 12830 int ecount = 0; 12831 int fcp_eqidx; 12832 12833 /* Get the driver's phba structure from the dev_id */ 12834 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12835 phba = fcp_eq_hdl->phba; 12836 fcp_eqidx = fcp_eq_hdl->idx; 12837 12838 if (unlikely(!phba)) 12839 return IRQ_NONE; 12840 if (unlikely(!phba->sli4_hba.hba_eq)) 12841 return IRQ_NONE; 12842 12843 /* Get to the EQ struct associated with this vector */ 12844 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12845 if (unlikely(!fpeq)) 12846 return IRQ_NONE; 12847 12848 if (lpfc_fcp_look_ahead) { 12849 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 12850 lpfc_sli4_eq_clr_intr(fpeq); 12851 else { 12852 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12853 return IRQ_NONE; 12854 } 12855 } 12856 12857 /* Check device state for handling interrupt */ 12858 if (unlikely(lpfc_intr_state_check(phba))) { 12859 fpeq->EQ_badstate++; 12860 /* Check again for link_state with lock held */ 12861 spin_lock_irqsave(&phba->hbalock, iflag); 12862 if (phba->link_state < LPFC_LINK_DOWN) 12863 /* Flush, clear interrupt, and rearm the EQ */ 12864 lpfc_sli4_eq_flush(phba, fpeq); 12865 spin_unlock_irqrestore(&phba->hbalock, iflag); 12866 if (lpfc_fcp_look_ahead) 12867 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12868 return IRQ_NONE; 12869 } 12870 12871 /* 12872 * Process all the event on FCP fast-path EQ 12873 */ 12874 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12875 if (eqe == NULL) 12876 break; 12877 12878 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12879 if (!(++ecount % fpeq->entry_repost)) 12880 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12881 fpeq->EQ_processed++; 12882 } 12883 12884 /* Track the max number of EQEs processed in 1 intr */ 12885 if (ecount > fpeq->EQ_max_eqe) 12886 fpeq->EQ_max_eqe = ecount; 12887 12888 /* Always clear and re-arm the fast-path EQ */ 12889 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12890 12891 if (unlikely(ecount == 0)) { 12892 fpeq->EQ_no_entry++; 12893 12894 if (lpfc_fcp_look_ahead) { 12895 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12896 return IRQ_NONE; 12897 } 12898 12899 if (phba->intr_type == MSIX) 12900 /* MSI-X treated interrupt served as no EQ share INT */ 12901 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12902 "0358 MSI-X interrupt with no EQE\n"); 12903 else 12904 /* Non MSI-X treated on interrupt as EQ share INT */ 12905 return IRQ_NONE; 12906 } 12907 12908 if (lpfc_fcp_look_ahead) 12909 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12910 return IRQ_HANDLED; 12911 } /* lpfc_sli4_fp_intr_handler */ 12912 12913 /** 12914 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12915 * @irq: Interrupt number. 12916 * @dev_id: The device context pointer. 12917 * 12918 * This function is the device-level interrupt handler to device with SLI-4 12919 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12920 * interrupt mode is enabled and there is an event in the HBA which requires 12921 * driver attention. This function invokes the slow-path interrupt attention 12922 * handling function and fast-path interrupt attention handling function in 12923 * turn to process the relevant HBA attention events. This function is called 12924 * without any lock held. It gets the hbalock to access and update SLI data 12925 * structures. 12926 * 12927 * This function returns IRQ_HANDLED when interrupt is handled, else it 12928 * returns IRQ_NONE. 12929 **/ 12930 irqreturn_t 12931 lpfc_sli4_intr_handler(int irq, void *dev_id) 12932 { 12933 struct lpfc_hba *phba; 12934 irqreturn_t hba_irq_rc; 12935 bool hba_handled = false; 12936 int fcp_eqidx; 12937 12938 /* Get the driver's phba structure from the dev_id */ 12939 phba = (struct lpfc_hba *)dev_id; 12940 12941 if (unlikely(!phba)) 12942 return IRQ_NONE; 12943 12944 /* 12945 * Invoke fast-path host attention interrupt handling as appropriate. 12946 */ 12947 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12948 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12949 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12950 if (hba_irq_rc == IRQ_HANDLED) 12951 hba_handled |= true; 12952 } 12953 12954 if (phba->cfg_fof) { 12955 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 12956 &phba->sli4_hba.fcp_eq_hdl[0]); 12957 if (hba_irq_rc == IRQ_HANDLED) 12958 hba_handled |= true; 12959 } 12960 12961 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12962 } /* lpfc_sli4_intr_handler */ 12963 12964 /** 12965 * lpfc_sli4_queue_free - free a queue structure and associated memory 12966 * @queue: The queue structure to free. 12967 * 12968 * This function frees a queue structure and the DMAable memory used for 12969 * the host resident queue. This function must be called after destroying the 12970 * queue on the HBA. 12971 **/ 12972 void 12973 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12974 { 12975 struct lpfc_dmabuf *dmabuf; 12976 12977 if (!queue) 12978 return; 12979 12980 while (!list_empty(&queue->page_list)) { 12981 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12982 list); 12983 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12984 dmabuf->virt, dmabuf->phys); 12985 kfree(dmabuf); 12986 } 12987 kfree(queue); 12988 return; 12989 } 12990 12991 /** 12992 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12993 * @phba: The HBA that this queue is being created on. 12994 * @entry_size: The size of each queue entry for this queue. 12995 * @entry count: The number of entries that this queue will handle. 12996 * 12997 * This function allocates a queue structure and the DMAable memory used for 12998 * the host resident queue. This function must be called before creating the 12999 * queue on the HBA. 13000 **/ 13001 struct lpfc_queue * 13002 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13003 uint32_t entry_count) 13004 { 13005 struct lpfc_queue *queue; 13006 struct lpfc_dmabuf *dmabuf; 13007 int x, total_qe_count; 13008 void *dma_pointer; 13009 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13010 13011 if (!phba->sli4_hba.pc_sli4_params.supported) 13012 hw_page_size = SLI4_PAGE_SIZE; 13013 13014 queue = kzalloc(sizeof(struct lpfc_queue) + 13015 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13016 if (!queue) 13017 return NULL; 13018 queue->page_count = (ALIGN(entry_size * entry_count, 13019 hw_page_size))/hw_page_size; 13020 INIT_LIST_HEAD(&queue->list); 13021 INIT_LIST_HEAD(&queue->page_list); 13022 INIT_LIST_HEAD(&queue->child_list); 13023 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13024 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13025 if (!dmabuf) 13026 goto out_fail; 13027 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13028 hw_page_size, &dmabuf->phys, 13029 GFP_KERNEL); 13030 if (!dmabuf->virt) { 13031 kfree(dmabuf); 13032 goto out_fail; 13033 } 13034 dmabuf->buffer_tag = x; 13035 list_add_tail(&dmabuf->list, &queue->page_list); 13036 /* initialize queue's entry array */ 13037 dma_pointer = dmabuf->virt; 13038 for (; total_qe_count < entry_count && 13039 dma_pointer < (hw_page_size + dmabuf->virt); 13040 total_qe_count++, dma_pointer += entry_size) { 13041 queue->qe[total_qe_count].address = dma_pointer; 13042 } 13043 } 13044 queue->entry_size = entry_size; 13045 queue->entry_count = entry_count; 13046 13047 /* 13048 * entry_repost is calculated based on the number of entries in the 13049 * queue. This works out except for RQs. If buffers are NOT initially 13050 * posted for every RQE, entry_repost should be adjusted accordingly. 13051 */ 13052 queue->entry_repost = (entry_count >> 3); 13053 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 13054 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 13055 queue->phba = phba; 13056 13057 return queue; 13058 out_fail: 13059 lpfc_sli4_queue_free(queue); 13060 return NULL; 13061 } 13062 13063 /** 13064 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13065 * @phba: HBA structure that indicates port to create a queue on. 13066 * @pci_barset: PCI BAR set flag. 13067 * 13068 * This function shall perform iomap of the specified PCI BAR address to host 13069 * memory address if not already done so and return it. The returned host 13070 * memory address can be NULL. 13071 */ 13072 static void __iomem * 13073 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13074 { 13075 if (!phba->pcidev) 13076 return NULL; 13077 13078 switch (pci_barset) { 13079 case WQ_PCI_BAR_0_AND_1: 13080 return phba->pci_bar0_memmap_p; 13081 case WQ_PCI_BAR_2_AND_3: 13082 return phba->pci_bar2_memmap_p; 13083 case WQ_PCI_BAR_4_AND_5: 13084 return phba->pci_bar4_memmap_p; 13085 default: 13086 break; 13087 } 13088 return NULL; 13089 } 13090 13091 /** 13092 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 13093 * @phba: HBA structure that indicates port to create a queue on. 13094 * @startq: The starting FCP EQ to modify 13095 * 13096 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13097 * 13098 * The @phba struct is used to send mailbox command to HBA. The @startq 13099 * is used to get the starting FCP EQ to change. 13100 * This function is asynchronous and will wait for the mailbox 13101 * command to finish before continuing. 13102 * 13103 * On success this function will return a zero. If unable to allocate enough 13104 * memory this function will return -ENOMEM. If the queue create mailbox command 13105 * fails this function will return -ENXIO. 13106 **/ 13107 int 13108 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq) 13109 { 13110 struct lpfc_mbx_modify_eq_delay *eq_delay; 13111 LPFC_MBOXQ_t *mbox; 13112 struct lpfc_queue *eq; 13113 int cnt, rc, length, status = 0; 13114 uint32_t shdr_status, shdr_add_status; 13115 uint32_t result; 13116 int fcp_eqidx; 13117 union lpfc_sli4_cfg_shdr *shdr; 13118 uint16_t dmult; 13119 13120 if (startq >= phba->cfg_fcp_io_channel) 13121 return 0; 13122 13123 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13124 if (!mbox) 13125 return -ENOMEM; 13126 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 13127 sizeof(struct lpfc_sli4_cfg_mhdr)); 13128 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13129 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 13130 length, LPFC_SLI4_MBX_EMBED); 13131 eq_delay = &mbox->u.mqe.un.eq_delay; 13132 13133 /* Calculate delay multiper from maximum interrupt per second */ 13134 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 13135 if (result > LPFC_DMULT_CONST) 13136 dmult = 0; 13137 else 13138 dmult = LPFC_DMULT_CONST/result - 1; 13139 13140 cnt = 0; 13141 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 13142 fcp_eqidx++) { 13143 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 13144 if (!eq) 13145 continue; 13146 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 13147 eq_delay->u.request.eq[cnt].phase = 0; 13148 eq_delay->u.request.eq[cnt].delay_multi = dmult; 13149 cnt++; 13150 if (cnt >= LPFC_MAX_EQ_DELAY) 13151 break; 13152 } 13153 eq_delay->u.request.num_eq = cnt; 13154 13155 mbox->vport = phba->pport; 13156 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13157 mbox->context1 = NULL; 13158 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13159 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 13160 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13161 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13162 if (shdr_status || shdr_add_status || rc) { 13163 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13164 "2512 MODIFY_EQ_DELAY mailbox failed with " 13165 "status x%x add_status x%x, mbx status x%x\n", 13166 shdr_status, shdr_add_status, rc); 13167 status = -ENXIO; 13168 } 13169 mempool_free(mbox, phba->mbox_mem_pool); 13170 return status; 13171 } 13172 13173 /** 13174 * lpfc_eq_create - Create an Event Queue on the HBA 13175 * @phba: HBA structure that indicates port to create a queue on. 13176 * @eq: The queue structure to use to create the event queue. 13177 * @imax: The maximum interrupt per second limit. 13178 * 13179 * This function creates an event queue, as detailed in @eq, on a port, 13180 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 13181 * 13182 * The @phba struct is used to send mailbox command to HBA. The @eq struct 13183 * is used to get the entry count and entry size that are necessary to 13184 * determine the number of pages to allocate and use for this queue. This 13185 * function will send the EQ_CREATE mailbox command to the HBA to setup the 13186 * event queue. This function is asynchronous and will wait for the mailbox 13187 * command to finish before continuing. 13188 * 13189 * On success this function will return a zero. If unable to allocate enough 13190 * memory this function will return -ENOMEM. If the queue create mailbox command 13191 * fails this function will return -ENXIO. 13192 **/ 13193 int 13194 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 13195 { 13196 struct lpfc_mbx_eq_create *eq_create; 13197 LPFC_MBOXQ_t *mbox; 13198 int rc, length, status = 0; 13199 struct lpfc_dmabuf *dmabuf; 13200 uint32_t shdr_status, shdr_add_status; 13201 union lpfc_sli4_cfg_shdr *shdr; 13202 uint16_t dmult; 13203 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13204 13205 /* sanity check on queue memory */ 13206 if (!eq) 13207 return -ENODEV; 13208 if (!phba->sli4_hba.pc_sli4_params.supported) 13209 hw_page_size = SLI4_PAGE_SIZE; 13210 13211 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13212 if (!mbox) 13213 return -ENOMEM; 13214 length = (sizeof(struct lpfc_mbx_eq_create) - 13215 sizeof(struct lpfc_sli4_cfg_mhdr)); 13216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13217 LPFC_MBOX_OPCODE_EQ_CREATE, 13218 length, LPFC_SLI4_MBX_EMBED); 13219 eq_create = &mbox->u.mqe.un.eq_create; 13220 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 13221 eq->page_count); 13222 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 13223 LPFC_EQE_SIZE); 13224 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 13225 /* don't setup delay multiplier using EQ_CREATE */ 13226 dmult = 0; 13227 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 13228 dmult); 13229 switch (eq->entry_count) { 13230 default: 13231 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13232 "0360 Unsupported EQ count. (%d)\n", 13233 eq->entry_count); 13234 if (eq->entry_count < 256) 13235 return -EINVAL; 13236 /* otherwise default to smallest count (drop through) */ 13237 case 256: 13238 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13239 LPFC_EQ_CNT_256); 13240 break; 13241 case 512: 13242 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13243 LPFC_EQ_CNT_512); 13244 break; 13245 case 1024: 13246 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13247 LPFC_EQ_CNT_1024); 13248 break; 13249 case 2048: 13250 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13251 LPFC_EQ_CNT_2048); 13252 break; 13253 case 4096: 13254 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13255 LPFC_EQ_CNT_4096); 13256 break; 13257 } 13258 list_for_each_entry(dmabuf, &eq->page_list, list) { 13259 memset(dmabuf->virt, 0, hw_page_size); 13260 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13261 putPaddrLow(dmabuf->phys); 13262 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13263 putPaddrHigh(dmabuf->phys); 13264 } 13265 mbox->vport = phba->pport; 13266 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13267 mbox->context1 = NULL; 13268 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13269 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 13270 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13271 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13272 if (shdr_status || shdr_add_status || rc) { 13273 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13274 "2500 EQ_CREATE mailbox failed with " 13275 "status x%x add_status x%x, mbx status x%x\n", 13276 shdr_status, shdr_add_status, rc); 13277 status = -ENXIO; 13278 } 13279 eq->type = LPFC_EQ; 13280 eq->subtype = LPFC_NONE; 13281 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 13282 if (eq->queue_id == 0xFFFF) 13283 status = -ENXIO; 13284 eq->host_index = 0; 13285 eq->hba_index = 0; 13286 13287 mempool_free(mbox, phba->mbox_mem_pool); 13288 return status; 13289 } 13290 13291 /** 13292 * lpfc_cq_create - Create a Completion Queue on the HBA 13293 * @phba: HBA structure that indicates port to create a queue on. 13294 * @cq: The queue structure to use to create the completion queue. 13295 * @eq: The event queue to bind this completion queue to. 13296 * 13297 * This function creates a completion queue, as detailed in @wq, on a port, 13298 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 13299 * 13300 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13301 * is used to get the entry count and entry size that are necessary to 13302 * determine the number of pages to allocate and use for this queue. The @eq 13303 * is used to indicate which event queue to bind this completion queue to. This 13304 * function will send the CQ_CREATE mailbox command to the HBA to setup the 13305 * completion queue. This function is asynchronous and will wait for the mailbox 13306 * command to finish before continuing. 13307 * 13308 * On success this function will return a zero. If unable to allocate enough 13309 * memory this function will return -ENOMEM. If the queue create mailbox command 13310 * fails this function will return -ENXIO. 13311 **/ 13312 int 13313 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 13314 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 13315 { 13316 struct lpfc_mbx_cq_create *cq_create; 13317 struct lpfc_dmabuf *dmabuf; 13318 LPFC_MBOXQ_t *mbox; 13319 int rc, length, status = 0; 13320 uint32_t shdr_status, shdr_add_status; 13321 union lpfc_sli4_cfg_shdr *shdr; 13322 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13323 13324 /* sanity check on queue memory */ 13325 if (!cq || !eq) 13326 return -ENODEV; 13327 if (!phba->sli4_hba.pc_sli4_params.supported) 13328 hw_page_size = SLI4_PAGE_SIZE; 13329 13330 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13331 if (!mbox) 13332 return -ENOMEM; 13333 length = (sizeof(struct lpfc_mbx_cq_create) - 13334 sizeof(struct lpfc_sli4_cfg_mhdr)); 13335 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13336 LPFC_MBOX_OPCODE_CQ_CREATE, 13337 length, LPFC_SLI4_MBX_EMBED); 13338 cq_create = &mbox->u.mqe.un.cq_create; 13339 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 13340 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 13341 cq->page_count); 13342 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 13343 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 13344 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13345 phba->sli4_hba.pc_sli4_params.cqv); 13346 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 13347 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 13348 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 13349 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 13350 eq->queue_id); 13351 } else { 13352 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 13353 eq->queue_id); 13354 } 13355 switch (cq->entry_count) { 13356 default: 13357 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13358 "0361 Unsupported CQ count. (%d)\n", 13359 cq->entry_count); 13360 if (cq->entry_count < 256) { 13361 status = -EINVAL; 13362 goto out; 13363 } 13364 /* otherwise default to smallest count (drop through) */ 13365 case 256: 13366 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13367 LPFC_CQ_CNT_256); 13368 break; 13369 case 512: 13370 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13371 LPFC_CQ_CNT_512); 13372 break; 13373 case 1024: 13374 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13375 LPFC_CQ_CNT_1024); 13376 break; 13377 } 13378 list_for_each_entry(dmabuf, &cq->page_list, list) { 13379 memset(dmabuf->virt, 0, hw_page_size); 13380 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13381 putPaddrLow(dmabuf->phys); 13382 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13383 putPaddrHigh(dmabuf->phys); 13384 } 13385 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13386 13387 /* The IOCTL status is embedded in the mailbox subheader. */ 13388 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13389 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13390 if (shdr_status || shdr_add_status || rc) { 13391 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13392 "2501 CQ_CREATE mailbox failed with " 13393 "status x%x add_status x%x, mbx status x%x\n", 13394 shdr_status, shdr_add_status, rc); 13395 status = -ENXIO; 13396 goto out; 13397 } 13398 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13399 if (cq->queue_id == 0xFFFF) { 13400 status = -ENXIO; 13401 goto out; 13402 } 13403 /* link the cq onto the parent eq child list */ 13404 list_add_tail(&cq->list, &eq->child_list); 13405 /* Set up completion queue's type and subtype */ 13406 cq->type = type; 13407 cq->subtype = subtype; 13408 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13409 cq->assoc_qid = eq->queue_id; 13410 cq->host_index = 0; 13411 cq->hba_index = 0; 13412 13413 out: 13414 mempool_free(mbox, phba->mbox_mem_pool); 13415 return status; 13416 } 13417 13418 /** 13419 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 13420 * @phba: HBA structure that indicates port to create a queue on. 13421 * @mq: The queue structure to use to create the mailbox queue. 13422 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 13423 * @cq: The completion queue to associate with this cq. 13424 * 13425 * This function provides failback (fb) functionality when the 13426 * mq_create_ext fails on older FW generations. It's purpose is identical 13427 * to mq_create_ext otherwise. 13428 * 13429 * This routine cannot fail as all attributes were previously accessed and 13430 * initialized in mq_create_ext. 13431 **/ 13432 static void 13433 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 13434 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 13435 { 13436 struct lpfc_mbx_mq_create *mq_create; 13437 struct lpfc_dmabuf *dmabuf; 13438 int length; 13439 13440 length = (sizeof(struct lpfc_mbx_mq_create) - 13441 sizeof(struct lpfc_sli4_cfg_mhdr)); 13442 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13443 LPFC_MBOX_OPCODE_MQ_CREATE, 13444 length, LPFC_SLI4_MBX_EMBED); 13445 mq_create = &mbox->u.mqe.un.mq_create; 13446 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 13447 mq->page_count); 13448 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 13449 cq->queue_id); 13450 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 13451 switch (mq->entry_count) { 13452 case 16: 13453 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13454 LPFC_MQ_RING_SIZE_16); 13455 break; 13456 case 32: 13457 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13458 LPFC_MQ_RING_SIZE_32); 13459 break; 13460 case 64: 13461 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13462 LPFC_MQ_RING_SIZE_64); 13463 break; 13464 case 128: 13465 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13466 LPFC_MQ_RING_SIZE_128); 13467 break; 13468 } 13469 list_for_each_entry(dmabuf, &mq->page_list, list) { 13470 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13471 putPaddrLow(dmabuf->phys); 13472 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13473 putPaddrHigh(dmabuf->phys); 13474 } 13475 } 13476 13477 /** 13478 * lpfc_mq_create - Create a mailbox Queue on the HBA 13479 * @phba: HBA structure that indicates port to create a queue on. 13480 * @mq: The queue structure to use to create the mailbox queue. 13481 * @cq: The completion queue to associate with this cq. 13482 * @subtype: The queue's subtype. 13483 * 13484 * This function creates a mailbox queue, as detailed in @mq, on a port, 13485 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 13486 * 13487 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13488 * is used to get the entry count and entry size that are necessary to 13489 * determine the number of pages to allocate and use for this queue. This 13490 * function will send the MQ_CREATE mailbox command to the HBA to setup the 13491 * mailbox queue. This function is asynchronous and will wait for the mailbox 13492 * command to finish before continuing. 13493 * 13494 * On success this function will return a zero. If unable to allocate enough 13495 * memory this function will return -ENOMEM. If the queue create mailbox command 13496 * fails this function will return -ENXIO. 13497 **/ 13498 int32_t 13499 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 13500 struct lpfc_queue *cq, uint32_t subtype) 13501 { 13502 struct lpfc_mbx_mq_create *mq_create; 13503 struct lpfc_mbx_mq_create_ext *mq_create_ext; 13504 struct lpfc_dmabuf *dmabuf; 13505 LPFC_MBOXQ_t *mbox; 13506 int rc, length, status = 0; 13507 uint32_t shdr_status, shdr_add_status; 13508 union lpfc_sli4_cfg_shdr *shdr; 13509 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13510 13511 /* sanity check on queue memory */ 13512 if (!mq || !cq) 13513 return -ENODEV; 13514 if (!phba->sli4_hba.pc_sli4_params.supported) 13515 hw_page_size = SLI4_PAGE_SIZE; 13516 13517 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13518 if (!mbox) 13519 return -ENOMEM; 13520 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 13521 sizeof(struct lpfc_sli4_cfg_mhdr)); 13522 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13523 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 13524 length, LPFC_SLI4_MBX_EMBED); 13525 13526 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 13527 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 13528 bf_set(lpfc_mbx_mq_create_ext_num_pages, 13529 &mq_create_ext->u.request, mq->page_count); 13530 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 13531 &mq_create_ext->u.request, 1); 13532 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 13533 &mq_create_ext->u.request, 1); 13534 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 13535 &mq_create_ext->u.request, 1); 13536 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 13537 &mq_create_ext->u.request, 1); 13538 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 13539 &mq_create_ext->u.request, 1); 13540 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 13541 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13542 phba->sli4_hba.pc_sli4_params.mqv); 13543 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 13544 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 13545 cq->queue_id); 13546 else 13547 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 13548 cq->queue_id); 13549 switch (mq->entry_count) { 13550 default: 13551 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13552 "0362 Unsupported MQ count. (%d)\n", 13553 mq->entry_count); 13554 if (mq->entry_count < 16) { 13555 status = -EINVAL; 13556 goto out; 13557 } 13558 /* otherwise default to smallest count (drop through) */ 13559 case 16: 13560 bf_set(lpfc_mq_context_ring_size, 13561 &mq_create_ext->u.request.context, 13562 LPFC_MQ_RING_SIZE_16); 13563 break; 13564 case 32: 13565 bf_set(lpfc_mq_context_ring_size, 13566 &mq_create_ext->u.request.context, 13567 LPFC_MQ_RING_SIZE_32); 13568 break; 13569 case 64: 13570 bf_set(lpfc_mq_context_ring_size, 13571 &mq_create_ext->u.request.context, 13572 LPFC_MQ_RING_SIZE_64); 13573 break; 13574 case 128: 13575 bf_set(lpfc_mq_context_ring_size, 13576 &mq_create_ext->u.request.context, 13577 LPFC_MQ_RING_SIZE_128); 13578 break; 13579 } 13580 list_for_each_entry(dmabuf, &mq->page_list, list) { 13581 memset(dmabuf->virt, 0, hw_page_size); 13582 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 13583 putPaddrLow(dmabuf->phys); 13584 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 13585 putPaddrHigh(dmabuf->phys); 13586 } 13587 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13588 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13589 &mq_create_ext->u.response); 13590 if (rc != MBX_SUCCESS) { 13591 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13592 "2795 MQ_CREATE_EXT failed with " 13593 "status x%x. Failback to MQ_CREATE.\n", 13594 rc); 13595 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 13596 mq_create = &mbox->u.mqe.un.mq_create; 13597 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13598 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 13599 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13600 &mq_create->u.response); 13601 } 13602 13603 /* The IOCTL status is embedded in the mailbox subheader. */ 13604 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13605 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13606 if (shdr_status || shdr_add_status || rc) { 13607 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13608 "2502 MQ_CREATE mailbox failed with " 13609 "status x%x add_status x%x, mbx status x%x\n", 13610 shdr_status, shdr_add_status, rc); 13611 status = -ENXIO; 13612 goto out; 13613 } 13614 if (mq->queue_id == 0xFFFF) { 13615 status = -ENXIO; 13616 goto out; 13617 } 13618 mq->type = LPFC_MQ; 13619 mq->assoc_qid = cq->queue_id; 13620 mq->subtype = subtype; 13621 mq->host_index = 0; 13622 mq->hba_index = 0; 13623 13624 /* link the mq onto the parent cq child list */ 13625 list_add_tail(&mq->list, &cq->child_list); 13626 out: 13627 mempool_free(mbox, phba->mbox_mem_pool); 13628 return status; 13629 } 13630 13631 /** 13632 * lpfc_wq_create - Create a Work Queue on the HBA 13633 * @phba: HBA structure that indicates port to create a queue on. 13634 * @wq: The queue structure to use to create the work queue. 13635 * @cq: The completion queue to bind this work queue to. 13636 * @subtype: The subtype of the work queue indicating its functionality. 13637 * 13638 * This function creates a work queue, as detailed in @wq, on a port, described 13639 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 13640 * 13641 * The @phba struct is used to send mailbox command to HBA. The @wq struct 13642 * is used to get the entry count and entry size that are necessary to 13643 * determine the number of pages to allocate and use for this queue. The @cq 13644 * is used to indicate which completion queue to bind this work queue to. This 13645 * function will send the WQ_CREATE mailbox command to the HBA to setup the 13646 * work queue. This function is asynchronous and will wait for the mailbox 13647 * command to finish before continuing. 13648 * 13649 * On success this function will return a zero. If unable to allocate enough 13650 * memory this function will return -ENOMEM. If the queue create mailbox command 13651 * fails this function will return -ENXIO. 13652 **/ 13653 int 13654 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 13655 struct lpfc_queue *cq, uint32_t subtype) 13656 { 13657 struct lpfc_mbx_wq_create *wq_create; 13658 struct lpfc_dmabuf *dmabuf; 13659 LPFC_MBOXQ_t *mbox; 13660 int rc, length, status = 0; 13661 uint32_t shdr_status, shdr_add_status; 13662 union lpfc_sli4_cfg_shdr *shdr; 13663 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13664 struct dma_address *page; 13665 void __iomem *bar_memmap_p; 13666 uint32_t db_offset; 13667 uint16_t pci_barset; 13668 13669 /* sanity check on queue memory */ 13670 if (!wq || !cq) 13671 return -ENODEV; 13672 if (!phba->sli4_hba.pc_sli4_params.supported) 13673 hw_page_size = SLI4_PAGE_SIZE; 13674 13675 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13676 if (!mbox) 13677 return -ENOMEM; 13678 length = (sizeof(struct lpfc_mbx_wq_create) - 13679 sizeof(struct lpfc_sli4_cfg_mhdr)); 13680 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13681 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 13682 length, LPFC_SLI4_MBX_EMBED); 13683 wq_create = &mbox->u.mqe.un.wq_create; 13684 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 13685 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 13686 wq->page_count); 13687 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 13688 cq->queue_id); 13689 13690 /* wqv is the earliest version supported, NOT the latest */ 13691 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13692 phba->sli4_hba.pc_sli4_params.wqv); 13693 13694 switch (phba->sli4_hba.pc_sli4_params.wqv) { 13695 case LPFC_Q_CREATE_VERSION_0: 13696 switch (wq->entry_size) { 13697 default: 13698 case 64: 13699 /* Nothing to do, version 0 ONLY supports 64 byte */ 13700 page = wq_create->u.request.page; 13701 break; 13702 case 128: 13703 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13704 LPFC_WQ_SZ128_SUPPORT)) { 13705 status = -ERANGE; 13706 goto out; 13707 } 13708 /* If we get here the HBA MUST also support V1 and 13709 * we MUST use it 13710 */ 13711 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13712 LPFC_Q_CREATE_VERSION_1); 13713 13714 bf_set(lpfc_mbx_wq_create_wqe_count, 13715 &wq_create->u.request_1, wq->entry_count); 13716 bf_set(lpfc_mbx_wq_create_wqe_size, 13717 &wq_create->u.request_1, 13718 LPFC_WQ_WQE_SIZE_128); 13719 bf_set(lpfc_mbx_wq_create_page_size, 13720 &wq_create->u.request_1, 13721 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13722 page = wq_create->u.request_1.page; 13723 break; 13724 } 13725 break; 13726 case LPFC_Q_CREATE_VERSION_1: 13727 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 13728 wq->entry_count); 13729 switch (wq->entry_size) { 13730 default: 13731 case 64: 13732 bf_set(lpfc_mbx_wq_create_wqe_size, 13733 &wq_create->u.request_1, 13734 LPFC_WQ_WQE_SIZE_64); 13735 break; 13736 case 128: 13737 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13738 LPFC_WQ_SZ128_SUPPORT)) { 13739 status = -ERANGE; 13740 goto out; 13741 } 13742 bf_set(lpfc_mbx_wq_create_wqe_size, 13743 &wq_create->u.request_1, 13744 LPFC_WQ_WQE_SIZE_128); 13745 break; 13746 } 13747 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 13748 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13749 page = wq_create->u.request_1.page; 13750 break; 13751 default: 13752 status = -ERANGE; 13753 goto out; 13754 } 13755 13756 list_for_each_entry(dmabuf, &wq->page_list, list) { 13757 memset(dmabuf->virt, 0, hw_page_size); 13758 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 13759 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 13760 } 13761 13762 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13763 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 13764 13765 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13766 /* The IOCTL status is embedded in the mailbox subheader. */ 13767 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13768 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13769 if (shdr_status || shdr_add_status || rc) { 13770 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13771 "2503 WQ_CREATE mailbox failed with " 13772 "status x%x add_status x%x, mbx status x%x\n", 13773 shdr_status, shdr_add_status, rc); 13774 status = -ENXIO; 13775 goto out; 13776 } 13777 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 13778 if (wq->queue_id == 0xFFFF) { 13779 status = -ENXIO; 13780 goto out; 13781 } 13782 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13783 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 13784 &wq_create->u.response); 13785 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 13786 (wq->db_format != LPFC_DB_RING_FORMAT)) { 13787 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13788 "3265 WQ[%d] doorbell format not " 13789 "supported: x%x\n", wq->queue_id, 13790 wq->db_format); 13791 status = -EINVAL; 13792 goto out; 13793 } 13794 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 13795 &wq_create->u.response); 13796 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13797 if (!bar_memmap_p) { 13798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13799 "3263 WQ[%d] failed to memmap pci " 13800 "barset:x%x\n", wq->queue_id, 13801 pci_barset); 13802 status = -ENOMEM; 13803 goto out; 13804 } 13805 db_offset = wq_create->u.response.doorbell_offset; 13806 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 13807 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 13808 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13809 "3252 WQ[%d] doorbell offset not " 13810 "supported: x%x\n", wq->queue_id, 13811 db_offset); 13812 status = -EINVAL; 13813 goto out; 13814 } 13815 wq->db_regaddr = bar_memmap_p + db_offset; 13816 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13817 "3264 WQ[%d]: barset:x%x, offset:x%x, " 13818 "format:x%x\n", wq->queue_id, pci_barset, 13819 db_offset, wq->db_format); 13820 } else { 13821 wq->db_format = LPFC_DB_LIST_FORMAT; 13822 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 13823 } 13824 wq->type = LPFC_WQ; 13825 wq->assoc_qid = cq->queue_id; 13826 wq->subtype = subtype; 13827 wq->host_index = 0; 13828 wq->hba_index = 0; 13829 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 13830 13831 /* link the wq onto the parent cq child list */ 13832 list_add_tail(&wq->list, &cq->child_list); 13833 out: 13834 mempool_free(mbox, phba->mbox_mem_pool); 13835 return status; 13836 } 13837 13838 /** 13839 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 13840 * @phba: HBA structure that indicates port to create a queue on. 13841 * @rq: The queue structure to use for the receive queue. 13842 * @qno: The associated HBQ number 13843 * 13844 * 13845 * For SLI4 we need to adjust the RQ repost value based on 13846 * the number of buffers that are initially posted to the RQ. 13847 */ 13848 void 13849 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 13850 { 13851 uint32_t cnt; 13852 13853 /* sanity check on queue memory */ 13854 if (!rq) 13855 return; 13856 cnt = lpfc_hbq_defs[qno]->entry_count; 13857 13858 /* Recalc repost for RQs based on buffers initially posted */ 13859 cnt = (cnt >> 3); 13860 if (cnt < LPFC_QUEUE_MIN_REPOST) 13861 cnt = LPFC_QUEUE_MIN_REPOST; 13862 13863 rq->entry_repost = cnt; 13864 } 13865 13866 /** 13867 * lpfc_rq_create - Create a Receive Queue on the HBA 13868 * @phba: HBA structure that indicates port to create a queue on. 13869 * @hrq: The queue structure to use to create the header receive queue. 13870 * @drq: The queue structure to use to create the data receive queue. 13871 * @cq: The completion queue to bind this work queue to. 13872 * 13873 * This function creates a receive buffer queue pair , as detailed in @hrq and 13874 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 13875 * to the HBA. 13876 * 13877 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 13878 * struct is used to get the entry count that is necessary to determine the 13879 * number of pages to use for this queue. The @cq is used to indicate which 13880 * completion queue to bind received buffers that are posted to these queues to. 13881 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 13882 * receive queue pair. This function is asynchronous and will wait for the 13883 * mailbox command to finish before continuing. 13884 * 13885 * On success this function will return a zero. If unable to allocate enough 13886 * memory this function will return -ENOMEM. If the queue create mailbox command 13887 * fails this function will return -ENXIO. 13888 **/ 13889 int 13890 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13891 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 13892 { 13893 struct lpfc_mbx_rq_create *rq_create; 13894 struct lpfc_dmabuf *dmabuf; 13895 LPFC_MBOXQ_t *mbox; 13896 int rc, length, status = 0; 13897 uint32_t shdr_status, shdr_add_status; 13898 union lpfc_sli4_cfg_shdr *shdr; 13899 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13900 void __iomem *bar_memmap_p; 13901 uint32_t db_offset; 13902 uint16_t pci_barset; 13903 13904 /* sanity check on queue memory */ 13905 if (!hrq || !drq || !cq) 13906 return -ENODEV; 13907 if (!phba->sli4_hba.pc_sli4_params.supported) 13908 hw_page_size = SLI4_PAGE_SIZE; 13909 13910 if (hrq->entry_count != drq->entry_count) 13911 return -EINVAL; 13912 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13913 if (!mbox) 13914 return -ENOMEM; 13915 length = (sizeof(struct lpfc_mbx_rq_create) - 13916 sizeof(struct lpfc_sli4_cfg_mhdr)); 13917 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13918 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13919 length, LPFC_SLI4_MBX_EMBED); 13920 rq_create = &mbox->u.mqe.un.rq_create; 13921 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13922 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13923 phba->sli4_hba.pc_sli4_params.rqv); 13924 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13925 bf_set(lpfc_rq_context_rqe_count_1, 13926 &rq_create->u.request.context, 13927 hrq->entry_count); 13928 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13929 bf_set(lpfc_rq_context_rqe_size, 13930 &rq_create->u.request.context, 13931 LPFC_RQE_SIZE_8); 13932 bf_set(lpfc_rq_context_page_size, 13933 &rq_create->u.request.context, 13934 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13935 } else { 13936 switch (hrq->entry_count) { 13937 default: 13938 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13939 "2535 Unsupported RQ count. (%d)\n", 13940 hrq->entry_count); 13941 if (hrq->entry_count < 512) { 13942 status = -EINVAL; 13943 goto out; 13944 } 13945 /* otherwise default to smallest count (drop through) */ 13946 case 512: 13947 bf_set(lpfc_rq_context_rqe_count, 13948 &rq_create->u.request.context, 13949 LPFC_RQ_RING_SIZE_512); 13950 break; 13951 case 1024: 13952 bf_set(lpfc_rq_context_rqe_count, 13953 &rq_create->u.request.context, 13954 LPFC_RQ_RING_SIZE_1024); 13955 break; 13956 case 2048: 13957 bf_set(lpfc_rq_context_rqe_count, 13958 &rq_create->u.request.context, 13959 LPFC_RQ_RING_SIZE_2048); 13960 break; 13961 case 4096: 13962 bf_set(lpfc_rq_context_rqe_count, 13963 &rq_create->u.request.context, 13964 LPFC_RQ_RING_SIZE_4096); 13965 break; 13966 } 13967 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13968 LPFC_HDR_BUF_SIZE); 13969 } 13970 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13971 cq->queue_id); 13972 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13973 hrq->page_count); 13974 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13975 memset(dmabuf->virt, 0, hw_page_size); 13976 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13977 putPaddrLow(dmabuf->phys); 13978 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13979 putPaddrHigh(dmabuf->phys); 13980 } 13981 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13982 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13983 13984 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13985 /* The IOCTL status is embedded in the mailbox subheader. */ 13986 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13987 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13988 if (shdr_status || shdr_add_status || rc) { 13989 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13990 "2504 RQ_CREATE mailbox failed with " 13991 "status x%x add_status x%x, mbx status x%x\n", 13992 shdr_status, shdr_add_status, rc); 13993 status = -ENXIO; 13994 goto out; 13995 } 13996 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13997 if (hrq->queue_id == 0xFFFF) { 13998 status = -ENXIO; 13999 goto out; 14000 } 14001 14002 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14003 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 14004 &rq_create->u.response); 14005 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 14006 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 14007 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14008 "3262 RQ [%d] doorbell format not " 14009 "supported: x%x\n", hrq->queue_id, 14010 hrq->db_format); 14011 status = -EINVAL; 14012 goto out; 14013 } 14014 14015 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 14016 &rq_create->u.response); 14017 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14018 if (!bar_memmap_p) { 14019 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14020 "3269 RQ[%d] failed to memmap pci " 14021 "barset:x%x\n", hrq->queue_id, 14022 pci_barset); 14023 status = -ENOMEM; 14024 goto out; 14025 } 14026 14027 db_offset = rq_create->u.response.doorbell_offset; 14028 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 14029 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 14030 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14031 "3270 RQ[%d] doorbell offset not " 14032 "supported: x%x\n", hrq->queue_id, 14033 db_offset); 14034 status = -EINVAL; 14035 goto out; 14036 } 14037 hrq->db_regaddr = bar_memmap_p + db_offset; 14038 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14039 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 14040 "format:x%x\n", hrq->queue_id, pci_barset, 14041 db_offset, hrq->db_format); 14042 } else { 14043 hrq->db_format = LPFC_DB_RING_FORMAT; 14044 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 14045 } 14046 hrq->type = LPFC_HRQ; 14047 hrq->assoc_qid = cq->queue_id; 14048 hrq->subtype = subtype; 14049 hrq->host_index = 0; 14050 hrq->hba_index = 0; 14051 14052 /* now create the data queue */ 14053 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14054 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 14055 length, LPFC_SLI4_MBX_EMBED); 14056 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14057 phba->sli4_hba.pc_sli4_params.rqv); 14058 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 14059 bf_set(lpfc_rq_context_rqe_count_1, 14060 &rq_create->u.request.context, hrq->entry_count); 14061 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 14062 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 14063 LPFC_RQE_SIZE_8); 14064 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 14065 (PAGE_SIZE/SLI4_PAGE_SIZE)); 14066 } else { 14067 switch (drq->entry_count) { 14068 default: 14069 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14070 "2536 Unsupported RQ count. (%d)\n", 14071 drq->entry_count); 14072 if (drq->entry_count < 512) { 14073 status = -EINVAL; 14074 goto out; 14075 } 14076 /* otherwise default to smallest count (drop through) */ 14077 case 512: 14078 bf_set(lpfc_rq_context_rqe_count, 14079 &rq_create->u.request.context, 14080 LPFC_RQ_RING_SIZE_512); 14081 break; 14082 case 1024: 14083 bf_set(lpfc_rq_context_rqe_count, 14084 &rq_create->u.request.context, 14085 LPFC_RQ_RING_SIZE_1024); 14086 break; 14087 case 2048: 14088 bf_set(lpfc_rq_context_rqe_count, 14089 &rq_create->u.request.context, 14090 LPFC_RQ_RING_SIZE_2048); 14091 break; 14092 case 4096: 14093 bf_set(lpfc_rq_context_rqe_count, 14094 &rq_create->u.request.context, 14095 LPFC_RQ_RING_SIZE_4096); 14096 break; 14097 } 14098 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 14099 LPFC_DATA_BUF_SIZE); 14100 } 14101 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 14102 cq->queue_id); 14103 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 14104 drq->page_count); 14105 list_for_each_entry(dmabuf, &drq->page_list, list) { 14106 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14107 putPaddrLow(dmabuf->phys); 14108 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14109 putPaddrHigh(dmabuf->phys); 14110 } 14111 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14112 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 14113 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14114 /* The IOCTL status is embedded in the mailbox subheader. */ 14115 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 14116 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14117 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14118 if (shdr_status || shdr_add_status || rc) { 14119 status = -ENXIO; 14120 goto out; 14121 } 14122 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 14123 if (drq->queue_id == 0xFFFF) { 14124 status = -ENXIO; 14125 goto out; 14126 } 14127 drq->type = LPFC_DRQ; 14128 drq->assoc_qid = cq->queue_id; 14129 drq->subtype = subtype; 14130 drq->host_index = 0; 14131 drq->hba_index = 0; 14132 14133 /* link the header and data RQs onto the parent cq child list */ 14134 list_add_tail(&hrq->list, &cq->child_list); 14135 list_add_tail(&drq->list, &cq->child_list); 14136 14137 out: 14138 mempool_free(mbox, phba->mbox_mem_pool); 14139 return status; 14140 } 14141 14142 /** 14143 * lpfc_eq_destroy - Destroy an event Queue on the HBA 14144 * @eq: The queue structure associated with the queue to destroy. 14145 * 14146 * This function destroys a queue, as detailed in @eq by sending an mailbox 14147 * command, specific to the type of queue, to the HBA. 14148 * 14149 * The @eq struct is used to get the queue ID of the queue to destroy. 14150 * 14151 * On success this function will return a zero. If the queue destroy mailbox 14152 * command fails this function will return -ENXIO. 14153 **/ 14154 int 14155 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 14156 { 14157 LPFC_MBOXQ_t *mbox; 14158 int rc, length, status = 0; 14159 uint32_t shdr_status, shdr_add_status; 14160 union lpfc_sli4_cfg_shdr *shdr; 14161 14162 /* sanity check on queue memory */ 14163 if (!eq) 14164 return -ENODEV; 14165 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 14166 if (!mbox) 14167 return -ENOMEM; 14168 length = (sizeof(struct lpfc_mbx_eq_destroy) - 14169 sizeof(struct lpfc_sli4_cfg_mhdr)); 14170 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14171 LPFC_MBOX_OPCODE_EQ_DESTROY, 14172 length, LPFC_SLI4_MBX_EMBED); 14173 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 14174 eq->queue_id); 14175 mbox->vport = eq->phba->pport; 14176 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14177 14178 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 14179 /* The IOCTL status is embedded in the mailbox subheader. */ 14180 shdr = (union lpfc_sli4_cfg_shdr *) 14181 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 14182 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14183 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14184 if (shdr_status || shdr_add_status || rc) { 14185 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14186 "2505 EQ_DESTROY mailbox failed with " 14187 "status x%x add_status x%x, mbx status x%x\n", 14188 shdr_status, shdr_add_status, rc); 14189 status = -ENXIO; 14190 } 14191 14192 /* Remove eq from any list */ 14193 list_del_init(&eq->list); 14194 mempool_free(mbox, eq->phba->mbox_mem_pool); 14195 return status; 14196 } 14197 14198 /** 14199 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 14200 * @cq: The queue structure associated with the queue to destroy. 14201 * 14202 * This function destroys a queue, as detailed in @cq by sending an mailbox 14203 * command, specific to the type of queue, to the HBA. 14204 * 14205 * The @cq struct is used to get the queue ID of the queue to destroy. 14206 * 14207 * On success this function will return a zero. If the queue destroy mailbox 14208 * command fails this function will return -ENXIO. 14209 **/ 14210 int 14211 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 14212 { 14213 LPFC_MBOXQ_t *mbox; 14214 int rc, length, status = 0; 14215 uint32_t shdr_status, shdr_add_status; 14216 union lpfc_sli4_cfg_shdr *shdr; 14217 14218 /* sanity check on queue memory */ 14219 if (!cq) 14220 return -ENODEV; 14221 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 14222 if (!mbox) 14223 return -ENOMEM; 14224 length = (sizeof(struct lpfc_mbx_cq_destroy) - 14225 sizeof(struct lpfc_sli4_cfg_mhdr)); 14226 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14227 LPFC_MBOX_OPCODE_CQ_DESTROY, 14228 length, LPFC_SLI4_MBX_EMBED); 14229 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 14230 cq->queue_id); 14231 mbox->vport = cq->phba->pport; 14232 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14233 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 14234 /* The IOCTL status is embedded in the mailbox subheader. */ 14235 shdr = (union lpfc_sli4_cfg_shdr *) 14236 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 14237 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14238 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14239 if (shdr_status || shdr_add_status || rc) { 14240 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14241 "2506 CQ_DESTROY mailbox failed with " 14242 "status x%x add_status x%x, mbx status x%x\n", 14243 shdr_status, shdr_add_status, rc); 14244 status = -ENXIO; 14245 } 14246 /* Remove cq from any list */ 14247 list_del_init(&cq->list); 14248 mempool_free(mbox, cq->phba->mbox_mem_pool); 14249 return status; 14250 } 14251 14252 /** 14253 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 14254 * @qm: The queue structure associated with the queue to destroy. 14255 * 14256 * This function destroys a queue, as detailed in @mq by sending an mailbox 14257 * command, specific to the type of queue, to the HBA. 14258 * 14259 * The @mq struct is used to get the queue ID of the queue to destroy. 14260 * 14261 * On success this function will return a zero. If the queue destroy mailbox 14262 * command fails this function will return -ENXIO. 14263 **/ 14264 int 14265 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 14266 { 14267 LPFC_MBOXQ_t *mbox; 14268 int rc, length, status = 0; 14269 uint32_t shdr_status, shdr_add_status; 14270 union lpfc_sli4_cfg_shdr *shdr; 14271 14272 /* sanity check on queue memory */ 14273 if (!mq) 14274 return -ENODEV; 14275 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 14276 if (!mbox) 14277 return -ENOMEM; 14278 length = (sizeof(struct lpfc_mbx_mq_destroy) - 14279 sizeof(struct lpfc_sli4_cfg_mhdr)); 14280 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14281 LPFC_MBOX_OPCODE_MQ_DESTROY, 14282 length, LPFC_SLI4_MBX_EMBED); 14283 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 14284 mq->queue_id); 14285 mbox->vport = mq->phba->pport; 14286 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14287 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 14288 /* The IOCTL status is embedded in the mailbox subheader. */ 14289 shdr = (union lpfc_sli4_cfg_shdr *) 14290 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 14291 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14292 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14293 if (shdr_status || shdr_add_status || rc) { 14294 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14295 "2507 MQ_DESTROY mailbox failed with " 14296 "status x%x add_status x%x, mbx status x%x\n", 14297 shdr_status, shdr_add_status, rc); 14298 status = -ENXIO; 14299 } 14300 /* Remove mq from any list */ 14301 list_del_init(&mq->list); 14302 mempool_free(mbox, mq->phba->mbox_mem_pool); 14303 return status; 14304 } 14305 14306 /** 14307 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 14308 * @wq: The queue structure associated with the queue to destroy. 14309 * 14310 * This function destroys a queue, as detailed in @wq by sending an mailbox 14311 * command, specific to the type of queue, to the HBA. 14312 * 14313 * The @wq struct is used to get the queue ID of the queue to destroy. 14314 * 14315 * On success this function will return a zero. If the queue destroy mailbox 14316 * command fails this function will return -ENXIO. 14317 **/ 14318 int 14319 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 14320 { 14321 LPFC_MBOXQ_t *mbox; 14322 int rc, length, status = 0; 14323 uint32_t shdr_status, shdr_add_status; 14324 union lpfc_sli4_cfg_shdr *shdr; 14325 14326 /* sanity check on queue memory */ 14327 if (!wq) 14328 return -ENODEV; 14329 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 14330 if (!mbox) 14331 return -ENOMEM; 14332 length = (sizeof(struct lpfc_mbx_wq_destroy) - 14333 sizeof(struct lpfc_sli4_cfg_mhdr)); 14334 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14335 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 14336 length, LPFC_SLI4_MBX_EMBED); 14337 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 14338 wq->queue_id); 14339 mbox->vport = wq->phba->pport; 14340 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14341 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 14342 shdr = (union lpfc_sli4_cfg_shdr *) 14343 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 14344 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14345 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14346 if (shdr_status || shdr_add_status || rc) { 14347 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14348 "2508 WQ_DESTROY mailbox failed with " 14349 "status x%x add_status x%x, mbx status x%x\n", 14350 shdr_status, shdr_add_status, rc); 14351 status = -ENXIO; 14352 } 14353 /* Remove wq from any list */ 14354 list_del_init(&wq->list); 14355 mempool_free(mbox, wq->phba->mbox_mem_pool); 14356 return status; 14357 } 14358 14359 /** 14360 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 14361 * @rq: The queue structure associated with the queue to destroy. 14362 * 14363 * This function destroys a queue, as detailed in @rq by sending an mailbox 14364 * command, specific to the type of queue, to the HBA. 14365 * 14366 * The @rq struct is used to get the queue ID of the queue to destroy. 14367 * 14368 * On success this function will return a zero. If the queue destroy mailbox 14369 * command fails this function will return -ENXIO. 14370 **/ 14371 int 14372 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14373 struct lpfc_queue *drq) 14374 { 14375 LPFC_MBOXQ_t *mbox; 14376 int rc, length, status = 0; 14377 uint32_t shdr_status, shdr_add_status; 14378 union lpfc_sli4_cfg_shdr *shdr; 14379 14380 /* sanity check on queue memory */ 14381 if (!hrq || !drq) 14382 return -ENODEV; 14383 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 14384 if (!mbox) 14385 return -ENOMEM; 14386 length = (sizeof(struct lpfc_mbx_rq_destroy) - 14387 sizeof(struct lpfc_sli4_cfg_mhdr)); 14388 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14389 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 14390 length, LPFC_SLI4_MBX_EMBED); 14391 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14392 hrq->queue_id); 14393 mbox->vport = hrq->phba->pport; 14394 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14395 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 14396 /* The IOCTL status is embedded in the mailbox subheader. */ 14397 shdr = (union lpfc_sli4_cfg_shdr *) 14398 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14399 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14400 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14401 if (shdr_status || shdr_add_status || rc) { 14402 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14403 "2509 RQ_DESTROY mailbox failed with " 14404 "status x%x add_status x%x, mbx status x%x\n", 14405 shdr_status, shdr_add_status, rc); 14406 if (rc != MBX_TIMEOUT) 14407 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14408 return -ENXIO; 14409 } 14410 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14411 drq->queue_id); 14412 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 14413 shdr = (union lpfc_sli4_cfg_shdr *) 14414 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14415 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14416 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14417 if (shdr_status || shdr_add_status || rc) { 14418 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14419 "2510 RQ_DESTROY mailbox failed with " 14420 "status x%x add_status x%x, mbx status x%x\n", 14421 shdr_status, shdr_add_status, rc); 14422 status = -ENXIO; 14423 } 14424 list_del_init(&hrq->list); 14425 list_del_init(&drq->list); 14426 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14427 return status; 14428 } 14429 14430 /** 14431 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 14432 * @phba: The virtual port for which this call being executed. 14433 * @pdma_phys_addr0: Physical address of the 1st SGL page. 14434 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 14435 * @xritag: the xritag that ties this io to the SGL pages. 14436 * 14437 * This routine will post the sgl pages for the IO that has the xritag 14438 * that is in the iocbq structure. The xritag is assigned during iocbq 14439 * creation and persists for as long as the driver is loaded. 14440 * if the caller has fewer than 256 scatter gather segments to map then 14441 * pdma_phys_addr1 should be 0. 14442 * If the caller needs to map more than 256 scatter gather segment then 14443 * pdma_phys_addr1 should be a valid physical address. 14444 * physical address for SGLs must be 64 byte aligned. 14445 * If you are going to map 2 SGL's then the first one must have 256 entries 14446 * the second sgl can have between 1 and 256 entries. 14447 * 14448 * Return codes: 14449 * 0 - Success 14450 * -ENXIO, -ENOMEM - Failure 14451 **/ 14452 int 14453 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 14454 dma_addr_t pdma_phys_addr0, 14455 dma_addr_t pdma_phys_addr1, 14456 uint16_t xritag) 14457 { 14458 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 14459 LPFC_MBOXQ_t *mbox; 14460 int rc; 14461 uint32_t shdr_status, shdr_add_status; 14462 uint32_t mbox_tmo; 14463 union lpfc_sli4_cfg_shdr *shdr; 14464 14465 if (xritag == NO_XRI) { 14466 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14467 "0364 Invalid param:\n"); 14468 return -EINVAL; 14469 } 14470 14471 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14472 if (!mbox) 14473 return -ENOMEM; 14474 14475 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14476 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 14477 sizeof(struct lpfc_mbx_post_sgl_pages) - 14478 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 14479 14480 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 14481 &mbox->u.mqe.un.post_sgl_pages; 14482 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 14483 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 14484 14485 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 14486 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 14487 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 14488 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 14489 14490 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 14491 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 14492 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 14493 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 14494 if (!phba->sli4_hba.intr_enable) 14495 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14496 else { 14497 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14498 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14499 } 14500 /* The IOCTL status is embedded in the mailbox subheader. */ 14501 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 14502 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14503 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14504 if (rc != MBX_TIMEOUT) 14505 mempool_free(mbox, phba->mbox_mem_pool); 14506 if (shdr_status || shdr_add_status || rc) { 14507 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14508 "2511 POST_SGL mailbox failed with " 14509 "status x%x add_status x%x, mbx status x%x\n", 14510 shdr_status, shdr_add_status, rc); 14511 } 14512 return 0; 14513 } 14514 14515 /** 14516 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 14517 * @phba: pointer to lpfc hba data structure. 14518 * 14519 * This routine is invoked to post rpi header templates to the 14520 * HBA consistent with the SLI-4 interface spec. This routine 14521 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14522 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14523 * 14524 * Returns 14525 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 14526 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 14527 **/ 14528 static uint16_t 14529 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 14530 { 14531 unsigned long xri; 14532 14533 /* 14534 * Fetch the next logical xri. Because this index is logical, 14535 * the driver starts at 0 each time. 14536 */ 14537 spin_lock_irq(&phba->hbalock); 14538 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 14539 phba->sli4_hba.max_cfg_param.max_xri, 0); 14540 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 14541 spin_unlock_irq(&phba->hbalock); 14542 return NO_XRI; 14543 } else { 14544 set_bit(xri, phba->sli4_hba.xri_bmask); 14545 phba->sli4_hba.max_cfg_param.xri_used++; 14546 } 14547 spin_unlock_irq(&phba->hbalock); 14548 return xri; 14549 } 14550 14551 /** 14552 * lpfc_sli4_free_xri - Release an xri for reuse. 14553 * @phba: pointer to lpfc hba data structure. 14554 * 14555 * This routine is invoked to release an xri to the pool of 14556 * available rpis maintained by the driver. 14557 **/ 14558 static void 14559 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14560 { 14561 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 14562 phba->sli4_hba.max_cfg_param.xri_used--; 14563 } 14564 } 14565 14566 /** 14567 * lpfc_sli4_free_xri - Release an xri for reuse. 14568 * @phba: pointer to lpfc hba data structure. 14569 * 14570 * This routine is invoked to release an xri to the pool of 14571 * available rpis maintained by the driver. 14572 **/ 14573 void 14574 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14575 { 14576 spin_lock_irq(&phba->hbalock); 14577 __lpfc_sli4_free_xri(phba, xri); 14578 spin_unlock_irq(&phba->hbalock); 14579 } 14580 14581 /** 14582 * lpfc_sli4_next_xritag - Get an xritag for the io 14583 * @phba: Pointer to HBA context object. 14584 * 14585 * This function gets an xritag for the iocb. If there is no unused xritag 14586 * it will return 0xffff. 14587 * The function returns the allocated xritag if successful, else returns zero. 14588 * Zero is not a valid xritag. 14589 * The caller is not required to hold any lock. 14590 **/ 14591 uint16_t 14592 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 14593 { 14594 uint16_t xri_index; 14595 14596 xri_index = lpfc_sli4_alloc_xri(phba); 14597 if (xri_index == NO_XRI) 14598 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14599 "2004 Failed to allocate XRI.last XRITAG is %d" 14600 " Max XRI is %d, Used XRI is %d\n", 14601 xri_index, 14602 phba->sli4_hba.max_cfg_param.max_xri, 14603 phba->sli4_hba.max_cfg_param.xri_used); 14604 return xri_index; 14605 } 14606 14607 /** 14608 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 14609 * @phba: pointer to lpfc hba data structure. 14610 * @post_sgl_list: pointer to els sgl entry list. 14611 * @count: number of els sgl entries on the list. 14612 * 14613 * This routine is invoked to post a block of driver's sgl pages to the 14614 * HBA using non-embedded mailbox command. No Lock is held. This routine 14615 * is only called when the driver is loading and after all IO has been 14616 * stopped. 14617 **/ 14618 static int 14619 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 14620 struct list_head *post_sgl_list, 14621 int post_cnt) 14622 { 14623 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 14624 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14625 struct sgl_page_pairs *sgl_pg_pairs; 14626 void *viraddr; 14627 LPFC_MBOXQ_t *mbox; 14628 uint32_t reqlen, alloclen, pg_pairs; 14629 uint32_t mbox_tmo; 14630 uint16_t xritag_start = 0; 14631 int rc = 0; 14632 uint32_t shdr_status, shdr_add_status; 14633 union lpfc_sli4_cfg_shdr *shdr; 14634 14635 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 14636 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14637 if (reqlen > SLI4_PAGE_SIZE) { 14638 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14639 "2559 Block sgl registration required DMA " 14640 "size (%d) great than a page\n", reqlen); 14641 return -ENOMEM; 14642 } 14643 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14644 if (!mbox) 14645 return -ENOMEM; 14646 14647 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14648 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14649 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14650 LPFC_SLI4_MBX_NEMBED); 14651 14652 if (alloclen < reqlen) { 14653 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14654 "0285 Allocated DMA memory size (%d) is " 14655 "less than the requested DMA memory " 14656 "size (%d)\n", alloclen, reqlen); 14657 lpfc_sli4_mbox_cmd_free(phba, mbox); 14658 return -ENOMEM; 14659 } 14660 /* Set up the SGL pages in the non-embedded DMA pages */ 14661 viraddr = mbox->sge_array->addr[0]; 14662 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14663 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14664 14665 pg_pairs = 0; 14666 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 14667 /* Set up the sge entry */ 14668 sgl_pg_pairs->sgl_pg0_addr_lo = 14669 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 14670 sgl_pg_pairs->sgl_pg0_addr_hi = 14671 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 14672 sgl_pg_pairs->sgl_pg1_addr_lo = 14673 cpu_to_le32(putPaddrLow(0)); 14674 sgl_pg_pairs->sgl_pg1_addr_hi = 14675 cpu_to_le32(putPaddrHigh(0)); 14676 14677 /* Keep the first xritag on the list */ 14678 if (pg_pairs == 0) 14679 xritag_start = sglq_entry->sli4_xritag; 14680 sgl_pg_pairs++; 14681 pg_pairs++; 14682 } 14683 14684 /* Complete initialization and perform endian conversion. */ 14685 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14686 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 14687 sgl->word0 = cpu_to_le32(sgl->word0); 14688 if (!phba->sli4_hba.intr_enable) 14689 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14690 else { 14691 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14692 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14693 } 14694 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14695 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14696 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14697 if (rc != MBX_TIMEOUT) 14698 lpfc_sli4_mbox_cmd_free(phba, mbox); 14699 if (shdr_status || shdr_add_status || rc) { 14700 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14701 "2513 POST_SGL_BLOCK mailbox command failed " 14702 "status x%x add_status x%x mbx status x%x\n", 14703 shdr_status, shdr_add_status, rc); 14704 rc = -ENXIO; 14705 } 14706 return rc; 14707 } 14708 14709 /** 14710 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 14711 * @phba: pointer to lpfc hba data structure. 14712 * @sblist: pointer to scsi buffer list. 14713 * @count: number of scsi buffers on the list. 14714 * 14715 * This routine is invoked to post a block of @count scsi sgl pages from a 14716 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 14717 * No Lock is held. 14718 * 14719 **/ 14720 int 14721 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 14722 struct list_head *sblist, 14723 int count) 14724 { 14725 struct lpfc_scsi_buf *psb; 14726 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14727 struct sgl_page_pairs *sgl_pg_pairs; 14728 void *viraddr; 14729 LPFC_MBOXQ_t *mbox; 14730 uint32_t reqlen, alloclen, pg_pairs; 14731 uint32_t mbox_tmo; 14732 uint16_t xritag_start = 0; 14733 int rc = 0; 14734 uint32_t shdr_status, shdr_add_status; 14735 dma_addr_t pdma_phys_bpl1; 14736 union lpfc_sli4_cfg_shdr *shdr; 14737 14738 /* Calculate the requested length of the dma memory */ 14739 reqlen = count * sizeof(struct sgl_page_pairs) + 14740 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14741 if (reqlen > SLI4_PAGE_SIZE) { 14742 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14743 "0217 Block sgl registration required DMA " 14744 "size (%d) great than a page\n", reqlen); 14745 return -ENOMEM; 14746 } 14747 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14748 if (!mbox) { 14749 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14750 "0283 Failed to allocate mbox cmd memory\n"); 14751 return -ENOMEM; 14752 } 14753 14754 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14755 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14756 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14757 LPFC_SLI4_MBX_NEMBED); 14758 14759 if (alloclen < reqlen) { 14760 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14761 "2561 Allocated DMA memory size (%d) is " 14762 "less than the requested DMA memory " 14763 "size (%d)\n", alloclen, reqlen); 14764 lpfc_sli4_mbox_cmd_free(phba, mbox); 14765 return -ENOMEM; 14766 } 14767 14768 /* Get the first SGE entry from the non-embedded DMA memory */ 14769 viraddr = mbox->sge_array->addr[0]; 14770 14771 /* Set up the SGL pages in the non-embedded DMA pages */ 14772 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14773 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14774 14775 pg_pairs = 0; 14776 list_for_each_entry(psb, sblist, list) { 14777 /* Set up the sge entry */ 14778 sgl_pg_pairs->sgl_pg0_addr_lo = 14779 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 14780 sgl_pg_pairs->sgl_pg0_addr_hi = 14781 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 14782 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 14783 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 14784 else 14785 pdma_phys_bpl1 = 0; 14786 sgl_pg_pairs->sgl_pg1_addr_lo = 14787 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 14788 sgl_pg_pairs->sgl_pg1_addr_hi = 14789 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 14790 /* Keep the first xritag on the list */ 14791 if (pg_pairs == 0) 14792 xritag_start = psb->cur_iocbq.sli4_xritag; 14793 sgl_pg_pairs++; 14794 pg_pairs++; 14795 } 14796 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14797 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 14798 /* Perform endian conversion if necessary */ 14799 sgl->word0 = cpu_to_le32(sgl->word0); 14800 14801 if (!phba->sli4_hba.intr_enable) 14802 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14803 else { 14804 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14805 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14806 } 14807 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14808 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14809 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14810 if (rc != MBX_TIMEOUT) 14811 lpfc_sli4_mbox_cmd_free(phba, mbox); 14812 if (shdr_status || shdr_add_status || rc) { 14813 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14814 "2564 POST_SGL_BLOCK mailbox command failed " 14815 "status x%x add_status x%x mbx status x%x\n", 14816 shdr_status, shdr_add_status, rc); 14817 rc = -ENXIO; 14818 } 14819 return rc; 14820 } 14821 14822 /** 14823 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 14824 * @phba: pointer to lpfc_hba struct that the frame was received on 14825 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14826 * 14827 * This function checks the fields in the @fc_hdr to see if the FC frame is a 14828 * valid type of frame that the LPFC driver will handle. This function will 14829 * return a zero if the frame is a valid frame or a non zero value when the 14830 * frame does not pass the check. 14831 **/ 14832 static int 14833 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 14834 { 14835 /* make rctl_names static to save stack space */ 14836 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 14837 char *type_names[] = FC_TYPE_NAMES_INIT; 14838 struct fc_vft_header *fc_vft_hdr; 14839 uint32_t *header = (uint32_t *) fc_hdr; 14840 14841 switch (fc_hdr->fh_r_ctl) { 14842 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 14843 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 14844 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 14845 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 14846 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 14847 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 14848 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 14849 case FC_RCTL_DD_CMD_STATUS: /* command status */ 14850 case FC_RCTL_ELS_REQ: /* extended link services request */ 14851 case FC_RCTL_ELS_REP: /* extended link services reply */ 14852 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 14853 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 14854 case FC_RCTL_BA_NOP: /* basic link service NOP */ 14855 case FC_RCTL_BA_ABTS: /* basic link service abort */ 14856 case FC_RCTL_BA_RMC: /* remove connection */ 14857 case FC_RCTL_BA_ACC: /* basic accept */ 14858 case FC_RCTL_BA_RJT: /* basic reject */ 14859 case FC_RCTL_BA_PRMT: 14860 case FC_RCTL_ACK_1: /* acknowledge_1 */ 14861 case FC_RCTL_ACK_0: /* acknowledge_0 */ 14862 case FC_RCTL_P_RJT: /* port reject */ 14863 case FC_RCTL_F_RJT: /* fabric reject */ 14864 case FC_RCTL_P_BSY: /* port busy */ 14865 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 14866 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 14867 case FC_RCTL_LCR: /* link credit reset */ 14868 case FC_RCTL_END: /* end */ 14869 break; 14870 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 14871 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14872 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 14873 return lpfc_fc_frame_check(phba, fc_hdr); 14874 default: 14875 goto drop; 14876 } 14877 switch (fc_hdr->fh_type) { 14878 case FC_TYPE_BLS: 14879 case FC_TYPE_ELS: 14880 case FC_TYPE_FCP: 14881 case FC_TYPE_CT: 14882 break; 14883 case FC_TYPE_IP: 14884 case FC_TYPE_ILS: 14885 default: 14886 goto drop; 14887 } 14888 14889 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 14890 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 14891 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 14892 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 14893 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 14894 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14895 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14896 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14897 be32_to_cpu(header[6])); 14898 return 0; 14899 drop: 14900 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14901 "2539 Dropped frame rctl:%s type:%s\n", 14902 rctl_names[fc_hdr->fh_r_ctl], 14903 type_names[fc_hdr->fh_type]); 14904 return 1; 14905 } 14906 14907 /** 14908 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14909 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14910 * 14911 * This function processes the FC header to retrieve the VFI from the VF 14912 * header, if one exists. This function will return the VFI if one exists 14913 * or 0 if no VSAN Header exists. 14914 **/ 14915 static uint32_t 14916 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14917 { 14918 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14919 14920 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14921 return 0; 14922 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14923 } 14924 14925 /** 14926 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14927 * @phba: Pointer to the HBA structure to search for the vport on 14928 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14929 * @fcfi: The FC Fabric ID that the frame came from 14930 * 14931 * This function searches the @phba for a vport that matches the content of the 14932 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14933 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14934 * returns the matching vport pointer or NULL if unable to match frame to a 14935 * vport. 14936 **/ 14937 static struct lpfc_vport * 14938 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14939 uint16_t fcfi) 14940 { 14941 struct lpfc_vport **vports; 14942 struct lpfc_vport *vport = NULL; 14943 int i; 14944 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14945 fc_hdr->fh_d_id[1] << 8 | 14946 fc_hdr->fh_d_id[2]); 14947 14948 if (did == Fabric_DID) 14949 return phba->pport; 14950 if ((phba->pport->fc_flag & FC_PT2PT) && 14951 !(phba->link_state == LPFC_HBA_READY)) 14952 return phba->pport; 14953 14954 vports = lpfc_create_vport_work_array(phba); 14955 if (vports != NULL) 14956 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14957 if (phba->fcf.fcfi == fcfi && 14958 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14959 vports[i]->fc_myDID == did) { 14960 vport = vports[i]; 14961 break; 14962 } 14963 } 14964 lpfc_destroy_vport_work_array(phba, vports); 14965 return vport; 14966 } 14967 14968 /** 14969 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14970 * @vport: The vport to work on. 14971 * 14972 * This function updates the receive sequence time stamp for this vport. The 14973 * receive sequence time stamp indicates the time that the last frame of the 14974 * the sequence that has been idle for the longest amount of time was received. 14975 * the driver uses this time stamp to indicate if any received sequences have 14976 * timed out. 14977 **/ 14978 static void 14979 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14980 { 14981 struct lpfc_dmabuf *h_buf; 14982 struct hbq_dmabuf *dmabuf = NULL; 14983 14984 /* get the oldest sequence on the rcv list */ 14985 h_buf = list_get_first(&vport->rcv_buffer_list, 14986 struct lpfc_dmabuf, list); 14987 if (!h_buf) 14988 return; 14989 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14990 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14991 } 14992 14993 /** 14994 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14995 * @vport: The vport that the received sequences were sent to. 14996 * 14997 * This function cleans up all outstanding received sequences. This is called 14998 * by the driver when a link event or user action invalidates all the received 14999 * sequences. 15000 **/ 15001 void 15002 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 15003 { 15004 struct lpfc_dmabuf *h_buf, *hnext; 15005 struct lpfc_dmabuf *d_buf, *dnext; 15006 struct hbq_dmabuf *dmabuf = NULL; 15007 15008 /* start with the oldest sequence on the rcv list */ 15009 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 15010 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15011 list_del_init(&dmabuf->hbuf.list); 15012 list_for_each_entry_safe(d_buf, dnext, 15013 &dmabuf->dbuf.list, list) { 15014 list_del_init(&d_buf->list); 15015 lpfc_in_buf_free(vport->phba, d_buf); 15016 } 15017 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 15018 } 15019 } 15020 15021 /** 15022 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 15023 * @vport: The vport that the received sequences were sent to. 15024 * 15025 * This function determines whether any received sequences have timed out by 15026 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 15027 * indicates that there is at least one timed out sequence this routine will 15028 * go through the received sequences one at a time from most inactive to most 15029 * active to determine which ones need to be cleaned up. Once it has determined 15030 * that a sequence needs to be cleaned up it will simply free up the resources 15031 * without sending an abort. 15032 **/ 15033 void 15034 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 15035 { 15036 struct lpfc_dmabuf *h_buf, *hnext; 15037 struct lpfc_dmabuf *d_buf, *dnext; 15038 struct hbq_dmabuf *dmabuf = NULL; 15039 unsigned long timeout; 15040 int abort_count = 0; 15041 15042 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 15043 vport->rcv_buffer_time_stamp); 15044 if (list_empty(&vport->rcv_buffer_list) || 15045 time_before(jiffies, timeout)) 15046 return; 15047 /* start with the oldest sequence on the rcv list */ 15048 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 15049 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15050 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 15051 dmabuf->time_stamp); 15052 if (time_before(jiffies, timeout)) 15053 break; 15054 abort_count++; 15055 list_del_init(&dmabuf->hbuf.list); 15056 list_for_each_entry_safe(d_buf, dnext, 15057 &dmabuf->dbuf.list, list) { 15058 list_del_init(&d_buf->list); 15059 lpfc_in_buf_free(vport->phba, d_buf); 15060 } 15061 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 15062 } 15063 if (abort_count) 15064 lpfc_update_rcv_time_stamp(vport); 15065 } 15066 15067 /** 15068 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 15069 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 15070 * 15071 * This function searches through the existing incomplete sequences that have 15072 * been sent to this @vport. If the frame matches one of the incomplete 15073 * sequences then the dbuf in the @dmabuf is added to the list of frames that 15074 * make up that sequence. If no sequence is found that matches this frame then 15075 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 15076 * This function returns a pointer to the first dmabuf in the sequence list that 15077 * the frame was linked to. 15078 **/ 15079 static struct hbq_dmabuf * 15080 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15081 { 15082 struct fc_frame_header *new_hdr; 15083 struct fc_frame_header *temp_hdr; 15084 struct lpfc_dmabuf *d_buf; 15085 struct lpfc_dmabuf *h_buf; 15086 struct hbq_dmabuf *seq_dmabuf = NULL; 15087 struct hbq_dmabuf *temp_dmabuf = NULL; 15088 uint8_t found = 0; 15089 15090 INIT_LIST_HEAD(&dmabuf->dbuf.list); 15091 dmabuf->time_stamp = jiffies; 15092 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15093 15094 /* Use the hdr_buf to find the sequence that this frame belongs to */ 15095 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 15096 temp_hdr = (struct fc_frame_header *)h_buf->virt; 15097 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 15098 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 15099 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 15100 continue; 15101 /* found a pending sequence that matches this frame */ 15102 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15103 break; 15104 } 15105 if (!seq_dmabuf) { 15106 /* 15107 * This indicates first frame received for this sequence. 15108 * Queue the buffer on the vport's rcv_buffer_list. 15109 */ 15110 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 15111 lpfc_update_rcv_time_stamp(vport); 15112 return dmabuf; 15113 } 15114 temp_hdr = seq_dmabuf->hbuf.virt; 15115 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 15116 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 15117 list_del_init(&seq_dmabuf->hbuf.list); 15118 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 15119 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 15120 lpfc_update_rcv_time_stamp(vport); 15121 return dmabuf; 15122 } 15123 /* move this sequence to the tail to indicate a young sequence */ 15124 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 15125 seq_dmabuf->time_stamp = jiffies; 15126 lpfc_update_rcv_time_stamp(vport); 15127 if (list_empty(&seq_dmabuf->dbuf.list)) { 15128 temp_hdr = dmabuf->hbuf.virt; 15129 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 15130 return seq_dmabuf; 15131 } 15132 /* find the correct place in the sequence to insert this frame */ 15133 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 15134 while (!found) { 15135 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15136 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 15137 /* 15138 * If the frame's sequence count is greater than the frame on 15139 * the list then insert the frame right after this frame 15140 */ 15141 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 15142 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 15143 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 15144 found = 1; 15145 break; 15146 } 15147 15148 if (&d_buf->list == &seq_dmabuf->dbuf.list) 15149 break; 15150 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 15151 } 15152 15153 if (found) 15154 return seq_dmabuf; 15155 return NULL; 15156 } 15157 15158 /** 15159 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 15160 * @vport: pointer to a vitural port 15161 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15162 * 15163 * This function tries to abort from the partially assembed sequence, described 15164 * by the information from basic abbort @dmabuf. It checks to see whether such 15165 * partially assembled sequence held by the driver. If so, it shall free up all 15166 * the frames from the partially assembled sequence. 15167 * 15168 * Return 15169 * true -- if there is matching partially assembled sequence present and all 15170 * the frames freed with the sequence; 15171 * false -- if there is no matching partially assembled sequence present so 15172 * nothing got aborted in the lower layer driver 15173 **/ 15174 static bool 15175 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 15176 struct hbq_dmabuf *dmabuf) 15177 { 15178 struct fc_frame_header *new_hdr; 15179 struct fc_frame_header *temp_hdr; 15180 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 15181 struct hbq_dmabuf *seq_dmabuf = NULL; 15182 15183 /* Use the hdr_buf to find the sequence that matches this frame */ 15184 INIT_LIST_HEAD(&dmabuf->dbuf.list); 15185 INIT_LIST_HEAD(&dmabuf->hbuf.list); 15186 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15187 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 15188 temp_hdr = (struct fc_frame_header *)h_buf->virt; 15189 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 15190 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 15191 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 15192 continue; 15193 /* found a pending sequence that matches this frame */ 15194 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 15195 break; 15196 } 15197 15198 /* Free up all the frames from the partially assembled sequence */ 15199 if (seq_dmabuf) { 15200 list_for_each_entry_safe(d_buf, n_buf, 15201 &seq_dmabuf->dbuf.list, list) { 15202 list_del_init(&d_buf->list); 15203 lpfc_in_buf_free(vport->phba, d_buf); 15204 } 15205 return true; 15206 } 15207 return false; 15208 } 15209 15210 /** 15211 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 15212 * @vport: pointer to a vitural port 15213 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15214 * 15215 * This function tries to abort from the assembed sequence from upper level 15216 * protocol, described by the information from basic abbort @dmabuf. It 15217 * checks to see whether such pending context exists at upper level protocol. 15218 * If so, it shall clean up the pending context. 15219 * 15220 * Return 15221 * true -- if there is matching pending context of the sequence cleaned 15222 * at ulp; 15223 * false -- if there is no matching pending context of the sequence present 15224 * at ulp. 15225 **/ 15226 static bool 15227 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 15228 { 15229 struct lpfc_hba *phba = vport->phba; 15230 int handled; 15231 15232 /* Accepting abort at ulp with SLI4 only */ 15233 if (phba->sli_rev < LPFC_SLI_REV4) 15234 return false; 15235 15236 /* Register all caring upper level protocols to attend abort */ 15237 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 15238 if (handled) 15239 return true; 15240 15241 return false; 15242 } 15243 15244 /** 15245 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 15246 * @phba: Pointer to HBA context object. 15247 * @cmd_iocbq: pointer to the command iocbq structure. 15248 * @rsp_iocbq: pointer to the response iocbq structure. 15249 * 15250 * This function handles the sequence abort response iocb command complete 15251 * event. It properly releases the memory allocated to the sequence abort 15252 * accept iocb. 15253 **/ 15254 static void 15255 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 15256 struct lpfc_iocbq *cmd_iocbq, 15257 struct lpfc_iocbq *rsp_iocbq) 15258 { 15259 struct lpfc_nodelist *ndlp; 15260 15261 if (cmd_iocbq) { 15262 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 15263 lpfc_nlp_put(ndlp); 15264 lpfc_nlp_not_used(ndlp); 15265 lpfc_sli_release_iocbq(phba, cmd_iocbq); 15266 } 15267 15268 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 15269 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 15270 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15271 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 15272 rsp_iocbq->iocb.ulpStatus, 15273 rsp_iocbq->iocb.un.ulpWord[4]); 15274 } 15275 15276 /** 15277 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 15278 * @phba: Pointer to HBA context object. 15279 * @xri: xri id in transaction. 15280 * 15281 * This function validates the xri maps to the known range of XRIs allocated an 15282 * used by the driver. 15283 **/ 15284 uint16_t 15285 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 15286 uint16_t xri) 15287 { 15288 uint16_t i; 15289 15290 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 15291 if (xri == phba->sli4_hba.xri_ids[i]) 15292 return i; 15293 } 15294 return NO_XRI; 15295 } 15296 15297 /** 15298 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 15299 * @phba: Pointer to HBA context object. 15300 * @fc_hdr: pointer to a FC frame header. 15301 * 15302 * This function sends a basic response to a previous unsol sequence abort 15303 * event after aborting the sequence handling. 15304 **/ 15305 static void 15306 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 15307 struct fc_frame_header *fc_hdr, bool aborted) 15308 { 15309 struct lpfc_hba *phba = vport->phba; 15310 struct lpfc_iocbq *ctiocb = NULL; 15311 struct lpfc_nodelist *ndlp; 15312 uint16_t oxid, rxid, xri, lxri; 15313 uint32_t sid, fctl; 15314 IOCB_t *icmd; 15315 int rc; 15316 15317 if (!lpfc_is_link_up(phba)) 15318 return; 15319 15320 sid = sli4_sid_from_fc_hdr(fc_hdr); 15321 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 15322 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 15323 15324 ndlp = lpfc_findnode_did(vport, sid); 15325 if (!ndlp) { 15326 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 15327 if (!ndlp) { 15328 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15329 "1268 Failed to allocate ndlp for " 15330 "oxid:x%x SID:x%x\n", oxid, sid); 15331 return; 15332 } 15333 lpfc_nlp_init(vport, ndlp, sid); 15334 /* Put ndlp onto pport node list */ 15335 lpfc_enqueue_node(vport, ndlp); 15336 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 15337 /* re-setup ndlp without removing from node list */ 15338 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 15339 if (!ndlp) { 15340 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15341 "3275 Failed to active ndlp found " 15342 "for oxid:x%x SID:x%x\n", oxid, sid); 15343 return; 15344 } 15345 } 15346 15347 /* Allocate buffer for rsp iocb */ 15348 ctiocb = lpfc_sli_get_iocbq(phba); 15349 if (!ctiocb) 15350 return; 15351 15352 /* Extract the F_CTL field from FC_HDR */ 15353 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 15354 15355 icmd = &ctiocb->iocb; 15356 icmd->un.xseq64.bdl.bdeSize = 0; 15357 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 15358 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 15359 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 15360 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 15361 15362 /* Fill in the rest of iocb fields */ 15363 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 15364 icmd->ulpBdeCount = 0; 15365 icmd->ulpLe = 1; 15366 icmd->ulpClass = CLASS3; 15367 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 15368 ctiocb->context1 = lpfc_nlp_get(ndlp); 15369 15370 ctiocb->iocb_cmpl = NULL; 15371 ctiocb->vport = phba->pport; 15372 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 15373 ctiocb->sli4_lxritag = NO_XRI; 15374 ctiocb->sli4_xritag = NO_XRI; 15375 15376 if (fctl & FC_FC_EX_CTX) 15377 /* Exchange responder sent the abort so we 15378 * own the oxid. 15379 */ 15380 xri = oxid; 15381 else 15382 xri = rxid; 15383 lxri = lpfc_sli4_xri_inrange(phba, xri); 15384 if (lxri != NO_XRI) 15385 lpfc_set_rrq_active(phba, ndlp, lxri, 15386 (xri == oxid) ? rxid : oxid, 0); 15387 /* For BA_ABTS from exchange responder, if the logical xri with 15388 * the oxid maps to the FCP XRI range, the port no longer has 15389 * that exchange context, send a BLS_RJT. Override the IOCB for 15390 * a BA_RJT. 15391 */ 15392 if ((fctl & FC_FC_EX_CTX) && 15393 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 15394 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15395 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15396 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15397 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15398 } 15399 15400 /* If BA_ABTS failed to abort a partially assembled receive sequence, 15401 * the driver no longer has that exchange, send a BLS_RJT. Override 15402 * the IOCB for a BA_RJT. 15403 */ 15404 if (aborted == false) { 15405 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15406 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15407 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15408 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15409 } 15410 15411 if (fctl & FC_FC_EX_CTX) { 15412 /* ABTS sent by responder to CT exchange, construction 15413 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 15414 * field and RX_ID from ABTS for RX_ID field. 15415 */ 15416 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 15417 } else { 15418 /* ABTS sent by initiator to CT exchange, construction 15419 * of BA_ACC will need to allocate a new XRI as for the 15420 * XRI_TAG field. 15421 */ 15422 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 15423 } 15424 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 15425 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 15426 15427 /* Xmit CT abts response on exchange <xid> */ 15428 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 15429 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 15430 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 15431 15432 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 15433 if (rc == IOCB_ERROR) { 15434 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 15435 "2925 Failed to issue CT ABTS RSP x%x on " 15436 "xri x%x, Data x%x\n", 15437 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 15438 phba->link_state); 15439 lpfc_nlp_put(ndlp); 15440 ctiocb->context1 = NULL; 15441 lpfc_sli_release_iocbq(phba, ctiocb); 15442 } 15443 } 15444 15445 /** 15446 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 15447 * @vport: Pointer to the vport on which this sequence was received 15448 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15449 * 15450 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 15451 * receive sequence is only partially assembed by the driver, it shall abort 15452 * the partially assembled frames for the sequence. Otherwise, if the 15453 * unsolicited receive sequence has been completely assembled and passed to 15454 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 15455 * unsolicited sequence has been aborted. After that, it will issue a basic 15456 * accept to accept the abort. 15457 **/ 15458 static void 15459 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 15460 struct hbq_dmabuf *dmabuf) 15461 { 15462 struct lpfc_hba *phba = vport->phba; 15463 struct fc_frame_header fc_hdr; 15464 uint32_t fctl; 15465 bool aborted; 15466 15467 /* Make a copy of fc_hdr before the dmabuf being released */ 15468 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 15469 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 15470 15471 if (fctl & FC_FC_EX_CTX) { 15472 /* ABTS by responder to exchange, no cleanup needed */ 15473 aborted = true; 15474 } else { 15475 /* ABTS by initiator to exchange, need to do cleanup */ 15476 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 15477 if (aborted == false) 15478 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 15479 } 15480 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15481 15482 /* Respond with BA_ACC or BA_RJT accordingly */ 15483 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 15484 } 15485 15486 /** 15487 * lpfc_seq_complete - Indicates if a sequence is complete 15488 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15489 * 15490 * This function checks the sequence, starting with the frame described by 15491 * @dmabuf, to see if all the frames associated with this sequence are present. 15492 * the frames associated with this sequence are linked to the @dmabuf using the 15493 * dbuf list. This function looks for two major things. 1) That the first frame 15494 * has a sequence count of zero. 2) There is a frame with last frame of sequence 15495 * set. 3) That there are no holes in the sequence count. The function will 15496 * return 1 when the sequence is complete, otherwise it will return 0. 15497 **/ 15498 static int 15499 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 15500 { 15501 struct fc_frame_header *hdr; 15502 struct lpfc_dmabuf *d_buf; 15503 struct hbq_dmabuf *seq_dmabuf; 15504 uint32_t fctl; 15505 int seq_count = 0; 15506 15507 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15508 /* make sure first fame of sequence has a sequence count of zero */ 15509 if (hdr->fh_seq_cnt != seq_count) 15510 return 0; 15511 fctl = (hdr->fh_f_ctl[0] << 16 | 15512 hdr->fh_f_ctl[1] << 8 | 15513 hdr->fh_f_ctl[2]); 15514 /* If last frame of sequence we can return success. */ 15515 if (fctl & FC_FC_END_SEQ) 15516 return 1; 15517 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 15518 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15519 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15520 /* If there is a hole in the sequence count then fail. */ 15521 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 15522 return 0; 15523 fctl = (hdr->fh_f_ctl[0] << 16 | 15524 hdr->fh_f_ctl[1] << 8 | 15525 hdr->fh_f_ctl[2]); 15526 /* If last frame of sequence we can return success. */ 15527 if (fctl & FC_FC_END_SEQ) 15528 return 1; 15529 } 15530 return 0; 15531 } 15532 15533 /** 15534 * lpfc_prep_seq - Prep sequence for ULP processing 15535 * @vport: Pointer to the vport on which this sequence was received 15536 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15537 * 15538 * This function takes a sequence, described by a list of frames, and creates 15539 * a list of iocbq structures to describe the sequence. This iocbq list will be 15540 * used to issue to the generic unsolicited sequence handler. This routine 15541 * returns a pointer to the first iocbq in the list. If the function is unable 15542 * to allocate an iocbq then it throw out the received frames that were not 15543 * able to be described and return a pointer to the first iocbq. If unable to 15544 * allocate any iocbqs (including the first) this function will return NULL. 15545 **/ 15546 static struct lpfc_iocbq * 15547 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 15548 { 15549 struct hbq_dmabuf *hbq_buf; 15550 struct lpfc_dmabuf *d_buf, *n_buf; 15551 struct lpfc_iocbq *first_iocbq, *iocbq; 15552 struct fc_frame_header *fc_hdr; 15553 uint32_t sid; 15554 uint32_t len, tot_len; 15555 struct ulp_bde64 *pbde; 15556 15557 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15558 /* remove from receive buffer list */ 15559 list_del_init(&seq_dmabuf->hbuf.list); 15560 lpfc_update_rcv_time_stamp(vport); 15561 /* get the Remote Port's SID */ 15562 sid = sli4_sid_from_fc_hdr(fc_hdr); 15563 tot_len = 0; 15564 /* Get an iocbq struct to fill in. */ 15565 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 15566 if (first_iocbq) { 15567 /* Initialize the first IOCB. */ 15568 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 15569 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 15570 15571 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 15572 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 15573 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 15574 first_iocbq->iocb.un.rcvels.parmRo = 15575 sli4_did_from_fc_hdr(fc_hdr); 15576 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 15577 } else 15578 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 15579 first_iocbq->iocb.ulpContext = NO_XRI; 15580 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 15581 be16_to_cpu(fc_hdr->fh_ox_id); 15582 /* iocbq is prepped for internal consumption. Physical vpi. */ 15583 first_iocbq->iocb.unsli3.rcvsli3.vpi = 15584 vport->phba->vpi_ids[vport->vpi]; 15585 /* put the first buffer into the first IOCBq */ 15586 tot_len = bf_get(lpfc_rcqe_length, 15587 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 15588 15589 first_iocbq->context2 = &seq_dmabuf->dbuf; 15590 first_iocbq->context3 = NULL; 15591 first_iocbq->iocb.ulpBdeCount = 1; 15592 if (tot_len > LPFC_DATA_BUF_SIZE) 15593 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15594 LPFC_DATA_BUF_SIZE; 15595 else 15596 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 15597 15598 first_iocbq->iocb.un.rcvels.remoteID = sid; 15599 15600 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15601 } 15602 iocbq = first_iocbq; 15603 /* 15604 * Each IOCBq can have two Buffers assigned, so go through the list 15605 * of buffers for this sequence and save two buffers in each IOCBq 15606 */ 15607 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 15608 if (!iocbq) { 15609 lpfc_in_buf_free(vport->phba, d_buf); 15610 continue; 15611 } 15612 if (!iocbq->context3) { 15613 iocbq->context3 = d_buf; 15614 iocbq->iocb.ulpBdeCount++; 15615 /* We need to get the size out of the right CQE */ 15616 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15617 len = bf_get(lpfc_rcqe_length, 15618 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15619 pbde = (struct ulp_bde64 *) 15620 &iocbq->iocb.unsli3.sli3Words[4]; 15621 if (len > LPFC_DATA_BUF_SIZE) 15622 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 15623 else 15624 pbde->tus.f.bdeSize = len; 15625 15626 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 15627 tot_len += len; 15628 } else { 15629 iocbq = lpfc_sli_get_iocbq(vport->phba); 15630 if (!iocbq) { 15631 if (first_iocbq) { 15632 first_iocbq->iocb.ulpStatus = 15633 IOSTAT_FCP_RSP_ERROR; 15634 first_iocbq->iocb.un.ulpWord[4] = 15635 IOERR_NO_RESOURCES; 15636 } 15637 lpfc_in_buf_free(vport->phba, d_buf); 15638 continue; 15639 } 15640 /* We need to get the size out of the right CQE */ 15641 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15642 len = bf_get(lpfc_rcqe_length, 15643 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15644 iocbq->context2 = d_buf; 15645 iocbq->context3 = NULL; 15646 iocbq->iocb.ulpBdeCount = 1; 15647 if (len > LPFC_DATA_BUF_SIZE) 15648 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15649 LPFC_DATA_BUF_SIZE; 15650 else 15651 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 15652 15653 tot_len += len; 15654 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15655 15656 iocbq->iocb.un.rcvels.remoteID = sid; 15657 list_add_tail(&iocbq->list, &first_iocbq->list); 15658 } 15659 } 15660 return first_iocbq; 15661 } 15662 15663 static void 15664 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 15665 struct hbq_dmabuf *seq_dmabuf) 15666 { 15667 struct fc_frame_header *fc_hdr; 15668 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 15669 struct lpfc_hba *phba = vport->phba; 15670 15671 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15672 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 15673 if (!iocbq) { 15674 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15675 "2707 Ring %d handler: Failed to allocate " 15676 "iocb Rctl x%x Type x%x received\n", 15677 LPFC_ELS_RING, 15678 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15679 return; 15680 } 15681 if (!lpfc_complete_unsol_iocb(phba, 15682 &phba->sli.ring[LPFC_ELS_RING], 15683 iocbq, fc_hdr->fh_r_ctl, 15684 fc_hdr->fh_type)) 15685 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15686 "2540 Ring %d handler: unexpected Rctl " 15687 "x%x Type x%x received\n", 15688 LPFC_ELS_RING, 15689 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15690 15691 /* Free iocb created in lpfc_prep_seq */ 15692 list_for_each_entry_safe(curr_iocb, next_iocb, 15693 &iocbq->list, list) { 15694 list_del_init(&curr_iocb->list); 15695 lpfc_sli_release_iocbq(phba, curr_iocb); 15696 } 15697 lpfc_sli_release_iocbq(phba, iocbq); 15698 } 15699 15700 /** 15701 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 15702 * @phba: Pointer to HBA context object. 15703 * 15704 * This function is called with no lock held. This function processes all 15705 * the received buffers and gives it to upper layers when a received buffer 15706 * indicates that it is the final frame in the sequence. The interrupt 15707 * service routine processes received buffers at interrupt contexts and adds 15708 * received dma buffers to the rb_pend_list queue and signals the worker thread. 15709 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 15710 * appropriate receive function when the final frame in a sequence is received. 15711 **/ 15712 void 15713 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 15714 struct hbq_dmabuf *dmabuf) 15715 { 15716 struct hbq_dmabuf *seq_dmabuf; 15717 struct fc_frame_header *fc_hdr; 15718 struct lpfc_vport *vport; 15719 uint32_t fcfi; 15720 uint32_t did; 15721 15722 /* Process each received buffer */ 15723 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15724 /* check to see if this a valid type of frame */ 15725 if (lpfc_fc_frame_check(phba, fc_hdr)) { 15726 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15727 return; 15728 } 15729 if ((bf_get(lpfc_cqe_code, 15730 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 15731 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 15732 &dmabuf->cq_event.cqe.rcqe_cmpl); 15733 else 15734 fcfi = bf_get(lpfc_rcqe_fcf_id, 15735 &dmabuf->cq_event.cqe.rcqe_cmpl); 15736 15737 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 15738 if (!vport) { 15739 /* throw out the frame */ 15740 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15741 return; 15742 } 15743 15744 /* d_id this frame is directed to */ 15745 did = sli4_did_from_fc_hdr(fc_hdr); 15746 15747 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 15748 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 15749 (did != Fabric_DID)) { 15750 /* 15751 * Throw out the frame if we are not pt2pt. 15752 * The pt2pt protocol allows for discovery frames 15753 * to be received without a registered VPI. 15754 */ 15755 if (!(vport->fc_flag & FC_PT2PT) || 15756 (phba->link_state == LPFC_HBA_READY)) { 15757 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15758 return; 15759 } 15760 } 15761 15762 /* Handle the basic abort sequence (BA_ABTS) event */ 15763 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 15764 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 15765 return; 15766 } 15767 15768 /* Link this frame */ 15769 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 15770 if (!seq_dmabuf) { 15771 /* unable to add frame to vport - throw it out */ 15772 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15773 return; 15774 } 15775 /* If not last frame in sequence continue processing frames. */ 15776 if (!lpfc_seq_complete(seq_dmabuf)) 15777 return; 15778 15779 /* Send the complete sequence to the upper layer protocol */ 15780 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 15781 } 15782 15783 /** 15784 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 15785 * @phba: pointer to lpfc hba data structure. 15786 * 15787 * This routine is invoked to post rpi header templates to the 15788 * HBA consistent with the SLI-4 interface spec. This routine 15789 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15790 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15791 * 15792 * This routine does not require any locks. It's usage is expected 15793 * to be driver load or reset recovery when the driver is 15794 * sequential. 15795 * 15796 * Return codes 15797 * 0 - successful 15798 * -EIO - The mailbox failed to complete successfully. 15799 * When this error occurs, the driver is not guaranteed 15800 * to have any rpi regions posted to the device and 15801 * must either attempt to repost the regions or take a 15802 * fatal error. 15803 **/ 15804 int 15805 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 15806 { 15807 struct lpfc_rpi_hdr *rpi_page; 15808 uint32_t rc = 0; 15809 uint16_t lrpi = 0; 15810 15811 /* SLI4 ports that support extents do not require RPI headers. */ 15812 if (!phba->sli4_hba.rpi_hdrs_in_use) 15813 goto exit; 15814 if (phba->sli4_hba.extents_in_use) 15815 return -EIO; 15816 15817 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 15818 /* 15819 * Assign the rpi headers a physical rpi only if the driver 15820 * has not initialized those resources. A port reset only 15821 * needs the headers posted. 15822 */ 15823 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 15824 LPFC_RPI_RSRC_RDY) 15825 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15826 15827 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 15828 if (rc != MBX_SUCCESS) { 15829 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15830 "2008 Error %d posting all rpi " 15831 "headers\n", rc); 15832 rc = -EIO; 15833 break; 15834 } 15835 } 15836 15837 exit: 15838 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 15839 LPFC_RPI_RSRC_RDY); 15840 return rc; 15841 } 15842 15843 /** 15844 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 15845 * @phba: pointer to lpfc hba data structure. 15846 * @rpi_page: pointer to the rpi memory region. 15847 * 15848 * This routine is invoked to post a single rpi header to the 15849 * HBA consistent with the SLI-4 interface spec. This memory region 15850 * maps up to 64 rpi context regions. 15851 * 15852 * Return codes 15853 * 0 - successful 15854 * -ENOMEM - No available memory 15855 * -EIO - The mailbox failed to complete successfully. 15856 **/ 15857 int 15858 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 15859 { 15860 LPFC_MBOXQ_t *mboxq; 15861 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 15862 uint32_t rc = 0; 15863 uint32_t shdr_status, shdr_add_status; 15864 union lpfc_sli4_cfg_shdr *shdr; 15865 15866 /* SLI4 ports that support extents do not require RPI headers. */ 15867 if (!phba->sli4_hba.rpi_hdrs_in_use) 15868 return rc; 15869 if (phba->sli4_hba.extents_in_use) 15870 return -EIO; 15871 15872 /* The port is notified of the header region via a mailbox command. */ 15873 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15874 if (!mboxq) { 15875 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15876 "2001 Unable to allocate memory for issuing " 15877 "SLI_CONFIG_SPECIAL mailbox command\n"); 15878 return -ENOMEM; 15879 } 15880 15881 /* Post all rpi memory regions to the port. */ 15882 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 15883 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15884 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 15885 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 15886 sizeof(struct lpfc_sli4_cfg_mhdr), 15887 LPFC_SLI4_MBX_EMBED); 15888 15889 15890 /* Post the physical rpi to the port for this rpi header. */ 15891 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 15892 rpi_page->start_rpi); 15893 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 15894 hdr_tmpl, rpi_page->page_count); 15895 15896 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 15897 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 15898 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15899 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 15900 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15901 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15902 if (rc != MBX_TIMEOUT) 15903 mempool_free(mboxq, phba->mbox_mem_pool); 15904 if (shdr_status || shdr_add_status || rc) { 15905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15906 "2514 POST_RPI_HDR mailbox failed with " 15907 "status x%x add_status x%x, mbx status x%x\n", 15908 shdr_status, shdr_add_status, rc); 15909 rc = -ENXIO; 15910 } 15911 return rc; 15912 } 15913 15914 /** 15915 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 15916 * @phba: pointer to lpfc hba data structure. 15917 * 15918 * This routine is invoked to post rpi header templates to the 15919 * HBA consistent with the SLI-4 interface spec. This routine 15920 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15921 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15922 * 15923 * Returns 15924 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15925 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15926 **/ 15927 int 15928 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15929 { 15930 unsigned long rpi; 15931 uint16_t max_rpi, rpi_limit; 15932 uint16_t rpi_remaining, lrpi = 0; 15933 struct lpfc_rpi_hdr *rpi_hdr; 15934 unsigned long iflag; 15935 15936 /* 15937 * Fetch the next logical rpi. Because this index is logical, 15938 * the driver starts at 0 each time. 15939 */ 15940 spin_lock_irqsave(&phba->hbalock, iflag); 15941 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15942 rpi_limit = phba->sli4_hba.next_rpi; 15943 15944 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15945 if (rpi >= rpi_limit) 15946 rpi = LPFC_RPI_ALLOC_ERROR; 15947 else { 15948 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15949 phba->sli4_hba.max_cfg_param.rpi_used++; 15950 phba->sli4_hba.rpi_count++; 15951 } 15952 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15953 "0001 rpi:%x max:%x lim:%x\n", 15954 (int) rpi, max_rpi, rpi_limit); 15955 15956 /* 15957 * Don't try to allocate more rpi header regions if the device limit 15958 * has been exhausted. 15959 */ 15960 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15961 (phba->sli4_hba.rpi_count >= max_rpi)) { 15962 spin_unlock_irqrestore(&phba->hbalock, iflag); 15963 return rpi; 15964 } 15965 15966 /* 15967 * RPI header postings are not required for SLI4 ports capable of 15968 * extents. 15969 */ 15970 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15971 spin_unlock_irqrestore(&phba->hbalock, iflag); 15972 return rpi; 15973 } 15974 15975 /* 15976 * If the driver is running low on rpi resources, allocate another 15977 * page now. Note that the next_rpi value is used because 15978 * it represents how many are actually in use whereas max_rpi notes 15979 * how many are supported max by the device. 15980 */ 15981 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15982 spin_unlock_irqrestore(&phba->hbalock, iflag); 15983 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15984 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15985 if (!rpi_hdr) { 15986 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15987 "2002 Error Could not grow rpi " 15988 "count\n"); 15989 } else { 15990 lrpi = rpi_hdr->start_rpi; 15991 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15992 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15993 } 15994 } 15995 15996 return rpi; 15997 } 15998 15999 /** 16000 * lpfc_sli4_free_rpi - Release an rpi for reuse. 16001 * @phba: pointer to lpfc hba data structure. 16002 * 16003 * This routine is invoked to release an rpi to the pool of 16004 * available rpis maintained by the driver. 16005 **/ 16006 static void 16007 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 16008 { 16009 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 16010 phba->sli4_hba.rpi_count--; 16011 phba->sli4_hba.max_cfg_param.rpi_used--; 16012 } 16013 } 16014 16015 /** 16016 * lpfc_sli4_free_rpi - Release an rpi for reuse. 16017 * @phba: pointer to lpfc hba data structure. 16018 * 16019 * This routine is invoked to release an rpi to the pool of 16020 * available rpis maintained by the driver. 16021 **/ 16022 void 16023 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 16024 { 16025 spin_lock_irq(&phba->hbalock); 16026 __lpfc_sli4_free_rpi(phba, rpi); 16027 spin_unlock_irq(&phba->hbalock); 16028 } 16029 16030 /** 16031 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 16032 * @phba: pointer to lpfc hba data structure. 16033 * 16034 * This routine is invoked to remove the memory region that 16035 * provided rpi via a bitmask. 16036 **/ 16037 void 16038 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 16039 { 16040 kfree(phba->sli4_hba.rpi_bmask); 16041 kfree(phba->sli4_hba.rpi_ids); 16042 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 16043 } 16044 16045 /** 16046 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 16047 * @phba: pointer to lpfc hba data structure. 16048 * 16049 * This routine is invoked to remove the memory region that 16050 * provided rpi via a bitmask. 16051 **/ 16052 int 16053 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 16054 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 16055 { 16056 LPFC_MBOXQ_t *mboxq; 16057 struct lpfc_hba *phba = ndlp->phba; 16058 int rc; 16059 16060 /* The port is notified of the header region via a mailbox command. */ 16061 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16062 if (!mboxq) 16063 return -ENOMEM; 16064 16065 /* Post all rpi memory regions to the port. */ 16066 lpfc_resume_rpi(mboxq, ndlp); 16067 if (cmpl) { 16068 mboxq->mbox_cmpl = cmpl; 16069 mboxq->context1 = arg; 16070 mboxq->context2 = ndlp; 16071 } else 16072 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16073 mboxq->vport = ndlp->vport; 16074 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16075 if (rc == MBX_NOT_FINISHED) { 16076 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16077 "2010 Resume RPI Mailbox failed " 16078 "status %d, mbxStatus x%x\n", rc, 16079 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 16080 mempool_free(mboxq, phba->mbox_mem_pool); 16081 return -EIO; 16082 } 16083 return 0; 16084 } 16085 16086 /** 16087 * lpfc_sli4_init_vpi - Initialize a vpi with the port 16088 * @vport: Pointer to the vport for which the vpi is being initialized 16089 * 16090 * This routine is invoked to activate a vpi with the port. 16091 * 16092 * Returns: 16093 * 0 success 16094 * -Evalue otherwise 16095 **/ 16096 int 16097 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 16098 { 16099 LPFC_MBOXQ_t *mboxq; 16100 int rc = 0; 16101 int retval = MBX_SUCCESS; 16102 uint32_t mbox_tmo; 16103 struct lpfc_hba *phba = vport->phba; 16104 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16105 if (!mboxq) 16106 return -ENOMEM; 16107 lpfc_init_vpi(phba, mboxq, vport->vpi); 16108 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 16109 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 16110 if (rc != MBX_SUCCESS) { 16111 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 16112 "2022 INIT VPI Mailbox failed " 16113 "status %d, mbxStatus x%x\n", rc, 16114 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 16115 retval = -EIO; 16116 } 16117 if (rc != MBX_TIMEOUT) 16118 mempool_free(mboxq, vport->phba->mbox_mem_pool); 16119 16120 return retval; 16121 } 16122 16123 /** 16124 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 16125 * @phba: pointer to lpfc hba data structure. 16126 * @mboxq: Pointer to mailbox object. 16127 * 16128 * This routine is invoked to manually add a single FCF record. The caller 16129 * must pass a completely initialized FCF_Record. This routine takes 16130 * care of the nonembedded mailbox operations. 16131 **/ 16132 static void 16133 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 16134 { 16135 void *virt_addr; 16136 union lpfc_sli4_cfg_shdr *shdr; 16137 uint32_t shdr_status, shdr_add_status; 16138 16139 virt_addr = mboxq->sge_array->addr[0]; 16140 /* The IOCTL status is embedded in the mailbox subheader. */ 16141 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 16142 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16143 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16144 16145 if ((shdr_status || shdr_add_status) && 16146 (shdr_status != STATUS_FCF_IN_USE)) 16147 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16148 "2558 ADD_FCF_RECORD mailbox failed with " 16149 "status x%x add_status x%x\n", 16150 shdr_status, shdr_add_status); 16151 16152 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16153 } 16154 16155 /** 16156 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 16157 * @phba: pointer to lpfc hba data structure. 16158 * @fcf_record: pointer to the initialized fcf record to add. 16159 * 16160 * This routine is invoked to manually add a single FCF record. The caller 16161 * must pass a completely initialized FCF_Record. This routine takes 16162 * care of the nonembedded mailbox operations. 16163 **/ 16164 int 16165 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 16166 { 16167 int rc = 0; 16168 LPFC_MBOXQ_t *mboxq; 16169 uint8_t *bytep; 16170 void *virt_addr; 16171 struct lpfc_mbx_sge sge; 16172 uint32_t alloc_len, req_len; 16173 uint32_t fcfindex; 16174 16175 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16176 if (!mboxq) { 16177 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16178 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 16179 return -ENOMEM; 16180 } 16181 16182 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 16183 sizeof(uint32_t); 16184 16185 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16186 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 16187 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 16188 req_len, LPFC_SLI4_MBX_NEMBED); 16189 if (alloc_len < req_len) { 16190 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16191 "2523 Allocated DMA memory size (x%x) is " 16192 "less than the requested DMA memory " 16193 "size (x%x)\n", alloc_len, req_len); 16194 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16195 return -ENOMEM; 16196 } 16197 16198 /* 16199 * Get the first SGE entry from the non-embedded DMA memory. This 16200 * routine only uses a single SGE. 16201 */ 16202 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 16203 virt_addr = mboxq->sge_array->addr[0]; 16204 /* 16205 * Configure the FCF record for FCFI 0. This is the driver's 16206 * hardcoded default and gets used in nonFIP mode. 16207 */ 16208 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 16209 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 16210 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 16211 16212 /* 16213 * Copy the fcf_index and the FCF Record Data. The data starts after 16214 * the FCoE header plus word10. The data copy needs to be endian 16215 * correct. 16216 */ 16217 bytep += sizeof(uint32_t); 16218 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 16219 mboxq->vport = phba->pport; 16220 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 16221 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16222 if (rc == MBX_NOT_FINISHED) { 16223 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16224 "2515 ADD_FCF_RECORD mailbox failed with " 16225 "status 0x%x\n", rc); 16226 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16227 rc = -EIO; 16228 } else 16229 rc = 0; 16230 16231 return rc; 16232 } 16233 16234 /** 16235 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 16236 * @phba: pointer to lpfc hba data structure. 16237 * @fcf_record: pointer to the fcf record to write the default data. 16238 * @fcf_index: FCF table entry index. 16239 * 16240 * This routine is invoked to build the driver's default FCF record. The 16241 * values used are hardcoded. This routine handles memory initialization. 16242 * 16243 **/ 16244 void 16245 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 16246 struct fcf_record *fcf_record, 16247 uint16_t fcf_index) 16248 { 16249 memset(fcf_record, 0, sizeof(struct fcf_record)); 16250 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 16251 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 16252 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 16253 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 16254 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 16255 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 16256 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 16257 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 16258 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 16259 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 16260 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 16261 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 16262 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 16263 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 16264 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 16265 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 16266 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 16267 /* Set the VLAN bit map */ 16268 if (phba->valid_vlan) { 16269 fcf_record->vlan_bitmap[phba->vlan_id / 8] 16270 = 1 << (phba->vlan_id % 8); 16271 } 16272 } 16273 16274 /** 16275 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 16276 * @phba: pointer to lpfc hba data structure. 16277 * @fcf_index: FCF table entry offset. 16278 * 16279 * This routine is invoked to scan the entire FCF table by reading FCF 16280 * record and processing it one at a time starting from the @fcf_index 16281 * for initial FCF discovery or fast FCF failover rediscovery. 16282 * 16283 * Return 0 if the mailbox command is submitted successfully, none 0 16284 * otherwise. 16285 **/ 16286 int 16287 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16288 { 16289 int rc = 0, error; 16290 LPFC_MBOXQ_t *mboxq; 16291 16292 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 16293 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 16294 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16295 if (!mboxq) { 16296 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16297 "2000 Failed to allocate mbox for " 16298 "READ_FCF cmd\n"); 16299 error = -ENOMEM; 16300 goto fail_fcf_scan; 16301 } 16302 /* Construct the read FCF record mailbox command */ 16303 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16304 if (rc) { 16305 error = -EINVAL; 16306 goto fail_fcf_scan; 16307 } 16308 /* Issue the mailbox command asynchronously */ 16309 mboxq->vport = phba->pport; 16310 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 16311 16312 spin_lock_irq(&phba->hbalock); 16313 phba->hba_flag |= FCF_TS_INPROG; 16314 spin_unlock_irq(&phba->hbalock); 16315 16316 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16317 if (rc == MBX_NOT_FINISHED) 16318 error = -EIO; 16319 else { 16320 /* Reset eligible FCF count for new scan */ 16321 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 16322 phba->fcf.eligible_fcf_cnt = 0; 16323 error = 0; 16324 } 16325 fail_fcf_scan: 16326 if (error) { 16327 if (mboxq) 16328 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16329 /* FCF scan failed, clear FCF_TS_INPROG flag */ 16330 spin_lock_irq(&phba->hbalock); 16331 phba->hba_flag &= ~FCF_TS_INPROG; 16332 spin_unlock_irq(&phba->hbalock); 16333 } 16334 return error; 16335 } 16336 16337 /** 16338 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 16339 * @phba: pointer to lpfc hba data structure. 16340 * @fcf_index: FCF table entry offset. 16341 * 16342 * This routine is invoked to read an FCF record indicated by @fcf_index 16343 * and to use it for FLOGI roundrobin FCF failover. 16344 * 16345 * Return 0 if the mailbox command is submitted successfully, none 0 16346 * otherwise. 16347 **/ 16348 int 16349 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16350 { 16351 int rc = 0, error; 16352 LPFC_MBOXQ_t *mboxq; 16353 16354 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16355 if (!mboxq) { 16356 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16357 "2763 Failed to allocate mbox for " 16358 "READ_FCF cmd\n"); 16359 error = -ENOMEM; 16360 goto fail_fcf_read; 16361 } 16362 /* Construct the read FCF record mailbox command */ 16363 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16364 if (rc) { 16365 error = -EINVAL; 16366 goto fail_fcf_read; 16367 } 16368 /* Issue the mailbox command asynchronously */ 16369 mboxq->vport = phba->pport; 16370 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 16371 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16372 if (rc == MBX_NOT_FINISHED) 16373 error = -EIO; 16374 else 16375 error = 0; 16376 16377 fail_fcf_read: 16378 if (error && mboxq) 16379 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16380 return error; 16381 } 16382 16383 /** 16384 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 16385 * @phba: pointer to lpfc hba data structure. 16386 * @fcf_index: FCF table entry offset. 16387 * 16388 * This routine is invoked to read an FCF record indicated by @fcf_index to 16389 * determine whether it's eligible for FLOGI roundrobin failover list. 16390 * 16391 * Return 0 if the mailbox command is submitted successfully, none 0 16392 * otherwise. 16393 **/ 16394 int 16395 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16396 { 16397 int rc = 0, error; 16398 LPFC_MBOXQ_t *mboxq; 16399 16400 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16401 if (!mboxq) { 16402 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16403 "2758 Failed to allocate mbox for " 16404 "READ_FCF cmd\n"); 16405 error = -ENOMEM; 16406 goto fail_fcf_read; 16407 } 16408 /* Construct the read FCF record mailbox command */ 16409 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16410 if (rc) { 16411 error = -EINVAL; 16412 goto fail_fcf_read; 16413 } 16414 /* Issue the mailbox command asynchronously */ 16415 mboxq->vport = phba->pport; 16416 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 16417 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16418 if (rc == MBX_NOT_FINISHED) 16419 error = -EIO; 16420 else 16421 error = 0; 16422 16423 fail_fcf_read: 16424 if (error && mboxq) 16425 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16426 return error; 16427 } 16428 16429 /** 16430 * lpfc_check_next_fcf_pri_level 16431 * phba pointer to the lpfc_hba struct for this port. 16432 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 16433 * routine when the rr_bmask is empty. The FCF indecies are put into the 16434 * rr_bmask based on their priority level. Starting from the highest priority 16435 * to the lowest. The most likely FCF candidate will be in the highest 16436 * priority group. When this routine is called it searches the fcf_pri list for 16437 * next lowest priority group and repopulates the rr_bmask with only those 16438 * fcf_indexes. 16439 * returns: 16440 * 1=success 0=failure 16441 **/ 16442 static int 16443 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 16444 { 16445 uint16_t next_fcf_pri; 16446 uint16_t last_index; 16447 struct lpfc_fcf_pri *fcf_pri; 16448 int rc; 16449 int ret = 0; 16450 16451 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 16452 LPFC_SLI4_FCF_TBL_INDX_MAX); 16453 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16454 "3060 Last IDX %d\n", last_index); 16455 16456 /* Verify the priority list has 2 or more entries */ 16457 spin_lock_irq(&phba->hbalock); 16458 if (list_empty(&phba->fcf.fcf_pri_list) || 16459 list_is_singular(&phba->fcf.fcf_pri_list)) { 16460 spin_unlock_irq(&phba->hbalock); 16461 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16462 "3061 Last IDX %d\n", last_index); 16463 return 0; /* Empty rr list */ 16464 } 16465 spin_unlock_irq(&phba->hbalock); 16466 16467 next_fcf_pri = 0; 16468 /* 16469 * Clear the rr_bmask and set all of the bits that are at this 16470 * priority. 16471 */ 16472 memset(phba->fcf.fcf_rr_bmask, 0, 16473 sizeof(*phba->fcf.fcf_rr_bmask)); 16474 spin_lock_irq(&phba->hbalock); 16475 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16476 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 16477 continue; 16478 /* 16479 * the 1st priority that has not FLOGI failed 16480 * will be the highest. 16481 */ 16482 if (!next_fcf_pri) 16483 next_fcf_pri = fcf_pri->fcf_rec.priority; 16484 spin_unlock_irq(&phba->hbalock); 16485 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16486 rc = lpfc_sli4_fcf_rr_index_set(phba, 16487 fcf_pri->fcf_rec.fcf_index); 16488 if (rc) 16489 return 0; 16490 } 16491 spin_lock_irq(&phba->hbalock); 16492 } 16493 /* 16494 * if next_fcf_pri was not set above and the list is not empty then 16495 * we have failed flogis on all of them. So reset flogi failed 16496 * and start at the beginning. 16497 */ 16498 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 16499 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16500 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 16501 /* 16502 * the 1st priority that has not FLOGI failed 16503 * will be the highest. 16504 */ 16505 if (!next_fcf_pri) 16506 next_fcf_pri = fcf_pri->fcf_rec.priority; 16507 spin_unlock_irq(&phba->hbalock); 16508 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16509 rc = lpfc_sli4_fcf_rr_index_set(phba, 16510 fcf_pri->fcf_rec.fcf_index); 16511 if (rc) 16512 return 0; 16513 } 16514 spin_lock_irq(&phba->hbalock); 16515 } 16516 } else 16517 ret = 1; 16518 spin_unlock_irq(&phba->hbalock); 16519 16520 return ret; 16521 } 16522 /** 16523 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 16524 * @phba: pointer to lpfc hba data structure. 16525 * 16526 * This routine is to get the next eligible FCF record index in a round 16527 * robin fashion. If the next eligible FCF record index equals to the 16528 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 16529 * shall be returned, otherwise, the next eligible FCF record's index 16530 * shall be returned. 16531 **/ 16532 uint16_t 16533 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 16534 { 16535 uint16_t next_fcf_index; 16536 16537 initial_priority: 16538 /* Search start from next bit of currently registered FCF index */ 16539 next_fcf_index = phba->fcf.current_rec.fcf_indx; 16540 16541 next_priority: 16542 /* Determine the next fcf index to check */ 16543 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 16544 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16545 LPFC_SLI4_FCF_TBL_INDX_MAX, 16546 next_fcf_index); 16547 16548 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 16549 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16550 /* 16551 * If we have wrapped then we need to clear the bits that 16552 * have been tested so that we can detect when we should 16553 * change the priority level. 16554 */ 16555 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16556 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 16557 } 16558 16559 16560 /* Check roundrobin failover list empty condition */ 16561 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 16562 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 16563 /* 16564 * If next fcf index is not found check if there are lower 16565 * Priority level fcf's in the fcf_priority list. 16566 * Set up the rr_bmask with all of the avaiable fcf bits 16567 * at that level and continue the selection process. 16568 */ 16569 if (lpfc_check_next_fcf_pri_level(phba)) 16570 goto initial_priority; 16571 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16572 "2844 No roundrobin failover FCF available\n"); 16573 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 16574 return LPFC_FCOE_FCF_NEXT_NONE; 16575 else { 16576 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16577 "3063 Only FCF available idx %d, flag %x\n", 16578 next_fcf_index, 16579 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 16580 return next_fcf_index; 16581 } 16582 } 16583 16584 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 16585 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 16586 LPFC_FCF_FLOGI_FAILED) { 16587 if (list_is_singular(&phba->fcf.fcf_pri_list)) 16588 return LPFC_FCOE_FCF_NEXT_NONE; 16589 16590 goto next_priority; 16591 } 16592 16593 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16594 "2845 Get next roundrobin failover FCF (x%x)\n", 16595 next_fcf_index); 16596 16597 return next_fcf_index; 16598 } 16599 16600 /** 16601 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 16602 * @phba: pointer to lpfc hba data structure. 16603 * 16604 * This routine sets the FCF record index in to the eligible bmask for 16605 * roundrobin failover search. It checks to make sure that the index 16606 * does not go beyond the range of the driver allocated bmask dimension 16607 * before setting the bit. 16608 * 16609 * Returns 0 if the index bit successfully set, otherwise, it returns 16610 * -EINVAL. 16611 **/ 16612 int 16613 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 16614 { 16615 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16616 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16617 "2610 FCF (x%x) reached driver's book " 16618 "keeping dimension:x%x\n", 16619 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16620 return -EINVAL; 16621 } 16622 /* Set the eligible FCF record index bmask */ 16623 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16624 16625 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16626 "2790 Set FCF (x%x) to roundrobin FCF failover " 16627 "bmask\n", fcf_index); 16628 16629 return 0; 16630 } 16631 16632 /** 16633 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 16634 * @phba: pointer to lpfc hba data structure. 16635 * 16636 * This routine clears the FCF record index from the eligible bmask for 16637 * roundrobin failover search. It checks to make sure that the index 16638 * does not go beyond the range of the driver allocated bmask dimension 16639 * before clearing the bit. 16640 **/ 16641 void 16642 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 16643 { 16644 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 16645 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16646 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16647 "2762 FCF (x%x) reached driver's book " 16648 "keeping dimension:x%x\n", 16649 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16650 return; 16651 } 16652 /* Clear the eligible FCF record index bmask */ 16653 spin_lock_irq(&phba->hbalock); 16654 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 16655 list) { 16656 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 16657 list_del_init(&fcf_pri->list); 16658 break; 16659 } 16660 } 16661 spin_unlock_irq(&phba->hbalock); 16662 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16663 16664 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16665 "2791 Clear FCF (x%x) from roundrobin failover " 16666 "bmask\n", fcf_index); 16667 } 16668 16669 /** 16670 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 16671 * @phba: pointer to lpfc hba data structure. 16672 * 16673 * This routine is the completion routine for the rediscover FCF table mailbox 16674 * command. If the mailbox command returned failure, it will try to stop the 16675 * FCF rediscover wait timer. 16676 **/ 16677 static void 16678 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 16679 { 16680 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16681 uint32_t shdr_status, shdr_add_status; 16682 16683 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16684 16685 shdr_status = bf_get(lpfc_mbox_hdr_status, 16686 &redisc_fcf->header.cfg_shdr.response); 16687 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 16688 &redisc_fcf->header.cfg_shdr.response); 16689 if (shdr_status || shdr_add_status) { 16690 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16691 "2746 Requesting for FCF rediscovery failed " 16692 "status x%x add_status x%x\n", 16693 shdr_status, shdr_add_status); 16694 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 16695 spin_lock_irq(&phba->hbalock); 16696 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 16697 spin_unlock_irq(&phba->hbalock); 16698 /* 16699 * CVL event triggered FCF rediscover request failed, 16700 * last resort to re-try current registered FCF entry. 16701 */ 16702 lpfc_retry_pport_discovery(phba); 16703 } else { 16704 spin_lock_irq(&phba->hbalock); 16705 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 16706 spin_unlock_irq(&phba->hbalock); 16707 /* 16708 * DEAD FCF event triggered FCF rediscover request 16709 * failed, last resort to fail over as a link down 16710 * to FCF registration. 16711 */ 16712 lpfc_sli4_fcf_dead_failthrough(phba); 16713 } 16714 } else { 16715 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16716 "2775 Start FCF rediscover quiescent timer\n"); 16717 /* 16718 * Start FCF rediscovery wait timer for pending FCF 16719 * before rescan FCF record table. 16720 */ 16721 lpfc_fcf_redisc_wait_start_timer(phba); 16722 } 16723 16724 mempool_free(mbox, phba->mbox_mem_pool); 16725 } 16726 16727 /** 16728 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 16729 * @phba: pointer to lpfc hba data structure. 16730 * 16731 * This routine is invoked to request for rediscovery of the entire FCF table 16732 * by the port. 16733 **/ 16734 int 16735 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 16736 { 16737 LPFC_MBOXQ_t *mbox; 16738 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16739 int rc, length; 16740 16741 /* Cancel retry delay timers to all vports before FCF rediscover */ 16742 lpfc_cancel_all_vport_retry_delay_timer(phba); 16743 16744 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16745 if (!mbox) { 16746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16747 "2745 Failed to allocate mbox for " 16748 "requesting FCF rediscover.\n"); 16749 return -ENOMEM; 16750 } 16751 16752 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 16753 sizeof(struct lpfc_sli4_cfg_mhdr)); 16754 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16755 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 16756 length, LPFC_SLI4_MBX_EMBED); 16757 16758 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16759 /* Set count to 0 for invalidating the entire FCF database */ 16760 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 16761 16762 /* Issue the mailbox command asynchronously */ 16763 mbox->vport = phba->pport; 16764 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 16765 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 16766 16767 if (rc == MBX_NOT_FINISHED) { 16768 mempool_free(mbox, phba->mbox_mem_pool); 16769 return -EIO; 16770 } 16771 return 0; 16772 } 16773 16774 /** 16775 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 16776 * @phba: pointer to lpfc hba data structure. 16777 * 16778 * This function is the failover routine as a last resort to the FCF DEAD 16779 * event when driver failed to perform fast FCF failover. 16780 **/ 16781 void 16782 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 16783 { 16784 uint32_t link_state; 16785 16786 /* 16787 * Last resort as FCF DEAD event failover will treat this as 16788 * a link down, but save the link state because we don't want 16789 * it to be changed to Link Down unless it is already down. 16790 */ 16791 link_state = phba->link_state; 16792 lpfc_linkdown(phba); 16793 phba->link_state = link_state; 16794 16795 /* Unregister FCF if no devices connected to it */ 16796 lpfc_unregister_unused_fcf(phba); 16797 } 16798 16799 /** 16800 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 16801 * @phba: pointer to lpfc hba data structure. 16802 * @rgn23_data: pointer to configure region 23 data. 16803 * 16804 * This function gets SLI3 port configure region 23 data through memory dump 16805 * mailbox command. When it successfully retrieves data, the size of the data 16806 * will be returned, otherwise, 0 will be returned. 16807 **/ 16808 static uint32_t 16809 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16810 { 16811 LPFC_MBOXQ_t *pmb = NULL; 16812 MAILBOX_t *mb; 16813 uint32_t offset = 0; 16814 int rc; 16815 16816 if (!rgn23_data) 16817 return 0; 16818 16819 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16820 if (!pmb) { 16821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16822 "2600 failed to allocate mailbox memory\n"); 16823 return 0; 16824 } 16825 mb = &pmb->u.mb; 16826 16827 do { 16828 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 16829 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 16830 16831 if (rc != MBX_SUCCESS) { 16832 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16833 "2601 failed to read config " 16834 "region 23, rc 0x%x Status 0x%x\n", 16835 rc, mb->mbxStatus); 16836 mb->un.varDmp.word_cnt = 0; 16837 } 16838 /* 16839 * dump mem may return a zero when finished or we got a 16840 * mailbox error, either way we are done. 16841 */ 16842 if (mb->un.varDmp.word_cnt == 0) 16843 break; 16844 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 16845 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 16846 16847 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 16848 rgn23_data + offset, 16849 mb->un.varDmp.word_cnt); 16850 offset += mb->un.varDmp.word_cnt; 16851 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 16852 16853 mempool_free(pmb, phba->mbox_mem_pool); 16854 return offset; 16855 } 16856 16857 /** 16858 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 16859 * @phba: pointer to lpfc hba data structure. 16860 * @rgn23_data: pointer to configure region 23 data. 16861 * 16862 * This function gets SLI4 port configure region 23 data through memory dump 16863 * mailbox command. When it successfully retrieves data, the size of the data 16864 * will be returned, otherwise, 0 will be returned. 16865 **/ 16866 static uint32_t 16867 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16868 { 16869 LPFC_MBOXQ_t *mboxq = NULL; 16870 struct lpfc_dmabuf *mp = NULL; 16871 struct lpfc_mqe *mqe; 16872 uint32_t data_length = 0; 16873 int rc; 16874 16875 if (!rgn23_data) 16876 return 0; 16877 16878 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16879 if (!mboxq) { 16880 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16881 "3105 failed to allocate mailbox memory\n"); 16882 return 0; 16883 } 16884 16885 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 16886 goto out; 16887 mqe = &mboxq->u.mqe; 16888 mp = (struct lpfc_dmabuf *) mboxq->context1; 16889 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 16890 if (rc) 16891 goto out; 16892 data_length = mqe->un.mb_words[5]; 16893 if (data_length == 0) 16894 goto out; 16895 if (data_length > DMP_RGN23_SIZE) { 16896 data_length = 0; 16897 goto out; 16898 } 16899 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 16900 out: 16901 mempool_free(mboxq, phba->mbox_mem_pool); 16902 if (mp) { 16903 lpfc_mbuf_free(phba, mp->virt, mp->phys); 16904 kfree(mp); 16905 } 16906 return data_length; 16907 } 16908 16909 /** 16910 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 16911 * @phba: pointer to lpfc hba data structure. 16912 * 16913 * This function read region 23 and parse TLV for port status to 16914 * decide if the user disaled the port. If the TLV indicates the 16915 * port is disabled, the hba_flag is set accordingly. 16916 **/ 16917 void 16918 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 16919 { 16920 uint8_t *rgn23_data = NULL; 16921 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 16922 uint32_t offset = 0; 16923 16924 /* Get adapter Region 23 data */ 16925 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16926 if (!rgn23_data) 16927 goto out; 16928 16929 if (phba->sli_rev < LPFC_SLI_REV4) 16930 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16931 else { 16932 if_type = bf_get(lpfc_sli_intf_if_type, 16933 &phba->sli4_hba.sli_intf); 16934 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16935 goto out; 16936 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16937 } 16938 16939 if (!data_size) 16940 goto out; 16941 16942 /* Check the region signature first */ 16943 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16944 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16945 "2619 Config region 23 has bad signature\n"); 16946 goto out; 16947 } 16948 offset += 4; 16949 16950 /* Check the data structure version */ 16951 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16952 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16953 "2620 Config region 23 has bad version\n"); 16954 goto out; 16955 } 16956 offset += 4; 16957 16958 /* Parse TLV entries in the region */ 16959 while (offset < data_size) { 16960 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16961 break; 16962 /* 16963 * If the TLV is not driver specific TLV or driver id is 16964 * not linux driver id, skip the record. 16965 */ 16966 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16967 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16968 (rgn23_data[offset + 3] != 0)) { 16969 offset += rgn23_data[offset + 1] * 4 + 4; 16970 continue; 16971 } 16972 16973 /* Driver found a driver specific TLV in the config region */ 16974 sub_tlv_len = rgn23_data[offset + 1] * 4; 16975 offset += 4; 16976 tlv_offset = 0; 16977 16978 /* 16979 * Search for configured port state sub-TLV. 16980 */ 16981 while ((offset < data_size) && 16982 (tlv_offset < sub_tlv_len)) { 16983 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16984 offset += 4; 16985 tlv_offset += 4; 16986 break; 16987 } 16988 if (rgn23_data[offset] != PORT_STE_TYPE) { 16989 offset += rgn23_data[offset + 1] * 4 + 4; 16990 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16991 continue; 16992 } 16993 16994 /* This HBA contains PORT_STE configured */ 16995 if (!rgn23_data[offset + 2]) 16996 phba->hba_flag |= LINK_DISABLED; 16997 16998 goto out; 16999 } 17000 } 17001 17002 out: 17003 kfree(rgn23_data); 17004 return; 17005 } 17006 17007 /** 17008 * lpfc_wr_object - write an object to the firmware 17009 * @phba: HBA structure that indicates port to create a queue on. 17010 * @dmabuf_list: list of dmabufs to write to the port. 17011 * @size: the total byte value of the objects to write to the port. 17012 * @offset: the current offset to be used to start the transfer. 17013 * 17014 * This routine will create a wr_object mailbox command to send to the port. 17015 * the mailbox command will be constructed using the dma buffers described in 17016 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 17017 * BDEs that the imbedded mailbox can support. The @offset variable will be 17018 * used to indicate the starting offset of the transfer and will also return 17019 * the offset after the write object mailbox has completed. @size is used to 17020 * determine the end of the object and whether the eof bit should be set. 17021 * 17022 * Return 0 is successful and offset will contain the the new offset to use 17023 * for the next write. 17024 * Return negative value for error cases. 17025 **/ 17026 int 17027 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 17028 uint32_t size, uint32_t *offset) 17029 { 17030 struct lpfc_mbx_wr_object *wr_object; 17031 LPFC_MBOXQ_t *mbox; 17032 int rc = 0, i = 0; 17033 uint32_t shdr_status, shdr_add_status; 17034 uint32_t mbox_tmo; 17035 union lpfc_sli4_cfg_shdr *shdr; 17036 struct lpfc_dmabuf *dmabuf; 17037 uint32_t written = 0; 17038 17039 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17040 if (!mbox) 17041 return -ENOMEM; 17042 17043 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17044 LPFC_MBOX_OPCODE_WRITE_OBJECT, 17045 sizeof(struct lpfc_mbx_wr_object) - 17046 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17047 17048 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 17049 wr_object->u.request.write_offset = *offset; 17050 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 17051 wr_object->u.request.object_name[0] = 17052 cpu_to_le32(wr_object->u.request.object_name[0]); 17053 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 17054 list_for_each_entry(dmabuf, dmabuf_list, list) { 17055 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 17056 break; 17057 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 17058 wr_object->u.request.bde[i].addrHigh = 17059 putPaddrHigh(dmabuf->phys); 17060 if (written + SLI4_PAGE_SIZE >= size) { 17061 wr_object->u.request.bde[i].tus.f.bdeSize = 17062 (size - written); 17063 written += (size - written); 17064 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 17065 } else { 17066 wr_object->u.request.bde[i].tus.f.bdeSize = 17067 SLI4_PAGE_SIZE; 17068 written += SLI4_PAGE_SIZE; 17069 } 17070 i++; 17071 } 17072 wr_object->u.request.bde_count = i; 17073 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 17074 if (!phba->sli4_hba.intr_enable) 17075 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17076 else { 17077 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17078 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17079 } 17080 /* The IOCTL status is embedded in the mailbox subheader. */ 17081 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 17082 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17083 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17084 if (rc != MBX_TIMEOUT) 17085 mempool_free(mbox, phba->mbox_mem_pool); 17086 if (shdr_status || shdr_add_status || rc) { 17087 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17088 "3025 Write Object mailbox failed with " 17089 "status x%x add_status x%x, mbx status x%x\n", 17090 shdr_status, shdr_add_status, rc); 17091 rc = -ENXIO; 17092 } else 17093 *offset += wr_object->u.response.actual_write_length; 17094 return rc; 17095 } 17096 17097 /** 17098 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 17099 * @vport: pointer to vport data structure. 17100 * 17101 * This function iterate through the mailboxq and clean up all REG_LOGIN 17102 * and REG_VPI mailbox commands associated with the vport. This function 17103 * is called when driver want to restart discovery of the vport due to 17104 * a Clear Virtual Link event. 17105 **/ 17106 void 17107 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 17108 { 17109 struct lpfc_hba *phba = vport->phba; 17110 LPFC_MBOXQ_t *mb, *nextmb; 17111 struct lpfc_dmabuf *mp; 17112 struct lpfc_nodelist *ndlp; 17113 struct lpfc_nodelist *act_mbx_ndlp = NULL; 17114 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 17115 LIST_HEAD(mbox_cmd_list); 17116 uint8_t restart_loop; 17117 17118 /* Clean up internally queued mailbox commands with the vport */ 17119 spin_lock_irq(&phba->hbalock); 17120 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 17121 if (mb->vport != vport) 17122 continue; 17123 17124 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 17125 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 17126 continue; 17127 17128 list_del(&mb->list); 17129 list_add_tail(&mb->list, &mbox_cmd_list); 17130 } 17131 /* Clean up active mailbox command with the vport */ 17132 mb = phba->sli.mbox_active; 17133 if (mb && (mb->vport == vport)) { 17134 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 17135 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 17136 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17137 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17138 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 17139 /* Put reference count for delayed processing */ 17140 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 17141 /* Unregister the RPI when mailbox complete */ 17142 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 17143 } 17144 } 17145 /* Cleanup any mailbox completions which are not yet processed */ 17146 do { 17147 restart_loop = 0; 17148 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 17149 /* 17150 * If this mailox is already processed or it is 17151 * for another vport ignore it. 17152 */ 17153 if ((mb->vport != vport) || 17154 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 17155 continue; 17156 17157 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 17158 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 17159 continue; 17160 17161 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17162 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17163 ndlp = (struct lpfc_nodelist *)mb->context2; 17164 /* Unregister the RPI when mailbox complete */ 17165 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 17166 restart_loop = 1; 17167 spin_unlock_irq(&phba->hbalock); 17168 spin_lock(shost->host_lock); 17169 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17170 spin_unlock(shost->host_lock); 17171 spin_lock_irq(&phba->hbalock); 17172 break; 17173 } 17174 } 17175 } while (restart_loop); 17176 17177 spin_unlock_irq(&phba->hbalock); 17178 17179 /* Release the cleaned-up mailbox commands */ 17180 while (!list_empty(&mbox_cmd_list)) { 17181 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 17182 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 17183 mp = (struct lpfc_dmabuf *) (mb->context1); 17184 if (mp) { 17185 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 17186 kfree(mp); 17187 } 17188 ndlp = (struct lpfc_nodelist *) mb->context2; 17189 mb->context2 = NULL; 17190 if (ndlp) { 17191 spin_lock(shost->host_lock); 17192 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17193 spin_unlock(shost->host_lock); 17194 lpfc_nlp_put(ndlp); 17195 } 17196 } 17197 mempool_free(mb, phba->mbox_mem_pool); 17198 } 17199 17200 /* Release the ndlp with the cleaned-up active mailbox command */ 17201 if (act_mbx_ndlp) { 17202 spin_lock(shost->host_lock); 17203 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 17204 spin_unlock(shost->host_lock); 17205 lpfc_nlp_put(act_mbx_ndlp); 17206 } 17207 } 17208 17209 /** 17210 * lpfc_drain_txq - Drain the txq 17211 * @phba: Pointer to HBA context object. 17212 * 17213 * This function attempt to submit IOCBs on the txq 17214 * to the adapter. For SLI4 adapters, the txq contains 17215 * ELS IOCBs that have been deferred because the there 17216 * are no SGLs. This congestion can occur with large 17217 * vport counts during node discovery. 17218 **/ 17219 17220 uint32_t 17221 lpfc_drain_txq(struct lpfc_hba *phba) 17222 { 17223 LIST_HEAD(completions); 17224 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 17225 struct lpfc_iocbq *piocbq = NULL; 17226 unsigned long iflags = 0; 17227 char *fail_msg = NULL; 17228 struct lpfc_sglq *sglq; 17229 union lpfc_wqe wqe; 17230 uint32_t txq_cnt = 0; 17231 17232 spin_lock_irqsave(&pring->ring_lock, iflags); 17233 list_for_each_entry(piocbq, &pring->txq, list) { 17234 txq_cnt++; 17235 } 17236 17237 if (txq_cnt > pring->txq_max) 17238 pring->txq_max = txq_cnt; 17239 17240 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17241 17242 while (!list_empty(&pring->txq)) { 17243 spin_lock_irqsave(&pring->ring_lock, iflags); 17244 17245 piocbq = lpfc_sli_ringtx_get(phba, pring); 17246 if (!piocbq) { 17247 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17248 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17249 "2823 txq empty and txq_cnt is %d\n ", 17250 txq_cnt); 17251 break; 17252 } 17253 sglq = __lpfc_sli_get_sglq(phba, piocbq); 17254 if (!sglq) { 17255 __lpfc_sli_ringtx_put(phba, pring, piocbq); 17256 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17257 break; 17258 } 17259 txq_cnt--; 17260 17261 /* The xri and iocb resources secured, 17262 * attempt to issue request 17263 */ 17264 piocbq->sli4_lxritag = sglq->sli4_lxritag; 17265 piocbq->sli4_xritag = sglq->sli4_xritag; 17266 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 17267 fail_msg = "to convert bpl to sgl"; 17268 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 17269 fail_msg = "to convert iocb to wqe"; 17270 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 17271 fail_msg = " - Wq is full"; 17272 else 17273 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 17274 17275 if (fail_msg) { 17276 /* Failed means we can't issue and need to cancel */ 17277 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17278 "2822 IOCB failed %s iotag 0x%x " 17279 "xri 0x%x\n", 17280 fail_msg, 17281 piocbq->iotag, piocbq->sli4_xritag); 17282 list_add_tail(&piocbq->list, &completions); 17283 } 17284 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17285 } 17286 17287 /* Cancel all the IOCBs that cannot be issued */ 17288 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 17289 IOERR_SLI_ABORTED); 17290 17291 return txq_cnt; 17292 } 17293