1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2004-2015 Emulex. All rights reserved. * 5 * EMULEX and SLI are trademarks of Emulex. * 6 * www.emulex.com * 7 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 8 * * 9 * This program is free software; you can redistribute it and/or * 10 * modify it under the terms of version 2 of the GNU General * 11 * Public License as published by the Free Software Foundation. * 12 * This program is distributed in the hope that it will be useful. * 13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 17 * TO BE LEGALLY INVALID. See the GNU General Public License for * 18 * more details, a copy of which can be found in the file COPYING * 19 * included with this package. * 20 *******************************************************************/ 21 22 #include <linux/blkdev.h> 23 #include <linux/pci.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 28 #include <scsi/scsi.h> 29 #include <scsi/scsi_cmnd.h> 30 #include <scsi/scsi_device.h> 31 #include <scsi/scsi_host.h> 32 #include <scsi/scsi_transport_fc.h> 33 #include <scsi/fc/fc_fs.h> 34 #include <linux/aer.h> 35 36 #include "lpfc_hw4.h" 37 #include "lpfc_hw.h" 38 #include "lpfc_sli.h" 39 #include "lpfc_sli4.h" 40 #include "lpfc_nl.h" 41 #include "lpfc_disc.h" 42 #include "lpfc_scsi.h" 43 #include "lpfc.h" 44 #include "lpfc_crtn.h" 45 #include "lpfc_logmsg.h" 46 #include "lpfc_compat.h" 47 #include "lpfc_debugfs.h" 48 #include "lpfc_vport.h" 49 50 /* There are only four IOCB completion types. */ 51 typedef enum _lpfc_iocb_type { 52 LPFC_UNKNOWN_IOCB, 53 LPFC_UNSOL_IOCB, 54 LPFC_SOL_IOCB, 55 LPFC_ABORT_IOCB 56 } lpfc_iocb_type; 57 58 59 /* Provide function prototypes local to this module. */ 60 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 61 uint32_t); 62 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 63 uint8_t *, uint32_t *); 64 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 65 struct lpfc_iocbq *); 66 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 67 struct hbq_dmabuf *); 68 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *, 69 struct lpfc_cqe *); 70 static int lpfc_sli4_post_els_sgl_list(struct lpfc_hba *, struct list_head *, 71 int); 72 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 73 uint32_t); 74 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 75 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 76 77 static IOCB_t * 78 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 79 { 80 return &iocbq->iocb; 81 } 82 83 /** 84 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 85 * @q: The Work Queue to operate on. 86 * @wqe: The work Queue Entry to put on the Work queue. 87 * 88 * This routine will copy the contents of @wqe to the next available entry on 89 * the @q. This function will then ring the Work Queue Doorbell to signal the 90 * HBA to start processing the Work Queue Entry. This function returns 0 if 91 * successful. If no entries are available on @q then this function will return 92 * -ENOMEM. 93 * The caller is expected to hold the hbalock when calling this routine. 94 **/ 95 static uint32_t 96 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 97 { 98 union lpfc_wqe *temp_wqe; 99 struct lpfc_register doorbell; 100 uint32_t host_index; 101 uint32_t idx; 102 103 /* sanity check on queue memory */ 104 if (unlikely(!q)) 105 return -ENOMEM; 106 temp_wqe = q->qe[q->host_index].wqe; 107 108 /* If the host has not yet processed the next entry then we are done */ 109 idx = ((q->host_index + 1) % q->entry_count); 110 if (idx == q->hba_index) { 111 q->WQ_overflow++; 112 return -ENOMEM; 113 } 114 q->WQ_posted++; 115 /* set consumption flag every once in a while */ 116 if (!((q->host_index + 1) % q->entry_repost)) 117 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 118 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 119 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 120 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 121 122 /* Update the host index before invoking device */ 123 host_index = q->host_index; 124 125 q->host_index = idx; 126 127 /* Ring Doorbell */ 128 doorbell.word0 = 0; 129 if (q->db_format == LPFC_DB_LIST_FORMAT) { 130 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 131 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 132 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 133 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 134 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 135 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 136 } else { 137 return -EINVAL; 138 } 139 writel(doorbell.word0, q->db_regaddr); 140 141 return 0; 142 } 143 144 /** 145 * lpfc_sli4_wq_release - Updates internal hba index for WQ 146 * @q: The Work Queue to operate on. 147 * @index: The index to advance the hba index to. 148 * 149 * This routine will update the HBA index of a queue to reflect consumption of 150 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 151 * an entry the host calls this function to update the queue's internal 152 * pointers. This routine returns the number of entries that were consumed by 153 * the HBA. 154 **/ 155 static uint32_t 156 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 157 { 158 uint32_t released = 0; 159 160 /* sanity check on queue memory */ 161 if (unlikely(!q)) 162 return 0; 163 164 if (q->hba_index == index) 165 return 0; 166 do { 167 q->hba_index = ((q->hba_index + 1) % q->entry_count); 168 released++; 169 } while (q->hba_index != index); 170 return released; 171 } 172 173 /** 174 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 175 * @q: The Mailbox Queue to operate on. 176 * @wqe: The Mailbox Queue Entry to put on the Work queue. 177 * 178 * This routine will copy the contents of @mqe to the next available entry on 179 * the @q. This function will then ring the Work Queue Doorbell to signal the 180 * HBA to start processing the Work Queue Entry. This function returns 0 if 181 * successful. If no entries are available on @q then this function will return 182 * -ENOMEM. 183 * The caller is expected to hold the hbalock when calling this routine. 184 **/ 185 static uint32_t 186 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 187 { 188 struct lpfc_mqe *temp_mqe; 189 struct lpfc_register doorbell; 190 191 /* sanity check on queue memory */ 192 if (unlikely(!q)) 193 return -ENOMEM; 194 temp_mqe = q->qe[q->host_index].mqe; 195 196 /* If the host has not yet processed the next entry then we are done */ 197 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 198 return -ENOMEM; 199 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 200 /* Save off the mailbox pointer for completion */ 201 q->phba->mbox = (MAILBOX_t *)temp_mqe; 202 203 /* Update the host index before invoking device */ 204 q->host_index = ((q->host_index + 1) % q->entry_count); 205 206 /* Ring Doorbell */ 207 doorbell.word0 = 0; 208 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 209 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 210 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 211 return 0; 212 } 213 214 /** 215 * lpfc_sli4_mq_release - Updates internal hba index for MQ 216 * @q: The Mailbox Queue to operate on. 217 * 218 * This routine will update the HBA index of a queue to reflect consumption of 219 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 220 * an entry the host calls this function to update the queue's internal 221 * pointers. This routine returns the number of entries that were consumed by 222 * the HBA. 223 **/ 224 static uint32_t 225 lpfc_sli4_mq_release(struct lpfc_queue *q) 226 { 227 /* sanity check on queue memory */ 228 if (unlikely(!q)) 229 return 0; 230 231 /* Clear the mailbox pointer for completion */ 232 q->phba->mbox = NULL; 233 q->hba_index = ((q->hba_index + 1) % q->entry_count); 234 return 1; 235 } 236 237 /** 238 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 239 * @q: The Event Queue to get the first valid EQE from 240 * 241 * This routine will get the first valid Event Queue Entry from @q, update 242 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 243 * the Queue (no more work to do), or the Queue is full of EQEs that have been 244 * processed, but not popped back to the HBA then this routine will return NULL. 245 **/ 246 static struct lpfc_eqe * 247 lpfc_sli4_eq_get(struct lpfc_queue *q) 248 { 249 struct lpfc_eqe *eqe; 250 uint32_t idx; 251 252 /* sanity check on queue memory */ 253 if (unlikely(!q)) 254 return NULL; 255 eqe = q->qe[q->hba_index].eqe; 256 257 /* If the next EQE is not valid then we are done */ 258 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 259 return NULL; 260 /* If the host has not yet processed the next entry then we are done */ 261 idx = ((q->hba_index + 1) % q->entry_count); 262 if (idx == q->host_index) 263 return NULL; 264 265 q->hba_index = idx; 266 267 /* 268 * insert barrier for instruction interlock : data from the hardware 269 * must have the valid bit checked before it can be copied and acted 270 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 271 * instructions allowing action on content before valid bit checked, 272 * add barrier here as well. May not be needed as "content" is a 273 * single 32-bit entity here (vs multi word structure for cq's). 274 */ 275 mb(); 276 return eqe; 277 } 278 279 /** 280 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 281 * @q: The Event Queue to disable interrupts 282 * 283 **/ 284 static inline void 285 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 286 { 287 struct lpfc_register doorbell; 288 289 doorbell.word0 = 0; 290 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 291 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 292 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 293 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 294 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 295 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 296 } 297 298 /** 299 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 300 * @q: The Event Queue that the host has completed processing for. 301 * @arm: Indicates whether the host wants to arms this CQ. 302 * 303 * This routine will mark all Event Queue Entries on @q, from the last 304 * known completed entry to the last entry that was processed, as completed 305 * by clearing the valid bit for each completion queue entry. Then it will 306 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 307 * The internal host index in the @q will be updated by this routine to indicate 308 * that the host has finished processing the entries. The @arm parameter 309 * indicates that the queue should be rearmed when ringing the doorbell. 310 * 311 * This function will return the number of EQEs that were popped. 312 **/ 313 uint32_t 314 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 315 { 316 uint32_t released = 0; 317 struct lpfc_eqe *temp_eqe; 318 struct lpfc_register doorbell; 319 320 /* sanity check on queue memory */ 321 if (unlikely(!q)) 322 return 0; 323 324 /* while there are valid entries */ 325 while (q->hba_index != q->host_index) { 326 temp_eqe = q->qe[q->host_index].eqe; 327 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 328 released++; 329 q->host_index = ((q->host_index + 1) % q->entry_count); 330 } 331 if (unlikely(released == 0 && !arm)) 332 return 0; 333 334 /* ring doorbell for number popped */ 335 doorbell.word0 = 0; 336 if (arm) { 337 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 338 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 339 } 340 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 341 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 342 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 343 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 344 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 345 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 346 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 347 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 348 readl(q->phba->sli4_hba.EQCQDBregaddr); 349 return released; 350 } 351 352 /** 353 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 354 * @q: The Completion Queue to get the first valid CQE from 355 * 356 * This routine will get the first valid Completion Queue Entry from @q, update 357 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 358 * the Queue (no more work to do), or the Queue is full of CQEs that have been 359 * processed, but not popped back to the HBA then this routine will return NULL. 360 **/ 361 static struct lpfc_cqe * 362 lpfc_sli4_cq_get(struct lpfc_queue *q) 363 { 364 struct lpfc_cqe *cqe; 365 uint32_t idx; 366 367 /* sanity check on queue memory */ 368 if (unlikely(!q)) 369 return NULL; 370 371 /* If the next CQE is not valid then we are done */ 372 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 373 return NULL; 374 /* If the host has not yet processed the next entry then we are done */ 375 idx = ((q->hba_index + 1) % q->entry_count); 376 if (idx == q->host_index) 377 return NULL; 378 379 cqe = q->qe[q->hba_index].cqe; 380 q->hba_index = idx; 381 382 /* 383 * insert barrier for instruction interlock : data from the hardware 384 * must have the valid bit checked before it can be copied and acted 385 * upon. Speculative instructions were allowing a bcopy at the start 386 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 387 * after our return, to copy data before the valid bit check above 388 * was done. As such, some of the copied data was stale. The barrier 389 * ensures the check is before any data is copied. 390 */ 391 mb(); 392 return cqe; 393 } 394 395 /** 396 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 397 * @q: The Completion Queue that the host has completed processing for. 398 * @arm: Indicates whether the host wants to arms this CQ. 399 * 400 * This routine will mark all Completion queue entries on @q, from the last 401 * known completed entry to the last entry that was processed, as completed 402 * by clearing the valid bit for each completion queue entry. Then it will 403 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 404 * The internal host index in the @q will be updated by this routine to indicate 405 * that the host has finished processing the entries. The @arm parameter 406 * indicates that the queue should be rearmed when ringing the doorbell. 407 * 408 * This function will return the number of CQEs that were released. 409 **/ 410 uint32_t 411 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 412 { 413 uint32_t released = 0; 414 struct lpfc_cqe *temp_qe; 415 struct lpfc_register doorbell; 416 417 /* sanity check on queue memory */ 418 if (unlikely(!q)) 419 return 0; 420 /* while there are valid entries */ 421 while (q->hba_index != q->host_index) { 422 temp_qe = q->qe[q->host_index].cqe; 423 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 424 released++; 425 q->host_index = ((q->host_index + 1) % q->entry_count); 426 } 427 if (unlikely(released == 0 && !arm)) 428 return 0; 429 430 /* ring doorbell for number popped */ 431 doorbell.word0 = 0; 432 if (arm) 433 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 434 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 435 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 436 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 437 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 438 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 439 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 440 return released; 441 } 442 443 /** 444 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 445 * @q: The Header Receive Queue to operate on. 446 * @wqe: The Receive Queue Entry to put on the Receive queue. 447 * 448 * This routine will copy the contents of @wqe to the next available entry on 449 * the @q. This function will then ring the Receive Queue Doorbell to signal the 450 * HBA to start processing the Receive Queue Entry. This function returns the 451 * index that the rqe was copied to if successful. If no entries are available 452 * on @q then this function will return -ENOMEM. 453 * The caller is expected to hold the hbalock when calling this routine. 454 **/ 455 static int 456 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 457 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 458 { 459 struct lpfc_rqe *temp_hrqe; 460 struct lpfc_rqe *temp_drqe; 461 struct lpfc_register doorbell; 462 int put_index; 463 464 /* sanity check on queue memory */ 465 if (unlikely(!hq) || unlikely(!dq)) 466 return -ENOMEM; 467 put_index = hq->host_index; 468 temp_hrqe = hq->qe[hq->host_index].rqe; 469 temp_drqe = dq->qe[dq->host_index].rqe; 470 471 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 472 return -EINVAL; 473 if (hq->host_index != dq->host_index) 474 return -EINVAL; 475 /* If the host has not yet processed the next entry then we are done */ 476 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 477 return -EBUSY; 478 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 479 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 480 481 /* Update the host index to point to the next slot */ 482 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 483 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 484 485 /* Ring The Header Receive Queue Doorbell */ 486 if (!(hq->host_index % hq->entry_repost)) { 487 doorbell.word0 = 0; 488 if (hq->db_format == LPFC_DB_RING_FORMAT) { 489 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 490 hq->entry_repost); 491 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 492 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 493 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 494 hq->entry_repost); 495 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 496 hq->host_index); 497 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 498 } else { 499 return -EINVAL; 500 } 501 writel(doorbell.word0, hq->db_regaddr); 502 } 503 return put_index; 504 } 505 506 /** 507 * lpfc_sli4_rq_release - Updates internal hba index for RQ 508 * @q: The Header Receive Queue to operate on. 509 * 510 * This routine will update the HBA index of a queue to reflect consumption of 511 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 512 * consumed an entry the host calls this function to update the queue's 513 * internal pointers. This routine returns the number of entries that were 514 * consumed by the HBA. 515 **/ 516 static uint32_t 517 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 518 { 519 /* sanity check on queue memory */ 520 if (unlikely(!hq) || unlikely(!dq)) 521 return 0; 522 523 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 524 return 0; 525 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 526 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 527 return 1; 528 } 529 530 /** 531 * lpfc_cmd_iocb - Get next command iocb entry in the ring 532 * @phba: Pointer to HBA context object. 533 * @pring: Pointer to driver SLI ring object. 534 * 535 * This function returns pointer to next command iocb entry 536 * in the command ring. The caller must hold hbalock to prevent 537 * other threads consume the next command iocb. 538 * SLI-2/SLI-3 provide different sized iocbs. 539 **/ 540 static inline IOCB_t * 541 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 542 { 543 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 544 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 545 } 546 547 /** 548 * lpfc_resp_iocb - Get next response iocb entry in the ring 549 * @phba: Pointer to HBA context object. 550 * @pring: Pointer to driver SLI ring object. 551 * 552 * This function returns pointer to next response iocb entry 553 * in the response ring. The caller must hold hbalock to make sure 554 * that no other thread consume the next response iocb. 555 * SLI-2/SLI-3 provide different sized iocbs. 556 **/ 557 static inline IOCB_t * 558 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 559 { 560 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 561 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 562 } 563 564 /** 565 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 566 * @phba: Pointer to HBA context object. 567 * 568 * This function is called with hbalock held. This function 569 * allocates a new driver iocb object from the iocb pool. If the 570 * allocation is successful, it returns pointer to the newly 571 * allocated iocb object else it returns NULL. 572 **/ 573 struct lpfc_iocbq * 574 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 575 { 576 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 577 struct lpfc_iocbq * iocbq = NULL; 578 579 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 580 if (iocbq) 581 phba->iocb_cnt++; 582 if (phba->iocb_cnt > phba->iocb_max) 583 phba->iocb_max = phba->iocb_cnt; 584 return iocbq; 585 } 586 587 /** 588 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 589 * @phba: Pointer to HBA context object. 590 * @xritag: XRI value. 591 * 592 * This function clears the sglq pointer from the array of acive 593 * sglq's. The xritag that is passed in is used to index into the 594 * array. Before the xritag can be used it needs to be adjusted 595 * by subtracting the xribase. 596 * 597 * Returns sglq ponter = success, NULL = Failure. 598 **/ 599 static struct lpfc_sglq * 600 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 601 { 602 struct lpfc_sglq *sglq; 603 604 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 605 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 606 return sglq; 607 } 608 609 /** 610 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 611 * @phba: Pointer to HBA context object. 612 * @xritag: XRI value. 613 * 614 * This function returns the sglq pointer from the array of acive 615 * sglq's. The xritag that is passed in is used to index into the 616 * array. Before the xritag can be used it needs to be adjusted 617 * by subtracting the xribase. 618 * 619 * Returns sglq ponter = success, NULL = Failure. 620 **/ 621 struct lpfc_sglq * 622 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 623 { 624 struct lpfc_sglq *sglq; 625 626 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 627 return sglq; 628 } 629 630 /** 631 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 632 * @phba: Pointer to HBA context object. 633 * @xritag: xri used in this exchange. 634 * @rrq: The RRQ to be cleared. 635 * 636 **/ 637 void 638 lpfc_clr_rrq_active(struct lpfc_hba *phba, 639 uint16_t xritag, 640 struct lpfc_node_rrq *rrq) 641 { 642 struct lpfc_nodelist *ndlp = NULL; 643 644 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 645 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 646 647 /* The target DID could have been swapped (cable swap) 648 * we should use the ndlp from the findnode if it is 649 * available. 650 */ 651 if ((!ndlp) && rrq->ndlp) 652 ndlp = rrq->ndlp; 653 654 if (!ndlp) 655 goto out; 656 657 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 658 rrq->send_rrq = 0; 659 rrq->xritag = 0; 660 rrq->rrq_stop_time = 0; 661 } 662 out: 663 mempool_free(rrq, phba->rrq_pool); 664 } 665 666 /** 667 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 668 * @phba: Pointer to HBA context object. 669 * 670 * This function is called with hbalock held. This function 671 * Checks if stop_time (ratov from setting rrq active) has 672 * been reached, if it has and the send_rrq flag is set then 673 * it will call lpfc_send_rrq. If the send_rrq flag is not set 674 * then it will just call the routine to clear the rrq and 675 * free the rrq resource. 676 * The timer is set to the next rrq that is going to expire before 677 * leaving the routine. 678 * 679 **/ 680 void 681 lpfc_handle_rrq_active(struct lpfc_hba *phba) 682 { 683 struct lpfc_node_rrq *rrq; 684 struct lpfc_node_rrq *nextrrq; 685 unsigned long next_time; 686 unsigned long iflags; 687 LIST_HEAD(send_rrq); 688 689 spin_lock_irqsave(&phba->hbalock, iflags); 690 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 691 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 692 list_for_each_entry_safe(rrq, nextrrq, 693 &phba->active_rrq_list, list) { 694 if (time_after(jiffies, rrq->rrq_stop_time)) 695 list_move(&rrq->list, &send_rrq); 696 else if (time_before(rrq->rrq_stop_time, next_time)) 697 next_time = rrq->rrq_stop_time; 698 } 699 spin_unlock_irqrestore(&phba->hbalock, iflags); 700 if ((!list_empty(&phba->active_rrq_list)) && 701 (!(phba->pport->load_flag & FC_UNLOADING))) 702 mod_timer(&phba->rrq_tmr, next_time); 703 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 704 list_del(&rrq->list); 705 if (!rrq->send_rrq) 706 /* this call will free the rrq */ 707 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 708 else if (lpfc_send_rrq(phba, rrq)) { 709 /* if we send the rrq then the completion handler 710 * will clear the bit in the xribitmap. 711 */ 712 lpfc_clr_rrq_active(phba, rrq->xritag, 713 rrq); 714 } 715 } 716 } 717 718 /** 719 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 720 * @vport: Pointer to vport context object. 721 * @xri: The xri used in the exchange. 722 * @did: The targets DID for this exchange. 723 * 724 * returns NULL = rrq not found in the phba->active_rrq_list. 725 * rrq = rrq for this xri and target. 726 **/ 727 struct lpfc_node_rrq * 728 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 729 { 730 struct lpfc_hba *phba = vport->phba; 731 struct lpfc_node_rrq *rrq; 732 struct lpfc_node_rrq *nextrrq; 733 unsigned long iflags; 734 735 if (phba->sli_rev != LPFC_SLI_REV4) 736 return NULL; 737 spin_lock_irqsave(&phba->hbalock, iflags); 738 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 739 if (rrq->vport == vport && rrq->xritag == xri && 740 rrq->nlp_DID == did){ 741 list_del(&rrq->list); 742 spin_unlock_irqrestore(&phba->hbalock, iflags); 743 return rrq; 744 } 745 } 746 spin_unlock_irqrestore(&phba->hbalock, iflags); 747 return NULL; 748 } 749 750 /** 751 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 752 * @vport: Pointer to vport context object. 753 * @ndlp: Pointer to the lpfc_node_list structure. 754 * If ndlp is NULL Remove all active RRQs for this vport from the 755 * phba->active_rrq_list and clear the rrq. 756 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 757 **/ 758 void 759 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 760 761 { 762 struct lpfc_hba *phba = vport->phba; 763 struct lpfc_node_rrq *rrq; 764 struct lpfc_node_rrq *nextrrq; 765 unsigned long iflags; 766 LIST_HEAD(rrq_list); 767 768 if (phba->sli_rev != LPFC_SLI_REV4) 769 return; 770 if (!ndlp) { 771 lpfc_sli4_vport_delete_els_xri_aborted(vport); 772 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 773 } 774 spin_lock_irqsave(&phba->hbalock, iflags); 775 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 776 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 777 list_move(&rrq->list, &rrq_list); 778 spin_unlock_irqrestore(&phba->hbalock, iflags); 779 780 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 781 list_del(&rrq->list); 782 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 783 } 784 } 785 786 /** 787 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 788 * @phba: Pointer to HBA context object. 789 * @ndlp: Targets nodelist pointer for this exchange. 790 * @xritag the xri in the bitmap to test. 791 * 792 * This function is called with hbalock held. This function 793 * returns 0 = rrq not active for this xri 794 * 1 = rrq is valid for this xri. 795 **/ 796 int 797 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 798 uint16_t xritag) 799 { 800 if (!ndlp) 801 return 0; 802 if (!ndlp->active_rrqs_xri_bitmap) 803 return 0; 804 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 805 return 1; 806 else 807 return 0; 808 } 809 810 /** 811 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 812 * @phba: Pointer to HBA context object. 813 * @ndlp: nodelist pointer for this target. 814 * @xritag: xri used in this exchange. 815 * @rxid: Remote Exchange ID. 816 * @send_rrq: Flag used to determine if we should send rrq els cmd. 817 * 818 * This function takes the hbalock. 819 * The active bit is always set in the active rrq xri_bitmap even 820 * if there is no slot avaiable for the other rrq information. 821 * 822 * returns 0 rrq actived for this xri 823 * < 0 No memory or invalid ndlp. 824 **/ 825 int 826 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 827 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 828 { 829 unsigned long iflags; 830 struct lpfc_node_rrq *rrq; 831 int empty; 832 833 if (!ndlp) 834 return -EINVAL; 835 836 if (!phba->cfg_enable_rrq) 837 return -EINVAL; 838 839 spin_lock_irqsave(&phba->hbalock, iflags); 840 if (phba->pport->load_flag & FC_UNLOADING) { 841 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 842 goto out; 843 } 844 845 /* 846 * set the active bit even if there is no mem available. 847 */ 848 if (NLP_CHK_FREE_REQ(ndlp)) 849 goto out; 850 851 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 852 goto out; 853 854 if (!ndlp->active_rrqs_xri_bitmap) 855 goto out; 856 857 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 858 goto out; 859 860 spin_unlock_irqrestore(&phba->hbalock, iflags); 861 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 862 if (!rrq) { 863 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 864 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 865 " DID:0x%x Send:%d\n", 866 xritag, rxid, ndlp->nlp_DID, send_rrq); 867 return -EINVAL; 868 } 869 if (phba->cfg_enable_rrq == 1) 870 rrq->send_rrq = send_rrq; 871 else 872 rrq->send_rrq = 0; 873 rrq->xritag = xritag; 874 rrq->rrq_stop_time = jiffies + 875 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 876 rrq->ndlp = ndlp; 877 rrq->nlp_DID = ndlp->nlp_DID; 878 rrq->vport = ndlp->vport; 879 rrq->rxid = rxid; 880 spin_lock_irqsave(&phba->hbalock, iflags); 881 empty = list_empty(&phba->active_rrq_list); 882 list_add_tail(&rrq->list, &phba->active_rrq_list); 883 phba->hba_flag |= HBA_RRQ_ACTIVE; 884 if (empty) 885 lpfc_worker_wake_up(phba); 886 spin_unlock_irqrestore(&phba->hbalock, iflags); 887 return 0; 888 out: 889 spin_unlock_irqrestore(&phba->hbalock, iflags); 890 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 891 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 892 " DID:0x%x Send:%d\n", 893 xritag, rxid, ndlp->nlp_DID, send_rrq); 894 return -EINVAL; 895 } 896 897 /** 898 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool 899 * @phba: Pointer to HBA context object. 900 * @piocb: Pointer to the iocbq. 901 * 902 * This function is called with the ring lock held. This function 903 * gets a new driver sglq object from the sglq list. If the 904 * list is not empty then it is successful, it returns pointer to the newly 905 * allocated sglq object else it returns NULL. 906 **/ 907 static struct lpfc_sglq * 908 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 909 { 910 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list; 911 struct lpfc_sglq *sglq = NULL; 912 struct lpfc_sglq *start_sglq = NULL; 913 struct lpfc_scsi_buf *lpfc_cmd; 914 struct lpfc_nodelist *ndlp; 915 int found = 0; 916 917 if (piocbq->iocb_flag & LPFC_IO_FCP) { 918 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 919 ndlp = lpfc_cmd->rdata->pnode; 920 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 921 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 922 ndlp = piocbq->context_un.ndlp; 923 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 924 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 925 ndlp = NULL; 926 else 927 ndlp = piocbq->context_un.ndlp; 928 } else { 929 ndlp = piocbq->context1; 930 } 931 932 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list); 933 start_sglq = sglq; 934 while (!found) { 935 if (!sglq) 936 return NULL; 937 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_lxritag)) { 938 /* This xri has an rrq outstanding for this DID. 939 * put it back in the list and get another xri. 940 */ 941 list_add_tail(&sglq->list, lpfc_sgl_list); 942 sglq = NULL; 943 list_remove_head(lpfc_sgl_list, sglq, 944 struct lpfc_sglq, list); 945 if (sglq == start_sglq) { 946 sglq = NULL; 947 break; 948 } else 949 continue; 950 } 951 sglq->ndlp = ndlp; 952 found = 1; 953 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 954 sglq->state = SGL_ALLOCATED; 955 } 956 return sglq; 957 } 958 959 /** 960 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 961 * @phba: Pointer to HBA context object. 962 * 963 * This function is called with no lock held. This function 964 * allocates a new driver iocb object from the iocb pool. If the 965 * allocation is successful, it returns pointer to the newly 966 * allocated iocb object else it returns NULL. 967 **/ 968 struct lpfc_iocbq * 969 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 970 { 971 struct lpfc_iocbq * iocbq = NULL; 972 unsigned long iflags; 973 974 spin_lock_irqsave(&phba->hbalock, iflags); 975 iocbq = __lpfc_sli_get_iocbq(phba); 976 spin_unlock_irqrestore(&phba->hbalock, iflags); 977 return iocbq; 978 } 979 980 /** 981 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 982 * @phba: Pointer to HBA context object. 983 * @iocbq: Pointer to driver iocb object. 984 * 985 * This function is called with hbalock held to release driver 986 * iocb object to the iocb pool. The iotag in the iocb object 987 * does not change for each use of the iocb object. This function 988 * clears all other fields of the iocb object when it is freed. 989 * The sqlq structure that holds the xritag and phys and virtual 990 * mappings for the scatter gather list is retrieved from the 991 * active array of sglq. The get of the sglq pointer also clears 992 * the entry in the array. If the status of the IO indiactes that 993 * this IO was aborted then the sglq entry it put on the 994 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 995 * IO has good status or fails for any other reason then the sglq 996 * entry is added to the free list (lpfc_sgl_list). 997 **/ 998 static void 999 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1000 { 1001 struct lpfc_sglq *sglq; 1002 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1003 unsigned long iflag = 0; 1004 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 1005 1006 if (iocbq->sli4_xritag == NO_XRI) 1007 sglq = NULL; 1008 else 1009 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1010 1011 1012 if (sglq) { 1013 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1014 (sglq->state != SGL_XRI_ABORTED)) { 1015 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock, 1016 iflag); 1017 list_add(&sglq->list, 1018 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1019 spin_unlock_irqrestore( 1020 &phba->sli4_hba.abts_sgl_list_lock, iflag); 1021 } else { 1022 spin_lock_irqsave(&pring->ring_lock, iflag); 1023 sglq->state = SGL_FREED; 1024 sglq->ndlp = NULL; 1025 list_add_tail(&sglq->list, 1026 &phba->sli4_hba.lpfc_sgl_list); 1027 spin_unlock_irqrestore(&pring->ring_lock, iflag); 1028 1029 /* Check if TXQ queue needs to be serviced */ 1030 if (!list_empty(&pring->txq)) 1031 lpfc_worker_wake_up(phba); 1032 } 1033 } 1034 1035 1036 /* 1037 * Clean all volatile data fields, preserve iotag and node struct. 1038 */ 1039 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1040 iocbq->sli4_lxritag = NO_XRI; 1041 iocbq->sli4_xritag = NO_XRI; 1042 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1043 } 1044 1045 1046 /** 1047 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1048 * @phba: Pointer to HBA context object. 1049 * @iocbq: Pointer to driver iocb object. 1050 * 1051 * This function is called with hbalock held to release driver 1052 * iocb object to the iocb pool. The iotag in the iocb object 1053 * does not change for each use of the iocb object. This function 1054 * clears all other fields of the iocb object when it is freed. 1055 **/ 1056 static void 1057 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1058 { 1059 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1060 1061 1062 /* 1063 * Clean all volatile data fields, preserve iotag and node struct. 1064 */ 1065 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1066 iocbq->sli4_xritag = NO_XRI; 1067 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1068 } 1069 1070 /** 1071 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1072 * @phba: Pointer to HBA context object. 1073 * @iocbq: Pointer to driver iocb object. 1074 * 1075 * This function is called with hbalock held to release driver 1076 * iocb object to the iocb pool. The iotag in the iocb object 1077 * does not change for each use of the iocb object. This function 1078 * clears all other fields of the iocb object when it is freed. 1079 **/ 1080 static void 1081 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1082 { 1083 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1084 phba->iocb_cnt--; 1085 } 1086 1087 /** 1088 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1089 * @phba: Pointer to HBA context object. 1090 * @iocbq: Pointer to driver iocb object. 1091 * 1092 * This function is called with no lock held to release the iocb to 1093 * iocb pool. 1094 **/ 1095 void 1096 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1097 { 1098 unsigned long iflags; 1099 1100 /* 1101 * Clean all volatile data fields, preserve iotag and node struct. 1102 */ 1103 spin_lock_irqsave(&phba->hbalock, iflags); 1104 __lpfc_sli_release_iocbq(phba, iocbq); 1105 spin_unlock_irqrestore(&phba->hbalock, iflags); 1106 } 1107 1108 /** 1109 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1110 * @phba: Pointer to HBA context object. 1111 * @iocblist: List of IOCBs. 1112 * @ulpstatus: ULP status in IOCB command field. 1113 * @ulpWord4: ULP word-4 in IOCB command field. 1114 * 1115 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1116 * on the list by invoking the complete callback function associated with the 1117 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1118 * fields. 1119 **/ 1120 void 1121 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1122 uint32_t ulpstatus, uint32_t ulpWord4) 1123 { 1124 struct lpfc_iocbq *piocb; 1125 1126 while (!list_empty(iocblist)) { 1127 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1128 if (!piocb->iocb_cmpl) 1129 lpfc_sli_release_iocbq(phba, piocb); 1130 else { 1131 piocb->iocb.ulpStatus = ulpstatus; 1132 piocb->iocb.un.ulpWord[4] = ulpWord4; 1133 (piocb->iocb_cmpl) (phba, piocb, piocb); 1134 } 1135 } 1136 return; 1137 } 1138 1139 /** 1140 * lpfc_sli_iocb_cmd_type - Get the iocb type 1141 * @iocb_cmnd: iocb command code. 1142 * 1143 * This function is called by ring event handler function to get the iocb type. 1144 * This function translates the iocb command to an iocb command type used to 1145 * decide the final disposition of each completed IOCB. 1146 * The function returns 1147 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1148 * LPFC_SOL_IOCB if it is a solicited iocb completion 1149 * LPFC_ABORT_IOCB if it is an abort iocb 1150 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1151 * 1152 * The caller is not required to hold any lock. 1153 **/ 1154 static lpfc_iocb_type 1155 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1156 { 1157 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1158 1159 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1160 return 0; 1161 1162 switch (iocb_cmnd) { 1163 case CMD_XMIT_SEQUENCE_CR: 1164 case CMD_XMIT_SEQUENCE_CX: 1165 case CMD_XMIT_BCAST_CN: 1166 case CMD_XMIT_BCAST_CX: 1167 case CMD_ELS_REQUEST_CR: 1168 case CMD_ELS_REQUEST_CX: 1169 case CMD_CREATE_XRI_CR: 1170 case CMD_CREATE_XRI_CX: 1171 case CMD_GET_RPI_CN: 1172 case CMD_XMIT_ELS_RSP_CX: 1173 case CMD_GET_RPI_CR: 1174 case CMD_FCP_IWRITE_CR: 1175 case CMD_FCP_IWRITE_CX: 1176 case CMD_FCP_IREAD_CR: 1177 case CMD_FCP_IREAD_CX: 1178 case CMD_FCP_ICMND_CR: 1179 case CMD_FCP_ICMND_CX: 1180 case CMD_FCP_TSEND_CX: 1181 case CMD_FCP_TRSP_CX: 1182 case CMD_FCP_TRECEIVE_CX: 1183 case CMD_FCP_AUTO_TRSP_CX: 1184 case CMD_ADAPTER_MSG: 1185 case CMD_ADAPTER_DUMP: 1186 case CMD_XMIT_SEQUENCE64_CR: 1187 case CMD_XMIT_SEQUENCE64_CX: 1188 case CMD_XMIT_BCAST64_CN: 1189 case CMD_XMIT_BCAST64_CX: 1190 case CMD_ELS_REQUEST64_CR: 1191 case CMD_ELS_REQUEST64_CX: 1192 case CMD_FCP_IWRITE64_CR: 1193 case CMD_FCP_IWRITE64_CX: 1194 case CMD_FCP_IREAD64_CR: 1195 case CMD_FCP_IREAD64_CX: 1196 case CMD_FCP_ICMND64_CR: 1197 case CMD_FCP_ICMND64_CX: 1198 case CMD_FCP_TSEND64_CX: 1199 case CMD_FCP_TRSP64_CX: 1200 case CMD_FCP_TRECEIVE64_CX: 1201 case CMD_GEN_REQUEST64_CR: 1202 case CMD_GEN_REQUEST64_CX: 1203 case CMD_XMIT_ELS_RSP64_CX: 1204 case DSSCMD_IWRITE64_CR: 1205 case DSSCMD_IWRITE64_CX: 1206 case DSSCMD_IREAD64_CR: 1207 case DSSCMD_IREAD64_CX: 1208 type = LPFC_SOL_IOCB; 1209 break; 1210 case CMD_ABORT_XRI_CN: 1211 case CMD_ABORT_XRI_CX: 1212 case CMD_CLOSE_XRI_CN: 1213 case CMD_CLOSE_XRI_CX: 1214 case CMD_XRI_ABORTED_CX: 1215 case CMD_ABORT_MXRI64_CN: 1216 case CMD_XMIT_BLS_RSP64_CX: 1217 type = LPFC_ABORT_IOCB; 1218 break; 1219 case CMD_RCV_SEQUENCE_CX: 1220 case CMD_RCV_ELS_REQ_CX: 1221 case CMD_RCV_SEQUENCE64_CX: 1222 case CMD_RCV_ELS_REQ64_CX: 1223 case CMD_ASYNC_STATUS: 1224 case CMD_IOCB_RCV_SEQ64_CX: 1225 case CMD_IOCB_RCV_ELS64_CX: 1226 case CMD_IOCB_RCV_CONT64_CX: 1227 case CMD_IOCB_RET_XRI64_CX: 1228 type = LPFC_UNSOL_IOCB; 1229 break; 1230 case CMD_IOCB_XMIT_MSEQ64_CR: 1231 case CMD_IOCB_XMIT_MSEQ64_CX: 1232 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1233 case CMD_IOCB_RCV_ELS_LIST64_CX: 1234 case CMD_IOCB_CLOSE_EXTENDED_CN: 1235 case CMD_IOCB_ABORT_EXTENDED_CN: 1236 case CMD_IOCB_RET_HBQE64_CN: 1237 case CMD_IOCB_FCP_IBIDIR64_CR: 1238 case CMD_IOCB_FCP_IBIDIR64_CX: 1239 case CMD_IOCB_FCP_ITASKMGT64_CX: 1240 case CMD_IOCB_LOGENTRY_CN: 1241 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1242 printk("%s - Unhandled SLI-3 Command x%x\n", 1243 __func__, iocb_cmnd); 1244 type = LPFC_UNKNOWN_IOCB; 1245 break; 1246 default: 1247 type = LPFC_UNKNOWN_IOCB; 1248 break; 1249 } 1250 1251 return type; 1252 } 1253 1254 /** 1255 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1256 * @phba: Pointer to HBA context object. 1257 * 1258 * This function is called from SLI initialization code 1259 * to configure every ring of the HBA's SLI interface. The 1260 * caller is not required to hold any lock. This function issues 1261 * a config_ring mailbox command for each ring. 1262 * This function returns zero if successful else returns a negative 1263 * error code. 1264 **/ 1265 static int 1266 lpfc_sli_ring_map(struct lpfc_hba *phba) 1267 { 1268 struct lpfc_sli *psli = &phba->sli; 1269 LPFC_MBOXQ_t *pmb; 1270 MAILBOX_t *pmbox; 1271 int i, rc, ret = 0; 1272 1273 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1274 if (!pmb) 1275 return -ENOMEM; 1276 pmbox = &pmb->u.mb; 1277 phba->link_state = LPFC_INIT_MBX_CMDS; 1278 for (i = 0; i < psli->num_rings; i++) { 1279 lpfc_config_ring(phba, i, pmb); 1280 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1281 if (rc != MBX_SUCCESS) { 1282 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1283 "0446 Adapter failed to init (%d), " 1284 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1285 "ring %d\n", 1286 rc, pmbox->mbxCommand, 1287 pmbox->mbxStatus, i); 1288 phba->link_state = LPFC_HBA_ERROR; 1289 ret = -ENXIO; 1290 break; 1291 } 1292 } 1293 mempool_free(pmb, phba->mbox_mem_pool); 1294 return ret; 1295 } 1296 1297 /** 1298 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1299 * @phba: Pointer to HBA context object. 1300 * @pring: Pointer to driver SLI ring object. 1301 * @piocb: Pointer to the driver iocb object. 1302 * 1303 * This function is called with hbalock held. The function adds the 1304 * new iocb to txcmplq of the given ring. This function always returns 1305 * 0. If this function is called for ELS ring, this function checks if 1306 * there is a vport associated with the ELS command. This function also 1307 * starts els_tmofunc timer if this is an ELS command. 1308 **/ 1309 static int 1310 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1311 struct lpfc_iocbq *piocb) 1312 { 1313 list_add_tail(&piocb->list, &pring->txcmplq); 1314 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1315 1316 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1317 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1318 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN) && 1319 (!(piocb->vport->load_flag & FC_UNLOADING))) { 1320 if (!piocb->vport) 1321 BUG(); 1322 else 1323 mod_timer(&piocb->vport->els_tmofunc, 1324 jiffies + 1325 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1326 } 1327 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * lpfc_sli_ringtx_get - Get first element of the txq 1334 * @phba: Pointer to HBA context object. 1335 * @pring: Pointer to driver SLI ring object. 1336 * 1337 * This function is called with hbalock held to get next 1338 * iocb in txq of the given ring. If there is any iocb in 1339 * the txq, the function returns first iocb in the list after 1340 * removing the iocb from the list, else it returns NULL. 1341 **/ 1342 struct lpfc_iocbq * 1343 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1344 { 1345 struct lpfc_iocbq *cmd_iocb; 1346 1347 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1348 return cmd_iocb; 1349 } 1350 1351 /** 1352 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1353 * @phba: Pointer to HBA context object. 1354 * @pring: Pointer to driver SLI ring object. 1355 * 1356 * This function is called with hbalock held and the caller must post the 1357 * iocb without releasing the lock. If the caller releases the lock, 1358 * iocb slot returned by the function is not guaranteed to be available. 1359 * The function returns pointer to the next available iocb slot if there 1360 * is available slot in the ring, else it returns NULL. 1361 * If the get index of the ring is ahead of the put index, the function 1362 * will post an error attention event to the worker thread to take the 1363 * HBA to offline state. 1364 **/ 1365 static IOCB_t * 1366 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1367 { 1368 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1369 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1370 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1371 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1372 pring->sli.sli3.next_cmdidx = 0; 1373 1374 if (unlikely(pring->sli.sli3.local_getidx == 1375 pring->sli.sli3.next_cmdidx)) { 1376 1377 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1378 1379 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1380 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1381 "0315 Ring %d issue: portCmdGet %d " 1382 "is bigger than cmd ring %d\n", 1383 pring->ringno, 1384 pring->sli.sli3.local_getidx, 1385 max_cmd_idx); 1386 1387 phba->link_state = LPFC_HBA_ERROR; 1388 /* 1389 * All error attention handlers are posted to 1390 * worker thread 1391 */ 1392 phba->work_ha |= HA_ERATT; 1393 phba->work_hs = HS_FFER3; 1394 1395 lpfc_worker_wake_up(phba); 1396 1397 return NULL; 1398 } 1399 1400 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1401 return NULL; 1402 } 1403 1404 return lpfc_cmd_iocb(phba, pring); 1405 } 1406 1407 /** 1408 * lpfc_sli_next_iotag - Get an iotag for the iocb 1409 * @phba: Pointer to HBA context object. 1410 * @iocbq: Pointer to driver iocb object. 1411 * 1412 * This function gets an iotag for the iocb. If there is no unused iotag and 1413 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1414 * array and assigns a new iotag. 1415 * The function returns the allocated iotag if successful, else returns zero. 1416 * Zero is not a valid iotag. 1417 * The caller is not required to hold any lock. 1418 **/ 1419 uint16_t 1420 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1421 { 1422 struct lpfc_iocbq **new_arr; 1423 struct lpfc_iocbq **old_arr; 1424 size_t new_len; 1425 struct lpfc_sli *psli = &phba->sli; 1426 uint16_t iotag; 1427 1428 spin_lock_irq(&phba->hbalock); 1429 iotag = psli->last_iotag; 1430 if(++iotag < psli->iocbq_lookup_len) { 1431 psli->last_iotag = iotag; 1432 psli->iocbq_lookup[iotag] = iocbq; 1433 spin_unlock_irq(&phba->hbalock); 1434 iocbq->iotag = iotag; 1435 return iotag; 1436 } else if (psli->iocbq_lookup_len < (0xffff 1437 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1438 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1439 spin_unlock_irq(&phba->hbalock); 1440 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1441 GFP_KERNEL); 1442 if (new_arr) { 1443 spin_lock_irq(&phba->hbalock); 1444 old_arr = psli->iocbq_lookup; 1445 if (new_len <= psli->iocbq_lookup_len) { 1446 /* highly unprobable case */ 1447 kfree(new_arr); 1448 iotag = psli->last_iotag; 1449 if(++iotag < psli->iocbq_lookup_len) { 1450 psli->last_iotag = iotag; 1451 psli->iocbq_lookup[iotag] = iocbq; 1452 spin_unlock_irq(&phba->hbalock); 1453 iocbq->iotag = iotag; 1454 return iotag; 1455 } 1456 spin_unlock_irq(&phba->hbalock); 1457 return 0; 1458 } 1459 if (psli->iocbq_lookup) 1460 memcpy(new_arr, old_arr, 1461 ((psli->last_iotag + 1) * 1462 sizeof (struct lpfc_iocbq *))); 1463 psli->iocbq_lookup = new_arr; 1464 psli->iocbq_lookup_len = new_len; 1465 psli->last_iotag = iotag; 1466 psli->iocbq_lookup[iotag] = iocbq; 1467 spin_unlock_irq(&phba->hbalock); 1468 iocbq->iotag = iotag; 1469 kfree(old_arr); 1470 return iotag; 1471 } 1472 } else 1473 spin_unlock_irq(&phba->hbalock); 1474 1475 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1476 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1477 psli->last_iotag); 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1484 * @phba: Pointer to HBA context object. 1485 * @pring: Pointer to driver SLI ring object. 1486 * @iocb: Pointer to iocb slot in the ring. 1487 * @nextiocb: Pointer to driver iocb object which need to be 1488 * posted to firmware. 1489 * 1490 * This function is called with hbalock held to post a new iocb to 1491 * the firmware. This function copies the new iocb to ring iocb slot and 1492 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1493 * a completion call back for this iocb else the function will free the 1494 * iocb object. 1495 **/ 1496 static void 1497 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1498 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1499 { 1500 /* 1501 * Set up an iotag 1502 */ 1503 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1504 1505 1506 if (pring->ringno == LPFC_ELS_RING) { 1507 lpfc_debugfs_slow_ring_trc(phba, 1508 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1509 *(((uint32_t *) &nextiocb->iocb) + 4), 1510 *(((uint32_t *) &nextiocb->iocb) + 6), 1511 *(((uint32_t *) &nextiocb->iocb) + 7)); 1512 } 1513 1514 /* 1515 * Issue iocb command to adapter 1516 */ 1517 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1518 wmb(); 1519 pring->stats.iocb_cmd++; 1520 1521 /* 1522 * If there is no completion routine to call, we can release the 1523 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1524 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1525 */ 1526 if (nextiocb->iocb_cmpl) 1527 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1528 else 1529 __lpfc_sli_release_iocbq(phba, nextiocb); 1530 1531 /* 1532 * Let the HBA know what IOCB slot will be the next one the 1533 * driver will put a command into. 1534 */ 1535 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1536 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1537 } 1538 1539 /** 1540 * lpfc_sli_update_full_ring - Update the chip attention register 1541 * @phba: Pointer to HBA context object. 1542 * @pring: Pointer to driver SLI ring object. 1543 * 1544 * The caller is not required to hold any lock for calling this function. 1545 * This function updates the chip attention bits for the ring to inform firmware 1546 * that there are pending work to be done for this ring and requests an 1547 * interrupt when there is space available in the ring. This function is 1548 * called when the driver is unable to post more iocbs to the ring due 1549 * to unavailability of space in the ring. 1550 **/ 1551 static void 1552 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1553 { 1554 int ringno = pring->ringno; 1555 1556 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1557 1558 wmb(); 1559 1560 /* 1561 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1562 * The HBA will tell us when an IOCB entry is available. 1563 */ 1564 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1565 readl(phba->CAregaddr); /* flush */ 1566 1567 pring->stats.iocb_cmd_full++; 1568 } 1569 1570 /** 1571 * lpfc_sli_update_ring - Update chip attention register 1572 * @phba: Pointer to HBA context object. 1573 * @pring: Pointer to driver SLI ring object. 1574 * 1575 * This function updates the chip attention register bit for the 1576 * given ring to inform HBA that there is more work to be done 1577 * in this ring. The caller is not required to hold any lock. 1578 **/ 1579 static void 1580 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1581 { 1582 int ringno = pring->ringno; 1583 1584 /* 1585 * Tell the HBA that there is work to do in this ring. 1586 */ 1587 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1588 wmb(); 1589 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1590 readl(phba->CAregaddr); /* flush */ 1591 } 1592 } 1593 1594 /** 1595 * lpfc_sli_resume_iocb - Process iocbs in the txq 1596 * @phba: Pointer to HBA context object. 1597 * @pring: Pointer to driver SLI ring object. 1598 * 1599 * This function is called with hbalock held to post pending iocbs 1600 * in the txq to the firmware. This function is called when driver 1601 * detects space available in the ring. 1602 **/ 1603 static void 1604 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1605 { 1606 IOCB_t *iocb; 1607 struct lpfc_iocbq *nextiocb; 1608 1609 /* 1610 * Check to see if: 1611 * (a) there is anything on the txq to send 1612 * (b) link is up 1613 * (c) link attention events can be processed (fcp ring only) 1614 * (d) IOCB processing is not blocked by the outstanding mbox command. 1615 */ 1616 1617 if (lpfc_is_link_up(phba) && 1618 (!list_empty(&pring->txq)) && 1619 (pring->ringno != phba->sli.fcp_ring || 1620 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1621 1622 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1623 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1624 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1625 1626 if (iocb) 1627 lpfc_sli_update_ring(phba, pring); 1628 else 1629 lpfc_sli_update_full_ring(phba, pring); 1630 } 1631 1632 return; 1633 } 1634 1635 /** 1636 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1637 * @phba: Pointer to HBA context object. 1638 * @hbqno: HBQ number. 1639 * 1640 * This function is called with hbalock held to get the next 1641 * available slot for the given HBQ. If there is free slot 1642 * available for the HBQ it will return pointer to the next available 1643 * HBQ entry else it will return NULL. 1644 **/ 1645 static struct lpfc_hbq_entry * 1646 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1647 { 1648 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1649 1650 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1651 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1652 hbqp->next_hbqPutIdx = 0; 1653 1654 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1655 uint32_t raw_index = phba->hbq_get[hbqno]; 1656 uint32_t getidx = le32_to_cpu(raw_index); 1657 1658 hbqp->local_hbqGetIdx = getidx; 1659 1660 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1661 lpfc_printf_log(phba, KERN_ERR, 1662 LOG_SLI | LOG_VPORT, 1663 "1802 HBQ %d: local_hbqGetIdx " 1664 "%u is > than hbqp->entry_count %u\n", 1665 hbqno, hbqp->local_hbqGetIdx, 1666 hbqp->entry_count); 1667 1668 phba->link_state = LPFC_HBA_ERROR; 1669 return NULL; 1670 } 1671 1672 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1673 return NULL; 1674 } 1675 1676 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1677 hbqp->hbqPutIdx; 1678 } 1679 1680 /** 1681 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1682 * @phba: Pointer to HBA context object. 1683 * 1684 * This function is called with no lock held to free all the 1685 * hbq buffers while uninitializing the SLI interface. It also 1686 * frees the HBQ buffers returned by the firmware but not yet 1687 * processed by the upper layers. 1688 **/ 1689 void 1690 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1691 { 1692 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1693 struct hbq_dmabuf *hbq_buf; 1694 unsigned long flags; 1695 int i, hbq_count; 1696 uint32_t hbqno; 1697 1698 hbq_count = lpfc_sli_hbq_count(); 1699 /* Return all memory used by all HBQs */ 1700 spin_lock_irqsave(&phba->hbalock, flags); 1701 for (i = 0; i < hbq_count; ++i) { 1702 list_for_each_entry_safe(dmabuf, next_dmabuf, 1703 &phba->hbqs[i].hbq_buffer_list, list) { 1704 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1705 list_del(&hbq_buf->dbuf.list); 1706 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1707 } 1708 phba->hbqs[i].buffer_count = 0; 1709 } 1710 /* Return all HBQ buffer that are in-fly */ 1711 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list, 1712 list) { 1713 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1714 list_del(&hbq_buf->dbuf.list); 1715 if (hbq_buf->tag == -1) { 1716 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1717 (phba, hbq_buf); 1718 } else { 1719 hbqno = hbq_buf->tag >> 16; 1720 if (hbqno >= LPFC_MAX_HBQS) 1721 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer) 1722 (phba, hbq_buf); 1723 else 1724 (phba->hbqs[hbqno].hbq_free_buffer)(phba, 1725 hbq_buf); 1726 } 1727 } 1728 1729 /* Mark the HBQs not in use */ 1730 phba->hbq_in_use = 0; 1731 spin_unlock_irqrestore(&phba->hbalock, flags); 1732 } 1733 1734 /** 1735 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1736 * @phba: Pointer to HBA context object. 1737 * @hbqno: HBQ number. 1738 * @hbq_buf: Pointer to HBQ buffer. 1739 * 1740 * This function is called with the hbalock held to post a 1741 * hbq buffer to the firmware. If the function finds an empty 1742 * slot in the HBQ, it will post the buffer. The function will return 1743 * pointer to the hbq entry if it successfully post the buffer 1744 * else it will return NULL. 1745 **/ 1746 static int 1747 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1748 struct hbq_dmabuf *hbq_buf) 1749 { 1750 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1751 } 1752 1753 /** 1754 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1755 * @phba: Pointer to HBA context object. 1756 * @hbqno: HBQ number. 1757 * @hbq_buf: Pointer to HBQ buffer. 1758 * 1759 * This function is called with the hbalock held to post a hbq buffer to the 1760 * firmware. If the function finds an empty slot in the HBQ, it will post the 1761 * buffer and place it on the hbq_buffer_list. The function will return zero if 1762 * it successfully post the buffer else it will return an error. 1763 **/ 1764 static int 1765 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1766 struct hbq_dmabuf *hbq_buf) 1767 { 1768 struct lpfc_hbq_entry *hbqe; 1769 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1770 1771 /* Get next HBQ entry slot to use */ 1772 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1773 if (hbqe) { 1774 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1775 1776 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1777 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1778 hbqe->bde.tus.f.bdeSize = hbq_buf->size; 1779 hbqe->bde.tus.f.bdeFlags = 0; 1780 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1781 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1782 /* Sync SLIM */ 1783 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1784 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1785 /* flush */ 1786 readl(phba->hbq_put + hbqno); 1787 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1788 return 0; 1789 } else 1790 return -ENOMEM; 1791 } 1792 1793 /** 1794 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1795 * @phba: Pointer to HBA context object. 1796 * @hbqno: HBQ number. 1797 * @hbq_buf: Pointer to HBQ buffer. 1798 * 1799 * This function is called with the hbalock held to post an RQE to the SLI4 1800 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1801 * the hbq_buffer_list and return zero, otherwise it will return an error. 1802 **/ 1803 static int 1804 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1805 struct hbq_dmabuf *hbq_buf) 1806 { 1807 int rc; 1808 struct lpfc_rqe hrqe; 1809 struct lpfc_rqe drqe; 1810 1811 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1812 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1813 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1814 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1815 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, 1816 &hrqe, &drqe); 1817 if (rc < 0) 1818 return rc; 1819 hbq_buf->tag = rc; 1820 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1821 return 0; 1822 } 1823 1824 /* HBQ for ELS and CT traffic. */ 1825 static struct lpfc_hbq_init lpfc_els_hbq = { 1826 .rn = 1, 1827 .entry_count = 256, 1828 .mask_count = 0, 1829 .profile = 0, 1830 .ring_mask = (1 << LPFC_ELS_RING), 1831 .buffer_count = 0, 1832 .init_count = 40, 1833 .add_count = 40, 1834 }; 1835 1836 /* HBQ for the extra ring if needed */ 1837 static struct lpfc_hbq_init lpfc_extra_hbq = { 1838 .rn = 1, 1839 .entry_count = 200, 1840 .mask_count = 0, 1841 .profile = 0, 1842 .ring_mask = (1 << LPFC_EXTRA_RING), 1843 .buffer_count = 0, 1844 .init_count = 0, 1845 .add_count = 5, 1846 }; 1847 1848 /* Array of HBQs */ 1849 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1850 &lpfc_els_hbq, 1851 &lpfc_extra_hbq, 1852 }; 1853 1854 /** 1855 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1856 * @phba: Pointer to HBA context object. 1857 * @hbqno: HBQ number. 1858 * @count: Number of HBQ buffers to be posted. 1859 * 1860 * This function is called with no lock held to post more hbq buffers to the 1861 * given HBQ. The function returns the number of HBQ buffers successfully 1862 * posted. 1863 **/ 1864 static int 1865 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1866 { 1867 uint32_t i, posted = 0; 1868 unsigned long flags; 1869 struct hbq_dmabuf *hbq_buffer; 1870 LIST_HEAD(hbq_buf_list); 1871 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1872 return 0; 1873 1874 if ((phba->hbqs[hbqno].buffer_count + count) > 1875 lpfc_hbq_defs[hbqno]->entry_count) 1876 count = lpfc_hbq_defs[hbqno]->entry_count - 1877 phba->hbqs[hbqno].buffer_count; 1878 if (!count) 1879 return 0; 1880 /* Allocate HBQ entries */ 1881 for (i = 0; i < count; i++) { 1882 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1883 if (!hbq_buffer) 1884 break; 1885 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1886 } 1887 /* Check whether HBQ is still in use */ 1888 spin_lock_irqsave(&phba->hbalock, flags); 1889 if (!phba->hbq_in_use) 1890 goto err; 1891 while (!list_empty(&hbq_buf_list)) { 1892 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1893 dbuf.list); 1894 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1895 (hbqno << 16)); 1896 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1897 phba->hbqs[hbqno].buffer_count++; 1898 posted++; 1899 } else 1900 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1901 } 1902 spin_unlock_irqrestore(&phba->hbalock, flags); 1903 return posted; 1904 err: 1905 spin_unlock_irqrestore(&phba->hbalock, flags); 1906 while (!list_empty(&hbq_buf_list)) { 1907 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1908 dbuf.list); 1909 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1910 } 1911 return 0; 1912 } 1913 1914 /** 1915 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1916 * @phba: Pointer to HBA context object. 1917 * @qno: HBQ number. 1918 * 1919 * This function posts more buffers to the HBQ. This function 1920 * is called with no lock held. The function returns the number of HBQ entries 1921 * successfully allocated. 1922 **/ 1923 int 1924 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1925 { 1926 if (phba->sli_rev == LPFC_SLI_REV4) 1927 return 0; 1928 else 1929 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1930 lpfc_hbq_defs[qno]->add_count); 1931 } 1932 1933 /** 1934 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1935 * @phba: Pointer to HBA context object. 1936 * @qno: HBQ queue number. 1937 * 1938 * This function is called from SLI initialization code path with 1939 * no lock held to post initial HBQ buffers to firmware. The 1940 * function returns the number of HBQ entries successfully allocated. 1941 **/ 1942 static int 1943 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 1944 { 1945 if (phba->sli_rev == LPFC_SLI_REV4) 1946 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1947 lpfc_hbq_defs[qno]->entry_count); 1948 else 1949 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1950 lpfc_hbq_defs[qno]->init_count); 1951 } 1952 1953 /** 1954 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 1955 * @phba: Pointer to HBA context object. 1956 * @hbqno: HBQ number. 1957 * 1958 * This function removes the first hbq buffer on an hbq list and returns a 1959 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 1960 **/ 1961 static struct hbq_dmabuf * 1962 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 1963 { 1964 struct lpfc_dmabuf *d_buf; 1965 1966 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 1967 if (!d_buf) 1968 return NULL; 1969 return container_of(d_buf, struct hbq_dmabuf, dbuf); 1970 } 1971 1972 /** 1973 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 1974 * @phba: Pointer to HBA context object. 1975 * @tag: Tag of the hbq buffer. 1976 * 1977 * This function is called with hbalock held. This function searches 1978 * for the hbq buffer associated with the given tag in the hbq buffer 1979 * list. If it finds the hbq buffer, it returns the hbq_buffer other wise 1980 * it returns NULL. 1981 **/ 1982 static struct hbq_dmabuf * 1983 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 1984 { 1985 struct lpfc_dmabuf *d_buf; 1986 struct hbq_dmabuf *hbq_buf; 1987 uint32_t hbqno; 1988 1989 hbqno = tag >> 16; 1990 if (hbqno >= LPFC_MAX_HBQS) 1991 return NULL; 1992 1993 spin_lock_irq(&phba->hbalock); 1994 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 1995 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 1996 if (hbq_buf->tag == tag) { 1997 spin_unlock_irq(&phba->hbalock); 1998 return hbq_buf; 1999 } 2000 } 2001 spin_unlock_irq(&phba->hbalock); 2002 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2003 "1803 Bad hbq tag. Data: x%x x%x\n", 2004 tag, phba->hbqs[tag >> 16].buffer_count); 2005 return NULL; 2006 } 2007 2008 /** 2009 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2010 * @phba: Pointer to HBA context object. 2011 * @hbq_buffer: Pointer to HBQ buffer. 2012 * 2013 * This function is called with hbalock. This function gives back 2014 * the hbq buffer to firmware. If the HBQ does not have space to 2015 * post the buffer, it will free the buffer. 2016 **/ 2017 void 2018 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2019 { 2020 uint32_t hbqno; 2021 2022 if (hbq_buffer) { 2023 hbqno = hbq_buffer->tag >> 16; 2024 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2025 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2026 } 2027 } 2028 2029 /** 2030 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2031 * @mbxCommand: mailbox command code. 2032 * 2033 * This function is called by the mailbox event handler function to verify 2034 * that the completed mailbox command is a legitimate mailbox command. If the 2035 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2036 * and the mailbox event handler will take the HBA offline. 2037 **/ 2038 static int 2039 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2040 { 2041 uint8_t ret; 2042 2043 switch (mbxCommand) { 2044 case MBX_LOAD_SM: 2045 case MBX_READ_NV: 2046 case MBX_WRITE_NV: 2047 case MBX_WRITE_VPARMS: 2048 case MBX_RUN_BIU_DIAG: 2049 case MBX_INIT_LINK: 2050 case MBX_DOWN_LINK: 2051 case MBX_CONFIG_LINK: 2052 case MBX_CONFIG_RING: 2053 case MBX_RESET_RING: 2054 case MBX_READ_CONFIG: 2055 case MBX_READ_RCONFIG: 2056 case MBX_READ_SPARM: 2057 case MBX_READ_STATUS: 2058 case MBX_READ_RPI: 2059 case MBX_READ_XRI: 2060 case MBX_READ_REV: 2061 case MBX_READ_LNK_STAT: 2062 case MBX_REG_LOGIN: 2063 case MBX_UNREG_LOGIN: 2064 case MBX_CLEAR_LA: 2065 case MBX_DUMP_MEMORY: 2066 case MBX_DUMP_CONTEXT: 2067 case MBX_RUN_DIAGS: 2068 case MBX_RESTART: 2069 case MBX_UPDATE_CFG: 2070 case MBX_DOWN_LOAD: 2071 case MBX_DEL_LD_ENTRY: 2072 case MBX_RUN_PROGRAM: 2073 case MBX_SET_MASK: 2074 case MBX_SET_VARIABLE: 2075 case MBX_UNREG_D_ID: 2076 case MBX_KILL_BOARD: 2077 case MBX_CONFIG_FARP: 2078 case MBX_BEACON: 2079 case MBX_LOAD_AREA: 2080 case MBX_RUN_BIU_DIAG64: 2081 case MBX_CONFIG_PORT: 2082 case MBX_READ_SPARM64: 2083 case MBX_READ_RPI64: 2084 case MBX_REG_LOGIN64: 2085 case MBX_READ_TOPOLOGY: 2086 case MBX_WRITE_WWN: 2087 case MBX_SET_DEBUG: 2088 case MBX_LOAD_EXP_ROM: 2089 case MBX_ASYNCEVT_ENABLE: 2090 case MBX_REG_VPI: 2091 case MBX_UNREG_VPI: 2092 case MBX_HEARTBEAT: 2093 case MBX_PORT_CAPABILITIES: 2094 case MBX_PORT_IOV_CONTROL: 2095 case MBX_SLI4_CONFIG: 2096 case MBX_SLI4_REQ_FTRS: 2097 case MBX_REG_FCFI: 2098 case MBX_UNREG_FCFI: 2099 case MBX_REG_VFI: 2100 case MBX_UNREG_VFI: 2101 case MBX_INIT_VPI: 2102 case MBX_INIT_VFI: 2103 case MBX_RESUME_RPI: 2104 case MBX_READ_EVENT_LOG_STATUS: 2105 case MBX_READ_EVENT_LOG: 2106 case MBX_SECURITY_MGMT: 2107 case MBX_AUTH_PORT: 2108 case MBX_ACCESS_VDATA: 2109 ret = mbxCommand; 2110 break; 2111 default: 2112 ret = MBX_SHUTDOWN; 2113 break; 2114 } 2115 return ret; 2116 } 2117 2118 /** 2119 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2120 * @phba: Pointer to HBA context object. 2121 * @pmboxq: Pointer to mailbox command. 2122 * 2123 * This is completion handler function for mailbox commands issued from 2124 * lpfc_sli_issue_mbox_wait function. This function is called by the 2125 * mailbox event handler function with no lock held. This function 2126 * will wake up thread waiting on the wait queue pointed by context1 2127 * of the mailbox. 2128 **/ 2129 void 2130 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2131 { 2132 wait_queue_head_t *pdone_q; 2133 unsigned long drvr_flag; 2134 2135 /* 2136 * If pdone_q is empty, the driver thread gave up waiting and 2137 * continued running. 2138 */ 2139 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2140 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2141 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2142 if (pdone_q) 2143 wake_up_interruptible(pdone_q); 2144 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2145 return; 2146 } 2147 2148 2149 /** 2150 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2151 * @phba: Pointer to HBA context object. 2152 * @pmb: Pointer to mailbox object. 2153 * 2154 * This function is the default mailbox completion handler. It 2155 * frees the memory resources associated with the completed mailbox 2156 * command. If the completed command is a REG_LOGIN mailbox command, 2157 * this function will issue a UREG_LOGIN to re-claim the RPI. 2158 **/ 2159 void 2160 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2161 { 2162 struct lpfc_vport *vport = pmb->vport; 2163 struct lpfc_dmabuf *mp; 2164 struct lpfc_nodelist *ndlp; 2165 struct Scsi_Host *shost; 2166 uint16_t rpi, vpi; 2167 int rc; 2168 2169 mp = (struct lpfc_dmabuf *) (pmb->context1); 2170 2171 if (mp) { 2172 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2173 kfree(mp); 2174 } 2175 2176 /* 2177 * If a REG_LOGIN succeeded after node is destroyed or node 2178 * is in re-discovery driver need to cleanup the RPI. 2179 */ 2180 if (!(phba->pport->load_flag & FC_UNLOADING) && 2181 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2182 !pmb->u.mb.mbxStatus) { 2183 rpi = pmb->u.mb.un.varWords[0]; 2184 vpi = pmb->u.mb.un.varRegLogin.vpi; 2185 lpfc_unreg_login(phba, vpi, rpi, pmb); 2186 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2187 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2188 if (rc != MBX_NOT_FINISHED) 2189 return; 2190 } 2191 2192 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2193 !(phba->pport->load_flag & FC_UNLOADING) && 2194 !pmb->u.mb.mbxStatus) { 2195 shost = lpfc_shost_from_vport(vport); 2196 spin_lock_irq(shost->host_lock); 2197 vport->vpi_state |= LPFC_VPI_REGISTERED; 2198 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2199 spin_unlock_irq(shost->host_lock); 2200 } 2201 2202 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2203 ndlp = (struct lpfc_nodelist *)pmb->context2; 2204 lpfc_nlp_put(ndlp); 2205 pmb->context2 = NULL; 2206 } 2207 2208 /* Check security permission status on INIT_LINK mailbox command */ 2209 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2210 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2211 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2212 "2860 SLI authentication is required " 2213 "for INIT_LINK but has not done yet\n"); 2214 2215 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2216 lpfc_sli4_mbox_cmd_free(phba, pmb); 2217 else 2218 mempool_free(pmb, phba->mbox_mem_pool); 2219 } 2220 /** 2221 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2222 * @phba: Pointer to HBA context object. 2223 * @pmb: Pointer to mailbox object. 2224 * 2225 * This function is the unreg rpi mailbox completion handler. It 2226 * frees the memory resources associated with the completed mailbox 2227 * command. An additional refrenece is put on the ndlp to prevent 2228 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2229 * the unreg mailbox command completes, this routine puts the 2230 * reference back. 2231 * 2232 **/ 2233 void 2234 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2235 { 2236 struct lpfc_vport *vport = pmb->vport; 2237 struct lpfc_nodelist *ndlp; 2238 2239 ndlp = pmb->context1; 2240 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2241 if (phba->sli_rev == LPFC_SLI_REV4 && 2242 (bf_get(lpfc_sli_intf_if_type, 2243 &phba->sli4_hba.sli_intf) == 2244 LPFC_SLI_INTF_IF_TYPE_2)) { 2245 if (ndlp) { 2246 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2247 "0010 UNREG_LOGIN vpi:%x " 2248 "rpi:%x DID:%x map:%x %p\n", 2249 vport->vpi, ndlp->nlp_rpi, 2250 ndlp->nlp_DID, 2251 ndlp->nlp_usg_map, ndlp); 2252 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2253 lpfc_nlp_put(ndlp); 2254 } 2255 } 2256 } 2257 2258 mempool_free(pmb, phba->mbox_mem_pool); 2259 } 2260 2261 /** 2262 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2263 * @phba: Pointer to HBA context object. 2264 * 2265 * This function is called with no lock held. This function processes all 2266 * the completed mailbox commands and gives it to upper layers. The interrupt 2267 * service routine processes mailbox completion interrupt and adds completed 2268 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2269 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2270 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2271 * function returns the mailbox commands to the upper layer by calling the 2272 * completion handler function of each mailbox. 2273 **/ 2274 int 2275 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2276 { 2277 MAILBOX_t *pmbox; 2278 LPFC_MBOXQ_t *pmb; 2279 int rc; 2280 LIST_HEAD(cmplq); 2281 2282 phba->sli.slistat.mbox_event++; 2283 2284 /* Get all completed mailboxe buffers into the cmplq */ 2285 spin_lock_irq(&phba->hbalock); 2286 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2287 spin_unlock_irq(&phba->hbalock); 2288 2289 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2290 do { 2291 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2292 if (pmb == NULL) 2293 break; 2294 2295 pmbox = &pmb->u.mb; 2296 2297 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2298 if (pmb->vport) { 2299 lpfc_debugfs_disc_trc(pmb->vport, 2300 LPFC_DISC_TRC_MBOX_VPORT, 2301 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2302 (uint32_t)pmbox->mbxCommand, 2303 pmbox->un.varWords[0], 2304 pmbox->un.varWords[1]); 2305 } 2306 else { 2307 lpfc_debugfs_disc_trc(phba->pport, 2308 LPFC_DISC_TRC_MBOX, 2309 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2310 (uint32_t)pmbox->mbxCommand, 2311 pmbox->un.varWords[0], 2312 pmbox->un.varWords[1]); 2313 } 2314 } 2315 2316 /* 2317 * It is a fatal error if unknown mbox command completion. 2318 */ 2319 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2320 MBX_SHUTDOWN) { 2321 /* Unknown mailbox command compl */ 2322 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2323 "(%d):0323 Unknown Mailbox command " 2324 "x%x (x%x/x%x) Cmpl\n", 2325 pmb->vport ? pmb->vport->vpi : 0, 2326 pmbox->mbxCommand, 2327 lpfc_sli_config_mbox_subsys_get(phba, 2328 pmb), 2329 lpfc_sli_config_mbox_opcode_get(phba, 2330 pmb)); 2331 phba->link_state = LPFC_HBA_ERROR; 2332 phba->work_hs = HS_FFER3; 2333 lpfc_handle_eratt(phba); 2334 continue; 2335 } 2336 2337 if (pmbox->mbxStatus) { 2338 phba->sli.slistat.mbox_stat_err++; 2339 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2340 /* Mbox cmd cmpl error - RETRYing */ 2341 lpfc_printf_log(phba, KERN_INFO, 2342 LOG_MBOX | LOG_SLI, 2343 "(%d):0305 Mbox cmd cmpl " 2344 "error - RETRYing Data: x%x " 2345 "(x%x/x%x) x%x x%x x%x\n", 2346 pmb->vport ? pmb->vport->vpi : 0, 2347 pmbox->mbxCommand, 2348 lpfc_sli_config_mbox_subsys_get(phba, 2349 pmb), 2350 lpfc_sli_config_mbox_opcode_get(phba, 2351 pmb), 2352 pmbox->mbxStatus, 2353 pmbox->un.varWords[0], 2354 pmb->vport->port_state); 2355 pmbox->mbxStatus = 0; 2356 pmbox->mbxOwner = OWN_HOST; 2357 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2358 if (rc != MBX_NOT_FINISHED) 2359 continue; 2360 } 2361 } 2362 2363 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2364 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2365 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2366 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2367 "x%x x%x x%x\n", 2368 pmb->vport ? pmb->vport->vpi : 0, 2369 pmbox->mbxCommand, 2370 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2371 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2372 pmb->mbox_cmpl, 2373 *((uint32_t *) pmbox), 2374 pmbox->un.varWords[0], 2375 pmbox->un.varWords[1], 2376 pmbox->un.varWords[2], 2377 pmbox->un.varWords[3], 2378 pmbox->un.varWords[4], 2379 pmbox->un.varWords[5], 2380 pmbox->un.varWords[6], 2381 pmbox->un.varWords[7], 2382 pmbox->un.varWords[8], 2383 pmbox->un.varWords[9], 2384 pmbox->un.varWords[10]); 2385 2386 if (pmb->mbox_cmpl) 2387 pmb->mbox_cmpl(phba,pmb); 2388 } while (1); 2389 return 0; 2390 } 2391 2392 /** 2393 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2394 * @phba: Pointer to HBA context object. 2395 * @pring: Pointer to driver SLI ring object. 2396 * @tag: buffer tag. 2397 * 2398 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2399 * is set in the tag the buffer is posted for a particular exchange, 2400 * the function will return the buffer without replacing the buffer. 2401 * If the buffer is for unsolicited ELS or CT traffic, this function 2402 * returns the buffer and also posts another buffer to the firmware. 2403 **/ 2404 static struct lpfc_dmabuf * 2405 lpfc_sli_get_buff(struct lpfc_hba *phba, 2406 struct lpfc_sli_ring *pring, 2407 uint32_t tag) 2408 { 2409 struct hbq_dmabuf *hbq_entry; 2410 2411 if (tag & QUE_BUFTAG_BIT) 2412 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2413 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2414 if (!hbq_entry) 2415 return NULL; 2416 return &hbq_entry->dbuf; 2417 } 2418 2419 /** 2420 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2421 * @phba: Pointer to HBA context object. 2422 * @pring: Pointer to driver SLI ring object. 2423 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2424 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2425 * @fch_type: the type for the first frame of the sequence. 2426 * 2427 * This function is called with no lock held. This function uses the r_ctl and 2428 * type of the received sequence to find the correct callback function to call 2429 * to process the sequence. 2430 **/ 2431 static int 2432 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2433 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2434 uint32_t fch_type) 2435 { 2436 int i; 2437 2438 /* unSolicited Responses */ 2439 if (pring->prt[0].profile) { 2440 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2441 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2442 saveq); 2443 return 1; 2444 } 2445 /* We must search, based on rctl / type 2446 for the right routine */ 2447 for (i = 0; i < pring->num_mask; i++) { 2448 if ((pring->prt[i].rctl == fch_r_ctl) && 2449 (pring->prt[i].type == fch_type)) { 2450 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2451 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2452 (phba, pring, saveq); 2453 return 1; 2454 } 2455 } 2456 return 0; 2457 } 2458 2459 /** 2460 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2461 * @phba: Pointer to HBA context object. 2462 * @pring: Pointer to driver SLI ring object. 2463 * @saveq: Pointer to the unsolicited iocb. 2464 * 2465 * This function is called with no lock held by the ring event handler 2466 * when there is an unsolicited iocb posted to the response ring by the 2467 * firmware. This function gets the buffer associated with the iocbs 2468 * and calls the event handler for the ring. This function handles both 2469 * qring buffers and hbq buffers. 2470 * When the function returns 1 the caller can free the iocb object otherwise 2471 * upper layer functions will free the iocb objects. 2472 **/ 2473 static int 2474 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2475 struct lpfc_iocbq *saveq) 2476 { 2477 IOCB_t * irsp; 2478 WORD5 * w5p; 2479 uint32_t Rctl, Type; 2480 struct lpfc_iocbq *iocbq; 2481 struct lpfc_dmabuf *dmzbuf; 2482 2483 irsp = &(saveq->iocb); 2484 2485 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2486 if (pring->lpfc_sli_rcv_async_status) 2487 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2488 else 2489 lpfc_printf_log(phba, 2490 KERN_WARNING, 2491 LOG_SLI, 2492 "0316 Ring %d handler: unexpected " 2493 "ASYNC_STATUS iocb received evt_code " 2494 "0x%x\n", 2495 pring->ringno, 2496 irsp->un.asyncstat.evt_code); 2497 return 1; 2498 } 2499 2500 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2501 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2502 if (irsp->ulpBdeCount > 0) { 2503 dmzbuf = lpfc_sli_get_buff(phba, pring, 2504 irsp->un.ulpWord[3]); 2505 lpfc_in_buf_free(phba, dmzbuf); 2506 } 2507 2508 if (irsp->ulpBdeCount > 1) { 2509 dmzbuf = lpfc_sli_get_buff(phba, pring, 2510 irsp->unsli3.sli3Words[3]); 2511 lpfc_in_buf_free(phba, dmzbuf); 2512 } 2513 2514 if (irsp->ulpBdeCount > 2) { 2515 dmzbuf = lpfc_sli_get_buff(phba, pring, 2516 irsp->unsli3.sli3Words[7]); 2517 lpfc_in_buf_free(phba, dmzbuf); 2518 } 2519 2520 return 1; 2521 } 2522 2523 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2524 if (irsp->ulpBdeCount != 0) { 2525 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2526 irsp->un.ulpWord[3]); 2527 if (!saveq->context2) 2528 lpfc_printf_log(phba, 2529 KERN_ERR, 2530 LOG_SLI, 2531 "0341 Ring %d Cannot find buffer for " 2532 "an unsolicited iocb. tag 0x%x\n", 2533 pring->ringno, 2534 irsp->un.ulpWord[3]); 2535 } 2536 if (irsp->ulpBdeCount == 2) { 2537 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2538 irsp->unsli3.sli3Words[7]); 2539 if (!saveq->context3) 2540 lpfc_printf_log(phba, 2541 KERN_ERR, 2542 LOG_SLI, 2543 "0342 Ring %d Cannot find buffer for an" 2544 " unsolicited iocb. tag 0x%x\n", 2545 pring->ringno, 2546 irsp->unsli3.sli3Words[7]); 2547 } 2548 list_for_each_entry(iocbq, &saveq->list, list) { 2549 irsp = &(iocbq->iocb); 2550 if (irsp->ulpBdeCount != 0) { 2551 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2552 irsp->un.ulpWord[3]); 2553 if (!iocbq->context2) 2554 lpfc_printf_log(phba, 2555 KERN_ERR, 2556 LOG_SLI, 2557 "0343 Ring %d Cannot find " 2558 "buffer for an unsolicited iocb" 2559 ". tag 0x%x\n", pring->ringno, 2560 irsp->un.ulpWord[3]); 2561 } 2562 if (irsp->ulpBdeCount == 2) { 2563 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2564 irsp->unsli3.sli3Words[7]); 2565 if (!iocbq->context3) 2566 lpfc_printf_log(phba, 2567 KERN_ERR, 2568 LOG_SLI, 2569 "0344 Ring %d Cannot find " 2570 "buffer for an unsolicited " 2571 "iocb. tag 0x%x\n", 2572 pring->ringno, 2573 irsp->unsli3.sli3Words[7]); 2574 } 2575 } 2576 } 2577 if (irsp->ulpBdeCount != 0 && 2578 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2579 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2580 int found = 0; 2581 2582 /* search continue save q for same XRI */ 2583 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2584 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2585 saveq->iocb.unsli3.rcvsli3.ox_id) { 2586 list_add_tail(&saveq->list, &iocbq->list); 2587 found = 1; 2588 break; 2589 } 2590 } 2591 if (!found) 2592 list_add_tail(&saveq->clist, 2593 &pring->iocb_continue_saveq); 2594 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2595 list_del_init(&iocbq->clist); 2596 saveq = iocbq; 2597 irsp = &(saveq->iocb); 2598 } else 2599 return 0; 2600 } 2601 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2602 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2603 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2604 Rctl = FC_RCTL_ELS_REQ; 2605 Type = FC_TYPE_ELS; 2606 } else { 2607 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2608 Rctl = w5p->hcsw.Rctl; 2609 Type = w5p->hcsw.Type; 2610 2611 /* Firmware Workaround */ 2612 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2613 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2614 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2615 Rctl = FC_RCTL_ELS_REQ; 2616 Type = FC_TYPE_ELS; 2617 w5p->hcsw.Rctl = Rctl; 2618 w5p->hcsw.Type = Type; 2619 } 2620 } 2621 2622 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2623 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2624 "0313 Ring %d handler: unexpected Rctl x%x " 2625 "Type x%x received\n", 2626 pring->ringno, Rctl, Type); 2627 2628 return 1; 2629 } 2630 2631 /** 2632 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2633 * @phba: Pointer to HBA context object. 2634 * @pring: Pointer to driver SLI ring object. 2635 * @prspiocb: Pointer to response iocb object. 2636 * 2637 * This function looks up the iocb_lookup table to get the command iocb 2638 * corresponding to the given response iocb using the iotag of the 2639 * response iocb. This function is called with the hbalock held. 2640 * This function returns the command iocb object if it finds the command 2641 * iocb else returns NULL. 2642 **/ 2643 static struct lpfc_iocbq * 2644 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2645 struct lpfc_sli_ring *pring, 2646 struct lpfc_iocbq *prspiocb) 2647 { 2648 struct lpfc_iocbq *cmd_iocb = NULL; 2649 uint16_t iotag; 2650 2651 iotag = prspiocb->iocb.ulpIoTag; 2652 2653 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2654 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2655 list_del_init(&cmd_iocb->list); 2656 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2657 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2658 } 2659 return cmd_iocb; 2660 } 2661 2662 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2663 "0317 iotag x%x is out off " 2664 "range: max iotag x%x wd0 x%x\n", 2665 iotag, phba->sli.last_iotag, 2666 *(((uint32_t *) &prspiocb->iocb) + 7)); 2667 return NULL; 2668 } 2669 2670 /** 2671 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2672 * @phba: Pointer to HBA context object. 2673 * @pring: Pointer to driver SLI ring object. 2674 * @iotag: IOCB tag. 2675 * 2676 * This function looks up the iocb_lookup table to get the command iocb 2677 * corresponding to the given iotag. This function is called with the 2678 * hbalock held. 2679 * This function returns the command iocb object if it finds the command 2680 * iocb else returns NULL. 2681 **/ 2682 static struct lpfc_iocbq * 2683 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2684 struct lpfc_sli_ring *pring, uint16_t iotag) 2685 { 2686 struct lpfc_iocbq *cmd_iocb; 2687 2688 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2689 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2690 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2691 /* remove from txcmpl queue list */ 2692 list_del_init(&cmd_iocb->list); 2693 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2694 return cmd_iocb; 2695 } 2696 } 2697 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2698 "0372 iotag x%x is out off range: max iotag (x%x)\n", 2699 iotag, phba->sli.last_iotag); 2700 return NULL; 2701 } 2702 2703 /** 2704 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2705 * @phba: Pointer to HBA context object. 2706 * @pring: Pointer to driver SLI ring object. 2707 * @saveq: Pointer to the response iocb to be processed. 2708 * 2709 * This function is called by the ring event handler for non-fcp 2710 * rings when there is a new response iocb in the response ring. 2711 * The caller is not required to hold any locks. This function 2712 * gets the command iocb associated with the response iocb and 2713 * calls the completion handler for the command iocb. If there 2714 * is no completion handler, the function will free the resources 2715 * associated with command iocb. If the response iocb is for 2716 * an already aborted command iocb, the status of the completion 2717 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2718 * This function always returns 1. 2719 **/ 2720 static int 2721 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2722 struct lpfc_iocbq *saveq) 2723 { 2724 struct lpfc_iocbq *cmdiocbp; 2725 int rc = 1; 2726 unsigned long iflag; 2727 2728 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2729 spin_lock_irqsave(&phba->hbalock, iflag); 2730 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2731 spin_unlock_irqrestore(&phba->hbalock, iflag); 2732 2733 if (cmdiocbp) { 2734 if (cmdiocbp->iocb_cmpl) { 2735 /* 2736 * If an ELS command failed send an event to mgmt 2737 * application. 2738 */ 2739 if (saveq->iocb.ulpStatus && 2740 (pring->ringno == LPFC_ELS_RING) && 2741 (cmdiocbp->iocb.ulpCommand == 2742 CMD_ELS_REQUEST64_CR)) 2743 lpfc_send_els_failure_event(phba, 2744 cmdiocbp, saveq); 2745 2746 /* 2747 * Post all ELS completions to the worker thread. 2748 * All other are passed to the completion callback. 2749 */ 2750 if (pring->ringno == LPFC_ELS_RING) { 2751 if ((phba->sli_rev < LPFC_SLI_REV4) && 2752 (cmdiocbp->iocb_flag & 2753 LPFC_DRIVER_ABORTED)) { 2754 spin_lock_irqsave(&phba->hbalock, 2755 iflag); 2756 cmdiocbp->iocb_flag &= 2757 ~LPFC_DRIVER_ABORTED; 2758 spin_unlock_irqrestore(&phba->hbalock, 2759 iflag); 2760 saveq->iocb.ulpStatus = 2761 IOSTAT_LOCAL_REJECT; 2762 saveq->iocb.un.ulpWord[4] = 2763 IOERR_SLI_ABORTED; 2764 2765 /* Firmware could still be in progress 2766 * of DMAing payload, so don't free data 2767 * buffer till after a hbeat. 2768 */ 2769 spin_lock_irqsave(&phba->hbalock, 2770 iflag); 2771 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2772 spin_unlock_irqrestore(&phba->hbalock, 2773 iflag); 2774 } 2775 if (phba->sli_rev == LPFC_SLI_REV4) { 2776 if (saveq->iocb_flag & 2777 LPFC_EXCHANGE_BUSY) { 2778 /* Set cmdiocb flag for the 2779 * exchange busy so sgl (xri) 2780 * will not be released until 2781 * the abort xri is received 2782 * from hba. 2783 */ 2784 spin_lock_irqsave( 2785 &phba->hbalock, iflag); 2786 cmdiocbp->iocb_flag |= 2787 LPFC_EXCHANGE_BUSY; 2788 spin_unlock_irqrestore( 2789 &phba->hbalock, iflag); 2790 } 2791 if (cmdiocbp->iocb_flag & 2792 LPFC_DRIVER_ABORTED) { 2793 /* 2794 * Clear LPFC_DRIVER_ABORTED 2795 * bit in case it was driver 2796 * initiated abort. 2797 */ 2798 spin_lock_irqsave( 2799 &phba->hbalock, iflag); 2800 cmdiocbp->iocb_flag &= 2801 ~LPFC_DRIVER_ABORTED; 2802 spin_unlock_irqrestore( 2803 &phba->hbalock, iflag); 2804 cmdiocbp->iocb.ulpStatus = 2805 IOSTAT_LOCAL_REJECT; 2806 cmdiocbp->iocb.un.ulpWord[4] = 2807 IOERR_ABORT_REQUESTED; 2808 /* 2809 * For SLI4, irsiocb contains 2810 * NO_XRI in sli_xritag, it 2811 * shall not affect releasing 2812 * sgl (xri) process. 2813 */ 2814 saveq->iocb.ulpStatus = 2815 IOSTAT_LOCAL_REJECT; 2816 saveq->iocb.un.ulpWord[4] = 2817 IOERR_SLI_ABORTED; 2818 spin_lock_irqsave( 2819 &phba->hbalock, iflag); 2820 saveq->iocb_flag |= 2821 LPFC_DELAY_MEM_FREE; 2822 spin_unlock_irqrestore( 2823 &phba->hbalock, iflag); 2824 } 2825 } 2826 } 2827 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2828 } else 2829 lpfc_sli_release_iocbq(phba, cmdiocbp); 2830 } else { 2831 /* 2832 * Unknown initiating command based on the response iotag. 2833 * This could be the case on the ELS ring because of 2834 * lpfc_els_abort(). 2835 */ 2836 if (pring->ringno != LPFC_ELS_RING) { 2837 /* 2838 * Ring <ringno> handler: unexpected completion IoTag 2839 * <IoTag> 2840 */ 2841 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2842 "0322 Ring %d handler: " 2843 "unexpected completion IoTag x%x " 2844 "Data: x%x x%x x%x x%x\n", 2845 pring->ringno, 2846 saveq->iocb.ulpIoTag, 2847 saveq->iocb.ulpStatus, 2848 saveq->iocb.un.ulpWord[4], 2849 saveq->iocb.ulpCommand, 2850 saveq->iocb.ulpContext); 2851 } 2852 } 2853 2854 return rc; 2855 } 2856 2857 /** 2858 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2859 * @phba: Pointer to HBA context object. 2860 * @pring: Pointer to driver SLI ring object. 2861 * 2862 * This function is called from the iocb ring event handlers when 2863 * put pointer is ahead of the get pointer for a ring. This function signal 2864 * an error attention condition to the worker thread and the worker 2865 * thread will transition the HBA to offline state. 2866 **/ 2867 static void 2868 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2869 { 2870 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2871 /* 2872 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2873 * rsp ring <portRspMax> 2874 */ 2875 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2876 "0312 Ring %d handler: portRspPut %d " 2877 "is bigger than rsp ring %d\n", 2878 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2879 pring->sli.sli3.numRiocb); 2880 2881 phba->link_state = LPFC_HBA_ERROR; 2882 2883 /* 2884 * All error attention handlers are posted to 2885 * worker thread 2886 */ 2887 phba->work_ha |= HA_ERATT; 2888 phba->work_hs = HS_FFER3; 2889 2890 lpfc_worker_wake_up(phba); 2891 2892 return; 2893 } 2894 2895 /** 2896 * lpfc_poll_eratt - Error attention polling timer timeout handler 2897 * @ptr: Pointer to address of HBA context object. 2898 * 2899 * This function is invoked by the Error Attention polling timer when the 2900 * timer times out. It will check the SLI Error Attention register for 2901 * possible attention events. If so, it will post an Error Attention event 2902 * and wake up worker thread to process it. Otherwise, it will set up the 2903 * Error Attention polling timer for the next poll. 2904 **/ 2905 void lpfc_poll_eratt(unsigned long ptr) 2906 { 2907 struct lpfc_hba *phba; 2908 uint32_t eratt = 0; 2909 uint64_t sli_intr, cnt; 2910 2911 phba = (struct lpfc_hba *)ptr; 2912 2913 /* Here we will also keep track of interrupts per sec of the hba */ 2914 sli_intr = phba->sli.slistat.sli_intr; 2915 2916 if (phba->sli.slistat.sli_prev_intr > sli_intr) 2917 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 2918 sli_intr); 2919 else 2920 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 2921 2922 /* 64-bit integer division not supporte on 32-bit x86 - use do_div */ 2923 do_div(cnt, LPFC_ERATT_POLL_INTERVAL); 2924 phba->sli.slistat.sli_ips = cnt; 2925 2926 phba->sli.slistat.sli_prev_intr = sli_intr; 2927 2928 /* Check chip HA register for error event */ 2929 eratt = lpfc_sli_check_eratt(phba); 2930 2931 if (eratt) 2932 /* Tell the worker thread there is work to do */ 2933 lpfc_worker_wake_up(phba); 2934 else 2935 /* Restart the timer for next eratt poll */ 2936 mod_timer(&phba->eratt_poll, 2937 jiffies + 2938 msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 2939 return; 2940 } 2941 2942 2943 /** 2944 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 2945 * @phba: Pointer to HBA context object. 2946 * @pring: Pointer to driver SLI ring object. 2947 * @mask: Host attention register mask for this ring. 2948 * 2949 * This function is called from the interrupt context when there is a ring 2950 * event for the fcp ring. The caller does not hold any lock. 2951 * The function processes each response iocb in the response ring until it 2952 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 2953 * LE bit set. The function will call the completion handler of the command iocb 2954 * if the response iocb indicates a completion for a command iocb or it is 2955 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 2956 * function if this is an unsolicited iocb. 2957 * This routine presumes LPFC_FCP_RING handling and doesn't bother 2958 * to check it explicitly. 2959 */ 2960 int 2961 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 2962 struct lpfc_sli_ring *pring, uint32_t mask) 2963 { 2964 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2965 IOCB_t *irsp = NULL; 2966 IOCB_t *entry = NULL; 2967 struct lpfc_iocbq *cmdiocbq = NULL; 2968 struct lpfc_iocbq rspiocbq; 2969 uint32_t status; 2970 uint32_t portRspPut, portRspMax; 2971 int rc = 1; 2972 lpfc_iocb_type type; 2973 unsigned long iflag; 2974 uint32_t rsp_cmpl = 0; 2975 2976 spin_lock_irqsave(&phba->hbalock, iflag); 2977 pring->stats.iocb_event++; 2978 2979 /* 2980 * The next available response entry should never exceed the maximum 2981 * entries. If it does, treat it as an adapter hardware error. 2982 */ 2983 portRspMax = pring->sli.sli3.numRiocb; 2984 portRspPut = le32_to_cpu(pgp->rspPutInx); 2985 if (unlikely(portRspPut >= portRspMax)) { 2986 lpfc_sli_rsp_pointers_error(phba, pring); 2987 spin_unlock_irqrestore(&phba->hbalock, iflag); 2988 return 1; 2989 } 2990 if (phba->fcp_ring_in_use) { 2991 spin_unlock_irqrestore(&phba->hbalock, iflag); 2992 return 1; 2993 } else 2994 phba->fcp_ring_in_use = 1; 2995 2996 rmb(); 2997 while (pring->sli.sli3.rspidx != portRspPut) { 2998 /* 2999 * Fetch an entry off the ring and copy it into a local data 3000 * structure. The copy involves a byte-swap since the 3001 * network byte order and pci byte orders are different. 3002 */ 3003 entry = lpfc_resp_iocb(phba, pring); 3004 phba->last_completion_time = jiffies; 3005 3006 if (++pring->sli.sli3.rspidx >= portRspMax) 3007 pring->sli.sli3.rspidx = 0; 3008 3009 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3010 (uint32_t *) &rspiocbq.iocb, 3011 phba->iocb_rsp_size); 3012 INIT_LIST_HEAD(&(rspiocbq.list)); 3013 irsp = &rspiocbq.iocb; 3014 3015 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3016 pring->stats.iocb_rsp++; 3017 rsp_cmpl++; 3018 3019 if (unlikely(irsp->ulpStatus)) { 3020 /* 3021 * If resource errors reported from HBA, reduce 3022 * queuedepths of the SCSI device. 3023 */ 3024 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3025 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3026 IOERR_NO_RESOURCES)) { 3027 spin_unlock_irqrestore(&phba->hbalock, iflag); 3028 phba->lpfc_rampdown_queue_depth(phba); 3029 spin_lock_irqsave(&phba->hbalock, iflag); 3030 } 3031 3032 /* Rsp ring <ringno> error: IOCB */ 3033 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3034 "0336 Rsp Ring %d error: IOCB Data: " 3035 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3036 pring->ringno, 3037 irsp->un.ulpWord[0], 3038 irsp->un.ulpWord[1], 3039 irsp->un.ulpWord[2], 3040 irsp->un.ulpWord[3], 3041 irsp->un.ulpWord[4], 3042 irsp->un.ulpWord[5], 3043 *(uint32_t *)&irsp->un1, 3044 *((uint32_t *)&irsp->un1 + 1)); 3045 } 3046 3047 switch (type) { 3048 case LPFC_ABORT_IOCB: 3049 case LPFC_SOL_IOCB: 3050 /* 3051 * Idle exchange closed via ABTS from port. No iocb 3052 * resources need to be recovered. 3053 */ 3054 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3055 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3056 "0333 IOCB cmd 0x%x" 3057 " processed. Skipping" 3058 " completion\n", 3059 irsp->ulpCommand); 3060 break; 3061 } 3062 3063 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3064 &rspiocbq); 3065 if (unlikely(!cmdiocbq)) 3066 break; 3067 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3068 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3069 if (cmdiocbq->iocb_cmpl) { 3070 spin_unlock_irqrestore(&phba->hbalock, iflag); 3071 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3072 &rspiocbq); 3073 spin_lock_irqsave(&phba->hbalock, iflag); 3074 } 3075 break; 3076 case LPFC_UNSOL_IOCB: 3077 spin_unlock_irqrestore(&phba->hbalock, iflag); 3078 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3079 spin_lock_irqsave(&phba->hbalock, iflag); 3080 break; 3081 default: 3082 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3083 char adaptermsg[LPFC_MAX_ADPTMSG]; 3084 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3085 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3086 MAX_MSG_DATA); 3087 dev_warn(&((phba->pcidev)->dev), 3088 "lpfc%d: %s\n", 3089 phba->brd_no, adaptermsg); 3090 } else { 3091 /* Unknown IOCB command */ 3092 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3093 "0334 Unknown IOCB command " 3094 "Data: x%x, x%x x%x x%x x%x\n", 3095 type, irsp->ulpCommand, 3096 irsp->ulpStatus, 3097 irsp->ulpIoTag, 3098 irsp->ulpContext); 3099 } 3100 break; 3101 } 3102 3103 /* 3104 * The response IOCB has been processed. Update the ring 3105 * pointer in SLIM. If the port response put pointer has not 3106 * been updated, sync the pgp->rspPutInx and fetch the new port 3107 * response put pointer. 3108 */ 3109 writel(pring->sli.sli3.rspidx, 3110 &phba->host_gp[pring->ringno].rspGetInx); 3111 3112 if (pring->sli.sli3.rspidx == portRspPut) 3113 portRspPut = le32_to_cpu(pgp->rspPutInx); 3114 } 3115 3116 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3117 pring->stats.iocb_rsp_full++; 3118 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3119 writel(status, phba->CAregaddr); 3120 readl(phba->CAregaddr); 3121 } 3122 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3123 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3124 pring->stats.iocb_cmd_empty++; 3125 3126 /* Force update of the local copy of cmdGetInx */ 3127 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3128 lpfc_sli_resume_iocb(phba, pring); 3129 3130 if ((pring->lpfc_sli_cmd_available)) 3131 (pring->lpfc_sli_cmd_available) (phba, pring); 3132 3133 } 3134 3135 phba->fcp_ring_in_use = 0; 3136 spin_unlock_irqrestore(&phba->hbalock, iflag); 3137 return rc; 3138 } 3139 3140 /** 3141 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3142 * @phba: Pointer to HBA context object. 3143 * @pring: Pointer to driver SLI ring object. 3144 * @rspiocbp: Pointer to driver response IOCB object. 3145 * 3146 * This function is called from the worker thread when there is a slow-path 3147 * response IOCB to process. This function chains all the response iocbs until 3148 * seeing the iocb with the LE bit set. The function will call 3149 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3150 * completion of a command iocb. The function will call the 3151 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3152 * The function frees the resources or calls the completion handler if this 3153 * iocb is an abort completion. The function returns NULL when the response 3154 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3155 * this function shall chain the iocb on to the iocb_continueq and return the 3156 * response iocb passed in. 3157 **/ 3158 static struct lpfc_iocbq * 3159 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3160 struct lpfc_iocbq *rspiocbp) 3161 { 3162 struct lpfc_iocbq *saveq; 3163 struct lpfc_iocbq *cmdiocbp; 3164 struct lpfc_iocbq *next_iocb; 3165 IOCB_t *irsp = NULL; 3166 uint32_t free_saveq; 3167 uint8_t iocb_cmd_type; 3168 lpfc_iocb_type type; 3169 unsigned long iflag; 3170 int rc; 3171 3172 spin_lock_irqsave(&phba->hbalock, iflag); 3173 /* First add the response iocb to the countinueq list */ 3174 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3175 pring->iocb_continueq_cnt++; 3176 3177 /* Now, determine whether the list is completed for processing */ 3178 irsp = &rspiocbp->iocb; 3179 if (irsp->ulpLe) { 3180 /* 3181 * By default, the driver expects to free all resources 3182 * associated with this iocb completion. 3183 */ 3184 free_saveq = 1; 3185 saveq = list_get_first(&pring->iocb_continueq, 3186 struct lpfc_iocbq, list); 3187 irsp = &(saveq->iocb); 3188 list_del_init(&pring->iocb_continueq); 3189 pring->iocb_continueq_cnt = 0; 3190 3191 pring->stats.iocb_rsp++; 3192 3193 /* 3194 * If resource errors reported from HBA, reduce 3195 * queuedepths of the SCSI device. 3196 */ 3197 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3198 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3199 IOERR_NO_RESOURCES)) { 3200 spin_unlock_irqrestore(&phba->hbalock, iflag); 3201 phba->lpfc_rampdown_queue_depth(phba); 3202 spin_lock_irqsave(&phba->hbalock, iflag); 3203 } 3204 3205 if (irsp->ulpStatus) { 3206 /* Rsp ring <ringno> error: IOCB */ 3207 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3208 "0328 Rsp Ring %d error: " 3209 "IOCB Data: " 3210 "x%x x%x x%x x%x " 3211 "x%x x%x x%x x%x " 3212 "x%x x%x x%x x%x " 3213 "x%x x%x x%x x%x\n", 3214 pring->ringno, 3215 irsp->un.ulpWord[0], 3216 irsp->un.ulpWord[1], 3217 irsp->un.ulpWord[2], 3218 irsp->un.ulpWord[3], 3219 irsp->un.ulpWord[4], 3220 irsp->un.ulpWord[5], 3221 *(((uint32_t *) irsp) + 6), 3222 *(((uint32_t *) irsp) + 7), 3223 *(((uint32_t *) irsp) + 8), 3224 *(((uint32_t *) irsp) + 9), 3225 *(((uint32_t *) irsp) + 10), 3226 *(((uint32_t *) irsp) + 11), 3227 *(((uint32_t *) irsp) + 12), 3228 *(((uint32_t *) irsp) + 13), 3229 *(((uint32_t *) irsp) + 14), 3230 *(((uint32_t *) irsp) + 15)); 3231 } 3232 3233 /* 3234 * Fetch the IOCB command type and call the correct completion 3235 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3236 * get freed back to the lpfc_iocb_list by the discovery 3237 * kernel thread. 3238 */ 3239 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3240 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3241 switch (type) { 3242 case LPFC_SOL_IOCB: 3243 spin_unlock_irqrestore(&phba->hbalock, iflag); 3244 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3245 spin_lock_irqsave(&phba->hbalock, iflag); 3246 break; 3247 3248 case LPFC_UNSOL_IOCB: 3249 spin_unlock_irqrestore(&phba->hbalock, iflag); 3250 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3251 spin_lock_irqsave(&phba->hbalock, iflag); 3252 if (!rc) 3253 free_saveq = 0; 3254 break; 3255 3256 case LPFC_ABORT_IOCB: 3257 cmdiocbp = NULL; 3258 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3259 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3260 saveq); 3261 if (cmdiocbp) { 3262 /* Call the specified completion routine */ 3263 if (cmdiocbp->iocb_cmpl) { 3264 spin_unlock_irqrestore(&phba->hbalock, 3265 iflag); 3266 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3267 saveq); 3268 spin_lock_irqsave(&phba->hbalock, 3269 iflag); 3270 } else 3271 __lpfc_sli_release_iocbq(phba, 3272 cmdiocbp); 3273 } 3274 break; 3275 3276 case LPFC_UNKNOWN_IOCB: 3277 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3278 char adaptermsg[LPFC_MAX_ADPTMSG]; 3279 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3280 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3281 MAX_MSG_DATA); 3282 dev_warn(&((phba->pcidev)->dev), 3283 "lpfc%d: %s\n", 3284 phba->brd_no, adaptermsg); 3285 } else { 3286 /* Unknown IOCB command */ 3287 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3288 "0335 Unknown IOCB " 3289 "command Data: x%x " 3290 "x%x x%x x%x\n", 3291 irsp->ulpCommand, 3292 irsp->ulpStatus, 3293 irsp->ulpIoTag, 3294 irsp->ulpContext); 3295 } 3296 break; 3297 } 3298 3299 if (free_saveq) { 3300 list_for_each_entry_safe(rspiocbp, next_iocb, 3301 &saveq->list, list) { 3302 list_del_init(&rspiocbp->list); 3303 __lpfc_sli_release_iocbq(phba, rspiocbp); 3304 } 3305 __lpfc_sli_release_iocbq(phba, saveq); 3306 } 3307 rspiocbp = NULL; 3308 } 3309 spin_unlock_irqrestore(&phba->hbalock, iflag); 3310 return rspiocbp; 3311 } 3312 3313 /** 3314 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3315 * @phba: Pointer to HBA context object. 3316 * @pring: Pointer to driver SLI ring object. 3317 * @mask: Host attention register mask for this ring. 3318 * 3319 * This routine wraps the actual slow_ring event process routine from the 3320 * API jump table function pointer from the lpfc_hba struct. 3321 **/ 3322 void 3323 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3324 struct lpfc_sli_ring *pring, uint32_t mask) 3325 { 3326 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3327 } 3328 3329 /** 3330 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3331 * @phba: Pointer to HBA context object. 3332 * @pring: Pointer to driver SLI ring object. 3333 * @mask: Host attention register mask for this ring. 3334 * 3335 * This function is called from the worker thread when there is a ring event 3336 * for non-fcp rings. The caller does not hold any lock. The function will 3337 * remove each response iocb in the response ring and calls the handle 3338 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3339 **/ 3340 static void 3341 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3342 struct lpfc_sli_ring *pring, uint32_t mask) 3343 { 3344 struct lpfc_pgp *pgp; 3345 IOCB_t *entry; 3346 IOCB_t *irsp = NULL; 3347 struct lpfc_iocbq *rspiocbp = NULL; 3348 uint32_t portRspPut, portRspMax; 3349 unsigned long iflag; 3350 uint32_t status; 3351 3352 pgp = &phba->port_gp[pring->ringno]; 3353 spin_lock_irqsave(&phba->hbalock, iflag); 3354 pring->stats.iocb_event++; 3355 3356 /* 3357 * The next available response entry should never exceed the maximum 3358 * entries. If it does, treat it as an adapter hardware error. 3359 */ 3360 portRspMax = pring->sli.sli3.numRiocb; 3361 portRspPut = le32_to_cpu(pgp->rspPutInx); 3362 if (portRspPut >= portRspMax) { 3363 /* 3364 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3365 * rsp ring <portRspMax> 3366 */ 3367 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3368 "0303 Ring %d handler: portRspPut %d " 3369 "is bigger than rsp ring %d\n", 3370 pring->ringno, portRspPut, portRspMax); 3371 3372 phba->link_state = LPFC_HBA_ERROR; 3373 spin_unlock_irqrestore(&phba->hbalock, iflag); 3374 3375 phba->work_hs = HS_FFER3; 3376 lpfc_handle_eratt(phba); 3377 3378 return; 3379 } 3380 3381 rmb(); 3382 while (pring->sli.sli3.rspidx != portRspPut) { 3383 /* 3384 * Build a completion list and call the appropriate handler. 3385 * The process is to get the next available response iocb, get 3386 * a free iocb from the list, copy the response data into the 3387 * free iocb, insert to the continuation list, and update the 3388 * next response index to slim. This process makes response 3389 * iocb's in the ring available to DMA as fast as possible but 3390 * pays a penalty for a copy operation. Since the iocb is 3391 * only 32 bytes, this penalty is considered small relative to 3392 * the PCI reads for register values and a slim write. When 3393 * the ulpLe field is set, the entire Command has been 3394 * received. 3395 */ 3396 entry = lpfc_resp_iocb(phba, pring); 3397 3398 phba->last_completion_time = jiffies; 3399 rspiocbp = __lpfc_sli_get_iocbq(phba); 3400 if (rspiocbp == NULL) { 3401 printk(KERN_ERR "%s: out of buffers! Failing " 3402 "completion.\n", __func__); 3403 break; 3404 } 3405 3406 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3407 phba->iocb_rsp_size); 3408 irsp = &rspiocbp->iocb; 3409 3410 if (++pring->sli.sli3.rspidx >= portRspMax) 3411 pring->sli.sli3.rspidx = 0; 3412 3413 if (pring->ringno == LPFC_ELS_RING) { 3414 lpfc_debugfs_slow_ring_trc(phba, 3415 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3416 *(((uint32_t *) irsp) + 4), 3417 *(((uint32_t *) irsp) + 6), 3418 *(((uint32_t *) irsp) + 7)); 3419 } 3420 3421 writel(pring->sli.sli3.rspidx, 3422 &phba->host_gp[pring->ringno].rspGetInx); 3423 3424 spin_unlock_irqrestore(&phba->hbalock, iflag); 3425 /* Handle the response IOCB */ 3426 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3427 spin_lock_irqsave(&phba->hbalock, iflag); 3428 3429 /* 3430 * If the port response put pointer has not been updated, sync 3431 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3432 * response put pointer. 3433 */ 3434 if (pring->sli.sli3.rspidx == portRspPut) { 3435 portRspPut = le32_to_cpu(pgp->rspPutInx); 3436 } 3437 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3438 3439 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3440 /* At least one response entry has been freed */ 3441 pring->stats.iocb_rsp_full++; 3442 /* SET RxRE_RSP in Chip Att register */ 3443 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3444 writel(status, phba->CAregaddr); 3445 readl(phba->CAregaddr); /* flush */ 3446 } 3447 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3448 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3449 pring->stats.iocb_cmd_empty++; 3450 3451 /* Force update of the local copy of cmdGetInx */ 3452 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3453 lpfc_sli_resume_iocb(phba, pring); 3454 3455 if ((pring->lpfc_sli_cmd_available)) 3456 (pring->lpfc_sli_cmd_available) (phba, pring); 3457 3458 } 3459 3460 spin_unlock_irqrestore(&phba->hbalock, iflag); 3461 return; 3462 } 3463 3464 /** 3465 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3466 * @phba: Pointer to HBA context object. 3467 * @pring: Pointer to driver SLI ring object. 3468 * @mask: Host attention register mask for this ring. 3469 * 3470 * This function is called from the worker thread when there is a pending 3471 * ELS response iocb on the driver internal slow-path response iocb worker 3472 * queue. The caller does not hold any lock. The function will remove each 3473 * response iocb from the response worker queue and calls the handle 3474 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3475 **/ 3476 static void 3477 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3478 struct lpfc_sli_ring *pring, uint32_t mask) 3479 { 3480 struct lpfc_iocbq *irspiocbq; 3481 struct hbq_dmabuf *dmabuf; 3482 struct lpfc_cq_event *cq_event; 3483 unsigned long iflag; 3484 3485 spin_lock_irqsave(&phba->hbalock, iflag); 3486 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3487 spin_unlock_irqrestore(&phba->hbalock, iflag); 3488 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3489 /* Get the response iocb from the head of work queue */ 3490 spin_lock_irqsave(&phba->hbalock, iflag); 3491 list_remove_head(&phba->sli4_hba.sp_queue_event, 3492 cq_event, struct lpfc_cq_event, list); 3493 spin_unlock_irqrestore(&phba->hbalock, iflag); 3494 3495 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3496 case CQE_CODE_COMPL_WQE: 3497 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3498 cq_event); 3499 /* Translate ELS WCQE to response IOCBQ */ 3500 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3501 irspiocbq); 3502 if (irspiocbq) 3503 lpfc_sli_sp_handle_rspiocb(phba, pring, 3504 irspiocbq); 3505 break; 3506 case CQE_CODE_RECEIVE: 3507 case CQE_CODE_RECEIVE_V1: 3508 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3509 cq_event); 3510 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3511 break; 3512 default: 3513 break; 3514 } 3515 } 3516 } 3517 3518 /** 3519 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3520 * @phba: Pointer to HBA context object. 3521 * @pring: Pointer to driver SLI ring object. 3522 * 3523 * This function aborts all iocbs in the given ring and frees all the iocb 3524 * objects in txq. This function issues an abort iocb for all the iocb commands 3525 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3526 * the return of this function. The caller is not required to hold any locks. 3527 **/ 3528 void 3529 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3530 { 3531 LIST_HEAD(completions); 3532 struct lpfc_iocbq *iocb, *next_iocb; 3533 3534 if (pring->ringno == LPFC_ELS_RING) { 3535 lpfc_fabric_abort_hba(phba); 3536 } 3537 3538 /* Error everything on txq and txcmplq 3539 * First do the txq. 3540 */ 3541 if (phba->sli_rev >= LPFC_SLI_REV4) { 3542 spin_lock_irq(&pring->ring_lock); 3543 list_splice_init(&pring->txq, &completions); 3544 pring->txq_cnt = 0; 3545 spin_unlock_irq(&pring->ring_lock); 3546 3547 spin_lock_irq(&phba->hbalock); 3548 /* Next issue ABTS for everything on the txcmplq */ 3549 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3550 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3551 spin_unlock_irq(&phba->hbalock); 3552 } else { 3553 spin_lock_irq(&phba->hbalock); 3554 list_splice_init(&pring->txq, &completions); 3555 pring->txq_cnt = 0; 3556 3557 /* Next issue ABTS for everything on the txcmplq */ 3558 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3559 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3560 spin_unlock_irq(&phba->hbalock); 3561 } 3562 3563 /* Cancel all the IOCBs from the completions list */ 3564 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3565 IOERR_SLI_ABORTED); 3566 } 3567 3568 /** 3569 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3570 * @phba: Pointer to HBA context object. 3571 * @pring: Pointer to driver SLI ring object. 3572 * 3573 * This function aborts all iocbs in FCP rings and frees all the iocb 3574 * objects in txq. This function issues an abort iocb for all the iocb commands 3575 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3576 * the return of this function. The caller is not required to hold any locks. 3577 **/ 3578 void 3579 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3580 { 3581 struct lpfc_sli *psli = &phba->sli; 3582 struct lpfc_sli_ring *pring; 3583 uint32_t i; 3584 3585 /* Look on all the FCP Rings for the iotag */ 3586 if (phba->sli_rev >= LPFC_SLI_REV4) { 3587 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3588 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3589 lpfc_sli_abort_iocb_ring(phba, pring); 3590 } 3591 } else { 3592 pring = &psli->ring[psli->fcp_ring]; 3593 lpfc_sli_abort_iocb_ring(phba, pring); 3594 } 3595 } 3596 3597 3598 /** 3599 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3600 * @phba: Pointer to HBA context object. 3601 * 3602 * This function flushes all iocbs in the fcp ring and frees all the iocb 3603 * objects in txq and txcmplq. This function will not issue abort iocbs 3604 * for all the iocb commands in txcmplq, they will just be returned with 3605 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3606 * slot has been permanently disabled. 3607 **/ 3608 void 3609 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3610 { 3611 LIST_HEAD(txq); 3612 LIST_HEAD(txcmplq); 3613 struct lpfc_sli *psli = &phba->sli; 3614 struct lpfc_sli_ring *pring; 3615 uint32_t i; 3616 3617 spin_lock_irq(&phba->hbalock); 3618 /* Indicate the I/O queues are flushed */ 3619 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3620 spin_unlock_irq(&phba->hbalock); 3621 3622 /* Look on all the FCP Rings for the iotag */ 3623 if (phba->sli_rev >= LPFC_SLI_REV4) { 3624 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3625 pring = &psli->ring[i + MAX_SLI3_CONFIGURED_RINGS]; 3626 3627 spin_lock_irq(&pring->ring_lock); 3628 /* Retrieve everything on txq */ 3629 list_splice_init(&pring->txq, &txq); 3630 /* Retrieve everything on the txcmplq */ 3631 list_splice_init(&pring->txcmplq, &txcmplq); 3632 pring->txq_cnt = 0; 3633 pring->txcmplq_cnt = 0; 3634 spin_unlock_irq(&pring->ring_lock); 3635 3636 /* Flush the txq */ 3637 lpfc_sli_cancel_iocbs(phba, &txq, 3638 IOSTAT_LOCAL_REJECT, 3639 IOERR_SLI_DOWN); 3640 /* Flush the txcmpq */ 3641 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3642 IOSTAT_LOCAL_REJECT, 3643 IOERR_SLI_DOWN); 3644 } 3645 } else { 3646 pring = &psli->ring[psli->fcp_ring]; 3647 3648 spin_lock_irq(&phba->hbalock); 3649 /* Retrieve everything on txq */ 3650 list_splice_init(&pring->txq, &txq); 3651 /* Retrieve everything on the txcmplq */ 3652 list_splice_init(&pring->txcmplq, &txcmplq); 3653 pring->txq_cnt = 0; 3654 pring->txcmplq_cnt = 0; 3655 spin_unlock_irq(&phba->hbalock); 3656 3657 /* Flush the txq */ 3658 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3659 IOERR_SLI_DOWN); 3660 /* Flush the txcmpq */ 3661 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3662 IOERR_SLI_DOWN); 3663 } 3664 } 3665 3666 /** 3667 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3668 * @phba: Pointer to HBA context object. 3669 * @mask: Bit mask to be checked. 3670 * 3671 * This function reads the host status register and compares 3672 * with the provided bit mask to check if HBA completed 3673 * the restart. This function will wait in a loop for the 3674 * HBA to complete restart. If the HBA does not restart within 3675 * 15 iterations, the function will reset the HBA again. The 3676 * function returns 1 when HBA fail to restart otherwise returns 3677 * zero. 3678 **/ 3679 static int 3680 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3681 { 3682 uint32_t status; 3683 int i = 0; 3684 int retval = 0; 3685 3686 /* Read the HBA Host Status Register */ 3687 if (lpfc_readl(phba->HSregaddr, &status)) 3688 return 1; 3689 3690 /* 3691 * Check status register every 100ms for 5 retries, then every 3692 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3693 * every 2.5 sec for 4. 3694 * Break our of the loop if errors occurred during init. 3695 */ 3696 while (((status & mask) != mask) && 3697 !(status & HS_FFERM) && 3698 i++ < 20) { 3699 3700 if (i <= 5) 3701 msleep(10); 3702 else if (i <= 10) 3703 msleep(500); 3704 else 3705 msleep(2500); 3706 3707 if (i == 15) { 3708 /* Do post */ 3709 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3710 lpfc_sli_brdrestart(phba); 3711 } 3712 /* Read the HBA Host Status Register */ 3713 if (lpfc_readl(phba->HSregaddr, &status)) { 3714 retval = 1; 3715 break; 3716 } 3717 } 3718 3719 /* Check to see if any errors occurred during init */ 3720 if ((status & HS_FFERM) || (i >= 20)) { 3721 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3722 "2751 Adapter failed to restart, " 3723 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3724 status, 3725 readl(phba->MBslimaddr + 0xa8), 3726 readl(phba->MBslimaddr + 0xac)); 3727 phba->link_state = LPFC_HBA_ERROR; 3728 retval = 1; 3729 } 3730 3731 return retval; 3732 } 3733 3734 /** 3735 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3736 * @phba: Pointer to HBA context object. 3737 * @mask: Bit mask to be checked. 3738 * 3739 * This function checks the host status register to check if HBA is 3740 * ready. This function will wait in a loop for the HBA to be ready 3741 * If the HBA is not ready , the function will will reset the HBA PCI 3742 * function again. The function returns 1 when HBA fail to be ready 3743 * otherwise returns zero. 3744 **/ 3745 static int 3746 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3747 { 3748 uint32_t status; 3749 int retval = 0; 3750 3751 /* Read the HBA Host Status Register */ 3752 status = lpfc_sli4_post_status_check(phba); 3753 3754 if (status) { 3755 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3756 lpfc_sli_brdrestart(phba); 3757 status = lpfc_sli4_post_status_check(phba); 3758 } 3759 3760 /* Check to see if any errors occurred during init */ 3761 if (status) { 3762 phba->link_state = LPFC_HBA_ERROR; 3763 retval = 1; 3764 } else 3765 phba->sli4_hba.intr_enable = 0; 3766 3767 return retval; 3768 } 3769 3770 /** 3771 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3772 * @phba: Pointer to HBA context object. 3773 * @mask: Bit mask to be checked. 3774 * 3775 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3776 * from the API jump table function pointer from the lpfc_hba struct. 3777 **/ 3778 int 3779 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3780 { 3781 return phba->lpfc_sli_brdready(phba, mask); 3782 } 3783 3784 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3785 3786 /** 3787 * lpfc_reset_barrier - Make HBA ready for HBA reset 3788 * @phba: Pointer to HBA context object. 3789 * 3790 * This function is called before resetting an HBA. This function is called 3791 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3792 **/ 3793 void lpfc_reset_barrier(struct lpfc_hba *phba) 3794 { 3795 uint32_t __iomem *resp_buf; 3796 uint32_t __iomem *mbox_buf; 3797 volatile uint32_t mbox; 3798 uint32_t hc_copy, ha_copy, resp_data; 3799 int i; 3800 uint8_t hdrtype; 3801 3802 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 3803 if (hdrtype != 0x80 || 3804 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 3805 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 3806 return; 3807 3808 /* 3809 * Tell the other part of the chip to suspend temporarily all 3810 * its DMA activity. 3811 */ 3812 resp_buf = phba->MBslimaddr; 3813 3814 /* Disable the error attention */ 3815 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 3816 return; 3817 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 3818 readl(phba->HCregaddr); /* flush */ 3819 phba->link_flag |= LS_IGNORE_ERATT; 3820 3821 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3822 return; 3823 if (ha_copy & HA_ERATT) { 3824 /* Clear Chip error bit */ 3825 writel(HA_ERATT, phba->HAregaddr); 3826 phba->pport->stopped = 1; 3827 } 3828 3829 mbox = 0; 3830 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 3831 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 3832 3833 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 3834 mbox_buf = phba->MBslimaddr; 3835 writel(mbox, mbox_buf); 3836 3837 for (i = 0; i < 50; i++) { 3838 if (lpfc_readl((resp_buf + 1), &resp_data)) 3839 return; 3840 if (resp_data != ~(BARRIER_TEST_PATTERN)) 3841 mdelay(1); 3842 else 3843 break; 3844 } 3845 resp_data = 0; 3846 if (lpfc_readl((resp_buf + 1), &resp_data)) 3847 return; 3848 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 3849 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 3850 phba->pport->stopped) 3851 goto restore_hc; 3852 else 3853 goto clear_errat; 3854 } 3855 3856 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 3857 resp_data = 0; 3858 for (i = 0; i < 500; i++) { 3859 if (lpfc_readl(resp_buf, &resp_data)) 3860 return; 3861 if (resp_data != mbox) 3862 mdelay(1); 3863 else 3864 break; 3865 } 3866 3867 clear_errat: 3868 3869 while (++i < 500) { 3870 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3871 return; 3872 if (!(ha_copy & HA_ERATT)) 3873 mdelay(1); 3874 else 3875 break; 3876 } 3877 3878 if (readl(phba->HAregaddr) & HA_ERATT) { 3879 writel(HA_ERATT, phba->HAregaddr); 3880 phba->pport->stopped = 1; 3881 } 3882 3883 restore_hc: 3884 phba->link_flag &= ~LS_IGNORE_ERATT; 3885 writel(hc_copy, phba->HCregaddr); 3886 readl(phba->HCregaddr); /* flush */ 3887 } 3888 3889 /** 3890 * lpfc_sli_brdkill - Issue a kill_board mailbox command 3891 * @phba: Pointer to HBA context object. 3892 * 3893 * This function issues a kill_board mailbox command and waits for 3894 * the error attention interrupt. This function is called for stopping 3895 * the firmware processing. The caller is not required to hold any 3896 * locks. This function calls lpfc_hba_down_post function to free 3897 * any pending commands after the kill. The function will return 1 when it 3898 * fails to kill the board else will return 0. 3899 **/ 3900 int 3901 lpfc_sli_brdkill(struct lpfc_hba *phba) 3902 { 3903 struct lpfc_sli *psli; 3904 LPFC_MBOXQ_t *pmb; 3905 uint32_t status; 3906 uint32_t ha_copy; 3907 int retval; 3908 int i = 0; 3909 3910 psli = &phba->sli; 3911 3912 /* Kill HBA */ 3913 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3914 "0329 Kill HBA Data: x%x x%x\n", 3915 phba->pport->port_state, psli->sli_flag); 3916 3917 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 3918 if (!pmb) 3919 return 1; 3920 3921 /* Disable the error attention */ 3922 spin_lock_irq(&phba->hbalock); 3923 if (lpfc_readl(phba->HCregaddr, &status)) { 3924 spin_unlock_irq(&phba->hbalock); 3925 mempool_free(pmb, phba->mbox_mem_pool); 3926 return 1; 3927 } 3928 status &= ~HC_ERINT_ENA; 3929 writel(status, phba->HCregaddr); 3930 readl(phba->HCregaddr); /* flush */ 3931 phba->link_flag |= LS_IGNORE_ERATT; 3932 spin_unlock_irq(&phba->hbalock); 3933 3934 lpfc_kill_board(phba, pmb); 3935 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 3936 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3937 3938 if (retval != MBX_SUCCESS) { 3939 if (retval != MBX_BUSY) 3940 mempool_free(pmb, phba->mbox_mem_pool); 3941 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3942 "2752 KILL_BOARD command failed retval %d\n", 3943 retval); 3944 spin_lock_irq(&phba->hbalock); 3945 phba->link_flag &= ~LS_IGNORE_ERATT; 3946 spin_unlock_irq(&phba->hbalock); 3947 return 1; 3948 } 3949 3950 spin_lock_irq(&phba->hbalock); 3951 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 3952 spin_unlock_irq(&phba->hbalock); 3953 3954 mempool_free(pmb, phba->mbox_mem_pool); 3955 3956 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 3957 * attention every 100ms for 3 seconds. If we don't get ERATT after 3958 * 3 seconds we still set HBA_ERROR state because the status of the 3959 * board is now undefined. 3960 */ 3961 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3962 return 1; 3963 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 3964 mdelay(100); 3965 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 3966 return 1; 3967 } 3968 3969 del_timer_sync(&psli->mbox_tmo); 3970 if (ha_copy & HA_ERATT) { 3971 writel(HA_ERATT, phba->HAregaddr); 3972 phba->pport->stopped = 1; 3973 } 3974 spin_lock_irq(&phba->hbalock); 3975 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 3976 psli->mbox_active = NULL; 3977 phba->link_flag &= ~LS_IGNORE_ERATT; 3978 spin_unlock_irq(&phba->hbalock); 3979 3980 lpfc_hba_down_post(phba); 3981 phba->link_state = LPFC_HBA_ERROR; 3982 3983 return ha_copy & HA_ERATT ? 0 : 1; 3984 } 3985 3986 /** 3987 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 3988 * @phba: Pointer to HBA context object. 3989 * 3990 * This function resets the HBA by writing HC_INITFF to the control 3991 * register. After the HBA resets, this function resets all the iocb ring 3992 * indices. This function disables PCI layer parity checking during 3993 * the reset. 3994 * This function returns 0 always. 3995 * The caller is not required to hold any locks. 3996 **/ 3997 int 3998 lpfc_sli_brdreset(struct lpfc_hba *phba) 3999 { 4000 struct lpfc_sli *psli; 4001 struct lpfc_sli_ring *pring; 4002 uint16_t cfg_value; 4003 int i; 4004 4005 psli = &phba->sli; 4006 4007 /* Reset HBA */ 4008 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4009 "0325 Reset HBA Data: x%x x%x\n", 4010 phba->pport->port_state, psli->sli_flag); 4011 4012 /* perform board reset */ 4013 phba->fc_eventTag = 0; 4014 phba->link_events = 0; 4015 phba->pport->fc_myDID = 0; 4016 phba->pport->fc_prevDID = 0; 4017 4018 /* Turn off parity checking and serr during the physical reset */ 4019 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4020 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4021 (cfg_value & 4022 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4023 4024 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4025 4026 /* Now toggle INITFF bit in the Host Control Register */ 4027 writel(HC_INITFF, phba->HCregaddr); 4028 mdelay(1); 4029 readl(phba->HCregaddr); /* flush */ 4030 writel(0, phba->HCregaddr); 4031 readl(phba->HCregaddr); /* flush */ 4032 4033 /* Restore PCI cmd register */ 4034 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4035 4036 /* Initialize relevant SLI info */ 4037 for (i = 0; i < psli->num_rings; i++) { 4038 pring = &psli->ring[i]; 4039 pring->flag = 0; 4040 pring->sli.sli3.rspidx = 0; 4041 pring->sli.sli3.next_cmdidx = 0; 4042 pring->sli.sli3.local_getidx = 0; 4043 pring->sli.sli3.cmdidx = 0; 4044 pring->missbufcnt = 0; 4045 } 4046 4047 phba->link_state = LPFC_WARM_START; 4048 return 0; 4049 } 4050 4051 /** 4052 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4053 * @phba: Pointer to HBA context object. 4054 * 4055 * This function resets a SLI4 HBA. This function disables PCI layer parity 4056 * checking during resets the device. The caller is not required to hold 4057 * any locks. 4058 * 4059 * This function returns 0 always. 4060 **/ 4061 int 4062 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4063 { 4064 struct lpfc_sli *psli = &phba->sli; 4065 uint16_t cfg_value; 4066 int rc = 0; 4067 4068 /* Reset HBA */ 4069 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4070 "0295 Reset HBA Data: x%x x%x x%x\n", 4071 phba->pport->port_state, psli->sli_flag, 4072 phba->hba_flag); 4073 4074 /* perform board reset */ 4075 phba->fc_eventTag = 0; 4076 phba->link_events = 0; 4077 phba->pport->fc_myDID = 0; 4078 phba->pport->fc_prevDID = 0; 4079 4080 spin_lock_irq(&phba->hbalock); 4081 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4082 phba->fcf.fcf_flag = 0; 4083 spin_unlock_irq(&phba->hbalock); 4084 4085 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4086 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4087 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4088 return rc; 4089 } 4090 4091 /* Now physically reset the device */ 4092 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4093 "0389 Performing PCI function reset!\n"); 4094 4095 /* Turn off parity checking and serr during the physical reset */ 4096 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4097 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4098 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4099 4100 /* Perform FCoE PCI function reset before freeing queue memory */ 4101 rc = lpfc_pci_function_reset(phba); 4102 lpfc_sli4_queue_destroy(phba); 4103 4104 /* Restore PCI cmd register */ 4105 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4106 4107 return rc; 4108 } 4109 4110 /** 4111 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4112 * @phba: Pointer to HBA context object. 4113 * 4114 * This function is called in the SLI initialization code path to 4115 * restart the HBA. The caller is not required to hold any lock. 4116 * This function writes MBX_RESTART mailbox command to the SLIM and 4117 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4118 * function to free any pending commands. The function enables 4119 * POST only during the first initialization. The function returns zero. 4120 * The function does not guarantee completion of MBX_RESTART mailbox 4121 * command before the return of this function. 4122 **/ 4123 static int 4124 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4125 { 4126 MAILBOX_t *mb; 4127 struct lpfc_sli *psli; 4128 volatile uint32_t word0; 4129 void __iomem *to_slim; 4130 uint32_t hba_aer_enabled; 4131 4132 spin_lock_irq(&phba->hbalock); 4133 4134 /* Take PCIe device Advanced Error Reporting (AER) state */ 4135 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4136 4137 psli = &phba->sli; 4138 4139 /* Restart HBA */ 4140 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4141 "0337 Restart HBA Data: x%x x%x\n", 4142 phba->pport->port_state, psli->sli_flag); 4143 4144 word0 = 0; 4145 mb = (MAILBOX_t *) &word0; 4146 mb->mbxCommand = MBX_RESTART; 4147 mb->mbxHc = 1; 4148 4149 lpfc_reset_barrier(phba); 4150 4151 to_slim = phba->MBslimaddr; 4152 writel(*(uint32_t *) mb, to_slim); 4153 readl(to_slim); /* flush */ 4154 4155 /* Only skip post after fc_ffinit is completed */ 4156 if (phba->pport->port_state) 4157 word0 = 1; /* This is really setting up word1 */ 4158 else 4159 word0 = 0; /* This is really setting up word1 */ 4160 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4161 writel(*(uint32_t *) mb, to_slim); 4162 readl(to_slim); /* flush */ 4163 4164 lpfc_sli_brdreset(phba); 4165 phba->pport->stopped = 0; 4166 phba->link_state = LPFC_INIT_START; 4167 phba->hba_flag = 0; 4168 spin_unlock_irq(&phba->hbalock); 4169 4170 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4171 psli->stats_start = get_seconds(); 4172 4173 /* Give the INITFF and Post time to settle. */ 4174 mdelay(100); 4175 4176 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4177 if (hba_aer_enabled) 4178 pci_disable_pcie_error_reporting(phba->pcidev); 4179 4180 lpfc_hba_down_post(phba); 4181 4182 return 0; 4183 } 4184 4185 /** 4186 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4187 * @phba: Pointer to HBA context object. 4188 * 4189 * This function is called in the SLI initialization code path to restart 4190 * a SLI4 HBA. The caller is not required to hold any lock. 4191 * At the end of the function, it calls lpfc_hba_down_post function to 4192 * free any pending commands. 4193 **/ 4194 static int 4195 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4196 { 4197 struct lpfc_sli *psli = &phba->sli; 4198 uint32_t hba_aer_enabled; 4199 int rc; 4200 4201 /* Restart HBA */ 4202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4203 "0296 Restart HBA Data: x%x x%x\n", 4204 phba->pport->port_state, psli->sli_flag); 4205 4206 /* Take PCIe device Advanced Error Reporting (AER) state */ 4207 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4208 4209 rc = lpfc_sli4_brdreset(phba); 4210 4211 spin_lock_irq(&phba->hbalock); 4212 phba->pport->stopped = 0; 4213 phba->link_state = LPFC_INIT_START; 4214 phba->hba_flag = 0; 4215 spin_unlock_irq(&phba->hbalock); 4216 4217 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4218 psli->stats_start = get_seconds(); 4219 4220 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4221 if (hba_aer_enabled) 4222 pci_disable_pcie_error_reporting(phba->pcidev); 4223 4224 lpfc_hba_down_post(phba); 4225 4226 return rc; 4227 } 4228 4229 /** 4230 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4231 * @phba: Pointer to HBA context object. 4232 * 4233 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4234 * API jump table function pointer from the lpfc_hba struct. 4235 **/ 4236 int 4237 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4238 { 4239 return phba->lpfc_sli_brdrestart(phba); 4240 } 4241 4242 /** 4243 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4244 * @phba: Pointer to HBA context object. 4245 * 4246 * This function is called after a HBA restart to wait for successful 4247 * restart of the HBA. Successful restart of the HBA is indicated by 4248 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4249 * iteration, the function will restart the HBA again. The function returns 4250 * zero if HBA successfully restarted else returns negative error code. 4251 **/ 4252 static int 4253 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4254 { 4255 uint32_t status, i = 0; 4256 4257 /* Read the HBA Host Status Register */ 4258 if (lpfc_readl(phba->HSregaddr, &status)) 4259 return -EIO; 4260 4261 /* Check status register to see what current state is */ 4262 i = 0; 4263 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4264 4265 /* Check every 10ms for 10 retries, then every 100ms for 90 4266 * retries, then every 1 sec for 50 retires for a total of 4267 * ~60 seconds before reset the board again and check every 4268 * 1 sec for 50 retries. The up to 60 seconds before the 4269 * board ready is required by the Falcon FIPS zeroization 4270 * complete, and any reset the board in between shall cause 4271 * restart of zeroization, further delay the board ready. 4272 */ 4273 if (i++ >= 200) { 4274 /* Adapter failed to init, timeout, status reg 4275 <status> */ 4276 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4277 "0436 Adapter failed to init, " 4278 "timeout, status reg x%x, " 4279 "FW Data: A8 x%x AC x%x\n", status, 4280 readl(phba->MBslimaddr + 0xa8), 4281 readl(phba->MBslimaddr + 0xac)); 4282 phba->link_state = LPFC_HBA_ERROR; 4283 return -ETIMEDOUT; 4284 } 4285 4286 /* Check to see if any errors occurred during init */ 4287 if (status & HS_FFERM) { 4288 /* ERROR: During chipset initialization */ 4289 /* Adapter failed to init, chipset, status reg 4290 <status> */ 4291 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4292 "0437 Adapter failed to init, " 4293 "chipset, status reg x%x, " 4294 "FW Data: A8 x%x AC x%x\n", status, 4295 readl(phba->MBslimaddr + 0xa8), 4296 readl(phba->MBslimaddr + 0xac)); 4297 phba->link_state = LPFC_HBA_ERROR; 4298 return -EIO; 4299 } 4300 4301 if (i <= 10) 4302 msleep(10); 4303 else if (i <= 100) 4304 msleep(100); 4305 else 4306 msleep(1000); 4307 4308 if (i == 150) { 4309 /* Do post */ 4310 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4311 lpfc_sli_brdrestart(phba); 4312 } 4313 /* Read the HBA Host Status Register */ 4314 if (lpfc_readl(phba->HSregaddr, &status)) 4315 return -EIO; 4316 } 4317 4318 /* Check to see if any errors occurred during init */ 4319 if (status & HS_FFERM) { 4320 /* ERROR: During chipset initialization */ 4321 /* Adapter failed to init, chipset, status reg <status> */ 4322 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4323 "0438 Adapter failed to init, chipset, " 4324 "status reg x%x, " 4325 "FW Data: A8 x%x AC x%x\n", status, 4326 readl(phba->MBslimaddr + 0xa8), 4327 readl(phba->MBslimaddr + 0xac)); 4328 phba->link_state = LPFC_HBA_ERROR; 4329 return -EIO; 4330 } 4331 4332 /* Clear all interrupt enable conditions */ 4333 writel(0, phba->HCregaddr); 4334 readl(phba->HCregaddr); /* flush */ 4335 4336 /* setup host attn register */ 4337 writel(0xffffffff, phba->HAregaddr); 4338 readl(phba->HAregaddr); /* flush */ 4339 return 0; 4340 } 4341 4342 /** 4343 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4344 * 4345 * This function calculates and returns the number of HBQs required to be 4346 * configured. 4347 **/ 4348 int 4349 lpfc_sli_hbq_count(void) 4350 { 4351 return ARRAY_SIZE(lpfc_hbq_defs); 4352 } 4353 4354 /** 4355 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4356 * 4357 * This function adds the number of hbq entries in every HBQ to get 4358 * the total number of hbq entries required for the HBA and returns 4359 * the total count. 4360 **/ 4361 static int 4362 lpfc_sli_hbq_entry_count(void) 4363 { 4364 int hbq_count = lpfc_sli_hbq_count(); 4365 int count = 0; 4366 int i; 4367 4368 for (i = 0; i < hbq_count; ++i) 4369 count += lpfc_hbq_defs[i]->entry_count; 4370 return count; 4371 } 4372 4373 /** 4374 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4375 * 4376 * This function calculates amount of memory required for all hbq entries 4377 * to be configured and returns the total memory required. 4378 **/ 4379 int 4380 lpfc_sli_hbq_size(void) 4381 { 4382 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4383 } 4384 4385 /** 4386 * lpfc_sli_hbq_setup - configure and initialize HBQs 4387 * @phba: Pointer to HBA context object. 4388 * 4389 * This function is called during the SLI initialization to configure 4390 * all the HBQs and post buffers to the HBQ. The caller is not 4391 * required to hold any locks. This function will return zero if successful 4392 * else it will return negative error code. 4393 **/ 4394 static int 4395 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4396 { 4397 int hbq_count = lpfc_sli_hbq_count(); 4398 LPFC_MBOXQ_t *pmb; 4399 MAILBOX_t *pmbox; 4400 uint32_t hbqno; 4401 uint32_t hbq_entry_index; 4402 4403 /* Get a Mailbox buffer to setup mailbox 4404 * commands for HBA initialization 4405 */ 4406 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4407 4408 if (!pmb) 4409 return -ENOMEM; 4410 4411 pmbox = &pmb->u.mb; 4412 4413 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4414 phba->link_state = LPFC_INIT_MBX_CMDS; 4415 phba->hbq_in_use = 1; 4416 4417 hbq_entry_index = 0; 4418 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4419 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4420 phba->hbqs[hbqno].hbqPutIdx = 0; 4421 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4422 phba->hbqs[hbqno].entry_count = 4423 lpfc_hbq_defs[hbqno]->entry_count; 4424 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4425 hbq_entry_index, pmb); 4426 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4427 4428 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4429 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4430 mbxStatus <status>, ring <num> */ 4431 4432 lpfc_printf_log(phba, KERN_ERR, 4433 LOG_SLI | LOG_VPORT, 4434 "1805 Adapter failed to init. " 4435 "Data: x%x x%x x%x\n", 4436 pmbox->mbxCommand, 4437 pmbox->mbxStatus, hbqno); 4438 4439 phba->link_state = LPFC_HBA_ERROR; 4440 mempool_free(pmb, phba->mbox_mem_pool); 4441 return -ENXIO; 4442 } 4443 } 4444 phba->hbq_count = hbq_count; 4445 4446 mempool_free(pmb, phba->mbox_mem_pool); 4447 4448 /* Initially populate or replenish the HBQs */ 4449 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4450 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4451 return 0; 4452 } 4453 4454 /** 4455 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4456 * @phba: Pointer to HBA context object. 4457 * 4458 * This function is called during the SLI initialization to configure 4459 * all the HBQs and post buffers to the HBQ. The caller is not 4460 * required to hold any locks. This function will return zero if successful 4461 * else it will return negative error code. 4462 **/ 4463 static int 4464 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4465 { 4466 phba->hbq_in_use = 1; 4467 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count; 4468 phba->hbq_count = 1; 4469 /* Initially populate or replenish the HBQs */ 4470 lpfc_sli_hbqbuf_init_hbqs(phba, 0); 4471 return 0; 4472 } 4473 4474 /** 4475 * lpfc_sli_config_port - Issue config port mailbox command 4476 * @phba: Pointer to HBA context object. 4477 * @sli_mode: sli mode - 2/3 4478 * 4479 * This function is called by the sli intialization code path 4480 * to issue config_port mailbox command. This function restarts the 4481 * HBA firmware and issues a config_port mailbox command to configure 4482 * the SLI interface in the sli mode specified by sli_mode 4483 * variable. The caller is not required to hold any locks. 4484 * The function returns 0 if successful, else returns negative error 4485 * code. 4486 **/ 4487 int 4488 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4489 { 4490 LPFC_MBOXQ_t *pmb; 4491 uint32_t resetcount = 0, rc = 0, done = 0; 4492 4493 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4494 if (!pmb) { 4495 phba->link_state = LPFC_HBA_ERROR; 4496 return -ENOMEM; 4497 } 4498 4499 phba->sli_rev = sli_mode; 4500 while (resetcount < 2 && !done) { 4501 spin_lock_irq(&phba->hbalock); 4502 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4503 spin_unlock_irq(&phba->hbalock); 4504 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4505 lpfc_sli_brdrestart(phba); 4506 rc = lpfc_sli_chipset_init(phba); 4507 if (rc) 4508 break; 4509 4510 spin_lock_irq(&phba->hbalock); 4511 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4512 spin_unlock_irq(&phba->hbalock); 4513 resetcount++; 4514 4515 /* Call pre CONFIG_PORT mailbox command initialization. A 4516 * value of 0 means the call was successful. Any other 4517 * nonzero value is a failure, but if ERESTART is returned, 4518 * the driver may reset the HBA and try again. 4519 */ 4520 rc = lpfc_config_port_prep(phba); 4521 if (rc == -ERESTART) { 4522 phba->link_state = LPFC_LINK_UNKNOWN; 4523 continue; 4524 } else if (rc) 4525 break; 4526 4527 phba->link_state = LPFC_INIT_MBX_CMDS; 4528 lpfc_config_port(phba, pmb); 4529 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4530 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4531 LPFC_SLI3_HBQ_ENABLED | 4532 LPFC_SLI3_CRP_ENABLED | 4533 LPFC_SLI3_BG_ENABLED | 4534 LPFC_SLI3_DSS_ENABLED); 4535 if (rc != MBX_SUCCESS) { 4536 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4537 "0442 Adapter failed to init, mbxCmd x%x " 4538 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4539 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4540 spin_lock_irq(&phba->hbalock); 4541 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4542 spin_unlock_irq(&phba->hbalock); 4543 rc = -ENXIO; 4544 } else { 4545 /* Allow asynchronous mailbox command to go through */ 4546 spin_lock_irq(&phba->hbalock); 4547 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4548 spin_unlock_irq(&phba->hbalock); 4549 done = 1; 4550 4551 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4552 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4553 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4554 "3110 Port did not grant ASABT\n"); 4555 } 4556 } 4557 if (!done) { 4558 rc = -EINVAL; 4559 goto do_prep_failed; 4560 } 4561 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4562 if (!pmb->u.mb.un.varCfgPort.cMA) { 4563 rc = -ENXIO; 4564 goto do_prep_failed; 4565 } 4566 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4567 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4568 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4569 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4570 phba->max_vpi : phba->max_vports; 4571 4572 } else 4573 phba->max_vpi = 0; 4574 phba->fips_level = 0; 4575 phba->fips_spec_rev = 0; 4576 if (pmb->u.mb.un.varCfgPort.gdss) { 4577 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4578 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4579 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4580 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4581 "2850 Security Crypto Active. FIPS x%d " 4582 "(Spec Rev: x%d)", 4583 phba->fips_level, phba->fips_spec_rev); 4584 } 4585 if (pmb->u.mb.un.varCfgPort.sec_err) { 4586 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4587 "2856 Config Port Security Crypto " 4588 "Error: x%x ", 4589 pmb->u.mb.un.varCfgPort.sec_err); 4590 } 4591 if (pmb->u.mb.un.varCfgPort.gerbm) 4592 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4593 if (pmb->u.mb.un.varCfgPort.gcrp) 4594 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4595 4596 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4597 phba->port_gp = phba->mbox->us.s3_pgp.port; 4598 4599 if (phba->cfg_enable_bg) { 4600 if (pmb->u.mb.un.varCfgPort.gbg) 4601 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4602 else 4603 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4604 "0443 Adapter did not grant " 4605 "BlockGuard\n"); 4606 } 4607 } else { 4608 phba->hbq_get = NULL; 4609 phba->port_gp = phba->mbox->us.s2.port; 4610 phba->max_vpi = 0; 4611 } 4612 do_prep_failed: 4613 mempool_free(pmb, phba->mbox_mem_pool); 4614 return rc; 4615 } 4616 4617 4618 /** 4619 * lpfc_sli_hba_setup - SLI intialization function 4620 * @phba: Pointer to HBA context object. 4621 * 4622 * This function is the main SLI intialization function. This function 4623 * is called by the HBA intialization code, HBA reset code and HBA 4624 * error attention handler code. Caller is not required to hold any 4625 * locks. This function issues config_port mailbox command to configure 4626 * the SLI, setup iocb rings and HBQ rings. In the end the function 4627 * calls the config_port_post function to issue init_link mailbox 4628 * command and to start the discovery. The function will return zero 4629 * if successful, else it will return negative error code. 4630 **/ 4631 int 4632 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4633 { 4634 uint32_t rc; 4635 int mode = 3, i; 4636 int longs; 4637 4638 switch (lpfc_sli_mode) { 4639 case 2: 4640 if (phba->cfg_enable_npiv) { 4641 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4642 "1824 NPIV enabled: Override lpfc_sli_mode " 4643 "parameter (%d) to auto (0).\n", 4644 lpfc_sli_mode); 4645 break; 4646 } 4647 mode = 2; 4648 break; 4649 case 0: 4650 case 3: 4651 break; 4652 default: 4653 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4654 "1819 Unrecognized lpfc_sli_mode " 4655 "parameter: %d.\n", lpfc_sli_mode); 4656 4657 break; 4658 } 4659 4660 rc = lpfc_sli_config_port(phba, mode); 4661 4662 if (rc && lpfc_sli_mode == 3) 4663 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4664 "1820 Unable to select SLI-3. " 4665 "Not supported by adapter.\n"); 4666 if (rc && mode != 2) 4667 rc = lpfc_sli_config_port(phba, 2); 4668 if (rc) 4669 goto lpfc_sli_hba_setup_error; 4670 4671 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4672 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4673 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4674 if (!rc) { 4675 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4676 "2709 This device supports " 4677 "Advanced Error Reporting (AER)\n"); 4678 spin_lock_irq(&phba->hbalock); 4679 phba->hba_flag |= HBA_AER_ENABLED; 4680 spin_unlock_irq(&phba->hbalock); 4681 } else { 4682 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4683 "2708 This device does not support " 4684 "Advanced Error Reporting (AER): %d\n", 4685 rc); 4686 phba->cfg_aer_support = 0; 4687 } 4688 } 4689 4690 if (phba->sli_rev == 3) { 4691 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4692 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4693 } else { 4694 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4695 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4696 phba->sli3_options = 0; 4697 } 4698 4699 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4700 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4701 phba->sli_rev, phba->max_vpi); 4702 rc = lpfc_sli_ring_map(phba); 4703 4704 if (rc) 4705 goto lpfc_sli_hba_setup_error; 4706 4707 /* Initialize VPIs. */ 4708 if (phba->sli_rev == LPFC_SLI_REV3) { 4709 /* 4710 * The VPI bitmask and physical ID array are allocated 4711 * and initialized once only - at driver load. A port 4712 * reset doesn't need to reinitialize this memory. 4713 */ 4714 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4715 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4716 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4717 GFP_KERNEL); 4718 if (!phba->vpi_bmask) { 4719 rc = -ENOMEM; 4720 goto lpfc_sli_hba_setup_error; 4721 } 4722 4723 phba->vpi_ids = kzalloc( 4724 (phba->max_vpi+1) * sizeof(uint16_t), 4725 GFP_KERNEL); 4726 if (!phba->vpi_ids) { 4727 kfree(phba->vpi_bmask); 4728 rc = -ENOMEM; 4729 goto lpfc_sli_hba_setup_error; 4730 } 4731 for (i = 0; i < phba->max_vpi; i++) 4732 phba->vpi_ids[i] = i; 4733 } 4734 } 4735 4736 /* Init HBQs */ 4737 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4738 rc = lpfc_sli_hbq_setup(phba); 4739 if (rc) 4740 goto lpfc_sli_hba_setup_error; 4741 } 4742 spin_lock_irq(&phba->hbalock); 4743 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4744 spin_unlock_irq(&phba->hbalock); 4745 4746 rc = lpfc_config_port_post(phba); 4747 if (rc) 4748 goto lpfc_sli_hba_setup_error; 4749 4750 return rc; 4751 4752 lpfc_sli_hba_setup_error: 4753 phba->link_state = LPFC_HBA_ERROR; 4754 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4755 "0445 Firmware initialization failed\n"); 4756 return rc; 4757 } 4758 4759 /** 4760 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4761 * @phba: Pointer to HBA context object. 4762 * @mboxq: mailbox pointer. 4763 * This function issue a dump mailbox command to read config region 4764 * 23 and parse the records in the region and populate driver 4765 * data structure. 4766 **/ 4767 static int 4768 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4769 { 4770 LPFC_MBOXQ_t *mboxq; 4771 struct lpfc_dmabuf *mp; 4772 struct lpfc_mqe *mqe; 4773 uint32_t data_length; 4774 int rc; 4775 4776 /* Program the default value of vlan_id and fc_map */ 4777 phba->valid_vlan = 0; 4778 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4779 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4780 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4781 4782 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4783 if (!mboxq) 4784 return -ENOMEM; 4785 4786 mqe = &mboxq->u.mqe; 4787 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4788 rc = -ENOMEM; 4789 goto out_free_mboxq; 4790 } 4791 4792 mp = (struct lpfc_dmabuf *) mboxq->context1; 4793 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4794 4795 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4796 "(%d):2571 Mailbox cmd x%x Status x%x " 4797 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4798 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4799 "CQ: x%x x%x x%x x%x\n", 4800 mboxq->vport ? mboxq->vport->vpi : 0, 4801 bf_get(lpfc_mqe_command, mqe), 4802 bf_get(lpfc_mqe_status, mqe), 4803 mqe->un.mb_words[0], mqe->un.mb_words[1], 4804 mqe->un.mb_words[2], mqe->un.mb_words[3], 4805 mqe->un.mb_words[4], mqe->un.mb_words[5], 4806 mqe->un.mb_words[6], mqe->un.mb_words[7], 4807 mqe->un.mb_words[8], mqe->un.mb_words[9], 4808 mqe->un.mb_words[10], mqe->un.mb_words[11], 4809 mqe->un.mb_words[12], mqe->un.mb_words[13], 4810 mqe->un.mb_words[14], mqe->un.mb_words[15], 4811 mqe->un.mb_words[16], mqe->un.mb_words[50], 4812 mboxq->mcqe.word0, 4813 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 4814 mboxq->mcqe.trailer); 4815 4816 if (rc) { 4817 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4818 kfree(mp); 4819 rc = -EIO; 4820 goto out_free_mboxq; 4821 } 4822 data_length = mqe->un.mb_words[5]; 4823 if (data_length > DMP_RGN23_SIZE) { 4824 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4825 kfree(mp); 4826 rc = -EIO; 4827 goto out_free_mboxq; 4828 } 4829 4830 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 4831 lpfc_mbuf_free(phba, mp->virt, mp->phys); 4832 kfree(mp); 4833 rc = 0; 4834 4835 out_free_mboxq: 4836 mempool_free(mboxq, phba->mbox_mem_pool); 4837 return rc; 4838 } 4839 4840 /** 4841 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 4842 * @phba: pointer to lpfc hba data structure. 4843 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 4844 * @vpd: pointer to the memory to hold resulting port vpd data. 4845 * @vpd_size: On input, the number of bytes allocated to @vpd. 4846 * On output, the number of data bytes in @vpd. 4847 * 4848 * This routine executes a READ_REV SLI4 mailbox command. In 4849 * addition, this routine gets the port vpd data. 4850 * 4851 * Return codes 4852 * 0 - successful 4853 * -ENOMEM - could not allocated memory. 4854 **/ 4855 static int 4856 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 4857 uint8_t *vpd, uint32_t *vpd_size) 4858 { 4859 int rc = 0; 4860 uint32_t dma_size; 4861 struct lpfc_dmabuf *dmabuf; 4862 struct lpfc_mqe *mqe; 4863 4864 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 4865 if (!dmabuf) 4866 return -ENOMEM; 4867 4868 /* 4869 * Get a DMA buffer for the vpd data resulting from the READ_REV 4870 * mailbox command. 4871 */ 4872 dma_size = *vpd_size; 4873 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 4874 &dmabuf->phys, GFP_KERNEL); 4875 if (!dmabuf->virt) { 4876 kfree(dmabuf); 4877 return -ENOMEM; 4878 } 4879 4880 /* 4881 * The SLI4 implementation of READ_REV conflicts at word1, 4882 * bits 31:16 and SLI4 adds vpd functionality not present 4883 * in SLI3. This code corrects the conflicts. 4884 */ 4885 lpfc_read_rev(phba, mboxq); 4886 mqe = &mboxq->u.mqe; 4887 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 4888 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 4889 mqe->un.read_rev.word1 &= 0x0000FFFF; 4890 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 4891 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 4892 4893 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4894 if (rc) { 4895 dma_free_coherent(&phba->pcidev->dev, dma_size, 4896 dmabuf->virt, dmabuf->phys); 4897 kfree(dmabuf); 4898 return -EIO; 4899 } 4900 4901 /* 4902 * The available vpd length cannot be bigger than the 4903 * DMA buffer passed to the port. Catch the less than 4904 * case and update the caller's size. 4905 */ 4906 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 4907 *vpd_size = mqe->un.read_rev.avail_vpd_len; 4908 4909 memcpy(vpd, dmabuf->virt, *vpd_size); 4910 4911 dma_free_coherent(&phba->pcidev->dev, dma_size, 4912 dmabuf->virt, dmabuf->phys); 4913 kfree(dmabuf); 4914 return 0; 4915 } 4916 4917 /** 4918 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 4919 * @phba: pointer to lpfc hba data structure. 4920 * 4921 * This routine retrieves SLI4 device physical port name this PCI function 4922 * is attached to. 4923 * 4924 * Return codes 4925 * 0 - successful 4926 * otherwise - failed to retrieve physical port name 4927 **/ 4928 static int 4929 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 4930 { 4931 LPFC_MBOXQ_t *mboxq; 4932 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 4933 struct lpfc_controller_attribute *cntl_attr; 4934 struct lpfc_mbx_get_port_name *get_port_name; 4935 void *virtaddr = NULL; 4936 uint32_t alloclen, reqlen; 4937 uint32_t shdr_status, shdr_add_status; 4938 union lpfc_sli4_cfg_shdr *shdr; 4939 char cport_name = 0; 4940 int rc; 4941 4942 /* We assume nothing at this point */ 4943 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4944 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 4945 4946 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4947 if (!mboxq) 4948 return -ENOMEM; 4949 /* obtain link type and link number via READ_CONFIG */ 4950 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 4951 lpfc_sli4_read_config(phba); 4952 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 4953 goto retrieve_ppname; 4954 4955 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 4956 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 4957 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4958 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 4959 LPFC_SLI4_MBX_NEMBED); 4960 if (alloclen < reqlen) { 4961 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4962 "3084 Allocated DMA memory size (%d) is " 4963 "less than the requested DMA memory size " 4964 "(%d)\n", alloclen, reqlen); 4965 rc = -ENOMEM; 4966 goto out_free_mboxq; 4967 } 4968 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4969 virtaddr = mboxq->sge_array->addr[0]; 4970 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 4971 shdr = &mbx_cntl_attr->cfg_shdr; 4972 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 4973 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 4974 if (shdr_status || shdr_add_status || rc) { 4975 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4976 "3085 Mailbox x%x (x%x/x%x) failed, " 4977 "rc:x%x, status:x%x, add_status:x%x\n", 4978 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 4979 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 4980 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 4981 rc, shdr_status, shdr_add_status); 4982 rc = -ENXIO; 4983 goto out_free_mboxq; 4984 } 4985 cntl_attr = &mbx_cntl_attr->cntl_attr; 4986 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 4987 phba->sli4_hba.lnk_info.lnk_tp = 4988 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 4989 phba->sli4_hba.lnk_info.lnk_no = 4990 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 4991 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4992 "3086 lnk_type:%d, lnk_numb:%d\n", 4993 phba->sli4_hba.lnk_info.lnk_tp, 4994 phba->sli4_hba.lnk_info.lnk_no); 4995 4996 retrieve_ppname: 4997 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 4998 LPFC_MBOX_OPCODE_GET_PORT_NAME, 4999 sizeof(struct lpfc_mbx_get_port_name) - 5000 sizeof(struct lpfc_sli4_cfg_mhdr), 5001 LPFC_SLI4_MBX_EMBED); 5002 get_port_name = &mboxq->u.mqe.un.get_port_name; 5003 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5004 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5005 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5006 phba->sli4_hba.lnk_info.lnk_tp); 5007 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5008 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5009 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5010 if (shdr_status || shdr_add_status || rc) { 5011 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5012 "3087 Mailbox x%x (x%x/x%x) failed: " 5013 "rc:x%x, status:x%x, add_status:x%x\n", 5014 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5015 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5016 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5017 rc, shdr_status, shdr_add_status); 5018 rc = -ENXIO; 5019 goto out_free_mboxq; 5020 } 5021 switch (phba->sli4_hba.lnk_info.lnk_no) { 5022 case LPFC_LINK_NUMBER_0: 5023 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5024 &get_port_name->u.response); 5025 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5026 break; 5027 case LPFC_LINK_NUMBER_1: 5028 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5029 &get_port_name->u.response); 5030 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5031 break; 5032 case LPFC_LINK_NUMBER_2: 5033 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5034 &get_port_name->u.response); 5035 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5036 break; 5037 case LPFC_LINK_NUMBER_3: 5038 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5039 &get_port_name->u.response); 5040 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5041 break; 5042 default: 5043 break; 5044 } 5045 5046 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5047 phba->Port[0] = cport_name; 5048 phba->Port[1] = '\0'; 5049 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5050 "3091 SLI get port name: %s\n", phba->Port); 5051 } 5052 5053 out_free_mboxq: 5054 if (rc != MBX_TIMEOUT) { 5055 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5056 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5057 else 5058 mempool_free(mboxq, phba->mbox_mem_pool); 5059 } 5060 return rc; 5061 } 5062 5063 /** 5064 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5065 * @phba: pointer to lpfc hba data structure. 5066 * 5067 * This routine is called to explicitly arm the SLI4 device's completion and 5068 * event queues 5069 **/ 5070 static void 5071 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5072 { 5073 int fcp_eqidx; 5074 5075 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5076 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5077 fcp_eqidx = 0; 5078 if (phba->sli4_hba.fcp_cq) { 5079 do { 5080 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx], 5081 LPFC_QUEUE_REARM); 5082 } while (++fcp_eqidx < phba->cfg_fcp_io_channel); 5083 } 5084 5085 if (phba->cfg_fof) 5086 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5087 5088 if (phba->sli4_hba.hba_eq) { 5089 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; 5090 fcp_eqidx++) 5091 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[fcp_eqidx], 5092 LPFC_QUEUE_REARM); 5093 } 5094 5095 if (phba->cfg_fof) 5096 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5097 } 5098 5099 /** 5100 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5101 * @phba: Pointer to HBA context object. 5102 * @type: The resource extent type. 5103 * @extnt_count: buffer to hold port available extent count. 5104 * @extnt_size: buffer to hold element count per extent. 5105 * 5106 * This function calls the port and retrievs the number of available 5107 * extents and their size for a particular extent type. 5108 * 5109 * Returns: 0 if successful. Nonzero otherwise. 5110 **/ 5111 int 5112 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5113 uint16_t *extnt_count, uint16_t *extnt_size) 5114 { 5115 int rc = 0; 5116 uint32_t length; 5117 uint32_t mbox_tmo; 5118 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5119 LPFC_MBOXQ_t *mbox; 5120 5121 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5122 if (!mbox) 5123 return -ENOMEM; 5124 5125 /* Find out how many extents are available for this resource type */ 5126 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5127 sizeof(struct lpfc_sli4_cfg_mhdr)); 5128 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5129 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5130 length, LPFC_SLI4_MBX_EMBED); 5131 5132 /* Send an extents count of 0 - the GET doesn't use it. */ 5133 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5134 LPFC_SLI4_MBX_EMBED); 5135 if (unlikely(rc)) { 5136 rc = -EIO; 5137 goto err_exit; 5138 } 5139 5140 if (!phba->sli4_hba.intr_enable) 5141 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5142 else { 5143 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5144 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5145 } 5146 if (unlikely(rc)) { 5147 rc = -EIO; 5148 goto err_exit; 5149 } 5150 5151 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5152 if (bf_get(lpfc_mbox_hdr_status, 5153 &rsrc_info->header.cfg_shdr.response)) { 5154 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5155 "2930 Failed to get resource extents " 5156 "Status 0x%x Add'l Status 0x%x\n", 5157 bf_get(lpfc_mbox_hdr_status, 5158 &rsrc_info->header.cfg_shdr.response), 5159 bf_get(lpfc_mbox_hdr_add_status, 5160 &rsrc_info->header.cfg_shdr.response)); 5161 rc = -EIO; 5162 goto err_exit; 5163 } 5164 5165 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5166 &rsrc_info->u.rsp); 5167 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5168 &rsrc_info->u.rsp); 5169 5170 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5171 "3162 Retrieved extents type-%d from port: count:%d, " 5172 "size:%d\n", type, *extnt_count, *extnt_size); 5173 5174 err_exit: 5175 mempool_free(mbox, phba->mbox_mem_pool); 5176 return rc; 5177 } 5178 5179 /** 5180 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5181 * @phba: Pointer to HBA context object. 5182 * @type: The extent type to check. 5183 * 5184 * This function reads the current available extents from the port and checks 5185 * if the extent count or extent size has changed since the last access. 5186 * Callers use this routine post port reset to understand if there is a 5187 * extent reprovisioning requirement. 5188 * 5189 * Returns: 5190 * -Error: error indicates problem. 5191 * 1: Extent count or size has changed. 5192 * 0: No changes. 5193 **/ 5194 static int 5195 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5196 { 5197 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5198 uint16_t size_diff, rsrc_ext_size; 5199 int rc = 0; 5200 struct lpfc_rsrc_blks *rsrc_entry; 5201 struct list_head *rsrc_blk_list = NULL; 5202 5203 size_diff = 0; 5204 curr_ext_cnt = 0; 5205 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5206 &rsrc_ext_cnt, 5207 &rsrc_ext_size); 5208 if (unlikely(rc)) 5209 return -EIO; 5210 5211 switch (type) { 5212 case LPFC_RSC_TYPE_FCOE_RPI: 5213 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5214 break; 5215 case LPFC_RSC_TYPE_FCOE_VPI: 5216 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5217 break; 5218 case LPFC_RSC_TYPE_FCOE_XRI: 5219 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5220 break; 5221 case LPFC_RSC_TYPE_FCOE_VFI: 5222 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5223 break; 5224 default: 5225 break; 5226 } 5227 5228 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5229 curr_ext_cnt++; 5230 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5231 size_diff++; 5232 } 5233 5234 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5235 rc = 1; 5236 5237 return rc; 5238 } 5239 5240 /** 5241 * lpfc_sli4_cfg_post_extnts - 5242 * @phba: Pointer to HBA context object. 5243 * @extnt_cnt - number of available extents. 5244 * @type - the extent type (rpi, xri, vfi, vpi). 5245 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5246 * @mbox - pointer to the caller's allocated mailbox structure. 5247 * 5248 * This function executes the extents allocation request. It also 5249 * takes care of the amount of memory needed to allocate or get the 5250 * allocated extents. It is the caller's responsibility to evaluate 5251 * the response. 5252 * 5253 * Returns: 5254 * -Error: Error value describes the condition found. 5255 * 0: if successful 5256 **/ 5257 static int 5258 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5259 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5260 { 5261 int rc = 0; 5262 uint32_t req_len; 5263 uint32_t emb_len; 5264 uint32_t alloc_len, mbox_tmo; 5265 5266 /* Calculate the total requested length of the dma memory */ 5267 req_len = extnt_cnt * sizeof(uint16_t); 5268 5269 /* 5270 * Calculate the size of an embedded mailbox. The uint32_t 5271 * accounts for extents-specific word. 5272 */ 5273 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5274 sizeof(uint32_t); 5275 5276 /* 5277 * Presume the allocation and response will fit into an embedded 5278 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5279 */ 5280 *emb = LPFC_SLI4_MBX_EMBED; 5281 if (req_len > emb_len) { 5282 req_len = extnt_cnt * sizeof(uint16_t) + 5283 sizeof(union lpfc_sli4_cfg_shdr) + 5284 sizeof(uint32_t); 5285 *emb = LPFC_SLI4_MBX_NEMBED; 5286 } 5287 5288 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5289 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5290 req_len, *emb); 5291 if (alloc_len < req_len) { 5292 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5293 "2982 Allocated DMA memory size (x%x) is " 5294 "less than the requested DMA memory " 5295 "size (x%x)\n", alloc_len, req_len); 5296 return -ENOMEM; 5297 } 5298 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5299 if (unlikely(rc)) 5300 return -EIO; 5301 5302 if (!phba->sli4_hba.intr_enable) 5303 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5304 else { 5305 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5306 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5307 } 5308 5309 if (unlikely(rc)) 5310 rc = -EIO; 5311 return rc; 5312 } 5313 5314 /** 5315 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5316 * @phba: Pointer to HBA context object. 5317 * @type: The resource extent type to allocate. 5318 * 5319 * This function allocates the number of elements for the specified 5320 * resource type. 5321 **/ 5322 static int 5323 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5324 { 5325 bool emb = false; 5326 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5327 uint16_t rsrc_id, rsrc_start, j, k; 5328 uint16_t *ids; 5329 int i, rc; 5330 unsigned long longs; 5331 unsigned long *bmask; 5332 struct lpfc_rsrc_blks *rsrc_blks; 5333 LPFC_MBOXQ_t *mbox; 5334 uint32_t length; 5335 struct lpfc_id_range *id_array = NULL; 5336 void *virtaddr = NULL; 5337 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5338 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5339 struct list_head *ext_blk_list; 5340 5341 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5342 &rsrc_cnt, 5343 &rsrc_size); 5344 if (unlikely(rc)) 5345 return -EIO; 5346 5347 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5348 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5349 "3009 No available Resource Extents " 5350 "for resource type 0x%x: Count: 0x%x, " 5351 "Size 0x%x\n", type, rsrc_cnt, 5352 rsrc_size); 5353 return -ENOMEM; 5354 } 5355 5356 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5357 "2903 Post resource extents type-0x%x: " 5358 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5359 5360 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5361 if (!mbox) 5362 return -ENOMEM; 5363 5364 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5365 if (unlikely(rc)) { 5366 rc = -EIO; 5367 goto err_exit; 5368 } 5369 5370 /* 5371 * Figure out where the response is located. Then get local pointers 5372 * to the response data. The port does not guarantee to respond to 5373 * all extents counts request so update the local variable with the 5374 * allocated count from the port. 5375 */ 5376 if (emb == LPFC_SLI4_MBX_EMBED) { 5377 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5378 id_array = &rsrc_ext->u.rsp.id[0]; 5379 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5380 } else { 5381 virtaddr = mbox->sge_array->addr[0]; 5382 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5383 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5384 id_array = &n_rsrc->id; 5385 } 5386 5387 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5388 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5389 5390 /* 5391 * Based on the resource size and count, correct the base and max 5392 * resource values. 5393 */ 5394 length = sizeof(struct lpfc_rsrc_blks); 5395 switch (type) { 5396 case LPFC_RSC_TYPE_FCOE_RPI: 5397 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5398 sizeof(unsigned long), 5399 GFP_KERNEL); 5400 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5401 rc = -ENOMEM; 5402 goto err_exit; 5403 } 5404 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5405 sizeof(uint16_t), 5406 GFP_KERNEL); 5407 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5408 kfree(phba->sli4_hba.rpi_bmask); 5409 rc = -ENOMEM; 5410 goto err_exit; 5411 } 5412 5413 /* 5414 * The next_rpi was initialized with the maximum available 5415 * count but the port may allocate a smaller number. Catch 5416 * that case and update the next_rpi. 5417 */ 5418 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5419 5420 /* Initialize local ptrs for common extent processing later. */ 5421 bmask = phba->sli4_hba.rpi_bmask; 5422 ids = phba->sli4_hba.rpi_ids; 5423 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5424 break; 5425 case LPFC_RSC_TYPE_FCOE_VPI: 5426 phba->vpi_bmask = kzalloc(longs * 5427 sizeof(unsigned long), 5428 GFP_KERNEL); 5429 if (unlikely(!phba->vpi_bmask)) { 5430 rc = -ENOMEM; 5431 goto err_exit; 5432 } 5433 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5434 sizeof(uint16_t), 5435 GFP_KERNEL); 5436 if (unlikely(!phba->vpi_ids)) { 5437 kfree(phba->vpi_bmask); 5438 rc = -ENOMEM; 5439 goto err_exit; 5440 } 5441 5442 /* Initialize local ptrs for common extent processing later. */ 5443 bmask = phba->vpi_bmask; 5444 ids = phba->vpi_ids; 5445 ext_blk_list = &phba->lpfc_vpi_blk_list; 5446 break; 5447 case LPFC_RSC_TYPE_FCOE_XRI: 5448 phba->sli4_hba.xri_bmask = kzalloc(longs * 5449 sizeof(unsigned long), 5450 GFP_KERNEL); 5451 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5452 rc = -ENOMEM; 5453 goto err_exit; 5454 } 5455 phba->sli4_hba.max_cfg_param.xri_used = 0; 5456 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5457 sizeof(uint16_t), 5458 GFP_KERNEL); 5459 if (unlikely(!phba->sli4_hba.xri_ids)) { 5460 kfree(phba->sli4_hba.xri_bmask); 5461 rc = -ENOMEM; 5462 goto err_exit; 5463 } 5464 5465 /* Initialize local ptrs for common extent processing later. */ 5466 bmask = phba->sli4_hba.xri_bmask; 5467 ids = phba->sli4_hba.xri_ids; 5468 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5469 break; 5470 case LPFC_RSC_TYPE_FCOE_VFI: 5471 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5472 sizeof(unsigned long), 5473 GFP_KERNEL); 5474 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5475 rc = -ENOMEM; 5476 goto err_exit; 5477 } 5478 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5479 sizeof(uint16_t), 5480 GFP_KERNEL); 5481 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5482 kfree(phba->sli4_hba.vfi_bmask); 5483 rc = -ENOMEM; 5484 goto err_exit; 5485 } 5486 5487 /* Initialize local ptrs for common extent processing later. */ 5488 bmask = phba->sli4_hba.vfi_bmask; 5489 ids = phba->sli4_hba.vfi_ids; 5490 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5491 break; 5492 default: 5493 /* Unsupported Opcode. Fail call. */ 5494 id_array = NULL; 5495 bmask = NULL; 5496 ids = NULL; 5497 ext_blk_list = NULL; 5498 goto err_exit; 5499 } 5500 5501 /* 5502 * Complete initializing the extent configuration with the 5503 * allocated ids assigned to this function. The bitmask serves 5504 * as an index into the array and manages the available ids. The 5505 * array just stores the ids communicated to the port via the wqes. 5506 */ 5507 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5508 if ((i % 2) == 0) 5509 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5510 &id_array[k]); 5511 else 5512 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5513 &id_array[k]); 5514 5515 rsrc_blks = kzalloc(length, GFP_KERNEL); 5516 if (unlikely(!rsrc_blks)) { 5517 rc = -ENOMEM; 5518 kfree(bmask); 5519 kfree(ids); 5520 goto err_exit; 5521 } 5522 rsrc_blks->rsrc_start = rsrc_id; 5523 rsrc_blks->rsrc_size = rsrc_size; 5524 list_add_tail(&rsrc_blks->list, ext_blk_list); 5525 rsrc_start = rsrc_id; 5526 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) 5527 phba->sli4_hba.scsi_xri_start = rsrc_start + 5528 lpfc_sli4_get_els_iocb_cnt(phba); 5529 5530 while (rsrc_id < (rsrc_start + rsrc_size)) { 5531 ids[j] = rsrc_id; 5532 rsrc_id++; 5533 j++; 5534 } 5535 /* Entire word processed. Get next word.*/ 5536 if ((i % 2) == 1) 5537 k++; 5538 } 5539 err_exit: 5540 lpfc_sli4_mbox_cmd_free(phba, mbox); 5541 return rc; 5542 } 5543 5544 /** 5545 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5546 * @phba: Pointer to HBA context object. 5547 * @type: the extent's type. 5548 * 5549 * This function deallocates all extents of a particular resource type. 5550 * SLI4 does not allow for deallocating a particular extent range. It 5551 * is the caller's responsibility to release all kernel memory resources. 5552 **/ 5553 static int 5554 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5555 { 5556 int rc; 5557 uint32_t length, mbox_tmo = 0; 5558 LPFC_MBOXQ_t *mbox; 5559 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5560 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5561 5562 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5563 if (!mbox) 5564 return -ENOMEM; 5565 5566 /* 5567 * This function sends an embedded mailbox because it only sends the 5568 * the resource type. All extents of this type are released by the 5569 * port. 5570 */ 5571 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5572 sizeof(struct lpfc_sli4_cfg_mhdr)); 5573 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5574 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5575 length, LPFC_SLI4_MBX_EMBED); 5576 5577 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5578 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5579 LPFC_SLI4_MBX_EMBED); 5580 if (unlikely(rc)) { 5581 rc = -EIO; 5582 goto out_free_mbox; 5583 } 5584 if (!phba->sli4_hba.intr_enable) 5585 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5586 else { 5587 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5588 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5589 } 5590 if (unlikely(rc)) { 5591 rc = -EIO; 5592 goto out_free_mbox; 5593 } 5594 5595 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5596 if (bf_get(lpfc_mbox_hdr_status, 5597 &dealloc_rsrc->header.cfg_shdr.response)) { 5598 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5599 "2919 Failed to release resource extents " 5600 "for type %d - Status 0x%x Add'l Status 0x%x. " 5601 "Resource memory not released.\n", 5602 type, 5603 bf_get(lpfc_mbox_hdr_status, 5604 &dealloc_rsrc->header.cfg_shdr.response), 5605 bf_get(lpfc_mbox_hdr_add_status, 5606 &dealloc_rsrc->header.cfg_shdr.response)); 5607 rc = -EIO; 5608 goto out_free_mbox; 5609 } 5610 5611 /* Release kernel memory resources for the specific type. */ 5612 switch (type) { 5613 case LPFC_RSC_TYPE_FCOE_VPI: 5614 kfree(phba->vpi_bmask); 5615 kfree(phba->vpi_ids); 5616 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5617 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5618 &phba->lpfc_vpi_blk_list, list) { 5619 list_del_init(&rsrc_blk->list); 5620 kfree(rsrc_blk); 5621 } 5622 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5623 break; 5624 case LPFC_RSC_TYPE_FCOE_XRI: 5625 kfree(phba->sli4_hba.xri_bmask); 5626 kfree(phba->sli4_hba.xri_ids); 5627 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5628 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5629 list_del_init(&rsrc_blk->list); 5630 kfree(rsrc_blk); 5631 } 5632 break; 5633 case LPFC_RSC_TYPE_FCOE_VFI: 5634 kfree(phba->sli4_hba.vfi_bmask); 5635 kfree(phba->sli4_hba.vfi_ids); 5636 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5637 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5638 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5639 list_del_init(&rsrc_blk->list); 5640 kfree(rsrc_blk); 5641 } 5642 break; 5643 case LPFC_RSC_TYPE_FCOE_RPI: 5644 /* RPI bitmask and physical id array are cleaned up earlier. */ 5645 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5646 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5647 list_del_init(&rsrc_blk->list); 5648 kfree(rsrc_blk); 5649 } 5650 break; 5651 default: 5652 break; 5653 } 5654 5655 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5656 5657 out_free_mbox: 5658 mempool_free(mbox, phba->mbox_mem_pool); 5659 return rc; 5660 } 5661 5662 /** 5663 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5664 * @phba: Pointer to HBA context object. 5665 * 5666 * This function allocates all SLI4 resource identifiers. 5667 **/ 5668 int 5669 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5670 { 5671 int i, rc, error = 0; 5672 uint16_t count, base; 5673 unsigned long longs; 5674 5675 if (!phba->sli4_hba.rpi_hdrs_in_use) 5676 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5677 if (phba->sli4_hba.extents_in_use) { 5678 /* 5679 * The port supports resource extents. The XRI, VPI, VFI, RPI 5680 * resource extent count must be read and allocated before 5681 * provisioning the resource id arrays. 5682 */ 5683 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5684 LPFC_IDX_RSRC_RDY) { 5685 /* 5686 * Extent-based resources are set - the driver could 5687 * be in a port reset. Figure out if any corrective 5688 * actions need to be taken. 5689 */ 5690 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5691 LPFC_RSC_TYPE_FCOE_VFI); 5692 if (rc != 0) 5693 error++; 5694 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5695 LPFC_RSC_TYPE_FCOE_VPI); 5696 if (rc != 0) 5697 error++; 5698 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5699 LPFC_RSC_TYPE_FCOE_XRI); 5700 if (rc != 0) 5701 error++; 5702 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5703 LPFC_RSC_TYPE_FCOE_RPI); 5704 if (rc != 0) 5705 error++; 5706 5707 /* 5708 * It's possible that the number of resources 5709 * provided to this port instance changed between 5710 * resets. Detect this condition and reallocate 5711 * resources. Otherwise, there is no action. 5712 */ 5713 if (error) { 5714 lpfc_printf_log(phba, KERN_INFO, 5715 LOG_MBOX | LOG_INIT, 5716 "2931 Detected extent resource " 5717 "change. Reallocating all " 5718 "extents.\n"); 5719 rc = lpfc_sli4_dealloc_extent(phba, 5720 LPFC_RSC_TYPE_FCOE_VFI); 5721 rc = lpfc_sli4_dealloc_extent(phba, 5722 LPFC_RSC_TYPE_FCOE_VPI); 5723 rc = lpfc_sli4_dealloc_extent(phba, 5724 LPFC_RSC_TYPE_FCOE_XRI); 5725 rc = lpfc_sli4_dealloc_extent(phba, 5726 LPFC_RSC_TYPE_FCOE_RPI); 5727 } else 5728 return 0; 5729 } 5730 5731 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5732 if (unlikely(rc)) 5733 goto err_exit; 5734 5735 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5736 if (unlikely(rc)) 5737 goto err_exit; 5738 5739 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5740 if (unlikely(rc)) 5741 goto err_exit; 5742 5743 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5744 if (unlikely(rc)) 5745 goto err_exit; 5746 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5747 LPFC_IDX_RSRC_RDY); 5748 return rc; 5749 } else { 5750 /* 5751 * The port does not support resource extents. The XRI, VPI, 5752 * VFI, RPI resource ids were determined from READ_CONFIG. 5753 * Just allocate the bitmasks and provision the resource id 5754 * arrays. If a port reset is active, the resources don't 5755 * need any action - just exit. 5756 */ 5757 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5758 LPFC_IDX_RSRC_RDY) { 5759 lpfc_sli4_dealloc_resource_identifiers(phba); 5760 lpfc_sli4_remove_rpis(phba); 5761 } 5762 /* RPIs. */ 5763 count = phba->sli4_hba.max_cfg_param.max_rpi; 5764 if (count <= 0) { 5765 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5766 "3279 Invalid provisioning of " 5767 "rpi:%d\n", count); 5768 rc = -EINVAL; 5769 goto err_exit; 5770 } 5771 base = phba->sli4_hba.max_cfg_param.rpi_base; 5772 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5773 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5774 sizeof(unsigned long), 5775 GFP_KERNEL); 5776 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5777 rc = -ENOMEM; 5778 goto err_exit; 5779 } 5780 phba->sli4_hba.rpi_ids = kzalloc(count * 5781 sizeof(uint16_t), 5782 GFP_KERNEL); 5783 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5784 rc = -ENOMEM; 5785 goto free_rpi_bmask; 5786 } 5787 5788 for (i = 0; i < count; i++) 5789 phba->sli4_hba.rpi_ids[i] = base + i; 5790 5791 /* VPIs. */ 5792 count = phba->sli4_hba.max_cfg_param.max_vpi; 5793 if (count <= 0) { 5794 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5795 "3280 Invalid provisioning of " 5796 "vpi:%d\n", count); 5797 rc = -EINVAL; 5798 goto free_rpi_ids; 5799 } 5800 base = phba->sli4_hba.max_cfg_param.vpi_base; 5801 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5802 phba->vpi_bmask = kzalloc(longs * 5803 sizeof(unsigned long), 5804 GFP_KERNEL); 5805 if (unlikely(!phba->vpi_bmask)) { 5806 rc = -ENOMEM; 5807 goto free_rpi_ids; 5808 } 5809 phba->vpi_ids = kzalloc(count * 5810 sizeof(uint16_t), 5811 GFP_KERNEL); 5812 if (unlikely(!phba->vpi_ids)) { 5813 rc = -ENOMEM; 5814 goto free_vpi_bmask; 5815 } 5816 5817 for (i = 0; i < count; i++) 5818 phba->vpi_ids[i] = base + i; 5819 5820 /* XRIs. */ 5821 count = phba->sli4_hba.max_cfg_param.max_xri; 5822 if (count <= 0) { 5823 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5824 "3281 Invalid provisioning of " 5825 "xri:%d\n", count); 5826 rc = -EINVAL; 5827 goto free_vpi_ids; 5828 } 5829 base = phba->sli4_hba.max_cfg_param.xri_base; 5830 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5831 phba->sli4_hba.xri_bmask = kzalloc(longs * 5832 sizeof(unsigned long), 5833 GFP_KERNEL); 5834 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5835 rc = -ENOMEM; 5836 goto free_vpi_ids; 5837 } 5838 phba->sli4_hba.max_cfg_param.xri_used = 0; 5839 phba->sli4_hba.xri_ids = kzalloc(count * 5840 sizeof(uint16_t), 5841 GFP_KERNEL); 5842 if (unlikely(!phba->sli4_hba.xri_ids)) { 5843 rc = -ENOMEM; 5844 goto free_xri_bmask; 5845 } 5846 5847 for (i = 0; i < count; i++) 5848 phba->sli4_hba.xri_ids[i] = base + i; 5849 5850 /* VFIs. */ 5851 count = phba->sli4_hba.max_cfg_param.max_vfi; 5852 if (count <= 0) { 5853 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5854 "3282 Invalid provisioning of " 5855 "vfi:%d\n", count); 5856 rc = -EINVAL; 5857 goto free_xri_ids; 5858 } 5859 base = phba->sli4_hba.max_cfg_param.vfi_base; 5860 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 5861 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5862 sizeof(unsigned long), 5863 GFP_KERNEL); 5864 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5865 rc = -ENOMEM; 5866 goto free_xri_ids; 5867 } 5868 phba->sli4_hba.vfi_ids = kzalloc(count * 5869 sizeof(uint16_t), 5870 GFP_KERNEL); 5871 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5872 rc = -ENOMEM; 5873 goto free_vfi_bmask; 5874 } 5875 5876 for (i = 0; i < count; i++) 5877 phba->sli4_hba.vfi_ids[i] = base + i; 5878 5879 /* 5880 * Mark all resources ready. An HBA reset doesn't need 5881 * to reset the initialization. 5882 */ 5883 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5884 LPFC_IDX_RSRC_RDY); 5885 return 0; 5886 } 5887 5888 free_vfi_bmask: 5889 kfree(phba->sli4_hba.vfi_bmask); 5890 free_xri_ids: 5891 kfree(phba->sli4_hba.xri_ids); 5892 free_xri_bmask: 5893 kfree(phba->sli4_hba.xri_bmask); 5894 free_vpi_ids: 5895 kfree(phba->vpi_ids); 5896 free_vpi_bmask: 5897 kfree(phba->vpi_bmask); 5898 free_rpi_ids: 5899 kfree(phba->sli4_hba.rpi_ids); 5900 free_rpi_bmask: 5901 kfree(phba->sli4_hba.rpi_bmask); 5902 err_exit: 5903 return rc; 5904 } 5905 5906 /** 5907 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 5908 * @phba: Pointer to HBA context object. 5909 * 5910 * This function allocates the number of elements for the specified 5911 * resource type. 5912 **/ 5913 int 5914 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 5915 { 5916 if (phba->sli4_hba.extents_in_use) { 5917 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5918 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5919 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5920 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5921 } else { 5922 kfree(phba->vpi_bmask); 5923 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5924 kfree(phba->vpi_ids); 5925 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5926 kfree(phba->sli4_hba.xri_bmask); 5927 kfree(phba->sli4_hba.xri_ids); 5928 kfree(phba->sli4_hba.vfi_bmask); 5929 kfree(phba->sli4_hba.vfi_ids); 5930 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5931 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5932 } 5933 5934 return 0; 5935 } 5936 5937 /** 5938 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 5939 * @phba: Pointer to HBA context object. 5940 * @type: The resource extent type. 5941 * @extnt_count: buffer to hold port extent count response 5942 * @extnt_size: buffer to hold port extent size response. 5943 * 5944 * This function calls the port to read the host allocated extents 5945 * for a particular type. 5946 **/ 5947 int 5948 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 5949 uint16_t *extnt_cnt, uint16_t *extnt_size) 5950 { 5951 bool emb; 5952 int rc = 0; 5953 uint16_t curr_blks = 0; 5954 uint32_t req_len, emb_len; 5955 uint32_t alloc_len, mbox_tmo; 5956 struct list_head *blk_list_head; 5957 struct lpfc_rsrc_blks *rsrc_blk; 5958 LPFC_MBOXQ_t *mbox; 5959 void *virtaddr = NULL; 5960 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5961 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5962 union lpfc_sli4_cfg_shdr *shdr; 5963 5964 switch (type) { 5965 case LPFC_RSC_TYPE_FCOE_VPI: 5966 blk_list_head = &phba->lpfc_vpi_blk_list; 5967 break; 5968 case LPFC_RSC_TYPE_FCOE_XRI: 5969 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 5970 break; 5971 case LPFC_RSC_TYPE_FCOE_VFI: 5972 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 5973 break; 5974 case LPFC_RSC_TYPE_FCOE_RPI: 5975 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 5976 break; 5977 default: 5978 return -EIO; 5979 } 5980 5981 /* Count the number of extents currently allocatd for this type. */ 5982 list_for_each_entry(rsrc_blk, blk_list_head, list) { 5983 if (curr_blks == 0) { 5984 /* 5985 * The GET_ALLOCATED mailbox does not return the size, 5986 * just the count. The size should be just the size 5987 * stored in the current allocated block and all sizes 5988 * for an extent type are the same so set the return 5989 * value now. 5990 */ 5991 *extnt_size = rsrc_blk->rsrc_size; 5992 } 5993 curr_blks++; 5994 } 5995 5996 /* 5997 * Calculate the size of an embedded mailbox. The uint32_t 5998 * accounts for extents-specific word. 5999 */ 6000 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6001 sizeof(uint32_t); 6002 6003 /* 6004 * Presume the allocation and response will fit into an embedded 6005 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6006 */ 6007 emb = LPFC_SLI4_MBX_EMBED; 6008 req_len = emb_len; 6009 if (req_len > emb_len) { 6010 req_len = curr_blks * sizeof(uint16_t) + 6011 sizeof(union lpfc_sli4_cfg_shdr) + 6012 sizeof(uint32_t); 6013 emb = LPFC_SLI4_MBX_NEMBED; 6014 } 6015 6016 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6017 if (!mbox) 6018 return -ENOMEM; 6019 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6020 6021 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6022 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6023 req_len, emb); 6024 if (alloc_len < req_len) { 6025 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6026 "2983 Allocated DMA memory size (x%x) is " 6027 "less than the requested DMA memory " 6028 "size (x%x)\n", alloc_len, req_len); 6029 rc = -ENOMEM; 6030 goto err_exit; 6031 } 6032 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6033 if (unlikely(rc)) { 6034 rc = -EIO; 6035 goto err_exit; 6036 } 6037 6038 if (!phba->sli4_hba.intr_enable) 6039 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6040 else { 6041 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6042 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6043 } 6044 6045 if (unlikely(rc)) { 6046 rc = -EIO; 6047 goto err_exit; 6048 } 6049 6050 /* 6051 * Figure out where the response is located. Then get local pointers 6052 * to the response data. The port does not guarantee to respond to 6053 * all extents counts request so update the local variable with the 6054 * allocated count from the port. 6055 */ 6056 if (emb == LPFC_SLI4_MBX_EMBED) { 6057 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6058 shdr = &rsrc_ext->header.cfg_shdr; 6059 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6060 } else { 6061 virtaddr = mbox->sge_array->addr[0]; 6062 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6063 shdr = &n_rsrc->cfg_shdr; 6064 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6065 } 6066 6067 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6068 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6069 "2984 Failed to read allocated resources " 6070 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6071 type, 6072 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6073 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6074 rc = -EIO; 6075 goto err_exit; 6076 } 6077 err_exit: 6078 lpfc_sli4_mbox_cmd_free(phba, mbox); 6079 return rc; 6080 } 6081 6082 /** 6083 * lpfc_sli4_repost_els_sgl_list - Repsot the els buffers sgl pages as block 6084 * @phba: pointer to lpfc hba data structure. 6085 * 6086 * This routine walks the list of els buffers that have been allocated and 6087 * repost them to the port by using SGL block post. This is needed after a 6088 * pci_function_reset/warm_start or start. It attempts to construct blocks 6089 * of els buffer sgls which contains contiguous xris and uses the non-embedded 6090 * SGL block post mailbox commands to post them to the port. For single els 6091 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6092 * mailbox command for posting. 6093 * 6094 * Returns: 0 = success, non-zero failure. 6095 **/ 6096 static int 6097 lpfc_sli4_repost_els_sgl_list(struct lpfc_hba *phba) 6098 { 6099 struct lpfc_sglq *sglq_entry = NULL; 6100 struct lpfc_sglq *sglq_entry_next = NULL; 6101 struct lpfc_sglq *sglq_entry_first = NULL; 6102 int status, total_cnt, post_cnt = 0, num_posted = 0, block_cnt = 0; 6103 int last_xritag = NO_XRI; 6104 struct lpfc_sli_ring *pring; 6105 LIST_HEAD(prep_sgl_list); 6106 LIST_HEAD(blck_sgl_list); 6107 LIST_HEAD(allc_sgl_list); 6108 LIST_HEAD(post_sgl_list); 6109 LIST_HEAD(free_sgl_list); 6110 6111 pring = &phba->sli.ring[LPFC_ELS_RING]; 6112 spin_lock_irq(&phba->hbalock); 6113 spin_lock(&pring->ring_lock); 6114 list_splice_init(&phba->sli4_hba.lpfc_sgl_list, &allc_sgl_list); 6115 spin_unlock(&pring->ring_lock); 6116 spin_unlock_irq(&phba->hbalock); 6117 6118 total_cnt = phba->sli4_hba.els_xri_cnt; 6119 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6120 &allc_sgl_list, list) { 6121 list_del_init(&sglq_entry->list); 6122 block_cnt++; 6123 if ((last_xritag != NO_XRI) && 6124 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6125 /* a hole in xri block, form a sgl posting block */ 6126 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6127 post_cnt = block_cnt - 1; 6128 /* prepare list for next posting block */ 6129 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6130 block_cnt = 1; 6131 } else { 6132 /* prepare list for next posting block */ 6133 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6134 /* enough sgls for non-embed sgl mbox command */ 6135 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6136 list_splice_init(&prep_sgl_list, 6137 &blck_sgl_list); 6138 post_cnt = block_cnt; 6139 block_cnt = 0; 6140 } 6141 } 6142 num_posted++; 6143 6144 /* keep track of last sgl's xritag */ 6145 last_xritag = sglq_entry->sli4_xritag; 6146 6147 /* end of repost sgl list condition for els buffers */ 6148 if (num_posted == phba->sli4_hba.els_xri_cnt) { 6149 if (post_cnt == 0) { 6150 list_splice_init(&prep_sgl_list, 6151 &blck_sgl_list); 6152 post_cnt = block_cnt; 6153 } else if (block_cnt == 1) { 6154 status = lpfc_sli4_post_sgl(phba, 6155 sglq_entry->phys, 0, 6156 sglq_entry->sli4_xritag); 6157 if (!status) { 6158 /* successful, put sgl to posted list */ 6159 list_add_tail(&sglq_entry->list, 6160 &post_sgl_list); 6161 } else { 6162 /* Failure, put sgl to free list */ 6163 lpfc_printf_log(phba, KERN_WARNING, 6164 LOG_SLI, 6165 "3159 Failed to post els " 6166 "sgl, xritag:x%x\n", 6167 sglq_entry->sli4_xritag); 6168 list_add_tail(&sglq_entry->list, 6169 &free_sgl_list); 6170 total_cnt--; 6171 } 6172 } 6173 } 6174 6175 /* continue until a nembed page worth of sgls */ 6176 if (post_cnt == 0) 6177 continue; 6178 6179 /* post the els buffer list sgls as a block */ 6180 status = lpfc_sli4_post_els_sgl_list(phba, &blck_sgl_list, 6181 post_cnt); 6182 6183 if (!status) { 6184 /* success, put sgl list to posted sgl list */ 6185 list_splice_init(&blck_sgl_list, &post_sgl_list); 6186 } else { 6187 /* Failure, put sgl list to free sgl list */ 6188 sglq_entry_first = list_first_entry(&blck_sgl_list, 6189 struct lpfc_sglq, 6190 list); 6191 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6192 "3160 Failed to post els sgl-list, " 6193 "xritag:x%x-x%x\n", 6194 sglq_entry_first->sli4_xritag, 6195 (sglq_entry_first->sli4_xritag + 6196 post_cnt - 1)); 6197 list_splice_init(&blck_sgl_list, &free_sgl_list); 6198 total_cnt -= post_cnt; 6199 } 6200 6201 /* don't reset xirtag due to hole in xri block */ 6202 if (block_cnt == 0) 6203 last_xritag = NO_XRI; 6204 6205 /* reset els sgl post count for next round of posting */ 6206 post_cnt = 0; 6207 } 6208 /* update the number of XRIs posted for ELS */ 6209 phba->sli4_hba.els_xri_cnt = total_cnt; 6210 6211 /* free the els sgls failed to post */ 6212 lpfc_free_sgl_list(phba, &free_sgl_list); 6213 6214 /* push els sgls posted to the availble list */ 6215 if (!list_empty(&post_sgl_list)) { 6216 spin_lock_irq(&phba->hbalock); 6217 spin_lock(&pring->ring_lock); 6218 list_splice_init(&post_sgl_list, 6219 &phba->sli4_hba.lpfc_sgl_list); 6220 spin_unlock(&pring->ring_lock); 6221 spin_unlock_irq(&phba->hbalock); 6222 } else { 6223 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6224 "3161 Failure to post els sgl to port.\n"); 6225 return -EIO; 6226 } 6227 return 0; 6228 } 6229 6230 /** 6231 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function 6232 * @phba: Pointer to HBA context object. 6233 * 6234 * This function is the main SLI4 device intialization PCI function. This 6235 * function is called by the HBA intialization code, HBA reset code and 6236 * HBA error attention handler code. Caller is not required to hold any 6237 * locks. 6238 **/ 6239 int 6240 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6241 { 6242 int rc; 6243 LPFC_MBOXQ_t *mboxq; 6244 struct lpfc_mqe *mqe; 6245 uint8_t *vpd; 6246 uint32_t vpd_size; 6247 uint32_t ftr_rsp = 0; 6248 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6249 struct lpfc_vport *vport = phba->pport; 6250 struct lpfc_dmabuf *mp; 6251 6252 /* Perform a PCI function reset to start from clean */ 6253 rc = lpfc_pci_function_reset(phba); 6254 if (unlikely(rc)) 6255 return -ENODEV; 6256 6257 /* Check the HBA Host Status Register for readyness */ 6258 rc = lpfc_sli4_post_status_check(phba); 6259 if (unlikely(rc)) 6260 return -ENODEV; 6261 else { 6262 spin_lock_irq(&phba->hbalock); 6263 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6264 spin_unlock_irq(&phba->hbalock); 6265 } 6266 6267 /* 6268 * Allocate a single mailbox container for initializing the 6269 * port. 6270 */ 6271 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6272 if (!mboxq) 6273 return -ENOMEM; 6274 6275 /* Issue READ_REV to collect vpd and FW information. */ 6276 vpd_size = SLI4_PAGE_SIZE; 6277 vpd = kzalloc(vpd_size, GFP_KERNEL); 6278 if (!vpd) { 6279 rc = -ENOMEM; 6280 goto out_free_mbox; 6281 } 6282 6283 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6284 if (unlikely(rc)) { 6285 kfree(vpd); 6286 goto out_free_mbox; 6287 } 6288 6289 mqe = &mboxq->u.mqe; 6290 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6291 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) 6292 phba->hba_flag |= HBA_FCOE_MODE; 6293 else 6294 phba->hba_flag &= ~HBA_FCOE_MODE; 6295 6296 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6297 LPFC_DCBX_CEE_MODE) 6298 phba->hba_flag |= HBA_FIP_SUPPORT; 6299 else 6300 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6301 6302 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6303 6304 if (phba->sli_rev != LPFC_SLI_REV4) { 6305 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6306 "0376 READ_REV Error. SLI Level %d " 6307 "FCoE enabled %d\n", 6308 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6309 rc = -EIO; 6310 kfree(vpd); 6311 goto out_free_mbox; 6312 } 6313 6314 /* 6315 * Continue initialization with default values even if driver failed 6316 * to read FCoE param config regions, only read parameters if the 6317 * board is FCoE 6318 */ 6319 if (phba->hba_flag & HBA_FCOE_MODE && 6320 lpfc_sli4_read_fcoe_params(phba)) 6321 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6322 "2570 Failed to read FCoE parameters\n"); 6323 6324 /* 6325 * Retrieve sli4 device physical port name, failure of doing it 6326 * is considered as non-fatal. 6327 */ 6328 rc = lpfc_sli4_retrieve_pport_name(phba); 6329 if (!rc) 6330 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6331 "3080 Successful retrieving SLI4 device " 6332 "physical port name: %s.\n", phba->Port); 6333 6334 /* 6335 * Evaluate the read rev and vpd data. Populate the driver 6336 * state with the results. If this routine fails, the failure 6337 * is not fatal as the driver will use generic values. 6338 */ 6339 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6340 if (unlikely(!rc)) { 6341 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6342 "0377 Error %d parsing vpd. " 6343 "Using defaults.\n", rc); 6344 rc = 0; 6345 } 6346 kfree(vpd); 6347 6348 /* Save information as VPD data */ 6349 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6350 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6351 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6352 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6353 &mqe->un.read_rev); 6354 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6355 &mqe->un.read_rev); 6356 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6357 &mqe->un.read_rev); 6358 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6359 &mqe->un.read_rev); 6360 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6361 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6362 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6363 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6364 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6365 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6366 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6367 "(%d):0380 READ_REV Status x%x " 6368 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6369 mboxq->vport ? mboxq->vport->vpi : 0, 6370 bf_get(lpfc_mqe_status, mqe), 6371 phba->vpd.rev.opFwName, 6372 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6373 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6374 6375 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6376 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6377 if (phba->pport->cfg_lun_queue_depth > rc) { 6378 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6379 "3362 LUN queue depth changed from %d to %d\n", 6380 phba->pport->cfg_lun_queue_depth, rc); 6381 phba->pport->cfg_lun_queue_depth = rc; 6382 } 6383 6384 6385 /* 6386 * Discover the port's supported feature set and match it against the 6387 * hosts requests. 6388 */ 6389 lpfc_request_features(phba, mboxq); 6390 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6391 if (unlikely(rc)) { 6392 rc = -EIO; 6393 goto out_free_mbox; 6394 } 6395 6396 /* 6397 * The port must support FCP initiator mode as this is the 6398 * only mode running in the host. 6399 */ 6400 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6401 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6402 "0378 No support for fcpi mode.\n"); 6403 ftr_rsp++; 6404 } 6405 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6406 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6407 else 6408 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6409 /* 6410 * If the port cannot support the host's requested features 6411 * then turn off the global config parameters to disable the 6412 * feature in the driver. This is not a fatal error. 6413 */ 6414 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6415 if (phba->cfg_enable_bg) { 6416 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6417 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6418 else 6419 ftr_rsp++; 6420 } 6421 6422 if (phba->max_vpi && phba->cfg_enable_npiv && 6423 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6424 ftr_rsp++; 6425 6426 if (ftr_rsp) { 6427 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6428 "0379 Feature Mismatch Data: x%08x %08x " 6429 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6430 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6431 phba->cfg_enable_npiv, phba->max_vpi); 6432 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6433 phba->cfg_enable_bg = 0; 6434 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6435 phba->cfg_enable_npiv = 0; 6436 } 6437 6438 /* These SLI3 features are assumed in SLI4 */ 6439 spin_lock_irq(&phba->hbalock); 6440 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6441 spin_unlock_irq(&phba->hbalock); 6442 6443 /* 6444 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6445 * calls depends on these resources to complete port setup. 6446 */ 6447 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6448 if (rc) { 6449 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6450 "2920 Failed to alloc Resource IDs " 6451 "rc = x%x\n", rc); 6452 goto out_free_mbox; 6453 } 6454 6455 /* Read the port's service parameters. */ 6456 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6457 if (rc) { 6458 phba->link_state = LPFC_HBA_ERROR; 6459 rc = -ENOMEM; 6460 goto out_free_mbox; 6461 } 6462 6463 mboxq->vport = vport; 6464 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6465 mp = (struct lpfc_dmabuf *) mboxq->context1; 6466 if (rc == MBX_SUCCESS) { 6467 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6468 rc = 0; 6469 } 6470 6471 /* 6472 * This memory was allocated by the lpfc_read_sparam routine. Release 6473 * it to the mbuf pool. 6474 */ 6475 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6476 kfree(mp); 6477 mboxq->context1 = NULL; 6478 if (unlikely(rc)) { 6479 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6480 "0382 READ_SPARAM command failed " 6481 "status %d, mbxStatus x%x\n", 6482 rc, bf_get(lpfc_mqe_status, mqe)); 6483 phba->link_state = LPFC_HBA_ERROR; 6484 rc = -EIO; 6485 goto out_free_mbox; 6486 } 6487 6488 lpfc_update_vport_wwn(vport); 6489 6490 /* Update the fc_host data structures with new wwn. */ 6491 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6492 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6493 6494 /* update host els and scsi xri-sgl sizes and mappings */ 6495 rc = lpfc_sli4_xri_sgl_update(phba); 6496 if (unlikely(rc)) { 6497 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6498 "1400 Failed to update xri-sgl size and " 6499 "mapping: %d\n", rc); 6500 goto out_free_mbox; 6501 } 6502 6503 /* register the els sgl pool to the port */ 6504 rc = lpfc_sli4_repost_els_sgl_list(phba); 6505 if (unlikely(rc)) { 6506 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6507 "0582 Error %d during els sgl post " 6508 "operation\n", rc); 6509 rc = -ENODEV; 6510 goto out_free_mbox; 6511 } 6512 6513 /* register the allocated scsi sgl pool to the port */ 6514 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6515 if (unlikely(rc)) { 6516 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6517 "0383 Error %d during scsi sgl post " 6518 "operation\n", rc); 6519 /* Some Scsi buffers were moved to the abort scsi list */ 6520 /* A pci function reset will repost them */ 6521 rc = -ENODEV; 6522 goto out_free_mbox; 6523 } 6524 6525 /* Post the rpi header region to the device. */ 6526 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6527 if (unlikely(rc)) { 6528 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6529 "0393 Error %d during rpi post operation\n", 6530 rc); 6531 rc = -ENODEV; 6532 goto out_free_mbox; 6533 } 6534 lpfc_sli4_node_prep(phba); 6535 6536 /* Create all the SLI4 queues */ 6537 rc = lpfc_sli4_queue_create(phba); 6538 if (rc) { 6539 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6540 "3089 Failed to allocate queues\n"); 6541 rc = -ENODEV; 6542 goto out_stop_timers; 6543 } 6544 /* Set up all the queues to the device */ 6545 rc = lpfc_sli4_queue_setup(phba); 6546 if (unlikely(rc)) { 6547 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6548 "0381 Error %d during queue setup.\n ", rc); 6549 goto out_destroy_queue; 6550 } 6551 6552 /* Arm the CQs and then EQs on device */ 6553 lpfc_sli4_arm_cqeq_intr(phba); 6554 6555 /* Indicate device interrupt mode */ 6556 phba->sli4_hba.intr_enable = 1; 6557 6558 /* Allow asynchronous mailbox command to go through */ 6559 spin_lock_irq(&phba->hbalock); 6560 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 6561 spin_unlock_irq(&phba->hbalock); 6562 6563 /* Post receive buffers to the device */ 6564 lpfc_sli4_rb_setup(phba); 6565 6566 /* Reset HBA FCF states after HBA reset */ 6567 phba->fcf.fcf_flag = 0; 6568 phba->fcf.current_rec.flag = 0; 6569 6570 /* Start the ELS watchdog timer */ 6571 mod_timer(&vport->els_tmofunc, 6572 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 6573 6574 /* Start heart beat timer */ 6575 mod_timer(&phba->hb_tmofunc, 6576 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 6577 phba->hb_outstanding = 0; 6578 phba->last_completion_time = jiffies; 6579 6580 /* Start error attention (ERATT) polling timer */ 6581 mod_timer(&phba->eratt_poll, 6582 jiffies + msecs_to_jiffies(1000 * LPFC_ERATT_POLL_INTERVAL)); 6583 6584 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 6585 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 6586 rc = pci_enable_pcie_error_reporting(phba->pcidev); 6587 if (!rc) { 6588 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6589 "2829 This device supports " 6590 "Advanced Error Reporting (AER)\n"); 6591 spin_lock_irq(&phba->hbalock); 6592 phba->hba_flag |= HBA_AER_ENABLED; 6593 spin_unlock_irq(&phba->hbalock); 6594 } else { 6595 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 6596 "2830 This device does not support " 6597 "Advanced Error Reporting (AER)\n"); 6598 phba->cfg_aer_support = 0; 6599 } 6600 rc = 0; 6601 } 6602 6603 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6604 /* 6605 * The FC Port needs to register FCFI (index 0) 6606 */ 6607 lpfc_reg_fcfi(phba, mboxq); 6608 mboxq->vport = phba->pport; 6609 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6610 if (rc != MBX_SUCCESS) 6611 goto out_unset_queue; 6612 rc = 0; 6613 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6614 &mboxq->u.mqe.un.reg_fcfi); 6615 6616 /* Check if the port is configured to be disabled */ 6617 lpfc_sli_read_link_ste(phba); 6618 } 6619 6620 /* 6621 * The port is ready, set the host's link state to LINK_DOWN 6622 * in preparation for link interrupts. 6623 */ 6624 spin_lock_irq(&phba->hbalock); 6625 phba->link_state = LPFC_LINK_DOWN; 6626 spin_unlock_irq(&phba->hbalock); 6627 if (!(phba->hba_flag & HBA_FCOE_MODE) && 6628 (phba->hba_flag & LINK_DISABLED)) { 6629 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6630 "3103 Adapter Link is disabled.\n"); 6631 lpfc_down_link(phba, mboxq); 6632 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6633 if (rc != MBX_SUCCESS) { 6634 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 6635 "3104 Adapter failed to issue " 6636 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 6637 goto out_unset_queue; 6638 } 6639 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 6640 /* don't perform init_link on SLI4 FC port loopback test */ 6641 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 6642 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 6643 if (rc) 6644 goto out_unset_queue; 6645 } 6646 } 6647 mempool_free(mboxq, phba->mbox_mem_pool); 6648 return rc; 6649 out_unset_queue: 6650 /* Unset all the queues set up in this routine when error out */ 6651 lpfc_sli4_queue_unset(phba); 6652 out_destroy_queue: 6653 lpfc_sli4_queue_destroy(phba); 6654 out_stop_timers: 6655 lpfc_stop_hba_timers(phba); 6656 out_free_mbox: 6657 mempool_free(mboxq, phba->mbox_mem_pool); 6658 return rc; 6659 } 6660 6661 /** 6662 * lpfc_mbox_timeout - Timeout call back function for mbox timer 6663 * @ptr: context object - pointer to hba structure. 6664 * 6665 * This is the callback function for mailbox timer. The mailbox 6666 * timer is armed when a new mailbox command is issued and the timer 6667 * is deleted when the mailbox complete. The function is called by 6668 * the kernel timer code when a mailbox does not complete within 6669 * expected time. This function wakes up the worker thread to 6670 * process the mailbox timeout and returns. All the processing is 6671 * done by the worker thread function lpfc_mbox_timeout_handler. 6672 **/ 6673 void 6674 lpfc_mbox_timeout(unsigned long ptr) 6675 { 6676 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 6677 unsigned long iflag; 6678 uint32_t tmo_posted; 6679 6680 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 6681 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 6682 if (!tmo_posted) 6683 phba->pport->work_port_events |= WORKER_MBOX_TMO; 6684 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 6685 6686 if (!tmo_posted) 6687 lpfc_worker_wake_up(phba); 6688 return; 6689 } 6690 6691 /** 6692 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 6693 * are pending 6694 * @phba: Pointer to HBA context object. 6695 * 6696 * This function checks if any mailbox completions are present on the mailbox 6697 * completion queue. 6698 **/ 6699 bool 6700 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 6701 { 6702 6703 uint32_t idx; 6704 struct lpfc_queue *mcq; 6705 struct lpfc_mcqe *mcqe; 6706 bool pending_completions = false; 6707 6708 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6709 return false; 6710 6711 /* Check for completions on mailbox completion queue */ 6712 6713 mcq = phba->sli4_hba.mbx_cq; 6714 idx = mcq->hba_index; 6715 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 6716 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 6717 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 6718 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 6719 pending_completions = true; 6720 break; 6721 } 6722 idx = (idx + 1) % mcq->entry_count; 6723 if (mcq->hba_index == idx) 6724 break; 6725 } 6726 return pending_completions; 6727 6728 } 6729 6730 /** 6731 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 6732 * that were missed. 6733 * @phba: Pointer to HBA context object. 6734 * 6735 * For sli4, it is possible to miss an interrupt. As such mbox completions 6736 * maybe missed causing erroneous mailbox timeouts to occur. This function 6737 * checks to see if mbox completions are on the mailbox completion queue 6738 * and will process all the completions associated with the eq for the 6739 * mailbox completion queue. 6740 **/ 6741 bool 6742 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 6743 { 6744 6745 uint32_t eqidx; 6746 struct lpfc_queue *fpeq = NULL; 6747 struct lpfc_eqe *eqe; 6748 bool mbox_pending; 6749 6750 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 6751 return false; 6752 6753 /* Find the eq associated with the mcq */ 6754 6755 if (phba->sli4_hba.hba_eq) 6756 for (eqidx = 0; eqidx < phba->cfg_fcp_io_channel; eqidx++) 6757 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 6758 phba->sli4_hba.mbx_cq->assoc_qid) { 6759 fpeq = phba->sli4_hba.hba_eq[eqidx]; 6760 break; 6761 } 6762 if (!fpeq) 6763 return false; 6764 6765 /* Turn off interrupts from this EQ */ 6766 6767 lpfc_sli4_eq_clr_intr(fpeq); 6768 6769 /* Check to see if a mbox completion is pending */ 6770 6771 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 6772 6773 /* 6774 * If a mbox completion is pending, process all the events on EQ 6775 * associated with the mbox completion queue (this could include 6776 * mailbox commands, async events, els commands, receive queue data 6777 * and fcp commands) 6778 */ 6779 6780 if (mbox_pending) 6781 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 6782 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 6783 fpeq->EQ_processed++; 6784 } 6785 6786 /* Always clear and re-arm the EQ */ 6787 6788 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 6789 6790 return mbox_pending; 6791 6792 } 6793 6794 /** 6795 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 6796 * @phba: Pointer to HBA context object. 6797 * 6798 * This function is called from worker thread when a mailbox command times out. 6799 * The caller is not required to hold any locks. This function will reset the 6800 * HBA and recover all the pending commands. 6801 **/ 6802 void 6803 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 6804 { 6805 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 6806 MAILBOX_t *mb = NULL; 6807 6808 struct lpfc_sli *psli = &phba->sli; 6809 6810 /* If the mailbox completed, process the completion and return */ 6811 if (lpfc_sli4_process_missed_mbox_completions(phba)) 6812 return; 6813 6814 if (pmbox != NULL) 6815 mb = &pmbox->u.mb; 6816 /* Check the pmbox pointer first. There is a race condition 6817 * between the mbox timeout handler getting executed in the 6818 * worklist and the mailbox actually completing. When this 6819 * race condition occurs, the mbox_active will be NULL. 6820 */ 6821 spin_lock_irq(&phba->hbalock); 6822 if (pmbox == NULL) { 6823 lpfc_printf_log(phba, KERN_WARNING, 6824 LOG_MBOX | LOG_SLI, 6825 "0353 Active Mailbox cleared - mailbox timeout " 6826 "exiting\n"); 6827 spin_unlock_irq(&phba->hbalock); 6828 return; 6829 } 6830 6831 /* Mbox cmd <mbxCommand> timeout */ 6832 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6833 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 6834 mb->mbxCommand, 6835 phba->pport->port_state, 6836 phba->sli.sli_flag, 6837 phba->sli.mbox_active); 6838 spin_unlock_irq(&phba->hbalock); 6839 6840 /* Setting state unknown so lpfc_sli_abort_iocb_ring 6841 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 6842 * it to fail all outstanding SCSI IO. 6843 */ 6844 spin_lock_irq(&phba->pport->work_port_lock); 6845 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 6846 spin_unlock_irq(&phba->pport->work_port_lock); 6847 spin_lock_irq(&phba->hbalock); 6848 phba->link_state = LPFC_LINK_UNKNOWN; 6849 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 6850 spin_unlock_irq(&phba->hbalock); 6851 6852 lpfc_sli_abort_fcp_rings(phba); 6853 6854 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6855 "0345 Resetting board due to mailbox timeout\n"); 6856 6857 /* Reset the HBA device */ 6858 lpfc_reset_hba(phba); 6859 } 6860 6861 /** 6862 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 6863 * @phba: Pointer to HBA context object. 6864 * @pmbox: Pointer to mailbox object. 6865 * @flag: Flag indicating how the mailbox need to be processed. 6866 * 6867 * This function is called by discovery code and HBA management code 6868 * to submit a mailbox command to firmware with SLI-3 interface spec. This 6869 * function gets the hbalock to protect the data structures. 6870 * The mailbox command can be submitted in polling mode, in which case 6871 * this function will wait in a polling loop for the completion of the 6872 * mailbox. 6873 * If the mailbox is submitted in no_wait mode (not polling) the 6874 * function will submit the command and returns immediately without waiting 6875 * for the mailbox completion. The no_wait is supported only when HBA 6876 * is in SLI2/SLI3 mode - interrupts are enabled. 6877 * The SLI interface allows only one mailbox pending at a time. If the 6878 * mailbox is issued in polling mode and there is already a mailbox 6879 * pending, then the function will return an error. If the mailbox is issued 6880 * in NO_WAIT mode and there is a mailbox pending already, the function 6881 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 6882 * The sli layer owns the mailbox object until the completion of mailbox 6883 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 6884 * return codes the caller owns the mailbox command after the return of 6885 * the function. 6886 **/ 6887 static int 6888 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 6889 uint32_t flag) 6890 { 6891 MAILBOX_t *mbx; 6892 struct lpfc_sli *psli = &phba->sli; 6893 uint32_t status, evtctr; 6894 uint32_t ha_copy, hc_copy; 6895 int i; 6896 unsigned long timeout; 6897 unsigned long drvr_flag = 0; 6898 uint32_t word0, ldata; 6899 void __iomem *to_slim; 6900 int processing_queue = 0; 6901 6902 spin_lock_irqsave(&phba->hbalock, drvr_flag); 6903 if (!pmbox) { 6904 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 6905 /* processing mbox queue from intr_handler */ 6906 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 6907 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6908 return MBX_SUCCESS; 6909 } 6910 processing_queue = 1; 6911 pmbox = lpfc_mbox_get(phba); 6912 if (!pmbox) { 6913 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6914 return MBX_SUCCESS; 6915 } 6916 } 6917 6918 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 6919 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 6920 if(!pmbox->vport) { 6921 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6922 lpfc_printf_log(phba, KERN_ERR, 6923 LOG_MBOX | LOG_VPORT, 6924 "1806 Mbox x%x failed. No vport\n", 6925 pmbox->u.mb.mbxCommand); 6926 dump_stack(); 6927 goto out_not_finished; 6928 } 6929 } 6930 6931 /* If the PCI channel is in offline state, do not post mbox. */ 6932 if (unlikely(pci_channel_offline(phba->pcidev))) { 6933 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6934 goto out_not_finished; 6935 } 6936 6937 /* If HBA has a deferred error attention, fail the iocb. */ 6938 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 6939 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6940 goto out_not_finished; 6941 } 6942 6943 psli = &phba->sli; 6944 6945 mbx = &pmbox->u.mb; 6946 status = MBX_SUCCESS; 6947 6948 if (phba->link_state == LPFC_HBA_ERROR) { 6949 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6950 6951 /* Mbox command <mbxCommand> cannot issue */ 6952 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6953 "(%d):0311 Mailbox command x%x cannot " 6954 "issue Data: x%x x%x\n", 6955 pmbox->vport ? pmbox->vport->vpi : 0, 6956 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6957 goto out_not_finished; 6958 } 6959 6960 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 6961 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 6962 !(hc_copy & HC_MBINT_ENA)) { 6963 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6964 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6965 "(%d):2528 Mailbox command x%x cannot " 6966 "issue Data: x%x x%x\n", 6967 pmbox->vport ? pmbox->vport->vpi : 0, 6968 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 6969 goto out_not_finished; 6970 } 6971 } 6972 6973 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 6974 /* Polling for a mbox command when another one is already active 6975 * is not allowed in SLI. Also, the driver must have established 6976 * SLI2 mode to queue and process multiple mbox commands. 6977 */ 6978 6979 if (flag & MBX_POLL) { 6980 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6981 6982 /* Mbox command <mbxCommand> cannot issue */ 6983 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6984 "(%d):2529 Mailbox command x%x " 6985 "cannot issue Data: x%x x%x\n", 6986 pmbox->vport ? pmbox->vport->vpi : 0, 6987 pmbox->u.mb.mbxCommand, 6988 psli->sli_flag, flag); 6989 goto out_not_finished; 6990 } 6991 6992 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 6993 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 6994 /* Mbox command <mbxCommand> cannot issue */ 6995 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6996 "(%d):2530 Mailbox command x%x " 6997 "cannot issue Data: x%x x%x\n", 6998 pmbox->vport ? pmbox->vport->vpi : 0, 6999 pmbox->u.mb.mbxCommand, 7000 psli->sli_flag, flag); 7001 goto out_not_finished; 7002 } 7003 7004 /* Another mailbox command is still being processed, queue this 7005 * command to be processed later. 7006 */ 7007 lpfc_mbox_put(phba, pmbox); 7008 7009 /* Mbox cmd issue - BUSY */ 7010 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7011 "(%d):0308 Mbox cmd issue - BUSY Data: " 7012 "x%x x%x x%x x%x\n", 7013 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7014 mbx->mbxCommand, phba->pport->port_state, 7015 psli->sli_flag, flag); 7016 7017 psli->slistat.mbox_busy++; 7018 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7019 7020 if (pmbox->vport) { 7021 lpfc_debugfs_disc_trc(pmbox->vport, 7022 LPFC_DISC_TRC_MBOX_VPORT, 7023 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7024 (uint32_t)mbx->mbxCommand, 7025 mbx->un.varWords[0], mbx->un.varWords[1]); 7026 } 7027 else { 7028 lpfc_debugfs_disc_trc(phba->pport, 7029 LPFC_DISC_TRC_MBOX, 7030 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7031 (uint32_t)mbx->mbxCommand, 7032 mbx->un.varWords[0], mbx->un.varWords[1]); 7033 } 7034 7035 return MBX_BUSY; 7036 } 7037 7038 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7039 7040 /* If we are not polling, we MUST be in SLI2 mode */ 7041 if (flag != MBX_POLL) { 7042 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7043 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7044 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7045 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7046 /* Mbox command <mbxCommand> cannot issue */ 7047 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7048 "(%d):2531 Mailbox command x%x " 7049 "cannot issue Data: x%x x%x\n", 7050 pmbox->vport ? pmbox->vport->vpi : 0, 7051 pmbox->u.mb.mbxCommand, 7052 psli->sli_flag, flag); 7053 goto out_not_finished; 7054 } 7055 /* timeout active mbox command */ 7056 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7057 1000); 7058 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7059 } 7060 7061 /* Mailbox cmd <cmd> issue */ 7062 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7063 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7064 "x%x\n", 7065 pmbox->vport ? pmbox->vport->vpi : 0, 7066 mbx->mbxCommand, phba->pport->port_state, 7067 psli->sli_flag, flag); 7068 7069 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7070 if (pmbox->vport) { 7071 lpfc_debugfs_disc_trc(pmbox->vport, 7072 LPFC_DISC_TRC_MBOX_VPORT, 7073 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7074 (uint32_t)mbx->mbxCommand, 7075 mbx->un.varWords[0], mbx->un.varWords[1]); 7076 } 7077 else { 7078 lpfc_debugfs_disc_trc(phba->pport, 7079 LPFC_DISC_TRC_MBOX, 7080 "MBOX Send: cmd:x%x mb:x%x x%x", 7081 (uint32_t)mbx->mbxCommand, 7082 mbx->un.varWords[0], mbx->un.varWords[1]); 7083 } 7084 } 7085 7086 psli->slistat.mbox_cmd++; 7087 evtctr = psli->slistat.mbox_event; 7088 7089 /* next set own bit for the adapter and copy over command word */ 7090 mbx->mbxOwner = OWN_CHIP; 7091 7092 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7093 /* Populate mbox extension offset word. */ 7094 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7095 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7096 = (uint8_t *)phba->mbox_ext 7097 - (uint8_t *)phba->mbox; 7098 } 7099 7100 /* Copy the mailbox extension data */ 7101 if (pmbox->in_ext_byte_len && pmbox->context2) { 7102 lpfc_sli_pcimem_bcopy(pmbox->context2, 7103 (uint8_t *)phba->mbox_ext, 7104 pmbox->in_ext_byte_len); 7105 } 7106 /* Copy command data to host SLIM area */ 7107 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7108 } else { 7109 /* Populate mbox extension offset word. */ 7110 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7111 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7112 = MAILBOX_HBA_EXT_OFFSET; 7113 7114 /* Copy the mailbox extension data */ 7115 if (pmbox->in_ext_byte_len && pmbox->context2) { 7116 lpfc_memcpy_to_slim(phba->MBslimaddr + 7117 MAILBOX_HBA_EXT_OFFSET, 7118 pmbox->context2, pmbox->in_ext_byte_len); 7119 7120 } 7121 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7122 /* copy command data into host mbox for cmpl */ 7123 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7124 } 7125 7126 /* First copy mbox command data to HBA SLIM, skip past first 7127 word */ 7128 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7129 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7130 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7131 7132 /* Next copy over first word, with mbxOwner set */ 7133 ldata = *((uint32_t *)mbx); 7134 to_slim = phba->MBslimaddr; 7135 writel(ldata, to_slim); 7136 readl(to_slim); /* flush */ 7137 7138 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7139 /* switch over to host mailbox */ 7140 psli->sli_flag |= LPFC_SLI_ACTIVE; 7141 } 7142 } 7143 7144 wmb(); 7145 7146 switch (flag) { 7147 case MBX_NOWAIT: 7148 /* Set up reference to mailbox command */ 7149 psli->mbox_active = pmbox; 7150 /* Interrupt board to do it */ 7151 writel(CA_MBATT, phba->CAregaddr); 7152 readl(phba->CAregaddr); /* flush */ 7153 /* Don't wait for it to finish, just return */ 7154 break; 7155 7156 case MBX_POLL: 7157 /* Set up null reference to mailbox command */ 7158 psli->mbox_active = NULL; 7159 /* Interrupt board to do it */ 7160 writel(CA_MBATT, phba->CAregaddr); 7161 readl(phba->CAregaddr); /* flush */ 7162 7163 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7164 /* First read mbox status word */ 7165 word0 = *((uint32_t *)phba->mbox); 7166 word0 = le32_to_cpu(word0); 7167 } else { 7168 /* First read mbox status word */ 7169 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7170 spin_unlock_irqrestore(&phba->hbalock, 7171 drvr_flag); 7172 goto out_not_finished; 7173 } 7174 } 7175 7176 /* Read the HBA Host Attention Register */ 7177 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7178 spin_unlock_irqrestore(&phba->hbalock, 7179 drvr_flag); 7180 goto out_not_finished; 7181 } 7182 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7183 1000) + jiffies; 7184 i = 0; 7185 /* Wait for command to complete */ 7186 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7187 (!(ha_copy & HA_MBATT) && 7188 (phba->link_state > LPFC_WARM_START))) { 7189 if (time_after(jiffies, timeout)) { 7190 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7191 spin_unlock_irqrestore(&phba->hbalock, 7192 drvr_flag); 7193 goto out_not_finished; 7194 } 7195 7196 /* Check if we took a mbox interrupt while we were 7197 polling */ 7198 if (((word0 & OWN_CHIP) != OWN_CHIP) 7199 && (evtctr != psli->slistat.mbox_event)) 7200 break; 7201 7202 if (i++ > 10) { 7203 spin_unlock_irqrestore(&phba->hbalock, 7204 drvr_flag); 7205 msleep(1); 7206 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7207 } 7208 7209 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7210 /* First copy command data */ 7211 word0 = *((uint32_t *)phba->mbox); 7212 word0 = le32_to_cpu(word0); 7213 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7214 MAILBOX_t *slimmb; 7215 uint32_t slimword0; 7216 /* Check real SLIM for any errors */ 7217 slimword0 = readl(phba->MBslimaddr); 7218 slimmb = (MAILBOX_t *) & slimword0; 7219 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7220 && slimmb->mbxStatus) { 7221 psli->sli_flag &= 7222 ~LPFC_SLI_ACTIVE; 7223 word0 = slimword0; 7224 } 7225 } 7226 } else { 7227 /* First copy command data */ 7228 word0 = readl(phba->MBslimaddr); 7229 } 7230 /* Read the HBA Host Attention Register */ 7231 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7232 spin_unlock_irqrestore(&phba->hbalock, 7233 drvr_flag); 7234 goto out_not_finished; 7235 } 7236 } 7237 7238 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7239 /* copy results back to user */ 7240 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); 7241 /* Copy the mailbox extension data */ 7242 if (pmbox->out_ext_byte_len && pmbox->context2) { 7243 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7244 pmbox->context2, 7245 pmbox->out_ext_byte_len); 7246 } 7247 } else { 7248 /* First copy command data */ 7249 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7250 MAILBOX_CMD_SIZE); 7251 /* Copy the mailbox extension data */ 7252 if (pmbox->out_ext_byte_len && pmbox->context2) { 7253 lpfc_memcpy_from_slim(pmbox->context2, 7254 phba->MBslimaddr + 7255 MAILBOX_HBA_EXT_OFFSET, 7256 pmbox->out_ext_byte_len); 7257 } 7258 } 7259 7260 writel(HA_MBATT, phba->HAregaddr); 7261 readl(phba->HAregaddr); /* flush */ 7262 7263 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7264 status = mbx->mbxStatus; 7265 } 7266 7267 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7268 return status; 7269 7270 out_not_finished: 7271 if (processing_queue) { 7272 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7273 lpfc_mbox_cmpl_put(phba, pmbox); 7274 } 7275 return MBX_NOT_FINISHED; 7276 } 7277 7278 /** 7279 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7280 * @phba: Pointer to HBA context object. 7281 * 7282 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7283 * the driver internal pending mailbox queue. It will then try to wait out the 7284 * possible outstanding mailbox command before return. 7285 * 7286 * Returns: 7287 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7288 * the outstanding mailbox command timed out. 7289 **/ 7290 static int 7291 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7292 { 7293 struct lpfc_sli *psli = &phba->sli; 7294 int rc = 0; 7295 unsigned long timeout = 0; 7296 7297 /* Mark the asynchronous mailbox command posting as blocked */ 7298 spin_lock_irq(&phba->hbalock); 7299 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7300 /* Determine how long we might wait for the active mailbox 7301 * command to be gracefully completed by firmware. 7302 */ 7303 if (phba->sli.mbox_active) 7304 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7305 phba->sli.mbox_active) * 7306 1000) + jiffies; 7307 spin_unlock_irq(&phba->hbalock); 7308 7309 /* Make sure the mailbox is really active */ 7310 if (timeout) 7311 lpfc_sli4_process_missed_mbox_completions(phba); 7312 7313 /* Wait for the outstnading mailbox command to complete */ 7314 while (phba->sli.mbox_active) { 7315 /* Check active mailbox complete status every 2ms */ 7316 msleep(2); 7317 if (time_after(jiffies, timeout)) { 7318 /* Timeout, marked the outstanding cmd not complete */ 7319 rc = 1; 7320 break; 7321 } 7322 } 7323 7324 /* Can not cleanly block async mailbox command, fails it */ 7325 if (rc) { 7326 spin_lock_irq(&phba->hbalock); 7327 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7328 spin_unlock_irq(&phba->hbalock); 7329 } 7330 return rc; 7331 } 7332 7333 /** 7334 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7335 * @phba: Pointer to HBA context object. 7336 * 7337 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7338 * commands from the driver internal pending mailbox queue. It makes sure 7339 * that there is no outstanding mailbox command before resuming posting 7340 * asynchronous mailbox commands. If, for any reason, there is outstanding 7341 * mailbox command, it will try to wait it out before resuming asynchronous 7342 * mailbox command posting. 7343 **/ 7344 static void 7345 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7346 { 7347 struct lpfc_sli *psli = &phba->sli; 7348 7349 spin_lock_irq(&phba->hbalock); 7350 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7351 /* Asynchronous mailbox posting is not blocked, do nothing */ 7352 spin_unlock_irq(&phba->hbalock); 7353 return; 7354 } 7355 7356 /* Outstanding synchronous mailbox command is guaranteed to be done, 7357 * successful or timeout, after timing-out the outstanding mailbox 7358 * command shall always be removed, so just unblock posting async 7359 * mailbox command and resume 7360 */ 7361 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7362 spin_unlock_irq(&phba->hbalock); 7363 7364 /* wake up worker thread to post asynchronlous mailbox command */ 7365 lpfc_worker_wake_up(phba); 7366 } 7367 7368 /** 7369 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7370 * @phba: Pointer to HBA context object. 7371 * @mboxq: Pointer to mailbox object. 7372 * 7373 * The function waits for the bootstrap mailbox register ready bit from 7374 * port for twice the regular mailbox command timeout value. 7375 * 7376 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7377 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7378 **/ 7379 static int 7380 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7381 { 7382 uint32_t db_ready; 7383 unsigned long timeout; 7384 struct lpfc_register bmbx_reg; 7385 7386 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7387 * 1000) + jiffies; 7388 7389 do { 7390 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7391 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7392 if (!db_ready) 7393 msleep(2); 7394 7395 if (time_after(jiffies, timeout)) 7396 return MBXERR_ERROR; 7397 } while (!db_ready); 7398 7399 return 0; 7400 } 7401 7402 /** 7403 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7404 * @phba: Pointer to HBA context object. 7405 * @mboxq: Pointer to mailbox object. 7406 * 7407 * The function posts a mailbox to the port. The mailbox is expected 7408 * to be comletely filled in and ready for the port to operate on it. 7409 * This routine executes a synchronous completion operation on the 7410 * mailbox by polling for its completion. 7411 * 7412 * The caller must not be holding any locks when calling this routine. 7413 * 7414 * Returns: 7415 * MBX_SUCCESS - mailbox posted successfully 7416 * Any of the MBX error values. 7417 **/ 7418 static int 7419 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7420 { 7421 int rc = MBX_SUCCESS; 7422 unsigned long iflag; 7423 uint32_t mcqe_status; 7424 uint32_t mbx_cmnd; 7425 struct lpfc_sli *psli = &phba->sli; 7426 struct lpfc_mqe *mb = &mboxq->u.mqe; 7427 struct lpfc_bmbx_create *mbox_rgn; 7428 struct dma_address *dma_address; 7429 7430 /* 7431 * Only one mailbox can be active to the bootstrap mailbox region 7432 * at a time and there is no queueing provided. 7433 */ 7434 spin_lock_irqsave(&phba->hbalock, iflag); 7435 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7436 spin_unlock_irqrestore(&phba->hbalock, iflag); 7437 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7438 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7439 "cannot issue Data: x%x x%x\n", 7440 mboxq->vport ? mboxq->vport->vpi : 0, 7441 mboxq->u.mb.mbxCommand, 7442 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7443 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7444 psli->sli_flag, MBX_POLL); 7445 return MBXERR_ERROR; 7446 } 7447 /* The server grabs the token and owns it until release */ 7448 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7449 phba->sli.mbox_active = mboxq; 7450 spin_unlock_irqrestore(&phba->hbalock, iflag); 7451 7452 /* wait for bootstrap mbox register for readyness */ 7453 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7454 if (rc) 7455 goto exit; 7456 7457 /* 7458 * Initialize the bootstrap memory region to avoid stale data areas 7459 * in the mailbox post. Then copy the caller's mailbox contents to 7460 * the bmbx mailbox region. 7461 */ 7462 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7463 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7464 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7465 sizeof(struct lpfc_mqe)); 7466 7467 /* Post the high mailbox dma address to the port and wait for ready. */ 7468 dma_address = &phba->sli4_hba.bmbx.dma_address; 7469 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7470 7471 /* wait for bootstrap mbox register for hi-address write done */ 7472 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7473 if (rc) 7474 goto exit; 7475 7476 /* Post the low mailbox dma address to the port. */ 7477 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7478 7479 /* wait for bootstrap mbox register for low address write done */ 7480 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7481 if (rc) 7482 goto exit; 7483 7484 /* 7485 * Read the CQ to ensure the mailbox has completed. 7486 * If so, update the mailbox status so that the upper layers 7487 * can complete the request normally. 7488 */ 7489 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7490 sizeof(struct lpfc_mqe)); 7491 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7492 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7493 sizeof(struct lpfc_mcqe)); 7494 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7495 /* 7496 * When the CQE status indicates a failure and the mailbox status 7497 * indicates success then copy the CQE status into the mailbox status 7498 * (and prefix it with x4000). 7499 */ 7500 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7501 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7502 bf_set(lpfc_mqe_status, mb, 7503 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7504 rc = MBXERR_ERROR; 7505 } else 7506 lpfc_sli4_swap_str(phba, mboxq); 7507 7508 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7509 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7510 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7511 " x%x x%x CQ: x%x x%x x%x x%x\n", 7512 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7513 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7514 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7515 bf_get(lpfc_mqe_status, mb), 7516 mb->un.mb_words[0], mb->un.mb_words[1], 7517 mb->un.mb_words[2], mb->un.mb_words[3], 7518 mb->un.mb_words[4], mb->un.mb_words[5], 7519 mb->un.mb_words[6], mb->un.mb_words[7], 7520 mb->un.mb_words[8], mb->un.mb_words[9], 7521 mb->un.mb_words[10], mb->un.mb_words[11], 7522 mb->un.mb_words[12], mboxq->mcqe.word0, 7523 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7524 mboxq->mcqe.trailer); 7525 exit: 7526 /* We are holding the token, no needed for lock when release */ 7527 spin_lock_irqsave(&phba->hbalock, iflag); 7528 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7529 phba->sli.mbox_active = NULL; 7530 spin_unlock_irqrestore(&phba->hbalock, iflag); 7531 return rc; 7532 } 7533 7534 /** 7535 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7536 * @phba: Pointer to HBA context object. 7537 * @pmbox: Pointer to mailbox object. 7538 * @flag: Flag indicating how the mailbox need to be processed. 7539 * 7540 * This function is called by discovery code and HBA management code to submit 7541 * a mailbox command to firmware with SLI-4 interface spec. 7542 * 7543 * Return codes the caller owns the mailbox command after the return of the 7544 * function. 7545 **/ 7546 static int 7547 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7548 uint32_t flag) 7549 { 7550 struct lpfc_sli *psli = &phba->sli; 7551 unsigned long iflags; 7552 int rc; 7553 7554 /* dump from issue mailbox command if setup */ 7555 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7556 7557 rc = lpfc_mbox_dev_check(phba); 7558 if (unlikely(rc)) { 7559 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7560 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7561 "cannot issue Data: x%x x%x\n", 7562 mboxq->vport ? mboxq->vport->vpi : 0, 7563 mboxq->u.mb.mbxCommand, 7564 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7565 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7566 psli->sli_flag, flag); 7567 goto out_not_finished; 7568 } 7569 7570 /* Detect polling mode and jump to a handler */ 7571 if (!phba->sli4_hba.intr_enable) { 7572 if (flag == MBX_POLL) 7573 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7574 else 7575 rc = -EIO; 7576 if (rc != MBX_SUCCESS) 7577 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7578 "(%d):2541 Mailbox command x%x " 7579 "(x%x/x%x) failure: " 7580 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7581 "Data: x%x x%x\n,", 7582 mboxq->vport ? mboxq->vport->vpi : 0, 7583 mboxq->u.mb.mbxCommand, 7584 lpfc_sli_config_mbox_subsys_get(phba, 7585 mboxq), 7586 lpfc_sli_config_mbox_opcode_get(phba, 7587 mboxq), 7588 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7589 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7590 bf_get(lpfc_mcqe_ext_status, 7591 &mboxq->mcqe), 7592 psli->sli_flag, flag); 7593 return rc; 7594 } else if (flag == MBX_POLL) { 7595 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7596 "(%d):2542 Try to issue mailbox command " 7597 "x%x (x%x/x%x) synchronously ahead of async" 7598 "mailbox command queue: x%x x%x\n", 7599 mboxq->vport ? mboxq->vport->vpi : 0, 7600 mboxq->u.mb.mbxCommand, 7601 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7602 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7603 psli->sli_flag, flag); 7604 /* Try to block the asynchronous mailbox posting */ 7605 rc = lpfc_sli4_async_mbox_block(phba); 7606 if (!rc) { 7607 /* Successfully blocked, now issue sync mbox cmd */ 7608 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 7609 if (rc != MBX_SUCCESS) 7610 lpfc_printf_log(phba, KERN_WARNING, 7611 LOG_MBOX | LOG_SLI, 7612 "(%d):2597 Sync Mailbox command " 7613 "x%x (x%x/x%x) failure: " 7614 "mqe_sta: x%x mcqe_sta: x%x/x%x " 7615 "Data: x%x x%x\n,", 7616 mboxq->vport ? mboxq->vport->vpi : 0, 7617 mboxq->u.mb.mbxCommand, 7618 lpfc_sli_config_mbox_subsys_get(phba, 7619 mboxq), 7620 lpfc_sli_config_mbox_opcode_get(phba, 7621 mboxq), 7622 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 7623 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 7624 bf_get(lpfc_mcqe_ext_status, 7625 &mboxq->mcqe), 7626 psli->sli_flag, flag); 7627 /* Unblock the async mailbox posting afterward */ 7628 lpfc_sli4_async_mbox_unblock(phba); 7629 } 7630 return rc; 7631 } 7632 7633 /* Now, interrupt mode asynchrous mailbox command */ 7634 rc = lpfc_mbox_cmd_check(phba, mboxq); 7635 if (rc) { 7636 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7637 "(%d):2543 Mailbox command x%x (x%x/x%x) " 7638 "cannot issue Data: x%x x%x\n", 7639 mboxq->vport ? mboxq->vport->vpi : 0, 7640 mboxq->u.mb.mbxCommand, 7641 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7642 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7643 psli->sli_flag, flag); 7644 goto out_not_finished; 7645 } 7646 7647 /* Put the mailbox command to the driver internal FIFO */ 7648 psli->slistat.mbox_busy++; 7649 spin_lock_irqsave(&phba->hbalock, iflags); 7650 lpfc_mbox_put(phba, mboxq); 7651 spin_unlock_irqrestore(&phba->hbalock, iflags); 7652 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7653 "(%d):0354 Mbox cmd issue - Enqueue Data: " 7654 "x%x (x%x/x%x) x%x x%x x%x\n", 7655 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 7656 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7657 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7658 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7659 phba->pport->port_state, 7660 psli->sli_flag, MBX_NOWAIT); 7661 /* Wake up worker thread to transport mailbox command from head */ 7662 lpfc_worker_wake_up(phba); 7663 7664 return MBX_BUSY; 7665 7666 out_not_finished: 7667 return MBX_NOT_FINISHED; 7668 } 7669 7670 /** 7671 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 7672 * @phba: Pointer to HBA context object. 7673 * 7674 * This function is called by worker thread to send a mailbox command to 7675 * SLI4 HBA firmware. 7676 * 7677 **/ 7678 int 7679 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 7680 { 7681 struct lpfc_sli *psli = &phba->sli; 7682 LPFC_MBOXQ_t *mboxq; 7683 int rc = MBX_SUCCESS; 7684 unsigned long iflags; 7685 struct lpfc_mqe *mqe; 7686 uint32_t mbx_cmnd; 7687 7688 /* Check interrupt mode before post async mailbox command */ 7689 if (unlikely(!phba->sli4_hba.intr_enable)) 7690 return MBX_NOT_FINISHED; 7691 7692 /* Check for mailbox command service token */ 7693 spin_lock_irqsave(&phba->hbalock, iflags); 7694 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7695 spin_unlock_irqrestore(&phba->hbalock, iflags); 7696 return MBX_NOT_FINISHED; 7697 } 7698 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7699 spin_unlock_irqrestore(&phba->hbalock, iflags); 7700 return MBX_NOT_FINISHED; 7701 } 7702 if (unlikely(phba->sli.mbox_active)) { 7703 spin_unlock_irqrestore(&phba->hbalock, iflags); 7704 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7705 "0384 There is pending active mailbox cmd\n"); 7706 return MBX_NOT_FINISHED; 7707 } 7708 /* Take the mailbox command service token */ 7709 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7710 7711 /* Get the next mailbox command from head of queue */ 7712 mboxq = lpfc_mbox_get(phba); 7713 7714 /* If no more mailbox command waiting for post, we're done */ 7715 if (!mboxq) { 7716 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7717 spin_unlock_irqrestore(&phba->hbalock, iflags); 7718 return MBX_SUCCESS; 7719 } 7720 phba->sli.mbox_active = mboxq; 7721 spin_unlock_irqrestore(&phba->hbalock, iflags); 7722 7723 /* Check device readiness for posting mailbox command */ 7724 rc = lpfc_mbox_dev_check(phba); 7725 if (unlikely(rc)) 7726 /* Driver clean routine will clean up pending mailbox */ 7727 goto out_not_finished; 7728 7729 /* Prepare the mbox command to be posted */ 7730 mqe = &mboxq->u.mqe; 7731 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 7732 7733 /* Start timer for the mbox_tmo and log some mailbox post messages */ 7734 mod_timer(&psli->mbox_tmo, (jiffies + 7735 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 7736 7737 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7738 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 7739 "x%x x%x\n", 7740 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7741 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7742 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7743 phba->pport->port_state, psli->sli_flag); 7744 7745 if (mbx_cmnd != MBX_HEARTBEAT) { 7746 if (mboxq->vport) { 7747 lpfc_debugfs_disc_trc(mboxq->vport, 7748 LPFC_DISC_TRC_MBOX_VPORT, 7749 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7750 mbx_cmnd, mqe->un.mb_words[0], 7751 mqe->un.mb_words[1]); 7752 } else { 7753 lpfc_debugfs_disc_trc(phba->pport, 7754 LPFC_DISC_TRC_MBOX, 7755 "MBOX Send: cmd:x%x mb:x%x x%x", 7756 mbx_cmnd, mqe->un.mb_words[0], 7757 mqe->un.mb_words[1]); 7758 } 7759 } 7760 psli->slistat.mbox_cmd++; 7761 7762 /* Post the mailbox command to the port */ 7763 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 7764 if (rc != MBX_SUCCESS) { 7765 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7766 "(%d):2533 Mailbox command x%x (x%x/x%x) " 7767 "cannot issue Data: x%x x%x\n", 7768 mboxq->vport ? mboxq->vport->vpi : 0, 7769 mboxq->u.mb.mbxCommand, 7770 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7771 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7772 psli->sli_flag, MBX_NOWAIT); 7773 goto out_not_finished; 7774 } 7775 7776 return rc; 7777 7778 out_not_finished: 7779 spin_lock_irqsave(&phba->hbalock, iflags); 7780 if (phba->sli.mbox_active) { 7781 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 7782 __lpfc_mbox_cmpl_put(phba, mboxq); 7783 /* Release the token */ 7784 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7785 phba->sli.mbox_active = NULL; 7786 } 7787 spin_unlock_irqrestore(&phba->hbalock, iflags); 7788 7789 return MBX_NOT_FINISHED; 7790 } 7791 7792 /** 7793 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 7794 * @phba: Pointer to HBA context object. 7795 * @pmbox: Pointer to mailbox object. 7796 * @flag: Flag indicating how the mailbox need to be processed. 7797 * 7798 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 7799 * the API jump table function pointer from the lpfc_hba struct. 7800 * 7801 * Return codes the caller owns the mailbox command after the return of the 7802 * function. 7803 **/ 7804 int 7805 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 7806 { 7807 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 7808 } 7809 7810 /** 7811 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 7812 * @phba: The hba struct for which this call is being executed. 7813 * @dev_grp: The HBA PCI-Device group number. 7814 * 7815 * This routine sets up the mbox interface API function jump table in @phba 7816 * struct. 7817 * Returns: 0 - success, -ENODEV - failure. 7818 **/ 7819 int 7820 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 7821 { 7822 7823 switch (dev_grp) { 7824 case LPFC_PCI_DEV_LP: 7825 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 7826 phba->lpfc_sli_handle_slow_ring_event = 7827 lpfc_sli_handle_slow_ring_event_s3; 7828 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 7829 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 7830 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 7831 break; 7832 case LPFC_PCI_DEV_OC: 7833 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 7834 phba->lpfc_sli_handle_slow_ring_event = 7835 lpfc_sli_handle_slow_ring_event_s4; 7836 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 7837 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 7838 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 7839 break; 7840 default: 7841 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7842 "1420 Invalid HBA PCI-device group: 0x%x\n", 7843 dev_grp); 7844 return -ENODEV; 7845 break; 7846 } 7847 return 0; 7848 } 7849 7850 /** 7851 * __lpfc_sli_ringtx_put - Add an iocb to the txq 7852 * @phba: Pointer to HBA context object. 7853 * @pring: Pointer to driver SLI ring object. 7854 * @piocb: Pointer to address of newly added command iocb. 7855 * 7856 * This function is called with hbalock held to add a command 7857 * iocb to the txq when SLI layer cannot submit the command iocb 7858 * to the ring. 7859 **/ 7860 void 7861 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7862 struct lpfc_iocbq *piocb) 7863 { 7864 /* Insert the caller's iocb in the txq tail for later processing. */ 7865 list_add_tail(&piocb->list, &pring->txq); 7866 } 7867 7868 /** 7869 * lpfc_sli_next_iocb - Get the next iocb in the txq 7870 * @phba: Pointer to HBA context object. 7871 * @pring: Pointer to driver SLI ring object. 7872 * @piocb: Pointer to address of newly added command iocb. 7873 * 7874 * This function is called with hbalock held before a new 7875 * iocb is submitted to the firmware. This function checks 7876 * txq to flush the iocbs in txq to Firmware before 7877 * submitting new iocbs to the Firmware. 7878 * If there are iocbs in the txq which need to be submitted 7879 * to firmware, lpfc_sli_next_iocb returns the first element 7880 * of the txq after dequeuing it from txq. 7881 * If there is no iocb in the txq then the function will return 7882 * *piocb and *piocb is set to NULL. Caller needs to check 7883 * *piocb to find if there are more commands in the txq. 7884 **/ 7885 static struct lpfc_iocbq * 7886 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 7887 struct lpfc_iocbq **piocb) 7888 { 7889 struct lpfc_iocbq * nextiocb; 7890 7891 nextiocb = lpfc_sli_ringtx_get(phba, pring); 7892 if (!nextiocb) { 7893 nextiocb = *piocb; 7894 *piocb = NULL; 7895 } 7896 7897 return nextiocb; 7898 } 7899 7900 /** 7901 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 7902 * @phba: Pointer to HBA context object. 7903 * @ring_number: SLI ring number to issue iocb on. 7904 * @piocb: Pointer to command iocb. 7905 * @flag: Flag indicating if this command can be put into txq. 7906 * 7907 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 7908 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 7909 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 7910 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 7911 * this function allows only iocbs for posting buffers. This function finds 7912 * next available slot in the command ring and posts the command to the 7913 * available slot and writes the port attention register to request HBA start 7914 * processing new iocb. If there is no slot available in the ring and 7915 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 7916 * the function returns IOCB_BUSY. 7917 * 7918 * This function is called with hbalock held. The function will return success 7919 * after it successfully submit the iocb to firmware or after adding to the 7920 * txq. 7921 **/ 7922 static int 7923 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 7924 struct lpfc_iocbq *piocb, uint32_t flag) 7925 { 7926 struct lpfc_iocbq *nextiocb; 7927 IOCB_t *iocb; 7928 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 7929 7930 if (piocb->iocb_cmpl && (!piocb->vport) && 7931 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 7932 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 7933 lpfc_printf_log(phba, KERN_ERR, 7934 LOG_SLI | LOG_VPORT, 7935 "1807 IOCB x%x failed. No vport\n", 7936 piocb->iocb.ulpCommand); 7937 dump_stack(); 7938 return IOCB_ERROR; 7939 } 7940 7941 7942 /* If the PCI channel is in offline state, do not post iocbs. */ 7943 if (unlikely(pci_channel_offline(phba->pcidev))) 7944 return IOCB_ERROR; 7945 7946 /* If HBA has a deferred error attention, fail the iocb. */ 7947 if (unlikely(phba->hba_flag & DEFER_ERATT)) 7948 return IOCB_ERROR; 7949 7950 /* 7951 * We should never get an IOCB if we are in a < LINK_DOWN state 7952 */ 7953 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 7954 return IOCB_ERROR; 7955 7956 /* 7957 * Check to see if we are blocking IOCB processing because of a 7958 * outstanding event. 7959 */ 7960 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 7961 goto iocb_busy; 7962 7963 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 7964 /* 7965 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 7966 * can be issued if the link is not up. 7967 */ 7968 switch (piocb->iocb.ulpCommand) { 7969 case CMD_GEN_REQUEST64_CR: 7970 case CMD_GEN_REQUEST64_CX: 7971 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 7972 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 7973 FC_RCTL_DD_UNSOL_CMD) || 7974 (piocb->iocb.un.genreq64.w5.hcsw.Type != 7975 MENLO_TRANSPORT_TYPE)) 7976 7977 goto iocb_busy; 7978 break; 7979 case CMD_QUE_RING_BUF_CN: 7980 case CMD_QUE_RING_BUF64_CN: 7981 /* 7982 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 7983 * completion, iocb_cmpl MUST be 0. 7984 */ 7985 if (piocb->iocb_cmpl) 7986 piocb->iocb_cmpl = NULL; 7987 /*FALLTHROUGH*/ 7988 case CMD_CREATE_XRI_CR: 7989 case CMD_CLOSE_XRI_CN: 7990 case CMD_CLOSE_XRI_CX: 7991 break; 7992 default: 7993 goto iocb_busy; 7994 } 7995 7996 /* 7997 * For FCP commands, we must be in a state where we can process link 7998 * attention events. 7999 */ 8000 } else if (unlikely(pring->ringno == phba->sli.fcp_ring && 8001 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8002 goto iocb_busy; 8003 } 8004 8005 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8006 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8007 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8008 8009 if (iocb) 8010 lpfc_sli_update_ring(phba, pring); 8011 else 8012 lpfc_sli_update_full_ring(phba, pring); 8013 8014 if (!piocb) 8015 return IOCB_SUCCESS; 8016 8017 goto out_busy; 8018 8019 iocb_busy: 8020 pring->stats.iocb_cmd_delay++; 8021 8022 out_busy: 8023 8024 if (!(flag & SLI_IOCB_RET_IOCB)) { 8025 __lpfc_sli_ringtx_put(phba, pring, piocb); 8026 return IOCB_SUCCESS; 8027 } 8028 8029 return IOCB_BUSY; 8030 } 8031 8032 /** 8033 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8034 * @phba: Pointer to HBA context object. 8035 * @piocb: Pointer to command iocb. 8036 * @sglq: Pointer to the scatter gather queue object. 8037 * 8038 * This routine converts the bpl or bde that is in the IOCB 8039 * to a sgl list for the sli4 hardware. The physical address 8040 * of the bpl/bde is converted back to a virtual address. 8041 * If the IOCB contains a BPL then the list of BDE's is 8042 * converted to sli4_sge's. If the IOCB contains a single 8043 * BDE then it is converted to a single sli_sge. 8044 * The IOCB is still in cpu endianess so the contents of 8045 * the bpl can be used without byte swapping. 8046 * 8047 * Returns valid XRI = Success, NO_XRI = Failure. 8048 **/ 8049 static uint16_t 8050 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8051 struct lpfc_sglq *sglq) 8052 { 8053 uint16_t xritag = NO_XRI; 8054 struct ulp_bde64 *bpl = NULL; 8055 struct ulp_bde64 bde; 8056 struct sli4_sge *sgl = NULL; 8057 struct lpfc_dmabuf *dmabuf; 8058 IOCB_t *icmd; 8059 int numBdes = 0; 8060 int i = 0; 8061 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8062 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8063 8064 if (!piocbq || !sglq) 8065 return xritag; 8066 8067 sgl = (struct sli4_sge *)sglq->sgl; 8068 icmd = &piocbq->iocb; 8069 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8070 return sglq->sli4_xritag; 8071 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8072 numBdes = icmd->un.genreq64.bdl.bdeSize / 8073 sizeof(struct ulp_bde64); 8074 /* The addrHigh and addrLow fields within the IOCB 8075 * have not been byteswapped yet so there is no 8076 * need to swap them back. 8077 */ 8078 if (piocbq->context3) 8079 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8080 else 8081 return xritag; 8082 8083 bpl = (struct ulp_bde64 *)dmabuf->virt; 8084 if (!bpl) 8085 return xritag; 8086 8087 for (i = 0; i < numBdes; i++) { 8088 /* Should already be byte swapped. */ 8089 sgl->addr_hi = bpl->addrHigh; 8090 sgl->addr_lo = bpl->addrLow; 8091 8092 sgl->word2 = le32_to_cpu(sgl->word2); 8093 if ((i+1) == numBdes) 8094 bf_set(lpfc_sli4_sge_last, sgl, 1); 8095 else 8096 bf_set(lpfc_sli4_sge_last, sgl, 0); 8097 /* swap the size field back to the cpu so we 8098 * can assign it to the sgl. 8099 */ 8100 bde.tus.w = le32_to_cpu(bpl->tus.w); 8101 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8102 /* The offsets in the sgl need to be accumulated 8103 * separately for the request and reply lists. 8104 * The request is always first, the reply follows. 8105 */ 8106 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8107 /* add up the reply sg entries */ 8108 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8109 inbound++; 8110 /* first inbound? reset the offset */ 8111 if (inbound == 1) 8112 offset = 0; 8113 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8114 bf_set(lpfc_sli4_sge_type, sgl, 8115 LPFC_SGE_TYPE_DATA); 8116 offset += bde.tus.f.bdeSize; 8117 } 8118 sgl->word2 = cpu_to_le32(sgl->word2); 8119 bpl++; 8120 sgl++; 8121 } 8122 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8123 /* The addrHigh and addrLow fields of the BDE have not 8124 * been byteswapped yet so they need to be swapped 8125 * before putting them in the sgl. 8126 */ 8127 sgl->addr_hi = 8128 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8129 sgl->addr_lo = 8130 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8131 sgl->word2 = le32_to_cpu(sgl->word2); 8132 bf_set(lpfc_sli4_sge_last, sgl, 1); 8133 sgl->word2 = cpu_to_le32(sgl->word2); 8134 sgl->sge_len = 8135 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8136 } 8137 return sglq->sli4_xritag; 8138 } 8139 8140 /** 8141 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8142 * @phba: Pointer to HBA context object. 8143 * @piocb: Pointer to command iocb. 8144 * @wqe: Pointer to the work queue entry. 8145 * 8146 * This routine converts the iocb command to its Work Queue Entry 8147 * equivalent. The wqe pointer should not have any fields set when 8148 * this routine is called because it will memcpy over them. 8149 * This routine does not set the CQ_ID or the WQEC bits in the 8150 * wqe. 8151 * 8152 * Returns: 0 = Success, IOCB_ERROR = Failure. 8153 **/ 8154 static int 8155 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8156 union lpfc_wqe *wqe) 8157 { 8158 uint32_t xmit_len = 0, total_len = 0; 8159 uint8_t ct = 0; 8160 uint32_t fip; 8161 uint32_t abort_tag; 8162 uint8_t command_type = ELS_COMMAND_NON_FIP; 8163 uint8_t cmnd; 8164 uint16_t xritag; 8165 uint16_t abrt_iotag; 8166 struct lpfc_iocbq *abrtiocbq; 8167 struct ulp_bde64 *bpl = NULL; 8168 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8169 int numBdes, i; 8170 struct ulp_bde64 bde; 8171 struct lpfc_nodelist *ndlp; 8172 uint32_t *pcmd; 8173 uint32_t if_type; 8174 8175 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8176 /* The fcp commands will set command type */ 8177 if (iocbq->iocb_flag & LPFC_IO_FCP) 8178 command_type = FCP_COMMAND; 8179 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8180 command_type = ELS_COMMAND_FIP; 8181 else 8182 command_type = ELS_COMMAND_NON_FIP; 8183 8184 /* Some of the fields are in the right position already */ 8185 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8186 abort_tag = (uint32_t) iocbq->iotag; 8187 xritag = iocbq->sli4_xritag; 8188 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8189 wqe->generic.wqe_com.word10 = 0; 8190 /* words0-2 bpl convert bde */ 8191 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8192 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8193 sizeof(struct ulp_bde64); 8194 bpl = (struct ulp_bde64 *) 8195 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8196 if (!bpl) 8197 return IOCB_ERROR; 8198 8199 /* Should already be byte swapped. */ 8200 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8201 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8202 /* swap the size field back to the cpu so we 8203 * can assign it to the sgl. 8204 */ 8205 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8206 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8207 total_len = 0; 8208 for (i = 0; i < numBdes; i++) { 8209 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8210 total_len += bde.tus.f.bdeSize; 8211 } 8212 } else 8213 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8214 8215 iocbq->iocb.ulpIoTag = iocbq->iotag; 8216 cmnd = iocbq->iocb.ulpCommand; 8217 8218 switch (iocbq->iocb.ulpCommand) { 8219 case CMD_ELS_REQUEST64_CR: 8220 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8221 ndlp = iocbq->context_un.ndlp; 8222 else 8223 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8224 if (!iocbq->iocb.ulpLe) { 8225 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8226 "2007 Only Limited Edition cmd Format" 8227 " supported 0x%x\n", 8228 iocbq->iocb.ulpCommand); 8229 return IOCB_ERROR; 8230 } 8231 8232 wqe->els_req.payload_len = xmit_len; 8233 /* Els_reguest64 has a TMO */ 8234 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8235 iocbq->iocb.ulpTimeout); 8236 /* Need a VF for word 4 set the vf bit*/ 8237 bf_set(els_req64_vf, &wqe->els_req, 0); 8238 /* And a VFID for word 12 */ 8239 bf_set(els_req64_vfid, &wqe->els_req, 0); 8240 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8241 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8242 iocbq->iocb.ulpContext); 8243 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8244 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8245 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8246 if (command_type == ELS_COMMAND_FIP) 8247 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8248 >> LPFC_FIP_ELS_ID_SHIFT); 8249 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8250 iocbq->context2)->virt); 8251 if_type = bf_get(lpfc_sli_intf_if_type, 8252 &phba->sli4_hba.sli_intf); 8253 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8254 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8255 *pcmd == ELS_CMD_SCR || 8256 *pcmd == ELS_CMD_FDISC || 8257 *pcmd == ELS_CMD_LOGO || 8258 *pcmd == ELS_CMD_PLOGI)) { 8259 bf_set(els_req64_sp, &wqe->els_req, 1); 8260 bf_set(els_req64_sid, &wqe->els_req, 8261 iocbq->vport->fc_myDID); 8262 if ((*pcmd == ELS_CMD_FLOGI) && 8263 !(phba->fc_topology == 8264 LPFC_TOPOLOGY_LOOP)) 8265 bf_set(els_req64_sid, &wqe->els_req, 0); 8266 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8267 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8268 phba->vpi_ids[iocbq->vport->vpi]); 8269 } else if (pcmd && iocbq->context1) { 8270 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8271 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8272 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8273 } 8274 } 8275 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8276 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8277 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8278 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8279 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8280 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8281 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8282 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8283 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8284 break; 8285 case CMD_XMIT_SEQUENCE64_CX: 8286 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8287 iocbq->iocb.un.ulpWord[3]); 8288 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8289 iocbq->iocb.unsli3.rcvsli3.ox_id); 8290 /* The entire sequence is transmitted for this IOCB */ 8291 xmit_len = total_len; 8292 cmnd = CMD_XMIT_SEQUENCE64_CR; 8293 if (phba->link_flag & LS_LOOPBACK_MODE) 8294 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8295 case CMD_XMIT_SEQUENCE64_CR: 8296 /* word3 iocb=io_tag32 wqe=reserved */ 8297 wqe->xmit_sequence.rsvd3 = 0; 8298 /* word4 relative_offset memcpy */ 8299 /* word5 r_ctl/df_ctl memcpy */ 8300 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8301 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8302 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8303 LPFC_WQE_IOD_WRITE); 8304 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8305 LPFC_WQE_LENLOC_WORD12); 8306 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8307 wqe->xmit_sequence.xmit_len = xmit_len; 8308 command_type = OTHER_COMMAND; 8309 break; 8310 case CMD_XMIT_BCAST64_CN: 8311 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8312 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8313 /* word4 iocb=rsvd wqe=rsvd */ 8314 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8315 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8316 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8317 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8318 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8319 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8320 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8321 LPFC_WQE_LENLOC_WORD3); 8322 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8323 break; 8324 case CMD_FCP_IWRITE64_CR: 8325 command_type = FCP_COMMAND_DATA_OUT; 8326 /* word3 iocb=iotag wqe=payload_offset_len */ 8327 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8328 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8329 xmit_len + sizeof(struct fcp_rsp)); 8330 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8331 0); 8332 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8333 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8334 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8335 iocbq->iocb.ulpFCP2Rcvy); 8336 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8337 /* Always open the exchange */ 8338 bf_set(wqe_xc, &wqe->fcp_iwrite.wqe_com, 0); 8339 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8340 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8341 LPFC_WQE_LENLOC_WORD4); 8342 bf_set(wqe_ebde_cnt, &wqe->fcp_iwrite.wqe_com, 0); 8343 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8344 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8345 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8346 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8347 if (phba->cfg_XLanePriority) { 8348 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8349 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8350 (phba->cfg_XLanePriority << 1)); 8351 } 8352 } 8353 break; 8354 case CMD_FCP_IREAD64_CR: 8355 /* word3 iocb=iotag wqe=payload_offset_len */ 8356 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8357 bf_set(payload_offset_len, &wqe->fcp_iread, 8358 xmit_len + sizeof(struct fcp_rsp)); 8359 bf_set(cmd_buff_len, &wqe->fcp_iread, 8360 0); 8361 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8362 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8363 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8364 iocbq->iocb.ulpFCP2Rcvy); 8365 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8366 /* Always open the exchange */ 8367 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0); 8368 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8369 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8370 LPFC_WQE_LENLOC_WORD4); 8371 bf_set(wqe_ebde_cnt, &wqe->fcp_iread.wqe_com, 0); 8372 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8373 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8374 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8375 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8376 if (phba->cfg_XLanePriority) { 8377 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8378 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8379 (phba->cfg_XLanePriority << 1)); 8380 } 8381 } 8382 break; 8383 case CMD_FCP_ICMND64_CR: 8384 /* word3 iocb=iotag wqe=payload_offset_len */ 8385 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8386 bf_set(payload_offset_len, &wqe->fcp_icmd, 8387 xmit_len + sizeof(struct fcp_rsp)); 8388 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8389 0); 8390 /* word3 iocb=IO_TAG wqe=reserved */ 8391 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8392 /* Always open the exchange */ 8393 bf_set(wqe_xc, &wqe->fcp_icmd.wqe_com, 0); 8394 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8395 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8396 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8397 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8398 LPFC_WQE_LENLOC_NONE); 8399 bf_set(wqe_ebde_cnt, &wqe->fcp_icmd.wqe_com, 0); 8400 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8401 iocbq->iocb.ulpFCP2Rcvy); 8402 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8403 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8404 if (phba->cfg_XLanePriority) { 8405 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8406 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8407 (phba->cfg_XLanePriority << 1)); 8408 } 8409 } 8410 break; 8411 case CMD_GEN_REQUEST64_CR: 8412 /* For this command calculate the xmit length of the 8413 * request bde. 8414 */ 8415 xmit_len = 0; 8416 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8417 sizeof(struct ulp_bde64); 8418 for (i = 0; i < numBdes; i++) { 8419 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8420 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8421 break; 8422 xmit_len += bde.tus.f.bdeSize; 8423 } 8424 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8425 wqe->gen_req.request_payload_len = xmit_len; 8426 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8427 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8428 /* word6 context tag copied in memcpy */ 8429 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8430 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8431 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8432 "2015 Invalid CT %x command 0x%x\n", 8433 ct, iocbq->iocb.ulpCommand); 8434 return IOCB_ERROR; 8435 } 8436 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8437 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8438 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8439 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8440 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8441 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8442 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8443 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8444 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8445 command_type = OTHER_COMMAND; 8446 break; 8447 case CMD_XMIT_ELS_RSP64_CX: 8448 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8449 /* words0-2 BDE memcpy */ 8450 /* word3 iocb=iotag32 wqe=response_payload_len */ 8451 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8452 /* word4 */ 8453 wqe->xmit_els_rsp.word4 = 0; 8454 /* word5 iocb=rsvd wge=did */ 8455 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8456 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8457 8458 if_type = bf_get(lpfc_sli_intf_if_type, 8459 &phba->sli4_hba.sli_intf); 8460 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8461 if (iocbq->vport->fc_flag & FC_PT2PT) { 8462 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8463 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8464 iocbq->vport->fc_myDID); 8465 if (iocbq->vport->fc_myDID == Fabric_DID) { 8466 bf_set(wqe_els_did, 8467 &wqe->xmit_els_rsp.wqe_dest, 0); 8468 } 8469 } 8470 } 8471 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8472 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8473 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8474 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8475 iocbq->iocb.unsli3.rcvsli3.ox_id); 8476 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 8477 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8478 phba->vpi_ids[iocbq->vport->vpi]); 8479 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 8480 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 8481 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 8482 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 8483 LPFC_WQE_LENLOC_WORD3); 8484 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 8485 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 8486 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8487 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8488 iocbq->context2)->virt); 8489 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 8490 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8491 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8492 iocbq->vport->fc_myDID); 8493 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 8494 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 8495 phba->vpi_ids[phba->pport->vpi]); 8496 } 8497 command_type = OTHER_COMMAND; 8498 break; 8499 case CMD_CLOSE_XRI_CN: 8500 case CMD_ABORT_XRI_CN: 8501 case CMD_ABORT_XRI_CX: 8502 /* words 0-2 memcpy should be 0 rserved */ 8503 /* port will send abts */ 8504 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 8505 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 8506 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 8507 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 8508 } else 8509 fip = 0; 8510 8511 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 8512 /* 8513 * The link is down, or the command was ELS_FIP 8514 * so the fw does not need to send abts 8515 * on the wire. 8516 */ 8517 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 8518 else 8519 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 8520 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 8521 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 8522 wqe->abort_cmd.rsrvd5 = 0; 8523 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 8524 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8525 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 8526 /* 8527 * The abort handler will send us CMD_ABORT_XRI_CN or 8528 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 8529 */ 8530 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 8531 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 8532 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 8533 LPFC_WQE_LENLOC_NONE); 8534 cmnd = CMD_ABORT_XRI_CX; 8535 command_type = OTHER_COMMAND; 8536 xritag = 0; 8537 break; 8538 case CMD_XMIT_BLS_RSP64_CX: 8539 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8540 /* As BLS ABTS RSP WQE is very different from other WQEs, 8541 * we re-construct this WQE here based on information in 8542 * iocbq from scratch. 8543 */ 8544 memset(wqe, 0, sizeof(union lpfc_wqe)); 8545 /* OX_ID is invariable to who sent ABTS to CT exchange */ 8546 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 8547 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 8548 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 8549 LPFC_ABTS_UNSOL_INT) { 8550 /* ABTS sent by initiator to CT exchange, the 8551 * RX_ID field will be filled with the newly 8552 * allocated responder XRI. 8553 */ 8554 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8555 iocbq->sli4_xritag); 8556 } else { 8557 /* ABTS sent by responder to CT exchange, the 8558 * RX_ID field will be filled with the responder 8559 * RX_ID from ABTS. 8560 */ 8561 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 8562 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 8563 } 8564 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 8565 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 8566 8567 /* Use CT=VPI */ 8568 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 8569 ndlp->nlp_DID); 8570 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 8571 iocbq->iocb.ulpContext); 8572 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 8573 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 8574 phba->vpi_ids[phba->pport->vpi]); 8575 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 8576 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 8577 LPFC_WQE_LENLOC_NONE); 8578 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 8579 command_type = OTHER_COMMAND; 8580 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 8581 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 8582 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 8583 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 8584 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 8585 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 8586 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 8587 } 8588 8589 break; 8590 case CMD_XRI_ABORTED_CX: 8591 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 8592 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 8593 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 8594 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 8595 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 8596 default: 8597 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8598 "2014 Invalid command 0x%x\n", 8599 iocbq->iocb.ulpCommand); 8600 return IOCB_ERROR; 8601 break; 8602 } 8603 8604 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 8605 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 8606 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 8607 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 8608 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 8609 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 8610 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 8611 LPFC_IO_DIF_INSERT); 8612 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 8613 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 8614 wqe->generic.wqe_com.abort_tag = abort_tag; 8615 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 8616 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 8617 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 8618 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 8619 return 0; 8620 } 8621 8622 /** 8623 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 8624 * @phba: Pointer to HBA context object. 8625 * @ring_number: SLI ring number to issue iocb on. 8626 * @piocb: Pointer to command iocb. 8627 * @flag: Flag indicating if this command can be put into txq. 8628 * 8629 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 8630 * an iocb command to an HBA with SLI-4 interface spec. 8631 * 8632 * This function is called with hbalock held. The function will return success 8633 * after it successfully submit the iocb to firmware or after adding to the 8634 * txq. 8635 **/ 8636 static int 8637 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 8638 struct lpfc_iocbq *piocb, uint32_t flag) 8639 { 8640 struct lpfc_sglq *sglq; 8641 union lpfc_wqe wqe; 8642 struct lpfc_queue *wq; 8643 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number]; 8644 8645 if (piocb->sli4_xritag == NO_XRI) { 8646 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 8647 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 8648 sglq = NULL; 8649 else { 8650 if (!list_empty(&pring->txq)) { 8651 if (!(flag & SLI_IOCB_RET_IOCB)) { 8652 __lpfc_sli_ringtx_put(phba, 8653 pring, piocb); 8654 return IOCB_SUCCESS; 8655 } else { 8656 return IOCB_BUSY; 8657 } 8658 } else { 8659 sglq = __lpfc_sli_get_sglq(phba, piocb); 8660 if (!sglq) { 8661 if (!(flag & SLI_IOCB_RET_IOCB)) { 8662 __lpfc_sli_ringtx_put(phba, 8663 pring, 8664 piocb); 8665 return IOCB_SUCCESS; 8666 } else 8667 return IOCB_BUSY; 8668 } 8669 } 8670 } 8671 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 8672 /* These IO's already have an XRI and a mapped sgl. */ 8673 sglq = NULL; 8674 } else { 8675 /* 8676 * This is a continuation of a commandi,(CX) so this 8677 * sglq is on the active list 8678 */ 8679 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 8680 if (!sglq) 8681 return IOCB_ERROR; 8682 } 8683 8684 if (sglq) { 8685 piocb->sli4_lxritag = sglq->sli4_lxritag; 8686 piocb->sli4_xritag = sglq->sli4_xritag; 8687 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 8688 return IOCB_ERROR; 8689 } 8690 8691 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 8692 return IOCB_ERROR; 8693 8694 if ((piocb->iocb_flag & LPFC_IO_FCP) || 8695 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 8696 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) { 8697 wq = phba->sli4_hba.fcp_wq[piocb->fcp_wqidx]; 8698 } else { 8699 wq = phba->sli4_hba.oas_wq; 8700 } 8701 if (lpfc_sli4_wq_put(wq, &wqe)) 8702 return IOCB_ERROR; 8703 } else { 8704 if (unlikely(!phba->sli4_hba.els_wq)) 8705 return IOCB_ERROR; 8706 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 8707 return IOCB_ERROR; 8708 } 8709 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 8710 8711 return 0; 8712 } 8713 8714 /** 8715 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 8716 * 8717 * This routine wraps the actual lockless version for issusing IOCB function 8718 * pointer from the lpfc_hba struct. 8719 * 8720 * Return codes: 8721 * IOCB_ERROR - Error 8722 * IOCB_SUCCESS - Success 8723 * IOCB_BUSY - Busy 8724 **/ 8725 int 8726 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8727 struct lpfc_iocbq *piocb, uint32_t flag) 8728 { 8729 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8730 } 8731 8732 /** 8733 * lpfc_sli_api_table_setup - Set up sli api function jump table 8734 * @phba: The hba struct for which this call is being executed. 8735 * @dev_grp: The HBA PCI-Device group number. 8736 * 8737 * This routine sets up the SLI interface API function jump table in @phba 8738 * struct. 8739 * Returns: 0 - success, -ENODEV - failure. 8740 **/ 8741 int 8742 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8743 { 8744 8745 switch (dev_grp) { 8746 case LPFC_PCI_DEV_LP: 8747 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 8748 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 8749 break; 8750 case LPFC_PCI_DEV_OC: 8751 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 8752 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 8753 break; 8754 default: 8755 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8756 "1419 Invalid HBA PCI-device group: 0x%x\n", 8757 dev_grp); 8758 return -ENODEV; 8759 break; 8760 } 8761 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 8762 return 0; 8763 } 8764 8765 /** 8766 * lpfc_sli_calc_ring - Calculates which ring to use 8767 * @phba: Pointer to HBA context object. 8768 * @ring_number: Initial ring 8769 * @piocb: Pointer to command iocb. 8770 * 8771 * For SLI4, FCP IO can deferred to one fo many WQs, based on 8772 * fcp_wqidx, thus we need to calculate the corresponding ring. 8773 * Since ABORTS must go on the same WQ of the command they are 8774 * aborting, we use command's fcp_wqidx. 8775 */ 8776 int 8777 lpfc_sli_calc_ring(struct lpfc_hba *phba, uint32_t ring_number, 8778 struct lpfc_iocbq *piocb) 8779 { 8780 if (phba->sli_rev < LPFC_SLI_REV4) 8781 return ring_number; 8782 8783 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 8784 if (!(phba->cfg_fof) || 8785 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 8786 if (unlikely(!phba->sli4_hba.fcp_wq)) 8787 return LPFC_HBA_ERROR; 8788 /* 8789 * for abort iocb fcp_wqidx should already 8790 * be setup based on what work queue we used. 8791 */ 8792 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 8793 piocb->fcp_wqidx = 8794 lpfc_sli4_scmd_to_wqidx_distr(phba, 8795 piocb->context1); 8796 ring_number = MAX_SLI3_CONFIGURED_RINGS + 8797 piocb->fcp_wqidx; 8798 } else { 8799 if (unlikely(!phba->sli4_hba.oas_wq)) 8800 return LPFC_HBA_ERROR; 8801 piocb->fcp_wqidx = 0; 8802 ring_number = LPFC_FCP_OAS_RING; 8803 } 8804 } 8805 return ring_number; 8806 } 8807 8808 /** 8809 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 8810 * @phba: Pointer to HBA context object. 8811 * @pring: Pointer to driver SLI ring object. 8812 * @piocb: Pointer to command iocb. 8813 * @flag: Flag indicating if this command can be put into txq. 8814 * 8815 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 8816 * function. This function gets the hbalock and calls 8817 * __lpfc_sli_issue_iocb function and will return the error returned 8818 * by __lpfc_sli_issue_iocb function. This wrapper is used by 8819 * functions which do not hold hbalock. 8820 **/ 8821 int 8822 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 8823 struct lpfc_iocbq *piocb, uint32_t flag) 8824 { 8825 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 8826 struct lpfc_sli_ring *pring; 8827 struct lpfc_queue *fpeq; 8828 struct lpfc_eqe *eqe; 8829 unsigned long iflags; 8830 int rc, idx; 8831 8832 if (phba->sli_rev == LPFC_SLI_REV4) { 8833 ring_number = lpfc_sli_calc_ring(phba, ring_number, piocb); 8834 if (unlikely(ring_number == LPFC_HBA_ERROR)) 8835 return IOCB_ERROR; 8836 idx = piocb->fcp_wqidx; 8837 8838 pring = &phba->sli.ring[ring_number]; 8839 spin_lock_irqsave(&pring->ring_lock, iflags); 8840 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8841 spin_unlock_irqrestore(&pring->ring_lock, iflags); 8842 8843 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 8844 fcp_eq_hdl = &phba->sli4_hba.fcp_eq_hdl[idx]; 8845 8846 if (atomic_dec_and_test(&fcp_eq_hdl-> 8847 fcp_eq_in_use)) { 8848 8849 /* Get associated EQ with this index */ 8850 fpeq = phba->sli4_hba.hba_eq[idx]; 8851 8852 /* Turn off interrupts from this EQ */ 8853 lpfc_sli4_eq_clr_intr(fpeq); 8854 8855 /* 8856 * Process all the events on FCP EQ 8857 */ 8858 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 8859 lpfc_sli4_hba_handle_eqe(phba, 8860 eqe, idx); 8861 fpeq->EQ_processed++; 8862 } 8863 8864 /* Always clear and re-arm the EQ */ 8865 lpfc_sli4_eq_release(fpeq, 8866 LPFC_QUEUE_REARM); 8867 } 8868 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 8869 } 8870 } else { 8871 /* For now, SLI2/3 will still use hbalock */ 8872 spin_lock_irqsave(&phba->hbalock, iflags); 8873 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 8874 spin_unlock_irqrestore(&phba->hbalock, iflags); 8875 } 8876 return rc; 8877 } 8878 8879 /** 8880 * lpfc_extra_ring_setup - Extra ring setup function 8881 * @phba: Pointer to HBA context object. 8882 * 8883 * This function is called while driver attaches with the 8884 * HBA to setup the extra ring. The extra ring is used 8885 * only when driver needs to support target mode functionality 8886 * or IP over FC functionalities. 8887 * 8888 * This function is called with no lock held. 8889 **/ 8890 static int 8891 lpfc_extra_ring_setup( struct lpfc_hba *phba) 8892 { 8893 struct lpfc_sli *psli; 8894 struct lpfc_sli_ring *pring; 8895 8896 psli = &phba->sli; 8897 8898 /* Adjust cmd/rsp ring iocb entries more evenly */ 8899 8900 /* Take some away from the FCP ring */ 8901 pring = &psli->ring[psli->fcp_ring]; 8902 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8903 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8904 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8905 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8906 8907 /* and give them to the extra ring */ 8908 pring = &psli->ring[psli->extra_ring]; 8909 8910 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 8911 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 8912 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 8913 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 8914 8915 /* Setup default profile for this ring */ 8916 pring->iotag_max = 4096; 8917 pring->num_mask = 1; 8918 pring->prt[0].profile = 0; /* Mask 0 */ 8919 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 8920 pring->prt[0].type = phba->cfg_multi_ring_type; 8921 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 8922 return 0; 8923 } 8924 8925 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 8926 * @phba: Pointer to HBA context object. 8927 * @iocbq: Pointer to iocb object. 8928 * 8929 * The async_event handler calls this routine when it receives 8930 * an ASYNC_STATUS_CN event from the port. The port generates 8931 * this event when an Abort Sequence request to an rport fails 8932 * twice in succession. The abort could be originated by the 8933 * driver or by the port. The ABTS could have been for an ELS 8934 * or FCP IO. The port only generates this event when an ABTS 8935 * fails to complete after one retry. 8936 */ 8937 static void 8938 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 8939 struct lpfc_iocbq *iocbq) 8940 { 8941 struct lpfc_nodelist *ndlp = NULL; 8942 uint16_t rpi = 0, vpi = 0; 8943 struct lpfc_vport *vport = NULL; 8944 8945 /* The rpi in the ulpContext is vport-sensitive. */ 8946 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 8947 rpi = iocbq->iocb.ulpContext; 8948 8949 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 8950 "3092 Port generated ABTS async event " 8951 "on vpi %d rpi %d status 0x%x\n", 8952 vpi, rpi, iocbq->iocb.ulpStatus); 8953 8954 vport = lpfc_find_vport_by_vpid(phba, vpi); 8955 if (!vport) 8956 goto err_exit; 8957 ndlp = lpfc_findnode_rpi(vport, rpi); 8958 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 8959 goto err_exit; 8960 8961 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 8962 lpfc_sli_abts_recover_port(vport, ndlp); 8963 return; 8964 8965 err_exit: 8966 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8967 "3095 Event Context not found, no " 8968 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 8969 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 8970 vpi, rpi); 8971 } 8972 8973 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 8974 * @phba: pointer to HBA context object. 8975 * @ndlp: nodelist pointer for the impacted rport. 8976 * @axri: pointer to the wcqe containing the failed exchange. 8977 * 8978 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 8979 * port. The port generates this event when an abort exchange request to an 8980 * rport fails twice in succession with no reply. The abort could be originated 8981 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 8982 */ 8983 void 8984 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 8985 struct lpfc_nodelist *ndlp, 8986 struct sli4_wcqe_xri_aborted *axri) 8987 { 8988 struct lpfc_vport *vport; 8989 uint32_t ext_status = 0; 8990 8991 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 8992 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 8993 "3115 Node Context not found, driver " 8994 "ignoring abts err event\n"); 8995 return; 8996 } 8997 8998 vport = ndlp->vport; 8999 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9000 "3116 Port generated FCP XRI ABORT event on " 9001 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9002 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9003 bf_get(lpfc_wcqe_xa_xri, axri), 9004 bf_get(lpfc_wcqe_xa_status, axri), 9005 axri->parameter); 9006 9007 /* 9008 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9009 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9010 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9011 */ 9012 ext_status = axri->parameter & IOERR_PARAM_MASK; 9013 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9014 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9015 lpfc_sli_abts_recover_port(vport, ndlp); 9016 } 9017 9018 /** 9019 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9020 * @phba: Pointer to HBA context object. 9021 * @pring: Pointer to driver SLI ring object. 9022 * @iocbq: Pointer to iocb object. 9023 * 9024 * This function is called by the slow ring event handler 9025 * function when there is an ASYNC event iocb in the ring. 9026 * This function is called with no lock held. 9027 * Currently this function handles only temperature related 9028 * ASYNC events. The function decodes the temperature sensor 9029 * event message and posts events for the management applications. 9030 **/ 9031 static void 9032 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9033 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9034 { 9035 IOCB_t *icmd; 9036 uint16_t evt_code; 9037 struct temp_event temp_event_data; 9038 struct Scsi_Host *shost; 9039 uint32_t *iocb_w; 9040 9041 icmd = &iocbq->iocb; 9042 evt_code = icmd->un.asyncstat.evt_code; 9043 9044 switch (evt_code) { 9045 case ASYNC_TEMP_WARN: 9046 case ASYNC_TEMP_SAFE: 9047 temp_event_data.data = (uint32_t) icmd->ulpContext; 9048 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9049 if (evt_code == ASYNC_TEMP_WARN) { 9050 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9051 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9052 "0347 Adapter is very hot, please take " 9053 "corrective action. temperature : %d Celsius\n", 9054 (uint32_t) icmd->ulpContext); 9055 } else { 9056 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9057 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9058 "0340 Adapter temperature is OK now. " 9059 "temperature : %d Celsius\n", 9060 (uint32_t) icmd->ulpContext); 9061 } 9062 9063 /* Send temperature change event to applications */ 9064 shost = lpfc_shost_from_vport(phba->pport); 9065 fc_host_post_vendor_event(shost, fc_get_event_number(), 9066 sizeof(temp_event_data), (char *) &temp_event_data, 9067 LPFC_NL_VENDOR_ID); 9068 break; 9069 case ASYNC_STATUS_CN: 9070 lpfc_sli_abts_err_handler(phba, iocbq); 9071 break; 9072 default: 9073 iocb_w = (uint32_t *) icmd; 9074 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9075 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9076 " evt_code 0x%x\n" 9077 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9078 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9079 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9080 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9081 pring->ringno, icmd->un.asyncstat.evt_code, 9082 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9083 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9084 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9085 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9086 9087 break; 9088 } 9089 } 9090 9091 9092 /** 9093 * lpfc_sli_setup - SLI ring setup function 9094 * @phba: Pointer to HBA context object. 9095 * 9096 * lpfc_sli_setup sets up rings of the SLI interface with 9097 * number of iocbs per ring and iotags. This function is 9098 * called while driver attach to the HBA and before the 9099 * interrupts are enabled. So there is no need for locking. 9100 * 9101 * This function always returns 0. 9102 **/ 9103 int 9104 lpfc_sli_setup(struct lpfc_hba *phba) 9105 { 9106 int i, totiocbsize = 0; 9107 struct lpfc_sli *psli = &phba->sli; 9108 struct lpfc_sli_ring *pring; 9109 9110 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9111 if (phba->sli_rev == LPFC_SLI_REV4) 9112 psli->num_rings += phba->cfg_fcp_io_channel; 9113 psli->sli_flag = 0; 9114 psli->fcp_ring = LPFC_FCP_RING; 9115 psli->next_ring = LPFC_FCP_NEXT_RING; 9116 psli->extra_ring = LPFC_EXTRA_RING; 9117 9118 psli->iocbq_lookup = NULL; 9119 psli->iocbq_lookup_len = 0; 9120 psli->last_iotag = 0; 9121 9122 for (i = 0; i < psli->num_rings; i++) { 9123 pring = &psli->ring[i]; 9124 switch (i) { 9125 case LPFC_FCP_RING: /* ring 0 - FCP */ 9126 /* numCiocb and numRiocb are used in config_port */ 9127 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9128 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9129 pring->sli.sli3.numCiocb += 9130 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9131 pring->sli.sli3.numRiocb += 9132 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9133 pring->sli.sli3.numCiocb += 9134 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9135 pring->sli.sli3.numRiocb += 9136 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9137 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9138 SLI3_IOCB_CMD_SIZE : 9139 SLI2_IOCB_CMD_SIZE; 9140 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9141 SLI3_IOCB_RSP_SIZE : 9142 SLI2_IOCB_RSP_SIZE; 9143 pring->iotag_ctr = 0; 9144 pring->iotag_max = 9145 (phba->cfg_hba_queue_depth * 2); 9146 pring->fast_iotag = pring->iotag_max; 9147 pring->num_mask = 0; 9148 break; 9149 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9150 /* numCiocb and numRiocb are used in config_port */ 9151 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9152 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9153 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9154 SLI3_IOCB_CMD_SIZE : 9155 SLI2_IOCB_CMD_SIZE; 9156 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9157 SLI3_IOCB_RSP_SIZE : 9158 SLI2_IOCB_RSP_SIZE; 9159 pring->iotag_max = phba->cfg_hba_queue_depth; 9160 pring->num_mask = 0; 9161 break; 9162 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9163 /* numCiocb and numRiocb are used in config_port */ 9164 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9165 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9166 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9167 SLI3_IOCB_CMD_SIZE : 9168 SLI2_IOCB_CMD_SIZE; 9169 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9170 SLI3_IOCB_RSP_SIZE : 9171 SLI2_IOCB_RSP_SIZE; 9172 pring->fast_iotag = 0; 9173 pring->iotag_ctr = 0; 9174 pring->iotag_max = 4096; 9175 pring->lpfc_sli_rcv_async_status = 9176 lpfc_sli_async_event_handler; 9177 pring->num_mask = LPFC_MAX_RING_MASK; 9178 pring->prt[0].profile = 0; /* Mask 0 */ 9179 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9180 pring->prt[0].type = FC_TYPE_ELS; 9181 pring->prt[0].lpfc_sli_rcv_unsol_event = 9182 lpfc_els_unsol_event; 9183 pring->prt[1].profile = 0; /* Mask 1 */ 9184 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9185 pring->prt[1].type = FC_TYPE_ELS; 9186 pring->prt[1].lpfc_sli_rcv_unsol_event = 9187 lpfc_els_unsol_event; 9188 pring->prt[2].profile = 0; /* Mask 2 */ 9189 /* NameServer Inquiry */ 9190 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9191 /* NameServer */ 9192 pring->prt[2].type = FC_TYPE_CT; 9193 pring->prt[2].lpfc_sli_rcv_unsol_event = 9194 lpfc_ct_unsol_event; 9195 pring->prt[3].profile = 0; /* Mask 3 */ 9196 /* NameServer response */ 9197 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9198 /* NameServer */ 9199 pring->prt[3].type = FC_TYPE_CT; 9200 pring->prt[3].lpfc_sli_rcv_unsol_event = 9201 lpfc_ct_unsol_event; 9202 break; 9203 } 9204 totiocbsize += (pring->sli.sli3.numCiocb * 9205 pring->sli.sli3.sizeCiocb) + 9206 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9207 } 9208 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9209 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9210 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9211 "SLI2 SLIM Data: x%x x%lx\n", 9212 phba->brd_no, totiocbsize, 9213 (unsigned long) MAX_SLIM_IOCB_SIZE); 9214 } 9215 if (phba->cfg_multi_ring_support == 2) 9216 lpfc_extra_ring_setup(phba); 9217 9218 return 0; 9219 } 9220 9221 /** 9222 * lpfc_sli_queue_setup - Queue initialization function 9223 * @phba: Pointer to HBA context object. 9224 * 9225 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each 9226 * ring. This function also initializes ring indices of each ring. 9227 * This function is called during the initialization of the SLI 9228 * interface of an HBA. 9229 * This function is called with no lock held and always returns 9230 * 1. 9231 **/ 9232 int 9233 lpfc_sli_queue_setup(struct lpfc_hba *phba) 9234 { 9235 struct lpfc_sli *psli; 9236 struct lpfc_sli_ring *pring; 9237 int i; 9238 9239 psli = &phba->sli; 9240 spin_lock_irq(&phba->hbalock); 9241 INIT_LIST_HEAD(&psli->mboxq); 9242 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9243 /* Initialize list headers for txq and txcmplq as double linked lists */ 9244 for (i = 0; i < psli->num_rings; i++) { 9245 pring = &psli->ring[i]; 9246 pring->ringno = i; 9247 pring->sli.sli3.next_cmdidx = 0; 9248 pring->sli.sli3.local_getidx = 0; 9249 pring->sli.sli3.cmdidx = 0; 9250 pring->flag = 0; 9251 INIT_LIST_HEAD(&pring->txq); 9252 INIT_LIST_HEAD(&pring->txcmplq); 9253 INIT_LIST_HEAD(&pring->iocb_continueq); 9254 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9255 INIT_LIST_HEAD(&pring->postbufq); 9256 spin_lock_init(&pring->ring_lock); 9257 } 9258 spin_unlock_irq(&phba->hbalock); 9259 return 1; 9260 } 9261 9262 /** 9263 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9264 * @phba: Pointer to HBA context object. 9265 * 9266 * This routine flushes the mailbox command subsystem. It will unconditionally 9267 * flush all the mailbox commands in the three possible stages in the mailbox 9268 * command sub-system: pending mailbox command queue; the outstanding mailbox 9269 * command; and completed mailbox command queue. It is caller's responsibility 9270 * to make sure that the driver is in the proper state to flush the mailbox 9271 * command sub-system. Namely, the posting of mailbox commands into the 9272 * pending mailbox command queue from the various clients must be stopped; 9273 * either the HBA is in a state that it will never works on the outstanding 9274 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9275 * mailbox command has been completed. 9276 **/ 9277 static void 9278 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9279 { 9280 LIST_HEAD(completions); 9281 struct lpfc_sli *psli = &phba->sli; 9282 LPFC_MBOXQ_t *pmb; 9283 unsigned long iflag; 9284 9285 /* Flush all the mailbox commands in the mbox system */ 9286 spin_lock_irqsave(&phba->hbalock, iflag); 9287 /* The pending mailbox command queue */ 9288 list_splice_init(&phba->sli.mboxq, &completions); 9289 /* The outstanding active mailbox command */ 9290 if (psli->mbox_active) { 9291 list_add_tail(&psli->mbox_active->list, &completions); 9292 psli->mbox_active = NULL; 9293 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9294 } 9295 /* The completed mailbox command queue */ 9296 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9297 spin_unlock_irqrestore(&phba->hbalock, iflag); 9298 9299 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9300 while (!list_empty(&completions)) { 9301 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9302 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9303 if (pmb->mbox_cmpl) 9304 pmb->mbox_cmpl(phba, pmb); 9305 } 9306 } 9307 9308 /** 9309 * lpfc_sli_host_down - Vport cleanup function 9310 * @vport: Pointer to virtual port object. 9311 * 9312 * lpfc_sli_host_down is called to clean up the resources 9313 * associated with a vport before destroying virtual 9314 * port data structures. 9315 * This function does following operations: 9316 * - Free discovery resources associated with this virtual 9317 * port. 9318 * - Free iocbs associated with this virtual port in 9319 * the txq. 9320 * - Send abort for all iocb commands associated with this 9321 * vport in txcmplq. 9322 * 9323 * This function is called with no lock held and always returns 1. 9324 **/ 9325 int 9326 lpfc_sli_host_down(struct lpfc_vport *vport) 9327 { 9328 LIST_HEAD(completions); 9329 struct lpfc_hba *phba = vport->phba; 9330 struct lpfc_sli *psli = &phba->sli; 9331 struct lpfc_sli_ring *pring; 9332 struct lpfc_iocbq *iocb, *next_iocb; 9333 int i; 9334 unsigned long flags = 0; 9335 uint16_t prev_pring_flag; 9336 9337 lpfc_cleanup_discovery_resources(vport); 9338 9339 spin_lock_irqsave(&phba->hbalock, flags); 9340 for (i = 0; i < psli->num_rings; i++) { 9341 pring = &psli->ring[i]; 9342 prev_pring_flag = pring->flag; 9343 /* Only slow rings */ 9344 if (pring->ringno == LPFC_ELS_RING) { 9345 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9346 /* Set the lpfc data pending flag */ 9347 set_bit(LPFC_DATA_READY, &phba->data_flags); 9348 } 9349 /* 9350 * Error everything on the txq since these iocbs have not been 9351 * given to the FW yet. 9352 */ 9353 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { 9354 if (iocb->vport != vport) 9355 continue; 9356 list_move_tail(&iocb->list, &completions); 9357 } 9358 9359 /* Next issue ABTS for everything on the txcmplq */ 9360 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, 9361 list) { 9362 if (iocb->vport != vport) 9363 continue; 9364 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 9365 } 9366 9367 pring->flag = prev_pring_flag; 9368 } 9369 9370 spin_unlock_irqrestore(&phba->hbalock, flags); 9371 9372 /* Cancel all the IOCBs from the completions list */ 9373 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9374 IOERR_SLI_DOWN); 9375 return 1; 9376 } 9377 9378 /** 9379 * lpfc_sli_hba_down - Resource cleanup function for the HBA 9380 * @phba: Pointer to HBA context object. 9381 * 9382 * This function cleans up all iocb, buffers, mailbox commands 9383 * while shutting down the HBA. This function is called with no 9384 * lock held and always returns 1. 9385 * This function does the following to cleanup driver resources: 9386 * - Free discovery resources for each virtual port 9387 * - Cleanup any pending fabric iocbs 9388 * - Iterate through the iocb txq and free each entry 9389 * in the list. 9390 * - Free up any buffer posted to the HBA 9391 * - Free mailbox commands in the mailbox queue. 9392 **/ 9393 int 9394 lpfc_sli_hba_down(struct lpfc_hba *phba) 9395 { 9396 LIST_HEAD(completions); 9397 struct lpfc_sli *psli = &phba->sli; 9398 struct lpfc_sli_ring *pring; 9399 struct lpfc_dmabuf *buf_ptr; 9400 unsigned long flags = 0; 9401 int i; 9402 9403 /* Shutdown the mailbox command sub-system */ 9404 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 9405 9406 lpfc_hba_down_prep(phba); 9407 9408 lpfc_fabric_abort_hba(phba); 9409 9410 spin_lock_irqsave(&phba->hbalock, flags); 9411 for (i = 0; i < psli->num_rings; i++) { 9412 pring = &psli->ring[i]; 9413 /* Only slow rings */ 9414 if (pring->ringno == LPFC_ELS_RING) { 9415 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9416 /* Set the lpfc data pending flag */ 9417 set_bit(LPFC_DATA_READY, &phba->data_flags); 9418 } 9419 9420 /* 9421 * Error everything on the txq since these iocbs have not been 9422 * given to the FW yet. 9423 */ 9424 list_splice_init(&pring->txq, &completions); 9425 } 9426 spin_unlock_irqrestore(&phba->hbalock, flags); 9427 9428 /* Cancel all the IOCBs from the completions list */ 9429 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 9430 IOERR_SLI_DOWN); 9431 9432 spin_lock_irqsave(&phba->hbalock, flags); 9433 list_splice_init(&phba->elsbuf, &completions); 9434 phba->elsbuf_cnt = 0; 9435 phba->elsbuf_prev_cnt = 0; 9436 spin_unlock_irqrestore(&phba->hbalock, flags); 9437 9438 while (!list_empty(&completions)) { 9439 list_remove_head(&completions, buf_ptr, 9440 struct lpfc_dmabuf, list); 9441 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 9442 kfree(buf_ptr); 9443 } 9444 9445 /* Return any active mbox cmds */ 9446 del_timer_sync(&psli->mbox_tmo); 9447 9448 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 9449 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9450 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 9451 9452 return 1; 9453 } 9454 9455 /** 9456 * lpfc_sli_pcimem_bcopy - SLI memory copy function 9457 * @srcp: Source memory pointer. 9458 * @destp: Destination memory pointer. 9459 * @cnt: Number of words required to be copied. 9460 * 9461 * This function is used for copying data between driver memory 9462 * and the SLI memory. This function also changes the endianness 9463 * of each word if native endianness is different from SLI 9464 * endianness. This function can be called with or without 9465 * lock. 9466 **/ 9467 void 9468 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 9469 { 9470 uint32_t *src = srcp; 9471 uint32_t *dest = destp; 9472 uint32_t ldata; 9473 int i; 9474 9475 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 9476 ldata = *src; 9477 ldata = le32_to_cpu(ldata); 9478 *dest = ldata; 9479 src++; 9480 dest++; 9481 } 9482 } 9483 9484 9485 /** 9486 * lpfc_sli_bemem_bcopy - SLI memory copy function 9487 * @srcp: Source memory pointer. 9488 * @destp: Destination memory pointer. 9489 * @cnt: Number of words required to be copied. 9490 * 9491 * This function is used for copying data between a data structure 9492 * with big endian representation to local endianness. 9493 * This function can be called with or without lock. 9494 **/ 9495 void 9496 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 9497 { 9498 uint32_t *src = srcp; 9499 uint32_t *dest = destp; 9500 uint32_t ldata; 9501 int i; 9502 9503 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 9504 ldata = *src; 9505 ldata = be32_to_cpu(ldata); 9506 *dest = ldata; 9507 src++; 9508 dest++; 9509 } 9510 } 9511 9512 /** 9513 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 9514 * @phba: Pointer to HBA context object. 9515 * @pring: Pointer to driver SLI ring object. 9516 * @mp: Pointer to driver buffer object. 9517 * 9518 * This function is called with no lock held. 9519 * It always return zero after adding the buffer to the postbufq 9520 * buffer list. 9521 **/ 9522 int 9523 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9524 struct lpfc_dmabuf *mp) 9525 { 9526 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 9527 later */ 9528 spin_lock_irq(&phba->hbalock); 9529 list_add_tail(&mp->list, &pring->postbufq); 9530 pring->postbufq_cnt++; 9531 spin_unlock_irq(&phba->hbalock); 9532 return 0; 9533 } 9534 9535 /** 9536 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 9537 * @phba: Pointer to HBA context object. 9538 * 9539 * When HBQ is enabled, buffers are searched based on tags. This function 9540 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 9541 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 9542 * does not conflict with tags of buffer posted for unsolicited events. 9543 * The function returns the allocated tag. The function is called with 9544 * no locks held. 9545 **/ 9546 uint32_t 9547 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 9548 { 9549 spin_lock_irq(&phba->hbalock); 9550 phba->buffer_tag_count++; 9551 /* 9552 * Always set the QUE_BUFTAG_BIT to distiguish between 9553 * a tag assigned by HBQ. 9554 */ 9555 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 9556 spin_unlock_irq(&phba->hbalock); 9557 return phba->buffer_tag_count; 9558 } 9559 9560 /** 9561 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 9562 * @phba: Pointer to HBA context object. 9563 * @pring: Pointer to driver SLI ring object. 9564 * @tag: Buffer tag. 9565 * 9566 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 9567 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 9568 * iocb is posted to the response ring with the tag of the buffer. 9569 * This function searches the pring->postbufq list using the tag 9570 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 9571 * iocb. If the buffer is found then lpfc_dmabuf object of the 9572 * buffer is returned to the caller else NULL is returned. 9573 * This function is called with no lock held. 9574 **/ 9575 struct lpfc_dmabuf * 9576 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9577 uint32_t tag) 9578 { 9579 struct lpfc_dmabuf *mp, *next_mp; 9580 struct list_head *slp = &pring->postbufq; 9581 9582 /* Search postbufq, from the beginning, looking for a match on tag */ 9583 spin_lock_irq(&phba->hbalock); 9584 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9585 if (mp->buffer_tag == tag) { 9586 list_del_init(&mp->list); 9587 pring->postbufq_cnt--; 9588 spin_unlock_irq(&phba->hbalock); 9589 return mp; 9590 } 9591 } 9592 9593 spin_unlock_irq(&phba->hbalock); 9594 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9595 "0402 Cannot find virtual addr for buffer tag on " 9596 "ring %d Data x%lx x%p x%p x%x\n", 9597 pring->ringno, (unsigned long) tag, 9598 slp->next, slp->prev, pring->postbufq_cnt); 9599 9600 return NULL; 9601 } 9602 9603 /** 9604 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 9605 * @phba: Pointer to HBA context object. 9606 * @pring: Pointer to driver SLI ring object. 9607 * @phys: DMA address of the buffer. 9608 * 9609 * This function searches the buffer list using the dma_address 9610 * of unsolicited event to find the driver's lpfc_dmabuf object 9611 * corresponding to the dma_address. The function returns the 9612 * lpfc_dmabuf object if a buffer is found else it returns NULL. 9613 * This function is called by the ct and els unsolicited event 9614 * handlers to get the buffer associated with the unsolicited 9615 * event. 9616 * 9617 * This function is called with no lock held. 9618 **/ 9619 struct lpfc_dmabuf * 9620 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9621 dma_addr_t phys) 9622 { 9623 struct lpfc_dmabuf *mp, *next_mp; 9624 struct list_head *slp = &pring->postbufq; 9625 9626 /* Search postbufq, from the beginning, looking for a match on phys */ 9627 spin_lock_irq(&phba->hbalock); 9628 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 9629 if (mp->phys == phys) { 9630 list_del_init(&mp->list); 9631 pring->postbufq_cnt--; 9632 spin_unlock_irq(&phba->hbalock); 9633 return mp; 9634 } 9635 } 9636 9637 spin_unlock_irq(&phba->hbalock); 9638 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9639 "0410 Cannot find virtual addr for mapped buf on " 9640 "ring %d Data x%llx x%p x%p x%x\n", 9641 pring->ringno, (unsigned long long)phys, 9642 slp->next, slp->prev, pring->postbufq_cnt); 9643 return NULL; 9644 } 9645 9646 /** 9647 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 9648 * @phba: Pointer to HBA context object. 9649 * @cmdiocb: Pointer to driver command iocb object. 9650 * @rspiocb: Pointer to driver response iocb object. 9651 * 9652 * This function is the completion handler for the abort iocbs for 9653 * ELS commands. This function is called from the ELS ring event 9654 * handler with no lock held. This function frees memory resources 9655 * associated with the abort iocb. 9656 **/ 9657 static void 9658 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9659 struct lpfc_iocbq *rspiocb) 9660 { 9661 IOCB_t *irsp = &rspiocb->iocb; 9662 uint16_t abort_iotag, abort_context; 9663 struct lpfc_iocbq *abort_iocb = NULL; 9664 9665 if (irsp->ulpStatus) { 9666 9667 /* 9668 * Assume that the port already completed and returned, or 9669 * will return the iocb. Just Log the message. 9670 */ 9671 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 9672 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 9673 9674 spin_lock_irq(&phba->hbalock); 9675 if (phba->sli_rev < LPFC_SLI_REV4) { 9676 if (abort_iotag != 0 && 9677 abort_iotag <= phba->sli.last_iotag) 9678 abort_iocb = 9679 phba->sli.iocbq_lookup[abort_iotag]; 9680 } else 9681 /* For sli4 the abort_tag is the XRI, 9682 * so the abort routine puts the iotag of the iocb 9683 * being aborted in the context field of the abort 9684 * IOCB. 9685 */ 9686 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 9687 9688 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 9689 "0327 Cannot abort els iocb %p " 9690 "with tag %x context %x, abort status %x, " 9691 "abort code %x\n", 9692 abort_iocb, abort_iotag, abort_context, 9693 irsp->ulpStatus, irsp->un.ulpWord[4]); 9694 9695 spin_unlock_irq(&phba->hbalock); 9696 } 9697 lpfc_sli_release_iocbq(phba, cmdiocb); 9698 return; 9699 } 9700 9701 /** 9702 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 9703 * @phba: Pointer to HBA context object. 9704 * @cmdiocb: Pointer to driver command iocb object. 9705 * @rspiocb: Pointer to driver response iocb object. 9706 * 9707 * The function is called from SLI ring event handler with no 9708 * lock held. This function is the completion handler for ELS commands 9709 * which are aborted. The function frees memory resources used for 9710 * the aborted ELS commands. 9711 **/ 9712 static void 9713 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 9714 struct lpfc_iocbq *rspiocb) 9715 { 9716 IOCB_t *irsp = &rspiocb->iocb; 9717 9718 /* ELS cmd tag <ulpIoTag> completes */ 9719 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 9720 "0139 Ignoring ELS cmd tag x%x completion Data: " 9721 "x%x x%x x%x\n", 9722 irsp->ulpIoTag, irsp->ulpStatus, 9723 irsp->un.ulpWord[4], irsp->ulpTimeout); 9724 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 9725 lpfc_ct_free_iocb(phba, cmdiocb); 9726 else 9727 lpfc_els_free_iocb(phba, cmdiocb); 9728 return; 9729 } 9730 9731 /** 9732 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 9733 * @phba: Pointer to HBA context object. 9734 * @pring: Pointer to driver SLI ring object. 9735 * @cmdiocb: Pointer to driver command iocb object. 9736 * 9737 * This function issues an abort iocb for the provided command iocb down to 9738 * the port. Other than the case the outstanding command iocb is an abort 9739 * request, this function issues abort out unconditionally. This function is 9740 * called with hbalock held. The function returns 0 when it fails due to 9741 * memory allocation failure or when the command iocb is an abort request. 9742 **/ 9743 static int 9744 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9745 struct lpfc_iocbq *cmdiocb) 9746 { 9747 struct lpfc_vport *vport = cmdiocb->vport; 9748 struct lpfc_iocbq *abtsiocbp; 9749 IOCB_t *icmd = NULL; 9750 IOCB_t *iabt = NULL; 9751 int ring_number; 9752 int retval; 9753 unsigned long iflags; 9754 9755 /* 9756 * There are certain command types we don't want to abort. And we 9757 * don't want to abort commands that are already in the process of 9758 * being aborted. 9759 */ 9760 icmd = &cmdiocb->iocb; 9761 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9762 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9763 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9764 return 0; 9765 9766 /* issue ABTS for this IOCB based on iotag */ 9767 abtsiocbp = __lpfc_sli_get_iocbq(phba); 9768 if (abtsiocbp == NULL) 9769 return 0; 9770 9771 /* This signals the response to set the correct status 9772 * before calling the completion handler 9773 */ 9774 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 9775 9776 iabt = &abtsiocbp->iocb; 9777 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 9778 iabt->un.acxri.abortContextTag = icmd->ulpContext; 9779 if (phba->sli_rev == LPFC_SLI_REV4) { 9780 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 9781 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 9782 } 9783 else 9784 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 9785 iabt->ulpLe = 1; 9786 iabt->ulpClass = icmd->ulpClass; 9787 9788 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 9789 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx; 9790 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 9791 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 9792 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 9793 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 9794 9795 if (phba->link_state >= LPFC_LINK_UP) 9796 iabt->ulpCommand = CMD_ABORT_XRI_CN; 9797 else 9798 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 9799 9800 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 9801 9802 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 9803 "0339 Abort xri x%x, original iotag x%x, " 9804 "abort cmd iotag x%x\n", 9805 iabt->un.acxri.abortIoTag, 9806 iabt->un.acxri.abortContextTag, 9807 abtsiocbp->iotag); 9808 9809 if (phba->sli_rev == LPFC_SLI_REV4) { 9810 ring_number = 9811 lpfc_sli_calc_ring(phba, pring->ringno, abtsiocbp); 9812 if (unlikely(ring_number == LPFC_HBA_ERROR)) 9813 return 0; 9814 pring = &phba->sli.ring[ring_number]; 9815 /* Note: both hbalock and ring_lock need to be set here */ 9816 spin_lock_irqsave(&pring->ring_lock, iflags); 9817 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9818 abtsiocbp, 0); 9819 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9820 } else { 9821 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 9822 abtsiocbp, 0); 9823 } 9824 9825 if (retval) 9826 __lpfc_sli_release_iocbq(phba, abtsiocbp); 9827 9828 /* 9829 * Caller to this routine should check for IOCB_ERROR 9830 * and handle it properly. This routine no longer removes 9831 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9832 */ 9833 return retval; 9834 } 9835 9836 /** 9837 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 9838 * @phba: Pointer to HBA context object. 9839 * @pring: Pointer to driver SLI ring object. 9840 * @cmdiocb: Pointer to driver command iocb object. 9841 * 9842 * This function issues an abort iocb for the provided command iocb. In case 9843 * of unloading, the abort iocb will not be issued to commands on the ELS 9844 * ring. Instead, the callback function shall be changed to those commands 9845 * so that nothing happens when them finishes. This function is called with 9846 * hbalock held. The function returns 0 when the command iocb is an abort 9847 * request. 9848 **/ 9849 int 9850 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9851 struct lpfc_iocbq *cmdiocb) 9852 { 9853 struct lpfc_vport *vport = cmdiocb->vport; 9854 int retval = IOCB_ERROR; 9855 IOCB_t *icmd = NULL; 9856 9857 /* 9858 * There are certain command types we don't want to abort. And we 9859 * don't want to abort commands that are already in the process of 9860 * being aborted. 9861 */ 9862 icmd = &cmdiocb->iocb; 9863 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 9864 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 9865 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 9866 return 0; 9867 9868 /* 9869 * If we're unloading, don't abort iocb on the ELS ring, but change 9870 * the callback so that nothing happens when it finishes. 9871 */ 9872 if ((vport->load_flag & FC_UNLOADING) && 9873 (pring->ringno == LPFC_ELS_RING)) { 9874 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 9875 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 9876 else 9877 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 9878 goto abort_iotag_exit; 9879 } 9880 9881 /* Now, we try to issue the abort to the cmdiocb out */ 9882 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 9883 9884 abort_iotag_exit: 9885 /* 9886 * Caller to this routine should check for IOCB_ERROR 9887 * and handle it properly. This routine no longer removes 9888 * iocb off txcmplq and call compl in case of IOCB_ERROR. 9889 */ 9890 return retval; 9891 } 9892 9893 /** 9894 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 9895 * @phba: pointer to lpfc HBA data structure. 9896 * 9897 * This routine will abort all pending and outstanding iocbs to an HBA. 9898 **/ 9899 void 9900 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 9901 { 9902 struct lpfc_sli *psli = &phba->sli; 9903 struct lpfc_sli_ring *pring; 9904 int i; 9905 9906 for (i = 0; i < psli->num_rings; i++) { 9907 pring = &psli->ring[i]; 9908 lpfc_sli_abort_iocb_ring(phba, pring); 9909 } 9910 } 9911 9912 /** 9913 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 9914 * @iocbq: Pointer to driver iocb object. 9915 * @vport: Pointer to driver virtual port object. 9916 * @tgt_id: SCSI ID of the target. 9917 * @lun_id: LUN ID of the scsi device. 9918 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 9919 * 9920 * This function acts as an iocb filter for functions which abort or count 9921 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 9922 * 0 if the filtering criteria is met for the given iocb and will return 9923 * 1 if the filtering criteria is not met. 9924 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 9925 * given iocb is for the SCSI device specified by vport, tgt_id and 9926 * lun_id parameter. 9927 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 9928 * given iocb is for the SCSI target specified by vport and tgt_id 9929 * parameters. 9930 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 9931 * given iocb is for the SCSI host associated with the given vport. 9932 * This function is called with no locks held. 9933 **/ 9934 static int 9935 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 9936 uint16_t tgt_id, uint64_t lun_id, 9937 lpfc_ctx_cmd ctx_cmd) 9938 { 9939 struct lpfc_scsi_buf *lpfc_cmd; 9940 int rc = 1; 9941 9942 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 9943 return rc; 9944 9945 if (iocbq->vport != vport) 9946 return rc; 9947 9948 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 9949 9950 if (lpfc_cmd->pCmd == NULL) 9951 return rc; 9952 9953 switch (ctx_cmd) { 9954 case LPFC_CTX_LUN: 9955 if ((lpfc_cmd->rdata->pnode) && 9956 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 9957 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 9958 rc = 0; 9959 break; 9960 case LPFC_CTX_TGT: 9961 if ((lpfc_cmd->rdata->pnode) && 9962 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 9963 rc = 0; 9964 break; 9965 case LPFC_CTX_HOST: 9966 rc = 0; 9967 break; 9968 default: 9969 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 9970 __func__, ctx_cmd); 9971 break; 9972 } 9973 9974 return rc; 9975 } 9976 9977 /** 9978 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 9979 * @vport: Pointer to virtual port. 9980 * @tgt_id: SCSI ID of the target. 9981 * @lun_id: LUN ID of the scsi device. 9982 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 9983 * 9984 * This function returns number of FCP commands pending for the vport. 9985 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 9986 * commands pending on the vport associated with SCSI device specified 9987 * by tgt_id and lun_id parameters. 9988 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 9989 * commands pending on the vport associated with SCSI target specified 9990 * by tgt_id parameter. 9991 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 9992 * commands pending on the vport. 9993 * This function returns the number of iocbs which satisfy the filter. 9994 * This function is called without any lock held. 9995 **/ 9996 int 9997 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 9998 lpfc_ctx_cmd ctx_cmd) 9999 { 10000 struct lpfc_hba *phba = vport->phba; 10001 struct lpfc_iocbq *iocbq; 10002 int sum, i; 10003 10004 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10005 iocbq = phba->sli.iocbq_lookup[i]; 10006 10007 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10008 ctx_cmd) == 0) 10009 sum++; 10010 } 10011 10012 return sum; 10013 } 10014 10015 /** 10016 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10017 * @phba: Pointer to HBA context object 10018 * @cmdiocb: Pointer to command iocb object. 10019 * @rspiocb: Pointer to response iocb object. 10020 * 10021 * This function is called when an aborted FCP iocb completes. This 10022 * function is called by the ring event handler with no lock held. 10023 * This function frees the iocb. 10024 **/ 10025 void 10026 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10027 struct lpfc_iocbq *rspiocb) 10028 { 10029 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10030 "3096 ABORT_XRI_CN completing on rpi x%x " 10031 "original iotag x%x, abort cmd iotag x%x " 10032 "status 0x%x, reason 0x%x\n", 10033 cmdiocb->iocb.un.acxri.abortContextTag, 10034 cmdiocb->iocb.un.acxri.abortIoTag, 10035 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10036 rspiocb->iocb.un.ulpWord[4]); 10037 lpfc_sli_release_iocbq(phba, cmdiocb); 10038 return; 10039 } 10040 10041 /** 10042 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10043 * @vport: Pointer to virtual port. 10044 * @pring: Pointer to driver SLI ring object. 10045 * @tgt_id: SCSI ID of the target. 10046 * @lun_id: LUN ID of the scsi device. 10047 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10048 * 10049 * This function sends an abort command for every SCSI command 10050 * associated with the given virtual port pending on the ring 10051 * filtered by lpfc_sli_validate_fcp_iocb function. 10052 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10053 * FCP iocbs associated with lun specified by tgt_id and lun_id 10054 * parameters 10055 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10056 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10057 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10058 * FCP iocbs associated with virtual port. 10059 * This function returns number of iocbs it failed to abort. 10060 * This function is called with no locks held. 10061 **/ 10062 int 10063 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10064 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10065 { 10066 struct lpfc_hba *phba = vport->phba; 10067 struct lpfc_iocbq *iocbq; 10068 struct lpfc_iocbq *abtsiocb; 10069 IOCB_t *cmd = NULL; 10070 int errcnt = 0, ret_val = 0; 10071 int i; 10072 10073 for (i = 1; i <= phba->sli.last_iotag; i++) { 10074 iocbq = phba->sli.iocbq_lookup[i]; 10075 10076 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10077 abort_cmd) != 0) 10078 continue; 10079 10080 /* 10081 * If the iocbq is already being aborted, don't take a second 10082 * action, but do count it. 10083 */ 10084 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10085 continue; 10086 10087 /* issue ABTS for this IOCB based on iotag */ 10088 abtsiocb = lpfc_sli_get_iocbq(phba); 10089 if (abtsiocb == NULL) { 10090 errcnt++; 10091 continue; 10092 } 10093 10094 /* indicate the IO is being aborted by the driver. */ 10095 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10096 10097 cmd = &iocbq->iocb; 10098 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10099 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10100 if (phba->sli_rev == LPFC_SLI_REV4) 10101 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10102 else 10103 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10104 abtsiocb->iocb.ulpLe = 1; 10105 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10106 abtsiocb->vport = vport; 10107 10108 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10109 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx; 10110 if (iocbq->iocb_flag & LPFC_IO_FCP) 10111 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10112 if (iocbq->iocb_flag & LPFC_IO_FOF) 10113 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10114 10115 if (lpfc_is_link_up(phba)) 10116 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10117 else 10118 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10119 10120 /* Setup callback routine and issue the command. */ 10121 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10122 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10123 abtsiocb, 0); 10124 if (ret_val == IOCB_ERROR) { 10125 lpfc_sli_release_iocbq(phba, abtsiocb); 10126 errcnt++; 10127 continue; 10128 } 10129 } 10130 10131 return errcnt; 10132 } 10133 10134 /** 10135 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10136 * @vport: Pointer to virtual port. 10137 * @pring: Pointer to driver SLI ring object. 10138 * @tgt_id: SCSI ID of the target. 10139 * @lun_id: LUN ID of the scsi device. 10140 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10141 * 10142 * This function sends an abort command for every SCSI command 10143 * associated with the given virtual port pending on the ring 10144 * filtered by lpfc_sli_validate_fcp_iocb function. 10145 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10146 * FCP iocbs associated with lun specified by tgt_id and lun_id 10147 * parameters 10148 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10149 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10150 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10151 * FCP iocbs associated with virtual port. 10152 * This function returns number of iocbs it aborted . 10153 * This function is called with no locks held right after a taskmgmt 10154 * command is sent. 10155 **/ 10156 int 10157 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10158 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10159 { 10160 struct lpfc_hba *phba = vport->phba; 10161 struct lpfc_scsi_buf *lpfc_cmd; 10162 struct lpfc_iocbq *abtsiocbq; 10163 struct lpfc_nodelist *ndlp; 10164 struct lpfc_iocbq *iocbq; 10165 IOCB_t *icmd; 10166 int sum, i, ret_val; 10167 unsigned long iflags; 10168 struct lpfc_sli_ring *pring_s4; 10169 uint32_t ring_number; 10170 10171 spin_lock_irq(&phba->hbalock); 10172 10173 /* all I/Os are in process of being flushed */ 10174 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10175 spin_unlock_irq(&phba->hbalock); 10176 return 0; 10177 } 10178 sum = 0; 10179 10180 for (i = 1; i <= phba->sli.last_iotag; i++) { 10181 iocbq = phba->sli.iocbq_lookup[i]; 10182 10183 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10184 cmd) != 0) 10185 continue; 10186 10187 /* 10188 * If the iocbq is already being aborted, don't take a second 10189 * action, but do count it. 10190 */ 10191 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10192 continue; 10193 10194 /* issue ABTS for this IOCB based on iotag */ 10195 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10196 if (abtsiocbq == NULL) 10197 continue; 10198 10199 icmd = &iocbq->iocb; 10200 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10201 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 10202 if (phba->sli_rev == LPFC_SLI_REV4) 10203 abtsiocbq->iocb.un.acxri.abortIoTag = 10204 iocbq->sli4_xritag; 10205 else 10206 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 10207 abtsiocbq->iocb.ulpLe = 1; 10208 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 10209 abtsiocbq->vport = vport; 10210 10211 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10212 abtsiocbq->fcp_wqidx = iocbq->fcp_wqidx; 10213 if (iocbq->iocb_flag & LPFC_IO_FCP) 10214 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 10215 if (iocbq->iocb_flag & LPFC_IO_FOF) 10216 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 10217 10218 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10219 ndlp = lpfc_cmd->rdata->pnode; 10220 10221 if (lpfc_is_link_up(phba) && 10222 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 10223 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10224 else 10225 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10226 10227 /* Setup callback routine and issue the command. */ 10228 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10229 10230 /* 10231 * Indicate the IO is being aborted by the driver and set 10232 * the caller's flag into the aborted IO. 10233 */ 10234 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10235 10236 if (phba->sli_rev == LPFC_SLI_REV4) { 10237 ring_number = MAX_SLI3_CONFIGURED_RINGS + 10238 iocbq->fcp_wqidx; 10239 pring_s4 = &phba->sli.ring[ring_number]; 10240 /* Note: both hbalock and ring_lock must be set here */ 10241 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 10242 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 10243 abtsiocbq, 0); 10244 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 10245 } else { 10246 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 10247 abtsiocbq, 0); 10248 } 10249 10250 10251 if (ret_val == IOCB_ERROR) 10252 __lpfc_sli_release_iocbq(phba, abtsiocbq); 10253 else 10254 sum++; 10255 } 10256 spin_unlock_irq(&phba->hbalock); 10257 return sum; 10258 } 10259 10260 /** 10261 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 10262 * @phba: Pointer to HBA context object. 10263 * @cmdiocbq: Pointer to command iocb. 10264 * @rspiocbq: Pointer to response iocb. 10265 * 10266 * This function is the completion handler for iocbs issued using 10267 * lpfc_sli_issue_iocb_wait function. This function is called by the 10268 * ring event handler function without any lock held. This function 10269 * can be called from both worker thread context and interrupt 10270 * context. This function also can be called from other thread which 10271 * cleans up the SLI layer objects. 10272 * This function copy the contents of the response iocb to the 10273 * response iocb memory object provided by the caller of 10274 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 10275 * sleeps for the iocb completion. 10276 **/ 10277 static void 10278 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 10279 struct lpfc_iocbq *cmdiocbq, 10280 struct lpfc_iocbq *rspiocbq) 10281 { 10282 wait_queue_head_t *pdone_q; 10283 unsigned long iflags; 10284 struct lpfc_scsi_buf *lpfc_cmd; 10285 10286 spin_lock_irqsave(&phba->hbalock, iflags); 10287 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 10288 10289 /* 10290 * A time out has occurred for the iocb. If a time out 10291 * completion handler has been supplied, call it. Otherwise, 10292 * just free the iocbq. 10293 */ 10294 10295 spin_unlock_irqrestore(&phba->hbalock, iflags); 10296 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 10297 cmdiocbq->wait_iocb_cmpl = NULL; 10298 if (cmdiocbq->iocb_cmpl) 10299 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 10300 else 10301 lpfc_sli_release_iocbq(phba, cmdiocbq); 10302 return; 10303 } 10304 10305 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 10306 if (cmdiocbq->context2 && rspiocbq) 10307 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 10308 &rspiocbq->iocb, sizeof(IOCB_t)); 10309 10310 /* Set the exchange busy flag for task management commands */ 10311 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 10312 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 10313 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 10314 cur_iocbq); 10315 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 10316 } 10317 10318 pdone_q = cmdiocbq->context_un.wait_queue; 10319 if (pdone_q) 10320 wake_up(pdone_q); 10321 spin_unlock_irqrestore(&phba->hbalock, iflags); 10322 return; 10323 } 10324 10325 /** 10326 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 10327 * @phba: Pointer to HBA context object.. 10328 * @piocbq: Pointer to command iocb. 10329 * @flag: Flag to test. 10330 * 10331 * This routine grabs the hbalock and then test the iocb_flag to 10332 * see if the passed in flag is set. 10333 * Returns: 10334 * 1 if flag is set. 10335 * 0 if flag is not set. 10336 **/ 10337 static int 10338 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 10339 struct lpfc_iocbq *piocbq, uint32_t flag) 10340 { 10341 unsigned long iflags; 10342 int ret; 10343 10344 spin_lock_irqsave(&phba->hbalock, iflags); 10345 ret = piocbq->iocb_flag & flag; 10346 spin_unlock_irqrestore(&phba->hbalock, iflags); 10347 return ret; 10348 10349 } 10350 10351 /** 10352 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 10353 * @phba: Pointer to HBA context object.. 10354 * @pring: Pointer to sli ring. 10355 * @piocb: Pointer to command iocb. 10356 * @prspiocbq: Pointer to response iocb. 10357 * @timeout: Timeout in number of seconds. 10358 * 10359 * This function issues the iocb to firmware and waits for the 10360 * iocb to complete. The iocb_cmpl field of the shall be used 10361 * to handle iocbs which time out. If the field is NULL, the 10362 * function shall free the iocbq structure. If more clean up is 10363 * needed, the caller is expected to provide a completion function 10364 * that will provide the needed clean up. If the iocb command is 10365 * not completed within timeout seconds, the function will either 10366 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 10367 * completion function set in the iocb_cmpl field and then return 10368 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 10369 * resources if this function returns IOCB_TIMEDOUT. 10370 * The function waits for the iocb completion using an 10371 * non-interruptible wait. 10372 * This function will sleep while waiting for iocb completion. 10373 * So, this function should not be called from any context which 10374 * does not allow sleeping. Due to the same reason, this function 10375 * cannot be called with interrupt disabled. 10376 * This function assumes that the iocb completions occur while 10377 * this function sleep. So, this function cannot be called from 10378 * the thread which process iocb completion for this ring. 10379 * This function clears the iocb_flag of the iocb object before 10380 * issuing the iocb and the iocb completion handler sets this 10381 * flag and wakes this thread when the iocb completes. 10382 * The contents of the response iocb will be copied to prspiocbq 10383 * by the completion handler when the command completes. 10384 * This function returns IOCB_SUCCESS when success. 10385 * This function is called with no lock held. 10386 **/ 10387 int 10388 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 10389 uint32_t ring_number, 10390 struct lpfc_iocbq *piocb, 10391 struct lpfc_iocbq *prspiocbq, 10392 uint32_t timeout) 10393 { 10394 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10395 long timeleft, timeout_req = 0; 10396 int retval = IOCB_SUCCESS; 10397 uint32_t creg_val; 10398 struct lpfc_iocbq *iocb; 10399 int txq_cnt = 0; 10400 int txcmplq_cnt = 0; 10401 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 10402 unsigned long iflags; 10403 bool iocb_completed = true; 10404 10405 /* 10406 * If the caller has provided a response iocbq buffer, then context2 10407 * is NULL or its an error. 10408 */ 10409 if (prspiocbq) { 10410 if (piocb->context2) 10411 return IOCB_ERROR; 10412 piocb->context2 = prspiocbq; 10413 } 10414 10415 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 10416 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 10417 piocb->context_un.wait_queue = &done_q; 10418 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 10419 10420 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10421 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10422 return IOCB_ERROR; 10423 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 10424 writel(creg_val, phba->HCregaddr); 10425 readl(phba->HCregaddr); /* flush */ 10426 } 10427 10428 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 10429 SLI_IOCB_RET_IOCB); 10430 if (retval == IOCB_SUCCESS) { 10431 timeout_req = msecs_to_jiffies(timeout * 1000); 10432 timeleft = wait_event_timeout(done_q, 10433 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 10434 timeout_req); 10435 spin_lock_irqsave(&phba->hbalock, iflags); 10436 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 10437 10438 /* 10439 * IOCB timed out. Inform the wake iocb wait 10440 * completion function and set local status 10441 */ 10442 10443 iocb_completed = false; 10444 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 10445 } 10446 spin_unlock_irqrestore(&phba->hbalock, iflags); 10447 if (iocb_completed) { 10448 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10449 "0331 IOCB wake signaled\n"); 10450 /* Note: we are not indicating if the IOCB has a success 10451 * status or not - that's for the caller to check. 10452 * IOCB_SUCCESS means just that the command was sent and 10453 * completed. Not that it completed successfully. 10454 * */ 10455 } else if (timeleft == 0) { 10456 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10457 "0338 IOCB wait timeout error - no " 10458 "wake response Data x%x\n", timeout); 10459 retval = IOCB_TIMEDOUT; 10460 } else { 10461 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10462 "0330 IOCB wake NOT set, " 10463 "Data x%x x%lx\n", 10464 timeout, (timeleft / jiffies)); 10465 retval = IOCB_TIMEDOUT; 10466 } 10467 } else if (retval == IOCB_BUSY) { 10468 if (phba->cfg_log_verbose & LOG_SLI) { 10469 list_for_each_entry(iocb, &pring->txq, list) { 10470 txq_cnt++; 10471 } 10472 list_for_each_entry(iocb, &pring->txcmplq, list) { 10473 txcmplq_cnt++; 10474 } 10475 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10476 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 10477 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 10478 } 10479 return retval; 10480 } else { 10481 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10482 "0332 IOCB wait issue failed, Data x%x\n", 10483 retval); 10484 retval = IOCB_ERROR; 10485 } 10486 10487 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 10488 if (lpfc_readl(phba->HCregaddr, &creg_val)) 10489 return IOCB_ERROR; 10490 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 10491 writel(creg_val, phba->HCregaddr); 10492 readl(phba->HCregaddr); /* flush */ 10493 } 10494 10495 if (prspiocbq) 10496 piocb->context2 = NULL; 10497 10498 piocb->context_un.wait_queue = NULL; 10499 piocb->iocb_cmpl = NULL; 10500 return retval; 10501 } 10502 10503 /** 10504 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 10505 * @phba: Pointer to HBA context object. 10506 * @pmboxq: Pointer to driver mailbox object. 10507 * @timeout: Timeout in number of seconds. 10508 * 10509 * This function issues the mailbox to firmware and waits for the 10510 * mailbox command to complete. If the mailbox command is not 10511 * completed within timeout seconds, it returns MBX_TIMEOUT. 10512 * The function waits for the mailbox completion using an 10513 * interruptible wait. If the thread is woken up due to a 10514 * signal, MBX_TIMEOUT error is returned to the caller. Caller 10515 * should not free the mailbox resources, if this function returns 10516 * MBX_TIMEOUT. 10517 * This function will sleep while waiting for mailbox completion. 10518 * So, this function should not be called from any context which 10519 * does not allow sleeping. Due to the same reason, this function 10520 * cannot be called with interrupt disabled. 10521 * This function assumes that the mailbox completion occurs while 10522 * this function sleep. So, this function cannot be called from 10523 * the worker thread which processes mailbox completion. 10524 * This function is called in the context of HBA management 10525 * applications. 10526 * This function returns MBX_SUCCESS when successful. 10527 * This function is called with no lock held. 10528 **/ 10529 int 10530 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 10531 uint32_t timeout) 10532 { 10533 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 10534 MAILBOX_t *mb = NULL; 10535 int retval; 10536 unsigned long flag; 10537 10538 /* The caller might set context1 for extended buffer */ 10539 if (pmboxq->context1) 10540 mb = (MAILBOX_t *)pmboxq->context1; 10541 10542 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 10543 /* setup wake call as IOCB callback */ 10544 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 10545 /* setup context field to pass wait_queue pointer to wake function */ 10546 pmboxq->context1 = &done_q; 10547 10548 /* now issue the command */ 10549 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 10550 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 10551 wait_event_interruptible_timeout(done_q, 10552 pmboxq->mbox_flag & LPFC_MBX_WAKE, 10553 msecs_to_jiffies(timeout * 1000)); 10554 10555 spin_lock_irqsave(&phba->hbalock, flag); 10556 /* restore the possible extended buffer for free resource */ 10557 pmboxq->context1 = (uint8_t *)mb; 10558 /* 10559 * if LPFC_MBX_WAKE flag is set the mailbox is completed 10560 * else do not free the resources. 10561 */ 10562 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 10563 retval = MBX_SUCCESS; 10564 } else { 10565 retval = MBX_TIMEOUT; 10566 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 10567 } 10568 spin_unlock_irqrestore(&phba->hbalock, flag); 10569 } else { 10570 /* restore the possible extended buffer for free resource */ 10571 pmboxq->context1 = (uint8_t *)mb; 10572 } 10573 10574 return retval; 10575 } 10576 10577 /** 10578 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 10579 * @phba: Pointer to HBA context. 10580 * 10581 * This function is called to shutdown the driver's mailbox sub-system. 10582 * It first marks the mailbox sub-system is in a block state to prevent 10583 * the asynchronous mailbox command from issued off the pending mailbox 10584 * command queue. If the mailbox command sub-system shutdown is due to 10585 * HBA error conditions such as EEH or ERATT, this routine shall invoke 10586 * the mailbox sub-system flush routine to forcefully bring down the 10587 * mailbox sub-system. Otherwise, if it is due to normal condition (such 10588 * as with offline or HBA function reset), this routine will wait for the 10589 * outstanding mailbox command to complete before invoking the mailbox 10590 * sub-system flush routine to gracefully bring down mailbox sub-system. 10591 **/ 10592 void 10593 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 10594 { 10595 struct lpfc_sli *psli = &phba->sli; 10596 unsigned long timeout; 10597 10598 if (mbx_action == LPFC_MBX_NO_WAIT) { 10599 /* delay 100ms for port state */ 10600 msleep(100); 10601 lpfc_sli_mbox_sys_flush(phba); 10602 return; 10603 } 10604 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 10605 10606 spin_lock_irq(&phba->hbalock); 10607 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 10608 10609 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 10610 /* Determine how long we might wait for the active mailbox 10611 * command to be gracefully completed by firmware. 10612 */ 10613 if (phba->sli.mbox_active) 10614 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 10615 phba->sli.mbox_active) * 10616 1000) + jiffies; 10617 spin_unlock_irq(&phba->hbalock); 10618 10619 while (phba->sli.mbox_active) { 10620 /* Check active mailbox complete status every 2ms */ 10621 msleep(2); 10622 if (time_after(jiffies, timeout)) 10623 /* Timeout, let the mailbox flush routine to 10624 * forcefully release active mailbox command 10625 */ 10626 break; 10627 } 10628 } else 10629 spin_unlock_irq(&phba->hbalock); 10630 10631 lpfc_sli_mbox_sys_flush(phba); 10632 } 10633 10634 /** 10635 * lpfc_sli_eratt_read - read sli-3 error attention events 10636 * @phba: Pointer to HBA context. 10637 * 10638 * This function is called to read the SLI3 device error attention registers 10639 * for possible error attention events. The caller must hold the hostlock 10640 * with spin_lock_irq(). 10641 * 10642 * This function returns 1 when there is Error Attention in the Host Attention 10643 * Register and returns 0 otherwise. 10644 **/ 10645 static int 10646 lpfc_sli_eratt_read(struct lpfc_hba *phba) 10647 { 10648 uint32_t ha_copy; 10649 10650 /* Read chip Host Attention (HA) register */ 10651 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10652 goto unplug_err; 10653 10654 if (ha_copy & HA_ERATT) { 10655 /* Read host status register to retrieve error event */ 10656 if (lpfc_sli_read_hs(phba)) 10657 goto unplug_err; 10658 10659 /* Check if there is a deferred error condition is active */ 10660 if ((HS_FFER1 & phba->work_hs) && 10661 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 10662 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 10663 phba->hba_flag |= DEFER_ERATT; 10664 /* Clear all interrupt enable conditions */ 10665 writel(0, phba->HCregaddr); 10666 readl(phba->HCregaddr); 10667 } 10668 10669 /* Set the driver HA work bitmap */ 10670 phba->work_ha |= HA_ERATT; 10671 /* Indicate polling handles this ERATT */ 10672 phba->hba_flag |= HBA_ERATT_HANDLED; 10673 return 1; 10674 } 10675 return 0; 10676 10677 unplug_err: 10678 /* Set the driver HS work bitmap */ 10679 phba->work_hs |= UNPLUG_ERR; 10680 /* Set the driver HA work bitmap */ 10681 phba->work_ha |= HA_ERATT; 10682 /* Indicate polling handles this ERATT */ 10683 phba->hba_flag |= HBA_ERATT_HANDLED; 10684 return 1; 10685 } 10686 10687 /** 10688 * lpfc_sli4_eratt_read - read sli-4 error attention events 10689 * @phba: Pointer to HBA context. 10690 * 10691 * This function is called to read the SLI4 device error attention registers 10692 * for possible error attention events. The caller must hold the hostlock 10693 * with spin_lock_irq(). 10694 * 10695 * This function returns 1 when there is Error Attention in the Host Attention 10696 * Register and returns 0 otherwise. 10697 **/ 10698 static int 10699 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 10700 { 10701 uint32_t uerr_sta_hi, uerr_sta_lo; 10702 uint32_t if_type, portsmphr; 10703 struct lpfc_register portstat_reg; 10704 10705 /* 10706 * For now, use the SLI4 device internal unrecoverable error 10707 * registers for error attention. This can be changed later. 10708 */ 10709 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 10710 switch (if_type) { 10711 case LPFC_SLI_INTF_IF_TYPE_0: 10712 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 10713 &uerr_sta_lo) || 10714 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 10715 &uerr_sta_hi)) { 10716 phba->work_hs |= UNPLUG_ERR; 10717 phba->work_ha |= HA_ERATT; 10718 phba->hba_flag |= HBA_ERATT_HANDLED; 10719 return 1; 10720 } 10721 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 10722 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 10723 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10724 "1423 HBA Unrecoverable error: " 10725 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 10726 "ue_mask_lo_reg=0x%x, " 10727 "ue_mask_hi_reg=0x%x\n", 10728 uerr_sta_lo, uerr_sta_hi, 10729 phba->sli4_hba.ue_mask_lo, 10730 phba->sli4_hba.ue_mask_hi); 10731 phba->work_status[0] = uerr_sta_lo; 10732 phba->work_status[1] = uerr_sta_hi; 10733 phba->work_ha |= HA_ERATT; 10734 phba->hba_flag |= HBA_ERATT_HANDLED; 10735 return 1; 10736 } 10737 break; 10738 case LPFC_SLI_INTF_IF_TYPE_2: 10739 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 10740 &portstat_reg.word0) || 10741 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 10742 &portsmphr)){ 10743 phba->work_hs |= UNPLUG_ERR; 10744 phba->work_ha |= HA_ERATT; 10745 phba->hba_flag |= HBA_ERATT_HANDLED; 10746 return 1; 10747 } 10748 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 10749 phba->work_status[0] = 10750 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 10751 phba->work_status[1] = 10752 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 10753 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10754 "2885 Port Status Event: " 10755 "port status reg 0x%x, " 10756 "port smphr reg 0x%x, " 10757 "error 1=0x%x, error 2=0x%x\n", 10758 portstat_reg.word0, 10759 portsmphr, 10760 phba->work_status[0], 10761 phba->work_status[1]); 10762 phba->work_ha |= HA_ERATT; 10763 phba->hba_flag |= HBA_ERATT_HANDLED; 10764 return 1; 10765 } 10766 break; 10767 case LPFC_SLI_INTF_IF_TYPE_1: 10768 default: 10769 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10770 "2886 HBA Error Attention on unsupported " 10771 "if type %d.", if_type); 10772 return 1; 10773 } 10774 10775 return 0; 10776 } 10777 10778 /** 10779 * lpfc_sli_check_eratt - check error attention events 10780 * @phba: Pointer to HBA context. 10781 * 10782 * This function is called from timer soft interrupt context to check HBA's 10783 * error attention register bit for error attention events. 10784 * 10785 * This function returns 1 when there is Error Attention in the Host Attention 10786 * Register and returns 0 otherwise. 10787 **/ 10788 int 10789 lpfc_sli_check_eratt(struct lpfc_hba *phba) 10790 { 10791 uint32_t ha_copy; 10792 10793 /* If somebody is waiting to handle an eratt, don't process it 10794 * here. The brdkill function will do this. 10795 */ 10796 if (phba->link_flag & LS_IGNORE_ERATT) 10797 return 0; 10798 10799 /* Check if interrupt handler handles this ERATT */ 10800 spin_lock_irq(&phba->hbalock); 10801 if (phba->hba_flag & HBA_ERATT_HANDLED) { 10802 /* Interrupt handler has handled ERATT */ 10803 spin_unlock_irq(&phba->hbalock); 10804 return 0; 10805 } 10806 10807 /* 10808 * If there is deferred error attention, do not check for error 10809 * attention 10810 */ 10811 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10812 spin_unlock_irq(&phba->hbalock); 10813 return 0; 10814 } 10815 10816 /* If PCI channel is offline, don't process it */ 10817 if (unlikely(pci_channel_offline(phba->pcidev))) { 10818 spin_unlock_irq(&phba->hbalock); 10819 return 0; 10820 } 10821 10822 switch (phba->sli_rev) { 10823 case LPFC_SLI_REV2: 10824 case LPFC_SLI_REV3: 10825 /* Read chip Host Attention (HA) register */ 10826 ha_copy = lpfc_sli_eratt_read(phba); 10827 break; 10828 case LPFC_SLI_REV4: 10829 /* Read device Uncoverable Error (UERR) registers */ 10830 ha_copy = lpfc_sli4_eratt_read(phba); 10831 break; 10832 default: 10833 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10834 "0299 Invalid SLI revision (%d)\n", 10835 phba->sli_rev); 10836 ha_copy = 0; 10837 break; 10838 } 10839 spin_unlock_irq(&phba->hbalock); 10840 10841 return ha_copy; 10842 } 10843 10844 /** 10845 * lpfc_intr_state_check - Check device state for interrupt handling 10846 * @phba: Pointer to HBA context. 10847 * 10848 * This inline routine checks whether a device or its PCI slot is in a state 10849 * that the interrupt should be handled. 10850 * 10851 * This function returns 0 if the device or the PCI slot is in a state that 10852 * interrupt should be handled, otherwise -EIO. 10853 */ 10854 static inline int 10855 lpfc_intr_state_check(struct lpfc_hba *phba) 10856 { 10857 /* If the pci channel is offline, ignore all the interrupts */ 10858 if (unlikely(pci_channel_offline(phba->pcidev))) 10859 return -EIO; 10860 10861 /* Update device level interrupt statistics */ 10862 phba->sli.slistat.sli_intr++; 10863 10864 /* Ignore all interrupts during initialization. */ 10865 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10866 return -EIO; 10867 10868 return 0; 10869 } 10870 10871 /** 10872 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 10873 * @irq: Interrupt number. 10874 * @dev_id: The device context pointer. 10875 * 10876 * This function is directly called from the PCI layer as an interrupt 10877 * service routine when device with SLI-3 interface spec is enabled with 10878 * MSI-X multi-message interrupt mode and there are slow-path events in 10879 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 10880 * interrupt mode, this function is called as part of the device-level 10881 * interrupt handler. When the PCI slot is in error recovery or the HBA 10882 * is undergoing initialization, the interrupt handler will not process 10883 * the interrupt. The link attention and ELS ring attention events are 10884 * handled by the worker thread. The interrupt handler signals the worker 10885 * thread and returns for these events. This function is called without 10886 * any lock held. It gets the hbalock to access and update SLI data 10887 * structures. 10888 * 10889 * This function returns IRQ_HANDLED when interrupt is handled else it 10890 * returns IRQ_NONE. 10891 **/ 10892 irqreturn_t 10893 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 10894 { 10895 struct lpfc_hba *phba; 10896 uint32_t ha_copy, hc_copy; 10897 uint32_t work_ha_copy; 10898 unsigned long status; 10899 unsigned long iflag; 10900 uint32_t control; 10901 10902 MAILBOX_t *mbox, *pmbox; 10903 struct lpfc_vport *vport; 10904 struct lpfc_nodelist *ndlp; 10905 struct lpfc_dmabuf *mp; 10906 LPFC_MBOXQ_t *pmb; 10907 int rc; 10908 10909 /* 10910 * Get the driver's phba structure from the dev_id and 10911 * assume the HBA is not interrupting. 10912 */ 10913 phba = (struct lpfc_hba *)dev_id; 10914 10915 if (unlikely(!phba)) 10916 return IRQ_NONE; 10917 10918 /* 10919 * Stuff needs to be attented to when this function is invoked as an 10920 * individual interrupt handler in MSI-X multi-message interrupt mode 10921 */ 10922 if (phba->intr_type == MSIX) { 10923 /* Check device state for handling interrupt */ 10924 if (lpfc_intr_state_check(phba)) 10925 return IRQ_NONE; 10926 /* Need to read HA REG for slow-path events */ 10927 spin_lock_irqsave(&phba->hbalock, iflag); 10928 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 10929 goto unplug_error; 10930 /* If somebody is waiting to handle an eratt don't process it 10931 * here. The brdkill function will do this. 10932 */ 10933 if (phba->link_flag & LS_IGNORE_ERATT) 10934 ha_copy &= ~HA_ERATT; 10935 /* Check the need for handling ERATT in interrupt handler */ 10936 if (ha_copy & HA_ERATT) { 10937 if (phba->hba_flag & HBA_ERATT_HANDLED) 10938 /* ERATT polling has handled ERATT */ 10939 ha_copy &= ~HA_ERATT; 10940 else 10941 /* Indicate interrupt handler handles ERATT */ 10942 phba->hba_flag |= HBA_ERATT_HANDLED; 10943 } 10944 10945 /* 10946 * If there is deferred error attention, do not check for any 10947 * interrupt. 10948 */ 10949 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 10950 spin_unlock_irqrestore(&phba->hbalock, iflag); 10951 return IRQ_NONE; 10952 } 10953 10954 /* Clear up only attention source related to slow-path */ 10955 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 10956 goto unplug_error; 10957 10958 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 10959 HC_LAINT_ENA | HC_ERINT_ENA), 10960 phba->HCregaddr); 10961 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 10962 phba->HAregaddr); 10963 writel(hc_copy, phba->HCregaddr); 10964 readl(phba->HAregaddr); /* flush */ 10965 spin_unlock_irqrestore(&phba->hbalock, iflag); 10966 } else 10967 ha_copy = phba->ha_copy; 10968 10969 work_ha_copy = ha_copy & phba->work_ha_mask; 10970 10971 if (work_ha_copy) { 10972 if (work_ha_copy & HA_LATT) { 10973 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 10974 /* 10975 * Turn off Link Attention interrupts 10976 * until CLEAR_LA done 10977 */ 10978 spin_lock_irqsave(&phba->hbalock, iflag); 10979 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 10980 if (lpfc_readl(phba->HCregaddr, &control)) 10981 goto unplug_error; 10982 control &= ~HC_LAINT_ENA; 10983 writel(control, phba->HCregaddr); 10984 readl(phba->HCregaddr); /* flush */ 10985 spin_unlock_irqrestore(&phba->hbalock, iflag); 10986 } 10987 else 10988 work_ha_copy &= ~HA_LATT; 10989 } 10990 10991 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 10992 /* 10993 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 10994 * the only slow ring. 10995 */ 10996 status = (work_ha_copy & 10997 (HA_RXMASK << (4*LPFC_ELS_RING))); 10998 status >>= (4*LPFC_ELS_RING); 10999 if (status & HA_RXMASK) { 11000 spin_lock_irqsave(&phba->hbalock, iflag); 11001 if (lpfc_readl(phba->HCregaddr, &control)) 11002 goto unplug_error; 11003 11004 lpfc_debugfs_slow_ring_trc(phba, 11005 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11006 control, status, 11007 (uint32_t)phba->sli.slistat.sli_intr); 11008 11009 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11010 lpfc_debugfs_slow_ring_trc(phba, 11011 "ISR Disable ring:" 11012 "pwork:x%x hawork:x%x wait:x%x", 11013 phba->work_ha, work_ha_copy, 11014 (uint32_t)((unsigned long) 11015 &phba->work_waitq)); 11016 11017 control &= 11018 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11019 writel(control, phba->HCregaddr); 11020 readl(phba->HCregaddr); /* flush */ 11021 } 11022 else { 11023 lpfc_debugfs_slow_ring_trc(phba, 11024 "ISR slow ring: pwork:" 11025 "x%x hawork:x%x wait:x%x", 11026 phba->work_ha, work_ha_copy, 11027 (uint32_t)((unsigned long) 11028 &phba->work_waitq)); 11029 } 11030 spin_unlock_irqrestore(&phba->hbalock, iflag); 11031 } 11032 } 11033 spin_lock_irqsave(&phba->hbalock, iflag); 11034 if (work_ha_copy & HA_ERATT) { 11035 if (lpfc_sli_read_hs(phba)) 11036 goto unplug_error; 11037 /* 11038 * Check if there is a deferred error condition 11039 * is active 11040 */ 11041 if ((HS_FFER1 & phba->work_hs) && 11042 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11043 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11044 phba->work_hs)) { 11045 phba->hba_flag |= DEFER_ERATT; 11046 /* Clear all interrupt enable conditions */ 11047 writel(0, phba->HCregaddr); 11048 readl(phba->HCregaddr); 11049 } 11050 } 11051 11052 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11053 pmb = phba->sli.mbox_active; 11054 pmbox = &pmb->u.mb; 11055 mbox = phba->mbox; 11056 vport = pmb->vport; 11057 11058 /* First check out the status word */ 11059 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11060 if (pmbox->mbxOwner != OWN_HOST) { 11061 spin_unlock_irqrestore(&phba->hbalock, iflag); 11062 /* 11063 * Stray Mailbox Interrupt, mbxCommand <cmd> 11064 * mbxStatus <status> 11065 */ 11066 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11067 LOG_SLI, 11068 "(%d):0304 Stray Mailbox " 11069 "Interrupt mbxCommand x%x " 11070 "mbxStatus x%x\n", 11071 (vport ? vport->vpi : 0), 11072 pmbox->mbxCommand, 11073 pmbox->mbxStatus); 11074 /* clear mailbox attention bit */ 11075 work_ha_copy &= ~HA_MBATT; 11076 } else { 11077 phba->sli.mbox_active = NULL; 11078 spin_unlock_irqrestore(&phba->hbalock, iflag); 11079 phba->last_completion_time = jiffies; 11080 del_timer(&phba->sli.mbox_tmo); 11081 if (pmb->mbox_cmpl) { 11082 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11083 MAILBOX_CMD_SIZE); 11084 if (pmb->out_ext_byte_len && 11085 pmb->context2) 11086 lpfc_sli_pcimem_bcopy( 11087 phba->mbox_ext, 11088 pmb->context2, 11089 pmb->out_ext_byte_len); 11090 } 11091 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11092 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11093 11094 lpfc_debugfs_disc_trc(vport, 11095 LPFC_DISC_TRC_MBOX_VPORT, 11096 "MBOX dflt rpi: : " 11097 "status:x%x rpi:x%x", 11098 (uint32_t)pmbox->mbxStatus, 11099 pmbox->un.varWords[0], 0); 11100 11101 if (!pmbox->mbxStatus) { 11102 mp = (struct lpfc_dmabuf *) 11103 (pmb->context1); 11104 ndlp = (struct lpfc_nodelist *) 11105 pmb->context2; 11106 11107 /* Reg_LOGIN of dflt RPI was 11108 * successful. new lets get 11109 * rid of the RPI using the 11110 * same mbox buffer. 11111 */ 11112 lpfc_unreg_login(phba, 11113 vport->vpi, 11114 pmbox->un.varWords[0], 11115 pmb); 11116 pmb->mbox_cmpl = 11117 lpfc_mbx_cmpl_dflt_rpi; 11118 pmb->context1 = mp; 11119 pmb->context2 = ndlp; 11120 pmb->vport = vport; 11121 rc = lpfc_sli_issue_mbox(phba, 11122 pmb, 11123 MBX_NOWAIT); 11124 if (rc != MBX_BUSY) 11125 lpfc_printf_log(phba, 11126 KERN_ERR, 11127 LOG_MBOX | LOG_SLI, 11128 "0350 rc should have" 11129 "been MBX_BUSY\n"); 11130 if (rc != MBX_NOT_FINISHED) 11131 goto send_current_mbox; 11132 } 11133 } 11134 spin_lock_irqsave( 11135 &phba->pport->work_port_lock, 11136 iflag); 11137 phba->pport->work_port_events &= 11138 ~WORKER_MBOX_TMO; 11139 spin_unlock_irqrestore( 11140 &phba->pport->work_port_lock, 11141 iflag); 11142 lpfc_mbox_cmpl_put(phba, pmb); 11143 } 11144 } else 11145 spin_unlock_irqrestore(&phba->hbalock, iflag); 11146 11147 if ((work_ha_copy & HA_MBATT) && 11148 (phba->sli.mbox_active == NULL)) { 11149 send_current_mbox: 11150 /* Process next mailbox command if there is one */ 11151 do { 11152 rc = lpfc_sli_issue_mbox(phba, NULL, 11153 MBX_NOWAIT); 11154 } while (rc == MBX_NOT_FINISHED); 11155 if (rc != MBX_SUCCESS) 11156 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11157 LOG_SLI, "0349 rc should be " 11158 "MBX_SUCCESS\n"); 11159 } 11160 11161 spin_lock_irqsave(&phba->hbalock, iflag); 11162 phba->work_ha |= work_ha_copy; 11163 spin_unlock_irqrestore(&phba->hbalock, iflag); 11164 lpfc_worker_wake_up(phba); 11165 } 11166 return IRQ_HANDLED; 11167 unplug_error: 11168 spin_unlock_irqrestore(&phba->hbalock, iflag); 11169 return IRQ_HANDLED; 11170 11171 } /* lpfc_sli_sp_intr_handler */ 11172 11173 /** 11174 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11175 * @irq: Interrupt number. 11176 * @dev_id: The device context pointer. 11177 * 11178 * This function is directly called from the PCI layer as an interrupt 11179 * service routine when device with SLI-3 interface spec is enabled with 11180 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11181 * ring event in the HBA. However, when the device is enabled with either 11182 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11183 * device-level interrupt handler. When the PCI slot is in error recovery 11184 * or the HBA is undergoing initialization, the interrupt handler will not 11185 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11186 * the intrrupt context. This function is called without any lock held. 11187 * It gets the hbalock to access and update SLI data structures. 11188 * 11189 * This function returns IRQ_HANDLED when interrupt is handled else it 11190 * returns IRQ_NONE. 11191 **/ 11192 irqreturn_t 11193 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 11194 { 11195 struct lpfc_hba *phba; 11196 uint32_t ha_copy; 11197 unsigned long status; 11198 unsigned long iflag; 11199 11200 /* Get the driver's phba structure from the dev_id and 11201 * assume the HBA is not interrupting. 11202 */ 11203 phba = (struct lpfc_hba *) dev_id; 11204 11205 if (unlikely(!phba)) 11206 return IRQ_NONE; 11207 11208 /* 11209 * Stuff needs to be attented to when this function is invoked as an 11210 * individual interrupt handler in MSI-X multi-message interrupt mode 11211 */ 11212 if (phba->intr_type == MSIX) { 11213 /* Check device state for handling interrupt */ 11214 if (lpfc_intr_state_check(phba)) 11215 return IRQ_NONE; 11216 /* Need to read HA REG for FCP ring and other ring events */ 11217 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11218 return IRQ_HANDLED; 11219 /* Clear up only attention source related to fast-path */ 11220 spin_lock_irqsave(&phba->hbalock, iflag); 11221 /* 11222 * If there is deferred error attention, do not check for 11223 * any interrupt. 11224 */ 11225 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11226 spin_unlock_irqrestore(&phba->hbalock, iflag); 11227 return IRQ_NONE; 11228 } 11229 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 11230 phba->HAregaddr); 11231 readl(phba->HAregaddr); /* flush */ 11232 spin_unlock_irqrestore(&phba->hbalock, iflag); 11233 } else 11234 ha_copy = phba->ha_copy; 11235 11236 /* 11237 * Process all events on FCP ring. Take the optimized path for FCP IO. 11238 */ 11239 ha_copy &= ~(phba->work_ha_mask); 11240 11241 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11242 status >>= (4*LPFC_FCP_RING); 11243 if (status & HA_RXMASK) 11244 lpfc_sli_handle_fast_ring_event(phba, 11245 &phba->sli.ring[LPFC_FCP_RING], 11246 status); 11247 11248 if (phba->cfg_multi_ring_support == 2) { 11249 /* 11250 * Process all events on extra ring. Take the optimized path 11251 * for extra ring IO. 11252 */ 11253 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11254 status >>= (4*LPFC_EXTRA_RING); 11255 if (status & HA_RXMASK) { 11256 lpfc_sli_handle_fast_ring_event(phba, 11257 &phba->sli.ring[LPFC_EXTRA_RING], 11258 status); 11259 } 11260 } 11261 return IRQ_HANDLED; 11262 } /* lpfc_sli_fp_intr_handler */ 11263 11264 /** 11265 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 11266 * @irq: Interrupt number. 11267 * @dev_id: The device context pointer. 11268 * 11269 * This function is the HBA device-level interrupt handler to device with 11270 * SLI-3 interface spec, called from the PCI layer when either MSI or 11271 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 11272 * requires driver attention. This function invokes the slow-path interrupt 11273 * attention handling function and fast-path interrupt attention handling 11274 * function in turn to process the relevant HBA attention events. This 11275 * function is called without any lock held. It gets the hbalock to access 11276 * and update SLI data structures. 11277 * 11278 * This function returns IRQ_HANDLED when interrupt is handled, else it 11279 * returns IRQ_NONE. 11280 **/ 11281 irqreturn_t 11282 lpfc_sli_intr_handler(int irq, void *dev_id) 11283 { 11284 struct lpfc_hba *phba; 11285 irqreturn_t sp_irq_rc, fp_irq_rc; 11286 unsigned long status1, status2; 11287 uint32_t hc_copy; 11288 11289 /* 11290 * Get the driver's phba structure from the dev_id and 11291 * assume the HBA is not interrupting. 11292 */ 11293 phba = (struct lpfc_hba *) dev_id; 11294 11295 if (unlikely(!phba)) 11296 return IRQ_NONE; 11297 11298 /* Check device state for handling interrupt */ 11299 if (lpfc_intr_state_check(phba)) 11300 return IRQ_NONE; 11301 11302 spin_lock(&phba->hbalock); 11303 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 11304 spin_unlock(&phba->hbalock); 11305 return IRQ_HANDLED; 11306 } 11307 11308 if (unlikely(!phba->ha_copy)) { 11309 spin_unlock(&phba->hbalock); 11310 return IRQ_NONE; 11311 } else if (phba->ha_copy & HA_ERATT) { 11312 if (phba->hba_flag & HBA_ERATT_HANDLED) 11313 /* ERATT polling has handled ERATT */ 11314 phba->ha_copy &= ~HA_ERATT; 11315 else 11316 /* Indicate interrupt handler handles ERATT */ 11317 phba->hba_flag |= HBA_ERATT_HANDLED; 11318 } 11319 11320 /* 11321 * If there is deferred error attention, do not check for any interrupt. 11322 */ 11323 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11324 spin_unlock(&phba->hbalock); 11325 return IRQ_NONE; 11326 } 11327 11328 /* Clear attention sources except link and error attentions */ 11329 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 11330 spin_unlock(&phba->hbalock); 11331 return IRQ_HANDLED; 11332 } 11333 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 11334 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 11335 phba->HCregaddr); 11336 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 11337 writel(hc_copy, phba->HCregaddr); 11338 readl(phba->HAregaddr); /* flush */ 11339 spin_unlock(&phba->hbalock); 11340 11341 /* 11342 * Invokes slow-path host attention interrupt handling as appropriate. 11343 */ 11344 11345 /* status of events with mailbox and link attention */ 11346 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 11347 11348 /* status of events with ELS ring */ 11349 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 11350 status2 >>= (4*LPFC_ELS_RING); 11351 11352 if (status1 || (status2 & HA_RXMASK)) 11353 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 11354 else 11355 sp_irq_rc = IRQ_NONE; 11356 11357 /* 11358 * Invoke fast-path host attention interrupt handling as appropriate. 11359 */ 11360 11361 /* status of events with FCP ring */ 11362 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 11363 status1 >>= (4*LPFC_FCP_RING); 11364 11365 /* status of events with extra ring */ 11366 if (phba->cfg_multi_ring_support == 2) { 11367 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 11368 status2 >>= (4*LPFC_EXTRA_RING); 11369 } else 11370 status2 = 0; 11371 11372 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 11373 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 11374 else 11375 fp_irq_rc = IRQ_NONE; 11376 11377 /* Return device-level interrupt handling status */ 11378 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 11379 } /* lpfc_sli_intr_handler */ 11380 11381 /** 11382 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 11383 * @phba: pointer to lpfc hba data structure. 11384 * 11385 * This routine is invoked by the worker thread to process all the pending 11386 * SLI4 FCP abort XRI events. 11387 **/ 11388 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 11389 { 11390 struct lpfc_cq_event *cq_event; 11391 11392 /* First, declare the fcp xri abort event has been handled */ 11393 spin_lock_irq(&phba->hbalock); 11394 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 11395 spin_unlock_irq(&phba->hbalock); 11396 /* Now, handle all the fcp xri abort events */ 11397 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 11398 /* Get the first event from the head of the event queue */ 11399 spin_lock_irq(&phba->hbalock); 11400 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 11401 cq_event, struct lpfc_cq_event, list); 11402 spin_unlock_irq(&phba->hbalock); 11403 /* Notify aborted XRI for FCP work queue */ 11404 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11405 /* Free the event processed back to the free pool */ 11406 lpfc_sli4_cq_event_release(phba, cq_event); 11407 } 11408 } 11409 11410 /** 11411 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 11412 * @phba: pointer to lpfc hba data structure. 11413 * 11414 * This routine is invoked by the worker thread to process all the pending 11415 * SLI4 els abort xri events. 11416 **/ 11417 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 11418 { 11419 struct lpfc_cq_event *cq_event; 11420 11421 /* First, declare the els xri abort event has been handled */ 11422 spin_lock_irq(&phba->hbalock); 11423 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 11424 spin_unlock_irq(&phba->hbalock); 11425 /* Now, handle all the els xri abort events */ 11426 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 11427 /* Get the first event from the head of the event queue */ 11428 spin_lock_irq(&phba->hbalock); 11429 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 11430 cq_event, struct lpfc_cq_event, list); 11431 spin_unlock_irq(&phba->hbalock); 11432 /* Notify aborted XRI for ELS work queue */ 11433 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 11434 /* Free the event processed back to the free pool */ 11435 lpfc_sli4_cq_event_release(phba, cq_event); 11436 } 11437 } 11438 11439 /** 11440 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 11441 * @phba: pointer to lpfc hba data structure 11442 * @pIocbIn: pointer to the rspiocbq 11443 * @pIocbOut: pointer to the cmdiocbq 11444 * @wcqe: pointer to the complete wcqe 11445 * 11446 * This routine transfers the fields of a command iocbq to a response iocbq 11447 * by copying all the IOCB fields from command iocbq and transferring the 11448 * completion status information from the complete wcqe. 11449 **/ 11450 static void 11451 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 11452 struct lpfc_iocbq *pIocbIn, 11453 struct lpfc_iocbq *pIocbOut, 11454 struct lpfc_wcqe_complete *wcqe) 11455 { 11456 int numBdes, i; 11457 unsigned long iflags; 11458 uint32_t status, max_response; 11459 struct lpfc_dmabuf *dmabuf; 11460 struct ulp_bde64 *bpl, bde; 11461 size_t offset = offsetof(struct lpfc_iocbq, iocb); 11462 11463 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 11464 sizeof(struct lpfc_iocbq) - offset); 11465 /* Map WCQE parameters into irspiocb parameters */ 11466 status = bf_get(lpfc_wcqe_c_status, wcqe); 11467 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 11468 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 11469 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 11470 pIocbIn->iocb.un.fcpi.fcpi_parm = 11471 pIocbOut->iocb.un.fcpi.fcpi_parm - 11472 wcqe->total_data_placed; 11473 else 11474 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11475 else { 11476 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 11477 switch (pIocbOut->iocb.ulpCommand) { 11478 case CMD_ELS_REQUEST64_CR: 11479 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11480 bpl = (struct ulp_bde64 *)dmabuf->virt; 11481 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 11482 max_response = bde.tus.f.bdeSize; 11483 break; 11484 case CMD_GEN_REQUEST64_CR: 11485 max_response = 0; 11486 if (!pIocbOut->context3) 11487 break; 11488 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 11489 sizeof(struct ulp_bde64); 11490 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 11491 bpl = (struct ulp_bde64 *)dmabuf->virt; 11492 for (i = 0; i < numBdes; i++) { 11493 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 11494 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 11495 max_response += bde.tus.f.bdeSize; 11496 } 11497 break; 11498 default: 11499 max_response = wcqe->total_data_placed; 11500 break; 11501 } 11502 if (max_response < wcqe->total_data_placed) 11503 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 11504 else 11505 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 11506 wcqe->total_data_placed; 11507 } 11508 11509 /* Convert BG errors for completion status */ 11510 if (status == CQE_STATUS_DI_ERROR) { 11511 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 11512 11513 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 11514 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 11515 else 11516 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 11517 11518 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 11519 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 11520 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11521 BGS_GUARD_ERR_MASK; 11522 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 11523 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11524 BGS_APPTAG_ERR_MASK; 11525 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 11526 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11527 BGS_REFTAG_ERR_MASK; 11528 11529 /* Check to see if there was any good data before the error */ 11530 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 11531 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11532 BGS_HI_WATER_MARK_PRESENT_MASK; 11533 pIocbIn->iocb.unsli3.sli3_bg.bghm = 11534 wcqe->total_data_placed; 11535 } 11536 11537 /* 11538 * Set ALL the error bits to indicate we don't know what 11539 * type of error it is. 11540 */ 11541 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 11542 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 11543 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 11544 BGS_GUARD_ERR_MASK); 11545 } 11546 11547 /* Pick up HBA exchange busy condition */ 11548 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 11549 spin_lock_irqsave(&phba->hbalock, iflags); 11550 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 11551 spin_unlock_irqrestore(&phba->hbalock, iflags); 11552 } 11553 } 11554 11555 /** 11556 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 11557 * @phba: Pointer to HBA context object. 11558 * @wcqe: Pointer to work-queue completion queue entry. 11559 * 11560 * This routine handles an ELS work-queue completion event and construct 11561 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 11562 * discovery engine to handle. 11563 * 11564 * Return: Pointer to the receive IOCBQ, NULL otherwise. 11565 **/ 11566 static struct lpfc_iocbq * 11567 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 11568 struct lpfc_iocbq *irspiocbq) 11569 { 11570 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 11571 struct lpfc_iocbq *cmdiocbq; 11572 struct lpfc_wcqe_complete *wcqe; 11573 unsigned long iflags; 11574 11575 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 11576 spin_lock_irqsave(&pring->ring_lock, iflags); 11577 pring->stats.iocb_event++; 11578 /* Look up the ELS command IOCB and create pseudo response IOCB */ 11579 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 11580 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11581 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11582 11583 if (unlikely(!cmdiocbq)) { 11584 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11585 "0386 ELS complete with no corresponding " 11586 "cmdiocb: iotag (%d)\n", 11587 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 11588 lpfc_sli_release_iocbq(phba, irspiocbq); 11589 return NULL; 11590 } 11591 11592 /* Fake the irspiocbq and copy necessary response information */ 11593 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 11594 11595 return irspiocbq; 11596 } 11597 11598 /** 11599 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 11600 * @phba: Pointer to HBA context object. 11601 * @cqe: Pointer to mailbox completion queue entry. 11602 * 11603 * This routine process a mailbox completion queue entry with asynchrous 11604 * event. 11605 * 11606 * Return: true if work posted to worker thread, otherwise false. 11607 **/ 11608 static bool 11609 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11610 { 11611 struct lpfc_cq_event *cq_event; 11612 unsigned long iflags; 11613 11614 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11615 "0392 Async Event: word0:x%x, word1:x%x, " 11616 "word2:x%x, word3:x%x\n", mcqe->word0, 11617 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 11618 11619 /* Allocate a new internal CQ_EVENT entry */ 11620 cq_event = lpfc_sli4_cq_event_alloc(phba); 11621 if (!cq_event) { 11622 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11623 "0394 Failed to allocate CQ_EVENT entry\n"); 11624 return false; 11625 } 11626 11627 /* Move the CQE into an asynchronous event entry */ 11628 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 11629 spin_lock_irqsave(&phba->hbalock, iflags); 11630 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 11631 /* Set the async event flag */ 11632 phba->hba_flag |= ASYNC_EVENT; 11633 spin_unlock_irqrestore(&phba->hbalock, iflags); 11634 11635 return true; 11636 } 11637 11638 /** 11639 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 11640 * @phba: Pointer to HBA context object. 11641 * @cqe: Pointer to mailbox completion queue entry. 11642 * 11643 * This routine process a mailbox completion queue entry with mailbox 11644 * completion event. 11645 * 11646 * Return: true if work posted to worker thread, otherwise false. 11647 **/ 11648 static bool 11649 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 11650 { 11651 uint32_t mcqe_status; 11652 MAILBOX_t *mbox, *pmbox; 11653 struct lpfc_mqe *mqe; 11654 struct lpfc_vport *vport; 11655 struct lpfc_nodelist *ndlp; 11656 struct lpfc_dmabuf *mp; 11657 unsigned long iflags; 11658 LPFC_MBOXQ_t *pmb; 11659 bool workposted = false; 11660 int rc; 11661 11662 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 11663 if (!bf_get(lpfc_trailer_completed, mcqe)) 11664 goto out_no_mqe_complete; 11665 11666 /* Get the reference to the active mbox command */ 11667 spin_lock_irqsave(&phba->hbalock, iflags); 11668 pmb = phba->sli.mbox_active; 11669 if (unlikely(!pmb)) { 11670 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 11671 "1832 No pending MBOX command to handle\n"); 11672 spin_unlock_irqrestore(&phba->hbalock, iflags); 11673 goto out_no_mqe_complete; 11674 } 11675 spin_unlock_irqrestore(&phba->hbalock, iflags); 11676 mqe = &pmb->u.mqe; 11677 pmbox = (MAILBOX_t *)&pmb->u.mqe; 11678 mbox = phba->mbox; 11679 vport = pmb->vport; 11680 11681 /* Reset heartbeat timer */ 11682 phba->last_completion_time = jiffies; 11683 del_timer(&phba->sli.mbox_tmo); 11684 11685 /* Move mbox data to caller's mailbox region, do endian swapping */ 11686 if (pmb->mbox_cmpl && mbox) 11687 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 11688 11689 /* 11690 * For mcqe errors, conditionally move a modified error code to 11691 * the mbox so that the error will not be missed. 11692 */ 11693 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 11694 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 11695 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 11696 bf_set(lpfc_mqe_status, mqe, 11697 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 11698 } 11699 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11700 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11701 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 11702 "MBOX dflt rpi: status:x%x rpi:x%x", 11703 mcqe_status, 11704 pmbox->un.varWords[0], 0); 11705 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 11706 mp = (struct lpfc_dmabuf *)(pmb->context1); 11707 ndlp = (struct lpfc_nodelist *)pmb->context2; 11708 /* Reg_LOGIN of dflt RPI was successful. Now lets get 11709 * RID of the PPI using the same mbox buffer. 11710 */ 11711 lpfc_unreg_login(phba, vport->vpi, 11712 pmbox->un.varWords[0], pmb); 11713 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 11714 pmb->context1 = mp; 11715 pmb->context2 = ndlp; 11716 pmb->vport = vport; 11717 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 11718 if (rc != MBX_BUSY) 11719 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11720 LOG_SLI, "0385 rc should " 11721 "have been MBX_BUSY\n"); 11722 if (rc != MBX_NOT_FINISHED) 11723 goto send_current_mbox; 11724 } 11725 } 11726 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 11727 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11728 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 11729 11730 /* There is mailbox completion work to do */ 11731 spin_lock_irqsave(&phba->hbalock, iflags); 11732 __lpfc_mbox_cmpl_put(phba, pmb); 11733 phba->work_ha |= HA_MBATT; 11734 spin_unlock_irqrestore(&phba->hbalock, iflags); 11735 workposted = true; 11736 11737 send_current_mbox: 11738 spin_lock_irqsave(&phba->hbalock, iflags); 11739 /* Release the mailbox command posting token */ 11740 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11741 /* Setting active mailbox pointer need to be in sync to flag clear */ 11742 phba->sli.mbox_active = NULL; 11743 spin_unlock_irqrestore(&phba->hbalock, iflags); 11744 /* Wake up worker thread to post the next pending mailbox command */ 11745 lpfc_worker_wake_up(phba); 11746 out_no_mqe_complete: 11747 if (bf_get(lpfc_trailer_consumed, mcqe)) 11748 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 11749 return workposted; 11750 } 11751 11752 /** 11753 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 11754 * @phba: Pointer to HBA context object. 11755 * @cqe: Pointer to mailbox completion queue entry. 11756 * 11757 * This routine process a mailbox completion queue entry, it invokes the 11758 * proper mailbox complete handling or asynchrous event handling routine 11759 * according to the MCQE's async bit. 11760 * 11761 * Return: true if work posted to worker thread, otherwise false. 11762 **/ 11763 static bool 11764 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 11765 { 11766 struct lpfc_mcqe mcqe; 11767 bool workposted; 11768 11769 /* Copy the mailbox MCQE and convert endian order as needed */ 11770 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 11771 11772 /* Invoke the proper event handling routine */ 11773 if (!bf_get(lpfc_trailer_async, &mcqe)) 11774 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 11775 else 11776 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 11777 return workposted; 11778 } 11779 11780 /** 11781 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 11782 * @phba: Pointer to HBA context object. 11783 * @cq: Pointer to associated CQ 11784 * @wcqe: Pointer to work-queue completion queue entry. 11785 * 11786 * This routine handles an ELS work-queue completion event. 11787 * 11788 * Return: true if work posted to worker thread, otherwise false. 11789 **/ 11790 static bool 11791 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11792 struct lpfc_wcqe_complete *wcqe) 11793 { 11794 struct lpfc_iocbq *irspiocbq; 11795 unsigned long iflags; 11796 struct lpfc_sli_ring *pring = cq->pring; 11797 int txq_cnt = 0; 11798 int txcmplq_cnt = 0; 11799 int fcp_txcmplq_cnt = 0; 11800 11801 /* Get an irspiocbq for later ELS response processing use */ 11802 irspiocbq = lpfc_sli_get_iocbq(phba); 11803 if (!irspiocbq) { 11804 if (!list_empty(&pring->txq)) 11805 txq_cnt++; 11806 if (!list_empty(&pring->txcmplq)) 11807 txcmplq_cnt++; 11808 if (!list_empty(&phba->sli.ring[LPFC_FCP_RING].txcmplq)) 11809 fcp_txcmplq_cnt++; 11810 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11811 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 11812 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 11813 txq_cnt, phba->iocb_cnt, 11814 fcp_txcmplq_cnt, 11815 txcmplq_cnt); 11816 return false; 11817 } 11818 11819 /* Save off the slow-path queue event for work thread to process */ 11820 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 11821 spin_lock_irqsave(&phba->hbalock, iflags); 11822 list_add_tail(&irspiocbq->cq_event.list, 11823 &phba->sli4_hba.sp_queue_event); 11824 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11825 spin_unlock_irqrestore(&phba->hbalock, iflags); 11826 11827 return true; 11828 } 11829 11830 /** 11831 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 11832 * @phba: Pointer to HBA context object. 11833 * @wcqe: Pointer to work-queue completion queue entry. 11834 * 11835 * This routine handles slow-path WQ entry comsumed event by invoking the 11836 * proper WQ release routine to the slow-path WQ. 11837 **/ 11838 static void 11839 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 11840 struct lpfc_wcqe_release *wcqe) 11841 { 11842 /* sanity check on queue memory */ 11843 if (unlikely(!phba->sli4_hba.els_wq)) 11844 return; 11845 /* Check for the slow-path ELS work queue */ 11846 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 11847 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 11848 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 11849 else 11850 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11851 "2579 Slow-path wqe consume event carries " 11852 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 11853 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 11854 phba->sli4_hba.els_wq->queue_id); 11855 } 11856 11857 /** 11858 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 11859 * @phba: Pointer to HBA context object. 11860 * @cq: Pointer to a WQ completion queue. 11861 * @wcqe: Pointer to work-queue completion queue entry. 11862 * 11863 * This routine handles an XRI abort event. 11864 * 11865 * Return: true if work posted to worker thread, otherwise false. 11866 **/ 11867 static bool 11868 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 11869 struct lpfc_queue *cq, 11870 struct sli4_wcqe_xri_aborted *wcqe) 11871 { 11872 bool workposted = false; 11873 struct lpfc_cq_event *cq_event; 11874 unsigned long iflags; 11875 11876 /* Allocate a new internal CQ_EVENT entry */ 11877 cq_event = lpfc_sli4_cq_event_alloc(phba); 11878 if (!cq_event) { 11879 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11880 "0602 Failed to allocate CQ_EVENT entry\n"); 11881 return false; 11882 } 11883 11884 /* Move the CQE into the proper xri abort event list */ 11885 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 11886 switch (cq->subtype) { 11887 case LPFC_FCP: 11888 spin_lock_irqsave(&phba->hbalock, iflags); 11889 list_add_tail(&cq_event->list, 11890 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 11891 /* Set the fcp xri abort event flag */ 11892 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 11893 spin_unlock_irqrestore(&phba->hbalock, iflags); 11894 workposted = true; 11895 break; 11896 case LPFC_ELS: 11897 spin_lock_irqsave(&phba->hbalock, iflags); 11898 list_add_tail(&cq_event->list, 11899 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 11900 /* Set the els xri abort event flag */ 11901 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 11902 spin_unlock_irqrestore(&phba->hbalock, iflags); 11903 workposted = true; 11904 break; 11905 default: 11906 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11907 "0603 Invalid work queue CQE subtype (x%x)\n", 11908 cq->subtype); 11909 workposted = false; 11910 break; 11911 } 11912 return workposted; 11913 } 11914 11915 /** 11916 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 11917 * @phba: Pointer to HBA context object. 11918 * @rcqe: Pointer to receive-queue completion queue entry. 11919 * 11920 * This routine process a receive-queue completion queue entry. 11921 * 11922 * Return: true if work posted to worker thread, otherwise false. 11923 **/ 11924 static bool 11925 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 11926 { 11927 bool workposted = false; 11928 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 11929 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 11930 struct hbq_dmabuf *dma_buf; 11931 uint32_t status, rq_id; 11932 unsigned long iflags; 11933 11934 /* sanity check on queue memory */ 11935 if (unlikely(!hrq) || unlikely(!drq)) 11936 return workposted; 11937 11938 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 11939 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 11940 else 11941 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 11942 if (rq_id != hrq->queue_id) 11943 goto out; 11944 11945 status = bf_get(lpfc_rcqe_status, rcqe); 11946 switch (status) { 11947 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 11948 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11949 "2537 Receive Frame Truncated!!\n"); 11950 hrq->RQ_buf_trunc++; 11951 case FC_STATUS_RQ_SUCCESS: 11952 lpfc_sli4_rq_release(hrq, drq); 11953 spin_lock_irqsave(&phba->hbalock, iflags); 11954 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 11955 if (!dma_buf) { 11956 hrq->RQ_no_buf_found++; 11957 spin_unlock_irqrestore(&phba->hbalock, iflags); 11958 goto out; 11959 } 11960 hrq->RQ_rcv_buf++; 11961 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 11962 /* save off the frame for the word thread to process */ 11963 list_add_tail(&dma_buf->cq_event.list, 11964 &phba->sli4_hba.sp_queue_event); 11965 /* Frame received */ 11966 phba->hba_flag |= HBA_SP_QUEUE_EVT; 11967 spin_unlock_irqrestore(&phba->hbalock, iflags); 11968 workposted = true; 11969 break; 11970 case FC_STATUS_INSUFF_BUF_NEED_BUF: 11971 case FC_STATUS_INSUFF_BUF_FRM_DISC: 11972 hrq->RQ_no_posted_buf++; 11973 /* Post more buffers if possible */ 11974 spin_lock_irqsave(&phba->hbalock, iflags); 11975 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 11976 spin_unlock_irqrestore(&phba->hbalock, iflags); 11977 workposted = true; 11978 break; 11979 } 11980 out: 11981 return workposted; 11982 } 11983 11984 /** 11985 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 11986 * @phba: Pointer to HBA context object. 11987 * @cq: Pointer to the completion queue. 11988 * @wcqe: Pointer to a completion queue entry. 11989 * 11990 * This routine process a slow-path work-queue or receive queue completion queue 11991 * entry. 11992 * 11993 * Return: true if work posted to worker thread, otherwise false. 11994 **/ 11995 static bool 11996 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 11997 struct lpfc_cqe *cqe) 11998 { 11999 struct lpfc_cqe cqevt; 12000 bool workposted = false; 12001 12002 /* Copy the work queue CQE and convert endian order if needed */ 12003 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12004 12005 /* Check and process for different type of WCQE and dispatch */ 12006 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12007 case CQE_CODE_COMPL_WQE: 12008 /* Process the WQ/RQ complete event */ 12009 phba->last_completion_time = jiffies; 12010 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12011 (struct lpfc_wcqe_complete *)&cqevt); 12012 break; 12013 case CQE_CODE_RELEASE_WQE: 12014 /* Process the WQ release event */ 12015 lpfc_sli4_sp_handle_rel_wcqe(phba, 12016 (struct lpfc_wcqe_release *)&cqevt); 12017 break; 12018 case CQE_CODE_XRI_ABORTED: 12019 /* Process the WQ XRI abort event */ 12020 phba->last_completion_time = jiffies; 12021 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12022 (struct sli4_wcqe_xri_aborted *)&cqevt); 12023 break; 12024 case CQE_CODE_RECEIVE: 12025 case CQE_CODE_RECEIVE_V1: 12026 /* Process the RQ event */ 12027 phba->last_completion_time = jiffies; 12028 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12029 (struct lpfc_rcqe *)&cqevt); 12030 break; 12031 default: 12032 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12033 "0388 Not a valid WCQE code: x%x\n", 12034 bf_get(lpfc_cqe_code, &cqevt)); 12035 break; 12036 } 12037 return workposted; 12038 } 12039 12040 /** 12041 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12042 * @phba: Pointer to HBA context object. 12043 * @eqe: Pointer to fast-path event queue entry. 12044 * 12045 * This routine process a event queue entry from the slow-path event queue. 12046 * It will check the MajorCode and MinorCode to determine this is for a 12047 * completion event on a completion queue, if not, an error shall be logged 12048 * and just return. Otherwise, it will get to the corresponding completion 12049 * queue and process all the entries on that completion queue, rearm the 12050 * completion queue, and then return. 12051 * 12052 **/ 12053 static void 12054 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12055 struct lpfc_queue *speq) 12056 { 12057 struct lpfc_queue *cq = NULL, *childq; 12058 struct lpfc_cqe *cqe; 12059 bool workposted = false; 12060 int ecount = 0; 12061 uint16_t cqid; 12062 12063 /* Get the reference to the corresponding CQ */ 12064 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12065 12066 list_for_each_entry(childq, &speq->child_list, list) { 12067 if (childq->queue_id == cqid) { 12068 cq = childq; 12069 break; 12070 } 12071 } 12072 if (unlikely(!cq)) { 12073 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12074 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12075 "0365 Slow-path CQ identifier " 12076 "(%d) does not exist\n", cqid); 12077 return; 12078 } 12079 12080 /* Process all the entries to the CQ */ 12081 switch (cq->type) { 12082 case LPFC_MCQ: 12083 while ((cqe = lpfc_sli4_cq_get(cq))) { 12084 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12085 if (!(++ecount % cq->entry_repost)) 12086 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12087 cq->CQ_mbox++; 12088 } 12089 break; 12090 case LPFC_WCQ: 12091 while ((cqe = lpfc_sli4_cq_get(cq))) { 12092 if (cq->subtype == LPFC_FCP) 12093 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, 12094 cqe); 12095 else 12096 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12097 cqe); 12098 if (!(++ecount % cq->entry_repost)) 12099 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12100 } 12101 12102 /* Track the max number of CQEs processed in 1 EQ */ 12103 if (ecount > cq->CQ_max_cqe) 12104 cq->CQ_max_cqe = ecount; 12105 break; 12106 default: 12107 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12108 "0370 Invalid completion queue type (%d)\n", 12109 cq->type); 12110 return; 12111 } 12112 12113 /* Catch the no cq entry condition, log an error */ 12114 if (unlikely(ecount == 0)) 12115 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12116 "0371 No entry from the CQ: identifier " 12117 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12118 12119 /* In any case, flash and re-arm the RCQ */ 12120 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12121 12122 /* wake up worker thread if there are works to be done */ 12123 if (workposted) 12124 lpfc_worker_wake_up(phba); 12125 } 12126 12127 /** 12128 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12129 * @phba: Pointer to HBA context object. 12130 * @cq: Pointer to associated CQ 12131 * @wcqe: Pointer to work-queue completion queue entry. 12132 * 12133 * This routine process a fast-path work queue completion entry from fast-path 12134 * event queue for FCP command response completion. 12135 **/ 12136 static void 12137 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12138 struct lpfc_wcqe_complete *wcqe) 12139 { 12140 struct lpfc_sli_ring *pring = cq->pring; 12141 struct lpfc_iocbq *cmdiocbq; 12142 struct lpfc_iocbq irspiocbq; 12143 unsigned long iflags; 12144 12145 /* Check for response status */ 12146 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 12147 /* If resource errors reported from HBA, reduce queue 12148 * depth of the SCSI device. 12149 */ 12150 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 12151 IOSTAT_LOCAL_REJECT)) && 12152 ((wcqe->parameter & IOERR_PARAM_MASK) == 12153 IOERR_NO_RESOURCES)) 12154 phba->lpfc_rampdown_queue_depth(phba); 12155 12156 /* Log the error status */ 12157 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12158 "0373 FCP complete error: status=x%x, " 12159 "hw_status=x%x, total_data_specified=%d, " 12160 "parameter=x%x, word3=x%x\n", 12161 bf_get(lpfc_wcqe_c_status, wcqe), 12162 bf_get(lpfc_wcqe_c_hw_status, wcqe), 12163 wcqe->total_data_placed, wcqe->parameter, 12164 wcqe->word3); 12165 } 12166 12167 /* Look up the FCP command IOCB and create pseudo response IOCB */ 12168 spin_lock_irqsave(&pring->ring_lock, iflags); 12169 pring->stats.iocb_event++; 12170 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12171 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12172 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12173 if (unlikely(!cmdiocbq)) { 12174 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12175 "0374 FCP complete with no corresponding " 12176 "cmdiocb: iotag (%d)\n", 12177 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12178 return; 12179 } 12180 if (unlikely(!cmdiocbq->iocb_cmpl)) { 12181 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12182 "0375 FCP cmdiocb not callback function " 12183 "iotag: (%d)\n", 12184 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12185 return; 12186 } 12187 12188 /* Fake the irspiocb and copy necessary response information */ 12189 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 12190 12191 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 12192 spin_lock_irqsave(&phba->hbalock, iflags); 12193 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 12194 spin_unlock_irqrestore(&phba->hbalock, iflags); 12195 } 12196 12197 /* Pass the cmd_iocb and the rsp state to the upper layer */ 12198 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 12199 } 12200 12201 /** 12202 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 12203 * @phba: Pointer to HBA context object. 12204 * @cq: Pointer to completion queue. 12205 * @wcqe: Pointer to work-queue completion queue entry. 12206 * 12207 * This routine handles an fast-path WQ entry comsumed event by invoking the 12208 * proper WQ release routine to the slow-path WQ. 12209 **/ 12210 static void 12211 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12212 struct lpfc_wcqe_release *wcqe) 12213 { 12214 struct lpfc_queue *childwq; 12215 bool wqid_matched = false; 12216 uint16_t fcp_wqid; 12217 12218 /* Check for fast-path FCP work queue release */ 12219 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 12220 list_for_each_entry(childwq, &cq->child_list, list) { 12221 if (childwq->queue_id == fcp_wqid) { 12222 lpfc_sli4_wq_release(childwq, 12223 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12224 wqid_matched = true; 12225 break; 12226 } 12227 } 12228 /* Report warning log message if no match found */ 12229 if (wqid_matched != true) 12230 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12231 "2580 Fast-path wqe consume event carries " 12232 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid); 12233 } 12234 12235 /** 12236 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry 12237 * @cq: Pointer to the completion queue. 12238 * @eqe: Pointer to fast-path completion queue entry. 12239 * 12240 * This routine process a fast-path work queue completion entry from fast-path 12241 * event queue for FCP command response completion. 12242 **/ 12243 static int 12244 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12245 struct lpfc_cqe *cqe) 12246 { 12247 struct lpfc_wcqe_release wcqe; 12248 bool workposted = false; 12249 12250 /* Copy the work queue CQE and convert endian order if needed */ 12251 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 12252 12253 /* Check and process for different type of WCQE and dispatch */ 12254 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 12255 case CQE_CODE_COMPL_WQE: 12256 cq->CQ_wq++; 12257 /* Process the WQ complete event */ 12258 phba->last_completion_time = jiffies; 12259 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 12260 (struct lpfc_wcqe_complete *)&wcqe); 12261 break; 12262 case CQE_CODE_RELEASE_WQE: 12263 cq->CQ_release_wqe++; 12264 /* Process the WQ release event */ 12265 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 12266 (struct lpfc_wcqe_release *)&wcqe); 12267 break; 12268 case CQE_CODE_XRI_ABORTED: 12269 cq->CQ_xri_aborted++; 12270 /* Process the WQ XRI abort event */ 12271 phba->last_completion_time = jiffies; 12272 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12273 (struct sli4_wcqe_xri_aborted *)&wcqe); 12274 break; 12275 default: 12276 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12277 "0144 Not a valid WCQE code: x%x\n", 12278 bf_get(lpfc_wcqe_c_code, &wcqe)); 12279 break; 12280 } 12281 return workposted; 12282 } 12283 12284 /** 12285 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 12286 * @phba: Pointer to HBA context object. 12287 * @eqe: Pointer to fast-path event queue entry. 12288 * 12289 * This routine process a event queue entry from the fast-path event queue. 12290 * It will check the MajorCode and MinorCode to determine this is for a 12291 * completion event on a completion queue, if not, an error shall be logged 12292 * and just return. Otherwise, it will get to the corresponding completion 12293 * queue and process all the entries on the completion queue, rearm the 12294 * completion queue, and then return. 12295 **/ 12296 static void 12297 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12298 uint32_t qidx) 12299 { 12300 struct lpfc_queue *cq; 12301 struct lpfc_cqe *cqe; 12302 bool workposted = false; 12303 uint16_t cqid; 12304 int ecount = 0; 12305 12306 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12307 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12308 "0366 Not a valid completion " 12309 "event: majorcode=x%x, minorcode=x%x\n", 12310 bf_get_le32(lpfc_eqe_major_code, eqe), 12311 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12312 return; 12313 } 12314 12315 /* Get the reference to the corresponding CQ */ 12316 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12317 12318 /* Check if this is a Slow path event */ 12319 if (unlikely(cqid != phba->sli4_hba.fcp_cq_map[qidx])) { 12320 lpfc_sli4_sp_handle_eqe(phba, eqe, 12321 phba->sli4_hba.hba_eq[qidx]); 12322 return; 12323 } 12324 12325 if (unlikely(!phba->sli4_hba.fcp_cq)) { 12326 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12327 "3146 Fast-path completion queues " 12328 "does not exist\n"); 12329 return; 12330 } 12331 cq = phba->sli4_hba.fcp_cq[qidx]; 12332 if (unlikely(!cq)) { 12333 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12334 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12335 "0367 Fast-path completion queue " 12336 "(%d) does not exist\n", qidx); 12337 return; 12338 } 12339 12340 if (unlikely(cqid != cq->queue_id)) { 12341 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12342 "0368 Miss-matched fast-path completion " 12343 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 12344 cqid, cq->queue_id); 12345 return; 12346 } 12347 12348 /* Process all the entries to the CQ */ 12349 while ((cqe = lpfc_sli4_cq_get(cq))) { 12350 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12351 if (!(++ecount % cq->entry_repost)) 12352 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12353 } 12354 12355 /* Track the max number of CQEs processed in 1 EQ */ 12356 if (ecount > cq->CQ_max_cqe) 12357 cq->CQ_max_cqe = ecount; 12358 12359 /* Catch the no cq entry condition */ 12360 if (unlikely(ecount == 0)) 12361 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12362 "0369 No entry from fast-path completion " 12363 "queue fcpcqid=%d\n", cq->queue_id); 12364 12365 /* In any case, flash and re-arm the CQ */ 12366 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12367 12368 /* wake up worker thread if there are works to be done */ 12369 if (workposted) 12370 lpfc_worker_wake_up(phba); 12371 } 12372 12373 static void 12374 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 12375 { 12376 struct lpfc_eqe *eqe; 12377 12378 /* walk all the EQ entries and drop on the floor */ 12379 while ((eqe = lpfc_sli4_eq_get(eq))) 12380 ; 12381 12382 /* Clear and re-arm the EQ */ 12383 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12384 } 12385 12386 12387 /** 12388 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 12389 * entry 12390 * @phba: Pointer to HBA context object. 12391 * @eqe: Pointer to fast-path event queue entry. 12392 * 12393 * This routine process a event queue entry from the Flash Optimized Fabric 12394 * event queue. It will check the MajorCode and MinorCode to determine this 12395 * is for a completion event on a completion queue, if not, an error shall be 12396 * logged and just return. Otherwise, it will get to the corresponding 12397 * completion queue and process all the entries on the completion queue, rearm 12398 * the completion queue, and then return. 12399 **/ 12400 static void 12401 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 12402 { 12403 struct lpfc_queue *cq; 12404 struct lpfc_cqe *cqe; 12405 bool workposted = false; 12406 uint16_t cqid; 12407 int ecount = 0; 12408 12409 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 12410 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12411 "9147 Not a valid completion " 12412 "event: majorcode=x%x, minorcode=x%x\n", 12413 bf_get_le32(lpfc_eqe_major_code, eqe), 12414 bf_get_le32(lpfc_eqe_minor_code, eqe)); 12415 return; 12416 } 12417 12418 /* Get the reference to the corresponding CQ */ 12419 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12420 12421 /* Next check for OAS */ 12422 cq = phba->sli4_hba.oas_cq; 12423 if (unlikely(!cq)) { 12424 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12425 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12426 "9148 OAS completion queue " 12427 "does not exist\n"); 12428 return; 12429 } 12430 12431 if (unlikely(cqid != cq->queue_id)) { 12432 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12433 "9149 Miss-matched fast-path compl " 12434 "queue id: eqcqid=%d, fcpcqid=%d\n", 12435 cqid, cq->queue_id); 12436 return; 12437 } 12438 12439 /* Process all the entries to the OAS CQ */ 12440 while ((cqe = lpfc_sli4_cq_get(cq))) { 12441 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe); 12442 if (!(++ecount % cq->entry_repost)) 12443 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12444 } 12445 12446 /* Track the max number of CQEs processed in 1 EQ */ 12447 if (ecount > cq->CQ_max_cqe) 12448 cq->CQ_max_cqe = ecount; 12449 12450 /* Catch the no cq entry condition */ 12451 if (unlikely(ecount == 0)) 12452 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12453 "9153 No entry from fast-path completion " 12454 "queue fcpcqid=%d\n", cq->queue_id); 12455 12456 /* In any case, flash and re-arm the CQ */ 12457 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12458 12459 /* wake up worker thread if there are works to be done */ 12460 if (workposted) 12461 lpfc_worker_wake_up(phba); 12462 } 12463 12464 /** 12465 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 12466 * @irq: Interrupt number. 12467 * @dev_id: The device context pointer. 12468 * 12469 * This function is directly called from the PCI layer as an interrupt 12470 * service routine when device with SLI-4 interface spec is enabled with 12471 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 12472 * IOCB ring event in the HBA. However, when the device is enabled with either 12473 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12474 * device-level interrupt handler. When the PCI slot is in error recovery 12475 * or the HBA is undergoing initialization, the interrupt handler will not 12476 * process the interrupt. The Flash Optimized Fabric ring event are handled in 12477 * the intrrupt context. This function is called without any lock held. 12478 * It gets the hbalock to access and update SLI data structures. Note that, 12479 * the EQ to CQ are one-to-one map such that the EQ index is 12480 * equal to that of CQ index. 12481 * 12482 * This function returns IRQ_HANDLED when interrupt is handled else it 12483 * returns IRQ_NONE. 12484 **/ 12485 irqreturn_t 12486 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 12487 { 12488 struct lpfc_hba *phba; 12489 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12490 struct lpfc_queue *eq; 12491 struct lpfc_eqe *eqe; 12492 unsigned long iflag; 12493 int ecount = 0; 12494 uint32_t eqidx; 12495 12496 /* Get the driver's phba structure from the dev_id */ 12497 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12498 phba = fcp_eq_hdl->phba; 12499 eqidx = fcp_eq_hdl->idx; 12500 12501 if (unlikely(!phba)) 12502 return IRQ_NONE; 12503 12504 /* Get to the EQ struct associated with this vector */ 12505 eq = phba->sli4_hba.fof_eq; 12506 if (unlikely(!eq)) 12507 return IRQ_NONE; 12508 12509 /* Check device state for handling interrupt */ 12510 if (unlikely(lpfc_intr_state_check(phba))) { 12511 eq->EQ_badstate++; 12512 /* Check again for link_state with lock held */ 12513 spin_lock_irqsave(&phba->hbalock, iflag); 12514 if (phba->link_state < LPFC_LINK_DOWN) 12515 /* Flush, clear interrupt, and rearm the EQ */ 12516 lpfc_sli4_eq_flush(phba, eq); 12517 spin_unlock_irqrestore(&phba->hbalock, iflag); 12518 return IRQ_NONE; 12519 } 12520 12521 /* 12522 * Process all the event on FCP fast-path EQ 12523 */ 12524 while ((eqe = lpfc_sli4_eq_get(eq))) { 12525 lpfc_sli4_fof_handle_eqe(phba, eqe); 12526 if (!(++ecount % eq->entry_repost)) 12527 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 12528 eq->EQ_processed++; 12529 } 12530 12531 /* Track the max number of EQEs processed in 1 intr */ 12532 if (ecount > eq->EQ_max_eqe) 12533 eq->EQ_max_eqe = ecount; 12534 12535 12536 if (unlikely(ecount == 0)) { 12537 eq->EQ_no_entry++; 12538 12539 if (phba->intr_type == MSIX) 12540 /* MSI-X treated interrupt served as no EQ share INT */ 12541 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12542 "9145 MSI-X interrupt with no EQE\n"); 12543 else { 12544 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12545 "9146 ISR interrupt with no EQE\n"); 12546 /* Non MSI-X treated on interrupt as EQ share INT */ 12547 return IRQ_NONE; 12548 } 12549 } 12550 /* Always clear and re-arm the fast-path EQ */ 12551 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 12552 return IRQ_HANDLED; 12553 } 12554 12555 /** 12556 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 12557 * @irq: Interrupt number. 12558 * @dev_id: The device context pointer. 12559 * 12560 * This function is directly called from the PCI layer as an interrupt 12561 * service routine when device with SLI-4 interface spec is enabled with 12562 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12563 * ring event in the HBA. However, when the device is enabled with either 12564 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12565 * device-level interrupt handler. When the PCI slot is in error recovery 12566 * or the HBA is undergoing initialization, the interrupt handler will not 12567 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12568 * the intrrupt context. This function is called without any lock held. 12569 * It gets the hbalock to access and update SLI data structures. Note that, 12570 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 12571 * equal to that of FCP CQ index. 12572 * 12573 * The link attention and ELS ring attention events are handled 12574 * by the worker thread. The interrupt handler signals the worker thread 12575 * and returns for these events. This function is called without any lock 12576 * held. It gets the hbalock to access and update SLI data structures. 12577 * 12578 * This function returns IRQ_HANDLED when interrupt is handled else it 12579 * returns IRQ_NONE. 12580 **/ 12581 irqreturn_t 12582 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 12583 { 12584 struct lpfc_hba *phba; 12585 struct lpfc_fcp_eq_hdl *fcp_eq_hdl; 12586 struct lpfc_queue *fpeq; 12587 struct lpfc_eqe *eqe; 12588 unsigned long iflag; 12589 int ecount = 0; 12590 int fcp_eqidx; 12591 12592 /* Get the driver's phba structure from the dev_id */ 12593 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id; 12594 phba = fcp_eq_hdl->phba; 12595 fcp_eqidx = fcp_eq_hdl->idx; 12596 12597 if (unlikely(!phba)) 12598 return IRQ_NONE; 12599 if (unlikely(!phba->sli4_hba.hba_eq)) 12600 return IRQ_NONE; 12601 12602 /* Get to the EQ struct associated with this vector */ 12603 fpeq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12604 if (unlikely(!fpeq)) 12605 return IRQ_NONE; 12606 12607 if (lpfc_fcp_look_ahead) { 12608 if (atomic_dec_and_test(&fcp_eq_hdl->fcp_eq_in_use)) 12609 lpfc_sli4_eq_clr_intr(fpeq); 12610 else { 12611 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12612 return IRQ_NONE; 12613 } 12614 } 12615 12616 /* Check device state for handling interrupt */ 12617 if (unlikely(lpfc_intr_state_check(phba))) { 12618 fpeq->EQ_badstate++; 12619 /* Check again for link_state with lock held */ 12620 spin_lock_irqsave(&phba->hbalock, iflag); 12621 if (phba->link_state < LPFC_LINK_DOWN) 12622 /* Flush, clear interrupt, and rearm the EQ */ 12623 lpfc_sli4_eq_flush(phba, fpeq); 12624 spin_unlock_irqrestore(&phba->hbalock, iflag); 12625 if (lpfc_fcp_look_ahead) 12626 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12627 return IRQ_NONE; 12628 } 12629 12630 /* 12631 * Process all the event on FCP fast-path EQ 12632 */ 12633 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 12634 if (eqe == NULL) 12635 break; 12636 12637 lpfc_sli4_hba_handle_eqe(phba, eqe, fcp_eqidx); 12638 if (!(++ecount % fpeq->entry_repost)) 12639 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 12640 fpeq->EQ_processed++; 12641 } 12642 12643 /* Track the max number of EQEs processed in 1 intr */ 12644 if (ecount > fpeq->EQ_max_eqe) 12645 fpeq->EQ_max_eqe = ecount; 12646 12647 /* Always clear and re-arm the fast-path EQ */ 12648 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 12649 12650 if (unlikely(ecount == 0)) { 12651 fpeq->EQ_no_entry++; 12652 12653 if (lpfc_fcp_look_ahead) { 12654 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12655 return IRQ_NONE; 12656 } 12657 12658 if (phba->intr_type == MSIX) 12659 /* MSI-X treated interrupt served as no EQ share INT */ 12660 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12661 "0358 MSI-X interrupt with no EQE\n"); 12662 else 12663 /* Non MSI-X treated on interrupt as EQ share INT */ 12664 return IRQ_NONE; 12665 } 12666 12667 if (lpfc_fcp_look_ahead) 12668 atomic_inc(&fcp_eq_hdl->fcp_eq_in_use); 12669 return IRQ_HANDLED; 12670 } /* lpfc_sli4_fp_intr_handler */ 12671 12672 /** 12673 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 12674 * @irq: Interrupt number. 12675 * @dev_id: The device context pointer. 12676 * 12677 * This function is the device-level interrupt handler to device with SLI-4 12678 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 12679 * interrupt mode is enabled and there is an event in the HBA which requires 12680 * driver attention. This function invokes the slow-path interrupt attention 12681 * handling function and fast-path interrupt attention handling function in 12682 * turn to process the relevant HBA attention events. This function is called 12683 * without any lock held. It gets the hbalock to access and update SLI data 12684 * structures. 12685 * 12686 * This function returns IRQ_HANDLED when interrupt is handled, else it 12687 * returns IRQ_NONE. 12688 **/ 12689 irqreturn_t 12690 lpfc_sli4_intr_handler(int irq, void *dev_id) 12691 { 12692 struct lpfc_hba *phba; 12693 irqreturn_t hba_irq_rc; 12694 bool hba_handled = false; 12695 int fcp_eqidx; 12696 12697 /* Get the driver's phba structure from the dev_id */ 12698 phba = (struct lpfc_hba *)dev_id; 12699 12700 if (unlikely(!phba)) 12701 return IRQ_NONE; 12702 12703 /* 12704 * Invoke fast-path host attention interrupt handling as appropriate. 12705 */ 12706 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_io_channel; fcp_eqidx++) { 12707 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 12708 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]); 12709 if (hba_irq_rc == IRQ_HANDLED) 12710 hba_handled |= true; 12711 } 12712 12713 if (phba->cfg_fof) { 12714 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 12715 &phba->sli4_hba.fcp_eq_hdl[0]); 12716 if (hba_irq_rc == IRQ_HANDLED) 12717 hba_handled |= true; 12718 } 12719 12720 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 12721 } /* lpfc_sli4_intr_handler */ 12722 12723 /** 12724 * lpfc_sli4_queue_free - free a queue structure and associated memory 12725 * @queue: The queue structure to free. 12726 * 12727 * This function frees a queue structure and the DMAable memory used for 12728 * the host resident queue. This function must be called after destroying the 12729 * queue on the HBA. 12730 **/ 12731 void 12732 lpfc_sli4_queue_free(struct lpfc_queue *queue) 12733 { 12734 struct lpfc_dmabuf *dmabuf; 12735 12736 if (!queue) 12737 return; 12738 12739 while (!list_empty(&queue->page_list)) { 12740 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 12741 list); 12742 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 12743 dmabuf->virt, dmabuf->phys); 12744 kfree(dmabuf); 12745 } 12746 kfree(queue); 12747 return; 12748 } 12749 12750 /** 12751 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 12752 * @phba: The HBA that this queue is being created on. 12753 * @entry_size: The size of each queue entry for this queue. 12754 * @entry count: The number of entries that this queue will handle. 12755 * 12756 * This function allocates a queue structure and the DMAable memory used for 12757 * the host resident queue. This function must be called before creating the 12758 * queue on the HBA. 12759 **/ 12760 struct lpfc_queue * 12761 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 12762 uint32_t entry_count) 12763 { 12764 struct lpfc_queue *queue; 12765 struct lpfc_dmabuf *dmabuf; 12766 int x, total_qe_count; 12767 void *dma_pointer; 12768 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12769 12770 if (!phba->sli4_hba.pc_sli4_params.supported) 12771 hw_page_size = SLI4_PAGE_SIZE; 12772 12773 queue = kzalloc(sizeof(struct lpfc_queue) + 12774 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 12775 if (!queue) 12776 return NULL; 12777 queue->page_count = (ALIGN(entry_size * entry_count, 12778 hw_page_size))/hw_page_size; 12779 INIT_LIST_HEAD(&queue->list); 12780 INIT_LIST_HEAD(&queue->page_list); 12781 INIT_LIST_HEAD(&queue->child_list); 12782 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 12783 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 12784 if (!dmabuf) 12785 goto out_fail; 12786 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 12787 hw_page_size, &dmabuf->phys, 12788 GFP_KERNEL); 12789 if (!dmabuf->virt) { 12790 kfree(dmabuf); 12791 goto out_fail; 12792 } 12793 dmabuf->buffer_tag = x; 12794 list_add_tail(&dmabuf->list, &queue->page_list); 12795 /* initialize queue's entry array */ 12796 dma_pointer = dmabuf->virt; 12797 for (; total_qe_count < entry_count && 12798 dma_pointer < (hw_page_size + dmabuf->virt); 12799 total_qe_count++, dma_pointer += entry_size) { 12800 queue->qe[total_qe_count].address = dma_pointer; 12801 } 12802 } 12803 queue->entry_size = entry_size; 12804 queue->entry_count = entry_count; 12805 12806 /* 12807 * entry_repost is calculated based on the number of entries in the 12808 * queue. This works out except for RQs. If buffers are NOT initially 12809 * posted for every RQE, entry_repost should be adjusted accordingly. 12810 */ 12811 queue->entry_repost = (entry_count >> 3); 12812 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 12813 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 12814 queue->phba = phba; 12815 12816 return queue; 12817 out_fail: 12818 lpfc_sli4_queue_free(queue); 12819 return NULL; 12820 } 12821 12822 /** 12823 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 12824 * @phba: HBA structure that indicates port to create a queue on. 12825 * @pci_barset: PCI BAR set flag. 12826 * 12827 * This function shall perform iomap of the specified PCI BAR address to host 12828 * memory address if not already done so and return it. The returned host 12829 * memory address can be NULL. 12830 */ 12831 static void __iomem * 12832 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 12833 { 12834 struct pci_dev *pdev; 12835 12836 if (!phba->pcidev) 12837 return NULL; 12838 else 12839 pdev = phba->pcidev; 12840 12841 switch (pci_barset) { 12842 case WQ_PCI_BAR_0_AND_1: 12843 return phba->pci_bar0_memmap_p; 12844 case WQ_PCI_BAR_2_AND_3: 12845 return phba->pci_bar2_memmap_p; 12846 case WQ_PCI_BAR_4_AND_5: 12847 return phba->pci_bar4_memmap_p; 12848 default: 12849 break; 12850 } 12851 return NULL; 12852 } 12853 12854 /** 12855 * lpfc_modify_fcp_eq_delay - Modify Delay Multiplier on FCP EQs 12856 * @phba: HBA structure that indicates port to create a queue on. 12857 * @startq: The starting FCP EQ to modify 12858 * 12859 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 12860 * 12861 * The @phba struct is used to send mailbox command to HBA. The @startq 12862 * is used to get the starting FCP EQ to change. 12863 * This function is asynchronous and will wait for the mailbox 12864 * command to finish before continuing. 12865 * 12866 * On success this function will return a zero. If unable to allocate enough 12867 * memory this function will return -ENOMEM. If the queue create mailbox command 12868 * fails this function will return -ENXIO. 12869 **/ 12870 int 12871 lpfc_modify_fcp_eq_delay(struct lpfc_hba *phba, uint32_t startq) 12872 { 12873 struct lpfc_mbx_modify_eq_delay *eq_delay; 12874 LPFC_MBOXQ_t *mbox; 12875 struct lpfc_queue *eq; 12876 int cnt, rc, length, status = 0; 12877 uint32_t shdr_status, shdr_add_status; 12878 uint32_t result; 12879 int fcp_eqidx; 12880 union lpfc_sli4_cfg_shdr *shdr; 12881 uint16_t dmult; 12882 12883 if (startq >= phba->cfg_fcp_io_channel) 12884 return 0; 12885 12886 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12887 if (!mbox) 12888 return -ENOMEM; 12889 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 12890 sizeof(struct lpfc_sli4_cfg_mhdr)); 12891 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12892 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 12893 length, LPFC_SLI4_MBX_EMBED); 12894 eq_delay = &mbox->u.mqe.un.eq_delay; 12895 12896 /* Calculate delay multiper from maximum interrupt per second */ 12897 result = phba->cfg_fcp_imax / phba->cfg_fcp_io_channel; 12898 if (result > LPFC_DMULT_CONST) 12899 dmult = 0; 12900 else 12901 dmult = LPFC_DMULT_CONST/result - 1; 12902 12903 cnt = 0; 12904 for (fcp_eqidx = startq; fcp_eqidx < phba->cfg_fcp_io_channel; 12905 fcp_eqidx++) { 12906 eq = phba->sli4_hba.hba_eq[fcp_eqidx]; 12907 if (!eq) 12908 continue; 12909 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 12910 eq_delay->u.request.eq[cnt].phase = 0; 12911 eq_delay->u.request.eq[cnt].delay_multi = dmult; 12912 cnt++; 12913 if (cnt >= LPFC_MAX_EQ_DELAY) 12914 break; 12915 } 12916 eq_delay->u.request.num_eq = cnt; 12917 12918 mbox->vport = phba->pport; 12919 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12920 mbox->context1 = NULL; 12921 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 12922 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 12923 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 12924 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 12925 if (shdr_status || shdr_add_status || rc) { 12926 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12927 "2512 MODIFY_EQ_DELAY mailbox failed with " 12928 "status x%x add_status x%x, mbx status x%x\n", 12929 shdr_status, shdr_add_status, rc); 12930 status = -ENXIO; 12931 } 12932 mempool_free(mbox, phba->mbox_mem_pool); 12933 return status; 12934 } 12935 12936 /** 12937 * lpfc_eq_create - Create an Event Queue on the HBA 12938 * @phba: HBA structure that indicates port to create a queue on. 12939 * @eq: The queue structure to use to create the event queue. 12940 * @imax: The maximum interrupt per second limit. 12941 * 12942 * This function creates an event queue, as detailed in @eq, on a port, 12943 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 12944 * 12945 * The @phba struct is used to send mailbox command to HBA. The @eq struct 12946 * is used to get the entry count and entry size that are necessary to 12947 * determine the number of pages to allocate and use for this queue. This 12948 * function will send the EQ_CREATE mailbox command to the HBA to setup the 12949 * event queue. This function is asynchronous and will wait for the mailbox 12950 * command to finish before continuing. 12951 * 12952 * On success this function will return a zero. If unable to allocate enough 12953 * memory this function will return -ENOMEM. If the queue create mailbox command 12954 * fails this function will return -ENXIO. 12955 **/ 12956 int 12957 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 12958 { 12959 struct lpfc_mbx_eq_create *eq_create; 12960 LPFC_MBOXQ_t *mbox; 12961 int rc, length, status = 0; 12962 struct lpfc_dmabuf *dmabuf; 12963 uint32_t shdr_status, shdr_add_status; 12964 union lpfc_sli4_cfg_shdr *shdr; 12965 uint16_t dmult; 12966 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 12967 12968 /* sanity check on queue memory */ 12969 if (!eq) 12970 return -ENODEV; 12971 if (!phba->sli4_hba.pc_sli4_params.supported) 12972 hw_page_size = SLI4_PAGE_SIZE; 12973 12974 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 12975 if (!mbox) 12976 return -ENOMEM; 12977 length = (sizeof(struct lpfc_mbx_eq_create) - 12978 sizeof(struct lpfc_sli4_cfg_mhdr)); 12979 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 12980 LPFC_MBOX_OPCODE_EQ_CREATE, 12981 length, LPFC_SLI4_MBX_EMBED); 12982 eq_create = &mbox->u.mqe.un.eq_create; 12983 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 12984 eq->page_count); 12985 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 12986 LPFC_EQE_SIZE); 12987 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 12988 /* don't setup delay multiplier using EQ_CREATE */ 12989 dmult = 0; 12990 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 12991 dmult); 12992 switch (eq->entry_count) { 12993 default: 12994 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12995 "0360 Unsupported EQ count. (%d)\n", 12996 eq->entry_count); 12997 if (eq->entry_count < 256) 12998 return -EINVAL; 12999 /* otherwise default to smallest count (drop through) */ 13000 case 256: 13001 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13002 LPFC_EQ_CNT_256); 13003 break; 13004 case 512: 13005 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13006 LPFC_EQ_CNT_512); 13007 break; 13008 case 1024: 13009 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13010 LPFC_EQ_CNT_1024); 13011 break; 13012 case 2048: 13013 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13014 LPFC_EQ_CNT_2048); 13015 break; 13016 case 4096: 13017 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 13018 LPFC_EQ_CNT_4096); 13019 break; 13020 } 13021 list_for_each_entry(dmabuf, &eq->page_list, list) { 13022 memset(dmabuf->virt, 0, hw_page_size); 13023 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13024 putPaddrLow(dmabuf->phys); 13025 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13026 putPaddrHigh(dmabuf->phys); 13027 } 13028 mbox->vport = phba->pport; 13029 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13030 mbox->context1 = NULL; 13031 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13032 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 13033 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13034 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13035 if (shdr_status || shdr_add_status || rc) { 13036 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13037 "2500 EQ_CREATE mailbox failed with " 13038 "status x%x add_status x%x, mbx status x%x\n", 13039 shdr_status, shdr_add_status, rc); 13040 status = -ENXIO; 13041 } 13042 eq->type = LPFC_EQ; 13043 eq->subtype = LPFC_NONE; 13044 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 13045 if (eq->queue_id == 0xFFFF) 13046 status = -ENXIO; 13047 eq->host_index = 0; 13048 eq->hba_index = 0; 13049 13050 mempool_free(mbox, phba->mbox_mem_pool); 13051 return status; 13052 } 13053 13054 /** 13055 * lpfc_cq_create - Create a Completion Queue on the HBA 13056 * @phba: HBA structure that indicates port to create a queue on. 13057 * @cq: The queue structure to use to create the completion queue. 13058 * @eq: The event queue to bind this completion queue to. 13059 * 13060 * This function creates a completion queue, as detailed in @wq, on a port, 13061 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 13062 * 13063 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13064 * is used to get the entry count and entry size that are necessary to 13065 * determine the number of pages to allocate and use for this queue. The @eq 13066 * is used to indicate which event queue to bind this completion queue to. This 13067 * function will send the CQ_CREATE mailbox command to the HBA to setup the 13068 * completion queue. This function is asynchronous and will wait for the mailbox 13069 * command to finish before continuing. 13070 * 13071 * On success this function will return a zero. If unable to allocate enough 13072 * memory this function will return -ENOMEM. If the queue create mailbox command 13073 * fails this function will return -ENXIO. 13074 **/ 13075 int 13076 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 13077 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 13078 { 13079 struct lpfc_mbx_cq_create *cq_create; 13080 struct lpfc_dmabuf *dmabuf; 13081 LPFC_MBOXQ_t *mbox; 13082 int rc, length, status = 0; 13083 uint32_t shdr_status, shdr_add_status; 13084 union lpfc_sli4_cfg_shdr *shdr; 13085 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13086 13087 /* sanity check on queue memory */ 13088 if (!cq || !eq) 13089 return -ENODEV; 13090 if (!phba->sli4_hba.pc_sli4_params.supported) 13091 hw_page_size = SLI4_PAGE_SIZE; 13092 13093 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13094 if (!mbox) 13095 return -ENOMEM; 13096 length = (sizeof(struct lpfc_mbx_cq_create) - 13097 sizeof(struct lpfc_sli4_cfg_mhdr)); 13098 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13099 LPFC_MBOX_OPCODE_CQ_CREATE, 13100 length, LPFC_SLI4_MBX_EMBED); 13101 cq_create = &mbox->u.mqe.un.cq_create; 13102 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 13103 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 13104 cq->page_count); 13105 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 13106 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 13107 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13108 phba->sli4_hba.pc_sli4_params.cqv); 13109 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 13110 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 13111 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 13112 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 13113 eq->queue_id); 13114 } else { 13115 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 13116 eq->queue_id); 13117 } 13118 switch (cq->entry_count) { 13119 default: 13120 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13121 "0361 Unsupported CQ count. (%d)\n", 13122 cq->entry_count); 13123 if (cq->entry_count < 256) { 13124 status = -EINVAL; 13125 goto out; 13126 } 13127 /* otherwise default to smallest count (drop through) */ 13128 case 256: 13129 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13130 LPFC_CQ_CNT_256); 13131 break; 13132 case 512: 13133 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13134 LPFC_CQ_CNT_512); 13135 break; 13136 case 1024: 13137 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 13138 LPFC_CQ_CNT_1024); 13139 break; 13140 } 13141 list_for_each_entry(dmabuf, &cq->page_list, list) { 13142 memset(dmabuf->virt, 0, hw_page_size); 13143 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13144 putPaddrLow(dmabuf->phys); 13145 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13146 putPaddrHigh(dmabuf->phys); 13147 } 13148 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13149 13150 /* The IOCTL status is embedded in the mailbox subheader. */ 13151 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13152 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13153 if (shdr_status || shdr_add_status || rc) { 13154 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13155 "2501 CQ_CREATE mailbox failed with " 13156 "status x%x add_status x%x, mbx status x%x\n", 13157 shdr_status, shdr_add_status, rc); 13158 status = -ENXIO; 13159 goto out; 13160 } 13161 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13162 if (cq->queue_id == 0xFFFF) { 13163 status = -ENXIO; 13164 goto out; 13165 } 13166 /* link the cq onto the parent eq child list */ 13167 list_add_tail(&cq->list, &eq->child_list); 13168 /* Set up completion queue's type and subtype */ 13169 cq->type = type; 13170 cq->subtype = subtype; 13171 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 13172 cq->assoc_qid = eq->queue_id; 13173 cq->host_index = 0; 13174 cq->hba_index = 0; 13175 13176 out: 13177 mempool_free(mbox, phba->mbox_mem_pool); 13178 return status; 13179 } 13180 13181 /** 13182 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 13183 * @phba: HBA structure that indicates port to create a queue on. 13184 * @mq: The queue structure to use to create the mailbox queue. 13185 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 13186 * @cq: The completion queue to associate with this cq. 13187 * 13188 * This function provides failback (fb) functionality when the 13189 * mq_create_ext fails on older FW generations. It's purpose is identical 13190 * to mq_create_ext otherwise. 13191 * 13192 * This routine cannot fail as all attributes were previously accessed and 13193 * initialized in mq_create_ext. 13194 **/ 13195 static void 13196 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 13197 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 13198 { 13199 struct lpfc_mbx_mq_create *mq_create; 13200 struct lpfc_dmabuf *dmabuf; 13201 int length; 13202 13203 length = (sizeof(struct lpfc_mbx_mq_create) - 13204 sizeof(struct lpfc_sli4_cfg_mhdr)); 13205 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13206 LPFC_MBOX_OPCODE_MQ_CREATE, 13207 length, LPFC_SLI4_MBX_EMBED); 13208 mq_create = &mbox->u.mqe.un.mq_create; 13209 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 13210 mq->page_count); 13211 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 13212 cq->queue_id); 13213 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 13214 switch (mq->entry_count) { 13215 case 16: 13216 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13217 LPFC_MQ_RING_SIZE_16); 13218 break; 13219 case 32: 13220 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13221 LPFC_MQ_RING_SIZE_32); 13222 break; 13223 case 64: 13224 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13225 LPFC_MQ_RING_SIZE_64); 13226 break; 13227 case 128: 13228 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 13229 LPFC_MQ_RING_SIZE_128); 13230 break; 13231 } 13232 list_for_each_entry(dmabuf, &mq->page_list, list) { 13233 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13234 putPaddrLow(dmabuf->phys); 13235 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13236 putPaddrHigh(dmabuf->phys); 13237 } 13238 } 13239 13240 /** 13241 * lpfc_mq_create - Create a mailbox Queue on the HBA 13242 * @phba: HBA structure that indicates port to create a queue on. 13243 * @mq: The queue structure to use to create the mailbox queue. 13244 * @cq: The completion queue to associate with this cq. 13245 * @subtype: The queue's subtype. 13246 * 13247 * This function creates a mailbox queue, as detailed in @mq, on a port, 13248 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 13249 * 13250 * The @phba struct is used to send mailbox command to HBA. The @cq struct 13251 * is used to get the entry count and entry size that are necessary to 13252 * determine the number of pages to allocate and use for this queue. This 13253 * function will send the MQ_CREATE mailbox command to the HBA to setup the 13254 * mailbox queue. This function is asynchronous and will wait for the mailbox 13255 * command to finish before continuing. 13256 * 13257 * On success this function will return a zero. If unable to allocate enough 13258 * memory this function will return -ENOMEM. If the queue create mailbox command 13259 * fails this function will return -ENXIO. 13260 **/ 13261 int32_t 13262 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 13263 struct lpfc_queue *cq, uint32_t subtype) 13264 { 13265 struct lpfc_mbx_mq_create *mq_create; 13266 struct lpfc_mbx_mq_create_ext *mq_create_ext; 13267 struct lpfc_dmabuf *dmabuf; 13268 LPFC_MBOXQ_t *mbox; 13269 int rc, length, status = 0; 13270 uint32_t shdr_status, shdr_add_status; 13271 union lpfc_sli4_cfg_shdr *shdr; 13272 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13273 13274 /* sanity check on queue memory */ 13275 if (!mq || !cq) 13276 return -ENODEV; 13277 if (!phba->sli4_hba.pc_sli4_params.supported) 13278 hw_page_size = SLI4_PAGE_SIZE; 13279 13280 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13281 if (!mbox) 13282 return -ENOMEM; 13283 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 13284 sizeof(struct lpfc_sli4_cfg_mhdr)); 13285 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13286 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 13287 length, LPFC_SLI4_MBX_EMBED); 13288 13289 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 13290 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 13291 bf_set(lpfc_mbx_mq_create_ext_num_pages, 13292 &mq_create_ext->u.request, mq->page_count); 13293 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 13294 &mq_create_ext->u.request, 1); 13295 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 13296 &mq_create_ext->u.request, 1); 13297 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 13298 &mq_create_ext->u.request, 1); 13299 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 13300 &mq_create_ext->u.request, 1); 13301 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 13302 &mq_create_ext->u.request, 1); 13303 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 13304 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13305 phba->sli4_hba.pc_sli4_params.mqv); 13306 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 13307 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 13308 cq->queue_id); 13309 else 13310 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 13311 cq->queue_id); 13312 switch (mq->entry_count) { 13313 default: 13314 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13315 "0362 Unsupported MQ count. (%d)\n", 13316 mq->entry_count); 13317 if (mq->entry_count < 16) { 13318 status = -EINVAL; 13319 goto out; 13320 } 13321 /* otherwise default to smallest count (drop through) */ 13322 case 16: 13323 bf_set(lpfc_mq_context_ring_size, 13324 &mq_create_ext->u.request.context, 13325 LPFC_MQ_RING_SIZE_16); 13326 break; 13327 case 32: 13328 bf_set(lpfc_mq_context_ring_size, 13329 &mq_create_ext->u.request.context, 13330 LPFC_MQ_RING_SIZE_32); 13331 break; 13332 case 64: 13333 bf_set(lpfc_mq_context_ring_size, 13334 &mq_create_ext->u.request.context, 13335 LPFC_MQ_RING_SIZE_64); 13336 break; 13337 case 128: 13338 bf_set(lpfc_mq_context_ring_size, 13339 &mq_create_ext->u.request.context, 13340 LPFC_MQ_RING_SIZE_128); 13341 break; 13342 } 13343 list_for_each_entry(dmabuf, &mq->page_list, list) { 13344 memset(dmabuf->virt, 0, hw_page_size); 13345 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 13346 putPaddrLow(dmabuf->phys); 13347 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 13348 putPaddrHigh(dmabuf->phys); 13349 } 13350 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13351 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13352 &mq_create_ext->u.response); 13353 if (rc != MBX_SUCCESS) { 13354 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13355 "2795 MQ_CREATE_EXT failed with " 13356 "status x%x. Failback to MQ_CREATE.\n", 13357 rc); 13358 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 13359 mq_create = &mbox->u.mqe.un.mq_create; 13360 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13361 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 13362 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 13363 &mq_create->u.response); 13364 } 13365 13366 /* The IOCTL status is embedded in the mailbox subheader. */ 13367 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13368 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13369 if (shdr_status || shdr_add_status || rc) { 13370 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13371 "2502 MQ_CREATE mailbox failed with " 13372 "status x%x add_status x%x, mbx status x%x\n", 13373 shdr_status, shdr_add_status, rc); 13374 status = -ENXIO; 13375 goto out; 13376 } 13377 if (mq->queue_id == 0xFFFF) { 13378 status = -ENXIO; 13379 goto out; 13380 } 13381 mq->type = LPFC_MQ; 13382 mq->assoc_qid = cq->queue_id; 13383 mq->subtype = subtype; 13384 mq->host_index = 0; 13385 mq->hba_index = 0; 13386 13387 /* link the mq onto the parent cq child list */ 13388 list_add_tail(&mq->list, &cq->child_list); 13389 out: 13390 mempool_free(mbox, phba->mbox_mem_pool); 13391 return status; 13392 } 13393 13394 /** 13395 * lpfc_wq_create - Create a Work Queue on the HBA 13396 * @phba: HBA structure that indicates port to create a queue on. 13397 * @wq: The queue structure to use to create the work queue. 13398 * @cq: The completion queue to bind this work queue to. 13399 * @subtype: The subtype of the work queue indicating its functionality. 13400 * 13401 * This function creates a work queue, as detailed in @wq, on a port, described 13402 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 13403 * 13404 * The @phba struct is used to send mailbox command to HBA. The @wq struct 13405 * is used to get the entry count and entry size that are necessary to 13406 * determine the number of pages to allocate and use for this queue. The @cq 13407 * is used to indicate which completion queue to bind this work queue to. This 13408 * function will send the WQ_CREATE mailbox command to the HBA to setup the 13409 * work queue. This function is asynchronous and will wait for the mailbox 13410 * command to finish before continuing. 13411 * 13412 * On success this function will return a zero. If unable to allocate enough 13413 * memory this function will return -ENOMEM. If the queue create mailbox command 13414 * fails this function will return -ENXIO. 13415 **/ 13416 int 13417 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 13418 struct lpfc_queue *cq, uint32_t subtype) 13419 { 13420 struct lpfc_mbx_wq_create *wq_create; 13421 struct lpfc_dmabuf *dmabuf; 13422 LPFC_MBOXQ_t *mbox; 13423 int rc, length, status = 0; 13424 uint32_t shdr_status, shdr_add_status; 13425 union lpfc_sli4_cfg_shdr *shdr; 13426 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13427 struct dma_address *page; 13428 void __iomem *bar_memmap_p; 13429 uint32_t db_offset; 13430 uint16_t pci_barset; 13431 13432 /* sanity check on queue memory */ 13433 if (!wq || !cq) 13434 return -ENODEV; 13435 if (!phba->sli4_hba.pc_sli4_params.supported) 13436 hw_page_size = SLI4_PAGE_SIZE; 13437 13438 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13439 if (!mbox) 13440 return -ENOMEM; 13441 length = (sizeof(struct lpfc_mbx_wq_create) - 13442 sizeof(struct lpfc_sli4_cfg_mhdr)); 13443 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13444 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 13445 length, LPFC_SLI4_MBX_EMBED); 13446 wq_create = &mbox->u.mqe.un.wq_create; 13447 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 13448 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 13449 wq->page_count); 13450 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 13451 cq->queue_id); 13452 13453 /* wqv is the earliest version supported, NOT the latest */ 13454 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13455 phba->sli4_hba.pc_sli4_params.wqv); 13456 13457 switch (phba->sli4_hba.pc_sli4_params.wqv) { 13458 case LPFC_Q_CREATE_VERSION_0: 13459 switch (wq->entry_size) { 13460 default: 13461 case 64: 13462 /* Nothing to do, version 0 ONLY supports 64 byte */ 13463 page = wq_create->u.request.page; 13464 break; 13465 case 128: 13466 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13467 LPFC_WQ_SZ128_SUPPORT)) { 13468 status = -ERANGE; 13469 goto out; 13470 } 13471 /* If we get here the HBA MUST also support V1 and 13472 * we MUST use it 13473 */ 13474 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13475 LPFC_Q_CREATE_VERSION_1); 13476 13477 bf_set(lpfc_mbx_wq_create_wqe_count, 13478 &wq_create->u.request_1, wq->entry_count); 13479 bf_set(lpfc_mbx_wq_create_wqe_size, 13480 &wq_create->u.request_1, 13481 LPFC_WQ_WQE_SIZE_128); 13482 bf_set(lpfc_mbx_wq_create_page_size, 13483 &wq_create->u.request_1, 13484 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13485 page = wq_create->u.request_1.page; 13486 break; 13487 } 13488 break; 13489 case LPFC_Q_CREATE_VERSION_1: 13490 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 13491 wq->entry_count); 13492 switch (wq->entry_size) { 13493 default: 13494 case 64: 13495 bf_set(lpfc_mbx_wq_create_wqe_size, 13496 &wq_create->u.request_1, 13497 LPFC_WQ_WQE_SIZE_64); 13498 break; 13499 case 128: 13500 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 13501 LPFC_WQ_SZ128_SUPPORT)) { 13502 status = -ERANGE; 13503 goto out; 13504 } 13505 bf_set(lpfc_mbx_wq_create_wqe_size, 13506 &wq_create->u.request_1, 13507 LPFC_WQ_WQE_SIZE_128); 13508 break; 13509 } 13510 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, 13511 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13512 page = wq_create->u.request_1.page; 13513 break; 13514 default: 13515 status = -ERANGE; 13516 goto out; 13517 } 13518 13519 list_for_each_entry(dmabuf, &wq->page_list, list) { 13520 memset(dmabuf->virt, 0, hw_page_size); 13521 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 13522 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 13523 } 13524 13525 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13526 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 13527 13528 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13529 /* The IOCTL status is embedded in the mailbox subheader. */ 13530 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13531 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13532 if (shdr_status || shdr_add_status || rc) { 13533 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13534 "2503 WQ_CREATE mailbox failed with " 13535 "status x%x add_status x%x, mbx status x%x\n", 13536 shdr_status, shdr_add_status, rc); 13537 status = -ENXIO; 13538 goto out; 13539 } 13540 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 13541 if (wq->queue_id == 0xFFFF) { 13542 status = -ENXIO; 13543 goto out; 13544 } 13545 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13546 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 13547 &wq_create->u.response); 13548 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 13549 (wq->db_format != LPFC_DB_RING_FORMAT)) { 13550 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13551 "3265 WQ[%d] doorbell format not " 13552 "supported: x%x\n", wq->queue_id, 13553 wq->db_format); 13554 status = -EINVAL; 13555 goto out; 13556 } 13557 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 13558 &wq_create->u.response); 13559 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13560 if (!bar_memmap_p) { 13561 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13562 "3263 WQ[%d] failed to memmap pci " 13563 "barset:x%x\n", wq->queue_id, 13564 pci_barset); 13565 status = -ENOMEM; 13566 goto out; 13567 } 13568 db_offset = wq_create->u.response.doorbell_offset; 13569 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 13570 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 13571 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13572 "3252 WQ[%d] doorbell offset not " 13573 "supported: x%x\n", wq->queue_id, 13574 db_offset); 13575 status = -EINVAL; 13576 goto out; 13577 } 13578 wq->db_regaddr = bar_memmap_p + db_offset; 13579 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13580 "3264 WQ[%d]: barset:x%x, offset:x%x, " 13581 "format:x%x\n", wq->queue_id, pci_barset, 13582 db_offset, wq->db_format); 13583 } else { 13584 wq->db_format = LPFC_DB_LIST_FORMAT; 13585 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 13586 } 13587 wq->type = LPFC_WQ; 13588 wq->assoc_qid = cq->queue_id; 13589 wq->subtype = subtype; 13590 wq->host_index = 0; 13591 wq->hba_index = 0; 13592 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 13593 13594 /* link the wq onto the parent cq child list */ 13595 list_add_tail(&wq->list, &cq->child_list); 13596 out: 13597 mempool_free(mbox, phba->mbox_mem_pool); 13598 return status; 13599 } 13600 13601 /** 13602 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 13603 * @phba: HBA structure that indicates port to create a queue on. 13604 * @rq: The queue structure to use for the receive queue. 13605 * @qno: The associated HBQ number 13606 * 13607 * 13608 * For SLI4 we need to adjust the RQ repost value based on 13609 * the number of buffers that are initially posted to the RQ. 13610 */ 13611 void 13612 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 13613 { 13614 uint32_t cnt; 13615 13616 /* sanity check on queue memory */ 13617 if (!rq) 13618 return; 13619 cnt = lpfc_hbq_defs[qno]->entry_count; 13620 13621 /* Recalc repost for RQs based on buffers initially posted */ 13622 cnt = (cnt >> 3); 13623 if (cnt < LPFC_QUEUE_MIN_REPOST) 13624 cnt = LPFC_QUEUE_MIN_REPOST; 13625 13626 rq->entry_repost = cnt; 13627 } 13628 13629 /** 13630 * lpfc_rq_create - Create a Receive Queue on the HBA 13631 * @phba: HBA structure that indicates port to create a queue on. 13632 * @hrq: The queue structure to use to create the header receive queue. 13633 * @drq: The queue structure to use to create the data receive queue. 13634 * @cq: The completion queue to bind this work queue to. 13635 * 13636 * This function creates a receive buffer queue pair , as detailed in @hrq and 13637 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 13638 * to the HBA. 13639 * 13640 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 13641 * struct is used to get the entry count that is necessary to determine the 13642 * number of pages to use for this queue. The @cq is used to indicate which 13643 * completion queue to bind received buffers that are posted to these queues to. 13644 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 13645 * receive queue pair. This function is asynchronous and will wait for the 13646 * mailbox command to finish before continuing. 13647 * 13648 * On success this function will return a zero. If unable to allocate enough 13649 * memory this function will return -ENOMEM. If the queue create mailbox command 13650 * fails this function will return -ENXIO. 13651 **/ 13652 int 13653 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 13654 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 13655 { 13656 struct lpfc_mbx_rq_create *rq_create; 13657 struct lpfc_dmabuf *dmabuf; 13658 LPFC_MBOXQ_t *mbox; 13659 int rc, length, status = 0; 13660 uint32_t shdr_status, shdr_add_status; 13661 union lpfc_sli4_cfg_shdr *shdr; 13662 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13663 void __iomem *bar_memmap_p; 13664 uint32_t db_offset; 13665 uint16_t pci_barset; 13666 13667 /* sanity check on queue memory */ 13668 if (!hrq || !drq || !cq) 13669 return -ENODEV; 13670 if (!phba->sli4_hba.pc_sli4_params.supported) 13671 hw_page_size = SLI4_PAGE_SIZE; 13672 13673 if (hrq->entry_count != drq->entry_count) 13674 return -EINVAL; 13675 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13676 if (!mbox) 13677 return -ENOMEM; 13678 length = (sizeof(struct lpfc_mbx_rq_create) - 13679 sizeof(struct lpfc_sli4_cfg_mhdr)); 13680 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13681 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13682 length, LPFC_SLI4_MBX_EMBED); 13683 rq_create = &mbox->u.mqe.un.rq_create; 13684 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13685 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13686 phba->sli4_hba.pc_sli4_params.rqv); 13687 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13688 bf_set(lpfc_rq_context_rqe_count_1, 13689 &rq_create->u.request.context, 13690 hrq->entry_count); 13691 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 13692 bf_set(lpfc_rq_context_rqe_size, 13693 &rq_create->u.request.context, 13694 LPFC_RQE_SIZE_8); 13695 bf_set(lpfc_rq_context_page_size, 13696 &rq_create->u.request.context, 13697 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13698 } else { 13699 switch (hrq->entry_count) { 13700 default: 13701 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13702 "2535 Unsupported RQ count. (%d)\n", 13703 hrq->entry_count); 13704 if (hrq->entry_count < 512) { 13705 status = -EINVAL; 13706 goto out; 13707 } 13708 /* otherwise default to smallest count (drop through) */ 13709 case 512: 13710 bf_set(lpfc_rq_context_rqe_count, 13711 &rq_create->u.request.context, 13712 LPFC_RQ_RING_SIZE_512); 13713 break; 13714 case 1024: 13715 bf_set(lpfc_rq_context_rqe_count, 13716 &rq_create->u.request.context, 13717 LPFC_RQ_RING_SIZE_1024); 13718 break; 13719 case 2048: 13720 bf_set(lpfc_rq_context_rqe_count, 13721 &rq_create->u.request.context, 13722 LPFC_RQ_RING_SIZE_2048); 13723 break; 13724 case 4096: 13725 bf_set(lpfc_rq_context_rqe_count, 13726 &rq_create->u.request.context, 13727 LPFC_RQ_RING_SIZE_4096); 13728 break; 13729 } 13730 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13731 LPFC_HDR_BUF_SIZE); 13732 } 13733 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13734 cq->queue_id); 13735 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13736 hrq->page_count); 13737 list_for_each_entry(dmabuf, &hrq->page_list, list) { 13738 memset(dmabuf->virt, 0, hw_page_size); 13739 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13740 putPaddrLow(dmabuf->phys); 13741 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13742 putPaddrHigh(dmabuf->phys); 13743 } 13744 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13745 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13746 13747 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13748 /* The IOCTL status is embedded in the mailbox subheader. */ 13749 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13750 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13751 if (shdr_status || shdr_add_status || rc) { 13752 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13753 "2504 RQ_CREATE mailbox failed with " 13754 "status x%x add_status x%x, mbx status x%x\n", 13755 shdr_status, shdr_add_status, rc); 13756 status = -ENXIO; 13757 goto out; 13758 } 13759 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13760 if (hrq->queue_id == 0xFFFF) { 13761 status = -ENXIO; 13762 goto out; 13763 } 13764 13765 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 13766 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 13767 &rq_create->u.response); 13768 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 13769 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 13770 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13771 "3262 RQ [%d] doorbell format not " 13772 "supported: x%x\n", hrq->queue_id, 13773 hrq->db_format); 13774 status = -EINVAL; 13775 goto out; 13776 } 13777 13778 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 13779 &rq_create->u.response); 13780 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 13781 if (!bar_memmap_p) { 13782 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13783 "3269 RQ[%d] failed to memmap pci " 13784 "barset:x%x\n", hrq->queue_id, 13785 pci_barset); 13786 status = -ENOMEM; 13787 goto out; 13788 } 13789 13790 db_offset = rq_create->u.response.doorbell_offset; 13791 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 13792 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 13793 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13794 "3270 RQ[%d] doorbell offset not " 13795 "supported: x%x\n", hrq->queue_id, 13796 db_offset); 13797 status = -EINVAL; 13798 goto out; 13799 } 13800 hrq->db_regaddr = bar_memmap_p + db_offset; 13801 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 13802 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 13803 "format:x%x\n", hrq->queue_id, pci_barset, 13804 db_offset, hrq->db_format); 13805 } else { 13806 hrq->db_format = LPFC_DB_RING_FORMAT; 13807 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 13808 } 13809 hrq->type = LPFC_HRQ; 13810 hrq->assoc_qid = cq->queue_id; 13811 hrq->subtype = subtype; 13812 hrq->host_index = 0; 13813 hrq->hba_index = 0; 13814 13815 /* now create the data queue */ 13816 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 13817 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 13818 length, LPFC_SLI4_MBX_EMBED); 13819 bf_set(lpfc_mbox_hdr_version, &shdr->request, 13820 phba->sli4_hba.pc_sli4_params.rqv); 13821 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 13822 bf_set(lpfc_rq_context_rqe_count_1, 13823 &rq_create->u.request.context, hrq->entry_count); 13824 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 13825 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 13826 LPFC_RQE_SIZE_8); 13827 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 13828 (PAGE_SIZE/SLI4_PAGE_SIZE)); 13829 } else { 13830 switch (drq->entry_count) { 13831 default: 13832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13833 "2536 Unsupported RQ count. (%d)\n", 13834 drq->entry_count); 13835 if (drq->entry_count < 512) { 13836 status = -EINVAL; 13837 goto out; 13838 } 13839 /* otherwise default to smallest count (drop through) */ 13840 case 512: 13841 bf_set(lpfc_rq_context_rqe_count, 13842 &rq_create->u.request.context, 13843 LPFC_RQ_RING_SIZE_512); 13844 break; 13845 case 1024: 13846 bf_set(lpfc_rq_context_rqe_count, 13847 &rq_create->u.request.context, 13848 LPFC_RQ_RING_SIZE_1024); 13849 break; 13850 case 2048: 13851 bf_set(lpfc_rq_context_rqe_count, 13852 &rq_create->u.request.context, 13853 LPFC_RQ_RING_SIZE_2048); 13854 break; 13855 case 4096: 13856 bf_set(lpfc_rq_context_rqe_count, 13857 &rq_create->u.request.context, 13858 LPFC_RQ_RING_SIZE_4096); 13859 break; 13860 } 13861 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 13862 LPFC_DATA_BUF_SIZE); 13863 } 13864 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 13865 cq->queue_id); 13866 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 13867 drq->page_count); 13868 list_for_each_entry(dmabuf, &drq->page_list, list) { 13869 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 13870 putPaddrLow(dmabuf->phys); 13871 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 13872 putPaddrHigh(dmabuf->phys); 13873 } 13874 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 13875 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 13876 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13877 /* The IOCTL status is embedded in the mailbox subheader. */ 13878 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 13879 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13880 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13881 if (shdr_status || shdr_add_status || rc) { 13882 status = -ENXIO; 13883 goto out; 13884 } 13885 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 13886 if (drq->queue_id == 0xFFFF) { 13887 status = -ENXIO; 13888 goto out; 13889 } 13890 drq->type = LPFC_DRQ; 13891 drq->assoc_qid = cq->queue_id; 13892 drq->subtype = subtype; 13893 drq->host_index = 0; 13894 drq->hba_index = 0; 13895 13896 /* link the header and data RQs onto the parent cq child list */ 13897 list_add_tail(&hrq->list, &cq->child_list); 13898 list_add_tail(&drq->list, &cq->child_list); 13899 13900 out: 13901 mempool_free(mbox, phba->mbox_mem_pool); 13902 return status; 13903 } 13904 13905 /** 13906 * lpfc_eq_destroy - Destroy an event Queue on the HBA 13907 * @eq: The queue structure associated with the queue to destroy. 13908 * 13909 * This function destroys a queue, as detailed in @eq by sending an mailbox 13910 * command, specific to the type of queue, to the HBA. 13911 * 13912 * The @eq struct is used to get the queue ID of the queue to destroy. 13913 * 13914 * On success this function will return a zero. If the queue destroy mailbox 13915 * command fails this function will return -ENXIO. 13916 **/ 13917 int 13918 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 13919 { 13920 LPFC_MBOXQ_t *mbox; 13921 int rc, length, status = 0; 13922 uint32_t shdr_status, shdr_add_status; 13923 union lpfc_sli4_cfg_shdr *shdr; 13924 13925 /* sanity check on queue memory */ 13926 if (!eq) 13927 return -ENODEV; 13928 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 13929 if (!mbox) 13930 return -ENOMEM; 13931 length = (sizeof(struct lpfc_mbx_eq_destroy) - 13932 sizeof(struct lpfc_sli4_cfg_mhdr)); 13933 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13934 LPFC_MBOX_OPCODE_EQ_DESTROY, 13935 length, LPFC_SLI4_MBX_EMBED); 13936 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 13937 eq->queue_id); 13938 mbox->vport = eq->phba->pport; 13939 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13940 13941 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 13942 /* The IOCTL status is embedded in the mailbox subheader. */ 13943 shdr = (union lpfc_sli4_cfg_shdr *) 13944 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 13945 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13946 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13947 if (shdr_status || shdr_add_status || rc) { 13948 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13949 "2505 EQ_DESTROY mailbox failed with " 13950 "status x%x add_status x%x, mbx status x%x\n", 13951 shdr_status, shdr_add_status, rc); 13952 status = -ENXIO; 13953 } 13954 13955 /* Remove eq from any list */ 13956 list_del_init(&eq->list); 13957 mempool_free(mbox, eq->phba->mbox_mem_pool); 13958 return status; 13959 } 13960 13961 /** 13962 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 13963 * @cq: The queue structure associated with the queue to destroy. 13964 * 13965 * This function destroys a queue, as detailed in @cq by sending an mailbox 13966 * command, specific to the type of queue, to the HBA. 13967 * 13968 * The @cq struct is used to get the queue ID of the queue to destroy. 13969 * 13970 * On success this function will return a zero. If the queue destroy mailbox 13971 * command fails this function will return -ENXIO. 13972 **/ 13973 int 13974 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 13975 { 13976 LPFC_MBOXQ_t *mbox; 13977 int rc, length, status = 0; 13978 uint32_t shdr_status, shdr_add_status; 13979 union lpfc_sli4_cfg_shdr *shdr; 13980 13981 /* sanity check on queue memory */ 13982 if (!cq) 13983 return -ENODEV; 13984 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 13985 if (!mbox) 13986 return -ENOMEM; 13987 length = (sizeof(struct lpfc_mbx_cq_destroy) - 13988 sizeof(struct lpfc_sli4_cfg_mhdr)); 13989 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13990 LPFC_MBOX_OPCODE_CQ_DESTROY, 13991 length, LPFC_SLI4_MBX_EMBED); 13992 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 13993 cq->queue_id); 13994 mbox->vport = cq->phba->pport; 13995 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13996 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 13997 /* The IOCTL status is embedded in the mailbox subheader. */ 13998 shdr = (union lpfc_sli4_cfg_shdr *) 13999 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 14000 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14001 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14002 if (shdr_status || shdr_add_status || rc) { 14003 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14004 "2506 CQ_DESTROY mailbox failed with " 14005 "status x%x add_status x%x, mbx status x%x\n", 14006 shdr_status, shdr_add_status, rc); 14007 status = -ENXIO; 14008 } 14009 /* Remove cq from any list */ 14010 list_del_init(&cq->list); 14011 mempool_free(mbox, cq->phba->mbox_mem_pool); 14012 return status; 14013 } 14014 14015 /** 14016 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 14017 * @qm: The queue structure associated with the queue to destroy. 14018 * 14019 * This function destroys a queue, as detailed in @mq by sending an mailbox 14020 * command, specific to the type of queue, to the HBA. 14021 * 14022 * The @mq struct is used to get the queue ID of the queue to destroy. 14023 * 14024 * On success this function will return a zero. If the queue destroy mailbox 14025 * command fails this function will return -ENXIO. 14026 **/ 14027 int 14028 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 14029 { 14030 LPFC_MBOXQ_t *mbox; 14031 int rc, length, status = 0; 14032 uint32_t shdr_status, shdr_add_status; 14033 union lpfc_sli4_cfg_shdr *shdr; 14034 14035 /* sanity check on queue memory */ 14036 if (!mq) 14037 return -ENODEV; 14038 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 14039 if (!mbox) 14040 return -ENOMEM; 14041 length = (sizeof(struct lpfc_mbx_mq_destroy) - 14042 sizeof(struct lpfc_sli4_cfg_mhdr)); 14043 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14044 LPFC_MBOX_OPCODE_MQ_DESTROY, 14045 length, LPFC_SLI4_MBX_EMBED); 14046 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 14047 mq->queue_id); 14048 mbox->vport = mq->phba->pport; 14049 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14050 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 14051 /* The IOCTL status is embedded in the mailbox subheader. */ 14052 shdr = (union lpfc_sli4_cfg_shdr *) 14053 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 14054 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14055 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14056 if (shdr_status || shdr_add_status || rc) { 14057 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14058 "2507 MQ_DESTROY mailbox failed with " 14059 "status x%x add_status x%x, mbx status x%x\n", 14060 shdr_status, shdr_add_status, rc); 14061 status = -ENXIO; 14062 } 14063 /* Remove mq from any list */ 14064 list_del_init(&mq->list); 14065 mempool_free(mbox, mq->phba->mbox_mem_pool); 14066 return status; 14067 } 14068 14069 /** 14070 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 14071 * @wq: The queue structure associated with the queue to destroy. 14072 * 14073 * This function destroys a queue, as detailed in @wq by sending an mailbox 14074 * command, specific to the type of queue, to the HBA. 14075 * 14076 * The @wq struct is used to get the queue ID of the queue to destroy. 14077 * 14078 * On success this function will return a zero. If the queue destroy mailbox 14079 * command fails this function will return -ENXIO. 14080 **/ 14081 int 14082 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 14083 { 14084 LPFC_MBOXQ_t *mbox; 14085 int rc, length, status = 0; 14086 uint32_t shdr_status, shdr_add_status; 14087 union lpfc_sli4_cfg_shdr *shdr; 14088 14089 /* sanity check on queue memory */ 14090 if (!wq) 14091 return -ENODEV; 14092 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 14093 if (!mbox) 14094 return -ENOMEM; 14095 length = (sizeof(struct lpfc_mbx_wq_destroy) - 14096 sizeof(struct lpfc_sli4_cfg_mhdr)); 14097 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14098 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 14099 length, LPFC_SLI4_MBX_EMBED); 14100 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 14101 wq->queue_id); 14102 mbox->vport = wq->phba->pport; 14103 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14104 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 14105 shdr = (union lpfc_sli4_cfg_shdr *) 14106 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 14107 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14108 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14109 if (shdr_status || shdr_add_status || rc) { 14110 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14111 "2508 WQ_DESTROY mailbox failed with " 14112 "status x%x add_status x%x, mbx status x%x\n", 14113 shdr_status, shdr_add_status, rc); 14114 status = -ENXIO; 14115 } 14116 /* Remove wq from any list */ 14117 list_del_init(&wq->list); 14118 mempool_free(mbox, wq->phba->mbox_mem_pool); 14119 return status; 14120 } 14121 14122 /** 14123 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 14124 * @rq: The queue structure associated with the queue to destroy. 14125 * 14126 * This function destroys a queue, as detailed in @rq by sending an mailbox 14127 * command, specific to the type of queue, to the HBA. 14128 * 14129 * The @rq struct is used to get the queue ID of the queue to destroy. 14130 * 14131 * On success this function will return a zero. If the queue destroy mailbox 14132 * command fails this function will return -ENXIO. 14133 **/ 14134 int 14135 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14136 struct lpfc_queue *drq) 14137 { 14138 LPFC_MBOXQ_t *mbox; 14139 int rc, length, status = 0; 14140 uint32_t shdr_status, shdr_add_status; 14141 union lpfc_sli4_cfg_shdr *shdr; 14142 14143 /* sanity check on queue memory */ 14144 if (!hrq || !drq) 14145 return -ENODEV; 14146 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 14147 if (!mbox) 14148 return -ENOMEM; 14149 length = (sizeof(struct lpfc_mbx_rq_destroy) - 14150 sizeof(struct lpfc_sli4_cfg_mhdr)); 14151 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14152 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 14153 length, LPFC_SLI4_MBX_EMBED); 14154 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14155 hrq->queue_id); 14156 mbox->vport = hrq->phba->pport; 14157 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14158 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 14159 /* The IOCTL status is embedded in the mailbox subheader. */ 14160 shdr = (union lpfc_sli4_cfg_shdr *) 14161 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14162 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14163 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14164 if (shdr_status || shdr_add_status || rc) { 14165 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14166 "2509 RQ_DESTROY mailbox failed with " 14167 "status x%x add_status x%x, mbx status x%x\n", 14168 shdr_status, shdr_add_status, rc); 14169 if (rc != MBX_TIMEOUT) 14170 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14171 return -ENXIO; 14172 } 14173 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 14174 drq->queue_id); 14175 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 14176 shdr = (union lpfc_sli4_cfg_shdr *) 14177 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 14178 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14179 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14180 if (shdr_status || shdr_add_status || rc) { 14181 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14182 "2510 RQ_DESTROY mailbox failed with " 14183 "status x%x add_status x%x, mbx status x%x\n", 14184 shdr_status, shdr_add_status, rc); 14185 status = -ENXIO; 14186 } 14187 list_del_init(&hrq->list); 14188 list_del_init(&drq->list); 14189 mempool_free(mbox, hrq->phba->mbox_mem_pool); 14190 return status; 14191 } 14192 14193 /** 14194 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 14195 * @phba: The virtual port for which this call being executed. 14196 * @pdma_phys_addr0: Physical address of the 1st SGL page. 14197 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 14198 * @xritag: the xritag that ties this io to the SGL pages. 14199 * 14200 * This routine will post the sgl pages for the IO that has the xritag 14201 * that is in the iocbq structure. The xritag is assigned during iocbq 14202 * creation and persists for as long as the driver is loaded. 14203 * if the caller has fewer than 256 scatter gather segments to map then 14204 * pdma_phys_addr1 should be 0. 14205 * If the caller needs to map more than 256 scatter gather segment then 14206 * pdma_phys_addr1 should be a valid physical address. 14207 * physical address for SGLs must be 64 byte aligned. 14208 * If you are going to map 2 SGL's then the first one must have 256 entries 14209 * the second sgl can have between 1 and 256 entries. 14210 * 14211 * Return codes: 14212 * 0 - Success 14213 * -ENXIO, -ENOMEM - Failure 14214 **/ 14215 int 14216 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 14217 dma_addr_t pdma_phys_addr0, 14218 dma_addr_t pdma_phys_addr1, 14219 uint16_t xritag) 14220 { 14221 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 14222 LPFC_MBOXQ_t *mbox; 14223 int rc; 14224 uint32_t shdr_status, shdr_add_status; 14225 uint32_t mbox_tmo; 14226 union lpfc_sli4_cfg_shdr *shdr; 14227 14228 if (xritag == NO_XRI) { 14229 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14230 "0364 Invalid param:\n"); 14231 return -EINVAL; 14232 } 14233 14234 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14235 if (!mbox) 14236 return -ENOMEM; 14237 14238 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14239 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 14240 sizeof(struct lpfc_mbx_post_sgl_pages) - 14241 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 14242 14243 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 14244 &mbox->u.mqe.un.post_sgl_pages; 14245 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 14246 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 14247 14248 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 14249 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 14250 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 14251 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 14252 14253 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 14254 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 14255 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 14256 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 14257 if (!phba->sli4_hba.intr_enable) 14258 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14259 else { 14260 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14261 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14262 } 14263 /* The IOCTL status is embedded in the mailbox subheader. */ 14264 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 14265 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14266 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14267 if (rc != MBX_TIMEOUT) 14268 mempool_free(mbox, phba->mbox_mem_pool); 14269 if (shdr_status || shdr_add_status || rc) { 14270 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14271 "2511 POST_SGL mailbox failed with " 14272 "status x%x add_status x%x, mbx status x%x\n", 14273 shdr_status, shdr_add_status, rc); 14274 } 14275 return 0; 14276 } 14277 14278 /** 14279 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 14280 * @phba: pointer to lpfc hba data structure. 14281 * 14282 * This routine is invoked to post rpi header templates to the 14283 * HBA consistent with the SLI-4 interface spec. This routine 14284 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 14285 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 14286 * 14287 * Returns 14288 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 14289 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 14290 **/ 14291 static uint16_t 14292 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 14293 { 14294 unsigned long xri; 14295 14296 /* 14297 * Fetch the next logical xri. Because this index is logical, 14298 * the driver starts at 0 each time. 14299 */ 14300 spin_lock_irq(&phba->hbalock); 14301 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 14302 phba->sli4_hba.max_cfg_param.max_xri, 0); 14303 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 14304 spin_unlock_irq(&phba->hbalock); 14305 return NO_XRI; 14306 } else { 14307 set_bit(xri, phba->sli4_hba.xri_bmask); 14308 phba->sli4_hba.max_cfg_param.xri_used++; 14309 } 14310 spin_unlock_irq(&phba->hbalock); 14311 return xri; 14312 } 14313 14314 /** 14315 * lpfc_sli4_free_xri - Release an xri for reuse. 14316 * @phba: pointer to lpfc hba data structure. 14317 * 14318 * This routine is invoked to release an xri to the pool of 14319 * available rpis maintained by the driver. 14320 **/ 14321 static void 14322 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14323 { 14324 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 14325 phba->sli4_hba.max_cfg_param.xri_used--; 14326 } 14327 } 14328 14329 /** 14330 * lpfc_sli4_free_xri - Release an xri for reuse. 14331 * @phba: pointer to lpfc hba data structure. 14332 * 14333 * This routine is invoked to release an xri to the pool of 14334 * available rpis maintained by the driver. 14335 **/ 14336 void 14337 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 14338 { 14339 spin_lock_irq(&phba->hbalock); 14340 __lpfc_sli4_free_xri(phba, xri); 14341 spin_unlock_irq(&phba->hbalock); 14342 } 14343 14344 /** 14345 * lpfc_sli4_next_xritag - Get an xritag for the io 14346 * @phba: Pointer to HBA context object. 14347 * 14348 * This function gets an xritag for the iocb. If there is no unused xritag 14349 * it will return 0xffff. 14350 * The function returns the allocated xritag if successful, else returns zero. 14351 * Zero is not a valid xritag. 14352 * The caller is not required to hold any lock. 14353 **/ 14354 uint16_t 14355 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 14356 { 14357 uint16_t xri_index; 14358 14359 xri_index = lpfc_sli4_alloc_xri(phba); 14360 if (xri_index == NO_XRI) 14361 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14362 "2004 Failed to allocate XRI.last XRITAG is %d" 14363 " Max XRI is %d, Used XRI is %d\n", 14364 xri_index, 14365 phba->sli4_hba.max_cfg_param.max_xri, 14366 phba->sli4_hba.max_cfg_param.xri_used); 14367 return xri_index; 14368 } 14369 14370 /** 14371 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port. 14372 * @phba: pointer to lpfc hba data structure. 14373 * @post_sgl_list: pointer to els sgl entry list. 14374 * @count: number of els sgl entries on the list. 14375 * 14376 * This routine is invoked to post a block of driver's sgl pages to the 14377 * HBA using non-embedded mailbox command. No Lock is held. This routine 14378 * is only called when the driver is loading and after all IO has been 14379 * stopped. 14380 **/ 14381 static int 14382 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba, 14383 struct list_head *post_sgl_list, 14384 int post_cnt) 14385 { 14386 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 14387 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14388 struct sgl_page_pairs *sgl_pg_pairs; 14389 void *viraddr; 14390 LPFC_MBOXQ_t *mbox; 14391 uint32_t reqlen, alloclen, pg_pairs; 14392 uint32_t mbox_tmo; 14393 uint16_t xritag_start = 0; 14394 int rc = 0; 14395 uint32_t shdr_status, shdr_add_status; 14396 union lpfc_sli4_cfg_shdr *shdr; 14397 14398 reqlen = phba->sli4_hba.els_xri_cnt * sizeof(struct sgl_page_pairs) + 14399 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14400 if (reqlen > SLI4_PAGE_SIZE) { 14401 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14402 "2559 Block sgl registration required DMA " 14403 "size (%d) great than a page\n", reqlen); 14404 return -ENOMEM; 14405 } 14406 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14407 if (!mbox) 14408 return -ENOMEM; 14409 14410 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14411 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14412 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14413 LPFC_SLI4_MBX_NEMBED); 14414 14415 if (alloclen < reqlen) { 14416 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14417 "0285 Allocated DMA memory size (%d) is " 14418 "less than the requested DMA memory " 14419 "size (%d)\n", alloclen, reqlen); 14420 lpfc_sli4_mbox_cmd_free(phba, mbox); 14421 return -ENOMEM; 14422 } 14423 /* Set up the SGL pages in the non-embedded DMA pages */ 14424 viraddr = mbox->sge_array->addr[0]; 14425 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14426 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14427 14428 pg_pairs = 0; 14429 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 14430 /* Set up the sge entry */ 14431 sgl_pg_pairs->sgl_pg0_addr_lo = 14432 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 14433 sgl_pg_pairs->sgl_pg0_addr_hi = 14434 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 14435 sgl_pg_pairs->sgl_pg1_addr_lo = 14436 cpu_to_le32(putPaddrLow(0)); 14437 sgl_pg_pairs->sgl_pg1_addr_hi = 14438 cpu_to_le32(putPaddrHigh(0)); 14439 14440 /* Keep the first xritag on the list */ 14441 if (pg_pairs == 0) 14442 xritag_start = sglq_entry->sli4_xritag; 14443 sgl_pg_pairs++; 14444 pg_pairs++; 14445 } 14446 14447 /* Complete initialization and perform endian conversion. */ 14448 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14449 bf_set(lpfc_post_sgl_pages_xricnt, sgl, phba->sli4_hba.els_xri_cnt); 14450 sgl->word0 = cpu_to_le32(sgl->word0); 14451 if (!phba->sli4_hba.intr_enable) 14452 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14453 else { 14454 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14455 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14456 } 14457 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14458 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14459 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14460 if (rc != MBX_TIMEOUT) 14461 lpfc_sli4_mbox_cmd_free(phba, mbox); 14462 if (shdr_status || shdr_add_status || rc) { 14463 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14464 "2513 POST_SGL_BLOCK mailbox command failed " 14465 "status x%x add_status x%x mbx status x%x\n", 14466 shdr_status, shdr_add_status, rc); 14467 rc = -ENXIO; 14468 } 14469 return rc; 14470 } 14471 14472 /** 14473 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 14474 * @phba: pointer to lpfc hba data structure. 14475 * @sblist: pointer to scsi buffer list. 14476 * @count: number of scsi buffers on the list. 14477 * 14478 * This routine is invoked to post a block of @count scsi sgl pages from a 14479 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 14480 * No Lock is held. 14481 * 14482 **/ 14483 int 14484 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 14485 struct list_head *sblist, 14486 int count) 14487 { 14488 struct lpfc_scsi_buf *psb; 14489 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 14490 struct sgl_page_pairs *sgl_pg_pairs; 14491 void *viraddr; 14492 LPFC_MBOXQ_t *mbox; 14493 uint32_t reqlen, alloclen, pg_pairs; 14494 uint32_t mbox_tmo; 14495 uint16_t xritag_start = 0; 14496 int rc = 0; 14497 uint32_t shdr_status, shdr_add_status; 14498 dma_addr_t pdma_phys_bpl1; 14499 union lpfc_sli4_cfg_shdr *shdr; 14500 14501 /* Calculate the requested length of the dma memory */ 14502 reqlen = count * sizeof(struct sgl_page_pairs) + 14503 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 14504 if (reqlen > SLI4_PAGE_SIZE) { 14505 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 14506 "0217 Block sgl registration required DMA " 14507 "size (%d) great than a page\n", reqlen); 14508 return -ENOMEM; 14509 } 14510 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14511 if (!mbox) { 14512 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14513 "0283 Failed to allocate mbox cmd memory\n"); 14514 return -ENOMEM; 14515 } 14516 14517 /* Allocate DMA memory and set up the non-embedded mailbox command */ 14518 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14519 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 14520 LPFC_SLI4_MBX_NEMBED); 14521 14522 if (alloclen < reqlen) { 14523 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14524 "2561 Allocated DMA memory size (%d) is " 14525 "less than the requested DMA memory " 14526 "size (%d)\n", alloclen, reqlen); 14527 lpfc_sli4_mbox_cmd_free(phba, mbox); 14528 return -ENOMEM; 14529 } 14530 14531 /* Get the first SGE entry from the non-embedded DMA memory */ 14532 viraddr = mbox->sge_array->addr[0]; 14533 14534 /* Set up the SGL pages in the non-embedded DMA pages */ 14535 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 14536 sgl_pg_pairs = &sgl->sgl_pg_pairs; 14537 14538 pg_pairs = 0; 14539 list_for_each_entry(psb, sblist, list) { 14540 /* Set up the sge entry */ 14541 sgl_pg_pairs->sgl_pg0_addr_lo = 14542 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 14543 sgl_pg_pairs->sgl_pg0_addr_hi = 14544 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 14545 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 14546 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 14547 else 14548 pdma_phys_bpl1 = 0; 14549 sgl_pg_pairs->sgl_pg1_addr_lo = 14550 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 14551 sgl_pg_pairs->sgl_pg1_addr_hi = 14552 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 14553 /* Keep the first xritag on the list */ 14554 if (pg_pairs == 0) 14555 xritag_start = psb->cur_iocbq.sli4_xritag; 14556 sgl_pg_pairs++; 14557 pg_pairs++; 14558 } 14559 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 14560 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 14561 /* Perform endian conversion if necessary */ 14562 sgl->word0 = cpu_to_le32(sgl->word0); 14563 14564 if (!phba->sli4_hba.intr_enable) 14565 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14566 else { 14567 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 14568 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 14569 } 14570 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 14571 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14572 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14573 if (rc != MBX_TIMEOUT) 14574 lpfc_sli4_mbox_cmd_free(phba, mbox); 14575 if (shdr_status || shdr_add_status || rc) { 14576 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14577 "2564 POST_SGL_BLOCK mailbox command failed " 14578 "status x%x add_status x%x mbx status x%x\n", 14579 shdr_status, shdr_add_status, rc); 14580 rc = -ENXIO; 14581 } 14582 return rc; 14583 } 14584 14585 /** 14586 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 14587 * @phba: pointer to lpfc_hba struct that the frame was received on 14588 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14589 * 14590 * This function checks the fields in the @fc_hdr to see if the FC frame is a 14591 * valid type of frame that the LPFC driver will handle. This function will 14592 * return a zero if the frame is a valid frame or a non zero value when the 14593 * frame does not pass the check. 14594 **/ 14595 static int 14596 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 14597 { 14598 /* make rctl_names static to save stack space */ 14599 static char *rctl_names[] = FC_RCTL_NAMES_INIT; 14600 char *type_names[] = FC_TYPE_NAMES_INIT; 14601 struct fc_vft_header *fc_vft_hdr; 14602 uint32_t *header = (uint32_t *) fc_hdr; 14603 14604 switch (fc_hdr->fh_r_ctl) { 14605 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 14606 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 14607 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 14608 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 14609 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 14610 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 14611 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 14612 case FC_RCTL_DD_CMD_STATUS: /* command status */ 14613 case FC_RCTL_ELS_REQ: /* extended link services request */ 14614 case FC_RCTL_ELS_REP: /* extended link services reply */ 14615 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 14616 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 14617 case FC_RCTL_BA_NOP: /* basic link service NOP */ 14618 case FC_RCTL_BA_ABTS: /* basic link service abort */ 14619 case FC_RCTL_BA_RMC: /* remove connection */ 14620 case FC_RCTL_BA_ACC: /* basic accept */ 14621 case FC_RCTL_BA_RJT: /* basic reject */ 14622 case FC_RCTL_BA_PRMT: 14623 case FC_RCTL_ACK_1: /* acknowledge_1 */ 14624 case FC_RCTL_ACK_0: /* acknowledge_0 */ 14625 case FC_RCTL_P_RJT: /* port reject */ 14626 case FC_RCTL_F_RJT: /* fabric reject */ 14627 case FC_RCTL_P_BSY: /* port busy */ 14628 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 14629 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 14630 case FC_RCTL_LCR: /* link credit reset */ 14631 case FC_RCTL_END: /* end */ 14632 break; 14633 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 14634 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14635 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 14636 return lpfc_fc_frame_check(phba, fc_hdr); 14637 default: 14638 goto drop; 14639 } 14640 switch (fc_hdr->fh_type) { 14641 case FC_TYPE_BLS: 14642 case FC_TYPE_ELS: 14643 case FC_TYPE_FCP: 14644 case FC_TYPE_CT: 14645 break; 14646 case FC_TYPE_IP: 14647 case FC_TYPE_ILS: 14648 default: 14649 goto drop; 14650 } 14651 14652 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 14653 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 14654 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 14655 rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 14656 type_names[fc_hdr->fh_type], fc_hdr->fh_type, 14657 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 14658 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 14659 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 14660 be32_to_cpu(header[6])); 14661 return 0; 14662 drop: 14663 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 14664 "2539 Dropped frame rctl:%s type:%s\n", 14665 rctl_names[fc_hdr->fh_r_ctl], 14666 type_names[fc_hdr->fh_type]); 14667 return 1; 14668 } 14669 14670 /** 14671 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 14672 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14673 * 14674 * This function processes the FC header to retrieve the VFI from the VF 14675 * header, if one exists. This function will return the VFI if one exists 14676 * or 0 if no VSAN Header exists. 14677 **/ 14678 static uint32_t 14679 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 14680 { 14681 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 14682 14683 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 14684 return 0; 14685 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 14686 } 14687 14688 /** 14689 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 14690 * @phba: Pointer to the HBA structure to search for the vport on 14691 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 14692 * @fcfi: The FC Fabric ID that the frame came from 14693 * 14694 * This function searches the @phba for a vport that matches the content of the 14695 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 14696 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 14697 * returns the matching vport pointer or NULL if unable to match frame to a 14698 * vport. 14699 **/ 14700 static struct lpfc_vport * 14701 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 14702 uint16_t fcfi) 14703 { 14704 struct lpfc_vport **vports; 14705 struct lpfc_vport *vport = NULL; 14706 int i; 14707 uint32_t did = (fc_hdr->fh_d_id[0] << 16 | 14708 fc_hdr->fh_d_id[1] << 8 | 14709 fc_hdr->fh_d_id[2]); 14710 14711 if (did == Fabric_DID) 14712 return phba->pport; 14713 if ((phba->pport->fc_flag & FC_PT2PT) && 14714 !(phba->link_state == LPFC_HBA_READY)) 14715 return phba->pport; 14716 14717 vports = lpfc_create_vport_work_array(phba); 14718 if (vports != NULL) 14719 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 14720 if (phba->fcf.fcfi == fcfi && 14721 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 14722 vports[i]->fc_myDID == did) { 14723 vport = vports[i]; 14724 break; 14725 } 14726 } 14727 lpfc_destroy_vport_work_array(phba, vports); 14728 return vport; 14729 } 14730 14731 /** 14732 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 14733 * @vport: The vport to work on. 14734 * 14735 * This function updates the receive sequence time stamp for this vport. The 14736 * receive sequence time stamp indicates the time that the last frame of the 14737 * the sequence that has been idle for the longest amount of time was received. 14738 * the driver uses this time stamp to indicate if any received sequences have 14739 * timed out. 14740 **/ 14741 static void 14742 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 14743 { 14744 struct lpfc_dmabuf *h_buf; 14745 struct hbq_dmabuf *dmabuf = NULL; 14746 14747 /* get the oldest sequence on the rcv list */ 14748 h_buf = list_get_first(&vport->rcv_buffer_list, 14749 struct lpfc_dmabuf, list); 14750 if (!h_buf) 14751 return; 14752 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14753 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 14754 } 14755 14756 /** 14757 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 14758 * @vport: The vport that the received sequences were sent to. 14759 * 14760 * This function cleans up all outstanding received sequences. This is called 14761 * by the driver when a link event or user action invalidates all the received 14762 * sequences. 14763 **/ 14764 void 14765 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 14766 { 14767 struct lpfc_dmabuf *h_buf, *hnext; 14768 struct lpfc_dmabuf *d_buf, *dnext; 14769 struct hbq_dmabuf *dmabuf = NULL; 14770 14771 /* start with the oldest sequence on the rcv list */ 14772 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14773 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14774 list_del_init(&dmabuf->hbuf.list); 14775 list_for_each_entry_safe(d_buf, dnext, 14776 &dmabuf->dbuf.list, list) { 14777 list_del_init(&d_buf->list); 14778 lpfc_in_buf_free(vport->phba, d_buf); 14779 } 14780 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14781 } 14782 } 14783 14784 /** 14785 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 14786 * @vport: The vport that the received sequences were sent to. 14787 * 14788 * This function determines whether any received sequences have timed out by 14789 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 14790 * indicates that there is at least one timed out sequence this routine will 14791 * go through the received sequences one at a time from most inactive to most 14792 * active to determine which ones need to be cleaned up. Once it has determined 14793 * that a sequence needs to be cleaned up it will simply free up the resources 14794 * without sending an abort. 14795 **/ 14796 void 14797 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 14798 { 14799 struct lpfc_dmabuf *h_buf, *hnext; 14800 struct lpfc_dmabuf *d_buf, *dnext; 14801 struct hbq_dmabuf *dmabuf = NULL; 14802 unsigned long timeout; 14803 int abort_count = 0; 14804 14805 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14806 vport->rcv_buffer_time_stamp); 14807 if (list_empty(&vport->rcv_buffer_list) || 14808 time_before(jiffies, timeout)) 14809 return; 14810 /* start with the oldest sequence on the rcv list */ 14811 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 14812 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14813 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 14814 dmabuf->time_stamp); 14815 if (time_before(jiffies, timeout)) 14816 break; 14817 abort_count++; 14818 list_del_init(&dmabuf->hbuf.list); 14819 list_for_each_entry_safe(d_buf, dnext, 14820 &dmabuf->dbuf.list, list) { 14821 list_del_init(&d_buf->list); 14822 lpfc_in_buf_free(vport->phba, d_buf); 14823 } 14824 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 14825 } 14826 if (abort_count) 14827 lpfc_update_rcv_time_stamp(vport); 14828 } 14829 14830 /** 14831 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 14832 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 14833 * 14834 * This function searches through the existing incomplete sequences that have 14835 * been sent to this @vport. If the frame matches one of the incomplete 14836 * sequences then the dbuf in the @dmabuf is added to the list of frames that 14837 * make up that sequence. If no sequence is found that matches this frame then 14838 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 14839 * This function returns a pointer to the first dmabuf in the sequence list that 14840 * the frame was linked to. 14841 **/ 14842 static struct hbq_dmabuf * 14843 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14844 { 14845 struct fc_frame_header *new_hdr; 14846 struct fc_frame_header *temp_hdr; 14847 struct lpfc_dmabuf *d_buf; 14848 struct lpfc_dmabuf *h_buf; 14849 struct hbq_dmabuf *seq_dmabuf = NULL; 14850 struct hbq_dmabuf *temp_dmabuf = NULL; 14851 14852 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14853 dmabuf->time_stamp = jiffies; 14854 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14855 /* Use the hdr_buf to find the sequence that this frame belongs to */ 14856 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14857 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14858 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14859 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14860 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14861 continue; 14862 /* found a pending sequence that matches this frame */ 14863 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14864 break; 14865 } 14866 if (!seq_dmabuf) { 14867 /* 14868 * This indicates first frame received for this sequence. 14869 * Queue the buffer on the vport's rcv_buffer_list. 14870 */ 14871 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14872 lpfc_update_rcv_time_stamp(vport); 14873 return dmabuf; 14874 } 14875 temp_hdr = seq_dmabuf->hbuf.virt; 14876 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 14877 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14878 list_del_init(&seq_dmabuf->hbuf.list); 14879 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 14880 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14881 lpfc_update_rcv_time_stamp(vport); 14882 return dmabuf; 14883 } 14884 /* move this sequence to the tail to indicate a young sequence */ 14885 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 14886 seq_dmabuf->time_stamp = jiffies; 14887 lpfc_update_rcv_time_stamp(vport); 14888 if (list_empty(&seq_dmabuf->dbuf.list)) { 14889 temp_hdr = dmabuf->hbuf.virt; 14890 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 14891 return seq_dmabuf; 14892 } 14893 /* find the correct place in the sequence to insert this frame */ 14894 list_for_each_entry_reverse(d_buf, &seq_dmabuf->dbuf.list, list) { 14895 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 14896 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 14897 /* 14898 * If the frame's sequence count is greater than the frame on 14899 * the list then insert the frame right after this frame 14900 */ 14901 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 14902 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 14903 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 14904 return seq_dmabuf; 14905 } 14906 } 14907 return NULL; 14908 } 14909 14910 /** 14911 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 14912 * @vport: pointer to a vitural port 14913 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14914 * 14915 * This function tries to abort from the partially assembed sequence, described 14916 * by the information from basic abbort @dmabuf. It checks to see whether such 14917 * partially assembled sequence held by the driver. If so, it shall free up all 14918 * the frames from the partially assembled sequence. 14919 * 14920 * Return 14921 * true -- if there is matching partially assembled sequence present and all 14922 * the frames freed with the sequence; 14923 * false -- if there is no matching partially assembled sequence present so 14924 * nothing got aborted in the lower layer driver 14925 **/ 14926 static bool 14927 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 14928 struct hbq_dmabuf *dmabuf) 14929 { 14930 struct fc_frame_header *new_hdr; 14931 struct fc_frame_header *temp_hdr; 14932 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 14933 struct hbq_dmabuf *seq_dmabuf = NULL; 14934 14935 /* Use the hdr_buf to find the sequence that matches this frame */ 14936 INIT_LIST_HEAD(&dmabuf->dbuf.list); 14937 INIT_LIST_HEAD(&dmabuf->hbuf.list); 14938 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 14939 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 14940 temp_hdr = (struct fc_frame_header *)h_buf->virt; 14941 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 14942 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 14943 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 14944 continue; 14945 /* found a pending sequence that matches this frame */ 14946 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 14947 break; 14948 } 14949 14950 /* Free up all the frames from the partially assembled sequence */ 14951 if (seq_dmabuf) { 14952 list_for_each_entry_safe(d_buf, n_buf, 14953 &seq_dmabuf->dbuf.list, list) { 14954 list_del_init(&d_buf->list); 14955 lpfc_in_buf_free(vport->phba, d_buf); 14956 } 14957 return true; 14958 } 14959 return false; 14960 } 14961 14962 /** 14963 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 14964 * @vport: pointer to a vitural port 14965 * @dmabuf: pointer to a dmabuf that describes the FC sequence 14966 * 14967 * This function tries to abort from the assembed sequence from upper level 14968 * protocol, described by the information from basic abbort @dmabuf. It 14969 * checks to see whether such pending context exists at upper level protocol. 14970 * If so, it shall clean up the pending context. 14971 * 14972 * Return 14973 * true -- if there is matching pending context of the sequence cleaned 14974 * at ulp; 14975 * false -- if there is no matching pending context of the sequence present 14976 * at ulp. 14977 **/ 14978 static bool 14979 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 14980 { 14981 struct lpfc_hba *phba = vport->phba; 14982 int handled; 14983 14984 /* Accepting abort at ulp with SLI4 only */ 14985 if (phba->sli_rev < LPFC_SLI_REV4) 14986 return false; 14987 14988 /* Register all caring upper level protocols to attend abort */ 14989 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 14990 if (handled) 14991 return true; 14992 14993 return false; 14994 } 14995 14996 /** 14997 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 14998 * @phba: Pointer to HBA context object. 14999 * @cmd_iocbq: pointer to the command iocbq structure. 15000 * @rsp_iocbq: pointer to the response iocbq structure. 15001 * 15002 * This function handles the sequence abort response iocb command complete 15003 * event. It properly releases the memory allocated to the sequence abort 15004 * accept iocb. 15005 **/ 15006 static void 15007 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 15008 struct lpfc_iocbq *cmd_iocbq, 15009 struct lpfc_iocbq *rsp_iocbq) 15010 { 15011 struct lpfc_nodelist *ndlp; 15012 15013 if (cmd_iocbq) { 15014 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 15015 lpfc_nlp_put(ndlp); 15016 lpfc_nlp_not_used(ndlp); 15017 lpfc_sli_release_iocbq(phba, cmd_iocbq); 15018 } 15019 15020 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 15021 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 15022 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15023 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 15024 rsp_iocbq->iocb.ulpStatus, 15025 rsp_iocbq->iocb.un.ulpWord[4]); 15026 } 15027 15028 /** 15029 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 15030 * @phba: Pointer to HBA context object. 15031 * @xri: xri id in transaction. 15032 * 15033 * This function validates the xri maps to the known range of XRIs allocated an 15034 * used by the driver. 15035 **/ 15036 uint16_t 15037 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 15038 uint16_t xri) 15039 { 15040 uint16_t i; 15041 15042 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 15043 if (xri == phba->sli4_hba.xri_ids[i]) 15044 return i; 15045 } 15046 return NO_XRI; 15047 } 15048 15049 /** 15050 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 15051 * @phba: Pointer to HBA context object. 15052 * @fc_hdr: pointer to a FC frame header. 15053 * 15054 * This function sends a basic response to a previous unsol sequence abort 15055 * event after aborting the sequence handling. 15056 **/ 15057 static void 15058 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 15059 struct fc_frame_header *fc_hdr, bool aborted) 15060 { 15061 struct lpfc_hba *phba = vport->phba; 15062 struct lpfc_iocbq *ctiocb = NULL; 15063 struct lpfc_nodelist *ndlp; 15064 uint16_t oxid, rxid, xri, lxri; 15065 uint32_t sid, fctl; 15066 IOCB_t *icmd; 15067 int rc; 15068 15069 if (!lpfc_is_link_up(phba)) 15070 return; 15071 15072 sid = sli4_sid_from_fc_hdr(fc_hdr); 15073 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 15074 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 15075 15076 ndlp = lpfc_findnode_did(vport, sid); 15077 if (!ndlp) { 15078 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 15079 if (!ndlp) { 15080 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15081 "1268 Failed to allocate ndlp for " 15082 "oxid:x%x SID:x%x\n", oxid, sid); 15083 return; 15084 } 15085 lpfc_nlp_init(vport, ndlp, sid); 15086 /* Put ndlp onto pport node list */ 15087 lpfc_enqueue_node(vport, ndlp); 15088 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 15089 /* re-setup ndlp without removing from node list */ 15090 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 15091 if (!ndlp) { 15092 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 15093 "3275 Failed to active ndlp found " 15094 "for oxid:x%x SID:x%x\n", oxid, sid); 15095 return; 15096 } 15097 } 15098 15099 /* Allocate buffer for rsp iocb */ 15100 ctiocb = lpfc_sli_get_iocbq(phba); 15101 if (!ctiocb) 15102 return; 15103 15104 /* Extract the F_CTL field from FC_HDR */ 15105 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 15106 15107 icmd = &ctiocb->iocb; 15108 icmd->un.xseq64.bdl.bdeSize = 0; 15109 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 15110 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 15111 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 15112 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 15113 15114 /* Fill in the rest of iocb fields */ 15115 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 15116 icmd->ulpBdeCount = 0; 15117 icmd->ulpLe = 1; 15118 icmd->ulpClass = CLASS3; 15119 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 15120 ctiocb->context1 = lpfc_nlp_get(ndlp); 15121 15122 ctiocb->iocb_cmpl = NULL; 15123 ctiocb->vport = phba->pport; 15124 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 15125 ctiocb->sli4_lxritag = NO_XRI; 15126 ctiocb->sli4_xritag = NO_XRI; 15127 15128 if (fctl & FC_FC_EX_CTX) 15129 /* Exchange responder sent the abort so we 15130 * own the oxid. 15131 */ 15132 xri = oxid; 15133 else 15134 xri = rxid; 15135 lxri = lpfc_sli4_xri_inrange(phba, xri); 15136 if (lxri != NO_XRI) 15137 lpfc_set_rrq_active(phba, ndlp, lxri, 15138 (xri == oxid) ? rxid : oxid, 0); 15139 /* For BA_ABTS from exchange responder, if the logical xri with 15140 * the oxid maps to the FCP XRI range, the port no longer has 15141 * that exchange context, send a BLS_RJT. Override the IOCB for 15142 * a BA_RJT. 15143 */ 15144 if ((fctl & FC_FC_EX_CTX) && 15145 (lxri > lpfc_sli4_get_els_iocb_cnt(phba))) { 15146 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15147 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15148 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15149 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15150 } 15151 15152 /* If BA_ABTS failed to abort a partially assembled receive sequence, 15153 * the driver no longer has that exchange, send a BLS_RJT. Override 15154 * the IOCB for a BA_RJT. 15155 */ 15156 if (aborted == false) { 15157 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 15158 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 15159 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 15160 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 15161 } 15162 15163 if (fctl & FC_FC_EX_CTX) { 15164 /* ABTS sent by responder to CT exchange, construction 15165 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 15166 * field and RX_ID from ABTS for RX_ID field. 15167 */ 15168 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 15169 } else { 15170 /* ABTS sent by initiator to CT exchange, construction 15171 * of BA_ACC will need to allocate a new XRI as for the 15172 * XRI_TAG field. 15173 */ 15174 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 15175 } 15176 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 15177 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 15178 15179 /* Xmit CT abts response on exchange <xid> */ 15180 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 15181 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 15182 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 15183 15184 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 15185 if (rc == IOCB_ERROR) { 15186 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 15187 "2925 Failed to issue CT ABTS RSP x%x on " 15188 "xri x%x, Data x%x\n", 15189 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 15190 phba->link_state); 15191 lpfc_nlp_put(ndlp); 15192 ctiocb->context1 = NULL; 15193 lpfc_sli_release_iocbq(phba, ctiocb); 15194 } 15195 } 15196 15197 /** 15198 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 15199 * @vport: Pointer to the vport on which this sequence was received 15200 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15201 * 15202 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 15203 * receive sequence is only partially assembed by the driver, it shall abort 15204 * the partially assembled frames for the sequence. Otherwise, if the 15205 * unsolicited receive sequence has been completely assembled and passed to 15206 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 15207 * unsolicited sequence has been aborted. After that, it will issue a basic 15208 * accept to accept the abort. 15209 **/ 15210 static void 15211 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 15212 struct hbq_dmabuf *dmabuf) 15213 { 15214 struct lpfc_hba *phba = vport->phba; 15215 struct fc_frame_header fc_hdr; 15216 uint32_t fctl; 15217 bool aborted; 15218 15219 /* Make a copy of fc_hdr before the dmabuf being released */ 15220 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 15221 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 15222 15223 if (fctl & FC_FC_EX_CTX) { 15224 /* ABTS by responder to exchange, no cleanup needed */ 15225 aborted = true; 15226 } else { 15227 /* ABTS by initiator to exchange, need to do cleanup */ 15228 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 15229 if (aborted == false) 15230 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 15231 } 15232 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15233 15234 /* Respond with BA_ACC or BA_RJT accordingly */ 15235 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 15236 } 15237 15238 /** 15239 * lpfc_seq_complete - Indicates if a sequence is complete 15240 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15241 * 15242 * This function checks the sequence, starting with the frame described by 15243 * @dmabuf, to see if all the frames associated with this sequence are present. 15244 * the frames associated with this sequence are linked to the @dmabuf using the 15245 * dbuf list. This function looks for two major things. 1) That the first frame 15246 * has a sequence count of zero. 2) There is a frame with last frame of sequence 15247 * set. 3) That there are no holes in the sequence count. The function will 15248 * return 1 when the sequence is complete, otherwise it will return 0. 15249 **/ 15250 static int 15251 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 15252 { 15253 struct fc_frame_header *hdr; 15254 struct lpfc_dmabuf *d_buf; 15255 struct hbq_dmabuf *seq_dmabuf; 15256 uint32_t fctl; 15257 int seq_count = 0; 15258 15259 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15260 /* make sure first fame of sequence has a sequence count of zero */ 15261 if (hdr->fh_seq_cnt != seq_count) 15262 return 0; 15263 fctl = (hdr->fh_f_ctl[0] << 16 | 15264 hdr->fh_f_ctl[1] << 8 | 15265 hdr->fh_f_ctl[2]); 15266 /* If last frame of sequence we can return success. */ 15267 if (fctl & FC_FC_END_SEQ) 15268 return 1; 15269 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 15270 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15271 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15272 /* If there is a hole in the sequence count then fail. */ 15273 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 15274 return 0; 15275 fctl = (hdr->fh_f_ctl[0] << 16 | 15276 hdr->fh_f_ctl[1] << 8 | 15277 hdr->fh_f_ctl[2]); 15278 /* If last frame of sequence we can return success. */ 15279 if (fctl & FC_FC_END_SEQ) 15280 return 1; 15281 } 15282 return 0; 15283 } 15284 15285 /** 15286 * lpfc_prep_seq - Prep sequence for ULP processing 15287 * @vport: Pointer to the vport on which this sequence was received 15288 * @dmabuf: pointer to a dmabuf that describes the FC sequence 15289 * 15290 * This function takes a sequence, described by a list of frames, and creates 15291 * a list of iocbq structures to describe the sequence. This iocbq list will be 15292 * used to issue to the generic unsolicited sequence handler. This routine 15293 * returns a pointer to the first iocbq in the list. If the function is unable 15294 * to allocate an iocbq then it throw out the received frames that were not 15295 * able to be described and return a pointer to the first iocbq. If unable to 15296 * allocate any iocbqs (including the first) this function will return NULL. 15297 **/ 15298 static struct lpfc_iocbq * 15299 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 15300 { 15301 struct hbq_dmabuf *hbq_buf; 15302 struct lpfc_dmabuf *d_buf, *n_buf; 15303 struct lpfc_iocbq *first_iocbq, *iocbq; 15304 struct fc_frame_header *fc_hdr; 15305 uint32_t sid; 15306 uint32_t len, tot_len; 15307 struct ulp_bde64 *pbde; 15308 15309 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15310 /* remove from receive buffer list */ 15311 list_del_init(&seq_dmabuf->hbuf.list); 15312 lpfc_update_rcv_time_stamp(vport); 15313 /* get the Remote Port's SID */ 15314 sid = sli4_sid_from_fc_hdr(fc_hdr); 15315 tot_len = 0; 15316 /* Get an iocbq struct to fill in. */ 15317 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 15318 if (first_iocbq) { 15319 /* Initialize the first IOCB. */ 15320 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 15321 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 15322 15323 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 15324 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 15325 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 15326 first_iocbq->iocb.un.rcvels.parmRo = 15327 sli4_did_from_fc_hdr(fc_hdr); 15328 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 15329 } else 15330 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 15331 first_iocbq->iocb.ulpContext = NO_XRI; 15332 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 15333 be16_to_cpu(fc_hdr->fh_ox_id); 15334 /* iocbq is prepped for internal consumption. Physical vpi. */ 15335 first_iocbq->iocb.unsli3.rcvsli3.vpi = 15336 vport->phba->vpi_ids[vport->vpi]; 15337 /* put the first buffer into the first IOCBq */ 15338 tot_len = bf_get(lpfc_rcqe_length, 15339 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 15340 15341 first_iocbq->context2 = &seq_dmabuf->dbuf; 15342 first_iocbq->context3 = NULL; 15343 first_iocbq->iocb.ulpBdeCount = 1; 15344 if (tot_len > LPFC_DATA_BUF_SIZE) 15345 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15346 LPFC_DATA_BUF_SIZE; 15347 else 15348 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 15349 15350 first_iocbq->iocb.un.rcvels.remoteID = sid; 15351 15352 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15353 } 15354 iocbq = first_iocbq; 15355 /* 15356 * Each IOCBq can have two Buffers assigned, so go through the list 15357 * of buffers for this sequence and save two buffers in each IOCBq 15358 */ 15359 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 15360 if (!iocbq) { 15361 lpfc_in_buf_free(vport->phba, d_buf); 15362 continue; 15363 } 15364 if (!iocbq->context3) { 15365 iocbq->context3 = d_buf; 15366 iocbq->iocb.ulpBdeCount++; 15367 /* We need to get the size out of the right CQE */ 15368 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15369 len = bf_get(lpfc_rcqe_length, 15370 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15371 pbde = (struct ulp_bde64 *) 15372 &iocbq->iocb.unsli3.sli3Words[4]; 15373 if (len > LPFC_DATA_BUF_SIZE) 15374 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 15375 else 15376 pbde->tus.f.bdeSize = len; 15377 15378 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 15379 tot_len += len; 15380 } else { 15381 iocbq = lpfc_sli_get_iocbq(vport->phba); 15382 if (!iocbq) { 15383 if (first_iocbq) { 15384 first_iocbq->iocb.ulpStatus = 15385 IOSTAT_FCP_RSP_ERROR; 15386 first_iocbq->iocb.un.ulpWord[4] = 15387 IOERR_NO_RESOURCES; 15388 } 15389 lpfc_in_buf_free(vport->phba, d_buf); 15390 continue; 15391 } 15392 /* We need to get the size out of the right CQE */ 15393 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 15394 len = bf_get(lpfc_rcqe_length, 15395 &hbq_buf->cq_event.cqe.rcqe_cmpl); 15396 iocbq->context2 = d_buf; 15397 iocbq->context3 = NULL; 15398 iocbq->iocb.ulpBdeCount = 1; 15399 if (len > LPFC_DATA_BUF_SIZE) 15400 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 15401 LPFC_DATA_BUF_SIZE; 15402 else 15403 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 15404 15405 tot_len += len; 15406 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 15407 15408 iocbq->iocb.un.rcvels.remoteID = sid; 15409 list_add_tail(&iocbq->list, &first_iocbq->list); 15410 } 15411 } 15412 return first_iocbq; 15413 } 15414 15415 static void 15416 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 15417 struct hbq_dmabuf *seq_dmabuf) 15418 { 15419 struct fc_frame_header *fc_hdr; 15420 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 15421 struct lpfc_hba *phba = vport->phba; 15422 15423 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 15424 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 15425 if (!iocbq) { 15426 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15427 "2707 Ring %d handler: Failed to allocate " 15428 "iocb Rctl x%x Type x%x received\n", 15429 LPFC_ELS_RING, 15430 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15431 return; 15432 } 15433 if (!lpfc_complete_unsol_iocb(phba, 15434 &phba->sli.ring[LPFC_ELS_RING], 15435 iocbq, fc_hdr->fh_r_ctl, 15436 fc_hdr->fh_type)) 15437 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15438 "2540 Ring %d handler: unexpected Rctl " 15439 "x%x Type x%x received\n", 15440 LPFC_ELS_RING, 15441 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 15442 15443 /* Free iocb created in lpfc_prep_seq */ 15444 list_for_each_entry_safe(curr_iocb, next_iocb, 15445 &iocbq->list, list) { 15446 list_del_init(&curr_iocb->list); 15447 lpfc_sli_release_iocbq(phba, curr_iocb); 15448 } 15449 lpfc_sli_release_iocbq(phba, iocbq); 15450 } 15451 15452 /** 15453 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 15454 * @phba: Pointer to HBA context object. 15455 * 15456 * This function is called with no lock held. This function processes all 15457 * the received buffers and gives it to upper layers when a received buffer 15458 * indicates that it is the final frame in the sequence. The interrupt 15459 * service routine processes received buffers at interrupt contexts and adds 15460 * received dma buffers to the rb_pend_list queue and signals the worker thread. 15461 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 15462 * appropriate receive function when the final frame in a sequence is received. 15463 **/ 15464 void 15465 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 15466 struct hbq_dmabuf *dmabuf) 15467 { 15468 struct hbq_dmabuf *seq_dmabuf; 15469 struct fc_frame_header *fc_hdr; 15470 struct lpfc_vport *vport; 15471 uint32_t fcfi; 15472 uint32_t did; 15473 15474 /* Process each received buffer */ 15475 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 15476 /* check to see if this a valid type of frame */ 15477 if (lpfc_fc_frame_check(phba, fc_hdr)) { 15478 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15479 return; 15480 } 15481 if ((bf_get(lpfc_cqe_code, 15482 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 15483 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 15484 &dmabuf->cq_event.cqe.rcqe_cmpl); 15485 else 15486 fcfi = bf_get(lpfc_rcqe_fcf_id, 15487 &dmabuf->cq_event.cqe.rcqe_cmpl); 15488 15489 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi); 15490 if (!vport) { 15491 /* throw out the frame */ 15492 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15493 return; 15494 } 15495 15496 /* d_id this frame is directed to */ 15497 did = sli4_did_from_fc_hdr(fc_hdr); 15498 15499 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 15500 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 15501 (did != Fabric_DID)) { 15502 /* 15503 * Throw out the frame if we are not pt2pt. 15504 * The pt2pt protocol allows for discovery frames 15505 * to be received without a registered VPI. 15506 */ 15507 if (!(vport->fc_flag & FC_PT2PT) || 15508 (phba->link_state == LPFC_HBA_READY)) { 15509 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15510 return; 15511 } 15512 } 15513 15514 /* Handle the basic abort sequence (BA_ABTS) event */ 15515 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 15516 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 15517 return; 15518 } 15519 15520 /* Link this frame */ 15521 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 15522 if (!seq_dmabuf) { 15523 /* unable to add frame to vport - throw it out */ 15524 lpfc_in_buf_free(phba, &dmabuf->dbuf); 15525 return; 15526 } 15527 /* If not last frame in sequence continue processing frames. */ 15528 if (!lpfc_seq_complete(seq_dmabuf)) 15529 return; 15530 15531 /* Send the complete sequence to the upper layer protocol */ 15532 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 15533 } 15534 15535 /** 15536 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 15537 * @phba: pointer to lpfc hba data structure. 15538 * 15539 * This routine is invoked to post rpi header templates to the 15540 * HBA consistent with the SLI-4 interface spec. This routine 15541 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15542 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15543 * 15544 * This routine does not require any locks. It's usage is expected 15545 * to be driver load or reset recovery when the driver is 15546 * sequential. 15547 * 15548 * Return codes 15549 * 0 - successful 15550 * -EIO - The mailbox failed to complete successfully. 15551 * When this error occurs, the driver is not guaranteed 15552 * to have any rpi regions posted to the device and 15553 * must either attempt to repost the regions or take a 15554 * fatal error. 15555 **/ 15556 int 15557 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 15558 { 15559 struct lpfc_rpi_hdr *rpi_page; 15560 uint32_t rc = 0; 15561 uint16_t lrpi = 0; 15562 15563 /* SLI4 ports that support extents do not require RPI headers. */ 15564 if (!phba->sli4_hba.rpi_hdrs_in_use) 15565 goto exit; 15566 if (phba->sli4_hba.extents_in_use) 15567 return -EIO; 15568 15569 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 15570 /* 15571 * Assign the rpi headers a physical rpi only if the driver 15572 * has not initialized those resources. A port reset only 15573 * needs the headers posted. 15574 */ 15575 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 15576 LPFC_RPI_RSRC_RDY) 15577 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15578 15579 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 15580 if (rc != MBX_SUCCESS) { 15581 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15582 "2008 Error %d posting all rpi " 15583 "headers\n", rc); 15584 rc = -EIO; 15585 break; 15586 } 15587 } 15588 15589 exit: 15590 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 15591 LPFC_RPI_RSRC_RDY); 15592 return rc; 15593 } 15594 15595 /** 15596 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 15597 * @phba: pointer to lpfc hba data structure. 15598 * @rpi_page: pointer to the rpi memory region. 15599 * 15600 * This routine is invoked to post a single rpi header to the 15601 * HBA consistent with the SLI-4 interface spec. This memory region 15602 * maps up to 64 rpi context regions. 15603 * 15604 * Return codes 15605 * 0 - successful 15606 * -ENOMEM - No available memory 15607 * -EIO - The mailbox failed to complete successfully. 15608 **/ 15609 int 15610 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 15611 { 15612 LPFC_MBOXQ_t *mboxq; 15613 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 15614 uint32_t rc = 0; 15615 uint32_t shdr_status, shdr_add_status; 15616 union lpfc_sli4_cfg_shdr *shdr; 15617 15618 /* SLI4 ports that support extents do not require RPI headers. */ 15619 if (!phba->sli4_hba.rpi_hdrs_in_use) 15620 return rc; 15621 if (phba->sli4_hba.extents_in_use) 15622 return -EIO; 15623 15624 /* The port is notified of the header region via a mailbox command. */ 15625 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15626 if (!mboxq) { 15627 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15628 "2001 Unable to allocate memory for issuing " 15629 "SLI_CONFIG_SPECIAL mailbox command\n"); 15630 return -ENOMEM; 15631 } 15632 15633 /* Post all rpi memory regions to the port. */ 15634 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 15635 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15636 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 15637 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 15638 sizeof(struct lpfc_sli4_cfg_mhdr), 15639 LPFC_SLI4_MBX_EMBED); 15640 15641 15642 /* Post the physical rpi to the port for this rpi header. */ 15643 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 15644 rpi_page->start_rpi); 15645 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 15646 hdr_tmpl, rpi_page->page_count); 15647 15648 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 15649 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 15650 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 15651 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 15652 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15653 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15654 if (rc != MBX_TIMEOUT) 15655 mempool_free(mboxq, phba->mbox_mem_pool); 15656 if (shdr_status || shdr_add_status || rc) { 15657 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15658 "2514 POST_RPI_HDR mailbox failed with " 15659 "status x%x add_status x%x, mbx status x%x\n", 15660 shdr_status, shdr_add_status, rc); 15661 rc = -ENXIO; 15662 } 15663 return rc; 15664 } 15665 15666 /** 15667 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 15668 * @phba: pointer to lpfc hba data structure. 15669 * 15670 * This routine is invoked to post rpi header templates to the 15671 * HBA consistent with the SLI-4 interface spec. This routine 15672 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15673 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15674 * 15675 * Returns 15676 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15677 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15678 **/ 15679 int 15680 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 15681 { 15682 unsigned long rpi; 15683 uint16_t max_rpi, rpi_limit; 15684 uint16_t rpi_remaining, lrpi = 0; 15685 struct lpfc_rpi_hdr *rpi_hdr; 15686 unsigned long iflag; 15687 15688 /* 15689 * Fetch the next logical rpi. Because this index is logical, 15690 * the driver starts at 0 each time. 15691 */ 15692 spin_lock_irqsave(&phba->hbalock, iflag); 15693 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 15694 rpi_limit = phba->sli4_hba.next_rpi; 15695 15696 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 15697 if (rpi >= rpi_limit) 15698 rpi = LPFC_RPI_ALLOC_ERROR; 15699 else { 15700 set_bit(rpi, phba->sli4_hba.rpi_bmask); 15701 phba->sli4_hba.max_cfg_param.rpi_used++; 15702 phba->sli4_hba.rpi_count++; 15703 } 15704 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15705 "0001 rpi:%x max:%x lim:%x\n", 15706 (int) rpi, max_rpi, rpi_limit); 15707 15708 /* 15709 * Don't try to allocate more rpi header regions if the device limit 15710 * has been exhausted. 15711 */ 15712 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 15713 (phba->sli4_hba.rpi_count >= max_rpi)) { 15714 spin_unlock_irqrestore(&phba->hbalock, iflag); 15715 return rpi; 15716 } 15717 15718 /* 15719 * RPI header postings are not required for SLI4 ports capable of 15720 * extents. 15721 */ 15722 if (!phba->sli4_hba.rpi_hdrs_in_use) { 15723 spin_unlock_irqrestore(&phba->hbalock, iflag); 15724 return rpi; 15725 } 15726 15727 /* 15728 * If the driver is running low on rpi resources, allocate another 15729 * page now. Note that the next_rpi value is used because 15730 * it represents how many are actually in use whereas max_rpi notes 15731 * how many are supported max by the device. 15732 */ 15733 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 15734 spin_unlock_irqrestore(&phba->hbalock, iflag); 15735 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 15736 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 15737 if (!rpi_hdr) { 15738 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15739 "2002 Error Could not grow rpi " 15740 "count\n"); 15741 } else { 15742 lrpi = rpi_hdr->start_rpi; 15743 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 15744 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 15745 } 15746 } 15747 15748 return rpi; 15749 } 15750 15751 /** 15752 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15753 * @phba: pointer to lpfc hba data structure. 15754 * 15755 * This routine is invoked to release an rpi to the pool of 15756 * available rpis maintained by the driver. 15757 **/ 15758 static void 15759 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15760 { 15761 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 15762 phba->sli4_hba.rpi_count--; 15763 phba->sli4_hba.max_cfg_param.rpi_used--; 15764 } 15765 } 15766 15767 /** 15768 * lpfc_sli4_free_rpi - Release an rpi for reuse. 15769 * @phba: pointer to lpfc hba data structure. 15770 * 15771 * This routine is invoked to release an rpi to the pool of 15772 * available rpis maintained by the driver. 15773 **/ 15774 void 15775 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 15776 { 15777 spin_lock_irq(&phba->hbalock); 15778 __lpfc_sli4_free_rpi(phba, rpi); 15779 spin_unlock_irq(&phba->hbalock); 15780 } 15781 15782 /** 15783 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 15784 * @phba: pointer to lpfc hba data structure. 15785 * 15786 * This routine is invoked to remove the memory region that 15787 * provided rpi via a bitmask. 15788 **/ 15789 void 15790 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 15791 { 15792 kfree(phba->sli4_hba.rpi_bmask); 15793 kfree(phba->sli4_hba.rpi_ids); 15794 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 15795 } 15796 15797 /** 15798 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 15799 * @phba: pointer to lpfc hba data structure. 15800 * 15801 * This routine is invoked to remove the memory region that 15802 * provided rpi via a bitmask. 15803 **/ 15804 int 15805 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 15806 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 15807 { 15808 LPFC_MBOXQ_t *mboxq; 15809 struct lpfc_hba *phba = ndlp->phba; 15810 int rc; 15811 15812 /* The port is notified of the header region via a mailbox command. */ 15813 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15814 if (!mboxq) 15815 return -ENOMEM; 15816 15817 /* Post all rpi memory regions to the port. */ 15818 lpfc_resume_rpi(mboxq, ndlp); 15819 if (cmpl) { 15820 mboxq->mbox_cmpl = cmpl; 15821 mboxq->context1 = arg; 15822 mboxq->context2 = ndlp; 15823 } else 15824 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15825 mboxq->vport = ndlp->vport; 15826 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15827 if (rc == MBX_NOT_FINISHED) { 15828 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15829 "2010 Resume RPI Mailbox failed " 15830 "status %d, mbxStatus x%x\n", rc, 15831 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15832 mempool_free(mboxq, phba->mbox_mem_pool); 15833 return -EIO; 15834 } 15835 return 0; 15836 } 15837 15838 /** 15839 * lpfc_sli4_init_vpi - Initialize a vpi with the port 15840 * @vport: Pointer to the vport for which the vpi is being initialized 15841 * 15842 * This routine is invoked to activate a vpi with the port. 15843 * 15844 * Returns: 15845 * 0 success 15846 * -Evalue otherwise 15847 **/ 15848 int 15849 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 15850 { 15851 LPFC_MBOXQ_t *mboxq; 15852 int rc = 0; 15853 int retval = MBX_SUCCESS; 15854 uint32_t mbox_tmo; 15855 struct lpfc_hba *phba = vport->phba; 15856 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15857 if (!mboxq) 15858 return -ENOMEM; 15859 lpfc_init_vpi(phba, mboxq, vport->vpi); 15860 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 15861 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 15862 if (rc != MBX_SUCCESS) { 15863 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 15864 "2022 INIT VPI Mailbox failed " 15865 "status %d, mbxStatus x%x\n", rc, 15866 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 15867 retval = -EIO; 15868 } 15869 if (rc != MBX_TIMEOUT) 15870 mempool_free(mboxq, vport->phba->mbox_mem_pool); 15871 15872 return retval; 15873 } 15874 15875 /** 15876 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 15877 * @phba: pointer to lpfc hba data structure. 15878 * @mboxq: Pointer to mailbox object. 15879 * 15880 * This routine is invoked to manually add a single FCF record. The caller 15881 * must pass a completely initialized FCF_Record. This routine takes 15882 * care of the nonembedded mailbox operations. 15883 **/ 15884 static void 15885 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 15886 { 15887 void *virt_addr; 15888 union lpfc_sli4_cfg_shdr *shdr; 15889 uint32_t shdr_status, shdr_add_status; 15890 15891 virt_addr = mboxq->sge_array->addr[0]; 15892 /* The IOCTL status is embedded in the mailbox subheader. */ 15893 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 15894 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15895 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15896 15897 if ((shdr_status || shdr_add_status) && 15898 (shdr_status != STATUS_FCF_IN_USE)) 15899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15900 "2558 ADD_FCF_RECORD mailbox failed with " 15901 "status x%x add_status x%x\n", 15902 shdr_status, shdr_add_status); 15903 15904 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15905 } 15906 15907 /** 15908 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 15909 * @phba: pointer to lpfc hba data structure. 15910 * @fcf_record: pointer to the initialized fcf record to add. 15911 * 15912 * This routine is invoked to manually add a single FCF record. The caller 15913 * must pass a completely initialized FCF_Record. This routine takes 15914 * care of the nonembedded mailbox operations. 15915 **/ 15916 int 15917 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 15918 { 15919 int rc = 0; 15920 LPFC_MBOXQ_t *mboxq; 15921 uint8_t *bytep; 15922 void *virt_addr; 15923 dma_addr_t phys_addr; 15924 struct lpfc_mbx_sge sge; 15925 uint32_t alloc_len, req_len; 15926 uint32_t fcfindex; 15927 15928 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15929 if (!mboxq) { 15930 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15931 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 15932 return -ENOMEM; 15933 } 15934 15935 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 15936 sizeof(uint32_t); 15937 15938 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15939 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 15940 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 15941 req_len, LPFC_SLI4_MBX_NEMBED); 15942 if (alloc_len < req_len) { 15943 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15944 "2523 Allocated DMA memory size (x%x) is " 15945 "less than the requested DMA memory " 15946 "size (x%x)\n", alloc_len, req_len); 15947 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15948 return -ENOMEM; 15949 } 15950 15951 /* 15952 * Get the first SGE entry from the non-embedded DMA memory. This 15953 * routine only uses a single SGE. 15954 */ 15955 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 15956 phys_addr = getPaddr(sge.pa_hi, sge.pa_lo); 15957 virt_addr = mboxq->sge_array->addr[0]; 15958 /* 15959 * Configure the FCF record for FCFI 0. This is the driver's 15960 * hardcoded default and gets used in nonFIP mode. 15961 */ 15962 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 15963 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 15964 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 15965 15966 /* 15967 * Copy the fcf_index and the FCF Record Data. The data starts after 15968 * the FCoE header plus word10. The data copy needs to be endian 15969 * correct. 15970 */ 15971 bytep += sizeof(uint32_t); 15972 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 15973 mboxq->vport = phba->pport; 15974 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 15975 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 15976 if (rc == MBX_NOT_FINISHED) { 15977 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15978 "2515 ADD_FCF_RECORD mailbox failed with " 15979 "status 0x%x\n", rc); 15980 lpfc_sli4_mbox_cmd_free(phba, mboxq); 15981 rc = -EIO; 15982 } else 15983 rc = 0; 15984 15985 return rc; 15986 } 15987 15988 /** 15989 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 15990 * @phba: pointer to lpfc hba data structure. 15991 * @fcf_record: pointer to the fcf record to write the default data. 15992 * @fcf_index: FCF table entry index. 15993 * 15994 * This routine is invoked to build the driver's default FCF record. The 15995 * values used are hardcoded. This routine handles memory initialization. 15996 * 15997 **/ 15998 void 15999 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 16000 struct fcf_record *fcf_record, 16001 uint16_t fcf_index) 16002 { 16003 memset(fcf_record, 0, sizeof(struct fcf_record)); 16004 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 16005 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 16006 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 16007 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 16008 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 16009 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 16010 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 16011 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 16012 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 16013 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 16014 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 16015 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 16016 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 16017 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 16018 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 16019 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 16020 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 16021 /* Set the VLAN bit map */ 16022 if (phba->valid_vlan) { 16023 fcf_record->vlan_bitmap[phba->vlan_id / 8] 16024 = 1 << (phba->vlan_id % 8); 16025 } 16026 } 16027 16028 /** 16029 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 16030 * @phba: pointer to lpfc hba data structure. 16031 * @fcf_index: FCF table entry offset. 16032 * 16033 * This routine is invoked to scan the entire FCF table by reading FCF 16034 * record and processing it one at a time starting from the @fcf_index 16035 * for initial FCF discovery or fast FCF failover rediscovery. 16036 * 16037 * Return 0 if the mailbox command is submitted successfully, none 0 16038 * otherwise. 16039 **/ 16040 int 16041 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16042 { 16043 int rc = 0, error; 16044 LPFC_MBOXQ_t *mboxq; 16045 16046 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 16047 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 16048 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16049 if (!mboxq) { 16050 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16051 "2000 Failed to allocate mbox for " 16052 "READ_FCF cmd\n"); 16053 error = -ENOMEM; 16054 goto fail_fcf_scan; 16055 } 16056 /* Construct the read FCF record mailbox command */ 16057 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16058 if (rc) { 16059 error = -EINVAL; 16060 goto fail_fcf_scan; 16061 } 16062 /* Issue the mailbox command asynchronously */ 16063 mboxq->vport = phba->pport; 16064 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 16065 16066 spin_lock_irq(&phba->hbalock); 16067 phba->hba_flag |= FCF_TS_INPROG; 16068 spin_unlock_irq(&phba->hbalock); 16069 16070 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16071 if (rc == MBX_NOT_FINISHED) 16072 error = -EIO; 16073 else { 16074 /* Reset eligible FCF count for new scan */ 16075 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 16076 phba->fcf.eligible_fcf_cnt = 0; 16077 error = 0; 16078 } 16079 fail_fcf_scan: 16080 if (error) { 16081 if (mboxq) 16082 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16083 /* FCF scan failed, clear FCF_TS_INPROG flag */ 16084 spin_lock_irq(&phba->hbalock); 16085 phba->hba_flag &= ~FCF_TS_INPROG; 16086 spin_unlock_irq(&phba->hbalock); 16087 } 16088 return error; 16089 } 16090 16091 /** 16092 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 16093 * @phba: pointer to lpfc hba data structure. 16094 * @fcf_index: FCF table entry offset. 16095 * 16096 * This routine is invoked to read an FCF record indicated by @fcf_index 16097 * and to use it for FLOGI roundrobin FCF failover. 16098 * 16099 * Return 0 if the mailbox command is submitted successfully, none 0 16100 * otherwise. 16101 **/ 16102 int 16103 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16104 { 16105 int rc = 0, error; 16106 LPFC_MBOXQ_t *mboxq; 16107 16108 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16109 if (!mboxq) { 16110 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16111 "2763 Failed to allocate mbox for " 16112 "READ_FCF cmd\n"); 16113 error = -ENOMEM; 16114 goto fail_fcf_read; 16115 } 16116 /* Construct the read FCF record mailbox command */ 16117 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16118 if (rc) { 16119 error = -EINVAL; 16120 goto fail_fcf_read; 16121 } 16122 /* Issue the mailbox command asynchronously */ 16123 mboxq->vport = phba->pport; 16124 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 16125 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16126 if (rc == MBX_NOT_FINISHED) 16127 error = -EIO; 16128 else 16129 error = 0; 16130 16131 fail_fcf_read: 16132 if (error && mboxq) 16133 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16134 return error; 16135 } 16136 16137 /** 16138 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 16139 * @phba: pointer to lpfc hba data structure. 16140 * @fcf_index: FCF table entry offset. 16141 * 16142 * This routine is invoked to read an FCF record indicated by @fcf_index to 16143 * determine whether it's eligible for FLOGI roundrobin failover list. 16144 * 16145 * Return 0 if the mailbox command is submitted successfully, none 0 16146 * otherwise. 16147 **/ 16148 int 16149 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 16150 { 16151 int rc = 0, error; 16152 LPFC_MBOXQ_t *mboxq; 16153 16154 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16155 if (!mboxq) { 16156 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 16157 "2758 Failed to allocate mbox for " 16158 "READ_FCF cmd\n"); 16159 error = -ENOMEM; 16160 goto fail_fcf_read; 16161 } 16162 /* Construct the read FCF record mailbox command */ 16163 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 16164 if (rc) { 16165 error = -EINVAL; 16166 goto fail_fcf_read; 16167 } 16168 /* Issue the mailbox command asynchronously */ 16169 mboxq->vport = phba->pport; 16170 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 16171 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 16172 if (rc == MBX_NOT_FINISHED) 16173 error = -EIO; 16174 else 16175 error = 0; 16176 16177 fail_fcf_read: 16178 if (error && mboxq) 16179 lpfc_sli4_mbox_cmd_free(phba, mboxq); 16180 return error; 16181 } 16182 16183 /** 16184 * lpfc_check_next_fcf_pri 16185 * phba pointer to the lpfc_hba struct for this port. 16186 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 16187 * routine when the rr_bmask is empty. The FCF indecies are put into the 16188 * rr_bmask based on their priority level. Starting from the highest priority 16189 * to the lowest. The most likely FCF candidate will be in the highest 16190 * priority group. When this routine is called it searches the fcf_pri list for 16191 * next lowest priority group and repopulates the rr_bmask with only those 16192 * fcf_indexes. 16193 * returns: 16194 * 1=success 0=failure 16195 **/ 16196 static int 16197 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 16198 { 16199 uint16_t next_fcf_pri; 16200 uint16_t last_index; 16201 struct lpfc_fcf_pri *fcf_pri; 16202 int rc; 16203 int ret = 0; 16204 16205 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 16206 LPFC_SLI4_FCF_TBL_INDX_MAX); 16207 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16208 "3060 Last IDX %d\n", last_index); 16209 16210 /* Verify the priority list has 2 or more entries */ 16211 spin_lock_irq(&phba->hbalock); 16212 if (list_empty(&phba->fcf.fcf_pri_list) || 16213 list_is_singular(&phba->fcf.fcf_pri_list)) { 16214 spin_unlock_irq(&phba->hbalock); 16215 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16216 "3061 Last IDX %d\n", last_index); 16217 return 0; /* Empty rr list */ 16218 } 16219 spin_unlock_irq(&phba->hbalock); 16220 16221 next_fcf_pri = 0; 16222 /* 16223 * Clear the rr_bmask and set all of the bits that are at this 16224 * priority. 16225 */ 16226 memset(phba->fcf.fcf_rr_bmask, 0, 16227 sizeof(*phba->fcf.fcf_rr_bmask)); 16228 spin_lock_irq(&phba->hbalock); 16229 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16230 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 16231 continue; 16232 /* 16233 * the 1st priority that has not FLOGI failed 16234 * will be the highest. 16235 */ 16236 if (!next_fcf_pri) 16237 next_fcf_pri = fcf_pri->fcf_rec.priority; 16238 spin_unlock_irq(&phba->hbalock); 16239 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16240 rc = lpfc_sli4_fcf_rr_index_set(phba, 16241 fcf_pri->fcf_rec.fcf_index); 16242 if (rc) 16243 return 0; 16244 } 16245 spin_lock_irq(&phba->hbalock); 16246 } 16247 /* 16248 * if next_fcf_pri was not set above and the list is not empty then 16249 * we have failed flogis on all of them. So reset flogi failed 16250 * and start at the beginning. 16251 */ 16252 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 16253 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 16254 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 16255 /* 16256 * the 1st priority that has not FLOGI failed 16257 * will be the highest. 16258 */ 16259 if (!next_fcf_pri) 16260 next_fcf_pri = fcf_pri->fcf_rec.priority; 16261 spin_unlock_irq(&phba->hbalock); 16262 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 16263 rc = lpfc_sli4_fcf_rr_index_set(phba, 16264 fcf_pri->fcf_rec.fcf_index); 16265 if (rc) 16266 return 0; 16267 } 16268 spin_lock_irq(&phba->hbalock); 16269 } 16270 } else 16271 ret = 1; 16272 spin_unlock_irq(&phba->hbalock); 16273 16274 return ret; 16275 } 16276 /** 16277 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 16278 * @phba: pointer to lpfc hba data structure. 16279 * 16280 * This routine is to get the next eligible FCF record index in a round 16281 * robin fashion. If the next eligible FCF record index equals to the 16282 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 16283 * shall be returned, otherwise, the next eligible FCF record's index 16284 * shall be returned. 16285 **/ 16286 uint16_t 16287 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 16288 { 16289 uint16_t next_fcf_index; 16290 16291 initial_priority: 16292 /* Search start from next bit of currently registered FCF index */ 16293 next_fcf_index = phba->fcf.current_rec.fcf_indx; 16294 16295 next_priority: 16296 /* Determine the next fcf index to check */ 16297 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 16298 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16299 LPFC_SLI4_FCF_TBL_INDX_MAX, 16300 next_fcf_index); 16301 16302 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 16303 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16304 /* 16305 * If we have wrapped then we need to clear the bits that 16306 * have been tested so that we can detect when we should 16307 * change the priority level. 16308 */ 16309 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 16310 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 16311 } 16312 16313 16314 /* Check roundrobin failover list empty condition */ 16315 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 16316 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 16317 /* 16318 * If next fcf index is not found check if there are lower 16319 * Priority level fcf's in the fcf_priority list. 16320 * Set up the rr_bmask with all of the avaiable fcf bits 16321 * at that level and continue the selection process. 16322 */ 16323 if (lpfc_check_next_fcf_pri_level(phba)) 16324 goto initial_priority; 16325 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16326 "2844 No roundrobin failover FCF available\n"); 16327 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 16328 return LPFC_FCOE_FCF_NEXT_NONE; 16329 else { 16330 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 16331 "3063 Only FCF available idx %d, flag %x\n", 16332 next_fcf_index, 16333 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 16334 return next_fcf_index; 16335 } 16336 } 16337 16338 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 16339 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 16340 LPFC_FCF_FLOGI_FAILED) 16341 goto next_priority; 16342 16343 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16344 "2845 Get next roundrobin failover FCF (x%x)\n", 16345 next_fcf_index); 16346 16347 return next_fcf_index; 16348 } 16349 16350 /** 16351 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 16352 * @phba: pointer to lpfc hba data structure. 16353 * 16354 * This routine sets the FCF record index in to the eligible bmask for 16355 * roundrobin failover search. It checks to make sure that the index 16356 * does not go beyond the range of the driver allocated bmask dimension 16357 * before setting the bit. 16358 * 16359 * Returns 0 if the index bit successfully set, otherwise, it returns 16360 * -EINVAL. 16361 **/ 16362 int 16363 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 16364 { 16365 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16366 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16367 "2610 FCF (x%x) reached driver's book " 16368 "keeping dimension:x%x\n", 16369 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16370 return -EINVAL; 16371 } 16372 /* Set the eligible FCF record index bmask */ 16373 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16374 16375 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16376 "2790 Set FCF (x%x) to roundrobin FCF failover " 16377 "bmask\n", fcf_index); 16378 16379 return 0; 16380 } 16381 16382 /** 16383 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 16384 * @phba: pointer to lpfc hba data structure. 16385 * 16386 * This routine clears the FCF record index from the eligible bmask for 16387 * roundrobin failover search. It checks to make sure that the index 16388 * does not go beyond the range of the driver allocated bmask dimension 16389 * before clearing the bit. 16390 **/ 16391 void 16392 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 16393 { 16394 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 16395 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 16396 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16397 "2762 FCF (x%x) reached driver's book " 16398 "keeping dimension:x%x\n", 16399 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 16400 return; 16401 } 16402 /* Clear the eligible FCF record index bmask */ 16403 spin_lock_irq(&phba->hbalock); 16404 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 16405 list) { 16406 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 16407 list_del_init(&fcf_pri->list); 16408 break; 16409 } 16410 } 16411 spin_unlock_irq(&phba->hbalock); 16412 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 16413 16414 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16415 "2791 Clear FCF (x%x) from roundrobin failover " 16416 "bmask\n", fcf_index); 16417 } 16418 16419 /** 16420 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 16421 * @phba: pointer to lpfc hba data structure. 16422 * 16423 * This routine is the completion routine for the rediscover FCF table mailbox 16424 * command. If the mailbox command returned failure, it will try to stop the 16425 * FCF rediscover wait timer. 16426 **/ 16427 static void 16428 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 16429 { 16430 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16431 uint32_t shdr_status, shdr_add_status; 16432 16433 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16434 16435 shdr_status = bf_get(lpfc_mbox_hdr_status, 16436 &redisc_fcf->header.cfg_shdr.response); 16437 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 16438 &redisc_fcf->header.cfg_shdr.response); 16439 if (shdr_status || shdr_add_status) { 16440 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 16441 "2746 Requesting for FCF rediscovery failed " 16442 "status x%x add_status x%x\n", 16443 shdr_status, shdr_add_status); 16444 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 16445 spin_lock_irq(&phba->hbalock); 16446 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 16447 spin_unlock_irq(&phba->hbalock); 16448 /* 16449 * CVL event triggered FCF rediscover request failed, 16450 * last resort to re-try current registered FCF entry. 16451 */ 16452 lpfc_retry_pport_discovery(phba); 16453 } else { 16454 spin_lock_irq(&phba->hbalock); 16455 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 16456 spin_unlock_irq(&phba->hbalock); 16457 /* 16458 * DEAD FCF event triggered FCF rediscover request 16459 * failed, last resort to fail over as a link down 16460 * to FCF registration. 16461 */ 16462 lpfc_sli4_fcf_dead_failthrough(phba); 16463 } 16464 } else { 16465 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 16466 "2775 Start FCF rediscover quiescent timer\n"); 16467 /* 16468 * Start FCF rediscovery wait timer for pending FCF 16469 * before rescan FCF record table. 16470 */ 16471 lpfc_fcf_redisc_wait_start_timer(phba); 16472 } 16473 16474 mempool_free(mbox, phba->mbox_mem_pool); 16475 } 16476 16477 /** 16478 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 16479 * @phba: pointer to lpfc hba data structure. 16480 * 16481 * This routine is invoked to request for rediscovery of the entire FCF table 16482 * by the port. 16483 **/ 16484 int 16485 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 16486 { 16487 LPFC_MBOXQ_t *mbox; 16488 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 16489 int rc, length; 16490 16491 /* Cancel retry delay timers to all vports before FCF rediscover */ 16492 lpfc_cancel_all_vport_retry_delay_timer(phba); 16493 16494 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16495 if (!mbox) { 16496 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16497 "2745 Failed to allocate mbox for " 16498 "requesting FCF rediscover.\n"); 16499 return -ENOMEM; 16500 } 16501 16502 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 16503 sizeof(struct lpfc_sli4_cfg_mhdr)); 16504 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16505 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 16506 length, LPFC_SLI4_MBX_EMBED); 16507 16508 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 16509 /* Set count to 0 for invalidating the entire FCF database */ 16510 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 16511 16512 /* Issue the mailbox command asynchronously */ 16513 mbox->vport = phba->pport; 16514 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 16515 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 16516 16517 if (rc == MBX_NOT_FINISHED) { 16518 mempool_free(mbox, phba->mbox_mem_pool); 16519 return -EIO; 16520 } 16521 return 0; 16522 } 16523 16524 /** 16525 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 16526 * @phba: pointer to lpfc hba data structure. 16527 * 16528 * This function is the failover routine as a last resort to the FCF DEAD 16529 * event when driver failed to perform fast FCF failover. 16530 **/ 16531 void 16532 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 16533 { 16534 uint32_t link_state; 16535 16536 /* 16537 * Last resort as FCF DEAD event failover will treat this as 16538 * a link down, but save the link state because we don't want 16539 * it to be changed to Link Down unless it is already down. 16540 */ 16541 link_state = phba->link_state; 16542 lpfc_linkdown(phba); 16543 phba->link_state = link_state; 16544 16545 /* Unregister FCF if no devices connected to it */ 16546 lpfc_unregister_unused_fcf(phba); 16547 } 16548 16549 /** 16550 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 16551 * @phba: pointer to lpfc hba data structure. 16552 * @rgn23_data: pointer to configure region 23 data. 16553 * 16554 * This function gets SLI3 port configure region 23 data through memory dump 16555 * mailbox command. When it successfully retrieves data, the size of the data 16556 * will be returned, otherwise, 0 will be returned. 16557 **/ 16558 static uint32_t 16559 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16560 { 16561 LPFC_MBOXQ_t *pmb = NULL; 16562 MAILBOX_t *mb; 16563 uint32_t offset = 0; 16564 int rc; 16565 16566 if (!rgn23_data) 16567 return 0; 16568 16569 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16570 if (!pmb) { 16571 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16572 "2600 failed to allocate mailbox memory\n"); 16573 return 0; 16574 } 16575 mb = &pmb->u.mb; 16576 16577 do { 16578 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 16579 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 16580 16581 if (rc != MBX_SUCCESS) { 16582 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16583 "2601 failed to read config " 16584 "region 23, rc 0x%x Status 0x%x\n", 16585 rc, mb->mbxStatus); 16586 mb->un.varDmp.word_cnt = 0; 16587 } 16588 /* 16589 * dump mem may return a zero when finished or we got a 16590 * mailbox error, either way we are done. 16591 */ 16592 if (mb->un.varDmp.word_cnt == 0) 16593 break; 16594 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 16595 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 16596 16597 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 16598 rgn23_data + offset, 16599 mb->un.varDmp.word_cnt); 16600 offset += mb->un.varDmp.word_cnt; 16601 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 16602 16603 mempool_free(pmb, phba->mbox_mem_pool); 16604 return offset; 16605 } 16606 16607 /** 16608 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 16609 * @phba: pointer to lpfc hba data structure. 16610 * @rgn23_data: pointer to configure region 23 data. 16611 * 16612 * This function gets SLI4 port configure region 23 data through memory dump 16613 * mailbox command. When it successfully retrieves data, the size of the data 16614 * will be returned, otherwise, 0 will be returned. 16615 **/ 16616 static uint32_t 16617 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 16618 { 16619 LPFC_MBOXQ_t *mboxq = NULL; 16620 struct lpfc_dmabuf *mp = NULL; 16621 struct lpfc_mqe *mqe; 16622 uint32_t data_length = 0; 16623 int rc; 16624 16625 if (!rgn23_data) 16626 return 0; 16627 16628 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16629 if (!mboxq) { 16630 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16631 "3105 failed to allocate mailbox memory\n"); 16632 return 0; 16633 } 16634 16635 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 16636 goto out; 16637 mqe = &mboxq->u.mqe; 16638 mp = (struct lpfc_dmabuf *) mboxq->context1; 16639 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 16640 if (rc) 16641 goto out; 16642 data_length = mqe->un.mb_words[5]; 16643 if (data_length == 0) 16644 goto out; 16645 if (data_length > DMP_RGN23_SIZE) { 16646 data_length = 0; 16647 goto out; 16648 } 16649 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 16650 out: 16651 mempool_free(mboxq, phba->mbox_mem_pool); 16652 if (mp) { 16653 lpfc_mbuf_free(phba, mp->virt, mp->phys); 16654 kfree(mp); 16655 } 16656 return data_length; 16657 } 16658 16659 /** 16660 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 16661 * @phba: pointer to lpfc hba data structure. 16662 * 16663 * This function read region 23 and parse TLV for port status to 16664 * decide if the user disaled the port. If the TLV indicates the 16665 * port is disabled, the hba_flag is set accordingly. 16666 **/ 16667 void 16668 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 16669 { 16670 uint8_t *rgn23_data = NULL; 16671 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 16672 uint32_t offset = 0; 16673 16674 /* Get adapter Region 23 data */ 16675 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 16676 if (!rgn23_data) 16677 goto out; 16678 16679 if (phba->sli_rev < LPFC_SLI_REV4) 16680 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 16681 else { 16682 if_type = bf_get(lpfc_sli_intf_if_type, 16683 &phba->sli4_hba.sli_intf); 16684 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 16685 goto out; 16686 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 16687 } 16688 16689 if (!data_size) 16690 goto out; 16691 16692 /* Check the region signature first */ 16693 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 16694 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16695 "2619 Config region 23 has bad signature\n"); 16696 goto out; 16697 } 16698 offset += 4; 16699 16700 /* Check the data structure version */ 16701 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 16702 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16703 "2620 Config region 23 has bad version\n"); 16704 goto out; 16705 } 16706 offset += 4; 16707 16708 /* Parse TLV entries in the region */ 16709 while (offset < data_size) { 16710 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 16711 break; 16712 /* 16713 * If the TLV is not driver specific TLV or driver id is 16714 * not linux driver id, skip the record. 16715 */ 16716 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 16717 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 16718 (rgn23_data[offset + 3] != 0)) { 16719 offset += rgn23_data[offset + 1] * 4 + 4; 16720 continue; 16721 } 16722 16723 /* Driver found a driver specific TLV in the config region */ 16724 sub_tlv_len = rgn23_data[offset + 1] * 4; 16725 offset += 4; 16726 tlv_offset = 0; 16727 16728 /* 16729 * Search for configured port state sub-TLV. 16730 */ 16731 while ((offset < data_size) && 16732 (tlv_offset < sub_tlv_len)) { 16733 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 16734 offset += 4; 16735 tlv_offset += 4; 16736 break; 16737 } 16738 if (rgn23_data[offset] != PORT_STE_TYPE) { 16739 offset += rgn23_data[offset + 1] * 4 + 4; 16740 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 16741 continue; 16742 } 16743 16744 /* This HBA contains PORT_STE configured */ 16745 if (!rgn23_data[offset + 2]) 16746 phba->hba_flag |= LINK_DISABLED; 16747 16748 goto out; 16749 } 16750 } 16751 16752 out: 16753 kfree(rgn23_data); 16754 return; 16755 } 16756 16757 /** 16758 * lpfc_wr_object - write an object to the firmware 16759 * @phba: HBA structure that indicates port to create a queue on. 16760 * @dmabuf_list: list of dmabufs to write to the port. 16761 * @size: the total byte value of the objects to write to the port. 16762 * @offset: the current offset to be used to start the transfer. 16763 * 16764 * This routine will create a wr_object mailbox command to send to the port. 16765 * the mailbox command will be constructed using the dma buffers described in 16766 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 16767 * BDEs that the imbedded mailbox can support. The @offset variable will be 16768 * used to indicate the starting offset of the transfer and will also return 16769 * the offset after the write object mailbox has completed. @size is used to 16770 * determine the end of the object and whether the eof bit should be set. 16771 * 16772 * Return 0 is successful and offset will contain the the new offset to use 16773 * for the next write. 16774 * Return negative value for error cases. 16775 **/ 16776 int 16777 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 16778 uint32_t size, uint32_t *offset) 16779 { 16780 struct lpfc_mbx_wr_object *wr_object; 16781 LPFC_MBOXQ_t *mbox; 16782 int rc = 0, i = 0; 16783 uint32_t shdr_status, shdr_add_status; 16784 uint32_t mbox_tmo; 16785 union lpfc_sli4_cfg_shdr *shdr; 16786 struct lpfc_dmabuf *dmabuf; 16787 uint32_t written = 0; 16788 16789 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16790 if (!mbox) 16791 return -ENOMEM; 16792 16793 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16794 LPFC_MBOX_OPCODE_WRITE_OBJECT, 16795 sizeof(struct lpfc_mbx_wr_object) - 16796 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16797 16798 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 16799 wr_object->u.request.write_offset = *offset; 16800 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 16801 wr_object->u.request.object_name[0] = 16802 cpu_to_le32(wr_object->u.request.object_name[0]); 16803 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 16804 list_for_each_entry(dmabuf, dmabuf_list, list) { 16805 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 16806 break; 16807 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 16808 wr_object->u.request.bde[i].addrHigh = 16809 putPaddrHigh(dmabuf->phys); 16810 if (written + SLI4_PAGE_SIZE >= size) { 16811 wr_object->u.request.bde[i].tus.f.bdeSize = 16812 (size - written); 16813 written += (size - written); 16814 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 16815 } else { 16816 wr_object->u.request.bde[i].tus.f.bdeSize = 16817 SLI4_PAGE_SIZE; 16818 written += SLI4_PAGE_SIZE; 16819 } 16820 i++; 16821 } 16822 wr_object->u.request.bde_count = i; 16823 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 16824 if (!phba->sli4_hba.intr_enable) 16825 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16826 else { 16827 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16828 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16829 } 16830 /* The IOCTL status is embedded in the mailbox subheader. */ 16831 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 16832 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16833 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16834 if (rc != MBX_TIMEOUT) 16835 mempool_free(mbox, phba->mbox_mem_pool); 16836 if (shdr_status || shdr_add_status || rc) { 16837 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16838 "3025 Write Object mailbox failed with " 16839 "status x%x add_status x%x, mbx status x%x\n", 16840 shdr_status, shdr_add_status, rc); 16841 rc = -ENXIO; 16842 } else 16843 *offset += wr_object->u.response.actual_write_length; 16844 return rc; 16845 } 16846 16847 /** 16848 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 16849 * @vport: pointer to vport data structure. 16850 * 16851 * This function iterate through the mailboxq and clean up all REG_LOGIN 16852 * and REG_VPI mailbox commands associated with the vport. This function 16853 * is called when driver want to restart discovery of the vport due to 16854 * a Clear Virtual Link event. 16855 **/ 16856 void 16857 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 16858 { 16859 struct lpfc_hba *phba = vport->phba; 16860 LPFC_MBOXQ_t *mb, *nextmb; 16861 struct lpfc_dmabuf *mp; 16862 struct lpfc_nodelist *ndlp; 16863 struct lpfc_nodelist *act_mbx_ndlp = NULL; 16864 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 16865 LIST_HEAD(mbox_cmd_list); 16866 uint8_t restart_loop; 16867 16868 /* Clean up internally queued mailbox commands with the vport */ 16869 spin_lock_irq(&phba->hbalock); 16870 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 16871 if (mb->vport != vport) 16872 continue; 16873 16874 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16875 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16876 continue; 16877 16878 list_del(&mb->list); 16879 list_add_tail(&mb->list, &mbox_cmd_list); 16880 } 16881 /* Clean up active mailbox command with the vport */ 16882 mb = phba->sli.mbox_active; 16883 if (mb && (mb->vport == vport)) { 16884 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 16885 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 16886 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16887 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16888 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 16889 /* Put reference count for delayed processing */ 16890 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 16891 /* Unregister the RPI when mailbox complete */ 16892 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16893 } 16894 } 16895 /* Cleanup any mailbox completions which are not yet processed */ 16896 do { 16897 restart_loop = 0; 16898 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 16899 /* 16900 * If this mailox is already processed or it is 16901 * for another vport ignore it. 16902 */ 16903 if ((mb->vport != vport) || 16904 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 16905 continue; 16906 16907 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 16908 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 16909 continue; 16910 16911 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16912 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16913 ndlp = (struct lpfc_nodelist *)mb->context2; 16914 /* Unregister the RPI when mailbox complete */ 16915 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 16916 restart_loop = 1; 16917 spin_unlock_irq(&phba->hbalock); 16918 spin_lock(shost->host_lock); 16919 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16920 spin_unlock(shost->host_lock); 16921 spin_lock_irq(&phba->hbalock); 16922 break; 16923 } 16924 } 16925 } while (restart_loop); 16926 16927 spin_unlock_irq(&phba->hbalock); 16928 16929 /* Release the cleaned-up mailbox commands */ 16930 while (!list_empty(&mbox_cmd_list)) { 16931 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 16932 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 16933 mp = (struct lpfc_dmabuf *) (mb->context1); 16934 if (mp) { 16935 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 16936 kfree(mp); 16937 } 16938 ndlp = (struct lpfc_nodelist *) mb->context2; 16939 mb->context2 = NULL; 16940 if (ndlp) { 16941 spin_lock(shost->host_lock); 16942 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16943 spin_unlock(shost->host_lock); 16944 lpfc_nlp_put(ndlp); 16945 } 16946 } 16947 mempool_free(mb, phba->mbox_mem_pool); 16948 } 16949 16950 /* Release the ndlp with the cleaned-up active mailbox command */ 16951 if (act_mbx_ndlp) { 16952 spin_lock(shost->host_lock); 16953 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 16954 spin_unlock(shost->host_lock); 16955 lpfc_nlp_put(act_mbx_ndlp); 16956 } 16957 } 16958 16959 /** 16960 * lpfc_drain_txq - Drain the txq 16961 * @phba: Pointer to HBA context object. 16962 * 16963 * This function attempt to submit IOCBs on the txq 16964 * to the adapter. For SLI4 adapters, the txq contains 16965 * ELS IOCBs that have been deferred because the there 16966 * are no SGLs. This congestion can occur with large 16967 * vport counts during node discovery. 16968 **/ 16969 16970 uint32_t 16971 lpfc_drain_txq(struct lpfc_hba *phba) 16972 { 16973 LIST_HEAD(completions); 16974 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; 16975 struct lpfc_iocbq *piocbq = NULL; 16976 unsigned long iflags = 0; 16977 char *fail_msg = NULL; 16978 struct lpfc_sglq *sglq; 16979 union lpfc_wqe wqe; 16980 uint32_t txq_cnt = 0; 16981 16982 spin_lock_irqsave(&pring->ring_lock, iflags); 16983 list_for_each_entry(piocbq, &pring->txq, list) { 16984 txq_cnt++; 16985 } 16986 16987 if (txq_cnt > pring->txq_max) 16988 pring->txq_max = txq_cnt; 16989 16990 spin_unlock_irqrestore(&pring->ring_lock, iflags); 16991 16992 while (!list_empty(&pring->txq)) { 16993 spin_lock_irqsave(&pring->ring_lock, iflags); 16994 16995 piocbq = lpfc_sli_ringtx_get(phba, pring); 16996 if (!piocbq) { 16997 spin_unlock_irqrestore(&pring->ring_lock, iflags); 16998 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16999 "2823 txq empty and txq_cnt is %d\n ", 17000 txq_cnt); 17001 break; 17002 } 17003 sglq = __lpfc_sli_get_sglq(phba, piocbq); 17004 if (!sglq) { 17005 __lpfc_sli_ringtx_put(phba, pring, piocbq); 17006 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17007 break; 17008 } 17009 txq_cnt--; 17010 17011 /* The xri and iocb resources secured, 17012 * attempt to issue request 17013 */ 17014 piocbq->sli4_lxritag = sglq->sli4_lxritag; 17015 piocbq->sli4_xritag = sglq->sli4_xritag; 17016 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 17017 fail_msg = "to convert bpl to sgl"; 17018 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 17019 fail_msg = "to convert iocb to wqe"; 17020 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe)) 17021 fail_msg = " - Wq is full"; 17022 else 17023 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 17024 17025 if (fail_msg) { 17026 /* Failed means we can't issue and need to cancel */ 17027 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17028 "2822 IOCB failed %s iotag 0x%x " 17029 "xri 0x%x\n", 17030 fail_msg, 17031 piocbq->iotag, piocbq->sli4_xritag); 17032 list_add_tail(&piocbq->list, &completions); 17033 } 17034 spin_unlock_irqrestore(&pring->ring_lock, iflags); 17035 } 17036 17037 /* Cancel all the IOCBs that cannot be issued */ 17038 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 17039 IOERR_SLI_ABORTED); 17040 17041 return txq_cnt; 17042 } 17043