1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1773 * @phba: Pointer to HBA context object. 1774 * @pring: Pointer to driver SLI ring object. 1775 * 1776 * This function is called with hbalock held and the caller must post the 1777 * iocb without releasing the lock. If the caller releases the lock, 1778 * iocb slot returned by the function is not guaranteed to be available. 1779 * The function returns pointer to the next available iocb slot if there 1780 * is available slot in the ring, else it returns NULL. 1781 * If the get index of the ring is ahead of the put index, the function 1782 * will post an error attention event to the worker thread to take the 1783 * HBA to offline state. 1784 **/ 1785 static IOCB_t * 1786 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1787 { 1788 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1789 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1790 1791 lockdep_assert_held(&phba->hbalock); 1792 1793 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1794 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1795 pring->sli.sli3.next_cmdidx = 0; 1796 1797 if (unlikely(pring->sli.sli3.local_getidx == 1798 pring->sli.sli3.next_cmdidx)) { 1799 1800 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1801 1802 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1804 "0315 Ring %d issue: portCmdGet %d " 1805 "is bigger than cmd ring %d\n", 1806 pring->ringno, 1807 pring->sli.sli3.local_getidx, 1808 max_cmd_idx); 1809 1810 phba->link_state = LPFC_HBA_ERROR; 1811 /* 1812 * All error attention handlers are posted to 1813 * worker thread 1814 */ 1815 phba->work_ha |= HA_ERATT; 1816 phba->work_hs = HS_FFER3; 1817 1818 lpfc_worker_wake_up(phba); 1819 1820 return NULL; 1821 } 1822 1823 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1824 return NULL; 1825 } 1826 1827 return lpfc_cmd_iocb(phba, pring); 1828 } 1829 1830 /** 1831 * lpfc_sli_next_iotag - Get an iotag for the iocb 1832 * @phba: Pointer to HBA context object. 1833 * @iocbq: Pointer to driver iocb object. 1834 * 1835 * This function gets an iotag for the iocb. If there is no unused iotag and 1836 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1837 * array and assigns a new iotag. 1838 * The function returns the allocated iotag if successful, else returns zero. 1839 * Zero is not a valid iotag. 1840 * The caller is not required to hold any lock. 1841 **/ 1842 uint16_t 1843 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1844 { 1845 struct lpfc_iocbq **new_arr; 1846 struct lpfc_iocbq **old_arr; 1847 size_t new_len; 1848 struct lpfc_sli *psli = &phba->sli; 1849 uint16_t iotag; 1850 1851 spin_lock_irq(&phba->hbalock); 1852 iotag = psli->last_iotag; 1853 if(++iotag < psli->iocbq_lookup_len) { 1854 psli->last_iotag = iotag; 1855 psli->iocbq_lookup[iotag] = iocbq; 1856 spin_unlock_irq(&phba->hbalock); 1857 iocbq->iotag = iotag; 1858 return iotag; 1859 } else if (psli->iocbq_lookup_len < (0xffff 1860 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1861 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1862 spin_unlock_irq(&phba->hbalock); 1863 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1864 GFP_KERNEL); 1865 if (new_arr) { 1866 spin_lock_irq(&phba->hbalock); 1867 old_arr = psli->iocbq_lookup; 1868 if (new_len <= psli->iocbq_lookup_len) { 1869 /* highly unprobable case */ 1870 kfree(new_arr); 1871 iotag = psli->last_iotag; 1872 if(++iotag < psli->iocbq_lookup_len) { 1873 psli->last_iotag = iotag; 1874 psli->iocbq_lookup[iotag] = iocbq; 1875 spin_unlock_irq(&phba->hbalock); 1876 iocbq->iotag = iotag; 1877 return iotag; 1878 } 1879 spin_unlock_irq(&phba->hbalock); 1880 return 0; 1881 } 1882 if (psli->iocbq_lookup) 1883 memcpy(new_arr, old_arr, 1884 ((psli->last_iotag + 1) * 1885 sizeof (struct lpfc_iocbq *))); 1886 psli->iocbq_lookup = new_arr; 1887 psli->iocbq_lookup_len = new_len; 1888 psli->last_iotag = iotag; 1889 psli->iocbq_lookup[iotag] = iocbq; 1890 spin_unlock_irq(&phba->hbalock); 1891 iocbq->iotag = iotag; 1892 kfree(old_arr); 1893 return iotag; 1894 } 1895 } else 1896 spin_unlock_irq(&phba->hbalock); 1897 1898 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1899 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1900 psli->last_iotag); 1901 1902 return 0; 1903 } 1904 1905 /** 1906 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1907 * @phba: Pointer to HBA context object. 1908 * @pring: Pointer to driver SLI ring object. 1909 * @iocb: Pointer to iocb slot in the ring. 1910 * @nextiocb: Pointer to driver iocb object which need to be 1911 * posted to firmware. 1912 * 1913 * This function is called to post a new iocb to the firmware. This 1914 * function copies the new iocb to ring iocb slot and updates the 1915 * ring pointers. It adds the new iocb to txcmplq if there is 1916 * a completion call back for this iocb else the function will free the 1917 * iocb object. The hbalock is asserted held in the code path calling 1918 * this routine. 1919 **/ 1920 static void 1921 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1922 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1923 { 1924 /* 1925 * Set up an iotag 1926 */ 1927 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1928 1929 1930 if (pring->ringno == LPFC_ELS_RING) { 1931 lpfc_debugfs_slow_ring_trc(phba, 1932 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1933 *(((uint32_t *) &nextiocb->iocb) + 4), 1934 *(((uint32_t *) &nextiocb->iocb) + 6), 1935 *(((uint32_t *) &nextiocb->iocb) + 7)); 1936 } 1937 1938 /* 1939 * Issue iocb command to adapter 1940 */ 1941 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1942 wmb(); 1943 pring->stats.iocb_cmd++; 1944 1945 /* 1946 * If there is no completion routine to call, we can release the 1947 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1948 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1949 */ 1950 if (nextiocb->iocb_cmpl) 1951 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1952 else 1953 __lpfc_sli_release_iocbq(phba, nextiocb); 1954 1955 /* 1956 * Let the HBA know what IOCB slot will be the next one the 1957 * driver will put a command into. 1958 */ 1959 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1960 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1961 } 1962 1963 /** 1964 * lpfc_sli_update_full_ring - Update the chip attention register 1965 * @phba: Pointer to HBA context object. 1966 * @pring: Pointer to driver SLI ring object. 1967 * 1968 * The caller is not required to hold any lock for calling this function. 1969 * This function updates the chip attention bits for the ring to inform firmware 1970 * that there are pending work to be done for this ring and requests an 1971 * interrupt when there is space available in the ring. This function is 1972 * called when the driver is unable to post more iocbs to the ring due 1973 * to unavailability of space in the ring. 1974 **/ 1975 static void 1976 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1977 { 1978 int ringno = pring->ringno; 1979 1980 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1981 1982 wmb(); 1983 1984 /* 1985 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1986 * The HBA will tell us when an IOCB entry is available. 1987 */ 1988 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1989 readl(phba->CAregaddr); /* flush */ 1990 1991 pring->stats.iocb_cmd_full++; 1992 } 1993 1994 /** 1995 * lpfc_sli_update_ring - Update chip attention register 1996 * @phba: Pointer to HBA context object. 1997 * @pring: Pointer to driver SLI ring object. 1998 * 1999 * This function updates the chip attention register bit for the 2000 * given ring to inform HBA that there is more work to be done 2001 * in this ring. The caller is not required to hold any lock. 2002 **/ 2003 static void 2004 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2005 { 2006 int ringno = pring->ringno; 2007 2008 /* 2009 * Tell the HBA that there is work to do in this ring. 2010 */ 2011 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2012 wmb(); 2013 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2014 readl(phba->CAregaddr); /* flush */ 2015 } 2016 } 2017 2018 /** 2019 * lpfc_sli_resume_iocb - Process iocbs in the txq 2020 * @phba: Pointer to HBA context object. 2021 * @pring: Pointer to driver SLI ring object. 2022 * 2023 * This function is called with hbalock held to post pending iocbs 2024 * in the txq to the firmware. This function is called when driver 2025 * detects space available in the ring. 2026 **/ 2027 static void 2028 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2029 { 2030 IOCB_t *iocb; 2031 struct lpfc_iocbq *nextiocb; 2032 2033 lockdep_assert_held(&phba->hbalock); 2034 2035 /* 2036 * Check to see if: 2037 * (a) there is anything on the txq to send 2038 * (b) link is up 2039 * (c) link attention events can be processed (fcp ring only) 2040 * (d) IOCB processing is not blocked by the outstanding mbox command. 2041 */ 2042 2043 if (lpfc_is_link_up(phba) && 2044 (!list_empty(&pring->txq)) && 2045 (pring->ringno != LPFC_FCP_RING || 2046 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2047 2048 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2049 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2050 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2051 2052 if (iocb) 2053 lpfc_sli_update_ring(phba, pring); 2054 else 2055 lpfc_sli_update_full_ring(phba, pring); 2056 } 2057 2058 return; 2059 } 2060 2061 /** 2062 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2063 * @phba: Pointer to HBA context object. 2064 * @hbqno: HBQ number. 2065 * 2066 * This function is called with hbalock held to get the next 2067 * available slot for the given HBQ. If there is free slot 2068 * available for the HBQ it will return pointer to the next available 2069 * HBQ entry else it will return NULL. 2070 **/ 2071 static struct lpfc_hbq_entry * 2072 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2073 { 2074 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2075 2076 lockdep_assert_held(&phba->hbalock); 2077 2078 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2079 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2080 hbqp->next_hbqPutIdx = 0; 2081 2082 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2083 uint32_t raw_index = phba->hbq_get[hbqno]; 2084 uint32_t getidx = le32_to_cpu(raw_index); 2085 2086 hbqp->local_hbqGetIdx = getidx; 2087 2088 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2090 "1802 HBQ %d: local_hbqGetIdx " 2091 "%u is > than hbqp->entry_count %u\n", 2092 hbqno, hbqp->local_hbqGetIdx, 2093 hbqp->entry_count); 2094 2095 phba->link_state = LPFC_HBA_ERROR; 2096 return NULL; 2097 } 2098 2099 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2100 return NULL; 2101 } 2102 2103 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2104 hbqp->hbqPutIdx; 2105 } 2106 2107 /** 2108 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2109 * @phba: Pointer to HBA context object. 2110 * 2111 * This function is called with no lock held to free all the 2112 * hbq buffers while uninitializing the SLI interface. It also 2113 * frees the HBQ buffers returned by the firmware but not yet 2114 * processed by the upper layers. 2115 **/ 2116 void 2117 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2118 { 2119 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2120 struct hbq_dmabuf *hbq_buf; 2121 unsigned long flags; 2122 int i, hbq_count; 2123 2124 hbq_count = lpfc_sli_hbq_count(); 2125 /* Return all memory used by all HBQs */ 2126 spin_lock_irqsave(&phba->hbalock, flags); 2127 for (i = 0; i < hbq_count; ++i) { 2128 list_for_each_entry_safe(dmabuf, next_dmabuf, 2129 &phba->hbqs[i].hbq_buffer_list, list) { 2130 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2131 list_del(&hbq_buf->dbuf.list); 2132 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2133 } 2134 phba->hbqs[i].buffer_count = 0; 2135 } 2136 2137 /* Mark the HBQs not in use */ 2138 phba->hbq_in_use = 0; 2139 spin_unlock_irqrestore(&phba->hbalock, flags); 2140 } 2141 2142 /** 2143 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2144 * @phba: Pointer to HBA context object. 2145 * @hbqno: HBQ number. 2146 * @hbq_buf: Pointer to HBQ buffer. 2147 * 2148 * This function is called with the hbalock held to post a 2149 * hbq buffer to the firmware. If the function finds an empty 2150 * slot in the HBQ, it will post the buffer. The function will return 2151 * pointer to the hbq entry if it successfully post the buffer 2152 * else it will return NULL. 2153 **/ 2154 static int 2155 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2156 struct hbq_dmabuf *hbq_buf) 2157 { 2158 lockdep_assert_held(&phba->hbalock); 2159 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2160 } 2161 2162 /** 2163 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2164 * @phba: Pointer to HBA context object. 2165 * @hbqno: HBQ number. 2166 * @hbq_buf: Pointer to HBQ buffer. 2167 * 2168 * This function is called with the hbalock held to post a hbq buffer to the 2169 * firmware. If the function finds an empty slot in the HBQ, it will post the 2170 * buffer and place it on the hbq_buffer_list. The function will return zero if 2171 * it successfully post the buffer else it will return an error. 2172 **/ 2173 static int 2174 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2175 struct hbq_dmabuf *hbq_buf) 2176 { 2177 struct lpfc_hbq_entry *hbqe; 2178 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2179 2180 lockdep_assert_held(&phba->hbalock); 2181 /* Get next HBQ entry slot to use */ 2182 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2183 if (hbqe) { 2184 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2185 2186 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2187 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2188 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2189 hbqe->bde.tus.f.bdeFlags = 0; 2190 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2191 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2192 /* Sync SLIM */ 2193 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2194 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2195 /* flush */ 2196 readl(phba->hbq_put + hbqno); 2197 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2198 return 0; 2199 } else 2200 return -ENOMEM; 2201 } 2202 2203 /** 2204 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2205 * @phba: Pointer to HBA context object. 2206 * @hbqno: HBQ number. 2207 * @hbq_buf: Pointer to HBQ buffer. 2208 * 2209 * This function is called with the hbalock held to post an RQE to the SLI4 2210 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2211 * the hbq_buffer_list and return zero, otherwise it will return an error. 2212 **/ 2213 static int 2214 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2215 struct hbq_dmabuf *hbq_buf) 2216 { 2217 int rc; 2218 struct lpfc_rqe hrqe; 2219 struct lpfc_rqe drqe; 2220 struct lpfc_queue *hrq; 2221 struct lpfc_queue *drq; 2222 2223 if (hbqno != LPFC_ELS_HBQ) 2224 return 1; 2225 hrq = phba->sli4_hba.hdr_rq; 2226 drq = phba->sli4_hba.dat_rq; 2227 2228 lockdep_assert_held(&phba->hbalock); 2229 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2230 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2231 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2232 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2233 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2234 if (rc < 0) 2235 return rc; 2236 hbq_buf->tag = (rc | (hbqno << 16)); 2237 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2238 return 0; 2239 } 2240 2241 /* HBQ for ELS and CT traffic. */ 2242 static struct lpfc_hbq_init lpfc_els_hbq = { 2243 .rn = 1, 2244 .entry_count = 256, 2245 .mask_count = 0, 2246 .profile = 0, 2247 .ring_mask = (1 << LPFC_ELS_RING), 2248 .buffer_count = 0, 2249 .init_count = 40, 2250 .add_count = 40, 2251 }; 2252 2253 /* Array of HBQs */ 2254 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2255 &lpfc_els_hbq, 2256 }; 2257 2258 /** 2259 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2260 * @phba: Pointer to HBA context object. 2261 * @hbqno: HBQ number. 2262 * @count: Number of HBQ buffers to be posted. 2263 * 2264 * This function is called with no lock held to post more hbq buffers to the 2265 * given HBQ. The function returns the number of HBQ buffers successfully 2266 * posted. 2267 **/ 2268 static int 2269 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2270 { 2271 uint32_t i, posted = 0; 2272 unsigned long flags; 2273 struct hbq_dmabuf *hbq_buffer; 2274 LIST_HEAD(hbq_buf_list); 2275 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2276 return 0; 2277 2278 if ((phba->hbqs[hbqno].buffer_count + count) > 2279 lpfc_hbq_defs[hbqno]->entry_count) 2280 count = lpfc_hbq_defs[hbqno]->entry_count - 2281 phba->hbqs[hbqno].buffer_count; 2282 if (!count) 2283 return 0; 2284 /* Allocate HBQ entries */ 2285 for (i = 0; i < count; i++) { 2286 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2287 if (!hbq_buffer) 2288 break; 2289 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2290 } 2291 /* Check whether HBQ is still in use */ 2292 spin_lock_irqsave(&phba->hbalock, flags); 2293 if (!phba->hbq_in_use) 2294 goto err; 2295 while (!list_empty(&hbq_buf_list)) { 2296 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2297 dbuf.list); 2298 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2299 (hbqno << 16)); 2300 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2301 phba->hbqs[hbqno].buffer_count++; 2302 posted++; 2303 } else 2304 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2305 } 2306 spin_unlock_irqrestore(&phba->hbalock, flags); 2307 return posted; 2308 err: 2309 spin_unlock_irqrestore(&phba->hbalock, flags); 2310 while (!list_empty(&hbq_buf_list)) { 2311 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2312 dbuf.list); 2313 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2314 } 2315 return 0; 2316 } 2317 2318 /** 2319 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2320 * @phba: Pointer to HBA context object. 2321 * @qno: HBQ number. 2322 * 2323 * This function posts more buffers to the HBQ. This function 2324 * is called with no lock held. The function returns the number of HBQ entries 2325 * successfully allocated. 2326 **/ 2327 int 2328 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2329 { 2330 if (phba->sli_rev == LPFC_SLI_REV4) 2331 return 0; 2332 else 2333 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2334 lpfc_hbq_defs[qno]->add_count); 2335 } 2336 2337 /** 2338 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2339 * @phba: Pointer to HBA context object. 2340 * @qno: HBQ queue number. 2341 * 2342 * This function is called from SLI initialization code path with 2343 * no lock held to post initial HBQ buffers to firmware. The 2344 * function returns the number of HBQ entries successfully allocated. 2345 **/ 2346 static int 2347 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2348 { 2349 if (phba->sli_rev == LPFC_SLI_REV4) 2350 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2351 lpfc_hbq_defs[qno]->entry_count); 2352 else 2353 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2354 lpfc_hbq_defs[qno]->init_count); 2355 } 2356 2357 /* 2358 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2359 * 2360 * This function removes the first hbq buffer on an hbq list and returns a 2361 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2362 **/ 2363 static struct hbq_dmabuf * 2364 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2365 { 2366 struct lpfc_dmabuf *d_buf; 2367 2368 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2369 if (!d_buf) 2370 return NULL; 2371 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2372 } 2373 2374 /** 2375 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2376 * @phba: Pointer to HBA context object. 2377 * @hrq: HBQ number. 2378 * 2379 * This function removes the first RQ buffer on an RQ buffer list and returns a 2380 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2381 **/ 2382 static struct rqb_dmabuf * 2383 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2384 { 2385 struct lpfc_dmabuf *h_buf; 2386 struct lpfc_rqb *rqbp; 2387 2388 rqbp = hrq->rqbp; 2389 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2390 struct lpfc_dmabuf, list); 2391 if (!h_buf) 2392 return NULL; 2393 rqbp->buffer_count--; 2394 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2395 } 2396 2397 /** 2398 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2399 * @phba: Pointer to HBA context object. 2400 * @tag: Tag of the hbq buffer. 2401 * 2402 * This function searches for the hbq buffer associated with the given tag in 2403 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2404 * otherwise it returns NULL. 2405 **/ 2406 static struct hbq_dmabuf * 2407 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2408 { 2409 struct lpfc_dmabuf *d_buf; 2410 struct hbq_dmabuf *hbq_buf; 2411 uint32_t hbqno; 2412 2413 hbqno = tag >> 16; 2414 if (hbqno >= LPFC_MAX_HBQS) 2415 return NULL; 2416 2417 spin_lock_irq(&phba->hbalock); 2418 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2419 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2420 if (hbq_buf->tag == tag) { 2421 spin_unlock_irq(&phba->hbalock); 2422 return hbq_buf; 2423 } 2424 } 2425 spin_unlock_irq(&phba->hbalock); 2426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2427 "1803 Bad hbq tag. Data: x%x x%x\n", 2428 tag, phba->hbqs[tag >> 16].buffer_count); 2429 return NULL; 2430 } 2431 2432 /** 2433 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbq_buffer: Pointer to HBQ buffer. 2436 * 2437 * This function is called with hbalock. This function gives back 2438 * the hbq buffer to firmware. If the HBQ does not have space to 2439 * post the buffer, it will free the buffer. 2440 **/ 2441 void 2442 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2443 { 2444 uint32_t hbqno; 2445 2446 if (hbq_buffer) { 2447 hbqno = hbq_buffer->tag >> 16; 2448 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2449 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2450 } 2451 } 2452 2453 /** 2454 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2455 * @mbxCommand: mailbox command code. 2456 * 2457 * This function is called by the mailbox event handler function to verify 2458 * that the completed mailbox command is a legitimate mailbox command. If the 2459 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2460 * and the mailbox event handler will take the HBA offline. 2461 **/ 2462 static int 2463 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2464 { 2465 uint8_t ret; 2466 2467 switch (mbxCommand) { 2468 case MBX_LOAD_SM: 2469 case MBX_READ_NV: 2470 case MBX_WRITE_NV: 2471 case MBX_WRITE_VPARMS: 2472 case MBX_RUN_BIU_DIAG: 2473 case MBX_INIT_LINK: 2474 case MBX_DOWN_LINK: 2475 case MBX_CONFIG_LINK: 2476 case MBX_CONFIG_RING: 2477 case MBX_RESET_RING: 2478 case MBX_READ_CONFIG: 2479 case MBX_READ_RCONFIG: 2480 case MBX_READ_SPARM: 2481 case MBX_READ_STATUS: 2482 case MBX_READ_RPI: 2483 case MBX_READ_XRI: 2484 case MBX_READ_REV: 2485 case MBX_READ_LNK_STAT: 2486 case MBX_REG_LOGIN: 2487 case MBX_UNREG_LOGIN: 2488 case MBX_CLEAR_LA: 2489 case MBX_DUMP_MEMORY: 2490 case MBX_DUMP_CONTEXT: 2491 case MBX_RUN_DIAGS: 2492 case MBX_RESTART: 2493 case MBX_UPDATE_CFG: 2494 case MBX_DOWN_LOAD: 2495 case MBX_DEL_LD_ENTRY: 2496 case MBX_RUN_PROGRAM: 2497 case MBX_SET_MASK: 2498 case MBX_SET_VARIABLE: 2499 case MBX_UNREG_D_ID: 2500 case MBX_KILL_BOARD: 2501 case MBX_CONFIG_FARP: 2502 case MBX_BEACON: 2503 case MBX_LOAD_AREA: 2504 case MBX_RUN_BIU_DIAG64: 2505 case MBX_CONFIG_PORT: 2506 case MBX_READ_SPARM64: 2507 case MBX_READ_RPI64: 2508 case MBX_REG_LOGIN64: 2509 case MBX_READ_TOPOLOGY: 2510 case MBX_WRITE_WWN: 2511 case MBX_SET_DEBUG: 2512 case MBX_LOAD_EXP_ROM: 2513 case MBX_ASYNCEVT_ENABLE: 2514 case MBX_REG_VPI: 2515 case MBX_UNREG_VPI: 2516 case MBX_HEARTBEAT: 2517 case MBX_PORT_CAPABILITIES: 2518 case MBX_PORT_IOV_CONTROL: 2519 case MBX_SLI4_CONFIG: 2520 case MBX_SLI4_REQ_FTRS: 2521 case MBX_REG_FCFI: 2522 case MBX_UNREG_FCFI: 2523 case MBX_REG_VFI: 2524 case MBX_UNREG_VFI: 2525 case MBX_INIT_VPI: 2526 case MBX_INIT_VFI: 2527 case MBX_RESUME_RPI: 2528 case MBX_READ_EVENT_LOG_STATUS: 2529 case MBX_READ_EVENT_LOG: 2530 case MBX_SECURITY_MGMT: 2531 case MBX_AUTH_PORT: 2532 case MBX_ACCESS_VDATA: 2533 ret = mbxCommand; 2534 break; 2535 default: 2536 ret = MBX_SHUTDOWN; 2537 break; 2538 } 2539 return ret; 2540 } 2541 2542 /** 2543 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2544 * @phba: Pointer to HBA context object. 2545 * @pmboxq: Pointer to mailbox command. 2546 * 2547 * This is completion handler function for mailbox commands issued from 2548 * lpfc_sli_issue_mbox_wait function. This function is called by the 2549 * mailbox event handler function with no lock held. This function 2550 * will wake up thread waiting on the wait queue pointed by context1 2551 * of the mailbox. 2552 **/ 2553 void 2554 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2555 { 2556 unsigned long drvr_flag; 2557 struct completion *pmbox_done; 2558 2559 /* 2560 * If pmbox_done is empty, the driver thread gave up waiting and 2561 * continued running. 2562 */ 2563 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2564 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2565 pmbox_done = (struct completion *)pmboxq->context3; 2566 if (pmbox_done) 2567 complete(pmbox_done); 2568 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2569 return; 2570 } 2571 2572 static void 2573 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2574 { 2575 unsigned long iflags; 2576 2577 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2578 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2579 spin_lock_irqsave(&ndlp->lock, iflags); 2580 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2581 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2582 spin_unlock_irqrestore(&ndlp->lock, iflags); 2583 } 2584 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2585 } 2586 2587 /** 2588 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2589 * @phba: Pointer to HBA context object. 2590 * @pmb: Pointer to mailbox object. 2591 * 2592 * This function is the default mailbox completion handler. It 2593 * frees the memory resources associated with the completed mailbox 2594 * command. If the completed command is a REG_LOGIN mailbox command, 2595 * this function will issue a UREG_LOGIN to re-claim the RPI. 2596 **/ 2597 void 2598 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2599 { 2600 struct lpfc_vport *vport = pmb->vport; 2601 struct lpfc_dmabuf *mp; 2602 struct lpfc_nodelist *ndlp; 2603 struct Scsi_Host *shost; 2604 uint16_t rpi, vpi; 2605 int rc; 2606 2607 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2608 2609 if (mp) { 2610 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2611 kfree(mp); 2612 } 2613 2614 /* 2615 * If a REG_LOGIN succeeded after node is destroyed or node 2616 * is in re-discovery driver need to cleanup the RPI. 2617 */ 2618 if (!(phba->pport->load_flag & FC_UNLOADING) && 2619 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2620 !pmb->u.mb.mbxStatus) { 2621 rpi = pmb->u.mb.un.varWords[0]; 2622 vpi = pmb->u.mb.un.varRegLogin.vpi; 2623 if (phba->sli_rev == LPFC_SLI_REV4) 2624 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2625 lpfc_unreg_login(phba, vpi, rpi, pmb); 2626 pmb->vport = vport; 2627 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2628 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2629 if (rc != MBX_NOT_FINISHED) 2630 return; 2631 } 2632 2633 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2634 !(phba->pport->load_flag & FC_UNLOADING) && 2635 !pmb->u.mb.mbxStatus) { 2636 shost = lpfc_shost_from_vport(vport); 2637 spin_lock_irq(shost->host_lock); 2638 vport->vpi_state |= LPFC_VPI_REGISTERED; 2639 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2640 spin_unlock_irq(shost->host_lock); 2641 } 2642 2643 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2644 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2645 lpfc_nlp_put(ndlp); 2646 pmb->ctx_buf = NULL; 2647 pmb->ctx_ndlp = NULL; 2648 } 2649 2650 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2651 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2652 2653 /* Check to see if there are any deferred events to process */ 2654 if (ndlp) { 2655 lpfc_printf_vlog( 2656 vport, 2657 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2658 "1438 UNREG cmpl deferred mbox x%x " 2659 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2660 ndlp->nlp_rpi, ndlp->nlp_DID, 2661 ndlp->nlp_flag, ndlp->nlp_defer_did, 2662 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2663 2664 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2665 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2666 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2667 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2668 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2669 } else { 2670 __lpfc_sli_rpi_release(vport, ndlp); 2671 } 2672 2673 /* The unreg_login mailbox is complete and had a 2674 * reference that has to be released. The PLOGI 2675 * got its own ref. 2676 */ 2677 lpfc_nlp_put(ndlp); 2678 pmb->ctx_ndlp = NULL; 2679 } 2680 } 2681 2682 /* Check security permission status on INIT_LINK mailbox command */ 2683 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2684 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2686 "2860 SLI authentication is required " 2687 "for INIT_LINK but has not done yet\n"); 2688 2689 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2690 lpfc_sli4_mbox_cmd_free(phba, pmb); 2691 else 2692 mempool_free(pmb, phba->mbox_mem_pool); 2693 } 2694 /** 2695 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2696 * @phba: Pointer to HBA context object. 2697 * @pmb: Pointer to mailbox object. 2698 * 2699 * This function is the unreg rpi mailbox completion handler. It 2700 * frees the memory resources associated with the completed mailbox 2701 * command. An additional reference is put on the ndlp to prevent 2702 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2703 * the unreg mailbox command completes, this routine puts the 2704 * reference back. 2705 * 2706 **/ 2707 void 2708 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2709 { 2710 struct lpfc_vport *vport = pmb->vport; 2711 struct lpfc_nodelist *ndlp; 2712 2713 ndlp = pmb->ctx_ndlp; 2714 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2715 if (phba->sli_rev == LPFC_SLI_REV4 && 2716 (bf_get(lpfc_sli_intf_if_type, 2717 &phba->sli4_hba.sli_intf) >= 2718 LPFC_SLI_INTF_IF_TYPE_2)) { 2719 if (ndlp) { 2720 lpfc_printf_vlog( 2721 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2722 "0010 UNREG_LOGIN vpi:%x " 2723 "rpi:%x DID:%x defer x%x flg x%x " 2724 "x%px\n", 2725 vport->vpi, ndlp->nlp_rpi, 2726 ndlp->nlp_DID, ndlp->nlp_defer_did, 2727 ndlp->nlp_flag, 2728 ndlp); 2729 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2730 2731 /* Check to see if there are any deferred 2732 * events to process 2733 */ 2734 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2735 (ndlp->nlp_defer_did != 2736 NLP_EVT_NOTHING_PENDING)) { 2737 lpfc_printf_vlog( 2738 vport, KERN_INFO, LOG_DISCOVERY, 2739 "4111 UNREG cmpl deferred " 2740 "clr x%x on " 2741 "NPort x%x Data: x%x x%px\n", 2742 ndlp->nlp_rpi, ndlp->nlp_DID, 2743 ndlp->nlp_defer_did, ndlp); 2744 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2745 ndlp->nlp_defer_did = 2746 NLP_EVT_NOTHING_PENDING; 2747 lpfc_issue_els_plogi( 2748 vport, ndlp->nlp_DID, 0); 2749 } else { 2750 __lpfc_sli_rpi_release(vport, ndlp); 2751 } 2752 2753 lpfc_nlp_put(ndlp); 2754 } 2755 } 2756 } 2757 2758 mempool_free(pmb, phba->mbox_mem_pool); 2759 } 2760 2761 /** 2762 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2763 * @phba: Pointer to HBA context object. 2764 * 2765 * This function is called with no lock held. This function processes all 2766 * the completed mailbox commands and gives it to upper layers. The interrupt 2767 * service routine processes mailbox completion interrupt and adds completed 2768 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2769 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2770 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2771 * function returns the mailbox commands to the upper layer by calling the 2772 * completion handler function of each mailbox. 2773 **/ 2774 int 2775 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2776 { 2777 MAILBOX_t *pmbox; 2778 LPFC_MBOXQ_t *pmb; 2779 int rc; 2780 LIST_HEAD(cmplq); 2781 2782 phba->sli.slistat.mbox_event++; 2783 2784 /* Get all completed mailboxe buffers into the cmplq */ 2785 spin_lock_irq(&phba->hbalock); 2786 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2787 spin_unlock_irq(&phba->hbalock); 2788 2789 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2790 do { 2791 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2792 if (pmb == NULL) 2793 break; 2794 2795 pmbox = &pmb->u.mb; 2796 2797 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2798 if (pmb->vport) { 2799 lpfc_debugfs_disc_trc(pmb->vport, 2800 LPFC_DISC_TRC_MBOX_VPORT, 2801 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2802 (uint32_t)pmbox->mbxCommand, 2803 pmbox->un.varWords[0], 2804 pmbox->un.varWords[1]); 2805 } 2806 else { 2807 lpfc_debugfs_disc_trc(phba->pport, 2808 LPFC_DISC_TRC_MBOX, 2809 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2810 (uint32_t)pmbox->mbxCommand, 2811 pmbox->un.varWords[0], 2812 pmbox->un.varWords[1]); 2813 } 2814 } 2815 2816 /* 2817 * It is a fatal error if unknown mbox command completion. 2818 */ 2819 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2820 MBX_SHUTDOWN) { 2821 /* Unknown mailbox command compl */ 2822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2823 "(%d):0323 Unknown Mailbox command " 2824 "x%x (x%x/x%x) Cmpl\n", 2825 pmb->vport ? pmb->vport->vpi : 2826 LPFC_VPORT_UNKNOWN, 2827 pmbox->mbxCommand, 2828 lpfc_sli_config_mbox_subsys_get(phba, 2829 pmb), 2830 lpfc_sli_config_mbox_opcode_get(phba, 2831 pmb)); 2832 phba->link_state = LPFC_HBA_ERROR; 2833 phba->work_hs = HS_FFER3; 2834 lpfc_handle_eratt(phba); 2835 continue; 2836 } 2837 2838 if (pmbox->mbxStatus) { 2839 phba->sli.slistat.mbox_stat_err++; 2840 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2841 /* Mbox cmd cmpl error - RETRYing */ 2842 lpfc_printf_log(phba, KERN_INFO, 2843 LOG_MBOX | LOG_SLI, 2844 "(%d):0305 Mbox cmd cmpl " 2845 "error - RETRYing Data: x%x " 2846 "(x%x/x%x) x%x x%x x%x\n", 2847 pmb->vport ? pmb->vport->vpi : 2848 LPFC_VPORT_UNKNOWN, 2849 pmbox->mbxCommand, 2850 lpfc_sli_config_mbox_subsys_get(phba, 2851 pmb), 2852 lpfc_sli_config_mbox_opcode_get(phba, 2853 pmb), 2854 pmbox->mbxStatus, 2855 pmbox->un.varWords[0], 2856 pmb->vport ? pmb->vport->port_state : 2857 LPFC_VPORT_UNKNOWN); 2858 pmbox->mbxStatus = 0; 2859 pmbox->mbxOwner = OWN_HOST; 2860 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2861 if (rc != MBX_NOT_FINISHED) 2862 continue; 2863 } 2864 } 2865 2866 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2867 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2868 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2869 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2870 "x%x x%x x%x\n", 2871 pmb->vport ? pmb->vport->vpi : 0, 2872 pmbox->mbxCommand, 2873 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2874 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2875 pmb->mbox_cmpl, 2876 *((uint32_t *) pmbox), 2877 pmbox->un.varWords[0], 2878 pmbox->un.varWords[1], 2879 pmbox->un.varWords[2], 2880 pmbox->un.varWords[3], 2881 pmbox->un.varWords[4], 2882 pmbox->un.varWords[5], 2883 pmbox->un.varWords[6], 2884 pmbox->un.varWords[7], 2885 pmbox->un.varWords[8], 2886 pmbox->un.varWords[9], 2887 pmbox->un.varWords[10]); 2888 2889 if (pmb->mbox_cmpl) 2890 pmb->mbox_cmpl(phba,pmb); 2891 } while (1); 2892 return 0; 2893 } 2894 2895 /** 2896 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2897 * @phba: Pointer to HBA context object. 2898 * @pring: Pointer to driver SLI ring object. 2899 * @tag: buffer tag. 2900 * 2901 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2902 * is set in the tag the buffer is posted for a particular exchange, 2903 * the function will return the buffer without replacing the buffer. 2904 * If the buffer is for unsolicited ELS or CT traffic, this function 2905 * returns the buffer and also posts another buffer to the firmware. 2906 **/ 2907 static struct lpfc_dmabuf * 2908 lpfc_sli_get_buff(struct lpfc_hba *phba, 2909 struct lpfc_sli_ring *pring, 2910 uint32_t tag) 2911 { 2912 struct hbq_dmabuf *hbq_entry; 2913 2914 if (tag & QUE_BUFTAG_BIT) 2915 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2916 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2917 if (!hbq_entry) 2918 return NULL; 2919 return &hbq_entry->dbuf; 2920 } 2921 2922 /** 2923 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2924 * containing a NVME LS request. 2925 * @phba: pointer to lpfc hba data structure. 2926 * @piocb: pointer to the iocbq struct representing the sequence starting 2927 * frame. 2928 * 2929 * This routine initially validates the NVME LS, validates there is a login 2930 * with the port that sent the LS, and then calls the appropriate nvme host 2931 * or target LS request handler. 2932 **/ 2933 static void 2934 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2935 { 2936 struct lpfc_nodelist *ndlp; 2937 struct lpfc_dmabuf *d_buf; 2938 struct hbq_dmabuf *nvmebuf; 2939 struct fc_frame_header *fc_hdr; 2940 struct lpfc_async_xchg_ctx *axchg = NULL; 2941 char *failwhy = NULL; 2942 uint32_t oxid, sid, did, fctl, size; 2943 int ret = 1; 2944 2945 d_buf = piocb->context2; 2946 2947 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2948 fc_hdr = nvmebuf->hbuf.virt; 2949 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2950 sid = sli4_sid_from_fc_hdr(fc_hdr); 2951 did = sli4_did_from_fc_hdr(fc_hdr); 2952 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2953 fc_hdr->fh_f_ctl[1] << 8 | 2954 fc_hdr->fh_f_ctl[2]); 2955 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2956 2957 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2958 oxid, size, sid); 2959 2960 if (phba->pport->load_flag & FC_UNLOADING) { 2961 failwhy = "Driver Unloading"; 2962 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2963 failwhy = "NVME FC4 Disabled"; 2964 } else if (!phba->nvmet_support && !phba->pport->localport) { 2965 failwhy = "No Localport"; 2966 } else if (phba->nvmet_support && !phba->targetport) { 2967 failwhy = "No Targetport"; 2968 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2969 failwhy = "Bad NVME LS R_CTL"; 2970 } else if (unlikely((fctl & 0x00FF0000) != 2971 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2972 failwhy = "Bad NVME LS F_CTL"; 2973 } else { 2974 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2975 if (!axchg) 2976 failwhy = "No CTX memory"; 2977 } 2978 2979 if (unlikely(failwhy)) { 2980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2981 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2982 sid, oxid, failwhy); 2983 goto out_fail; 2984 } 2985 2986 /* validate the source of the LS is logged in */ 2987 ndlp = lpfc_findnode_did(phba->pport, sid); 2988 if (!ndlp || 2989 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2990 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2991 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2992 "6216 NVME Unsol rcv: No ndlp: " 2993 "NPort_ID x%x oxid x%x\n", 2994 sid, oxid); 2995 goto out_fail; 2996 } 2997 2998 axchg->phba = phba; 2999 axchg->ndlp = ndlp; 3000 axchg->size = size; 3001 axchg->oxid = oxid; 3002 axchg->sid = sid; 3003 axchg->wqeq = NULL; 3004 axchg->state = LPFC_NVME_STE_LS_RCV; 3005 axchg->entry_cnt = 1; 3006 axchg->rqb_buffer = (void *)nvmebuf; 3007 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3008 axchg->payload = nvmebuf->dbuf.virt; 3009 INIT_LIST_HEAD(&axchg->list); 3010 3011 if (phba->nvmet_support) { 3012 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3013 spin_lock_irq(&ndlp->lock); 3014 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3015 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3016 spin_unlock_irq(&ndlp->lock); 3017 3018 /* This reference is a single occurrence to hold the 3019 * node valid until the nvmet transport calls 3020 * host_release. 3021 */ 3022 if (!lpfc_nlp_get(ndlp)) 3023 goto out_fail; 3024 3025 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3026 "6206 NVMET unsol ls_req ndlp x%px " 3027 "DID x%x xflags x%x refcnt %d\n", 3028 ndlp, ndlp->nlp_DID, 3029 ndlp->fc4_xpt_flags, 3030 kref_read(&ndlp->kref)); 3031 } else { 3032 spin_unlock_irq(&ndlp->lock); 3033 } 3034 } else { 3035 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3036 } 3037 3038 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3039 if (!ret) 3040 return; 3041 3042 out_fail: 3043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3044 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3045 "NVMe%s handler failed %d\n", 3046 did, sid, oxid, 3047 (phba->nvmet_support) ? "T" : "I", ret); 3048 3049 /* recycle receive buffer */ 3050 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3051 3052 /* If start of new exchange, abort it */ 3053 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3054 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3055 3056 if (ret) 3057 kfree(axchg); 3058 } 3059 3060 /** 3061 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3062 * @phba: Pointer to HBA context object. 3063 * @pring: Pointer to driver SLI ring object. 3064 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3065 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3066 * @fch_type: the type for the first frame of the sequence. 3067 * 3068 * This function is called with no lock held. This function uses the r_ctl and 3069 * type of the received sequence to find the correct callback function to call 3070 * to process the sequence. 3071 **/ 3072 static int 3073 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3074 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3075 uint32_t fch_type) 3076 { 3077 int i; 3078 3079 switch (fch_type) { 3080 case FC_TYPE_NVME: 3081 lpfc_nvme_unsol_ls_handler(phba, saveq); 3082 return 1; 3083 default: 3084 break; 3085 } 3086 3087 /* unSolicited Responses */ 3088 if (pring->prt[0].profile) { 3089 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3090 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3091 saveq); 3092 return 1; 3093 } 3094 /* We must search, based on rctl / type 3095 for the right routine */ 3096 for (i = 0; i < pring->num_mask; i++) { 3097 if ((pring->prt[i].rctl == fch_r_ctl) && 3098 (pring->prt[i].type == fch_type)) { 3099 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3100 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3101 (phba, pring, saveq); 3102 return 1; 3103 } 3104 } 3105 return 0; 3106 } 3107 3108 /** 3109 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3110 * @phba: Pointer to HBA context object. 3111 * @pring: Pointer to driver SLI ring object. 3112 * @saveq: Pointer to the unsolicited iocb. 3113 * 3114 * This function is called with no lock held by the ring event handler 3115 * when there is an unsolicited iocb posted to the response ring by the 3116 * firmware. This function gets the buffer associated with the iocbs 3117 * and calls the event handler for the ring. This function handles both 3118 * qring buffers and hbq buffers. 3119 * When the function returns 1 the caller can free the iocb object otherwise 3120 * upper layer functions will free the iocb objects. 3121 **/ 3122 static int 3123 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3124 struct lpfc_iocbq *saveq) 3125 { 3126 IOCB_t * irsp; 3127 WORD5 * w5p; 3128 uint32_t Rctl, Type; 3129 struct lpfc_iocbq *iocbq; 3130 struct lpfc_dmabuf *dmzbuf; 3131 3132 irsp = &(saveq->iocb); 3133 3134 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3135 if (pring->lpfc_sli_rcv_async_status) 3136 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3137 else 3138 lpfc_printf_log(phba, 3139 KERN_WARNING, 3140 LOG_SLI, 3141 "0316 Ring %d handler: unexpected " 3142 "ASYNC_STATUS iocb received evt_code " 3143 "0x%x\n", 3144 pring->ringno, 3145 irsp->un.asyncstat.evt_code); 3146 return 1; 3147 } 3148 3149 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3150 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3151 if (irsp->ulpBdeCount > 0) { 3152 dmzbuf = lpfc_sli_get_buff(phba, pring, 3153 irsp->un.ulpWord[3]); 3154 lpfc_in_buf_free(phba, dmzbuf); 3155 } 3156 3157 if (irsp->ulpBdeCount > 1) { 3158 dmzbuf = lpfc_sli_get_buff(phba, pring, 3159 irsp->unsli3.sli3Words[3]); 3160 lpfc_in_buf_free(phba, dmzbuf); 3161 } 3162 3163 if (irsp->ulpBdeCount > 2) { 3164 dmzbuf = lpfc_sli_get_buff(phba, pring, 3165 irsp->unsli3.sli3Words[7]); 3166 lpfc_in_buf_free(phba, dmzbuf); 3167 } 3168 3169 return 1; 3170 } 3171 3172 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3173 if (irsp->ulpBdeCount != 0) { 3174 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3175 irsp->un.ulpWord[3]); 3176 if (!saveq->context2) 3177 lpfc_printf_log(phba, 3178 KERN_ERR, 3179 LOG_SLI, 3180 "0341 Ring %d Cannot find buffer for " 3181 "an unsolicited iocb. tag 0x%x\n", 3182 pring->ringno, 3183 irsp->un.ulpWord[3]); 3184 } 3185 if (irsp->ulpBdeCount == 2) { 3186 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3187 irsp->unsli3.sli3Words[7]); 3188 if (!saveq->context3) 3189 lpfc_printf_log(phba, 3190 KERN_ERR, 3191 LOG_SLI, 3192 "0342 Ring %d Cannot find buffer for an" 3193 " unsolicited iocb. tag 0x%x\n", 3194 pring->ringno, 3195 irsp->unsli3.sli3Words[7]); 3196 } 3197 list_for_each_entry(iocbq, &saveq->list, list) { 3198 irsp = &(iocbq->iocb); 3199 if (irsp->ulpBdeCount != 0) { 3200 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3201 irsp->un.ulpWord[3]); 3202 if (!iocbq->context2) 3203 lpfc_printf_log(phba, 3204 KERN_ERR, 3205 LOG_SLI, 3206 "0343 Ring %d Cannot find " 3207 "buffer for an unsolicited iocb" 3208 ". tag 0x%x\n", pring->ringno, 3209 irsp->un.ulpWord[3]); 3210 } 3211 if (irsp->ulpBdeCount == 2) { 3212 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3213 irsp->unsli3.sli3Words[7]); 3214 if (!iocbq->context3) 3215 lpfc_printf_log(phba, 3216 KERN_ERR, 3217 LOG_SLI, 3218 "0344 Ring %d Cannot find " 3219 "buffer for an unsolicited " 3220 "iocb. tag 0x%x\n", 3221 pring->ringno, 3222 irsp->unsli3.sli3Words[7]); 3223 } 3224 } 3225 } 3226 if (irsp->ulpBdeCount != 0 && 3227 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3228 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3229 int found = 0; 3230 3231 /* search continue save q for same XRI */ 3232 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3233 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3234 saveq->iocb.unsli3.rcvsli3.ox_id) { 3235 list_add_tail(&saveq->list, &iocbq->list); 3236 found = 1; 3237 break; 3238 } 3239 } 3240 if (!found) 3241 list_add_tail(&saveq->clist, 3242 &pring->iocb_continue_saveq); 3243 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3244 list_del_init(&iocbq->clist); 3245 saveq = iocbq; 3246 irsp = &(saveq->iocb); 3247 } else 3248 return 0; 3249 } 3250 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3251 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3252 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3253 Rctl = FC_RCTL_ELS_REQ; 3254 Type = FC_TYPE_ELS; 3255 } else { 3256 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3257 Rctl = w5p->hcsw.Rctl; 3258 Type = w5p->hcsw.Type; 3259 3260 /* Firmware Workaround */ 3261 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3262 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3263 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3264 Rctl = FC_RCTL_ELS_REQ; 3265 Type = FC_TYPE_ELS; 3266 w5p->hcsw.Rctl = Rctl; 3267 w5p->hcsw.Type = Type; 3268 } 3269 } 3270 3271 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3272 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3273 "0313 Ring %d handler: unexpected Rctl x%x " 3274 "Type x%x received\n", 3275 pring->ringno, Rctl, Type); 3276 3277 return 1; 3278 } 3279 3280 /** 3281 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3282 * @phba: Pointer to HBA context object. 3283 * @pring: Pointer to driver SLI ring object. 3284 * @prspiocb: Pointer to response iocb object. 3285 * 3286 * This function looks up the iocb_lookup table to get the command iocb 3287 * corresponding to the given response iocb using the iotag of the 3288 * response iocb. The driver calls this function with the hbalock held 3289 * for SLI3 ports or the ring lock held for SLI4 ports. 3290 * This function returns the command iocb object if it finds the command 3291 * iocb else returns NULL. 3292 **/ 3293 static struct lpfc_iocbq * 3294 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3295 struct lpfc_sli_ring *pring, 3296 struct lpfc_iocbq *prspiocb) 3297 { 3298 struct lpfc_iocbq *cmd_iocb = NULL; 3299 uint16_t iotag; 3300 spinlock_t *temp_lock = NULL; 3301 unsigned long iflag = 0; 3302 3303 if (phba->sli_rev == LPFC_SLI_REV4) 3304 temp_lock = &pring->ring_lock; 3305 else 3306 temp_lock = &phba->hbalock; 3307 3308 spin_lock_irqsave(temp_lock, iflag); 3309 iotag = prspiocb->iocb.ulpIoTag; 3310 3311 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3312 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3313 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3314 /* remove from txcmpl queue list */ 3315 list_del_init(&cmd_iocb->list); 3316 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3317 pring->txcmplq_cnt--; 3318 spin_unlock_irqrestore(temp_lock, iflag); 3319 return cmd_iocb; 3320 } 3321 } 3322 3323 spin_unlock_irqrestore(temp_lock, iflag); 3324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3325 "0317 iotag x%x is out of " 3326 "range: max iotag x%x wd0 x%x\n", 3327 iotag, phba->sli.last_iotag, 3328 *(((uint32_t *) &prspiocb->iocb) + 7)); 3329 return NULL; 3330 } 3331 3332 /** 3333 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3334 * @phba: Pointer to HBA context object. 3335 * @pring: Pointer to driver SLI ring object. 3336 * @iotag: IOCB tag. 3337 * 3338 * This function looks up the iocb_lookup table to get the command iocb 3339 * corresponding to the given iotag. The driver calls this function with 3340 * the ring lock held because this function is an SLI4 port only helper. 3341 * This function returns the command iocb object if it finds the command 3342 * iocb else returns NULL. 3343 **/ 3344 static struct lpfc_iocbq * 3345 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3346 struct lpfc_sli_ring *pring, uint16_t iotag) 3347 { 3348 struct lpfc_iocbq *cmd_iocb = NULL; 3349 spinlock_t *temp_lock = NULL; 3350 unsigned long iflag = 0; 3351 3352 if (phba->sli_rev == LPFC_SLI_REV4) 3353 temp_lock = &pring->ring_lock; 3354 else 3355 temp_lock = &phba->hbalock; 3356 3357 spin_lock_irqsave(temp_lock, iflag); 3358 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3359 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3360 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3361 /* remove from txcmpl queue list */ 3362 list_del_init(&cmd_iocb->list); 3363 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3364 pring->txcmplq_cnt--; 3365 spin_unlock_irqrestore(temp_lock, iflag); 3366 return cmd_iocb; 3367 } 3368 } 3369 3370 spin_unlock_irqrestore(temp_lock, iflag); 3371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3372 "0372 iotag x%x lookup error: max iotag (x%x) " 3373 "iocb_flag x%x\n", 3374 iotag, phba->sli.last_iotag, 3375 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3376 return NULL; 3377 } 3378 3379 /** 3380 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3381 * @phba: Pointer to HBA context object. 3382 * @pring: Pointer to driver SLI ring object. 3383 * @saveq: Pointer to the response iocb to be processed. 3384 * 3385 * This function is called by the ring event handler for non-fcp 3386 * rings when there is a new response iocb in the response ring. 3387 * The caller is not required to hold any locks. This function 3388 * gets the command iocb associated with the response iocb and 3389 * calls the completion handler for the command iocb. If there 3390 * is no completion handler, the function will free the resources 3391 * associated with command iocb. If the response iocb is for 3392 * an already aborted command iocb, the status of the completion 3393 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3394 * This function always returns 1. 3395 **/ 3396 static int 3397 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3398 struct lpfc_iocbq *saveq) 3399 { 3400 struct lpfc_iocbq *cmdiocbp; 3401 int rc = 1; 3402 unsigned long iflag; 3403 3404 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3405 if (cmdiocbp) { 3406 if (cmdiocbp->iocb_cmpl) { 3407 /* 3408 * If an ELS command failed send an event to mgmt 3409 * application. 3410 */ 3411 if (saveq->iocb.ulpStatus && 3412 (pring->ringno == LPFC_ELS_RING) && 3413 (cmdiocbp->iocb.ulpCommand == 3414 CMD_ELS_REQUEST64_CR)) 3415 lpfc_send_els_failure_event(phba, 3416 cmdiocbp, saveq); 3417 3418 /* 3419 * Post all ELS completions to the worker thread. 3420 * All other are passed to the completion callback. 3421 */ 3422 if (pring->ringno == LPFC_ELS_RING) { 3423 if ((phba->sli_rev < LPFC_SLI_REV4) && 3424 (cmdiocbp->iocb_flag & 3425 LPFC_DRIVER_ABORTED)) { 3426 spin_lock_irqsave(&phba->hbalock, 3427 iflag); 3428 cmdiocbp->iocb_flag &= 3429 ~LPFC_DRIVER_ABORTED; 3430 spin_unlock_irqrestore(&phba->hbalock, 3431 iflag); 3432 saveq->iocb.ulpStatus = 3433 IOSTAT_LOCAL_REJECT; 3434 saveq->iocb.un.ulpWord[4] = 3435 IOERR_SLI_ABORTED; 3436 3437 /* Firmware could still be in progress 3438 * of DMAing payload, so don't free data 3439 * buffer till after a hbeat. 3440 */ 3441 spin_lock_irqsave(&phba->hbalock, 3442 iflag); 3443 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3444 spin_unlock_irqrestore(&phba->hbalock, 3445 iflag); 3446 } 3447 if (phba->sli_rev == LPFC_SLI_REV4) { 3448 if (saveq->iocb_flag & 3449 LPFC_EXCHANGE_BUSY) { 3450 /* Set cmdiocb flag for the 3451 * exchange busy so sgl (xri) 3452 * will not be released until 3453 * the abort xri is received 3454 * from hba. 3455 */ 3456 spin_lock_irqsave( 3457 &phba->hbalock, iflag); 3458 cmdiocbp->iocb_flag |= 3459 LPFC_EXCHANGE_BUSY; 3460 spin_unlock_irqrestore( 3461 &phba->hbalock, iflag); 3462 } 3463 if (cmdiocbp->iocb_flag & 3464 LPFC_DRIVER_ABORTED) { 3465 /* 3466 * Clear LPFC_DRIVER_ABORTED 3467 * bit in case it was driver 3468 * initiated abort. 3469 */ 3470 spin_lock_irqsave( 3471 &phba->hbalock, iflag); 3472 cmdiocbp->iocb_flag &= 3473 ~LPFC_DRIVER_ABORTED; 3474 spin_unlock_irqrestore( 3475 &phba->hbalock, iflag); 3476 cmdiocbp->iocb.ulpStatus = 3477 IOSTAT_LOCAL_REJECT; 3478 cmdiocbp->iocb.un.ulpWord[4] = 3479 IOERR_ABORT_REQUESTED; 3480 /* 3481 * For SLI4, irsiocb contains 3482 * NO_XRI in sli_xritag, it 3483 * shall not affect releasing 3484 * sgl (xri) process. 3485 */ 3486 saveq->iocb.ulpStatus = 3487 IOSTAT_LOCAL_REJECT; 3488 saveq->iocb.un.ulpWord[4] = 3489 IOERR_SLI_ABORTED; 3490 spin_lock_irqsave( 3491 &phba->hbalock, iflag); 3492 saveq->iocb_flag |= 3493 LPFC_DELAY_MEM_FREE; 3494 spin_unlock_irqrestore( 3495 &phba->hbalock, iflag); 3496 } 3497 } 3498 } 3499 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3500 } else 3501 lpfc_sli_release_iocbq(phba, cmdiocbp); 3502 } else { 3503 /* 3504 * Unknown initiating command based on the response iotag. 3505 * This could be the case on the ELS ring because of 3506 * lpfc_els_abort(). 3507 */ 3508 if (pring->ringno != LPFC_ELS_RING) { 3509 /* 3510 * Ring <ringno> handler: unexpected completion IoTag 3511 * <IoTag> 3512 */ 3513 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3514 "0322 Ring %d handler: " 3515 "unexpected completion IoTag x%x " 3516 "Data: x%x x%x x%x x%x\n", 3517 pring->ringno, 3518 saveq->iocb.ulpIoTag, 3519 saveq->iocb.ulpStatus, 3520 saveq->iocb.un.ulpWord[4], 3521 saveq->iocb.ulpCommand, 3522 saveq->iocb.ulpContext); 3523 } 3524 } 3525 3526 return rc; 3527 } 3528 3529 /** 3530 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3531 * @phba: Pointer to HBA context object. 3532 * @pring: Pointer to driver SLI ring object. 3533 * 3534 * This function is called from the iocb ring event handlers when 3535 * put pointer is ahead of the get pointer for a ring. This function signal 3536 * an error attention condition to the worker thread and the worker 3537 * thread will transition the HBA to offline state. 3538 **/ 3539 static void 3540 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3541 { 3542 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3543 /* 3544 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3545 * rsp ring <portRspMax> 3546 */ 3547 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3548 "0312 Ring %d handler: portRspPut %d " 3549 "is bigger than rsp ring %d\n", 3550 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3551 pring->sli.sli3.numRiocb); 3552 3553 phba->link_state = LPFC_HBA_ERROR; 3554 3555 /* 3556 * All error attention handlers are posted to 3557 * worker thread 3558 */ 3559 phba->work_ha |= HA_ERATT; 3560 phba->work_hs = HS_FFER3; 3561 3562 lpfc_worker_wake_up(phba); 3563 3564 return; 3565 } 3566 3567 /** 3568 * lpfc_poll_eratt - Error attention polling timer timeout handler 3569 * @t: Context to fetch pointer to address of HBA context object from. 3570 * 3571 * This function is invoked by the Error Attention polling timer when the 3572 * timer times out. It will check the SLI Error Attention register for 3573 * possible attention events. If so, it will post an Error Attention event 3574 * and wake up worker thread to process it. Otherwise, it will set up the 3575 * Error Attention polling timer for the next poll. 3576 **/ 3577 void lpfc_poll_eratt(struct timer_list *t) 3578 { 3579 struct lpfc_hba *phba; 3580 uint32_t eratt = 0; 3581 uint64_t sli_intr, cnt; 3582 3583 phba = from_timer(phba, t, eratt_poll); 3584 3585 /* Here we will also keep track of interrupts per sec of the hba */ 3586 sli_intr = phba->sli.slistat.sli_intr; 3587 3588 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3589 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3590 sli_intr); 3591 else 3592 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3593 3594 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3595 do_div(cnt, phba->eratt_poll_interval); 3596 phba->sli.slistat.sli_ips = cnt; 3597 3598 phba->sli.slistat.sli_prev_intr = sli_intr; 3599 3600 /* Check chip HA register for error event */ 3601 eratt = lpfc_sli_check_eratt(phba); 3602 3603 if (eratt) 3604 /* Tell the worker thread there is work to do */ 3605 lpfc_worker_wake_up(phba); 3606 else 3607 /* Restart the timer for next eratt poll */ 3608 mod_timer(&phba->eratt_poll, 3609 jiffies + 3610 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3611 return; 3612 } 3613 3614 3615 /** 3616 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3617 * @phba: Pointer to HBA context object. 3618 * @pring: Pointer to driver SLI ring object. 3619 * @mask: Host attention register mask for this ring. 3620 * 3621 * This function is called from the interrupt context when there is a ring 3622 * event for the fcp ring. The caller does not hold any lock. 3623 * The function processes each response iocb in the response ring until it 3624 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3625 * LE bit set. The function will call the completion handler of the command iocb 3626 * if the response iocb indicates a completion for a command iocb or it is 3627 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3628 * function if this is an unsolicited iocb. 3629 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3630 * to check it explicitly. 3631 */ 3632 int 3633 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3634 struct lpfc_sli_ring *pring, uint32_t mask) 3635 { 3636 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3637 IOCB_t *irsp = NULL; 3638 IOCB_t *entry = NULL; 3639 struct lpfc_iocbq *cmdiocbq = NULL; 3640 struct lpfc_iocbq rspiocbq; 3641 uint32_t status; 3642 uint32_t portRspPut, portRspMax; 3643 int rc = 1; 3644 lpfc_iocb_type type; 3645 unsigned long iflag; 3646 uint32_t rsp_cmpl = 0; 3647 3648 spin_lock_irqsave(&phba->hbalock, iflag); 3649 pring->stats.iocb_event++; 3650 3651 /* 3652 * The next available response entry should never exceed the maximum 3653 * entries. If it does, treat it as an adapter hardware error. 3654 */ 3655 portRspMax = pring->sli.sli3.numRiocb; 3656 portRspPut = le32_to_cpu(pgp->rspPutInx); 3657 if (unlikely(portRspPut >= portRspMax)) { 3658 lpfc_sli_rsp_pointers_error(phba, pring); 3659 spin_unlock_irqrestore(&phba->hbalock, iflag); 3660 return 1; 3661 } 3662 if (phba->fcp_ring_in_use) { 3663 spin_unlock_irqrestore(&phba->hbalock, iflag); 3664 return 1; 3665 } else 3666 phba->fcp_ring_in_use = 1; 3667 3668 rmb(); 3669 while (pring->sli.sli3.rspidx != portRspPut) { 3670 /* 3671 * Fetch an entry off the ring and copy it into a local data 3672 * structure. The copy involves a byte-swap since the 3673 * network byte order and pci byte orders are different. 3674 */ 3675 entry = lpfc_resp_iocb(phba, pring); 3676 phba->last_completion_time = jiffies; 3677 3678 if (++pring->sli.sli3.rspidx >= portRspMax) 3679 pring->sli.sli3.rspidx = 0; 3680 3681 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3682 (uint32_t *) &rspiocbq.iocb, 3683 phba->iocb_rsp_size); 3684 INIT_LIST_HEAD(&(rspiocbq.list)); 3685 irsp = &rspiocbq.iocb; 3686 3687 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3688 pring->stats.iocb_rsp++; 3689 rsp_cmpl++; 3690 3691 if (unlikely(irsp->ulpStatus)) { 3692 /* 3693 * If resource errors reported from HBA, reduce 3694 * queuedepths of the SCSI device. 3695 */ 3696 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3697 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3698 IOERR_NO_RESOURCES)) { 3699 spin_unlock_irqrestore(&phba->hbalock, iflag); 3700 phba->lpfc_rampdown_queue_depth(phba); 3701 spin_lock_irqsave(&phba->hbalock, iflag); 3702 } 3703 3704 /* Rsp ring <ringno> error: IOCB */ 3705 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3706 "0336 Rsp Ring %d error: IOCB Data: " 3707 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3708 pring->ringno, 3709 irsp->un.ulpWord[0], 3710 irsp->un.ulpWord[1], 3711 irsp->un.ulpWord[2], 3712 irsp->un.ulpWord[3], 3713 irsp->un.ulpWord[4], 3714 irsp->un.ulpWord[5], 3715 *(uint32_t *)&irsp->un1, 3716 *((uint32_t *)&irsp->un1 + 1)); 3717 } 3718 3719 switch (type) { 3720 case LPFC_ABORT_IOCB: 3721 case LPFC_SOL_IOCB: 3722 /* 3723 * Idle exchange closed via ABTS from port. No iocb 3724 * resources need to be recovered. 3725 */ 3726 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3727 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3728 "0333 IOCB cmd 0x%x" 3729 " processed. Skipping" 3730 " completion\n", 3731 irsp->ulpCommand); 3732 break; 3733 } 3734 3735 spin_unlock_irqrestore(&phba->hbalock, iflag); 3736 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3737 &rspiocbq); 3738 spin_lock_irqsave(&phba->hbalock, iflag); 3739 if (unlikely(!cmdiocbq)) 3740 break; 3741 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3742 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3743 if (cmdiocbq->iocb_cmpl) { 3744 spin_unlock_irqrestore(&phba->hbalock, iflag); 3745 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3746 &rspiocbq); 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 } 3749 break; 3750 case LPFC_UNSOL_IOCB: 3751 spin_unlock_irqrestore(&phba->hbalock, iflag); 3752 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3753 spin_lock_irqsave(&phba->hbalock, iflag); 3754 break; 3755 default: 3756 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3757 char adaptermsg[LPFC_MAX_ADPTMSG]; 3758 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3759 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3760 MAX_MSG_DATA); 3761 dev_warn(&((phba->pcidev)->dev), 3762 "lpfc%d: %s\n", 3763 phba->brd_no, adaptermsg); 3764 } else { 3765 /* Unknown IOCB command */ 3766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3767 "0334 Unknown IOCB command " 3768 "Data: x%x, x%x x%x x%x x%x\n", 3769 type, irsp->ulpCommand, 3770 irsp->ulpStatus, 3771 irsp->ulpIoTag, 3772 irsp->ulpContext); 3773 } 3774 break; 3775 } 3776 3777 /* 3778 * The response IOCB has been processed. Update the ring 3779 * pointer in SLIM. If the port response put pointer has not 3780 * been updated, sync the pgp->rspPutInx and fetch the new port 3781 * response put pointer. 3782 */ 3783 writel(pring->sli.sli3.rspidx, 3784 &phba->host_gp[pring->ringno].rspGetInx); 3785 3786 if (pring->sli.sli3.rspidx == portRspPut) 3787 portRspPut = le32_to_cpu(pgp->rspPutInx); 3788 } 3789 3790 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3791 pring->stats.iocb_rsp_full++; 3792 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3793 writel(status, phba->CAregaddr); 3794 readl(phba->CAregaddr); 3795 } 3796 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3797 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3798 pring->stats.iocb_cmd_empty++; 3799 3800 /* Force update of the local copy of cmdGetInx */ 3801 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3802 lpfc_sli_resume_iocb(phba, pring); 3803 3804 if ((pring->lpfc_sli_cmd_available)) 3805 (pring->lpfc_sli_cmd_available) (phba, pring); 3806 3807 } 3808 3809 phba->fcp_ring_in_use = 0; 3810 spin_unlock_irqrestore(&phba->hbalock, iflag); 3811 return rc; 3812 } 3813 3814 /** 3815 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3816 * @phba: Pointer to HBA context object. 3817 * @pring: Pointer to driver SLI ring object. 3818 * @rspiocbp: Pointer to driver response IOCB object. 3819 * 3820 * This function is called from the worker thread when there is a slow-path 3821 * response IOCB to process. This function chains all the response iocbs until 3822 * seeing the iocb with the LE bit set. The function will call 3823 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3824 * completion of a command iocb. The function will call the 3825 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3826 * The function frees the resources or calls the completion handler if this 3827 * iocb is an abort completion. The function returns NULL when the response 3828 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3829 * this function shall chain the iocb on to the iocb_continueq and return the 3830 * response iocb passed in. 3831 **/ 3832 static struct lpfc_iocbq * 3833 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3834 struct lpfc_iocbq *rspiocbp) 3835 { 3836 struct lpfc_iocbq *saveq; 3837 struct lpfc_iocbq *cmdiocbp; 3838 struct lpfc_iocbq *next_iocb; 3839 IOCB_t *irsp = NULL; 3840 uint32_t free_saveq; 3841 uint8_t iocb_cmd_type; 3842 lpfc_iocb_type type; 3843 unsigned long iflag; 3844 int rc; 3845 3846 spin_lock_irqsave(&phba->hbalock, iflag); 3847 /* First add the response iocb to the countinueq list */ 3848 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3849 pring->iocb_continueq_cnt++; 3850 3851 /* Now, determine whether the list is completed for processing */ 3852 irsp = &rspiocbp->iocb; 3853 if (irsp->ulpLe) { 3854 /* 3855 * By default, the driver expects to free all resources 3856 * associated with this iocb completion. 3857 */ 3858 free_saveq = 1; 3859 saveq = list_get_first(&pring->iocb_continueq, 3860 struct lpfc_iocbq, list); 3861 irsp = &(saveq->iocb); 3862 list_del_init(&pring->iocb_continueq); 3863 pring->iocb_continueq_cnt = 0; 3864 3865 pring->stats.iocb_rsp++; 3866 3867 /* 3868 * If resource errors reported from HBA, reduce 3869 * queuedepths of the SCSI device. 3870 */ 3871 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3872 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3873 IOERR_NO_RESOURCES)) { 3874 spin_unlock_irqrestore(&phba->hbalock, iflag); 3875 phba->lpfc_rampdown_queue_depth(phba); 3876 spin_lock_irqsave(&phba->hbalock, iflag); 3877 } 3878 3879 if (irsp->ulpStatus) { 3880 /* Rsp ring <ringno> error: IOCB */ 3881 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3882 "0328 Rsp Ring %d error: " 3883 "IOCB Data: " 3884 "x%x x%x x%x x%x " 3885 "x%x x%x x%x x%x " 3886 "x%x x%x x%x x%x " 3887 "x%x x%x x%x x%x\n", 3888 pring->ringno, 3889 irsp->un.ulpWord[0], 3890 irsp->un.ulpWord[1], 3891 irsp->un.ulpWord[2], 3892 irsp->un.ulpWord[3], 3893 irsp->un.ulpWord[4], 3894 irsp->un.ulpWord[5], 3895 *(((uint32_t *) irsp) + 6), 3896 *(((uint32_t *) irsp) + 7), 3897 *(((uint32_t *) irsp) + 8), 3898 *(((uint32_t *) irsp) + 9), 3899 *(((uint32_t *) irsp) + 10), 3900 *(((uint32_t *) irsp) + 11), 3901 *(((uint32_t *) irsp) + 12), 3902 *(((uint32_t *) irsp) + 13), 3903 *(((uint32_t *) irsp) + 14), 3904 *(((uint32_t *) irsp) + 15)); 3905 } 3906 3907 /* 3908 * Fetch the IOCB command type and call the correct completion 3909 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3910 * get freed back to the lpfc_iocb_list by the discovery 3911 * kernel thread. 3912 */ 3913 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3914 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3915 switch (type) { 3916 case LPFC_SOL_IOCB: 3917 spin_unlock_irqrestore(&phba->hbalock, iflag); 3918 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3919 spin_lock_irqsave(&phba->hbalock, iflag); 3920 break; 3921 3922 case LPFC_UNSOL_IOCB: 3923 spin_unlock_irqrestore(&phba->hbalock, iflag); 3924 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3925 spin_lock_irqsave(&phba->hbalock, iflag); 3926 if (!rc) 3927 free_saveq = 0; 3928 break; 3929 3930 case LPFC_ABORT_IOCB: 3931 cmdiocbp = NULL; 3932 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3933 spin_unlock_irqrestore(&phba->hbalock, iflag); 3934 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3935 saveq); 3936 spin_lock_irqsave(&phba->hbalock, iflag); 3937 } 3938 if (cmdiocbp) { 3939 /* Call the specified completion routine */ 3940 if (cmdiocbp->iocb_cmpl) { 3941 spin_unlock_irqrestore(&phba->hbalock, 3942 iflag); 3943 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3944 saveq); 3945 spin_lock_irqsave(&phba->hbalock, 3946 iflag); 3947 } else 3948 __lpfc_sli_release_iocbq(phba, 3949 cmdiocbp); 3950 } 3951 break; 3952 3953 case LPFC_UNKNOWN_IOCB: 3954 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3955 char adaptermsg[LPFC_MAX_ADPTMSG]; 3956 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3957 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3958 MAX_MSG_DATA); 3959 dev_warn(&((phba->pcidev)->dev), 3960 "lpfc%d: %s\n", 3961 phba->brd_no, adaptermsg); 3962 } else { 3963 /* Unknown IOCB command */ 3964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3965 "0335 Unknown IOCB " 3966 "command Data: x%x " 3967 "x%x x%x x%x\n", 3968 irsp->ulpCommand, 3969 irsp->ulpStatus, 3970 irsp->ulpIoTag, 3971 irsp->ulpContext); 3972 } 3973 break; 3974 } 3975 3976 if (free_saveq) { 3977 list_for_each_entry_safe(rspiocbp, next_iocb, 3978 &saveq->list, list) { 3979 list_del_init(&rspiocbp->list); 3980 __lpfc_sli_release_iocbq(phba, rspiocbp); 3981 } 3982 __lpfc_sli_release_iocbq(phba, saveq); 3983 } 3984 rspiocbp = NULL; 3985 } 3986 spin_unlock_irqrestore(&phba->hbalock, iflag); 3987 return rspiocbp; 3988 } 3989 3990 /** 3991 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3992 * @phba: Pointer to HBA context object. 3993 * @pring: Pointer to driver SLI ring object. 3994 * @mask: Host attention register mask for this ring. 3995 * 3996 * This routine wraps the actual slow_ring event process routine from the 3997 * API jump table function pointer from the lpfc_hba struct. 3998 **/ 3999 void 4000 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4001 struct lpfc_sli_ring *pring, uint32_t mask) 4002 { 4003 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4004 } 4005 4006 /** 4007 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4008 * @phba: Pointer to HBA context object. 4009 * @pring: Pointer to driver SLI ring object. 4010 * @mask: Host attention register mask for this ring. 4011 * 4012 * This function is called from the worker thread when there is a ring event 4013 * for non-fcp rings. The caller does not hold any lock. The function will 4014 * remove each response iocb in the response ring and calls the handle 4015 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4016 **/ 4017 static void 4018 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4019 struct lpfc_sli_ring *pring, uint32_t mask) 4020 { 4021 struct lpfc_pgp *pgp; 4022 IOCB_t *entry; 4023 IOCB_t *irsp = NULL; 4024 struct lpfc_iocbq *rspiocbp = NULL; 4025 uint32_t portRspPut, portRspMax; 4026 unsigned long iflag; 4027 uint32_t status; 4028 4029 pgp = &phba->port_gp[pring->ringno]; 4030 spin_lock_irqsave(&phba->hbalock, iflag); 4031 pring->stats.iocb_event++; 4032 4033 /* 4034 * The next available response entry should never exceed the maximum 4035 * entries. If it does, treat it as an adapter hardware error. 4036 */ 4037 portRspMax = pring->sli.sli3.numRiocb; 4038 portRspPut = le32_to_cpu(pgp->rspPutInx); 4039 if (portRspPut >= portRspMax) { 4040 /* 4041 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4042 * rsp ring <portRspMax> 4043 */ 4044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4045 "0303 Ring %d handler: portRspPut %d " 4046 "is bigger than rsp ring %d\n", 4047 pring->ringno, portRspPut, portRspMax); 4048 4049 phba->link_state = LPFC_HBA_ERROR; 4050 spin_unlock_irqrestore(&phba->hbalock, iflag); 4051 4052 phba->work_hs = HS_FFER3; 4053 lpfc_handle_eratt(phba); 4054 4055 return; 4056 } 4057 4058 rmb(); 4059 while (pring->sli.sli3.rspidx != portRspPut) { 4060 /* 4061 * Build a completion list and call the appropriate handler. 4062 * The process is to get the next available response iocb, get 4063 * a free iocb from the list, copy the response data into the 4064 * free iocb, insert to the continuation list, and update the 4065 * next response index to slim. This process makes response 4066 * iocb's in the ring available to DMA as fast as possible but 4067 * pays a penalty for a copy operation. Since the iocb is 4068 * only 32 bytes, this penalty is considered small relative to 4069 * the PCI reads for register values and a slim write. When 4070 * the ulpLe field is set, the entire Command has been 4071 * received. 4072 */ 4073 entry = lpfc_resp_iocb(phba, pring); 4074 4075 phba->last_completion_time = jiffies; 4076 rspiocbp = __lpfc_sli_get_iocbq(phba); 4077 if (rspiocbp == NULL) { 4078 printk(KERN_ERR "%s: out of buffers! Failing " 4079 "completion.\n", __func__); 4080 break; 4081 } 4082 4083 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4084 phba->iocb_rsp_size); 4085 irsp = &rspiocbp->iocb; 4086 4087 if (++pring->sli.sli3.rspidx >= portRspMax) 4088 pring->sli.sli3.rspidx = 0; 4089 4090 if (pring->ringno == LPFC_ELS_RING) { 4091 lpfc_debugfs_slow_ring_trc(phba, 4092 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4093 *(((uint32_t *) irsp) + 4), 4094 *(((uint32_t *) irsp) + 6), 4095 *(((uint32_t *) irsp) + 7)); 4096 } 4097 4098 writel(pring->sli.sli3.rspidx, 4099 &phba->host_gp[pring->ringno].rspGetInx); 4100 4101 spin_unlock_irqrestore(&phba->hbalock, iflag); 4102 /* Handle the response IOCB */ 4103 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4104 spin_lock_irqsave(&phba->hbalock, iflag); 4105 4106 /* 4107 * If the port response put pointer has not been updated, sync 4108 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4109 * response put pointer. 4110 */ 4111 if (pring->sli.sli3.rspidx == portRspPut) { 4112 portRspPut = le32_to_cpu(pgp->rspPutInx); 4113 } 4114 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4115 4116 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4117 /* At least one response entry has been freed */ 4118 pring->stats.iocb_rsp_full++; 4119 /* SET RxRE_RSP in Chip Att register */ 4120 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4121 writel(status, phba->CAregaddr); 4122 readl(phba->CAregaddr); /* flush */ 4123 } 4124 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4125 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4126 pring->stats.iocb_cmd_empty++; 4127 4128 /* Force update of the local copy of cmdGetInx */ 4129 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4130 lpfc_sli_resume_iocb(phba, pring); 4131 4132 if ((pring->lpfc_sli_cmd_available)) 4133 (pring->lpfc_sli_cmd_available) (phba, pring); 4134 4135 } 4136 4137 spin_unlock_irqrestore(&phba->hbalock, iflag); 4138 return; 4139 } 4140 4141 /** 4142 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4143 * @phba: Pointer to HBA context object. 4144 * @pring: Pointer to driver SLI ring object. 4145 * @mask: Host attention register mask for this ring. 4146 * 4147 * This function is called from the worker thread when there is a pending 4148 * ELS response iocb on the driver internal slow-path response iocb worker 4149 * queue. The caller does not hold any lock. The function will remove each 4150 * response iocb from the response worker queue and calls the handle 4151 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4152 **/ 4153 static void 4154 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4155 struct lpfc_sli_ring *pring, uint32_t mask) 4156 { 4157 struct lpfc_iocbq *irspiocbq; 4158 struct hbq_dmabuf *dmabuf; 4159 struct lpfc_cq_event *cq_event; 4160 unsigned long iflag; 4161 int count = 0; 4162 4163 spin_lock_irqsave(&phba->hbalock, iflag); 4164 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4165 spin_unlock_irqrestore(&phba->hbalock, iflag); 4166 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4167 /* Get the response iocb from the head of work queue */ 4168 spin_lock_irqsave(&phba->hbalock, iflag); 4169 list_remove_head(&phba->sli4_hba.sp_queue_event, 4170 cq_event, struct lpfc_cq_event, list); 4171 spin_unlock_irqrestore(&phba->hbalock, iflag); 4172 4173 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4174 case CQE_CODE_COMPL_WQE: 4175 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4176 cq_event); 4177 /* Translate ELS WCQE to response IOCBQ */ 4178 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4179 irspiocbq); 4180 if (irspiocbq) 4181 lpfc_sli_sp_handle_rspiocb(phba, pring, 4182 irspiocbq); 4183 count++; 4184 break; 4185 case CQE_CODE_RECEIVE: 4186 case CQE_CODE_RECEIVE_V1: 4187 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4188 cq_event); 4189 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4190 count++; 4191 break; 4192 default: 4193 break; 4194 } 4195 4196 /* Limit the number of events to 64 to avoid soft lockups */ 4197 if (count == 64) 4198 break; 4199 } 4200 } 4201 4202 /** 4203 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4204 * @phba: Pointer to HBA context object. 4205 * @pring: Pointer to driver SLI ring object. 4206 * 4207 * This function aborts all iocbs in the given ring and frees all the iocb 4208 * objects in txq. This function issues an abort iocb for all the iocb commands 4209 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4210 * the return of this function. The caller is not required to hold any locks. 4211 **/ 4212 void 4213 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4214 { 4215 LIST_HEAD(completions); 4216 struct lpfc_iocbq *iocb, *next_iocb; 4217 4218 if (pring->ringno == LPFC_ELS_RING) { 4219 lpfc_fabric_abort_hba(phba); 4220 } 4221 4222 /* Error everything on txq and txcmplq 4223 * First do the txq. 4224 */ 4225 if (phba->sli_rev >= LPFC_SLI_REV4) { 4226 spin_lock_irq(&pring->ring_lock); 4227 list_splice_init(&pring->txq, &completions); 4228 pring->txq_cnt = 0; 4229 spin_unlock_irq(&pring->ring_lock); 4230 4231 spin_lock_irq(&phba->hbalock); 4232 /* Next issue ABTS for everything on the txcmplq */ 4233 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4234 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4235 spin_unlock_irq(&phba->hbalock); 4236 } else { 4237 spin_lock_irq(&phba->hbalock); 4238 list_splice_init(&pring->txq, &completions); 4239 pring->txq_cnt = 0; 4240 4241 /* Next issue ABTS for everything on the txcmplq */ 4242 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4243 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4244 spin_unlock_irq(&phba->hbalock); 4245 } 4246 /* Make sure HBA is alive */ 4247 lpfc_issue_hb_tmo(phba); 4248 4249 /* Cancel all the IOCBs from the completions list */ 4250 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4251 IOERR_SLI_ABORTED); 4252 } 4253 4254 /** 4255 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4256 * @phba: Pointer to HBA context object. 4257 * 4258 * This function aborts all iocbs in FCP rings and frees all the iocb 4259 * objects in txq. This function issues an abort iocb for all the iocb commands 4260 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4261 * the return of this function. The caller is not required to hold any locks. 4262 **/ 4263 void 4264 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4265 { 4266 struct lpfc_sli *psli = &phba->sli; 4267 struct lpfc_sli_ring *pring; 4268 uint32_t i; 4269 4270 /* Look on all the FCP Rings for the iotag */ 4271 if (phba->sli_rev >= LPFC_SLI_REV4) { 4272 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4273 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4274 lpfc_sli_abort_iocb_ring(phba, pring); 4275 } 4276 } else { 4277 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4278 lpfc_sli_abort_iocb_ring(phba, pring); 4279 } 4280 } 4281 4282 /** 4283 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4284 * @phba: Pointer to HBA context object. 4285 * 4286 * This function flushes all iocbs in the IO ring and frees all the iocb 4287 * objects in txq and txcmplq. This function will not issue abort iocbs 4288 * for all the iocb commands in txcmplq, they will just be returned with 4289 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4290 * slot has been permanently disabled. 4291 **/ 4292 void 4293 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4294 { 4295 LIST_HEAD(txq); 4296 LIST_HEAD(txcmplq); 4297 struct lpfc_sli *psli = &phba->sli; 4298 struct lpfc_sli_ring *pring; 4299 uint32_t i; 4300 struct lpfc_iocbq *piocb, *next_iocb; 4301 4302 spin_lock_irq(&phba->hbalock); 4303 if (phba->hba_flag & HBA_IOQ_FLUSH || 4304 !phba->sli4_hba.hdwq) { 4305 spin_unlock_irq(&phba->hbalock); 4306 return; 4307 } 4308 /* Indicate the I/O queues are flushed */ 4309 phba->hba_flag |= HBA_IOQ_FLUSH; 4310 spin_unlock_irq(&phba->hbalock); 4311 4312 /* Look on all the FCP Rings for the iotag */ 4313 if (phba->sli_rev >= LPFC_SLI_REV4) { 4314 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4315 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4316 4317 spin_lock_irq(&pring->ring_lock); 4318 /* Retrieve everything on txq */ 4319 list_splice_init(&pring->txq, &txq); 4320 list_for_each_entry_safe(piocb, next_iocb, 4321 &pring->txcmplq, list) 4322 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4323 /* Retrieve everything on the txcmplq */ 4324 list_splice_init(&pring->txcmplq, &txcmplq); 4325 pring->txq_cnt = 0; 4326 pring->txcmplq_cnt = 0; 4327 spin_unlock_irq(&pring->ring_lock); 4328 4329 /* Flush the txq */ 4330 lpfc_sli_cancel_iocbs(phba, &txq, 4331 IOSTAT_LOCAL_REJECT, 4332 IOERR_SLI_DOWN); 4333 /* Flush the txcmpq */ 4334 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4335 IOSTAT_LOCAL_REJECT, 4336 IOERR_SLI_DOWN); 4337 } 4338 } else { 4339 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4340 4341 spin_lock_irq(&phba->hbalock); 4342 /* Retrieve everything on txq */ 4343 list_splice_init(&pring->txq, &txq); 4344 list_for_each_entry_safe(piocb, next_iocb, 4345 &pring->txcmplq, list) 4346 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4347 /* Retrieve everything on the txcmplq */ 4348 list_splice_init(&pring->txcmplq, &txcmplq); 4349 pring->txq_cnt = 0; 4350 pring->txcmplq_cnt = 0; 4351 spin_unlock_irq(&phba->hbalock); 4352 4353 /* Flush the txq */ 4354 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4355 IOERR_SLI_DOWN); 4356 /* Flush the txcmpq */ 4357 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4358 IOERR_SLI_DOWN); 4359 } 4360 } 4361 4362 /** 4363 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4364 * @phba: Pointer to HBA context object. 4365 * @mask: Bit mask to be checked. 4366 * 4367 * This function reads the host status register and compares 4368 * with the provided bit mask to check if HBA completed 4369 * the restart. This function will wait in a loop for the 4370 * HBA to complete restart. If the HBA does not restart within 4371 * 15 iterations, the function will reset the HBA again. The 4372 * function returns 1 when HBA fail to restart otherwise returns 4373 * zero. 4374 **/ 4375 static int 4376 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4377 { 4378 uint32_t status; 4379 int i = 0; 4380 int retval = 0; 4381 4382 /* Read the HBA Host Status Register */ 4383 if (lpfc_readl(phba->HSregaddr, &status)) 4384 return 1; 4385 4386 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4387 4388 /* 4389 * Check status register every 100ms for 5 retries, then every 4390 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4391 * every 2.5 sec for 4. 4392 * Break our of the loop if errors occurred during init. 4393 */ 4394 while (((status & mask) != mask) && 4395 !(status & HS_FFERM) && 4396 i++ < 20) { 4397 4398 if (i <= 5) 4399 msleep(10); 4400 else if (i <= 10) 4401 msleep(500); 4402 else 4403 msleep(2500); 4404 4405 if (i == 15) { 4406 /* Do post */ 4407 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4408 lpfc_sli_brdrestart(phba); 4409 } 4410 /* Read the HBA Host Status Register */ 4411 if (lpfc_readl(phba->HSregaddr, &status)) { 4412 retval = 1; 4413 break; 4414 } 4415 } 4416 4417 /* Check to see if any errors occurred during init */ 4418 if ((status & HS_FFERM) || (i >= 20)) { 4419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4420 "2751 Adapter failed to restart, " 4421 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4422 status, 4423 readl(phba->MBslimaddr + 0xa8), 4424 readl(phba->MBslimaddr + 0xac)); 4425 phba->link_state = LPFC_HBA_ERROR; 4426 retval = 1; 4427 } 4428 4429 return retval; 4430 } 4431 4432 /** 4433 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4434 * @phba: Pointer to HBA context object. 4435 * @mask: Bit mask to be checked. 4436 * 4437 * This function checks the host status register to check if HBA is 4438 * ready. This function will wait in a loop for the HBA to be ready 4439 * If the HBA is not ready , the function will will reset the HBA PCI 4440 * function again. The function returns 1 when HBA fail to be ready 4441 * otherwise returns zero. 4442 **/ 4443 static int 4444 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4445 { 4446 uint32_t status; 4447 int retval = 0; 4448 4449 /* Read the HBA Host Status Register */ 4450 status = lpfc_sli4_post_status_check(phba); 4451 4452 if (status) { 4453 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4454 lpfc_sli_brdrestart(phba); 4455 status = lpfc_sli4_post_status_check(phba); 4456 } 4457 4458 /* Check to see if any errors occurred during init */ 4459 if (status) { 4460 phba->link_state = LPFC_HBA_ERROR; 4461 retval = 1; 4462 } else 4463 phba->sli4_hba.intr_enable = 0; 4464 4465 return retval; 4466 } 4467 4468 /** 4469 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4470 * @phba: Pointer to HBA context object. 4471 * @mask: Bit mask to be checked. 4472 * 4473 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4474 * from the API jump table function pointer from the lpfc_hba struct. 4475 **/ 4476 int 4477 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4478 { 4479 return phba->lpfc_sli_brdready(phba, mask); 4480 } 4481 4482 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4483 4484 /** 4485 * lpfc_reset_barrier - Make HBA ready for HBA reset 4486 * @phba: Pointer to HBA context object. 4487 * 4488 * This function is called before resetting an HBA. This function is called 4489 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4490 **/ 4491 void lpfc_reset_barrier(struct lpfc_hba *phba) 4492 { 4493 uint32_t __iomem *resp_buf; 4494 uint32_t __iomem *mbox_buf; 4495 volatile uint32_t mbox; 4496 uint32_t hc_copy, ha_copy, resp_data; 4497 int i; 4498 uint8_t hdrtype; 4499 4500 lockdep_assert_held(&phba->hbalock); 4501 4502 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4503 if (hdrtype != 0x80 || 4504 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4505 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4506 return; 4507 4508 /* 4509 * Tell the other part of the chip to suspend temporarily all 4510 * its DMA activity. 4511 */ 4512 resp_buf = phba->MBslimaddr; 4513 4514 /* Disable the error attention */ 4515 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4516 return; 4517 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4518 readl(phba->HCregaddr); /* flush */ 4519 phba->link_flag |= LS_IGNORE_ERATT; 4520 4521 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4522 return; 4523 if (ha_copy & HA_ERATT) { 4524 /* Clear Chip error bit */ 4525 writel(HA_ERATT, phba->HAregaddr); 4526 phba->pport->stopped = 1; 4527 } 4528 4529 mbox = 0; 4530 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4531 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4532 4533 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4534 mbox_buf = phba->MBslimaddr; 4535 writel(mbox, mbox_buf); 4536 4537 for (i = 0; i < 50; i++) { 4538 if (lpfc_readl((resp_buf + 1), &resp_data)) 4539 return; 4540 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4541 mdelay(1); 4542 else 4543 break; 4544 } 4545 resp_data = 0; 4546 if (lpfc_readl((resp_buf + 1), &resp_data)) 4547 return; 4548 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4549 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4550 phba->pport->stopped) 4551 goto restore_hc; 4552 else 4553 goto clear_errat; 4554 } 4555 4556 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4557 resp_data = 0; 4558 for (i = 0; i < 500; i++) { 4559 if (lpfc_readl(resp_buf, &resp_data)) 4560 return; 4561 if (resp_data != mbox) 4562 mdelay(1); 4563 else 4564 break; 4565 } 4566 4567 clear_errat: 4568 4569 while (++i < 500) { 4570 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4571 return; 4572 if (!(ha_copy & HA_ERATT)) 4573 mdelay(1); 4574 else 4575 break; 4576 } 4577 4578 if (readl(phba->HAregaddr) & HA_ERATT) { 4579 writel(HA_ERATT, phba->HAregaddr); 4580 phba->pport->stopped = 1; 4581 } 4582 4583 restore_hc: 4584 phba->link_flag &= ~LS_IGNORE_ERATT; 4585 writel(hc_copy, phba->HCregaddr); 4586 readl(phba->HCregaddr); /* flush */ 4587 } 4588 4589 /** 4590 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4591 * @phba: Pointer to HBA context object. 4592 * 4593 * This function issues a kill_board mailbox command and waits for 4594 * the error attention interrupt. This function is called for stopping 4595 * the firmware processing. The caller is not required to hold any 4596 * locks. This function calls lpfc_hba_down_post function to free 4597 * any pending commands after the kill. The function will return 1 when it 4598 * fails to kill the board else will return 0. 4599 **/ 4600 int 4601 lpfc_sli_brdkill(struct lpfc_hba *phba) 4602 { 4603 struct lpfc_sli *psli; 4604 LPFC_MBOXQ_t *pmb; 4605 uint32_t status; 4606 uint32_t ha_copy; 4607 int retval; 4608 int i = 0; 4609 4610 psli = &phba->sli; 4611 4612 /* Kill HBA */ 4613 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4614 "0329 Kill HBA Data: x%x x%x\n", 4615 phba->pport->port_state, psli->sli_flag); 4616 4617 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4618 if (!pmb) 4619 return 1; 4620 4621 /* Disable the error attention */ 4622 spin_lock_irq(&phba->hbalock); 4623 if (lpfc_readl(phba->HCregaddr, &status)) { 4624 spin_unlock_irq(&phba->hbalock); 4625 mempool_free(pmb, phba->mbox_mem_pool); 4626 return 1; 4627 } 4628 status &= ~HC_ERINT_ENA; 4629 writel(status, phba->HCregaddr); 4630 readl(phba->HCregaddr); /* flush */ 4631 phba->link_flag |= LS_IGNORE_ERATT; 4632 spin_unlock_irq(&phba->hbalock); 4633 4634 lpfc_kill_board(phba, pmb); 4635 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4636 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4637 4638 if (retval != MBX_SUCCESS) { 4639 if (retval != MBX_BUSY) 4640 mempool_free(pmb, phba->mbox_mem_pool); 4641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4642 "2752 KILL_BOARD command failed retval %d\n", 4643 retval); 4644 spin_lock_irq(&phba->hbalock); 4645 phba->link_flag &= ~LS_IGNORE_ERATT; 4646 spin_unlock_irq(&phba->hbalock); 4647 return 1; 4648 } 4649 4650 spin_lock_irq(&phba->hbalock); 4651 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4652 spin_unlock_irq(&phba->hbalock); 4653 4654 mempool_free(pmb, phba->mbox_mem_pool); 4655 4656 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4657 * attention every 100ms for 3 seconds. If we don't get ERATT after 4658 * 3 seconds we still set HBA_ERROR state because the status of the 4659 * board is now undefined. 4660 */ 4661 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4662 return 1; 4663 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4664 mdelay(100); 4665 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4666 return 1; 4667 } 4668 4669 del_timer_sync(&psli->mbox_tmo); 4670 if (ha_copy & HA_ERATT) { 4671 writel(HA_ERATT, phba->HAregaddr); 4672 phba->pport->stopped = 1; 4673 } 4674 spin_lock_irq(&phba->hbalock); 4675 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4676 psli->mbox_active = NULL; 4677 phba->link_flag &= ~LS_IGNORE_ERATT; 4678 spin_unlock_irq(&phba->hbalock); 4679 4680 lpfc_hba_down_post(phba); 4681 phba->link_state = LPFC_HBA_ERROR; 4682 4683 return ha_copy & HA_ERATT ? 0 : 1; 4684 } 4685 4686 /** 4687 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4688 * @phba: Pointer to HBA context object. 4689 * 4690 * This function resets the HBA by writing HC_INITFF to the control 4691 * register. After the HBA resets, this function resets all the iocb ring 4692 * indices. This function disables PCI layer parity checking during 4693 * the reset. 4694 * This function returns 0 always. 4695 * The caller is not required to hold any locks. 4696 **/ 4697 int 4698 lpfc_sli_brdreset(struct lpfc_hba *phba) 4699 { 4700 struct lpfc_sli *psli; 4701 struct lpfc_sli_ring *pring; 4702 uint16_t cfg_value; 4703 int i; 4704 4705 psli = &phba->sli; 4706 4707 /* Reset HBA */ 4708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4709 "0325 Reset HBA Data: x%x x%x\n", 4710 (phba->pport) ? phba->pport->port_state : 0, 4711 psli->sli_flag); 4712 4713 /* perform board reset */ 4714 phba->fc_eventTag = 0; 4715 phba->link_events = 0; 4716 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4717 if (phba->pport) { 4718 phba->pport->fc_myDID = 0; 4719 phba->pport->fc_prevDID = 0; 4720 } 4721 4722 /* Turn off parity checking and serr during the physical reset */ 4723 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4724 return -EIO; 4725 4726 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4727 (cfg_value & 4728 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4729 4730 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4731 4732 /* Now toggle INITFF bit in the Host Control Register */ 4733 writel(HC_INITFF, phba->HCregaddr); 4734 mdelay(1); 4735 readl(phba->HCregaddr); /* flush */ 4736 writel(0, phba->HCregaddr); 4737 readl(phba->HCregaddr); /* flush */ 4738 4739 /* Restore PCI cmd register */ 4740 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4741 4742 /* Initialize relevant SLI info */ 4743 for (i = 0; i < psli->num_rings; i++) { 4744 pring = &psli->sli3_ring[i]; 4745 pring->flag = 0; 4746 pring->sli.sli3.rspidx = 0; 4747 pring->sli.sli3.next_cmdidx = 0; 4748 pring->sli.sli3.local_getidx = 0; 4749 pring->sli.sli3.cmdidx = 0; 4750 pring->missbufcnt = 0; 4751 } 4752 4753 phba->link_state = LPFC_WARM_START; 4754 return 0; 4755 } 4756 4757 /** 4758 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4759 * @phba: Pointer to HBA context object. 4760 * 4761 * This function resets a SLI4 HBA. This function disables PCI layer parity 4762 * checking during resets the device. The caller is not required to hold 4763 * any locks. 4764 * 4765 * This function returns 0 on success else returns negative error code. 4766 **/ 4767 int 4768 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4769 { 4770 struct lpfc_sli *psli = &phba->sli; 4771 uint16_t cfg_value; 4772 int rc = 0; 4773 4774 /* Reset HBA */ 4775 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4776 "0295 Reset HBA Data: x%x x%x x%x\n", 4777 phba->pport->port_state, psli->sli_flag, 4778 phba->hba_flag); 4779 4780 /* perform board reset */ 4781 phba->fc_eventTag = 0; 4782 phba->link_events = 0; 4783 phba->pport->fc_myDID = 0; 4784 phba->pport->fc_prevDID = 0; 4785 4786 spin_lock_irq(&phba->hbalock); 4787 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4788 phba->fcf.fcf_flag = 0; 4789 spin_unlock_irq(&phba->hbalock); 4790 4791 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4792 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4793 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4794 return rc; 4795 } 4796 4797 /* Now physically reset the device */ 4798 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4799 "0389 Performing PCI function reset!\n"); 4800 4801 /* Turn off parity checking and serr during the physical reset */ 4802 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4804 "3205 PCI read Config failed\n"); 4805 return -EIO; 4806 } 4807 4808 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4809 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4810 4811 /* Perform FCoE PCI function reset before freeing queue memory */ 4812 rc = lpfc_pci_function_reset(phba); 4813 4814 /* Restore PCI cmd register */ 4815 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4816 4817 return rc; 4818 } 4819 4820 /** 4821 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4822 * @phba: Pointer to HBA context object. 4823 * 4824 * This function is called in the SLI initialization code path to 4825 * restart the HBA. The caller is not required to hold any lock. 4826 * This function writes MBX_RESTART mailbox command to the SLIM and 4827 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4828 * function to free any pending commands. The function enables 4829 * POST only during the first initialization. The function returns zero. 4830 * The function does not guarantee completion of MBX_RESTART mailbox 4831 * command before the return of this function. 4832 **/ 4833 static int 4834 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4835 { 4836 MAILBOX_t *mb; 4837 struct lpfc_sli *psli; 4838 volatile uint32_t word0; 4839 void __iomem *to_slim; 4840 uint32_t hba_aer_enabled; 4841 4842 spin_lock_irq(&phba->hbalock); 4843 4844 /* Take PCIe device Advanced Error Reporting (AER) state */ 4845 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4846 4847 psli = &phba->sli; 4848 4849 /* Restart HBA */ 4850 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4851 "0337 Restart HBA Data: x%x x%x\n", 4852 (phba->pport) ? phba->pport->port_state : 0, 4853 psli->sli_flag); 4854 4855 word0 = 0; 4856 mb = (MAILBOX_t *) &word0; 4857 mb->mbxCommand = MBX_RESTART; 4858 mb->mbxHc = 1; 4859 4860 lpfc_reset_barrier(phba); 4861 4862 to_slim = phba->MBslimaddr; 4863 writel(*(uint32_t *) mb, to_slim); 4864 readl(to_slim); /* flush */ 4865 4866 /* Only skip post after fc_ffinit is completed */ 4867 if (phba->pport && phba->pport->port_state) 4868 word0 = 1; /* This is really setting up word1 */ 4869 else 4870 word0 = 0; /* This is really setting up word1 */ 4871 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4872 writel(*(uint32_t *) mb, to_slim); 4873 readl(to_slim); /* flush */ 4874 4875 lpfc_sli_brdreset(phba); 4876 if (phba->pport) 4877 phba->pport->stopped = 0; 4878 phba->link_state = LPFC_INIT_START; 4879 phba->hba_flag = 0; 4880 spin_unlock_irq(&phba->hbalock); 4881 4882 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4883 psli->stats_start = ktime_get_seconds(); 4884 4885 /* Give the INITFF and Post time to settle. */ 4886 mdelay(100); 4887 4888 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4889 if (hba_aer_enabled) 4890 pci_disable_pcie_error_reporting(phba->pcidev); 4891 4892 lpfc_hba_down_post(phba); 4893 4894 return 0; 4895 } 4896 4897 /** 4898 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4899 * @phba: Pointer to HBA context object. 4900 * 4901 * This function is called in the SLI initialization code path to restart 4902 * a SLI4 HBA. The caller is not required to hold any lock. 4903 * At the end of the function, it calls lpfc_hba_down_post function to 4904 * free any pending commands. 4905 **/ 4906 static int 4907 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4908 { 4909 struct lpfc_sli *psli = &phba->sli; 4910 uint32_t hba_aer_enabled; 4911 int rc; 4912 4913 /* Restart HBA */ 4914 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4915 "0296 Restart HBA Data: x%x x%x\n", 4916 phba->pport->port_state, psli->sli_flag); 4917 4918 /* Take PCIe device Advanced Error Reporting (AER) state */ 4919 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4920 4921 rc = lpfc_sli4_brdreset(phba); 4922 if (rc) { 4923 phba->link_state = LPFC_HBA_ERROR; 4924 goto hba_down_queue; 4925 } 4926 4927 spin_lock_irq(&phba->hbalock); 4928 phba->pport->stopped = 0; 4929 phba->link_state = LPFC_INIT_START; 4930 phba->hba_flag = 0; 4931 spin_unlock_irq(&phba->hbalock); 4932 4933 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4934 psli->stats_start = ktime_get_seconds(); 4935 4936 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4937 if (hba_aer_enabled) 4938 pci_disable_pcie_error_reporting(phba->pcidev); 4939 4940 hba_down_queue: 4941 lpfc_hba_down_post(phba); 4942 lpfc_sli4_queue_destroy(phba); 4943 4944 return rc; 4945 } 4946 4947 /** 4948 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4949 * @phba: Pointer to HBA context object. 4950 * 4951 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4952 * API jump table function pointer from the lpfc_hba struct. 4953 **/ 4954 int 4955 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4956 { 4957 return phba->lpfc_sli_brdrestart(phba); 4958 } 4959 4960 /** 4961 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4962 * @phba: Pointer to HBA context object. 4963 * 4964 * This function is called after a HBA restart to wait for successful 4965 * restart of the HBA. Successful restart of the HBA is indicated by 4966 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4967 * iteration, the function will restart the HBA again. The function returns 4968 * zero if HBA successfully restarted else returns negative error code. 4969 **/ 4970 int 4971 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4972 { 4973 uint32_t status, i = 0; 4974 4975 /* Read the HBA Host Status Register */ 4976 if (lpfc_readl(phba->HSregaddr, &status)) 4977 return -EIO; 4978 4979 /* Check status register to see what current state is */ 4980 i = 0; 4981 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4982 4983 /* Check every 10ms for 10 retries, then every 100ms for 90 4984 * retries, then every 1 sec for 50 retires for a total of 4985 * ~60 seconds before reset the board again and check every 4986 * 1 sec for 50 retries. The up to 60 seconds before the 4987 * board ready is required by the Falcon FIPS zeroization 4988 * complete, and any reset the board in between shall cause 4989 * restart of zeroization, further delay the board ready. 4990 */ 4991 if (i++ >= 200) { 4992 /* Adapter failed to init, timeout, status reg 4993 <status> */ 4994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4995 "0436 Adapter failed to init, " 4996 "timeout, status reg x%x, " 4997 "FW Data: A8 x%x AC x%x\n", status, 4998 readl(phba->MBslimaddr + 0xa8), 4999 readl(phba->MBslimaddr + 0xac)); 5000 phba->link_state = LPFC_HBA_ERROR; 5001 return -ETIMEDOUT; 5002 } 5003 5004 /* Check to see if any errors occurred during init */ 5005 if (status & HS_FFERM) { 5006 /* ERROR: During chipset initialization */ 5007 /* Adapter failed to init, chipset, status reg 5008 <status> */ 5009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5010 "0437 Adapter failed to init, " 5011 "chipset, status reg x%x, " 5012 "FW Data: A8 x%x AC x%x\n", status, 5013 readl(phba->MBslimaddr + 0xa8), 5014 readl(phba->MBslimaddr + 0xac)); 5015 phba->link_state = LPFC_HBA_ERROR; 5016 return -EIO; 5017 } 5018 5019 if (i <= 10) 5020 msleep(10); 5021 else if (i <= 100) 5022 msleep(100); 5023 else 5024 msleep(1000); 5025 5026 if (i == 150) { 5027 /* Do post */ 5028 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5029 lpfc_sli_brdrestart(phba); 5030 } 5031 /* Read the HBA Host Status Register */ 5032 if (lpfc_readl(phba->HSregaddr, &status)) 5033 return -EIO; 5034 } 5035 5036 /* Check to see if any errors occurred during init */ 5037 if (status & HS_FFERM) { 5038 /* ERROR: During chipset initialization */ 5039 /* Adapter failed to init, chipset, status reg <status> */ 5040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5041 "0438 Adapter failed to init, chipset, " 5042 "status reg x%x, " 5043 "FW Data: A8 x%x AC x%x\n", status, 5044 readl(phba->MBslimaddr + 0xa8), 5045 readl(phba->MBslimaddr + 0xac)); 5046 phba->link_state = LPFC_HBA_ERROR; 5047 return -EIO; 5048 } 5049 5050 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5051 5052 /* Clear all interrupt enable conditions */ 5053 writel(0, phba->HCregaddr); 5054 readl(phba->HCregaddr); /* flush */ 5055 5056 /* setup host attn register */ 5057 writel(0xffffffff, phba->HAregaddr); 5058 readl(phba->HAregaddr); /* flush */ 5059 return 0; 5060 } 5061 5062 /** 5063 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5064 * 5065 * This function calculates and returns the number of HBQs required to be 5066 * configured. 5067 **/ 5068 int 5069 lpfc_sli_hbq_count(void) 5070 { 5071 return ARRAY_SIZE(lpfc_hbq_defs); 5072 } 5073 5074 /** 5075 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5076 * 5077 * This function adds the number of hbq entries in every HBQ to get 5078 * the total number of hbq entries required for the HBA and returns 5079 * the total count. 5080 **/ 5081 static int 5082 lpfc_sli_hbq_entry_count(void) 5083 { 5084 int hbq_count = lpfc_sli_hbq_count(); 5085 int count = 0; 5086 int i; 5087 5088 for (i = 0; i < hbq_count; ++i) 5089 count += lpfc_hbq_defs[i]->entry_count; 5090 return count; 5091 } 5092 5093 /** 5094 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5095 * 5096 * This function calculates amount of memory required for all hbq entries 5097 * to be configured and returns the total memory required. 5098 **/ 5099 int 5100 lpfc_sli_hbq_size(void) 5101 { 5102 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5103 } 5104 5105 /** 5106 * lpfc_sli_hbq_setup - configure and initialize HBQs 5107 * @phba: Pointer to HBA context object. 5108 * 5109 * This function is called during the SLI initialization to configure 5110 * all the HBQs and post buffers to the HBQ. The caller is not 5111 * required to hold any locks. This function will return zero if successful 5112 * else it will return negative error code. 5113 **/ 5114 static int 5115 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5116 { 5117 int hbq_count = lpfc_sli_hbq_count(); 5118 LPFC_MBOXQ_t *pmb; 5119 MAILBOX_t *pmbox; 5120 uint32_t hbqno; 5121 uint32_t hbq_entry_index; 5122 5123 /* Get a Mailbox buffer to setup mailbox 5124 * commands for HBA initialization 5125 */ 5126 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5127 5128 if (!pmb) 5129 return -ENOMEM; 5130 5131 pmbox = &pmb->u.mb; 5132 5133 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5134 phba->link_state = LPFC_INIT_MBX_CMDS; 5135 phba->hbq_in_use = 1; 5136 5137 hbq_entry_index = 0; 5138 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5139 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5140 phba->hbqs[hbqno].hbqPutIdx = 0; 5141 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5142 phba->hbqs[hbqno].entry_count = 5143 lpfc_hbq_defs[hbqno]->entry_count; 5144 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5145 hbq_entry_index, pmb); 5146 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5147 5148 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5149 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5150 mbxStatus <status>, ring <num> */ 5151 5152 lpfc_printf_log(phba, KERN_ERR, 5153 LOG_SLI | LOG_VPORT, 5154 "1805 Adapter failed to init. " 5155 "Data: x%x x%x x%x\n", 5156 pmbox->mbxCommand, 5157 pmbox->mbxStatus, hbqno); 5158 5159 phba->link_state = LPFC_HBA_ERROR; 5160 mempool_free(pmb, phba->mbox_mem_pool); 5161 return -ENXIO; 5162 } 5163 } 5164 phba->hbq_count = hbq_count; 5165 5166 mempool_free(pmb, phba->mbox_mem_pool); 5167 5168 /* Initially populate or replenish the HBQs */ 5169 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5170 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5171 return 0; 5172 } 5173 5174 /** 5175 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5176 * @phba: Pointer to HBA context object. 5177 * 5178 * This function is called during the SLI initialization to configure 5179 * all the HBQs and post buffers to the HBQ. The caller is not 5180 * required to hold any locks. This function will return zero if successful 5181 * else it will return negative error code. 5182 **/ 5183 static int 5184 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5185 { 5186 phba->hbq_in_use = 1; 5187 /** 5188 * Specific case when the MDS diagnostics is enabled and supported. 5189 * The receive buffer count is truncated to manage the incoming 5190 * traffic. 5191 **/ 5192 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5193 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5194 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5195 else 5196 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5197 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5198 phba->hbq_count = 1; 5199 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5200 /* Initially populate or replenish the HBQs */ 5201 return 0; 5202 } 5203 5204 /** 5205 * lpfc_sli_config_port - Issue config port mailbox command 5206 * @phba: Pointer to HBA context object. 5207 * @sli_mode: sli mode - 2/3 5208 * 5209 * This function is called by the sli initialization code path 5210 * to issue config_port mailbox command. This function restarts the 5211 * HBA firmware and issues a config_port mailbox command to configure 5212 * the SLI interface in the sli mode specified by sli_mode 5213 * variable. The caller is not required to hold any locks. 5214 * The function returns 0 if successful, else returns negative error 5215 * code. 5216 **/ 5217 int 5218 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5219 { 5220 LPFC_MBOXQ_t *pmb; 5221 uint32_t resetcount = 0, rc = 0, done = 0; 5222 5223 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5224 if (!pmb) { 5225 phba->link_state = LPFC_HBA_ERROR; 5226 return -ENOMEM; 5227 } 5228 5229 phba->sli_rev = sli_mode; 5230 while (resetcount < 2 && !done) { 5231 spin_lock_irq(&phba->hbalock); 5232 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5233 spin_unlock_irq(&phba->hbalock); 5234 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5235 lpfc_sli_brdrestart(phba); 5236 rc = lpfc_sli_chipset_init(phba); 5237 if (rc) 5238 break; 5239 5240 spin_lock_irq(&phba->hbalock); 5241 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5242 spin_unlock_irq(&phba->hbalock); 5243 resetcount++; 5244 5245 /* Call pre CONFIG_PORT mailbox command initialization. A 5246 * value of 0 means the call was successful. Any other 5247 * nonzero value is a failure, but if ERESTART is returned, 5248 * the driver may reset the HBA and try again. 5249 */ 5250 rc = lpfc_config_port_prep(phba); 5251 if (rc == -ERESTART) { 5252 phba->link_state = LPFC_LINK_UNKNOWN; 5253 continue; 5254 } else if (rc) 5255 break; 5256 5257 phba->link_state = LPFC_INIT_MBX_CMDS; 5258 lpfc_config_port(phba, pmb); 5259 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5260 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5261 LPFC_SLI3_HBQ_ENABLED | 5262 LPFC_SLI3_CRP_ENABLED | 5263 LPFC_SLI3_DSS_ENABLED); 5264 if (rc != MBX_SUCCESS) { 5265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5266 "0442 Adapter failed to init, mbxCmd x%x " 5267 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5268 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5269 spin_lock_irq(&phba->hbalock); 5270 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5271 spin_unlock_irq(&phba->hbalock); 5272 rc = -ENXIO; 5273 } else { 5274 /* Allow asynchronous mailbox command to go through */ 5275 spin_lock_irq(&phba->hbalock); 5276 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5277 spin_unlock_irq(&phba->hbalock); 5278 done = 1; 5279 5280 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5281 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5282 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5283 "3110 Port did not grant ASABT\n"); 5284 } 5285 } 5286 if (!done) { 5287 rc = -EINVAL; 5288 goto do_prep_failed; 5289 } 5290 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5291 if (!pmb->u.mb.un.varCfgPort.cMA) { 5292 rc = -ENXIO; 5293 goto do_prep_failed; 5294 } 5295 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5296 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5297 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5298 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5299 phba->max_vpi : phba->max_vports; 5300 5301 } else 5302 phba->max_vpi = 0; 5303 if (pmb->u.mb.un.varCfgPort.gerbm) 5304 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5305 if (pmb->u.mb.un.varCfgPort.gcrp) 5306 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5307 5308 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5309 phba->port_gp = phba->mbox->us.s3_pgp.port; 5310 5311 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5312 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5313 phba->cfg_enable_bg = 0; 5314 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5316 "0443 Adapter did not grant " 5317 "BlockGuard\n"); 5318 } 5319 } 5320 } else { 5321 phba->hbq_get = NULL; 5322 phba->port_gp = phba->mbox->us.s2.port; 5323 phba->max_vpi = 0; 5324 } 5325 do_prep_failed: 5326 mempool_free(pmb, phba->mbox_mem_pool); 5327 return rc; 5328 } 5329 5330 5331 /** 5332 * lpfc_sli_hba_setup - SLI initialization function 5333 * @phba: Pointer to HBA context object. 5334 * 5335 * This function is the main SLI initialization function. This function 5336 * is called by the HBA initialization code, HBA reset code and HBA 5337 * error attention handler code. Caller is not required to hold any 5338 * locks. This function issues config_port mailbox command to configure 5339 * the SLI, setup iocb rings and HBQ rings. In the end the function 5340 * calls the config_port_post function to issue init_link mailbox 5341 * command and to start the discovery. The function will return zero 5342 * if successful, else it will return negative error code. 5343 **/ 5344 int 5345 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5346 { 5347 uint32_t rc; 5348 int i; 5349 int longs; 5350 5351 /* Enable ISR already does config_port because of config_msi mbx */ 5352 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5353 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5354 if (rc) 5355 return -EIO; 5356 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5357 } 5358 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5359 5360 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5361 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5362 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5363 if (!rc) { 5364 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5365 "2709 This device supports " 5366 "Advanced Error Reporting (AER)\n"); 5367 spin_lock_irq(&phba->hbalock); 5368 phba->hba_flag |= HBA_AER_ENABLED; 5369 spin_unlock_irq(&phba->hbalock); 5370 } else { 5371 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5372 "2708 This device does not support " 5373 "Advanced Error Reporting (AER): %d\n", 5374 rc); 5375 phba->cfg_aer_support = 0; 5376 } 5377 } 5378 5379 if (phba->sli_rev == 3) { 5380 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5381 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5382 } else { 5383 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5384 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5385 phba->sli3_options = 0; 5386 } 5387 5388 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5389 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5390 phba->sli_rev, phba->max_vpi); 5391 rc = lpfc_sli_ring_map(phba); 5392 5393 if (rc) 5394 goto lpfc_sli_hba_setup_error; 5395 5396 /* Initialize VPIs. */ 5397 if (phba->sli_rev == LPFC_SLI_REV3) { 5398 /* 5399 * The VPI bitmask and physical ID array are allocated 5400 * and initialized once only - at driver load. A port 5401 * reset doesn't need to reinitialize this memory. 5402 */ 5403 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5404 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5405 phba->vpi_bmask = kcalloc(longs, 5406 sizeof(unsigned long), 5407 GFP_KERNEL); 5408 if (!phba->vpi_bmask) { 5409 rc = -ENOMEM; 5410 goto lpfc_sli_hba_setup_error; 5411 } 5412 5413 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5414 sizeof(uint16_t), 5415 GFP_KERNEL); 5416 if (!phba->vpi_ids) { 5417 kfree(phba->vpi_bmask); 5418 rc = -ENOMEM; 5419 goto lpfc_sli_hba_setup_error; 5420 } 5421 for (i = 0; i < phba->max_vpi; i++) 5422 phba->vpi_ids[i] = i; 5423 } 5424 } 5425 5426 /* Init HBQs */ 5427 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5428 rc = lpfc_sli_hbq_setup(phba); 5429 if (rc) 5430 goto lpfc_sli_hba_setup_error; 5431 } 5432 spin_lock_irq(&phba->hbalock); 5433 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5434 spin_unlock_irq(&phba->hbalock); 5435 5436 rc = lpfc_config_port_post(phba); 5437 if (rc) 5438 goto lpfc_sli_hba_setup_error; 5439 5440 return rc; 5441 5442 lpfc_sli_hba_setup_error: 5443 phba->link_state = LPFC_HBA_ERROR; 5444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5445 "0445 Firmware initialization failed\n"); 5446 return rc; 5447 } 5448 5449 /** 5450 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5451 * @phba: Pointer to HBA context object. 5452 * 5453 * This function issue a dump mailbox command to read config region 5454 * 23 and parse the records in the region and populate driver 5455 * data structure. 5456 **/ 5457 static int 5458 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5459 { 5460 LPFC_MBOXQ_t *mboxq; 5461 struct lpfc_dmabuf *mp; 5462 struct lpfc_mqe *mqe; 5463 uint32_t data_length; 5464 int rc; 5465 5466 /* Program the default value of vlan_id and fc_map */ 5467 phba->valid_vlan = 0; 5468 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5469 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5470 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5471 5472 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5473 if (!mboxq) 5474 return -ENOMEM; 5475 5476 mqe = &mboxq->u.mqe; 5477 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5478 rc = -ENOMEM; 5479 goto out_free_mboxq; 5480 } 5481 5482 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5483 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5484 5485 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5486 "(%d):2571 Mailbox cmd x%x Status x%x " 5487 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5488 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5489 "CQ: x%x x%x x%x x%x\n", 5490 mboxq->vport ? mboxq->vport->vpi : 0, 5491 bf_get(lpfc_mqe_command, mqe), 5492 bf_get(lpfc_mqe_status, mqe), 5493 mqe->un.mb_words[0], mqe->un.mb_words[1], 5494 mqe->un.mb_words[2], mqe->un.mb_words[3], 5495 mqe->un.mb_words[4], mqe->un.mb_words[5], 5496 mqe->un.mb_words[6], mqe->un.mb_words[7], 5497 mqe->un.mb_words[8], mqe->un.mb_words[9], 5498 mqe->un.mb_words[10], mqe->un.mb_words[11], 5499 mqe->un.mb_words[12], mqe->un.mb_words[13], 5500 mqe->un.mb_words[14], mqe->un.mb_words[15], 5501 mqe->un.mb_words[16], mqe->un.mb_words[50], 5502 mboxq->mcqe.word0, 5503 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5504 mboxq->mcqe.trailer); 5505 5506 if (rc) { 5507 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5508 kfree(mp); 5509 rc = -EIO; 5510 goto out_free_mboxq; 5511 } 5512 data_length = mqe->un.mb_words[5]; 5513 if (data_length > DMP_RGN23_SIZE) { 5514 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5515 kfree(mp); 5516 rc = -EIO; 5517 goto out_free_mboxq; 5518 } 5519 5520 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5521 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5522 kfree(mp); 5523 rc = 0; 5524 5525 out_free_mboxq: 5526 mempool_free(mboxq, phba->mbox_mem_pool); 5527 return rc; 5528 } 5529 5530 /** 5531 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5532 * @phba: pointer to lpfc hba data structure. 5533 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5534 * @vpd: pointer to the memory to hold resulting port vpd data. 5535 * @vpd_size: On input, the number of bytes allocated to @vpd. 5536 * On output, the number of data bytes in @vpd. 5537 * 5538 * This routine executes a READ_REV SLI4 mailbox command. In 5539 * addition, this routine gets the port vpd data. 5540 * 5541 * Return codes 5542 * 0 - successful 5543 * -ENOMEM - could not allocated memory. 5544 **/ 5545 static int 5546 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5547 uint8_t *vpd, uint32_t *vpd_size) 5548 { 5549 int rc = 0; 5550 uint32_t dma_size; 5551 struct lpfc_dmabuf *dmabuf; 5552 struct lpfc_mqe *mqe; 5553 5554 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5555 if (!dmabuf) 5556 return -ENOMEM; 5557 5558 /* 5559 * Get a DMA buffer for the vpd data resulting from the READ_REV 5560 * mailbox command. 5561 */ 5562 dma_size = *vpd_size; 5563 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5564 &dmabuf->phys, GFP_KERNEL); 5565 if (!dmabuf->virt) { 5566 kfree(dmabuf); 5567 return -ENOMEM; 5568 } 5569 5570 /* 5571 * The SLI4 implementation of READ_REV conflicts at word1, 5572 * bits 31:16 and SLI4 adds vpd functionality not present 5573 * in SLI3. This code corrects the conflicts. 5574 */ 5575 lpfc_read_rev(phba, mboxq); 5576 mqe = &mboxq->u.mqe; 5577 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5578 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5579 mqe->un.read_rev.word1 &= 0x0000FFFF; 5580 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5581 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5582 5583 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5584 if (rc) { 5585 dma_free_coherent(&phba->pcidev->dev, dma_size, 5586 dmabuf->virt, dmabuf->phys); 5587 kfree(dmabuf); 5588 return -EIO; 5589 } 5590 5591 /* 5592 * The available vpd length cannot be bigger than the 5593 * DMA buffer passed to the port. Catch the less than 5594 * case and update the caller's size. 5595 */ 5596 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5597 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5598 5599 memcpy(vpd, dmabuf->virt, *vpd_size); 5600 5601 dma_free_coherent(&phba->pcidev->dev, dma_size, 5602 dmabuf->virt, dmabuf->phys); 5603 kfree(dmabuf); 5604 return 0; 5605 } 5606 5607 /** 5608 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5609 * @phba: pointer to lpfc hba data structure. 5610 * 5611 * This routine retrieves SLI4 device physical port name this PCI function 5612 * is attached to. 5613 * 5614 * Return codes 5615 * 0 - successful 5616 * otherwise - failed to retrieve controller attributes 5617 **/ 5618 static int 5619 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5620 { 5621 LPFC_MBOXQ_t *mboxq; 5622 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5623 struct lpfc_controller_attribute *cntl_attr; 5624 void *virtaddr = NULL; 5625 uint32_t alloclen, reqlen; 5626 uint32_t shdr_status, shdr_add_status; 5627 union lpfc_sli4_cfg_shdr *shdr; 5628 int rc; 5629 5630 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5631 if (!mboxq) 5632 return -ENOMEM; 5633 5634 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5635 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5636 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5637 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5638 LPFC_SLI4_MBX_NEMBED); 5639 5640 if (alloclen < reqlen) { 5641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5642 "3084 Allocated DMA memory size (%d) is " 5643 "less than the requested DMA memory size " 5644 "(%d)\n", alloclen, reqlen); 5645 rc = -ENOMEM; 5646 goto out_free_mboxq; 5647 } 5648 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5649 virtaddr = mboxq->sge_array->addr[0]; 5650 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5651 shdr = &mbx_cntl_attr->cfg_shdr; 5652 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5653 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5654 if (shdr_status || shdr_add_status || rc) { 5655 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5656 "3085 Mailbox x%x (x%x/x%x) failed, " 5657 "rc:x%x, status:x%x, add_status:x%x\n", 5658 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5659 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5660 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5661 rc, shdr_status, shdr_add_status); 5662 rc = -ENXIO; 5663 goto out_free_mboxq; 5664 } 5665 5666 cntl_attr = &mbx_cntl_attr->cntl_attr; 5667 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5668 phba->sli4_hba.lnk_info.lnk_tp = 5669 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5670 phba->sli4_hba.lnk_info.lnk_no = 5671 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5672 5673 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5674 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5675 sizeof(phba->BIOSVersion)); 5676 5677 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5678 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5679 phba->sli4_hba.lnk_info.lnk_tp, 5680 phba->sli4_hba.lnk_info.lnk_no, 5681 phba->BIOSVersion); 5682 out_free_mboxq: 5683 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5684 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5685 else 5686 mempool_free(mboxq, phba->mbox_mem_pool); 5687 return rc; 5688 } 5689 5690 /** 5691 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5692 * @phba: pointer to lpfc hba data structure. 5693 * 5694 * This routine retrieves SLI4 device physical port name this PCI function 5695 * is attached to. 5696 * 5697 * Return codes 5698 * 0 - successful 5699 * otherwise - failed to retrieve physical port name 5700 **/ 5701 static int 5702 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5703 { 5704 LPFC_MBOXQ_t *mboxq; 5705 struct lpfc_mbx_get_port_name *get_port_name; 5706 uint32_t shdr_status, shdr_add_status; 5707 union lpfc_sli4_cfg_shdr *shdr; 5708 char cport_name = 0; 5709 int rc; 5710 5711 /* We assume nothing at this point */ 5712 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5713 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5714 5715 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5716 if (!mboxq) 5717 return -ENOMEM; 5718 /* obtain link type and link number via READ_CONFIG */ 5719 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5720 lpfc_sli4_read_config(phba); 5721 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5722 goto retrieve_ppname; 5723 5724 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5725 rc = lpfc_sli4_get_ctl_attr(phba); 5726 if (rc) 5727 goto out_free_mboxq; 5728 5729 retrieve_ppname: 5730 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5731 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5732 sizeof(struct lpfc_mbx_get_port_name) - 5733 sizeof(struct lpfc_sli4_cfg_mhdr), 5734 LPFC_SLI4_MBX_EMBED); 5735 get_port_name = &mboxq->u.mqe.un.get_port_name; 5736 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5737 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5738 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5739 phba->sli4_hba.lnk_info.lnk_tp); 5740 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5741 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5742 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5743 if (shdr_status || shdr_add_status || rc) { 5744 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5745 "3087 Mailbox x%x (x%x/x%x) failed: " 5746 "rc:x%x, status:x%x, add_status:x%x\n", 5747 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5748 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5749 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5750 rc, shdr_status, shdr_add_status); 5751 rc = -ENXIO; 5752 goto out_free_mboxq; 5753 } 5754 switch (phba->sli4_hba.lnk_info.lnk_no) { 5755 case LPFC_LINK_NUMBER_0: 5756 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5757 &get_port_name->u.response); 5758 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5759 break; 5760 case LPFC_LINK_NUMBER_1: 5761 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5762 &get_port_name->u.response); 5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5764 break; 5765 case LPFC_LINK_NUMBER_2: 5766 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5767 &get_port_name->u.response); 5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5769 break; 5770 case LPFC_LINK_NUMBER_3: 5771 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5772 &get_port_name->u.response); 5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5774 break; 5775 default: 5776 break; 5777 } 5778 5779 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5780 phba->Port[0] = cport_name; 5781 phba->Port[1] = '\0'; 5782 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5783 "3091 SLI get port name: %s\n", phba->Port); 5784 } 5785 5786 out_free_mboxq: 5787 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5788 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5789 else 5790 mempool_free(mboxq, phba->mbox_mem_pool); 5791 return rc; 5792 } 5793 5794 /** 5795 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5796 * @phba: pointer to lpfc hba data structure. 5797 * 5798 * This routine is called to explicitly arm the SLI4 device's completion and 5799 * event queues 5800 **/ 5801 static void 5802 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5803 { 5804 int qidx; 5805 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5806 struct lpfc_sli4_hdw_queue *qp; 5807 struct lpfc_queue *eq; 5808 5809 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5810 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5811 if (sli4_hba->nvmels_cq) 5812 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5813 LPFC_QUEUE_REARM); 5814 5815 if (sli4_hba->hdwq) { 5816 /* Loop thru all Hardware Queues */ 5817 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5818 qp = &sli4_hba->hdwq[qidx]; 5819 /* ARM the corresponding CQ */ 5820 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5821 LPFC_QUEUE_REARM); 5822 } 5823 5824 /* Loop thru all IRQ vectors */ 5825 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5826 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5827 /* ARM the corresponding EQ */ 5828 sli4_hba->sli4_write_eq_db(phba, eq, 5829 0, LPFC_QUEUE_REARM); 5830 } 5831 } 5832 5833 if (phba->nvmet_support) { 5834 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5835 sli4_hba->sli4_write_cq_db(phba, 5836 sli4_hba->nvmet_cqset[qidx], 0, 5837 LPFC_QUEUE_REARM); 5838 } 5839 } 5840 } 5841 5842 /** 5843 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5844 * @phba: Pointer to HBA context object. 5845 * @type: The resource extent type. 5846 * @extnt_count: buffer to hold port available extent count. 5847 * @extnt_size: buffer to hold element count per extent. 5848 * 5849 * This function calls the port and retrievs the number of available 5850 * extents and their size for a particular extent type. 5851 * 5852 * Returns: 0 if successful. Nonzero otherwise. 5853 **/ 5854 int 5855 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5856 uint16_t *extnt_count, uint16_t *extnt_size) 5857 { 5858 int rc = 0; 5859 uint32_t length; 5860 uint32_t mbox_tmo; 5861 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5862 LPFC_MBOXQ_t *mbox; 5863 5864 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5865 if (!mbox) 5866 return -ENOMEM; 5867 5868 /* Find out how many extents are available for this resource type */ 5869 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5870 sizeof(struct lpfc_sli4_cfg_mhdr)); 5871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5872 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5873 length, LPFC_SLI4_MBX_EMBED); 5874 5875 /* Send an extents count of 0 - the GET doesn't use it. */ 5876 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5877 LPFC_SLI4_MBX_EMBED); 5878 if (unlikely(rc)) { 5879 rc = -EIO; 5880 goto err_exit; 5881 } 5882 5883 if (!phba->sli4_hba.intr_enable) 5884 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5885 else { 5886 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5887 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5888 } 5889 if (unlikely(rc)) { 5890 rc = -EIO; 5891 goto err_exit; 5892 } 5893 5894 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5895 if (bf_get(lpfc_mbox_hdr_status, 5896 &rsrc_info->header.cfg_shdr.response)) { 5897 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5898 "2930 Failed to get resource extents " 5899 "Status 0x%x Add'l Status 0x%x\n", 5900 bf_get(lpfc_mbox_hdr_status, 5901 &rsrc_info->header.cfg_shdr.response), 5902 bf_get(lpfc_mbox_hdr_add_status, 5903 &rsrc_info->header.cfg_shdr.response)); 5904 rc = -EIO; 5905 goto err_exit; 5906 } 5907 5908 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5909 &rsrc_info->u.rsp); 5910 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5911 &rsrc_info->u.rsp); 5912 5913 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5914 "3162 Retrieved extents type-%d from port: count:%d, " 5915 "size:%d\n", type, *extnt_count, *extnt_size); 5916 5917 err_exit: 5918 mempool_free(mbox, phba->mbox_mem_pool); 5919 return rc; 5920 } 5921 5922 /** 5923 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5924 * @phba: Pointer to HBA context object. 5925 * @type: The extent type to check. 5926 * 5927 * This function reads the current available extents from the port and checks 5928 * if the extent count or extent size has changed since the last access. 5929 * Callers use this routine post port reset to understand if there is a 5930 * extent reprovisioning requirement. 5931 * 5932 * Returns: 5933 * -Error: error indicates problem. 5934 * 1: Extent count or size has changed. 5935 * 0: No changes. 5936 **/ 5937 static int 5938 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5939 { 5940 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5941 uint16_t size_diff, rsrc_ext_size; 5942 int rc = 0; 5943 struct lpfc_rsrc_blks *rsrc_entry; 5944 struct list_head *rsrc_blk_list = NULL; 5945 5946 size_diff = 0; 5947 curr_ext_cnt = 0; 5948 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5949 &rsrc_ext_cnt, 5950 &rsrc_ext_size); 5951 if (unlikely(rc)) 5952 return -EIO; 5953 5954 switch (type) { 5955 case LPFC_RSC_TYPE_FCOE_RPI: 5956 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5957 break; 5958 case LPFC_RSC_TYPE_FCOE_VPI: 5959 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5960 break; 5961 case LPFC_RSC_TYPE_FCOE_XRI: 5962 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5963 break; 5964 case LPFC_RSC_TYPE_FCOE_VFI: 5965 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5966 break; 5967 default: 5968 break; 5969 } 5970 5971 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5972 curr_ext_cnt++; 5973 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5974 size_diff++; 5975 } 5976 5977 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5978 rc = 1; 5979 5980 return rc; 5981 } 5982 5983 /** 5984 * lpfc_sli4_cfg_post_extnts - 5985 * @phba: Pointer to HBA context object. 5986 * @extnt_cnt: number of available extents. 5987 * @type: the extent type (rpi, xri, vfi, vpi). 5988 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5989 * @mbox: pointer to the caller's allocated mailbox structure. 5990 * 5991 * This function executes the extents allocation request. It also 5992 * takes care of the amount of memory needed to allocate or get the 5993 * allocated extents. It is the caller's responsibility to evaluate 5994 * the response. 5995 * 5996 * Returns: 5997 * -Error: Error value describes the condition found. 5998 * 0: if successful 5999 **/ 6000 static int 6001 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6002 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6003 { 6004 int rc = 0; 6005 uint32_t req_len; 6006 uint32_t emb_len; 6007 uint32_t alloc_len, mbox_tmo; 6008 6009 /* Calculate the total requested length of the dma memory */ 6010 req_len = extnt_cnt * sizeof(uint16_t); 6011 6012 /* 6013 * Calculate the size of an embedded mailbox. The uint32_t 6014 * accounts for extents-specific word. 6015 */ 6016 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6017 sizeof(uint32_t); 6018 6019 /* 6020 * Presume the allocation and response will fit into an embedded 6021 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6022 */ 6023 *emb = LPFC_SLI4_MBX_EMBED; 6024 if (req_len > emb_len) { 6025 req_len = extnt_cnt * sizeof(uint16_t) + 6026 sizeof(union lpfc_sli4_cfg_shdr) + 6027 sizeof(uint32_t); 6028 *emb = LPFC_SLI4_MBX_NEMBED; 6029 } 6030 6031 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6032 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6033 req_len, *emb); 6034 if (alloc_len < req_len) { 6035 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6036 "2982 Allocated DMA memory size (x%x) is " 6037 "less than the requested DMA memory " 6038 "size (x%x)\n", alloc_len, req_len); 6039 return -ENOMEM; 6040 } 6041 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6042 if (unlikely(rc)) 6043 return -EIO; 6044 6045 if (!phba->sli4_hba.intr_enable) 6046 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6047 else { 6048 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6049 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6050 } 6051 6052 if (unlikely(rc)) 6053 rc = -EIO; 6054 return rc; 6055 } 6056 6057 /** 6058 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6059 * @phba: Pointer to HBA context object. 6060 * @type: The resource extent type to allocate. 6061 * 6062 * This function allocates the number of elements for the specified 6063 * resource type. 6064 **/ 6065 static int 6066 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6067 { 6068 bool emb = false; 6069 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6070 uint16_t rsrc_id, rsrc_start, j, k; 6071 uint16_t *ids; 6072 int i, rc; 6073 unsigned long longs; 6074 unsigned long *bmask; 6075 struct lpfc_rsrc_blks *rsrc_blks; 6076 LPFC_MBOXQ_t *mbox; 6077 uint32_t length; 6078 struct lpfc_id_range *id_array = NULL; 6079 void *virtaddr = NULL; 6080 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6081 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6082 struct list_head *ext_blk_list; 6083 6084 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6085 &rsrc_cnt, 6086 &rsrc_size); 6087 if (unlikely(rc)) 6088 return -EIO; 6089 6090 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6092 "3009 No available Resource Extents " 6093 "for resource type 0x%x: Count: 0x%x, " 6094 "Size 0x%x\n", type, rsrc_cnt, 6095 rsrc_size); 6096 return -ENOMEM; 6097 } 6098 6099 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6100 "2903 Post resource extents type-0x%x: " 6101 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6102 6103 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6104 if (!mbox) 6105 return -ENOMEM; 6106 6107 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6108 if (unlikely(rc)) { 6109 rc = -EIO; 6110 goto err_exit; 6111 } 6112 6113 /* 6114 * Figure out where the response is located. Then get local pointers 6115 * to the response data. The port does not guarantee to respond to 6116 * all extents counts request so update the local variable with the 6117 * allocated count from the port. 6118 */ 6119 if (emb == LPFC_SLI4_MBX_EMBED) { 6120 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6121 id_array = &rsrc_ext->u.rsp.id[0]; 6122 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6123 } else { 6124 virtaddr = mbox->sge_array->addr[0]; 6125 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6126 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6127 id_array = &n_rsrc->id; 6128 } 6129 6130 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6131 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6132 6133 /* 6134 * Based on the resource size and count, correct the base and max 6135 * resource values. 6136 */ 6137 length = sizeof(struct lpfc_rsrc_blks); 6138 switch (type) { 6139 case LPFC_RSC_TYPE_FCOE_RPI: 6140 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6141 sizeof(unsigned long), 6142 GFP_KERNEL); 6143 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6144 rc = -ENOMEM; 6145 goto err_exit; 6146 } 6147 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6148 sizeof(uint16_t), 6149 GFP_KERNEL); 6150 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6151 kfree(phba->sli4_hba.rpi_bmask); 6152 rc = -ENOMEM; 6153 goto err_exit; 6154 } 6155 6156 /* 6157 * The next_rpi was initialized with the maximum available 6158 * count but the port may allocate a smaller number. Catch 6159 * that case and update the next_rpi. 6160 */ 6161 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6162 6163 /* Initialize local ptrs for common extent processing later. */ 6164 bmask = phba->sli4_hba.rpi_bmask; 6165 ids = phba->sli4_hba.rpi_ids; 6166 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6167 break; 6168 case LPFC_RSC_TYPE_FCOE_VPI: 6169 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6170 GFP_KERNEL); 6171 if (unlikely(!phba->vpi_bmask)) { 6172 rc = -ENOMEM; 6173 goto err_exit; 6174 } 6175 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6176 GFP_KERNEL); 6177 if (unlikely(!phba->vpi_ids)) { 6178 kfree(phba->vpi_bmask); 6179 rc = -ENOMEM; 6180 goto err_exit; 6181 } 6182 6183 /* Initialize local ptrs for common extent processing later. */ 6184 bmask = phba->vpi_bmask; 6185 ids = phba->vpi_ids; 6186 ext_blk_list = &phba->lpfc_vpi_blk_list; 6187 break; 6188 case LPFC_RSC_TYPE_FCOE_XRI: 6189 phba->sli4_hba.xri_bmask = kcalloc(longs, 6190 sizeof(unsigned long), 6191 GFP_KERNEL); 6192 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6193 rc = -ENOMEM; 6194 goto err_exit; 6195 } 6196 phba->sli4_hba.max_cfg_param.xri_used = 0; 6197 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6198 sizeof(uint16_t), 6199 GFP_KERNEL); 6200 if (unlikely(!phba->sli4_hba.xri_ids)) { 6201 kfree(phba->sli4_hba.xri_bmask); 6202 rc = -ENOMEM; 6203 goto err_exit; 6204 } 6205 6206 /* Initialize local ptrs for common extent processing later. */ 6207 bmask = phba->sli4_hba.xri_bmask; 6208 ids = phba->sli4_hba.xri_ids; 6209 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6210 break; 6211 case LPFC_RSC_TYPE_FCOE_VFI: 6212 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6213 sizeof(unsigned long), 6214 GFP_KERNEL); 6215 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6216 rc = -ENOMEM; 6217 goto err_exit; 6218 } 6219 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6220 sizeof(uint16_t), 6221 GFP_KERNEL); 6222 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6223 kfree(phba->sli4_hba.vfi_bmask); 6224 rc = -ENOMEM; 6225 goto err_exit; 6226 } 6227 6228 /* Initialize local ptrs for common extent processing later. */ 6229 bmask = phba->sli4_hba.vfi_bmask; 6230 ids = phba->sli4_hba.vfi_ids; 6231 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6232 break; 6233 default: 6234 /* Unsupported Opcode. Fail call. */ 6235 id_array = NULL; 6236 bmask = NULL; 6237 ids = NULL; 6238 ext_blk_list = NULL; 6239 goto err_exit; 6240 } 6241 6242 /* 6243 * Complete initializing the extent configuration with the 6244 * allocated ids assigned to this function. The bitmask serves 6245 * as an index into the array and manages the available ids. The 6246 * array just stores the ids communicated to the port via the wqes. 6247 */ 6248 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6249 if ((i % 2) == 0) 6250 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6251 &id_array[k]); 6252 else 6253 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6254 &id_array[k]); 6255 6256 rsrc_blks = kzalloc(length, GFP_KERNEL); 6257 if (unlikely(!rsrc_blks)) { 6258 rc = -ENOMEM; 6259 kfree(bmask); 6260 kfree(ids); 6261 goto err_exit; 6262 } 6263 rsrc_blks->rsrc_start = rsrc_id; 6264 rsrc_blks->rsrc_size = rsrc_size; 6265 list_add_tail(&rsrc_blks->list, ext_blk_list); 6266 rsrc_start = rsrc_id; 6267 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6268 phba->sli4_hba.io_xri_start = rsrc_start + 6269 lpfc_sli4_get_iocb_cnt(phba); 6270 } 6271 6272 while (rsrc_id < (rsrc_start + rsrc_size)) { 6273 ids[j] = rsrc_id; 6274 rsrc_id++; 6275 j++; 6276 } 6277 /* Entire word processed. Get next word.*/ 6278 if ((i % 2) == 1) 6279 k++; 6280 } 6281 err_exit: 6282 lpfc_sli4_mbox_cmd_free(phba, mbox); 6283 return rc; 6284 } 6285 6286 6287 6288 /** 6289 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6290 * @phba: Pointer to HBA context object. 6291 * @type: the extent's type. 6292 * 6293 * This function deallocates all extents of a particular resource type. 6294 * SLI4 does not allow for deallocating a particular extent range. It 6295 * is the caller's responsibility to release all kernel memory resources. 6296 **/ 6297 static int 6298 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6299 { 6300 int rc; 6301 uint32_t length, mbox_tmo = 0; 6302 LPFC_MBOXQ_t *mbox; 6303 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6304 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6305 6306 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6307 if (!mbox) 6308 return -ENOMEM; 6309 6310 /* 6311 * This function sends an embedded mailbox because it only sends the 6312 * the resource type. All extents of this type are released by the 6313 * port. 6314 */ 6315 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6316 sizeof(struct lpfc_sli4_cfg_mhdr)); 6317 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6318 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6319 length, LPFC_SLI4_MBX_EMBED); 6320 6321 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6322 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6323 LPFC_SLI4_MBX_EMBED); 6324 if (unlikely(rc)) { 6325 rc = -EIO; 6326 goto out_free_mbox; 6327 } 6328 if (!phba->sli4_hba.intr_enable) 6329 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6330 else { 6331 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6332 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6333 } 6334 if (unlikely(rc)) { 6335 rc = -EIO; 6336 goto out_free_mbox; 6337 } 6338 6339 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6340 if (bf_get(lpfc_mbox_hdr_status, 6341 &dealloc_rsrc->header.cfg_shdr.response)) { 6342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6343 "2919 Failed to release resource extents " 6344 "for type %d - Status 0x%x Add'l Status 0x%x. " 6345 "Resource memory not released.\n", 6346 type, 6347 bf_get(lpfc_mbox_hdr_status, 6348 &dealloc_rsrc->header.cfg_shdr.response), 6349 bf_get(lpfc_mbox_hdr_add_status, 6350 &dealloc_rsrc->header.cfg_shdr.response)); 6351 rc = -EIO; 6352 goto out_free_mbox; 6353 } 6354 6355 /* Release kernel memory resources for the specific type. */ 6356 switch (type) { 6357 case LPFC_RSC_TYPE_FCOE_VPI: 6358 kfree(phba->vpi_bmask); 6359 kfree(phba->vpi_ids); 6360 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6361 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6362 &phba->lpfc_vpi_blk_list, list) { 6363 list_del_init(&rsrc_blk->list); 6364 kfree(rsrc_blk); 6365 } 6366 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6367 break; 6368 case LPFC_RSC_TYPE_FCOE_XRI: 6369 kfree(phba->sli4_hba.xri_bmask); 6370 kfree(phba->sli4_hba.xri_ids); 6371 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6372 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6373 list_del_init(&rsrc_blk->list); 6374 kfree(rsrc_blk); 6375 } 6376 break; 6377 case LPFC_RSC_TYPE_FCOE_VFI: 6378 kfree(phba->sli4_hba.vfi_bmask); 6379 kfree(phba->sli4_hba.vfi_ids); 6380 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6381 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6382 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6383 list_del_init(&rsrc_blk->list); 6384 kfree(rsrc_blk); 6385 } 6386 break; 6387 case LPFC_RSC_TYPE_FCOE_RPI: 6388 /* RPI bitmask and physical id array are cleaned up earlier. */ 6389 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6390 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6391 list_del_init(&rsrc_blk->list); 6392 kfree(rsrc_blk); 6393 } 6394 break; 6395 default: 6396 break; 6397 } 6398 6399 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6400 6401 out_free_mbox: 6402 mempool_free(mbox, phba->mbox_mem_pool); 6403 return rc; 6404 } 6405 6406 static void 6407 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6408 uint32_t feature) 6409 { 6410 uint32_t len; 6411 6412 len = sizeof(struct lpfc_mbx_set_feature) - 6413 sizeof(struct lpfc_sli4_cfg_mhdr); 6414 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6415 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6416 LPFC_SLI4_MBX_EMBED); 6417 6418 switch (feature) { 6419 case LPFC_SET_UE_RECOVERY: 6420 bf_set(lpfc_mbx_set_feature_UER, 6421 &mbox->u.mqe.un.set_feature, 1); 6422 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6423 mbox->u.mqe.un.set_feature.param_len = 8; 6424 break; 6425 case LPFC_SET_MDS_DIAGS: 6426 bf_set(lpfc_mbx_set_feature_mds, 6427 &mbox->u.mqe.un.set_feature, 1); 6428 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6429 &mbox->u.mqe.un.set_feature, 1); 6430 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6431 mbox->u.mqe.un.set_feature.param_len = 8; 6432 break; 6433 case LPFC_SET_DUAL_DUMP: 6434 bf_set(lpfc_mbx_set_feature_dd, 6435 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6436 bf_set(lpfc_mbx_set_feature_ddquery, 6437 &mbox->u.mqe.un.set_feature, 0); 6438 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6439 mbox->u.mqe.un.set_feature.param_len = 4; 6440 break; 6441 } 6442 6443 return; 6444 } 6445 6446 /** 6447 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6448 * @phba: Pointer to HBA context object. 6449 * 6450 * Disable FW logging into host memory on the adapter. To 6451 * be done before reading logs from the host memory. 6452 **/ 6453 void 6454 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6455 { 6456 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6457 6458 spin_lock_irq(&phba->hbalock); 6459 ras_fwlog->state = INACTIVE; 6460 spin_unlock_irq(&phba->hbalock); 6461 6462 /* Disable FW logging to host memory */ 6463 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6464 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6465 6466 /* Wait 10ms for firmware to stop using DMA buffer */ 6467 usleep_range(10 * 1000, 20 * 1000); 6468 } 6469 6470 /** 6471 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6472 * @phba: Pointer to HBA context object. 6473 * 6474 * This function is called to free memory allocated for RAS FW logging 6475 * support in the driver. 6476 **/ 6477 void 6478 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6479 { 6480 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6481 struct lpfc_dmabuf *dmabuf, *next; 6482 6483 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6484 list_for_each_entry_safe(dmabuf, next, 6485 &ras_fwlog->fwlog_buff_list, 6486 list) { 6487 list_del(&dmabuf->list); 6488 dma_free_coherent(&phba->pcidev->dev, 6489 LPFC_RAS_MAX_ENTRY_SIZE, 6490 dmabuf->virt, dmabuf->phys); 6491 kfree(dmabuf); 6492 } 6493 } 6494 6495 if (ras_fwlog->lwpd.virt) { 6496 dma_free_coherent(&phba->pcidev->dev, 6497 sizeof(uint32_t) * 2, 6498 ras_fwlog->lwpd.virt, 6499 ras_fwlog->lwpd.phys); 6500 ras_fwlog->lwpd.virt = NULL; 6501 } 6502 6503 spin_lock_irq(&phba->hbalock); 6504 ras_fwlog->state = INACTIVE; 6505 spin_unlock_irq(&phba->hbalock); 6506 } 6507 6508 /** 6509 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6510 * @phba: Pointer to HBA context object. 6511 * @fwlog_buff_count: Count of buffers to be created. 6512 * 6513 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6514 * to update FW log is posted to the adapter. 6515 * Buffer count is calculated based on module param ras_fwlog_buffsize 6516 * Size of each buffer posted to FW is 64K. 6517 **/ 6518 6519 static int 6520 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6521 uint32_t fwlog_buff_count) 6522 { 6523 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6524 struct lpfc_dmabuf *dmabuf; 6525 int rc = 0, i = 0; 6526 6527 /* Initialize List */ 6528 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6529 6530 /* Allocate memory for the LWPD */ 6531 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6532 sizeof(uint32_t) * 2, 6533 &ras_fwlog->lwpd.phys, 6534 GFP_KERNEL); 6535 if (!ras_fwlog->lwpd.virt) { 6536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6537 "6185 LWPD Memory Alloc Failed\n"); 6538 6539 return -ENOMEM; 6540 } 6541 6542 ras_fwlog->fw_buffcount = fwlog_buff_count; 6543 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6544 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6545 GFP_KERNEL); 6546 if (!dmabuf) { 6547 rc = -ENOMEM; 6548 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6549 "6186 Memory Alloc failed FW logging"); 6550 goto free_mem; 6551 } 6552 6553 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6554 LPFC_RAS_MAX_ENTRY_SIZE, 6555 &dmabuf->phys, GFP_KERNEL); 6556 if (!dmabuf->virt) { 6557 kfree(dmabuf); 6558 rc = -ENOMEM; 6559 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6560 "6187 DMA Alloc Failed FW logging"); 6561 goto free_mem; 6562 } 6563 dmabuf->buffer_tag = i; 6564 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6565 } 6566 6567 free_mem: 6568 if (rc) 6569 lpfc_sli4_ras_dma_free(phba); 6570 6571 return rc; 6572 } 6573 6574 /** 6575 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6576 * @phba: pointer to lpfc hba data structure. 6577 * @pmb: pointer to the driver internal queue element for mailbox command. 6578 * 6579 * Completion handler for driver's RAS MBX command to the device. 6580 **/ 6581 static void 6582 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6583 { 6584 MAILBOX_t *mb; 6585 union lpfc_sli4_cfg_shdr *shdr; 6586 uint32_t shdr_status, shdr_add_status; 6587 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6588 6589 mb = &pmb->u.mb; 6590 6591 shdr = (union lpfc_sli4_cfg_shdr *) 6592 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6593 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6594 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6595 6596 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6597 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6598 "6188 FW LOG mailbox " 6599 "completed with status x%x add_status x%x," 6600 " mbx status x%x\n", 6601 shdr_status, shdr_add_status, mb->mbxStatus); 6602 6603 ras_fwlog->ras_hwsupport = false; 6604 goto disable_ras; 6605 } 6606 6607 spin_lock_irq(&phba->hbalock); 6608 ras_fwlog->state = ACTIVE; 6609 spin_unlock_irq(&phba->hbalock); 6610 mempool_free(pmb, phba->mbox_mem_pool); 6611 6612 return; 6613 6614 disable_ras: 6615 /* Free RAS DMA memory */ 6616 lpfc_sli4_ras_dma_free(phba); 6617 mempool_free(pmb, phba->mbox_mem_pool); 6618 } 6619 6620 /** 6621 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6622 * @phba: pointer to lpfc hba data structure. 6623 * @fwlog_level: Logging verbosity level. 6624 * @fwlog_enable: Enable/Disable logging. 6625 * 6626 * Initialize memory and post mailbox command to enable FW logging in host 6627 * memory. 6628 **/ 6629 int 6630 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6631 uint32_t fwlog_level, 6632 uint32_t fwlog_enable) 6633 { 6634 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6635 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6636 struct lpfc_dmabuf *dmabuf; 6637 LPFC_MBOXQ_t *mbox; 6638 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6639 int rc = 0; 6640 6641 spin_lock_irq(&phba->hbalock); 6642 ras_fwlog->state = INACTIVE; 6643 spin_unlock_irq(&phba->hbalock); 6644 6645 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6646 phba->cfg_ras_fwlog_buffsize); 6647 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6648 6649 /* 6650 * If re-enabling FW logging support use earlier allocated 6651 * DMA buffers while posting MBX command. 6652 **/ 6653 if (!ras_fwlog->lwpd.virt) { 6654 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6655 if (rc) { 6656 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6657 "6189 FW Log Memory Allocation Failed"); 6658 return rc; 6659 } 6660 } 6661 6662 /* Setup Mailbox command */ 6663 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6664 if (!mbox) { 6665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6666 "6190 RAS MBX Alloc Failed"); 6667 rc = -ENOMEM; 6668 goto mem_free; 6669 } 6670 6671 ras_fwlog->fw_loglevel = fwlog_level; 6672 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6673 sizeof(struct lpfc_sli4_cfg_mhdr)); 6674 6675 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6676 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6677 len, LPFC_SLI4_MBX_EMBED); 6678 6679 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6680 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6681 fwlog_enable); 6682 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6683 ras_fwlog->fw_loglevel); 6684 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6685 ras_fwlog->fw_buffcount); 6686 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6687 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6688 6689 /* Update DMA buffer address */ 6690 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6691 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6692 6693 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6694 putPaddrLow(dmabuf->phys); 6695 6696 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6697 putPaddrHigh(dmabuf->phys); 6698 } 6699 6700 /* Update LPWD address */ 6701 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6702 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6703 6704 spin_lock_irq(&phba->hbalock); 6705 ras_fwlog->state = REG_INPROGRESS; 6706 spin_unlock_irq(&phba->hbalock); 6707 mbox->vport = phba->pport; 6708 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6709 6710 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6711 6712 if (rc == MBX_NOT_FINISHED) { 6713 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6714 "6191 FW-Log Mailbox failed. " 6715 "status %d mbxStatus : x%x", rc, 6716 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6717 mempool_free(mbox, phba->mbox_mem_pool); 6718 rc = -EIO; 6719 goto mem_free; 6720 } else 6721 rc = 0; 6722 mem_free: 6723 if (rc) 6724 lpfc_sli4_ras_dma_free(phba); 6725 6726 return rc; 6727 } 6728 6729 /** 6730 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6731 * @phba: Pointer to HBA context object. 6732 * 6733 * Check if RAS is supported on the adapter and initialize it. 6734 **/ 6735 void 6736 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6737 { 6738 /* Check RAS FW Log needs to be enabled or not */ 6739 if (lpfc_check_fwlog_support(phba)) 6740 return; 6741 6742 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6743 LPFC_RAS_ENABLE_LOGGING); 6744 } 6745 6746 /** 6747 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6748 * @phba: Pointer to HBA context object. 6749 * 6750 * This function allocates all SLI4 resource identifiers. 6751 **/ 6752 int 6753 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6754 { 6755 int i, rc, error = 0; 6756 uint16_t count, base; 6757 unsigned long longs; 6758 6759 if (!phba->sli4_hba.rpi_hdrs_in_use) 6760 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6761 if (phba->sli4_hba.extents_in_use) { 6762 /* 6763 * The port supports resource extents. The XRI, VPI, VFI, RPI 6764 * resource extent count must be read and allocated before 6765 * provisioning the resource id arrays. 6766 */ 6767 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6768 LPFC_IDX_RSRC_RDY) { 6769 /* 6770 * Extent-based resources are set - the driver could 6771 * be in a port reset. Figure out if any corrective 6772 * actions need to be taken. 6773 */ 6774 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6775 LPFC_RSC_TYPE_FCOE_VFI); 6776 if (rc != 0) 6777 error++; 6778 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6779 LPFC_RSC_TYPE_FCOE_VPI); 6780 if (rc != 0) 6781 error++; 6782 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6783 LPFC_RSC_TYPE_FCOE_XRI); 6784 if (rc != 0) 6785 error++; 6786 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6787 LPFC_RSC_TYPE_FCOE_RPI); 6788 if (rc != 0) 6789 error++; 6790 6791 /* 6792 * It's possible that the number of resources 6793 * provided to this port instance changed between 6794 * resets. Detect this condition and reallocate 6795 * resources. Otherwise, there is no action. 6796 */ 6797 if (error) { 6798 lpfc_printf_log(phba, KERN_INFO, 6799 LOG_MBOX | LOG_INIT, 6800 "2931 Detected extent resource " 6801 "change. Reallocating all " 6802 "extents.\n"); 6803 rc = lpfc_sli4_dealloc_extent(phba, 6804 LPFC_RSC_TYPE_FCOE_VFI); 6805 rc = lpfc_sli4_dealloc_extent(phba, 6806 LPFC_RSC_TYPE_FCOE_VPI); 6807 rc = lpfc_sli4_dealloc_extent(phba, 6808 LPFC_RSC_TYPE_FCOE_XRI); 6809 rc = lpfc_sli4_dealloc_extent(phba, 6810 LPFC_RSC_TYPE_FCOE_RPI); 6811 } else 6812 return 0; 6813 } 6814 6815 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6816 if (unlikely(rc)) 6817 goto err_exit; 6818 6819 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6820 if (unlikely(rc)) 6821 goto err_exit; 6822 6823 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6824 if (unlikely(rc)) 6825 goto err_exit; 6826 6827 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6828 if (unlikely(rc)) 6829 goto err_exit; 6830 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6831 LPFC_IDX_RSRC_RDY); 6832 return rc; 6833 } else { 6834 /* 6835 * The port does not support resource extents. The XRI, VPI, 6836 * VFI, RPI resource ids were determined from READ_CONFIG. 6837 * Just allocate the bitmasks and provision the resource id 6838 * arrays. If a port reset is active, the resources don't 6839 * need any action - just exit. 6840 */ 6841 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6842 LPFC_IDX_RSRC_RDY) { 6843 lpfc_sli4_dealloc_resource_identifiers(phba); 6844 lpfc_sli4_remove_rpis(phba); 6845 } 6846 /* RPIs. */ 6847 count = phba->sli4_hba.max_cfg_param.max_rpi; 6848 if (count <= 0) { 6849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6850 "3279 Invalid provisioning of " 6851 "rpi:%d\n", count); 6852 rc = -EINVAL; 6853 goto err_exit; 6854 } 6855 base = phba->sli4_hba.max_cfg_param.rpi_base; 6856 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6857 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6858 sizeof(unsigned long), 6859 GFP_KERNEL); 6860 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6861 rc = -ENOMEM; 6862 goto err_exit; 6863 } 6864 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6865 GFP_KERNEL); 6866 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6867 rc = -ENOMEM; 6868 goto free_rpi_bmask; 6869 } 6870 6871 for (i = 0; i < count; i++) 6872 phba->sli4_hba.rpi_ids[i] = base + i; 6873 6874 /* VPIs. */ 6875 count = phba->sli4_hba.max_cfg_param.max_vpi; 6876 if (count <= 0) { 6877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6878 "3280 Invalid provisioning of " 6879 "vpi:%d\n", count); 6880 rc = -EINVAL; 6881 goto free_rpi_ids; 6882 } 6883 base = phba->sli4_hba.max_cfg_param.vpi_base; 6884 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6885 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6886 GFP_KERNEL); 6887 if (unlikely(!phba->vpi_bmask)) { 6888 rc = -ENOMEM; 6889 goto free_rpi_ids; 6890 } 6891 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6892 GFP_KERNEL); 6893 if (unlikely(!phba->vpi_ids)) { 6894 rc = -ENOMEM; 6895 goto free_vpi_bmask; 6896 } 6897 6898 for (i = 0; i < count; i++) 6899 phba->vpi_ids[i] = base + i; 6900 6901 /* XRIs. */ 6902 count = phba->sli4_hba.max_cfg_param.max_xri; 6903 if (count <= 0) { 6904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6905 "3281 Invalid provisioning of " 6906 "xri:%d\n", count); 6907 rc = -EINVAL; 6908 goto free_vpi_ids; 6909 } 6910 base = phba->sli4_hba.max_cfg_param.xri_base; 6911 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6912 phba->sli4_hba.xri_bmask = kcalloc(longs, 6913 sizeof(unsigned long), 6914 GFP_KERNEL); 6915 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6916 rc = -ENOMEM; 6917 goto free_vpi_ids; 6918 } 6919 phba->sli4_hba.max_cfg_param.xri_used = 0; 6920 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6921 GFP_KERNEL); 6922 if (unlikely(!phba->sli4_hba.xri_ids)) { 6923 rc = -ENOMEM; 6924 goto free_xri_bmask; 6925 } 6926 6927 for (i = 0; i < count; i++) 6928 phba->sli4_hba.xri_ids[i] = base + i; 6929 6930 /* VFIs. */ 6931 count = phba->sli4_hba.max_cfg_param.max_vfi; 6932 if (count <= 0) { 6933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6934 "3282 Invalid provisioning of " 6935 "vfi:%d\n", count); 6936 rc = -EINVAL; 6937 goto free_xri_ids; 6938 } 6939 base = phba->sli4_hba.max_cfg_param.vfi_base; 6940 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6941 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6942 sizeof(unsigned long), 6943 GFP_KERNEL); 6944 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6945 rc = -ENOMEM; 6946 goto free_xri_ids; 6947 } 6948 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6949 GFP_KERNEL); 6950 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6951 rc = -ENOMEM; 6952 goto free_vfi_bmask; 6953 } 6954 6955 for (i = 0; i < count; i++) 6956 phba->sli4_hba.vfi_ids[i] = base + i; 6957 6958 /* 6959 * Mark all resources ready. An HBA reset doesn't need 6960 * to reset the initialization. 6961 */ 6962 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6963 LPFC_IDX_RSRC_RDY); 6964 return 0; 6965 } 6966 6967 free_vfi_bmask: 6968 kfree(phba->sli4_hba.vfi_bmask); 6969 phba->sli4_hba.vfi_bmask = NULL; 6970 free_xri_ids: 6971 kfree(phba->sli4_hba.xri_ids); 6972 phba->sli4_hba.xri_ids = NULL; 6973 free_xri_bmask: 6974 kfree(phba->sli4_hba.xri_bmask); 6975 phba->sli4_hba.xri_bmask = NULL; 6976 free_vpi_ids: 6977 kfree(phba->vpi_ids); 6978 phba->vpi_ids = NULL; 6979 free_vpi_bmask: 6980 kfree(phba->vpi_bmask); 6981 phba->vpi_bmask = NULL; 6982 free_rpi_ids: 6983 kfree(phba->sli4_hba.rpi_ids); 6984 phba->sli4_hba.rpi_ids = NULL; 6985 free_rpi_bmask: 6986 kfree(phba->sli4_hba.rpi_bmask); 6987 phba->sli4_hba.rpi_bmask = NULL; 6988 err_exit: 6989 return rc; 6990 } 6991 6992 /** 6993 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6994 * @phba: Pointer to HBA context object. 6995 * 6996 * This function allocates the number of elements for the specified 6997 * resource type. 6998 **/ 6999 int 7000 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7001 { 7002 if (phba->sli4_hba.extents_in_use) { 7003 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7004 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7005 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7006 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7007 } else { 7008 kfree(phba->vpi_bmask); 7009 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7010 kfree(phba->vpi_ids); 7011 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7012 kfree(phba->sli4_hba.xri_bmask); 7013 kfree(phba->sli4_hba.xri_ids); 7014 kfree(phba->sli4_hba.vfi_bmask); 7015 kfree(phba->sli4_hba.vfi_ids); 7016 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7017 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7018 } 7019 7020 return 0; 7021 } 7022 7023 /** 7024 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7025 * @phba: Pointer to HBA context object. 7026 * @type: The resource extent type. 7027 * @extnt_cnt: buffer to hold port extent count response 7028 * @extnt_size: buffer to hold port extent size response. 7029 * 7030 * This function calls the port to read the host allocated extents 7031 * for a particular type. 7032 **/ 7033 int 7034 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7035 uint16_t *extnt_cnt, uint16_t *extnt_size) 7036 { 7037 bool emb; 7038 int rc = 0; 7039 uint16_t curr_blks = 0; 7040 uint32_t req_len, emb_len; 7041 uint32_t alloc_len, mbox_tmo; 7042 struct list_head *blk_list_head; 7043 struct lpfc_rsrc_blks *rsrc_blk; 7044 LPFC_MBOXQ_t *mbox; 7045 void *virtaddr = NULL; 7046 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7047 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7048 union lpfc_sli4_cfg_shdr *shdr; 7049 7050 switch (type) { 7051 case LPFC_RSC_TYPE_FCOE_VPI: 7052 blk_list_head = &phba->lpfc_vpi_blk_list; 7053 break; 7054 case LPFC_RSC_TYPE_FCOE_XRI: 7055 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7056 break; 7057 case LPFC_RSC_TYPE_FCOE_VFI: 7058 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7059 break; 7060 case LPFC_RSC_TYPE_FCOE_RPI: 7061 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7062 break; 7063 default: 7064 return -EIO; 7065 } 7066 7067 /* Count the number of extents currently allocatd for this type. */ 7068 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7069 if (curr_blks == 0) { 7070 /* 7071 * The GET_ALLOCATED mailbox does not return the size, 7072 * just the count. The size should be just the size 7073 * stored in the current allocated block and all sizes 7074 * for an extent type are the same so set the return 7075 * value now. 7076 */ 7077 *extnt_size = rsrc_blk->rsrc_size; 7078 } 7079 curr_blks++; 7080 } 7081 7082 /* 7083 * Calculate the size of an embedded mailbox. The uint32_t 7084 * accounts for extents-specific word. 7085 */ 7086 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7087 sizeof(uint32_t); 7088 7089 /* 7090 * Presume the allocation and response will fit into an embedded 7091 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7092 */ 7093 emb = LPFC_SLI4_MBX_EMBED; 7094 req_len = emb_len; 7095 if (req_len > emb_len) { 7096 req_len = curr_blks * sizeof(uint16_t) + 7097 sizeof(union lpfc_sli4_cfg_shdr) + 7098 sizeof(uint32_t); 7099 emb = LPFC_SLI4_MBX_NEMBED; 7100 } 7101 7102 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7103 if (!mbox) 7104 return -ENOMEM; 7105 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7106 7107 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7108 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7109 req_len, emb); 7110 if (alloc_len < req_len) { 7111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7112 "2983 Allocated DMA memory size (x%x) is " 7113 "less than the requested DMA memory " 7114 "size (x%x)\n", alloc_len, req_len); 7115 rc = -ENOMEM; 7116 goto err_exit; 7117 } 7118 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7119 if (unlikely(rc)) { 7120 rc = -EIO; 7121 goto err_exit; 7122 } 7123 7124 if (!phba->sli4_hba.intr_enable) 7125 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7126 else { 7127 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7128 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7129 } 7130 7131 if (unlikely(rc)) { 7132 rc = -EIO; 7133 goto err_exit; 7134 } 7135 7136 /* 7137 * Figure out where the response is located. Then get local pointers 7138 * to the response data. The port does not guarantee to respond to 7139 * all extents counts request so update the local variable with the 7140 * allocated count from the port. 7141 */ 7142 if (emb == LPFC_SLI4_MBX_EMBED) { 7143 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7144 shdr = &rsrc_ext->header.cfg_shdr; 7145 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7146 } else { 7147 virtaddr = mbox->sge_array->addr[0]; 7148 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7149 shdr = &n_rsrc->cfg_shdr; 7150 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7151 } 7152 7153 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7155 "2984 Failed to read allocated resources " 7156 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7157 type, 7158 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7159 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7160 rc = -EIO; 7161 goto err_exit; 7162 } 7163 err_exit: 7164 lpfc_sli4_mbox_cmd_free(phba, mbox); 7165 return rc; 7166 } 7167 7168 /** 7169 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7170 * @phba: pointer to lpfc hba data structure. 7171 * @sgl_list: linked link of sgl buffers to post 7172 * @cnt: number of linked list buffers 7173 * 7174 * This routine walks the list of buffers that have been allocated and 7175 * repost them to the port by using SGL block post. This is needed after a 7176 * pci_function_reset/warm_start or start. It attempts to construct blocks 7177 * of buffer sgls which contains contiguous xris and uses the non-embedded 7178 * SGL block post mailbox commands to post them to the port. For single 7179 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7180 * mailbox command for posting. 7181 * 7182 * Returns: 0 = success, non-zero failure. 7183 **/ 7184 static int 7185 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7186 struct list_head *sgl_list, int cnt) 7187 { 7188 struct lpfc_sglq *sglq_entry = NULL; 7189 struct lpfc_sglq *sglq_entry_next = NULL; 7190 struct lpfc_sglq *sglq_entry_first = NULL; 7191 int status, total_cnt; 7192 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7193 int last_xritag = NO_XRI; 7194 LIST_HEAD(prep_sgl_list); 7195 LIST_HEAD(blck_sgl_list); 7196 LIST_HEAD(allc_sgl_list); 7197 LIST_HEAD(post_sgl_list); 7198 LIST_HEAD(free_sgl_list); 7199 7200 spin_lock_irq(&phba->hbalock); 7201 spin_lock(&phba->sli4_hba.sgl_list_lock); 7202 list_splice_init(sgl_list, &allc_sgl_list); 7203 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7204 spin_unlock_irq(&phba->hbalock); 7205 7206 total_cnt = cnt; 7207 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7208 &allc_sgl_list, list) { 7209 list_del_init(&sglq_entry->list); 7210 block_cnt++; 7211 if ((last_xritag != NO_XRI) && 7212 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7213 /* a hole in xri block, form a sgl posting block */ 7214 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7215 post_cnt = block_cnt - 1; 7216 /* prepare list for next posting block */ 7217 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7218 block_cnt = 1; 7219 } else { 7220 /* prepare list for next posting block */ 7221 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7222 /* enough sgls for non-embed sgl mbox command */ 7223 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7224 list_splice_init(&prep_sgl_list, 7225 &blck_sgl_list); 7226 post_cnt = block_cnt; 7227 block_cnt = 0; 7228 } 7229 } 7230 num_posted++; 7231 7232 /* keep track of last sgl's xritag */ 7233 last_xritag = sglq_entry->sli4_xritag; 7234 7235 /* end of repost sgl list condition for buffers */ 7236 if (num_posted == total_cnt) { 7237 if (post_cnt == 0) { 7238 list_splice_init(&prep_sgl_list, 7239 &blck_sgl_list); 7240 post_cnt = block_cnt; 7241 } else if (block_cnt == 1) { 7242 status = lpfc_sli4_post_sgl(phba, 7243 sglq_entry->phys, 0, 7244 sglq_entry->sli4_xritag); 7245 if (!status) { 7246 /* successful, put sgl to posted list */ 7247 list_add_tail(&sglq_entry->list, 7248 &post_sgl_list); 7249 } else { 7250 /* Failure, put sgl to free list */ 7251 lpfc_printf_log(phba, KERN_WARNING, 7252 LOG_SLI, 7253 "3159 Failed to post " 7254 "sgl, xritag:x%x\n", 7255 sglq_entry->sli4_xritag); 7256 list_add_tail(&sglq_entry->list, 7257 &free_sgl_list); 7258 total_cnt--; 7259 } 7260 } 7261 } 7262 7263 /* continue until a nembed page worth of sgls */ 7264 if (post_cnt == 0) 7265 continue; 7266 7267 /* post the buffer list sgls as a block */ 7268 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7269 post_cnt); 7270 7271 if (!status) { 7272 /* success, put sgl list to posted sgl list */ 7273 list_splice_init(&blck_sgl_list, &post_sgl_list); 7274 } else { 7275 /* Failure, put sgl list to free sgl list */ 7276 sglq_entry_first = list_first_entry(&blck_sgl_list, 7277 struct lpfc_sglq, 7278 list); 7279 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7280 "3160 Failed to post sgl-list, " 7281 "xritag:x%x-x%x\n", 7282 sglq_entry_first->sli4_xritag, 7283 (sglq_entry_first->sli4_xritag + 7284 post_cnt - 1)); 7285 list_splice_init(&blck_sgl_list, &free_sgl_list); 7286 total_cnt -= post_cnt; 7287 } 7288 7289 /* don't reset xirtag due to hole in xri block */ 7290 if (block_cnt == 0) 7291 last_xritag = NO_XRI; 7292 7293 /* reset sgl post count for next round of posting */ 7294 post_cnt = 0; 7295 } 7296 7297 /* free the sgls failed to post */ 7298 lpfc_free_sgl_list(phba, &free_sgl_list); 7299 7300 /* push sgls posted to the available list */ 7301 if (!list_empty(&post_sgl_list)) { 7302 spin_lock_irq(&phba->hbalock); 7303 spin_lock(&phba->sli4_hba.sgl_list_lock); 7304 list_splice_init(&post_sgl_list, sgl_list); 7305 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7306 spin_unlock_irq(&phba->hbalock); 7307 } else { 7308 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7309 "3161 Failure to post sgl to port.\n"); 7310 return -EIO; 7311 } 7312 7313 /* return the number of XRIs actually posted */ 7314 return total_cnt; 7315 } 7316 7317 /** 7318 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7319 * @phba: pointer to lpfc hba data structure. 7320 * 7321 * This routine walks the list of nvme buffers that have been allocated and 7322 * repost them to the port by using SGL block post. This is needed after a 7323 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7324 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7325 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7326 * 7327 * Returns: 0 = success, non-zero failure. 7328 **/ 7329 static int 7330 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7331 { 7332 LIST_HEAD(post_nblist); 7333 int num_posted, rc = 0; 7334 7335 /* get all NVME buffers need to repost to a local list */ 7336 lpfc_io_buf_flush(phba, &post_nblist); 7337 7338 /* post the list of nvme buffer sgls to port if available */ 7339 if (!list_empty(&post_nblist)) { 7340 num_posted = lpfc_sli4_post_io_sgl_list( 7341 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7342 /* failed to post any nvme buffer, return error */ 7343 if (num_posted == 0) 7344 rc = -EIO; 7345 } 7346 return rc; 7347 } 7348 7349 static void 7350 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7351 { 7352 uint32_t len; 7353 7354 len = sizeof(struct lpfc_mbx_set_host_data) - 7355 sizeof(struct lpfc_sli4_cfg_mhdr); 7356 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7357 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7358 LPFC_SLI4_MBX_EMBED); 7359 7360 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7361 mbox->u.mqe.un.set_host_data.param_len = 7362 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7363 snprintf(mbox->u.mqe.un.set_host_data.data, 7364 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7365 "Linux %s v"LPFC_DRIVER_VERSION, 7366 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7367 } 7368 7369 int 7370 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7371 struct lpfc_queue *drq, int count, int idx) 7372 { 7373 int rc, i; 7374 struct lpfc_rqe hrqe; 7375 struct lpfc_rqe drqe; 7376 struct lpfc_rqb *rqbp; 7377 unsigned long flags; 7378 struct rqb_dmabuf *rqb_buffer; 7379 LIST_HEAD(rqb_buf_list); 7380 7381 rqbp = hrq->rqbp; 7382 for (i = 0; i < count; i++) { 7383 spin_lock_irqsave(&phba->hbalock, flags); 7384 /* IF RQ is already full, don't bother */ 7385 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7386 spin_unlock_irqrestore(&phba->hbalock, flags); 7387 break; 7388 } 7389 spin_unlock_irqrestore(&phba->hbalock, flags); 7390 7391 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7392 if (!rqb_buffer) 7393 break; 7394 rqb_buffer->hrq = hrq; 7395 rqb_buffer->drq = drq; 7396 rqb_buffer->idx = idx; 7397 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7398 } 7399 7400 spin_lock_irqsave(&phba->hbalock, flags); 7401 while (!list_empty(&rqb_buf_list)) { 7402 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7403 hbuf.list); 7404 7405 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7406 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7407 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7408 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7409 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7410 if (rc < 0) { 7411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7412 "6421 Cannot post to HRQ %d: %x %x %x " 7413 "DRQ %x %x\n", 7414 hrq->queue_id, 7415 hrq->host_index, 7416 hrq->hba_index, 7417 hrq->entry_count, 7418 drq->host_index, 7419 drq->hba_index); 7420 rqbp->rqb_free_buffer(phba, rqb_buffer); 7421 } else { 7422 list_add_tail(&rqb_buffer->hbuf.list, 7423 &rqbp->rqb_buffer_list); 7424 rqbp->buffer_count++; 7425 } 7426 } 7427 spin_unlock_irqrestore(&phba->hbalock, flags); 7428 return 1; 7429 } 7430 7431 /** 7432 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7433 * @phba: pointer to lpfc hba data structure. 7434 * 7435 * This routine initializes the per-cq idle_stat to dynamically dictate 7436 * polling decisions. 7437 * 7438 * Return codes: 7439 * None 7440 **/ 7441 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7442 { 7443 int i; 7444 struct lpfc_sli4_hdw_queue *hdwq; 7445 struct lpfc_queue *cq; 7446 struct lpfc_idle_stat *idle_stat; 7447 u64 wall; 7448 7449 for_each_present_cpu(i) { 7450 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7451 cq = hdwq->io_cq; 7452 7453 /* Skip if we've already handled this cq's primary CPU */ 7454 if (cq->chann != i) 7455 continue; 7456 7457 idle_stat = &phba->sli4_hba.idle_stat[i]; 7458 7459 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7460 idle_stat->prev_wall = wall; 7461 7462 if (phba->nvmet_support) 7463 cq->poll_mode = LPFC_QUEUE_WORK; 7464 else 7465 cq->poll_mode = LPFC_IRQ_POLL; 7466 } 7467 7468 if (!phba->nvmet_support) 7469 schedule_delayed_work(&phba->idle_stat_delay_work, 7470 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7471 } 7472 7473 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7474 { 7475 uint32_t if_type; 7476 7477 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7478 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7479 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7480 struct lpfc_register reg_data; 7481 7482 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7483 ®_data.word0)) 7484 return; 7485 7486 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7487 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7488 "2904 Firmware Dump Image Present" 7489 " on Adapter"); 7490 } 7491 } 7492 7493 /** 7494 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7495 * @phba: Pointer to HBA context object. 7496 * 7497 * This function is the main SLI4 device initialization PCI function. This 7498 * function is called by the HBA initialization code, HBA reset code and 7499 * HBA error attention handler code. Caller is not required to hold any 7500 * locks. 7501 **/ 7502 int 7503 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7504 { 7505 int rc, i, cnt, len, dd; 7506 LPFC_MBOXQ_t *mboxq; 7507 struct lpfc_mqe *mqe; 7508 uint8_t *vpd; 7509 uint32_t vpd_size; 7510 uint32_t ftr_rsp = 0; 7511 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7512 struct lpfc_vport *vport = phba->pport; 7513 struct lpfc_dmabuf *mp; 7514 struct lpfc_rqb *rqbp; 7515 7516 /* Perform a PCI function reset to start from clean */ 7517 rc = lpfc_pci_function_reset(phba); 7518 if (unlikely(rc)) 7519 return -ENODEV; 7520 7521 /* Check the HBA Host Status Register for readyness */ 7522 rc = lpfc_sli4_post_status_check(phba); 7523 if (unlikely(rc)) 7524 return -ENODEV; 7525 else { 7526 spin_lock_irq(&phba->hbalock); 7527 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7528 spin_unlock_irq(&phba->hbalock); 7529 } 7530 7531 lpfc_sli4_dip(phba); 7532 7533 /* 7534 * Allocate a single mailbox container for initializing the 7535 * port. 7536 */ 7537 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7538 if (!mboxq) 7539 return -ENOMEM; 7540 7541 /* Issue READ_REV to collect vpd and FW information. */ 7542 vpd_size = SLI4_PAGE_SIZE; 7543 vpd = kzalloc(vpd_size, GFP_KERNEL); 7544 if (!vpd) { 7545 rc = -ENOMEM; 7546 goto out_free_mbox; 7547 } 7548 7549 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7550 if (unlikely(rc)) { 7551 kfree(vpd); 7552 goto out_free_mbox; 7553 } 7554 7555 mqe = &mboxq->u.mqe; 7556 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7557 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7558 phba->hba_flag |= HBA_FCOE_MODE; 7559 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7560 } else { 7561 phba->hba_flag &= ~HBA_FCOE_MODE; 7562 } 7563 7564 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7565 LPFC_DCBX_CEE_MODE) 7566 phba->hba_flag |= HBA_FIP_SUPPORT; 7567 else 7568 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7569 7570 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7571 7572 if (phba->sli_rev != LPFC_SLI_REV4) { 7573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7574 "0376 READ_REV Error. SLI Level %d " 7575 "FCoE enabled %d\n", 7576 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7577 rc = -EIO; 7578 kfree(vpd); 7579 goto out_free_mbox; 7580 } 7581 7582 /* 7583 * Continue initialization with default values even if driver failed 7584 * to read FCoE param config regions, only read parameters if the 7585 * board is FCoE 7586 */ 7587 if (phba->hba_flag & HBA_FCOE_MODE && 7588 lpfc_sli4_read_fcoe_params(phba)) 7589 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7590 "2570 Failed to read FCoE parameters\n"); 7591 7592 /* 7593 * Retrieve sli4 device physical port name, failure of doing it 7594 * is considered as non-fatal. 7595 */ 7596 rc = lpfc_sli4_retrieve_pport_name(phba); 7597 if (!rc) 7598 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7599 "3080 Successful retrieving SLI4 device " 7600 "physical port name: %s.\n", phba->Port); 7601 7602 rc = lpfc_sli4_get_ctl_attr(phba); 7603 if (!rc) 7604 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7605 "8351 Successful retrieving SLI4 device " 7606 "CTL ATTR\n"); 7607 7608 /* 7609 * Evaluate the read rev and vpd data. Populate the driver 7610 * state with the results. If this routine fails, the failure 7611 * is not fatal as the driver will use generic values. 7612 */ 7613 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7614 if (unlikely(!rc)) { 7615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7616 "0377 Error %d parsing vpd. " 7617 "Using defaults.\n", rc); 7618 rc = 0; 7619 } 7620 kfree(vpd); 7621 7622 /* Save information as VPD data */ 7623 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7624 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7625 7626 /* 7627 * This is because first G7 ASIC doesn't support the standard 7628 * 0x5a NVME cmd descriptor type/subtype 7629 */ 7630 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7631 LPFC_SLI_INTF_IF_TYPE_6) && 7632 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7633 (phba->vpd.rev.smRev == 0) && 7634 (phba->cfg_nvme_embed_cmd == 1)) 7635 phba->cfg_nvme_embed_cmd = 0; 7636 7637 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7638 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7639 &mqe->un.read_rev); 7640 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7641 &mqe->un.read_rev); 7642 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7643 &mqe->un.read_rev); 7644 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7645 &mqe->un.read_rev); 7646 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7647 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7648 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7649 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7650 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7651 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7652 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7653 "(%d):0380 READ_REV Status x%x " 7654 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7655 mboxq->vport ? mboxq->vport->vpi : 0, 7656 bf_get(lpfc_mqe_status, mqe), 7657 phba->vpd.rev.opFwName, 7658 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7659 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7660 7661 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7662 LPFC_SLI_INTF_IF_TYPE_0) { 7663 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7664 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7665 if (rc == MBX_SUCCESS) { 7666 phba->hba_flag |= HBA_RECOVERABLE_UE; 7667 /* Set 1Sec interval to detect UE */ 7668 phba->eratt_poll_interval = 1; 7669 phba->sli4_hba.ue_to_sr = bf_get( 7670 lpfc_mbx_set_feature_UESR, 7671 &mboxq->u.mqe.un.set_feature); 7672 phba->sli4_hba.ue_to_rp = bf_get( 7673 lpfc_mbx_set_feature_UERP, 7674 &mboxq->u.mqe.un.set_feature); 7675 } 7676 } 7677 7678 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7679 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7680 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7681 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7682 if (rc != MBX_SUCCESS) 7683 phba->mds_diags_support = 0; 7684 } 7685 7686 /* 7687 * Discover the port's supported feature set and match it against the 7688 * hosts requests. 7689 */ 7690 lpfc_request_features(phba, mboxq); 7691 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7692 if (unlikely(rc)) { 7693 rc = -EIO; 7694 goto out_free_mbox; 7695 } 7696 7697 /* 7698 * The port must support FCP initiator mode as this is the 7699 * only mode running in the host. 7700 */ 7701 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7702 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7703 "0378 No support for fcpi mode.\n"); 7704 ftr_rsp++; 7705 } 7706 7707 /* Performance Hints are ONLY for FCoE */ 7708 if (phba->hba_flag & HBA_FCOE_MODE) { 7709 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7710 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7711 else 7712 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7713 } 7714 7715 /* 7716 * If the port cannot support the host's requested features 7717 * then turn off the global config parameters to disable the 7718 * feature in the driver. This is not a fatal error. 7719 */ 7720 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7721 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7722 phba->cfg_enable_bg = 0; 7723 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7724 ftr_rsp++; 7725 } 7726 } 7727 7728 if (phba->max_vpi && phba->cfg_enable_npiv && 7729 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7730 ftr_rsp++; 7731 7732 if (ftr_rsp) { 7733 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7734 "0379 Feature Mismatch Data: x%08x %08x " 7735 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7736 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7737 phba->cfg_enable_npiv, phba->max_vpi); 7738 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7739 phba->cfg_enable_bg = 0; 7740 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7741 phba->cfg_enable_npiv = 0; 7742 } 7743 7744 /* These SLI3 features are assumed in SLI4 */ 7745 spin_lock_irq(&phba->hbalock); 7746 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7747 spin_unlock_irq(&phba->hbalock); 7748 7749 /* Always try to enable dual dump feature if we can */ 7750 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7751 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7752 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7753 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7754 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7755 "6448 Dual Dump is enabled\n"); 7756 else 7757 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7758 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7759 "rc:x%x dd:x%x\n", 7760 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7761 lpfc_sli_config_mbox_subsys_get( 7762 phba, mboxq), 7763 lpfc_sli_config_mbox_opcode_get( 7764 phba, mboxq), 7765 rc, dd); 7766 /* 7767 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7768 * calls depends on these resources to complete port setup. 7769 */ 7770 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7771 if (rc) { 7772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7773 "2920 Failed to alloc Resource IDs " 7774 "rc = x%x\n", rc); 7775 goto out_free_mbox; 7776 } 7777 7778 lpfc_set_host_data(phba, mboxq); 7779 7780 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7781 if (rc) { 7782 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7783 "2134 Failed to set host os driver version %x", 7784 rc); 7785 } 7786 7787 /* Read the port's service parameters. */ 7788 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7789 if (rc) { 7790 phba->link_state = LPFC_HBA_ERROR; 7791 rc = -ENOMEM; 7792 goto out_free_mbox; 7793 } 7794 7795 mboxq->vport = vport; 7796 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7797 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7798 if (rc == MBX_SUCCESS) { 7799 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7800 rc = 0; 7801 } 7802 7803 /* 7804 * This memory was allocated by the lpfc_read_sparam routine. Release 7805 * it to the mbuf pool. 7806 */ 7807 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7808 kfree(mp); 7809 mboxq->ctx_buf = NULL; 7810 if (unlikely(rc)) { 7811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7812 "0382 READ_SPARAM command failed " 7813 "status %d, mbxStatus x%x\n", 7814 rc, bf_get(lpfc_mqe_status, mqe)); 7815 phba->link_state = LPFC_HBA_ERROR; 7816 rc = -EIO; 7817 goto out_free_mbox; 7818 } 7819 7820 lpfc_update_vport_wwn(vport); 7821 7822 /* Update the fc_host data structures with new wwn. */ 7823 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7824 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7825 7826 /* Create all the SLI4 queues */ 7827 rc = lpfc_sli4_queue_create(phba); 7828 if (rc) { 7829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7830 "3089 Failed to allocate queues\n"); 7831 rc = -ENODEV; 7832 goto out_free_mbox; 7833 } 7834 /* Set up all the queues to the device */ 7835 rc = lpfc_sli4_queue_setup(phba); 7836 if (unlikely(rc)) { 7837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7838 "0381 Error %d during queue setup.\n ", rc); 7839 goto out_stop_timers; 7840 } 7841 /* Initialize the driver internal SLI layer lists. */ 7842 lpfc_sli4_setup(phba); 7843 lpfc_sli4_queue_init(phba); 7844 7845 /* update host els xri-sgl sizes and mappings */ 7846 rc = lpfc_sli4_els_sgl_update(phba); 7847 if (unlikely(rc)) { 7848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7849 "1400 Failed to update xri-sgl size and " 7850 "mapping: %d\n", rc); 7851 goto out_destroy_queue; 7852 } 7853 7854 /* register the els sgl pool to the port */ 7855 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7856 phba->sli4_hba.els_xri_cnt); 7857 if (unlikely(rc < 0)) { 7858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7859 "0582 Error %d during els sgl post " 7860 "operation\n", rc); 7861 rc = -ENODEV; 7862 goto out_destroy_queue; 7863 } 7864 phba->sli4_hba.els_xri_cnt = rc; 7865 7866 if (phba->nvmet_support) { 7867 /* update host nvmet xri-sgl sizes and mappings */ 7868 rc = lpfc_sli4_nvmet_sgl_update(phba); 7869 if (unlikely(rc)) { 7870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7871 "6308 Failed to update nvmet-sgl size " 7872 "and mapping: %d\n", rc); 7873 goto out_destroy_queue; 7874 } 7875 7876 /* register the nvmet sgl pool to the port */ 7877 rc = lpfc_sli4_repost_sgl_list( 7878 phba, 7879 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7880 phba->sli4_hba.nvmet_xri_cnt); 7881 if (unlikely(rc < 0)) { 7882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7883 "3117 Error %d during nvmet " 7884 "sgl post\n", rc); 7885 rc = -ENODEV; 7886 goto out_destroy_queue; 7887 } 7888 phba->sli4_hba.nvmet_xri_cnt = rc; 7889 7890 /* We allocate an iocbq for every receive context SGL. 7891 * The additional allocation is for abort and ls handling. 7892 */ 7893 cnt = phba->sli4_hba.nvmet_xri_cnt + 7894 phba->sli4_hba.max_cfg_param.max_xri; 7895 } else { 7896 /* update host common xri-sgl sizes and mappings */ 7897 rc = lpfc_sli4_io_sgl_update(phba); 7898 if (unlikely(rc)) { 7899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7900 "6082 Failed to update nvme-sgl size " 7901 "and mapping: %d\n", rc); 7902 goto out_destroy_queue; 7903 } 7904 7905 /* register the allocated common sgl pool to the port */ 7906 rc = lpfc_sli4_repost_io_sgl_list(phba); 7907 if (unlikely(rc)) { 7908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7909 "6116 Error %d during nvme sgl post " 7910 "operation\n", rc); 7911 /* Some NVME buffers were moved to abort nvme list */ 7912 /* A pci function reset will repost them */ 7913 rc = -ENODEV; 7914 goto out_destroy_queue; 7915 } 7916 /* Each lpfc_io_buf job structure has an iocbq element. 7917 * This cnt provides for abort, els, ct and ls requests. 7918 */ 7919 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7920 } 7921 7922 if (!phba->sli.iocbq_lookup) { 7923 /* Initialize and populate the iocb list per host */ 7924 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7925 "2821 initialize iocb list with %d entries\n", 7926 cnt); 7927 rc = lpfc_init_iocb_list(phba, cnt); 7928 if (rc) { 7929 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7930 "1413 Failed to init iocb list.\n"); 7931 goto out_destroy_queue; 7932 } 7933 } 7934 7935 if (phba->nvmet_support) 7936 lpfc_nvmet_create_targetport(phba); 7937 7938 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7939 /* Post initial buffers to all RQs created */ 7940 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7941 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7942 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7943 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7944 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7945 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7946 rqbp->buffer_count = 0; 7947 7948 lpfc_post_rq_buffer( 7949 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7950 phba->sli4_hba.nvmet_mrq_data[i], 7951 phba->cfg_nvmet_mrq_post, i); 7952 } 7953 } 7954 7955 /* Post the rpi header region to the device. */ 7956 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7957 if (unlikely(rc)) { 7958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7959 "0393 Error %d during rpi post operation\n", 7960 rc); 7961 rc = -ENODEV; 7962 goto out_destroy_queue; 7963 } 7964 lpfc_sli4_node_prep(phba); 7965 7966 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7967 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7968 /* 7969 * The FC Port needs to register FCFI (index 0) 7970 */ 7971 lpfc_reg_fcfi(phba, mboxq); 7972 mboxq->vport = phba->pport; 7973 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7974 if (rc != MBX_SUCCESS) 7975 goto out_unset_queue; 7976 rc = 0; 7977 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7978 &mboxq->u.mqe.un.reg_fcfi); 7979 } else { 7980 /* We are a NVME Target mode with MRQ > 1 */ 7981 7982 /* First register the FCFI */ 7983 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7984 mboxq->vport = phba->pport; 7985 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7986 if (rc != MBX_SUCCESS) 7987 goto out_unset_queue; 7988 rc = 0; 7989 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7990 &mboxq->u.mqe.un.reg_fcfi_mrq); 7991 7992 /* Next register the MRQs */ 7993 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7994 mboxq->vport = phba->pport; 7995 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7996 if (rc != MBX_SUCCESS) 7997 goto out_unset_queue; 7998 rc = 0; 7999 } 8000 /* Check if the port is configured to be disabled */ 8001 lpfc_sli_read_link_ste(phba); 8002 } 8003 8004 /* Don't post more new bufs if repost already recovered 8005 * the nvme sgls. 8006 */ 8007 if (phba->nvmet_support == 0) { 8008 if (phba->sli4_hba.io_xri_cnt == 0) { 8009 len = lpfc_new_io_buf( 8010 phba, phba->sli4_hba.io_xri_max); 8011 if (len == 0) { 8012 rc = -ENOMEM; 8013 goto out_unset_queue; 8014 } 8015 8016 if (phba->cfg_xri_rebalancing) 8017 lpfc_create_multixri_pools(phba); 8018 } 8019 } else { 8020 phba->cfg_xri_rebalancing = 0; 8021 } 8022 8023 /* Allow asynchronous mailbox command to go through */ 8024 spin_lock_irq(&phba->hbalock); 8025 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8026 spin_unlock_irq(&phba->hbalock); 8027 8028 /* Post receive buffers to the device */ 8029 lpfc_sli4_rb_setup(phba); 8030 8031 /* Reset HBA FCF states after HBA reset */ 8032 phba->fcf.fcf_flag = 0; 8033 phba->fcf.current_rec.flag = 0; 8034 8035 /* Start the ELS watchdog timer */ 8036 mod_timer(&vport->els_tmofunc, 8037 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8038 8039 /* Start heart beat timer */ 8040 mod_timer(&phba->hb_tmofunc, 8041 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8042 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8043 phba->last_completion_time = jiffies; 8044 8045 /* start eq_delay heartbeat */ 8046 if (phba->cfg_auto_imax) 8047 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8048 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8049 8050 /* start per phba idle_stat_delay heartbeat */ 8051 lpfc_init_idle_stat_hb(phba); 8052 8053 /* Start error attention (ERATT) polling timer */ 8054 mod_timer(&phba->eratt_poll, 8055 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8056 8057 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8058 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8059 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8060 if (!rc) { 8061 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8062 "2829 This device supports " 8063 "Advanced Error Reporting (AER)\n"); 8064 spin_lock_irq(&phba->hbalock); 8065 phba->hba_flag |= HBA_AER_ENABLED; 8066 spin_unlock_irq(&phba->hbalock); 8067 } else { 8068 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8069 "2830 This device does not support " 8070 "Advanced Error Reporting (AER)\n"); 8071 phba->cfg_aer_support = 0; 8072 } 8073 rc = 0; 8074 } 8075 8076 /* 8077 * The port is ready, set the host's link state to LINK_DOWN 8078 * in preparation for link interrupts. 8079 */ 8080 spin_lock_irq(&phba->hbalock); 8081 phba->link_state = LPFC_LINK_DOWN; 8082 8083 /* Check if physical ports are trunked */ 8084 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8085 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8086 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8087 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8088 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8089 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8090 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8091 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8092 spin_unlock_irq(&phba->hbalock); 8093 8094 /* Arm the CQs and then EQs on device */ 8095 lpfc_sli4_arm_cqeq_intr(phba); 8096 8097 /* Indicate device interrupt mode */ 8098 phba->sli4_hba.intr_enable = 1; 8099 8100 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8101 (phba->hba_flag & LINK_DISABLED)) { 8102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8103 "3103 Adapter Link is disabled.\n"); 8104 lpfc_down_link(phba, mboxq); 8105 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8106 if (rc != MBX_SUCCESS) { 8107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8108 "3104 Adapter failed to issue " 8109 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8110 goto out_io_buff_free; 8111 } 8112 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8113 /* don't perform init_link on SLI4 FC port loopback test */ 8114 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8115 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8116 if (rc) 8117 goto out_io_buff_free; 8118 } 8119 } 8120 mempool_free(mboxq, phba->mbox_mem_pool); 8121 return rc; 8122 out_io_buff_free: 8123 /* Free allocated IO Buffers */ 8124 lpfc_io_free(phba); 8125 out_unset_queue: 8126 /* Unset all the queues set up in this routine when error out */ 8127 lpfc_sli4_queue_unset(phba); 8128 out_destroy_queue: 8129 lpfc_free_iocb_list(phba); 8130 lpfc_sli4_queue_destroy(phba); 8131 out_stop_timers: 8132 lpfc_stop_hba_timers(phba); 8133 out_free_mbox: 8134 mempool_free(mboxq, phba->mbox_mem_pool); 8135 return rc; 8136 } 8137 8138 /** 8139 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8140 * @t: Context to fetch pointer to hba structure from. 8141 * 8142 * This is the callback function for mailbox timer. The mailbox 8143 * timer is armed when a new mailbox command is issued and the timer 8144 * is deleted when the mailbox complete. The function is called by 8145 * the kernel timer code when a mailbox does not complete within 8146 * expected time. This function wakes up the worker thread to 8147 * process the mailbox timeout and returns. All the processing is 8148 * done by the worker thread function lpfc_mbox_timeout_handler. 8149 **/ 8150 void 8151 lpfc_mbox_timeout(struct timer_list *t) 8152 { 8153 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8154 unsigned long iflag; 8155 uint32_t tmo_posted; 8156 8157 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8158 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8159 if (!tmo_posted) 8160 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8161 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8162 8163 if (!tmo_posted) 8164 lpfc_worker_wake_up(phba); 8165 return; 8166 } 8167 8168 /** 8169 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8170 * are pending 8171 * @phba: Pointer to HBA context object. 8172 * 8173 * This function checks if any mailbox completions are present on the mailbox 8174 * completion queue. 8175 **/ 8176 static bool 8177 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8178 { 8179 8180 uint32_t idx; 8181 struct lpfc_queue *mcq; 8182 struct lpfc_mcqe *mcqe; 8183 bool pending_completions = false; 8184 uint8_t qe_valid; 8185 8186 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8187 return false; 8188 8189 /* Check for completions on mailbox completion queue */ 8190 8191 mcq = phba->sli4_hba.mbx_cq; 8192 idx = mcq->hba_index; 8193 qe_valid = mcq->qe_valid; 8194 while (bf_get_le32(lpfc_cqe_valid, 8195 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8196 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8197 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8198 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8199 pending_completions = true; 8200 break; 8201 } 8202 idx = (idx + 1) % mcq->entry_count; 8203 if (mcq->hba_index == idx) 8204 break; 8205 8206 /* if the index wrapped around, toggle the valid bit */ 8207 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8208 qe_valid = (qe_valid) ? 0 : 1; 8209 } 8210 return pending_completions; 8211 8212 } 8213 8214 /** 8215 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8216 * that were missed. 8217 * @phba: Pointer to HBA context object. 8218 * 8219 * For sli4, it is possible to miss an interrupt. As such mbox completions 8220 * maybe missed causing erroneous mailbox timeouts to occur. This function 8221 * checks to see if mbox completions are on the mailbox completion queue 8222 * and will process all the completions associated with the eq for the 8223 * mailbox completion queue. 8224 **/ 8225 static bool 8226 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8227 { 8228 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8229 uint32_t eqidx; 8230 struct lpfc_queue *fpeq = NULL; 8231 struct lpfc_queue *eq; 8232 bool mbox_pending; 8233 8234 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8235 return false; 8236 8237 /* Find the EQ associated with the mbox CQ */ 8238 if (sli4_hba->hdwq) { 8239 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8240 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8241 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8242 fpeq = eq; 8243 break; 8244 } 8245 } 8246 } 8247 if (!fpeq) 8248 return false; 8249 8250 /* Turn off interrupts from this EQ */ 8251 8252 sli4_hba->sli4_eq_clr_intr(fpeq); 8253 8254 /* Check to see if a mbox completion is pending */ 8255 8256 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8257 8258 /* 8259 * If a mbox completion is pending, process all the events on EQ 8260 * associated with the mbox completion queue (this could include 8261 * mailbox commands, async events, els commands, receive queue data 8262 * and fcp commands) 8263 */ 8264 8265 if (mbox_pending) 8266 /* process and rearm the EQ */ 8267 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8268 else 8269 /* Always clear and re-arm the EQ */ 8270 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8271 8272 return mbox_pending; 8273 8274 } 8275 8276 /** 8277 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8278 * @phba: Pointer to HBA context object. 8279 * 8280 * This function is called from worker thread when a mailbox command times out. 8281 * The caller is not required to hold any locks. This function will reset the 8282 * HBA and recover all the pending commands. 8283 **/ 8284 void 8285 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8286 { 8287 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8288 MAILBOX_t *mb = NULL; 8289 8290 struct lpfc_sli *psli = &phba->sli; 8291 8292 /* If the mailbox completed, process the completion */ 8293 lpfc_sli4_process_missed_mbox_completions(phba); 8294 8295 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8296 return; 8297 8298 if (pmbox != NULL) 8299 mb = &pmbox->u.mb; 8300 /* Check the pmbox pointer first. There is a race condition 8301 * between the mbox timeout handler getting executed in the 8302 * worklist and the mailbox actually completing. When this 8303 * race condition occurs, the mbox_active will be NULL. 8304 */ 8305 spin_lock_irq(&phba->hbalock); 8306 if (pmbox == NULL) { 8307 lpfc_printf_log(phba, KERN_WARNING, 8308 LOG_MBOX | LOG_SLI, 8309 "0353 Active Mailbox cleared - mailbox timeout " 8310 "exiting\n"); 8311 spin_unlock_irq(&phba->hbalock); 8312 return; 8313 } 8314 8315 /* Mbox cmd <mbxCommand> timeout */ 8316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8317 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8318 mb->mbxCommand, 8319 phba->pport->port_state, 8320 phba->sli.sli_flag, 8321 phba->sli.mbox_active); 8322 spin_unlock_irq(&phba->hbalock); 8323 8324 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8325 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8326 * it to fail all outstanding SCSI IO. 8327 */ 8328 spin_lock_irq(&phba->pport->work_port_lock); 8329 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8330 spin_unlock_irq(&phba->pport->work_port_lock); 8331 spin_lock_irq(&phba->hbalock); 8332 phba->link_state = LPFC_LINK_UNKNOWN; 8333 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8334 spin_unlock_irq(&phba->hbalock); 8335 8336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8337 "0345 Resetting board due to mailbox timeout\n"); 8338 8339 /* Reset the HBA device */ 8340 lpfc_reset_hba(phba); 8341 } 8342 8343 /** 8344 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8345 * @phba: Pointer to HBA context object. 8346 * @pmbox: Pointer to mailbox object. 8347 * @flag: Flag indicating how the mailbox need to be processed. 8348 * 8349 * This function is called by discovery code and HBA management code 8350 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8351 * function gets the hbalock to protect the data structures. 8352 * The mailbox command can be submitted in polling mode, in which case 8353 * this function will wait in a polling loop for the completion of the 8354 * mailbox. 8355 * If the mailbox is submitted in no_wait mode (not polling) the 8356 * function will submit the command and returns immediately without waiting 8357 * for the mailbox completion. The no_wait is supported only when HBA 8358 * is in SLI2/SLI3 mode - interrupts are enabled. 8359 * The SLI interface allows only one mailbox pending at a time. If the 8360 * mailbox is issued in polling mode and there is already a mailbox 8361 * pending, then the function will return an error. If the mailbox is issued 8362 * in NO_WAIT mode and there is a mailbox pending already, the function 8363 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8364 * The sli layer owns the mailbox object until the completion of mailbox 8365 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8366 * return codes the caller owns the mailbox command after the return of 8367 * the function. 8368 **/ 8369 static int 8370 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8371 uint32_t flag) 8372 { 8373 MAILBOX_t *mbx; 8374 struct lpfc_sli *psli = &phba->sli; 8375 uint32_t status, evtctr; 8376 uint32_t ha_copy, hc_copy; 8377 int i; 8378 unsigned long timeout; 8379 unsigned long drvr_flag = 0; 8380 uint32_t word0, ldata; 8381 void __iomem *to_slim; 8382 int processing_queue = 0; 8383 8384 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8385 if (!pmbox) { 8386 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8387 /* processing mbox queue from intr_handler */ 8388 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8389 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8390 return MBX_SUCCESS; 8391 } 8392 processing_queue = 1; 8393 pmbox = lpfc_mbox_get(phba); 8394 if (!pmbox) { 8395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8396 return MBX_SUCCESS; 8397 } 8398 } 8399 8400 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8401 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8402 if(!pmbox->vport) { 8403 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8404 lpfc_printf_log(phba, KERN_ERR, 8405 LOG_MBOX | LOG_VPORT, 8406 "1806 Mbox x%x failed. No vport\n", 8407 pmbox->u.mb.mbxCommand); 8408 dump_stack(); 8409 goto out_not_finished; 8410 } 8411 } 8412 8413 /* If the PCI channel is in offline state, do not post mbox. */ 8414 if (unlikely(pci_channel_offline(phba->pcidev))) { 8415 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8416 goto out_not_finished; 8417 } 8418 8419 /* If HBA has a deferred error attention, fail the iocb. */ 8420 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8422 goto out_not_finished; 8423 } 8424 8425 psli = &phba->sli; 8426 8427 mbx = &pmbox->u.mb; 8428 status = MBX_SUCCESS; 8429 8430 if (phba->link_state == LPFC_HBA_ERROR) { 8431 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8432 8433 /* Mbox command <mbxCommand> cannot issue */ 8434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8435 "(%d):0311 Mailbox command x%x cannot " 8436 "issue Data: x%x x%x\n", 8437 pmbox->vport ? pmbox->vport->vpi : 0, 8438 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8439 goto out_not_finished; 8440 } 8441 8442 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8443 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8444 !(hc_copy & HC_MBINT_ENA)) { 8445 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8447 "(%d):2528 Mailbox command x%x cannot " 8448 "issue Data: x%x x%x\n", 8449 pmbox->vport ? pmbox->vport->vpi : 0, 8450 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8451 goto out_not_finished; 8452 } 8453 } 8454 8455 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8456 /* Polling for a mbox command when another one is already active 8457 * is not allowed in SLI. Also, the driver must have established 8458 * SLI2 mode to queue and process multiple mbox commands. 8459 */ 8460 8461 if (flag & MBX_POLL) { 8462 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8463 8464 /* Mbox command <mbxCommand> cannot issue */ 8465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8466 "(%d):2529 Mailbox command x%x " 8467 "cannot issue Data: x%x x%x\n", 8468 pmbox->vport ? pmbox->vport->vpi : 0, 8469 pmbox->u.mb.mbxCommand, 8470 psli->sli_flag, flag); 8471 goto out_not_finished; 8472 } 8473 8474 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8475 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8476 /* Mbox command <mbxCommand> cannot issue */ 8477 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8478 "(%d):2530 Mailbox command x%x " 8479 "cannot issue Data: x%x x%x\n", 8480 pmbox->vport ? pmbox->vport->vpi : 0, 8481 pmbox->u.mb.mbxCommand, 8482 psli->sli_flag, flag); 8483 goto out_not_finished; 8484 } 8485 8486 /* Another mailbox command is still being processed, queue this 8487 * command to be processed later. 8488 */ 8489 lpfc_mbox_put(phba, pmbox); 8490 8491 /* Mbox cmd issue - BUSY */ 8492 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8493 "(%d):0308 Mbox cmd issue - BUSY Data: " 8494 "x%x x%x x%x x%x\n", 8495 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8496 mbx->mbxCommand, 8497 phba->pport ? phba->pport->port_state : 0xff, 8498 psli->sli_flag, flag); 8499 8500 psli->slistat.mbox_busy++; 8501 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8502 8503 if (pmbox->vport) { 8504 lpfc_debugfs_disc_trc(pmbox->vport, 8505 LPFC_DISC_TRC_MBOX_VPORT, 8506 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8507 (uint32_t)mbx->mbxCommand, 8508 mbx->un.varWords[0], mbx->un.varWords[1]); 8509 } 8510 else { 8511 lpfc_debugfs_disc_trc(phba->pport, 8512 LPFC_DISC_TRC_MBOX, 8513 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8514 (uint32_t)mbx->mbxCommand, 8515 mbx->un.varWords[0], mbx->un.varWords[1]); 8516 } 8517 8518 return MBX_BUSY; 8519 } 8520 8521 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8522 8523 /* If we are not polling, we MUST be in SLI2 mode */ 8524 if (flag != MBX_POLL) { 8525 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8526 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8527 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8528 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8529 /* Mbox command <mbxCommand> cannot issue */ 8530 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8531 "(%d):2531 Mailbox command x%x " 8532 "cannot issue Data: x%x x%x\n", 8533 pmbox->vport ? pmbox->vport->vpi : 0, 8534 pmbox->u.mb.mbxCommand, 8535 psli->sli_flag, flag); 8536 goto out_not_finished; 8537 } 8538 /* timeout active mbox command */ 8539 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8540 1000); 8541 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8542 } 8543 8544 /* Mailbox cmd <cmd> issue */ 8545 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8546 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8547 "x%x\n", 8548 pmbox->vport ? pmbox->vport->vpi : 0, 8549 mbx->mbxCommand, 8550 phba->pport ? phba->pport->port_state : 0xff, 8551 psli->sli_flag, flag); 8552 8553 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8554 if (pmbox->vport) { 8555 lpfc_debugfs_disc_trc(pmbox->vport, 8556 LPFC_DISC_TRC_MBOX_VPORT, 8557 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8558 (uint32_t)mbx->mbxCommand, 8559 mbx->un.varWords[0], mbx->un.varWords[1]); 8560 } 8561 else { 8562 lpfc_debugfs_disc_trc(phba->pport, 8563 LPFC_DISC_TRC_MBOX, 8564 "MBOX Send: cmd:x%x mb:x%x x%x", 8565 (uint32_t)mbx->mbxCommand, 8566 mbx->un.varWords[0], mbx->un.varWords[1]); 8567 } 8568 } 8569 8570 psli->slistat.mbox_cmd++; 8571 evtctr = psli->slistat.mbox_event; 8572 8573 /* next set own bit for the adapter and copy over command word */ 8574 mbx->mbxOwner = OWN_CHIP; 8575 8576 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8577 /* Populate mbox extension offset word. */ 8578 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8579 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8580 = (uint8_t *)phba->mbox_ext 8581 - (uint8_t *)phba->mbox; 8582 } 8583 8584 /* Copy the mailbox extension data */ 8585 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8586 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8587 (uint8_t *)phba->mbox_ext, 8588 pmbox->in_ext_byte_len); 8589 } 8590 /* Copy command data to host SLIM area */ 8591 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8592 } else { 8593 /* Populate mbox extension offset word. */ 8594 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8595 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8596 = MAILBOX_HBA_EXT_OFFSET; 8597 8598 /* Copy the mailbox extension data */ 8599 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8600 lpfc_memcpy_to_slim(phba->MBslimaddr + 8601 MAILBOX_HBA_EXT_OFFSET, 8602 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8603 8604 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8605 /* copy command data into host mbox for cmpl */ 8606 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8607 MAILBOX_CMD_SIZE); 8608 8609 /* First copy mbox command data to HBA SLIM, skip past first 8610 word */ 8611 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8612 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8613 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8614 8615 /* Next copy over first word, with mbxOwner set */ 8616 ldata = *((uint32_t *)mbx); 8617 to_slim = phba->MBslimaddr; 8618 writel(ldata, to_slim); 8619 readl(to_slim); /* flush */ 8620 8621 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8622 /* switch over to host mailbox */ 8623 psli->sli_flag |= LPFC_SLI_ACTIVE; 8624 } 8625 8626 wmb(); 8627 8628 switch (flag) { 8629 case MBX_NOWAIT: 8630 /* Set up reference to mailbox command */ 8631 psli->mbox_active = pmbox; 8632 /* Interrupt board to do it */ 8633 writel(CA_MBATT, phba->CAregaddr); 8634 readl(phba->CAregaddr); /* flush */ 8635 /* Don't wait for it to finish, just return */ 8636 break; 8637 8638 case MBX_POLL: 8639 /* Set up null reference to mailbox command */ 8640 psli->mbox_active = NULL; 8641 /* Interrupt board to do it */ 8642 writel(CA_MBATT, phba->CAregaddr); 8643 readl(phba->CAregaddr); /* flush */ 8644 8645 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8646 /* First read mbox status word */ 8647 word0 = *((uint32_t *)phba->mbox); 8648 word0 = le32_to_cpu(word0); 8649 } else { 8650 /* First read mbox status word */ 8651 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8652 spin_unlock_irqrestore(&phba->hbalock, 8653 drvr_flag); 8654 goto out_not_finished; 8655 } 8656 } 8657 8658 /* Read the HBA Host Attention Register */ 8659 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8660 spin_unlock_irqrestore(&phba->hbalock, 8661 drvr_flag); 8662 goto out_not_finished; 8663 } 8664 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8665 1000) + jiffies; 8666 i = 0; 8667 /* Wait for command to complete */ 8668 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8669 (!(ha_copy & HA_MBATT) && 8670 (phba->link_state > LPFC_WARM_START))) { 8671 if (time_after(jiffies, timeout)) { 8672 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8673 spin_unlock_irqrestore(&phba->hbalock, 8674 drvr_flag); 8675 goto out_not_finished; 8676 } 8677 8678 /* Check if we took a mbox interrupt while we were 8679 polling */ 8680 if (((word0 & OWN_CHIP) != OWN_CHIP) 8681 && (evtctr != psli->slistat.mbox_event)) 8682 break; 8683 8684 if (i++ > 10) { 8685 spin_unlock_irqrestore(&phba->hbalock, 8686 drvr_flag); 8687 msleep(1); 8688 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8689 } 8690 8691 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8692 /* First copy command data */ 8693 word0 = *((uint32_t *)phba->mbox); 8694 word0 = le32_to_cpu(word0); 8695 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8696 MAILBOX_t *slimmb; 8697 uint32_t slimword0; 8698 /* Check real SLIM for any errors */ 8699 slimword0 = readl(phba->MBslimaddr); 8700 slimmb = (MAILBOX_t *) & slimword0; 8701 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8702 && slimmb->mbxStatus) { 8703 psli->sli_flag &= 8704 ~LPFC_SLI_ACTIVE; 8705 word0 = slimword0; 8706 } 8707 } 8708 } else { 8709 /* First copy command data */ 8710 word0 = readl(phba->MBslimaddr); 8711 } 8712 /* Read the HBA Host Attention Register */ 8713 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8714 spin_unlock_irqrestore(&phba->hbalock, 8715 drvr_flag); 8716 goto out_not_finished; 8717 } 8718 } 8719 8720 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8721 /* copy results back to user */ 8722 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8723 MAILBOX_CMD_SIZE); 8724 /* Copy the mailbox extension data */ 8725 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8726 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8727 pmbox->ctx_buf, 8728 pmbox->out_ext_byte_len); 8729 } 8730 } else { 8731 /* First copy command data */ 8732 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8733 MAILBOX_CMD_SIZE); 8734 /* Copy the mailbox extension data */ 8735 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8736 lpfc_memcpy_from_slim( 8737 pmbox->ctx_buf, 8738 phba->MBslimaddr + 8739 MAILBOX_HBA_EXT_OFFSET, 8740 pmbox->out_ext_byte_len); 8741 } 8742 } 8743 8744 writel(HA_MBATT, phba->HAregaddr); 8745 readl(phba->HAregaddr); /* flush */ 8746 8747 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8748 status = mbx->mbxStatus; 8749 } 8750 8751 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8752 return status; 8753 8754 out_not_finished: 8755 if (processing_queue) { 8756 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8757 lpfc_mbox_cmpl_put(phba, pmbox); 8758 } 8759 return MBX_NOT_FINISHED; 8760 } 8761 8762 /** 8763 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8764 * @phba: Pointer to HBA context object. 8765 * 8766 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8767 * the driver internal pending mailbox queue. It will then try to wait out the 8768 * possible outstanding mailbox command before return. 8769 * 8770 * Returns: 8771 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8772 * the outstanding mailbox command timed out. 8773 **/ 8774 static int 8775 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8776 { 8777 struct lpfc_sli *psli = &phba->sli; 8778 int rc = 0; 8779 unsigned long timeout = 0; 8780 8781 /* Mark the asynchronous mailbox command posting as blocked */ 8782 spin_lock_irq(&phba->hbalock); 8783 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8784 /* Determine how long we might wait for the active mailbox 8785 * command to be gracefully completed by firmware. 8786 */ 8787 if (phba->sli.mbox_active) 8788 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8789 phba->sli.mbox_active) * 8790 1000) + jiffies; 8791 spin_unlock_irq(&phba->hbalock); 8792 8793 /* Make sure the mailbox is really active */ 8794 if (timeout) 8795 lpfc_sli4_process_missed_mbox_completions(phba); 8796 8797 /* Wait for the outstnading mailbox command to complete */ 8798 while (phba->sli.mbox_active) { 8799 /* Check active mailbox complete status every 2ms */ 8800 msleep(2); 8801 if (time_after(jiffies, timeout)) { 8802 /* Timeout, marked the outstanding cmd not complete */ 8803 rc = 1; 8804 break; 8805 } 8806 } 8807 8808 /* Can not cleanly block async mailbox command, fails it */ 8809 if (rc) { 8810 spin_lock_irq(&phba->hbalock); 8811 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8812 spin_unlock_irq(&phba->hbalock); 8813 } 8814 return rc; 8815 } 8816 8817 /** 8818 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8819 * @phba: Pointer to HBA context object. 8820 * 8821 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8822 * commands from the driver internal pending mailbox queue. It makes sure 8823 * that there is no outstanding mailbox command before resuming posting 8824 * asynchronous mailbox commands. If, for any reason, there is outstanding 8825 * mailbox command, it will try to wait it out before resuming asynchronous 8826 * mailbox command posting. 8827 **/ 8828 static void 8829 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8830 { 8831 struct lpfc_sli *psli = &phba->sli; 8832 8833 spin_lock_irq(&phba->hbalock); 8834 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8835 /* Asynchronous mailbox posting is not blocked, do nothing */ 8836 spin_unlock_irq(&phba->hbalock); 8837 return; 8838 } 8839 8840 /* Outstanding synchronous mailbox command is guaranteed to be done, 8841 * successful or timeout, after timing-out the outstanding mailbox 8842 * command shall always be removed, so just unblock posting async 8843 * mailbox command and resume 8844 */ 8845 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8846 spin_unlock_irq(&phba->hbalock); 8847 8848 /* wake up worker thread to post asynchronous mailbox command */ 8849 lpfc_worker_wake_up(phba); 8850 } 8851 8852 /** 8853 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8854 * @phba: Pointer to HBA context object. 8855 * @mboxq: Pointer to mailbox object. 8856 * 8857 * The function waits for the bootstrap mailbox register ready bit from 8858 * port for twice the regular mailbox command timeout value. 8859 * 8860 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8861 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8862 **/ 8863 static int 8864 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8865 { 8866 uint32_t db_ready; 8867 unsigned long timeout; 8868 struct lpfc_register bmbx_reg; 8869 8870 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8871 * 1000) + jiffies; 8872 8873 do { 8874 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8875 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8876 if (!db_ready) 8877 mdelay(2); 8878 8879 if (time_after(jiffies, timeout)) 8880 return MBXERR_ERROR; 8881 } while (!db_ready); 8882 8883 return 0; 8884 } 8885 8886 /** 8887 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8888 * @phba: Pointer to HBA context object. 8889 * @mboxq: Pointer to mailbox object. 8890 * 8891 * The function posts a mailbox to the port. The mailbox is expected 8892 * to be comletely filled in and ready for the port to operate on it. 8893 * This routine executes a synchronous completion operation on the 8894 * mailbox by polling for its completion. 8895 * 8896 * The caller must not be holding any locks when calling this routine. 8897 * 8898 * Returns: 8899 * MBX_SUCCESS - mailbox posted successfully 8900 * Any of the MBX error values. 8901 **/ 8902 static int 8903 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8904 { 8905 int rc = MBX_SUCCESS; 8906 unsigned long iflag; 8907 uint32_t mcqe_status; 8908 uint32_t mbx_cmnd; 8909 struct lpfc_sli *psli = &phba->sli; 8910 struct lpfc_mqe *mb = &mboxq->u.mqe; 8911 struct lpfc_bmbx_create *mbox_rgn; 8912 struct dma_address *dma_address; 8913 8914 /* 8915 * Only one mailbox can be active to the bootstrap mailbox region 8916 * at a time and there is no queueing provided. 8917 */ 8918 spin_lock_irqsave(&phba->hbalock, iflag); 8919 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8920 spin_unlock_irqrestore(&phba->hbalock, iflag); 8921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8922 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8923 "cannot issue Data: x%x x%x\n", 8924 mboxq->vport ? mboxq->vport->vpi : 0, 8925 mboxq->u.mb.mbxCommand, 8926 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8927 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8928 psli->sli_flag, MBX_POLL); 8929 return MBXERR_ERROR; 8930 } 8931 /* The server grabs the token and owns it until release */ 8932 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8933 phba->sli.mbox_active = mboxq; 8934 spin_unlock_irqrestore(&phba->hbalock, iflag); 8935 8936 /* wait for bootstrap mbox register for readyness */ 8937 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8938 if (rc) 8939 goto exit; 8940 /* 8941 * Initialize the bootstrap memory region to avoid stale data areas 8942 * in the mailbox post. Then copy the caller's mailbox contents to 8943 * the bmbx mailbox region. 8944 */ 8945 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8946 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8947 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8948 sizeof(struct lpfc_mqe)); 8949 8950 /* Post the high mailbox dma address to the port and wait for ready. */ 8951 dma_address = &phba->sli4_hba.bmbx.dma_address; 8952 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8953 8954 /* wait for bootstrap mbox register for hi-address write done */ 8955 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8956 if (rc) 8957 goto exit; 8958 8959 /* Post the low mailbox dma address to the port. */ 8960 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8961 8962 /* wait for bootstrap mbox register for low address write done */ 8963 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8964 if (rc) 8965 goto exit; 8966 8967 /* 8968 * Read the CQ to ensure the mailbox has completed. 8969 * If so, update the mailbox status so that the upper layers 8970 * can complete the request normally. 8971 */ 8972 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8973 sizeof(struct lpfc_mqe)); 8974 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8975 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8976 sizeof(struct lpfc_mcqe)); 8977 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8978 /* 8979 * When the CQE status indicates a failure and the mailbox status 8980 * indicates success then copy the CQE status into the mailbox status 8981 * (and prefix it with x4000). 8982 */ 8983 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8984 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8985 bf_set(lpfc_mqe_status, mb, 8986 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8987 rc = MBXERR_ERROR; 8988 } else 8989 lpfc_sli4_swap_str(phba, mboxq); 8990 8991 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8992 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8993 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8994 " x%x x%x CQ: x%x x%x x%x x%x\n", 8995 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8996 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8997 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8998 bf_get(lpfc_mqe_status, mb), 8999 mb->un.mb_words[0], mb->un.mb_words[1], 9000 mb->un.mb_words[2], mb->un.mb_words[3], 9001 mb->un.mb_words[4], mb->un.mb_words[5], 9002 mb->un.mb_words[6], mb->un.mb_words[7], 9003 mb->un.mb_words[8], mb->un.mb_words[9], 9004 mb->un.mb_words[10], mb->un.mb_words[11], 9005 mb->un.mb_words[12], mboxq->mcqe.word0, 9006 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9007 mboxq->mcqe.trailer); 9008 exit: 9009 /* We are holding the token, no needed for lock when release */ 9010 spin_lock_irqsave(&phba->hbalock, iflag); 9011 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9012 phba->sli.mbox_active = NULL; 9013 spin_unlock_irqrestore(&phba->hbalock, iflag); 9014 return rc; 9015 } 9016 9017 /** 9018 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9019 * @phba: Pointer to HBA context object. 9020 * @mboxq: Pointer to mailbox object. 9021 * @flag: Flag indicating how the mailbox need to be processed. 9022 * 9023 * This function is called by discovery code and HBA management code to submit 9024 * a mailbox command to firmware with SLI-4 interface spec. 9025 * 9026 * Return codes the caller owns the mailbox command after the return of the 9027 * function. 9028 **/ 9029 static int 9030 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9031 uint32_t flag) 9032 { 9033 struct lpfc_sli *psli = &phba->sli; 9034 unsigned long iflags; 9035 int rc; 9036 9037 /* dump from issue mailbox command if setup */ 9038 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9039 9040 rc = lpfc_mbox_dev_check(phba); 9041 if (unlikely(rc)) { 9042 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9043 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9044 "cannot issue Data: x%x x%x\n", 9045 mboxq->vport ? mboxq->vport->vpi : 0, 9046 mboxq->u.mb.mbxCommand, 9047 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9048 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9049 psli->sli_flag, flag); 9050 goto out_not_finished; 9051 } 9052 9053 /* Detect polling mode and jump to a handler */ 9054 if (!phba->sli4_hba.intr_enable) { 9055 if (flag == MBX_POLL) 9056 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9057 else 9058 rc = -EIO; 9059 if (rc != MBX_SUCCESS) 9060 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9061 "(%d):2541 Mailbox command x%x " 9062 "(x%x/x%x) failure: " 9063 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9064 "Data: x%x x%x\n,", 9065 mboxq->vport ? mboxq->vport->vpi : 0, 9066 mboxq->u.mb.mbxCommand, 9067 lpfc_sli_config_mbox_subsys_get(phba, 9068 mboxq), 9069 lpfc_sli_config_mbox_opcode_get(phba, 9070 mboxq), 9071 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9072 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9073 bf_get(lpfc_mcqe_ext_status, 9074 &mboxq->mcqe), 9075 psli->sli_flag, flag); 9076 return rc; 9077 } else if (flag == MBX_POLL) { 9078 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9079 "(%d):2542 Try to issue mailbox command " 9080 "x%x (x%x/x%x) synchronously ahead of async " 9081 "mailbox command queue: x%x x%x\n", 9082 mboxq->vport ? mboxq->vport->vpi : 0, 9083 mboxq->u.mb.mbxCommand, 9084 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9085 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9086 psli->sli_flag, flag); 9087 /* Try to block the asynchronous mailbox posting */ 9088 rc = lpfc_sli4_async_mbox_block(phba); 9089 if (!rc) { 9090 /* Successfully blocked, now issue sync mbox cmd */ 9091 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9092 if (rc != MBX_SUCCESS) 9093 lpfc_printf_log(phba, KERN_WARNING, 9094 LOG_MBOX | LOG_SLI, 9095 "(%d):2597 Sync Mailbox command " 9096 "x%x (x%x/x%x) failure: " 9097 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9098 "Data: x%x x%x\n,", 9099 mboxq->vport ? mboxq->vport->vpi : 0, 9100 mboxq->u.mb.mbxCommand, 9101 lpfc_sli_config_mbox_subsys_get(phba, 9102 mboxq), 9103 lpfc_sli_config_mbox_opcode_get(phba, 9104 mboxq), 9105 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9106 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9107 bf_get(lpfc_mcqe_ext_status, 9108 &mboxq->mcqe), 9109 psli->sli_flag, flag); 9110 /* Unblock the async mailbox posting afterward */ 9111 lpfc_sli4_async_mbox_unblock(phba); 9112 } 9113 return rc; 9114 } 9115 9116 /* Now, interrupt mode asynchronous mailbox command */ 9117 rc = lpfc_mbox_cmd_check(phba, mboxq); 9118 if (rc) { 9119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9120 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9121 "cannot issue Data: x%x x%x\n", 9122 mboxq->vport ? mboxq->vport->vpi : 0, 9123 mboxq->u.mb.mbxCommand, 9124 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9125 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9126 psli->sli_flag, flag); 9127 goto out_not_finished; 9128 } 9129 9130 /* Put the mailbox command to the driver internal FIFO */ 9131 psli->slistat.mbox_busy++; 9132 spin_lock_irqsave(&phba->hbalock, iflags); 9133 lpfc_mbox_put(phba, mboxq); 9134 spin_unlock_irqrestore(&phba->hbalock, iflags); 9135 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9136 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9137 "x%x (x%x/x%x) x%x x%x x%x\n", 9138 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9139 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9140 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9141 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9142 phba->pport->port_state, 9143 psli->sli_flag, MBX_NOWAIT); 9144 /* Wake up worker thread to transport mailbox command from head */ 9145 lpfc_worker_wake_up(phba); 9146 9147 return MBX_BUSY; 9148 9149 out_not_finished: 9150 return MBX_NOT_FINISHED; 9151 } 9152 9153 /** 9154 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9155 * @phba: Pointer to HBA context object. 9156 * 9157 * This function is called by worker thread to send a mailbox command to 9158 * SLI4 HBA firmware. 9159 * 9160 **/ 9161 int 9162 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9163 { 9164 struct lpfc_sli *psli = &phba->sli; 9165 LPFC_MBOXQ_t *mboxq; 9166 int rc = MBX_SUCCESS; 9167 unsigned long iflags; 9168 struct lpfc_mqe *mqe; 9169 uint32_t mbx_cmnd; 9170 9171 /* Check interrupt mode before post async mailbox command */ 9172 if (unlikely(!phba->sli4_hba.intr_enable)) 9173 return MBX_NOT_FINISHED; 9174 9175 /* Check for mailbox command service token */ 9176 spin_lock_irqsave(&phba->hbalock, iflags); 9177 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9178 spin_unlock_irqrestore(&phba->hbalock, iflags); 9179 return MBX_NOT_FINISHED; 9180 } 9181 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9182 spin_unlock_irqrestore(&phba->hbalock, iflags); 9183 return MBX_NOT_FINISHED; 9184 } 9185 if (unlikely(phba->sli.mbox_active)) { 9186 spin_unlock_irqrestore(&phba->hbalock, iflags); 9187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9188 "0384 There is pending active mailbox cmd\n"); 9189 return MBX_NOT_FINISHED; 9190 } 9191 /* Take the mailbox command service token */ 9192 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9193 9194 /* Get the next mailbox command from head of queue */ 9195 mboxq = lpfc_mbox_get(phba); 9196 9197 /* If no more mailbox command waiting for post, we're done */ 9198 if (!mboxq) { 9199 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9200 spin_unlock_irqrestore(&phba->hbalock, iflags); 9201 return MBX_SUCCESS; 9202 } 9203 phba->sli.mbox_active = mboxq; 9204 spin_unlock_irqrestore(&phba->hbalock, iflags); 9205 9206 /* Check device readiness for posting mailbox command */ 9207 rc = lpfc_mbox_dev_check(phba); 9208 if (unlikely(rc)) 9209 /* Driver clean routine will clean up pending mailbox */ 9210 goto out_not_finished; 9211 9212 /* Prepare the mbox command to be posted */ 9213 mqe = &mboxq->u.mqe; 9214 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9215 9216 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9217 mod_timer(&psli->mbox_tmo, (jiffies + 9218 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9219 9220 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9221 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9222 "x%x x%x\n", 9223 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9224 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9225 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9226 phba->pport->port_state, psli->sli_flag); 9227 9228 if (mbx_cmnd != MBX_HEARTBEAT) { 9229 if (mboxq->vport) { 9230 lpfc_debugfs_disc_trc(mboxq->vport, 9231 LPFC_DISC_TRC_MBOX_VPORT, 9232 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9233 mbx_cmnd, mqe->un.mb_words[0], 9234 mqe->un.mb_words[1]); 9235 } else { 9236 lpfc_debugfs_disc_trc(phba->pport, 9237 LPFC_DISC_TRC_MBOX, 9238 "MBOX Send: cmd:x%x mb:x%x x%x", 9239 mbx_cmnd, mqe->un.mb_words[0], 9240 mqe->un.mb_words[1]); 9241 } 9242 } 9243 psli->slistat.mbox_cmd++; 9244 9245 /* Post the mailbox command to the port */ 9246 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9247 if (rc != MBX_SUCCESS) { 9248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9249 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9250 "cannot issue Data: x%x x%x\n", 9251 mboxq->vport ? mboxq->vport->vpi : 0, 9252 mboxq->u.mb.mbxCommand, 9253 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9254 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9255 psli->sli_flag, MBX_NOWAIT); 9256 goto out_not_finished; 9257 } 9258 9259 return rc; 9260 9261 out_not_finished: 9262 spin_lock_irqsave(&phba->hbalock, iflags); 9263 if (phba->sli.mbox_active) { 9264 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9265 __lpfc_mbox_cmpl_put(phba, mboxq); 9266 /* Release the token */ 9267 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9268 phba->sli.mbox_active = NULL; 9269 } 9270 spin_unlock_irqrestore(&phba->hbalock, iflags); 9271 9272 return MBX_NOT_FINISHED; 9273 } 9274 9275 /** 9276 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9277 * @phba: Pointer to HBA context object. 9278 * @pmbox: Pointer to mailbox object. 9279 * @flag: Flag indicating how the mailbox need to be processed. 9280 * 9281 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9282 * the API jump table function pointer from the lpfc_hba struct. 9283 * 9284 * Return codes the caller owns the mailbox command after the return of the 9285 * function. 9286 **/ 9287 int 9288 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9289 { 9290 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9291 } 9292 9293 /** 9294 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9295 * @phba: The hba struct for which this call is being executed. 9296 * @dev_grp: The HBA PCI-Device group number. 9297 * 9298 * This routine sets up the mbox interface API function jump table in @phba 9299 * struct. 9300 * Returns: 0 - success, -ENODEV - failure. 9301 **/ 9302 int 9303 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9304 { 9305 9306 switch (dev_grp) { 9307 case LPFC_PCI_DEV_LP: 9308 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9309 phba->lpfc_sli_handle_slow_ring_event = 9310 lpfc_sli_handle_slow_ring_event_s3; 9311 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9312 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9313 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9314 break; 9315 case LPFC_PCI_DEV_OC: 9316 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9317 phba->lpfc_sli_handle_slow_ring_event = 9318 lpfc_sli_handle_slow_ring_event_s4; 9319 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9320 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9321 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9322 break; 9323 default: 9324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9325 "1420 Invalid HBA PCI-device group: 0x%x\n", 9326 dev_grp); 9327 return -ENODEV; 9328 } 9329 return 0; 9330 } 9331 9332 /** 9333 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9334 * @phba: Pointer to HBA context object. 9335 * @pring: Pointer to driver SLI ring object. 9336 * @piocb: Pointer to address of newly added command iocb. 9337 * 9338 * This function is called with hbalock held for SLI3 ports or 9339 * the ring lock held for SLI4 ports to add a command 9340 * iocb to the txq when SLI layer cannot submit the command iocb 9341 * to the ring. 9342 **/ 9343 void 9344 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9345 struct lpfc_iocbq *piocb) 9346 { 9347 if (phba->sli_rev == LPFC_SLI_REV4) 9348 lockdep_assert_held(&pring->ring_lock); 9349 else 9350 lockdep_assert_held(&phba->hbalock); 9351 /* Insert the caller's iocb in the txq tail for later processing. */ 9352 list_add_tail(&piocb->list, &pring->txq); 9353 } 9354 9355 /** 9356 * lpfc_sli_next_iocb - Get the next iocb in the txq 9357 * @phba: Pointer to HBA context object. 9358 * @pring: Pointer to driver SLI ring object. 9359 * @piocb: Pointer to address of newly added command iocb. 9360 * 9361 * This function is called with hbalock held before a new 9362 * iocb is submitted to the firmware. This function checks 9363 * txq to flush the iocbs in txq to Firmware before 9364 * submitting new iocbs to the Firmware. 9365 * If there are iocbs in the txq which need to be submitted 9366 * to firmware, lpfc_sli_next_iocb returns the first element 9367 * of the txq after dequeuing it from txq. 9368 * If there is no iocb in the txq then the function will return 9369 * *piocb and *piocb is set to NULL. Caller needs to check 9370 * *piocb to find if there are more commands in the txq. 9371 **/ 9372 static struct lpfc_iocbq * 9373 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9374 struct lpfc_iocbq **piocb) 9375 { 9376 struct lpfc_iocbq * nextiocb; 9377 9378 lockdep_assert_held(&phba->hbalock); 9379 9380 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9381 if (!nextiocb) { 9382 nextiocb = *piocb; 9383 *piocb = NULL; 9384 } 9385 9386 return nextiocb; 9387 } 9388 9389 /** 9390 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9391 * @phba: Pointer to HBA context object. 9392 * @ring_number: SLI ring number to issue iocb on. 9393 * @piocb: Pointer to command iocb. 9394 * @flag: Flag indicating if this command can be put into txq. 9395 * 9396 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9397 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9398 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9399 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9400 * this function allows only iocbs for posting buffers. This function finds 9401 * next available slot in the command ring and posts the command to the 9402 * available slot and writes the port attention register to request HBA start 9403 * processing new iocb. If there is no slot available in the ring and 9404 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9405 * the function returns IOCB_BUSY. 9406 * 9407 * This function is called with hbalock held. The function will return success 9408 * after it successfully submit the iocb to firmware or after adding to the 9409 * txq. 9410 **/ 9411 static int 9412 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9413 struct lpfc_iocbq *piocb, uint32_t flag) 9414 { 9415 struct lpfc_iocbq *nextiocb; 9416 IOCB_t *iocb; 9417 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9418 9419 lockdep_assert_held(&phba->hbalock); 9420 9421 if (piocb->iocb_cmpl && (!piocb->vport) && 9422 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9423 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9425 "1807 IOCB x%x failed. No vport\n", 9426 piocb->iocb.ulpCommand); 9427 dump_stack(); 9428 return IOCB_ERROR; 9429 } 9430 9431 9432 /* If the PCI channel is in offline state, do not post iocbs. */ 9433 if (unlikely(pci_channel_offline(phba->pcidev))) 9434 return IOCB_ERROR; 9435 9436 /* If HBA has a deferred error attention, fail the iocb. */ 9437 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9438 return IOCB_ERROR; 9439 9440 /* 9441 * We should never get an IOCB if we are in a < LINK_DOWN state 9442 */ 9443 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9444 return IOCB_ERROR; 9445 9446 /* 9447 * Check to see if we are blocking IOCB processing because of a 9448 * outstanding event. 9449 */ 9450 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9451 goto iocb_busy; 9452 9453 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9454 /* 9455 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9456 * can be issued if the link is not up. 9457 */ 9458 switch (piocb->iocb.ulpCommand) { 9459 case CMD_GEN_REQUEST64_CR: 9460 case CMD_GEN_REQUEST64_CX: 9461 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9462 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9463 FC_RCTL_DD_UNSOL_CMD) || 9464 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9465 MENLO_TRANSPORT_TYPE)) 9466 9467 goto iocb_busy; 9468 break; 9469 case CMD_QUE_RING_BUF_CN: 9470 case CMD_QUE_RING_BUF64_CN: 9471 /* 9472 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9473 * completion, iocb_cmpl MUST be 0. 9474 */ 9475 if (piocb->iocb_cmpl) 9476 piocb->iocb_cmpl = NULL; 9477 fallthrough; 9478 case CMD_CREATE_XRI_CR: 9479 case CMD_CLOSE_XRI_CN: 9480 case CMD_CLOSE_XRI_CX: 9481 break; 9482 default: 9483 goto iocb_busy; 9484 } 9485 9486 /* 9487 * For FCP commands, we must be in a state where we can process link 9488 * attention events. 9489 */ 9490 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9491 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9492 goto iocb_busy; 9493 } 9494 9495 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9496 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9497 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9498 9499 if (iocb) 9500 lpfc_sli_update_ring(phba, pring); 9501 else 9502 lpfc_sli_update_full_ring(phba, pring); 9503 9504 if (!piocb) 9505 return IOCB_SUCCESS; 9506 9507 goto out_busy; 9508 9509 iocb_busy: 9510 pring->stats.iocb_cmd_delay++; 9511 9512 out_busy: 9513 9514 if (!(flag & SLI_IOCB_RET_IOCB)) { 9515 __lpfc_sli_ringtx_put(phba, pring, piocb); 9516 return IOCB_SUCCESS; 9517 } 9518 9519 return IOCB_BUSY; 9520 } 9521 9522 /** 9523 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9524 * @phba: Pointer to HBA context object. 9525 * @piocbq: Pointer to command iocb. 9526 * @sglq: Pointer to the scatter gather queue object. 9527 * 9528 * This routine converts the bpl or bde that is in the IOCB 9529 * to a sgl list for the sli4 hardware. The physical address 9530 * of the bpl/bde is converted back to a virtual address. 9531 * If the IOCB contains a BPL then the list of BDE's is 9532 * converted to sli4_sge's. If the IOCB contains a single 9533 * BDE then it is converted to a single sli_sge. 9534 * The IOCB is still in cpu endianess so the contents of 9535 * the bpl can be used without byte swapping. 9536 * 9537 * Returns valid XRI = Success, NO_XRI = Failure. 9538 **/ 9539 static uint16_t 9540 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9541 struct lpfc_sglq *sglq) 9542 { 9543 uint16_t xritag = NO_XRI; 9544 struct ulp_bde64 *bpl = NULL; 9545 struct ulp_bde64 bde; 9546 struct sli4_sge *sgl = NULL; 9547 struct lpfc_dmabuf *dmabuf; 9548 IOCB_t *icmd; 9549 int numBdes = 0; 9550 int i = 0; 9551 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9552 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9553 9554 if (!piocbq || !sglq) 9555 return xritag; 9556 9557 sgl = (struct sli4_sge *)sglq->sgl; 9558 icmd = &piocbq->iocb; 9559 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9560 return sglq->sli4_xritag; 9561 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9562 numBdes = icmd->un.genreq64.bdl.bdeSize / 9563 sizeof(struct ulp_bde64); 9564 /* The addrHigh and addrLow fields within the IOCB 9565 * have not been byteswapped yet so there is no 9566 * need to swap them back. 9567 */ 9568 if (piocbq->context3) 9569 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9570 else 9571 return xritag; 9572 9573 bpl = (struct ulp_bde64 *)dmabuf->virt; 9574 if (!bpl) 9575 return xritag; 9576 9577 for (i = 0; i < numBdes; i++) { 9578 /* Should already be byte swapped. */ 9579 sgl->addr_hi = bpl->addrHigh; 9580 sgl->addr_lo = bpl->addrLow; 9581 9582 sgl->word2 = le32_to_cpu(sgl->word2); 9583 if ((i+1) == numBdes) 9584 bf_set(lpfc_sli4_sge_last, sgl, 1); 9585 else 9586 bf_set(lpfc_sli4_sge_last, sgl, 0); 9587 /* swap the size field back to the cpu so we 9588 * can assign it to the sgl. 9589 */ 9590 bde.tus.w = le32_to_cpu(bpl->tus.w); 9591 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9592 /* The offsets in the sgl need to be accumulated 9593 * separately for the request and reply lists. 9594 * The request is always first, the reply follows. 9595 */ 9596 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9597 /* add up the reply sg entries */ 9598 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9599 inbound++; 9600 /* first inbound? reset the offset */ 9601 if (inbound == 1) 9602 offset = 0; 9603 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9604 bf_set(lpfc_sli4_sge_type, sgl, 9605 LPFC_SGE_TYPE_DATA); 9606 offset += bde.tus.f.bdeSize; 9607 } 9608 sgl->word2 = cpu_to_le32(sgl->word2); 9609 bpl++; 9610 sgl++; 9611 } 9612 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9613 /* The addrHigh and addrLow fields of the BDE have not 9614 * been byteswapped yet so they need to be swapped 9615 * before putting them in the sgl. 9616 */ 9617 sgl->addr_hi = 9618 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9619 sgl->addr_lo = 9620 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9621 sgl->word2 = le32_to_cpu(sgl->word2); 9622 bf_set(lpfc_sli4_sge_last, sgl, 1); 9623 sgl->word2 = cpu_to_le32(sgl->word2); 9624 sgl->sge_len = 9625 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9626 } 9627 return sglq->sli4_xritag; 9628 } 9629 9630 /** 9631 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 9632 * @phba: Pointer to HBA context object. 9633 * @iocbq: Pointer to command iocb. 9634 * @wqe: Pointer to the work queue entry. 9635 * 9636 * This routine converts the iocb command to its Work Queue Entry 9637 * equivalent. The wqe pointer should not have any fields set when 9638 * this routine is called because it will memcpy over them. 9639 * This routine does not set the CQ_ID or the WQEC bits in the 9640 * wqe. 9641 * 9642 * Returns: 0 = Success, IOCB_ERROR = Failure. 9643 **/ 9644 static int 9645 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9646 union lpfc_wqe128 *wqe) 9647 { 9648 uint32_t xmit_len = 0, total_len = 0; 9649 uint8_t ct = 0; 9650 uint32_t fip; 9651 uint32_t abort_tag; 9652 uint8_t command_type = ELS_COMMAND_NON_FIP; 9653 uint8_t cmnd; 9654 uint16_t xritag; 9655 uint16_t abrt_iotag; 9656 struct lpfc_iocbq *abrtiocbq; 9657 struct ulp_bde64 *bpl = NULL; 9658 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9659 int numBdes, i; 9660 struct ulp_bde64 bde; 9661 struct lpfc_nodelist *ndlp; 9662 uint32_t *pcmd; 9663 uint32_t if_type; 9664 9665 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9666 /* The fcp commands will set command type */ 9667 if (iocbq->iocb_flag & LPFC_IO_FCP) 9668 command_type = FCP_COMMAND; 9669 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9670 command_type = ELS_COMMAND_FIP; 9671 else 9672 command_type = ELS_COMMAND_NON_FIP; 9673 9674 if (phba->fcp_embed_io) 9675 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9676 /* Some of the fields are in the right position already */ 9677 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9678 /* The ct field has moved so reset */ 9679 wqe->generic.wqe_com.word7 = 0; 9680 wqe->generic.wqe_com.word10 = 0; 9681 9682 abort_tag = (uint32_t) iocbq->iotag; 9683 xritag = iocbq->sli4_xritag; 9684 /* words0-2 bpl convert bde */ 9685 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9686 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9687 sizeof(struct ulp_bde64); 9688 bpl = (struct ulp_bde64 *) 9689 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9690 if (!bpl) 9691 return IOCB_ERROR; 9692 9693 /* Should already be byte swapped. */ 9694 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9695 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9696 /* swap the size field back to the cpu so we 9697 * can assign it to the sgl. 9698 */ 9699 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9700 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9701 total_len = 0; 9702 for (i = 0; i < numBdes; i++) { 9703 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9704 total_len += bde.tus.f.bdeSize; 9705 } 9706 } else 9707 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9708 9709 iocbq->iocb.ulpIoTag = iocbq->iotag; 9710 cmnd = iocbq->iocb.ulpCommand; 9711 9712 switch (iocbq->iocb.ulpCommand) { 9713 case CMD_ELS_REQUEST64_CR: 9714 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9715 ndlp = iocbq->context_un.ndlp; 9716 else 9717 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9718 if (!iocbq->iocb.ulpLe) { 9719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9720 "2007 Only Limited Edition cmd Format" 9721 " supported 0x%x\n", 9722 iocbq->iocb.ulpCommand); 9723 return IOCB_ERROR; 9724 } 9725 9726 wqe->els_req.payload_len = xmit_len; 9727 /* Els_reguest64 has a TMO */ 9728 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9729 iocbq->iocb.ulpTimeout); 9730 /* Need a VF for word 4 set the vf bit*/ 9731 bf_set(els_req64_vf, &wqe->els_req, 0); 9732 /* And a VFID for word 12 */ 9733 bf_set(els_req64_vfid, &wqe->els_req, 0); 9734 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9735 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9736 iocbq->iocb.ulpContext); 9737 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9738 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9739 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9740 if (command_type == ELS_COMMAND_FIP) 9741 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9742 >> LPFC_FIP_ELS_ID_SHIFT); 9743 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9744 iocbq->context2)->virt); 9745 if_type = bf_get(lpfc_sli_intf_if_type, 9746 &phba->sli4_hba.sli_intf); 9747 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9748 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9749 *pcmd == ELS_CMD_SCR || 9750 *pcmd == ELS_CMD_RDF || 9751 *pcmd == ELS_CMD_RSCN_XMT || 9752 *pcmd == ELS_CMD_FDISC || 9753 *pcmd == ELS_CMD_LOGO || 9754 *pcmd == ELS_CMD_PLOGI)) { 9755 bf_set(els_req64_sp, &wqe->els_req, 1); 9756 bf_set(els_req64_sid, &wqe->els_req, 9757 iocbq->vport->fc_myDID); 9758 if ((*pcmd == ELS_CMD_FLOGI) && 9759 !(phba->fc_topology == 9760 LPFC_TOPOLOGY_LOOP)) 9761 bf_set(els_req64_sid, &wqe->els_req, 0); 9762 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9763 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9764 phba->vpi_ids[iocbq->vport->vpi]); 9765 } else if (pcmd && iocbq->context1) { 9766 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9767 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9768 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9769 } 9770 } 9771 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9772 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9773 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9774 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9775 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9776 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9777 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9778 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9779 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9780 break; 9781 case CMD_XMIT_SEQUENCE64_CX: 9782 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9783 iocbq->iocb.un.ulpWord[3]); 9784 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9785 iocbq->iocb.unsli3.rcvsli3.ox_id); 9786 /* The entire sequence is transmitted for this IOCB */ 9787 xmit_len = total_len; 9788 cmnd = CMD_XMIT_SEQUENCE64_CR; 9789 if (phba->link_flag & LS_LOOPBACK_MODE) 9790 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9791 fallthrough; 9792 case CMD_XMIT_SEQUENCE64_CR: 9793 /* word3 iocb=io_tag32 wqe=reserved */ 9794 wqe->xmit_sequence.rsvd3 = 0; 9795 /* word4 relative_offset memcpy */ 9796 /* word5 r_ctl/df_ctl memcpy */ 9797 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9798 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9799 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9800 LPFC_WQE_IOD_WRITE); 9801 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9802 LPFC_WQE_LENLOC_WORD12); 9803 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9804 wqe->xmit_sequence.xmit_len = xmit_len; 9805 command_type = OTHER_COMMAND; 9806 break; 9807 case CMD_XMIT_BCAST64_CN: 9808 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9809 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9810 /* word4 iocb=rsvd wqe=rsvd */ 9811 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9812 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9813 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9814 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9815 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9816 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9817 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9818 LPFC_WQE_LENLOC_WORD3); 9819 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9820 break; 9821 case CMD_FCP_IWRITE64_CR: 9822 command_type = FCP_COMMAND_DATA_OUT; 9823 /* word3 iocb=iotag wqe=payload_offset_len */ 9824 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9825 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9826 xmit_len + sizeof(struct fcp_rsp)); 9827 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9828 0); 9829 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9830 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9831 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9832 iocbq->iocb.ulpFCP2Rcvy); 9833 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9834 /* Always open the exchange */ 9835 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9836 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9837 LPFC_WQE_LENLOC_WORD4); 9838 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9839 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9840 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9841 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9842 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9843 if (iocbq->priority) { 9844 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9845 (iocbq->priority << 1)); 9846 } else { 9847 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9848 (phba->cfg_XLanePriority << 1)); 9849 } 9850 } 9851 /* Note, word 10 is already initialized to 0 */ 9852 9853 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9854 if (phba->cfg_enable_pbde) 9855 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9856 else 9857 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9858 9859 if (phba->fcp_embed_io) { 9860 struct lpfc_io_buf *lpfc_cmd; 9861 struct sli4_sge *sgl; 9862 struct fcp_cmnd *fcp_cmnd; 9863 uint32_t *ptr; 9864 9865 /* 128 byte wqe support here */ 9866 9867 lpfc_cmd = iocbq->context1; 9868 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9869 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9870 9871 /* Word 0-2 - FCP_CMND */ 9872 wqe->generic.bde.tus.f.bdeFlags = 9873 BUFF_TYPE_BDE_IMMED; 9874 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9875 wqe->generic.bde.addrHigh = 0; 9876 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9877 9878 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9879 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9880 9881 /* Word 22-29 FCP CMND Payload */ 9882 ptr = &wqe->words[22]; 9883 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9884 } 9885 break; 9886 case CMD_FCP_IREAD64_CR: 9887 /* word3 iocb=iotag wqe=payload_offset_len */ 9888 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9889 bf_set(payload_offset_len, &wqe->fcp_iread, 9890 xmit_len + sizeof(struct fcp_rsp)); 9891 bf_set(cmd_buff_len, &wqe->fcp_iread, 9892 0); 9893 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9894 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9895 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9896 iocbq->iocb.ulpFCP2Rcvy); 9897 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9898 /* Always open the exchange */ 9899 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9900 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9901 LPFC_WQE_LENLOC_WORD4); 9902 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9903 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9904 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9905 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9906 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9907 if (iocbq->priority) { 9908 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9909 (iocbq->priority << 1)); 9910 } else { 9911 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9912 (phba->cfg_XLanePriority << 1)); 9913 } 9914 } 9915 /* Note, word 10 is already initialized to 0 */ 9916 9917 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9918 if (phba->cfg_enable_pbde) 9919 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9920 else 9921 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9922 9923 if (phba->fcp_embed_io) { 9924 struct lpfc_io_buf *lpfc_cmd; 9925 struct sli4_sge *sgl; 9926 struct fcp_cmnd *fcp_cmnd; 9927 uint32_t *ptr; 9928 9929 /* 128 byte wqe support here */ 9930 9931 lpfc_cmd = iocbq->context1; 9932 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9933 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9934 9935 /* Word 0-2 - FCP_CMND */ 9936 wqe->generic.bde.tus.f.bdeFlags = 9937 BUFF_TYPE_BDE_IMMED; 9938 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9939 wqe->generic.bde.addrHigh = 0; 9940 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9941 9942 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9943 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9944 9945 /* Word 22-29 FCP CMND Payload */ 9946 ptr = &wqe->words[22]; 9947 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9948 } 9949 break; 9950 case CMD_FCP_ICMND64_CR: 9951 /* word3 iocb=iotag wqe=payload_offset_len */ 9952 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9953 bf_set(payload_offset_len, &wqe->fcp_icmd, 9954 xmit_len + sizeof(struct fcp_rsp)); 9955 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9956 0); 9957 /* word3 iocb=IO_TAG wqe=reserved */ 9958 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9959 /* Always open the exchange */ 9960 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9961 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9962 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9963 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9964 LPFC_WQE_LENLOC_NONE); 9965 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9966 iocbq->iocb.ulpFCP2Rcvy); 9967 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9968 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9969 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9970 if (iocbq->priority) { 9971 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9972 (iocbq->priority << 1)); 9973 } else { 9974 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9975 (phba->cfg_XLanePriority << 1)); 9976 } 9977 } 9978 /* Note, word 10 is already initialized to 0 */ 9979 9980 if (phba->fcp_embed_io) { 9981 struct lpfc_io_buf *lpfc_cmd; 9982 struct sli4_sge *sgl; 9983 struct fcp_cmnd *fcp_cmnd; 9984 uint32_t *ptr; 9985 9986 /* 128 byte wqe support here */ 9987 9988 lpfc_cmd = iocbq->context1; 9989 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9990 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9991 9992 /* Word 0-2 - FCP_CMND */ 9993 wqe->generic.bde.tus.f.bdeFlags = 9994 BUFF_TYPE_BDE_IMMED; 9995 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9996 wqe->generic.bde.addrHigh = 0; 9997 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9998 9999 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10000 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10001 10002 /* Word 22-29 FCP CMND Payload */ 10003 ptr = &wqe->words[22]; 10004 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10005 } 10006 break; 10007 case CMD_GEN_REQUEST64_CR: 10008 /* For this command calculate the xmit length of the 10009 * request bde. 10010 */ 10011 xmit_len = 0; 10012 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10013 sizeof(struct ulp_bde64); 10014 for (i = 0; i < numBdes; i++) { 10015 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10016 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10017 break; 10018 xmit_len += bde.tus.f.bdeSize; 10019 } 10020 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10021 wqe->gen_req.request_payload_len = xmit_len; 10022 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10023 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10024 /* word6 context tag copied in memcpy */ 10025 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10026 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10028 "2015 Invalid CT %x command 0x%x\n", 10029 ct, iocbq->iocb.ulpCommand); 10030 return IOCB_ERROR; 10031 } 10032 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10033 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10034 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10035 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10036 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10037 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10038 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10039 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10040 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10041 command_type = OTHER_COMMAND; 10042 break; 10043 case CMD_XMIT_ELS_RSP64_CX: 10044 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10045 /* words0-2 BDE memcpy */ 10046 /* word3 iocb=iotag32 wqe=response_payload_len */ 10047 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10048 /* word4 */ 10049 wqe->xmit_els_rsp.word4 = 0; 10050 /* word5 iocb=rsvd wge=did */ 10051 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10052 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10053 10054 if_type = bf_get(lpfc_sli_intf_if_type, 10055 &phba->sli4_hba.sli_intf); 10056 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10057 if (iocbq->vport->fc_flag & FC_PT2PT) { 10058 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10059 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10060 iocbq->vport->fc_myDID); 10061 if (iocbq->vport->fc_myDID == Fabric_DID) { 10062 bf_set(wqe_els_did, 10063 &wqe->xmit_els_rsp.wqe_dest, 0); 10064 } 10065 } 10066 } 10067 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10068 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10069 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10070 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10071 iocbq->iocb.unsli3.rcvsli3.ox_id); 10072 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10073 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10074 phba->vpi_ids[iocbq->vport->vpi]); 10075 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10076 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10077 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10078 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10079 LPFC_WQE_LENLOC_WORD3); 10080 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10081 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10082 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10083 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10084 iocbq->context2)->virt); 10085 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10086 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10087 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10088 iocbq->vport->fc_myDID); 10089 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10090 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10091 phba->vpi_ids[phba->pport->vpi]); 10092 } 10093 command_type = OTHER_COMMAND; 10094 break; 10095 case CMD_CLOSE_XRI_CN: 10096 case CMD_ABORT_XRI_CN: 10097 case CMD_ABORT_XRI_CX: 10098 /* words 0-2 memcpy should be 0 rserved */ 10099 /* port will send abts */ 10100 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10101 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10102 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10103 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10104 } else 10105 fip = 0; 10106 10107 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10108 /* 10109 * The link is down, or the command was ELS_FIP 10110 * so the fw does not need to send abts 10111 * on the wire. 10112 */ 10113 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10114 else 10115 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10116 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10117 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10118 wqe->abort_cmd.rsrvd5 = 0; 10119 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10120 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10121 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10122 /* 10123 * The abort handler will send us CMD_ABORT_XRI_CN or 10124 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10125 */ 10126 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10127 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10128 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10129 LPFC_WQE_LENLOC_NONE); 10130 cmnd = CMD_ABORT_XRI_CX; 10131 command_type = OTHER_COMMAND; 10132 xritag = 0; 10133 break; 10134 case CMD_XMIT_BLS_RSP64_CX: 10135 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10136 /* As BLS ABTS RSP WQE is very different from other WQEs, 10137 * we re-construct this WQE here based on information in 10138 * iocbq from scratch. 10139 */ 10140 memset(wqe, 0, sizeof(*wqe)); 10141 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10142 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10143 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10144 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10145 LPFC_ABTS_UNSOL_INT) { 10146 /* ABTS sent by initiator to CT exchange, the 10147 * RX_ID field will be filled with the newly 10148 * allocated responder XRI. 10149 */ 10150 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10151 iocbq->sli4_xritag); 10152 } else { 10153 /* ABTS sent by responder to CT exchange, the 10154 * RX_ID field will be filled with the responder 10155 * RX_ID from ABTS. 10156 */ 10157 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10158 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10159 } 10160 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10161 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10162 10163 /* Use CT=VPI */ 10164 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10165 ndlp->nlp_DID); 10166 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10167 iocbq->iocb.ulpContext); 10168 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10169 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10170 phba->vpi_ids[phba->pport->vpi]); 10171 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10172 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10173 LPFC_WQE_LENLOC_NONE); 10174 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10175 command_type = OTHER_COMMAND; 10176 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10177 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10178 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10179 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10180 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10181 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10182 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10183 } 10184 10185 break; 10186 case CMD_SEND_FRAME: 10187 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10188 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10189 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10190 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10191 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10192 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10193 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10194 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10195 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10196 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10197 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10198 return 0; 10199 case CMD_XRI_ABORTED_CX: 10200 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10201 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10202 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10203 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10204 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10205 default: 10206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10207 "2014 Invalid command 0x%x\n", 10208 iocbq->iocb.ulpCommand); 10209 return IOCB_ERROR; 10210 } 10211 10212 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10213 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10214 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10215 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10216 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10217 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10218 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10219 LPFC_IO_DIF_INSERT); 10220 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10221 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10222 wqe->generic.wqe_com.abort_tag = abort_tag; 10223 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10224 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10225 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10226 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10227 return 0; 10228 } 10229 10230 /** 10231 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10232 * @phba: Pointer to HBA context object. 10233 * @ring_number: SLI ring number to issue wqe on. 10234 * @piocb: Pointer to command iocb. 10235 * @flag: Flag indicating if this command can be put into txq. 10236 * 10237 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10238 * send an iocb command to an HBA with SLI-4 interface spec. 10239 * 10240 * This function takes the hbalock before invoking the lockless version. 10241 * The function will return success after it successfully submit the wqe to 10242 * firmware or after adding to the txq. 10243 **/ 10244 static int 10245 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10246 struct lpfc_iocbq *piocb, uint32_t flag) 10247 { 10248 unsigned long iflags; 10249 int rc; 10250 10251 spin_lock_irqsave(&phba->hbalock, iflags); 10252 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10253 spin_unlock_irqrestore(&phba->hbalock, iflags); 10254 10255 return rc; 10256 } 10257 10258 /** 10259 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10260 * @phba: Pointer to HBA context object. 10261 * @ring_number: SLI ring number to issue wqe on. 10262 * @piocb: Pointer to command iocb. 10263 * @flag: Flag indicating if this command can be put into txq. 10264 * 10265 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10266 * an wqe command to an HBA with SLI-4 interface spec. 10267 * 10268 * This function is a lockless version. The function will return success 10269 * after it successfully submit the wqe to firmware or after adding to the 10270 * txq. 10271 **/ 10272 static int 10273 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10274 struct lpfc_iocbq *piocb, uint32_t flag) 10275 { 10276 int rc; 10277 struct lpfc_io_buf *lpfc_cmd = 10278 (struct lpfc_io_buf *)piocb->context1; 10279 union lpfc_wqe128 *wqe = &piocb->wqe; 10280 struct sli4_sge *sgl; 10281 10282 /* 128 byte wqe support here */ 10283 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10284 10285 if (phba->fcp_embed_io) { 10286 struct fcp_cmnd *fcp_cmnd; 10287 u32 *ptr; 10288 10289 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10290 10291 /* Word 0-2 - FCP_CMND */ 10292 wqe->generic.bde.tus.f.bdeFlags = 10293 BUFF_TYPE_BDE_IMMED; 10294 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10295 wqe->generic.bde.addrHigh = 0; 10296 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10297 10298 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10299 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10300 10301 /* Word 22-29 FCP CMND Payload */ 10302 ptr = &wqe->words[22]; 10303 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10304 } else { 10305 /* Word 0-2 - Inline BDE */ 10306 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10307 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10308 wqe->generic.bde.addrHigh = sgl->addr_hi; 10309 wqe->generic.bde.addrLow = sgl->addr_lo; 10310 10311 /* Word 10 */ 10312 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10313 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10314 } 10315 10316 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10317 return rc; 10318 } 10319 10320 /** 10321 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10322 * @phba: Pointer to HBA context object. 10323 * @ring_number: SLI ring number to issue iocb on. 10324 * @piocb: Pointer to command iocb. 10325 * @flag: Flag indicating if this command can be put into txq. 10326 * 10327 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10328 * an iocb command to an HBA with SLI-4 interface spec. 10329 * 10330 * This function is called with ringlock held. The function will return success 10331 * after it successfully submit the iocb to firmware or after adding to the 10332 * txq. 10333 **/ 10334 static int 10335 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10336 struct lpfc_iocbq *piocb, uint32_t flag) 10337 { 10338 struct lpfc_sglq *sglq; 10339 union lpfc_wqe128 wqe; 10340 struct lpfc_queue *wq; 10341 struct lpfc_sli_ring *pring; 10342 10343 /* Get the WQ */ 10344 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10345 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10346 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10347 } else { 10348 wq = phba->sli4_hba.els_wq; 10349 } 10350 10351 /* Get corresponding ring */ 10352 pring = wq->pring; 10353 10354 /* 10355 * The WQE can be either 64 or 128 bytes, 10356 */ 10357 10358 lockdep_assert_held(&pring->ring_lock); 10359 10360 if (piocb->sli4_xritag == NO_XRI) { 10361 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10362 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10363 sglq = NULL; 10364 else { 10365 if (!list_empty(&pring->txq)) { 10366 if (!(flag & SLI_IOCB_RET_IOCB)) { 10367 __lpfc_sli_ringtx_put(phba, 10368 pring, piocb); 10369 return IOCB_SUCCESS; 10370 } else { 10371 return IOCB_BUSY; 10372 } 10373 } else { 10374 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10375 if (!sglq) { 10376 if (!(flag & SLI_IOCB_RET_IOCB)) { 10377 __lpfc_sli_ringtx_put(phba, 10378 pring, 10379 piocb); 10380 return IOCB_SUCCESS; 10381 } else 10382 return IOCB_BUSY; 10383 } 10384 } 10385 } 10386 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10387 /* These IO's already have an XRI and a mapped sgl. */ 10388 sglq = NULL; 10389 } 10390 else { 10391 /* 10392 * This is a continuation of a commandi,(CX) so this 10393 * sglq is on the active list 10394 */ 10395 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10396 if (!sglq) 10397 return IOCB_ERROR; 10398 } 10399 10400 if (sglq) { 10401 piocb->sli4_lxritag = sglq->sli4_lxritag; 10402 piocb->sli4_xritag = sglq->sli4_xritag; 10403 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10404 return IOCB_ERROR; 10405 } 10406 10407 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10408 return IOCB_ERROR; 10409 10410 if (lpfc_sli4_wq_put(wq, &wqe)) 10411 return IOCB_ERROR; 10412 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10413 10414 return 0; 10415 } 10416 10417 /* 10418 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10419 * 10420 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10421 * or IOCB for sli-3 function. 10422 * pointer from the lpfc_hba struct. 10423 * 10424 * Return codes: 10425 * IOCB_ERROR - Error 10426 * IOCB_SUCCESS - Success 10427 * IOCB_BUSY - Busy 10428 **/ 10429 int 10430 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10431 struct lpfc_iocbq *piocb, uint32_t flag) 10432 { 10433 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10434 } 10435 10436 /* 10437 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10438 * 10439 * This routine wraps the actual lockless version for issusing IOCB function 10440 * pointer from the lpfc_hba struct. 10441 * 10442 * Return codes: 10443 * IOCB_ERROR - Error 10444 * IOCB_SUCCESS - Success 10445 * IOCB_BUSY - Busy 10446 **/ 10447 int 10448 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10449 struct lpfc_iocbq *piocb, uint32_t flag) 10450 { 10451 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10452 } 10453 10454 /** 10455 * lpfc_sli_api_table_setup - Set up sli api function jump table 10456 * @phba: The hba struct for which this call is being executed. 10457 * @dev_grp: The HBA PCI-Device group number. 10458 * 10459 * This routine sets up the SLI interface API function jump table in @phba 10460 * struct. 10461 * Returns: 0 - success, -ENODEV - failure. 10462 **/ 10463 int 10464 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10465 { 10466 10467 switch (dev_grp) { 10468 case LPFC_PCI_DEV_LP: 10469 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10470 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10471 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10472 break; 10473 case LPFC_PCI_DEV_OC: 10474 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10475 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10476 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10477 break; 10478 default: 10479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10480 "1419 Invalid HBA PCI-device group: 0x%x\n", 10481 dev_grp); 10482 return -ENODEV; 10483 } 10484 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10485 return 0; 10486 } 10487 10488 /** 10489 * lpfc_sli4_calc_ring - Calculates which ring to use 10490 * @phba: Pointer to HBA context object. 10491 * @piocb: Pointer to command iocb. 10492 * 10493 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10494 * hba_wqidx, thus we need to calculate the corresponding ring. 10495 * Since ABORTS must go on the same WQ of the command they are 10496 * aborting, we use command's hba_wqidx. 10497 */ 10498 struct lpfc_sli_ring * 10499 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10500 { 10501 struct lpfc_io_buf *lpfc_cmd; 10502 10503 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10504 if (unlikely(!phba->sli4_hba.hdwq)) 10505 return NULL; 10506 /* 10507 * for abort iocb hba_wqidx should already 10508 * be setup based on what work queue we used. 10509 */ 10510 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10511 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10512 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10513 } 10514 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10515 } else { 10516 if (unlikely(!phba->sli4_hba.els_wq)) 10517 return NULL; 10518 piocb->hba_wqidx = 0; 10519 return phba->sli4_hba.els_wq->pring; 10520 } 10521 } 10522 10523 /** 10524 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10525 * @phba: Pointer to HBA context object. 10526 * @ring_number: Ring number 10527 * @piocb: Pointer to command iocb. 10528 * @flag: Flag indicating if this command can be put into txq. 10529 * 10530 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10531 * function. This function gets the hbalock and calls 10532 * __lpfc_sli_issue_iocb function and will return the error returned 10533 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10534 * functions which do not hold hbalock. 10535 **/ 10536 int 10537 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10538 struct lpfc_iocbq *piocb, uint32_t flag) 10539 { 10540 struct lpfc_sli_ring *pring; 10541 struct lpfc_queue *eq; 10542 unsigned long iflags; 10543 int rc; 10544 10545 if (phba->sli_rev == LPFC_SLI_REV4) { 10546 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10547 10548 pring = lpfc_sli4_calc_ring(phba, piocb); 10549 if (unlikely(pring == NULL)) 10550 return IOCB_ERROR; 10551 10552 spin_lock_irqsave(&pring->ring_lock, iflags); 10553 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10554 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10555 10556 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10557 } else { 10558 /* For now, SLI2/3 will still use hbalock */ 10559 spin_lock_irqsave(&phba->hbalock, iflags); 10560 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10561 spin_unlock_irqrestore(&phba->hbalock, iflags); 10562 } 10563 return rc; 10564 } 10565 10566 /** 10567 * lpfc_extra_ring_setup - Extra ring setup function 10568 * @phba: Pointer to HBA context object. 10569 * 10570 * This function is called while driver attaches with the 10571 * HBA to setup the extra ring. The extra ring is used 10572 * only when driver needs to support target mode functionality 10573 * or IP over FC functionalities. 10574 * 10575 * This function is called with no lock held. SLI3 only. 10576 **/ 10577 static int 10578 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10579 { 10580 struct lpfc_sli *psli; 10581 struct lpfc_sli_ring *pring; 10582 10583 psli = &phba->sli; 10584 10585 /* Adjust cmd/rsp ring iocb entries more evenly */ 10586 10587 /* Take some away from the FCP ring */ 10588 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10589 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10590 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10591 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10592 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10593 10594 /* and give them to the extra ring */ 10595 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10596 10597 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10598 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10599 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10600 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10601 10602 /* Setup default profile for this ring */ 10603 pring->iotag_max = 4096; 10604 pring->num_mask = 1; 10605 pring->prt[0].profile = 0; /* Mask 0 */ 10606 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10607 pring->prt[0].type = phba->cfg_multi_ring_type; 10608 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10609 return 0; 10610 } 10611 10612 static void 10613 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10614 struct lpfc_nodelist *ndlp) 10615 { 10616 unsigned long iflags; 10617 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10618 10619 spin_lock_irqsave(&phba->hbalock, iflags); 10620 if (!list_empty(&evtp->evt_listp)) { 10621 spin_unlock_irqrestore(&phba->hbalock, iflags); 10622 return; 10623 } 10624 10625 /* Incrementing the reference count until the queued work is done. */ 10626 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10627 if (!evtp->evt_arg1) { 10628 spin_unlock_irqrestore(&phba->hbalock, iflags); 10629 return; 10630 } 10631 evtp->evt = LPFC_EVT_RECOVER_PORT; 10632 list_add_tail(&evtp->evt_listp, &phba->work_list); 10633 spin_unlock_irqrestore(&phba->hbalock, iflags); 10634 10635 lpfc_worker_wake_up(phba); 10636 } 10637 10638 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10639 * @phba: Pointer to HBA context object. 10640 * @iocbq: Pointer to iocb object. 10641 * 10642 * The async_event handler calls this routine when it receives 10643 * an ASYNC_STATUS_CN event from the port. The port generates 10644 * this event when an Abort Sequence request to an rport fails 10645 * twice in succession. The abort could be originated by the 10646 * driver or by the port. The ABTS could have been for an ELS 10647 * or FCP IO. The port only generates this event when an ABTS 10648 * fails to complete after one retry. 10649 */ 10650 static void 10651 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10652 struct lpfc_iocbq *iocbq) 10653 { 10654 struct lpfc_nodelist *ndlp = NULL; 10655 uint16_t rpi = 0, vpi = 0; 10656 struct lpfc_vport *vport = NULL; 10657 10658 /* The rpi in the ulpContext is vport-sensitive. */ 10659 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10660 rpi = iocbq->iocb.ulpContext; 10661 10662 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10663 "3092 Port generated ABTS async event " 10664 "on vpi %d rpi %d status 0x%x\n", 10665 vpi, rpi, iocbq->iocb.ulpStatus); 10666 10667 vport = lpfc_find_vport_by_vpid(phba, vpi); 10668 if (!vport) 10669 goto err_exit; 10670 ndlp = lpfc_findnode_rpi(vport, rpi); 10671 if (!ndlp) 10672 goto err_exit; 10673 10674 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10675 lpfc_sli_abts_recover_port(vport, ndlp); 10676 return; 10677 10678 err_exit: 10679 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10680 "3095 Event Context not found, no " 10681 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10682 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10683 vpi, rpi); 10684 } 10685 10686 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10687 * @phba: pointer to HBA context object. 10688 * @ndlp: nodelist pointer for the impacted rport. 10689 * @axri: pointer to the wcqe containing the failed exchange. 10690 * 10691 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10692 * port. The port generates this event when an abort exchange request to an 10693 * rport fails twice in succession with no reply. The abort could be originated 10694 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10695 */ 10696 void 10697 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10698 struct lpfc_nodelist *ndlp, 10699 struct sli4_wcqe_xri_aborted *axri) 10700 { 10701 uint32_t ext_status = 0; 10702 10703 if (!ndlp) { 10704 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10705 "3115 Node Context not found, driver " 10706 "ignoring abts err event\n"); 10707 return; 10708 } 10709 10710 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10711 "3116 Port generated FCP XRI ABORT event on " 10712 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10713 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10714 bf_get(lpfc_wcqe_xa_xri, axri), 10715 bf_get(lpfc_wcqe_xa_status, axri), 10716 axri->parameter); 10717 10718 /* 10719 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10720 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10721 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10722 */ 10723 ext_status = axri->parameter & IOERR_PARAM_MASK; 10724 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10725 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10726 lpfc_sli_post_recovery_event(phba, ndlp); 10727 } 10728 10729 /** 10730 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10731 * @phba: Pointer to HBA context object. 10732 * @pring: Pointer to driver SLI ring object. 10733 * @iocbq: Pointer to iocb object. 10734 * 10735 * This function is called by the slow ring event handler 10736 * function when there is an ASYNC event iocb in the ring. 10737 * This function is called with no lock held. 10738 * Currently this function handles only temperature related 10739 * ASYNC events. The function decodes the temperature sensor 10740 * event message and posts events for the management applications. 10741 **/ 10742 static void 10743 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10744 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10745 { 10746 IOCB_t *icmd; 10747 uint16_t evt_code; 10748 struct temp_event temp_event_data; 10749 struct Scsi_Host *shost; 10750 uint32_t *iocb_w; 10751 10752 icmd = &iocbq->iocb; 10753 evt_code = icmd->un.asyncstat.evt_code; 10754 10755 switch (evt_code) { 10756 case ASYNC_TEMP_WARN: 10757 case ASYNC_TEMP_SAFE: 10758 temp_event_data.data = (uint32_t) icmd->ulpContext; 10759 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10760 if (evt_code == ASYNC_TEMP_WARN) { 10761 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10762 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10763 "0347 Adapter is very hot, please take " 10764 "corrective action. temperature : %d Celsius\n", 10765 (uint32_t) icmd->ulpContext); 10766 } else { 10767 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10769 "0340 Adapter temperature is OK now. " 10770 "temperature : %d Celsius\n", 10771 (uint32_t) icmd->ulpContext); 10772 } 10773 10774 /* Send temperature change event to applications */ 10775 shost = lpfc_shost_from_vport(phba->pport); 10776 fc_host_post_vendor_event(shost, fc_get_event_number(), 10777 sizeof(temp_event_data), (char *) &temp_event_data, 10778 LPFC_NL_VENDOR_ID); 10779 break; 10780 case ASYNC_STATUS_CN: 10781 lpfc_sli_abts_err_handler(phba, iocbq); 10782 break; 10783 default: 10784 iocb_w = (uint32_t *) icmd; 10785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10786 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10787 " evt_code 0x%x\n" 10788 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10789 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10790 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10791 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10792 pring->ringno, icmd->un.asyncstat.evt_code, 10793 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10794 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10795 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10796 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10797 10798 break; 10799 } 10800 } 10801 10802 10803 /** 10804 * lpfc_sli4_setup - SLI ring setup function 10805 * @phba: Pointer to HBA context object. 10806 * 10807 * lpfc_sli_setup sets up rings of the SLI interface with 10808 * number of iocbs per ring and iotags. This function is 10809 * called while driver attach to the HBA and before the 10810 * interrupts are enabled. So there is no need for locking. 10811 * 10812 * This function always returns 0. 10813 **/ 10814 int 10815 lpfc_sli4_setup(struct lpfc_hba *phba) 10816 { 10817 struct lpfc_sli_ring *pring; 10818 10819 pring = phba->sli4_hba.els_wq->pring; 10820 pring->num_mask = LPFC_MAX_RING_MASK; 10821 pring->prt[0].profile = 0; /* Mask 0 */ 10822 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10823 pring->prt[0].type = FC_TYPE_ELS; 10824 pring->prt[0].lpfc_sli_rcv_unsol_event = 10825 lpfc_els_unsol_event; 10826 pring->prt[1].profile = 0; /* Mask 1 */ 10827 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10828 pring->prt[1].type = FC_TYPE_ELS; 10829 pring->prt[1].lpfc_sli_rcv_unsol_event = 10830 lpfc_els_unsol_event; 10831 pring->prt[2].profile = 0; /* Mask 2 */ 10832 /* NameServer Inquiry */ 10833 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10834 /* NameServer */ 10835 pring->prt[2].type = FC_TYPE_CT; 10836 pring->prt[2].lpfc_sli_rcv_unsol_event = 10837 lpfc_ct_unsol_event; 10838 pring->prt[3].profile = 0; /* Mask 3 */ 10839 /* NameServer response */ 10840 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10841 /* NameServer */ 10842 pring->prt[3].type = FC_TYPE_CT; 10843 pring->prt[3].lpfc_sli_rcv_unsol_event = 10844 lpfc_ct_unsol_event; 10845 return 0; 10846 } 10847 10848 /** 10849 * lpfc_sli_setup - SLI ring setup function 10850 * @phba: Pointer to HBA context object. 10851 * 10852 * lpfc_sli_setup sets up rings of the SLI interface with 10853 * number of iocbs per ring and iotags. This function is 10854 * called while driver attach to the HBA and before the 10855 * interrupts are enabled. So there is no need for locking. 10856 * 10857 * This function always returns 0. SLI3 only. 10858 **/ 10859 int 10860 lpfc_sli_setup(struct lpfc_hba *phba) 10861 { 10862 int i, totiocbsize = 0; 10863 struct lpfc_sli *psli = &phba->sli; 10864 struct lpfc_sli_ring *pring; 10865 10866 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10867 psli->sli_flag = 0; 10868 10869 psli->iocbq_lookup = NULL; 10870 psli->iocbq_lookup_len = 0; 10871 psli->last_iotag = 0; 10872 10873 for (i = 0; i < psli->num_rings; i++) { 10874 pring = &psli->sli3_ring[i]; 10875 switch (i) { 10876 case LPFC_FCP_RING: /* ring 0 - FCP */ 10877 /* numCiocb and numRiocb are used in config_port */ 10878 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10879 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10880 pring->sli.sli3.numCiocb += 10881 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10882 pring->sli.sli3.numRiocb += 10883 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10884 pring->sli.sli3.numCiocb += 10885 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10886 pring->sli.sli3.numRiocb += 10887 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10888 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10889 SLI3_IOCB_CMD_SIZE : 10890 SLI2_IOCB_CMD_SIZE; 10891 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10892 SLI3_IOCB_RSP_SIZE : 10893 SLI2_IOCB_RSP_SIZE; 10894 pring->iotag_ctr = 0; 10895 pring->iotag_max = 10896 (phba->cfg_hba_queue_depth * 2); 10897 pring->fast_iotag = pring->iotag_max; 10898 pring->num_mask = 0; 10899 break; 10900 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10901 /* numCiocb and numRiocb are used in config_port */ 10902 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10903 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10904 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10905 SLI3_IOCB_CMD_SIZE : 10906 SLI2_IOCB_CMD_SIZE; 10907 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10908 SLI3_IOCB_RSP_SIZE : 10909 SLI2_IOCB_RSP_SIZE; 10910 pring->iotag_max = phba->cfg_hba_queue_depth; 10911 pring->num_mask = 0; 10912 break; 10913 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10914 /* numCiocb and numRiocb are used in config_port */ 10915 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10916 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10917 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10918 SLI3_IOCB_CMD_SIZE : 10919 SLI2_IOCB_CMD_SIZE; 10920 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10921 SLI3_IOCB_RSP_SIZE : 10922 SLI2_IOCB_RSP_SIZE; 10923 pring->fast_iotag = 0; 10924 pring->iotag_ctr = 0; 10925 pring->iotag_max = 4096; 10926 pring->lpfc_sli_rcv_async_status = 10927 lpfc_sli_async_event_handler; 10928 pring->num_mask = LPFC_MAX_RING_MASK; 10929 pring->prt[0].profile = 0; /* Mask 0 */ 10930 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10931 pring->prt[0].type = FC_TYPE_ELS; 10932 pring->prt[0].lpfc_sli_rcv_unsol_event = 10933 lpfc_els_unsol_event; 10934 pring->prt[1].profile = 0; /* Mask 1 */ 10935 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10936 pring->prt[1].type = FC_TYPE_ELS; 10937 pring->prt[1].lpfc_sli_rcv_unsol_event = 10938 lpfc_els_unsol_event; 10939 pring->prt[2].profile = 0; /* Mask 2 */ 10940 /* NameServer Inquiry */ 10941 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10942 /* NameServer */ 10943 pring->prt[2].type = FC_TYPE_CT; 10944 pring->prt[2].lpfc_sli_rcv_unsol_event = 10945 lpfc_ct_unsol_event; 10946 pring->prt[3].profile = 0; /* Mask 3 */ 10947 /* NameServer response */ 10948 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10949 /* NameServer */ 10950 pring->prt[3].type = FC_TYPE_CT; 10951 pring->prt[3].lpfc_sli_rcv_unsol_event = 10952 lpfc_ct_unsol_event; 10953 break; 10954 } 10955 totiocbsize += (pring->sli.sli3.numCiocb * 10956 pring->sli.sli3.sizeCiocb) + 10957 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10958 } 10959 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10960 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10961 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10962 "SLI2 SLIM Data: x%x x%lx\n", 10963 phba->brd_no, totiocbsize, 10964 (unsigned long) MAX_SLIM_IOCB_SIZE); 10965 } 10966 if (phba->cfg_multi_ring_support == 2) 10967 lpfc_extra_ring_setup(phba); 10968 10969 return 0; 10970 } 10971 10972 /** 10973 * lpfc_sli4_queue_init - Queue initialization function 10974 * @phba: Pointer to HBA context object. 10975 * 10976 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10977 * ring. This function also initializes ring indices of each ring. 10978 * This function is called during the initialization of the SLI 10979 * interface of an HBA. 10980 * This function is called with no lock held and always returns 10981 * 1. 10982 **/ 10983 void 10984 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10985 { 10986 struct lpfc_sli *psli; 10987 struct lpfc_sli_ring *pring; 10988 int i; 10989 10990 psli = &phba->sli; 10991 spin_lock_irq(&phba->hbalock); 10992 INIT_LIST_HEAD(&psli->mboxq); 10993 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10994 /* Initialize list headers for txq and txcmplq as double linked lists */ 10995 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10996 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10997 pring->flag = 0; 10998 pring->ringno = LPFC_FCP_RING; 10999 pring->txcmplq_cnt = 0; 11000 INIT_LIST_HEAD(&pring->txq); 11001 INIT_LIST_HEAD(&pring->txcmplq); 11002 INIT_LIST_HEAD(&pring->iocb_continueq); 11003 spin_lock_init(&pring->ring_lock); 11004 } 11005 pring = phba->sli4_hba.els_wq->pring; 11006 pring->flag = 0; 11007 pring->ringno = LPFC_ELS_RING; 11008 pring->txcmplq_cnt = 0; 11009 INIT_LIST_HEAD(&pring->txq); 11010 INIT_LIST_HEAD(&pring->txcmplq); 11011 INIT_LIST_HEAD(&pring->iocb_continueq); 11012 spin_lock_init(&pring->ring_lock); 11013 11014 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11015 pring = phba->sli4_hba.nvmels_wq->pring; 11016 pring->flag = 0; 11017 pring->ringno = LPFC_ELS_RING; 11018 pring->txcmplq_cnt = 0; 11019 INIT_LIST_HEAD(&pring->txq); 11020 INIT_LIST_HEAD(&pring->txcmplq); 11021 INIT_LIST_HEAD(&pring->iocb_continueq); 11022 spin_lock_init(&pring->ring_lock); 11023 } 11024 11025 spin_unlock_irq(&phba->hbalock); 11026 } 11027 11028 /** 11029 * lpfc_sli_queue_init - Queue initialization function 11030 * @phba: Pointer to HBA context object. 11031 * 11032 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11033 * ring. This function also initializes ring indices of each ring. 11034 * This function is called during the initialization of the SLI 11035 * interface of an HBA. 11036 * This function is called with no lock held and always returns 11037 * 1. 11038 **/ 11039 void 11040 lpfc_sli_queue_init(struct lpfc_hba *phba) 11041 { 11042 struct lpfc_sli *psli; 11043 struct lpfc_sli_ring *pring; 11044 int i; 11045 11046 psli = &phba->sli; 11047 spin_lock_irq(&phba->hbalock); 11048 INIT_LIST_HEAD(&psli->mboxq); 11049 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11050 /* Initialize list headers for txq and txcmplq as double linked lists */ 11051 for (i = 0; i < psli->num_rings; i++) { 11052 pring = &psli->sli3_ring[i]; 11053 pring->ringno = i; 11054 pring->sli.sli3.next_cmdidx = 0; 11055 pring->sli.sli3.local_getidx = 0; 11056 pring->sli.sli3.cmdidx = 0; 11057 INIT_LIST_HEAD(&pring->iocb_continueq); 11058 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11059 INIT_LIST_HEAD(&pring->postbufq); 11060 pring->flag = 0; 11061 INIT_LIST_HEAD(&pring->txq); 11062 INIT_LIST_HEAD(&pring->txcmplq); 11063 spin_lock_init(&pring->ring_lock); 11064 } 11065 spin_unlock_irq(&phba->hbalock); 11066 } 11067 11068 /** 11069 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11070 * @phba: Pointer to HBA context object. 11071 * 11072 * This routine flushes the mailbox command subsystem. It will unconditionally 11073 * flush all the mailbox commands in the three possible stages in the mailbox 11074 * command sub-system: pending mailbox command queue; the outstanding mailbox 11075 * command; and completed mailbox command queue. It is caller's responsibility 11076 * to make sure that the driver is in the proper state to flush the mailbox 11077 * command sub-system. Namely, the posting of mailbox commands into the 11078 * pending mailbox command queue from the various clients must be stopped; 11079 * either the HBA is in a state that it will never works on the outstanding 11080 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11081 * mailbox command has been completed. 11082 **/ 11083 static void 11084 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11085 { 11086 LIST_HEAD(completions); 11087 struct lpfc_sli *psli = &phba->sli; 11088 LPFC_MBOXQ_t *pmb; 11089 unsigned long iflag; 11090 11091 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11092 local_bh_disable(); 11093 11094 /* Flush all the mailbox commands in the mbox system */ 11095 spin_lock_irqsave(&phba->hbalock, iflag); 11096 11097 /* The pending mailbox command queue */ 11098 list_splice_init(&phba->sli.mboxq, &completions); 11099 /* The outstanding active mailbox command */ 11100 if (psli->mbox_active) { 11101 list_add_tail(&psli->mbox_active->list, &completions); 11102 psli->mbox_active = NULL; 11103 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11104 } 11105 /* The completed mailbox command queue */ 11106 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11107 spin_unlock_irqrestore(&phba->hbalock, iflag); 11108 11109 /* Enable softirqs again, done with phba->hbalock */ 11110 local_bh_enable(); 11111 11112 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11113 while (!list_empty(&completions)) { 11114 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11115 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11116 if (pmb->mbox_cmpl) 11117 pmb->mbox_cmpl(phba, pmb); 11118 } 11119 } 11120 11121 /** 11122 * lpfc_sli_host_down - Vport cleanup function 11123 * @vport: Pointer to virtual port object. 11124 * 11125 * lpfc_sli_host_down is called to clean up the resources 11126 * associated with a vport before destroying virtual 11127 * port data structures. 11128 * This function does following operations: 11129 * - Free discovery resources associated with this virtual 11130 * port. 11131 * - Free iocbs associated with this virtual port in 11132 * the txq. 11133 * - Send abort for all iocb commands associated with this 11134 * vport in txcmplq. 11135 * 11136 * This function is called with no lock held and always returns 1. 11137 **/ 11138 int 11139 lpfc_sli_host_down(struct lpfc_vport *vport) 11140 { 11141 LIST_HEAD(completions); 11142 struct lpfc_hba *phba = vport->phba; 11143 struct lpfc_sli *psli = &phba->sli; 11144 struct lpfc_queue *qp = NULL; 11145 struct lpfc_sli_ring *pring; 11146 struct lpfc_iocbq *iocb, *next_iocb; 11147 int i; 11148 unsigned long flags = 0; 11149 uint16_t prev_pring_flag; 11150 11151 lpfc_cleanup_discovery_resources(vport); 11152 11153 spin_lock_irqsave(&phba->hbalock, flags); 11154 11155 /* 11156 * Error everything on the txq since these iocbs 11157 * have not been given to the FW yet. 11158 * Also issue ABTS for everything on the txcmplq 11159 */ 11160 if (phba->sli_rev != LPFC_SLI_REV4) { 11161 for (i = 0; i < psli->num_rings; i++) { 11162 pring = &psli->sli3_ring[i]; 11163 prev_pring_flag = pring->flag; 11164 /* Only slow rings */ 11165 if (pring->ringno == LPFC_ELS_RING) { 11166 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11167 /* Set the lpfc data pending flag */ 11168 set_bit(LPFC_DATA_READY, &phba->data_flags); 11169 } 11170 list_for_each_entry_safe(iocb, next_iocb, 11171 &pring->txq, list) { 11172 if (iocb->vport != vport) 11173 continue; 11174 list_move_tail(&iocb->list, &completions); 11175 } 11176 list_for_each_entry_safe(iocb, next_iocb, 11177 &pring->txcmplq, list) { 11178 if (iocb->vport != vport) 11179 continue; 11180 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11181 NULL); 11182 } 11183 pring->flag = prev_pring_flag; 11184 } 11185 } else { 11186 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11187 pring = qp->pring; 11188 if (!pring) 11189 continue; 11190 if (pring == phba->sli4_hba.els_wq->pring) { 11191 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11192 /* Set the lpfc data pending flag */ 11193 set_bit(LPFC_DATA_READY, &phba->data_flags); 11194 } 11195 prev_pring_flag = pring->flag; 11196 spin_lock(&pring->ring_lock); 11197 list_for_each_entry_safe(iocb, next_iocb, 11198 &pring->txq, list) { 11199 if (iocb->vport != vport) 11200 continue; 11201 list_move_tail(&iocb->list, &completions); 11202 } 11203 spin_unlock(&pring->ring_lock); 11204 list_for_each_entry_safe(iocb, next_iocb, 11205 &pring->txcmplq, list) { 11206 if (iocb->vport != vport) 11207 continue; 11208 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11209 NULL); 11210 } 11211 pring->flag = prev_pring_flag; 11212 } 11213 } 11214 spin_unlock_irqrestore(&phba->hbalock, flags); 11215 11216 /* Make sure HBA is alive */ 11217 lpfc_issue_hb_tmo(phba); 11218 11219 /* Cancel all the IOCBs from the completions list */ 11220 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11221 IOERR_SLI_DOWN); 11222 return 1; 11223 } 11224 11225 /** 11226 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11227 * @phba: Pointer to HBA context object. 11228 * 11229 * This function cleans up all iocb, buffers, mailbox commands 11230 * while shutting down the HBA. This function is called with no 11231 * lock held and always returns 1. 11232 * This function does the following to cleanup driver resources: 11233 * - Free discovery resources for each virtual port 11234 * - Cleanup any pending fabric iocbs 11235 * - Iterate through the iocb txq and free each entry 11236 * in the list. 11237 * - Free up any buffer posted to the HBA 11238 * - Free mailbox commands in the mailbox queue. 11239 **/ 11240 int 11241 lpfc_sli_hba_down(struct lpfc_hba *phba) 11242 { 11243 LIST_HEAD(completions); 11244 struct lpfc_sli *psli = &phba->sli; 11245 struct lpfc_queue *qp = NULL; 11246 struct lpfc_sli_ring *pring; 11247 struct lpfc_dmabuf *buf_ptr; 11248 unsigned long flags = 0; 11249 int i; 11250 11251 /* Shutdown the mailbox command sub-system */ 11252 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11253 11254 lpfc_hba_down_prep(phba); 11255 11256 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11257 local_bh_disable(); 11258 11259 lpfc_fabric_abort_hba(phba); 11260 11261 spin_lock_irqsave(&phba->hbalock, flags); 11262 11263 /* 11264 * Error everything on the txq since these iocbs 11265 * have not been given to the FW yet. 11266 */ 11267 if (phba->sli_rev != LPFC_SLI_REV4) { 11268 for (i = 0; i < psli->num_rings; i++) { 11269 pring = &psli->sli3_ring[i]; 11270 /* Only slow rings */ 11271 if (pring->ringno == LPFC_ELS_RING) { 11272 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11273 /* Set the lpfc data pending flag */ 11274 set_bit(LPFC_DATA_READY, &phba->data_flags); 11275 } 11276 list_splice_init(&pring->txq, &completions); 11277 } 11278 } else { 11279 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11280 pring = qp->pring; 11281 if (!pring) 11282 continue; 11283 spin_lock(&pring->ring_lock); 11284 list_splice_init(&pring->txq, &completions); 11285 spin_unlock(&pring->ring_lock); 11286 if (pring == phba->sli4_hba.els_wq->pring) { 11287 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11288 /* Set the lpfc data pending flag */ 11289 set_bit(LPFC_DATA_READY, &phba->data_flags); 11290 } 11291 } 11292 } 11293 spin_unlock_irqrestore(&phba->hbalock, flags); 11294 11295 /* Cancel all the IOCBs from the completions list */ 11296 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11297 IOERR_SLI_DOWN); 11298 11299 spin_lock_irqsave(&phba->hbalock, flags); 11300 list_splice_init(&phba->elsbuf, &completions); 11301 phba->elsbuf_cnt = 0; 11302 phba->elsbuf_prev_cnt = 0; 11303 spin_unlock_irqrestore(&phba->hbalock, flags); 11304 11305 while (!list_empty(&completions)) { 11306 list_remove_head(&completions, buf_ptr, 11307 struct lpfc_dmabuf, list); 11308 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11309 kfree(buf_ptr); 11310 } 11311 11312 /* Enable softirqs again, done with phba->hbalock */ 11313 local_bh_enable(); 11314 11315 /* Return any active mbox cmds */ 11316 del_timer_sync(&psli->mbox_tmo); 11317 11318 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11319 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11320 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11321 11322 return 1; 11323 } 11324 11325 /** 11326 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11327 * @srcp: Source memory pointer. 11328 * @destp: Destination memory pointer. 11329 * @cnt: Number of words required to be copied. 11330 * 11331 * This function is used for copying data between driver memory 11332 * and the SLI memory. This function also changes the endianness 11333 * of each word if native endianness is different from SLI 11334 * endianness. This function can be called with or without 11335 * lock. 11336 **/ 11337 void 11338 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11339 { 11340 uint32_t *src = srcp; 11341 uint32_t *dest = destp; 11342 uint32_t ldata; 11343 int i; 11344 11345 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11346 ldata = *src; 11347 ldata = le32_to_cpu(ldata); 11348 *dest = ldata; 11349 src++; 11350 dest++; 11351 } 11352 } 11353 11354 11355 /** 11356 * lpfc_sli_bemem_bcopy - SLI memory copy function 11357 * @srcp: Source memory pointer. 11358 * @destp: Destination memory pointer. 11359 * @cnt: Number of words required to be copied. 11360 * 11361 * This function is used for copying data between a data structure 11362 * with big endian representation to local endianness. 11363 * This function can be called with or without lock. 11364 **/ 11365 void 11366 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11367 { 11368 uint32_t *src = srcp; 11369 uint32_t *dest = destp; 11370 uint32_t ldata; 11371 int i; 11372 11373 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11374 ldata = *src; 11375 ldata = be32_to_cpu(ldata); 11376 *dest = ldata; 11377 src++; 11378 dest++; 11379 } 11380 } 11381 11382 /** 11383 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11384 * @phba: Pointer to HBA context object. 11385 * @pring: Pointer to driver SLI ring object. 11386 * @mp: Pointer to driver buffer object. 11387 * 11388 * This function is called with no lock held. 11389 * It always return zero after adding the buffer to the postbufq 11390 * buffer list. 11391 **/ 11392 int 11393 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11394 struct lpfc_dmabuf *mp) 11395 { 11396 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11397 later */ 11398 spin_lock_irq(&phba->hbalock); 11399 list_add_tail(&mp->list, &pring->postbufq); 11400 pring->postbufq_cnt++; 11401 spin_unlock_irq(&phba->hbalock); 11402 return 0; 11403 } 11404 11405 /** 11406 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11407 * @phba: Pointer to HBA context object. 11408 * 11409 * When HBQ is enabled, buffers are searched based on tags. This function 11410 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11411 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11412 * does not conflict with tags of buffer posted for unsolicited events. 11413 * The function returns the allocated tag. The function is called with 11414 * no locks held. 11415 **/ 11416 uint32_t 11417 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11418 { 11419 spin_lock_irq(&phba->hbalock); 11420 phba->buffer_tag_count++; 11421 /* 11422 * Always set the QUE_BUFTAG_BIT to distiguish between 11423 * a tag assigned by HBQ. 11424 */ 11425 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11426 spin_unlock_irq(&phba->hbalock); 11427 return phba->buffer_tag_count; 11428 } 11429 11430 /** 11431 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11432 * @phba: Pointer to HBA context object. 11433 * @pring: Pointer to driver SLI ring object. 11434 * @tag: Buffer tag. 11435 * 11436 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11437 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11438 * iocb is posted to the response ring with the tag of the buffer. 11439 * This function searches the pring->postbufq list using the tag 11440 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11441 * iocb. If the buffer is found then lpfc_dmabuf object of the 11442 * buffer is returned to the caller else NULL is returned. 11443 * This function is called with no lock held. 11444 **/ 11445 struct lpfc_dmabuf * 11446 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11447 uint32_t tag) 11448 { 11449 struct lpfc_dmabuf *mp, *next_mp; 11450 struct list_head *slp = &pring->postbufq; 11451 11452 /* Search postbufq, from the beginning, looking for a match on tag */ 11453 spin_lock_irq(&phba->hbalock); 11454 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11455 if (mp->buffer_tag == tag) { 11456 list_del_init(&mp->list); 11457 pring->postbufq_cnt--; 11458 spin_unlock_irq(&phba->hbalock); 11459 return mp; 11460 } 11461 } 11462 11463 spin_unlock_irq(&phba->hbalock); 11464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11465 "0402 Cannot find virtual addr for buffer tag on " 11466 "ring %d Data x%lx x%px x%px x%x\n", 11467 pring->ringno, (unsigned long) tag, 11468 slp->next, slp->prev, pring->postbufq_cnt); 11469 11470 return NULL; 11471 } 11472 11473 /** 11474 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11475 * @phba: Pointer to HBA context object. 11476 * @pring: Pointer to driver SLI ring object. 11477 * @phys: DMA address of the buffer. 11478 * 11479 * This function searches the buffer list using the dma_address 11480 * of unsolicited event to find the driver's lpfc_dmabuf object 11481 * corresponding to the dma_address. The function returns the 11482 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11483 * This function is called by the ct and els unsolicited event 11484 * handlers to get the buffer associated with the unsolicited 11485 * event. 11486 * 11487 * This function is called with no lock held. 11488 **/ 11489 struct lpfc_dmabuf * 11490 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11491 dma_addr_t phys) 11492 { 11493 struct lpfc_dmabuf *mp, *next_mp; 11494 struct list_head *slp = &pring->postbufq; 11495 11496 /* Search postbufq, from the beginning, looking for a match on phys */ 11497 spin_lock_irq(&phba->hbalock); 11498 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11499 if (mp->phys == phys) { 11500 list_del_init(&mp->list); 11501 pring->postbufq_cnt--; 11502 spin_unlock_irq(&phba->hbalock); 11503 return mp; 11504 } 11505 } 11506 11507 spin_unlock_irq(&phba->hbalock); 11508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11509 "0410 Cannot find virtual addr for mapped buf on " 11510 "ring %d Data x%llx x%px x%px x%x\n", 11511 pring->ringno, (unsigned long long)phys, 11512 slp->next, slp->prev, pring->postbufq_cnt); 11513 return NULL; 11514 } 11515 11516 /** 11517 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11518 * @phba: Pointer to HBA context object. 11519 * @cmdiocb: Pointer to driver command iocb object. 11520 * @rspiocb: Pointer to driver response iocb object. 11521 * 11522 * This function is the completion handler for the abort iocbs for 11523 * ELS commands. This function is called from the ELS ring event 11524 * handler with no lock held. This function frees memory resources 11525 * associated with the abort iocb. 11526 **/ 11527 static void 11528 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11529 struct lpfc_iocbq *rspiocb) 11530 { 11531 IOCB_t *irsp = &rspiocb->iocb; 11532 uint16_t abort_iotag, abort_context; 11533 struct lpfc_iocbq *abort_iocb = NULL; 11534 11535 if (irsp->ulpStatus) { 11536 11537 /* 11538 * Assume that the port already completed and returned, or 11539 * will return the iocb. Just Log the message. 11540 */ 11541 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11542 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11543 11544 spin_lock_irq(&phba->hbalock); 11545 if (phba->sli_rev < LPFC_SLI_REV4) { 11546 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11547 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11548 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11549 spin_unlock_irq(&phba->hbalock); 11550 goto release_iocb; 11551 } 11552 if (abort_iotag != 0 && 11553 abort_iotag <= phba->sli.last_iotag) 11554 abort_iocb = 11555 phba->sli.iocbq_lookup[abort_iotag]; 11556 } else 11557 /* For sli4 the abort_tag is the XRI, 11558 * so the abort routine puts the iotag of the iocb 11559 * being aborted in the context field of the abort 11560 * IOCB. 11561 */ 11562 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11563 11564 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11565 "0327 Cannot abort els iocb x%px " 11566 "with tag %x context %x, abort status %x, " 11567 "abort code %x\n", 11568 abort_iocb, abort_iotag, abort_context, 11569 irsp->ulpStatus, irsp->un.ulpWord[4]); 11570 11571 spin_unlock_irq(&phba->hbalock); 11572 } 11573 release_iocb: 11574 lpfc_sli_release_iocbq(phba, cmdiocb); 11575 return; 11576 } 11577 11578 /** 11579 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11580 * @phba: Pointer to HBA context object. 11581 * @cmdiocb: Pointer to driver command iocb object. 11582 * @rspiocb: Pointer to driver response iocb object. 11583 * 11584 * The function is called from SLI ring event handler with no 11585 * lock held. This function is the completion handler for ELS commands 11586 * which are aborted. The function frees memory resources used for 11587 * the aborted ELS commands. 11588 **/ 11589 void 11590 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11591 struct lpfc_iocbq *rspiocb) 11592 { 11593 IOCB_t *irsp = &rspiocb->iocb; 11594 11595 /* ELS cmd tag <ulpIoTag> completes */ 11596 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11597 "0139 Ignoring ELS cmd tag x%x completion Data: " 11598 "x%x x%x x%x\n", 11599 irsp->ulpIoTag, irsp->ulpStatus, 11600 irsp->un.ulpWord[4], irsp->ulpTimeout); 11601 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1); 11602 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11603 lpfc_ct_free_iocb(phba, cmdiocb); 11604 else 11605 lpfc_els_free_iocb(phba, cmdiocb); 11606 } 11607 11608 /** 11609 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11610 * @phba: Pointer to HBA context object. 11611 * @pring: Pointer to driver SLI ring object. 11612 * @cmdiocb: Pointer to driver command iocb object. 11613 * @cmpl: completion function. 11614 * 11615 * This function issues an abort iocb for the provided command iocb. In case 11616 * of unloading, the abort iocb will not be issued to commands on the ELS 11617 * ring. Instead, the callback function shall be changed to those commands 11618 * so that nothing happens when them finishes. This function is called with 11619 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11620 * when the command iocb is an abort request. 11621 * 11622 **/ 11623 int 11624 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11625 struct lpfc_iocbq *cmdiocb, void *cmpl) 11626 { 11627 struct lpfc_vport *vport = cmdiocb->vport; 11628 struct lpfc_iocbq *abtsiocbp; 11629 IOCB_t *icmd = NULL; 11630 IOCB_t *iabt = NULL; 11631 int retval = IOCB_ERROR; 11632 unsigned long iflags; 11633 struct lpfc_nodelist *ndlp; 11634 11635 /* 11636 * There are certain command types we don't want to abort. And we 11637 * don't want to abort commands that are already in the process of 11638 * being aborted. 11639 */ 11640 icmd = &cmdiocb->iocb; 11641 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11642 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11643 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 11644 return IOCB_ABORTING; 11645 11646 if (!pring) { 11647 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11648 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11649 else 11650 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11651 return retval; 11652 } 11653 11654 /* 11655 * If we're unloading, don't abort iocb on the ELS ring, but change 11656 * the callback so that nothing happens when it finishes. 11657 */ 11658 if ((vport->load_flag & FC_UNLOADING) && 11659 pring->ringno == LPFC_ELS_RING) { 11660 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11661 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11662 else 11663 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11664 return retval; 11665 } 11666 11667 /* issue ABTS for this IOCB based on iotag */ 11668 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11669 if (abtsiocbp == NULL) 11670 return IOCB_NORESOURCE; 11671 11672 /* This signals the response to set the correct status 11673 * before calling the completion handler 11674 */ 11675 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11676 11677 iabt = &abtsiocbp->iocb; 11678 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11679 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11680 if (phba->sli_rev == LPFC_SLI_REV4) { 11681 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11682 if (pring->ringno == LPFC_ELS_RING) 11683 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11684 } else { 11685 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11686 if (pring->ringno == LPFC_ELS_RING) { 11687 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11688 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11689 } 11690 } 11691 iabt->ulpLe = 1; 11692 iabt->ulpClass = icmd->ulpClass; 11693 11694 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11695 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11696 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11697 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11698 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11699 } 11700 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11701 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11702 11703 if (phba->link_state >= LPFC_LINK_UP) 11704 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11705 else 11706 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11707 11708 if (cmpl) 11709 abtsiocbp->iocb_cmpl = cmpl; 11710 else 11711 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11712 abtsiocbp->vport = vport; 11713 11714 if (phba->sli_rev == LPFC_SLI_REV4) { 11715 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11716 if (unlikely(pring == NULL)) 11717 goto abort_iotag_exit; 11718 /* Note: both hbalock and ring_lock need to be set here */ 11719 spin_lock_irqsave(&pring->ring_lock, iflags); 11720 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11721 abtsiocbp, 0); 11722 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11723 } else { 11724 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11725 abtsiocbp, 0); 11726 } 11727 11728 abort_iotag_exit: 11729 11730 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11731 "0339 Abort xri x%x, original iotag x%x, " 11732 "abort cmd iotag x%x retval x%x\n", 11733 iabt->un.acxri.abortIoTag, 11734 iabt->un.acxri.abortContextTag, 11735 abtsiocbp->iotag, retval); 11736 11737 if (retval) { 11738 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11739 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11740 } 11741 11742 /* 11743 * Caller to this routine should check for IOCB_ERROR 11744 * and handle it properly. This routine no longer removes 11745 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11746 */ 11747 return retval; 11748 } 11749 11750 /** 11751 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11752 * @phba: pointer to lpfc HBA data structure. 11753 * 11754 * This routine will abort all pending and outstanding iocbs to an HBA. 11755 **/ 11756 void 11757 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11758 { 11759 struct lpfc_sli *psli = &phba->sli; 11760 struct lpfc_sli_ring *pring; 11761 struct lpfc_queue *qp = NULL; 11762 int i; 11763 11764 if (phba->sli_rev != LPFC_SLI_REV4) { 11765 for (i = 0; i < psli->num_rings; i++) { 11766 pring = &psli->sli3_ring[i]; 11767 lpfc_sli_abort_iocb_ring(phba, pring); 11768 } 11769 return; 11770 } 11771 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11772 pring = qp->pring; 11773 if (!pring) 11774 continue; 11775 lpfc_sli_abort_iocb_ring(phba, pring); 11776 } 11777 } 11778 11779 /** 11780 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11781 * @iocbq: Pointer to driver iocb object. 11782 * @vport: Pointer to driver virtual port object. 11783 * @tgt_id: SCSI ID of the target. 11784 * @lun_id: LUN ID of the scsi device. 11785 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11786 * 11787 * This function acts as an iocb filter for functions which abort or count 11788 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11789 * 0 if the filtering criteria is met for the given iocb and will return 11790 * 1 if the filtering criteria is not met. 11791 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11792 * given iocb is for the SCSI device specified by vport, tgt_id and 11793 * lun_id parameter. 11794 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11795 * given iocb is for the SCSI target specified by vport and tgt_id 11796 * parameters. 11797 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11798 * given iocb is for the SCSI host associated with the given vport. 11799 * This function is called with no locks held. 11800 **/ 11801 static int 11802 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11803 uint16_t tgt_id, uint64_t lun_id, 11804 lpfc_ctx_cmd ctx_cmd) 11805 { 11806 struct lpfc_io_buf *lpfc_cmd; 11807 int rc = 1; 11808 11809 if (!iocbq || iocbq->vport != vport) 11810 return rc; 11811 11812 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11813 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11814 return rc; 11815 11816 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11817 11818 if (lpfc_cmd->pCmd == NULL) 11819 return rc; 11820 11821 switch (ctx_cmd) { 11822 case LPFC_CTX_LUN: 11823 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11824 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11825 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11826 rc = 0; 11827 break; 11828 case LPFC_CTX_TGT: 11829 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11830 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11831 rc = 0; 11832 break; 11833 case LPFC_CTX_HOST: 11834 rc = 0; 11835 break; 11836 default: 11837 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11838 __func__, ctx_cmd); 11839 break; 11840 } 11841 11842 return rc; 11843 } 11844 11845 /** 11846 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11847 * @vport: Pointer to virtual port. 11848 * @tgt_id: SCSI ID of the target. 11849 * @lun_id: LUN ID of the scsi device. 11850 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11851 * 11852 * This function returns number of FCP commands pending for the vport. 11853 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11854 * commands pending on the vport associated with SCSI device specified 11855 * by tgt_id and lun_id parameters. 11856 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11857 * commands pending on the vport associated with SCSI target specified 11858 * by tgt_id parameter. 11859 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11860 * commands pending on the vport. 11861 * This function returns the number of iocbs which satisfy the filter. 11862 * This function is called without any lock held. 11863 **/ 11864 int 11865 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11866 lpfc_ctx_cmd ctx_cmd) 11867 { 11868 struct lpfc_hba *phba = vport->phba; 11869 struct lpfc_iocbq *iocbq; 11870 int sum, i; 11871 11872 spin_lock_irq(&phba->hbalock); 11873 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11874 iocbq = phba->sli.iocbq_lookup[i]; 11875 11876 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11877 ctx_cmd) == 0) 11878 sum++; 11879 } 11880 spin_unlock_irq(&phba->hbalock); 11881 11882 return sum; 11883 } 11884 11885 /** 11886 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11887 * @phba: Pointer to HBA context object 11888 * @cmdiocb: Pointer to command iocb object. 11889 * @wcqe: pointer to the complete wcqe 11890 * 11891 * This function is called when an aborted FCP iocb completes. This 11892 * function is called by the ring event handler with no lock held. 11893 * This function frees the iocb. It is called for sli-4 adapters. 11894 **/ 11895 void 11896 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11897 struct lpfc_wcqe_complete *wcqe) 11898 { 11899 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11900 "3017 ABORT_XRI_CN completing on rpi x%x " 11901 "original iotag x%x, abort cmd iotag x%x " 11902 "status 0x%x, reason 0x%x\n", 11903 cmdiocb->iocb.un.acxri.abortContextTag, 11904 cmdiocb->iocb.un.acxri.abortIoTag, 11905 cmdiocb->iotag, 11906 (bf_get(lpfc_wcqe_c_status, wcqe) 11907 & LPFC_IOCB_STATUS_MASK), 11908 wcqe->parameter); 11909 lpfc_sli_release_iocbq(phba, cmdiocb); 11910 } 11911 11912 /** 11913 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11914 * @phba: Pointer to HBA context object 11915 * @cmdiocb: Pointer to command iocb object. 11916 * @rspiocb: Pointer to response iocb object. 11917 * 11918 * This function is called when an aborted FCP iocb completes. This 11919 * function is called by the ring event handler with no lock held. 11920 * This function frees the iocb. 11921 **/ 11922 void 11923 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11924 struct lpfc_iocbq *rspiocb) 11925 { 11926 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11927 "3096 ABORT_XRI_CN completing on rpi x%x " 11928 "original iotag x%x, abort cmd iotag x%x " 11929 "status 0x%x, reason 0x%x\n", 11930 cmdiocb->iocb.un.acxri.abortContextTag, 11931 cmdiocb->iocb.un.acxri.abortIoTag, 11932 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11933 rspiocb->iocb.un.ulpWord[4]); 11934 lpfc_sli_release_iocbq(phba, cmdiocb); 11935 return; 11936 } 11937 11938 /** 11939 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11940 * @vport: Pointer to virtual port. 11941 * @tgt_id: SCSI ID of the target. 11942 * @lun_id: LUN ID of the scsi device. 11943 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11944 * 11945 * This function sends an abort command for every SCSI command 11946 * associated with the given virtual port pending on the ring 11947 * filtered by lpfc_sli_validate_fcp_iocb function. 11948 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11949 * FCP iocbs associated with lun specified by tgt_id and lun_id 11950 * parameters 11951 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11952 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11953 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11954 * FCP iocbs associated with virtual port. 11955 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 11956 * lpfc_sli4_calc_ring is used. 11957 * This function returns number of iocbs it failed to abort. 11958 * This function is called with no locks held. 11959 **/ 11960 int 11961 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 11962 lpfc_ctx_cmd abort_cmd) 11963 { 11964 struct lpfc_hba *phba = vport->phba; 11965 struct lpfc_sli_ring *pring = NULL; 11966 struct lpfc_iocbq *iocbq; 11967 int errcnt = 0, ret_val = 0; 11968 unsigned long iflags; 11969 int i; 11970 void *fcp_cmpl = NULL; 11971 11972 /* all I/Os are in process of being flushed */ 11973 if (phba->hba_flag & HBA_IOQ_FLUSH) 11974 return errcnt; 11975 11976 for (i = 1; i <= phba->sli.last_iotag; i++) { 11977 iocbq = phba->sli.iocbq_lookup[i]; 11978 11979 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11980 abort_cmd) != 0) 11981 continue; 11982 11983 spin_lock_irqsave(&phba->hbalock, iflags); 11984 if (phba->sli_rev == LPFC_SLI_REV3) { 11985 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 11986 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 11987 } else if (phba->sli_rev == LPFC_SLI_REV4) { 11988 pring = lpfc_sli4_calc_ring(phba, iocbq); 11989 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 11990 } 11991 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 11992 fcp_cmpl); 11993 spin_unlock_irqrestore(&phba->hbalock, iflags); 11994 if (ret_val != IOCB_SUCCESS) 11995 errcnt++; 11996 } 11997 11998 return errcnt; 11999 } 12000 12001 /** 12002 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12003 * @vport: Pointer to virtual port. 12004 * @pring: Pointer to driver SLI ring object. 12005 * @tgt_id: SCSI ID of the target. 12006 * @lun_id: LUN ID of the scsi device. 12007 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12008 * 12009 * This function sends an abort command for every SCSI command 12010 * associated with the given virtual port pending on the ring 12011 * filtered by lpfc_sli_validate_fcp_iocb function. 12012 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12013 * FCP iocbs associated with lun specified by tgt_id and lun_id 12014 * parameters 12015 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12016 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12017 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12018 * FCP iocbs associated with virtual port. 12019 * This function returns number of iocbs it aborted . 12020 * This function is called with no locks held right after a taskmgmt 12021 * command is sent. 12022 **/ 12023 int 12024 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12025 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12026 { 12027 struct lpfc_hba *phba = vport->phba; 12028 struct lpfc_io_buf *lpfc_cmd; 12029 struct lpfc_iocbq *abtsiocbq; 12030 struct lpfc_nodelist *ndlp; 12031 struct lpfc_iocbq *iocbq; 12032 IOCB_t *icmd; 12033 int sum, i, ret_val; 12034 unsigned long iflags; 12035 struct lpfc_sli_ring *pring_s4 = NULL; 12036 12037 spin_lock_irqsave(&phba->hbalock, iflags); 12038 12039 /* all I/Os are in process of being flushed */ 12040 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12041 spin_unlock_irqrestore(&phba->hbalock, iflags); 12042 return 0; 12043 } 12044 sum = 0; 12045 12046 for (i = 1; i <= phba->sli.last_iotag; i++) { 12047 iocbq = phba->sli.iocbq_lookup[i]; 12048 12049 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12050 cmd) != 0) 12051 continue; 12052 12053 /* Guard against IO completion being called at same time */ 12054 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12055 spin_lock(&lpfc_cmd->buf_lock); 12056 12057 if (!lpfc_cmd->pCmd) { 12058 spin_unlock(&lpfc_cmd->buf_lock); 12059 continue; 12060 } 12061 12062 if (phba->sli_rev == LPFC_SLI_REV4) { 12063 pring_s4 = 12064 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12065 if (!pring_s4) { 12066 spin_unlock(&lpfc_cmd->buf_lock); 12067 continue; 12068 } 12069 /* Note: both hbalock and ring_lock must be set here */ 12070 spin_lock(&pring_s4->ring_lock); 12071 } 12072 12073 /* 12074 * If the iocbq is already being aborted, don't take a second 12075 * action, but do count it. 12076 */ 12077 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12078 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12079 if (phba->sli_rev == LPFC_SLI_REV4) 12080 spin_unlock(&pring_s4->ring_lock); 12081 spin_unlock(&lpfc_cmd->buf_lock); 12082 continue; 12083 } 12084 12085 /* issue ABTS for this IOCB based on iotag */ 12086 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12087 if (!abtsiocbq) { 12088 if (phba->sli_rev == LPFC_SLI_REV4) 12089 spin_unlock(&pring_s4->ring_lock); 12090 spin_unlock(&lpfc_cmd->buf_lock); 12091 continue; 12092 } 12093 12094 icmd = &iocbq->iocb; 12095 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12096 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12097 if (phba->sli_rev == LPFC_SLI_REV4) 12098 abtsiocbq->iocb.un.acxri.abortIoTag = 12099 iocbq->sli4_xritag; 12100 else 12101 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12102 abtsiocbq->iocb.ulpLe = 1; 12103 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12104 abtsiocbq->vport = vport; 12105 12106 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12107 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12108 if (iocbq->iocb_flag & LPFC_IO_FCP) 12109 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12110 if (iocbq->iocb_flag & LPFC_IO_FOF) 12111 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12112 12113 ndlp = lpfc_cmd->rdata->pnode; 12114 12115 if (lpfc_is_link_up(phba) && 12116 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12117 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12118 else 12119 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12120 12121 /* Setup callback routine and issue the command. */ 12122 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12123 12124 /* 12125 * Indicate the IO is being aborted by the driver and set 12126 * the caller's flag into the aborted IO. 12127 */ 12128 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12129 12130 if (phba->sli_rev == LPFC_SLI_REV4) { 12131 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12132 abtsiocbq, 0); 12133 spin_unlock(&pring_s4->ring_lock); 12134 } else { 12135 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12136 abtsiocbq, 0); 12137 } 12138 12139 spin_unlock(&lpfc_cmd->buf_lock); 12140 12141 if (ret_val == IOCB_ERROR) 12142 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12143 else 12144 sum++; 12145 } 12146 spin_unlock_irqrestore(&phba->hbalock, iflags); 12147 return sum; 12148 } 12149 12150 /** 12151 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12152 * @phba: Pointer to HBA context object. 12153 * @cmdiocbq: Pointer to command iocb. 12154 * @rspiocbq: Pointer to response iocb. 12155 * 12156 * This function is the completion handler for iocbs issued using 12157 * lpfc_sli_issue_iocb_wait function. This function is called by the 12158 * ring event handler function without any lock held. This function 12159 * can be called from both worker thread context and interrupt 12160 * context. This function also can be called from other thread which 12161 * cleans up the SLI layer objects. 12162 * This function copy the contents of the response iocb to the 12163 * response iocb memory object provided by the caller of 12164 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12165 * sleeps for the iocb completion. 12166 **/ 12167 static void 12168 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12169 struct lpfc_iocbq *cmdiocbq, 12170 struct lpfc_iocbq *rspiocbq) 12171 { 12172 wait_queue_head_t *pdone_q; 12173 unsigned long iflags; 12174 struct lpfc_io_buf *lpfc_cmd; 12175 12176 spin_lock_irqsave(&phba->hbalock, iflags); 12177 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12178 12179 /* 12180 * A time out has occurred for the iocb. If a time out 12181 * completion handler has been supplied, call it. Otherwise, 12182 * just free the iocbq. 12183 */ 12184 12185 spin_unlock_irqrestore(&phba->hbalock, iflags); 12186 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12187 cmdiocbq->wait_iocb_cmpl = NULL; 12188 if (cmdiocbq->iocb_cmpl) 12189 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12190 else 12191 lpfc_sli_release_iocbq(phba, cmdiocbq); 12192 return; 12193 } 12194 12195 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12196 if (cmdiocbq->context2 && rspiocbq) 12197 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12198 &rspiocbq->iocb, sizeof(IOCB_t)); 12199 12200 /* Set the exchange busy flag for task management commands */ 12201 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12202 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12203 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12204 cur_iocbq); 12205 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12206 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12207 else 12208 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12209 } 12210 12211 pdone_q = cmdiocbq->context_un.wait_queue; 12212 if (pdone_q) 12213 wake_up(pdone_q); 12214 spin_unlock_irqrestore(&phba->hbalock, iflags); 12215 return; 12216 } 12217 12218 /** 12219 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12220 * @phba: Pointer to HBA context object.. 12221 * @piocbq: Pointer to command iocb. 12222 * @flag: Flag to test. 12223 * 12224 * This routine grabs the hbalock and then test the iocb_flag to 12225 * see if the passed in flag is set. 12226 * Returns: 12227 * 1 if flag is set. 12228 * 0 if flag is not set. 12229 **/ 12230 static int 12231 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12232 struct lpfc_iocbq *piocbq, uint32_t flag) 12233 { 12234 unsigned long iflags; 12235 int ret; 12236 12237 spin_lock_irqsave(&phba->hbalock, iflags); 12238 ret = piocbq->iocb_flag & flag; 12239 spin_unlock_irqrestore(&phba->hbalock, iflags); 12240 return ret; 12241 12242 } 12243 12244 /** 12245 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12246 * @phba: Pointer to HBA context object.. 12247 * @ring_number: Ring number 12248 * @piocb: Pointer to command iocb. 12249 * @prspiocbq: Pointer to response iocb. 12250 * @timeout: Timeout in number of seconds. 12251 * 12252 * This function issues the iocb to firmware and waits for the 12253 * iocb to complete. The iocb_cmpl field of the shall be used 12254 * to handle iocbs which time out. If the field is NULL, the 12255 * function shall free the iocbq structure. If more clean up is 12256 * needed, the caller is expected to provide a completion function 12257 * that will provide the needed clean up. If the iocb command is 12258 * not completed within timeout seconds, the function will either 12259 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12260 * completion function set in the iocb_cmpl field and then return 12261 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12262 * resources if this function returns IOCB_TIMEDOUT. 12263 * The function waits for the iocb completion using an 12264 * non-interruptible wait. 12265 * This function will sleep while waiting for iocb completion. 12266 * So, this function should not be called from any context which 12267 * does not allow sleeping. Due to the same reason, this function 12268 * cannot be called with interrupt disabled. 12269 * This function assumes that the iocb completions occur while 12270 * this function sleep. So, this function cannot be called from 12271 * the thread which process iocb completion for this ring. 12272 * This function clears the iocb_flag of the iocb object before 12273 * issuing the iocb and the iocb completion handler sets this 12274 * flag and wakes this thread when the iocb completes. 12275 * The contents of the response iocb will be copied to prspiocbq 12276 * by the completion handler when the command completes. 12277 * This function returns IOCB_SUCCESS when success. 12278 * This function is called with no lock held. 12279 **/ 12280 int 12281 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12282 uint32_t ring_number, 12283 struct lpfc_iocbq *piocb, 12284 struct lpfc_iocbq *prspiocbq, 12285 uint32_t timeout) 12286 { 12287 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12288 long timeleft, timeout_req = 0; 12289 int retval = IOCB_SUCCESS; 12290 uint32_t creg_val; 12291 struct lpfc_iocbq *iocb; 12292 int txq_cnt = 0; 12293 int txcmplq_cnt = 0; 12294 struct lpfc_sli_ring *pring; 12295 unsigned long iflags; 12296 bool iocb_completed = true; 12297 12298 if (phba->sli_rev >= LPFC_SLI_REV4) 12299 pring = lpfc_sli4_calc_ring(phba, piocb); 12300 else 12301 pring = &phba->sli.sli3_ring[ring_number]; 12302 /* 12303 * If the caller has provided a response iocbq buffer, then context2 12304 * is NULL or its an error. 12305 */ 12306 if (prspiocbq) { 12307 if (piocb->context2) 12308 return IOCB_ERROR; 12309 piocb->context2 = prspiocbq; 12310 } 12311 12312 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12313 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12314 piocb->context_un.wait_queue = &done_q; 12315 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12316 12317 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12318 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12319 return IOCB_ERROR; 12320 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12321 writel(creg_val, phba->HCregaddr); 12322 readl(phba->HCregaddr); /* flush */ 12323 } 12324 12325 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12326 SLI_IOCB_RET_IOCB); 12327 if (retval == IOCB_SUCCESS) { 12328 timeout_req = msecs_to_jiffies(timeout * 1000); 12329 timeleft = wait_event_timeout(done_q, 12330 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12331 timeout_req); 12332 spin_lock_irqsave(&phba->hbalock, iflags); 12333 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12334 12335 /* 12336 * IOCB timed out. Inform the wake iocb wait 12337 * completion function and set local status 12338 */ 12339 12340 iocb_completed = false; 12341 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12342 } 12343 spin_unlock_irqrestore(&phba->hbalock, iflags); 12344 if (iocb_completed) { 12345 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12346 "0331 IOCB wake signaled\n"); 12347 /* Note: we are not indicating if the IOCB has a success 12348 * status or not - that's for the caller to check. 12349 * IOCB_SUCCESS means just that the command was sent and 12350 * completed. Not that it completed successfully. 12351 * */ 12352 } else if (timeleft == 0) { 12353 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12354 "0338 IOCB wait timeout error - no " 12355 "wake response Data x%x\n", timeout); 12356 retval = IOCB_TIMEDOUT; 12357 } else { 12358 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12359 "0330 IOCB wake NOT set, " 12360 "Data x%x x%lx\n", 12361 timeout, (timeleft / jiffies)); 12362 retval = IOCB_TIMEDOUT; 12363 } 12364 } else if (retval == IOCB_BUSY) { 12365 if (phba->cfg_log_verbose & LOG_SLI) { 12366 list_for_each_entry(iocb, &pring->txq, list) { 12367 txq_cnt++; 12368 } 12369 list_for_each_entry(iocb, &pring->txcmplq, list) { 12370 txcmplq_cnt++; 12371 } 12372 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12373 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12374 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12375 } 12376 return retval; 12377 } else { 12378 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12379 "0332 IOCB wait issue failed, Data x%x\n", 12380 retval); 12381 retval = IOCB_ERROR; 12382 } 12383 12384 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12385 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12386 return IOCB_ERROR; 12387 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12388 writel(creg_val, phba->HCregaddr); 12389 readl(phba->HCregaddr); /* flush */ 12390 } 12391 12392 if (prspiocbq) 12393 piocb->context2 = NULL; 12394 12395 piocb->context_un.wait_queue = NULL; 12396 piocb->iocb_cmpl = NULL; 12397 return retval; 12398 } 12399 12400 /** 12401 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12402 * @phba: Pointer to HBA context object. 12403 * @pmboxq: Pointer to driver mailbox object. 12404 * @timeout: Timeout in number of seconds. 12405 * 12406 * This function issues the mailbox to firmware and waits for the 12407 * mailbox command to complete. If the mailbox command is not 12408 * completed within timeout seconds, it returns MBX_TIMEOUT. 12409 * The function waits for the mailbox completion using an 12410 * interruptible wait. If the thread is woken up due to a 12411 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12412 * should not free the mailbox resources, if this function returns 12413 * MBX_TIMEOUT. 12414 * This function will sleep while waiting for mailbox completion. 12415 * So, this function should not be called from any context which 12416 * does not allow sleeping. Due to the same reason, this function 12417 * cannot be called with interrupt disabled. 12418 * This function assumes that the mailbox completion occurs while 12419 * this function sleep. So, this function cannot be called from 12420 * the worker thread which processes mailbox completion. 12421 * This function is called in the context of HBA management 12422 * applications. 12423 * This function returns MBX_SUCCESS when successful. 12424 * This function is called with no lock held. 12425 **/ 12426 int 12427 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12428 uint32_t timeout) 12429 { 12430 struct completion mbox_done; 12431 int retval; 12432 unsigned long flag; 12433 12434 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12435 /* setup wake call as IOCB callback */ 12436 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12437 12438 /* setup context3 field to pass wait_queue pointer to wake function */ 12439 init_completion(&mbox_done); 12440 pmboxq->context3 = &mbox_done; 12441 /* now issue the command */ 12442 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12443 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12444 wait_for_completion_timeout(&mbox_done, 12445 msecs_to_jiffies(timeout * 1000)); 12446 12447 spin_lock_irqsave(&phba->hbalock, flag); 12448 pmboxq->context3 = NULL; 12449 /* 12450 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12451 * else do not free the resources. 12452 */ 12453 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12454 retval = MBX_SUCCESS; 12455 } else { 12456 retval = MBX_TIMEOUT; 12457 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12458 } 12459 spin_unlock_irqrestore(&phba->hbalock, flag); 12460 } 12461 return retval; 12462 } 12463 12464 /** 12465 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12466 * @phba: Pointer to HBA context. 12467 * @mbx_action: Mailbox shutdown options. 12468 * 12469 * This function is called to shutdown the driver's mailbox sub-system. 12470 * It first marks the mailbox sub-system is in a block state to prevent 12471 * the asynchronous mailbox command from issued off the pending mailbox 12472 * command queue. If the mailbox command sub-system shutdown is due to 12473 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12474 * the mailbox sub-system flush routine to forcefully bring down the 12475 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12476 * as with offline or HBA function reset), this routine will wait for the 12477 * outstanding mailbox command to complete before invoking the mailbox 12478 * sub-system flush routine to gracefully bring down mailbox sub-system. 12479 **/ 12480 void 12481 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12482 { 12483 struct lpfc_sli *psli = &phba->sli; 12484 unsigned long timeout; 12485 12486 if (mbx_action == LPFC_MBX_NO_WAIT) { 12487 /* delay 100ms for port state */ 12488 msleep(100); 12489 lpfc_sli_mbox_sys_flush(phba); 12490 return; 12491 } 12492 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12493 12494 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12495 local_bh_disable(); 12496 12497 spin_lock_irq(&phba->hbalock); 12498 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12499 12500 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12501 /* Determine how long we might wait for the active mailbox 12502 * command to be gracefully completed by firmware. 12503 */ 12504 if (phba->sli.mbox_active) 12505 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12506 phba->sli.mbox_active) * 12507 1000) + jiffies; 12508 spin_unlock_irq(&phba->hbalock); 12509 12510 /* Enable softirqs again, done with phba->hbalock */ 12511 local_bh_enable(); 12512 12513 while (phba->sli.mbox_active) { 12514 /* Check active mailbox complete status every 2ms */ 12515 msleep(2); 12516 if (time_after(jiffies, timeout)) 12517 /* Timeout, let the mailbox flush routine to 12518 * forcefully release active mailbox command 12519 */ 12520 break; 12521 } 12522 } else { 12523 spin_unlock_irq(&phba->hbalock); 12524 12525 /* Enable softirqs again, done with phba->hbalock */ 12526 local_bh_enable(); 12527 } 12528 12529 lpfc_sli_mbox_sys_flush(phba); 12530 } 12531 12532 /** 12533 * lpfc_sli_eratt_read - read sli-3 error attention events 12534 * @phba: Pointer to HBA context. 12535 * 12536 * This function is called to read the SLI3 device error attention registers 12537 * for possible error attention events. The caller must hold the hostlock 12538 * with spin_lock_irq(). 12539 * 12540 * This function returns 1 when there is Error Attention in the Host Attention 12541 * Register and returns 0 otherwise. 12542 **/ 12543 static int 12544 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12545 { 12546 uint32_t ha_copy; 12547 12548 /* Read chip Host Attention (HA) register */ 12549 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12550 goto unplug_err; 12551 12552 if (ha_copy & HA_ERATT) { 12553 /* Read host status register to retrieve error event */ 12554 if (lpfc_sli_read_hs(phba)) 12555 goto unplug_err; 12556 12557 /* Check if there is a deferred error condition is active */ 12558 if ((HS_FFER1 & phba->work_hs) && 12559 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12560 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12561 phba->hba_flag |= DEFER_ERATT; 12562 /* Clear all interrupt enable conditions */ 12563 writel(0, phba->HCregaddr); 12564 readl(phba->HCregaddr); 12565 } 12566 12567 /* Set the driver HA work bitmap */ 12568 phba->work_ha |= HA_ERATT; 12569 /* Indicate polling handles this ERATT */ 12570 phba->hba_flag |= HBA_ERATT_HANDLED; 12571 return 1; 12572 } 12573 return 0; 12574 12575 unplug_err: 12576 /* Set the driver HS work bitmap */ 12577 phba->work_hs |= UNPLUG_ERR; 12578 /* Set the driver HA work bitmap */ 12579 phba->work_ha |= HA_ERATT; 12580 /* Indicate polling handles this ERATT */ 12581 phba->hba_flag |= HBA_ERATT_HANDLED; 12582 return 1; 12583 } 12584 12585 /** 12586 * lpfc_sli4_eratt_read - read sli-4 error attention events 12587 * @phba: Pointer to HBA context. 12588 * 12589 * This function is called to read the SLI4 device error attention registers 12590 * for possible error attention events. The caller must hold the hostlock 12591 * with spin_lock_irq(). 12592 * 12593 * This function returns 1 when there is Error Attention in the Host Attention 12594 * Register and returns 0 otherwise. 12595 **/ 12596 static int 12597 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12598 { 12599 uint32_t uerr_sta_hi, uerr_sta_lo; 12600 uint32_t if_type, portsmphr; 12601 struct lpfc_register portstat_reg; 12602 12603 /* 12604 * For now, use the SLI4 device internal unrecoverable error 12605 * registers for error attention. This can be changed later. 12606 */ 12607 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12608 switch (if_type) { 12609 case LPFC_SLI_INTF_IF_TYPE_0: 12610 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12611 &uerr_sta_lo) || 12612 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12613 &uerr_sta_hi)) { 12614 phba->work_hs |= UNPLUG_ERR; 12615 phba->work_ha |= HA_ERATT; 12616 phba->hba_flag |= HBA_ERATT_HANDLED; 12617 return 1; 12618 } 12619 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12620 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12622 "1423 HBA Unrecoverable error: " 12623 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12624 "ue_mask_lo_reg=0x%x, " 12625 "ue_mask_hi_reg=0x%x\n", 12626 uerr_sta_lo, uerr_sta_hi, 12627 phba->sli4_hba.ue_mask_lo, 12628 phba->sli4_hba.ue_mask_hi); 12629 phba->work_status[0] = uerr_sta_lo; 12630 phba->work_status[1] = uerr_sta_hi; 12631 phba->work_ha |= HA_ERATT; 12632 phba->hba_flag |= HBA_ERATT_HANDLED; 12633 return 1; 12634 } 12635 break; 12636 case LPFC_SLI_INTF_IF_TYPE_2: 12637 case LPFC_SLI_INTF_IF_TYPE_6: 12638 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12639 &portstat_reg.word0) || 12640 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12641 &portsmphr)){ 12642 phba->work_hs |= UNPLUG_ERR; 12643 phba->work_ha |= HA_ERATT; 12644 phba->hba_flag |= HBA_ERATT_HANDLED; 12645 return 1; 12646 } 12647 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12648 phba->work_status[0] = 12649 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12650 phba->work_status[1] = 12651 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12652 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12653 "2885 Port Status Event: " 12654 "port status reg 0x%x, " 12655 "port smphr reg 0x%x, " 12656 "error 1=0x%x, error 2=0x%x\n", 12657 portstat_reg.word0, 12658 portsmphr, 12659 phba->work_status[0], 12660 phba->work_status[1]); 12661 phba->work_ha |= HA_ERATT; 12662 phba->hba_flag |= HBA_ERATT_HANDLED; 12663 return 1; 12664 } 12665 break; 12666 case LPFC_SLI_INTF_IF_TYPE_1: 12667 default: 12668 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12669 "2886 HBA Error Attention on unsupported " 12670 "if type %d.", if_type); 12671 return 1; 12672 } 12673 12674 return 0; 12675 } 12676 12677 /** 12678 * lpfc_sli_check_eratt - check error attention events 12679 * @phba: Pointer to HBA context. 12680 * 12681 * This function is called from timer soft interrupt context to check HBA's 12682 * error attention register bit for error attention events. 12683 * 12684 * This function returns 1 when there is Error Attention in the Host Attention 12685 * Register and returns 0 otherwise. 12686 **/ 12687 int 12688 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12689 { 12690 uint32_t ha_copy; 12691 12692 /* If somebody is waiting to handle an eratt, don't process it 12693 * here. The brdkill function will do this. 12694 */ 12695 if (phba->link_flag & LS_IGNORE_ERATT) 12696 return 0; 12697 12698 /* Check if interrupt handler handles this ERATT */ 12699 spin_lock_irq(&phba->hbalock); 12700 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12701 /* Interrupt handler has handled ERATT */ 12702 spin_unlock_irq(&phba->hbalock); 12703 return 0; 12704 } 12705 12706 /* 12707 * If there is deferred error attention, do not check for error 12708 * attention 12709 */ 12710 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12711 spin_unlock_irq(&phba->hbalock); 12712 return 0; 12713 } 12714 12715 /* If PCI channel is offline, don't process it */ 12716 if (unlikely(pci_channel_offline(phba->pcidev))) { 12717 spin_unlock_irq(&phba->hbalock); 12718 return 0; 12719 } 12720 12721 switch (phba->sli_rev) { 12722 case LPFC_SLI_REV2: 12723 case LPFC_SLI_REV3: 12724 /* Read chip Host Attention (HA) register */ 12725 ha_copy = lpfc_sli_eratt_read(phba); 12726 break; 12727 case LPFC_SLI_REV4: 12728 /* Read device Uncoverable Error (UERR) registers */ 12729 ha_copy = lpfc_sli4_eratt_read(phba); 12730 break; 12731 default: 12732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12733 "0299 Invalid SLI revision (%d)\n", 12734 phba->sli_rev); 12735 ha_copy = 0; 12736 break; 12737 } 12738 spin_unlock_irq(&phba->hbalock); 12739 12740 return ha_copy; 12741 } 12742 12743 /** 12744 * lpfc_intr_state_check - Check device state for interrupt handling 12745 * @phba: Pointer to HBA context. 12746 * 12747 * This inline routine checks whether a device or its PCI slot is in a state 12748 * that the interrupt should be handled. 12749 * 12750 * This function returns 0 if the device or the PCI slot is in a state that 12751 * interrupt should be handled, otherwise -EIO. 12752 */ 12753 static inline int 12754 lpfc_intr_state_check(struct lpfc_hba *phba) 12755 { 12756 /* If the pci channel is offline, ignore all the interrupts */ 12757 if (unlikely(pci_channel_offline(phba->pcidev))) 12758 return -EIO; 12759 12760 /* Update device level interrupt statistics */ 12761 phba->sli.slistat.sli_intr++; 12762 12763 /* Ignore all interrupts during initialization. */ 12764 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12765 return -EIO; 12766 12767 return 0; 12768 } 12769 12770 /** 12771 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12772 * @irq: Interrupt number. 12773 * @dev_id: The device context pointer. 12774 * 12775 * This function is directly called from the PCI layer as an interrupt 12776 * service routine when device with SLI-3 interface spec is enabled with 12777 * MSI-X multi-message interrupt mode and there are slow-path events in 12778 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12779 * interrupt mode, this function is called as part of the device-level 12780 * interrupt handler. When the PCI slot is in error recovery or the HBA 12781 * is undergoing initialization, the interrupt handler will not process 12782 * the interrupt. The link attention and ELS ring attention events are 12783 * handled by the worker thread. The interrupt handler signals the worker 12784 * thread and returns for these events. This function is called without 12785 * any lock held. It gets the hbalock to access and update SLI data 12786 * structures. 12787 * 12788 * This function returns IRQ_HANDLED when interrupt is handled else it 12789 * returns IRQ_NONE. 12790 **/ 12791 irqreturn_t 12792 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12793 { 12794 struct lpfc_hba *phba; 12795 uint32_t ha_copy, hc_copy; 12796 uint32_t work_ha_copy; 12797 unsigned long status; 12798 unsigned long iflag; 12799 uint32_t control; 12800 12801 MAILBOX_t *mbox, *pmbox; 12802 struct lpfc_vport *vport; 12803 struct lpfc_nodelist *ndlp; 12804 struct lpfc_dmabuf *mp; 12805 LPFC_MBOXQ_t *pmb; 12806 int rc; 12807 12808 /* 12809 * Get the driver's phba structure from the dev_id and 12810 * assume the HBA is not interrupting. 12811 */ 12812 phba = (struct lpfc_hba *)dev_id; 12813 12814 if (unlikely(!phba)) 12815 return IRQ_NONE; 12816 12817 /* 12818 * Stuff needs to be attented to when this function is invoked as an 12819 * individual interrupt handler in MSI-X multi-message interrupt mode 12820 */ 12821 if (phba->intr_type == MSIX) { 12822 /* Check device state for handling interrupt */ 12823 if (lpfc_intr_state_check(phba)) 12824 return IRQ_NONE; 12825 /* Need to read HA REG for slow-path events */ 12826 spin_lock_irqsave(&phba->hbalock, iflag); 12827 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12828 goto unplug_error; 12829 /* If somebody is waiting to handle an eratt don't process it 12830 * here. The brdkill function will do this. 12831 */ 12832 if (phba->link_flag & LS_IGNORE_ERATT) 12833 ha_copy &= ~HA_ERATT; 12834 /* Check the need for handling ERATT in interrupt handler */ 12835 if (ha_copy & HA_ERATT) { 12836 if (phba->hba_flag & HBA_ERATT_HANDLED) 12837 /* ERATT polling has handled ERATT */ 12838 ha_copy &= ~HA_ERATT; 12839 else 12840 /* Indicate interrupt handler handles ERATT */ 12841 phba->hba_flag |= HBA_ERATT_HANDLED; 12842 } 12843 12844 /* 12845 * If there is deferred error attention, do not check for any 12846 * interrupt. 12847 */ 12848 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12849 spin_unlock_irqrestore(&phba->hbalock, iflag); 12850 return IRQ_NONE; 12851 } 12852 12853 /* Clear up only attention source related to slow-path */ 12854 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12855 goto unplug_error; 12856 12857 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12858 HC_LAINT_ENA | HC_ERINT_ENA), 12859 phba->HCregaddr); 12860 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12861 phba->HAregaddr); 12862 writel(hc_copy, phba->HCregaddr); 12863 readl(phba->HAregaddr); /* flush */ 12864 spin_unlock_irqrestore(&phba->hbalock, iflag); 12865 } else 12866 ha_copy = phba->ha_copy; 12867 12868 work_ha_copy = ha_copy & phba->work_ha_mask; 12869 12870 if (work_ha_copy) { 12871 if (work_ha_copy & HA_LATT) { 12872 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12873 /* 12874 * Turn off Link Attention interrupts 12875 * until CLEAR_LA done 12876 */ 12877 spin_lock_irqsave(&phba->hbalock, iflag); 12878 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12879 if (lpfc_readl(phba->HCregaddr, &control)) 12880 goto unplug_error; 12881 control &= ~HC_LAINT_ENA; 12882 writel(control, phba->HCregaddr); 12883 readl(phba->HCregaddr); /* flush */ 12884 spin_unlock_irqrestore(&phba->hbalock, iflag); 12885 } 12886 else 12887 work_ha_copy &= ~HA_LATT; 12888 } 12889 12890 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12891 /* 12892 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12893 * the only slow ring. 12894 */ 12895 status = (work_ha_copy & 12896 (HA_RXMASK << (4*LPFC_ELS_RING))); 12897 status >>= (4*LPFC_ELS_RING); 12898 if (status & HA_RXMASK) { 12899 spin_lock_irqsave(&phba->hbalock, iflag); 12900 if (lpfc_readl(phba->HCregaddr, &control)) 12901 goto unplug_error; 12902 12903 lpfc_debugfs_slow_ring_trc(phba, 12904 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12905 control, status, 12906 (uint32_t)phba->sli.slistat.sli_intr); 12907 12908 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12909 lpfc_debugfs_slow_ring_trc(phba, 12910 "ISR Disable ring:" 12911 "pwork:x%x hawork:x%x wait:x%x", 12912 phba->work_ha, work_ha_copy, 12913 (uint32_t)((unsigned long) 12914 &phba->work_waitq)); 12915 12916 control &= 12917 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12918 writel(control, phba->HCregaddr); 12919 readl(phba->HCregaddr); /* flush */ 12920 } 12921 else { 12922 lpfc_debugfs_slow_ring_trc(phba, 12923 "ISR slow ring: pwork:" 12924 "x%x hawork:x%x wait:x%x", 12925 phba->work_ha, work_ha_copy, 12926 (uint32_t)((unsigned long) 12927 &phba->work_waitq)); 12928 } 12929 spin_unlock_irqrestore(&phba->hbalock, iflag); 12930 } 12931 } 12932 spin_lock_irqsave(&phba->hbalock, iflag); 12933 if (work_ha_copy & HA_ERATT) { 12934 if (lpfc_sli_read_hs(phba)) 12935 goto unplug_error; 12936 /* 12937 * Check if there is a deferred error condition 12938 * is active 12939 */ 12940 if ((HS_FFER1 & phba->work_hs) && 12941 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12942 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12943 phba->work_hs)) { 12944 phba->hba_flag |= DEFER_ERATT; 12945 /* Clear all interrupt enable conditions */ 12946 writel(0, phba->HCregaddr); 12947 readl(phba->HCregaddr); 12948 } 12949 } 12950 12951 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12952 pmb = phba->sli.mbox_active; 12953 pmbox = &pmb->u.mb; 12954 mbox = phba->mbox; 12955 vport = pmb->vport; 12956 12957 /* First check out the status word */ 12958 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12959 if (pmbox->mbxOwner != OWN_HOST) { 12960 spin_unlock_irqrestore(&phba->hbalock, iflag); 12961 /* 12962 * Stray Mailbox Interrupt, mbxCommand <cmd> 12963 * mbxStatus <status> 12964 */ 12965 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12966 "(%d):0304 Stray Mailbox " 12967 "Interrupt mbxCommand x%x " 12968 "mbxStatus x%x\n", 12969 (vport ? vport->vpi : 0), 12970 pmbox->mbxCommand, 12971 pmbox->mbxStatus); 12972 /* clear mailbox attention bit */ 12973 work_ha_copy &= ~HA_MBATT; 12974 } else { 12975 phba->sli.mbox_active = NULL; 12976 spin_unlock_irqrestore(&phba->hbalock, iflag); 12977 phba->last_completion_time = jiffies; 12978 del_timer(&phba->sli.mbox_tmo); 12979 if (pmb->mbox_cmpl) { 12980 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12981 MAILBOX_CMD_SIZE); 12982 if (pmb->out_ext_byte_len && 12983 pmb->ctx_buf) 12984 lpfc_sli_pcimem_bcopy( 12985 phba->mbox_ext, 12986 pmb->ctx_buf, 12987 pmb->out_ext_byte_len); 12988 } 12989 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12990 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12991 12992 lpfc_debugfs_disc_trc(vport, 12993 LPFC_DISC_TRC_MBOX_VPORT, 12994 "MBOX dflt rpi: : " 12995 "status:x%x rpi:x%x", 12996 (uint32_t)pmbox->mbxStatus, 12997 pmbox->un.varWords[0], 0); 12998 12999 if (!pmbox->mbxStatus) { 13000 mp = (struct lpfc_dmabuf *) 13001 (pmb->ctx_buf); 13002 ndlp = (struct lpfc_nodelist *) 13003 pmb->ctx_ndlp; 13004 13005 /* Reg_LOGIN of dflt RPI was 13006 * successful. new lets get 13007 * rid of the RPI using the 13008 * same mbox buffer. 13009 */ 13010 lpfc_unreg_login(phba, 13011 vport->vpi, 13012 pmbox->un.varWords[0], 13013 pmb); 13014 pmb->mbox_cmpl = 13015 lpfc_mbx_cmpl_dflt_rpi; 13016 pmb->ctx_buf = mp; 13017 pmb->ctx_ndlp = ndlp; 13018 pmb->vport = vport; 13019 rc = lpfc_sli_issue_mbox(phba, 13020 pmb, 13021 MBX_NOWAIT); 13022 if (rc != MBX_BUSY) 13023 lpfc_printf_log(phba, 13024 KERN_ERR, 13025 LOG_TRACE_EVENT, 13026 "0350 rc should have" 13027 "been MBX_BUSY\n"); 13028 if (rc != MBX_NOT_FINISHED) 13029 goto send_current_mbox; 13030 } 13031 } 13032 spin_lock_irqsave( 13033 &phba->pport->work_port_lock, 13034 iflag); 13035 phba->pport->work_port_events &= 13036 ~WORKER_MBOX_TMO; 13037 spin_unlock_irqrestore( 13038 &phba->pport->work_port_lock, 13039 iflag); 13040 13041 /* Do NOT queue MBX_HEARTBEAT to the worker 13042 * thread for processing. 13043 */ 13044 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13045 /* Process mbox now */ 13046 phba->sli.mbox_active = NULL; 13047 phba->sli.sli_flag &= 13048 ~LPFC_SLI_MBOX_ACTIVE; 13049 if (pmb->mbox_cmpl) 13050 pmb->mbox_cmpl(phba, pmb); 13051 } else { 13052 /* Queue to worker thread to process */ 13053 lpfc_mbox_cmpl_put(phba, pmb); 13054 } 13055 } 13056 } else 13057 spin_unlock_irqrestore(&phba->hbalock, iflag); 13058 13059 if ((work_ha_copy & HA_MBATT) && 13060 (phba->sli.mbox_active == NULL)) { 13061 send_current_mbox: 13062 /* Process next mailbox command if there is one */ 13063 do { 13064 rc = lpfc_sli_issue_mbox(phba, NULL, 13065 MBX_NOWAIT); 13066 } while (rc == MBX_NOT_FINISHED); 13067 if (rc != MBX_SUCCESS) 13068 lpfc_printf_log(phba, KERN_ERR, 13069 LOG_TRACE_EVENT, 13070 "0349 rc should be " 13071 "MBX_SUCCESS\n"); 13072 } 13073 13074 spin_lock_irqsave(&phba->hbalock, iflag); 13075 phba->work_ha |= work_ha_copy; 13076 spin_unlock_irqrestore(&phba->hbalock, iflag); 13077 lpfc_worker_wake_up(phba); 13078 } 13079 return IRQ_HANDLED; 13080 unplug_error: 13081 spin_unlock_irqrestore(&phba->hbalock, iflag); 13082 return IRQ_HANDLED; 13083 13084 } /* lpfc_sli_sp_intr_handler */ 13085 13086 /** 13087 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13088 * @irq: Interrupt number. 13089 * @dev_id: The device context pointer. 13090 * 13091 * This function is directly called from the PCI layer as an interrupt 13092 * service routine when device with SLI-3 interface spec is enabled with 13093 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13094 * ring event in the HBA. However, when the device is enabled with either 13095 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13096 * device-level interrupt handler. When the PCI slot is in error recovery 13097 * or the HBA is undergoing initialization, the interrupt handler will not 13098 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13099 * the intrrupt context. This function is called without any lock held. 13100 * It gets the hbalock to access and update SLI data structures. 13101 * 13102 * This function returns IRQ_HANDLED when interrupt is handled else it 13103 * returns IRQ_NONE. 13104 **/ 13105 irqreturn_t 13106 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13107 { 13108 struct lpfc_hba *phba; 13109 uint32_t ha_copy; 13110 unsigned long status; 13111 unsigned long iflag; 13112 struct lpfc_sli_ring *pring; 13113 13114 /* Get the driver's phba structure from the dev_id and 13115 * assume the HBA is not interrupting. 13116 */ 13117 phba = (struct lpfc_hba *) dev_id; 13118 13119 if (unlikely(!phba)) 13120 return IRQ_NONE; 13121 13122 /* 13123 * Stuff needs to be attented to when this function is invoked as an 13124 * individual interrupt handler in MSI-X multi-message interrupt mode 13125 */ 13126 if (phba->intr_type == MSIX) { 13127 /* Check device state for handling interrupt */ 13128 if (lpfc_intr_state_check(phba)) 13129 return IRQ_NONE; 13130 /* Need to read HA REG for FCP ring and other ring events */ 13131 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13132 return IRQ_HANDLED; 13133 /* Clear up only attention source related to fast-path */ 13134 spin_lock_irqsave(&phba->hbalock, iflag); 13135 /* 13136 * If there is deferred error attention, do not check for 13137 * any interrupt. 13138 */ 13139 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13140 spin_unlock_irqrestore(&phba->hbalock, iflag); 13141 return IRQ_NONE; 13142 } 13143 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13144 phba->HAregaddr); 13145 readl(phba->HAregaddr); /* flush */ 13146 spin_unlock_irqrestore(&phba->hbalock, iflag); 13147 } else 13148 ha_copy = phba->ha_copy; 13149 13150 /* 13151 * Process all events on FCP ring. Take the optimized path for FCP IO. 13152 */ 13153 ha_copy &= ~(phba->work_ha_mask); 13154 13155 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13156 status >>= (4*LPFC_FCP_RING); 13157 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13158 if (status & HA_RXMASK) 13159 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13160 13161 if (phba->cfg_multi_ring_support == 2) { 13162 /* 13163 * Process all events on extra ring. Take the optimized path 13164 * for extra ring IO. 13165 */ 13166 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13167 status >>= (4*LPFC_EXTRA_RING); 13168 if (status & HA_RXMASK) { 13169 lpfc_sli_handle_fast_ring_event(phba, 13170 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13171 status); 13172 } 13173 } 13174 return IRQ_HANDLED; 13175 } /* lpfc_sli_fp_intr_handler */ 13176 13177 /** 13178 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13179 * @irq: Interrupt number. 13180 * @dev_id: The device context pointer. 13181 * 13182 * This function is the HBA device-level interrupt handler to device with 13183 * SLI-3 interface spec, called from the PCI layer when either MSI or 13184 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13185 * requires driver attention. This function invokes the slow-path interrupt 13186 * attention handling function and fast-path interrupt attention handling 13187 * function in turn to process the relevant HBA attention events. This 13188 * function is called without any lock held. It gets the hbalock to access 13189 * and update SLI data structures. 13190 * 13191 * This function returns IRQ_HANDLED when interrupt is handled, else it 13192 * returns IRQ_NONE. 13193 **/ 13194 irqreturn_t 13195 lpfc_sli_intr_handler(int irq, void *dev_id) 13196 { 13197 struct lpfc_hba *phba; 13198 irqreturn_t sp_irq_rc, fp_irq_rc; 13199 unsigned long status1, status2; 13200 uint32_t hc_copy; 13201 13202 /* 13203 * Get the driver's phba structure from the dev_id and 13204 * assume the HBA is not interrupting. 13205 */ 13206 phba = (struct lpfc_hba *) dev_id; 13207 13208 if (unlikely(!phba)) 13209 return IRQ_NONE; 13210 13211 /* Check device state for handling interrupt */ 13212 if (lpfc_intr_state_check(phba)) 13213 return IRQ_NONE; 13214 13215 spin_lock(&phba->hbalock); 13216 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13217 spin_unlock(&phba->hbalock); 13218 return IRQ_HANDLED; 13219 } 13220 13221 if (unlikely(!phba->ha_copy)) { 13222 spin_unlock(&phba->hbalock); 13223 return IRQ_NONE; 13224 } else if (phba->ha_copy & HA_ERATT) { 13225 if (phba->hba_flag & HBA_ERATT_HANDLED) 13226 /* ERATT polling has handled ERATT */ 13227 phba->ha_copy &= ~HA_ERATT; 13228 else 13229 /* Indicate interrupt handler handles ERATT */ 13230 phba->hba_flag |= HBA_ERATT_HANDLED; 13231 } 13232 13233 /* 13234 * If there is deferred error attention, do not check for any interrupt. 13235 */ 13236 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13237 spin_unlock(&phba->hbalock); 13238 return IRQ_NONE; 13239 } 13240 13241 /* Clear attention sources except link and error attentions */ 13242 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13243 spin_unlock(&phba->hbalock); 13244 return IRQ_HANDLED; 13245 } 13246 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13247 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13248 phba->HCregaddr); 13249 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13250 writel(hc_copy, phba->HCregaddr); 13251 readl(phba->HAregaddr); /* flush */ 13252 spin_unlock(&phba->hbalock); 13253 13254 /* 13255 * Invokes slow-path host attention interrupt handling as appropriate. 13256 */ 13257 13258 /* status of events with mailbox and link attention */ 13259 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13260 13261 /* status of events with ELS ring */ 13262 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13263 status2 >>= (4*LPFC_ELS_RING); 13264 13265 if (status1 || (status2 & HA_RXMASK)) 13266 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13267 else 13268 sp_irq_rc = IRQ_NONE; 13269 13270 /* 13271 * Invoke fast-path host attention interrupt handling as appropriate. 13272 */ 13273 13274 /* status of events with FCP ring */ 13275 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13276 status1 >>= (4*LPFC_FCP_RING); 13277 13278 /* status of events with extra ring */ 13279 if (phba->cfg_multi_ring_support == 2) { 13280 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13281 status2 >>= (4*LPFC_EXTRA_RING); 13282 } else 13283 status2 = 0; 13284 13285 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13286 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13287 else 13288 fp_irq_rc = IRQ_NONE; 13289 13290 /* Return device-level interrupt handling status */ 13291 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13292 } /* lpfc_sli_intr_handler */ 13293 13294 /** 13295 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13296 * @phba: pointer to lpfc hba data structure. 13297 * 13298 * This routine is invoked by the worker thread to process all the pending 13299 * SLI4 els abort xri events. 13300 **/ 13301 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13302 { 13303 struct lpfc_cq_event *cq_event; 13304 unsigned long iflags; 13305 13306 /* First, declare the els xri abort event has been handled */ 13307 spin_lock_irqsave(&phba->hbalock, iflags); 13308 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13309 spin_unlock_irqrestore(&phba->hbalock, iflags); 13310 13311 /* Now, handle all the els xri abort events */ 13312 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13313 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13314 /* Get the first event from the head of the event queue */ 13315 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13316 cq_event, struct lpfc_cq_event, list); 13317 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13318 iflags); 13319 /* Notify aborted XRI for ELS work queue */ 13320 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13321 13322 /* Free the event processed back to the free pool */ 13323 lpfc_sli4_cq_event_release(phba, cq_event); 13324 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13325 iflags); 13326 } 13327 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13328 } 13329 13330 /** 13331 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13332 * @phba: pointer to lpfc hba data structure 13333 * @pIocbIn: pointer to the rspiocbq 13334 * @pIocbOut: pointer to the cmdiocbq 13335 * @wcqe: pointer to the complete wcqe 13336 * 13337 * This routine transfers the fields of a command iocbq to a response iocbq 13338 * by copying all the IOCB fields from command iocbq and transferring the 13339 * completion status information from the complete wcqe. 13340 **/ 13341 static void 13342 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13343 struct lpfc_iocbq *pIocbIn, 13344 struct lpfc_iocbq *pIocbOut, 13345 struct lpfc_wcqe_complete *wcqe) 13346 { 13347 int numBdes, i; 13348 unsigned long iflags; 13349 uint32_t status, max_response; 13350 struct lpfc_dmabuf *dmabuf; 13351 struct ulp_bde64 *bpl, bde; 13352 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13353 13354 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13355 sizeof(struct lpfc_iocbq) - offset); 13356 /* Map WCQE parameters into irspiocb parameters */ 13357 status = bf_get(lpfc_wcqe_c_status, wcqe); 13358 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13359 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13360 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13361 pIocbIn->iocb.un.fcpi.fcpi_parm = 13362 pIocbOut->iocb.un.fcpi.fcpi_parm - 13363 wcqe->total_data_placed; 13364 else 13365 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13366 else { 13367 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13368 switch (pIocbOut->iocb.ulpCommand) { 13369 case CMD_ELS_REQUEST64_CR: 13370 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13371 bpl = (struct ulp_bde64 *)dmabuf->virt; 13372 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13373 max_response = bde.tus.f.bdeSize; 13374 break; 13375 case CMD_GEN_REQUEST64_CR: 13376 max_response = 0; 13377 if (!pIocbOut->context3) 13378 break; 13379 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13380 sizeof(struct ulp_bde64); 13381 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13382 bpl = (struct ulp_bde64 *)dmabuf->virt; 13383 for (i = 0; i < numBdes; i++) { 13384 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13385 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13386 max_response += bde.tus.f.bdeSize; 13387 } 13388 break; 13389 default: 13390 max_response = wcqe->total_data_placed; 13391 break; 13392 } 13393 if (max_response < wcqe->total_data_placed) 13394 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13395 else 13396 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13397 wcqe->total_data_placed; 13398 } 13399 13400 /* Convert BG errors for completion status */ 13401 if (status == CQE_STATUS_DI_ERROR) { 13402 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13403 13404 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13405 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13406 else 13407 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13408 13409 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13410 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13411 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13412 BGS_GUARD_ERR_MASK; 13413 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13414 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13415 BGS_APPTAG_ERR_MASK; 13416 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13417 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13418 BGS_REFTAG_ERR_MASK; 13419 13420 /* Check to see if there was any good data before the error */ 13421 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13422 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13423 BGS_HI_WATER_MARK_PRESENT_MASK; 13424 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13425 wcqe->total_data_placed; 13426 } 13427 13428 /* 13429 * Set ALL the error bits to indicate we don't know what 13430 * type of error it is. 13431 */ 13432 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13433 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13434 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13435 BGS_GUARD_ERR_MASK); 13436 } 13437 13438 /* Pick up HBA exchange busy condition */ 13439 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13440 spin_lock_irqsave(&phba->hbalock, iflags); 13441 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13442 spin_unlock_irqrestore(&phba->hbalock, iflags); 13443 } 13444 } 13445 13446 /** 13447 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13448 * @phba: Pointer to HBA context object. 13449 * @irspiocbq: Pointer to work-queue completion queue entry. 13450 * 13451 * This routine handles an ELS work-queue completion event and construct 13452 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13453 * discovery engine to handle. 13454 * 13455 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13456 **/ 13457 static struct lpfc_iocbq * 13458 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13459 struct lpfc_iocbq *irspiocbq) 13460 { 13461 struct lpfc_sli_ring *pring; 13462 struct lpfc_iocbq *cmdiocbq; 13463 struct lpfc_wcqe_complete *wcqe; 13464 unsigned long iflags; 13465 13466 pring = lpfc_phba_elsring(phba); 13467 if (unlikely(!pring)) 13468 return NULL; 13469 13470 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13471 pring->stats.iocb_event++; 13472 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13473 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13474 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13475 if (unlikely(!cmdiocbq)) { 13476 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13477 "0386 ELS complete with no corresponding " 13478 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13479 wcqe->word0, wcqe->total_data_placed, 13480 wcqe->parameter, wcqe->word3); 13481 lpfc_sli_release_iocbq(phba, irspiocbq); 13482 return NULL; 13483 } 13484 13485 spin_lock_irqsave(&pring->ring_lock, iflags); 13486 /* Put the iocb back on the txcmplq */ 13487 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13488 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13489 13490 /* Fake the irspiocbq and copy necessary response information */ 13491 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13492 13493 return irspiocbq; 13494 } 13495 13496 inline struct lpfc_cq_event * 13497 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13498 { 13499 struct lpfc_cq_event *cq_event; 13500 13501 /* Allocate a new internal CQ_EVENT entry */ 13502 cq_event = lpfc_sli4_cq_event_alloc(phba); 13503 if (!cq_event) { 13504 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13505 "0602 Failed to alloc CQ_EVENT entry\n"); 13506 return NULL; 13507 } 13508 13509 /* Move the CQE into the event */ 13510 memcpy(&cq_event->cqe, entry, size); 13511 return cq_event; 13512 } 13513 13514 /** 13515 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13516 * @phba: Pointer to HBA context object. 13517 * @mcqe: Pointer to mailbox completion queue entry. 13518 * 13519 * This routine process a mailbox completion queue entry with asynchronous 13520 * event. 13521 * 13522 * Return: true if work posted to worker thread, otherwise false. 13523 **/ 13524 static bool 13525 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13526 { 13527 struct lpfc_cq_event *cq_event; 13528 unsigned long iflags; 13529 13530 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13531 "0392 Async Event: word0:x%x, word1:x%x, " 13532 "word2:x%x, word3:x%x\n", mcqe->word0, 13533 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13534 13535 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13536 if (!cq_event) 13537 return false; 13538 13539 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13540 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13541 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13542 13543 /* Set the async event flag */ 13544 spin_lock_irqsave(&phba->hbalock, iflags); 13545 phba->hba_flag |= ASYNC_EVENT; 13546 spin_unlock_irqrestore(&phba->hbalock, iflags); 13547 13548 return true; 13549 } 13550 13551 /** 13552 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13553 * @phba: Pointer to HBA context object. 13554 * @mcqe: Pointer to mailbox completion queue entry. 13555 * 13556 * This routine process a mailbox completion queue entry with mailbox 13557 * completion event. 13558 * 13559 * Return: true if work posted to worker thread, otherwise false. 13560 **/ 13561 static bool 13562 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13563 { 13564 uint32_t mcqe_status; 13565 MAILBOX_t *mbox, *pmbox; 13566 struct lpfc_mqe *mqe; 13567 struct lpfc_vport *vport; 13568 struct lpfc_nodelist *ndlp; 13569 struct lpfc_dmabuf *mp; 13570 unsigned long iflags; 13571 LPFC_MBOXQ_t *pmb; 13572 bool workposted = false; 13573 int rc; 13574 13575 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13576 if (!bf_get(lpfc_trailer_completed, mcqe)) 13577 goto out_no_mqe_complete; 13578 13579 /* Get the reference to the active mbox command */ 13580 spin_lock_irqsave(&phba->hbalock, iflags); 13581 pmb = phba->sli.mbox_active; 13582 if (unlikely(!pmb)) { 13583 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13584 "1832 No pending MBOX command to handle\n"); 13585 spin_unlock_irqrestore(&phba->hbalock, iflags); 13586 goto out_no_mqe_complete; 13587 } 13588 spin_unlock_irqrestore(&phba->hbalock, iflags); 13589 mqe = &pmb->u.mqe; 13590 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13591 mbox = phba->mbox; 13592 vport = pmb->vport; 13593 13594 /* Reset heartbeat timer */ 13595 phba->last_completion_time = jiffies; 13596 del_timer(&phba->sli.mbox_tmo); 13597 13598 /* Move mbox data to caller's mailbox region, do endian swapping */ 13599 if (pmb->mbox_cmpl && mbox) 13600 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13601 13602 /* 13603 * For mcqe errors, conditionally move a modified error code to 13604 * the mbox so that the error will not be missed. 13605 */ 13606 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13607 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13608 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13609 bf_set(lpfc_mqe_status, mqe, 13610 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13611 } 13612 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13613 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13614 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13615 "MBOX dflt rpi: status:x%x rpi:x%x", 13616 mcqe_status, 13617 pmbox->un.varWords[0], 0); 13618 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13619 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13620 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13621 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13622 * RID of the PPI using the same mbox buffer. 13623 */ 13624 lpfc_unreg_login(phba, vport->vpi, 13625 pmbox->un.varWords[0], pmb); 13626 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13627 pmb->ctx_buf = mp; 13628 13629 /* No reference taken here. This is a default 13630 * RPI reg/immediate unreg cycle. The reference was 13631 * taken in the reg rpi path and is released when 13632 * this mailbox completes. 13633 */ 13634 pmb->ctx_ndlp = ndlp; 13635 pmb->vport = vport; 13636 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13637 if (rc != MBX_BUSY) 13638 lpfc_printf_log(phba, KERN_ERR, 13639 LOG_TRACE_EVENT, 13640 "0385 rc should " 13641 "have been MBX_BUSY\n"); 13642 if (rc != MBX_NOT_FINISHED) 13643 goto send_current_mbox; 13644 } 13645 } 13646 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13647 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13648 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13649 13650 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 13651 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13652 spin_lock_irqsave(&phba->hbalock, iflags); 13653 /* Release the mailbox command posting token */ 13654 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13655 phba->sli.mbox_active = NULL; 13656 if (bf_get(lpfc_trailer_consumed, mcqe)) 13657 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13658 spin_unlock_irqrestore(&phba->hbalock, iflags); 13659 13660 /* Post the next mbox command, if there is one */ 13661 lpfc_sli4_post_async_mbox(phba); 13662 13663 /* Process cmpl now */ 13664 if (pmb->mbox_cmpl) 13665 pmb->mbox_cmpl(phba, pmb); 13666 return false; 13667 } 13668 13669 /* There is mailbox completion work to queue to the worker thread */ 13670 spin_lock_irqsave(&phba->hbalock, iflags); 13671 __lpfc_mbox_cmpl_put(phba, pmb); 13672 phba->work_ha |= HA_MBATT; 13673 spin_unlock_irqrestore(&phba->hbalock, iflags); 13674 workposted = true; 13675 13676 send_current_mbox: 13677 spin_lock_irqsave(&phba->hbalock, iflags); 13678 /* Release the mailbox command posting token */ 13679 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13680 /* Setting active mailbox pointer need to be in sync to flag clear */ 13681 phba->sli.mbox_active = NULL; 13682 if (bf_get(lpfc_trailer_consumed, mcqe)) 13683 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13684 spin_unlock_irqrestore(&phba->hbalock, iflags); 13685 /* Wake up worker thread to post the next pending mailbox command */ 13686 lpfc_worker_wake_up(phba); 13687 return workposted; 13688 13689 out_no_mqe_complete: 13690 spin_lock_irqsave(&phba->hbalock, iflags); 13691 if (bf_get(lpfc_trailer_consumed, mcqe)) 13692 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13693 spin_unlock_irqrestore(&phba->hbalock, iflags); 13694 return false; 13695 } 13696 13697 /** 13698 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13699 * @phba: Pointer to HBA context object. 13700 * @cq: Pointer to associated CQ 13701 * @cqe: Pointer to mailbox completion queue entry. 13702 * 13703 * This routine process a mailbox completion queue entry, it invokes the 13704 * proper mailbox complete handling or asynchronous event handling routine 13705 * according to the MCQE's async bit. 13706 * 13707 * Return: true if work posted to worker thread, otherwise false. 13708 **/ 13709 static bool 13710 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13711 struct lpfc_cqe *cqe) 13712 { 13713 struct lpfc_mcqe mcqe; 13714 bool workposted; 13715 13716 cq->CQ_mbox++; 13717 13718 /* Copy the mailbox MCQE and convert endian order as needed */ 13719 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13720 13721 /* Invoke the proper event handling routine */ 13722 if (!bf_get(lpfc_trailer_async, &mcqe)) 13723 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13724 else 13725 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13726 return workposted; 13727 } 13728 13729 /** 13730 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13731 * @phba: Pointer to HBA context object. 13732 * @cq: Pointer to associated CQ 13733 * @wcqe: Pointer to work-queue completion queue entry. 13734 * 13735 * This routine handles an ELS work-queue completion event. 13736 * 13737 * Return: true if work posted to worker thread, otherwise false. 13738 **/ 13739 static bool 13740 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13741 struct lpfc_wcqe_complete *wcqe) 13742 { 13743 struct lpfc_iocbq *irspiocbq; 13744 unsigned long iflags; 13745 struct lpfc_sli_ring *pring = cq->pring; 13746 int txq_cnt = 0; 13747 int txcmplq_cnt = 0; 13748 13749 /* Check for response status */ 13750 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13751 /* Log the error status */ 13752 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13753 "0357 ELS CQE error: status=x%x: " 13754 "CQE: %08x %08x %08x %08x\n", 13755 bf_get(lpfc_wcqe_c_status, wcqe), 13756 wcqe->word0, wcqe->total_data_placed, 13757 wcqe->parameter, wcqe->word3); 13758 } 13759 13760 /* Get an irspiocbq for later ELS response processing use */ 13761 irspiocbq = lpfc_sli_get_iocbq(phba); 13762 if (!irspiocbq) { 13763 if (!list_empty(&pring->txq)) 13764 txq_cnt++; 13765 if (!list_empty(&pring->txcmplq)) 13766 txcmplq_cnt++; 13767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13768 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13769 "els_txcmplq_cnt=%d\n", 13770 txq_cnt, phba->iocb_cnt, 13771 txcmplq_cnt); 13772 return false; 13773 } 13774 13775 /* Save off the slow-path queue event for work thread to process */ 13776 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13777 spin_lock_irqsave(&phba->hbalock, iflags); 13778 list_add_tail(&irspiocbq->cq_event.list, 13779 &phba->sli4_hba.sp_queue_event); 13780 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13781 spin_unlock_irqrestore(&phba->hbalock, iflags); 13782 13783 return true; 13784 } 13785 13786 /** 13787 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13788 * @phba: Pointer to HBA context object. 13789 * @wcqe: Pointer to work-queue completion queue entry. 13790 * 13791 * This routine handles slow-path WQ entry consumed event by invoking the 13792 * proper WQ release routine to the slow-path WQ. 13793 **/ 13794 static void 13795 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13796 struct lpfc_wcqe_release *wcqe) 13797 { 13798 /* sanity check on queue memory */ 13799 if (unlikely(!phba->sli4_hba.els_wq)) 13800 return; 13801 /* Check for the slow-path ELS work queue */ 13802 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13803 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13804 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13805 else 13806 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13807 "2579 Slow-path wqe consume event carries " 13808 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13809 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13810 phba->sli4_hba.els_wq->queue_id); 13811 } 13812 13813 /** 13814 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13815 * @phba: Pointer to HBA context object. 13816 * @cq: Pointer to a WQ completion queue. 13817 * @wcqe: Pointer to work-queue completion queue entry. 13818 * 13819 * This routine handles an XRI abort event. 13820 * 13821 * Return: true if work posted to worker thread, otherwise false. 13822 **/ 13823 static bool 13824 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13825 struct lpfc_queue *cq, 13826 struct sli4_wcqe_xri_aborted *wcqe) 13827 { 13828 bool workposted = false; 13829 struct lpfc_cq_event *cq_event; 13830 unsigned long iflags; 13831 13832 switch (cq->subtype) { 13833 case LPFC_IO: 13834 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13835 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13836 /* Notify aborted XRI for NVME work queue */ 13837 if (phba->nvmet_support) 13838 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13839 } 13840 workposted = false; 13841 break; 13842 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13843 case LPFC_ELS: 13844 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13845 if (!cq_event) { 13846 workposted = false; 13847 break; 13848 } 13849 cq_event->hdwq = cq->hdwq; 13850 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13851 iflags); 13852 list_add_tail(&cq_event->list, 13853 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13854 /* Set the els xri abort event flag */ 13855 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13856 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13857 iflags); 13858 workposted = true; 13859 break; 13860 default: 13861 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13862 "0603 Invalid CQ subtype %d: " 13863 "%08x %08x %08x %08x\n", 13864 cq->subtype, wcqe->word0, wcqe->parameter, 13865 wcqe->word2, wcqe->word3); 13866 workposted = false; 13867 break; 13868 } 13869 return workposted; 13870 } 13871 13872 #define FC_RCTL_MDS_DIAGS 0xF4 13873 13874 /** 13875 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13876 * @phba: Pointer to HBA context object. 13877 * @rcqe: Pointer to receive-queue completion queue entry. 13878 * 13879 * This routine process a receive-queue completion queue entry. 13880 * 13881 * Return: true if work posted to worker thread, otherwise false. 13882 **/ 13883 static bool 13884 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13885 { 13886 bool workposted = false; 13887 struct fc_frame_header *fc_hdr; 13888 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13889 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13890 struct lpfc_nvmet_tgtport *tgtp; 13891 struct hbq_dmabuf *dma_buf; 13892 uint32_t status, rq_id; 13893 unsigned long iflags; 13894 13895 /* sanity check on queue memory */ 13896 if (unlikely(!hrq) || unlikely(!drq)) 13897 return workposted; 13898 13899 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13900 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13901 else 13902 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13903 if (rq_id != hrq->queue_id) 13904 goto out; 13905 13906 status = bf_get(lpfc_rcqe_status, rcqe); 13907 switch (status) { 13908 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13909 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13910 "2537 Receive Frame Truncated!!\n"); 13911 fallthrough; 13912 case FC_STATUS_RQ_SUCCESS: 13913 spin_lock_irqsave(&phba->hbalock, iflags); 13914 lpfc_sli4_rq_release(hrq, drq); 13915 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13916 if (!dma_buf) { 13917 hrq->RQ_no_buf_found++; 13918 spin_unlock_irqrestore(&phba->hbalock, iflags); 13919 goto out; 13920 } 13921 hrq->RQ_rcv_buf++; 13922 hrq->RQ_buf_posted--; 13923 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13924 13925 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13926 13927 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13928 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13929 spin_unlock_irqrestore(&phba->hbalock, iflags); 13930 /* Handle MDS Loopback frames */ 13931 if (!(phba->pport->load_flag & FC_UNLOADING)) 13932 lpfc_sli4_handle_mds_loopback(phba->pport, 13933 dma_buf); 13934 else 13935 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13936 break; 13937 } 13938 13939 /* save off the frame for the work thread to process */ 13940 list_add_tail(&dma_buf->cq_event.list, 13941 &phba->sli4_hba.sp_queue_event); 13942 /* Frame received */ 13943 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13944 spin_unlock_irqrestore(&phba->hbalock, iflags); 13945 workposted = true; 13946 break; 13947 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13948 if (phba->nvmet_support) { 13949 tgtp = phba->targetport->private; 13950 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13951 "6402 RQE Error x%x, posted %d err_cnt " 13952 "%d: %x %x %x\n", 13953 status, hrq->RQ_buf_posted, 13954 hrq->RQ_no_posted_buf, 13955 atomic_read(&tgtp->rcv_fcp_cmd_in), 13956 atomic_read(&tgtp->rcv_fcp_cmd_out), 13957 atomic_read(&tgtp->xmt_fcp_release)); 13958 } 13959 fallthrough; 13960 13961 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13962 hrq->RQ_no_posted_buf++; 13963 /* Post more buffers if possible */ 13964 spin_lock_irqsave(&phba->hbalock, iflags); 13965 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13966 spin_unlock_irqrestore(&phba->hbalock, iflags); 13967 workposted = true; 13968 break; 13969 } 13970 out: 13971 return workposted; 13972 } 13973 13974 /** 13975 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13976 * @phba: Pointer to HBA context object. 13977 * @cq: Pointer to the completion queue. 13978 * @cqe: Pointer to a completion queue entry. 13979 * 13980 * This routine process a slow-path work-queue or receive queue completion queue 13981 * entry. 13982 * 13983 * Return: true if work posted to worker thread, otherwise false. 13984 **/ 13985 static bool 13986 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13987 struct lpfc_cqe *cqe) 13988 { 13989 struct lpfc_cqe cqevt; 13990 bool workposted = false; 13991 13992 /* Copy the work queue CQE and convert endian order if needed */ 13993 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13994 13995 /* Check and process for different type of WCQE and dispatch */ 13996 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13997 case CQE_CODE_COMPL_WQE: 13998 /* Process the WQ/RQ complete event */ 13999 phba->last_completion_time = jiffies; 14000 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14001 (struct lpfc_wcqe_complete *)&cqevt); 14002 break; 14003 case CQE_CODE_RELEASE_WQE: 14004 /* Process the WQ release event */ 14005 lpfc_sli4_sp_handle_rel_wcqe(phba, 14006 (struct lpfc_wcqe_release *)&cqevt); 14007 break; 14008 case CQE_CODE_XRI_ABORTED: 14009 /* Process the WQ XRI abort event */ 14010 phba->last_completion_time = jiffies; 14011 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14012 (struct sli4_wcqe_xri_aborted *)&cqevt); 14013 break; 14014 case CQE_CODE_RECEIVE: 14015 case CQE_CODE_RECEIVE_V1: 14016 /* Process the RQ event */ 14017 phba->last_completion_time = jiffies; 14018 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14019 (struct lpfc_rcqe *)&cqevt); 14020 break; 14021 default: 14022 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14023 "0388 Not a valid WCQE code: x%x\n", 14024 bf_get(lpfc_cqe_code, &cqevt)); 14025 break; 14026 } 14027 return workposted; 14028 } 14029 14030 /** 14031 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14032 * @phba: Pointer to HBA context object. 14033 * @eqe: Pointer to fast-path event queue entry. 14034 * @speq: Pointer to slow-path event queue. 14035 * 14036 * This routine process a event queue entry from the slow-path event queue. 14037 * It will check the MajorCode and MinorCode to determine this is for a 14038 * completion event on a completion queue, if not, an error shall be logged 14039 * and just return. Otherwise, it will get to the corresponding completion 14040 * queue and process all the entries on that completion queue, rearm the 14041 * completion queue, and then return. 14042 * 14043 **/ 14044 static void 14045 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14046 struct lpfc_queue *speq) 14047 { 14048 struct lpfc_queue *cq = NULL, *childq; 14049 uint16_t cqid; 14050 int ret = 0; 14051 14052 /* Get the reference to the corresponding CQ */ 14053 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14054 14055 list_for_each_entry(childq, &speq->child_list, list) { 14056 if (childq->queue_id == cqid) { 14057 cq = childq; 14058 break; 14059 } 14060 } 14061 if (unlikely(!cq)) { 14062 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14063 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14064 "0365 Slow-path CQ identifier " 14065 "(%d) does not exist\n", cqid); 14066 return; 14067 } 14068 14069 /* Save EQ associated with this CQ */ 14070 cq->assoc_qp = speq; 14071 14072 if (is_kdump_kernel()) 14073 ret = queue_work(phba->wq, &cq->spwork); 14074 else 14075 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14076 14077 if (!ret) 14078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14079 "0390 Cannot schedule queue work " 14080 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14081 cqid, cq->queue_id, raw_smp_processor_id()); 14082 } 14083 14084 /** 14085 * __lpfc_sli4_process_cq - Process elements of a CQ 14086 * @phba: Pointer to HBA context object. 14087 * @cq: Pointer to CQ to be processed 14088 * @handler: Routine to process each cqe 14089 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14090 * @poll_mode: Polling mode we were called from 14091 * 14092 * This routine processes completion queue entries in a CQ. While a valid 14093 * queue element is found, the handler is called. During processing checks 14094 * are made for periodic doorbell writes to let the hardware know of 14095 * element consumption. 14096 * 14097 * If the max limit on cqes to process is hit, or there are no more valid 14098 * entries, the loop stops. If we processed a sufficient number of elements, 14099 * meaning there is sufficient load, rather than rearming and generating 14100 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14101 * indicates no rescheduling. 14102 * 14103 * Returns True if work scheduled, False otherwise. 14104 **/ 14105 static bool 14106 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14107 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14108 struct lpfc_cqe *), unsigned long *delay, 14109 enum lpfc_poll_mode poll_mode) 14110 { 14111 struct lpfc_cqe *cqe; 14112 bool workposted = false; 14113 int count = 0, consumed = 0; 14114 bool arm = true; 14115 14116 /* default - no reschedule */ 14117 *delay = 0; 14118 14119 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14120 goto rearm_and_exit; 14121 14122 /* Process all the entries to the CQ */ 14123 cq->q_flag = 0; 14124 cqe = lpfc_sli4_cq_get(cq); 14125 while (cqe) { 14126 workposted |= handler(phba, cq, cqe); 14127 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14128 14129 consumed++; 14130 if (!(++count % cq->max_proc_limit)) 14131 break; 14132 14133 if (!(count % cq->notify_interval)) { 14134 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14135 LPFC_QUEUE_NOARM); 14136 consumed = 0; 14137 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14138 } 14139 14140 if (count == LPFC_NVMET_CQ_NOTIFY) 14141 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14142 14143 cqe = lpfc_sli4_cq_get(cq); 14144 } 14145 if (count >= phba->cfg_cq_poll_threshold) { 14146 *delay = 1; 14147 arm = false; 14148 } 14149 14150 /* Note: complete the irq_poll softirq before rearming CQ */ 14151 if (poll_mode == LPFC_IRQ_POLL) 14152 irq_poll_complete(&cq->iop); 14153 14154 /* Track the max number of CQEs processed in 1 EQ */ 14155 if (count > cq->CQ_max_cqe) 14156 cq->CQ_max_cqe = count; 14157 14158 cq->assoc_qp->EQ_cqe_cnt += count; 14159 14160 /* Catch the no cq entry condition */ 14161 if (unlikely(count == 0)) 14162 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14163 "0369 No entry from completion queue " 14164 "qid=%d\n", cq->queue_id); 14165 14166 xchg(&cq->queue_claimed, 0); 14167 14168 rearm_and_exit: 14169 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14170 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14171 14172 return workposted; 14173 } 14174 14175 /** 14176 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14177 * @cq: pointer to CQ to process 14178 * 14179 * This routine calls the cq processing routine with a handler specific 14180 * to the type of queue bound to it. 14181 * 14182 * The CQ routine returns two values: the first is the calling status, 14183 * which indicates whether work was queued to the background discovery 14184 * thread. If true, the routine should wakeup the discovery thread; 14185 * the second is the delay parameter. If non-zero, rather than rearming 14186 * the CQ and yet another interrupt, the CQ handler should be queued so 14187 * that it is processed in a subsequent polling action. The value of 14188 * the delay indicates when to reschedule it. 14189 **/ 14190 static void 14191 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14192 { 14193 struct lpfc_hba *phba = cq->phba; 14194 unsigned long delay; 14195 bool workposted = false; 14196 int ret = 0; 14197 14198 /* Process and rearm the CQ */ 14199 switch (cq->type) { 14200 case LPFC_MCQ: 14201 workposted |= __lpfc_sli4_process_cq(phba, cq, 14202 lpfc_sli4_sp_handle_mcqe, 14203 &delay, LPFC_QUEUE_WORK); 14204 break; 14205 case LPFC_WCQ: 14206 if (cq->subtype == LPFC_IO) 14207 workposted |= __lpfc_sli4_process_cq(phba, cq, 14208 lpfc_sli4_fp_handle_cqe, 14209 &delay, LPFC_QUEUE_WORK); 14210 else 14211 workposted |= __lpfc_sli4_process_cq(phba, cq, 14212 lpfc_sli4_sp_handle_cqe, 14213 &delay, LPFC_QUEUE_WORK); 14214 break; 14215 default: 14216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14217 "0370 Invalid completion queue type (%d)\n", 14218 cq->type); 14219 return; 14220 } 14221 14222 if (delay) { 14223 if (is_kdump_kernel()) 14224 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14225 delay); 14226 else 14227 ret = queue_delayed_work_on(cq->chann, phba->wq, 14228 &cq->sched_spwork, delay); 14229 if (!ret) 14230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14231 "0394 Cannot schedule queue work " 14232 "for cqid=%d on CPU %d\n", 14233 cq->queue_id, cq->chann); 14234 } 14235 14236 /* wake up worker thread if there are works to be done */ 14237 if (workposted) 14238 lpfc_worker_wake_up(phba); 14239 } 14240 14241 /** 14242 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14243 * interrupt 14244 * @work: pointer to work element 14245 * 14246 * translates from the work handler and calls the slow-path handler. 14247 **/ 14248 static void 14249 lpfc_sli4_sp_process_cq(struct work_struct *work) 14250 { 14251 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14252 14253 __lpfc_sli4_sp_process_cq(cq); 14254 } 14255 14256 /** 14257 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14258 * @work: pointer to work element 14259 * 14260 * translates from the work handler and calls the slow-path handler. 14261 **/ 14262 static void 14263 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14264 { 14265 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14266 struct lpfc_queue, sched_spwork); 14267 14268 __lpfc_sli4_sp_process_cq(cq); 14269 } 14270 14271 /** 14272 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14273 * @phba: Pointer to HBA context object. 14274 * @cq: Pointer to associated CQ 14275 * @wcqe: Pointer to work-queue completion queue entry. 14276 * 14277 * This routine process a fast-path work queue completion entry from fast-path 14278 * event queue for FCP command response completion. 14279 **/ 14280 static void 14281 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14282 struct lpfc_wcqe_complete *wcqe) 14283 { 14284 struct lpfc_sli_ring *pring = cq->pring; 14285 struct lpfc_iocbq *cmdiocbq; 14286 struct lpfc_iocbq irspiocbq; 14287 unsigned long iflags; 14288 14289 /* Check for response status */ 14290 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14291 /* If resource errors reported from HBA, reduce queue 14292 * depth of the SCSI device. 14293 */ 14294 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14295 IOSTAT_LOCAL_REJECT)) && 14296 ((wcqe->parameter & IOERR_PARAM_MASK) == 14297 IOERR_NO_RESOURCES)) 14298 phba->lpfc_rampdown_queue_depth(phba); 14299 14300 /* Log the cmpl status */ 14301 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14302 "0373 FCP CQE cmpl: status=x%x: " 14303 "CQE: %08x %08x %08x %08x\n", 14304 bf_get(lpfc_wcqe_c_status, wcqe), 14305 wcqe->word0, wcqe->total_data_placed, 14306 wcqe->parameter, wcqe->word3); 14307 } 14308 14309 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14310 spin_lock_irqsave(&pring->ring_lock, iflags); 14311 pring->stats.iocb_event++; 14312 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14313 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14314 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14315 if (unlikely(!cmdiocbq)) { 14316 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14317 "0374 FCP complete with no corresponding " 14318 "cmdiocb: iotag (%d)\n", 14319 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14320 return; 14321 } 14322 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14323 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14324 #endif 14325 if (cmdiocbq->iocb_cmpl == NULL) { 14326 if (cmdiocbq->wqe_cmpl) { 14327 /* For FCP the flag is cleared in wqe_cmpl */ 14328 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14329 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14330 spin_lock_irqsave(&phba->hbalock, iflags); 14331 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14332 spin_unlock_irqrestore(&phba->hbalock, iflags); 14333 } 14334 14335 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14336 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14337 return; 14338 } 14339 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14340 "0375 FCP cmdiocb not callback function " 14341 "iotag: (%d)\n", 14342 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14343 return; 14344 } 14345 14346 /* Only SLI4 non-IO commands stil use IOCB */ 14347 /* Fake the irspiocb and copy necessary response information */ 14348 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14349 14350 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14351 spin_lock_irqsave(&phba->hbalock, iflags); 14352 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14353 spin_unlock_irqrestore(&phba->hbalock, iflags); 14354 } 14355 14356 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14357 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14358 } 14359 14360 /** 14361 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14362 * @phba: Pointer to HBA context object. 14363 * @cq: Pointer to completion queue. 14364 * @wcqe: Pointer to work-queue completion queue entry. 14365 * 14366 * This routine handles an fast-path WQ entry consumed event by invoking the 14367 * proper WQ release routine to the slow-path WQ. 14368 **/ 14369 static void 14370 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14371 struct lpfc_wcqe_release *wcqe) 14372 { 14373 struct lpfc_queue *childwq; 14374 bool wqid_matched = false; 14375 uint16_t hba_wqid; 14376 14377 /* Check for fast-path FCP work queue release */ 14378 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14379 list_for_each_entry(childwq, &cq->child_list, list) { 14380 if (childwq->queue_id == hba_wqid) { 14381 lpfc_sli4_wq_release(childwq, 14382 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14383 if (childwq->q_flag & HBA_NVMET_WQFULL) 14384 lpfc_nvmet_wqfull_process(phba, childwq); 14385 wqid_matched = true; 14386 break; 14387 } 14388 } 14389 /* Report warning log message if no match found */ 14390 if (wqid_matched != true) 14391 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14392 "2580 Fast-path wqe consume event carries " 14393 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14394 } 14395 14396 /** 14397 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14398 * @phba: Pointer to HBA context object. 14399 * @cq: Pointer to completion queue. 14400 * @rcqe: Pointer to receive-queue completion queue entry. 14401 * 14402 * This routine process a receive-queue completion queue entry. 14403 * 14404 * Return: true if work posted to worker thread, otherwise false. 14405 **/ 14406 static bool 14407 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14408 struct lpfc_rcqe *rcqe) 14409 { 14410 bool workposted = false; 14411 struct lpfc_queue *hrq; 14412 struct lpfc_queue *drq; 14413 struct rqb_dmabuf *dma_buf; 14414 struct fc_frame_header *fc_hdr; 14415 struct lpfc_nvmet_tgtport *tgtp; 14416 uint32_t status, rq_id; 14417 unsigned long iflags; 14418 uint32_t fctl, idx; 14419 14420 if ((phba->nvmet_support == 0) || 14421 (phba->sli4_hba.nvmet_cqset == NULL)) 14422 return workposted; 14423 14424 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14425 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14426 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14427 14428 /* sanity check on queue memory */ 14429 if (unlikely(!hrq) || unlikely(!drq)) 14430 return workposted; 14431 14432 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14433 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14434 else 14435 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14436 14437 if ((phba->nvmet_support == 0) || 14438 (rq_id != hrq->queue_id)) 14439 return workposted; 14440 14441 status = bf_get(lpfc_rcqe_status, rcqe); 14442 switch (status) { 14443 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14445 "6126 Receive Frame Truncated!!\n"); 14446 fallthrough; 14447 case FC_STATUS_RQ_SUCCESS: 14448 spin_lock_irqsave(&phba->hbalock, iflags); 14449 lpfc_sli4_rq_release(hrq, drq); 14450 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14451 if (!dma_buf) { 14452 hrq->RQ_no_buf_found++; 14453 spin_unlock_irqrestore(&phba->hbalock, iflags); 14454 goto out; 14455 } 14456 spin_unlock_irqrestore(&phba->hbalock, iflags); 14457 hrq->RQ_rcv_buf++; 14458 hrq->RQ_buf_posted--; 14459 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14460 14461 /* Just some basic sanity checks on FCP Command frame */ 14462 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14463 fc_hdr->fh_f_ctl[1] << 8 | 14464 fc_hdr->fh_f_ctl[2]); 14465 if (((fctl & 14466 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14467 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14468 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14469 goto drop; 14470 14471 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14472 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14473 lpfc_nvmet_unsol_fcp_event( 14474 phba, idx, dma_buf, cq->isr_timestamp, 14475 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14476 return false; 14477 } 14478 drop: 14479 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14480 break; 14481 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14482 if (phba->nvmet_support) { 14483 tgtp = phba->targetport->private; 14484 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14485 "6401 RQE Error x%x, posted %d err_cnt " 14486 "%d: %x %x %x\n", 14487 status, hrq->RQ_buf_posted, 14488 hrq->RQ_no_posted_buf, 14489 atomic_read(&tgtp->rcv_fcp_cmd_in), 14490 atomic_read(&tgtp->rcv_fcp_cmd_out), 14491 atomic_read(&tgtp->xmt_fcp_release)); 14492 } 14493 fallthrough; 14494 14495 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14496 hrq->RQ_no_posted_buf++; 14497 /* Post more buffers if possible */ 14498 break; 14499 } 14500 out: 14501 return workposted; 14502 } 14503 14504 /** 14505 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14506 * @phba: adapter with cq 14507 * @cq: Pointer to the completion queue. 14508 * @cqe: Pointer to fast-path completion queue entry. 14509 * 14510 * This routine process a fast-path work queue completion entry from fast-path 14511 * event queue for FCP command response completion. 14512 * 14513 * Return: true if work posted to worker thread, otherwise false. 14514 **/ 14515 static bool 14516 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14517 struct lpfc_cqe *cqe) 14518 { 14519 struct lpfc_wcqe_release wcqe; 14520 bool workposted = false; 14521 14522 /* Copy the work queue CQE and convert endian order if needed */ 14523 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14524 14525 /* Check and process for different type of WCQE and dispatch */ 14526 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14527 case CQE_CODE_COMPL_WQE: 14528 case CQE_CODE_NVME_ERSP: 14529 cq->CQ_wq++; 14530 /* Process the WQ complete event */ 14531 phba->last_completion_time = jiffies; 14532 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14533 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14534 (struct lpfc_wcqe_complete *)&wcqe); 14535 break; 14536 case CQE_CODE_RELEASE_WQE: 14537 cq->CQ_release_wqe++; 14538 /* Process the WQ release event */ 14539 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14540 (struct lpfc_wcqe_release *)&wcqe); 14541 break; 14542 case CQE_CODE_XRI_ABORTED: 14543 cq->CQ_xri_aborted++; 14544 /* Process the WQ XRI abort event */ 14545 phba->last_completion_time = jiffies; 14546 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14547 (struct sli4_wcqe_xri_aborted *)&wcqe); 14548 break; 14549 case CQE_CODE_RECEIVE_V1: 14550 case CQE_CODE_RECEIVE: 14551 phba->last_completion_time = jiffies; 14552 if (cq->subtype == LPFC_NVMET) { 14553 workposted = lpfc_sli4_nvmet_handle_rcqe( 14554 phba, cq, (struct lpfc_rcqe *)&wcqe); 14555 } 14556 break; 14557 default: 14558 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14559 "0144 Not a valid CQE code: x%x\n", 14560 bf_get(lpfc_wcqe_c_code, &wcqe)); 14561 break; 14562 } 14563 return workposted; 14564 } 14565 14566 /** 14567 * lpfc_sli4_sched_cq_work - Schedules cq work 14568 * @phba: Pointer to HBA context object. 14569 * @cq: Pointer to CQ 14570 * @cqid: CQ ID 14571 * 14572 * This routine checks the poll mode of the CQ corresponding to 14573 * cq->chann, then either schedules a softirq or queue_work to complete 14574 * cq work. 14575 * 14576 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14577 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14578 * 14579 **/ 14580 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14581 struct lpfc_queue *cq, uint16_t cqid) 14582 { 14583 int ret = 0; 14584 14585 switch (cq->poll_mode) { 14586 case LPFC_IRQ_POLL: 14587 irq_poll_sched(&cq->iop); 14588 break; 14589 case LPFC_QUEUE_WORK: 14590 default: 14591 if (is_kdump_kernel()) 14592 ret = queue_work(phba->wq, &cq->irqwork); 14593 else 14594 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14595 if (!ret) 14596 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14597 "0383 Cannot schedule queue work " 14598 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14599 cqid, cq->queue_id, 14600 raw_smp_processor_id()); 14601 } 14602 } 14603 14604 /** 14605 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14606 * @phba: Pointer to HBA context object. 14607 * @eq: Pointer to the queue structure. 14608 * @eqe: Pointer to fast-path event queue entry. 14609 * 14610 * This routine process a event queue entry from the fast-path event queue. 14611 * It will check the MajorCode and MinorCode to determine this is for a 14612 * completion event on a completion queue, if not, an error shall be logged 14613 * and just return. Otherwise, it will get to the corresponding completion 14614 * queue and process all the entries on the completion queue, rearm the 14615 * completion queue, and then return. 14616 **/ 14617 static void 14618 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14619 struct lpfc_eqe *eqe) 14620 { 14621 struct lpfc_queue *cq = NULL; 14622 uint32_t qidx = eq->hdwq; 14623 uint16_t cqid, id; 14624 14625 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14626 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14627 "0366 Not a valid completion " 14628 "event: majorcode=x%x, minorcode=x%x\n", 14629 bf_get_le32(lpfc_eqe_major_code, eqe), 14630 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14631 return; 14632 } 14633 14634 /* Get the reference to the corresponding CQ */ 14635 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14636 14637 /* Use the fast lookup method first */ 14638 if (cqid <= phba->sli4_hba.cq_max) { 14639 cq = phba->sli4_hba.cq_lookup[cqid]; 14640 if (cq) 14641 goto work_cq; 14642 } 14643 14644 /* Next check for NVMET completion */ 14645 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14646 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14647 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14648 /* Process NVMET unsol rcv */ 14649 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14650 goto process_cq; 14651 } 14652 } 14653 14654 if (phba->sli4_hba.nvmels_cq && 14655 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14656 /* Process NVME unsol rcv */ 14657 cq = phba->sli4_hba.nvmels_cq; 14658 } 14659 14660 /* Otherwise this is a Slow path event */ 14661 if (cq == NULL) { 14662 lpfc_sli4_sp_handle_eqe(phba, eqe, 14663 phba->sli4_hba.hdwq[qidx].hba_eq); 14664 return; 14665 } 14666 14667 process_cq: 14668 if (unlikely(cqid != cq->queue_id)) { 14669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14670 "0368 Miss-matched fast-path completion " 14671 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14672 cqid, cq->queue_id); 14673 return; 14674 } 14675 14676 work_cq: 14677 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14678 if (phba->ktime_on) 14679 cq->isr_timestamp = ktime_get_ns(); 14680 else 14681 cq->isr_timestamp = 0; 14682 #endif 14683 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14684 } 14685 14686 /** 14687 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14688 * @cq: Pointer to CQ to be processed 14689 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14690 * 14691 * This routine calls the cq processing routine with the handler for 14692 * fast path CQEs. 14693 * 14694 * The CQ routine returns two values: the first is the calling status, 14695 * which indicates whether work was queued to the background discovery 14696 * thread. If true, the routine should wakeup the discovery thread; 14697 * the second is the delay parameter. If non-zero, rather than rearming 14698 * the CQ and yet another interrupt, the CQ handler should be queued so 14699 * that it is processed in a subsequent polling action. The value of 14700 * the delay indicates when to reschedule it. 14701 **/ 14702 static void 14703 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14704 enum lpfc_poll_mode poll_mode) 14705 { 14706 struct lpfc_hba *phba = cq->phba; 14707 unsigned long delay; 14708 bool workposted = false; 14709 int ret = 0; 14710 14711 /* process and rearm the CQ */ 14712 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14713 &delay, poll_mode); 14714 14715 if (delay) { 14716 if (is_kdump_kernel()) 14717 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14718 delay); 14719 else 14720 ret = queue_delayed_work_on(cq->chann, phba->wq, 14721 &cq->sched_irqwork, delay); 14722 if (!ret) 14723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14724 "0367 Cannot schedule queue work " 14725 "for cqid=%d on CPU %d\n", 14726 cq->queue_id, cq->chann); 14727 } 14728 14729 /* wake up worker thread if there are works to be done */ 14730 if (workposted) 14731 lpfc_worker_wake_up(phba); 14732 } 14733 14734 /** 14735 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14736 * interrupt 14737 * @work: pointer to work element 14738 * 14739 * translates from the work handler and calls the fast-path handler. 14740 **/ 14741 static void 14742 lpfc_sli4_hba_process_cq(struct work_struct *work) 14743 { 14744 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14745 14746 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14747 } 14748 14749 /** 14750 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 14751 * @work: pointer to work element 14752 * 14753 * translates from the work handler and calls the fast-path handler. 14754 **/ 14755 static void 14756 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14757 { 14758 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14759 struct lpfc_queue, sched_irqwork); 14760 14761 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14762 } 14763 14764 /** 14765 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14766 * @irq: Interrupt number. 14767 * @dev_id: The device context pointer. 14768 * 14769 * This function is directly called from the PCI layer as an interrupt 14770 * service routine when device with SLI-4 interface spec is enabled with 14771 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14772 * ring event in the HBA. However, when the device is enabled with either 14773 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14774 * device-level interrupt handler. When the PCI slot is in error recovery 14775 * or the HBA is undergoing initialization, the interrupt handler will not 14776 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14777 * the intrrupt context. This function is called without any lock held. 14778 * It gets the hbalock to access and update SLI data structures. Note that, 14779 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14780 * equal to that of FCP CQ index. 14781 * 14782 * The link attention and ELS ring attention events are handled 14783 * by the worker thread. The interrupt handler signals the worker thread 14784 * and returns for these events. This function is called without any lock 14785 * held. It gets the hbalock to access and update SLI data structures. 14786 * 14787 * This function returns IRQ_HANDLED when interrupt is handled else it 14788 * returns IRQ_NONE. 14789 **/ 14790 irqreturn_t 14791 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14792 { 14793 struct lpfc_hba *phba; 14794 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14795 struct lpfc_queue *fpeq; 14796 unsigned long iflag; 14797 int ecount = 0; 14798 int hba_eqidx; 14799 struct lpfc_eq_intr_info *eqi; 14800 14801 /* Get the driver's phba structure from the dev_id */ 14802 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14803 phba = hba_eq_hdl->phba; 14804 hba_eqidx = hba_eq_hdl->idx; 14805 14806 if (unlikely(!phba)) 14807 return IRQ_NONE; 14808 if (unlikely(!phba->sli4_hba.hdwq)) 14809 return IRQ_NONE; 14810 14811 /* Get to the EQ struct associated with this vector */ 14812 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14813 if (unlikely(!fpeq)) 14814 return IRQ_NONE; 14815 14816 /* Check device state for handling interrupt */ 14817 if (unlikely(lpfc_intr_state_check(phba))) { 14818 /* Check again for link_state with lock held */ 14819 spin_lock_irqsave(&phba->hbalock, iflag); 14820 if (phba->link_state < LPFC_LINK_DOWN) 14821 /* Flush, clear interrupt, and rearm the EQ */ 14822 lpfc_sli4_eqcq_flush(phba, fpeq); 14823 spin_unlock_irqrestore(&phba->hbalock, iflag); 14824 return IRQ_NONE; 14825 } 14826 14827 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14828 eqi->icnt++; 14829 14830 fpeq->last_cpu = raw_smp_processor_id(); 14831 14832 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14833 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14834 phba->cfg_auto_imax && 14835 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14836 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14837 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14838 14839 /* process and rearm the EQ */ 14840 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14841 14842 if (unlikely(ecount == 0)) { 14843 fpeq->EQ_no_entry++; 14844 if (phba->intr_type == MSIX) 14845 /* MSI-X treated interrupt served as no EQ share INT */ 14846 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14847 "0358 MSI-X interrupt with no EQE\n"); 14848 else 14849 /* Non MSI-X treated on interrupt as EQ share INT */ 14850 return IRQ_NONE; 14851 } 14852 14853 return IRQ_HANDLED; 14854 } /* lpfc_sli4_hba_intr_handler */ 14855 14856 /** 14857 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14858 * @irq: Interrupt number. 14859 * @dev_id: The device context pointer. 14860 * 14861 * This function is the device-level interrupt handler to device with SLI-4 14862 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14863 * interrupt mode is enabled and there is an event in the HBA which requires 14864 * driver attention. This function invokes the slow-path interrupt attention 14865 * handling function and fast-path interrupt attention handling function in 14866 * turn to process the relevant HBA attention events. This function is called 14867 * without any lock held. It gets the hbalock to access and update SLI data 14868 * structures. 14869 * 14870 * This function returns IRQ_HANDLED when interrupt is handled, else it 14871 * returns IRQ_NONE. 14872 **/ 14873 irqreturn_t 14874 lpfc_sli4_intr_handler(int irq, void *dev_id) 14875 { 14876 struct lpfc_hba *phba; 14877 irqreturn_t hba_irq_rc; 14878 bool hba_handled = false; 14879 int qidx; 14880 14881 /* Get the driver's phba structure from the dev_id */ 14882 phba = (struct lpfc_hba *)dev_id; 14883 14884 if (unlikely(!phba)) 14885 return IRQ_NONE; 14886 14887 /* 14888 * Invoke fast-path host attention interrupt handling as appropriate. 14889 */ 14890 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14891 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14892 &phba->sli4_hba.hba_eq_hdl[qidx]); 14893 if (hba_irq_rc == IRQ_HANDLED) 14894 hba_handled |= true; 14895 } 14896 14897 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14898 } /* lpfc_sli4_intr_handler */ 14899 14900 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14901 { 14902 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14903 struct lpfc_queue *eq; 14904 int i = 0; 14905 14906 rcu_read_lock(); 14907 14908 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14909 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14910 if (!list_empty(&phba->poll_list)) 14911 mod_timer(&phba->cpuhp_poll_timer, 14912 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14913 14914 rcu_read_unlock(); 14915 } 14916 14917 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14918 { 14919 struct lpfc_hba *phba = eq->phba; 14920 int i = 0; 14921 14922 /* 14923 * Unlocking an irq is one of the entry point to check 14924 * for re-schedule, but we are good for io submission 14925 * path as midlayer does a get_cpu to glue us in. Flush 14926 * out the invalidate queue so we can see the updated 14927 * value for flag. 14928 */ 14929 smp_rmb(); 14930 14931 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14932 /* We will not likely get the completion for the caller 14933 * during this iteration but i guess that's fine. 14934 * Future io's coming on this eq should be able to 14935 * pick it up. As for the case of single io's, they 14936 * will be handled through a sched from polling timer 14937 * function which is currently triggered every 1msec. 14938 */ 14939 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14940 14941 return i; 14942 } 14943 14944 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14945 { 14946 struct lpfc_hba *phba = eq->phba; 14947 14948 /* kickstart slowpath processing if needed */ 14949 if (list_empty(&phba->poll_list)) 14950 mod_timer(&phba->cpuhp_poll_timer, 14951 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14952 14953 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14954 synchronize_rcu(); 14955 } 14956 14957 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14958 { 14959 struct lpfc_hba *phba = eq->phba; 14960 14961 /* Disable slowpath processing for this eq. Kick start the eq 14962 * by RE-ARMING the eq's ASAP 14963 */ 14964 list_del_rcu(&eq->_poll_list); 14965 synchronize_rcu(); 14966 14967 if (list_empty(&phba->poll_list)) 14968 del_timer_sync(&phba->cpuhp_poll_timer); 14969 } 14970 14971 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14972 { 14973 struct lpfc_queue *eq, *next; 14974 14975 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14976 list_del(&eq->_poll_list); 14977 14978 INIT_LIST_HEAD(&phba->poll_list); 14979 synchronize_rcu(); 14980 } 14981 14982 static inline void 14983 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14984 { 14985 if (mode == eq->mode) 14986 return; 14987 /* 14988 * currently this function is only called during a hotplug 14989 * event and the cpu on which this function is executing 14990 * is going offline. By now the hotplug has instructed 14991 * the scheduler to remove this cpu from cpu active mask. 14992 * So we don't need to work about being put aside by the 14993 * scheduler for a high priority process. Yes, the inte- 14994 * rrupts could come but they are known to retire ASAP. 14995 */ 14996 14997 /* Disable polling in the fastpath */ 14998 WRITE_ONCE(eq->mode, mode); 14999 /* flush out the store buffer */ 15000 smp_wmb(); 15001 15002 /* 15003 * Add this eq to the polling list and start polling. For 15004 * a grace period both interrupt handler and poller will 15005 * try to process the eq _but_ that's fine. We have a 15006 * synchronization mechanism in place (queue_claimed) to 15007 * deal with it. This is just a draining phase for int- 15008 * errupt handler (not eq's) as we have guranteed through 15009 * barrier that all the CPUs have seen the new CQ_POLLED 15010 * state. which will effectively disable the REARMING of 15011 * the EQ. The whole idea is eq's die off eventually as 15012 * we are not rearming EQ's anymore. 15013 */ 15014 mode ? lpfc_sli4_add_to_poll_list(eq) : 15015 lpfc_sli4_remove_from_poll_list(eq); 15016 } 15017 15018 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15019 { 15020 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15021 } 15022 15023 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15024 { 15025 struct lpfc_hba *phba = eq->phba; 15026 15027 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15028 15029 /* Kick start for the pending io's in h/w. 15030 * Once we switch back to interrupt processing on a eq 15031 * the io path completion will only arm eq's when it 15032 * receives a completion. But since eq's are in disa- 15033 * rmed state it doesn't receive a completion. This 15034 * creates a deadlock scenaro. 15035 */ 15036 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15037 } 15038 15039 /** 15040 * lpfc_sli4_queue_free - free a queue structure and associated memory 15041 * @queue: The queue structure to free. 15042 * 15043 * This function frees a queue structure and the DMAable memory used for 15044 * the host resident queue. This function must be called after destroying the 15045 * queue on the HBA. 15046 **/ 15047 void 15048 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15049 { 15050 struct lpfc_dmabuf *dmabuf; 15051 15052 if (!queue) 15053 return; 15054 15055 if (!list_empty(&queue->wq_list)) 15056 list_del(&queue->wq_list); 15057 15058 while (!list_empty(&queue->page_list)) { 15059 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15060 list); 15061 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15062 dmabuf->virt, dmabuf->phys); 15063 kfree(dmabuf); 15064 } 15065 if (queue->rqbp) { 15066 lpfc_free_rq_buffer(queue->phba, queue); 15067 kfree(queue->rqbp); 15068 } 15069 15070 if (!list_empty(&queue->cpu_list)) 15071 list_del(&queue->cpu_list); 15072 15073 kfree(queue); 15074 return; 15075 } 15076 15077 /** 15078 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15079 * @phba: The HBA that this queue is being created on. 15080 * @page_size: The size of a queue page 15081 * @entry_size: The size of each queue entry for this queue. 15082 * @entry_count: The number of entries that this queue will handle. 15083 * @cpu: The cpu that will primarily utilize this queue. 15084 * 15085 * This function allocates a queue structure and the DMAable memory used for 15086 * the host resident queue. This function must be called before creating the 15087 * queue on the HBA. 15088 **/ 15089 struct lpfc_queue * 15090 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15091 uint32_t entry_size, uint32_t entry_count, int cpu) 15092 { 15093 struct lpfc_queue *queue; 15094 struct lpfc_dmabuf *dmabuf; 15095 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15096 uint16_t x, pgcnt; 15097 15098 if (!phba->sli4_hba.pc_sli4_params.supported) 15099 hw_page_size = page_size; 15100 15101 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15102 15103 /* If needed, Adjust page count to match the max the adapter supports */ 15104 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15105 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15106 15107 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15108 GFP_KERNEL, cpu_to_node(cpu)); 15109 if (!queue) 15110 return NULL; 15111 15112 INIT_LIST_HEAD(&queue->list); 15113 INIT_LIST_HEAD(&queue->_poll_list); 15114 INIT_LIST_HEAD(&queue->wq_list); 15115 INIT_LIST_HEAD(&queue->wqfull_list); 15116 INIT_LIST_HEAD(&queue->page_list); 15117 INIT_LIST_HEAD(&queue->child_list); 15118 INIT_LIST_HEAD(&queue->cpu_list); 15119 15120 /* Set queue parameters now. If the system cannot provide memory 15121 * resources, the free routine needs to know what was allocated. 15122 */ 15123 queue->page_count = pgcnt; 15124 queue->q_pgs = (void **)&queue[1]; 15125 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15126 queue->entry_size = entry_size; 15127 queue->entry_count = entry_count; 15128 queue->page_size = hw_page_size; 15129 queue->phba = phba; 15130 15131 for (x = 0; x < queue->page_count; x++) { 15132 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15133 dev_to_node(&phba->pcidev->dev)); 15134 if (!dmabuf) 15135 goto out_fail; 15136 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15137 hw_page_size, &dmabuf->phys, 15138 GFP_KERNEL); 15139 if (!dmabuf->virt) { 15140 kfree(dmabuf); 15141 goto out_fail; 15142 } 15143 dmabuf->buffer_tag = x; 15144 list_add_tail(&dmabuf->list, &queue->page_list); 15145 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15146 queue->q_pgs[x] = dmabuf->virt; 15147 } 15148 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15149 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15150 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15151 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15152 15153 /* notify_interval will be set during q creation */ 15154 15155 return queue; 15156 out_fail: 15157 lpfc_sli4_queue_free(queue); 15158 return NULL; 15159 } 15160 15161 /** 15162 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15163 * @phba: HBA structure that indicates port to create a queue on. 15164 * @pci_barset: PCI BAR set flag. 15165 * 15166 * This function shall perform iomap of the specified PCI BAR address to host 15167 * memory address if not already done so and return it. The returned host 15168 * memory address can be NULL. 15169 */ 15170 static void __iomem * 15171 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15172 { 15173 if (!phba->pcidev) 15174 return NULL; 15175 15176 switch (pci_barset) { 15177 case WQ_PCI_BAR_0_AND_1: 15178 return phba->pci_bar0_memmap_p; 15179 case WQ_PCI_BAR_2_AND_3: 15180 return phba->pci_bar2_memmap_p; 15181 case WQ_PCI_BAR_4_AND_5: 15182 return phba->pci_bar4_memmap_p; 15183 default: 15184 break; 15185 } 15186 return NULL; 15187 } 15188 15189 /** 15190 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15191 * @phba: HBA structure that EQs are on. 15192 * @startq: The starting EQ index to modify 15193 * @numq: The number of EQs (consecutive indexes) to modify 15194 * @usdelay: amount of delay 15195 * 15196 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15197 * is set either by writing to a register (if supported by the SLI Port) 15198 * or by mailbox command. The mailbox command allows several EQs to be 15199 * updated at once. 15200 * 15201 * The @phba struct is used to send a mailbox command to HBA. The @startq 15202 * is used to get the starting EQ index to change. The @numq value is 15203 * used to specify how many consecutive EQ indexes, starting at EQ index, 15204 * are to be changed. This function is asynchronous and will wait for any 15205 * mailbox commands to finish before returning. 15206 * 15207 * On success this function will return a zero. If unable to allocate 15208 * enough memory this function will return -ENOMEM. If a mailbox command 15209 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15210 * have had their delay multipler changed. 15211 **/ 15212 void 15213 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15214 uint32_t numq, uint32_t usdelay) 15215 { 15216 struct lpfc_mbx_modify_eq_delay *eq_delay; 15217 LPFC_MBOXQ_t *mbox; 15218 struct lpfc_queue *eq; 15219 int cnt = 0, rc, length; 15220 uint32_t shdr_status, shdr_add_status; 15221 uint32_t dmult; 15222 int qidx; 15223 union lpfc_sli4_cfg_shdr *shdr; 15224 15225 if (startq >= phba->cfg_irq_chann) 15226 return; 15227 15228 if (usdelay > 0xFFFF) { 15229 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15230 "6429 usdelay %d too large. Scaled down to " 15231 "0xFFFF.\n", usdelay); 15232 usdelay = 0xFFFF; 15233 } 15234 15235 /* set values by EQ_DELAY register if supported */ 15236 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15237 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15238 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15239 if (!eq) 15240 continue; 15241 15242 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15243 15244 if (++cnt >= numq) 15245 break; 15246 } 15247 return; 15248 } 15249 15250 /* Otherwise, set values by mailbox cmd */ 15251 15252 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15253 if (!mbox) { 15254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15255 "6428 Failed allocating mailbox cmd buffer." 15256 " EQ delay was not set.\n"); 15257 return; 15258 } 15259 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15260 sizeof(struct lpfc_sli4_cfg_mhdr)); 15261 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15262 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15263 length, LPFC_SLI4_MBX_EMBED); 15264 eq_delay = &mbox->u.mqe.un.eq_delay; 15265 15266 /* Calculate delay multiper from maximum interrupt per second */ 15267 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15268 if (dmult) 15269 dmult--; 15270 if (dmult > LPFC_DMULT_MAX) 15271 dmult = LPFC_DMULT_MAX; 15272 15273 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15274 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15275 if (!eq) 15276 continue; 15277 eq->q_mode = usdelay; 15278 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15279 eq_delay->u.request.eq[cnt].phase = 0; 15280 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15281 15282 if (++cnt >= numq) 15283 break; 15284 } 15285 eq_delay->u.request.num_eq = cnt; 15286 15287 mbox->vport = phba->pport; 15288 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15289 mbox->ctx_buf = NULL; 15290 mbox->ctx_ndlp = NULL; 15291 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15292 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15293 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15294 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15295 if (shdr_status || shdr_add_status || rc) { 15296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15297 "2512 MODIFY_EQ_DELAY mailbox failed with " 15298 "status x%x add_status x%x, mbx status x%x\n", 15299 shdr_status, shdr_add_status, rc); 15300 } 15301 mempool_free(mbox, phba->mbox_mem_pool); 15302 return; 15303 } 15304 15305 /** 15306 * lpfc_eq_create - Create an Event Queue on the HBA 15307 * @phba: HBA structure that indicates port to create a queue on. 15308 * @eq: The queue structure to use to create the event queue. 15309 * @imax: The maximum interrupt per second limit. 15310 * 15311 * This function creates an event queue, as detailed in @eq, on a port, 15312 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15313 * 15314 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15315 * is used to get the entry count and entry size that are necessary to 15316 * determine the number of pages to allocate and use for this queue. This 15317 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15318 * event queue. This function is asynchronous and will wait for the mailbox 15319 * command to finish before continuing. 15320 * 15321 * On success this function will return a zero. If unable to allocate enough 15322 * memory this function will return -ENOMEM. If the queue create mailbox command 15323 * fails this function will return -ENXIO. 15324 **/ 15325 int 15326 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15327 { 15328 struct lpfc_mbx_eq_create *eq_create; 15329 LPFC_MBOXQ_t *mbox; 15330 int rc, length, status = 0; 15331 struct lpfc_dmabuf *dmabuf; 15332 uint32_t shdr_status, shdr_add_status; 15333 union lpfc_sli4_cfg_shdr *shdr; 15334 uint16_t dmult; 15335 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15336 15337 /* sanity check on queue memory */ 15338 if (!eq) 15339 return -ENODEV; 15340 if (!phba->sli4_hba.pc_sli4_params.supported) 15341 hw_page_size = SLI4_PAGE_SIZE; 15342 15343 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15344 if (!mbox) 15345 return -ENOMEM; 15346 length = (sizeof(struct lpfc_mbx_eq_create) - 15347 sizeof(struct lpfc_sli4_cfg_mhdr)); 15348 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15349 LPFC_MBOX_OPCODE_EQ_CREATE, 15350 length, LPFC_SLI4_MBX_EMBED); 15351 eq_create = &mbox->u.mqe.un.eq_create; 15352 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15353 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15354 eq->page_count); 15355 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15356 LPFC_EQE_SIZE); 15357 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15358 15359 /* Use version 2 of CREATE_EQ if eqav is set */ 15360 if (phba->sli4_hba.pc_sli4_params.eqav) { 15361 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15362 LPFC_Q_CREATE_VERSION_2); 15363 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15364 phba->sli4_hba.pc_sli4_params.eqav); 15365 } 15366 15367 /* don't setup delay multiplier using EQ_CREATE */ 15368 dmult = 0; 15369 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15370 dmult); 15371 switch (eq->entry_count) { 15372 default: 15373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15374 "0360 Unsupported EQ count. (%d)\n", 15375 eq->entry_count); 15376 if (eq->entry_count < 256) { 15377 status = -EINVAL; 15378 goto out; 15379 } 15380 fallthrough; /* otherwise default to smallest count */ 15381 case 256: 15382 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15383 LPFC_EQ_CNT_256); 15384 break; 15385 case 512: 15386 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15387 LPFC_EQ_CNT_512); 15388 break; 15389 case 1024: 15390 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15391 LPFC_EQ_CNT_1024); 15392 break; 15393 case 2048: 15394 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15395 LPFC_EQ_CNT_2048); 15396 break; 15397 case 4096: 15398 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15399 LPFC_EQ_CNT_4096); 15400 break; 15401 } 15402 list_for_each_entry(dmabuf, &eq->page_list, list) { 15403 memset(dmabuf->virt, 0, hw_page_size); 15404 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15405 putPaddrLow(dmabuf->phys); 15406 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15407 putPaddrHigh(dmabuf->phys); 15408 } 15409 mbox->vport = phba->pport; 15410 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15411 mbox->ctx_buf = NULL; 15412 mbox->ctx_ndlp = NULL; 15413 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15414 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15415 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15416 if (shdr_status || shdr_add_status || rc) { 15417 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15418 "2500 EQ_CREATE mailbox failed with " 15419 "status x%x add_status x%x, mbx status x%x\n", 15420 shdr_status, shdr_add_status, rc); 15421 status = -ENXIO; 15422 } 15423 eq->type = LPFC_EQ; 15424 eq->subtype = LPFC_NONE; 15425 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15426 if (eq->queue_id == 0xFFFF) 15427 status = -ENXIO; 15428 eq->host_index = 0; 15429 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15430 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15431 out: 15432 mempool_free(mbox, phba->mbox_mem_pool); 15433 return status; 15434 } 15435 15436 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15437 { 15438 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15439 15440 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15441 15442 return 1; 15443 } 15444 15445 /** 15446 * lpfc_cq_create - Create a Completion Queue on the HBA 15447 * @phba: HBA structure that indicates port to create a queue on. 15448 * @cq: The queue structure to use to create the completion queue. 15449 * @eq: The event queue to bind this completion queue to. 15450 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15451 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15452 * 15453 * This function creates a completion queue, as detailed in @wq, on a port, 15454 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15455 * 15456 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15457 * is used to get the entry count and entry size that are necessary to 15458 * determine the number of pages to allocate and use for this queue. The @eq 15459 * is used to indicate which event queue to bind this completion queue to. This 15460 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15461 * completion queue. This function is asynchronous and will wait for the mailbox 15462 * command to finish before continuing. 15463 * 15464 * On success this function will return a zero. If unable to allocate enough 15465 * memory this function will return -ENOMEM. If the queue create mailbox command 15466 * fails this function will return -ENXIO. 15467 **/ 15468 int 15469 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15470 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15471 { 15472 struct lpfc_mbx_cq_create *cq_create; 15473 struct lpfc_dmabuf *dmabuf; 15474 LPFC_MBOXQ_t *mbox; 15475 int rc, length, status = 0; 15476 uint32_t shdr_status, shdr_add_status; 15477 union lpfc_sli4_cfg_shdr *shdr; 15478 15479 /* sanity check on queue memory */ 15480 if (!cq || !eq) 15481 return -ENODEV; 15482 15483 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15484 if (!mbox) 15485 return -ENOMEM; 15486 length = (sizeof(struct lpfc_mbx_cq_create) - 15487 sizeof(struct lpfc_sli4_cfg_mhdr)); 15488 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15489 LPFC_MBOX_OPCODE_CQ_CREATE, 15490 length, LPFC_SLI4_MBX_EMBED); 15491 cq_create = &mbox->u.mqe.un.cq_create; 15492 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15493 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15494 cq->page_count); 15495 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15496 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15497 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15498 phba->sli4_hba.pc_sli4_params.cqv); 15499 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15500 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15501 (cq->page_size / SLI4_PAGE_SIZE)); 15502 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15503 eq->queue_id); 15504 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15505 phba->sli4_hba.pc_sli4_params.cqav); 15506 } else { 15507 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15508 eq->queue_id); 15509 } 15510 switch (cq->entry_count) { 15511 case 2048: 15512 case 4096: 15513 if (phba->sli4_hba.pc_sli4_params.cqv == 15514 LPFC_Q_CREATE_VERSION_2) { 15515 cq_create->u.request.context.lpfc_cq_context_count = 15516 cq->entry_count; 15517 bf_set(lpfc_cq_context_count, 15518 &cq_create->u.request.context, 15519 LPFC_CQ_CNT_WORD7); 15520 break; 15521 } 15522 fallthrough; 15523 default: 15524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15525 "0361 Unsupported CQ count: " 15526 "entry cnt %d sz %d pg cnt %d\n", 15527 cq->entry_count, cq->entry_size, 15528 cq->page_count); 15529 if (cq->entry_count < 256) { 15530 status = -EINVAL; 15531 goto out; 15532 } 15533 fallthrough; /* otherwise default to smallest count */ 15534 case 256: 15535 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15536 LPFC_CQ_CNT_256); 15537 break; 15538 case 512: 15539 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15540 LPFC_CQ_CNT_512); 15541 break; 15542 case 1024: 15543 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15544 LPFC_CQ_CNT_1024); 15545 break; 15546 } 15547 list_for_each_entry(dmabuf, &cq->page_list, list) { 15548 memset(dmabuf->virt, 0, cq->page_size); 15549 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15550 putPaddrLow(dmabuf->phys); 15551 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15552 putPaddrHigh(dmabuf->phys); 15553 } 15554 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15555 15556 /* The IOCTL status is embedded in the mailbox subheader. */ 15557 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15558 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15559 if (shdr_status || shdr_add_status || rc) { 15560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15561 "2501 CQ_CREATE mailbox failed with " 15562 "status x%x add_status x%x, mbx status x%x\n", 15563 shdr_status, shdr_add_status, rc); 15564 status = -ENXIO; 15565 goto out; 15566 } 15567 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15568 if (cq->queue_id == 0xFFFF) { 15569 status = -ENXIO; 15570 goto out; 15571 } 15572 /* link the cq onto the parent eq child list */ 15573 list_add_tail(&cq->list, &eq->child_list); 15574 /* Set up completion queue's type and subtype */ 15575 cq->type = type; 15576 cq->subtype = subtype; 15577 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15578 cq->assoc_qid = eq->queue_id; 15579 cq->assoc_qp = eq; 15580 cq->host_index = 0; 15581 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15582 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15583 15584 if (cq->queue_id > phba->sli4_hba.cq_max) 15585 phba->sli4_hba.cq_max = cq->queue_id; 15586 15587 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15588 out: 15589 mempool_free(mbox, phba->mbox_mem_pool); 15590 return status; 15591 } 15592 15593 /** 15594 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15595 * @phba: HBA structure that indicates port to create a queue on. 15596 * @cqp: The queue structure array to use to create the completion queues. 15597 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15598 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15599 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15600 * 15601 * This function creates a set of completion queue, s to support MRQ 15602 * as detailed in @cqp, on a port, 15603 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15604 * 15605 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15606 * is used to get the entry count and entry size that are necessary to 15607 * determine the number of pages to allocate and use for this queue. The @eq 15608 * is used to indicate which event queue to bind this completion queue to. This 15609 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15610 * completion queue. This function is asynchronous and will wait for the mailbox 15611 * command to finish before continuing. 15612 * 15613 * On success this function will return a zero. If unable to allocate enough 15614 * memory this function will return -ENOMEM. If the queue create mailbox command 15615 * fails this function will return -ENXIO. 15616 **/ 15617 int 15618 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15619 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15620 uint32_t subtype) 15621 { 15622 struct lpfc_queue *cq; 15623 struct lpfc_queue *eq; 15624 struct lpfc_mbx_cq_create_set *cq_set; 15625 struct lpfc_dmabuf *dmabuf; 15626 LPFC_MBOXQ_t *mbox; 15627 int rc, length, alloclen, status = 0; 15628 int cnt, idx, numcq, page_idx = 0; 15629 uint32_t shdr_status, shdr_add_status; 15630 union lpfc_sli4_cfg_shdr *shdr; 15631 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15632 15633 /* sanity check on queue memory */ 15634 numcq = phba->cfg_nvmet_mrq; 15635 if (!cqp || !hdwq || !numcq) 15636 return -ENODEV; 15637 15638 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15639 if (!mbox) 15640 return -ENOMEM; 15641 15642 length = sizeof(struct lpfc_mbx_cq_create_set); 15643 length += ((numcq * cqp[0]->page_count) * 15644 sizeof(struct dma_address)); 15645 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15646 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15647 LPFC_SLI4_MBX_NEMBED); 15648 if (alloclen < length) { 15649 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15650 "3098 Allocated DMA memory size (%d) is " 15651 "less than the requested DMA memory size " 15652 "(%d)\n", alloclen, length); 15653 status = -ENOMEM; 15654 goto out; 15655 } 15656 cq_set = mbox->sge_array->addr[0]; 15657 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15658 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15659 15660 for (idx = 0; idx < numcq; idx++) { 15661 cq = cqp[idx]; 15662 eq = hdwq[idx].hba_eq; 15663 if (!cq || !eq) { 15664 status = -ENOMEM; 15665 goto out; 15666 } 15667 if (!phba->sli4_hba.pc_sli4_params.supported) 15668 hw_page_size = cq->page_size; 15669 15670 switch (idx) { 15671 case 0: 15672 bf_set(lpfc_mbx_cq_create_set_page_size, 15673 &cq_set->u.request, 15674 (hw_page_size / SLI4_PAGE_SIZE)); 15675 bf_set(lpfc_mbx_cq_create_set_num_pages, 15676 &cq_set->u.request, cq->page_count); 15677 bf_set(lpfc_mbx_cq_create_set_evt, 15678 &cq_set->u.request, 1); 15679 bf_set(lpfc_mbx_cq_create_set_valid, 15680 &cq_set->u.request, 1); 15681 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15682 &cq_set->u.request, 0); 15683 bf_set(lpfc_mbx_cq_create_set_num_cq, 15684 &cq_set->u.request, numcq); 15685 bf_set(lpfc_mbx_cq_create_set_autovalid, 15686 &cq_set->u.request, 15687 phba->sli4_hba.pc_sli4_params.cqav); 15688 switch (cq->entry_count) { 15689 case 2048: 15690 case 4096: 15691 if (phba->sli4_hba.pc_sli4_params.cqv == 15692 LPFC_Q_CREATE_VERSION_2) { 15693 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15694 &cq_set->u.request, 15695 cq->entry_count); 15696 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15697 &cq_set->u.request, 15698 LPFC_CQ_CNT_WORD7); 15699 break; 15700 } 15701 fallthrough; 15702 default: 15703 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15704 "3118 Bad CQ count. (%d)\n", 15705 cq->entry_count); 15706 if (cq->entry_count < 256) { 15707 status = -EINVAL; 15708 goto out; 15709 } 15710 fallthrough; /* otherwise default to smallest */ 15711 case 256: 15712 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15713 &cq_set->u.request, LPFC_CQ_CNT_256); 15714 break; 15715 case 512: 15716 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15717 &cq_set->u.request, LPFC_CQ_CNT_512); 15718 break; 15719 case 1024: 15720 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15721 &cq_set->u.request, LPFC_CQ_CNT_1024); 15722 break; 15723 } 15724 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15725 &cq_set->u.request, eq->queue_id); 15726 break; 15727 case 1: 15728 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15729 &cq_set->u.request, eq->queue_id); 15730 break; 15731 case 2: 15732 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15733 &cq_set->u.request, eq->queue_id); 15734 break; 15735 case 3: 15736 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15737 &cq_set->u.request, eq->queue_id); 15738 break; 15739 case 4: 15740 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15741 &cq_set->u.request, eq->queue_id); 15742 break; 15743 case 5: 15744 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15745 &cq_set->u.request, eq->queue_id); 15746 break; 15747 case 6: 15748 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15749 &cq_set->u.request, eq->queue_id); 15750 break; 15751 case 7: 15752 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15753 &cq_set->u.request, eq->queue_id); 15754 break; 15755 case 8: 15756 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15757 &cq_set->u.request, eq->queue_id); 15758 break; 15759 case 9: 15760 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15761 &cq_set->u.request, eq->queue_id); 15762 break; 15763 case 10: 15764 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15765 &cq_set->u.request, eq->queue_id); 15766 break; 15767 case 11: 15768 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15769 &cq_set->u.request, eq->queue_id); 15770 break; 15771 case 12: 15772 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15773 &cq_set->u.request, eq->queue_id); 15774 break; 15775 case 13: 15776 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15777 &cq_set->u.request, eq->queue_id); 15778 break; 15779 case 14: 15780 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15781 &cq_set->u.request, eq->queue_id); 15782 break; 15783 case 15: 15784 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15785 &cq_set->u.request, eq->queue_id); 15786 break; 15787 } 15788 15789 /* link the cq onto the parent eq child list */ 15790 list_add_tail(&cq->list, &eq->child_list); 15791 /* Set up completion queue's type and subtype */ 15792 cq->type = type; 15793 cq->subtype = subtype; 15794 cq->assoc_qid = eq->queue_id; 15795 cq->assoc_qp = eq; 15796 cq->host_index = 0; 15797 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15798 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15799 cq->entry_count); 15800 cq->chann = idx; 15801 15802 rc = 0; 15803 list_for_each_entry(dmabuf, &cq->page_list, list) { 15804 memset(dmabuf->virt, 0, hw_page_size); 15805 cnt = page_idx + dmabuf->buffer_tag; 15806 cq_set->u.request.page[cnt].addr_lo = 15807 putPaddrLow(dmabuf->phys); 15808 cq_set->u.request.page[cnt].addr_hi = 15809 putPaddrHigh(dmabuf->phys); 15810 rc++; 15811 } 15812 page_idx += rc; 15813 } 15814 15815 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15816 15817 /* The IOCTL status is embedded in the mailbox subheader. */ 15818 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15819 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15820 if (shdr_status || shdr_add_status || rc) { 15821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15822 "3119 CQ_CREATE_SET mailbox failed with " 15823 "status x%x add_status x%x, mbx status x%x\n", 15824 shdr_status, shdr_add_status, rc); 15825 status = -ENXIO; 15826 goto out; 15827 } 15828 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15829 if (rc == 0xFFFF) { 15830 status = -ENXIO; 15831 goto out; 15832 } 15833 15834 for (idx = 0; idx < numcq; idx++) { 15835 cq = cqp[idx]; 15836 cq->queue_id = rc + idx; 15837 if (cq->queue_id > phba->sli4_hba.cq_max) 15838 phba->sli4_hba.cq_max = cq->queue_id; 15839 } 15840 15841 out: 15842 lpfc_sli4_mbox_cmd_free(phba, mbox); 15843 return status; 15844 } 15845 15846 /** 15847 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15848 * @phba: HBA structure that indicates port to create a queue on. 15849 * @mq: The queue structure to use to create the mailbox queue. 15850 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15851 * @cq: The completion queue to associate with this cq. 15852 * 15853 * This function provides failback (fb) functionality when the 15854 * mq_create_ext fails on older FW generations. It's purpose is identical 15855 * to mq_create_ext otherwise. 15856 * 15857 * This routine cannot fail as all attributes were previously accessed and 15858 * initialized in mq_create_ext. 15859 **/ 15860 static void 15861 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15862 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15863 { 15864 struct lpfc_mbx_mq_create *mq_create; 15865 struct lpfc_dmabuf *dmabuf; 15866 int length; 15867 15868 length = (sizeof(struct lpfc_mbx_mq_create) - 15869 sizeof(struct lpfc_sli4_cfg_mhdr)); 15870 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15871 LPFC_MBOX_OPCODE_MQ_CREATE, 15872 length, LPFC_SLI4_MBX_EMBED); 15873 mq_create = &mbox->u.mqe.un.mq_create; 15874 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15875 mq->page_count); 15876 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15877 cq->queue_id); 15878 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15879 switch (mq->entry_count) { 15880 case 16: 15881 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15882 LPFC_MQ_RING_SIZE_16); 15883 break; 15884 case 32: 15885 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15886 LPFC_MQ_RING_SIZE_32); 15887 break; 15888 case 64: 15889 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15890 LPFC_MQ_RING_SIZE_64); 15891 break; 15892 case 128: 15893 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15894 LPFC_MQ_RING_SIZE_128); 15895 break; 15896 } 15897 list_for_each_entry(dmabuf, &mq->page_list, list) { 15898 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15899 putPaddrLow(dmabuf->phys); 15900 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15901 putPaddrHigh(dmabuf->phys); 15902 } 15903 } 15904 15905 /** 15906 * lpfc_mq_create - Create a mailbox Queue on the HBA 15907 * @phba: HBA structure that indicates port to create a queue on. 15908 * @mq: The queue structure to use to create the mailbox queue. 15909 * @cq: The completion queue to associate with this cq. 15910 * @subtype: The queue's subtype. 15911 * 15912 * This function creates a mailbox queue, as detailed in @mq, on a port, 15913 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15914 * 15915 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15916 * is used to get the entry count and entry size that are necessary to 15917 * determine the number of pages to allocate and use for this queue. This 15918 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15919 * mailbox queue. This function is asynchronous and will wait for the mailbox 15920 * command to finish before continuing. 15921 * 15922 * On success this function will return a zero. If unable to allocate enough 15923 * memory this function will return -ENOMEM. If the queue create mailbox command 15924 * fails this function will return -ENXIO. 15925 **/ 15926 int32_t 15927 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15928 struct lpfc_queue *cq, uint32_t subtype) 15929 { 15930 struct lpfc_mbx_mq_create *mq_create; 15931 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15932 struct lpfc_dmabuf *dmabuf; 15933 LPFC_MBOXQ_t *mbox; 15934 int rc, length, status = 0; 15935 uint32_t shdr_status, shdr_add_status; 15936 union lpfc_sli4_cfg_shdr *shdr; 15937 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15938 15939 /* sanity check on queue memory */ 15940 if (!mq || !cq) 15941 return -ENODEV; 15942 if (!phba->sli4_hba.pc_sli4_params.supported) 15943 hw_page_size = SLI4_PAGE_SIZE; 15944 15945 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15946 if (!mbox) 15947 return -ENOMEM; 15948 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15949 sizeof(struct lpfc_sli4_cfg_mhdr)); 15950 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15951 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15952 length, LPFC_SLI4_MBX_EMBED); 15953 15954 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15955 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15956 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15957 &mq_create_ext->u.request, mq->page_count); 15958 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15959 &mq_create_ext->u.request, 1); 15960 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15961 &mq_create_ext->u.request, 1); 15962 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15963 &mq_create_ext->u.request, 1); 15964 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15965 &mq_create_ext->u.request, 1); 15966 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15967 &mq_create_ext->u.request, 1); 15968 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15969 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15970 phba->sli4_hba.pc_sli4_params.mqv); 15971 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15972 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15973 cq->queue_id); 15974 else 15975 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15976 cq->queue_id); 15977 switch (mq->entry_count) { 15978 default: 15979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15980 "0362 Unsupported MQ count. (%d)\n", 15981 mq->entry_count); 15982 if (mq->entry_count < 16) { 15983 status = -EINVAL; 15984 goto out; 15985 } 15986 fallthrough; /* otherwise default to smallest count */ 15987 case 16: 15988 bf_set(lpfc_mq_context_ring_size, 15989 &mq_create_ext->u.request.context, 15990 LPFC_MQ_RING_SIZE_16); 15991 break; 15992 case 32: 15993 bf_set(lpfc_mq_context_ring_size, 15994 &mq_create_ext->u.request.context, 15995 LPFC_MQ_RING_SIZE_32); 15996 break; 15997 case 64: 15998 bf_set(lpfc_mq_context_ring_size, 15999 &mq_create_ext->u.request.context, 16000 LPFC_MQ_RING_SIZE_64); 16001 break; 16002 case 128: 16003 bf_set(lpfc_mq_context_ring_size, 16004 &mq_create_ext->u.request.context, 16005 LPFC_MQ_RING_SIZE_128); 16006 break; 16007 } 16008 list_for_each_entry(dmabuf, &mq->page_list, list) { 16009 memset(dmabuf->virt, 0, hw_page_size); 16010 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16011 putPaddrLow(dmabuf->phys); 16012 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16013 putPaddrHigh(dmabuf->phys); 16014 } 16015 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16016 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16017 &mq_create_ext->u.response); 16018 if (rc != MBX_SUCCESS) { 16019 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16020 "2795 MQ_CREATE_EXT failed with " 16021 "status x%x. Failback to MQ_CREATE.\n", 16022 rc); 16023 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16024 mq_create = &mbox->u.mqe.un.mq_create; 16025 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16026 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16027 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16028 &mq_create->u.response); 16029 } 16030 16031 /* The IOCTL status is embedded in the mailbox subheader. */ 16032 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16033 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16034 if (shdr_status || shdr_add_status || rc) { 16035 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16036 "2502 MQ_CREATE mailbox failed with " 16037 "status x%x add_status x%x, mbx status x%x\n", 16038 shdr_status, shdr_add_status, rc); 16039 status = -ENXIO; 16040 goto out; 16041 } 16042 if (mq->queue_id == 0xFFFF) { 16043 status = -ENXIO; 16044 goto out; 16045 } 16046 mq->type = LPFC_MQ; 16047 mq->assoc_qid = cq->queue_id; 16048 mq->subtype = subtype; 16049 mq->host_index = 0; 16050 mq->hba_index = 0; 16051 16052 /* link the mq onto the parent cq child list */ 16053 list_add_tail(&mq->list, &cq->child_list); 16054 out: 16055 mempool_free(mbox, phba->mbox_mem_pool); 16056 return status; 16057 } 16058 16059 /** 16060 * lpfc_wq_create - Create a Work Queue on the HBA 16061 * @phba: HBA structure that indicates port to create a queue on. 16062 * @wq: The queue structure to use to create the work queue. 16063 * @cq: The completion queue to bind this work queue to. 16064 * @subtype: The subtype of the work queue indicating its functionality. 16065 * 16066 * This function creates a work queue, as detailed in @wq, on a port, described 16067 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16068 * 16069 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16070 * is used to get the entry count and entry size that are necessary to 16071 * determine the number of pages to allocate and use for this queue. The @cq 16072 * is used to indicate which completion queue to bind this work queue to. This 16073 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16074 * work queue. This function is asynchronous and will wait for the mailbox 16075 * command to finish before continuing. 16076 * 16077 * On success this function will return a zero. If unable to allocate enough 16078 * memory this function will return -ENOMEM. If the queue create mailbox command 16079 * fails this function will return -ENXIO. 16080 **/ 16081 int 16082 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16083 struct lpfc_queue *cq, uint32_t subtype) 16084 { 16085 struct lpfc_mbx_wq_create *wq_create; 16086 struct lpfc_dmabuf *dmabuf; 16087 LPFC_MBOXQ_t *mbox; 16088 int rc, length, status = 0; 16089 uint32_t shdr_status, shdr_add_status; 16090 union lpfc_sli4_cfg_shdr *shdr; 16091 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16092 struct dma_address *page; 16093 void __iomem *bar_memmap_p; 16094 uint32_t db_offset; 16095 uint16_t pci_barset; 16096 uint8_t dpp_barset; 16097 uint32_t dpp_offset; 16098 uint8_t wq_create_version; 16099 #ifdef CONFIG_X86 16100 unsigned long pg_addr; 16101 #endif 16102 16103 /* sanity check on queue memory */ 16104 if (!wq || !cq) 16105 return -ENODEV; 16106 if (!phba->sli4_hba.pc_sli4_params.supported) 16107 hw_page_size = wq->page_size; 16108 16109 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16110 if (!mbox) 16111 return -ENOMEM; 16112 length = (sizeof(struct lpfc_mbx_wq_create) - 16113 sizeof(struct lpfc_sli4_cfg_mhdr)); 16114 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16115 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16116 length, LPFC_SLI4_MBX_EMBED); 16117 wq_create = &mbox->u.mqe.un.wq_create; 16118 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16119 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16120 wq->page_count); 16121 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16122 cq->queue_id); 16123 16124 /* wqv is the earliest version supported, NOT the latest */ 16125 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16126 phba->sli4_hba.pc_sli4_params.wqv); 16127 16128 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16129 (wq->page_size > SLI4_PAGE_SIZE)) 16130 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16131 else 16132 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16133 16134 switch (wq_create_version) { 16135 case LPFC_Q_CREATE_VERSION_1: 16136 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16137 wq->entry_count); 16138 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16139 LPFC_Q_CREATE_VERSION_1); 16140 16141 switch (wq->entry_size) { 16142 default: 16143 case 64: 16144 bf_set(lpfc_mbx_wq_create_wqe_size, 16145 &wq_create->u.request_1, 16146 LPFC_WQ_WQE_SIZE_64); 16147 break; 16148 case 128: 16149 bf_set(lpfc_mbx_wq_create_wqe_size, 16150 &wq_create->u.request_1, 16151 LPFC_WQ_WQE_SIZE_128); 16152 break; 16153 } 16154 /* Request DPP by default */ 16155 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16156 bf_set(lpfc_mbx_wq_create_page_size, 16157 &wq_create->u.request_1, 16158 (wq->page_size / SLI4_PAGE_SIZE)); 16159 page = wq_create->u.request_1.page; 16160 break; 16161 default: 16162 page = wq_create->u.request.page; 16163 break; 16164 } 16165 16166 list_for_each_entry(dmabuf, &wq->page_list, list) { 16167 memset(dmabuf->virt, 0, hw_page_size); 16168 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16169 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16170 } 16171 16172 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16173 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16174 16175 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16176 /* The IOCTL status is embedded in the mailbox subheader. */ 16177 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16178 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16179 if (shdr_status || shdr_add_status || rc) { 16180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16181 "2503 WQ_CREATE mailbox failed with " 16182 "status x%x add_status x%x, mbx status x%x\n", 16183 shdr_status, shdr_add_status, rc); 16184 status = -ENXIO; 16185 goto out; 16186 } 16187 16188 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16189 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16190 &wq_create->u.response); 16191 else 16192 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16193 &wq_create->u.response_1); 16194 16195 if (wq->queue_id == 0xFFFF) { 16196 status = -ENXIO; 16197 goto out; 16198 } 16199 16200 wq->db_format = LPFC_DB_LIST_FORMAT; 16201 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16202 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16203 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16204 &wq_create->u.response); 16205 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16206 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16208 "3265 WQ[%d] doorbell format " 16209 "not supported: x%x\n", 16210 wq->queue_id, wq->db_format); 16211 status = -EINVAL; 16212 goto out; 16213 } 16214 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16215 &wq_create->u.response); 16216 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16217 pci_barset); 16218 if (!bar_memmap_p) { 16219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16220 "3263 WQ[%d] failed to memmap " 16221 "pci barset:x%x\n", 16222 wq->queue_id, pci_barset); 16223 status = -ENOMEM; 16224 goto out; 16225 } 16226 db_offset = wq_create->u.response.doorbell_offset; 16227 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16228 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16230 "3252 WQ[%d] doorbell offset " 16231 "not supported: x%x\n", 16232 wq->queue_id, db_offset); 16233 status = -EINVAL; 16234 goto out; 16235 } 16236 wq->db_regaddr = bar_memmap_p + db_offset; 16237 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16238 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16239 "format:x%x\n", wq->queue_id, 16240 pci_barset, db_offset, wq->db_format); 16241 } else 16242 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16243 } else { 16244 /* Check if DPP was honored by the firmware */ 16245 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16246 &wq_create->u.response_1); 16247 if (wq->dpp_enable) { 16248 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16249 &wq_create->u.response_1); 16250 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16251 pci_barset); 16252 if (!bar_memmap_p) { 16253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16254 "3267 WQ[%d] failed to memmap " 16255 "pci barset:x%x\n", 16256 wq->queue_id, pci_barset); 16257 status = -ENOMEM; 16258 goto out; 16259 } 16260 db_offset = wq_create->u.response_1.doorbell_offset; 16261 wq->db_regaddr = bar_memmap_p + db_offset; 16262 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16263 &wq_create->u.response_1); 16264 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16265 &wq_create->u.response_1); 16266 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16267 dpp_barset); 16268 if (!bar_memmap_p) { 16269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16270 "3268 WQ[%d] failed to memmap " 16271 "pci barset:x%x\n", 16272 wq->queue_id, dpp_barset); 16273 status = -ENOMEM; 16274 goto out; 16275 } 16276 dpp_offset = wq_create->u.response_1.dpp_offset; 16277 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16278 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16279 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16280 "dpp_id:x%x dpp_barset:x%x " 16281 "dpp_offset:x%x\n", 16282 wq->queue_id, pci_barset, db_offset, 16283 wq->dpp_id, dpp_barset, dpp_offset); 16284 16285 #ifdef CONFIG_X86 16286 /* Enable combined writes for DPP aperture */ 16287 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16288 rc = set_memory_wc(pg_addr, 1); 16289 if (rc) { 16290 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16291 "3272 Cannot setup Combined " 16292 "Write on WQ[%d] - disable DPP\n", 16293 wq->queue_id); 16294 phba->cfg_enable_dpp = 0; 16295 } 16296 #else 16297 phba->cfg_enable_dpp = 0; 16298 #endif 16299 } else 16300 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16301 } 16302 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16303 if (wq->pring == NULL) { 16304 status = -ENOMEM; 16305 goto out; 16306 } 16307 wq->type = LPFC_WQ; 16308 wq->assoc_qid = cq->queue_id; 16309 wq->subtype = subtype; 16310 wq->host_index = 0; 16311 wq->hba_index = 0; 16312 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16313 16314 /* link the wq onto the parent cq child list */ 16315 list_add_tail(&wq->list, &cq->child_list); 16316 out: 16317 mempool_free(mbox, phba->mbox_mem_pool); 16318 return status; 16319 } 16320 16321 /** 16322 * lpfc_rq_create - Create a Receive Queue on the HBA 16323 * @phba: HBA structure that indicates port to create a queue on. 16324 * @hrq: The queue structure to use to create the header receive queue. 16325 * @drq: The queue structure to use to create the data receive queue. 16326 * @cq: The completion queue to bind this work queue to. 16327 * @subtype: The subtype of the work queue indicating its functionality. 16328 * 16329 * This function creates a receive buffer queue pair , as detailed in @hrq and 16330 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16331 * to the HBA. 16332 * 16333 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16334 * struct is used to get the entry count that is necessary to determine the 16335 * number of pages to use for this queue. The @cq is used to indicate which 16336 * completion queue to bind received buffers that are posted to these queues to. 16337 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16338 * receive queue pair. This function is asynchronous and will wait for the 16339 * mailbox command to finish before continuing. 16340 * 16341 * On success this function will return a zero. If unable to allocate enough 16342 * memory this function will return -ENOMEM. If the queue create mailbox command 16343 * fails this function will return -ENXIO. 16344 **/ 16345 int 16346 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16347 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16348 { 16349 struct lpfc_mbx_rq_create *rq_create; 16350 struct lpfc_dmabuf *dmabuf; 16351 LPFC_MBOXQ_t *mbox; 16352 int rc, length, status = 0; 16353 uint32_t shdr_status, shdr_add_status; 16354 union lpfc_sli4_cfg_shdr *shdr; 16355 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16356 void __iomem *bar_memmap_p; 16357 uint32_t db_offset; 16358 uint16_t pci_barset; 16359 16360 /* sanity check on queue memory */ 16361 if (!hrq || !drq || !cq) 16362 return -ENODEV; 16363 if (!phba->sli4_hba.pc_sli4_params.supported) 16364 hw_page_size = SLI4_PAGE_SIZE; 16365 16366 if (hrq->entry_count != drq->entry_count) 16367 return -EINVAL; 16368 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16369 if (!mbox) 16370 return -ENOMEM; 16371 length = (sizeof(struct lpfc_mbx_rq_create) - 16372 sizeof(struct lpfc_sli4_cfg_mhdr)); 16373 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16374 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16375 length, LPFC_SLI4_MBX_EMBED); 16376 rq_create = &mbox->u.mqe.un.rq_create; 16377 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16378 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16379 phba->sli4_hba.pc_sli4_params.rqv); 16380 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16381 bf_set(lpfc_rq_context_rqe_count_1, 16382 &rq_create->u.request.context, 16383 hrq->entry_count); 16384 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16385 bf_set(lpfc_rq_context_rqe_size, 16386 &rq_create->u.request.context, 16387 LPFC_RQE_SIZE_8); 16388 bf_set(lpfc_rq_context_page_size, 16389 &rq_create->u.request.context, 16390 LPFC_RQ_PAGE_SIZE_4096); 16391 } else { 16392 switch (hrq->entry_count) { 16393 default: 16394 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16395 "2535 Unsupported RQ count. (%d)\n", 16396 hrq->entry_count); 16397 if (hrq->entry_count < 512) { 16398 status = -EINVAL; 16399 goto out; 16400 } 16401 fallthrough; /* otherwise default to smallest count */ 16402 case 512: 16403 bf_set(lpfc_rq_context_rqe_count, 16404 &rq_create->u.request.context, 16405 LPFC_RQ_RING_SIZE_512); 16406 break; 16407 case 1024: 16408 bf_set(lpfc_rq_context_rqe_count, 16409 &rq_create->u.request.context, 16410 LPFC_RQ_RING_SIZE_1024); 16411 break; 16412 case 2048: 16413 bf_set(lpfc_rq_context_rqe_count, 16414 &rq_create->u.request.context, 16415 LPFC_RQ_RING_SIZE_2048); 16416 break; 16417 case 4096: 16418 bf_set(lpfc_rq_context_rqe_count, 16419 &rq_create->u.request.context, 16420 LPFC_RQ_RING_SIZE_4096); 16421 break; 16422 } 16423 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16424 LPFC_HDR_BUF_SIZE); 16425 } 16426 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16427 cq->queue_id); 16428 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16429 hrq->page_count); 16430 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16431 memset(dmabuf->virt, 0, hw_page_size); 16432 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16433 putPaddrLow(dmabuf->phys); 16434 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16435 putPaddrHigh(dmabuf->phys); 16436 } 16437 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16438 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16439 16440 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16441 /* The IOCTL status is embedded in the mailbox subheader. */ 16442 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16443 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16444 if (shdr_status || shdr_add_status || rc) { 16445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16446 "2504 RQ_CREATE mailbox failed with " 16447 "status x%x add_status x%x, mbx status x%x\n", 16448 shdr_status, shdr_add_status, rc); 16449 status = -ENXIO; 16450 goto out; 16451 } 16452 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16453 if (hrq->queue_id == 0xFFFF) { 16454 status = -ENXIO; 16455 goto out; 16456 } 16457 16458 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16459 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16460 &rq_create->u.response); 16461 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16462 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16463 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16464 "3262 RQ [%d] doorbell format not " 16465 "supported: x%x\n", hrq->queue_id, 16466 hrq->db_format); 16467 status = -EINVAL; 16468 goto out; 16469 } 16470 16471 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16472 &rq_create->u.response); 16473 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16474 if (!bar_memmap_p) { 16475 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16476 "3269 RQ[%d] failed to memmap pci " 16477 "barset:x%x\n", hrq->queue_id, 16478 pci_barset); 16479 status = -ENOMEM; 16480 goto out; 16481 } 16482 16483 db_offset = rq_create->u.response.doorbell_offset; 16484 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16485 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16486 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16487 "3270 RQ[%d] doorbell offset not " 16488 "supported: x%x\n", hrq->queue_id, 16489 db_offset); 16490 status = -EINVAL; 16491 goto out; 16492 } 16493 hrq->db_regaddr = bar_memmap_p + db_offset; 16494 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16495 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16496 "format:x%x\n", hrq->queue_id, pci_barset, 16497 db_offset, hrq->db_format); 16498 } else { 16499 hrq->db_format = LPFC_DB_RING_FORMAT; 16500 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16501 } 16502 hrq->type = LPFC_HRQ; 16503 hrq->assoc_qid = cq->queue_id; 16504 hrq->subtype = subtype; 16505 hrq->host_index = 0; 16506 hrq->hba_index = 0; 16507 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16508 16509 /* now create the data queue */ 16510 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16511 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16512 length, LPFC_SLI4_MBX_EMBED); 16513 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16514 phba->sli4_hba.pc_sli4_params.rqv); 16515 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16516 bf_set(lpfc_rq_context_rqe_count_1, 16517 &rq_create->u.request.context, hrq->entry_count); 16518 if (subtype == LPFC_NVMET) 16519 rq_create->u.request.context.buffer_size = 16520 LPFC_NVMET_DATA_BUF_SIZE; 16521 else 16522 rq_create->u.request.context.buffer_size = 16523 LPFC_DATA_BUF_SIZE; 16524 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16525 LPFC_RQE_SIZE_8); 16526 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16527 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16528 } else { 16529 switch (drq->entry_count) { 16530 default: 16531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16532 "2536 Unsupported RQ count. (%d)\n", 16533 drq->entry_count); 16534 if (drq->entry_count < 512) { 16535 status = -EINVAL; 16536 goto out; 16537 } 16538 fallthrough; /* otherwise default to smallest count */ 16539 case 512: 16540 bf_set(lpfc_rq_context_rqe_count, 16541 &rq_create->u.request.context, 16542 LPFC_RQ_RING_SIZE_512); 16543 break; 16544 case 1024: 16545 bf_set(lpfc_rq_context_rqe_count, 16546 &rq_create->u.request.context, 16547 LPFC_RQ_RING_SIZE_1024); 16548 break; 16549 case 2048: 16550 bf_set(lpfc_rq_context_rqe_count, 16551 &rq_create->u.request.context, 16552 LPFC_RQ_RING_SIZE_2048); 16553 break; 16554 case 4096: 16555 bf_set(lpfc_rq_context_rqe_count, 16556 &rq_create->u.request.context, 16557 LPFC_RQ_RING_SIZE_4096); 16558 break; 16559 } 16560 if (subtype == LPFC_NVMET) 16561 bf_set(lpfc_rq_context_buf_size, 16562 &rq_create->u.request.context, 16563 LPFC_NVMET_DATA_BUF_SIZE); 16564 else 16565 bf_set(lpfc_rq_context_buf_size, 16566 &rq_create->u.request.context, 16567 LPFC_DATA_BUF_SIZE); 16568 } 16569 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16570 cq->queue_id); 16571 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16572 drq->page_count); 16573 list_for_each_entry(dmabuf, &drq->page_list, list) { 16574 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16575 putPaddrLow(dmabuf->phys); 16576 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16577 putPaddrHigh(dmabuf->phys); 16578 } 16579 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16580 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16581 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16582 /* The IOCTL status is embedded in the mailbox subheader. */ 16583 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16584 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16585 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16586 if (shdr_status || shdr_add_status || rc) { 16587 status = -ENXIO; 16588 goto out; 16589 } 16590 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16591 if (drq->queue_id == 0xFFFF) { 16592 status = -ENXIO; 16593 goto out; 16594 } 16595 drq->type = LPFC_DRQ; 16596 drq->assoc_qid = cq->queue_id; 16597 drq->subtype = subtype; 16598 drq->host_index = 0; 16599 drq->hba_index = 0; 16600 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16601 16602 /* link the header and data RQs onto the parent cq child list */ 16603 list_add_tail(&hrq->list, &cq->child_list); 16604 list_add_tail(&drq->list, &cq->child_list); 16605 16606 out: 16607 mempool_free(mbox, phba->mbox_mem_pool); 16608 return status; 16609 } 16610 16611 /** 16612 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16613 * @phba: HBA structure that indicates port to create a queue on. 16614 * @hrqp: The queue structure array to use to create the header receive queues. 16615 * @drqp: The queue structure array to use to create the data receive queues. 16616 * @cqp: The completion queue array to bind these receive queues to. 16617 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16618 * 16619 * This function creates a receive buffer queue pair , as detailed in @hrq and 16620 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16621 * to the HBA. 16622 * 16623 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16624 * struct is used to get the entry count that is necessary to determine the 16625 * number of pages to use for this queue. The @cq is used to indicate which 16626 * completion queue to bind received buffers that are posted to these queues to. 16627 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16628 * receive queue pair. This function is asynchronous and will wait for the 16629 * mailbox command to finish before continuing. 16630 * 16631 * On success this function will return a zero. If unable to allocate enough 16632 * memory this function will return -ENOMEM. If the queue create mailbox command 16633 * fails this function will return -ENXIO. 16634 **/ 16635 int 16636 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16637 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16638 uint32_t subtype) 16639 { 16640 struct lpfc_queue *hrq, *drq, *cq; 16641 struct lpfc_mbx_rq_create_v2 *rq_create; 16642 struct lpfc_dmabuf *dmabuf; 16643 LPFC_MBOXQ_t *mbox; 16644 int rc, length, alloclen, status = 0; 16645 int cnt, idx, numrq, page_idx = 0; 16646 uint32_t shdr_status, shdr_add_status; 16647 union lpfc_sli4_cfg_shdr *shdr; 16648 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16649 16650 numrq = phba->cfg_nvmet_mrq; 16651 /* sanity check on array memory */ 16652 if (!hrqp || !drqp || !cqp || !numrq) 16653 return -ENODEV; 16654 if (!phba->sli4_hba.pc_sli4_params.supported) 16655 hw_page_size = SLI4_PAGE_SIZE; 16656 16657 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16658 if (!mbox) 16659 return -ENOMEM; 16660 16661 length = sizeof(struct lpfc_mbx_rq_create_v2); 16662 length += ((2 * numrq * hrqp[0]->page_count) * 16663 sizeof(struct dma_address)); 16664 16665 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16666 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16667 LPFC_SLI4_MBX_NEMBED); 16668 if (alloclen < length) { 16669 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16670 "3099 Allocated DMA memory size (%d) is " 16671 "less than the requested DMA memory size " 16672 "(%d)\n", alloclen, length); 16673 status = -ENOMEM; 16674 goto out; 16675 } 16676 16677 16678 16679 rq_create = mbox->sge_array->addr[0]; 16680 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16681 16682 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16683 cnt = 0; 16684 16685 for (idx = 0; idx < numrq; idx++) { 16686 hrq = hrqp[idx]; 16687 drq = drqp[idx]; 16688 cq = cqp[idx]; 16689 16690 /* sanity check on queue memory */ 16691 if (!hrq || !drq || !cq) { 16692 status = -ENODEV; 16693 goto out; 16694 } 16695 16696 if (hrq->entry_count != drq->entry_count) { 16697 status = -EINVAL; 16698 goto out; 16699 } 16700 16701 if (idx == 0) { 16702 bf_set(lpfc_mbx_rq_create_num_pages, 16703 &rq_create->u.request, 16704 hrq->page_count); 16705 bf_set(lpfc_mbx_rq_create_rq_cnt, 16706 &rq_create->u.request, (numrq * 2)); 16707 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16708 1); 16709 bf_set(lpfc_rq_context_base_cq, 16710 &rq_create->u.request.context, 16711 cq->queue_id); 16712 bf_set(lpfc_rq_context_data_size, 16713 &rq_create->u.request.context, 16714 LPFC_NVMET_DATA_BUF_SIZE); 16715 bf_set(lpfc_rq_context_hdr_size, 16716 &rq_create->u.request.context, 16717 LPFC_HDR_BUF_SIZE); 16718 bf_set(lpfc_rq_context_rqe_count_1, 16719 &rq_create->u.request.context, 16720 hrq->entry_count); 16721 bf_set(lpfc_rq_context_rqe_size, 16722 &rq_create->u.request.context, 16723 LPFC_RQE_SIZE_8); 16724 bf_set(lpfc_rq_context_page_size, 16725 &rq_create->u.request.context, 16726 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16727 } 16728 rc = 0; 16729 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16730 memset(dmabuf->virt, 0, hw_page_size); 16731 cnt = page_idx + dmabuf->buffer_tag; 16732 rq_create->u.request.page[cnt].addr_lo = 16733 putPaddrLow(dmabuf->phys); 16734 rq_create->u.request.page[cnt].addr_hi = 16735 putPaddrHigh(dmabuf->phys); 16736 rc++; 16737 } 16738 page_idx += rc; 16739 16740 rc = 0; 16741 list_for_each_entry(dmabuf, &drq->page_list, list) { 16742 memset(dmabuf->virt, 0, hw_page_size); 16743 cnt = page_idx + dmabuf->buffer_tag; 16744 rq_create->u.request.page[cnt].addr_lo = 16745 putPaddrLow(dmabuf->phys); 16746 rq_create->u.request.page[cnt].addr_hi = 16747 putPaddrHigh(dmabuf->phys); 16748 rc++; 16749 } 16750 page_idx += rc; 16751 16752 hrq->db_format = LPFC_DB_RING_FORMAT; 16753 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16754 hrq->type = LPFC_HRQ; 16755 hrq->assoc_qid = cq->queue_id; 16756 hrq->subtype = subtype; 16757 hrq->host_index = 0; 16758 hrq->hba_index = 0; 16759 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16760 16761 drq->db_format = LPFC_DB_RING_FORMAT; 16762 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16763 drq->type = LPFC_DRQ; 16764 drq->assoc_qid = cq->queue_id; 16765 drq->subtype = subtype; 16766 drq->host_index = 0; 16767 drq->hba_index = 0; 16768 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16769 16770 list_add_tail(&hrq->list, &cq->child_list); 16771 list_add_tail(&drq->list, &cq->child_list); 16772 } 16773 16774 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16775 /* The IOCTL status is embedded in the mailbox subheader. */ 16776 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16777 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16778 if (shdr_status || shdr_add_status || rc) { 16779 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16780 "3120 RQ_CREATE mailbox failed with " 16781 "status x%x add_status x%x, mbx status x%x\n", 16782 shdr_status, shdr_add_status, rc); 16783 status = -ENXIO; 16784 goto out; 16785 } 16786 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16787 if (rc == 0xFFFF) { 16788 status = -ENXIO; 16789 goto out; 16790 } 16791 16792 /* Initialize all RQs with associated queue id */ 16793 for (idx = 0; idx < numrq; idx++) { 16794 hrq = hrqp[idx]; 16795 hrq->queue_id = rc + (2 * idx); 16796 drq = drqp[idx]; 16797 drq->queue_id = rc + (2 * idx) + 1; 16798 } 16799 16800 out: 16801 lpfc_sli4_mbox_cmd_free(phba, mbox); 16802 return status; 16803 } 16804 16805 /** 16806 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16807 * @phba: HBA structure that indicates port to destroy a queue on. 16808 * @eq: The queue structure associated with the queue to destroy. 16809 * 16810 * This function destroys a queue, as detailed in @eq by sending an mailbox 16811 * command, specific to the type of queue, to the HBA. 16812 * 16813 * The @eq struct is used to get the queue ID of the queue to destroy. 16814 * 16815 * On success this function will return a zero. If the queue destroy mailbox 16816 * command fails this function will return -ENXIO. 16817 **/ 16818 int 16819 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16820 { 16821 LPFC_MBOXQ_t *mbox; 16822 int rc, length, status = 0; 16823 uint32_t shdr_status, shdr_add_status; 16824 union lpfc_sli4_cfg_shdr *shdr; 16825 16826 /* sanity check on queue memory */ 16827 if (!eq) 16828 return -ENODEV; 16829 16830 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16831 if (!mbox) 16832 return -ENOMEM; 16833 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16834 sizeof(struct lpfc_sli4_cfg_mhdr)); 16835 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16836 LPFC_MBOX_OPCODE_EQ_DESTROY, 16837 length, LPFC_SLI4_MBX_EMBED); 16838 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16839 eq->queue_id); 16840 mbox->vport = eq->phba->pport; 16841 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16842 16843 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16844 /* The IOCTL status is embedded in the mailbox subheader. */ 16845 shdr = (union lpfc_sli4_cfg_shdr *) 16846 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16847 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16848 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16849 if (shdr_status || shdr_add_status || rc) { 16850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16851 "2505 EQ_DESTROY mailbox failed with " 16852 "status x%x add_status x%x, mbx status x%x\n", 16853 shdr_status, shdr_add_status, rc); 16854 status = -ENXIO; 16855 } 16856 16857 /* Remove eq from any list */ 16858 list_del_init(&eq->list); 16859 mempool_free(mbox, eq->phba->mbox_mem_pool); 16860 return status; 16861 } 16862 16863 /** 16864 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16865 * @phba: HBA structure that indicates port to destroy a queue on. 16866 * @cq: The queue structure associated with the queue to destroy. 16867 * 16868 * This function destroys a queue, as detailed in @cq by sending an mailbox 16869 * command, specific to the type of queue, to the HBA. 16870 * 16871 * The @cq struct is used to get the queue ID of the queue to destroy. 16872 * 16873 * On success this function will return a zero. If the queue destroy mailbox 16874 * command fails this function will return -ENXIO. 16875 **/ 16876 int 16877 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16878 { 16879 LPFC_MBOXQ_t *mbox; 16880 int rc, length, status = 0; 16881 uint32_t shdr_status, shdr_add_status; 16882 union lpfc_sli4_cfg_shdr *shdr; 16883 16884 /* sanity check on queue memory */ 16885 if (!cq) 16886 return -ENODEV; 16887 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16888 if (!mbox) 16889 return -ENOMEM; 16890 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16891 sizeof(struct lpfc_sli4_cfg_mhdr)); 16892 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16893 LPFC_MBOX_OPCODE_CQ_DESTROY, 16894 length, LPFC_SLI4_MBX_EMBED); 16895 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16896 cq->queue_id); 16897 mbox->vport = cq->phba->pport; 16898 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16899 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16900 /* The IOCTL status is embedded in the mailbox subheader. */ 16901 shdr = (union lpfc_sli4_cfg_shdr *) 16902 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16903 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16904 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16905 if (shdr_status || shdr_add_status || rc) { 16906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16907 "2506 CQ_DESTROY mailbox failed with " 16908 "status x%x add_status x%x, mbx status x%x\n", 16909 shdr_status, shdr_add_status, rc); 16910 status = -ENXIO; 16911 } 16912 /* Remove cq from any list */ 16913 list_del_init(&cq->list); 16914 mempool_free(mbox, cq->phba->mbox_mem_pool); 16915 return status; 16916 } 16917 16918 /** 16919 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16920 * @phba: HBA structure that indicates port to destroy a queue on. 16921 * @mq: The queue structure associated with the queue to destroy. 16922 * 16923 * This function destroys a queue, as detailed in @mq by sending an mailbox 16924 * command, specific to the type of queue, to the HBA. 16925 * 16926 * The @mq struct is used to get the queue ID of the queue to destroy. 16927 * 16928 * On success this function will return a zero. If the queue destroy mailbox 16929 * command fails this function will return -ENXIO. 16930 **/ 16931 int 16932 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16933 { 16934 LPFC_MBOXQ_t *mbox; 16935 int rc, length, status = 0; 16936 uint32_t shdr_status, shdr_add_status; 16937 union lpfc_sli4_cfg_shdr *shdr; 16938 16939 /* sanity check on queue memory */ 16940 if (!mq) 16941 return -ENODEV; 16942 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16943 if (!mbox) 16944 return -ENOMEM; 16945 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16946 sizeof(struct lpfc_sli4_cfg_mhdr)); 16947 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16948 LPFC_MBOX_OPCODE_MQ_DESTROY, 16949 length, LPFC_SLI4_MBX_EMBED); 16950 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16951 mq->queue_id); 16952 mbox->vport = mq->phba->pport; 16953 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16954 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16955 /* The IOCTL status is embedded in the mailbox subheader. */ 16956 shdr = (union lpfc_sli4_cfg_shdr *) 16957 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16958 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16959 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16960 if (shdr_status || shdr_add_status || rc) { 16961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16962 "2507 MQ_DESTROY mailbox failed with " 16963 "status x%x add_status x%x, mbx status x%x\n", 16964 shdr_status, shdr_add_status, rc); 16965 status = -ENXIO; 16966 } 16967 /* Remove mq from any list */ 16968 list_del_init(&mq->list); 16969 mempool_free(mbox, mq->phba->mbox_mem_pool); 16970 return status; 16971 } 16972 16973 /** 16974 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16975 * @phba: HBA structure that indicates port to destroy a queue on. 16976 * @wq: The queue structure associated with the queue to destroy. 16977 * 16978 * This function destroys a queue, as detailed in @wq by sending an mailbox 16979 * command, specific to the type of queue, to the HBA. 16980 * 16981 * The @wq struct is used to get the queue ID of the queue to destroy. 16982 * 16983 * On success this function will return a zero. If the queue destroy mailbox 16984 * command fails this function will return -ENXIO. 16985 **/ 16986 int 16987 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16988 { 16989 LPFC_MBOXQ_t *mbox; 16990 int rc, length, status = 0; 16991 uint32_t shdr_status, shdr_add_status; 16992 union lpfc_sli4_cfg_shdr *shdr; 16993 16994 /* sanity check on queue memory */ 16995 if (!wq) 16996 return -ENODEV; 16997 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16998 if (!mbox) 16999 return -ENOMEM; 17000 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17001 sizeof(struct lpfc_sli4_cfg_mhdr)); 17002 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17003 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17004 length, LPFC_SLI4_MBX_EMBED); 17005 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17006 wq->queue_id); 17007 mbox->vport = wq->phba->pport; 17008 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17009 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17010 shdr = (union lpfc_sli4_cfg_shdr *) 17011 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17012 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17013 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17014 if (shdr_status || shdr_add_status || rc) { 17015 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17016 "2508 WQ_DESTROY mailbox failed with " 17017 "status x%x add_status x%x, mbx status x%x\n", 17018 shdr_status, shdr_add_status, rc); 17019 status = -ENXIO; 17020 } 17021 /* Remove wq from any list */ 17022 list_del_init(&wq->list); 17023 kfree(wq->pring); 17024 wq->pring = NULL; 17025 mempool_free(mbox, wq->phba->mbox_mem_pool); 17026 return status; 17027 } 17028 17029 /** 17030 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17031 * @phba: HBA structure that indicates port to destroy a queue on. 17032 * @hrq: The queue structure associated with the queue to destroy. 17033 * @drq: The queue structure associated with the queue to destroy. 17034 * 17035 * This function destroys a queue, as detailed in @rq by sending an mailbox 17036 * command, specific to the type of queue, to the HBA. 17037 * 17038 * The @rq struct is used to get the queue ID of the queue to destroy. 17039 * 17040 * On success this function will return a zero. If the queue destroy mailbox 17041 * command fails this function will return -ENXIO. 17042 **/ 17043 int 17044 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17045 struct lpfc_queue *drq) 17046 { 17047 LPFC_MBOXQ_t *mbox; 17048 int rc, length, status = 0; 17049 uint32_t shdr_status, shdr_add_status; 17050 union lpfc_sli4_cfg_shdr *shdr; 17051 17052 /* sanity check on queue memory */ 17053 if (!hrq || !drq) 17054 return -ENODEV; 17055 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17056 if (!mbox) 17057 return -ENOMEM; 17058 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17059 sizeof(struct lpfc_sli4_cfg_mhdr)); 17060 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17061 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17062 length, LPFC_SLI4_MBX_EMBED); 17063 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17064 hrq->queue_id); 17065 mbox->vport = hrq->phba->pport; 17066 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17067 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17068 /* The IOCTL status is embedded in the mailbox subheader. */ 17069 shdr = (union lpfc_sli4_cfg_shdr *) 17070 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17071 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17072 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17073 if (shdr_status || shdr_add_status || rc) { 17074 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17075 "2509 RQ_DESTROY mailbox failed with " 17076 "status x%x add_status x%x, mbx status x%x\n", 17077 shdr_status, shdr_add_status, rc); 17078 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17079 return -ENXIO; 17080 } 17081 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17082 drq->queue_id); 17083 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17084 shdr = (union lpfc_sli4_cfg_shdr *) 17085 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17086 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17087 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17088 if (shdr_status || shdr_add_status || rc) { 17089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17090 "2510 RQ_DESTROY mailbox failed with " 17091 "status x%x add_status x%x, mbx status x%x\n", 17092 shdr_status, shdr_add_status, rc); 17093 status = -ENXIO; 17094 } 17095 list_del_init(&hrq->list); 17096 list_del_init(&drq->list); 17097 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17098 return status; 17099 } 17100 17101 /** 17102 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17103 * @phba: The virtual port for which this call being executed. 17104 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17105 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17106 * @xritag: the xritag that ties this io to the SGL pages. 17107 * 17108 * This routine will post the sgl pages for the IO that has the xritag 17109 * that is in the iocbq structure. The xritag is assigned during iocbq 17110 * creation and persists for as long as the driver is loaded. 17111 * if the caller has fewer than 256 scatter gather segments to map then 17112 * pdma_phys_addr1 should be 0. 17113 * If the caller needs to map more than 256 scatter gather segment then 17114 * pdma_phys_addr1 should be a valid physical address. 17115 * physical address for SGLs must be 64 byte aligned. 17116 * If you are going to map 2 SGL's then the first one must have 256 entries 17117 * the second sgl can have between 1 and 256 entries. 17118 * 17119 * Return codes: 17120 * 0 - Success 17121 * -ENXIO, -ENOMEM - Failure 17122 **/ 17123 int 17124 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17125 dma_addr_t pdma_phys_addr0, 17126 dma_addr_t pdma_phys_addr1, 17127 uint16_t xritag) 17128 { 17129 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17130 LPFC_MBOXQ_t *mbox; 17131 int rc; 17132 uint32_t shdr_status, shdr_add_status; 17133 uint32_t mbox_tmo; 17134 union lpfc_sli4_cfg_shdr *shdr; 17135 17136 if (xritag == NO_XRI) { 17137 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17138 "0364 Invalid param:\n"); 17139 return -EINVAL; 17140 } 17141 17142 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17143 if (!mbox) 17144 return -ENOMEM; 17145 17146 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17147 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17148 sizeof(struct lpfc_mbx_post_sgl_pages) - 17149 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17150 17151 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17152 &mbox->u.mqe.un.post_sgl_pages; 17153 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17154 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17155 17156 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17157 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17158 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17159 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17160 17161 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17162 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17163 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17164 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17165 if (!phba->sli4_hba.intr_enable) 17166 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17167 else { 17168 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17169 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17170 } 17171 /* The IOCTL status is embedded in the mailbox subheader. */ 17172 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17173 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17174 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17175 if (!phba->sli4_hba.intr_enable) 17176 mempool_free(mbox, phba->mbox_mem_pool); 17177 else if (rc != MBX_TIMEOUT) 17178 mempool_free(mbox, phba->mbox_mem_pool); 17179 if (shdr_status || shdr_add_status || rc) { 17180 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17181 "2511 POST_SGL mailbox failed with " 17182 "status x%x add_status x%x, mbx status x%x\n", 17183 shdr_status, shdr_add_status, rc); 17184 } 17185 return 0; 17186 } 17187 17188 /** 17189 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17190 * @phba: pointer to lpfc hba data structure. 17191 * 17192 * This routine is invoked to post rpi header templates to the 17193 * HBA consistent with the SLI-4 interface spec. This routine 17194 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17195 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17196 * 17197 * Returns 17198 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17199 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17200 **/ 17201 static uint16_t 17202 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17203 { 17204 unsigned long xri; 17205 17206 /* 17207 * Fetch the next logical xri. Because this index is logical, 17208 * the driver starts at 0 each time. 17209 */ 17210 spin_lock_irq(&phba->hbalock); 17211 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17212 phba->sli4_hba.max_cfg_param.max_xri, 0); 17213 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17214 spin_unlock_irq(&phba->hbalock); 17215 return NO_XRI; 17216 } else { 17217 set_bit(xri, phba->sli4_hba.xri_bmask); 17218 phba->sli4_hba.max_cfg_param.xri_used++; 17219 } 17220 spin_unlock_irq(&phba->hbalock); 17221 return xri; 17222 } 17223 17224 /** 17225 * __lpfc_sli4_free_xri - Release an xri for reuse. 17226 * @phba: pointer to lpfc hba data structure. 17227 * @xri: xri to release. 17228 * 17229 * This routine is invoked to release an xri to the pool of 17230 * available rpis maintained by the driver. 17231 **/ 17232 static void 17233 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17234 { 17235 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17236 phba->sli4_hba.max_cfg_param.xri_used--; 17237 } 17238 } 17239 17240 /** 17241 * lpfc_sli4_free_xri - Release an xri for reuse. 17242 * @phba: pointer to lpfc hba data structure. 17243 * @xri: xri to release. 17244 * 17245 * This routine is invoked to release an xri to the pool of 17246 * available rpis maintained by the driver. 17247 **/ 17248 void 17249 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17250 { 17251 spin_lock_irq(&phba->hbalock); 17252 __lpfc_sli4_free_xri(phba, xri); 17253 spin_unlock_irq(&phba->hbalock); 17254 } 17255 17256 /** 17257 * lpfc_sli4_next_xritag - Get an xritag for the io 17258 * @phba: Pointer to HBA context object. 17259 * 17260 * This function gets an xritag for the iocb. If there is no unused xritag 17261 * it will return 0xffff. 17262 * The function returns the allocated xritag if successful, else returns zero. 17263 * Zero is not a valid xritag. 17264 * The caller is not required to hold any lock. 17265 **/ 17266 uint16_t 17267 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17268 { 17269 uint16_t xri_index; 17270 17271 xri_index = lpfc_sli4_alloc_xri(phba); 17272 if (xri_index == NO_XRI) 17273 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17274 "2004 Failed to allocate XRI.last XRITAG is %d" 17275 " Max XRI is %d, Used XRI is %d\n", 17276 xri_index, 17277 phba->sli4_hba.max_cfg_param.max_xri, 17278 phba->sli4_hba.max_cfg_param.xri_used); 17279 return xri_index; 17280 } 17281 17282 /** 17283 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17284 * @phba: pointer to lpfc hba data structure. 17285 * @post_sgl_list: pointer to els sgl entry list. 17286 * @post_cnt: number of els sgl entries on the list. 17287 * 17288 * This routine is invoked to post a block of driver's sgl pages to the 17289 * HBA using non-embedded mailbox command. No Lock is held. This routine 17290 * is only called when the driver is loading and after all IO has been 17291 * stopped. 17292 **/ 17293 static int 17294 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17295 struct list_head *post_sgl_list, 17296 int post_cnt) 17297 { 17298 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17299 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17300 struct sgl_page_pairs *sgl_pg_pairs; 17301 void *viraddr; 17302 LPFC_MBOXQ_t *mbox; 17303 uint32_t reqlen, alloclen, pg_pairs; 17304 uint32_t mbox_tmo; 17305 uint16_t xritag_start = 0; 17306 int rc = 0; 17307 uint32_t shdr_status, shdr_add_status; 17308 union lpfc_sli4_cfg_shdr *shdr; 17309 17310 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17311 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17312 if (reqlen > SLI4_PAGE_SIZE) { 17313 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17314 "2559 Block sgl registration required DMA " 17315 "size (%d) great than a page\n", reqlen); 17316 return -ENOMEM; 17317 } 17318 17319 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17320 if (!mbox) 17321 return -ENOMEM; 17322 17323 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17324 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17325 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17326 LPFC_SLI4_MBX_NEMBED); 17327 17328 if (alloclen < reqlen) { 17329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17330 "0285 Allocated DMA memory size (%d) is " 17331 "less than the requested DMA memory " 17332 "size (%d)\n", alloclen, reqlen); 17333 lpfc_sli4_mbox_cmd_free(phba, mbox); 17334 return -ENOMEM; 17335 } 17336 /* Set up the SGL pages in the non-embedded DMA pages */ 17337 viraddr = mbox->sge_array->addr[0]; 17338 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17339 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17340 17341 pg_pairs = 0; 17342 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17343 /* Set up the sge entry */ 17344 sgl_pg_pairs->sgl_pg0_addr_lo = 17345 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17346 sgl_pg_pairs->sgl_pg0_addr_hi = 17347 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17348 sgl_pg_pairs->sgl_pg1_addr_lo = 17349 cpu_to_le32(putPaddrLow(0)); 17350 sgl_pg_pairs->sgl_pg1_addr_hi = 17351 cpu_to_le32(putPaddrHigh(0)); 17352 17353 /* Keep the first xritag on the list */ 17354 if (pg_pairs == 0) 17355 xritag_start = sglq_entry->sli4_xritag; 17356 sgl_pg_pairs++; 17357 pg_pairs++; 17358 } 17359 17360 /* Complete initialization and perform endian conversion. */ 17361 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17362 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17363 sgl->word0 = cpu_to_le32(sgl->word0); 17364 17365 if (!phba->sli4_hba.intr_enable) 17366 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17367 else { 17368 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17369 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17370 } 17371 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17372 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17373 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17374 if (!phba->sli4_hba.intr_enable) 17375 lpfc_sli4_mbox_cmd_free(phba, mbox); 17376 else if (rc != MBX_TIMEOUT) 17377 lpfc_sli4_mbox_cmd_free(phba, mbox); 17378 if (shdr_status || shdr_add_status || rc) { 17379 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17380 "2513 POST_SGL_BLOCK mailbox command failed " 17381 "status x%x add_status x%x mbx status x%x\n", 17382 shdr_status, shdr_add_status, rc); 17383 rc = -ENXIO; 17384 } 17385 return rc; 17386 } 17387 17388 /** 17389 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17390 * @phba: pointer to lpfc hba data structure. 17391 * @nblist: pointer to nvme buffer list. 17392 * @count: number of scsi buffers on the list. 17393 * 17394 * This routine is invoked to post a block of @count scsi sgl pages from a 17395 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17396 * No Lock is held. 17397 * 17398 **/ 17399 static int 17400 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17401 int count) 17402 { 17403 struct lpfc_io_buf *lpfc_ncmd; 17404 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17405 struct sgl_page_pairs *sgl_pg_pairs; 17406 void *viraddr; 17407 LPFC_MBOXQ_t *mbox; 17408 uint32_t reqlen, alloclen, pg_pairs; 17409 uint32_t mbox_tmo; 17410 uint16_t xritag_start = 0; 17411 int rc = 0; 17412 uint32_t shdr_status, shdr_add_status; 17413 dma_addr_t pdma_phys_bpl1; 17414 union lpfc_sli4_cfg_shdr *shdr; 17415 17416 /* Calculate the requested length of the dma memory */ 17417 reqlen = count * sizeof(struct sgl_page_pairs) + 17418 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17419 if (reqlen > SLI4_PAGE_SIZE) { 17420 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17421 "6118 Block sgl registration required DMA " 17422 "size (%d) great than a page\n", reqlen); 17423 return -ENOMEM; 17424 } 17425 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17426 if (!mbox) { 17427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17428 "6119 Failed to allocate mbox cmd memory\n"); 17429 return -ENOMEM; 17430 } 17431 17432 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17433 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17434 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17435 reqlen, LPFC_SLI4_MBX_NEMBED); 17436 17437 if (alloclen < reqlen) { 17438 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17439 "6120 Allocated DMA memory size (%d) is " 17440 "less than the requested DMA memory " 17441 "size (%d)\n", alloclen, reqlen); 17442 lpfc_sli4_mbox_cmd_free(phba, mbox); 17443 return -ENOMEM; 17444 } 17445 17446 /* Get the first SGE entry from the non-embedded DMA memory */ 17447 viraddr = mbox->sge_array->addr[0]; 17448 17449 /* Set up the SGL pages in the non-embedded DMA pages */ 17450 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17451 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17452 17453 pg_pairs = 0; 17454 list_for_each_entry(lpfc_ncmd, nblist, list) { 17455 /* Set up the sge entry */ 17456 sgl_pg_pairs->sgl_pg0_addr_lo = 17457 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17458 sgl_pg_pairs->sgl_pg0_addr_hi = 17459 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17460 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17461 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17462 SGL_PAGE_SIZE; 17463 else 17464 pdma_phys_bpl1 = 0; 17465 sgl_pg_pairs->sgl_pg1_addr_lo = 17466 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17467 sgl_pg_pairs->sgl_pg1_addr_hi = 17468 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17469 /* Keep the first xritag on the list */ 17470 if (pg_pairs == 0) 17471 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17472 sgl_pg_pairs++; 17473 pg_pairs++; 17474 } 17475 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17476 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17477 /* Perform endian conversion if necessary */ 17478 sgl->word0 = cpu_to_le32(sgl->word0); 17479 17480 if (!phba->sli4_hba.intr_enable) { 17481 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17482 } else { 17483 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17484 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17485 } 17486 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17487 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17488 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17489 if (!phba->sli4_hba.intr_enable) 17490 lpfc_sli4_mbox_cmd_free(phba, mbox); 17491 else if (rc != MBX_TIMEOUT) 17492 lpfc_sli4_mbox_cmd_free(phba, mbox); 17493 if (shdr_status || shdr_add_status || rc) { 17494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17495 "6125 POST_SGL_BLOCK mailbox command failed " 17496 "status x%x add_status x%x mbx status x%x\n", 17497 shdr_status, shdr_add_status, rc); 17498 rc = -ENXIO; 17499 } 17500 return rc; 17501 } 17502 17503 /** 17504 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17505 * @phba: pointer to lpfc hba data structure. 17506 * @post_nblist: pointer to the nvme buffer list. 17507 * @sb_count: number of nvme buffers. 17508 * 17509 * This routine walks a list of nvme buffers that was passed in. It attempts 17510 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17511 * uses the non-embedded SGL block post mailbox commands to post to the port. 17512 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17513 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17514 * must be local list, thus no lock is needed when manipulate the list. 17515 * 17516 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17517 **/ 17518 int 17519 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17520 struct list_head *post_nblist, int sb_count) 17521 { 17522 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17523 int status, sgl_size; 17524 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17525 dma_addr_t pdma_phys_sgl1; 17526 int last_xritag = NO_XRI; 17527 int cur_xritag; 17528 LIST_HEAD(prep_nblist); 17529 LIST_HEAD(blck_nblist); 17530 LIST_HEAD(nvme_nblist); 17531 17532 /* sanity check */ 17533 if (sb_count <= 0) 17534 return -EINVAL; 17535 17536 sgl_size = phba->cfg_sg_dma_buf_size; 17537 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17538 list_del_init(&lpfc_ncmd->list); 17539 block_cnt++; 17540 if ((last_xritag != NO_XRI) && 17541 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17542 /* a hole in xri block, form a sgl posting block */ 17543 list_splice_init(&prep_nblist, &blck_nblist); 17544 post_cnt = block_cnt - 1; 17545 /* prepare list for next posting block */ 17546 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17547 block_cnt = 1; 17548 } else { 17549 /* prepare list for next posting block */ 17550 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17551 /* enough sgls for non-embed sgl mbox command */ 17552 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17553 list_splice_init(&prep_nblist, &blck_nblist); 17554 post_cnt = block_cnt; 17555 block_cnt = 0; 17556 } 17557 } 17558 num_posting++; 17559 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17560 17561 /* end of repost sgl list condition for NVME buffers */ 17562 if (num_posting == sb_count) { 17563 if (post_cnt == 0) { 17564 /* last sgl posting block */ 17565 list_splice_init(&prep_nblist, &blck_nblist); 17566 post_cnt = block_cnt; 17567 } else if (block_cnt == 1) { 17568 /* last single sgl with non-contiguous xri */ 17569 if (sgl_size > SGL_PAGE_SIZE) 17570 pdma_phys_sgl1 = 17571 lpfc_ncmd->dma_phys_sgl + 17572 SGL_PAGE_SIZE; 17573 else 17574 pdma_phys_sgl1 = 0; 17575 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17576 status = lpfc_sli4_post_sgl( 17577 phba, lpfc_ncmd->dma_phys_sgl, 17578 pdma_phys_sgl1, cur_xritag); 17579 if (status) { 17580 /* Post error. Buffer unavailable. */ 17581 lpfc_ncmd->flags |= 17582 LPFC_SBUF_NOT_POSTED; 17583 } else { 17584 /* Post success. Bffer available. */ 17585 lpfc_ncmd->flags &= 17586 ~LPFC_SBUF_NOT_POSTED; 17587 lpfc_ncmd->status = IOSTAT_SUCCESS; 17588 num_posted++; 17589 } 17590 /* success, put on NVME buffer sgl list */ 17591 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17592 } 17593 } 17594 17595 /* continue until a nembed page worth of sgls */ 17596 if (post_cnt == 0) 17597 continue; 17598 17599 /* post block of NVME buffer list sgls */ 17600 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17601 post_cnt); 17602 17603 /* don't reset xirtag due to hole in xri block */ 17604 if (block_cnt == 0) 17605 last_xritag = NO_XRI; 17606 17607 /* reset NVME buffer post count for next round of posting */ 17608 post_cnt = 0; 17609 17610 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17611 while (!list_empty(&blck_nblist)) { 17612 list_remove_head(&blck_nblist, lpfc_ncmd, 17613 struct lpfc_io_buf, list); 17614 if (status) { 17615 /* Post error. Mark buffer unavailable. */ 17616 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17617 } else { 17618 /* Post success, Mark buffer available. */ 17619 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17620 lpfc_ncmd->status = IOSTAT_SUCCESS; 17621 num_posted++; 17622 } 17623 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17624 } 17625 } 17626 /* Push NVME buffers with sgl posted to the available list */ 17627 lpfc_io_buf_replenish(phba, &nvme_nblist); 17628 17629 return num_posted; 17630 } 17631 17632 /** 17633 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17634 * @phba: pointer to lpfc_hba struct that the frame was received on 17635 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17636 * 17637 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17638 * valid type of frame that the LPFC driver will handle. This function will 17639 * return a zero if the frame is a valid frame or a non zero value when the 17640 * frame does not pass the check. 17641 **/ 17642 static int 17643 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17644 { 17645 /* make rctl_names static to save stack space */ 17646 struct fc_vft_header *fc_vft_hdr; 17647 uint32_t *header = (uint32_t *) fc_hdr; 17648 17649 #define FC_RCTL_MDS_DIAGS 0xF4 17650 17651 switch (fc_hdr->fh_r_ctl) { 17652 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17653 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17654 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17655 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17656 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17657 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17658 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17659 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17660 case FC_RCTL_ELS_REQ: /* extended link services request */ 17661 case FC_RCTL_ELS_REP: /* extended link services reply */ 17662 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17663 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17664 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17665 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17666 case FC_RCTL_BA_RMC: /* remove connection */ 17667 case FC_RCTL_BA_ACC: /* basic accept */ 17668 case FC_RCTL_BA_RJT: /* basic reject */ 17669 case FC_RCTL_BA_PRMT: 17670 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17671 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17672 case FC_RCTL_P_RJT: /* port reject */ 17673 case FC_RCTL_F_RJT: /* fabric reject */ 17674 case FC_RCTL_P_BSY: /* port busy */ 17675 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17676 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17677 case FC_RCTL_LCR: /* link credit reset */ 17678 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17679 case FC_RCTL_END: /* end */ 17680 break; 17681 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17682 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17683 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17684 return lpfc_fc_frame_check(phba, fc_hdr); 17685 default: 17686 goto drop; 17687 } 17688 17689 switch (fc_hdr->fh_type) { 17690 case FC_TYPE_BLS: 17691 case FC_TYPE_ELS: 17692 case FC_TYPE_FCP: 17693 case FC_TYPE_CT: 17694 case FC_TYPE_NVME: 17695 break; 17696 case FC_TYPE_IP: 17697 case FC_TYPE_ILS: 17698 default: 17699 goto drop; 17700 } 17701 17702 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17703 "2538 Received frame rctl:x%x, type:x%x, " 17704 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17705 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17706 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17707 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17708 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17709 be32_to_cpu(header[6])); 17710 return 0; 17711 drop: 17712 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17713 "2539 Dropped frame rctl:x%x type:x%x\n", 17714 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17715 return 1; 17716 } 17717 17718 /** 17719 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17720 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17721 * 17722 * This function processes the FC header to retrieve the VFI from the VF 17723 * header, if one exists. This function will return the VFI if one exists 17724 * or 0 if no VSAN Header exists. 17725 **/ 17726 static uint32_t 17727 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17728 { 17729 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17730 17731 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17732 return 0; 17733 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17734 } 17735 17736 /** 17737 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17738 * @phba: Pointer to the HBA structure to search for the vport on 17739 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17740 * @fcfi: The FC Fabric ID that the frame came from 17741 * @did: Destination ID to match against 17742 * 17743 * This function searches the @phba for a vport that matches the content of the 17744 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17745 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17746 * returns the matching vport pointer or NULL if unable to match frame to a 17747 * vport. 17748 **/ 17749 static struct lpfc_vport * 17750 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17751 uint16_t fcfi, uint32_t did) 17752 { 17753 struct lpfc_vport **vports; 17754 struct lpfc_vport *vport = NULL; 17755 int i; 17756 17757 if (did == Fabric_DID) 17758 return phba->pport; 17759 if ((phba->pport->fc_flag & FC_PT2PT) && 17760 !(phba->link_state == LPFC_HBA_READY)) 17761 return phba->pport; 17762 17763 vports = lpfc_create_vport_work_array(phba); 17764 if (vports != NULL) { 17765 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17766 if (phba->fcf.fcfi == fcfi && 17767 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17768 vports[i]->fc_myDID == did) { 17769 vport = vports[i]; 17770 break; 17771 } 17772 } 17773 } 17774 lpfc_destroy_vport_work_array(phba, vports); 17775 return vport; 17776 } 17777 17778 /** 17779 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17780 * @vport: The vport to work on. 17781 * 17782 * This function updates the receive sequence time stamp for this vport. The 17783 * receive sequence time stamp indicates the time that the last frame of the 17784 * the sequence that has been idle for the longest amount of time was received. 17785 * the driver uses this time stamp to indicate if any received sequences have 17786 * timed out. 17787 **/ 17788 static void 17789 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17790 { 17791 struct lpfc_dmabuf *h_buf; 17792 struct hbq_dmabuf *dmabuf = NULL; 17793 17794 /* get the oldest sequence on the rcv list */ 17795 h_buf = list_get_first(&vport->rcv_buffer_list, 17796 struct lpfc_dmabuf, list); 17797 if (!h_buf) 17798 return; 17799 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17800 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17801 } 17802 17803 /** 17804 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17805 * @vport: The vport that the received sequences were sent to. 17806 * 17807 * This function cleans up all outstanding received sequences. This is called 17808 * by the driver when a link event or user action invalidates all the received 17809 * sequences. 17810 **/ 17811 void 17812 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17813 { 17814 struct lpfc_dmabuf *h_buf, *hnext; 17815 struct lpfc_dmabuf *d_buf, *dnext; 17816 struct hbq_dmabuf *dmabuf = NULL; 17817 17818 /* start with the oldest sequence on the rcv list */ 17819 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17820 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17821 list_del_init(&dmabuf->hbuf.list); 17822 list_for_each_entry_safe(d_buf, dnext, 17823 &dmabuf->dbuf.list, list) { 17824 list_del_init(&d_buf->list); 17825 lpfc_in_buf_free(vport->phba, d_buf); 17826 } 17827 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17828 } 17829 } 17830 17831 /** 17832 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17833 * @vport: The vport that the received sequences were sent to. 17834 * 17835 * This function determines whether any received sequences have timed out by 17836 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17837 * indicates that there is at least one timed out sequence this routine will 17838 * go through the received sequences one at a time from most inactive to most 17839 * active to determine which ones need to be cleaned up. Once it has determined 17840 * that a sequence needs to be cleaned up it will simply free up the resources 17841 * without sending an abort. 17842 **/ 17843 void 17844 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17845 { 17846 struct lpfc_dmabuf *h_buf, *hnext; 17847 struct lpfc_dmabuf *d_buf, *dnext; 17848 struct hbq_dmabuf *dmabuf = NULL; 17849 unsigned long timeout; 17850 int abort_count = 0; 17851 17852 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17853 vport->rcv_buffer_time_stamp); 17854 if (list_empty(&vport->rcv_buffer_list) || 17855 time_before(jiffies, timeout)) 17856 return; 17857 /* start with the oldest sequence on the rcv list */ 17858 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17859 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17860 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17861 dmabuf->time_stamp); 17862 if (time_before(jiffies, timeout)) 17863 break; 17864 abort_count++; 17865 list_del_init(&dmabuf->hbuf.list); 17866 list_for_each_entry_safe(d_buf, dnext, 17867 &dmabuf->dbuf.list, list) { 17868 list_del_init(&d_buf->list); 17869 lpfc_in_buf_free(vport->phba, d_buf); 17870 } 17871 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17872 } 17873 if (abort_count) 17874 lpfc_update_rcv_time_stamp(vport); 17875 } 17876 17877 /** 17878 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17879 * @vport: pointer to a vitural port 17880 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17881 * 17882 * This function searches through the existing incomplete sequences that have 17883 * been sent to this @vport. If the frame matches one of the incomplete 17884 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17885 * make up that sequence. If no sequence is found that matches this frame then 17886 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17887 * This function returns a pointer to the first dmabuf in the sequence list that 17888 * the frame was linked to. 17889 **/ 17890 static struct hbq_dmabuf * 17891 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17892 { 17893 struct fc_frame_header *new_hdr; 17894 struct fc_frame_header *temp_hdr; 17895 struct lpfc_dmabuf *d_buf; 17896 struct lpfc_dmabuf *h_buf; 17897 struct hbq_dmabuf *seq_dmabuf = NULL; 17898 struct hbq_dmabuf *temp_dmabuf = NULL; 17899 uint8_t found = 0; 17900 17901 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17902 dmabuf->time_stamp = jiffies; 17903 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17904 17905 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17906 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17907 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17908 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17909 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17910 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17911 continue; 17912 /* found a pending sequence that matches this frame */ 17913 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17914 break; 17915 } 17916 if (!seq_dmabuf) { 17917 /* 17918 * This indicates first frame received for this sequence. 17919 * Queue the buffer on the vport's rcv_buffer_list. 17920 */ 17921 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17922 lpfc_update_rcv_time_stamp(vport); 17923 return dmabuf; 17924 } 17925 temp_hdr = seq_dmabuf->hbuf.virt; 17926 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17927 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17928 list_del_init(&seq_dmabuf->hbuf.list); 17929 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17930 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17931 lpfc_update_rcv_time_stamp(vport); 17932 return dmabuf; 17933 } 17934 /* move this sequence to the tail to indicate a young sequence */ 17935 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17936 seq_dmabuf->time_stamp = jiffies; 17937 lpfc_update_rcv_time_stamp(vport); 17938 if (list_empty(&seq_dmabuf->dbuf.list)) { 17939 temp_hdr = dmabuf->hbuf.virt; 17940 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17941 return seq_dmabuf; 17942 } 17943 /* find the correct place in the sequence to insert this frame */ 17944 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17945 while (!found) { 17946 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17947 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17948 /* 17949 * If the frame's sequence count is greater than the frame on 17950 * the list then insert the frame right after this frame 17951 */ 17952 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17953 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17954 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17955 found = 1; 17956 break; 17957 } 17958 17959 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17960 break; 17961 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17962 } 17963 17964 if (found) 17965 return seq_dmabuf; 17966 return NULL; 17967 } 17968 17969 /** 17970 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17971 * @vport: pointer to a vitural port 17972 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17973 * 17974 * This function tries to abort from the partially assembed sequence, described 17975 * by the information from basic abbort @dmabuf. It checks to see whether such 17976 * partially assembled sequence held by the driver. If so, it shall free up all 17977 * the frames from the partially assembled sequence. 17978 * 17979 * Return 17980 * true -- if there is matching partially assembled sequence present and all 17981 * the frames freed with the sequence; 17982 * false -- if there is no matching partially assembled sequence present so 17983 * nothing got aborted in the lower layer driver 17984 **/ 17985 static bool 17986 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17987 struct hbq_dmabuf *dmabuf) 17988 { 17989 struct fc_frame_header *new_hdr; 17990 struct fc_frame_header *temp_hdr; 17991 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17992 struct hbq_dmabuf *seq_dmabuf = NULL; 17993 17994 /* Use the hdr_buf to find the sequence that matches this frame */ 17995 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17996 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17997 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17998 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17999 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18000 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18001 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18002 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18003 continue; 18004 /* found a pending sequence that matches this frame */ 18005 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18006 break; 18007 } 18008 18009 /* Free up all the frames from the partially assembled sequence */ 18010 if (seq_dmabuf) { 18011 list_for_each_entry_safe(d_buf, n_buf, 18012 &seq_dmabuf->dbuf.list, list) { 18013 list_del_init(&d_buf->list); 18014 lpfc_in_buf_free(vport->phba, d_buf); 18015 } 18016 return true; 18017 } 18018 return false; 18019 } 18020 18021 /** 18022 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18023 * @vport: pointer to a vitural port 18024 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18025 * 18026 * This function tries to abort from the assembed sequence from upper level 18027 * protocol, described by the information from basic abbort @dmabuf. It 18028 * checks to see whether such pending context exists at upper level protocol. 18029 * If so, it shall clean up the pending context. 18030 * 18031 * Return 18032 * true -- if there is matching pending context of the sequence cleaned 18033 * at ulp; 18034 * false -- if there is no matching pending context of the sequence present 18035 * at ulp. 18036 **/ 18037 static bool 18038 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18039 { 18040 struct lpfc_hba *phba = vport->phba; 18041 int handled; 18042 18043 /* Accepting abort at ulp with SLI4 only */ 18044 if (phba->sli_rev < LPFC_SLI_REV4) 18045 return false; 18046 18047 /* Register all caring upper level protocols to attend abort */ 18048 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18049 if (handled) 18050 return true; 18051 18052 return false; 18053 } 18054 18055 /** 18056 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18057 * @phba: Pointer to HBA context object. 18058 * @cmd_iocbq: pointer to the command iocbq structure. 18059 * @rsp_iocbq: pointer to the response iocbq structure. 18060 * 18061 * This function handles the sequence abort response iocb command complete 18062 * event. It properly releases the memory allocated to the sequence abort 18063 * accept iocb. 18064 **/ 18065 static void 18066 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18067 struct lpfc_iocbq *cmd_iocbq, 18068 struct lpfc_iocbq *rsp_iocbq) 18069 { 18070 struct lpfc_nodelist *ndlp; 18071 18072 if (cmd_iocbq) { 18073 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18074 lpfc_nlp_put(ndlp); 18075 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18076 } 18077 18078 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18079 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18080 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18081 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18082 rsp_iocbq->iocb.ulpStatus, 18083 rsp_iocbq->iocb.un.ulpWord[4]); 18084 } 18085 18086 /** 18087 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18088 * @phba: Pointer to HBA context object. 18089 * @xri: xri id in transaction. 18090 * 18091 * This function validates the xri maps to the known range of XRIs allocated an 18092 * used by the driver. 18093 **/ 18094 uint16_t 18095 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18096 uint16_t xri) 18097 { 18098 uint16_t i; 18099 18100 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18101 if (xri == phba->sli4_hba.xri_ids[i]) 18102 return i; 18103 } 18104 return NO_XRI; 18105 } 18106 18107 /** 18108 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18109 * @vport: pointer to a virtual port. 18110 * @fc_hdr: pointer to a FC frame header. 18111 * @aborted: was the partially assembled receive sequence successfully aborted 18112 * 18113 * This function sends a basic response to a previous unsol sequence abort 18114 * event after aborting the sequence handling. 18115 **/ 18116 void 18117 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18118 struct fc_frame_header *fc_hdr, bool aborted) 18119 { 18120 struct lpfc_hba *phba = vport->phba; 18121 struct lpfc_iocbq *ctiocb = NULL; 18122 struct lpfc_nodelist *ndlp; 18123 uint16_t oxid, rxid, xri, lxri; 18124 uint32_t sid, fctl; 18125 IOCB_t *icmd; 18126 int rc; 18127 18128 if (!lpfc_is_link_up(phba)) 18129 return; 18130 18131 sid = sli4_sid_from_fc_hdr(fc_hdr); 18132 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18133 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18134 18135 ndlp = lpfc_findnode_did(vport, sid); 18136 if (!ndlp) { 18137 ndlp = lpfc_nlp_init(vport, sid); 18138 if (!ndlp) { 18139 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18140 "1268 Failed to allocate ndlp for " 18141 "oxid:x%x SID:x%x\n", oxid, sid); 18142 return; 18143 } 18144 /* Put ndlp onto pport node list */ 18145 lpfc_enqueue_node(vport, ndlp); 18146 } 18147 18148 /* Allocate buffer for rsp iocb */ 18149 ctiocb = lpfc_sli_get_iocbq(phba); 18150 if (!ctiocb) 18151 return; 18152 18153 /* Extract the F_CTL field from FC_HDR */ 18154 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18155 18156 icmd = &ctiocb->iocb; 18157 icmd->un.xseq64.bdl.bdeSize = 0; 18158 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18159 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18160 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18161 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18162 18163 /* Fill in the rest of iocb fields */ 18164 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18165 icmd->ulpBdeCount = 0; 18166 icmd->ulpLe = 1; 18167 icmd->ulpClass = CLASS3; 18168 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18169 ctiocb->context1 = lpfc_nlp_get(ndlp); 18170 if (!ctiocb->context1) { 18171 lpfc_sli_release_iocbq(phba, ctiocb); 18172 return; 18173 } 18174 18175 ctiocb->vport = phba->pport; 18176 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18177 ctiocb->sli4_lxritag = NO_XRI; 18178 ctiocb->sli4_xritag = NO_XRI; 18179 18180 if (fctl & FC_FC_EX_CTX) 18181 /* Exchange responder sent the abort so we 18182 * own the oxid. 18183 */ 18184 xri = oxid; 18185 else 18186 xri = rxid; 18187 lxri = lpfc_sli4_xri_inrange(phba, xri); 18188 if (lxri != NO_XRI) 18189 lpfc_set_rrq_active(phba, ndlp, lxri, 18190 (xri == oxid) ? rxid : oxid, 0); 18191 /* For BA_ABTS from exchange responder, if the logical xri with 18192 * the oxid maps to the FCP XRI range, the port no longer has 18193 * that exchange context, send a BLS_RJT. Override the IOCB for 18194 * a BA_RJT. 18195 */ 18196 if ((fctl & FC_FC_EX_CTX) && 18197 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18198 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18199 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18200 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18201 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18202 } 18203 18204 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18205 * the driver no longer has that exchange, send a BLS_RJT. Override 18206 * the IOCB for a BA_RJT. 18207 */ 18208 if (aborted == false) { 18209 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18210 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18211 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18212 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18213 } 18214 18215 if (fctl & FC_FC_EX_CTX) { 18216 /* ABTS sent by responder to CT exchange, construction 18217 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18218 * field and RX_ID from ABTS for RX_ID field. 18219 */ 18220 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18221 } else { 18222 /* ABTS sent by initiator to CT exchange, construction 18223 * of BA_ACC will need to allocate a new XRI as for the 18224 * XRI_TAG field. 18225 */ 18226 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18227 } 18228 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18229 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18230 18231 /* Xmit CT abts response on exchange <xid> */ 18232 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18233 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18234 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18235 18236 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18237 if (rc == IOCB_ERROR) { 18238 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18239 "2925 Failed to issue CT ABTS RSP x%x on " 18240 "xri x%x, Data x%x\n", 18241 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18242 phba->link_state); 18243 lpfc_nlp_put(ndlp); 18244 ctiocb->context1 = NULL; 18245 lpfc_sli_release_iocbq(phba, ctiocb); 18246 } 18247 } 18248 18249 /** 18250 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18251 * @vport: Pointer to the vport on which this sequence was received 18252 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18253 * 18254 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18255 * receive sequence is only partially assembed by the driver, it shall abort 18256 * the partially assembled frames for the sequence. Otherwise, if the 18257 * unsolicited receive sequence has been completely assembled and passed to 18258 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18259 * unsolicited sequence has been aborted. After that, it will issue a basic 18260 * accept to accept the abort. 18261 **/ 18262 static void 18263 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18264 struct hbq_dmabuf *dmabuf) 18265 { 18266 struct lpfc_hba *phba = vport->phba; 18267 struct fc_frame_header fc_hdr; 18268 uint32_t fctl; 18269 bool aborted; 18270 18271 /* Make a copy of fc_hdr before the dmabuf being released */ 18272 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18273 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18274 18275 if (fctl & FC_FC_EX_CTX) { 18276 /* ABTS by responder to exchange, no cleanup needed */ 18277 aborted = true; 18278 } else { 18279 /* ABTS by initiator to exchange, need to do cleanup */ 18280 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18281 if (aborted == false) 18282 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18283 } 18284 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18285 18286 if (phba->nvmet_support) { 18287 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18288 return; 18289 } 18290 18291 /* Respond with BA_ACC or BA_RJT accordingly */ 18292 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18293 } 18294 18295 /** 18296 * lpfc_seq_complete - Indicates if a sequence is complete 18297 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18298 * 18299 * This function checks the sequence, starting with the frame described by 18300 * @dmabuf, to see if all the frames associated with this sequence are present. 18301 * the frames associated with this sequence are linked to the @dmabuf using the 18302 * dbuf list. This function looks for two major things. 1) That the first frame 18303 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18304 * set. 3) That there are no holes in the sequence count. The function will 18305 * return 1 when the sequence is complete, otherwise it will return 0. 18306 **/ 18307 static int 18308 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18309 { 18310 struct fc_frame_header *hdr; 18311 struct lpfc_dmabuf *d_buf; 18312 struct hbq_dmabuf *seq_dmabuf; 18313 uint32_t fctl; 18314 int seq_count = 0; 18315 18316 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18317 /* make sure first fame of sequence has a sequence count of zero */ 18318 if (hdr->fh_seq_cnt != seq_count) 18319 return 0; 18320 fctl = (hdr->fh_f_ctl[0] << 16 | 18321 hdr->fh_f_ctl[1] << 8 | 18322 hdr->fh_f_ctl[2]); 18323 /* If last frame of sequence we can return success. */ 18324 if (fctl & FC_FC_END_SEQ) 18325 return 1; 18326 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18327 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18328 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18329 /* If there is a hole in the sequence count then fail. */ 18330 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18331 return 0; 18332 fctl = (hdr->fh_f_ctl[0] << 16 | 18333 hdr->fh_f_ctl[1] << 8 | 18334 hdr->fh_f_ctl[2]); 18335 /* If last frame of sequence we can return success. */ 18336 if (fctl & FC_FC_END_SEQ) 18337 return 1; 18338 } 18339 return 0; 18340 } 18341 18342 /** 18343 * lpfc_prep_seq - Prep sequence for ULP processing 18344 * @vport: Pointer to the vport on which this sequence was received 18345 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18346 * 18347 * This function takes a sequence, described by a list of frames, and creates 18348 * a list of iocbq structures to describe the sequence. This iocbq list will be 18349 * used to issue to the generic unsolicited sequence handler. This routine 18350 * returns a pointer to the first iocbq in the list. If the function is unable 18351 * to allocate an iocbq then it throw out the received frames that were not 18352 * able to be described and return a pointer to the first iocbq. If unable to 18353 * allocate any iocbqs (including the first) this function will return NULL. 18354 **/ 18355 static struct lpfc_iocbq * 18356 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18357 { 18358 struct hbq_dmabuf *hbq_buf; 18359 struct lpfc_dmabuf *d_buf, *n_buf; 18360 struct lpfc_iocbq *first_iocbq, *iocbq; 18361 struct fc_frame_header *fc_hdr; 18362 uint32_t sid; 18363 uint32_t len, tot_len; 18364 struct ulp_bde64 *pbde; 18365 18366 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18367 /* remove from receive buffer list */ 18368 list_del_init(&seq_dmabuf->hbuf.list); 18369 lpfc_update_rcv_time_stamp(vport); 18370 /* get the Remote Port's SID */ 18371 sid = sli4_sid_from_fc_hdr(fc_hdr); 18372 tot_len = 0; 18373 /* Get an iocbq struct to fill in. */ 18374 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18375 if (first_iocbq) { 18376 /* Initialize the first IOCB. */ 18377 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18378 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18379 first_iocbq->vport = vport; 18380 18381 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18382 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18383 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18384 first_iocbq->iocb.un.rcvels.parmRo = 18385 sli4_did_from_fc_hdr(fc_hdr); 18386 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18387 } else 18388 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18389 first_iocbq->iocb.ulpContext = NO_XRI; 18390 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18391 be16_to_cpu(fc_hdr->fh_ox_id); 18392 /* iocbq is prepped for internal consumption. Physical vpi. */ 18393 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18394 vport->phba->vpi_ids[vport->vpi]; 18395 /* put the first buffer into the first IOCBq */ 18396 tot_len = bf_get(lpfc_rcqe_length, 18397 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18398 18399 first_iocbq->context2 = &seq_dmabuf->dbuf; 18400 first_iocbq->context3 = NULL; 18401 first_iocbq->iocb.ulpBdeCount = 1; 18402 if (tot_len > LPFC_DATA_BUF_SIZE) 18403 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18404 LPFC_DATA_BUF_SIZE; 18405 else 18406 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18407 18408 first_iocbq->iocb.un.rcvels.remoteID = sid; 18409 18410 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18411 } 18412 iocbq = first_iocbq; 18413 /* 18414 * Each IOCBq can have two Buffers assigned, so go through the list 18415 * of buffers for this sequence and save two buffers in each IOCBq 18416 */ 18417 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18418 if (!iocbq) { 18419 lpfc_in_buf_free(vport->phba, d_buf); 18420 continue; 18421 } 18422 if (!iocbq->context3) { 18423 iocbq->context3 = d_buf; 18424 iocbq->iocb.ulpBdeCount++; 18425 /* We need to get the size out of the right CQE */ 18426 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18427 len = bf_get(lpfc_rcqe_length, 18428 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18429 pbde = (struct ulp_bde64 *) 18430 &iocbq->iocb.unsli3.sli3Words[4]; 18431 if (len > LPFC_DATA_BUF_SIZE) 18432 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18433 else 18434 pbde->tus.f.bdeSize = len; 18435 18436 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18437 tot_len += len; 18438 } else { 18439 iocbq = lpfc_sli_get_iocbq(vport->phba); 18440 if (!iocbq) { 18441 if (first_iocbq) { 18442 first_iocbq->iocb.ulpStatus = 18443 IOSTAT_FCP_RSP_ERROR; 18444 first_iocbq->iocb.un.ulpWord[4] = 18445 IOERR_NO_RESOURCES; 18446 } 18447 lpfc_in_buf_free(vport->phba, d_buf); 18448 continue; 18449 } 18450 /* We need to get the size out of the right CQE */ 18451 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18452 len = bf_get(lpfc_rcqe_length, 18453 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18454 iocbq->context2 = d_buf; 18455 iocbq->context3 = NULL; 18456 iocbq->iocb.ulpBdeCount = 1; 18457 if (len > LPFC_DATA_BUF_SIZE) 18458 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18459 LPFC_DATA_BUF_SIZE; 18460 else 18461 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18462 18463 tot_len += len; 18464 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18465 18466 iocbq->iocb.un.rcvels.remoteID = sid; 18467 list_add_tail(&iocbq->list, &first_iocbq->list); 18468 } 18469 } 18470 /* Free the sequence's header buffer */ 18471 if (!first_iocbq) 18472 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18473 18474 return first_iocbq; 18475 } 18476 18477 static void 18478 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18479 struct hbq_dmabuf *seq_dmabuf) 18480 { 18481 struct fc_frame_header *fc_hdr; 18482 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18483 struct lpfc_hba *phba = vport->phba; 18484 18485 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18486 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18487 if (!iocbq) { 18488 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18489 "2707 Ring %d handler: Failed to allocate " 18490 "iocb Rctl x%x Type x%x received\n", 18491 LPFC_ELS_RING, 18492 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18493 return; 18494 } 18495 if (!lpfc_complete_unsol_iocb(phba, 18496 phba->sli4_hba.els_wq->pring, 18497 iocbq, fc_hdr->fh_r_ctl, 18498 fc_hdr->fh_type)) 18499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18500 "2540 Ring %d handler: unexpected Rctl " 18501 "x%x Type x%x received\n", 18502 LPFC_ELS_RING, 18503 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18504 18505 /* Free iocb created in lpfc_prep_seq */ 18506 list_for_each_entry_safe(curr_iocb, next_iocb, 18507 &iocbq->list, list) { 18508 list_del_init(&curr_iocb->list); 18509 lpfc_sli_release_iocbq(phba, curr_iocb); 18510 } 18511 lpfc_sli_release_iocbq(phba, iocbq); 18512 } 18513 18514 static void 18515 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18516 struct lpfc_iocbq *rspiocb) 18517 { 18518 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18519 18520 if (pcmd && pcmd->virt) 18521 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18522 kfree(pcmd); 18523 lpfc_sli_release_iocbq(phba, cmdiocb); 18524 lpfc_drain_txq(phba); 18525 } 18526 18527 static void 18528 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18529 struct hbq_dmabuf *dmabuf) 18530 { 18531 struct fc_frame_header *fc_hdr; 18532 struct lpfc_hba *phba = vport->phba; 18533 struct lpfc_iocbq *iocbq = NULL; 18534 union lpfc_wqe *wqe; 18535 struct lpfc_dmabuf *pcmd = NULL; 18536 uint32_t frame_len; 18537 int rc; 18538 unsigned long iflags; 18539 18540 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18541 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18542 18543 /* Send the received frame back */ 18544 iocbq = lpfc_sli_get_iocbq(phba); 18545 if (!iocbq) { 18546 /* Queue cq event and wakeup worker thread to process it */ 18547 spin_lock_irqsave(&phba->hbalock, iflags); 18548 list_add_tail(&dmabuf->cq_event.list, 18549 &phba->sli4_hba.sp_queue_event); 18550 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18551 spin_unlock_irqrestore(&phba->hbalock, iflags); 18552 lpfc_worker_wake_up(phba); 18553 return; 18554 } 18555 18556 /* Allocate buffer for command payload */ 18557 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18558 if (pcmd) 18559 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18560 &pcmd->phys); 18561 if (!pcmd || !pcmd->virt) 18562 goto exit; 18563 18564 INIT_LIST_HEAD(&pcmd->list); 18565 18566 /* copyin the payload */ 18567 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18568 18569 /* fill in BDE's for command */ 18570 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18571 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18572 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18573 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18574 18575 iocbq->context2 = pcmd; 18576 iocbq->vport = vport; 18577 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18578 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18579 18580 /* 18581 * Setup rest of the iocb as though it were a WQE 18582 * Build the SEND_FRAME WQE 18583 */ 18584 wqe = (union lpfc_wqe *)&iocbq->iocb; 18585 18586 wqe->send_frame.frame_len = frame_len; 18587 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18588 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18589 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18590 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18591 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18592 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18593 18594 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18595 iocbq->iocb.ulpLe = 1; 18596 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18597 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18598 if (rc == IOCB_ERROR) 18599 goto exit; 18600 18601 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18602 return; 18603 18604 exit: 18605 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18606 "2023 Unable to process MDS loopback frame\n"); 18607 if (pcmd && pcmd->virt) 18608 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18609 kfree(pcmd); 18610 if (iocbq) 18611 lpfc_sli_release_iocbq(phba, iocbq); 18612 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18613 } 18614 18615 /** 18616 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18617 * @phba: Pointer to HBA context object. 18618 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18619 * 18620 * This function is called with no lock held. This function processes all 18621 * the received buffers and gives it to upper layers when a received buffer 18622 * indicates that it is the final frame in the sequence. The interrupt 18623 * service routine processes received buffers at interrupt contexts. 18624 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18625 * appropriate receive function when the final frame in a sequence is received. 18626 **/ 18627 void 18628 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18629 struct hbq_dmabuf *dmabuf) 18630 { 18631 struct hbq_dmabuf *seq_dmabuf; 18632 struct fc_frame_header *fc_hdr; 18633 struct lpfc_vport *vport; 18634 uint32_t fcfi; 18635 uint32_t did; 18636 18637 /* Process each received buffer */ 18638 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18639 18640 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18641 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18642 vport = phba->pport; 18643 /* Handle MDS Loopback frames */ 18644 if (!(phba->pport->load_flag & FC_UNLOADING)) 18645 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18646 else 18647 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18648 return; 18649 } 18650 18651 /* check to see if this a valid type of frame */ 18652 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18653 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18654 return; 18655 } 18656 18657 if ((bf_get(lpfc_cqe_code, 18658 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18659 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18660 &dmabuf->cq_event.cqe.rcqe_cmpl); 18661 else 18662 fcfi = bf_get(lpfc_rcqe_fcf_id, 18663 &dmabuf->cq_event.cqe.rcqe_cmpl); 18664 18665 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18666 vport = phba->pport; 18667 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18668 "2023 MDS Loopback %d bytes\n", 18669 bf_get(lpfc_rcqe_length, 18670 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18671 /* Handle MDS Loopback frames */ 18672 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18673 return; 18674 } 18675 18676 /* d_id this frame is directed to */ 18677 did = sli4_did_from_fc_hdr(fc_hdr); 18678 18679 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18680 if (!vport) { 18681 /* throw out the frame */ 18682 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18683 return; 18684 } 18685 18686 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18687 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18688 (did != Fabric_DID)) { 18689 /* 18690 * Throw out the frame if we are not pt2pt. 18691 * The pt2pt protocol allows for discovery frames 18692 * to be received without a registered VPI. 18693 */ 18694 if (!(vport->fc_flag & FC_PT2PT) || 18695 (phba->link_state == LPFC_HBA_READY)) { 18696 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18697 return; 18698 } 18699 } 18700 18701 /* Handle the basic abort sequence (BA_ABTS) event */ 18702 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18703 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18704 return; 18705 } 18706 18707 /* Link this frame */ 18708 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18709 if (!seq_dmabuf) { 18710 /* unable to add frame to vport - throw it out */ 18711 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18712 return; 18713 } 18714 /* If not last frame in sequence continue processing frames. */ 18715 if (!lpfc_seq_complete(seq_dmabuf)) 18716 return; 18717 18718 /* Send the complete sequence to the upper layer protocol */ 18719 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18720 } 18721 18722 /** 18723 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18724 * @phba: pointer to lpfc hba data structure. 18725 * 18726 * This routine is invoked to post rpi header templates to the 18727 * HBA consistent with the SLI-4 interface spec. This routine 18728 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18729 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18730 * 18731 * This routine does not require any locks. It's usage is expected 18732 * to be driver load or reset recovery when the driver is 18733 * sequential. 18734 * 18735 * Return codes 18736 * 0 - successful 18737 * -EIO - The mailbox failed to complete successfully. 18738 * When this error occurs, the driver is not guaranteed 18739 * to have any rpi regions posted to the device and 18740 * must either attempt to repost the regions or take a 18741 * fatal error. 18742 **/ 18743 int 18744 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18745 { 18746 struct lpfc_rpi_hdr *rpi_page; 18747 uint32_t rc = 0; 18748 uint16_t lrpi = 0; 18749 18750 /* SLI4 ports that support extents do not require RPI headers. */ 18751 if (!phba->sli4_hba.rpi_hdrs_in_use) 18752 goto exit; 18753 if (phba->sli4_hba.extents_in_use) 18754 return -EIO; 18755 18756 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18757 /* 18758 * Assign the rpi headers a physical rpi only if the driver 18759 * has not initialized those resources. A port reset only 18760 * needs the headers posted. 18761 */ 18762 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18763 LPFC_RPI_RSRC_RDY) 18764 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18765 18766 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18767 if (rc != MBX_SUCCESS) { 18768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18769 "2008 Error %d posting all rpi " 18770 "headers\n", rc); 18771 rc = -EIO; 18772 break; 18773 } 18774 } 18775 18776 exit: 18777 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18778 LPFC_RPI_RSRC_RDY); 18779 return rc; 18780 } 18781 18782 /** 18783 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18784 * @phba: pointer to lpfc hba data structure. 18785 * @rpi_page: pointer to the rpi memory region. 18786 * 18787 * This routine is invoked to post a single rpi header to the 18788 * HBA consistent with the SLI-4 interface spec. This memory region 18789 * maps up to 64 rpi context regions. 18790 * 18791 * Return codes 18792 * 0 - successful 18793 * -ENOMEM - No available memory 18794 * -EIO - The mailbox failed to complete successfully. 18795 **/ 18796 int 18797 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18798 { 18799 LPFC_MBOXQ_t *mboxq; 18800 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18801 uint32_t rc = 0; 18802 uint32_t shdr_status, shdr_add_status; 18803 union lpfc_sli4_cfg_shdr *shdr; 18804 18805 /* SLI4 ports that support extents do not require RPI headers. */ 18806 if (!phba->sli4_hba.rpi_hdrs_in_use) 18807 return rc; 18808 if (phba->sli4_hba.extents_in_use) 18809 return -EIO; 18810 18811 /* The port is notified of the header region via a mailbox command. */ 18812 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18813 if (!mboxq) { 18814 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18815 "2001 Unable to allocate memory for issuing " 18816 "SLI_CONFIG_SPECIAL mailbox command\n"); 18817 return -ENOMEM; 18818 } 18819 18820 /* Post all rpi memory regions to the port. */ 18821 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18822 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18823 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18824 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18825 sizeof(struct lpfc_sli4_cfg_mhdr), 18826 LPFC_SLI4_MBX_EMBED); 18827 18828 18829 /* Post the physical rpi to the port for this rpi header. */ 18830 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18831 rpi_page->start_rpi); 18832 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18833 hdr_tmpl, rpi_page->page_count); 18834 18835 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18836 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18837 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18838 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18839 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18840 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18841 mempool_free(mboxq, phba->mbox_mem_pool); 18842 if (shdr_status || shdr_add_status || rc) { 18843 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18844 "2514 POST_RPI_HDR mailbox failed with " 18845 "status x%x add_status x%x, mbx status x%x\n", 18846 shdr_status, shdr_add_status, rc); 18847 rc = -ENXIO; 18848 } else { 18849 /* 18850 * The next_rpi stores the next logical module-64 rpi value used 18851 * to post physical rpis in subsequent rpi postings. 18852 */ 18853 spin_lock_irq(&phba->hbalock); 18854 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18855 spin_unlock_irq(&phba->hbalock); 18856 } 18857 return rc; 18858 } 18859 18860 /** 18861 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18862 * @phba: pointer to lpfc hba data structure. 18863 * 18864 * This routine is invoked to post rpi header templates to the 18865 * HBA consistent with the SLI-4 interface spec. This routine 18866 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18867 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18868 * 18869 * Returns 18870 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18871 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18872 **/ 18873 int 18874 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18875 { 18876 unsigned long rpi; 18877 uint16_t max_rpi, rpi_limit; 18878 uint16_t rpi_remaining, lrpi = 0; 18879 struct lpfc_rpi_hdr *rpi_hdr; 18880 unsigned long iflag; 18881 18882 /* 18883 * Fetch the next logical rpi. Because this index is logical, 18884 * the driver starts at 0 each time. 18885 */ 18886 spin_lock_irqsave(&phba->hbalock, iflag); 18887 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18888 rpi_limit = phba->sli4_hba.next_rpi; 18889 18890 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18891 if (rpi >= rpi_limit) 18892 rpi = LPFC_RPI_ALLOC_ERROR; 18893 else { 18894 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18895 phba->sli4_hba.max_cfg_param.rpi_used++; 18896 phba->sli4_hba.rpi_count++; 18897 } 18898 lpfc_printf_log(phba, KERN_INFO, 18899 LOG_NODE | LOG_DISCOVERY, 18900 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18901 (int) rpi, max_rpi, rpi_limit); 18902 18903 /* 18904 * Don't try to allocate more rpi header regions if the device limit 18905 * has been exhausted. 18906 */ 18907 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18908 (phba->sli4_hba.rpi_count >= max_rpi)) { 18909 spin_unlock_irqrestore(&phba->hbalock, iflag); 18910 return rpi; 18911 } 18912 18913 /* 18914 * RPI header postings are not required for SLI4 ports capable of 18915 * extents. 18916 */ 18917 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18918 spin_unlock_irqrestore(&phba->hbalock, iflag); 18919 return rpi; 18920 } 18921 18922 /* 18923 * If the driver is running low on rpi resources, allocate another 18924 * page now. Note that the next_rpi value is used because 18925 * it represents how many are actually in use whereas max_rpi notes 18926 * how many are supported max by the device. 18927 */ 18928 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18929 spin_unlock_irqrestore(&phba->hbalock, iflag); 18930 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18931 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18932 if (!rpi_hdr) { 18933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18934 "2002 Error Could not grow rpi " 18935 "count\n"); 18936 } else { 18937 lrpi = rpi_hdr->start_rpi; 18938 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18939 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18940 } 18941 } 18942 18943 return rpi; 18944 } 18945 18946 /** 18947 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 18948 * @phba: pointer to lpfc hba data structure. 18949 * @rpi: rpi to free 18950 * 18951 * This routine is invoked to release an rpi to the pool of 18952 * available rpis maintained by the driver. 18953 **/ 18954 static void 18955 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18956 { 18957 /* 18958 * if the rpi value indicates a prior unreg has already 18959 * been done, skip the unreg. 18960 */ 18961 if (rpi == LPFC_RPI_ALLOC_ERROR) 18962 return; 18963 18964 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18965 phba->sli4_hba.rpi_count--; 18966 phba->sli4_hba.max_cfg_param.rpi_used--; 18967 } else { 18968 lpfc_printf_log(phba, KERN_INFO, 18969 LOG_NODE | LOG_DISCOVERY, 18970 "2016 rpi %x not inuse\n", 18971 rpi); 18972 } 18973 } 18974 18975 /** 18976 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18977 * @phba: pointer to lpfc hba data structure. 18978 * @rpi: rpi to free 18979 * 18980 * This routine is invoked to release an rpi to the pool of 18981 * available rpis maintained by the driver. 18982 **/ 18983 void 18984 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18985 { 18986 spin_lock_irq(&phba->hbalock); 18987 __lpfc_sli4_free_rpi(phba, rpi); 18988 spin_unlock_irq(&phba->hbalock); 18989 } 18990 18991 /** 18992 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18993 * @phba: pointer to lpfc hba data structure. 18994 * 18995 * This routine is invoked to remove the memory region that 18996 * provided rpi via a bitmask. 18997 **/ 18998 void 18999 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19000 { 19001 kfree(phba->sli4_hba.rpi_bmask); 19002 kfree(phba->sli4_hba.rpi_ids); 19003 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19004 } 19005 19006 /** 19007 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19008 * @ndlp: pointer to lpfc nodelist data structure. 19009 * @cmpl: completion call-back. 19010 * @arg: data to load as MBox 'caller buffer information' 19011 * 19012 * This routine is invoked to remove the memory region that 19013 * provided rpi via a bitmask. 19014 **/ 19015 int 19016 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19017 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19018 { 19019 LPFC_MBOXQ_t *mboxq; 19020 struct lpfc_hba *phba = ndlp->phba; 19021 int rc; 19022 19023 /* The port is notified of the header region via a mailbox command. */ 19024 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19025 if (!mboxq) 19026 return -ENOMEM; 19027 19028 /* Post all rpi memory regions to the port. */ 19029 lpfc_resume_rpi(mboxq, ndlp); 19030 if (cmpl) { 19031 mboxq->mbox_cmpl = cmpl; 19032 mboxq->ctx_buf = arg; 19033 mboxq->ctx_ndlp = ndlp; 19034 } else 19035 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19036 mboxq->vport = ndlp->vport; 19037 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19038 if (rc == MBX_NOT_FINISHED) { 19039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19040 "2010 Resume RPI Mailbox failed " 19041 "status %d, mbxStatus x%x\n", rc, 19042 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19043 mempool_free(mboxq, phba->mbox_mem_pool); 19044 return -EIO; 19045 } 19046 return 0; 19047 } 19048 19049 /** 19050 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19051 * @vport: Pointer to the vport for which the vpi is being initialized 19052 * 19053 * This routine is invoked to activate a vpi with the port. 19054 * 19055 * Returns: 19056 * 0 success 19057 * -Evalue otherwise 19058 **/ 19059 int 19060 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19061 { 19062 LPFC_MBOXQ_t *mboxq; 19063 int rc = 0; 19064 int retval = MBX_SUCCESS; 19065 uint32_t mbox_tmo; 19066 struct lpfc_hba *phba = vport->phba; 19067 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19068 if (!mboxq) 19069 return -ENOMEM; 19070 lpfc_init_vpi(phba, mboxq, vport->vpi); 19071 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19072 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19073 if (rc != MBX_SUCCESS) { 19074 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19075 "2022 INIT VPI Mailbox failed " 19076 "status %d, mbxStatus x%x\n", rc, 19077 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19078 retval = -EIO; 19079 } 19080 if (rc != MBX_TIMEOUT) 19081 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19082 19083 return retval; 19084 } 19085 19086 /** 19087 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19088 * @phba: pointer to lpfc hba data structure. 19089 * @mboxq: Pointer to mailbox object. 19090 * 19091 * This routine is invoked to manually add a single FCF record. The caller 19092 * must pass a completely initialized FCF_Record. This routine takes 19093 * care of the nonembedded mailbox operations. 19094 **/ 19095 static void 19096 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19097 { 19098 void *virt_addr; 19099 union lpfc_sli4_cfg_shdr *shdr; 19100 uint32_t shdr_status, shdr_add_status; 19101 19102 virt_addr = mboxq->sge_array->addr[0]; 19103 /* The IOCTL status is embedded in the mailbox subheader. */ 19104 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19105 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19106 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19107 19108 if ((shdr_status || shdr_add_status) && 19109 (shdr_status != STATUS_FCF_IN_USE)) 19110 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19111 "2558 ADD_FCF_RECORD mailbox failed with " 19112 "status x%x add_status x%x\n", 19113 shdr_status, shdr_add_status); 19114 19115 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19116 } 19117 19118 /** 19119 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19120 * @phba: pointer to lpfc hba data structure. 19121 * @fcf_record: pointer to the initialized fcf record to add. 19122 * 19123 * This routine is invoked to manually add a single FCF record. The caller 19124 * must pass a completely initialized FCF_Record. This routine takes 19125 * care of the nonembedded mailbox operations. 19126 **/ 19127 int 19128 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19129 { 19130 int rc = 0; 19131 LPFC_MBOXQ_t *mboxq; 19132 uint8_t *bytep; 19133 void *virt_addr; 19134 struct lpfc_mbx_sge sge; 19135 uint32_t alloc_len, req_len; 19136 uint32_t fcfindex; 19137 19138 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19139 if (!mboxq) { 19140 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19141 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19142 return -ENOMEM; 19143 } 19144 19145 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19146 sizeof(uint32_t); 19147 19148 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19149 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19150 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19151 req_len, LPFC_SLI4_MBX_NEMBED); 19152 if (alloc_len < req_len) { 19153 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19154 "2523 Allocated DMA memory size (x%x) is " 19155 "less than the requested DMA memory " 19156 "size (x%x)\n", alloc_len, req_len); 19157 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19158 return -ENOMEM; 19159 } 19160 19161 /* 19162 * Get the first SGE entry from the non-embedded DMA memory. This 19163 * routine only uses a single SGE. 19164 */ 19165 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19166 virt_addr = mboxq->sge_array->addr[0]; 19167 /* 19168 * Configure the FCF record for FCFI 0. This is the driver's 19169 * hardcoded default and gets used in nonFIP mode. 19170 */ 19171 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19172 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19173 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19174 19175 /* 19176 * Copy the fcf_index and the FCF Record Data. The data starts after 19177 * the FCoE header plus word10. The data copy needs to be endian 19178 * correct. 19179 */ 19180 bytep += sizeof(uint32_t); 19181 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19182 mboxq->vport = phba->pport; 19183 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19184 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19185 if (rc == MBX_NOT_FINISHED) { 19186 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19187 "2515 ADD_FCF_RECORD mailbox failed with " 19188 "status 0x%x\n", rc); 19189 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19190 rc = -EIO; 19191 } else 19192 rc = 0; 19193 19194 return rc; 19195 } 19196 19197 /** 19198 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19199 * @phba: pointer to lpfc hba data structure. 19200 * @fcf_record: pointer to the fcf record to write the default data. 19201 * @fcf_index: FCF table entry index. 19202 * 19203 * This routine is invoked to build the driver's default FCF record. The 19204 * values used are hardcoded. This routine handles memory initialization. 19205 * 19206 **/ 19207 void 19208 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19209 struct fcf_record *fcf_record, 19210 uint16_t fcf_index) 19211 { 19212 memset(fcf_record, 0, sizeof(struct fcf_record)); 19213 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19214 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19215 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19216 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19217 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19218 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19219 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19220 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19221 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19222 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19223 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19224 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19225 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19226 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19227 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19228 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19229 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19230 /* Set the VLAN bit map */ 19231 if (phba->valid_vlan) { 19232 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19233 = 1 << (phba->vlan_id % 8); 19234 } 19235 } 19236 19237 /** 19238 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19239 * @phba: pointer to lpfc hba data structure. 19240 * @fcf_index: FCF table entry offset. 19241 * 19242 * This routine is invoked to scan the entire FCF table by reading FCF 19243 * record and processing it one at a time starting from the @fcf_index 19244 * for initial FCF discovery or fast FCF failover rediscovery. 19245 * 19246 * Return 0 if the mailbox command is submitted successfully, none 0 19247 * otherwise. 19248 **/ 19249 int 19250 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19251 { 19252 int rc = 0, error; 19253 LPFC_MBOXQ_t *mboxq; 19254 19255 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19256 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19257 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19258 if (!mboxq) { 19259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19260 "2000 Failed to allocate mbox for " 19261 "READ_FCF cmd\n"); 19262 error = -ENOMEM; 19263 goto fail_fcf_scan; 19264 } 19265 /* Construct the read FCF record mailbox command */ 19266 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19267 if (rc) { 19268 error = -EINVAL; 19269 goto fail_fcf_scan; 19270 } 19271 /* Issue the mailbox command asynchronously */ 19272 mboxq->vport = phba->pport; 19273 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19274 19275 spin_lock_irq(&phba->hbalock); 19276 phba->hba_flag |= FCF_TS_INPROG; 19277 spin_unlock_irq(&phba->hbalock); 19278 19279 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19280 if (rc == MBX_NOT_FINISHED) 19281 error = -EIO; 19282 else { 19283 /* Reset eligible FCF count for new scan */ 19284 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19285 phba->fcf.eligible_fcf_cnt = 0; 19286 error = 0; 19287 } 19288 fail_fcf_scan: 19289 if (error) { 19290 if (mboxq) 19291 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19292 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19293 spin_lock_irq(&phba->hbalock); 19294 phba->hba_flag &= ~FCF_TS_INPROG; 19295 spin_unlock_irq(&phba->hbalock); 19296 } 19297 return error; 19298 } 19299 19300 /** 19301 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19302 * @phba: pointer to lpfc hba data structure. 19303 * @fcf_index: FCF table entry offset. 19304 * 19305 * This routine is invoked to read an FCF record indicated by @fcf_index 19306 * and to use it for FLOGI roundrobin FCF failover. 19307 * 19308 * Return 0 if the mailbox command is submitted successfully, none 0 19309 * otherwise. 19310 **/ 19311 int 19312 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19313 { 19314 int rc = 0, error; 19315 LPFC_MBOXQ_t *mboxq; 19316 19317 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19318 if (!mboxq) { 19319 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19320 "2763 Failed to allocate mbox for " 19321 "READ_FCF cmd\n"); 19322 error = -ENOMEM; 19323 goto fail_fcf_read; 19324 } 19325 /* Construct the read FCF record mailbox command */ 19326 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19327 if (rc) { 19328 error = -EINVAL; 19329 goto fail_fcf_read; 19330 } 19331 /* Issue the mailbox command asynchronously */ 19332 mboxq->vport = phba->pport; 19333 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19334 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19335 if (rc == MBX_NOT_FINISHED) 19336 error = -EIO; 19337 else 19338 error = 0; 19339 19340 fail_fcf_read: 19341 if (error && mboxq) 19342 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19343 return error; 19344 } 19345 19346 /** 19347 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19348 * @phba: pointer to lpfc hba data structure. 19349 * @fcf_index: FCF table entry offset. 19350 * 19351 * This routine is invoked to read an FCF record indicated by @fcf_index to 19352 * determine whether it's eligible for FLOGI roundrobin failover list. 19353 * 19354 * Return 0 if the mailbox command is submitted successfully, none 0 19355 * otherwise. 19356 **/ 19357 int 19358 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19359 { 19360 int rc = 0, error; 19361 LPFC_MBOXQ_t *mboxq; 19362 19363 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19364 if (!mboxq) { 19365 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19366 "2758 Failed to allocate mbox for " 19367 "READ_FCF cmd\n"); 19368 error = -ENOMEM; 19369 goto fail_fcf_read; 19370 } 19371 /* Construct the read FCF record mailbox command */ 19372 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19373 if (rc) { 19374 error = -EINVAL; 19375 goto fail_fcf_read; 19376 } 19377 /* Issue the mailbox command asynchronously */ 19378 mboxq->vport = phba->pport; 19379 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19380 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19381 if (rc == MBX_NOT_FINISHED) 19382 error = -EIO; 19383 else 19384 error = 0; 19385 19386 fail_fcf_read: 19387 if (error && mboxq) 19388 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19389 return error; 19390 } 19391 19392 /** 19393 * lpfc_check_next_fcf_pri_level 19394 * @phba: pointer to the lpfc_hba struct for this port. 19395 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19396 * routine when the rr_bmask is empty. The FCF indecies are put into the 19397 * rr_bmask based on their priority level. Starting from the highest priority 19398 * to the lowest. The most likely FCF candidate will be in the highest 19399 * priority group. When this routine is called it searches the fcf_pri list for 19400 * next lowest priority group and repopulates the rr_bmask with only those 19401 * fcf_indexes. 19402 * returns: 19403 * 1=success 0=failure 19404 **/ 19405 static int 19406 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19407 { 19408 uint16_t next_fcf_pri; 19409 uint16_t last_index; 19410 struct lpfc_fcf_pri *fcf_pri; 19411 int rc; 19412 int ret = 0; 19413 19414 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19415 LPFC_SLI4_FCF_TBL_INDX_MAX); 19416 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19417 "3060 Last IDX %d\n", last_index); 19418 19419 /* Verify the priority list has 2 or more entries */ 19420 spin_lock_irq(&phba->hbalock); 19421 if (list_empty(&phba->fcf.fcf_pri_list) || 19422 list_is_singular(&phba->fcf.fcf_pri_list)) { 19423 spin_unlock_irq(&phba->hbalock); 19424 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19425 "3061 Last IDX %d\n", last_index); 19426 return 0; /* Empty rr list */ 19427 } 19428 spin_unlock_irq(&phba->hbalock); 19429 19430 next_fcf_pri = 0; 19431 /* 19432 * Clear the rr_bmask and set all of the bits that are at this 19433 * priority. 19434 */ 19435 memset(phba->fcf.fcf_rr_bmask, 0, 19436 sizeof(*phba->fcf.fcf_rr_bmask)); 19437 spin_lock_irq(&phba->hbalock); 19438 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19439 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19440 continue; 19441 /* 19442 * the 1st priority that has not FLOGI failed 19443 * will be the highest. 19444 */ 19445 if (!next_fcf_pri) 19446 next_fcf_pri = fcf_pri->fcf_rec.priority; 19447 spin_unlock_irq(&phba->hbalock); 19448 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19449 rc = lpfc_sli4_fcf_rr_index_set(phba, 19450 fcf_pri->fcf_rec.fcf_index); 19451 if (rc) 19452 return 0; 19453 } 19454 spin_lock_irq(&phba->hbalock); 19455 } 19456 /* 19457 * if next_fcf_pri was not set above and the list is not empty then 19458 * we have failed flogis on all of them. So reset flogi failed 19459 * and start at the beginning. 19460 */ 19461 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19462 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19463 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19464 /* 19465 * the 1st priority that has not FLOGI failed 19466 * will be the highest. 19467 */ 19468 if (!next_fcf_pri) 19469 next_fcf_pri = fcf_pri->fcf_rec.priority; 19470 spin_unlock_irq(&phba->hbalock); 19471 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19472 rc = lpfc_sli4_fcf_rr_index_set(phba, 19473 fcf_pri->fcf_rec.fcf_index); 19474 if (rc) 19475 return 0; 19476 } 19477 spin_lock_irq(&phba->hbalock); 19478 } 19479 } else 19480 ret = 1; 19481 spin_unlock_irq(&phba->hbalock); 19482 19483 return ret; 19484 } 19485 /** 19486 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19487 * @phba: pointer to lpfc hba data structure. 19488 * 19489 * This routine is to get the next eligible FCF record index in a round 19490 * robin fashion. If the next eligible FCF record index equals to the 19491 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19492 * shall be returned, otherwise, the next eligible FCF record's index 19493 * shall be returned. 19494 **/ 19495 uint16_t 19496 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19497 { 19498 uint16_t next_fcf_index; 19499 19500 initial_priority: 19501 /* Search start from next bit of currently registered FCF index */ 19502 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19503 19504 next_priority: 19505 /* Determine the next fcf index to check */ 19506 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19507 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19508 LPFC_SLI4_FCF_TBL_INDX_MAX, 19509 next_fcf_index); 19510 19511 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19512 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19513 /* 19514 * If we have wrapped then we need to clear the bits that 19515 * have been tested so that we can detect when we should 19516 * change the priority level. 19517 */ 19518 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19519 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19520 } 19521 19522 19523 /* Check roundrobin failover list empty condition */ 19524 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19525 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19526 /* 19527 * If next fcf index is not found check if there are lower 19528 * Priority level fcf's in the fcf_priority list. 19529 * Set up the rr_bmask with all of the avaiable fcf bits 19530 * at that level and continue the selection process. 19531 */ 19532 if (lpfc_check_next_fcf_pri_level(phba)) 19533 goto initial_priority; 19534 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19535 "2844 No roundrobin failover FCF available\n"); 19536 19537 return LPFC_FCOE_FCF_NEXT_NONE; 19538 } 19539 19540 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19541 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19542 LPFC_FCF_FLOGI_FAILED) { 19543 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19544 return LPFC_FCOE_FCF_NEXT_NONE; 19545 19546 goto next_priority; 19547 } 19548 19549 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19550 "2845 Get next roundrobin failover FCF (x%x)\n", 19551 next_fcf_index); 19552 19553 return next_fcf_index; 19554 } 19555 19556 /** 19557 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19558 * @phba: pointer to lpfc hba data structure. 19559 * @fcf_index: index into the FCF table to 'set' 19560 * 19561 * This routine sets the FCF record index in to the eligible bmask for 19562 * roundrobin failover search. It checks to make sure that the index 19563 * does not go beyond the range of the driver allocated bmask dimension 19564 * before setting the bit. 19565 * 19566 * Returns 0 if the index bit successfully set, otherwise, it returns 19567 * -EINVAL. 19568 **/ 19569 int 19570 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19571 { 19572 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19573 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19574 "2610 FCF (x%x) reached driver's book " 19575 "keeping dimension:x%x\n", 19576 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19577 return -EINVAL; 19578 } 19579 /* Set the eligible FCF record index bmask */ 19580 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19581 19582 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19583 "2790 Set FCF (x%x) to roundrobin FCF failover " 19584 "bmask\n", fcf_index); 19585 19586 return 0; 19587 } 19588 19589 /** 19590 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19591 * @phba: pointer to lpfc hba data structure. 19592 * @fcf_index: index into the FCF table to 'clear' 19593 * 19594 * This routine clears the FCF record index from the eligible bmask for 19595 * roundrobin failover search. It checks to make sure that the index 19596 * does not go beyond the range of the driver allocated bmask dimension 19597 * before clearing the bit. 19598 **/ 19599 void 19600 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19601 { 19602 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19603 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19604 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19605 "2762 FCF (x%x) reached driver's book " 19606 "keeping dimension:x%x\n", 19607 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19608 return; 19609 } 19610 /* Clear the eligible FCF record index bmask */ 19611 spin_lock_irq(&phba->hbalock); 19612 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19613 list) { 19614 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19615 list_del_init(&fcf_pri->list); 19616 break; 19617 } 19618 } 19619 spin_unlock_irq(&phba->hbalock); 19620 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19621 19622 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19623 "2791 Clear FCF (x%x) from roundrobin failover " 19624 "bmask\n", fcf_index); 19625 } 19626 19627 /** 19628 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19629 * @phba: pointer to lpfc hba data structure. 19630 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19631 * 19632 * This routine is the completion routine for the rediscover FCF table mailbox 19633 * command. If the mailbox command returned failure, it will try to stop the 19634 * FCF rediscover wait timer. 19635 **/ 19636 static void 19637 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19638 { 19639 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19640 uint32_t shdr_status, shdr_add_status; 19641 19642 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19643 19644 shdr_status = bf_get(lpfc_mbox_hdr_status, 19645 &redisc_fcf->header.cfg_shdr.response); 19646 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19647 &redisc_fcf->header.cfg_shdr.response); 19648 if (shdr_status || shdr_add_status) { 19649 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19650 "2746 Requesting for FCF rediscovery failed " 19651 "status x%x add_status x%x\n", 19652 shdr_status, shdr_add_status); 19653 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19654 spin_lock_irq(&phba->hbalock); 19655 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19656 spin_unlock_irq(&phba->hbalock); 19657 /* 19658 * CVL event triggered FCF rediscover request failed, 19659 * last resort to re-try current registered FCF entry. 19660 */ 19661 lpfc_retry_pport_discovery(phba); 19662 } else { 19663 spin_lock_irq(&phba->hbalock); 19664 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19665 spin_unlock_irq(&phba->hbalock); 19666 /* 19667 * DEAD FCF event triggered FCF rediscover request 19668 * failed, last resort to fail over as a link down 19669 * to FCF registration. 19670 */ 19671 lpfc_sli4_fcf_dead_failthrough(phba); 19672 } 19673 } else { 19674 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19675 "2775 Start FCF rediscover quiescent timer\n"); 19676 /* 19677 * Start FCF rediscovery wait timer for pending FCF 19678 * before rescan FCF record table. 19679 */ 19680 lpfc_fcf_redisc_wait_start_timer(phba); 19681 } 19682 19683 mempool_free(mbox, phba->mbox_mem_pool); 19684 } 19685 19686 /** 19687 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19688 * @phba: pointer to lpfc hba data structure. 19689 * 19690 * This routine is invoked to request for rediscovery of the entire FCF table 19691 * by the port. 19692 **/ 19693 int 19694 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19695 { 19696 LPFC_MBOXQ_t *mbox; 19697 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19698 int rc, length; 19699 19700 /* Cancel retry delay timers to all vports before FCF rediscover */ 19701 lpfc_cancel_all_vport_retry_delay_timer(phba); 19702 19703 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19704 if (!mbox) { 19705 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19706 "2745 Failed to allocate mbox for " 19707 "requesting FCF rediscover.\n"); 19708 return -ENOMEM; 19709 } 19710 19711 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19712 sizeof(struct lpfc_sli4_cfg_mhdr)); 19713 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19714 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19715 length, LPFC_SLI4_MBX_EMBED); 19716 19717 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19718 /* Set count to 0 for invalidating the entire FCF database */ 19719 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19720 19721 /* Issue the mailbox command asynchronously */ 19722 mbox->vport = phba->pport; 19723 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19724 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19725 19726 if (rc == MBX_NOT_FINISHED) { 19727 mempool_free(mbox, phba->mbox_mem_pool); 19728 return -EIO; 19729 } 19730 return 0; 19731 } 19732 19733 /** 19734 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19735 * @phba: pointer to lpfc hba data structure. 19736 * 19737 * This function is the failover routine as a last resort to the FCF DEAD 19738 * event when driver failed to perform fast FCF failover. 19739 **/ 19740 void 19741 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19742 { 19743 uint32_t link_state; 19744 19745 /* 19746 * Last resort as FCF DEAD event failover will treat this as 19747 * a link down, but save the link state because we don't want 19748 * it to be changed to Link Down unless it is already down. 19749 */ 19750 link_state = phba->link_state; 19751 lpfc_linkdown(phba); 19752 phba->link_state = link_state; 19753 19754 /* Unregister FCF if no devices connected to it */ 19755 lpfc_unregister_unused_fcf(phba); 19756 } 19757 19758 /** 19759 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19760 * @phba: pointer to lpfc hba data structure. 19761 * @rgn23_data: pointer to configure region 23 data. 19762 * 19763 * This function gets SLI3 port configure region 23 data through memory dump 19764 * mailbox command. When it successfully retrieves data, the size of the data 19765 * will be returned, otherwise, 0 will be returned. 19766 **/ 19767 static uint32_t 19768 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19769 { 19770 LPFC_MBOXQ_t *pmb = NULL; 19771 MAILBOX_t *mb; 19772 uint32_t offset = 0; 19773 int i, rc; 19774 19775 if (!rgn23_data) 19776 return 0; 19777 19778 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19779 if (!pmb) { 19780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19781 "2600 failed to allocate mailbox memory\n"); 19782 return 0; 19783 } 19784 mb = &pmb->u.mb; 19785 19786 do { 19787 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19788 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19789 19790 if (rc != MBX_SUCCESS) { 19791 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19792 "2601 failed to read config " 19793 "region 23, rc 0x%x Status 0x%x\n", 19794 rc, mb->mbxStatus); 19795 mb->un.varDmp.word_cnt = 0; 19796 } 19797 /* 19798 * dump mem may return a zero when finished or we got a 19799 * mailbox error, either way we are done. 19800 */ 19801 if (mb->un.varDmp.word_cnt == 0) 19802 break; 19803 19804 i = mb->un.varDmp.word_cnt * sizeof(uint32_t); 19805 if (offset + i > DMP_RGN23_SIZE) 19806 i = DMP_RGN23_SIZE - offset; 19807 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19808 rgn23_data + offset, i); 19809 offset += i; 19810 } while (offset < DMP_RGN23_SIZE); 19811 19812 mempool_free(pmb, phba->mbox_mem_pool); 19813 return offset; 19814 } 19815 19816 /** 19817 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19818 * @phba: pointer to lpfc hba data structure. 19819 * @rgn23_data: pointer to configure region 23 data. 19820 * 19821 * This function gets SLI4 port configure region 23 data through memory dump 19822 * mailbox command. When it successfully retrieves data, the size of the data 19823 * will be returned, otherwise, 0 will be returned. 19824 **/ 19825 static uint32_t 19826 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19827 { 19828 LPFC_MBOXQ_t *mboxq = NULL; 19829 struct lpfc_dmabuf *mp = NULL; 19830 struct lpfc_mqe *mqe; 19831 uint32_t data_length = 0; 19832 int rc; 19833 19834 if (!rgn23_data) 19835 return 0; 19836 19837 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19838 if (!mboxq) { 19839 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19840 "3105 failed to allocate mailbox memory\n"); 19841 return 0; 19842 } 19843 19844 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19845 goto out; 19846 mqe = &mboxq->u.mqe; 19847 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19848 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19849 if (rc) 19850 goto out; 19851 data_length = mqe->un.mb_words[5]; 19852 if (data_length == 0) 19853 goto out; 19854 if (data_length > DMP_RGN23_SIZE) { 19855 data_length = 0; 19856 goto out; 19857 } 19858 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19859 out: 19860 mempool_free(mboxq, phba->mbox_mem_pool); 19861 if (mp) { 19862 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19863 kfree(mp); 19864 } 19865 return data_length; 19866 } 19867 19868 /** 19869 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19870 * @phba: pointer to lpfc hba data structure. 19871 * 19872 * This function read region 23 and parse TLV for port status to 19873 * decide if the user disaled the port. If the TLV indicates the 19874 * port is disabled, the hba_flag is set accordingly. 19875 **/ 19876 void 19877 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19878 { 19879 uint8_t *rgn23_data = NULL; 19880 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19881 uint32_t offset = 0; 19882 19883 /* Get adapter Region 23 data */ 19884 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19885 if (!rgn23_data) 19886 goto out; 19887 19888 if (phba->sli_rev < LPFC_SLI_REV4) 19889 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19890 else { 19891 if_type = bf_get(lpfc_sli_intf_if_type, 19892 &phba->sli4_hba.sli_intf); 19893 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19894 goto out; 19895 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19896 } 19897 19898 if (!data_size) 19899 goto out; 19900 19901 /* Check the region signature first */ 19902 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19903 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19904 "2619 Config region 23 has bad signature\n"); 19905 goto out; 19906 } 19907 offset += 4; 19908 19909 /* Check the data structure version */ 19910 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19912 "2620 Config region 23 has bad version\n"); 19913 goto out; 19914 } 19915 offset += 4; 19916 19917 /* Parse TLV entries in the region */ 19918 while (offset < data_size) { 19919 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19920 break; 19921 /* 19922 * If the TLV is not driver specific TLV or driver id is 19923 * not linux driver id, skip the record. 19924 */ 19925 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19926 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19927 (rgn23_data[offset + 3] != 0)) { 19928 offset += rgn23_data[offset + 1] * 4 + 4; 19929 continue; 19930 } 19931 19932 /* Driver found a driver specific TLV in the config region */ 19933 sub_tlv_len = rgn23_data[offset + 1] * 4; 19934 offset += 4; 19935 tlv_offset = 0; 19936 19937 /* 19938 * Search for configured port state sub-TLV. 19939 */ 19940 while ((offset < data_size) && 19941 (tlv_offset < sub_tlv_len)) { 19942 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19943 offset += 4; 19944 tlv_offset += 4; 19945 break; 19946 } 19947 if (rgn23_data[offset] != PORT_STE_TYPE) { 19948 offset += rgn23_data[offset + 1] * 4 + 4; 19949 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19950 continue; 19951 } 19952 19953 /* This HBA contains PORT_STE configured */ 19954 if (!rgn23_data[offset + 2]) 19955 phba->hba_flag |= LINK_DISABLED; 19956 19957 goto out; 19958 } 19959 } 19960 19961 out: 19962 kfree(rgn23_data); 19963 return; 19964 } 19965 19966 /** 19967 * lpfc_wr_object - write an object to the firmware 19968 * @phba: HBA structure that indicates port to create a queue on. 19969 * @dmabuf_list: list of dmabufs to write to the port. 19970 * @size: the total byte value of the objects to write to the port. 19971 * @offset: the current offset to be used to start the transfer. 19972 * 19973 * This routine will create a wr_object mailbox command to send to the port. 19974 * the mailbox command will be constructed using the dma buffers described in 19975 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19976 * BDEs that the imbedded mailbox can support. The @offset variable will be 19977 * used to indicate the starting offset of the transfer and will also return 19978 * the offset after the write object mailbox has completed. @size is used to 19979 * determine the end of the object and whether the eof bit should be set. 19980 * 19981 * Return 0 is successful and offset will contain the the new offset to use 19982 * for the next write. 19983 * Return negative value for error cases. 19984 **/ 19985 int 19986 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19987 uint32_t size, uint32_t *offset) 19988 { 19989 struct lpfc_mbx_wr_object *wr_object; 19990 LPFC_MBOXQ_t *mbox; 19991 int rc = 0, i = 0; 19992 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19993 uint32_t mbox_tmo; 19994 struct lpfc_dmabuf *dmabuf; 19995 uint32_t written = 0; 19996 bool check_change_status = false; 19997 19998 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19999 if (!mbox) 20000 return -ENOMEM; 20001 20002 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20003 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20004 sizeof(struct lpfc_mbx_wr_object) - 20005 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20006 20007 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20008 wr_object->u.request.write_offset = *offset; 20009 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20010 wr_object->u.request.object_name[0] = 20011 cpu_to_le32(wr_object->u.request.object_name[0]); 20012 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20013 list_for_each_entry(dmabuf, dmabuf_list, list) { 20014 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20015 break; 20016 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20017 wr_object->u.request.bde[i].addrHigh = 20018 putPaddrHigh(dmabuf->phys); 20019 if (written + SLI4_PAGE_SIZE >= size) { 20020 wr_object->u.request.bde[i].tus.f.bdeSize = 20021 (size - written); 20022 written += (size - written); 20023 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20024 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20025 check_change_status = true; 20026 } else { 20027 wr_object->u.request.bde[i].tus.f.bdeSize = 20028 SLI4_PAGE_SIZE; 20029 written += SLI4_PAGE_SIZE; 20030 } 20031 i++; 20032 } 20033 wr_object->u.request.bde_count = i; 20034 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20035 if (!phba->sli4_hba.intr_enable) 20036 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20037 else { 20038 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20039 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20040 } 20041 /* The IOCTL status is embedded in the mailbox subheader. */ 20042 shdr_status = bf_get(lpfc_mbox_hdr_status, 20043 &wr_object->header.cfg_shdr.response); 20044 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20045 &wr_object->header.cfg_shdr.response); 20046 if (check_change_status) { 20047 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20048 &wr_object->u.response); 20049 20050 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20051 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20052 shdr_csf = bf_get(lpfc_wr_object_csf, 20053 &wr_object->u.response); 20054 if (shdr_csf) 20055 shdr_change_status = 20056 LPFC_CHANGE_STATUS_PCI_RESET; 20057 } 20058 20059 switch (shdr_change_status) { 20060 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20061 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20062 "3198 Firmware write complete: System " 20063 "reboot required to instantiate\n"); 20064 break; 20065 case (LPFC_CHANGE_STATUS_FW_RESET): 20066 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20067 "3199 Firmware write complete: Firmware" 20068 " reset required to instantiate\n"); 20069 break; 20070 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20071 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20072 "3200 Firmware write complete: Port " 20073 "Migration or PCI Reset required to " 20074 "instantiate\n"); 20075 break; 20076 case (LPFC_CHANGE_STATUS_PCI_RESET): 20077 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20078 "3201 Firmware write complete: PCI " 20079 "Reset required to instantiate\n"); 20080 break; 20081 default: 20082 break; 20083 } 20084 } 20085 if (!phba->sli4_hba.intr_enable) 20086 mempool_free(mbox, phba->mbox_mem_pool); 20087 else if (rc != MBX_TIMEOUT) 20088 mempool_free(mbox, phba->mbox_mem_pool); 20089 if (shdr_status || shdr_add_status || rc) { 20090 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20091 "3025 Write Object mailbox failed with " 20092 "status x%x add_status x%x, mbx status x%x\n", 20093 shdr_status, shdr_add_status, rc); 20094 rc = -ENXIO; 20095 *offset = shdr_add_status; 20096 } else 20097 *offset += wr_object->u.response.actual_write_length; 20098 return rc; 20099 } 20100 20101 /** 20102 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20103 * @vport: pointer to vport data structure. 20104 * 20105 * This function iterate through the mailboxq and clean up all REG_LOGIN 20106 * and REG_VPI mailbox commands associated with the vport. This function 20107 * is called when driver want to restart discovery of the vport due to 20108 * a Clear Virtual Link event. 20109 **/ 20110 void 20111 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20112 { 20113 struct lpfc_hba *phba = vport->phba; 20114 LPFC_MBOXQ_t *mb, *nextmb; 20115 struct lpfc_dmabuf *mp; 20116 struct lpfc_nodelist *ndlp; 20117 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20118 LIST_HEAD(mbox_cmd_list); 20119 uint8_t restart_loop; 20120 20121 /* Clean up internally queued mailbox commands with the vport */ 20122 spin_lock_irq(&phba->hbalock); 20123 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20124 if (mb->vport != vport) 20125 continue; 20126 20127 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20128 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20129 continue; 20130 20131 list_del(&mb->list); 20132 list_add_tail(&mb->list, &mbox_cmd_list); 20133 } 20134 /* Clean up active mailbox command with the vport */ 20135 mb = phba->sli.mbox_active; 20136 if (mb && (mb->vport == vport)) { 20137 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20138 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20139 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20140 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20141 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20142 /* Put reference count for delayed processing */ 20143 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20144 /* Unregister the RPI when mailbox complete */ 20145 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20146 } 20147 } 20148 /* Cleanup any mailbox completions which are not yet processed */ 20149 do { 20150 restart_loop = 0; 20151 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20152 /* 20153 * If this mailox is already processed or it is 20154 * for another vport ignore it. 20155 */ 20156 if ((mb->vport != vport) || 20157 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20158 continue; 20159 20160 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20161 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20162 continue; 20163 20164 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20165 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20166 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20167 /* Unregister the RPI when mailbox complete */ 20168 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20169 restart_loop = 1; 20170 spin_unlock_irq(&phba->hbalock); 20171 spin_lock(&ndlp->lock); 20172 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20173 spin_unlock(&ndlp->lock); 20174 spin_lock_irq(&phba->hbalock); 20175 break; 20176 } 20177 } 20178 } while (restart_loop); 20179 20180 spin_unlock_irq(&phba->hbalock); 20181 20182 /* Release the cleaned-up mailbox commands */ 20183 while (!list_empty(&mbox_cmd_list)) { 20184 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20185 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20186 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20187 if (mp) { 20188 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20189 kfree(mp); 20190 } 20191 mb->ctx_buf = NULL; 20192 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20193 mb->ctx_ndlp = NULL; 20194 if (ndlp) { 20195 spin_lock(&ndlp->lock); 20196 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20197 spin_unlock(&ndlp->lock); 20198 lpfc_nlp_put(ndlp); 20199 } 20200 } 20201 mempool_free(mb, phba->mbox_mem_pool); 20202 } 20203 20204 /* Release the ndlp with the cleaned-up active mailbox command */ 20205 if (act_mbx_ndlp) { 20206 spin_lock(&act_mbx_ndlp->lock); 20207 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20208 spin_unlock(&act_mbx_ndlp->lock); 20209 lpfc_nlp_put(act_mbx_ndlp); 20210 } 20211 } 20212 20213 /** 20214 * lpfc_drain_txq - Drain the txq 20215 * @phba: Pointer to HBA context object. 20216 * 20217 * This function attempt to submit IOCBs on the txq 20218 * to the adapter. For SLI4 adapters, the txq contains 20219 * ELS IOCBs that have been deferred because the there 20220 * are no SGLs. This congestion can occur with large 20221 * vport counts during node discovery. 20222 **/ 20223 20224 uint32_t 20225 lpfc_drain_txq(struct lpfc_hba *phba) 20226 { 20227 LIST_HEAD(completions); 20228 struct lpfc_sli_ring *pring; 20229 struct lpfc_iocbq *piocbq = NULL; 20230 unsigned long iflags = 0; 20231 char *fail_msg = NULL; 20232 struct lpfc_sglq *sglq; 20233 union lpfc_wqe128 wqe; 20234 uint32_t txq_cnt = 0; 20235 struct lpfc_queue *wq; 20236 20237 if (phba->link_flag & LS_MDS_LOOPBACK) { 20238 /* MDS WQE are posted only to first WQ*/ 20239 wq = phba->sli4_hba.hdwq[0].io_wq; 20240 if (unlikely(!wq)) 20241 return 0; 20242 pring = wq->pring; 20243 } else { 20244 wq = phba->sli4_hba.els_wq; 20245 if (unlikely(!wq)) 20246 return 0; 20247 pring = lpfc_phba_elsring(phba); 20248 } 20249 20250 if (unlikely(!pring) || list_empty(&pring->txq)) 20251 return 0; 20252 20253 spin_lock_irqsave(&pring->ring_lock, iflags); 20254 list_for_each_entry(piocbq, &pring->txq, list) { 20255 txq_cnt++; 20256 } 20257 20258 if (txq_cnt > pring->txq_max) 20259 pring->txq_max = txq_cnt; 20260 20261 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20262 20263 while (!list_empty(&pring->txq)) { 20264 spin_lock_irqsave(&pring->ring_lock, iflags); 20265 20266 piocbq = lpfc_sli_ringtx_get(phba, pring); 20267 if (!piocbq) { 20268 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20270 "2823 txq empty and txq_cnt is %d\n ", 20271 txq_cnt); 20272 break; 20273 } 20274 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20275 if (!sglq) { 20276 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20277 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20278 break; 20279 } 20280 txq_cnt--; 20281 20282 /* The xri and iocb resources secured, 20283 * attempt to issue request 20284 */ 20285 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20286 piocbq->sli4_xritag = sglq->sli4_xritag; 20287 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20288 fail_msg = "to convert bpl to sgl"; 20289 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20290 fail_msg = "to convert iocb to wqe"; 20291 else if (lpfc_sli4_wq_put(wq, &wqe)) 20292 fail_msg = " - Wq is full"; 20293 else 20294 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20295 20296 if (fail_msg) { 20297 /* Failed means we can't issue and need to cancel */ 20298 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20299 "2822 IOCB failed %s iotag 0x%x " 20300 "xri 0x%x\n", 20301 fail_msg, 20302 piocbq->iotag, piocbq->sli4_xritag); 20303 list_add_tail(&piocbq->list, &completions); 20304 } 20305 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20306 } 20307 20308 /* Cancel all the IOCBs that cannot be issued */ 20309 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20310 IOERR_SLI_ABORTED); 20311 20312 return txq_cnt; 20313 } 20314 20315 /** 20316 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20317 * @phba: Pointer to HBA context object. 20318 * @pwqeq: Pointer to command WQE. 20319 * @sglq: Pointer to the scatter gather queue object. 20320 * 20321 * This routine converts the bpl or bde that is in the WQE 20322 * to a sgl list for the sli4 hardware. The physical address 20323 * of the bpl/bde is converted back to a virtual address. 20324 * If the WQE contains a BPL then the list of BDE's is 20325 * converted to sli4_sge's. If the WQE contains a single 20326 * BDE then it is converted to a single sli_sge. 20327 * The WQE is still in cpu endianness so the contents of 20328 * the bpl can be used without byte swapping. 20329 * 20330 * Returns valid XRI = Success, NO_XRI = Failure. 20331 */ 20332 static uint16_t 20333 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20334 struct lpfc_sglq *sglq) 20335 { 20336 uint16_t xritag = NO_XRI; 20337 struct ulp_bde64 *bpl = NULL; 20338 struct ulp_bde64 bde; 20339 struct sli4_sge *sgl = NULL; 20340 struct lpfc_dmabuf *dmabuf; 20341 union lpfc_wqe128 *wqe; 20342 int numBdes = 0; 20343 int i = 0; 20344 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20345 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20346 uint32_t cmd; 20347 20348 if (!pwqeq || !sglq) 20349 return xritag; 20350 20351 sgl = (struct sli4_sge *)sglq->sgl; 20352 wqe = &pwqeq->wqe; 20353 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20354 20355 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20356 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20357 return sglq->sli4_xritag; 20358 numBdes = pwqeq->rsvd2; 20359 if (numBdes) { 20360 /* The addrHigh and addrLow fields within the WQE 20361 * have not been byteswapped yet so there is no 20362 * need to swap them back. 20363 */ 20364 if (pwqeq->context3) 20365 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20366 else 20367 return xritag; 20368 20369 bpl = (struct ulp_bde64 *)dmabuf->virt; 20370 if (!bpl) 20371 return xritag; 20372 20373 for (i = 0; i < numBdes; i++) { 20374 /* Should already be byte swapped. */ 20375 sgl->addr_hi = bpl->addrHigh; 20376 sgl->addr_lo = bpl->addrLow; 20377 20378 sgl->word2 = le32_to_cpu(sgl->word2); 20379 if ((i+1) == numBdes) 20380 bf_set(lpfc_sli4_sge_last, sgl, 1); 20381 else 20382 bf_set(lpfc_sli4_sge_last, sgl, 0); 20383 /* swap the size field back to the cpu so we 20384 * can assign it to the sgl. 20385 */ 20386 bde.tus.w = le32_to_cpu(bpl->tus.w); 20387 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20388 /* The offsets in the sgl need to be accumulated 20389 * separately for the request and reply lists. 20390 * The request is always first, the reply follows. 20391 */ 20392 switch (cmd) { 20393 case CMD_GEN_REQUEST64_WQE: 20394 /* add up the reply sg entries */ 20395 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20396 inbound++; 20397 /* first inbound? reset the offset */ 20398 if (inbound == 1) 20399 offset = 0; 20400 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20401 bf_set(lpfc_sli4_sge_type, sgl, 20402 LPFC_SGE_TYPE_DATA); 20403 offset += bde.tus.f.bdeSize; 20404 break; 20405 case CMD_FCP_TRSP64_WQE: 20406 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20407 bf_set(lpfc_sli4_sge_type, sgl, 20408 LPFC_SGE_TYPE_DATA); 20409 break; 20410 case CMD_FCP_TSEND64_WQE: 20411 case CMD_FCP_TRECEIVE64_WQE: 20412 bf_set(lpfc_sli4_sge_type, sgl, 20413 bpl->tus.f.bdeFlags); 20414 if (i < 3) 20415 offset = 0; 20416 else 20417 offset += bde.tus.f.bdeSize; 20418 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20419 break; 20420 } 20421 sgl->word2 = cpu_to_le32(sgl->word2); 20422 bpl++; 20423 sgl++; 20424 } 20425 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20426 /* The addrHigh and addrLow fields of the BDE have not 20427 * been byteswapped yet so they need to be swapped 20428 * before putting them in the sgl. 20429 */ 20430 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20431 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20432 sgl->word2 = le32_to_cpu(sgl->word2); 20433 bf_set(lpfc_sli4_sge_last, sgl, 1); 20434 sgl->word2 = cpu_to_le32(sgl->word2); 20435 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20436 } 20437 return sglq->sli4_xritag; 20438 } 20439 20440 /** 20441 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20442 * @phba: Pointer to HBA context object. 20443 * @qp: Pointer to HDW queue. 20444 * @pwqe: Pointer to command WQE. 20445 **/ 20446 int 20447 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20448 struct lpfc_iocbq *pwqe) 20449 { 20450 union lpfc_wqe128 *wqe = &pwqe->wqe; 20451 struct lpfc_async_xchg_ctx *ctxp; 20452 struct lpfc_queue *wq; 20453 struct lpfc_sglq *sglq; 20454 struct lpfc_sli_ring *pring; 20455 unsigned long iflags; 20456 uint32_t ret = 0; 20457 20458 /* NVME_LS and NVME_LS ABTS requests. */ 20459 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20460 pring = phba->sli4_hba.nvmels_wq->pring; 20461 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20462 qp, wq_access); 20463 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20464 if (!sglq) { 20465 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20466 return WQE_BUSY; 20467 } 20468 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20469 pwqe->sli4_xritag = sglq->sli4_xritag; 20470 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20471 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20472 return WQE_ERROR; 20473 } 20474 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20475 pwqe->sli4_xritag); 20476 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20477 if (ret) { 20478 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20479 return ret; 20480 } 20481 20482 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20483 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20484 20485 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20486 return 0; 20487 } 20488 20489 /* NVME_FCREQ and NVME_ABTS requests */ 20490 if (pwqe->iocb_flag & LPFC_IO_NVME || 20491 pwqe->iocb_flag & LPFC_IO_FCP) { 20492 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20493 wq = qp->io_wq; 20494 pring = wq->pring; 20495 20496 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20497 20498 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20499 qp, wq_access); 20500 ret = lpfc_sli4_wq_put(wq, wqe); 20501 if (ret) { 20502 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20503 return ret; 20504 } 20505 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20506 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20507 20508 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20509 return 0; 20510 } 20511 20512 /* NVMET requests */ 20513 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20514 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20515 wq = qp->io_wq; 20516 pring = wq->pring; 20517 20518 ctxp = pwqe->context2; 20519 sglq = ctxp->ctxbuf->sglq; 20520 if (pwqe->sli4_xritag == NO_XRI) { 20521 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20522 pwqe->sli4_xritag = sglq->sli4_xritag; 20523 } 20524 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20525 pwqe->sli4_xritag); 20526 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20527 20528 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20529 qp, wq_access); 20530 ret = lpfc_sli4_wq_put(wq, wqe); 20531 if (ret) { 20532 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20533 return ret; 20534 } 20535 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20536 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20537 20538 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20539 return 0; 20540 } 20541 return WQE_ERROR; 20542 } 20543 20544 /** 20545 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20546 * @phba: Pointer to HBA context object. 20547 * @cmdiocb: Pointer to driver command iocb object. 20548 * @cmpl: completion function. 20549 * 20550 * Fill the appropriate fields for the abort WQE and call 20551 * internal routine lpfc_sli4_issue_wqe to send the WQE 20552 * This function is called with hbalock held and no ring_lock held. 20553 * 20554 * RETURNS 0 - SUCCESS 20555 **/ 20556 20557 int 20558 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20559 void *cmpl) 20560 { 20561 struct lpfc_vport *vport = cmdiocb->vport; 20562 struct lpfc_iocbq *abtsiocb = NULL; 20563 union lpfc_wqe128 *abtswqe; 20564 struct lpfc_io_buf *lpfc_cmd; 20565 int retval = IOCB_ERROR; 20566 u16 xritag = cmdiocb->sli4_xritag; 20567 20568 /* 20569 * The scsi command can not be in txq and it is in flight because the 20570 * pCmd is still pointing at the SCSI command we have to abort. There 20571 * is no need to search the txcmplq. Just send an abort to the FW. 20572 */ 20573 20574 abtsiocb = __lpfc_sli_get_iocbq(phba); 20575 if (!abtsiocb) 20576 return WQE_NORESOURCE; 20577 20578 /* Indicate the IO is being aborted by the driver. */ 20579 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20580 20581 abtswqe = &abtsiocb->wqe; 20582 memset(abtswqe, 0, sizeof(*abtswqe)); 20583 20584 if (lpfc_is_link_up(phba)) 20585 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20586 else 20587 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0); 20588 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20589 abtswqe->abort_cmd.rsrvd5 = 0; 20590 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20591 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20592 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20593 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20594 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20595 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20596 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20597 20598 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20599 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20600 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20601 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20602 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20603 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20604 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20605 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20606 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20607 abtsiocb->vport = vport; 20608 abtsiocb->wqe_cmpl = cmpl; 20609 20610 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20611 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20612 20613 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20614 "0359 Abort xri x%x, original iotag x%x, " 20615 "abort cmd iotag x%x retval x%x\n", 20616 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20617 20618 if (retval) { 20619 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20620 __lpfc_sli_release_iocbq(phba, abtsiocb); 20621 } 20622 20623 return retval; 20624 } 20625 20626 #ifdef LPFC_MXP_STAT 20627 /** 20628 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20629 * @phba: pointer to lpfc hba data structure. 20630 * @hwqid: belong to which HWQ. 20631 * 20632 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20633 * 15 seconds after a test case is running. 20634 * 20635 * The user should call lpfc_debugfs_multixripools_write before running a test 20636 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20637 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20638 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20639 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20640 **/ 20641 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20642 { 20643 struct lpfc_sli4_hdw_queue *qp; 20644 struct lpfc_multixri_pool *multixri_pool; 20645 struct lpfc_pvt_pool *pvt_pool; 20646 struct lpfc_pbl_pool *pbl_pool; 20647 u32 txcmplq_cnt; 20648 20649 qp = &phba->sli4_hba.hdwq[hwqid]; 20650 multixri_pool = qp->p_multixri_pool; 20651 if (!multixri_pool) 20652 return; 20653 20654 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20655 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20656 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20657 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20658 20659 multixri_pool->stat_pbl_count = pbl_pool->count; 20660 multixri_pool->stat_pvt_count = pvt_pool->count; 20661 multixri_pool->stat_busy_count = txcmplq_cnt; 20662 } 20663 20664 multixri_pool->stat_snapshot_taken++; 20665 } 20666 #endif 20667 20668 /** 20669 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20670 * @phba: pointer to lpfc hba data structure. 20671 * @hwqid: belong to which HWQ. 20672 * 20673 * This routine moves some XRIs from private to public pool when private pool 20674 * is not busy. 20675 **/ 20676 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20677 { 20678 struct lpfc_multixri_pool *multixri_pool; 20679 u32 io_req_count; 20680 u32 prev_io_req_count; 20681 20682 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20683 if (!multixri_pool) 20684 return; 20685 io_req_count = multixri_pool->io_req_count; 20686 prev_io_req_count = multixri_pool->prev_io_req_count; 20687 20688 if (prev_io_req_count != io_req_count) { 20689 /* Private pool is busy */ 20690 multixri_pool->prev_io_req_count = io_req_count; 20691 } else { 20692 /* Private pool is not busy. 20693 * Move XRIs from private to public pool. 20694 */ 20695 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20696 } 20697 } 20698 20699 /** 20700 * lpfc_adjust_high_watermark - Adjust high watermark 20701 * @phba: pointer to lpfc hba data structure. 20702 * @hwqid: belong to which HWQ. 20703 * 20704 * This routine sets high watermark as number of outstanding XRIs, 20705 * but make sure the new value is between xri_limit/2 and xri_limit. 20706 **/ 20707 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20708 { 20709 u32 new_watermark; 20710 u32 watermark_max; 20711 u32 watermark_min; 20712 u32 xri_limit; 20713 u32 txcmplq_cnt; 20714 u32 abts_io_bufs; 20715 struct lpfc_multixri_pool *multixri_pool; 20716 struct lpfc_sli4_hdw_queue *qp; 20717 20718 qp = &phba->sli4_hba.hdwq[hwqid]; 20719 multixri_pool = qp->p_multixri_pool; 20720 if (!multixri_pool) 20721 return; 20722 xri_limit = multixri_pool->xri_limit; 20723 20724 watermark_max = xri_limit; 20725 watermark_min = xri_limit / 2; 20726 20727 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20728 abts_io_bufs = qp->abts_scsi_io_bufs; 20729 abts_io_bufs += qp->abts_nvme_io_bufs; 20730 20731 new_watermark = txcmplq_cnt + abts_io_bufs; 20732 new_watermark = min(watermark_max, new_watermark); 20733 new_watermark = max(watermark_min, new_watermark); 20734 multixri_pool->pvt_pool.high_watermark = new_watermark; 20735 20736 #ifdef LPFC_MXP_STAT 20737 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20738 new_watermark); 20739 #endif 20740 } 20741 20742 /** 20743 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20744 * @phba: pointer to lpfc hba data structure. 20745 * @hwqid: belong to which HWQ. 20746 * 20747 * This routine is called from hearbeat timer when pvt_pool is idle. 20748 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20749 * The first step moves (all - low_watermark) amount of XRIs. 20750 * The second step moves the rest of XRIs. 20751 **/ 20752 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20753 { 20754 struct lpfc_pbl_pool *pbl_pool; 20755 struct lpfc_pvt_pool *pvt_pool; 20756 struct lpfc_sli4_hdw_queue *qp; 20757 struct lpfc_io_buf *lpfc_ncmd; 20758 struct lpfc_io_buf *lpfc_ncmd_next; 20759 unsigned long iflag; 20760 struct list_head tmp_list; 20761 u32 tmp_count; 20762 20763 qp = &phba->sli4_hba.hdwq[hwqid]; 20764 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20765 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20766 tmp_count = 0; 20767 20768 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20769 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20770 20771 if (pvt_pool->count > pvt_pool->low_watermark) { 20772 /* Step 1: move (all - low_watermark) from pvt_pool 20773 * to pbl_pool 20774 */ 20775 20776 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20777 INIT_LIST_HEAD(&tmp_list); 20778 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20779 &pvt_pool->list, list) { 20780 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20781 tmp_count++; 20782 if (tmp_count >= pvt_pool->low_watermark) 20783 break; 20784 } 20785 20786 /* Move all bufs from pvt_pool to pbl_pool */ 20787 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20788 20789 /* Move all bufs from tmp_list to pvt_pool */ 20790 list_splice(&tmp_list, &pvt_pool->list); 20791 20792 pbl_pool->count += (pvt_pool->count - tmp_count); 20793 pvt_pool->count = tmp_count; 20794 } else { 20795 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20796 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20797 pbl_pool->count += pvt_pool->count; 20798 pvt_pool->count = 0; 20799 } 20800 20801 spin_unlock(&pvt_pool->lock); 20802 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20803 } 20804 20805 /** 20806 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20807 * @phba: pointer to lpfc hba data structure 20808 * @qp: pointer to HDW queue 20809 * @pbl_pool: specified public free XRI pool 20810 * @pvt_pool: specified private free XRI pool 20811 * @count: number of XRIs to move 20812 * 20813 * This routine tries to move some free common bufs from the specified pbl_pool 20814 * to the specified pvt_pool. It might move less than count XRIs if there's not 20815 * enough in public pool. 20816 * 20817 * Return: 20818 * true - if XRIs are successfully moved from the specified pbl_pool to the 20819 * specified pvt_pool 20820 * false - if the specified pbl_pool is empty or locked by someone else 20821 **/ 20822 static bool 20823 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20824 struct lpfc_pbl_pool *pbl_pool, 20825 struct lpfc_pvt_pool *pvt_pool, u32 count) 20826 { 20827 struct lpfc_io_buf *lpfc_ncmd; 20828 struct lpfc_io_buf *lpfc_ncmd_next; 20829 unsigned long iflag; 20830 int ret; 20831 20832 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20833 if (ret) { 20834 if (pbl_pool->count) { 20835 /* Move a batch of XRIs from public to private pool */ 20836 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20837 list_for_each_entry_safe(lpfc_ncmd, 20838 lpfc_ncmd_next, 20839 &pbl_pool->list, 20840 list) { 20841 list_move_tail(&lpfc_ncmd->list, 20842 &pvt_pool->list); 20843 pvt_pool->count++; 20844 pbl_pool->count--; 20845 count--; 20846 if (count == 0) 20847 break; 20848 } 20849 20850 spin_unlock(&pvt_pool->lock); 20851 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20852 return true; 20853 } 20854 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20855 } 20856 20857 return false; 20858 } 20859 20860 /** 20861 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20862 * @phba: pointer to lpfc hba data structure. 20863 * @hwqid: belong to which HWQ. 20864 * @count: number of XRIs to move 20865 * 20866 * This routine tries to find some free common bufs in one of public pools with 20867 * Round Robin method. The search always starts from local hwqid, then the next 20868 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20869 * a batch of free common bufs are moved to private pool on hwqid. 20870 * It might move less than count XRIs if there's not enough in public pool. 20871 **/ 20872 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20873 { 20874 struct lpfc_multixri_pool *multixri_pool; 20875 struct lpfc_multixri_pool *next_multixri_pool; 20876 struct lpfc_pvt_pool *pvt_pool; 20877 struct lpfc_pbl_pool *pbl_pool; 20878 struct lpfc_sli4_hdw_queue *qp; 20879 u32 next_hwqid; 20880 u32 hwq_count; 20881 int ret; 20882 20883 qp = &phba->sli4_hba.hdwq[hwqid]; 20884 multixri_pool = qp->p_multixri_pool; 20885 pvt_pool = &multixri_pool->pvt_pool; 20886 pbl_pool = &multixri_pool->pbl_pool; 20887 20888 /* Check if local pbl_pool is available */ 20889 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20890 if (ret) { 20891 #ifdef LPFC_MXP_STAT 20892 multixri_pool->local_pbl_hit_count++; 20893 #endif 20894 return; 20895 } 20896 20897 hwq_count = phba->cfg_hdw_queue; 20898 20899 /* Get the next hwqid which was found last time */ 20900 next_hwqid = multixri_pool->rrb_next_hwqid; 20901 20902 do { 20903 /* Go to next hwq */ 20904 next_hwqid = (next_hwqid + 1) % hwq_count; 20905 20906 next_multixri_pool = 20907 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20908 pbl_pool = &next_multixri_pool->pbl_pool; 20909 20910 /* Check if the public free xri pool is available */ 20911 ret = _lpfc_move_xri_pbl_to_pvt( 20912 phba, qp, pbl_pool, pvt_pool, count); 20913 20914 /* Exit while-loop if success or all hwqid are checked */ 20915 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20916 20917 /* Starting point for the next time */ 20918 multixri_pool->rrb_next_hwqid = next_hwqid; 20919 20920 if (!ret) { 20921 /* stats: all public pools are empty*/ 20922 multixri_pool->pbl_empty_count++; 20923 } 20924 20925 #ifdef LPFC_MXP_STAT 20926 if (ret) { 20927 if (next_hwqid == hwqid) 20928 multixri_pool->local_pbl_hit_count++; 20929 else 20930 multixri_pool->other_pbl_hit_count++; 20931 } 20932 #endif 20933 } 20934 20935 /** 20936 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20937 * @phba: pointer to lpfc hba data structure. 20938 * @hwqid: belong to which HWQ. 20939 * 20940 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20941 * low watermark. 20942 **/ 20943 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20944 { 20945 struct lpfc_multixri_pool *multixri_pool; 20946 struct lpfc_pvt_pool *pvt_pool; 20947 20948 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20949 pvt_pool = &multixri_pool->pvt_pool; 20950 20951 if (pvt_pool->count < pvt_pool->low_watermark) 20952 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20953 } 20954 20955 /** 20956 * lpfc_release_io_buf - Return one IO buf back to free pool 20957 * @phba: pointer to lpfc hba data structure. 20958 * @lpfc_ncmd: IO buf to be returned. 20959 * @qp: belong to which HWQ. 20960 * 20961 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20962 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20963 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20964 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20965 * lpfc_io_buf_list_put. 20966 **/ 20967 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20968 struct lpfc_sli4_hdw_queue *qp) 20969 { 20970 unsigned long iflag; 20971 struct lpfc_pbl_pool *pbl_pool; 20972 struct lpfc_pvt_pool *pvt_pool; 20973 struct lpfc_epd_pool *epd_pool; 20974 u32 txcmplq_cnt; 20975 u32 xri_owned; 20976 u32 xri_limit; 20977 u32 abts_io_bufs; 20978 20979 /* MUST zero fields if buffer is reused by another protocol */ 20980 lpfc_ncmd->nvmeCmd = NULL; 20981 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20982 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20983 20984 if (phba->cfg_xpsgl && !phba->nvmet_support && 20985 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20986 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20987 20988 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20989 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20990 20991 if (phba->cfg_xri_rebalancing) { 20992 if (lpfc_ncmd->expedite) { 20993 /* Return to expedite pool */ 20994 epd_pool = &phba->epd_pool; 20995 spin_lock_irqsave(&epd_pool->lock, iflag); 20996 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20997 epd_pool->count++; 20998 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20999 return; 21000 } 21001 21002 /* Avoid invalid access if an IO sneaks in and is being rejected 21003 * just _after_ xri pools are destroyed in lpfc_offline. 21004 * Nothing much can be done at this point. 21005 */ 21006 if (!qp->p_multixri_pool) 21007 return; 21008 21009 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21010 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21011 21012 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21013 abts_io_bufs = qp->abts_scsi_io_bufs; 21014 abts_io_bufs += qp->abts_nvme_io_bufs; 21015 21016 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21017 xri_limit = qp->p_multixri_pool->xri_limit; 21018 21019 #ifdef LPFC_MXP_STAT 21020 if (xri_owned <= xri_limit) 21021 qp->p_multixri_pool->below_limit_count++; 21022 else 21023 qp->p_multixri_pool->above_limit_count++; 21024 #endif 21025 21026 /* XRI goes to either public or private free xri pool 21027 * based on watermark and xri_limit 21028 */ 21029 if ((pvt_pool->count < pvt_pool->low_watermark) || 21030 (xri_owned < xri_limit && 21031 pvt_pool->count < pvt_pool->high_watermark)) { 21032 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21033 qp, free_pvt_pool); 21034 list_add_tail(&lpfc_ncmd->list, 21035 &pvt_pool->list); 21036 pvt_pool->count++; 21037 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21038 } else { 21039 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21040 qp, free_pub_pool); 21041 list_add_tail(&lpfc_ncmd->list, 21042 &pbl_pool->list); 21043 pbl_pool->count++; 21044 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21045 } 21046 } else { 21047 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21048 qp, free_xri); 21049 list_add_tail(&lpfc_ncmd->list, 21050 &qp->lpfc_io_buf_list_put); 21051 qp->put_io_bufs++; 21052 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21053 iflag); 21054 } 21055 } 21056 21057 /** 21058 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21059 * @phba: pointer to lpfc hba data structure. 21060 * @qp: pointer to HDW queue 21061 * @pvt_pool: pointer to private pool data structure. 21062 * @ndlp: pointer to lpfc nodelist data structure. 21063 * 21064 * This routine tries to get one free IO buf from private pool. 21065 * 21066 * Return: 21067 * pointer to one free IO buf - if private pool is not empty 21068 * NULL - if private pool is empty 21069 **/ 21070 static struct lpfc_io_buf * 21071 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21072 struct lpfc_sli4_hdw_queue *qp, 21073 struct lpfc_pvt_pool *pvt_pool, 21074 struct lpfc_nodelist *ndlp) 21075 { 21076 struct lpfc_io_buf *lpfc_ncmd; 21077 struct lpfc_io_buf *lpfc_ncmd_next; 21078 unsigned long iflag; 21079 21080 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21081 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21082 &pvt_pool->list, list) { 21083 if (lpfc_test_rrq_active( 21084 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21085 continue; 21086 list_del(&lpfc_ncmd->list); 21087 pvt_pool->count--; 21088 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21089 return lpfc_ncmd; 21090 } 21091 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21092 21093 return NULL; 21094 } 21095 21096 /** 21097 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21098 * @phba: pointer to lpfc hba data structure. 21099 * 21100 * This routine tries to get one free IO buf from expedite pool. 21101 * 21102 * Return: 21103 * pointer to one free IO buf - if expedite pool is not empty 21104 * NULL - if expedite pool is empty 21105 **/ 21106 static struct lpfc_io_buf * 21107 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21108 { 21109 struct lpfc_io_buf *lpfc_ncmd; 21110 struct lpfc_io_buf *lpfc_ncmd_next; 21111 unsigned long iflag; 21112 struct lpfc_epd_pool *epd_pool; 21113 21114 epd_pool = &phba->epd_pool; 21115 lpfc_ncmd = NULL; 21116 21117 spin_lock_irqsave(&epd_pool->lock, iflag); 21118 if (epd_pool->count > 0) { 21119 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21120 &epd_pool->list, list) { 21121 list_del(&lpfc_ncmd->list); 21122 epd_pool->count--; 21123 break; 21124 } 21125 } 21126 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21127 21128 return lpfc_ncmd; 21129 } 21130 21131 /** 21132 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21133 * @phba: pointer to lpfc hba data structure. 21134 * @ndlp: pointer to lpfc nodelist data structure. 21135 * @hwqid: belong to which HWQ 21136 * @expedite: 1 means this request is urgent. 21137 * 21138 * This routine will do the following actions and then return a pointer to 21139 * one free IO buf. 21140 * 21141 * 1. If private free xri count is empty, move some XRIs from public to 21142 * private pool. 21143 * 2. Get one XRI from private free xri pool. 21144 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21145 * get one free xri from expedite pool. 21146 * 21147 * Note: ndlp is only used on SCSI side for RRQ testing. 21148 * The caller should pass NULL for ndlp on NVME side. 21149 * 21150 * Return: 21151 * pointer to one free IO buf - if private pool is not empty 21152 * NULL - if private pool is empty 21153 **/ 21154 static struct lpfc_io_buf * 21155 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21156 struct lpfc_nodelist *ndlp, 21157 int hwqid, int expedite) 21158 { 21159 struct lpfc_sli4_hdw_queue *qp; 21160 struct lpfc_multixri_pool *multixri_pool; 21161 struct lpfc_pvt_pool *pvt_pool; 21162 struct lpfc_io_buf *lpfc_ncmd; 21163 21164 qp = &phba->sli4_hba.hdwq[hwqid]; 21165 lpfc_ncmd = NULL; 21166 multixri_pool = qp->p_multixri_pool; 21167 pvt_pool = &multixri_pool->pvt_pool; 21168 multixri_pool->io_req_count++; 21169 21170 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21171 if (pvt_pool->count == 0) 21172 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21173 21174 /* Get one XRI from private free xri pool */ 21175 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21176 21177 if (lpfc_ncmd) { 21178 lpfc_ncmd->hdwq = qp; 21179 lpfc_ncmd->hdwq_no = hwqid; 21180 } else if (expedite) { 21181 /* If we fail to get one from pvt_pool and this is an expedite 21182 * request, get one free xri from expedite pool. 21183 */ 21184 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21185 } 21186 21187 return lpfc_ncmd; 21188 } 21189 21190 static inline struct lpfc_io_buf * 21191 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21192 { 21193 struct lpfc_sli4_hdw_queue *qp; 21194 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21195 21196 qp = &phba->sli4_hba.hdwq[idx]; 21197 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21198 &qp->lpfc_io_buf_list_get, list) { 21199 if (lpfc_test_rrq_active(phba, ndlp, 21200 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21201 continue; 21202 21203 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21204 continue; 21205 21206 list_del_init(&lpfc_cmd->list); 21207 qp->get_io_bufs--; 21208 lpfc_cmd->hdwq = qp; 21209 lpfc_cmd->hdwq_no = idx; 21210 return lpfc_cmd; 21211 } 21212 return NULL; 21213 } 21214 21215 /** 21216 * lpfc_get_io_buf - Get one IO buffer from free pool 21217 * @phba: The HBA for which this call is being executed. 21218 * @ndlp: pointer to lpfc nodelist data structure. 21219 * @hwqid: belong to which HWQ 21220 * @expedite: 1 means this request is urgent. 21221 * 21222 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21223 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21224 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21225 * 21226 * Note: ndlp is only used on SCSI side for RRQ testing. 21227 * The caller should pass NULL for ndlp on NVME side. 21228 * 21229 * Return codes: 21230 * NULL - Error 21231 * Pointer to lpfc_io_buf - Success 21232 **/ 21233 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21234 struct lpfc_nodelist *ndlp, 21235 u32 hwqid, int expedite) 21236 { 21237 struct lpfc_sli4_hdw_queue *qp; 21238 unsigned long iflag; 21239 struct lpfc_io_buf *lpfc_cmd; 21240 21241 qp = &phba->sli4_hba.hdwq[hwqid]; 21242 lpfc_cmd = NULL; 21243 21244 if (phba->cfg_xri_rebalancing) 21245 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21246 phba, ndlp, hwqid, expedite); 21247 else { 21248 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21249 qp, alloc_xri_get); 21250 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21251 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21252 if (!lpfc_cmd) { 21253 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21254 qp, alloc_xri_put); 21255 list_splice(&qp->lpfc_io_buf_list_put, 21256 &qp->lpfc_io_buf_list_get); 21257 qp->get_io_bufs += qp->put_io_bufs; 21258 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21259 qp->put_io_bufs = 0; 21260 spin_unlock(&qp->io_buf_list_put_lock); 21261 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21262 expedite) 21263 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21264 } 21265 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21266 } 21267 21268 return lpfc_cmd; 21269 } 21270 21271 /** 21272 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21273 * @phba: The HBA for which this call is being executed. 21274 * @lpfc_buf: IO buf structure to append the SGL chunk 21275 * 21276 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21277 * and will allocate an SGL chunk if the pool is empty. 21278 * 21279 * Return codes: 21280 * NULL - Error 21281 * Pointer to sli4_hybrid_sgl - Success 21282 **/ 21283 struct sli4_hybrid_sgl * 21284 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21285 { 21286 struct sli4_hybrid_sgl *list_entry = NULL; 21287 struct sli4_hybrid_sgl *tmp = NULL; 21288 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21289 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21290 struct list_head *buf_list = &hdwq->sgl_list; 21291 unsigned long iflags; 21292 21293 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21294 21295 if (likely(!list_empty(buf_list))) { 21296 /* break off 1 chunk from the sgl_list */ 21297 list_for_each_entry_safe(list_entry, tmp, 21298 buf_list, list_node) { 21299 list_move_tail(&list_entry->list_node, 21300 &lpfc_buf->dma_sgl_xtra_list); 21301 break; 21302 } 21303 } else { 21304 /* allocate more */ 21305 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21306 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21307 cpu_to_node(hdwq->io_wq->chann)); 21308 if (!tmp) { 21309 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21310 "8353 error kmalloc memory for HDWQ " 21311 "%d %s\n", 21312 lpfc_buf->hdwq_no, __func__); 21313 return NULL; 21314 } 21315 21316 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21317 GFP_ATOMIC, &tmp->dma_phys_sgl); 21318 if (!tmp->dma_sgl) { 21319 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21320 "8354 error pool_alloc memory for HDWQ " 21321 "%d %s\n", 21322 lpfc_buf->hdwq_no, __func__); 21323 kfree(tmp); 21324 return NULL; 21325 } 21326 21327 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21328 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21329 } 21330 21331 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21332 struct sli4_hybrid_sgl, 21333 list_node); 21334 21335 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21336 21337 return allocated_sgl; 21338 } 21339 21340 /** 21341 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21342 * @phba: The HBA for which this call is being executed. 21343 * @lpfc_buf: IO buf structure with the SGL chunk 21344 * 21345 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21346 * 21347 * Return codes: 21348 * 0 - Success 21349 * -EINVAL - Error 21350 **/ 21351 int 21352 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21353 { 21354 int rc = 0; 21355 struct sli4_hybrid_sgl *list_entry = NULL; 21356 struct sli4_hybrid_sgl *tmp = NULL; 21357 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21358 struct list_head *buf_list = &hdwq->sgl_list; 21359 unsigned long iflags; 21360 21361 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21362 21363 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21364 list_for_each_entry_safe(list_entry, tmp, 21365 &lpfc_buf->dma_sgl_xtra_list, 21366 list_node) { 21367 list_move_tail(&list_entry->list_node, 21368 buf_list); 21369 } 21370 } else { 21371 rc = -EINVAL; 21372 } 21373 21374 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21375 return rc; 21376 } 21377 21378 /** 21379 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21380 * @phba: phba object 21381 * @hdwq: hdwq to cleanup sgl buff resources on 21382 * 21383 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21384 * 21385 * Return codes: 21386 * None 21387 **/ 21388 void 21389 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21390 struct lpfc_sli4_hdw_queue *hdwq) 21391 { 21392 struct list_head *buf_list = &hdwq->sgl_list; 21393 struct sli4_hybrid_sgl *list_entry = NULL; 21394 struct sli4_hybrid_sgl *tmp = NULL; 21395 unsigned long iflags; 21396 21397 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21398 21399 /* Free sgl pool */ 21400 list_for_each_entry_safe(list_entry, tmp, 21401 buf_list, list_node) { 21402 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21403 list_entry->dma_sgl, 21404 list_entry->dma_phys_sgl); 21405 list_del(&list_entry->list_node); 21406 kfree(list_entry); 21407 } 21408 21409 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21410 } 21411 21412 /** 21413 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21414 * @phba: The HBA for which this call is being executed. 21415 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21416 * 21417 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21418 * and will allocate an CMD/RSP buffer if the pool is empty. 21419 * 21420 * Return codes: 21421 * NULL - Error 21422 * Pointer to fcp_cmd_rsp_buf - Success 21423 **/ 21424 struct fcp_cmd_rsp_buf * 21425 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21426 struct lpfc_io_buf *lpfc_buf) 21427 { 21428 struct fcp_cmd_rsp_buf *list_entry = NULL; 21429 struct fcp_cmd_rsp_buf *tmp = NULL; 21430 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21431 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21432 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21433 unsigned long iflags; 21434 21435 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21436 21437 if (likely(!list_empty(buf_list))) { 21438 /* break off 1 chunk from the list */ 21439 list_for_each_entry_safe(list_entry, tmp, 21440 buf_list, 21441 list_node) { 21442 list_move_tail(&list_entry->list_node, 21443 &lpfc_buf->dma_cmd_rsp_list); 21444 break; 21445 } 21446 } else { 21447 /* allocate more */ 21448 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21449 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21450 cpu_to_node(hdwq->io_wq->chann)); 21451 if (!tmp) { 21452 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21453 "8355 error kmalloc memory for HDWQ " 21454 "%d %s\n", 21455 lpfc_buf->hdwq_no, __func__); 21456 return NULL; 21457 } 21458 21459 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21460 GFP_ATOMIC, 21461 &tmp->fcp_cmd_rsp_dma_handle); 21462 21463 if (!tmp->fcp_cmnd) { 21464 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21465 "8356 error pool_alloc memory for HDWQ " 21466 "%d %s\n", 21467 lpfc_buf->hdwq_no, __func__); 21468 kfree(tmp); 21469 return NULL; 21470 } 21471 21472 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21473 sizeof(struct fcp_cmnd)); 21474 21475 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21476 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21477 } 21478 21479 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21480 struct fcp_cmd_rsp_buf, 21481 list_node); 21482 21483 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21484 21485 return allocated_buf; 21486 } 21487 21488 /** 21489 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21490 * @phba: The HBA for which this call is being executed. 21491 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21492 * 21493 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21494 * 21495 * Return codes: 21496 * 0 - Success 21497 * -EINVAL - Error 21498 **/ 21499 int 21500 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21501 struct lpfc_io_buf *lpfc_buf) 21502 { 21503 int rc = 0; 21504 struct fcp_cmd_rsp_buf *list_entry = NULL; 21505 struct fcp_cmd_rsp_buf *tmp = NULL; 21506 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21507 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21508 unsigned long iflags; 21509 21510 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21511 21512 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21513 list_for_each_entry_safe(list_entry, tmp, 21514 &lpfc_buf->dma_cmd_rsp_list, 21515 list_node) { 21516 list_move_tail(&list_entry->list_node, 21517 buf_list); 21518 } 21519 } else { 21520 rc = -EINVAL; 21521 } 21522 21523 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21524 return rc; 21525 } 21526 21527 /** 21528 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21529 * @phba: phba object 21530 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21531 * 21532 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21533 * 21534 * Return codes: 21535 * None 21536 **/ 21537 void 21538 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21539 struct lpfc_sli4_hdw_queue *hdwq) 21540 { 21541 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21542 struct fcp_cmd_rsp_buf *list_entry = NULL; 21543 struct fcp_cmd_rsp_buf *tmp = NULL; 21544 unsigned long iflags; 21545 21546 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21547 21548 /* Free cmd_rsp buf pool */ 21549 list_for_each_entry_safe(list_entry, tmp, 21550 buf_list, 21551 list_node) { 21552 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21553 list_entry->fcp_cmnd, 21554 list_entry->fcp_cmd_rsp_dma_handle); 21555 list_del(&list_entry->list_node); 21556 kfree(list_entry); 21557 } 21558 21559 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21560 } 21561