1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 1217 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1218 empty = list_empty(&phba->active_rrq_list); 1219 list_add_tail(&rrq->list, &phba->active_rrq_list); 1220 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1221 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 return 0; 1225 out: 1226 spin_unlock_irqrestore(&phba->hbalock, iflags); 1227 outnl: 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 int found = 0; 1255 u8 cmnd; 1256 1257 cmnd = get_job_cmnd(phba, piocbq); 1258 1259 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1260 lpfc_cmd = piocbq->io_buf; 1261 ndlp = lpfc_cmd->rdata->pnode; 1262 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1263 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1264 ndlp = piocbq->ndlp; 1265 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1266 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1267 ndlp = NULL; 1268 else 1269 ndlp = piocbq->ndlp; 1270 } else { 1271 ndlp = piocbq->ndlp; 1272 } 1273 1274 spin_lock(&phba->sli4_hba.sgl_list_lock); 1275 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1276 start_sglq = sglq; 1277 while (!found) { 1278 if (!sglq) 1279 break; 1280 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1281 test_bit(sglq->sli4_lxritag, 1282 ndlp->active_rrqs_xri_bitmap)) { 1283 /* This xri has an rrq outstanding for this DID. 1284 * put it back in the list and get another xri. 1285 */ 1286 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1287 sglq = NULL; 1288 list_remove_head(lpfc_els_sgl_list, sglq, 1289 struct lpfc_sglq, list); 1290 if (sglq == start_sglq) { 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 break; 1294 } else 1295 continue; 1296 } 1297 sglq->ndlp = ndlp; 1298 found = 1; 1299 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1300 sglq->state = SGL_ALLOCATED; 1301 } 1302 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1303 return sglq; 1304 } 1305 1306 /** 1307 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1308 * @phba: Pointer to HBA context object. 1309 * @piocbq: Pointer to the iocbq. 1310 * 1311 * This function is called with the sgl_list lock held. This function 1312 * gets a new driver sglq object from the sglq list. If the 1313 * list is not empty then it is successful, it returns pointer to the newly 1314 * allocated sglq object else it returns NULL. 1315 **/ 1316 struct lpfc_sglq * 1317 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1318 { 1319 struct list_head *lpfc_nvmet_sgl_list; 1320 struct lpfc_sglq *sglq = NULL; 1321 1322 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1323 1324 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1325 1326 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1327 if (!sglq) 1328 return NULL; 1329 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1330 sglq->state = SGL_ALLOCATED; 1331 return sglq; 1332 } 1333 1334 /** 1335 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1336 * @phba: Pointer to HBA context object. 1337 * 1338 * This function is called with no lock held. This function 1339 * allocates a new driver iocb object from the iocb pool. If the 1340 * allocation is successful, it returns pointer to the newly 1341 * allocated iocb object else it returns NULL. 1342 **/ 1343 struct lpfc_iocbq * 1344 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1345 { 1346 struct lpfc_iocbq * iocbq = NULL; 1347 unsigned long iflags; 1348 1349 spin_lock_irqsave(&phba->hbalock, iflags); 1350 iocbq = __lpfc_sli_get_iocbq(phba); 1351 spin_unlock_irqrestore(&phba->hbalock, iflags); 1352 return iocbq; 1353 } 1354 1355 /** 1356 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1357 * @phba: Pointer to HBA context object. 1358 * @iocbq: Pointer to driver iocb object. 1359 * 1360 * This function is called to release the driver iocb object 1361 * to the iocb pool. The iotag in the iocb object 1362 * does not change for each use of the iocb object. This function 1363 * clears all other fields of the iocb object when it is freed. 1364 * The sqlq structure that holds the xritag and phys and virtual 1365 * mappings for the scatter gather list is retrieved from the 1366 * active array of sglq. The get of the sglq pointer also clears 1367 * the entry in the array. If the status of the IO indiactes that 1368 * this IO was aborted then the sglq entry it put on the 1369 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1370 * IO has good status or fails for any other reason then the sglq 1371 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1372 * asserted held in the code path calling this routine. 1373 **/ 1374 static void 1375 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1376 { 1377 struct lpfc_sglq *sglq; 1378 unsigned long iflag = 0; 1379 struct lpfc_sli_ring *pring; 1380 1381 if (iocbq->sli4_xritag == NO_XRI) 1382 sglq = NULL; 1383 else 1384 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1385 1386 1387 if (sglq) { 1388 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1389 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1390 iflag); 1391 sglq->state = SGL_FREED; 1392 sglq->ndlp = NULL; 1393 list_add_tail(&sglq->list, 1394 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1395 spin_unlock_irqrestore( 1396 &phba->sli4_hba.sgl_list_lock, iflag); 1397 goto out; 1398 } 1399 1400 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1401 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1402 sglq->state != SGL_XRI_ABORTED) { 1403 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1404 iflag); 1405 1406 /* Check if we can get a reference on ndlp */ 1407 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1408 sglq->ndlp = NULL; 1409 1410 list_add(&sglq->list, 1411 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1412 spin_unlock_irqrestore( 1413 &phba->sli4_hba.sgl_list_lock, iflag); 1414 } else { 1415 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1416 iflag); 1417 sglq->state = SGL_FREED; 1418 sglq->ndlp = NULL; 1419 list_add_tail(&sglq->list, 1420 &phba->sli4_hba.lpfc_els_sgl_list); 1421 spin_unlock_irqrestore( 1422 &phba->sli4_hba.sgl_list_lock, iflag); 1423 pring = lpfc_phba_elsring(phba); 1424 /* Check if TXQ queue needs to be serviced */ 1425 if (pring && (!list_empty(&pring->txq))) 1426 lpfc_worker_wake_up(phba); 1427 } 1428 } 1429 1430 out: 1431 /* 1432 * Clean all volatile data fields, preserve iotag and node struct. 1433 */ 1434 memset_startat(iocbq, 0, wqe); 1435 iocbq->sli4_lxritag = NO_XRI; 1436 iocbq->sli4_xritag = NO_XRI; 1437 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1438 LPFC_IO_NVME_LS); 1439 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1440 } 1441 1442 1443 /** 1444 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1445 * @phba: Pointer to HBA context object. 1446 * @iocbq: Pointer to driver iocb object. 1447 * 1448 * This function is called to release the driver iocb object to the 1449 * iocb pool. The iotag in the iocb object does not change for each 1450 * use of the iocb object. This function clears all other fields of 1451 * the iocb object when it is freed. The hbalock is asserted held in 1452 * the code path calling this routine. 1453 **/ 1454 static void 1455 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1456 { 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset_startat(iocbq, 0, iocb); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 /* Because of bytes adjustment due to shorter timer in 1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1853 * may seem like BW is above 100%. 1854 */ 1855 if (bwpcent > 100) 1856 bwpcent = 100; 1857 1858 if (phba->cmf_max_bytes_per_interval < bw && 1859 bwpcent > 95) 1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1861 "6208 Congestion bandwidth " 1862 "limits removed\n"); 1863 else if ((phba->cmf_max_bytes_per_interval > bw) && 1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1866 "6209 Congestion bandwidth " 1867 "limits in effect\n"); 1868 1869 if (asig) { 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6237 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Alarm: cg:%d " 1873 "Info:%u\n", 1874 bwpcent, bw, pcent, s, cg, 1875 phba->cmf_active_info); 1876 } else if (afpin) { 1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1878 "6238 BW Threshold %lld%% (%lld): " 1879 "%lld%% %s: FPIN Alarm: cg:%d " 1880 "Info:%u\n", 1881 bwpcent, bw, pcent, s, cg, 1882 phba->cmf_active_info); 1883 } else if (sigcnt) { 1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6239 BW Threshold %lld%% (%lld): " 1887 "%lld%% %s: Signal Warning: " 1888 "Cnt %d Max %d: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, sigcnt, 1890 wsigmax, cg, phba->cmf_active_info); 1891 } else if (fpincnt) { 1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6240 BW Threshold %lld%% (%lld): " 1895 "%lld%% %s: FPIN Warning: " 1896 "Cnt %d Max %d: cg:%d Info:%u\n", 1897 bwpcent, bw, pcent, s, fpincnt, 1898 wfpinmax, cg, phba->cmf_active_info); 1899 } else { 1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1901 "6241 BW Threshold %lld%% (%lld): " 1902 "CMF %lld%% %s: cg:%d Info:%u\n", 1903 bwpcent, bw, pcent, s, cg, 1904 phba->cmf_active_info); 1905 } 1906 } else if (info) { 1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1908 "6246 Info Threshold %u\n", info); 1909 } 1910 1911 /* Save BW change to be picked up during next timer interrupt */ 1912 phba->cmf_last_sync_bw = bw; 1913 out: 1914 lpfc_sli_release_iocbq(phba, cmdiocb); 1915 } 1916 1917 /** 1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1919 * @phba: Pointer to HBA context object. 1920 * @ms: ms to set in WQE interval, 0 means use init op 1921 * @total: Total rcv bytes for this interval 1922 * 1923 * This routine is called every CMF timer interrupt. Its purpose is 1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1925 * that may indicate we have congestion (FPINs or Signals). Upon 1926 * completion, the firmware will indicate any BW restrictions the 1927 * driver may need to take. 1928 **/ 1929 int 1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1931 { 1932 union lpfc_wqe128 *wqe; 1933 struct lpfc_iocbq *sync_buf; 1934 unsigned long iflags; 1935 u32 ret_val; 1936 u32 atot, wtot, max; 1937 u8 warn_sync_period = 0; 1938 1939 /* First address any alarm / warning activity */ 1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1942 1943 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1944 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1945 phba->link_state == LPFC_LINK_DOWN) 1946 return 0; 1947 1948 spin_lock_irqsave(&phba->hbalock, iflags); 1949 sync_buf = __lpfc_sli_get_iocbq(phba); 1950 if (!sync_buf) { 1951 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1952 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1953 ret_val = ENOMEM; 1954 goto out_unlock; 1955 } 1956 1957 wqe = &sync_buf->wqe; 1958 1959 /* WQEs are reused. Clear stale data and set key fields to zero */ 1960 memset(wqe, 0, sizeof(*wqe)); 1961 1962 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1963 if (!ms) { 1964 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1965 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1966 phba->fc_eventTag); 1967 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1968 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1969 goto initpath; 1970 } 1971 1972 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1973 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1974 1975 /* Check for alarms / warnings */ 1976 if (atot) { 1977 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1978 /* We hit an Signal alarm condition */ 1979 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1980 } else { 1981 /* We hit a FPIN alarm condition */ 1982 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1983 } 1984 } else if (wtot) { 1985 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1986 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1987 /* We hit an Signal warning condition */ 1988 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1989 lpfc_acqe_cgn_frequency; 1990 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1991 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1992 warn_sync_period = lpfc_acqe_cgn_frequency; 1993 } else { 1994 /* We hit a FPIN warning condition */ 1995 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1996 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1997 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1998 warn_sync_period = 1999 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2000 } 2001 } 2002 2003 /* Update total read blocks during previous timer interval */ 2004 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2005 2006 initpath: 2007 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2008 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2009 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2010 2011 /* Setup reqtag to match the wqe completion. */ 2012 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2013 2014 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2015 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2016 2017 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2018 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2019 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2020 2021 sync_buf->vport = phba->pport; 2022 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2023 sync_buf->cmd_dmabuf = NULL; 2024 sync_buf->rsp_dmabuf = NULL; 2025 sync_buf->bpl_dmabuf = NULL; 2026 sync_buf->sli4_xritag = NO_XRI; 2027 2028 sync_buf->cmd_flag |= LPFC_IO_CMF; 2029 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2030 if (ret_val) { 2031 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2032 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2033 ret_val); 2034 __lpfc_sli_release_iocbq(phba, sync_buf); 2035 } 2036 out_unlock: 2037 spin_unlock_irqrestore(&phba->hbalock, iflags); 2038 return ret_val; 2039 } 2040 2041 /** 2042 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2043 * @phba: Pointer to HBA context object. 2044 * @pring: Pointer to driver SLI ring object. 2045 * 2046 * This function is called with hbalock held and the caller must post the 2047 * iocb without releasing the lock. If the caller releases the lock, 2048 * iocb slot returned by the function is not guaranteed to be available. 2049 * The function returns pointer to the next available iocb slot if there 2050 * is available slot in the ring, else it returns NULL. 2051 * If the get index of the ring is ahead of the put index, the function 2052 * will post an error attention event to the worker thread to take the 2053 * HBA to offline state. 2054 **/ 2055 static IOCB_t * 2056 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2057 { 2058 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2059 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2060 2061 lockdep_assert_held(&phba->hbalock); 2062 2063 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2064 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2065 pring->sli.sli3.next_cmdidx = 0; 2066 2067 if (unlikely(pring->sli.sli3.local_getidx == 2068 pring->sli.sli3.next_cmdidx)) { 2069 2070 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2071 2072 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2074 "0315 Ring %d issue: portCmdGet %d " 2075 "is bigger than cmd ring %d\n", 2076 pring->ringno, 2077 pring->sli.sli3.local_getidx, 2078 max_cmd_idx); 2079 2080 phba->link_state = LPFC_HBA_ERROR; 2081 /* 2082 * All error attention handlers are posted to 2083 * worker thread 2084 */ 2085 phba->work_ha |= HA_ERATT; 2086 phba->work_hs = HS_FFER3; 2087 2088 lpfc_worker_wake_up(phba); 2089 2090 return NULL; 2091 } 2092 2093 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2094 return NULL; 2095 } 2096 2097 return lpfc_cmd_iocb(phba, pring); 2098 } 2099 2100 /** 2101 * lpfc_sli_next_iotag - Get an iotag for the iocb 2102 * @phba: Pointer to HBA context object. 2103 * @iocbq: Pointer to driver iocb object. 2104 * 2105 * This function gets an iotag for the iocb. If there is no unused iotag and 2106 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2107 * array and assigns a new iotag. 2108 * The function returns the allocated iotag if successful, else returns zero. 2109 * Zero is not a valid iotag. 2110 * The caller is not required to hold any lock. 2111 **/ 2112 uint16_t 2113 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2114 { 2115 struct lpfc_iocbq **new_arr; 2116 struct lpfc_iocbq **old_arr; 2117 size_t new_len; 2118 struct lpfc_sli *psli = &phba->sli; 2119 uint16_t iotag; 2120 2121 spin_lock_irq(&phba->hbalock); 2122 iotag = psli->last_iotag; 2123 if(++iotag < psli->iocbq_lookup_len) { 2124 psli->last_iotag = iotag; 2125 psli->iocbq_lookup[iotag] = iocbq; 2126 spin_unlock_irq(&phba->hbalock); 2127 iocbq->iotag = iotag; 2128 return iotag; 2129 } else if (psli->iocbq_lookup_len < (0xffff 2130 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2131 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2132 spin_unlock_irq(&phba->hbalock); 2133 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2134 GFP_KERNEL); 2135 if (new_arr) { 2136 spin_lock_irq(&phba->hbalock); 2137 old_arr = psli->iocbq_lookup; 2138 if (new_len <= psli->iocbq_lookup_len) { 2139 /* highly unprobable case */ 2140 kfree(new_arr); 2141 iotag = psli->last_iotag; 2142 if(++iotag < psli->iocbq_lookup_len) { 2143 psli->last_iotag = iotag; 2144 psli->iocbq_lookup[iotag] = iocbq; 2145 spin_unlock_irq(&phba->hbalock); 2146 iocbq->iotag = iotag; 2147 return iotag; 2148 } 2149 spin_unlock_irq(&phba->hbalock); 2150 return 0; 2151 } 2152 if (psli->iocbq_lookup) 2153 memcpy(new_arr, old_arr, 2154 ((psli->last_iotag + 1) * 2155 sizeof (struct lpfc_iocbq *))); 2156 psli->iocbq_lookup = new_arr; 2157 psli->iocbq_lookup_len = new_len; 2158 psli->last_iotag = iotag; 2159 psli->iocbq_lookup[iotag] = iocbq; 2160 spin_unlock_irq(&phba->hbalock); 2161 iocbq->iotag = iotag; 2162 kfree(old_arr); 2163 return iotag; 2164 } 2165 } else 2166 spin_unlock_irq(&phba->hbalock); 2167 2168 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2169 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2170 psli->last_iotag); 2171 2172 return 0; 2173 } 2174 2175 /** 2176 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2177 * @phba: Pointer to HBA context object. 2178 * @pring: Pointer to driver SLI ring object. 2179 * @iocb: Pointer to iocb slot in the ring. 2180 * @nextiocb: Pointer to driver iocb object which need to be 2181 * posted to firmware. 2182 * 2183 * This function is called to post a new iocb to the firmware. This 2184 * function copies the new iocb to ring iocb slot and updates the 2185 * ring pointers. It adds the new iocb to txcmplq if there is 2186 * a completion call back for this iocb else the function will free the 2187 * iocb object. The hbalock is asserted held in the code path calling 2188 * this routine. 2189 **/ 2190 static void 2191 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2192 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2193 { 2194 /* 2195 * Set up an iotag 2196 */ 2197 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2198 2199 2200 if (pring->ringno == LPFC_ELS_RING) { 2201 lpfc_debugfs_slow_ring_trc(phba, 2202 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2203 *(((uint32_t *) &nextiocb->iocb) + 4), 2204 *(((uint32_t *) &nextiocb->iocb) + 6), 2205 *(((uint32_t *) &nextiocb->iocb) + 7)); 2206 } 2207 2208 /* 2209 * Issue iocb command to adapter 2210 */ 2211 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2212 wmb(); 2213 pring->stats.iocb_cmd++; 2214 2215 /* 2216 * If there is no completion routine to call, we can release the 2217 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2218 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2219 */ 2220 if (nextiocb->cmd_cmpl) 2221 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2222 else 2223 __lpfc_sli_release_iocbq(phba, nextiocb); 2224 2225 /* 2226 * Let the HBA know what IOCB slot will be the next one the 2227 * driver will put a command into. 2228 */ 2229 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2230 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2231 } 2232 2233 /** 2234 * lpfc_sli_update_full_ring - Update the chip attention register 2235 * @phba: Pointer to HBA context object. 2236 * @pring: Pointer to driver SLI ring object. 2237 * 2238 * The caller is not required to hold any lock for calling this function. 2239 * This function updates the chip attention bits for the ring to inform firmware 2240 * that there are pending work to be done for this ring and requests an 2241 * interrupt when there is space available in the ring. This function is 2242 * called when the driver is unable to post more iocbs to the ring due 2243 * to unavailability of space in the ring. 2244 **/ 2245 static void 2246 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2247 { 2248 int ringno = pring->ringno; 2249 2250 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2251 2252 wmb(); 2253 2254 /* 2255 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2256 * The HBA will tell us when an IOCB entry is available. 2257 */ 2258 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2259 readl(phba->CAregaddr); /* flush */ 2260 2261 pring->stats.iocb_cmd_full++; 2262 } 2263 2264 /** 2265 * lpfc_sli_update_ring - Update chip attention register 2266 * @phba: Pointer to HBA context object. 2267 * @pring: Pointer to driver SLI ring object. 2268 * 2269 * This function updates the chip attention register bit for the 2270 * given ring to inform HBA that there is more work to be done 2271 * in this ring. The caller is not required to hold any lock. 2272 **/ 2273 static void 2274 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2275 { 2276 int ringno = pring->ringno; 2277 2278 /* 2279 * Tell the HBA that there is work to do in this ring. 2280 */ 2281 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2282 wmb(); 2283 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2284 readl(phba->CAregaddr); /* flush */ 2285 } 2286 } 2287 2288 /** 2289 * lpfc_sli_resume_iocb - Process iocbs in the txq 2290 * @phba: Pointer to HBA context object. 2291 * @pring: Pointer to driver SLI ring object. 2292 * 2293 * This function is called with hbalock held to post pending iocbs 2294 * in the txq to the firmware. This function is called when driver 2295 * detects space available in the ring. 2296 **/ 2297 static void 2298 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2299 { 2300 IOCB_t *iocb; 2301 struct lpfc_iocbq *nextiocb; 2302 2303 lockdep_assert_held(&phba->hbalock); 2304 2305 /* 2306 * Check to see if: 2307 * (a) there is anything on the txq to send 2308 * (b) link is up 2309 * (c) link attention events can be processed (fcp ring only) 2310 * (d) IOCB processing is not blocked by the outstanding mbox command. 2311 */ 2312 2313 if (lpfc_is_link_up(phba) && 2314 (!list_empty(&pring->txq)) && 2315 (pring->ringno != LPFC_FCP_RING || 2316 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2317 2318 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2319 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2320 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2321 2322 if (iocb) 2323 lpfc_sli_update_ring(phba, pring); 2324 else 2325 lpfc_sli_update_full_ring(phba, pring); 2326 } 2327 2328 return; 2329 } 2330 2331 /** 2332 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2333 * @phba: Pointer to HBA context object. 2334 * @hbqno: HBQ number. 2335 * 2336 * This function is called with hbalock held to get the next 2337 * available slot for the given HBQ. If there is free slot 2338 * available for the HBQ it will return pointer to the next available 2339 * HBQ entry else it will return NULL. 2340 **/ 2341 static struct lpfc_hbq_entry * 2342 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2343 { 2344 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2345 2346 lockdep_assert_held(&phba->hbalock); 2347 2348 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2349 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2350 hbqp->next_hbqPutIdx = 0; 2351 2352 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2353 uint32_t raw_index = phba->hbq_get[hbqno]; 2354 uint32_t getidx = le32_to_cpu(raw_index); 2355 2356 hbqp->local_hbqGetIdx = getidx; 2357 2358 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2359 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2360 "1802 HBQ %d: local_hbqGetIdx " 2361 "%u is > than hbqp->entry_count %u\n", 2362 hbqno, hbqp->local_hbqGetIdx, 2363 hbqp->entry_count); 2364 2365 phba->link_state = LPFC_HBA_ERROR; 2366 return NULL; 2367 } 2368 2369 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2370 return NULL; 2371 } 2372 2373 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2374 hbqp->hbqPutIdx; 2375 } 2376 2377 /** 2378 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2379 * @phba: Pointer to HBA context object. 2380 * 2381 * This function is called with no lock held to free all the 2382 * hbq buffers while uninitializing the SLI interface. It also 2383 * frees the HBQ buffers returned by the firmware but not yet 2384 * processed by the upper layers. 2385 **/ 2386 void 2387 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2388 { 2389 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2390 struct hbq_dmabuf *hbq_buf; 2391 unsigned long flags; 2392 int i, hbq_count; 2393 2394 hbq_count = lpfc_sli_hbq_count(); 2395 /* Return all memory used by all HBQs */ 2396 spin_lock_irqsave(&phba->hbalock, flags); 2397 for (i = 0; i < hbq_count; ++i) { 2398 list_for_each_entry_safe(dmabuf, next_dmabuf, 2399 &phba->hbqs[i].hbq_buffer_list, list) { 2400 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2401 list_del(&hbq_buf->dbuf.list); 2402 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2403 } 2404 phba->hbqs[i].buffer_count = 0; 2405 } 2406 2407 /* Mark the HBQs not in use */ 2408 phba->hbq_in_use = 0; 2409 spin_unlock_irqrestore(&phba->hbalock, flags); 2410 } 2411 2412 /** 2413 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2414 * @phba: Pointer to HBA context object. 2415 * @hbqno: HBQ number. 2416 * @hbq_buf: Pointer to HBQ buffer. 2417 * 2418 * This function is called with the hbalock held to post a 2419 * hbq buffer to the firmware. If the function finds an empty 2420 * slot in the HBQ, it will post the buffer. The function will return 2421 * pointer to the hbq entry if it successfully post the buffer 2422 * else it will return NULL. 2423 **/ 2424 static int 2425 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2426 struct hbq_dmabuf *hbq_buf) 2427 { 2428 lockdep_assert_held(&phba->hbalock); 2429 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2430 } 2431 2432 /** 2433 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbqno: HBQ number. 2436 * @hbq_buf: Pointer to HBQ buffer. 2437 * 2438 * This function is called with the hbalock held to post a hbq buffer to the 2439 * firmware. If the function finds an empty slot in the HBQ, it will post the 2440 * buffer and place it on the hbq_buffer_list. The function will return zero if 2441 * it successfully post the buffer else it will return an error. 2442 **/ 2443 static int 2444 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2445 struct hbq_dmabuf *hbq_buf) 2446 { 2447 struct lpfc_hbq_entry *hbqe; 2448 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2449 2450 lockdep_assert_held(&phba->hbalock); 2451 /* Get next HBQ entry slot to use */ 2452 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2453 if (hbqe) { 2454 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2455 2456 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2457 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2458 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2459 hbqe->bde.tus.f.bdeFlags = 0; 2460 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2461 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2462 /* Sync SLIM */ 2463 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2464 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2465 /* flush */ 2466 readl(phba->hbq_put + hbqno); 2467 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2468 return 0; 2469 } else 2470 return -ENOMEM; 2471 } 2472 2473 /** 2474 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2475 * @phba: Pointer to HBA context object. 2476 * @hbqno: HBQ number. 2477 * @hbq_buf: Pointer to HBQ buffer. 2478 * 2479 * This function is called with the hbalock held to post an RQE to the SLI4 2480 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2481 * the hbq_buffer_list and return zero, otherwise it will return an error. 2482 **/ 2483 static int 2484 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2485 struct hbq_dmabuf *hbq_buf) 2486 { 2487 int rc; 2488 struct lpfc_rqe hrqe; 2489 struct lpfc_rqe drqe; 2490 struct lpfc_queue *hrq; 2491 struct lpfc_queue *drq; 2492 2493 if (hbqno != LPFC_ELS_HBQ) 2494 return 1; 2495 hrq = phba->sli4_hba.hdr_rq; 2496 drq = phba->sli4_hba.dat_rq; 2497 2498 lockdep_assert_held(&phba->hbalock); 2499 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2500 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2501 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2502 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2503 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2504 if (rc < 0) 2505 return rc; 2506 hbq_buf->tag = (rc | (hbqno << 16)); 2507 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2508 return 0; 2509 } 2510 2511 /* HBQ for ELS and CT traffic. */ 2512 static struct lpfc_hbq_init lpfc_els_hbq = { 2513 .rn = 1, 2514 .entry_count = 256, 2515 .mask_count = 0, 2516 .profile = 0, 2517 .ring_mask = (1 << LPFC_ELS_RING), 2518 .buffer_count = 0, 2519 .init_count = 40, 2520 .add_count = 40, 2521 }; 2522 2523 /* Array of HBQs */ 2524 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2525 &lpfc_els_hbq, 2526 }; 2527 2528 /** 2529 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2530 * @phba: Pointer to HBA context object. 2531 * @hbqno: HBQ number. 2532 * @count: Number of HBQ buffers to be posted. 2533 * 2534 * This function is called with no lock held to post more hbq buffers to the 2535 * given HBQ. The function returns the number of HBQ buffers successfully 2536 * posted. 2537 **/ 2538 static int 2539 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2540 { 2541 uint32_t i, posted = 0; 2542 unsigned long flags; 2543 struct hbq_dmabuf *hbq_buffer; 2544 LIST_HEAD(hbq_buf_list); 2545 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2546 return 0; 2547 2548 if ((phba->hbqs[hbqno].buffer_count + count) > 2549 lpfc_hbq_defs[hbqno]->entry_count) 2550 count = lpfc_hbq_defs[hbqno]->entry_count - 2551 phba->hbqs[hbqno].buffer_count; 2552 if (!count) 2553 return 0; 2554 /* Allocate HBQ entries */ 2555 for (i = 0; i < count; i++) { 2556 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2557 if (!hbq_buffer) 2558 break; 2559 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2560 } 2561 /* Check whether HBQ is still in use */ 2562 spin_lock_irqsave(&phba->hbalock, flags); 2563 if (!phba->hbq_in_use) 2564 goto err; 2565 while (!list_empty(&hbq_buf_list)) { 2566 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2567 dbuf.list); 2568 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2569 (hbqno << 16)); 2570 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2571 phba->hbqs[hbqno].buffer_count++; 2572 posted++; 2573 } else 2574 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2575 } 2576 spin_unlock_irqrestore(&phba->hbalock, flags); 2577 return posted; 2578 err: 2579 spin_unlock_irqrestore(&phba->hbalock, flags); 2580 while (!list_empty(&hbq_buf_list)) { 2581 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2582 dbuf.list); 2583 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2584 } 2585 return 0; 2586 } 2587 2588 /** 2589 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2590 * @phba: Pointer to HBA context object. 2591 * @qno: HBQ number. 2592 * 2593 * This function posts more buffers to the HBQ. This function 2594 * is called with no lock held. The function returns the number of HBQ entries 2595 * successfully allocated. 2596 **/ 2597 int 2598 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2599 { 2600 if (phba->sli_rev == LPFC_SLI_REV4) 2601 return 0; 2602 else 2603 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2604 lpfc_hbq_defs[qno]->add_count); 2605 } 2606 2607 /** 2608 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2609 * @phba: Pointer to HBA context object. 2610 * @qno: HBQ queue number. 2611 * 2612 * This function is called from SLI initialization code path with 2613 * no lock held to post initial HBQ buffers to firmware. The 2614 * function returns the number of HBQ entries successfully allocated. 2615 **/ 2616 static int 2617 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2618 { 2619 if (phba->sli_rev == LPFC_SLI_REV4) 2620 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2621 lpfc_hbq_defs[qno]->entry_count); 2622 else 2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2624 lpfc_hbq_defs[qno]->init_count); 2625 } 2626 2627 /* 2628 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2629 * 2630 * This function removes the first hbq buffer on an hbq list and returns a 2631 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2632 **/ 2633 static struct hbq_dmabuf * 2634 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2635 { 2636 struct lpfc_dmabuf *d_buf; 2637 2638 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2639 if (!d_buf) 2640 return NULL; 2641 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2642 } 2643 2644 /** 2645 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2646 * @phba: Pointer to HBA context object. 2647 * @hrq: HBQ number. 2648 * 2649 * This function removes the first RQ buffer on an RQ buffer list and returns a 2650 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2651 **/ 2652 static struct rqb_dmabuf * 2653 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2654 { 2655 struct lpfc_dmabuf *h_buf; 2656 struct lpfc_rqb *rqbp; 2657 2658 rqbp = hrq->rqbp; 2659 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2660 struct lpfc_dmabuf, list); 2661 if (!h_buf) 2662 return NULL; 2663 rqbp->buffer_count--; 2664 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2665 } 2666 2667 /** 2668 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2669 * @phba: Pointer to HBA context object. 2670 * @tag: Tag of the hbq buffer. 2671 * 2672 * This function searches for the hbq buffer associated with the given tag in 2673 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2674 * otherwise it returns NULL. 2675 **/ 2676 static struct hbq_dmabuf * 2677 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2678 { 2679 struct lpfc_dmabuf *d_buf; 2680 struct hbq_dmabuf *hbq_buf; 2681 uint32_t hbqno; 2682 2683 hbqno = tag >> 16; 2684 if (hbqno >= LPFC_MAX_HBQS) 2685 return NULL; 2686 2687 spin_lock_irq(&phba->hbalock); 2688 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2689 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2690 if (hbq_buf->tag == tag) { 2691 spin_unlock_irq(&phba->hbalock); 2692 return hbq_buf; 2693 } 2694 } 2695 spin_unlock_irq(&phba->hbalock); 2696 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2697 "1803 Bad hbq tag. Data: x%x x%x\n", 2698 tag, phba->hbqs[tag >> 16].buffer_count); 2699 return NULL; 2700 } 2701 2702 /** 2703 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2704 * @phba: Pointer to HBA context object. 2705 * @hbq_buffer: Pointer to HBQ buffer. 2706 * 2707 * This function is called with hbalock. This function gives back 2708 * the hbq buffer to firmware. If the HBQ does not have space to 2709 * post the buffer, it will free the buffer. 2710 **/ 2711 void 2712 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2713 { 2714 uint32_t hbqno; 2715 2716 if (hbq_buffer) { 2717 hbqno = hbq_buffer->tag >> 16; 2718 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2719 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2720 } 2721 } 2722 2723 /** 2724 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2725 * @mbxCommand: mailbox command code. 2726 * 2727 * This function is called by the mailbox event handler function to verify 2728 * that the completed mailbox command is a legitimate mailbox command. If the 2729 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2730 * and the mailbox event handler will take the HBA offline. 2731 **/ 2732 static int 2733 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2734 { 2735 uint8_t ret; 2736 2737 switch (mbxCommand) { 2738 case MBX_LOAD_SM: 2739 case MBX_READ_NV: 2740 case MBX_WRITE_NV: 2741 case MBX_WRITE_VPARMS: 2742 case MBX_RUN_BIU_DIAG: 2743 case MBX_INIT_LINK: 2744 case MBX_DOWN_LINK: 2745 case MBX_CONFIG_LINK: 2746 case MBX_CONFIG_RING: 2747 case MBX_RESET_RING: 2748 case MBX_READ_CONFIG: 2749 case MBX_READ_RCONFIG: 2750 case MBX_READ_SPARM: 2751 case MBX_READ_STATUS: 2752 case MBX_READ_RPI: 2753 case MBX_READ_XRI: 2754 case MBX_READ_REV: 2755 case MBX_READ_LNK_STAT: 2756 case MBX_REG_LOGIN: 2757 case MBX_UNREG_LOGIN: 2758 case MBX_CLEAR_LA: 2759 case MBX_DUMP_MEMORY: 2760 case MBX_DUMP_CONTEXT: 2761 case MBX_RUN_DIAGS: 2762 case MBX_RESTART: 2763 case MBX_UPDATE_CFG: 2764 case MBX_DOWN_LOAD: 2765 case MBX_DEL_LD_ENTRY: 2766 case MBX_RUN_PROGRAM: 2767 case MBX_SET_MASK: 2768 case MBX_SET_VARIABLE: 2769 case MBX_UNREG_D_ID: 2770 case MBX_KILL_BOARD: 2771 case MBX_CONFIG_FARP: 2772 case MBX_BEACON: 2773 case MBX_LOAD_AREA: 2774 case MBX_RUN_BIU_DIAG64: 2775 case MBX_CONFIG_PORT: 2776 case MBX_READ_SPARM64: 2777 case MBX_READ_RPI64: 2778 case MBX_REG_LOGIN64: 2779 case MBX_READ_TOPOLOGY: 2780 case MBX_WRITE_WWN: 2781 case MBX_SET_DEBUG: 2782 case MBX_LOAD_EXP_ROM: 2783 case MBX_ASYNCEVT_ENABLE: 2784 case MBX_REG_VPI: 2785 case MBX_UNREG_VPI: 2786 case MBX_HEARTBEAT: 2787 case MBX_PORT_CAPABILITIES: 2788 case MBX_PORT_IOV_CONTROL: 2789 case MBX_SLI4_CONFIG: 2790 case MBX_SLI4_REQ_FTRS: 2791 case MBX_REG_FCFI: 2792 case MBX_UNREG_FCFI: 2793 case MBX_REG_VFI: 2794 case MBX_UNREG_VFI: 2795 case MBX_INIT_VPI: 2796 case MBX_INIT_VFI: 2797 case MBX_RESUME_RPI: 2798 case MBX_READ_EVENT_LOG_STATUS: 2799 case MBX_READ_EVENT_LOG: 2800 case MBX_SECURITY_MGMT: 2801 case MBX_AUTH_PORT: 2802 case MBX_ACCESS_VDATA: 2803 ret = mbxCommand; 2804 break; 2805 default: 2806 ret = MBX_SHUTDOWN; 2807 break; 2808 } 2809 return ret; 2810 } 2811 2812 /** 2813 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2814 * @phba: Pointer to HBA context object. 2815 * @pmboxq: Pointer to mailbox command. 2816 * 2817 * This is completion handler function for mailbox commands issued from 2818 * lpfc_sli_issue_mbox_wait function. This function is called by the 2819 * mailbox event handler function with no lock held. This function 2820 * will wake up thread waiting on the wait queue pointed by context1 2821 * of the mailbox. 2822 **/ 2823 void 2824 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2825 { 2826 unsigned long drvr_flag; 2827 struct completion *pmbox_done; 2828 2829 /* 2830 * If pmbox_done is empty, the driver thread gave up waiting and 2831 * continued running. 2832 */ 2833 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2834 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2835 pmbox_done = pmboxq->ctx_u.mbox_wait; 2836 if (pmbox_done) 2837 complete(pmbox_done); 2838 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2839 return; 2840 } 2841 2842 static void 2843 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2844 { 2845 unsigned long iflags; 2846 2847 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2848 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2849 spin_lock_irqsave(&ndlp->lock, iflags); 2850 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2851 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2852 spin_unlock_irqrestore(&ndlp->lock, iflags); 2853 } 2854 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2855 } 2856 2857 void 2858 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2859 { 2860 __lpfc_sli_rpi_release(vport, ndlp); 2861 } 2862 2863 /** 2864 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2865 * @phba: Pointer to HBA context object. 2866 * @pmb: Pointer to mailbox object. 2867 * 2868 * This function is the default mailbox completion handler. It 2869 * frees the memory resources associated with the completed mailbox 2870 * command. If the completed command is a REG_LOGIN mailbox command, 2871 * this function will issue a UREG_LOGIN to re-claim the RPI. 2872 **/ 2873 void 2874 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2875 { 2876 struct lpfc_vport *vport = pmb->vport; 2877 struct lpfc_dmabuf *mp; 2878 struct lpfc_nodelist *ndlp; 2879 struct Scsi_Host *shost; 2880 uint16_t rpi, vpi; 2881 int rc; 2882 2883 /* 2884 * If a REG_LOGIN succeeded after node is destroyed or node 2885 * is in re-discovery driver need to cleanup the RPI. 2886 */ 2887 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2888 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2889 !pmb->u.mb.mbxStatus) { 2890 mp = pmb->ctx_buf; 2891 if (mp) { 2892 pmb->ctx_buf = NULL; 2893 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2894 kfree(mp); 2895 } 2896 rpi = pmb->u.mb.un.varWords[0]; 2897 vpi = pmb->u.mb.un.varRegLogin.vpi; 2898 if (phba->sli_rev == LPFC_SLI_REV4) 2899 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2900 lpfc_unreg_login(phba, vpi, rpi, pmb); 2901 pmb->vport = vport; 2902 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2903 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2904 if (rc != MBX_NOT_FINISHED) 2905 return; 2906 } 2907 2908 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2909 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2910 !pmb->u.mb.mbxStatus) { 2911 shost = lpfc_shost_from_vport(vport); 2912 spin_lock_irq(shost->host_lock); 2913 vport->vpi_state |= LPFC_VPI_REGISTERED; 2914 spin_unlock_irq(shost->host_lock); 2915 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2916 } 2917 2918 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2919 ndlp = pmb->ctx_ndlp; 2920 lpfc_nlp_put(ndlp); 2921 } 2922 2923 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2924 ndlp = pmb->ctx_ndlp; 2925 2926 /* Check to see if there are any deferred events to process */ 2927 if (ndlp) { 2928 lpfc_printf_vlog( 2929 vport, 2930 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2931 "1438 UNREG cmpl deferred mbox x%x " 2932 "on NPort x%x Data: x%x x%x x%px x%lx x%x\n", 2933 ndlp->nlp_rpi, ndlp->nlp_DID, 2934 ndlp->nlp_flag, ndlp->nlp_defer_did, 2935 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2936 2937 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2938 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2939 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2940 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2941 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2942 } else { 2943 __lpfc_sli_rpi_release(vport, ndlp); 2944 } 2945 2946 /* The unreg_login mailbox is complete and had a 2947 * reference that has to be released. The PLOGI 2948 * got its own ref. 2949 */ 2950 lpfc_nlp_put(ndlp); 2951 pmb->ctx_ndlp = NULL; 2952 } 2953 } 2954 2955 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2956 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2957 ndlp = pmb->ctx_ndlp; 2958 lpfc_nlp_put(ndlp); 2959 } 2960 2961 /* Check security permission status on INIT_LINK mailbox command */ 2962 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2963 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2965 "2860 SLI authentication is required " 2966 "for INIT_LINK but has not done yet\n"); 2967 2968 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2969 lpfc_sli4_mbox_cmd_free(phba, pmb); 2970 else 2971 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2972 } 2973 /** 2974 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2975 * @phba: Pointer to HBA context object. 2976 * @pmb: Pointer to mailbox object. 2977 * 2978 * This function is the unreg rpi mailbox completion handler. It 2979 * frees the memory resources associated with the completed mailbox 2980 * command. An additional reference is put on the ndlp to prevent 2981 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2982 * the unreg mailbox command completes, this routine puts the 2983 * reference back. 2984 * 2985 **/ 2986 void 2987 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2988 { 2989 struct lpfc_vport *vport = pmb->vport; 2990 struct lpfc_nodelist *ndlp; 2991 2992 ndlp = pmb->ctx_ndlp; 2993 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2994 if (phba->sli_rev == LPFC_SLI_REV4 && 2995 (bf_get(lpfc_sli_intf_if_type, 2996 &phba->sli4_hba.sli_intf) >= 2997 LPFC_SLI_INTF_IF_TYPE_2)) { 2998 if (ndlp) { 2999 lpfc_printf_vlog( 3000 vport, KERN_INFO, 3001 LOG_MBOX | LOG_SLI | LOG_NODE, 3002 "0010 UNREG_LOGIN vpi:x%x " 3003 "rpi:%x DID:%x defer x%x flg x%x " 3004 "x%px\n", 3005 vport->vpi, ndlp->nlp_rpi, 3006 ndlp->nlp_DID, ndlp->nlp_defer_did, 3007 ndlp->nlp_flag, 3008 ndlp); 3009 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3010 3011 /* Check to see if there are any deferred 3012 * events to process 3013 */ 3014 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3015 (ndlp->nlp_defer_did != 3016 NLP_EVT_NOTHING_PENDING)) { 3017 lpfc_printf_vlog( 3018 vport, KERN_INFO, 3019 LOG_MBOX | LOG_SLI | LOG_NODE, 3020 "4111 UNREG cmpl deferred " 3021 "clr x%x on " 3022 "NPort x%x Data: x%x x%px\n", 3023 ndlp->nlp_rpi, ndlp->nlp_DID, 3024 ndlp->nlp_defer_did, ndlp); 3025 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3026 ndlp->nlp_defer_did = 3027 NLP_EVT_NOTHING_PENDING; 3028 lpfc_issue_els_plogi( 3029 vport, ndlp->nlp_DID, 0); 3030 } else { 3031 __lpfc_sli_rpi_release(vport, ndlp); 3032 } 3033 lpfc_nlp_put(ndlp); 3034 } 3035 } 3036 } 3037 3038 mempool_free(pmb, phba->mbox_mem_pool); 3039 } 3040 3041 /** 3042 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3043 * @phba: Pointer to HBA context object. 3044 * 3045 * This function is called with no lock held. This function processes all 3046 * the completed mailbox commands and gives it to upper layers. The interrupt 3047 * service routine processes mailbox completion interrupt and adds completed 3048 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3049 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3050 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3051 * function returns the mailbox commands to the upper layer by calling the 3052 * completion handler function of each mailbox. 3053 **/ 3054 int 3055 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3056 { 3057 MAILBOX_t *pmbox; 3058 LPFC_MBOXQ_t *pmb; 3059 int rc; 3060 LIST_HEAD(cmplq); 3061 3062 phba->sli.slistat.mbox_event++; 3063 3064 /* Get all completed mailboxe buffers into the cmplq */ 3065 spin_lock_irq(&phba->hbalock); 3066 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3067 spin_unlock_irq(&phba->hbalock); 3068 3069 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3070 do { 3071 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3072 if (pmb == NULL) 3073 break; 3074 3075 pmbox = &pmb->u.mb; 3076 3077 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3078 if (pmb->vport) { 3079 lpfc_debugfs_disc_trc(pmb->vport, 3080 LPFC_DISC_TRC_MBOX_VPORT, 3081 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3082 (uint32_t)pmbox->mbxCommand, 3083 pmbox->un.varWords[0], 3084 pmbox->un.varWords[1]); 3085 } 3086 else { 3087 lpfc_debugfs_disc_trc(phba->pport, 3088 LPFC_DISC_TRC_MBOX, 3089 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3090 (uint32_t)pmbox->mbxCommand, 3091 pmbox->un.varWords[0], 3092 pmbox->un.varWords[1]); 3093 } 3094 } 3095 3096 /* 3097 * It is a fatal error if unknown mbox command completion. 3098 */ 3099 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3100 MBX_SHUTDOWN) { 3101 /* Unknown mailbox command compl */ 3102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3103 "(%d):0323 Unknown Mailbox command " 3104 "x%x (x%x/x%x) Cmpl\n", 3105 pmb->vport ? pmb->vport->vpi : 3106 LPFC_VPORT_UNKNOWN, 3107 pmbox->mbxCommand, 3108 lpfc_sli_config_mbox_subsys_get(phba, 3109 pmb), 3110 lpfc_sli_config_mbox_opcode_get(phba, 3111 pmb)); 3112 phba->link_state = LPFC_HBA_ERROR; 3113 phba->work_hs = HS_FFER3; 3114 lpfc_handle_eratt(phba); 3115 continue; 3116 } 3117 3118 if (pmbox->mbxStatus) { 3119 phba->sli.slistat.mbox_stat_err++; 3120 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3121 /* Mbox cmd cmpl error - RETRYing */ 3122 lpfc_printf_log(phba, KERN_INFO, 3123 LOG_MBOX | LOG_SLI, 3124 "(%d):0305 Mbox cmd cmpl " 3125 "error - RETRYing Data: x%x " 3126 "(x%x/x%x) x%x x%x x%x\n", 3127 pmb->vport ? pmb->vport->vpi : 3128 LPFC_VPORT_UNKNOWN, 3129 pmbox->mbxCommand, 3130 lpfc_sli_config_mbox_subsys_get(phba, 3131 pmb), 3132 lpfc_sli_config_mbox_opcode_get(phba, 3133 pmb), 3134 pmbox->mbxStatus, 3135 pmbox->un.varWords[0], 3136 pmb->vport ? pmb->vport->port_state : 3137 LPFC_VPORT_UNKNOWN); 3138 pmbox->mbxStatus = 0; 3139 pmbox->mbxOwner = OWN_HOST; 3140 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3141 if (rc != MBX_NOT_FINISHED) 3142 continue; 3143 } 3144 } 3145 3146 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3147 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3148 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3149 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3150 "x%x x%x x%x\n", 3151 pmb->vport ? pmb->vport->vpi : 0, 3152 pmbox->mbxCommand, 3153 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3154 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3155 pmb->mbox_cmpl, 3156 *((uint32_t *) pmbox), 3157 pmbox->un.varWords[0], 3158 pmbox->un.varWords[1], 3159 pmbox->un.varWords[2], 3160 pmbox->un.varWords[3], 3161 pmbox->un.varWords[4], 3162 pmbox->un.varWords[5], 3163 pmbox->un.varWords[6], 3164 pmbox->un.varWords[7], 3165 pmbox->un.varWords[8], 3166 pmbox->un.varWords[9], 3167 pmbox->un.varWords[10]); 3168 3169 if (pmb->mbox_cmpl) 3170 pmb->mbox_cmpl(phba,pmb); 3171 } while (1); 3172 return 0; 3173 } 3174 3175 /** 3176 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3177 * @phba: Pointer to HBA context object. 3178 * @pring: Pointer to driver SLI ring object. 3179 * @tag: buffer tag. 3180 * 3181 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3182 * is set in the tag the buffer is posted for a particular exchange, 3183 * the function will return the buffer without replacing the buffer. 3184 * If the buffer is for unsolicited ELS or CT traffic, this function 3185 * returns the buffer and also posts another buffer to the firmware. 3186 **/ 3187 static struct lpfc_dmabuf * 3188 lpfc_sli_get_buff(struct lpfc_hba *phba, 3189 struct lpfc_sli_ring *pring, 3190 uint32_t tag) 3191 { 3192 struct hbq_dmabuf *hbq_entry; 3193 3194 if (tag & QUE_BUFTAG_BIT) 3195 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3196 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3197 if (!hbq_entry) 3198 return NULL; 3199 return &hbq_entry->dbuf; 3200 } 3201 3202 /** 3203 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3204 * containing a NVME LS request. 3205 * @phba: pointer to lpfc hba data structure. 3206 * @piocb: pointer to the iocbq struct representing the sequence starting 3207 * frame. 3208 * 3209 * This routine initially validates the NVME LS, validates there is a login 3210 * with the port that sent the LS, and then calls the appropriate nvme host 3211 * or target LS request handler. 3212 **/ 3213 static void 3214 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3215 { 3216 struct lpfc_nodelist *ndlp; 3217 struct lpfc_dmabuf *d_buf; 3218 struct hbq_dmabuf *nvmebuf; 3219 struct fc_frame_header *fc_hdr; 3220 struct lpfc_async_xchg_ctx *axchg = NULL; 3221 char *failwhy = NULL; 3222 uint32_t oxid, sid, did, fctl, size; 3223 int ret = 1; 3224 3225 d_buf = piocb->cmd_dmabuf; 3226 3227 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3228 fc_hdr = nvmebuf->hbuf.virt; 3229 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3230 sid = sli4_sid_from_fc_hdr(fc_hdr); 3231 did = sli4_did_from_fc_hdr(fc_hdr); 3232 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3233 fc_hdr->fh_f_ctl[1] << 8 | 3234 fc_hdr->fh_f_ctl[2]); 3235 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3236 3237 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3238 oxid, size, sid); 3239 3240 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3241 failwhy = "Driver Unloading"; 3242 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3243 failwhy = "NVME FC4 Disabled"; 3244 } else if (!phba->nvmet_support && !phba->pport->localport) { 3245 failwhy = "No Localport"; 3246 } else if (phba->nvmet_support && !phba->targetport) { 3247 failwhy = "No Targetport"; 3248 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3249 failwhy = "Bad NVME LS R_CTL"; 3250 } else if (unlikely((fctl & 0x00FF0000) != 3251 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3252 failwhy = "Bad NVME LS F_CTL"; 3253 } else { 3254 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3255 if (!axchg) 3256 failwhy = "No CTX memory"; 3257 } 3258 3259 if (unlikely(failwhy)) { 3260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3261 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3262 sid, oxid, failwhy); 3263 goto out_fail; 3264 } 3265 3266 /* validate the source of the LS is logged in */ 3267 ndlp = lpfc_findnode_did(phba->pport, sid); 3268 if (!ndlp || 3269 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3270 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3271 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3272 "6216 NVME Unsol rcv: No ndlp: " 3273 "NPort_ID x%x oxid x%x\n", 3274 sid, oxid); 3275 goto out_fail; 3276 } 3277 3278 axchg->phba = phba; 3279 axchg->ndlp = ndlp; 3280 axchg->size = size; 3281 axchg->oxid = oxid; 3282 axchg->sid = sid; 3283 axchg->wqeq = NULL; 3284 axchg->state = LPFC_NVME_STE_LS_RCV; 3285 axchg->entry_cnt = 1; 3286 axchg->rqb_buffer = (void *)nvmebuf; 3287 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3288 axchg->payload = nvmebuf->dbuf.virt; 3289 INIT_LIST_HEAD(&axchg->list); 3290 3291 if (phba->nvmet_support) { 3292 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3293 spin_lock_irq(&ndlp->lock); 3294 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3295 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3296 spin_unlock_irq(&ndlp->lock); 3297 3298 /* This reference is a single occurrence to hold the 3299 * node valid until the nvmet transport calls 3300 * host_release. 3301 */ 3302 if (!lpfc_nlp_get(ndlp)) 3303 goto out_fail; 3304 3305 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3306 "6206 NVMET unsol ls_req ndlp x%px " 3307 "DID x%x xflags x%x refcnt %d\n", 3308 ndlp, ndlp->nlp_DID, 3309 ndlp->fc4_xpt_flags, 3310 kref_read(&ndlp->kref)); 3311 } else { 3312 spin_unlock_irq(&ndlp->lock); 3313 } 3314 } else { 3315 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3316 } 3317 3318 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3319 if (!ret) 3320 return; 3321 3322 out_fail: 3323 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3324 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3325 "NVMe%s handler failed %d\n", 3326 did, sid, oxid, 3327 (phba->nvmet_support) ? "T" : "I", ret); 3328 3329 /* recycle receive buffer */ 3330 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3331 3332 /* If start of new exchange, abort it */ 3333 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3334 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3335 3336 if (ret) 3337 kfree(axchg); 3338 } 3339 3340 /** 3341 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3342 * @phba: Pointer to HBA context object. 3343 * @pring: Pointer to driver SLI ring object. 3344 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3345 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3346 * @fch_type: the type for the first frame of the sequence. 3347 * 3348 * This function is called with no lock held. This function uses the r_ctl and 3349 * type of the received sequence to find the correct callback function to call 3350 * to process the sequence. 3351 **/ 3352 static int 3353 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3354 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3355 uint32_t fch_type) 3356 { 3357 int i; 3358 3359 switch (fch_type) { 3360 case FC_TYPE_NVME: 3361 lpfc_nvme_unsol_ls_handler(phba, saveq); 3362 return 1; 3363 default: 3364 break; 3365 } 3366 3367 /* unSolicited Responses */ 3368 if (pring->prt[0].profile) { 3369 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3370 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3371 saveq); 3372 return 1; 3373 } 3374 /* We must search, based on rctl / type 3375 for the right routine */ 3376 for (i = 0; i < pring->num_mask; i++) { 3377 if ((pring->prt[i].rctl == fch_r_ctl) && 3378 (pring->prt[i].type == fch_type)) { 3379 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3380 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3381 (phba, pring, saveq); 3382 return 1; 3383 } 3384 } 3385 return 0; 3386 } 3387 3388 static void 3389 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3390 struct lpfc_iocbq *saveq) 3391 { 3392 IOCB_t *irsp; 3393 union lpfc_wqe128 *wqe; 3394 u16 i = 0; 3395 3396 irsp = &saveq->iocb; 3397 wqe = &saveq->wqe; 3398 3399 /* Fill wcqe with the IOCB status fields */ 3400 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3401 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3402 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3403 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3404 3405 /* Source ID */ 3406 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3407 3408 /* rx-id of the response frame */ 3409 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3410 3411 /* ox-id of the frame */ 3412 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3413 irsp->unsli3.rcvsli3.ox_id); 3414 3415 /* DID */ 3416 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3417 irsp->un.rcvels.remoteID); 3418 3419 /* unsol data len */ 3420 for (i = 0; i < irsp->ulpBdeCount; i++) { 3421 struct lpfc_hbq_entry *hbqe = NULL; 3422 3423 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3424 if (i == 0) { 3425 hbqe = (struct lpfc_hbq_entry *) 3426 &irsp->un.ulpWord[0]; 3427 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3428 hbqe->bde.tus.f.bdeSize; 3429 } else if (i == 1) { 3430 hbqe = (struct lpfc_hbq_entry *) 3431 &irsp->unsli3.sli3Words[4]; 3432 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3433 } 3434 } 3435 } 3436 } 3437 3438 /** 3439 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3440 * @phba: Pointer to HBA context object. 3441 * @pring: Pointer to driver SLI ring object. 3442 * @saveq: Pointer to the unsolicited iocb. 3443 * 3444 * This function is called with no lock held by the ring event handler 3445 * when there is an unsolicited iocb posted to the response ring by the 3446 * firmware. This function gets the buffer associated with the iocbs 3447 * and calls the event handler for the ring. This function handles both 3448 * qring buffers and hbq buffers. 3449 * When the function returns 1 the caller can free the iocb object otherwise 3450 * upper layer functions will free the iocb objects. 3451 **/ 3452 static int 3453 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3454 struct lpfc_iocbq *saveq) 3455 { 3456 IOCB_t * irsp; 3457 WORD5 * w5p; 3458 dma_addr_t paddr; 3459 uint32_t Rctl, Type; 3460 struct lpfc_iocbq *iocbq; 3461 struct lpfc_dmabuf *dmzbuf; 3462 3463 irsp = &saveq->iocb; 3464 saveq->vport = phba->pport; 3465 3466 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3467 if (pring->lpfc_sli_rcv_async_status) 3468 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3469 else 3470 lpfc_printf_log(phba, 3471 KERN_WARNING, 3472 LOG_SLI, 3473 "0316 Ring %d handler: unexpected " 3474 "ASYNC_STATUS iocb received evt_code " 3475 "0x%x\n", 3476 pring->ringno, 3477 irsp->un.asyncstat.evt_code); 3478 return 1; 3479 } 3480 3481 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3482 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3483 if (irsp->ulpBdeCount > 0) { 3484 dmzbuf = lpfc_sli_get_buff(phba, pring, 3485 irsp->un.ulpWord[3]); 3486 lpfc_in_buf_free(phba, dmzbuf); 3487 } 3488 3489 if (irsp->ulpBdeCount > 1) { 3490 dmzbuf = lpfc_sli_get_buff(phba, pring, 3491 irsp->unsli3.sli3Words[3]); 3492 lpfc_in_buf_free(phba, dmzbuf); 3493 } 3494 3495 if (irsp->ulpBdeCount > 2) { 3496 dmzbuf = lpfc_sli_get_buff(phba, pring, 3497 irsp->unsli3.sli3Words[7]); 3498 lpfc_in_buf_free(phba, dmzbuf); 3499 } 3500 3501 return 1; 3502 } 3503 3504 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3505 if (irsp->ulpBdeCount != 0) { 3506 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3507 irsp->un.ulpWord[3]); 3508 if (!saveq->cmd_dmabuf) 3509 lpfc_printf_log(phba, 3510 KERN_ERR, 3511 LOG_SLI, 3512 "0341 Ring %d Cannot find buffer for " 3513 "an unsolicited iocb. tag 0x%x\n", 3514 pring->ringno, 3515 irsp->un.ulpWord[3]); 3516 } 3517 if (irsp->ulpBdeCount == 2) { 3518 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3519 irsp->unsli3.sli3Words[7]); 3520 if (!saveq->bpl_dmabuf) 3521 lpfc_printf_log(phba, 3522 KERN_ERR, 3523 LOG_SLI, 3524 "0342 Ring %d Cannot find buffer for an" 3525 " unsolicited iocb. tag 0x%x\n", 3526 pring->ringno, 3527 irsp->unsli3.sli3Words[7]); 3528 } 3529 list_for_each_entry(iocbq, &saveq->list, list) { 3530 irsp = &iocbq->iocb; 3531 if (irsp->ulpBdeCount != 0) { 3532 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3533 pring, 3534 irsp->un.ulpWord[3]); 3535 if (!iocbq->cmd_dmabuf) 3536 lpfc_printf_log(phba, 3537 KERN_ERR, 3538 LOG_SLI, 3539 "0343 Ring %d Cannot find " 3540 "buffer for an unsolicited iocb" 3541 ". tag 0x%x\n", pring->ringno, 3542 irsp->un.ulpWord[3]); 3543 } 3544 if (irsp->ulpBdeCount == 2) { 3545 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3546 pring, 3547 irsp->unsli3.sli3Words[7]); 3548 if (!iocbq->bpl_dmabuf) 3549 lpfc_printf_log(phba, 3550 KERN_ERR, 3551 LOG_SLI, 3552 "0344 Ring %d Cannot find " 3553 "buffer for an unsolicited " 3554 "iocb. tag 0x%x\n", 3555 pring->ringno, 3556 irsp->unsli3.sli3Words[7]); 3557 } 3558 } 3559 } else { 3560 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3561 irsp->un.cont64[0].addrLow); 3562 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3563 paddr); 3564 if (irsp->ulpBdeCount == 2) { 3565 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3566 irsp->un.cont64[1].addrLow); 3567 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3568 pring, 3569 paddr); 3570 } 3571 } 3572 3573 if (irsp->ulpBdeCount != 0 && 3574 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3575 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3576 int found = 0; 3577 3578 /* search continue save q for same XRI */ 3579 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3580 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3581 saveq->iocb.unsli3.rcvsli3.ox_id) { 3582 list_add_tail(&saveq->list, &iocbq->list); 3583 found = 1; 3584 break; 3585 } 3586 } 3587 if (!found) 3588 list_add_tail(&saveq->clist, 3589 &pring->iocb_continue_saveq); 3590 3591 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3592 list_del_init(&iocbq->clist); 3593 saveq = iocbq; 3594 irsp = &saveq->iocb; 3595 } else { 3596 return 0; 3597 } 3598 } 3599 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3600 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3601 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3602 Rctl = FC_RCTL_ELS_REQ; 3603 Type = FC_TYPE_ELS; 3604 } else { 3605 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3606 Rctl = w5p->hcsw.Rctl; 3607 Type = w5p->hcsw.Type; 3608 3609 /* Firmware Workaround */ 3610 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3611 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3612 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3613 Rctl = FC_RCTL_ELS_REQ; 3614 Type = FC_TYPE_ELS; 3615 w5p->hcsw.Rctl = Rctl; 3616 w5p->hcsw.Type = Type; 3617 } 3618 } 3619 3620 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3621 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3622 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3623 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3624 saveq->vport = phba->pport; 3625 else 3626 saveq->vport = lpfc_find_vport_by_vpid(phba, 3627 irsp->unsli3.rcvsli3.vpi); 3628 } 3629 3630 /* Prepare WQE with Unsol frame */ 3631 lpfc_sli_prep_unsol_wqe(phba, saveq); 3632 3633 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3634 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3635 "0313 Ring %d handler: unexpected Rctl x%x " 3636 "Type x%x received\n", 3637 pring->ringno, Rctl, Type); 3638 3639 return 1; 3640 } 3641 3642 /** 3643 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3644 * @phba: Pointer to HBA context object. 3645 * @pring: Pointer to driver SLI ring object. 3646 * @prspiocb: Pointer to response iocb object. 3647 * 3648 * This function looks up the iocb_lookup table to get the command iocb 3649 * corresponding to the given response iocb using the iotag of the 3650 * response iocb. The driver calls this function with the hbalock held 3651 * for SLI3 ports or the ring lock held for SLI4 ports. 3652 * This function returns the command iocb object if it finds the command 3653 * iocb else returns NULL. 3654 **/ 3655 static struct lpfc_iocbq * 3656 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3657 struct lpfc_sli_ring *pring, 3658 struct lpfc_iocbq *prspiocb) 3659 { 3660 struct lpfc_iocbq *cmd_iocb = NULL; 3661 u16 iotag; 3662 3663 if (phba->sli_rev == LPFC_SLI_REV4) 3664 iotag = get_wqe_reqtag(prspiocb); 3665 else 3666 iotag = prspiocb->iocb.ulpIoTag; 3667 3668 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3669 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3670 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3671 /* remove from txcmpl queue list */ 3672 list_del_init(&cmd_iocb->list); 3673 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3674 pring->txcmplq_cnt--; 3675 return cmd_iocb; 3676 } 3677 } 3678 3679 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3680 "0317 iotag x%x is out of " 3681 "range: max iotag x%x\n", 3682 iotag, phba->sli.last_iotag); 3683 return NULL; 3684 } 3685 3686 /** 3687 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3688 * @phba: Pointer to HBA context object. 3689 * @pring: Pointer to driver SLI ring object. 3690 * @iotag: IOCB tag. 3691 * 3692 * This function looks up the iocb_lookup table to get the command iocb 3693 * corresponding to the given iotag. The driver calls this function with 3694 * the ring lock held because this function is an SLI4 port only helper. 3695 * This function returns the command iocb object if it finds the command 3696 * iocb else returns NULL. 3697 **/ 3698 static struct lpfc_iocbq * 3699 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3700 struct lpfc_sli_ring *pring, uint16_t iotag) 3701 { 3702 struct lpfc_iocbq *cmd_iocb = NULL; 3703 3704 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3705 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3706 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3707 /* remove from txcmpl queue list */ 3708 list_del_init(&cmd_iocb->list); 3709 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3710 pring->txcmplq_cnt--; 3711 return cmd_iocb; 3712 } 3713 } 3714 3715 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3716 "0372 iotag x%x lookup error: max iotag (x%x) " 3717 "cmd_flag x%x\n", 3718 iotag, phba->sli.last_iotag, 3719 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3720 return NULL; 3721 } 3722 3723 /** 3724 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3725 * @phba: Pointer to HBA context object. 3726 * @pring: Pointer to driver SLI ring object. 3727 * @saveq: Pointer to the response iocb to be processed. 3728 * 3729 * This function is called by the ring event handler for non-fcp 3730 * rings when there is a new response iocb in the response ring. 3731 * The caller is not required to hold any locks. This function 3732 * gets the command iocb associated with the response iocb and 3733 * calls the completion handler for the command iocb. If there 3734 * is no completion handler, the function will free the resources 3735 * associated with command iocb. If the response iocb is for 3736 * an already aborted command iocb, the status of the completion 3737 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3738 * This function always returns 1. 3739 **/ 3740 static int 3741 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3742 struct lpfc_iocbq *saveq) 3743 { 3744 struct lpfc_iocbq *cmdiocbp; 3745 unsigned long iflag; 3746 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3747 3748 if (phba->sli_rev == LPFC_SLI_REV4) 3749 spin_lock_irqsave(&pring->ring_lock, iflag); 3750 else 3751 spin_lock_irqsave(&phba->hbalock, iflag); 3752 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3753 if (phba->sli_rev == LPFC_SLI_REV4) 3754 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3755 else 3756 spin_unlock_irqrestore(&phba->hbalock, iflag); 3757 3758 ulp_command = get_job_cmnd(phba, saveq); 3759 ulp_status = get_job_ulpstatus(phba, saveq); 3760 ulp_word4 = get_job_word4(phba, saveq); 3761 ulp_context = get_job_ulpcontext(phba, saveq); 3762 if (phba->sli_rev == LPFC_SLI_REV4) 3763 iotag = get_wqe_reqtag(saveq); 3764 else 3765 iotag = saveq->iocb.ulpIoTag; 3766 3767 if (cmdiocbp) { 3768 ulp_command = get_job_cmnd(phba, cmdiocbp); 3769 if (cmdiocbp->cmd_cmpl) { 3770 /* 3771 * If an ELS command failed send an event to mgmt 3772 * application. 3773 */ 3774 if (ulp_status && 3775 (pring->ringno == LPFC_ELS_RING) && 3776 (ulp_command == CMD_ELS_REQUEST64_CR)) 3777 lpfc_send_els_failure_event(phba, 3778 cmdiocbp, saveq); 3779 3780 /* 3781 * Post all ELS completions to the worker thread. 3782 * All other are passed to the completion callback. 3783 */ 3784 if (pring->ringno == LPFC_ELS_RING) { 3785 if ((phba->sli_rev < LPFC_SLI_REV4) && 3786 (cmdiocbp->cmd_flag & 3787 LPFC_DRIVER_ABORTED)) { 3788 spin_lock_irqsave(&phba->hbalock, 3789 iflag); 3790 cmdiocbp->cmd_flag &= 3791 ~LPFC_DRIVER_ABORTED; 3792 spin_unlock_irqrestore(&phba->hbalock, 3793 iflag); 3794 saveq->iocb.ulpStatus = 3795 IOSTAT_LOCAL_REJECT; 3796 saveq->iocb.un.ulpWord[4] = 3797 IOERR_SLI_ABORTED; 3798 3799 /* Firmware could still be in progress 3800 * of DMAing payload, so don't free data 3801 * buffer till after a hbeat. 3802 */ 3803 spin_lock_irqsave(&phba->hbalock, 3804 iflag); 3805 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3806 spin_unlock_irqrestore(&phba->hbalock, 3807 iflag); 3808 } 3809 if (phba->sli_rev == LPFC_SLI_REV4) { 3810 if (saveq->cmd_flag & 3811 LPFC_EXCHANGE_BUSY) { 3812 /* Set cmdiocb flag for the 3813 * exchange busy so sgl (xri) 3814 * will not be released until 3815 * the abort xri is received 3816 * from hba. 3817 */ 3818 spin_lock_irqsave( 3819 &phba->hbalock, iflag); 3820 cmdiocbp->cmd_flag |= 3821 LPFC_EXCHANGE_BUSY; 3822 spin_unlock_irqrestore( 3823 &phba->hbalock, iflag); 3824 } 3825 if (cmdiocbp->cmd_flag & 3826 LPFC_DRIVER_ABORTED) { 3827 /* 3828 * Clear LPFC_DRIVER_ABORTED 3829 * bit in case it was driver 3830 * initiated abort. 3831 */ 3832 spin_lock_irqsave( 3833 &phba->hbalock, iflag); 3834 cmdiocbp->cmd_flag &= 3835 ~LPFC_DRIVER_ABORTED; 3836 spin_unlock_irqrestore( 3837 &phba->hbalock, iflag); 3838 set_job_ulpstatus(cmdiocbp, 3839 IOSTAT_LOCAL_REJECT); 3840 set_job_ulpword4(cmdiocbp, 3841 IOERR_ABORT_REQUESTED); 3842 /* 3843 * For SLI4, irspiocb contains 3844 * NO_XRI in sli_xritag, it 3845 * shall not affect releasing 3846 * sgl (xri) process. 3847 */ 3848 set_job_ulpstatus(saveq, 3849 IOSTAT_LOCAL_REJECT); 3850 set_job_ulpword4(saveq, 3851 IOERR_SLI_ABORTED); 3852 spin_lock_irqsave( 3853 &phba->hbalock, iflag); 3854 saveq->cmd_flag |= 3855 LPFC_DELAY_MEM_FREE; 3856 spin_unlock_irqrestore( 3857 &phba->hbalock, iflag); 3858 } 3859 } 3860 } 3861 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3862 } else 3863 lpfc_sli_release_iocbq(phba, cmdiocbp); 3864 } else { 3865 /* 3866 * Unknown initiating command based on the response iotag. 3867 * This could be the case on the ELS ring because of 3868 * lpfc_els_abort(). 3869 */ 3870 if (pring->ringno != LPFC_ELS_RING) { 3871 /* 3872 * Ring <ringno> handler: unexpected completion IoTag 3873 * <IoTag> 3874 */ 3875 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3876 "0322 Ring %d handler: " 3877 "unexpected completion IoTag x%x " 3878 "Data: x%x x%x x%x x%x\n", 3879 pring->ringno, iotag, ulp_status, 3880 ulp_word4, ulp_command, ulp_context); 3881 } 3882 } 3883 3884 return 1; 3885 } 3886 3887 /** 3888 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3889 * @phba: Pointer to HBA context object. 3890 * @pring: Pointer to driver SLI ring object. 3891 * 3892 * This function is called from the iocb ring event handlers when 3893 * put pointer is ahead of the get pointer for a ring. This function signal 3894 * an error attention condition to the worker thread and the worker 3895 * thread will transition the HBA to offline state. 3896 **/ 3897 static void 3898 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3899 { 3900 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3901 /* 3902 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3903 * rsp ring <portRspMax> 3904 */ 3905 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3906 "0312 Ring %d handler: portRspPut %d " 3907 "is bigger than rsp ring %d\n", 3908 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3909 pring->sli.sli3.numRiocb); 3910 3911 phba->link_state = LPFC_HBA_ERROR; 3912 3913 /* 3914 * All error attention handlers are posted to 3915 * worker thread 3916 */ 3917 phba->work_ha |= HA_ERATT; 3918 phba->work_hs = HS_FFER3; 3919 3920 lpfc_worker_wake_up(phba); 3921 3922 return; 3923 } 3924 3925 /** 3926 * lpfc_poll_eratt - Error attention polling timer timeout handler 3927 * @t: Context to fetch pointer to address of HBA context object from. 3928 * 3929 * This function is invoked by the Error Attention polling timer when the 3930 * timer times out. It will check the SLI Error Attention register for 3931 * possible attention events. If so, it will post an Error Attention event 3932 * and wake up worker thread to process it. Otherwise, it will set up the 3933 * Error Attention polling timer for the next poll. 3934 **/ 3935 void lpfc_poll_eratt(struct timer_list *t) 3936 { 3937 struct lpfc_hba *phba; 3938 uint32_t eratt = 0; 3939 uint64_t sli_intr, cnt; 3940 3941 phba = from_timer(phba, t, eratt_poll); 3942 if (!test_bit(HBA_SETUP, &phba->hba_flag)) 3943 return; 3944 3945 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3946 return; 3947 3948 /* Here we will also keep track of interrupts per sec of the hba */ 3949 sli_intr = phba->sli.slistat.sli_intr; 3950 3951 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3952 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3953 sli_intr); 3954 else 3955 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3956 3957 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3958 do_div(cnt, phba->eratt_poll_interval); 3959 phba->sli.slistat.sli_ips = cnt; 3960 3961 phba->sli.slistat.sli_prev_intr = sli_intr; 3962 3963 /* Check chip HA register for error event */ 3964 eratt = lpfc_sli_check_eratt(phba); 3965 3966 if (eratt) 3967 /* Tell the worker thread there is work to do */ 3968 lpfc_worker_wake_up(phba); 3969 else 3970 /* Restart the timer for next eratt poll */ 3971 mod_timer(&phba->eratt_poll, 3972 jiffies + 3973 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3974 return; 3975 } 3976 3977 3978 /** 3979 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3980 * @phba: Pointer to HBA context object. 3981 * @pring: Pointer to driver SLI ring object. 3982 * @mask: Host attention register mask for this ring. 3983 * 3984 * This function is called from the interrupt context when there is a ring 3985 * event for the fcp ring. The caller does not hold any lock. 3986 * The function processes each response iocb in the response ring until it 3987 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3988 * LE bit set. The function will call the completion handler of the command iocb 3989 * if the response iocb indicates a completion for a command iocb or it is 3990 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3991 * function if this is an unsolicited iocb. 3992 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3993 * to check it explicitly. 3994 */ 3995 int 3996 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3997 struct lpfc_sli_ring *pring, uint32_t mask) 3998 { 3999 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 4000 IOCB_t *irsp = NULL; 4001 IOCB_t *entry = NULL; 4002 struct lpfc_iocbq *cmdiocbq = NULL; 4003 struct lpfc_iocbq rspiocbq; 4004 uint32_t status; 4005 uint32_t portRspPut, portRspMax; 4006 int rc = 1; 4007 lpfc_iocb_type type; 4008 unsigned long iflag; 4009 uint32_t rsp_cmpl = 0; 4010 4011 spin_lock_irqsave(&phba->hbalock, iflag); 4012 pring->stats.iocb_event++; 4013 4014 /* 4015 * The next available response entry should never exceed the maximum 4016 * entries. If it does, treat it as an adapter hardware error. 4017 */ 4018 portRspMax = pring->sli.sli3.numRiocb; 4019 portRspPut = le32_to_cpu(pgp->rspPutInx); 4020 if (unlikely(portRspPut >= portRspMax)) { 4021 lpfc_sli_rsp_pointers_error(phba, pring); 4022 spin_unlock_irqrestore(&phba->hbalock, iflag); 4023 return 1; 4024 } 4025 if (phba->fcp_ring_in_use) { 4026 spin_unlock_irqrestore(&phba->hbalock, iflag); 4027 return 1; 4028 } else 4029 phba->fcp_ring_in_use = 1; 4030 4031 rmb(); 4032 while (pring->sli.sli3.rspidx != portRspPut) { 4033 /* 4034 * Fetch an entry off the ring and copy it into a local data 4035 * structure. The copy involves a byte-swap since the 4036 * network byte order and pci byte orders are different. 4037 */ 4038 entry = lpfc_resp_iocb(phba, pring); 4039 phba->last_completion_time = jiffies; 4040 4041 if (++pring->sli.sli3.rspidx >= portRspMax) 4042 pring->sli.sli3.rspidx = 0; 4043 4044 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4045 (uint32_t *) &rspiocbq.iocb, 4046 phba->iocb_rsp_size); 4047 INIT_LIST_HEAD(&(rspiocbq.list)); 4048 irsp = &rspiocbq.iocb; 4049 4050 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4051 pring->stats.iocb_rsp++; 4052 rsp_cmpl++; 4053 4054 if (unlikely(irsp->ulpStatus)) { 4055 /* 4056 * If resource errors reported from HBA, reduce 4057 * queuedepths of the SCSI device. 4058 */ 4059 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4060 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4061 IOERR_NO_RESOURCES)) { 4062 spin_unlock_irqrestore(&phba->hbalock, iflag); 4063 phba->lpfc_rampdown_queue_depth(phba); 4064 spin_lock_irqsave(&phba->hbalock, iflag); 4065 } 4066 4067 /* Rsp ring <ringno> error: IOCB */ 4068 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4069 "0336 Rsp Ring %d error: IOCB Data: " 4070 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4071 pring->ringno, 4072 irsp->un.ulpWord[0], 4073 irsp->un.ulpWord[1], 4074 irsp->un.ulpWord[2], 4075 irsp->un.ulpWord[3], 4076 irsp->un.ulpWord[4], 4077 irsp->un.ulpWord[5], 4078 *(uint32_t *)&irsp->un1, 4079 *((uint32_t *)&irsp->un1 + 1)); 4080 } 4081 4082 switch (type) { 4083 case LPFC_ABORT_IOCB: 4084 case LPFC_SOL_IOCB: 4085 /* 4086 * Idle exchange closed via ABTS from port. No iocb 4087 * resources need to be recovered. 4088 */ 4089 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4090 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4091 "0333 IOCB cmd 0x%x" 4092 " processed. Skipping" 4093 " completion\n", 4094 irsp->ulpCommand); 4095 break; 4096 } 4097 4098 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4099 &rspiocbq); 4100 if (unlikely(!cmdiocbq)) 4101 break; 4102 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4103 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4104 if (cmdiocbq->cmd_cmpl) { 4105 spin_unlock_irqrestore(&phba->hbalock, iflag); 4106 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4107 spin_lock_irqsave(&phba->hbalock, iflag); 4108 } 4109 break; 4110 case LPFC_UNSOL_IOCB: 4111 spin_unlock_irqrestore(&phba->hbalock, iflag); 4112 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4113 spin_lock_irqsave(&phba->hbalock, iflag); 4114 break; 4115 default: 4116 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4117 char adaptermsg[LPFC_MAX_ADPTMSG]; 4118 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4119 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4120 MAX_MSG_DATA); 4121 dev_warn(&((phba->pcidev)->dev), 4122 "lpfc%d: %s\n", 4123 phba->brd_no, adaptermsg); 4124 } else { 4125 /* Unknown IOCB command */ 4126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4127 "0334 Unknown IOCB command " 4128 "Data: x%x, x%x x%x x%x x%x\n", 4129 type, irsp->ulpCommand, 4130 irsp->ulpStatus, 4131 irsp->ulpIoTag, 4132 irsp->ulpContext); 4133 } 4134 break; 4135 } 4136 4137 /* 4138 * The response IOCB has been processed. Update the ring 4139 * pointer in SLIM. If the port response put pointer has not 4140 * been updated, sync the pgp->rspPutInx and fetch the new port 4141 * response put pointer. 4142 */ 4143 writel(pring->sli.sli3.rspidx, 4144 &phba->host_gp[pring->ringno].rspGetInx); 4145 4146 if (pring->sli.sli3.rspidx == portRspPut) 4147 portRspPut = le32_to_cpu(pgp->rspPutInx); 4148 } 4149 4150 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4151 pring->stats.iocb_rsp_full++; 4152 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4153 writel(status, phba->CAregaddr); 4154 readl(phba->CAregaddr); 4155 } 4156 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4157 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4158 pring->stats.iocb_cmd_empty++; 4159 4160 /* Force update of the local copy of cmdGetInx */ 4161 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4162 lpfc_sli_resume_iocb(phba, pring); 4163 4164 if ((pring->lpfc_sli_cmd_available)) 4165 (pring->lpfc_sli_cmd_available) (phba, pring); 4166 4167 } 4168 4169 phba->fcp_ring_in_use = 0; 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 return rc; 4172 } 4173 4174 /** 4175 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4176 * @phba: Pointer to HBA context object. 4177 * @pring: Pointer to driver SLI ring object. 4178 * @rspiocbp: Pointer to driver response IOCB object. 4179 * 4180 * This function is called from the worker thread when there is a slow-path 4181 * response IOCB to process. This function chains all the response iocbs until 4182 * seeing the iocb with the LE bit set. The function will call 4183 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4184 * completion of a command iocb. The function will call the 4185 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4186 * The function frees the resources or calls the completion handler if this 4187 * iocb is an abort completion. The function returns NULL when the response 4188 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4189 * this function shall chain the iocb on to the iocb_continueq and return the 4190 * response iocb passed in. 4191 **/ 4192 static struct lpfc_iocbq * 4193 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4194 struct lpfc_iocbq *rspiocbp) 4195 { 4196 struct lpfc_iocbq *saveq; 4197 struct lpfc_iocbq *cmdiocb; 4198 struct lpfc_iocbq *next_iocb; 4199 IOCB_t *irsp; 4200 uint32_t free_saveq; 4201 u8 cmd_type; 4202 lpfc_iocb_type type; 4203 unsigned long iflag; 4204 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4205 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4206 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4207 int rc; 4208 4209 spin_lock_irqsave(&phba->hbalock, iflag); 4210 /* First add the response iocb to the countinueq list */ 4211 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4212 pring->iocb_continueq_cnt++; 4213 4214 /* 4215 * By default, the driver expects to free all resources 4216 * associated with this iocb completion. 4217 */ 4218 free_saveq = 1; 4219 saveq = list_get_first(&pring->iocb_continueq, 4220 struct lpfc_iocbq, list); 4221 list_del_init(&pring->iocb_continueq); 4222 pring->iocb_continueq_cnt = 0; 4223 4224 pring->stats.iocb_rsp++; 4225 4226 /* 4227 * If resource errors reported from HBA, reduce 4228 * queuedepths of the SCSI device. 4229 */ 4230 if (ulp_status == IOSTAT_LOCAL_REJECT && 4231 ((ulp_word4 & IOERR_PARAM_MASK) == 4232 IOERR_NO_RESOURCES)) { 4233 spin_unlock_irqrestore(&phba->hbalock, iflag); 4234 phba->lpfc_rampdown_queue_depth(phba); 4235 spin_lock_irqsave(&phba->hbalock, iflag); 4236 } 4237 4238 if (ulp_status) { 4239 /* Rsp ring <ringno> error: IOCB */ 4240 if (phba->sli_rev < LPFC_SLI_REV4) { 4241 irsp = &rspiocbp->iocb; 4242 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4243 "0328 Rsp Ring %d error: ulp_status x%x " 4244 "IOCB Data: " 4245 "x%08x x%08x x%08x x%08x " 4246 "x%08x x%08x x%08x x%08x " 4247 "x%08x x%08x x%08x x%08x " 4248 "x%08x x%08x x%08x x%08x\n", 4249 pring->ringno, ulp_status, 4250 get_job_ulpword(rspiocbp, 0), 4251 get_job_ulpword(rspiocbp, 1), 4252 get_job_ulpword(rspiocbp, 2), 4253 get_job_ulpword(rspiocbp, 3), 4254 get_job_ulpword(rspiocbp, 4), 4255 get_job_ulpword(rspiocbp, 5), 4256 *(((uint32_t *)irsp) + 6), 4257 *(((uint32_t *)irsp) + 7), 4258 *(((uint32_t *)irsp) + 8), 4259 *(((uint32_t *)irsp) + 9), 4260 *(((uint32_t *)irsp) + 10), 4261 *(((uint32_t *)irsp) + 11), 4262 *(((uint32_t *)irsp) + 12), 4263 *(((uint32_t *)irsp) + 13), 4264 *(((uint32_t *)irsp) + 14), 4265 *(((uint32_t *)irsp) + 15)); 4266 } else { 4267 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4268 "0321 Rsp Ring %d error: " 4269 "IOCB Data: " 4270 "x%x x%x x%x x%x\n", 4271 pring->ringno, 4272 rspiocbp->wcqe_cmpl.word0, 4273 rspiocbp->wcqe_cmpl.total_data_placed, 4274 rspiocbp->wcqe_cmpl.parameter, 4275 rspiocbp->wcqe_cmpl.word3); 4276 } 4277 } 4278 4279 4280 /* 4281 * Fetch the iocb command type and call the correct completion 4282 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4283 * get freed back to the lpfc_iocb_list by the discovery 4284 * kernel thread. 4285 */ 4286 cmd_type = ulp_command & CMD_IOCB_MASK; 4287 type = lpfc_sli_iocb_cmd_type(cmd_type); 4288 switch (type) { 4289 case LPFC_SOL_IOCB: 4290 spin_unlock_irqrestore(&phba->hbalock, iflag); 4291 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4292 spin_lock_irqsave(&phba->hbalock, iflag); 4293 break; 4294 case LPFC_UNSOL_IOCB: 4295 spin_unlock_irqrestore(&phba->hbalock, iflag); 4296 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4297 spin_lock_irqsave(&phba->hbalock, iflag); 4298 if (!rc) 4299 free_saveq = 0; 4300 break; 4301 case LPFC_ABORT_IOCB: 4302 cmdiocb = NULL; 4303 if (ulp_command != CMD_XRI_ABORTED_CX) 4304 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4305 saveq); 4306 if (cmdiocb) { 4307 /* Call the specified completion routine */ 4308 if (cmdiocb->cmd_cmpl) { 4309 spin_unlock_irqrestore(&phba->hbalock, iflag); 4310 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4311 spin_lock_irqsave(&phba->hbalock, iflag); 4312 } else { 4313 __lpfc_sli_release_iocbq(phba, cmdiocb); 4314 } 4315 } 4316 break; 4317 case LPFC_UNKNOWN_IOCB: 4318 if (ulp_command == CMD_ADAPTER_MSG) { 4319 char adaptermsg[LPFC_MAX_ADPTMSG]; 4320 4321 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4322 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4323 MAX_MSG_DATA); 4324 dev_warn(&((phba->pcidev)->dev), 4325 "lpfc%d: %s\n", 4326 phba->brd_no, adaptermsg); 4327 } else { 4328 /* Unknown command */ 4329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4330 "0335 Unknown IOCB " 4331 "command Data: x%x " 4332 "x%x x%x x%x\n", 4333 ulp_command, 4334 ulp_status, 4335 get_wqe_reqtag(rspiocbp), 4336 get_job_ulpcontext(phba, rspiocbp)); 4337 } 4338 break; 4339 } 4340 4341 if (free_saveq) { 4342 list_for_each_entry_safe(rspiocbp, next_iocb, 4343 &saveq->list, list) { 4344 list_del_init(&rspiocbp->list); 4345 __lpfc_sli_release_iocbq(phba, rspiocbp); 4346 } 4347 __lpfc_sli_release_iocbq(phba, saveq); 4348 } 4349 rspiocbp = NULL; 4350 spin_unlock_irqrestore(&phba->hbalock, iflag); 4351 return rspiocbp; 4352 } 4353 4354 /** 4355 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4356 * @phba: Pointer to HBA context object. 4357 * @pring: Pointer to driver SLI ring object. 4358 * @mask: Host attention register mask for this ring. 4359 * 4360 * This routine wraps the actual slow_ring event process routine from the 4361 * API jump table function pointer from the lpfc_hba struct. 4362 **/ 4363 void 4364 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4365 struct lpfc_sli_ring *pring, uint32_t mask) 4366 { 4367 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4368 } 4369 4370 /** 4371 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4372 * @phba: Pointer to HBA context object. 4373 * @pring: Pointer to driver SLI ring object. 4374 * @mask: Host attention register mask for this ring. 4375 * 4376 * This function is called from the worker thread when there is a ring event 4377 * for non-fcp rings. The caller does not hold any lock. The function will 4378 * remove each response iocb in the response ring and calls the handle 4379 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4380 **/ 4381 static void 4382 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4383 struct lpfc_sli_ring *pring, uint32_t mask) 4384 { 4385 struct lpfc_pgp *pgp; 4386 IOCB_t *entry; 4387 IOCB_t *irsp = NULL; 4388 struct lpfc_iocbq *rspiocbp = NULL; 4389 uint32_t portRspPut, portRspMax; 4390 unsigned long iflag; 4391 uint32_t status; 4392 4393 pgp = &phba->port_gp[pring->ringno]; 4394 spin_lock_irqsave(&phba->hbalock, iflag); 4395 pring->stats.iocb_event++; 4396 4397 /* 4398 * The next available response entry should never exceed the maximum 4399 * entries. If it does, treat it as an adapter hardware error. 4400 */ 4401 portRspMax = pring->sli.sli3.numRiocb; 4402 portRspPut = le32_to_cpu(pgp->rspPutInx); 4403 if (portRspPut >= portRspMax) { 4404 /* 4405 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4406 * rsp ring <portRspMax> 4407 */ 4408 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4409 "0303 Ring %d handler: portRspPut %d " 4410 "is bigger than rsp ring %d\n", 4411 pring->ringno, portRspPut, portRspMax); 4412 4413 phba->link_state = LPFC_HBA_ERROR; 4414 spin_unlock_irqrestore(&phba->hbalock, iflag); 4415 4416 phba->work_hs = HS_FFER3; 4417 lpfc_handle_eratt(phba); 4418 4419 return; 4420 } 4421 4422 rmb(); 4423 while (pring->sli.sli3.rspidx != portRspPut) { 4424 /* 4425 * Build a completion list and call the appropriate handler. 4426 * The process is to get the next available response iocb, get 4427 * a free iocb from the list, copy the response data into the 4428 * free iocb, insert to the continuation list, and update the 4429 * next response index to slim. This process makes response 4430 * iocb's in the ring available to DMA as fast as possible but 4431 * pays a penalty for a copy operation. Since the iocb is 4432 * only 32 bytes, this penalty is considered small relative to 4433 * the PCI reads for register values and a slim write. When 4434 * the ulpLe field is set, the entire Command has been 4435 * received. 4436 */ 4437 entry = lpfc_resp_iocb(phba, pring); 4438 4439 phba->last_completion_time = jiffies; 4440 rspiocbp = __lpfc_sli_get_iocbq(phba); 4441 if (rspiocbp == NULL) { 4442 printk(KERN_ERR "%s: out of buffers! Failing " 4443 "completion.\n", __func__); 4444 break; 4445 } 4446 4447 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4448 phba->iocb_rsp_size); 4449 irsp = &rspiocbp->iocb; 4450 4451 if (++pring->sli.sli3.rspidx >= portRspMax) 4452 pring->sli.sli3.rspidx = 0; 4453 4454 if (pring->ringno == LPFC_ELS_RING) { 4455 lpfc_debugfs_slow_ring_trc(phba, 4456 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4457 *(((uint32_t *) irsp) + 4), 4458 *(((uint32_t *) irsp) + 6), 4459 *(((uint32_t *) irsp) + 7)); 4460 } 4461 4462 writel(pring->sli.sli3.rspidx, 4463 &phba->host_gp[pring->ringno].rspGetInx); 4464 4465 spin_unlock_irqrestore(&phba->hbalock, iflag); 4466 /* Handle the response IOCB */ 4467 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4468 spin_lock_irqsave(&phba->hbalock, iflag); 4469 4470 /* 4471 * If the port response put pointer has not been updated, sync 4472 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4473 * response put pointer. 4474 */ 4475 if (pring->sli.sli3.rspidx == portRspPut) { 4476 portRspPut = le32_to_cpu(pgp->rspPutInx); 4477 } 4478 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4479 4480 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4481 /* At least one response entry has been freed */ 4482 pring->stats.iocb_rsp_full++; 4483 /* SET RxRE_RSP in Chip Att register */ 4484 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4485 writel(status, phba->CAregaddr); 4486 readl(phba->CAregaddr); /* flush */ 4487 } 4488 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4489 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4490 pring->stats.iocb_cmd_empty++; 4491 4492 /* Force update of the local copy of cmdGetInx */ 4493 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4494 lpfc_sli_resume_iocb(phba, pring); 4495 4496 if ((pring->lpfc_sli_cmd_available)) 4497 (pring->lpfc_sli_cmd_available) (phba, pring); 4498 4499 } 4500 4501 spin_unlock_irqrestore(&phba->hbalock, iflag); 4502 return; 4503 } 4504 4505 /** 4506 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4507 * @phba: Pointer to HBA context object. 4508 * @pring: Pointer to driver SLI ring object. 4509 * @mask: Host attention register mask for this ring. 4510 * 4511 * This function is called from the worker thread when there is a pending 4512 * ELS response iocb on the driver internal slow-path response iocb worker 4513 * queue. The caller does not hold any lock. The function will remove each 4514 * response iocb from the response worker queue and calls the handle 4515 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4516 **/ 4517 static void 4518 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4519 struct lpfc_sli_ring *pring, uint32_t mask) 4520 { 4521 struct lpfc_iocbq *irspiocbq; 4522 struct hbq_dmabuf *dmabuf; 4523 struct lpfc_cq_event *cq_event; 4524 unsigned long iflag; 4525 int count = 0; 4526 4527 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4528 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4529 /* Get the response iocb from the head of work queue */ 4530 spin_lock_irqsave(&phba->hbalock, iflag); 4531 list_remove_head(&phba->sli4_hba.sp_queue_event, 4532 cq_event, struct lpfc_cq_event, list); 4533 spin_unlock_irqrestore(&phba->hbalock, iflag); 4534 4535 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4536 case CQE_CODE_COMPL_WQE: 4537 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4538 cq_event); 4539 /* Translate ELS WCQE to response IOCBQ */ 4540 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4541 irspiocbq); 4542 if (irspiocbq) 4543 lpfc_sli_sp_handle_rspiocb(phba, pring, 4544 irspiocbq); 4545 count++; 4546 break; 4547 case CQE_CODE_RECEIVE: 4548 case CQE_CODE_RECEIVE_V1: 4549 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4550 cq_event); 4551 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4552 count++; 4553 break; 4554 default: 4555 break; 4556 } 4557 4558 /* Limit the number of events to 64 to avoid soft lockups */ 4559 if (count == 64) 4560 break; 4561 } 4562 } 4563 4564 /** 4565 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4566 * @phba: Pointer to HBA context object. 4567 * @pring: Pointer to driver SLI ring object. 4568 * 4569 * This function aborts all iocbs in the given ring and frees all the iocb 4570 * objects in txq. This function issues an abort iocb for all the iocb commands 4571 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4572 * the return of this function. The caller is not required to hold any locks. 4573 **/ 4574 void 4575 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4576 { 4577 LIST_HEAD(tx_completions); 4578 LIST_HEAD(txcmplq_completions); 4579 struct lpfc_iocbq *iocb, *next_iocb; 4580 int offline; 4581 4582 if (pring->ringno == LPFC_ELS_RING) { 4583 lpfc_fabric_abort_hba(phba); 4584 } 4585 offline = pci_channel_offline(phba->pcidev); 4586 4587 /* Error everything on txq and txcmplq 4588 * First do the txq. 4589 */ 4590 if (phba->sli_rev >= LPFC_SLI_REV4) { 4591 spin_lock_irq(&pring->ring_lock); 4592 list_splice_init(&pring->txq, &tx_completions); 4593 pring->txq_cnt = 0; 4594 4595 if (offline) { 4596 list_splice_init(&pring->txcmplq, 4597 &txcmplq_completions); 4598 } else { 4599 /* Next issue ABTS for everything on the txcmplq */ 4600 list_for_each_entry_safe(iocb, next_iocb, 4601 &pring->txcmplq, list) 4602 lpfc_sli_issue_abort_iotag(phba, pring, 4603 iocb, NULL); 4604 } 4605 spin_unlock_irq(&pring->ring_lock); 4606 } else { 4607 spin_lock_irq(&phba->hbalock); 4608 list_splice_init(&pring->txq, &tx_completions); 4609 pring->txq_cnt = 0; 4610 4611 if (offline) { 4612 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4613 } else { 4614 /* Next issue ABTS for everything on the txcmplq */ 4615 list_for_each_entry_safe(iocb, next_iocb, 4616 &pring->txcmplq, list) 4617 lpfc_sli_issue_abort_iotag(phba, pring, 4618 iocb, NULL); 4619 } 4620 spin_unlock_irq(&phba->hbalock); 4621 } 4622 4623 if (offline) { 4624 /* Cancel all the IOCBs from the completions list */ 4625 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4626 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4627 } else { 4628 /* Make sure HBA is alive */ 4629 lpfc_issue_hb_tmo(phba); 4630 } 4631 /* Cancel all the IOCBs from the completions list */ 4632 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4633 IOERR_SLI_ABORTED); 4634 } 4635 4636 /** 4637 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4638 * @phba: Pointer to HBA context object. 4639 * 4640 * This function aborts all iocbs in FCP rings and frees all the iocb 4641 * objects in txq. This function issues an abort iocb for all the iocb commands 4642 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4643 * the return of this function. The caller is not required to hold any locks. 4644 **/ 4645 void 4646 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4647 { 4648 struct lpfc_sli *psli = &phba->sli; 4649 struct lpfc_sli_ring *pring; 4650 uint32_t i; 4651 4652 /* Look on all the FCP Rings for the iotag */ 4653 if (phba->sli_rev >= LPFC_SLI_REV4) { 4654 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4655 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4656 lpfc_sli_abort_iocb_ring(phba, pring); 4657 } 4658 } else { 4659 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4660 lpfc_sli_abort_iocb_ring(phba, pring); 4661 } 4662 } 4663 4664 /** 4665 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4666 * @phba: Pointer to HBA context object. 4667 * 4668 * This function flushes all iocbs in the IO ring and frees all the iocb 4669 * objects in txq and txcmplq. This function will not issue abort iocbs 4670 * for all the iocb commands in txcmplq, they will just be returned with 4671 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4672 * slot has been permanently disabled. 4673 **/ 4674 void 4675 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4676 { 4677 LIST_HEAD(txq); 4678 LIST_HEAD(txcmplq); 4679 struct lpfc_sli *psli = &phba->sli; 4680 struct lpfc_sli_ring *pring; 4681 uint32_t i; 4682 struct lpfc_iocbq *piocb, *next_iocb; 4683 4684 /* Indicate the I/O queues are flushed */ 4685 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4686 4687 /* Look on all the FCP Rings for the iotag */ 4688 if (phba->sli_rev >= LPFC_SLI_REV4) { 4689 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4690 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4691 4692 spin_lock_irq(&pring->ring_lock); 4693 /* Retrieve everything on txq */ 4694 list_splice_init(&pring->txq, &txq); 4695 list_for_each_entry_safe(piocb, next_iocb, 4696 &pring->txcmplq, list) 4697 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4698 /* Retrieve everything on the txcmplq */ 4699 list_splice_init(&pring->txcmplq, &txcmplq); 4700 pring->txq_cnt = 0; 4701 pring->txcmplq_cnt = 0; 4702 spin_unlock_irq(&pring->ring_lock); 4703 4704 /* Flush the txq */ 4705 lpfc_sli_cancel_iocbs(phba, &txq, 4706 IOSTAT_LOCAL_REJECT, 4707 IOERR_SLI_DOWN); 4708 /* Flush the txcmplq */ 4709 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4710 IOSTAT_LOCAL_REJECT, 4711 IOERR_SLI_DOWN); 4712 if (unlikely(pci_channel_offline(phba->pcidev))) 4713 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4714 } 4715 } else { 4716 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4717 4718 spin_lock_irq(&phba->hbalock); 4719 /* Retrieve everything on txq */ 4720 list_splice_init(&pring->txq, &txq); 4721 list_for_each_entry_safe(piocb, next_iocb, 4722 &pring->txcmplq, list) 4723 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4724 /* Retrieve everything on the txcmplq */ 4725 list_splice_init(&pring->txcmplq, &txcmplq); 4726 pring->txq_cnt = 0; 4727 pring->txcmplq_cnt = 0; 4728 spin_unlock_irq(&phba->hbalock); 4729 4730 /* Flush the txq */ 4731 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4732 IOERR_SLI_DOWN); 4733 /* Flush the txcmpq */ 4734 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4735 IOERR_SLI_DOWN); 4736 } 4737 } 4738 4739 /** 4740 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4741 * @phba: Pointer to HBA context object. 4742 * @mask: Bit mask to be checked. 4743 * 4744 * This function reads the host status register and compares 4745 * with the provided bit mask to check if HBA completed 4746 * the restart. This function will wait in a loop for the 4747 * HBA to complete restart. If the HBA does not restart within 4748 * 15 iterations, the function will reset the HBA again. The 4749 * function returns 1 when HBA fail to restart otherwise returns 4750 * zero. 4751 **/ 4752 static int 4753 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4754 { 4755 uint32_t status; 4756 int i = 0; 4757 int retval = 0; 4758 4759 /* Read the HBA Host Status Register */ 4760 if (lpfc_readl(phba->HSregaddr, &status)) 4761 return 1; 4762 4763 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4764 4765 /* 4766 * Check status register every 100ms for 5 retries, then every 4767 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4768 * every 2.5 sec for 4. 4769 * Break our of the loop if errors occurred during init. 4770 */ 4771 while (((status & mask) != mask) && 4772 !(status & HS_FFERM) && 4773 i++ < 20) { 4774 4775 if (i <= 5) 4776 msleep(10); 4777 else if (i <= 10) 4778 msleep(500); 4779 else 4780 msleep(2500); 4781 4782 if (i == 15) { 4783 /* Do post */ 4784 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4785 lpfc_sli_brdrestart(phba); 4786 } 4787 /* Read the HBA Host Status Register */ 4788 if (lpfc_readl(phba->HSregaddr, &status)) { 4789 retval = 1; 4790 break; 4791 } 4792 } 4793 4794 /* Check to see if any errors occurred during init */ 4795 if ((status & HS_FFERM) || (i >= 20)) { 4796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4797 "2751 Adapter failed to restart, " 4798 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4799 status, 4800 readl(phba->MBslimaddr + 0xa8), 4801 readl(phba->MBslimaddr + 0xac)); 4802 phba->link_state = LPFC_HBA_ERROR; 4803 retval = 1; 4804 } 4805 4806 return retval; 4807 } 4808 4809 /** 4810 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4811 * @phba: Pointer to HBA context object. 4812 * @mask: Bit mask to be checked. 4813 * 4814 * This function checks the host status register to check if HBA is 4815 * ready. This function will wait in a loop for the HBA to be ready 4816 * If the HBA is not ready , the function will will reset the HBA PCI 4817 * function again. The function returns 1 when HBA fail to be ready 4818 * otherwise returns zero. 4819 **/ 4820 static int 4821 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4822 { 4823 uint32_t status; 4824 int retval = 0; 4825 4826 /* Read the HBA Host Status Register */ 4827 status = lpfc_sli4_post_status_check(phba); 4828 4829 if (status) { 4830 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4831 lpfc_sli_brdrestart(phba); 4832 status = lpfc_sli4_post_status_check(phba); 4833 } 4834 4835 /* Check to see if any errors occurred during init */ 4836 if (status) { 4837 phba->link_state = LPFC_HBA_ERROR; 4838 retval = 1; 4839 } else 4840 phba->sli4_hba.intr_enable = 0; 4841 4842 clear_bit(HBA_SETUP, &phba->hba_flag); 4843 return retval; 4844 } 4845 4846 /** 4847 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4848 * @phba: Pointer to HBA context object. 4849 * @mask: Bit mask to be checked. 4850 * 4851 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4852 * from the API jump table function pointer from the lpfc_hba struct. 4853 **/ 4854 int 4855 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4856 { 4857 return phba->lpfc_sli_brdready(phba, mask); 4858 } 4859 4860 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4861 4862 /** 4863 * lpfc_reset_barrier - Make HBA ready for HBA reset 4864 * @phba: Pointer to HBA context object. 4865 * 4866 * This function is called before resetting an HBA. This function is called 4867 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4868 **/ 4869 void lpfc_reset_barrier(struct lpfc_hba *phba) 4870 { 4871 uint32_t __iomem *resp_buf; 4872 uint32_t __iomem *mbox_buf; 4873 volatile struct MAILBOX_word0 mbox; 4874 uint32_t hc_copy, ha_copy, resp_data; 4875 int i; 4876 uint8_t hdrtype; 4877 4878 lockdep_assert_held(&phba->hbalock); 4879 4880 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4881 if (hdrtype != PCI_HEADER_TYPE_MFD || 4882 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4883 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4884 return; 4885 4886 /* 4887 * Tell the other part of the chip to suspend temporarily all 4888 * its DMA activity. 4889 */ 4890 resp_buf = phba->MBslimaddr; 4891 4892 /* Disable the error attention */ 4893 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4894 return; 4895 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4896 readl(phba->HCregaddr); /* flush */ 4897 phba->link_flag |= LS_IGNORE_ERATT; 4898 4899 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4900 return; 4901 if (ha_copy & HA_ERATT) { 4902 /* Clear Chip error bit */ 4903 writel(HA_ERATT, phba->HAregaddr); 4904 phba->pport->stopped = 1; 4905 } 4906 4907 mbox.word0 = 0; 4908 mbox.mbxCommand = MBX_KILL_BOARD; 4909 mbox.mbxOwner = OWN_CHIP; 4910 4911 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4912 mbox_buf = phba->MBslimaddr; 4913 writel(mbox.word0, mbox_buf); 4914 4915 for (i = 0; i < 50; i++) { 4916 if (lpfc_readl((resp_buf + 1), &resp_data)) 4917 return; 4918 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4919 mdelay(1); 4920 else 4921 break; 4922 } 4923 resp_data = 0; 4924 if (lpfc_readl((resp_buf + 1), &resp_data)) 4925 return; 4926 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4927 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4928 phba->pport->stopped) 4929 goto restore_hc; 4930 else 4931 goto clear_errat; 4932 } 4933 4934 mbox.mbxOwner = OWN_HOST; 4935 resp_data = 0; 4936 for (i = 0; i < 500; i++) { 4937 if (lpfc_readl(resp_buf, &resp_data)) 4938 return; 4939 if (resp_data != mbox.word0) 4940 mdelay(1); 4941 else 4942 break; 4943 } 4944 4945 clear_errat: 4946 4947 while (++i < 500) { 4948 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4949 return; 4950 if (!(ha_copy & HA_ERATT)) 4951 mdelay(1); 4952 else 4953 break; 4954 } 4955 4956 if (readl(phba->HAregaddr) & HA_ERATT) { 4957 writel(HA_ERATT, phba->HAregaddr); 4958 phba->pport->stopped = 1; 4959 } 4960 4961 restore_hc: 4962 phba->link_flag &= ~LS_IGNORE_ERATT; 4963 writel(hc_copy, phba->HCregaddr); 4964 readl(phba->HCregaddr); /* flush */ 4965 } 4966 4967 /** 4968 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4969 * @phba: Pointer to HBA context object. 4970 * 4971 * This function issues a kill_board mailbox command and waits for 4972 * the error attention interrupt. This function is called for stopping 4973 * the firmware processing. The caller is not required to hold any 4974 * locks. This function calls lpfc_hba_down_post function to free 4975 * any pending commands after the kill. The function will return 1 when it 4976 * fails to kill the board else will return 0. 4977 **/ 4978 int 4979 lpfc_sli_brdkill(struct lpfc_hba *phba) 4980 { 4981 struct lpfc_sli *psli; 4982 LPFC_MBOXQ_t *pmb; 4983 uint32_t status; 4984 uint32_t ha_copy; 4985 int retval; 4986 int i = 0; 4987 4988 psli = &phba->sli; 4989 4990 /* Kill HBA */ 4991 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4992 "0329 Kill HBA Data: x%x x%x\n", 4993 phba->pport->port_state, psli->sli_flag); 4994 4995 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4996 if (!pmb) 4997 return 1; 4998 4999 /* Disable the error attention */ 5000 spin_lock_irq(&phba->hbalock); 5001 if (lpfc_readl(phba->HCregaddr, &status)) { 5002 spin_unlock_irq(&phba->hbalock); 5003 mempool_free(pmb, phba->mbox_mem_pool); 5004 return 1; 5005 } 5006 status &= ~HC_ERINT_ENA; 5007 writel(status, phba->HCregaddr); 5008 readl(phba->HCregaddr); /* flush */ 5009 phba->link_flag |= LS_IGNORE_ERATT; 5010 spin_unlock_irq(&phba->hbalock); 5011 5012 lpfc_kill_board(phba, pmb); 5013 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5014 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5015 5016 if (retval != MBX_SUCCESS) { 5017 if (retval != MBX_BUSY) 5018 mempool_free(pmb, phba->mbox_mem_pool); 5019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5020 "2752 KILL_BOARD command failed retval %d\n", 5021 retval); 5022 spin_lock_irq(&phba->hbalock); 5023 phba->link_flag &= ~LS_IGNORE_ERATT; 5024 spin_unlock_irq(&phba->hbalock); 5025 return 1; 5026 } 5027 5028 spin_lock_irq(&phba->hbalock); 5029 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5030 spin_unlock_irq(&phba->hbalock); 5031 5032 mempool_free(pmb, phba->mbox_mem_pool); 5033 5034 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5035 * attention every 100ms for 3 seconds. If we don't get ERATT after 5036 * 3 seconds we still set HBA_ERROR state because the status of the 5037 * board is now undefined. 5038 */ 5039 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5040 return 1; 5041 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5042 mdelay(100); 5043 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5044 return 1; 5045 } 5046 5047 del_timer_sync(&psli->mbox_tmo); 5048 if (ha_copy & HA_ERATT) { 5049 writel(HA_ERATT, phba->HAregaddr); 5050 phba->pport->stopped = 1; 5051 } 5052 spin_lock_irq(&phba->hbalock); 5053 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5054 psli->mbox_active = NULL; 5055 phba->link_flag &= ~LS_IGNORE_ERATT; 5056 spin_unlock_irq(&phba->hbalock); 5057 5058 lpfc_hba_down_post(phba); 5059 phba->link_state = LPFC_HBA_ERROR; 5060 5061 return ha_copy & HA_ERATT ? 0 : 1; 5062 } 5063 5064 /** 5065 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5066 * @phba: Pointer to HBA context object. 5067 * 5068 * This function resets the HBA by writing HC_INITFF to the control 5069 * register. After the HBA resets, this function resets all the iocb ring 5070 * indices. This function disables PCI layer parity checking during 5071 * the reset. 5072 * This function returns 0 always. 5073 * The caller is not required to hold any locks. 5074 **/ 5075 int 5076 lpfc_sli_brdreset(struct lpfc_hba *phba) 5077 { 5078 struct lpfc_sli *psli; 5079 struct lpfc_sli_ring *pring; 5080 uint16_t cfg_value; 5081 int i; 5082 5083 psli = &phba->sli; 5084 5085 /* Reset HBA */ 5086 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5087 "0325 Reset HBA Data: x%x x%x\n", 5088 (phba->pport) ? phba->pport->port_state : 0, 5089 psli->sli_flag); 5090 5091 /* perform board reset */ 5092 phba->fc_eventTag = 0; 5093 phba->link_events = 0; 5094 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5095 if (phba->pport) { 5096 phba->pport->fc_myDID = 0; 5097 phba->pport->fc_prevDID = 0; 5098 } 5099 5100 /* Turn off parity checking and serr during the physical reset */ 5101 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5102 return -EIO; 5103 5104 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5105 (cfg_value & 5106 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5107 5108 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5109 5110 /* Now toggle INITFF bit in the Host Control Register */ 5111 writel(HC_INITFF, phba->HCregaddr); 5112 mdelay(1); 5113 readl(phba->HCregaddr); /* flush */ 5114 writel(0, phba->HCregaddr); 5115 readl(phba->HCregaddr); /* flush */ 5116 5117 /* Restore PCI cmd register */ 5118 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5119 5120 /* Initialize relevant SLI info */ 5121 for (i = 0; i < psli->num_rings; i++) { 5122 pring = &psli->sli3_ring[i]; 5123 pring->flag = 0; 5124 pring->sli.sli3.rspidx = 0; 5125 pring->sli.sli3.next_cmdidx = 0; 5126 pring->sli.sli3.local_getidx = 0; 5127 pring->sli.sli3.cmdidx = 0; 5128 pring->missbufcnt = 0; 5129 } 5130 5131 phba->link_state = LPFC_WARM_START; 5132 return 0; 5133 } 5134 5135 /** 5136 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5137 * @phba: Pointer to HBA context object. 5138 * 5139 * This function resets a SLI4 HBA. This function disables PCI layer parity 5140 * checking during resets the device. The caller is not required to hold 5141 * any locks. 5142 * 5143 * This function returns 0 on success else returns negative error code. 5144 **/ 5145 int 5146 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5147 { 5148 struct lpfc_sli *psli = &phba->sli; 5149 uint16_t cfg_value; 5150 int rc = 0; 5151 5152 /* Reset HBA */ 5153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5154 "0295 Reset HBA Data: x%x x%x x%lx\n", 5155 phba->pport->port_state, psli->sli_flag, 5156 phba->hba_flag); 5157 5158 /* perform board reset */ 5159 phba->fc_eventTag = 0; 5160 phba->link_events = 0; 5161 phba->pport->fc_myDID = 0; 5162 phba->pport->fc_prevDID = 0; 5163 clear_bit(HBA_SETUP, &phba->hba_flag); 5164 5165 spin_lock_irq(&phba->hbalock); 5166 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5167 phba->fcf.fcf_flag = 0; 5168 spin_unlock_irq(&phba->hbalock); 5169 5170 /* Now physically reset the device */ 5171 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5172 "0389 Performing PCI function reset!\n"); 5173 5174 /* Turn off parity checking and serr during the physical reset */ 5175 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5176 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5177 "3205 PCI read Config failed\n"); 5178 return -EIO; 5179 } 5180 5181 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5182 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5183 5184 /* Perform FCoE PCI function reset before freeing queue memory */ 5185 rc = lpfc_pci_function_reset(phba); 5186 5187 /* Restore PCI cmd register */ 5188 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5189 5190 return rc; 5191 } 5192 5193 /** 5194 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5195 * @phba: Pointer to HBA context object. 5196 * 5197 * This function is called in the SLI initialization code path to 5198 * restart the HBA. The caller is not required to hold any lock. 5199 * This function writes MBX_RESTART mailbox command to the SLIM and 5200 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5201 * function to free any pending commands. The function enables 5202 * POST only during the first initialization. The function returns zero. 5203 * The function does not guarantee completion of MBX_RESTART mailbox 5204 * command before the return of this function. 5205 **/ 5206 static int 5207 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5208 { 5209 volatile struct MAILBOX_word0 mb; 5210 struct lpfc_sli *psli; 5211 void __iomem *to_slim; 5212 5213 spin_lock_irq(&phba->hbalock); 5214 5215 psli = &phba->sli; 5216 5217 /* Restart HBA */ 5218 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5219 "0337 Restart HBA Data: x%x x%x\n", 5220 (phba->pport) ? phba->pport->port_state : 0, 5221 psli->sli_flag); 5222 5223 mb.word0 = 0; 5224 mb.mbxCommand = MBX_RESTART; 5225 mb.mbxHc = 1; 5226 5227 lpfc_reset_barrier(phba); 5228 5229 to_slim = phba->MBslimaddr; 5230 writel(mb.word0, to_slim); 5231 readl(to_slim); /* flush */ 5232 5233 /* Only skip post after fc_ffinit is completed */ 5234 if (phba->pport && phba->pport->port_state) 5235 mb.word0 = 1; /* This is really setting up word1 */ 5236 else 5237 mb.word0 = 0; /* This is really setting up word1 */ 5238 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5239 writel(mb.word0, to_slim); 5240 readl(to_slim); /* flush */ 5241 5242 lpfc_sli_brdreset(phba); 5243 if (phba->pport) 5244 phba->pport->stopped = 0; 5245 phba->link_state = LPFC_INIT_START; 5246 phba->hba_flag = 0; 5247 spin_unlock_irq(&phba->hbalock); 5248 5249 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5250 psli->stats_start = ktime_get_seconds(); 5251 5252 /* Give the INITFF and Post time to settle. */ 5253 mdelay(100); 5254 5255 lpfc_hba_down_post(phba); 5256 5257 return 0; 5258 } 5259 5260 /** 5261 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5262 * @phba: Pointer to HBA context object. 5263 * 5264 * This function is called in the SLI initialization code path to restart 5265 * a SLI4 HBA. The caller is not required to hold any lock. 5266 * At the end of the function, it calls lpfc_hba_down_post function to 5267 * free any pending commands. 5268 **/ 5269 static int 5270 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5271 { 5272 struct lpfc_sli *psli = &phba->sli; 5273 int rc; 5274 5275 /* Restart HBA */ 5276 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5277 "0296 Restart HBA Data: x%x x%x\n", 5278 phba->pport->port_state, psli->sli_flag); 5279 5280 rc = lpfc_sli4_brdreset(phba); 5281 if (rc) { 5282 phba->link_state = LPFC_HBA_ERROR; 5283 goto hba_down_queue; 5284 } 5285 5286 spin_lock_irq(&phba->hbalock); 5287 phba->pport->stopped = 0; 5288 phba->link_state = LPFC_INIT_START; 5289 phba->hba_flag = 0; 5290 /* Preserve FA-PWWN expectation */ 5291 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5292 spin_unlock_irq(&phba->hbalock); 5293 5294 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5295 psli->stats_start = ktime_get_seconds(); 5296 5297 hba_down_queue: 5298 lpfc_hba_down_post(phba); 5299 lpfc_sli4_queue_destroy(phba); 5300 5301 return rc; 5302 } 5303 5304 /** 5305 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5306 * @phba: Pointer to HBA context object. 5307 * 5308 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5309 * API jump table function pointer from the lpfc_hba struct. 5310 **/ 5311 int 5312 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5313 { 5314 return phba->lpfc_sli_brdrestart(phba); 5315 } 5316 5317 /** 5318 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5319 * @phba: Pointer to HBA context object. 5320 * 5321 * This function is called after a HBA restart to wait for successful 5322 * restart of the HBA. Successful restart of the HBA is indicated by 5323 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5324 * iteration, the function will restart the HBA again. The function returns 5325 * zero if HBA successfully restarted else returns negative error code. 5326 **/ 5327 int 5328 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5329 { 5330 uint32_t status, i = 0; 5331 5332 /* Read the HBA Host Status Register */ 5333 if (lpfc_readl(phba->HSregaddr, &status)) 5334 return -EIO; 5335 5336 /* Check status register to see what current state is */ 5337 i = 0; 5338 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5339 5340 /* Check every 10ms for 10 retries, then every 100ms for 90 5341 * retries, then every 1 sec for 50 retires for a total of 5342 * ~60 seconds before reset the board again and check every 5343 * 1 sec for 50 retries. The up to 60 seconds before the 5344 * board ready is required by the Falcon FIPS zeroization 5345 * complete, and any reset the board in between shall cause 5346 * restart of zeroization, further delay the board ready. 5347 */ 5348 if (i++ >= 200) { 5349 /* Adapter failed to init, timeout, status reg 5350 <status> */ 5351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5352 "0436 Adapter failed to init, " 5353 "timeout, status reg x%x, " 5354 "FW Data: A8 x%x AC x%x\n", status, 5355 readl(phba->MBslimaddr + 0xa8), 5356 readl(phba->MBslimaddr + 0xac)); 5357 phba->link_state = LPFC_HBA_ERROR; 5358 return -ETIMEDOUT; 5359 } 5360 5361 /* Check to see if any errors occurred during init */ 5362 if (status & HS_FFERM) { 5363 /* ERROR: During chipset initialization */ 5364 /* Adapter failed to init, chipset, status reg 5365 <status> */ 5366 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5367 "0437 Adapter failed to init, " 5368 "chipset, status reg x%x, " 5369 "FW Data: A8 x%x AC x%x\n", status, 5370 readl(phba->MBslimaddr + 0xa8), 5371 readl(phba->MBslimaddr + 0xac)); 5372 phba->link_state = LPFC_HBA_ERROR; 5373 return -EIO; 5374 } 5375 5376 if (i <= 10) 5377 msleep(10); 5378 else if (i <= 100) 5379 msleep(100); 5380 else 5381 msleep(1000); 5382 5383 if (i == 150) { 5384 /* Do post */ 5385 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5386 lpfc_sli_brdrestart(phba); 5387 } 5388 /* Read the HBA Host Status Register */ 5389 if (lpfc_readl(phba->HSregaddr, &status)) 5390 return -EIO; 5391 } 5392 5393 /* Check to see if any errors occurred during init */ 5394 if (status & HS_FFERM) { 5395 /* ERROR: During chipset initialization */ 5396 /* Adapter failed to init, chipset, status reg <status> */ 5397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5398 "0438 Adapter failed to init, chipset, " 5399 "status reg x%x, " 5400 "FW Data: A8 x%x AC x%x\n", status, 5401 readl(phba->MBslimaddr + 0xa8), 5402 readl(phba->MBslimaddr + 0xac)); 5403 phba->link_state = LPFC_HBA_ERROR; 5404 return -EIO; 5405 } 5406 5407 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5408 5409 /* Clear all interrupt enable conditions */ 5410 writel(0, phba->HCregaddr); 5411 readl(phba->HCregaddr); /* flush */ 5412 5413 /* setup host attn register */ 5414 writel(0xffffffff, phba->HAregaddr); 5415 readl(phba->HAregaddr); /* flush */ 5416 return 0; 5417 } 5418 5419 /** 5420 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5421 * 5422 * This function calculates and returns the number of HBQs required to be 5423 * configured. 5424 **/ 5425 int 5426 lpfc_sli_hbq_count(void) 5427 { 5428 return ARRAY_SIZE(lpfc_hbq_defs); 5429 } 5430 5431 /** 5432 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5433 * 5434 * This function adds the number of hbq entries in every HBQ to get 5435 * the total number of hbq entries required for the HBA and returns 5436 * the total count. 5437 **/ 5438 static int 5439 lpfc_sli_hbq_entry_count(void) 5440 { 5441 int hbq_count = lpfc_sli_hbq_count(); 5442 int count = 0; 5443 int i; 5444 5445 for (i = 0; i < hbq_count; ++i) 5446 count += lpfc_hbq_defs[i]->entry_count; 5447 return count; 5448 } 5449 5450 /** 5451 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5452 * 5453 * This function calculates amount of memory required for all hbq entries 5454 * to be configured and returns the total memory required. 5455 **/ 5456 int 5457 lpfc_sli_hbq_size(void) 5458 { 5459 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5460 } 5461 5462 /** 5463 * lpfc_sli_hbq_setup - configure and initialize HBQs 5464 * @phba: Pointer to HBA context object. 5465 * 5466 * This function is called during the SLI initialization to configure 5467 * all the HBQs and post buffers to the HBQ. The caller is not 5468 * required to hold any locks. This function will return zero if successful 5469 * else it will return negative error code. 5470 **/ 5471 static int 5472 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5473 { 5474 int hbq_count = lpfc_sli_hbq_count(); 5475 LPFC_MBOXQ_t *pmb; 5476 MAILBOX_t *pmbox; 5477 uint32_t hbqno; 5478 uint32_t hbq_entry_index; 5479 5480 /* Get a Mailbox buffer to setup mailbox 5481 * commands for HBA initialization 5482 */ 5483 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5484 5485 if (!pmb) 5486 return -ENOMEM; 5487 5488 pmbox = &pmb->u.mb; 5489 5490 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5491 phba->link_state = LPFC_INIT_MBX_CMDS; 5492 phba->hbq_in_use = 1; 5493 5494 hbq_entry_index = 0; 5495 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5496 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5497 phba->hbqs[hbqno].hbqPutIdx = 0; 5498 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5499 phba->hbqs[hbqno].entry_count = 5500 lpfc_hbq_defs[hbqno]->entry_count; 5501 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5502 hbq_entry_index, pmb); 5503 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5504 5505 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5506 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5507 mbxStatus <status>, ring <num> */ 5508 5509 lpfc_printf_log(phba, KERN_ERR, 5510 LOG_SLI | LOG_VPORT, 5511 "1805 Adapter failed to init. " 5512 "Data: x%x x%x x%x\n", 5513 pmbox->mbxCommand, 5514 pmbox->mbxStatus, hbqno); 5515 5516 phba->link_state = LPFC_HBA_ERROR; 5517 mempool_free(pmb, phba->mbox_mem_pool); 5518 return -ENXIO; 5519 } 5520 } 5521 phba->hbq_count = hbq_count; 5522 5523 mempool_free(pmb, phba->mbox_mem_pool); 5524 5525 /* Initially populate or replenish the HBQs */ 5526 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5527 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5528 return 0; 5529 } 5530 5531 /** 5532 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5533 * @phba: Pointer to HBA context object. 5534 * 5535 * This function is called during the SLI initialization to configure 5536 * all the HBQs and post buffers to the HBQ. The caller is not 5537 * required to hold any locks. This function will return zero if successful 5538 * else it will return negative error code. 5539 **/ 5540 static int 5541 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5542 { 5543 phba->hbq_in_use = 1; 5544 /** 5545 * Specific case when the MDS diagnostics is enabled and supported. 5546 * The receive buffer count is truncated to manage the incoming 5547 * traffic. 5548 **/ 5549 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5550 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5551 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5552 else 5553 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5554 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5555 phba->hbq_count = 1; 5556 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5557 /* Initially populate or replenish the HBQs */ 5558 return 0; 5559 } 5560 5561 /** 5562 * lpfc_sli_config_port - Issue config port mailbox command 5563 * @phba: Pointer to HBA context object. 5564 * @sli_mode: sli mode - 2/3 5565 * 5566 * This function is called by the sli initialization code path 5567 * to issue config_port mailbox command. This function restarts the 5568 * HBA firmware and issues a config_port mailbox command to configure 5569 * the SLI interface in the sli mode specified by sli_mode 5570 * variable. The caller is not required to hold any locks. 5571 * The function returns 0 if successful, else returns negative error 5572 * code. 5573 **/ 5574 int 5575 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5576 { 5577 LPFC_MBOXQ_t *pmb; 5578 uint32_t resetcount = 0, rc = 0, done = 0; 5579 5580 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5581 if (!pmb) { 5582 phba->link_state = LPFC_HBA_ERROR; 5583 return -ENOMEM; 5584 } 5585 5586 phba->sli_rev = sli_mode; 5587 while (resetcount < 2 && !done) { 5588 spin_lock_irq(&phba->hbalock); 5589 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5590 spin_unlock_irq(&phba->hbalock); 5591 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5592 lpfc_sli_brdrestart(phba); 5593 rc = lpfc_sli_chipset_init(phba); 5594 if (rc) 5595 break; 5596 5597 spin_lock_irq(&phba->hbalock); 5598 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5599 spin_unlock_irq(&phba->hbalock); 5600 resetcount++; 5601 5602 /* Call pre CONFIG_PORT mailbox command initialization. A 5603 * value of 0 means the call was successful. Any other 5604 * nonzero value is a failure, but if ERESTART is returned, 5605 * the driver may reset the HBA and try again. 5606 */ 5607 rc = lpfc_config_port_prep(phba); 5608 if (rc == -ERESTART) { 5609 phba->link_state = LPFC_LINK_UNKNOWN; 5610 continue; 5611 } else if (rc) 5612 break; 5613 5614 phba->link_state = LPFC_INIT_MBX_CMDS; 5615 lpfc_config_port(phba, pmb); 5616 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5617 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5618 LPFC_SLI3_HBQ_ENABLED | 5619 LPFC_SLI3_CRP_ENABLED | 5620 LPFC_SLI3_DSS_ENABLED); 5621 if (rc != MBX_SUCCESS) { 5622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5623 "0442 Adapter failed to init, mbxCmd x%x " 5624 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5625 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5626 spin_lock_irq(&phba->hbalock); 5627 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5628 spin_unlock_irq(&phba->hbalock); 5629 rc = -ENXIO; 5630 } else { 5631 /* Allow asynchronous mailbox command to go through */ 5632 spin_lock_irq(&phba->hbalock); 5633 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5634 spin_unlock_irq(&phba->hbalock); 5635 done = 1; 5636 5637 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5638 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5639 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5640 "3110 Port did not grant ASABT\n"); 5641 } 5642 } 5643 if (!done) { 5644 rc = -EINVAL; 5645 goto do_prep_failed; 5646 } 5647 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5648 if (!pmb->u.mb.un.varCfgPort.cMA) { 5649 rc = -ENXIO; 5650 goto do_prep_failed; 5651 } 5652 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5653 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5654 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5655 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5656 phba->max_vpi : phba->max_vports; 5657 5658 } else 5659 phba->max_vpi = 0; 5660 if (pmb->u.mb.un.varCfgPort.gerbm) 5661 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5662 if (pmb->u.mb.un.varCfgPort.gcrp) 5663 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5664 5665 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5666 phba->port_gp = phba->mbox->us.s3_pgp.port; 5667 5668 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5669 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5670 phba->cfg_enable_bg = 0; 5671 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5673 "0443 Adapter did not grant " 5674 "BlockGuard\n"); 5675 } 5676 } 5677 } else { 5678 phba->hbq_get = NULL; 5679 phba->port_gp = phba->mbox->us.s2.port; 5680 phba->max_vpi = 0; 5681 } 5682 do_prep_failed: 5683 mempool_free(pmb, phba->mbox_mem_pool); 5684 return rc; 5685 } 5686 5687 5688 /** 5689 * lpfc_sli_hba_setup - SLI initialization function 5690 * @phba: Pointer to HBA context object. 5691 * 5692 * This function is the main SLI initialization function. This function 5693 * is called by the HBA initialization code, HBA reset code and HBA 5694 * error attention handler code. Caller is not required to hold any 5695 * locks. This function issues config_port mailbox command to configure 5696 * the SLI, setup iocb rings and HBQ rings. In the end the function 5697 * calls the config_port_post function to issue init_link mailbox 5698 * command and to start the discovery. The function will return zero 5699 * if successful, else it will return negative error code. 5700 **/ 5701 int 5702 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5703 { 5704 uint32_t rc; 5705 int i; 5706 int longs; 5707 5708 /* Enable ISR already does config_port because of config_msi mbx */ 5709 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5710 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5711 if (rc) 5712 return -EIO; 5713 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5714 } 5715 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5716 5717 if (phba->sli_rev == 3) { 5718 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5719 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5720 } else { 5721 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5722 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5723 phba->sli3_options = 0; 5724 } 5725 5726 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5727 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5728 phba->sli_rev, phba->max_vpi); 5729 rc = lpfc_sli_ring_map(phba); 5730 5731 if (rc) 5732 goto lpfc_sli_hba_setup_error; 5733 5734 /* Initialize VPIs. */ 5735 if (phba->sli_rev == LPFC_SLI_REV3) { 5736 /* 5737 * The VPI bitmask and physical ID array are allocated 5738 * and initialized once only - at driver load. A port 5739 * reset doesn't need to reinitialize this memory. 5740 */ 5741 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5742 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5743 phba->vpi_bmask = kcalloc(longs, 5744 sizeof(unsigned long), 5745 GFP_KERNEL); 5746 if (!phba->vpi_bmask) { 5747 rc = -ENOMEM; 5748 goto lpfc_sli_hba_setup_error; 5749 } 5750 5751 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5752 sizeof(uint16_t), 5753 GFP_KERNEL); 5754 if (!phba->vpi_ids) { 5755 kfree(phba->vpi_bmask); 5756 rc = -ENOMEM; 5757 goto lpfc_sli_hba_setup_error; 5758 } 5759 for (i = 0; i < phba->max_vpi; i++) 5760 phba->vpi_ids[i] = i; 5761 } 5762 } 5763 5764 /* Init HBQs */ 5765 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5766 rc = lpfc_sli_hbq_setup(phba); 5767 if (rc) 5768 goto lpfc_sli_hba_setup_error; 5769 } 5770 spin_lock_irq(&phba->hbalock); 5771 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5772 spin_unlock_irq(&phba->hbalock); 5773 5774 rc = lpfc_config_port_post(phba); 5775 if (rc) 5776 goto lpfc_sli_hba_setup_error; 5777 5778 return rc; 5779 5780 lpfc_sli_hba_setup_error: 5781 phba->link_state = LPFC_HBA_ERROR; 5782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5783 "0445 Firmware initialization failed\n"); 5784 return rc; 5785 } 5786 5787 /** 5788 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5789 * @phba: Pointer to HBA context object. 5790 * 5791 * This function issue a dump mailbox command to read config region 5792 * 23 and parse the records in the region and populate driver 5793 * data structure. 5794 **/ 5795 static int 5796 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5797 { 5798 LPFC_MBOXQ_t *mboxq; 5799 struct lpfc_dmabuf *mp; 5800 struct lpfc_mqe *mqe; 5801 uint32_t data_length; 5802 int rc; 5803 5804 /* Program the default value of vlan_id and fc_map */ 5805 phba->valid_vlan = 0; 5806 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5807 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5808 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5809 5810 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5811 if (!mboxq) 5812 return -ENOMEM; 5813 5814 mqe = &mboxq->u.mqe; 5815 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5816 rc = -ENOMEM; 5817 goto out_free_mboxq; 5818 } 5819 5820 mp = mboxq->ctx_buf; 5821 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5822 5823 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5824 "(%d):2571 Mailbox cmd x%x Status x%x " 5825 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5826 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5827 "CQ: x%x x%x x%x x%x\n", 5828 mboxq->vport ? mboxq->vport->vpi : 0, 5829 bf_get(lpfc_mqe_command, mqe), 5830 bf_get(lpfc_mqe_status, mqe), 5831 mqe->un.mb_words[0], mqe->un.mb_words[1], 5832 mqe->un.mb_words[2], mqe->un.mb_words[3], 5833 mqe->un.mb_words[4], mqe->un.mb_words[5], 5834 mqe->un.mb_words[6], mqe->un.mb_words[7], 5835 mqe->un.mb_words[8], mqe->un.mb_words[9], 5836 mqe->un.mb_words[10], mqe->un.mb_words[11], 5837 mqe->un.mb_words[12], mqe->un.mb_words[13], 5838 mqe->un.mb_words[14], mqe->un.mb_words[15], 5839 mqe->un.mb_words[16], mqe->un.mb_words[50], 5840 mboxq->mcqe.word0, 5841 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5842 mboxq->mcqe.trailer); 5843 5844 if (rc) { 5845 rc = -EIO; 5846 goto out_free_mboxq; 5847 } 5848 data_length = mqe->un.mb_words[5]; 5849 if (data_length > DMP_RGN23_SIZE) { 5850 rc = -EIO; 5851 goto out_free_mboxq; 5852 } 5853 5854 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5855 rc = 0; 5856 5857 out_free_mboxq: 5858 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5859 return rc; 5860 } 5861 5862 /** 5863 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5864 * @phba: pointer to lpfc hba data structure. 5865 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5866 * @vpd: pointer to the memory to hold resulting port vpd data. 5867 * @vpd_size: On input, the number of bytes allocated to @vpd. 5868 * On output, the number of data bytes in @vpd. 5869 * 5870 * This routine executes a READ_REV SLI4 mailbox command. In 5871 * addition, this routine gets the port vpd data. 5872 * 5873 * Return codes 5874 * 0 - successful 5875 * -ENOMEM - could not allocated memory. 5876 **/ 5877 static int 5878 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5879 uint8_t *vpd, uint32_t *vpd_size) 5880 { 5881 int rc = 0; 5882 uint32_t dma_size; 5883 struct lpfc_dmabuf *dmabuf; 5884 struct lpfc_mqe *mqe; 5885 5886 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5887 if (!dmabuf) 5888 return -ENOMEM; 5889 5890 /* 5891 * Get a DMA buffer for the vpd data resulting from the READ_REV 5892 * mailbox command. 5893 */ 5894 dma_size = *vpd_size; 5895 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5896 &dmabuf->phys, GFP_KERNEL); 5897 if (!dmabuf->virt) { 5898 kfree(dmabuf); 5899 return -ENOMEM; 5900 } 5901 5902 /* 5903 * The SLI4 implementation of READ_REV conflicts at word1, 5904 * bits 31:16 and SLI4 adds vpd functionality not present 5905 * in SLI3. This code corrects the conflicts. 5906 */ 5907 lpfc_read_rev(phba, mboxq); 5908 mqe = &mboxq->u.mqe; 5909 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5910 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5911 mqe->un.read_rev.word1 &= 0x0000FFFF; 5912 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5913 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5914 5915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5916 if (rc) { 5917 dma_free_coherent(&phba->pcidev->dev, dma_size, 5918 dmabuf->virt, dmabuf->phys); 5919 kfree(dmabuf); 5920 return -EIO; 5921 } 5922 5923 /* 5924 * The available vpd length cannot be bigger than the 5925 * DMA buffer passed to the port. Catch the less than 5926 * case and update the caller's size. 5927 */ 5928 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5929 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5930 5931 memcpy(vpd, dmabuf->virt, *vpd_size); 5932 5933 dma_free_coherent(&phba->pcidev->dev, dma_size, 5934 dmabuf->virt, dmabuf->phys); 5935 kfree(dmabuf); 5936 return 0; 5937 } 5938 5939 /** 5940 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5941 * @phba: pointer to lpfc hba data structure. 5942 * 5943 * This routine retrieves SLI4 device physical port name this PCI function 5944 * is attached to. 5945 * 5946 * Return codes 5947 * 0 - successful 5948 * otherwise - failed to retrieve controller attributes 5949 **/ 5950 static int 5951 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5952 { 5953 LPFC_MBOXQ_t *mboxq; 5954 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5955 struct lpfc_controller_attribute *cntl_attr; 5956 void *virtaddr = NULL; 5957 uint32_t alloclen, reqlen; 5958 uint32_t shdr_status, shdr_add_status; 5959 union lpfc_sli4_cfg_shdr *shdr; 5960 int rc; 5961 5962 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5963 if (!mboxq) 5964 return -ENOMEM; 5965 5966 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5967 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5968 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5969 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5970 LPFC_SLI4_MBX_NEMBED); 5971 5972 if (alloclen < reqlen) { 5973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5974 "3084 Allocated DMA memory size (%d) is " 5975 "less than the requested DMA memory size " 5976 "(%d)\n", alloclen, reqlen); 5977 rc = -ENOMEM; 5978 goto out_free_mboxq; 5979 } 5980 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5981 virtaddr = mboxq->sge_array->addr[0]; 5982 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5983 shdr = &mbx_cntl_attr->cfg_shdr; 5984 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5985 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5986 if (shdr_status || shdr_add_status || rc) { 5987 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5988 "3085 Mailbox x%x (x%x/x%x) failed, " 5989 "rc:x%x, status:x%x, add_status:x%x\n", 5990 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5991 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5992 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5993 rc, shdr_status, shdr_add_status); 5994 rc = -ENXIO; 5995 goto out_free_mboxq; 5996 } 5997 5998 cntl_attr = &mbx_cntl_attr->cntl_attr; 5999 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6000 phba->sli4_hba.lnk_info.lnk_tp = 6001 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6002 phba->sli4_hba.lnk_info.lnk_no = 6003 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6004 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6005 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6006 6007 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6008 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6009 sizeof(phba->BIOSVersion)); 6010 6011 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6012 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6013 "flash_id: x%02x, asic_rev: x%02x\n", 6014 phba->sli4_hba.lnk_info.lnk_tp, 6015 phba->sli4_hba.lnk_info.lnk_no, 6016 phba->BIOSVersion, phba->sli4_hba.flash_id, 6017 phba->sli4_hba.asic_rev); 6018 out_free_mboxq: 6019 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6020 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6021 else 6022 mempool_free(mboxq, phba->mbox_mem_pool); 6023 return rc; 6024 } 6025 6026 /** 6027 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6028 * @phba: pointer to lpfc hba data structure. 6029 * 6030 * This routine retrieves SLI4 device physical port name this PCI function 6031 * is attached to. 6032 * 6033 * Return codes 6034 * 0 - successful 6035 * otherwise - failed to retrieve physical port name 6036 **/ 6037 static int 6038 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6039 { 6040 LPFC_MBOXQ_t *mboxq; 6041 struct lpfc_mbx_get_port_name *get_port_name; 6042 uint32_t shdr_status, shdr_add_status; 6043 union lpfc_sli4_cfg_shdr *shdr; 6044 char cport_name = 0; 6045 int rc; 6046 6047 /* We assume nothing at this point */ 6048 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6049 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6050 6051 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6052 if (!mboxq) 6053 return -ENOMEM; 6054 /* obtain link type and link number via READ_CONFIG */ 6055 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6056 lpfc_sli4_read_config(phba); 6057 6058 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6059 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6060 6061 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6062 goto retrieve_ppname; 6063 6064 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6065 rc = lpfc_sli4_get_ctl_attr(phba); 6066 if (rc) 6067 goto out_free_mboxq; 6068 6069 retrieve_ppname: 6070 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6071 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6072 sizeof(struct lpfc_mbx_get_port_name) - 6073 sizeof(struct lpfc_sli4_cfg_mhdr), 6074 LPFC_SLI4_MBX_EMBED); 6075 get_port_name = &mboxq->u.mqe.un.get_port_name; 6076 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6077 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6078 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6079 phba->sli4_hba.lnk_info.lnk_tp); 6080 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6081 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6082 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6083 if (shdr_status || shdr_add_status || rc) { 6084 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6085 "3087 Mailbox x%x (x%x/x%x) failed: " 6086 "rc:x%x, status:x%x, add_status:x%x\n", 6087 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6088 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6089 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6090 rc, shdr_status, shdr_add_status); 6091 rc = -ENXIO; 6092 goto out_free_mboxq; 6093 } 6094 switch (phba->sli4_hba.lnk_info.lnk_no) { 6095 case LPFC_LINK_NUMBER_0: 6096 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6097 &get_port_name->u.response); 6098 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6099 break; 6100 case LPFC_LINK_NUMBER_1: 6101 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6102 &get_port_name->u.response); 6103 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6104 break; 6105 case LPFC_LINK_NUMBER_2: 6106 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6107 &get_port_name->u.response); 6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6109 break; 6110 case LPFC_LINK_NUMBER_3: 6111 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6112 &get_port_name->u.response); 6113 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6114 break; 6115 default: 6116 break; 6117 } 6118 6119 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6120 phba->Port[0] = cport_name; 6121 phba->Port[1] = '\0'; 6122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6123 "3091 SLI get port name: %s\n", phba->Port); 6124 } 6125 6126 out_free_mboxq: 6127 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6128 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6129 else 6130 mempool_free(mboxq, phba->mbox_mem_pool); 6131 return rc; 6132 } 6133 6134 /** 6135 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6136 * @phba: pointer to lpfc hba data structure. 6137 * 6138 * This routine is called to explicitly arm the SLI4 device's completion and 6139 * event queues 6140 **/ 6141 static void 6142 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6143 { 6144 int qidx; 6145 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6146 struct lpfc_sli4_hdw_queue *qp; 6147 struct lpfc_queue *eq; 6148 6149 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6150 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6151 if (sli4_hba->nvmels_cq) 6152 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6153 LPFC_QUEUE_REARM); 6154 6155 if (sli4_hba->hdwq) { 6156 /* Loop thru all Hardware Queues */ 6157 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6158 qp = &sli4_hba->hdwq[qidx]; 6159 /* ARM the corresponding CQ */ 6160 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6161 LPFC_QUEUE_REARM); 6162 } 6163 6164 /* Loop thru all IRQ vectors */ 6165 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6166 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6167 /* ARM the corresponding EQ */ 6168 sli4_hba->sli4_write_eq_db(phba, eq, 6169 0, LPFC_QUEUE_REARM); 6170 } 6171 } 6172 6173 if (phba->nvmet_support) { 6174 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6175 sli4_hba->sli4_write_cq_db(phba, 6176 sli4_hba->nvmet_cqset[qidx], 0, 6177 LPFC_QUEUE_REARM); 6178 } 6179 } 6180 } 6181 6182 /** 6183 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6184 * @phba: Pointer to HBA context object. 6185 * @type: The resource extent type. 6186 * @extnt_count: buffer to hold port available extent count. 6187 * @extnt_size: buffer to hold element count per extent. 6188 * 6189 * This function calls the port and retrievs the number of available 6190 * extents and their size for a particular extent type. 6191 * 6192 * Returns: 0 if successful. Nonzero otherwise. 6193 **/ 6194 int 6195 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6196 uint16_t *extnt_count, uint16_t *extnt_size) 6197 { 6198 int rc = 0; 6199 uint32_t length; 6200 uint32_t mbox_tmo; 6201 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6202 LPFC_MBOXQ_t *mbox; 6203 6204 *extnt_count = 0; 6205 *extnt_size = 0; 6206 6207 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6208 if (!mbox) 6209 return -ENOMEM; 6210 6211 /* Find out how many extents are available for this resource type */ 6212 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6213 sizeof(struct lpfc_sli4_cfg_mhdr)); 6214 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6215 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6216 length, LPFC_SLI4_MBX_EMBED); 6217 6218 /* Send an extents count of 0 - the GET doesn't use it. */ 6219 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6220 LPFC_SLI4_MBX_EMBED); 6221 if (unlikely(rc)) { 6222 rc = -EIO; 6223 goto err_exit; 6224 } 6225 6226 if (!phba->sli4_hba.intr_enable) 6227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6228 else { 6229 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6230 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6231 } 6232 if (unlikely(rc)) { 6233 rc = -EIO; 6234 goto err_exit; 6235 } 6236 6237 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6238 if (bf_get(lpfc_mbox_hdr_status, 6239 &rsrc_info->header.cfg_shdr.response)) { 6240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6241 "2930 Failed to get resource extents " 6242 "Status 0x%x Add'l Status 0x%x\n", 6243 bf_get(lpfc_mbox_hdr_status, 6244 &rsrc_info->header.cfg_shdr.response), 6245 bf_get(lpfc_mbox_hdr_add_status, 6246 &rsrc_info->header.cfg_shdr.response)); 6247 rc = -EIO; 6248 goto err_exit; 6249 } 6250 6251 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6252 &rsrc_info->u.rsp); 6253 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6254 &rsrc_info->u.rsp); 6255 6256 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6257 "3162 Retrieved extents type-%d from port: count:%d, " 6258 "size:%d\n", type, *extnt_count, *extnt_size); 6259 6260 err_exit: 6261 mempool_free(mbox, phba->mbox_mem_pool); 6262 return rc; 6263 } 6264 6265 /** 6266 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6267 * @phba: Pointer to HBA context object. 6268 * @type: The extent type to check. 6269 * 6270 * This function reads the current available extents from the port and checks 6271 * if the extent count or extent size has changed since the last access. 6272 * Callers use this routine post port reset to understand if there is a 6273 * extent reprovisioning requirement. 6274 * 6275 * Returns: 6276 * -Error: error indicates problem. 6277 * 1: Extent count or size has changed. 6278 * 0: No changes. 6279 **/ 6280 static int 6281 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6282 { 6283 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6284 uint16_t size_diff, rsrc_ext_size; 6285 int rc = 0; 6286 struct lpfc_rsrc_blks *rsrc_entry; 6287 struct list_head *rsrc_blk_list = NULL; 6288 6289 size_diff = 0; 6290 curr_ext_cnt = 0; 6291 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6292 &rsrc_ext_cnt, 6293 &rsrc_ext_size); 6294 if (unlikely(rc)) 6295 return -EIO; 6296 6297 switch (type) { 6298 case LPFC_RSC_TYPE_FCOE_RPI: 6299 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6300 break; 6301 case LPFC_RSC_TYPE_FCOE_VPI: 6302 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6303 break; 6304 case LPFC_RSC_TYPE_FCOE_XRI: 6305 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6306 break; 6307 case LPFC_RSC_TYPE_FCOE_VFI: 6308 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6309 break; 6310 default: 6311 break; 6312 } 6313 6314 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6315 curr_ext_cnt++; 6316 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6317 size_diff++; 6318 } 6319 6320 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6321 rc = 1; 6322 6323 return rc; 6324 } 6325 6326 /** 6327 * lpfc_sli4_cfg_post_extnts - 6328 * @phba: Pointer to HBA context object. 6329 * @extnt_cnt: number of available extents. 6330 * @type: the extent type (rpi, xri, vfi, vpi). 6331 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6332 * @mbox: pointer to the caller's allocated mailbox structure. 6333 * 6334 * This function executes the extents allocation request. It also 6335 * takes care of the amount of memory needed to allocate or get the 6336 * allocated extents. It is the caller's responsibility to evaluate 6337 * the response. 6338 * 6339 * Returns: 6340 * -Error: Error value describes the condition found. 6341 * 0: if successful 6342 **/ 6343 static int 6344 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6345 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6346 { 6347 int rc = 0; 6348 uint32_t req_len; 6349 uint32_t emb_len; 6350 uint32_t alloc_len, mbox_tmo; 6351 6352 /* Calculate the total requested length of the dma memory */ 6353 req_len = extnt_cnt * sizeof(uint16_t); 6354 6355 /* 6356 * Calculate the size of an embedded mailbox. The uint32_t 6357 * accounts for extents-specific word. 6358 */ 6359 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6360 sizeof(uint32_t); 6361 6362 /* 6363 * Presume the allocation and response will fit into an embedded 6364 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6365 */ 6366 *emb = LPFC_SLI4_MBX_EMBED; 6367 if (req_len > emb_len) { 6368 req_len = extnt_cnt * sizeof(uint16_t) + 6369 sizeof(union lpfc_sli4_cfg_shdr) + 6370 sizeof(uint32_t); 6371 *emb = LPFC_SLI4_MBX_NEMBED; 6372 } 6373 6374 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6375 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6376 req_len, *emb); 6377 if (alloc_len < req_len) { 6378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6379 "2982 Allocated DMA memory size (x%x) is " 6380 "less than the requested DMA memory " 6381 "size (x%x)\n", alloc_len, req_len); 6382 return -ENOMEM; 6383 } 6384 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6385 if (unlikely(rc)) 6386 return -EIO; 6387 6388 if (!phba->sli4_hba.intr_enable) 6389 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6390 else { 6391 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6392 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6393 } 6394 6395 if (unlikely(rc)) 6396 rc = -EIO; 6397 return rc; 6398 } 6399 6400 /** 6401 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6402 * @phba: Pointer to HBA context object. 6403 * @type: The resource extent type to allocate. 6404 * 6405 * This function allocates the number of elements for the specified 6406 * resource type. 6407 **/ 6408 static int 6409 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6410 { 6411 bool emb = false; 6412 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6413 uint16_t rsrc_id, rsrc_start, j, k; 6414 uint16_t *ids; 6415 int i, rc; 6416 unsigned long longs; 6417 unsigned long *bmask; 6418 struct lpfc_rsrc_blks *rsrc_blks; 6419 LPFC_MBOXQ_t *mbox; 6420 uint32_t length; 6421 struct lpfc_id_range *id_array = NULL; 6422 void *virtaddr = NULL; 6423 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6424 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6425 struct list_head *ext_blk_list; 6426 6427 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6428 &rsrc_cnt, 6429 &rsrc_size); 6430 if (unlikely(rc)) 6431 return -EIO; 6432 6433 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6435 "3009 No available Resource Extents " 6436 "for resource type 0x%x: Count: 0x%x, " 6437 "Size 0x%x\n", type, rsrc_cnt, 6438 rsrc_size); 6439 return -ENOMEM; 6440 } 6441 6442 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6443 "2903 Post resource extents type-0x%x: " 6444 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6445 6446 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6447 if (!mbox) 6448 return -ENOMEM; 6449 6450 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6451 if (unlikely(rc)) { 6452 rc = -EIO; 6453 goto err_exit; 6454 } 6455 6456 /* 6457 * Figure out where the response is located. Then get local pointers 6458 * to the response data. The port does not guarantee to respond to 6459 * all extents counts request so update the local variable with the 6460 * allocated count from the port. 6461 */ 6462 if (emb == LPFC_SLI4_MBX_EMBED) { 6463 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6464 id_array = &rsrc_ext->u.rsp.id[0]; 6465 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6466 } else { 6467 virtaddr = mbox->sge_array->addr[0]; 6468 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6469 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6470 id_array = &n_rsrc->id; 6471 } 6472 6473 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6474 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6475 6476 /* 6477 * Based on the resource size and count, correct the base and max 6478 * resource values. 6479 */ 6480 length = sizeof(struct lpfc_rsrc_blks); 6481 switch (type) { 6482 case LPFC_RSC_TYPE_FCOE_RPI: 6483 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6484 sizeof(unsigned long), 6485 GFP_KERNEL); 6486 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6487 rc = -ENOMEM; 6488 goto err_exit; 6489 } 6490 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6491 sizeof(uint16_t), 6492 GFP_KERNEL); 6493 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6494 kfree(phba->sli4_hba.rpi_bmask); 6495 rc = -ENOMEM; 6496 goto err_exit; 6497 } 6498 6499 /* 6500 * The next_rpi was initialized with the maximum available 6501 * count but the port may allocate a smaller number. Catch 6502 * that case and update the next_rpi. 6503 */ 6504 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6505 6506 /* Initialize local ptrs for common extent processing later. */ 6507 bmask = phba->sli4_hba.rpi_bmask; 6508 ids = phba->sli4_hba.rpi_ids; 6509 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6510 break; 6511 case LPFC_RSC_TYPE_FCOE_VPI: 6512 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6513 GFP_KERNEL); 6514 if (unlikely(!phba->vpi_bmask)) { 6515 rc = -ENOMEM; 6516 goto err_exit; 6517 } 6518 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6519 GFP_KERNEL); 6520 if (unlikely(!phba->vpi_ids)) { 6521 kfree(phba->vpi_bmask); 6522 rc = -ENOMEM; 6523 goto err_exit; 6524 } 6525 6526 /* Initialize local ptrs for common extent processing later. */ 6527 bmask = phba->vpi_bmask; 6528 ids = phba->vpi_ids; 6529 ext_blk_list = &phba->lpfc_vpi_blk_list; 6530 break; 6531 case LPFC_RSC_TYPE_FCOE_XRI: 6532 phba->sli4_hba.xri_bmask = kcalloc(longs, 6533 sizeof(unsigned long), 6534 GFP_KERNEL); 6535 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6536 rc = -ENOMEM; 6537 goto err_exit; 6538 } 6539 phba->sli4_hba.max_cfg_param.xri_used = 0; 6540 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6541 sizeof(uint16_t), 6542 GFP_KERNEL); 6543 if (unlikely(!phba->sli4_hba.xri_ids)) { 6544 kfree(phba->sli4_hba.xri_bmask); 6545 rc = -ENOMEM; 6546 goto err_exit; 6547 } 6548 6549 /* Initialize local ptrs for common extent processing later. */ 6550 bmask = phba->sli4_hba.xri_bmask; 6551 ids = phba->sli4_hba.xri_ids; 6552 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6553 break; 6554 case LPFC_RSC_TYPE_FCOE_VFI: 6555 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6556 sizeof(unsigned long), 6557 GFP_KERNEL); 6558 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6559 rc = -ENOMEM; 6560 goto err_exit; 6561 } 6562 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6563 sizeof(uint16_t), 6564 GFP_KERNEL); 6565 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6566 kfree(phba->sli4_hba.vfi_bmask); 6567 rc = -ENOMEM; 6568 goto err_exit; 6569 } 6570 6571 /* Initialize local ptrs for common extent processing later. */ 6572 bmask = phba->sli4_hba.vfi_bmask; 6573 ids = phba->sli4_hba.vfi_ids; 6574 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6575 break; 6576 default: 6577 /* Unsupported Opcode. Fail call. */ 6578 id_array = NULL; 6579 bmask = NULL; 6580 ids = NULL; 6581 ext_blk_list = NULL; 6582 goto err_exit; 6583 } 6584 6585 /* 6586 * Complete initializing the extent configuration with the 6587 * allocated ids assigned to this function. The bitmask serves 6588 * as an index into the array and manages the available ids. The 6589 * array just stores the ids communicated to the port via the wqes. 6590 */ 6591 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6592 if ((i % 2) == 0) 6593 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6594 &id_array[k]); 6595 else 6596 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6597 &id_array[k]); 6598 6599 rsrc_blks = kzalloc(length, GFP_KERNEL); 6600 if (unlikely(!rsrc_blks)) { 6601 rc = -ENOMEM; 6602 kfree(bmask); 6603 kfree(ids); 6604 goto err_exit; 6605 } 6606 rsrc_blks->rsrc_start = rsrc_id; 6607 rsrc_blks->rsrc_size = rsrc_size; 6608 list_add_tail(&rsrc_blks->list, ext_blk_list); 6609 rsrc_start = rsrc_id; 6610 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6611 phba->sli4_hba.io_xri_start = rsrc_start + 6612 lpfc_sli4_get_iocb_cnt(phba); 6613 } 6614 6615 while (rsrc_id < (rsrc_start + rsrc_size)) { 6616 ids[j] = rsrc_id; 6617 rsrc_id++; 6618 j++; 6619 } 6620 /* Entire word processed. Get next word.*/ 6621 if ((i % 2) == 1) 6622 k++; 6623 } 6624 err_exit: 6625 lpfc_sli4_mbox_cmd_free(phba, mbox); 6626 return rc; 6627 } 6628 6629 6630 6631 /** 6632 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6633 * @phba: Pointer to HBA context object. 6634 * @type: the extent's type. 6635 * 6636 * This function deallocates all extents of a particular resource type. 6637 * SLI4 does not allow for deallocating a particular extent range. It 6638 * is the caller's responsibility to release all kernel memory resources. 6639 **/ 6640 static int 6641 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6642 { 6643 int rc; 6644 uint32_t length, mbox_tmo = 0; 6645 LPFC_MBOXQ_t *mbox; 6646 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6647 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6648 6649 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6650 if (!mbox) 6651 return -ENOMEM; 6652 6653 /* 6654 * This function sends an embedded mailbox because it only sends the 6655 * the resource type. All extents of this type are released by the 6656 * port. 6657 */ 6658 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6659 sizeof(struct lpfc_sli4_cfg_mhdr)); 6660 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6661 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6662 length, LPFC_SLI4_MBX_EMBED); 6663 6664 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6665 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6666 LPFC_SLI4_MBX_EMBED); 6667 if (unlikely(rc)) { 6668 rc = -EIO; 6669 goto out_free_mbox; 6670 } 6671 if (!phba->sli4_hba.intr_enable) 6672 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6673 else { 6674 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6675 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6676 } 6677 if (unlikely(rc)) { 6678 rc = -EIO; 6679 goto out_free_mbox; 6680 } 6681 6682 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6683 if (bf_get(lpfc_mbox_hdr_status, 6684 &dealloc_rsrc->header.cfg_shdr.response)) { 6685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6686 "2919 Failed to release resource extents " 6687 "for type %d - Status 0x%x Add'l Status 0x%x. " 6688 "Resource memory not released.\n", 6689 type, 6690 bf_get(lpfc_mbox_hdr_status, 6691 &dealloc_rsrc->header.cfg_shdr.response), 6692 bf_get(lpfc_mbox_hdr_add_status, 6693 &dealloc_rsrc->header.cfg_shdr.response)); 6694 rc = -EIO; 6695 goto out_free_mbox; 6696 } 6697 6698 /* Release kernel memory resources for the specific type. */ 6699 switch (type) { 6700 case LPFC_RSC_TYPE_FCOE_VPI: 6701 kfree(phba->vpi_bmask); 6702 kfree(phba->vpi_ids); 6703 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6704 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6705 &phba->lpfc_vpi_blk_list, list) { 6706 list_del_init(&rsrc_blk->list); 6707 kfree(rsrc_blk); 6708 } 6709 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6710 break; 6711 case LPFC_RSC_TYPE_FCOE_XRI: 6712 kfree(phba->sli4_hba.xri_bmask); 6713 kfree(phba->sli4_hba.xri_ids); 6714 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6715 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6716 list_del_init(&rsrc_blk->list); 6717 kfree(rsrc_blk); 6718 } 6719 break; 6720 case LPFC_RSC_TYPE_FCOE_VFI: 6721 kfree(phba->sli4_hba.vfi_bmask); 6722 kfree(phba->sli4_hba.vfi_ids); 6723 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6724 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6725 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6726 list_del_init(&rsrc_blk->list); 6727 kfree(rsrc_blk); 6728 } 6729 break; 6730 case LPFC_RSC_TYPE_FCOE_RPI: 6731 /* RPI bitmask and physical id array are cleaned up earlier. */ 6732 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6733 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6734 list_del_init(&rsrc_blk->list); 6735 kfree(rsrc_blk); 6736 } 6737 break; 6738 default: 6739 break; 6740 } 6741 6742 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6743 6744 out_free_mbox: 6745 mempool_free(mbox, phba->mbox_mem_pool); 6746 return rc; 6747 } 6748 6749 static void 6750 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6751 uint32_t feature) 6752 { 6753 uint32_t len; 6754 u32 sig_freq = 0; 6755 6756 len = sizeof(struct lpfc_mbx_set_feature) - 6757 sizeof(struct lpfc_sli4_cfg_mhdr); 6758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6759 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6760 LPFC_SLI4_MBX_EMBED); 6761 6762 switch (feature) { 6763 case LPFC_SET_UE_RECOVERY: 6764 bf_set(lpfc_mbx_set_feature_UER, 6765 &mbox->u.mqe.un.set_feature, 1); 6766 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6767 mbox->u.mqe.un.set_feature.param_len = 8; 6768 break; 6769 case LPFC_SET_MDS_DIAGS: 6770 bf_set(lpfc_mbx_set_feature_mds, 6771 &mbox->u.mqe.un.set_feature, 1); 6772 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6773 &mbox->u.mqe.un.set_feature, 1); 6774 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6775 mbox->u.mqe.un.set_feature.param_len = 8; 6776 break; 6777 case LPFC_SET_CGN_SIGNAL: 6778 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6779 sig_freq = 0; 6780 else 6781 sig_freq = phba->cgn_sig_freq; 6782 6783 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6784 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6785 &mbox->u.mqe.un.set_feature, sig_freq); 6786 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6787 &mbox->u.mqe.un.set_feature, sig_freq); 6788 } 6789 6790 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6791 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6792 &mbox->u.mqe.un.set_feature, sig_freq); 6793 6794 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6795 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6796 sig_freq = 0; 6797 else 6798 sig_freq = lpfc_acqe_cgn_frequency; 6799 6800 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 6803 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6804 mbox->u.mqe.un.set_feature.param_len = 12; 6805 break; 6806 case LPFC_SET_DUAL_DUMP: 6807 bf_set(lpfc_mbx_set_feature_dd, 6808 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6809 bf_set(lpfc_mbx_set_feature_ddquery, 6810 &mbox->u.mqe.un.set_feature, 0); 6811 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6812 mbox->u.mqe.un.set_feature.param_len = 4; 6813 break; 6814 case LPFC_SET_ENABLE_MI: 6815 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6816 mbox->u.mqe.un.set_feature.param_len = 4; 6817 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6818 phba->pport->cfg_lun_queue_depth); 6819 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6820 phba->sli4_hba.pc_sli4_params.mi_ver); 6821 break; 6822 case LPFC_SET_LD_SIGNAL: 6823 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6824 mbox->u.mqe.un.set_feature.param_len = 16; 6825 bf_set(lpfc_mbx_set_feature_lds_qry, 6826 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6827 break; 6828 case LPFC_SET_ENABLE_CMF: 6829 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6830 mbox->u.mqe.un.set_feature.param_len = 4; 6831 bf_set(lpfc_mbx_set_feature_cmf, 6832 &mbox->u.mqe.un.set_feature, 1); 6833 break; 6834 } 6835 return; 6836 } 6837 6838 /** 6839 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6840 * @phba: Pointer to HBA context object. 6841 * 6842 * Disable FW logging into host memory on the adapter. To 6843 * be done before reading logs from the host memory. 6844 **/ 6845 void 6846 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6847 { 6848 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6849 6850 spin_lock_irq(&phba->ras_fwlog_lock); 6851 ras_fwlog->state = INACTIVE; 6852 spin_unlock_irq(&phba->ras_fwlog_lock); 6853 6854 /* Disable FW logging to host memory */ 6855 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6856 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6857 6858 /* Wait 10ms for firmware to stop using DMA buffer */ 6859 usleep_range(10 * 1000, 20 * 1000); 6860 } 6861 6862 /** 6863 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6864 * @phba: Pointer to HBA context object. 6865 * 6866 * This function is called to free memory allocated for RAS FW logging 6867 * support in the driver. 6868 **/ 6869 void 6870 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6871 { 6872 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6873 struct lpfc_dmabuf *dmabuf, *next; 6874 6875 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6876 list_for_each_entry_safe(dmabuf, next, 6877 &ras_fwlog->fwlog_buff_list, 6878 list) { 6879 list_del(&dmabuf->list); 6880 dma_free_coherent(&phba->pcidev->dev, 6881 LPFC_RAS_MAX_ENTRY_SIZE, 6882 dmabuf->virt, dmabuf->phys); 6883 kfree(dmabuf); 6884 } 6885 } 6886 6887 if (ras_fwlog->lwpd.virt) { 6888 dma_free_coherent(&phba->pcidev->dev, 6889 sizeof(uint32_t) * 2, 6890 ras_fwlog->lwpd.virt, 6891 ras_fwlog->lwpd.phys); 6892 ras_fwlog->lwpd.virt = NULL; 6893 } 6894 6895 spin_lock_irq(&phba->ras_fwlog_lock); 6896 ras_fwlog->state = INACTIVE; 6897 spin_unlock_irq(&phba->ras_fwlog_lock); 6898 } 6899 6900 /** 6901 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6902 * @phba: Pointer to HBA context object. 6903 * @fwlog_buff_count: Count of buffers to be created. 6904 * 6905 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6906 * to update FW log is posted to the adapter. 6907 * Buffer count is calculated based on module param ras_fwlog_buffsize 6908 * Size of each buffer posted to FW is 64K. 6909 **/ 6910 6911 static int 6912 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6913 uint32_t fwlog_buff_count) 6914 { 6915 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6916 struct lpfc_dmabuf *dmabuf; 6917 int rc = 0, i = 0; 6918 6919 /* Initialize List */ 6920 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6921 6922 /* Allocate memory for the LWPD */ 6923 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6924 sizeof(uint32_t) * 2, 6925 &ras_fwlog->lwpd.phys, 6926 GFP_KERNEL); 6927 if (!ras_fwlog->lwpd.virt) { 6928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6929 "6185 LWPD Memory Alloc Failed\n"); 6930 6931 return -ENOMEM; 6932 } 6933 6934 ras_fwlog->fw_buffcount = fwlog_buff_count; 6935 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6936 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6937 GFP_KERNEL); 6938 if (!dmabuf) { 6939 rc = -ENOMEM; 6940 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6941 "6186 Memory Alloc failed FW logging"); 6942 goto free_mem; 6943 } 6944 6945 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6946 LPFC_RAS_MAX_ENTRY_SIZE, 6947 &dmabuf->phys, GFP_KERNEL); 6948 if (!dmabuf->virt) { 6949 kfree(dmabuf); 6950 rc = -ENOMEM; 6951 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6952 "6187 DMA Alloc Failed FW logging"); 6953 goto free_mem; 6954 } 6955 dmabuf->buffer_tag = i; 6956 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6957 } 6958 6959 free_mem: 6960 if (rc) 6961 lpfc_sli4_ras_dma_free(phba); 6962 6963 return rc; 6964 } 6965 6966 /** 6967 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6968 * @phba: pointer to lpfc hba data structure. 6969 * @pmb: pointer to the driver internal queue element for mailbox command. 6970 * 6971 * Completion handler for driver's RAS MBX command to the device. 6972 **/ 6973 static void 6974 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6975 { 6976 MAILBOX_t *mb; 6977 union lpfc_sli4_cfg_shdr *shdr; 6978 uint32_t shdr_status, shdr_add_status; 6979 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6980 6981 mb = &pmb->u.mb; 6982 6983 shdr = (union lpfc_sli4_cfg_shdr *) 6984 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6985 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6986 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6987 6988 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6990 "6188 FW LOG mailbox " 6991 "completed with status x%x add_status x%x," 6992 " mbx status x%x\n", 6993 shdr_status, shdr_add_status, mb->mbxStatus); 6994 6995 ras_fwlog->ras_hwsupport = false; 6996 goto disable_ras; 6997 } 6998 6999 spin_lock_irq(&phba->ras_fwlog_lock); 7000 ras_fwlog->state = ACTIVE; 7001 spin_unlock_irq(&phba->ras_fwlog_lock); 7002 mempool_free(pmb, phba->mbox_mem_pool); 7003 7004 return; 7005 7006 disable_ras: 7007 /* Free RAS DMA memory */ 7008 lpfc_sli4_ras_dma_free(phba); 7009 mempool_free(pmb, phba->mbox_mem_pool); 7010 } 7011 7012 /** 7013 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7014 * @phba: pointer to lpfc hba data structure. 7015 * @fwlog_level: Logging verbosity level. 7016 * @fwlog_enable: Enable/Disable logging. 7017 * 7018 * Initialize memory and post mailbox command to enable FW logging in host 7019 * memory. 7020 **/ 7021 int 7022 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7023 uint32_t fwlog_level, 7024 uint32_t fwlog_enable) 7025 { 7026 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7027 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7028 struct lpfc_dmabuf *dmabuf; 7029 LPFC_MBOXQ_t *mbox; 7030 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7031 int rc = 0; 7032 7033 spin_lock_irq(&phba->ras_fwlog_lock); 7034 ras_fwlog->state = INACTIVE; 7035 spin_unlock_irq(&phba->ras_fwlog_lock); 7036 7037 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7038 phba->cfg_ras_fwlog_buffsize); 7039 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7040 7041 /* 7042 * If re-enabling FW logging support use earlier allocated 7043 * DMA buffers while posting MBX command. 7044 **/ 7045 if (!ras_fwlog->lwpd.virt) { 7046 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7047 if (rc) { 7048 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7049 "6189 FW Log Memory Allocation Failed"); 7050 return rc; 7051 } 7052 } 7053 7054 /* Setup Mailbox command */ 7055 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7056 if (!mbox) { 7057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7058 "6190 RAS MBX Alloc Failed"); 7059 rc = -ENOMEM; 7060 goto mem_free; 7061 } 7062 7063 ras_fwlog->fw_loglevel = fwlog_level; 7064 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7065 sizeof(struct lpfc_sli4_cfg_mhdr)); 7066 7067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7068 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7069 len, LPFC_SLI4_MBX_EMBED); 7070 7071 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7072 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7073 fwlog_enable); 7074 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7075 ras_fwlog->fw_loglevel); 7076 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7077 ras_fwlog->fw_buffcount); 7078 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7079 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7080 7081 /* Update DMA buffer address */ 7082 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7083 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7084 7085 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7086 putPaddrLow(dmabuf->phys); 7087 7088 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7089 putPaddrHigh(dmabuf->phys); 7090 } 7091 7092 /* Update LPWD address */ 7093 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7094 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7095 7096 spin_lock_irq(&phba->ras_fwlog_lock); 7097 ras_fwlog->state = REG_INPROGRESS; 7098 spin_unlock_irq(&phba->ras_fwlog_lock); 7099 mbox->vport = phba->pport; 7100 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7101 7102 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7103 7104 if (rc == MBX_NOT_FINISHED) { 7105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7106 "6191 FW-Log Mailbox failed. " 7107 "status %d mbxStatus : x%x", rc, 7108 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7109 mempool_free(mbox, phba->mbox_mem_pool); 7110 rc = -EIO; 7111 goto mem_free; 7112 } else 7113 rc = 0; 7114 mem_free: 7115 if (rc) 7116 lpfc_sli4_ras_dma_free(phba); 7117 7118 return rc; 7119 } 7120 7121 /** 7122 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7123 * @phba: Pointer to HBA context object. 7124 * 7125 * Check if RAS is supported on the adapter and initialize it. 7126 **/ 7127 void 7128 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7129 { 7130 /* Check RAS FW Log needs to be enabled or not */ 7131 if (lpfc_check_fwlog_support(phba)) 7132 return; 7133 7134 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7135 LPFC_RAS_ENABLE_LOGGING); 7136 } 7137 7138 /** 7139 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7140 * @phba: Pointer to HBA context object. 7141 * 7142 * This function allocates all SLI4 resource identifiers. 7143 **/ 7144 int 7145 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7146 { 7147 int i, rc, error = 0; 7148 uint16_t count, base; 7149 unsigned long longs; 7150 7151 if (!phba->sli4_hba.rpi_hdrs_in_use) 7152 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7153 if (phba->sli4_hba.extents_in_use) { 7154 /* 7155 * The port supports resource extents. The XRI, VPI, VFI, RPI 7156 * resource extent count must be read and allocated before 7157 * provisioning the resource id arrays. 7158 */ 7159 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7160 LPFC_IDX_RSRC_RDY) { 7161 /* 7162 * Extent-based resources are set - the driver could 7163 * be in a port reset. Figure out if any corrective 7164 * actions need to be taken. 7165 */ 7166 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7167 LPFC_RSC_TYPE_FCOE_VFI); 7168 if (rc != 0) 7169 error++; 7170 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7171 LPFC_RSC_TYPE_FCOE_VPI); 7172 if (rc != 0) 7173 error++; 7174 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7175 LPFC_RSC_TYPE_FCOE_XRI); 7176 if (rc != 0) 7177 error++; 7178 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7179 LPFC_RSC_TYPE_FCOE_RPI); 7180 if (rc != 0) 7181 error++; 7182 7183 /* 7184 * It's possible that the number of resources 7185 * provided to this port instance changed between 7186 * resets. Detect this condition and reallocate 7187 * resources. Otherwise, there is no action. 7188 */ 7189 if (error) { 7190 lpfc_printf_log(phba, KERN_INFO, 7191 LOG_MBOX | LOG_INIT, 7192 "2931 Detected extent resource " 7193 "change. Reallocating all " 7194 "extents.\n"); 7195 rc = lpfc_sli4_dealloc_extent(phba, 7196 LPFC_RSC_TYPE_FCOE_VFI); 7197 rc = lpfc_sli4_dealloc_extent(phba, 7198 LPFC_RSC_TYPE_FCOE_VPI); 7199 rc = lpfc_sli4_dealloc_extent(phba, 7200 LPFC_RSC_TYPE_FCOE_XRI); 7201 rc = lpfc_sli4_dealloc_extent(phba, 7202 LPFC_RSC_TYPE_FCOE_RPI); 7203 } else 7204 return 0; 7205 } 7206 7207 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7208 if (unlikely(rc)) 7209 goto err_exit; 7210 7211 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7212 if (unlikely(rc)) 7213 goto err_exit; 7214 7215 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7216 if (unlikely(rc)) 7217 goto err_exit; 7218 7219 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7220 if (unlikely(rc)) 7221 goto err_exit; 7222 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7223 LPFC_IDX_RSRC_RDY); 7224 return rc; 7225 } else { 7226 /* 7227 * The port does not support resource extents. The XRI, VPI, 7228 * VFI, RPI resource ids were determined from READ_CONFIG. 7229 * Just allocate the bitmasks and provision the resource id 7230 * arrays. If a port reset is active, the resources don't 7231 * need any action - just exit. 7232 */ 7233 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7234 LPFC_IDX_RSRC_RDY) { 7235 lpfc_sli4_dealloc_resource_identifiers(phba); 7236 lpfc_sli4_remove_rpis(phba); 7237 } 7238 /* RPIs. */ 7239 count = phba->sli4_hba.max_cfg_param.max_rpi; 7240 if (count <= 0) { 7241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7242 "3279 Invalid provisioning of " 7243 "rpi:%d\n", count); 7244 rc = -EINVAL; 7245 goto err_exit; 7246 } 7247 base = phba->sli4_hba.max_cfg_param.rpi_base; 7248 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7249 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7250 sizeof(unsigned long), 7251 GFP_KERNEL); 7252 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7253 rc = -ENOMEM; 7254 goto err_exit; 7255 } 7256 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7257 GFP_KERNEL); 7258 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7259 rc = -ENOMEM; 7260 goto free_rpi_bmask; 7261 } 7262 7263 for (i = 0; i < count; i++) 7264 phba->sli4_hba.rpi_ids[i] = base + i; 7265 7266 /* VPIs. */ 7267 count = phba->sli4_hba.max_cfg_param.max_vpi; 7268 if (count <= 0) { 7269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7270 "3280 Invalid provisioning of " 7271 "vpi:%d\n", count); 7272 rc = -EINVAL; 7273 goto free_rpi_ids; 7274 } 7275 base = phba->sli4_hba.max_cfg_param.vpi_base; 7276 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7277 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7278 GFP_KERNEL); 7279 if (unlikely(!phba->vpi_bmask)) { 7280 rc = -ENOMEM; 7281 goto free_rpi_ids; 7282 } 7283 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7284 GFP_KERNEL); 7285 if (unlikely(!phba->vpi_ids)) { 7286 rc = -ENOMEM; 7287 goto free_vpi_bmask; 7288 } 7289 7290 for (i = 0; i < count; i++) 7291 phba->vpi_ids[i] = base + i; 7292 7293 /* XRIs. */ 7294 count = phba->sli4_hba.max_cfg_param.max_xri; 7295 if (count <= 0) { 7296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7297 "3281 Invalid provisioning of " 7298 "xri:%d\n", count); 7299 rc = -EINVAL; 7300 goto free_vpi_ids; 7301 } 7302 base = phba->sli4_hba.max_cfg_param.xri_base; 7303 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7304 phba->sli4_hba.xri_bmask = kcalloc(longs, 7305 sizeof(unsigned long), 7306 GFP_KERNEL); 7307 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7308 rc = -ENOMEM; 7309 goto free_vpi_ids; 7310 } 7311 phba->sli4_hba.max_cfg_param.xri_used = 0; 7312 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7313 GFP_KERNEL); 7314 if (unlikely(!phba->sli4_hba.xri_ids)) { 7315 rc = -ENOMEM; 7316 goto free_xri_bmask; 7317 } 7318 7319 for (i = 0; i < count; i++) 7320 phba->sli4_hba.xri_ids[i] = base + i; 7321 7322 /* VFIs. */ 7323 count = phba->sli4_hba.max_cfg_param.max_vfi; 7324 if (count <= 0) { 7325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7326 "3282 Invalid provisioning of " 7327 "vfi:%d\n", count); 7328 rc = -EINVAL; 7329 goto free_xri_ids; 7330 } 7331 base = phba->sli4_hba.max_cfg_param.vfi_base; 7332 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7333 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7334 sizeof(unsigned long), 7335 GFP_KERNEL); 7336 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7337 rc = -ENOMEM; 7338 goto free_xri_ids; 7339 } 7340 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7341 GFP_KERNEL); 7342 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7343 rc = -ENOMEM; 7344 goto free_vfi_bmask; 7345 } 7346 7347 for (i = 0; i < count; i++) 7348 phba->sli4_hba.vfi_ids[i] = base + i; 7349 7350 /* 7351 * Mark all resources ready. An HBA reset doesn't need 7352 * to reset the initialization. 7353 */ 7354 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7355 LPFC_IDX_RSRC_RDY); 7356 return 0; 7357 } 7358 7359 free_vfi_bmask: 7360 kfree(phba->sli4_hba.vfi_bmask); 7361 phba->sli4_hba.vfi_bmask = NULL; 7362 free_xri_ids: 7363 kfree(phba->sli4_hba.xri_ids); 7364 phba->sli4_hba.xri_ids = NULL; 7365 free_xri_bmask: 7366 kfree(phba->sli4_hba.xri_bmask); 7367 phba->sli4_hba.xri_bmask = NULL; 7368 free_vpi_ids: 7369 kfree(phba->vpi_ids); 7370 phba->vpi_ids = NULL; 7371 free_vpi_bmask: 7372 kfree(phba->vpi_bmask); 7373 phba->vpi_bmask = NULL; 7374 free_rpi_ids: 7375 kfree(phba->sli4_hba.rpi_ids); 7376 phba->sli4_hba.rpi_ids = NULL; 7377 free_rpi_bmask: 7378 kfree(phba->sli4_hba.rpi_bmask); 7379 phba->sli4_hba.rpi_bmask = NULL; 7380 err_exit: 7381 return rc; 7382 } 7383 7384 /** 7385 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7386 * @phba: Pointer to HBA context object. 7387 * 7388 * This function allocates the number of elements for the specified 7389 * resource type. 7390 **/ 7391 int 7392 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7393 { 7394 if (phba->sli4_hba.extents_in_use) { 7395 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7396 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7397 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7398 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7399 } else { 7400 kfree(phba->vpi_bmask); 7401 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7402 kfree(phba->vpi_ids); 7403 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7404 kfree(phba->sli4_hba.xri_bmask); 7405 kfree(phba->sli4_hba.xri_ids); 7406 kfree(phba->sli4_hba.vfi_bmask); 7407 kfree(phba->sli4_hba.vfi_ids); 7408 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7409 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7410 } 7411 7412 return 0; 7413 } 7414 7415 /** 7416 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7417 * @phba: Pointer to HBA context object. 7418 * @type: The resource extent type. 7419 * @extnt_cnt: buffer to hold port extent count response 7420 * @extnt_size: buffer to hold port extent size response. 7421 * 7422 * This function calls the port to read the host allocated extents 7423 * for a particular type. 7424 **/ 7425 int 7426 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7427 uint16_t *extnt_cnt, uint16_t *extnt_size) 7428 { 7429 bool emb; 7430 int rc = 0; 7431 uint16_t curr_blks = 0; 7432 uint32_t req_len, emb_len; 7433 uint32_t alloc_len, mbox_tmo; 7434 struct list_head *blk_list_head; 7435 struct lpfc_rsrc_blks *rsrc_blk; 7436 LPFC_MBOXQ_t *mbox; 7437 void *virtaddr = NULL; 7438 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7439 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7440 union lpfc_sli4_cfg_shdr *shdr; 7441 7442 switch (type) { 7443 case LPFC_RSC_TYPE_FCOE_VPI: 7444 blk_list_head = &phba->lpfc_vpi_blk_list; 7445 break; 7446 case LPFC_RSC_TYPE_FCOE_XRI: 7447 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7448 break; 7449 case LPFC_RSC_TYPE_FCOE_VFI: 7450 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7451 break; 7452 case LPFC_RSC_TYPE_FCOE_RPI: 7453 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7454 break; 7455 default: 7456 return -EIO; 7457 } 7458 7459 /* Count the number of extents currently allocatd for this type. */ 7460 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7461 if (curr_blks == 0) { 7462 /* 7463 * The GET_ALLOCATED mailbox does not return the size, 7464 * just the count. The size should be just the size 7465 * stored in the current allocated block and all sizes 7466 * for an extent type are the same so set the return 7467 * value now. 7468 */ 7469 *extnt_size = rsrc_blk->rsrc_size; 7470 } 7471 curr_blks++; 7472 } 7473 7474 /* 7475 * Calculate the size of an embedded mailbox. The uint32_t 7476 * accounts for extents-specific word. 7477 */ 7478 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7479 sizeof(uint32_t); 7480 7481 /* 7482 * Presume the allocation and response will fit into an embedded 7483 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7484 */ 7485 emb = LPFC_SLI4_MBX_EMBED; 7486 req_len = emb_len; 7487 if (req_len > emb_len) { 7488 req_len = curr_blks * sizeof(uint16_t) + 7489 sizeof(union lpfc_sli4_cfg_shdr) + 7490 sizeof(uint32_t); 7491 emb = LPFC_SLI4_MBX_NEMBED; 7492 } 7493 7494 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7495 if (!mbox) 7496 return -ENOMEM; 7497 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7498 7499 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7500 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7501 req_len, emb); 7502 if (alloc_len < req_len) { 7503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7504 "2983 Allocated DMA memory size (x%x) is " 7505 "less than the requested DMA memory " 7506 "size (x%x)\n", alloc_len, req_len); 7507 rc = -ENOMEM; 7508 goto err_exit; 7509 } 7510 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7511 if (unlikely(rc)) { 7512 rc = -EIO; 7513 goto err_exit; 7514 } 7515 7516 if (!phba->sli4_hba.intr_enable) 7517 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7518 else { 7519 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7520 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7521 } 7522 7523 if (unlikely(rc)) { 7524 rc = -EIO; 7525 goto err_exit; 7526 } 7527 7528 /* 7529 * Figure out where the response is located. Then get local pointers 7530 * to the response data. The port does not guarantee to respond to 7531 * all extents counts request so update the local variable with the 7532 * allocated count from the port. 7533 */ 7534 if (emb == LPFC_SLI4_MBX_EMBED) { 7535 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7536 shdr = &rsrc_ext->header.cfg_shdr; 7537 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7538 } else { 7539 virtaddr = mbox->sge_array->addr[0]; 7540 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7541 shdr = &n_rsrc->cfg_shdr; 7542 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7543 } 7544 7545 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7546 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7547 "2984 Failed to read allocated resources " 7548 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7549 type, 7550 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7551 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7552 rc = -EIO; 7553 goto err_exit; 7554 } 7555 err_exit: 7556 lpfc_sli4_mbox_cmd_free(phba, mbox); 7557 return rc; 7558 } 7559 7560 /** 7561 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7562 * @phba: pointer to lpfc hba data structure. 7563 * @sgl_list: linked link of sgl buffers to post 7564 * @cnt: number of linked list buffers 7565 * 7566 * This routine walks the list of buffers that have been allocated and 7567 * repost them to the port by using SGL block post. This is needed after a 7568 * pci_function_reset/warm_start or start. It attempts to construct blocks 7569 * of buffer sgls which contains contiguous xris and uses the non-embedded 7570 * SGL block post mailbox commands to post them to the port. For single 7571 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7572 * mailbox command for posting. 7573 * 7574 * Returns: 0 = success, non-zero failure. 7575 **/ 7576 static int 7577 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7578 struct list_head *sgl_list, int cnt) 7579 { 7580 struct lpfc_sglq *sglq_entry = NULL; 7581 struct lpfc_sglq *sglq_entry_next = NULL; 7582 struct lpfc_sglq *sglq_entry_first = NULL; 7583 int status = 0, total_cnt; 7584 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7585 int last_xritag = NO_XRI; 7586 LIST_HEAD(prep_sgl_list); 7587 LIST_HEAD(blck_sgl_list); 7588 LIST_HEAD(allc_sgl_list); 7589 LIST_HEAD(post_sgl_list); 7590 LIST_HEAD(free_sgl_list); 7591 7592 spin_lock_irq(&phba->hbalock); 7593 spin_lock(&phba->sli4_hba.sgl_list_lock); 7594 list_splice_init(sgl_list, &allc_sgl_list); 7595 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7596 spin_unlock_irq(&phba->hbalock); 7597 7598 total_cnt = cnt; 7599 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7600 &allc_sgl_list, list) { 7601 list_del_init(&sglq_entry->list); 7602 block_cnt++; 7603 if ((last_xritag != NO_XRI) && 7604 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7605 /* a hole in xri block, form a sgl posting block */ 7606 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7607 post_cnt = block_cnt - 1; 7608 /* prepare list for next posting block */ 7609 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7610 block_cnt = 1; 7611 } else { 7612 /* prepare list for next posting block */ 7613 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7614 /* enough sgls for non-embed sgl mbox command */ 7615 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7616 list_splice_init(&prep_sgl_list, 7617 &blck_sgl_list); 7618 post_cnt = block_cnt; 7619 block_cnt = 0; 7620 } 7621 } 7622 num_posted++; 7623 7624 /* keep track of last sgl's xritag */ 7625 last_xritag = sglq_entry->sli4_xritag; 7626 7627 /* end of repost sgl list condition for buffers */ 7628 if (num_posted == total_cnt) { 7629 if (post_cnt == 0) { 7630 list_splice_init(&prep_sgl_list, 7631 &blck_sgl_list); 7632 post_cnt = block_cnt; 7633 } else if (block_cnt == 1) { 7634 status = lpfc_sli4_post_sgl(phba, 7635 sglq_entry->phys, 0, 7636 sglq_entry->sli4_xritag); 7637 if (!status) { 7638 /* successful, put sgl to posted list */ 7639 list_add_tail(&sglq_entry->list, 7640 &post_sgl_list); 7641 } else { 7642 /* Failure, put sgl to free list */ 7643 lpfc_printf_log(phba, KERN_WARNING, 7644 LOG_SLI, 7645 "3159 Failed to post " 7646 "sgl, xritag:x%x\n", 7647 sglq_entry->sli4_xritag); 7648 list_add_tail(&sglq_entry->list, 7649 &free_sgl_list); 7650 total_cnt--; 7651 } 7652 } 7653 } 7654 7655 /* continue until a nembed page worth of sgls */ 7656 if (post_cnt == 0) 7657 continue; 7658 7659 /* post the buffer list sgls as a block */ 7660 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7661 post_cnt); 7662 7663 if (!status) { 7664 /* success, put sgl list to posted sgl list */ 7665 list_splice_init(&blck_sgl_list, &post_sgl_list); 7666 } else { 7667 /* Failure, put sgl list to free sgl list */ 7668 sglq_entry_first = list_first_entry(&blck_sgl_list, 7669 struct lpfc_sglq, 7670 list); 7671 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7672 "3160 Failed to post sgl-list, " 7673 "xritag:x%x-x%x\n", 7674 sglq_entry_first->sli4_xritag, 7675 (sglq_entry_first->sli4_xritag + 7676 post_cnt - 1)); 7677 list_splice_init(&blck_sgl_list, &free_sgl_list); 7678 total_cnt -= post_cnt; 7679 } 7680 7681 /* don't reset xirtag due to hole in xri block */ 7682 if (block_cnt == 0) 7683 last_xritag = NO_XRI; 7684 7685 /* reset sgl post count for next round of posting */ 7686 post_cnt = 0; 7687 } 7688 7689 /* free the sgls failed to post */ 7690 lpfc_free_sgl_list(phba, &free_sgl_list); 7691 7692 /* push sgls posted to the available list */ 7693 if (!list_empty(&post_sgl_list)) { 7694 spin_lock_irq(&phba->hbalock); 7695 spin_lock(&phba->sli4_hba.sgl_list_lock); 7696 list_splice_init(&post_sgl_list, sgl_list); 7697 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7698 spin_unlock_irq(&phba->hbalock); 7699 } else { 7700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7701 "3161 Failure to post sgl to port,status %x " 7702 "blkcnt %d totalcnt %d postcnt %d\n", 7703 status, block_cnt, total_cnt, post_cnt); 7704 return -EIO; 7705 } 7706 7707 /* return the number of XRIs actually posted */ 7708 return total_cnt; 7709 } 7710 7711 /** 7712 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7713 * @phba: pointer to lpfc hba data structure. 7714 * 7715 * This routine walks the list of nvme buffers that have been allocated and 7716 * repost them to the port by using SGL block post. This is needed after a 7717 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7718 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7719 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7720 * 7721 * Returns: 0 = success, non-zero failure. 7722 **/ 7723 static int 7724 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7725 { 7726 LIST_HEAD(post_nblist); 7727 int num_posted, rc = 0; 7728 7729 /* get all NVME buffers need to repost to a local list */ 7730 lpfc_io_buf_flush(phba, &post_nblist); 7731 7732 /* post the list of nvme buffer sgls to port if available */ 7733 if (!list_empty(&post_nblist)) { 7734 num_posted = lpfc_sli4_post_io_sgl_list( 7735 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7736 /* failed to post any nvme buffer, return error */ 7737 if (num_posted == 0) 7738 rc = -EIO; 7739 } 7740 return rc; 7741 } 7742 7743 static void 7744 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7745 { 7746 uint32_t len; 7747 7748 len = sizeof(struct lpfc_mbx_set_host_data) - 7749 sizeof(struct lpfc_sli4_cfg_mhdr); 7750 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7751 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7752 LPFC_SLI4_MBX_EMBED); 7753 7754 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7755 mbox->u.mqe.un.set_host_data.param_len = 7756 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7757 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7758 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7759 "Linux %s v"LPFC_DRIVER_VERSION, 7760 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7761 } 7762 7763 int 7764 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7765 struct lpfc_queue *drq, int count, int idx) 7766 { 7767 int rc, i; 7768 struct lpfc_rqe hrqe; 7769 struct lpfc_rqe drqe; 7770 struct lpfc_rqb *rqbp; 7771 unsigned long flags; 7772 struct rqb_dmabuf *rqb_buffer; 7773 LIST_HEAD(rqb_buf_list); 7774 7775 rqbp = hrq->rqbp; 7776 for (i = 0; i < count; i++) { 7777 spin_lock_irqsave(&phba->hbalock, flags); 7778 /* IF RQ is already full, don't bother */ 7779 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7780 spin_unlock_irqrestore(&phba->hbalock, flags); 7781 break; 7782 } 7783 spin_unlock_irqrestore(&phba->hbalock, flags); 7784 7785 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7786 if (!rqb_buffer) 7787 break; 7788 rqb_buffer->hrq = hrq; 7789 rqb_buffer->drq = drq; 7790 rqb_buffer->idx = idx; 7791 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7792 } 7793 7794 spin_lock_irqsave(&phba->hbalock, flags); 7795 while (!list_empty(&rqb_buf_list)) { 7796 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7797 hbuf.list); 7798 7799 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7800 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7801 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7802 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7803 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7804 if (rc < 0) { 7805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7806 "6421 Cannot post to HRQ %d: %x %x %x " 7807 "DRQ %x %x\n", 7808 hrq->queue_id, 7809 hrq->host_index, 7810 hrq->hba_index, 7811 hrq->entry_count, 7812 drq->host_index, 7813 drq->hba_index); 7814 rqbp->rqb_free_buffer(phba, rqb_buffer); 7815 } else { 7816 list_add_tail(&rqb_buffer->hbuf.list, 7817 &rqbp->rqb_buffer_list); 7818 rqbp->buffer_count++; 7819 } 7820 } 7821 spin_unlock_irqrestore(&phba->hbalock, flags); 7822 return 1; 7823 } 7824 7825 static void 7826 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7827 { 7828 union lpfc_sli4_cfg_shdr *shdr; 7829 u32 shdr_status, shdr_add_status; 7830 7831 shdr = (union lpfc_sli4_cfg_shdr *) 7832 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7833 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7834 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7835 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7836 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7837 "4622 SET_FEATURE (x%x) mbox failed, " 7838 "status x%x add_status x%x, mbx status x%x\n", 7839 LPFC_SET_LD_SIGNAL, shdr_status, 7840 shdr_add_status, pmb->u.mb.mbxStatus); 7841 phba->degrade_activate_threshold = 0; 7842 phba->degrade_deactivate_threshold = 0; 7843 phba->fec_degrade_interval = 0; 7844 goto out; 7845 } 7846 7847 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7848 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7849 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7850 7851 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7852 "4624 Success: da x%x dd x%x interval x%x\n", 7853 phba->degrade_activate_threshold, 7854 phba->degrade_deactivate_threshold, 7855 phba->fec_degrade_interval); 7856 out: 7857 mempool_free(pmb, phba->mbox_mem_pool); 7858 } 7859 7860 int 7861 lpfc_read_lds_params(struct lpfc_hba *phba) 7862 { 7863 LPFC_MBOXQ_t *mboxq; 7864 int rc; 7865 7866 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7867 if (!mboxq) 7868 return -ENOMEM; 7869 7870 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7871 mboxq->vport = phba->pport; 7872 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7873 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7874 if (rc == MBX_NOT_FINISHED) { 7875 mempool_free(mboxq, phba->mbox_mem_pool); 7876 return -EIO; 7877 } 7878 return 0; 7879 } 7880 7881 static void 7882 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7883 { 7884 struct lpfc_vport *vport = pmb->vport; 7885 union lpfc_sli4_cfg_shdr *shdr; 7886 u32 shdr_status, shdr_add_status; 7887 u32 sig, acqe; 7888 7889 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7890 * is done. (2) Mailbox failed and send FPIN support only. 7891 */ 7892 shdr = (union lpfc_sli4_cfg_shdr *) 7893 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7894 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7895 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7896 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7897 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7898 "2516 CGN SET_FEATURE mbox failed with " 7899 "status x%x add_status x%x, mbx status x%x " 7900 "Reset Congestion to FPINs only\n", 7901 shdr_status, shdr_add_status, 7902 pmb->u.mb.mbxStatus); 7903 /* If there is a mbox error, move on to RDF */ 7904 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7905 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7906 goto out; 7907 } 7908 7909 /* Zero out Congestion Signal ACQE counter */ 7910 phba->cgn_acqe_cnt = 0; 7911 7912 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7913 &pmb->u.mqe.un.set_feature); 7914 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7915 &pmb->u.mqe.un.set_feature); 7916 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7917 "4620 SET_FEATURES Success: Freq: %ds %dms " 7918 " Reg: x%x x%x\n", acqe, sig, 7919 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7920 out: 7921 mempool_free(pmb, phba->mbox_mem_pool); 7922 7923 /* Register for FPIN events from the fabric now that the 7924 * EDC common_set_features has completed. 7925 */ 7926 lpfc_issue_els_rdf(vport, 0); 7927 } 7928 7929 int 7930 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7931 { 7932 LPFC_MBOXQ_t *mboxq; 7933 u32 rc; 7934 7935 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7936 if (!mboxq) 7937 goto out_rdf; 7938 7939 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7940 mboxq->vport = phba->pport; 7941 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7942 7943 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7944 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7945 "Reg: x%x x%x\n", 7946 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7947 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7948 7949 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7950 if (rc == MBX_NOT_FINISHED) 7951 goto out; 7952 return 0; 7953 7954 out: 7955 mempool_free(mboxq, phba->mbox_mem_pool); 7956 out_rdf: 7957 /* If there is a mbox error, move on to RDF */ 7958 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7959 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7960 lpfc_issue_els_rdf(phba->pport, 0); 7961 return -EIO; 7962 } 7963 7964 /** 7965 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7966 * @phba: pointer to lpfc hba data structure. 7967 * 7968 * This routine initializes the per-eq idle_stat to dynamically dictate 7969 * polling decisions. 7970 * 7971 * Return codes: 7972 * None 7973 **/ 7974 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7975 { 7976 int i; 7977 struct lpfc_sli4_hdw_queue *hdwq; 7978 struct lpfc_queue *eq; 7979 struct lpfc_idle_stat *idle_stat; 7980 u64 wall; 7981 7982 for_each_present_cpu(i) { 7983 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7984 eq = hdwq->hba_eq; 7985 7986 /* Skip if we've already handled this eq's primary CPU */ 7987 if (eq->chann != i) 7988 continue; 7989 7990 idle_stat = &phba->sli4_hba.idle_stat[i]; 7991 7992 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7993 idle_stat->prev_wall = wall; 7994 7995 if (phba->nvmet_support || 7996 phba->cmf_active_mode != LPFC_CFG_OFF || 7997 phba->intr_type != MSIX) 7998 eq->poll_mode = LPFC_QUEUE_WORK; 7999 else 8000 eq->poll_mode = LPFC_THREADED_IRQ; 8001 } 8002 8003 if (!phba->nvmet_support && phba->intr_type == MSIX) 8004 schedule_delayed_work(&phba->idle_stat_delay_work, 8005 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8006 } 8007 8008 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8009 { 8010 uint32_t if_type; 8011 8012 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8013 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8014 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8015 struct lpfc_register reg_data; 8016 8017 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8018 ®_data.word0)) 8019 return; 8020 8021 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8022 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8023 "2904 Firmware Dump Image Present" 8024 " on Adapter"); 8025 } 8026 } 8027 8028 /** 8029 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8030 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8031 * @entries: Number of rx_info_entry objects to allocate in ring 8032 * 8033 * Return: 8034 * 0 - Success 8035 * ENOMEM - Failure to kmalloc 8036 **/ 8037 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8038 u32 entries) 8039 { 8040 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8041 GFP_KERNEL); 8042 if (!rx_monitor->ring) 8043 return -ENOMEM; 8044 8045 rx_monitor->head_idx = 0; 8046 rx_monitor->tail_idx = 0; 8047 spin_lock_init(&rx_monitor->lock); 8048 rx_monitor->entries = entries; 8049 8050 return 0; 8051 } 8052 8053 /** 8054 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8055 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8056 * 8057 * Called after cancellation of cmf_timer. 8058 **/ 8059 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8060 { 8061 kfree(rx_monitor->ring); 8062 rx_monitor->ring = NULL; 8063 rx_monitor->entries = 0; 8064 rx_monitor->head_idx = 0; 8065 rx_monitor->tail_idx = 0; 8066 } 8067 8068 /** 8069 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8070 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8071 * @entry: Pointer to rx_info_entry 8072 * 8073 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8074 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8075 * 8076 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8077 * 8078 * In cases of old data overflow, we do a best effort of FIFO order. 8079 **/ 8080 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8081 struct rx_info_entry *entry) 8082 { 8083 struct rx_info_entry *ring = rx_monitor->ring; 8084 u32 *head_idx = &rx_monitor->head_idx; 8085 u32 *tail_idx = &rx_monitor->tail_idx; 8086 spinlock_t *ring_lock = &rx_monitor->lock; 8087 u32 ring_size = rx_monitor->entries; 8088 8089 spin_lock(ring_lock); 8090 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8091 *tail_idx = (*tail_idx + 1) % ring_size; 8092 8093 /* Best effort of FIFO saved data */ 8094 if (*tail_idx == *head_idx) 8095 *head_idx = (*head_idx + 1) % ring_size; 8096 8097 spin_unlock(ring_lock); 8098 } 8099 8100 /** 8101 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8102 * @phba: Pointer to lpfc_hba object 8103 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8104 * @buf: Pointer to char buffer that will contain rx monitor info data 8105 * @buf_len: Length buf including null char 8106 * @max_read_entries: Maximum number of entries to read out of ring 8107 * 8108 * Used to dump/read what's in rx_monitor's ring buffer. 8109 * 8110 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8111 * information to kmsg instead of filling out buf. 8112 * 8113 * Return: 8114 * Number of entries read out of the ring 8115 **/ 8116 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8117 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8118 u32 buf_len, u32 max_read_entries) 8119 { 8120 struct rx_info_entry *ring = rx_monitor->ring; 8121 struct rx_info_entry *entry; 8122 u32 *head_idx = &rx_monitor->head_idx; 8123 u32 *tail_idx = &rx_monitor->tail_idx; 8124 spinlock_t *ring_lock = &rx_monitor->lock; 8125 u32 ring_size = rx_monitor->entries; 8126 u32 cnt = 0; 8127 char tmp[DBG_LOG_STR_SZ] = {0}; 8128 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8129 8130 if (!log_to_kmsg) { 8131 /* clear the buffer to be sure */ 8132 memset(buf, 0, buf_len); 8133 8134 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8135 "%-8s%-8s%-8s%-16s\n", 8136 "MaxBPI", "Tot_Data_CMF", 8137 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8138 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8139 "IO_cnt", "Info", "BWutil(ms)"); 8140 } 8141 8142 /* Needs to be _irq because record is called from timer interrupt 8143 * context 8144 */ 8145 spin_lock_irq(ring_lock); 8146 while (*head_idx != *tail_idx) { 8147 entry = &ring[*head_idx]; 8148 8149 /* Read out this entry's data. */ 8150 if (!log_to_kmsg) { 8151 /* If !log_to_kmsg, then store to buf. */ 8152 scnprintf(tmp, sizeof(tmp), 8153 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8154 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8155 *head_idx, entry->max_bytes_per_interval, 8156 entry->cmf_bytes, entry->total_bytes, 8157 entry->rcv_bytes, entry->avg_io_latency, 8158 entry->avg_io_size, entry->max_read_cnt, 8159 entry->cmf_busy, entry->io_cnt, 8160 entry->cmf_info, entry->timer_utilization, 8161 entry->timer_interval); 8162 8163 /* Check for buffer overflow */ 8164 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8165 break; 8166 8167 /* Append entry's data to buffer */ 8168 strlcat(buf, tmp, buf_len); 8169 } else { 8170 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8171 "4410 %02u: MBPI %llu Xmit %llu " 8172 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8173 "BWUtil %u Int %u slot %u\n", 8174 cnt, entry->max_bytes_per_interval, 8175 entry->total_bytes, entry->rcv_bytes, 8176 entry->avg_io_latency, 8177 entry->avg_io_size, entry->cmf_info, 8178 entry->timer_utilization, 8179 entry->timer_interval, *head_idx); 8180 } 8181 8182 *head_idx = (*head_idx + 1) % ring_size; 8183 8184 /* Don't feed more than max_read_entries */ 8185 cnt++; 8186 if (cnt >= max_read_entries) 8187 break; 8188 } 8189 spin_unlock_irq(ring_lock); 8190 8191 return cnt; 8192 } 8193 8194 /** 8195 * lpfc_cmf_setup - Initialize idle_stat tracking 8196 * @phba: Pointer to HBA context object. 8197 * 8198 * This is called from HBA setup during driver load or when the HBA 8199 * comes online. this does all the initialization to support CMF and MI. 8200 **/ 8201 static int 8202 lpfc_cmf_setup(struct lpfc_hba *phba) 8203 { 8204 LPFC_MBOXQ_t *mboxq; 8205 struct lpfc_dmabuf *mp; 8206 struct lpfc_pc_sli4_params *sli4_params; 8207 int rc, cmf, mi_ver; 8208 8209 rc = lpfc_sli4_refresh_params(phba); 8210 if (unlikely(rc)) 8211 return rc; 8212 8213 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8214 if (!mboxq) 8215 return -ENOMEM; 8216 8217 sli4_params = &phba->sli4_hba.pc_sli4_params; 8218 8219 /* Always try to enable MI feature if we can */ 8220 if (sli4_params->mi_ver) { 8221 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8222 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8223 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8224 &mboxq->u.mqe.un.set_feature); 8225 8226 if (rc == MBX_SUCCESS) { 8227 if (mi_ver) { 8228 lpfc_printf_log(phba, 8229 KERN_WARNING, LOG_CGN_MGMT, 8230 "6215 MI is enabled\n"); 8231 sli4_params->mi_ver = mi_ver; 8232 } else { 8233 lpfc_printf_log(phba, 8234 KERN_WARNING, LOG_CGN_MGMT, 8235 "6338 MI is disabled\n"); 8236 sli4_params->mi_ver = 0; 8237 } 8238 } else { 8239 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8240 lpfc_printf_log(phba, KERN_INFO, 8241 LOG_CGN_MGMT | LOG_INIT, 8242 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8243 "failed, rc:x%x mi:x%x\n", 8244 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8245 lpfc_sli_config_mbox_subsys_get 8246 (phba, mboxq), 8247 lpfc_sli_config_mbox_opcode_get 8248 (phba, mboxq), 8249 rc, sli4_params->mi_ver); 8250 } 8251 } else { 8252 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8253 "6217 MI is disabled\n"); 8254 } 8255 8256 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8257 if (sli4_params->mi_ver) 8258 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8259 8260 /* Always try to enable CMF feature if we can */ 8261 if (sli4_params->cmf) { 8262 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8263 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8264 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8265 &mboxq->u.mqe.un.set_feature); 8266 if (rc == MBX_SUCCESS && cmf) { 8267 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8268 "6218 CMF is enabled: mode %d\n", 8269 phba->cmf_active_mode); 8270 } else { 8271 lpfc_printf_log(phba, KERN_WARNING, 8272 LOG_CGN_MGMT | LOG_INIT, 8273 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8274 "failed, rc:x%x dd:x%x\n", 8275 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8276 lpfc_sli_config_mbox_subsys_get 8277 (phba, mboxq), 8278 lpfc_sli_config_mbox_opcode_get 8279 (phba, mboxq), 8280 rc, cmf); 8281 sli4_params->cmf = 0; 8282 phba->cmf_active_mode = LPFC_CFG_OFF; 8283 goto no_cmf; 8284 } 8285 8286 /* Allocate Congestion Information Buffer */ 8287 if (!phba->cgn_i) { 8288 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8289 if (mp) 8290 mp->virt = dma_alloc_coherent 8291 (&phba->pcidev->dev, 8292 sizeof(struct lpfc_cgn_info), 8293 &mp->phys, GFP_KERNEL); 8294 if (!mp || !mp->virt) { 8295 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8296 "2640 Failed to alloc memory " 8297 "for Congestion Info\n"); 8298 kfree(mp); 8299 sli4_params->cmf = 0; 8300 phba->cmf_active_mode = LPFC_CFG_OFF; 8301 goto no_cmf; 8302 } 8303 phba->cgn_i = mp; 8304 8305 /* initialize congestion buffer info */ 8306 lpfc_init_congestion_buf(phba); 8307 lpfc_init_congestion_stat(phba); 8308 8309 /* Zero out Congestion Signal counters */ 8310 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8311 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8312 } 8313 8314 rc = lpfc_sli4_cgn_params_read(phba); 8315 if (rc < 0) { 8316 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8317 "6242 Error reading Cgn Params (%d)\n", 8318 rc); 8319 /* Ensure CGN Mode is off */ 8320 sli4_params->cmf = 0; 8321 } else if (!rc) { 8322 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8323 "6243 CGN Event empty object.\n"); 8324 /* Ensure CGN Mode is off */ 8325 sli4_params->cmf = 0; 8326 } 8327 } else { 8328 no_cmf: 8329 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8330 "6220 CMF is disabled\n"); 8331 } 8332 8333 /* Only register congestion buffer with firmware if BOTH 8334 * CMF and E2E are enabled. 8335 */ 8336 if (sli4_params->cmf && sli4_params->mi_ver) { 8337 rc = lpfc_reg_congestion_buf(phba); 8338 if (rc) { 8339 dma_free_coherent(&phba->pcidev->dev, 8340 sizeof(struct lpfc_cgn_info), 8341 phba->cgn_i->virt, phba->cgn_i->phys); 8342 kfree(phba->cgn_i); 8343 phba->cgn_i = NULL; 8344 /* Ensure CGN Mode is off */ 8345 phba->cmf_active_mode = LPFC_CFG_OFF; 8346 sli4_params->cmf = 0; 8347 return 0; 8348 } 8349 } 8350 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8351 "6470 Setup MI version %d CMF %d mode %d\n", 8352 sli4_params->mi_ver, sli4_params->cmf, 8353 phba->cmf_active_mode); 8354 8355 mempool_free(mboxq, phba->mbox_mem_pool); 8356 8357 /* Initialize atomic counters */ 8358 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8359 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8360 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8361 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8362 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8363 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8364 atomic64_set(&phba->cgn_latency_evt, 0); 8365 8366 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8367 8368 /* Allocate RX Monitor Buffer */ 8369 if (!phba->rx_monitor) { 8370 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8371 GFP_KERNEL); 8372 8373 if (!phba->rx_monitor) { 8374 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8375 "2644 Failed to alloc memory " 8376 "for RX Monitor Buffer\n"); 8377 return -ENOMEM; 8378 } 8379 8380 /* Instruct the rx_monitor object to instantiate its ring */ 8381 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8382 LPFC_MAX_RXMONITOR_ENTRY)) { 8383 kfree(phba->rx_monitor); 8384 phba->rx_monitor = NULL; 8385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8386 "2645 Failed to alloc memory " 8387 "for RX Monitor's Ring\n"); 8388 return -ENOMEM; 8389 } 8390 } 8391 8392 return 0; 8393 } 8394 8395 static int 8396 lpfc_set_host_tm(struct lpfc_hba *phba) 8397 { 8398 LPFC_MBOXQ_t *mboxq; 8399 uint32_t len, rc; 8400 struct timespec64 cur_time; 8401 struct tm broken; 8402 uint32_t month, day, year; 8403 uint32_t hour, minute, second; 8404 struct lpfc_mbx_set_host_date_time *tm; 8405 8406 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8407 if (!mboxq) 8408 return -ENOMEM; 8409 8410 len = sizeof(struct lpfc_mbx_set_host_data) - 8411 sizeof(struct lpfc_sli4_cfg_mhdr); 8412 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8413 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8414 LPFC_SLI4_MBX_EMBED); 8415 8416 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8417 mboxq->u.mqe.un.set_host_data.param_len = 8418 sizeof(struct lpfc_mbx_set_host_date_time); 8419 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8420 ktime_get_real_ts64(&cur_time); 8421 time64_to_tm(cur_time.tv_sec, 0, &broken); 8422 month = broken.tm_mon + 1; 8423 day = broken.tm_mday; 8424 year = broken.tm_year - 100; 8425 hour = broken.tm_hour; 8426 minute = broken.tm_min; 8427 second = broken.tm_sec; 8428 bf_set(lpfc_mbx_set_host_month, tm, month); 8429 bf_set(lpfc_mbx_set_host_day, tm, day); 8430 bf_set(lpfc_mbx_set_host_year, tm, year); 8431 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8432 bf_set(lpfc_mbx_set_host_min, tm, minute); 8433 bf_set(lpfc_mbx_set_host_sec, tm, second); 8434 8435 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8436 mempool_free(mboxq, phba->mbox_mem_pool); 8437 return rc; 8438 } 8439 8440 /** 8441 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8442 * @phba: Pointer to HBA context object. 8443 * 8444 * This function is the main SLI4 device initialization PCI function. This 8445 * function is called by the HBA initialization code, HBA reset code and 8446 * HBA error attention handler code. Caller is not required to hold any 8447 * locks. 8448 **/ 8449 int 8450 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8451 { 8452 int rc, i, cnt, len, dd; 8453 LPFC_MBOXQ_t *mboxq; 8454 struct lpfc_mqe *mqe; 8455 uint8_t *vpd; 8456 uint32_t vpd_size; 8457 uint32_t ftr_rsp = 0; 8458 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8459 struct lpfc_vport *vport = phba->pport; 8460 struct lpfc_dmabuf *mp; 8461 struct lpfc_rqb *rqbp; 8462 u32 flg; 8463 8464 /* Perform a PCI function reset to start from clean */ 8465 rc = lpfc_pci_function_reset(phba); 8466 if (unlikely(rc)) 8467 return -ENODEV; 8468 8469 /* Check the HBA Host Status Register for readyness */ 8470 rc = lpfc_sli4_post_status_check(phba); 8471 if (unlikely(rc)) 8472 return -ENODEV; 8473 else { 8474 spin_lock_irq(&phba->hbalock); 8475 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8476 flg = phba->sli.sli_flag; 8477 spin_unlock_irq(&phba->hbalock); 8478 /* Allow a little time after setting SLI_ACTIVE for any polled 8479 * MBX commands to complete via BSG. 8480 */ 8481 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8482 msleep(20); 8483 spin_lock_irq(&phba->hbalock); 8484 flg = phba->sli.sli_flag; 8485 spin_unlock_irq(&phba->hbalock); 8486 } 8487 } 8488 clear_bit(HBA_SETUP, &phba->hba_flag); 8489 8490 lpfc_sli4_dip(phba); 8491 8492 /* 8493 * Allocate a single mailbox container for initializing the 8494 * port. 8495 */ 8496 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8497 if (!mboxq) 8498 return -ENOMEM; 8499 8500 /* Issue READ_REV to collect vpd and FW information. */ 8501 vpd_size = SLI4_PAGE_SIZE; 8502 vpd = kzalloc(vpd_size, GFP_KERNEL); 8503 if (!vpd) { 8504 rc = -ENOMEM; 8505 goto out_free_mbox; 8506 } 8507 8508 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8509 if (unlikely(rc)) { 8510 kfree(vpd); 8511 goto out_free_mbox; 8512 } 8513 8514 mqe = &mboxq->u.mqe; 8515 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8516 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8517 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8518 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8519 } else { 8520 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8521 } 8522 8523 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8524 LPFC_DCBX_CEE_MODE) 8525 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8526 else 8527 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8528 8529 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8530 8531 if (phba->sli_rev != LPFC_SLI_REV4) { 8532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8533 "0376 READ_REV Error. SLI Level %d " 8534 "FCoE enabled %d\n", 8535 phba->sli_rev, 8536 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8537 rc = -EIO; 8538 kfree(vpd); 8539 goto out_free_mbox; 8540 } 8541 8542 rc = lpfc_set_host_tm(phba); 8543 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8544 "6468 Set host date / time: Status x%x:\n", rc); 8545 8546 /* 8547 * Continue initialization with default values even if driver failed 8548 * to read FCoE param config regions, only read parameters if the 8549 * board is FCoE 8550 */ 8551 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8552 lpfc_sli4_read_fcoe_params(phba)) 8553 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8554 "2570 Failed to read FCoE parameters\n"); 8555 8556 /* 8557 * Retrieve sli4 device physical port name, failure of doing it 8558 * is considered as non-fatal. 8559 */ 8560 rc = lpfc_sli4_retrieve_pport_name(phba); 8561 if (!rc) 8562 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8563 "3080 Successful retrieving SLI4 device " 8564 "physical port name: %s.\n", phba->Port); 8565 8566 rc = lpfc_sli4_get_ctl_attr(phba); 8567 if (!rc) 8568 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8569 "8351 Successful retrieving SLI4 device " 8570 "CTL ATTR\n"); 8571 8572 /* 8573 * Evaluate the read rev and vpd data. Populate the driver 8574 * state with the results. If this routine fails, the failure 8575 * is not fatal as the driver will use generic values. 8576 */ 8577 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8578 if (unlikely(!rc)) 8579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8580 "0377 Error %d parsing vpd. " 8581 "Using defaults.\n", rc); 8582 kfree(vpd); 8583 8584 /* Save information as VPD data */ 8585 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8586 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8587 8588 /* 8589 * This is because first G7 ASIC doesn't support the standard 8590 * 0x5a NVME cmd descriptor type/subtype 8591 */ 8592 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8593 LPFC_SLI_INTF_IF_TYPE_6) && 8594 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8595 (phba->vpd.rev.smRev == 0) && 8596 (phba->cfg_nvme_embed_cmd == 1)) 8597 phba->cfg_nvme_embed_cmd = 0; 8598 8599 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8600 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8601 &mqe->un.read_rev); 8602 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8603 &mqe->un.read_rev); 8604 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8605 &mqe->un.read_rev); 8606 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8607 &mqe->un.read_rev); 8608 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8609 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8610 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8611 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8612 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8613 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8614 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8615 "(%d):0380 READ_REV Status x%x " 8616 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8617 mboxq->vport ? mboxq->vport->vpi : 0, 8618 bf_get(lpfc_mqe_status, mqe), 8619 phba->vpd.rev.opFwName, 8620 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8621 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8622 8623 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8624 LPFC_SLI_INTF_IF_TYPE_0) { 8625 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8626 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8627 if (rc == MBX_SUCCESS) { 8628 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8629 /* Set 1Sec interval to detect UE */ 8630 phba->eratt_poll_interval = 1; 8631 phba->sli4_hba.ue_to_sr = bf_get( 8632 lpfc_mbx_set_feature_UESR, 8633 &mboxq->u.mqe.un.set_feature); 8634 phba->sli4_hba.ue_to_rp = bf_get( 8635 lpfc_mbx_set_feature_UERP, 8636 &mboxq->u.mqe.un.set_feature); 8637 } 8638 } 8639 8640 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8641 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8642 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8643 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8644 if (rc != MBX_SUCCESS) 8645 phba->mds_diags_support = 0; 8646 } 8647 8648 /* 8649 * Discover the port's supported feature set and match it against the 8650 * hosts requests. 8651 */ 8652 lpfc_request_features(phba, mboxq); 8653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8654 if (unlikely(rc)) { 8655 rc = -EIO; 8656 goto out_free_mbox; 8657 } 8658 8659 /* Disable VMID if app header is not supported */ 8660 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8661 &mqe->un.req_ftrs))) { 8662 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8663 phba->cfg_vmid_app_header = 0; 8664 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8665 "1242 vmid feature not supported\n"); 8666 } 8667 8668 /* 8669 * The port must support FCP initiator mode as this is the 8670 * only mode running in the host. 8671 */ 8672 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8673 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8674 "0378 No support for fcpi mode.\n"); 8675 ftr_rsp++; 8676 } 8677 8678 /* Performance Hints are ONLY for FCoE */ 8679 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8680 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8681 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8682 else 8683 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8684 } 8685 8686 /* 8687 * If the port cannot support the host's requested features 8688 * then turn off the global config parameters to disable the 8689 * feature in the driver. This is not a fatal error. 8690 */ 8691 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8692 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8693 phba->cfg_enable_bg = 0; 8694 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8695 ftr_rsp++; 8696 } 8697 } 8698 8699 if (phba->max_vpi && phba->cfg_enable_npiv && 8700 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8701 ftr_rsp++; 8702 8703 if (ftr_rsp) { 8704 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8705 "0379 Feature Mismatch Data: x%08x %08x " 8706 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8707 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8708 phba->cfg_enable_npiv, phba->max_vpi); 8709 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8710 phba->cfg_enable_bg = 0; 8711 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8712 phba->cfg_enable_npiv = 0; 8713 } 8714 8715 /* These SLI3 features are assumed in SLI4 */ 8716 spin_lock_irq(&phba->hbalock); 8717 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8718 spin_unlock_irq(&phba->hbalock); 8719 8720 /* Always try to enable dual dump feature if we can */ 8721 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8722 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8723 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8724 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8725 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8726 "6448 Dual Dump is enabled\n"); 8727 else 8728 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8729 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8730 "rc:x%x dd:x%x\n", 8731 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8732 lpfc_sli_config_mbox_subsys_get( 8733 phba, mboxq), 8734 lpfc_sli_config_mbox_opcode_get( 8735 phba, mboxq), 8736 rc, dd); 8737 /* 8738 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8739 * calls depends on these resources to complete port setup. 8740 */ 8741 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8742 if (rc) { 8743 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8744 "2920 Failed to alloc Resource IDs " 8745 "rc = x%x\n", rc); 8746 goto out_free_mbox; 8747 } 8748 8749 lpfc_set_host_data(phba, mboxq); 8750 8751 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8752 if (rc) { 8753 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8754 "2134 Failed to set host os driver version %x", 8755 rc); 8756 } 8757 8758 /* Read the port's service parameters. */ 8759 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8760 if (rc) { 8761 phba->link_state = LPFC_HBA_ERROR; 8762 rc = -ENOMEM; 8763 goto out_free_mbox; 8764 } 8765 8766 mboxq->vport = vport; 8767 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8768 mp = mboxq->ctx_buf; 8769 if (rc == MBX_SUCCESS) { 8770 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8771 rc = 0; 8772 } 8773 8774 /* 8775 * This memory was allocated by the lpfc_read_sparam routine but is 8776 * no longer needed. It is released and ctx_buf NULLed to prevent 8777 * unintended pointer access as the mbox is reused. 8778 */ 8779 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8780 kfree(mp); 8781 mboxq->ctx_buf = NULL; 8782 if (unlikely(rc)) { 8783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8784 "0382 READ_SPARAM command failed " 8785 "status %d, mbxStatus x%x\n", 8786 rc, bf_get(lpfc_mqe_status, mqe)); 8787 phba->link_state = LPFC_HBA_ERROR; 8788 rc = -EIO; 8789 goto out_free_mbox; 8790 } 8791 8792 lpfc_update_vport_wwn(vport); 8793 8794 /* Update the fc_host data structures with new wwn. */ 8795 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8796 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8797 8798 /* Create all the SLI4 queues */ 8799 rc = lpfc_sli4_queue_create(phba); 8800 if (rc) { 8801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8802 "3089 Failed to allocate queues\n"); 8803 rc = -ENODEV; 8804 goto out_free_mbox; 8805 } 8806 /* Set up all the queues to the device */ 8807 rc = lpfc_sli4_queue_setup(phba); 8808 if (unlikely(rc)) { 8809 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8810 "0381 Error %d during queue setup.\n ", rc); 8811 goto out_stop_timers; 8812 } 8813 /* Initialize the driver internal SLI layer lists. */ 8814 lpfc_sli4_setup(phba); 8815 lpfc_sli4_queue_init(phba); 8816 8817 /* update host els xri-sgl sizes and mappings */ 8818 rc = lpfc_sli4_els_sgl_update(phba); 8819 if (unlikely(rc)) { 8820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8821 "1400 Failed to update xri-sgl size and " 8822 "mapping: %d\n", rc); 8823 goto out_destroy_queue; 8824 } 8825 8826 /* register the els sgl pool to the port */ 8827 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8828 phba->sli4_hba.els_xri_cnt); 8829 if (unlikely(rc < 0)) { 8830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8831 "0582 Error %d during els sgl post " 8832 "operation\n", rc); 8833 rc = -ENODEV; 8834 goto out_destroy_queue; 8835 } 8836 phba->sli4_hba.els_xri_cnt = rc; 8837 8838 if (phba->nvmet_support) { 8839 /* update host nvmet xri-sgl sizes and mappings */ 8840 rc = lpfc_sli4_nvmet_sgl_update(phba); 8841 if (unlikely(rc)) { 8842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8843 "6308 Failed to update nvmet-sgl size " 8844 "and mapping: %d\n", rc); 8845 goto out_destroy_queue; 8846 } 8847 8848 /* register the nvmet sgl pool to the port */ 8849 rc = lpfc_sli4_repost_sgl_list( 8850 phba, 8851 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8852 phba->sli4_hba.nvmet_xri_cnt); 8853 if (unlikely(rc < 0)) { 8854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8855 "3117 Error %d during nvmet " 8856 "sgl post\n", rc); 8857 rc = -ENODEV; 8858 goto out_destroy_queue; 8859 } 8860 phba->sli4_hba.nvmet_xri_cnt = rc; 8861 8862 /* We allocate an iocbq for every receive context SGL. 8863 * The additional allocation is for abort and ls handling. 8864 */ 8865 cnt = phba->sli4_hba.nvmet_xri_cnt + 8866 phba->sli4_hba.max_cfg_param.max_xri; 8867 } else { 8868 /* update host common xri-sgl sizes and mappings */ 8869 rc = lpfc_sli4_io_sgl_update(phba); 8870 if (unlikely(rc)) { 8871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8872 "6082 Failed to update nvme-sgl size " 8873 "and mapping: %d\n", rc); 8874 goto out_destroy_queue; 8875 } 8876 8877 /* register the allocated common sgl pool to the port */ 8878 rc = lpfc_sli4_repost_io_sgl_list(phba); 8879 if (unlikely(rc)) { 8880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8881 "6116 Error %d during nvme sgl post " 8882 "operation\n", rc); 8883 /* Some NVME buffers were moved to abort nvme list */ 8884 /* A pci function reset will repost them */ 8885 rc = -ENODEV; 8886 goto out_destroy_queue; 8887 } 8888 /* Each lpfc_io_buf job structure has an iocbq element. 8889 * This cnt provides for abort, els, ct and ls requests. 8890 */ 8891 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8892 } 8893 8894 if (!phba->sli.iocbq_lookup) { 8895 /* Initialize and populate the iocb list per host */ 8896 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8897 "2821 initialize iocb list with %d entries\n", 8898 cnt); 8899 rc = lpfc_init_iocb_list(phba, cnt); 8900 if (rc) { 8901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8902 "1413 Failed to init iocb list.\n"); 8903 goto out_destroy_queue; 8904 } 8905 } 8906 8907 if (phba->nvmet_support) 8908 lpfc_nvmet_create_targetport(phba); 8909 8910 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8911 /* Post initial buffers to all RQs created */ 8912 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8913 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8914 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8915 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8916 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8917 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8918 rqbp->buffer_count = 0; 8919 8920 lpfc_post_rq_buffer( 8921 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8922 phba->sli4_hba.nvmet_mrq_data[i], 8923 phba->cfg_nvmet_mrq_post, i); 8924 } 8925 } 8926 8927 /* Post the rpi header region to the device. */ 8928 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8929 if (unlikely(rc)) { 8930 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8931 "0393 Error %d during rpi post operation\n", 8932 rc); 8933 rc = -ENODEV; 8934 goto out_free_iocblist; 8935 } 8936 lpfc_sli4_node_prep(phba); 8937 8938 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8939 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8940 /* 8941 * The FC Port needs to register FCFI (index 0) 8942 */ 8943 lpfc_reg_fcfi(phba, mboxq); 8944 mboxq->vport = phba->pport; 8945 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8946 if (rc != MBX_SUCCESS) 8947 goto out_unset_queue; 8948 rc = 0; 8949 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8950 &mboxq->u.mqe.un.reg_fcfi); 8951 } else { 8952 /* We are a NVME Target mode with MRQ > 1 */ 8953 8954 /* First register the FCFI */ 8955 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8956 mboxq->vport = phba->pport; 8957 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8958 if (rc != MBX_SUCCESS) 8959 goto out_unset_queue; 8960 rc = 0; 8961 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8962 &mboxq->u.mqe.un.reg_fcfi_mrq); 8963 8964 /* Next register the MRQs */ 8965 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8966 mboxq->vport = phba->pport; 8967 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8968 if (rc != MBX_SUCCESS) 8969 goto out_unset_queue; 8970 rc = 0; 8971 } 8972 /* Check if the port is configured to be disabled */ 8973 lpfc_sli_read_link_ste(phba); 8974 } 8975 8976 /* Don't post more new bufs if repost already recovered 8977 * the nvme sgls. 8978 */ 8979 if (phba->nvmet_support == 0) { 8980 if (phba->sli4_hba.io_xri_cnt == 0) { 8981 len = lpfc_new_io_buf( 8982 phba, phba->sli4_hba.io_xri_max); 8983 if (len == 0) { 8984 rc = -ENOMEM; 8985 goto out_unset_queue; 8986 } 8987 8988 if (phba->cfg_xri_rebalancing) 8989 lpfc_create_multixri_pools(phba); 8990 } 8991 } else { 8992 phba->cfg_xri_rebalancing = 0; 8993 } 8994 8995 /* Allow asynchronous mailbox command to go through */ 8996 spin_lock_irq(&phba->hbalock); 8997 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8998 spin_unlock_irq(&phba->hbalock); 8999 9000 /* Post receive buffers to the device */ 9001 lpfc_sli4_rb_setup(phba); 9002 9003 /* Reset HBA FCF states after HBA reset */ 9004 phba->fcf.fcf_flag = 0; 9005 phba->fcf.current_rec.flag = 0; 9006 9007 /* Start the ELS watchdog timer */ 9008 mod_timer(&vport->els_tmofunc, 9009 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9010 9011 /* Start heart beat timer */ 9012 mod_timer(&phba->hb_tmofunc, 9013 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9014 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9015 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9016 phba->last_completion_time = jiffies; 9017 9018 /* start eq_delay heartbeat */ 9019 if (phba->cfg_auto_imax) 9020 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9021 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9022 9023 /* start per phba idle_stat_delay heartbeat */ 9024 lpfc_init_idle_stat_hb(phba); 9025 9026 /* Start error attention (ERATT) polling timer */ 9027 mod_timer(&phba->eratt_poll, 9028 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9029 9030 /* 9031 * The port is ready, set the host's link state to LINK_DOWN 9032 * in preparation for link interrupts. 9033 */ 9034 spin_lock_irq(&phba->hbalock); 9035 phba->link_state = LPFC_LINK_DOWN; 9036 9037 /* Check if physical ports are trunked */ 9038 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9039 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9040 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9041 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9042 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9043 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9044 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9045 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9046 spin_unlock_irq(&phba->hbalock); 9047 9048 /* Arm the CQs and then EQs on device */ 9049 lpfc_sli4_arm_cqeq_intr(phba); 9050 9051 /* Indicate device interrupt mode */ 9052 phba->sli4_hba.intr_enable = 1; 9053 9054 /* Setup CMF after HBA is initialized */ 9055 lpfc_cmf_setup(phba); 9056 9057 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9058 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9059 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9060 "3103 Adapter Link is disabled.\n"); 9061 lpfc_down_link(phba, mboxq); 9062 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9063 if (rc != MBX_SUCCESS) { 9064 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9065 "3104 Adapter failed to issue " 9066 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9067 goto out_io_buff_free; 9068 } 9069 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9070 /* don't perform init_link on SLI4 FC port loopback test */ 9071 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9072 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9073 if (rc) 9074 goto out_io_buff_free; 9075 } 9076 } 9077 mempool_free(mboxq, phba->mbox_mem_pool); 9078 9079 /* Enable RAS FW log support */ 9080 lpfc_sli4_ras_setup(phba); 9081 9082 set_bit(HBA_SETUP, &phba->hba_flag); 9083 return rc; 9084 9085 out_io_buff_free: 9086 /* Free allocated IO Buffers */ 9087 lpfc_io_free(phba); 9088 out_unset_queue: 9089 /* Unset all the queues set up in this routine when error out */ 9090 lpfc_sli4_queue_unset(phba); 9091 out_free_iocblist: 9092 lpfc_free_iocb_list(phba); 9093 out_destroy_queue: 9094 lpfc_sli4_queue_destroy(phba); 9095 out_stop_timers: 9096 lpfc_stop_hba_timers(phba); 9097 out_free_mbox: 9098 mempool_free(mboxq, phba->mbox_mem_pool); 9099 return rc; 9100 } 9101 9102 /** 9103 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9104 * @t: Context to fetch pointer to hba structure from. 9105 * 9106 * This is the callback function for mailbox timer. The mailbox 9107 * timer is armed when a new mailbox command is issued and the timer 9108 * is deleted when the mailbox complete. The function is called by 9109 * the kernel timer code when a mailbox does not complete within 9110 * expected time. This function wakes up the worker thread to 9111 * process the mailbox timeout and returns. All the processing is 9112 * done by the worker thread function lpfc_mbox_timeout_handler. 9113 **/ 9114 void 9115 lpfc_mbox_timeout(struct timer_list *t) 9116 { 9117 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9118 unsigned long iflag; 9119 uint32_t tmo_posted; 9120 9121 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9122 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9123 if (!tmo_posted) 9124 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9125 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9126 9127 if (!tmo_posted) 9128 lpfc_worker_wake_up(phba); 9129 return; 9130 } 9131 9132 /** 9133 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9134 * are pending 9135 * @phba: Pointer to HBA context object. 9136 * 9137 * This function checks if any mailbox completions are present on the mailbox 9138 * completion queue. 9139 **/ 9140 static bool 9141 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9142 { 9143 9144 uint32_t idx; 9145 struct lpfc_queue *mcq; 9146 struct lpfc_mcqe *mcqe; 9147 bool pending_completions = false; 9148 uint8_t qe_valid; 9149 9150 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9151 return false; 9152 9153 /* Check for completions on mailbox completion queue */ 9154 9155 mcq = phba->sli4_hba.mbx_cq; 9156 idx = mcq->hba_index; 9157 qe_valid = mcq->qe_valid; 9158 while (bf_get_le32(lpfc_cqe_valid, 9159 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9160 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9161 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9162 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9163 pending_completions = true; 9164 break; 9165 } 9166 idx = (idx + 1) % mcq->entry_count; 9167 if (mcq->hba_index == idx) 9168 break; 9169 9170 /* if the index wrapped around, toggle the valid bit */ 9171 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9172 qe_valid = (qe_valid) ? 0 : 1; 9173 } 9174 return pending_completions; 9175 9176 } 9177 9178 /** 9179 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9180 * that were missed. 9181 * @phba: Pointer to HBA context object. 9182 * 9183 * For sli4, it is possible to miss an interrupt. As such mbox completions 9184 * maybe missed causing erroneous mailbox timeouts to occur. This function 9185 * checks to see if mbox completions are on the mailbox completion queue 9186 * and will process all the completions associated with the eq for the 9187 * mailbox completion queue. 9188 **/ 9189 static bool 9190 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9191 { 9192 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9193 uint32_t eqidx; 9194 struct lpfc_queue *fpeq = NULL; 9195 struct lpfc_queue *eq; 9196 bool mbox_pending; 9197 9198 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9199 return false; 9200 9201 /* Find the EQ associated with the mbox CQ */ 9202 if (sli4_hba->hdwq) { 9203 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9204 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9205 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9206 fpeq = eq; 9207 break; 9208 } 9209 } 9210 } 9211 if (!fpeq) 9212 return false; 9213 9214 /* Turn off interrupts from this EQ */ 9215 9216 sli4_hba->sli4_eq_clr_intr(fpeq); 9217 9218 /* Check to see if a mbox completion is pending */ 9219 9220 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9221 9222 /* 9223 * If a mbox completion is pending, process all the events on EQ 9224 * associated with the mbox completion queue (this could include 9225 * mailbox commands, async events, els commands, receive queue data 9226 * and fcp commands) 9227 */ 9228 9229 if (mbox_pending) 9230 /* process and rearm the EQ */ 9231 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9232 LPFC_QUEUE_WORK); 9233 else 9234 /* Always clear and re-arm the EQ */ 9235 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9236 9237 return mbox_pending; 9238 9239 } 9240 9241 /** 9242 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9243 * @phba: Pointer to HBA context object. 9244 * 9245 * This function is called from worker thread when a mailbox command times out. 9246 * The caller is not required to hold any locks. This function will reset the 9247 * HBA and recover all the pending commands. 9248 **/ 9249 void 9250 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9251 { 9252 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9253 MAILBOX_t *mb = NULL; 9254 9255 struct lpfc_sli *psli = &phba->sli; 9256 9257 /* If the mailbox completed, process the completion */ 9258 lpfc_sli4_process_missed_mbox_completions(phba); 9259 9260 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9261 return; 9262 9263 if (pmbox != NULL) 9264 mb = &pmbox->u.mb; 9265 /* Check the pmbox pointer first. There is a race condition 9266 * between the mbox timeout handler getting executed in the 9267 * worklist and the mailbox actually completing. When this 9268 * race condition occurs, the mbox_active will be NULL. 9269 */ 9270 spin_lock_irq(&phba->hbalock); 9271 if (pmbox == NULL) { 9272 lpfc_printf_log(phba, KERN_WARNING, 9273 LOG_MBOX | LOG_SLI, 9274 "0353 Active Mailbox cleared - mailbox timeout " 9275 "exiting\n"); 9276 spin_unlock_irq(&phba->hbalock); 9277 return; 9278 } 9279 9280 /* Mbox cmd <mbxCommand> timeout */ 9281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9282 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9283 mb->mbxCommand, 9284 phba->pport->port_state, 9285 phba->sli.sli_flag, 9286 phba->sli.mbox_active); 9287 spin_unlock_irq(&phba->hbalock); 9288 9289 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9290 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9291 * it to fail all outstanding SCSI IO. 9292 */ 9293 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9294 spin_lock_irq(&phba->pport->work_port_lock); 9295 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9296 spin_unlock_irq(&phba->pport->work_port_lock); 9297 spin_lock_irq(&phba->hbalock); 9298 phba->link_state = LPFC_LINK_UNKNOWN; 9299 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9300 spin_unlock_irq(&phba->hbalock); 9301 9302 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9303 "0345 Resetting board due to mailbox timeout\n"); 9304 9305 /* Reset the HBA device */ 9306 lpfc_reset_hba(phba); 9307 } 9308 9309 /** 9310 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9311 * @phba: Pointer to HBA context object. 9312 * @pmbox: Pointer to mailbox object. 9313 * @flag: Flag indicating how the mailbox need to be processed. 9314 * 9315 * This function is called by discovery code and HBA management code 9316 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9317 * function gets the hbalock to protect the data structures. 9318 * The mailbox command can be submitted in polling mode, in which case 9319 * this function will wait in a polling loop for the completion of the 9320 * mailbox. 9321 * If the mailbox is submitted in no_wait mode (not polling) the 9322 * function will submit the command and returns immediately without waiting 9323 * for the mailbox completion. The no_wait is supported only when HBA 9324 * is in SLI2/SLI3 mode - interrupts are enabled. 9325 * The SLI interface allows only one mailbox pending at a time. If the 9326 * mailbox is issued in polling mode and there is already a mailbox 9327 * pending, then the function will return an error. If the mailbox is issued 9328 * in NO_WAIT mode and there is a mailbox pending already, the function 9329 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9330 * The sli layer owns the mailbox object until the completion of mailbox 9331 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9332 * return codes the caller owns the mailbox command after the return of 9333 * the function. 9334 **/ 9335 static int 9336 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9337 uint32_t flag) 9338 { 9339 MAILBOX_t *mbx; 9340 struct lpfc_sli *psli = &phba->sli; 9341 uint32_t status, evtctr; 9342 uint32_t ha_copy, hc_copy; 9343 int i; 9344 unsigned long timeout; 9345 unsigned long drvr_flag = 0; 9346 uint32_t word0, ldata; 9347 void __iomem *to_slim; 9348 int processing_queue = 0; 9349 9350 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9351 if (!pmbox) { 9352 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9353 /* processing mbox queue from intr_handler */ 9354 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9355 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9356 return MBX_SUCCESS; 9357 } 9358 processing_queue = 1; 9359 pmbox = lpfc_mbox_get(phba); 9360 if (!pmbox) { 9361 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9362 return MBX_SUCCESS; 9363 } 9364 } 9365 9366 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9367 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9368 if(!pmbox->vport) { 9369 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9370 lpfc_printf_log(phba, KERN_ERR, 9371 LOG_MBOX | LOG_VPORT, 9372 "1806 Mbox x%x failed. No vport\n", 9373 pmbox->u.mb.mbxCommand); 9374 dump_stack(); 9375 goto out_not_finished; 9376 } 9377 } 9378 9379 /* If the PCI channel is in offline state, do not post mbox. */ 9380 if (unlikely(pci_channel_offline(phba->pcidev))) { 9381 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9382 goto out_not_finished; 9383 } 9384 9385 /* If HBA has a deferred error attention, fail the iocb. */ 9386 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9387 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9388 goto out_not_finished; 9389 } 9390 9391 psli = &phba->sli; 9392 9393 mbx = &pmbox->u.mb; 9394 status = MBX_SUCCESS; 9395 9396 if (phba->link_state == LPFC_HBA_ERROR) { 9397 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9398 9399 /* Mbox command <mbxCommand> cannot issue */ 9400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9401 "(%d):0311 Mailbox command x%x cannot " 9402 "issue Data: x%x x%x\n", 9403 pmbox->vport ? pmbox->vport->vpi : 0, 9404 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9405 goto out_not_finished; 9406 } 9407 9408 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9409 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9410 !(hc_copy & HC_MBINT_ENA)) { 9411 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9413 "(%d):2528 Mailbox command x%x cannot " 9414 "issue Data: x%x x%x\n", 9415 pmbox->vport ? pmbox->vport->vpi : 0, 9416 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9417 goto out_not_finished; 9418 } 9419 } 9420 9421 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9422 /* Polling for a mbox command when another one is already active 9423 * is not allowed in SLI. Also, the driver must have established 9424 * SLI2 mode to queue and process multiple mbox commands. 9425 */ 9426 9427 if (flag & MBX_POLL) { 9428 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9429 9430 /* Mbox command <mbxCommand> cannot issue */ 9431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9432 "(%d):2529 Mailbox command x%x " 9433 "cannot issue Data: x%x x%x\n", 9434 pmbox->vport ? pmbox->vport->vpi : 0, 9435 pmbox->u.mb.mbxCommand, 9436 psli->sli_flag, flag); 9437 goto out_not_finished; 9438 } 9439 9440 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9442 /* Mbox command <mbxCommand> cannot issue */ 9443 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9444 "(%d):2530 Mailbox command x%x " 9445 "cannot issue Data: x%x x%x\n", 9446 pmbox->vport ? pmbox->vport->vpi : 0, 9447 pmbox->u.mb.mbxCommand, 9448 psli->sli_flag, flag); 9449 goto out_not_finished; 9450 } 9451 9452 /* Another mailbox command is still being processed, queue this 9453 * command to be processed later. 9454 */ 9455 lpfc_mbox_put(phba, pmbox); 9456 9457 /* Mbox cmd issue - BUSY */ 9458 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9459 "(%d):0308 Mbox cmd issue - BUSY Data: " 9460 "x%x x%x x%x x%x\n", 9461 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9462 mbx->mbxCommand, 9463 phba->pport ? phba->pport->port_state : 0xff, 9464 psli->sli_flag, flag); 9465 9466 psli->slistat.mbox_busy++; 9467 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9468 9469 if (pmbox->vport) { 9470 lpfc_debugfs_disc_trc(pmbox->vport, 9471 LPFC_DISC_TRC_MBOX_VPORT, 9472 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9473 (uint32_t)mbx->mbxCommand, 9474 mbx->un.varWords[0], mbx->un.varWords[1]); 9475 } 9476 else { 9477 lpfc_debugfs_disc_trc(phba->pport, 9478 LPFC_DISC_TRC_MBOX, 9479 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9480 (uint32_t)mbx->mbxCommand, 9481 mbx->un.varWords[0], mbx->un.varWords[1]); 9482 } 9483 9484 return MBX_BUSY; 9485 } 9486 9487 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9488 9489 /* If we are not polling, we MUST be in SLI2 mode */ 9490 if (flag != MBX_POLL) { 9491 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9492 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9493 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9494 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9495 /* Mbox command <mbxCommand> cannot issue */ 9496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9497 "(%d):2531 Mailbox command x%x " 9498 "cannot issue Data: x%x x%x\n", 9499 pmbox->vport ? pmbox->vport->vpi : 0, 9500 pmbox->u.mb.mbxCommand, 9501 psli->sli_flag, flag); 9502 goto out_not_finished; 9503 } 9504 /* timeout active mbox command */ 9505 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9506 1000); 9507 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9508 } 9509 9510 /* Mailbox cmd <cmd> issue */ 9511 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9512 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9513 "x%x\n", 9514 pmbox->vport ? pmbox->vport->vpi : 0, 9515 mbx->mbxCommand, 9516 phba->pport ? phba->pport->port_state : 0xff, 9517 psli->sli_flag, flag); 9518 9519 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9520 if (pmbox->vport) { 9521 lpfc_debugfs_disc_trc(pmbox->vport, 9522 LPFC_DISC_TRC_MBOX_VPORT, 9523 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9524 (uint32_t)mbx->mbxCommand, 9525 mbx->un.varWords[0], mbx->un.varWords[1]); 9526 } 9527 else { 9528 lpfc_debugfs_disc_trc(phba->pport, 9529 LPFC_DISC_TRC_MBOX, 9530 "MBOX Send: cmd:x%x mb:x%x x%x", 9531 (uint32_t)mbx->mbxCommand, 9532 mbx->un.varWords[0], mbx->un.varWords[1]); 9533 } 9534 } 9535 9536 psli->slistat.mbox_cmd++; 9537 evtctr = psli->slistat.mbox_event; 9538 9539 /* next set own bit for the adapter and copy over command word */ 9540 mbx->mbxOwner = OWN_CHIP; 9541 9542 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9543 /* Populate mbox extension offset word. */ 9544 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9545 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9546 = (uint8_t *)phba->mbox_ext 9547 - (uint8_t *)phba->mbox; 9548 } 9549 9550 /* Copy the mailbox extension data */ 9551 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9552 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9553 (uint8_t *)phba->mbox_ext, 9554 pmbox->in_ext_byte_len); 9555 } 9556 /* Copy command data to host SLIM area */ 9557 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9558 } else { 9559 /* Populate mbox extension offset word. */ 9560 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9561 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9562 = MAILBOX_HBA_EXT_OFFSET; 9563 9564 /* Copy the mailbox extension data */ 9565 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9566 lpfc_memcpy_to_slim(phba->MBslimaddr + 9567 MAILBOX_HBA_EXT_OFFSET, 9568 pmbox->ext_buf, pmbox->in_ext_byte_len); 9569 9570 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9571 /* copy command data into host mbox for cmpl */ 9572 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9573 MAILBOX_CMD_SIZE); 9574 9575 /* First copy mbox command data to HBA SLIM, skip past first 9576 word */ 9577 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9578 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9579 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9580 9581 /* Next copy over first word, with mbxOwner set */ 9582 ldata = *((uint32_t *)mbx); 9583 to_slim = phba->MBslimaddr; 9584 writel(ldata, to_slim); 9585 readl(to_slim); /* flush */ 9586 9587 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9588 /* switch over to host mailbox */ 9589 psli->sli_flag |= LPFC_SLI_ACTIVE; 9590 } 9591 9592 wmb(); 9593 9594 switch (flag) { 9595 case MBX_NOWAIT: 9596 /* Set up reference to mailbox command */ 9597 psli->mbox_active = pmbox; 9598 /* Interrupt board to do it */ 9599 writel(CA_MBATT, phba->CAregaddr); 9600 readl(phba->CAregaddr); /* flush */ 9601 /* Don't wait for it to finish, just return */ 9602 break; 9603 9604 case MBX_POLL: 9605 /* Set up null reference to mailbox command */ 9606 psli->mbox_active = NULL; 9607 /* Interrupt board to do it */ 9608 writel(CA_MBATT, phba->CAregaddr); 9609 readl(phba->CAregaddr); /* flush */ 9610 9611 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9612 /* First read mbox status word */ 9613 word0 = *((uint32_t *)phba->mbox); 9614 word0 = le32_to_cpu(word0); 9615 } else { 9616 /* First read mbox status word */ 9617 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9618 spin_unlock_irqrestore(&phba->hbalock, 9619 drvr_flag); 9620 goto out_not_finished; 9621 } 9622 } 9623 9624 /* Read the HBA Host Attention Register */ 9625 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9626 spin_unlock_irqrestore(&phba->hbalock, 9627 drvr_flag); 9628 goto out_not_finished; 9629 } 9630 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9631 1000) + jiffies; 9632 i = 0; 9633 /* Wait for command to complete */ 9634 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9635 (!(ha_copy & HA_MBATT) && 9636 (phba->link_state > LPFC_WARM_START))) { 9637 if (time_after(jiffies, timeout)) { 9638 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9639 spin_unlock_irqrestore(&phba->hbalock, 9640 drvr_flag); 9641 goto out_not_finished; 9642 } 9643 9644 /* Check if we took a mbox interrupt while we were 9645 polling */ 9646 if (((word0 & OWN_CHIP) != OWN_CHIP) 9647 && (evtctr != psli->slistat.mbox_event)) 9648 break; 9649 9650 if (i++ > 10) { 9651 spin_unlock_irqrestore(&phba->hbalock, 9652 drvr_flag); 9653 msleep(1); 9654 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9655 } 9656 9657 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9658 /* First copy command data */ 9659 word0 = *((uint32_t *)phba->mbox); 9660 word0 = le32_to_cpu(word0); 9661 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9662 MAILBOX_t *slimmb; 9663 uint32_t slimword0; 9664 /* Check real SLIM for any errors */ 9665 slimword0 = readl(phba->MBslimaddr); 9666 slimmb = (MAILBOX_t *) & slimword0; 9667 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9668 && slimmb->mbxStatus) { 9669 psli->sli_flag &= 9670 ~LPFC_SLI_ACTIVE; 9671 word0 = slimword0; 9672 } 9673 } 9674 } else { 9675 /* First copy command data */ 9676 word0 = readl(phba->MBslimaddr); 9677 } 9678 /* Read the HBA Host Attention Register */ 9679 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9680 spin_unlock_irqrestore(&phba->hbalock, 9681 drvr_flag); 9682 goto out_not_finished; 9683 } 9684 } 9685 9686 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9687 /* copy results back to user */ 9688 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9689 MAILBOX_CMD_SIZE); 9690 /* Copy the mailbox extension data */ 9691 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9692 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9693 pmbox->ext_buf, 9694 pmbox->out_ext_byte_len); 9695 } 9696 } else { 9697 /* First copy command data */ 9698 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9699 MAILBOX_CMD_SIZE); 9700 /* Copy the mailbox extension data */ 9701 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9702 lpfc_memcpy_from_slim( 9703 pmbox->ext_buf, 9704 phba->MBslimaddr + 9705 MAILBOX_HBA_EXT_OFFSET, 9706 pmbox->out_ext_byte_len); 9707 } 9708 } 9709 9710 writel(HA_MBATT, phba->HAregaddr); 9711 readl(phba->HAregaddr); /* flush */ 9712 9713 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9714 status = mbx->mbxStatus; 9715 } 9716 9717 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9718 return status; 9719 9720 out_not_finished: 9721 if (processing_queue) { 9722 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9723 lpfc_mbox_cmpl_put(phba, pmbox); 9724 } 9725 return MBX_NOT_FINISHED; 9726 } 9727 9728 /** 9729 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9730 * @phba: Pointer to HBA context object. 9731 * 9732 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9733 * the driver internal pending mailbox queue. It will then try to wait out the 9734 * possible outstanding mailbox command before return. 9735 * 9736 * Returns: 9737 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9738 * the outstanding mailbox command timed out. 9739 **/ 9740 static int 9741 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9742 { 9743 struct lpfc_sli *psli = &phba->sli; 9744 LPFC_MBOXQ_t *mboxq; 9745 int rc = 0; 9746 unsigned long timeout = 0; 9747 u32 sli_flag; 9748 u8 cmd, subsys, opcode; 9749 9750 /* Mark the asynchronous mailbox command posting as blocked */ 9751 spin_lock_irq(&phba->hbalock); 9752 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9753 /* Determine how long we might wait for the active mailbox 9754 * command to be gracefully completed by firmware. 9755 */ 9756 if (phba->sli.mbox_active) 9757 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9758 phba->sli.mbox_active) * 9759 1000) + jiffies; 9760 spin_unlock_irq(&phba->hbalock); 9761 9762 /* Make sure the mailbox is really active */ 9763 if (timeout) 9764 lpfc_sli4_process_missed_mbox_completions(phba); 9765 9766 /* Wait for the outstanding mailbox command to complete */ 9767 while (phba->sli.mbox_active) { 9768 /* Check active mailbox complete status every 2ms */ 9769 msleep(2); 9770 if (time_after(jiffies, timeout)) { 9771 /* Timeout, mark the outstanding cmd not complete */ 9772 9773 /* Sanity check sli.mbox_active has not completed or 9774 * cancelled from another context during last 2ms sleep, 9775 * so take hbalock to be sure before logging. 9776 */ 9777 spin_lock_irq(&phba->hbalock); 9778 if (phba->sli.mbox_active) { 9779 mboxq = phba->sli.mbox_active; 9780 cmd = mboxq->u.mb.mbxCommand; 9781 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9782 mboxq); 9783 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9784 mboxq); 9785 sli_flag = psli->sli_flag; 9786 spin_unlock_irq(&phba->hbalock); 9787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9788 "2352 Mailbox command x%x " 9789 "(x%x/x%x) sli_flag x%x could " 9790 "not complete\n", 9791 cmd, subsys, opcode, 9792 sli_flag); 9793 } else { 9794 spin_unlock_irq(&phba->hbalock); 9795 } 9796 9797 rc = 1; 9798 break; 9799 } 9800 } 9801 9802 /* Can not cleanly block async mailbox command, fails it */ 9803 if (rc) { 9804 spin_lock_irq(&phba->hbalock); 9805 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9806 spin_unlock_irq(&phba->hbalock); 9807 } 9808 return rc; 9809 } 9810 9811 /** 9812 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9813 * @phba: Pointer to HBA context object. 9814 * 9815 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9816 * commands from the driver internal pending mailbox queue. It makes sure 9817 * that there is no outstanding mailbox command before resuming posting 9818 * asynchronous mailbox commands. If, for any reason, there is outstanding 9819 * mailbox command, it will try to wait it out before resuming asynchronous 9820 * mailbox command posting. 9821 **/ 9822 static void 9823 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9824 { 9825 struct lpfc_sli *psli = &phba->sli; 9826 9827 spin_lock_irq(&phba->hbalock); 9828 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9829 /* Asynchronous mailbox posting is not blocked, do nothing */ 9830 spin_unlock_irq(&phba->hbalock); 9831 return; 9832 } 9833 9834 /* Outstanding synchronous mailbox command is guaranteed to be done, 9835 * successful or timeout, after timing-out the outstanding mailbox 9836 * command shall always be removed, so just unblock posting async 9837 * mailbox command and resume 9838 */ 9839 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9840 spin_unlock_irq(&phba->hbalock); 9841 9842 /* wake up worker thread to post asynchronous mailbox command */ 9843 lpfc_worker_wake_up(phba); 9844 } 9845 9846 /** 9847 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9848 * @phba: Pointer to HBA context object. 9849 * @mboxq: Pointer to mailbox object. 9850 * 9851 * The function waits for the bootstrap mailbox register ready bit from 9852 * port for twice the regular mailbox command timeout value. 9853 * 9854 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9855 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9856 * is in an unrecoverable state. 9857 **/ 9858 static int 9859 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9860 { 9861 uint32_t db_ready; 9862 unsigned long timeout; 9863 struct lpfc_register bmbx_reg; 9864 struct lpfc_register portstat_reg = {-1}; 9865 9866 /* Sanity check - there is no point to wait if the port is in an 9867 * unrecoverable state. 9868 */ 9869 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9870 LPFC_SLI_INTF_IF_TYPE_2) { 9871 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9872 &portstat_reg.word0) || 9873 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9874 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9875 "3858 Skipping bmbx ready because " 9876 "Port Status x%x\n", 9877 portstat_reg.word0); 9878 return MBXERR_ERROR; 9879 } 9880 } 9881 9882 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9883 * 1000) + jiffies; 9884 9885 do { 9886 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9887 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9888 if (!db_ready) 9889 mdelay(2); 9890 9891 if (time_after(jiffies, timeout)) 9892 return MBXERR_ERROR; 9893 } while (!db_ready); 9894 9895 return 0; 9896 } 9897 9898 /** 9899 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9900 * @phba: Pointer to HBA context object. 9901 * @mboxq: Pointer to mailbox object. 9902 * 9903 * The function posts a mailbox to the port. The mailbox is expected 9904 * to be comletely filled in and ready for the port to operate on it. 9905 * This routine executes a synchronous completion operation on the 9906 * mailbox by polling for its completion. 9907 * 9908 * The caller must not be holding any locks when calling this routine. 9909 * 9910 * Returns: 9911 * MBX_SUCCESS - mailbox posted successfully 9912 * Any of the MBX error values. 9913 **/ 9914 static int 9915 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9916 { 9917 int rc = MBX_SUCCESS; 9918 unsigned long iflag; 9919 uint32_t mcqe_status; 9920 uint32_t mbx_cmnd; 9921 struct lpfc_sli *psli = &phba->sli; 9922 struct lpfc_mqe *mb = &mboxq->u.mqe; 9923 struct lpfc_bmbx_create *mbox_rgn; 9924 struct dma_address *dma_address; 9925 9926 /* 9927 * Only one mailbox can be active to the bootstrap mailbox region 9928 * at a time and there is no queueing provided. 9929 */ 9930 spin_lock_irqsave(&phba->hbalock, iflag); 9931 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9932 spin_unlock_irqrestore(&phba->hbalock, iflag); 9933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9934 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9935 "cannot issue Data: x%x x%x\n", 9936 mboxq->vport ? mboxq->vport->vpi : 0, 9937 mboxq->u.mb.mbxCommand, 9938 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9939 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9940 psli->sli_flag, MBX_POLL); 9941 return MBXERR_ERROR; 9942 } 9943 /* The server grabs the token and owns it until release */ 9944 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9945 phba->sli.mbox_active = mboxq; 9946 spin_unlock_irqrestore(&phba->hbalock, iflag); 9947 9948 /* wait for bootstrap mbox register for readyness */ 9949 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9950 if (rc) 9951 goto exit; 9952 /* 9953 * Initialize the bootstrap memory region to avoid stale data areas 9954 * in the mailbox post. Then copy the caller's mailbox contents to 9955 * the bmbx mailbox region. 9956 */ 9957 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9958 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9959 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9960 sizeof(struct lpfc_mqe)); 9961 9962 /* Post the high mailbox dma address to the port and wait for ready. */ 9963 dma_address = &phba->sli4_hba.bmbx.dma_address; 9964 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9965 9966 /* wait for bootstrap mbox register for hi-address write done */ 9967 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9968 if (rc) 9969 goto exit; 9970 9971 /* Post the low mailbox dma address to the port. */ 9972 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9973 9974 /* wait for bootstrap mbox register for low address write done */ 9975 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9976 if (rc) 9977 goto exit; 9978 9979 /* 9980 * Read the CQ to ensure the mailbox has completed. 9981 * If so, update the mailbox status so that the upper layers 9982 * can complete the request normally. 9983 */ 9984 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9985 sizeof(struct lpfc_mqe)); 9986 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9987 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9988 sizeof(struct lpfc_mcqe)); 9989 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9990 /* 9991 * When the CQE status indicates a failure and the mailbox status 9992 * indicates success then copy the CQE status into the mailbox status 9993 * (and prefix it with x4000). 9994 */ 9995 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9996 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9997 bf_set(lpfc_mqe_status, mb, 9998 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9999 rc = MBXERR_ERROR; 10000 } else 10001 lpfc_sli4_swap_str(phba, mboxq); 10002 10003 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10004 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10005 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10006 " x%x x%x CQ: x%x x%x x%x x%x\n", 10007 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10008 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10009 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10010 bf_get(lpfc_mqe_status, mb), 10011 mb->un.mb_words[0], mb->un.mb_words[1], 10012 mb->un.mb_words[2], mb->un.mb_words[3], 10013 mb->un.mb_words[4], mb->un.mb_words[5], 10014 mb->un.mb_words[6], mb->un.mb_words[7], 10015 mb->un.mb_words[8], mb->un.mb_words[9], 10016 mb->un.mb_words[10], mb->un.mb_words[11], 10017 mb->un.mb_words[12], mboxq->mcqe.word0, 10018 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10019 mboxq->mcqe.trailer); 10020 exit: 10021 /* We are holding the token, no needed for lock when release */ 10022 spin_lock_irqsave(&phba->hbalock, iflag); 10023 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10024 phba->sli.mbox_active = NULL; 10025 spin_unlock_irqrestore(&phba->hbalock, iflag); 10026 return rc; 10027 } 10028 10029 /** 10030 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10031 * @phba: Pointer to HBA context object. 10032 * @mboxq: Pointer to mailbox object. 10033 * @flag: Flag indicating how the mailbox need to be processed. 10034 * 10035 * This function is called by discovery code and HBA management code to submit 10036 * a mailbox command to firmware with SLI-4 interface spec. 10037 * 10038 * Return codes the caller owns the mailbox command after the return of the 10039 * function. 10040 **/ 10041 static int 10042 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10043 uint32_t flag) 10044 { 10045 struct lpfc_sli *psli = &phba->sli; 10046 unsigned long iflags; 10047 int rc; 10048 10049 /* dump from issue mailbox command if setup */ 10050 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10051 10052 rc = lpfc_mbox_dev_check(phba); 10053 if (unlikely(rc)) { 10054 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10055 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10056 "cannot issue Data: x%x x%x\n", 10057 mboxq->vport ? mboxq->vport->vpi : 0, 10058 mboxq->u.mb.mbxCommand, 10059 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10060 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10061 psli->sli_flag, flag); 10062 goto out_not_finished; 10063 } 10064 10065 /* Detect polling mode and jump to a handler */ 10066 if (!phba->sli4_hba.intr_enable) { 10067 if (flag == MBX_POLL) 10068 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10069 else 10070 rc = -EIO; 10071 if (rc != MBX_SUCCESS) 10072 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10073 "(%d):2541 Mailbox command x%x " 10074 "(x%x/x%x) failure: " 10075 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10076 "Data: x%x x%x\n", 10077 mboxq->vport ? mboxq->vport->vpi : 0, 10078 mboxq->u.mb.mbxCommand, 10079 lpfc_sli_config_mbox_subsys_get(phba, 10080 mboxq), 10081 lpfc_sli_config_mbox_opcode_get(phba, 10082 mboxq), 10083 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10084 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10085 bf_get(lpfc_mcqe_ext_status, 10086 &mboxq->mcqe), 10087 psli->sli_flag, flag); 10088 return rc; 10089 } else if (flag == MBX_POLL) { 10090 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10091 "(%d):2542 Try to issue mailbox command " 10092 "x%x (x%x/x%x) synchronously ahead of async " 10093 "mailbox command queue: x%x x%x\n", 10094 mboxq->vport ? mboxq->vport->vpi : 0, 10095 mboxq->u.mb.mbxCommand, 10096 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10097 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10098 psli->sli_flag, flag); 10099 /* Try to block the asynchronous mailbox posting */ 10100 rc = lpfc_sli4_async_mbox_block(phba); 10101 if (!rc) { 10102 /* Successfully blocked, now issue sync mbox cmd */ 10103 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10104 if (rc != MBX_SUCCESS) 10105 lpfc_printf_log(phba, KERN_WARNING, 10106 LOG_MBOX | LOG_SLI, 10107 "(%d):2597 Sync Mailbox command " 10108 "x%x (x%x/x%x) failure: " 10109 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10110 "Data: x%x x%x\n", 10111 mboxq->vport ? mboxq->vport->vpi : 0, 10112 mboxq->u.mb.mbxCommand, 10113 lpfc_sli_config_mbox_subsys_get(phba, 10114 mboxq), 10115 lpfc_sli_config_mbox_opcode_get(phba, 10116 mboxq), 10117 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10118 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10119 bf_get(lpfc_mcqe_ext_status, 10120 &mboxq->mcqe), 10121 psli->sli_flag, flag); 10122 /* Unblock the async mailbox posting afterward */ 10123 lpfc_sli4_async_mbox_unblock(phba); 10124 } 10125 return rc; 10126 } 10127 10128 /* Now, interrupt mode asynchronous mailbox command */ 10129 rc = lpfc_mbox_cmd_check(phba, mboxq); 10130 if (rc) { 10131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10132 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10133 "cannot issue Data: x%x x%x\n", 10134 mboxq->vport ? mboxq->vport->vpi : 0, 10135 mboxq->u.mb.mbxCommand, 10136 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10137 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10138 psli->sli_flag, flag); 10139 goto out_not_finished; 10140 } 10141 10142 /* Put the mailbox command to the driver internal FIFO */ 10143 psli->slistat.mbox_busy++; 10144 spin_lock_irqsave(&phba->hbalock, iflags); 10145 lpfc_mbox_put(phba, mboxq); 10146 spin_unlock_irqrestore(&phba->hbalock, iflags); 10147 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10148 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10149 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10150 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10151 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10152 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10153 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10154 mboxq->u.mb.un.varUnregLogin.rpi, 10155 phba->pport->port_state, 10156 psli->sli_flag, MBX_NOWAIT); 10157 /* Wake up worker thread to transport mailbox command from head */ 10158 lpfc_worker_wake_up(phba); 10159 10160 return MBX_BUSY; 10161 10162 out_not_finished: 10163 return MBX_NOT_FINISHED; 10164 } 10165 10166 /** 10167 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10168 * @phba: Pointer to HBA context object. 10169 * 10170 * This function is called by worker thread to send a mailbox command to 10171 * SLI4 HBA firmware. 10172 * 10173 **/ 10174 int 10175 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10176 { 10177 struct lpfc_sli *psli = &phba->sli; 10178 LPFC_MBOXQ_t *mboxq; 10179 int rc = MBX_SUCCESS; 10180 unsigned long iflags; 10181 struct lpfc_mqe *mqe; 10182 uint32_t mbx_cmnd; 10183 10184 /* Check interrupt mode before post async mailbox command */ 10185 if (unlikely(!phba->sli4_hba.intr_enable)) 10186 return MBX_NOT_FINISHED; 10187 10188 /* Check for mailbox command service token */ 10189 spin_lock_irqsave(&phba->hbalock, iflags); 10190 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10191 spin_unlock_irqrestore(&phba->hbalock, iflags); 10192 return MBX_NOT_FINISHED; 10193 } 10194 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10195 spin_unlock_irqrestore(&phba->hbalock, iflags); 10196 return MBX_NOT_FINISHED; 10197 } 10198 if (unlikely(phba->sli.mbox_active)) { 10199 spin_unlock_irqrestore(&phba->hbalock, iflags); 10200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10201 "0384 There is pending active mailbox cmd\n"); 10202 return MBX_NOT_FINISHED; 10203 } 10204 /* Take the mailbox command service token */ 10205 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10206 10207 /* Get the next mailbox command from head of queue */ 10208 mboxq = lpfc_mbox_get(phba); 10209 10210 /* If no more mailbox command waiting for post, we're done */ 10211 if (!mboxq) { 10212 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10213 spin_unlock_irqrestore(&phba->hbalock, iflags); 10214 return MBX_SUCCESS; 10215 } 10216 phba->sli.mbox_active = mboxq; 10217 spin_unlock_irqrestore(&phba->hbalock, iflags); 10218 10219 /* Check device readiness for posting mailbox command */ 10220 rc = lpfc_mbox_dev_check(phba); 10221 if (unlikely(rc)) 10222 /* Driver clean routine will clean up pending mailbox */ 10223 goto out_not_finished; 10224 10225 /* Prepare the mbox command to be posted */ 10226 mqe = &mboxq->u.mqe; 10227 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10228 10229 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10230 mod_timer(&psli->mbox_tmo, (jiffies + 10231 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10232 10233 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10234 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10235 "x%x x%x\n", 10236 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10237 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10238 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10239 phba->pport->port_state, psli->sli_flag); 10240 10241 if (mbx_cmnd != MBX_HEARTBEAT) { 10242 if (mboxq->vport) { 10243 lpfc_debugfs_disc_trc(mboxq->vport, 10244 LPFC_DISC_TRC_MBOX_VPORT, 10245 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10246 mbx_cmnd, mqe->un.mb_words[0], 10247 mqe->un.mb_words[1]); 10248 } else { 10249 lpfc_debugfs_disc_trc(phba->pport, 10250 LPFC_DISC_TRC_MBOX, 10251 "MBOX Send: cmd:x%x mb:x%x x%x", 10252 mbx_cmnd, mqe->un.mb_words[0], 10253 mqe->un.mb_words[1]); 10254 } 10255 } 10256 psli->slistat.mbox_cmd++; 10257 10258 /* Post the mailbox command to the port */ 10259 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10260 if (rc != MBX_SUCCESS) { 10261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10262 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10263 "cannot issue Data: x%x x%x\n", 10264 mboxq->vport ? mboxq->vport->vpi : 0, 10265 mboxq->u.mb.mbxCommand, 10266 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10267 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10268 psli->sli_flag, MBX_NOWAIT); 10269 goto out_not_finished; 10270 } 10271 10272 return rc; 10273 10274 out_not_finished: 10275 spin_lock_irqsave(&phba->hbalock, iflags); 10276 if (phba->sli.mbox_active) { 10277 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10278 __lpfc_mbox_cmpl_put(phba, mboxq); 10279 /* Release the token */ 10280 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10281 phba->sli.mbox_active = NULL; 10282 } 10283 spin_unlock_irqrestore(&phba->hbalock, iflags); 10284 10285 return MBX_NOT_FINISHED; 10286 } 10287 10288 /** 10289 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10290 * @phba: Pointer to HBA context object. 10291 * @pmbox: Pointer to mailbox object. 10292 * @flag: Flag indicating how the mailbox need to be processed. 10293 * 10294 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10295 * the API jump table function pointer from the lpfc_hba struct. 10296 * 10297 * Return codes the caller owns the mailbox command after the return of the 10298 * function. 10299 **/ 10300 int 10301 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10302 { 10303 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10304 } 10305 10306 /** 10307 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10308 * @phba: The hba struct for which this call is being executed. 10309 * @dev_grp: The HBA PCI-Device group number. 10310 * 10311 * This routine sets up the mbox interface API function jump table in @phba 10312 * struct. 10313 * Returns: 0 - success, -ENODEV - failure. 10314 **/ 10315 int 10316 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10317 { 10318 10319 switch (dev_grp) { 10320 case LPFC_PCI_DEV_LP: 10321 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10322 phba->lpfc_sli_handle_slow_ring_event = 10323 lpfc_sli_handle_slow_ring_event_s3; 10324 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10325 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10326 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10327 break; 10328 case LPFC_PCI_DEV_OC: 10329 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10330 phba->lpfc_sli_handle_slow_ring_event = 10331 lpfc_sli_handle_slow_ring_event_s4; 10332 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10333 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10334 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10335 break; 10336 default: 10337 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10338 "1420 Invalid HBA PCI-device group: 0x%x\n", 10339 dev_grp); 10340 return -ENODEV; 10341 } 10342 return 0; 10343 } 10344 10345 /** 10346 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10347 * @phba: Pointer to HBA context object. 10348 * @pring: Pointer to driver SLI ring object. 10349 * @piocb: Pointer to address of newly added command iocb. 10350 * 10351 * This function is called with hbalock held for SLI3 ports or 10352 * the ring lock held for SLI4 ports to add a command 10353 * iocb to the txq when SLI layer cannot submit the command iocb 10354 * to the ring. 10355 **/ 10356 void 10357 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10358 struct lpfc_iocbq *piocb) 10359 { 10360 if (phba->sli_rev == LPFC_SLI_REV4) 10361 lockdep_assert_held(&pring->ring_lock); 10362 else 10363 lockdep_assert_held(&phba->hbalock); 10364 /* Insert the caller's iocb in the txq tail for later processing. */ 10365 list_add_tail(&piocb->list, &pring->txq); 10366 } 10367 10368 /** 10369 * lpfc_sli_next_iocb - Get the next iocb in the txq 10370 * @phba: Pointer to HBA context object. 10371 * @pring: Pointer to driver SLI ring object. 10372 * @piocb: Pointer to address of newly added command iocb. 10373 * 10374 * This function is called with hbalock held before a new 10375 * iocb is submitted to the firmware. This function checks 10376 * txq to flush the iocbs in txq to Firmware before 10377 * submitting new iocbs to the Firmware. 10378 * If there are iocbs in the txq which need to be submitted 10379 * to firmware, lpfc_sli_next_iocb returns the first element 10380 * of the txq after dequeuing it from txq. 10381 * If there is no iocb in the txq then the function will return 10382 * *piocb and *piocb is set to NULL. Caller needs to check 10383 * *piocb to find if there are more commands in the txq. 10384 **/ 10385 static struct lpfc_iocbq * 10386 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10387 struct lpfc_iocbq **piocb) 10388 { 10389 struct lpfc_iocbq * nextiocb; 10390 10391 lockdep_assert_held(&phba->hbalock); 10392 10393 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10394 if (!nextiocb) { 10395 nextiocb = *piocb; 10396 *piocb = NULL; 10397 } 10398 10399 return nextiocb; 10400 } 10401 10402 /** 10403 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10404 * @phba: Pointer to HBA context object. 10405 * @ring_number: SLI ring number to issue iocb on. 10406 * @piocb: Pointer to command iocb. 10407 * @flag: Flag indicating if this command can be put into txq. 10408 * 10409 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10410 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10411 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10412 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10413 * this function allows only iocbs for posting buffers. This function finds 10414 * next available slot in the command ring and posts the command to the 10415 * available slot and writes the port attention register to request HBA start 10416 * processing new iocb. If there is no slot available in the ring and 10417 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10418 * the function returns IOCB_BUSY. 10419 * 10420 * This function is called with hbalock held. The function will return success 10421 * after it successfully submit the iocb to firmware or after adding to the 10422 * txq. 10423 **/ 10424 static int 10425 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10426 struct lpfc_iocbq *piocb, uint32_t flag) 10427 { 10428 struct lpfc_iocbq *nextiocb; 10429 IOCB_t *iocb; 10430 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10431 10432 lockdep_assert_held(&phba->hbalock); 10433 10434 if (piocb->cmd_cmpl && (!piocb->vport) && 10435 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10436 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10437 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10438 "1807 IOCB x%x failed. No vport\n", 10439 piocb->iocb.ulpCommand); 10440 dump_stack(); 10441 return IOCB_ERROR; 10442 } 10443 10444 10445 /* If the PCI channel is in offline state, do not post iocbs. */ 10446 if (unlikely(pci_channel_offline(phba->pcidev))) 10447 return IOCB_ERROR; 10448 10449 /* If HBA has a deferred error attention, fail the iocb. */ 10450 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10451 return IOCB_ERROR; 10452 10453 /* 10454 * We should never get an IOCB if we are in a < LINK_DOWN state 10455 */ 10456 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10457 return IOCB_ERROR; 10458 10459 /* 10460 * Check to see if we are blocking IOCB processing because of a 10461 * outstanding event. 10462 */ 10463 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10464 goto iocb_busy; 10465 10466 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10467 /* 10468 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10469 * can be issued if the link is not up. 10470 */ 10471 switch (piocb->iocb.ulpCommand) { 10472 case CMD_QUE_RING_BUF_CN: 10473 case CMD_QUE_RING_BUF64_CN: 10474 /* 10475 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10476 * completion, cmd_cmpl MUST be 0. 10477 */ 10478 if (piocb->cmd_cmpl) 10479 piocb->cmd_cmpl = NULL; 10480 fallthrough; 10481 case CMD_CREATE_XRI_CR: 10482 case CMD_CLOSE_XRI_CN: 10483 case CMD_CLOSE_XRI_CX: 10484 break; 10485 default: 10486 goto iocb_busy; 10487 } 10488 10489 /* 10490 * For FCP commands, we must be in a state where we can process link 10491 * attention events. 10492 */ 10493 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10494 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10495 goto iocb_busy; 10496 } 10497 10498 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10499 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10500 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10501 10502 if (iocb) 10503 lpfc_sli_update_ring(phba, pring); 10504 else 10505 lpfc_sli_update_full_ring(phba, pring); 10506 10507 if (!piocb) 10508 return IOCB_SUCCESS; 10509 10510 goto out_busy; 10511 10512 iocb_busy: 10513 pring->stats.iocb_cmd_delay++; 10514 10515 out_busy: 10516 10517 if (!(flag & SLI_IOCB_RET_IOCB)) { 10518 __lpfc_sli_ringtx_put(phba, pring, piocb); 10519 return IOCB_SUCCESS; 10520 } 10521 10522 return IOCB_BUSY; 10523 } 10524 10525 /** 10526 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10527 * @phba: Pointer to HBA context object. 10528 * @ring_number: SLI ring number to issue wqe on. 10529 * @piocb: Pointer to command iocb. 10530 * @flag: Flag indicating if this command can be put into txq. 10531 * 10532 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10533 * send an iocb command to an HBA with SLI-3 interface spec. 10534 * 10535 * This function takes the hbalock before invoking the lockless version. 10536 * The function will return success after it successfully submit the wqe to 10537 * firmware or after adding to the txq. 10538 **/ 10539 static int 10540 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10541 struct lpfc_iocbq *piocb, uint32_t flag) 10542 { 10543 unsigned long iflags; 10544 int rc; 10545 10546 spin_lock_irqsave(&phba->hbalock, iflags); 10547 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10548 spin_unlock_irqrestore(&phba->hbalock, iflags); 10549 10550 return rc; 10551 } 10552 10553 /** 10554 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10555 * @phba: Pointer to HBA context object. 10556 * @ring_number: SLI ring number to issue wqe on. 10557 * @piocb: Pointer to command iocb. 10558 * @flag: Flag indicating if this command can be put into txq. 10559 * 10560 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10561 * an wqe command to an HBA with SLI-4 interface spec. 10562 * 10563 * This function is a lockless version. The function will return success 10564 * after it successfully submit the wqe to firmware or after adding to the 10565 * txq. 10566 **/ 10567 static int 10568 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10569 struct lpfc_iocbq *piocb, uint32_t flag) 10570 { 10571 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10572 10573 lpfc_prep_embed_io(phba, lpfc_cmd); 10574 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10575 } 10576 10577 void 10578 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10579 { 10580 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10581 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10582 struct sli4_sge_le *sgl; 10583 u32 type_size; 10584 10585 /* 128 byte wqe support here */ 10586 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10587 10588 if (phba->fcp_embed_io) { 10589 struct fcp_cmnd *fcp_cmnd; 10590 u32 *ptr; 10591 10592 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10593 10594 /* Word 0-2 - FCP_CMND */ 10595 type_size = le32_to_cpu(sgl->sge_len); 10596 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10597 wqe->generic.bde.tus.w = type_size; 10598 wqe->generic.bde.addrHigh = 0; 10599 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10600 10601 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10602 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10603 10604 /* Word 18-29 FCP CMND Payload */ 10605 ptr = &wqe->words[18]; 10606 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10607 } else { 10608 /* Word 0-2 - Inline BDE */ 10609 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10610 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10611 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10612 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10613 10614 /* Word 10 */ 10615 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10616 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10617 } 10618 10619 /* add the VMID tags as per switch response */ 10620 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10621 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10622 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10623 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10624 (piocb->vmid_tag.cs_ctl_vmid)); 10625 } else if (phba->cfg_vmid_app_header) { 10626 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10627 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10628 wqe->words[31] = piocb->vmid_tag.app_id; 10629 } 10630 } 10631 } 10632 10633 /** 10634 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10635 * @phba: Pointer to HBA context object. 10636 * @ring_number: SLI ring number to issue iocb on. 10637 * @piocb: Pointer to command iocb. 10638 * @flag: Flag indicating if this command can be put into txq. 10639 * 10640 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10641 * an iocb command to an HBA with SLI-4 interface spec. 10642 * 10643 * This function is called with ringlock held. The function will return success 10644 * after it successfully submit the iocb to firmware or after adding to the 10645 * txq. 10646 **/ 10647 static int 10648 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10649 struct lpfc_iocbq *piocb, uint32_t flag) 10650 { 10651 struct lpfc_sglq *sglq; 10652 union lpfc_wqe128 *wqe; 10653 struct lpfc_queue *wq; 10654 struct lpfc_sli_ring *pring; 10655 u32 ulp_command = get_job_cmnd(phba, piocb); 10656 10657 /* Get the WQ */ 10658 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10659 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10660 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10661 } else { 10662 wq = phba->sli4_hba.els_wq; 10663 } 10664 10665 /* Get corresponding ring */ 10666 pring = wq->pring; 10667 10668 /* 10669 * The WQE can be either 64 or 128 bytes, 10670 */ 10671 10672 lockdep_assert_held(&pring->ring_lock); 10673 wqe = &piocb->wqe; 10674 if (piocb->sli4_xritag == NO_XRI) { 10675 if (ulp_command == CMD_ABORT_XRI_CX) 10676 sglq = NULL; 10677 else { 10678 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10679 if (!sglq) { 10680 if (!(flag & SLI_IOCB_RET_IOCB)) { 10681 __lpfc_sli_ringtx_put(phba, 10682 pring, 10683 piocb); 10684 return IOCB_SUCCESS; 10685 } else { 10686 return IOCB_BUSY; 10687 } 10688 } 10689 } 10690 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10691 /* These IO's already have an XRI and a mapped sgl. */ 10692 sglq = NULL; 10693 } 10694 else { 10695 /* 10696 * This is a continuation of a commandi,(CX) so this 10697 * sglq is on the active list 10698 */ 10699 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10700 if (!sglq) 10701 return IOCB_ERROR; 10702 } 10703 10704 if (sglq) { 10705 piocb->sli4_lxritag = sglq->sli4_lxritag; 10706 piocb->sli4_xritag = sglq->sli4_xritag; 10707 10708 /* ABTS sent by initiator to CT exchange, the 10709 * RX_ID field will be filled with the newly 10710 * allocated responder XRI. 10711 */ 10712 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10713 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10714 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10715 piocb->sli4_xritag); 10716 10717 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10718 piocb->sli4_xritag); 10719 10720 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10721 return IOCB_ERROR; 10722 } 10723 10724 if (lpfc_sli4_wq_put(wq, wqe)) 10725 return IOCB_ERROR; 10726 10727 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10728 10729 return 0; 10730 } 10731 10732 /* 10733 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10734 * 10735 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10736 * or IOCB for sli-3 function. 10737 * pointer from the lpfc_hba struct. 10738 * 10739 * Return codes: 10740 * IOCB_ERROR - Error 10741 * IOCB_SUCCESS - Success 10742 * IOCB_BUSY - Busy 10743 **/ 10744 int 10745 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10746 struct lpfc_iocbq *piocb, uint32_t flag) 10747 { 10748 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10749 } 10750 10751 /* 10752 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10753 * 10754 * This routine wraps the actual lockless version for issusing IOCB function 10755 * pointer from the lpfc_hba struct. 10756 * 10757 * Return codes: 10758 * IOCB_ERROR - Error 10759 * IOCB_SUCCESS - Success 10760 * IOCB_BUSY - Busy 10761 **/ 10762 int 10763 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10764 struct lpfc_iocbq *piocb, uint32_t flag) 10765 { 10766 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10767 } 10768 10769 static void 10770 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10771 struct lpfc_vport *vport, 10772 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10773 u32 elscmd, u8 tmo, u8 expect_rsp) 10774 { 10775 struct lpfc_hba *phba = vport->phba; 10776 IOCB_t *cmd; 10777 10778 cmd = &cmdiocbq->iocb; 10779 memset(cmd, 0, sizeof(*cmd)); 10780 10781 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10782 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10783 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10784 10785 if (expect_rsp) { 10786 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10787 cmd->un.elsreq64.remoteID = did; /* DID */ 10788 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10789 cmd->ulpTimeout = tmo; 10790 } else { 10791 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10792 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10793 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10794 cmd->ulpPU = PARM_NPIV_DID; 10795 } 10796 cmd->ulpBdeCount = 1; 10797 cmd->ulpLe = 1; 10798 cmd->ulpClass = CLASS3; 10799 10800 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10801 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10802 if (expect_rsp) { 10803 cmd->un.elsreq64.myID = vport->fc_myDID; 10804 10805 /* For ELS_REQUEST64_CR, use the VPI by default */ 10806 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10807 } 10808 10809 cmd->ulpCt_h = 0; 10810 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10811 if (elscmd == ELS_CMD_ECHO) 10812 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10813 else 10814 cmd->ulpCt_l = 1; /* context = VPI */ 10815 } 10816 } 10817 10818 static void 10819 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10820 struct lpfc_vport *vport, 10821 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10822 u32 elscmd, u8 tmo, u8 expect_rsp) 10823 { 10824 struct lpfc_hba *phba = vport->phba; 10825 union lpfc_wqe128 *wqe; 10826 struct ulp_bde64_le *bde; 10827 u8 els_id; 10828 10829 wqe = &cmdiocbq->wqe; 10830 memset(wqe, 0, sizeof(*wqe)); 10831 10832 /* Word 0 - 2 BDE */ 10833 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10834 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10835 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10836 bde->type_size = cpu_to_le32(cmd_size); 10837 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10838 10839 if (expect_rsp) { 10840 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10841 10842 /* Transfer length */ 10843 wqe->els_req.payload_len = cmd_size; 10844 wqe->els_req.max_response_payload_len = FCELSSIZE; 10845 10846 /* DID */ 10847 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10848 10849 /* Word 11 - ELS_ID */ 10850 switch (elscmd) { 10851 case ELS_CMD_PLOGI: 10852 els_id = LPFC_ELS_ID_PLOGI; 10853 break; 10854 case ELS_CMD_FLOGI: 10855 els_id = LPFC_ELS_ID_FLOGI; 10856 break; 10857 case ELS_CMD_LOGO: 10858 els_id = LPFC_ELS_ID_LOGO; 10859 break; 10860 case ELS_CMD_FDISC: 10861 if (!vport->fc_myDID) { 10862 els_id = LPFC_ELS_ID_FDISC; 10863 break; 10864 } 10865 fallthrough; 10866 default: 10867 els_id = LPFC_ELS_ID_DEFAULT; 10868 break; 10869 } 10870 10871 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10872 } else { 10873 /* DID */ 10874 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10875 10876 /* Transfer length */ 10877 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10878 10879 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10880 CMD_XMIT_ELS_RSP64_WQE); 10881 } 10882 10883 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10884 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10885 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10886 10887 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10888 * For SLI4, since the driver controls VPIs we also want to include 10889 * all ELS pt2pt protocol traffic as well. 10890 */ 10891 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10892 test_bit(FC_PT2PT, &vport->fc_flag)) { 10893 if (expect_rsp) { 10894 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10895 10896 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10897 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10898 phba->vpi_ids[vport->vpi]); 10899 } 10900 10901 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10902 if (elscmd == ELS_CMD_ECHO) 10903 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10904 else 10905 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10906 } 10907 } 10908 10909 void 10910 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10911 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10912 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10913 u8 expect_rsp) 10914 { 10915 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10916 elscmd, tmo, expect_rsp); 10917 } 10918 10919 static void 10920 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10921 u16 rpi, u32 num_entry, u8 tmo) 10922 { 10923 IOCB_t *cmd; 10924 10925 cmd = &cmdiocbq->iocb; 10926 memset(cmd, 0, sizeof(*cmd)); 10927 10928 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10929 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10930 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10931 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10932 10933 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10934 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10935 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10936 10937 cmd->ulpContext = rpi; 10938 cmd->ulpClass = CLASS3; 10939 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10940 cmd->ulpBdeCount = 1; 10941 cmd->ulpLe = 1; 10942 cmd->ulpOwner = OWN_CHIP; 10943 cmd->ulpTimeout = tmo; 10944 } 10945 10946 static void 10947 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10948 u16 rpi, u32 num_entry, u8 tmo) 10949 { 10950 union lpfc_wqe128 *cmdwqe; 10951 struct ulp_bde64_le *bde, *bpl; 10952 u32 xmit_len = 0, total_len = 0, size, type, i; 10953 10954 cmdwqe = &cmdiocbq->wqe; 10955 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10956 10957 /* Calculate total_len and xmit_len */ 10958 bpl = (struct ulp_bde64_le *)bmp->virt; 10959 for (i = 0; i < num_entry; i++) { 10960 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10961 total_len += size; 10962 } 10963 for (i = 0; i < num_entry; i++) { 10964 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10965 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10966 if (type != ULP_BDE64_TYPE_BDE_64) 10967 break; 10968 xmit_len += size; 10969 } 10970 10971 /* Words 0 - 2 */ 10972 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10973 bde->addr_low = bpl->addr_low; 10974 bde->addr_high = bpl->addr_high; 10975 bde->type_size = cpu_to_le32(xmit_len); 10976 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10977 10978 /* Word 3 */ 10979 cmdwqe->gen_req.request_payload_len = xmit_len; 10980 10981 /* Word 5 */ 10982 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10983 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10984 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10985 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10986 10987 /* Word 6 */ 10988 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10989 10990 /* Word 7 */ 10991 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10992 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10993 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10994 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10995 10996 /* Word 12 */ 10997 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10998 } 10999 11000 void 11001 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11002 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11003 { 11004 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11005 } 11006 11007 static void 11008 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11009 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11010 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11011 { 11012 IOCB_t *icmd; 11013 11014 icmd = &cmdiocbq->iocb; 11015 memset(icmd, 0, sizeof(*icmd)); 11016 11017 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11018 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11019 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11020 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11021 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11022 if (last_seq) 11023 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11024 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11025 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11026 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11027 11028 icmd->ulpBdeCount = 1; 11029 icmd->ulpLe = 1; 11030 icmd->ulpClass = CLASS3; 11031 11032 switch (cr_cx_cmd) { 11033 case CMD_XMIT_SEQUENCE64_CR: 11034 icmd->ulpContext = rpi; 11035 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11036 break; 11037 case CMD_XMIT_SEQUENCE64_CX: 11038 icmd->ulpContext = ox_id; 11039 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11040 break; 11041 default: 11042 break; 11043 } 11044 } 11045 11046 static void 11047 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11048 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11049 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11050 { 11051 union lpfc_wqe128 *wqe; 11052 struct ulp_bde64 *bpl; 11053 11054 wqe = &cmdiocbq->wqe; 11055 memset(wqe, 0, sizeof(*wqe)); 11056 11057 /* Words 0 - 2 */ 11058 bpl = (struct ulp_bde64 *)bmp->virt; 11059 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11060 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11061 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11062 11063 /* Word 5 */ 11064 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11065 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11066 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11067 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11068 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11069 11070 /* Word 6 */ 11071 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11072 11073 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11074 CMD_XMIT_SEQUENCE64_WQE); 11075 11076 /* Word 7 */ 11077 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11078 11079 /* Word 9 */ 11080 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11081 11082 /* Word 12 */ 11083 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11084 wqe->xmit_sequence.xmit_len = full_size; 11085 else 11086 wqe->xmit_sequence.xmit_len = 11087 wqe->xmit_sequence.bde.tus.f.bdeSize; 11088 } 11089 11090 void 11091 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11092 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11093 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11094 { 11095 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11096 rctl, last_seq, cr_cx_cmd); 11097 } 11098 11099 static void 11100 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11101 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11102 bool wqec) 11103 { 11104 IOCB_t *icmd = NULL; 11105 11106 icmd = &cmdiocbq->iocb; 11107 memset(icmd, 0, sizeof(*icmd)); 11108 11109 /* Word 5 */ 11110 icmd->un.acxri.abortContextTag = ulp_context; 11111 icmd->un.acxri.abortIoTag = iotag; 11112 11113 if (ia) { 11114 /* Word 7 */ 11115 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11116 } else { 11117 /* Word 3 */ 11118 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11119 11120 /* Word 7 */ 11121 icmd->ulpClass = ulp_class; 11122 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11123 } 11124 11125 /* Word 7 */ 11126 icmd->ulpLe = 1; 11127 } 11128 11129 static void 11130 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11131 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11132 bool wqec) 11133 { 11134 union lpfc_wqe128 *wqe; 11135 11136 wqe = &cmdiocbq->wqe; 11137 memset(wqe, 0, sizeof(*wqe)); 11138 11139 /* Word 3 */ 11140 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11141 if (ia) 11142 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11143 else 11144 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11145 11146 /* Word 7 */ 11147 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11148 11149 /* Word 8 */ 11150 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11151 11152 /* Word 9 */ 11153 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11154 11155 /* Word 10 */ 11156 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11157 11158 /* Word 11 */ 11159 if (wqec) 11160 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11161 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11162 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11163 } 11164 11165 void 11166 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11167 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11168 bool ia, bool wqec) 11169 { 11170 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11171 cqid, ia, wqec); 11172 } 11173 11174 /** 11175 * lpfc_sli_api_table_setup - Set up sli api function jump table 11176 * @phba: The hba struct for which this call is being executed. 11177 * @dev_grp: The HBA PCI-Device group number. 11178 * 11179 * This routine sets up the SLI interface API function jump table in @phba 11180 * struct. 11181 * Returns: 0 - success, -ENODEV - failure. 11182 **/ 11183 int 11184 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11185 { 11186 11187 switch (dev_grp) { 11188 case LPFC_PCI_DEV_LP: 11189 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11190 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11191 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11192 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11193 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11194 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11195 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11196 break; 11197 case LPFC_PCI_DEV_OC: 11198 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11199 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11200 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11201 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11202 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11203 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11204 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11205 break; 11206 default: 11207 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11208 "1419 Invalid HBA PCI-device group: 0x%x\n", 11209 dev_grp); 11210 return -ENODEV; 11211 } 11212 return 0; 11213 } 11214 11215 /** 11216 * lpfc_sli4_calc_ring - Calculates which ring to use 11217 * @phba: Pointer to HBA context object. 11218 * @piocb: Pointer to command iocb. 11219 * 11220 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11221 * hba_wqidx, thus we need to calculate the corresponding ring. 11222 * Since ABORTS must go on the same WQ of the command they are 11223 * aborting, we use command's hba_wqidx. 11224 */ 11225 struct lpfc_sli_ring * 11226 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11227 { 11228 struct lpfc_io_buf *lpfc_cmd; 11229 11230 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11231 if (unlikely(!phba->sli4_hba.hdwq)) 11232 return NULL; 11233 /* 11234 * for abort iocb hba_wqidx should already 11235 * be setup based on what work queue we used. 11236 */ 11237 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11238 lpfc_cmd = piocb->io_buf; 11239 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11240 } 11241 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11242 } else { 11243 if (unlikely(!phba->sli4_hba.els_wq)) 11244 return NULL; 11245 piocb->hba_wqidx = 0; 11246 return phba->sli4_hba.els_wq->pring; 11247 } 11248 } 11249 11250 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11251 { 11252 struct lpfc_hba *phba = eq->phba; 11253 11254 /* 11255 * Unlocking an irq is one of the entry point to check 11256 * for re-schedule, but we are good for io submission 11257 * path as midlayer does a get_cpu to glue us in. Flush 11258 * out the invalidate queue so we can see the updated 11259 * value for flag. 11260 */ 11261 smp_rmb(); 11262 11263 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11264 /* We will not likely get the completion for the caller 11265 * during this iteration but i guess that's fine. 11266 * Future io's coming on this eq should be able to 11267 * pick it up. As for the case of single io's, they 11268 * will be handled through a sched from polling timer 11269 * function which is currently triggered every 1msec. 11270 */ 11271 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11272 LPFC_QUEUE_WORK); 11273 } 11274 11275 /** 11276 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11277 * @phba: Pointer to HBA context object. 11278 * @ring_number: Ring number 11279 * @piocb: Pointer to command iocb. 11280 * @flag: Flag indicating if this command can be put into txq. 11281 * 11282 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11283 * function. This function gets the hbalock and calls 11284 * __lpfc_sli_issue_iocb function and will return the error returned 11285 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11286 * functions which do not hold hbalock. 11287 **/ 11288 int 11289 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11290 struct lpfc_iocbq *piocb, uint32_t flag) 11291 { 11292 struct lpfc_sli_ring *pring; 11293 struct lpfc_queue *eq; 11294 unsigned long iflags; 11295 int rc; 11296 11297 /* If the PCI channel is in offline state, do not post iocbs. */ 11298 if (unlikely(pci_channel_offline(phba->pcidev))) 11299 return IOCB_ERROR; 11300 11301 if (phba->sli_rev == LPFC_SLI_REV4) { 11302 lpfc_sli_prep_wqe(phba, piocb); 11303 11304 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11305 11306 pring = lpfc_sli4_calc_ring(phba, piocb); 11307 if (unlikely(pring == NULL)) 11308 return IOCB_ERROR; 11309 11310 spin_lock_irqsave(&pring->ring_lock, iflags); 11311 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11312 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11313 11314 lpfc_sli4_poll_eq(eq); 11315 } else { 11316 /* For now, SLI2/3 will still use hbalock */ 11317 spin_lock_irqsave(&phba->hbalock, iflags); 11318 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11319 spin_unlock_irqrestore(&phba->hbalock, iflags); 11320 } 11321 return rc; 11322 } 11323 11324 /** 11325 * lpfc_extra_ring_setup - Extra ring setup function 11326 * @phba: Pointer to HBA context object. 11327 * 11328 * This function is called while driver attaches with the 11329 * HBA to setup the extra ring. The extra ring is used 11330 * only when driver needs to support target mode functionality 11331 * or IP over FC functionalities. 11332 * 11333 * This function is called with no lock held. SLI3 only. 11334 **/ 11335 static int 11336 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11337 { 11338 struct lpfc_sli *psli; 11339 struct lpfc_sli_ring *pring; 11340 11341 psli = &phba->sli; 11342 11343 /* Adjust cmd/rsp ring iocb entries more evenly */ 11344 11345 /* Take some away from the FCP ring */ 11346 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11347 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11348 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11349 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11350 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11351 11352 /* and give them to the extra ring */ 11353 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11354 11355 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11356 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11357 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11358 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11359 11360 /* Setup default profile for this ring */ 11361 pring->iotag_max = 4096; 11362 pring->num_mask = 1; 11363 pring->prt[0].profile = 0; /* Mask 0 */ 11364 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11365 pring->prt[0].type = phba->cfg_multi_ring_type; 11366 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11367 return 0; 11368 } 11369 11370 static void 11371 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11372 struct lpfc_nodelist *ndlp) 11373 { 11374 unsigned long iflags; 11375 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11376 11377 /* Hold a node reference for outstanding queued work */ 11378 if (!lpfc_nlp_get(ndlp)) 11379 return; 11380 11381 spin_lock_irqsave(&phba->hbalock, iflags); 11382 if (!list_empty(&evtp->evt_listp)) { 11383 spin_unlock_irqrestore(&phba->hbalock, iflags); 11384 lpfc_nlp_put(ndlp); 11385 return; 11386 } 11387 11388 evtp->evt_arg1 = ndlp; 11389 evtp->evt = LPFC_EVT_RECOVER_PORT; 11390 list_add_tail(&evtp->evt_listp, &phba->work_list); 11391 spin_unlock_irqrestore(&phba->hbalock, iflags); 11392 11393 lpfc_worker_wake_up(phba); 11394 } 11395 11396 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11397 * @phba: Pointer to HBA context object. 11398 * @iocbq: Pointer to iocb object. 11399 * 11400 * The async_event handler calls this routine when it receives 11401 * an ASYNC_STATUS_CN event from the port. The port generates 11402 * this event when an Abort Sequence request to an rport fails 11403 * twice in succession. The abort could be originated by the 11404 * driver or by the port. The ABTS could have been for an ELS 11405 * or FCP IO. The port only generates this event when an ABTS 11406 * fails to complete after one retry. 11407 */ 11408 static void 11409 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11410 struct lpfc_iocbq *iocbq) 11411 { 11412 struct lpfc_nodelist *ndlp = NULL; 11413 uint16_t rpi = 0, vpi = 0; 11414 struct lpfc_vport *vport = NULL; 11415 11416 /* The rpi in the ulpContext is vport-sensitive. */ 11417 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11418 rpi = iocbq->iocb.ulpContext; 11419 11420 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11421 "3092 Port generated ABTS async event " 11422 "on vpi %d rpi %d status 0x%x\n", 11423 vpi, rpi, iocbq->iocb.ulpStatus); 11424 11425 vport = lpfc_find_vport_by_vpid(phba, vpi); 11426 if (!vport) 11427 goto err_exit; 11428 ndlp = lpfc_findnode_rpi(vport, rpi); 11429 if (!ndlp) 11430 goto err_exit; 11431 11432 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11433 lpfc_sli_abts_recover_port(vport, ndlp); 11434 return; 11435 11436 err_exit: 11437 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11438 "3095 Event Context not found, no " 11439 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11440 vpi, rpi, iocbq->iocb.ulpStatus, 11441 iocbq->iocb.ulpContext); 11442 } 11443 11444 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11445 * @phba: pointer to HBA context object. 11446 * @ndlp: nodelist pointer for the impacted rport. 11447 * @axri: pointer to the wcqe containing the failed exchange. 11448 * 11449 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11450 * port. The port generates this event when an abort exchange request to an 11451 * rport fails twice in succession with no reply. The abort could be originated 11452 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11453 */ 11454 void 11455 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11456 struct lpfc_nodelist *ndlp, 11457 struct sli4_wcqe_xri_aborted *axri) 11458 { 11459 uint32_t ext_status = 0; 11460 11461 if (!ndlp) { 11462 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11463 "3115 Node Context not found, driver " 11464 "ignoring abts err event\n"); 11465 return; 11466 } 11467 11468 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11469 "3116 Port generated FCP XRI ABORT event on " 11470 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11471 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11472 bf_get(lpfc_wcqe_xa_xri, axri), 11473 bf_get(lpfc_wcqe_xa_status, axri), 11474 axri->parameter); 11475 11476 /* 11477 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11478 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11479 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11480 */ 11481 ext_status = axri->parameter & IOERR_PARAM_MASK; 11482 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11483 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11484 lpfc_sli_post_recovery_event(phba, ndlp); 11485 } 11486 11487 /** 11488 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11489 * @phba: Pointer to HBA context object. 11490 * @pring: Pointer to driver SLI ring object. 11491 * @iocbq: Pointer to iocb object. 11492 * 11493 * This function is called by the slow ring event handler 11494 * function when there is an ASYNC event iocb in the ring. 11495 * This function is called with no lock held. 11496 * Currently this function handles only temperature related 11497 * ASYNC events. The function decodes the temperature sensor 11498 * event message and posts events for the management applications. 11499 **/ 11500 static void 11501 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11502 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11503 { 11504 IOCB_t *icmd; 11505 uint16_t evt_code; 11506 struct temp_event temp_event_data; 11507 struct Scsi_Host *shost; 11508 uint32_t *iocb_w; 11509 11510 icmd = &iocbq->iocb; 11511 evt_code = icmd->un.asyncstat.evt_code; 11512 11513 switch (evt_code) { 11514 case ASYNC_TEMP_WARN: 11515 case ASYNC_TEMP_SAFE: 11516 temp_event_data.data = (uint32_t) icmd->ulpContext; 11517 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11518 if (evt_code == ASYNC_TEMP_WARN) { 11519 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11521 "0347 Adapter is very hot, please take " 11522 "corrective action. temperature : %d Celsius\n", 11523 (uint32_t) icmd->ulpContext); 11524 } else { 11525 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11526 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11527 "0340 Adapter temperature is OK now. " 11528 "temperature : %d Celsius\n", 11529 (uint32_t) icmd->ulpContext); 11530 } 11531 11532 /* Send temperature change event to applications */ 11533 shost = lpfc_shost_from_vport(phba->pport); 11534 fc_host_post_vendor_event(shost, fc_get_event_number(), 11535 sizeof(temp_event_data), (char *) &temp_event_data, 11536 LPFC_NL_VENDOR_ID); 11537 break; 11538 case ASYNC_STATUS_CN: 11539 lpfc_sli_abts_err_handler(phba, iocbq); 11540 break; 11541 default: 11542 iocb_w = (uint32_t *) icmd; 11543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11544 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11545 " evt_code 0x%x\n" 11546 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11547 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11548 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11549 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11550 pring->ringno, icmd->un.asyncstat.evt_code, 11551 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11552 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11553 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11554 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11555 11556 break; 11557 } 11558 } 11559 11560 11561 /** 11562 * lpfc_sli4_setup - SLI ring setup function 11563 * @phba: Pointer to HBA context object. 11564 * 11565 * lpfc_sli_setup sets up rings of the SLI interface with 11566 * number of iocbs per ring and iotags. This function is 11567 * called while driver attach to the HBA and before the 11568 * interrupts are enabled. So there is no need for locking. 11569 * 11570 * This function always returns 0. 11571 **/ 11572 int 11573 lpfc_sli4_setup(struct lpfc_hba *phba) 11574 { 11575 struct lpfc_sli_ring *pring; 11576 11577 pring = phba->sli4_hba.els_wq->pring; 11578 pring->num_mask = LPFC_MAX_RING_MASK; 11579 pring->prt[0].profile = 0; /* Mask 0 */ 11580 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11581 pring->prt[0].type = FC_TYPE_ELS; 11582 pring->prt[0].lpfc_sli_rcv_unsol_event = 11583 lpfc_els_unsol_event; 11584 pring->prt[1].profile = 0; /* Mask 1 */ 11585 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11586 pring->prt[1].type = FC_TYPE_ELS; 11587 pring->prt[1].lpfc_sli_rcv_unsol_event = 11588 lpfc_els_unsol_event; 11589 pring->prt[2].profile = 0; /* Mask 2 */ 11590 /* NameServer Inquiry */ 11591 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11592 /* NameServer */ 11593 pring->prt[2].type = FC_TYPE_CT; 11594 pring->prt[2].lpfc_sli_rcv_unsol_event = 11595 lpfc_ct_unsol_event; 11596 pring->prt[3].profile = 0; /* Mask 3 */ 11597 /* NameServer response */ 11598 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11599 /* NameServer */ 11600 pring->prt[3].type = FC_TYPE_CT; 11601 pring->prt[3].lpfc_sli_rcv_unsol_event = 11602 lpfc_ct_unsol_event; 11603 return 0; 11604 } 11605 11606 /** 11607 * lpfc_sli_setup - SLI ring setup function 11608 * @phba: Pointer to HBA context object. 11609 * 11610 * lpfc_sli_setup sets up rings of the SLI interface with 11611 * number of iocbs per ring and iotags. This function is 11612 * called while driver attach to the HBA and before the 11613 * interrupts are enabled. So there is no need for locking. 11614 * 11615 * This function always returns 0. SLI3 only. 11616 **/ 11617 int 11618 lpfc_sli_setup(struct lpfc_hba *phba) 11619 { 11620 int i, totiocbsize = 0; 11621 struct lpfc_sli *psli = &phba->sli; 11622 struct lpfc_sli_ring *pring; 11623 11624 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11625 psli->sli_flag = 0; 11626 11627 psli->iocbq_lookup = NULL; 11628 psli->iocbq_lookup_len = 0; 11629 psli->last_iotag = 0; 11630 11631 for (i = 0; i < psli->num_rings; i++) { 11632 pring = &psli->sli3_ring[i]; 11633 switch (i) { 11634 case LPFC_FCP_RING: /* ring 0 - FCP */ 11635 /* numCiocb and numRiocb are used in config_port */ 11636 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11637 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11638 pring->sli.sli3.numCiocb += 11639 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11640 pring->sli.sli3.numRiocb += 11641 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11642 pring->sli.sli3.numCiocb += 11643 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11644 pring->sli.sli3.numRiocb += 11645 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11646 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11647 SLI3_IOCB_CMD_SIZE : 11648 SLI2_IOCB_CMD_SIZE; 11649 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11650 SLI3_IOCB_RSP_SIZE : 11651 SLI2_IOCB_RSP_SIZE; 11652 pring->iotag_ctr = 0; 11653 pring->iotag_max = 11654 (phba->cfg_hba_queue_depth * 2); 11655 pring->fast_iotag = pring->iotag_max; 11656 pring->num_mask = 0; 11657 break; 11658 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11659 /* numCiocb and numRiocb are used in config_port */ 11660 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11661 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11662 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11663 SLI3_IOCB_CMD_SIZE : 11664 SLI2_IOCB_CMD_SIZE; 11665 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11666 SLI3_IOCB_RSP_SIZE : 11667 SLI2_IOCB_RSP_SIZE; 11668 pring->iotag_max = phba->cfg_hba_queue_depth; 11669 pring->num_mask = 0; 11670 break; 11671 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11672 /* numCiocb and numRiocb are used in config_port */ 11673 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11674 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11675 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11676 SLI3_IOCB_CMD_SIZE : 11677 SLI2_IOCB_CMD_SIZE; 11678 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11679 SLI3_IOCB_RSP_SIZE : 11680 SLI2_IOCB_RSP_SIZE; 11681 pring->fast_iotag = 0; 11682 pring->iotag_ctr = 0; 11683 pring->iotag_max = 4096; 11684 pring->lpfc_sli_rcv_async_status = 11685 lpfc_sli_async_event_handler; 11686 pring->num_mask = LPFC_MAX_RING_MASK; 11687 pring->prt[0].profile = 0; /* Mask 0 */ 11688 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11689 pring->prt[0].type = FC_TYPE_ELS; 11690 pring->prt[0].lpfc_sli_rcv_unsol_event = 11691 lpfc_els_unsol_event; 11692 pring->prt[1].profile = 0; /* Mask 1 */ 11693 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11694 pring->prt[1].type = FC_TYPE_ELS; 11695 pring->prt[1].lpfc_sli_rcv_unsol_event = 11696 lpfc_els_unsol_event; 11697 pring->prt[2].profile = 0; /* Mask 2 */ 11698 /* NameServer Inquiry */ 11699 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11700 /* NameServer */ 11701 pring->prt[2].type = FC_TYPE_CT; 11702 pring->prt[2].lpfc_sli_rcv_unsol_event = 11703 lpfc_ct_unsol_event; 11704 pring->prt[3].profile = 0; /* Mask 3 */ 11705 /* NameServer response */ 11706 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11707 /* NameServer */ 11708 pring->prt[3].type = FC_TYPE_CT; 11709 pring->prt[3].lpfc_sli_rcv_unsol_event = 11710 lpfc_ct_unsol_event; 11711 break; 11712 } 11713 totiocbsize += (pring->sli.sli3.numCiocb * 11714 pring->sli.sli3.sizeCiocb) + 11715 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11716 } 11717 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11718 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11719 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11720 "SLI2 SLIM Data: x%x x%lx\n", 11721 phba->brd_no, totiocbsize, 11722 (unsigned long) MAX_SLIM_IOCB_SIZE); 11723 } 11724 if (phba->cfg_multi_ring_support == 2) 11725 lpfc_extra_ring_setup(phba); 11726 11727 return 0; 11728 } 11729 11730 /** 11731 * lpfc_sli4_queue_init - Queue initialization function 11732 * @phba: Pointer to HBA context object. 11733 * 11734 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11735 * ring. This function also initializes ring indices of each ring. 11736 * This function is called during the initialization of the SLI 11737 * interface of an HBA. 11738 * This function is called with no lock held and always returns 11739 * 1. 11740 **/ 11741 void 11742 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11743 { 11744 struct lpfc_sli *psli; 11745 struct lpfc_sli_ring *pring; 11746 int i; 11747 11748 psli = &phba->sli; 11749 spin_lock_irq(&phba->hbalock); 11750 INIT_LIST_HEAD(&psli->mboxq); 11751 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11752 /* Initialize list headers for txq and txcmplq as double linked lists */ 11753 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11754 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11755 pring->flag = 0; 11756 pring->ringno = LPFC_FCP_RING; 11757 pring->txcmplq_cnt = 0; 11758 INIT_LIST_HEAD(&pring->txq); 11759 INIT_LIST_HEAD(&pring->txcmplq); 11760 INIT_LIST_HEAD(&pring->iocb_continueq); 11761 spin_lock_init(&pring->ring_lock); 11762 } 11763 pring = phba->sli4_hba.els_wq->pring; 11764 pring->flag = 0; 11765 pring->ringno = LPFC_ELS_RING; 11766 pring->txcmplq_cnt = 0; 11767 INIT_LIST_HEAD(&pring->txq); 11768 INIT_LIST_HEAD(&pring->txcmplq); 11769 INIT_LIST_HEAD(&pring->iocb_continueq); 11770 spin_lock_init(&pring->ring_lock); 11771 11772 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11773 pring = phba->sli4_hba.nvmels_wq->pring; 11774 pring->flag = 0; 11775 pring->ringno = LPFC_ELS_RING; 11776 pring->txcmplq_cnt = 0; 11777 INIT_LIST_HEAD(&pring->txq); 11778 INIT_LIST_HEAD(&pring->txcmplq); 11779 INIT_LIST_HEAD(&pring->iocb_continueq); 11780 spin_lock_init(&pring->ring_lock); 11781 } 11782 11783 spin_unlock_irq(&phba->hbalock); 11784 } 11785 11786 /** 11787 * lpfc_sli_queue_init - Queue initialization function 11788 * @phba: Pointer to HBA context object. 11789 * 11790 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11791 * ring. This function also initializes ring indices of each ring. 11792 * This function is called during the initialization of the SLI 11793 * interface of an HBA. 11794 * This function is called with no lock held and always returns 11795 * 1. 11796 **/ 11797 void 11798 lpfc_sli_queue_init(struct lpfc_hba *phba) 11799 { 11800 struct lpfc_sli *psli; 11801 struct lpfc_sli_ring *pring; 11802 int i; 11803 11804 psli = &phba->sli; 11805 spin_lock_irq(&phba->hbalock); 11806 INIT_LIST_HEAD(&psli->mboxq); 11807 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11808 /* Initialize list headers for txq and txcmplq as double linked lists */ 11809 for (i = 0; i < psli->num_rings; i++) { 11810 pring = &psli->sli3_ring[i]; 11811 pring->ringno = i; 11812 pring->sli.sli3.next_cmdidx = 0; 11813 pring->sli.sli3.local_getidx = 0; 11814 pring->sli.sli3.cmdidx = 0; 11815 INIT_LIST_HEAD(&pring->iocb_continueq); 11816 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11817 INIT_LIST_HEAD(&pring->postbufq); 11818 pring->flag = 0; 11819 INIT_LIST_HEAD(&pring->txq); 11820 INIT_LIST_HEAD(&pring->txcmplq); 11821 spin_lock_init(&pring->ring_lock); 11822 } 11823 spin_unlock_irq(&phba->hbalock); 11824 } 11825 11826 /** 11827 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11828 * @phba: Pointer to HBA context object. 11829 * 11830 * This routine flushes the mailbox command subsystem. It will unconditionally 11831 * flush all the mailbox commands in the three possible stages in the mailbox 11832 * command sub-system: pending mailbox command queue; the outstanding mailbox 11833 * command; and completed mailbox command queue. It is caller's responsibility 11834 * to make sure that the driver is in the proper state to flush the mailbox 11835 * command sub-system. Namely, the posting of mailbox commands into the 11836 * pending mailbox command queue from the various clients must be stopped; 11837 * either the HBA is in a state that it will never works on the outstanding 11838 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11839 * mailbox command has been completed. 11840 **/ 11841 static void 11842 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11843 { 11844 LIST_HEAD(completions); 11845 struct lpfc_sli *psli = &phba->sli; 11846 LPFC_MBOXQ_t *pmb; 11847 unsigned long iflag; 11848 11849 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11850 local_bh_disable(); 11851 11852 /* Flush all the mailbox commands in the mbox system */ 11853 spin_lock_irqsave(&phba->hbalock, iflag); 11854 11855 /* The pending mailbox command queue */ 11856 list_splice_init(&phba->sli.mboxq, &completions); 11857 /* The outstanding active mailbox command */ 11858 if (psli->mbox_active) { 11859 list_add_tail(&psli->mbox_active->list, &completions); 11860 psli->mbox_active = NULL; 11861 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11862 } 11863 /* The completed mailbox command queue */ 11864 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11865 spin_unlock_irqrestore(&phba->hbalock, iflag); 11866 11867 /* Enable softirqs again, done with phba->hbalock */ 11868 local_bh_enable(); 11869 11870 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11871 while (!list_empty(&completions)) { 11872 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11873 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11874 if (pmb->mbox_cmpl) 11875 pmb->mbox_cmpl(phba, pmb); 11876 } 11877 } 11878 11879 /** 11880 * lpfc_sli_host_down - Vport cleanup function 11881 * @vport: Pointer to virtual port object. 11882 * 11883 * lpfc_sli_host_down is called to clean up the resources 11884 * associated with a vport before destroying virtual 11885 * port data structures. 11886 * This function does following operations: 11887 * - Free discovery resources associated with this virtual 11888 * port. 11889 * - Free iocbs associated with this virtual port in 11890 * the txq. 11891 * - Send abort for all iocb commands associated with this 11892 * vport in txcmplq. 11893 * 11894 * This function is called with no lock held and always returns 1. 11895 **/ 11896 int 11897 lpfc_sli_host_down(struct lpfc_vport *vport) 11898 { 11899 LIST_HEAD(completions); 11900 struct lpfc_hba *phba = vport->phba; 11901 struct lpfc_sli *psli = &phba->sli; 11902 struct lpfc_queue *qp = NULL; 11903 struct lpfc_sli_ring *pring; 11904 struct lpfc_iocbq *iocb, *next_iocb; 11905 int i; 11906 unsigned long flags = 0; 11907 uint16_t prev_pring_flag; 11908 11909 lpfc_cleanup_discovery_resources(vport); 11910 11911 spin_lock_irqsave(&phba->hbalock, flags); 11912 11913 /* 11914 * Error everything on the txq since these iocbs 11915 * have not been given to the FW yet. 11916 * Also issue ABTS for everything on the txcmplq 11917 */ 11918 if (phba->sli_rev != LPFC_SLI_REV4) { 11919 for (i = 0; i < psli->num_rings; i++) { 11920 pring = &psli->sli3_ring[i]; 11921 prev_pring_flag = pring->flag; 11922 /* Only slow rings */ 11923 if (pring->ringno == LPFC_ELS_RING) { 11924 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11925 /* Set the lpfc data pending flag */ 11926 set_bit(LPFC_DATA_READY, &phba->data_flags); 11927 } 11928 list_for_each_entry_safe(iocb, next_iocb, 11929 &pring->txq, list) { 11930 if (iocb->vport != vport) 11931 continue; 11932 list_move_tail(&iocb->list, &completions); 11933 } 11934 list_for_each_entry_safe(iocb, next_iocb, 11935 &pring->txcmplq, list) { 11936 if (iocb->vport != vport) 11937 continue; 11938 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11939 NULL); 11940 } 11941 pring->flag = prev_pring_flag; 11942 } 11943 } else { 11944 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11945 pring = qp->pring; 11946 if (!pring) 11947 continue; 11948 if (pring == phba->sli4_hba.els_wq->pring) { 11949 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11950 /* Set the lpfc data pending flag */ 11951 set_bit(LPFC_DATA_READY, &phba->data_flags); 11952 } 11953 prev_pring_flag = pring->flag; 11954 spin_lock(&pring->ring_lock); 11955 list_for_each_entry_safe(iocb, next_iocb, 11956 &pring->txq, list) { 11957 if (iocb->vport != vport) 11958 continue; 11959 list_move_tail(&iocb->list, &completions); 11960 } 11961 spin_unlock(&pring->ring_lock); 11962 list_for_each_entry_safe(iocb, next_iocb, 11963 &pring->txcmplq, list) { 11964 if (iocb->vport != vport) 11965 continue; 11966 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11967 NULL); 11968 } 11969 pring->flag = prev_pring_flag; 11970 } 11971 } 11972 spin_unlock_irqrestore(&phba->hbalock, flags); 11973 11974 /* Make sure HBA is alive */ 11975 lpfc_issue_hb_tmo(phba); 11976 11977 /* Cancel all the IOCBs from the completions list */ 11978 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11979 IOERR_SLI_DOWN); 11980 return 1; 11981 } 11982 11983 /** 11984 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11985 * @phba: Pointer to HBA context object. 11986 * 11987 * This function cleans up all iocb, buffers, mailbox commands 11988 * while shutting down the HBA. This function is called with no 11989 * lock held and always returns 1. 11990 * This function does the following to cleanup driver resources: 11991 * - Free discovery resources for each virtual port 11992 * - Cleanup any pending fabric iocbs 11993 * - Iterate through the iocb txq and free each entry 11994 * in the list. 11995 * - Free up any buffer posted to the HBA 11996 * - Free mailbox commands in the mailbox queue. 11997 **/ 11998 int 11999 lpfc_sli_hba_down(struct lpfc_hba *phba) 12000 { 12001 LIST_HEAD(completions); 12002 struct lpfc_sli *psli = &phba->sli; 12003 struct lpfc_queue *qp = NULL; 12004 struct lpfc_sli_ring *pring; 12005 struct lpfc_dmabuf *buf_ptr; 12006 unsigned long flags = 0; 12007 int i; 12008 12009 /* Shutdown the mailbox command sub-system */ 12010 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12011 12012 lpfc_hba_down_prep(phba); 12013 12014 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12015 local_bh_disable(); 12016 12017 lpfc_fabric_abort_hba(phba); 12018 12019 spin_lock_irqsave(&phba->hbalock, flags); 12020 12021 /* 12022 * Error everything on the txq since these iocbs 12023 * have not been given to the FW yet. 12024 */ 12025 if (phba->sli_rev != LPFC_SLI_REV4) { 12026 for (i = 0; i < psli->num_rings; i++) { 12027 pring = &psli->sli3_ring[i]; 12028 /* Only slow rings */ 12029 if (pring->ringno == LPFC_ELS_RING) { 12030 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12031 /* Set the lpfc data pending flag */ 12032 set_bit(LPFC_DATA_READY, &phba->data_flags); 12033 } 12034 list_splice_init(&pring->txq, &completions); 12035 } 12036 } else { 12037 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12038 pring = qp->pring; 12039 if (!pring) 12040 continue; 12041 spin_lock(&pring->ring_lock); 12042 list_splice_init(&pring->txq, &completions); 12043 spin_unlock(&pring->ring_lock); 12044 if (pring == phba->sli4_hba.els_wq->pring) { 12045 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12046 /* Set the lpfc data pending flag */ 12047 set_bit(LPFC_DATA_READY, &phba->data_flags); 12048 } 12049 } 12050 } 12051 spin_unlock_irqrestore(&phba->hbalock, flags); 12052 12053 /* Cancel all the IOCBs from the completions list */ 12054 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12055 IOERR_SLI_DOWN); 12056 12057 spin_lock_irqsave(&phba->hbalock, flags); 12058 list_splice_init(&phba->elsbuf, &completions); 12059 phba->elsbuf_cnt = 0; 12060 phba->elsbuf_prev_cnt = 0; 12061 spin_unlock_irqrestore(&phba->hbalock, flags); 12062 12063 while (!list_empty(&completions)) { 12064 list_remove_head(&completions, buf_ptr, 12065 struct lpfc_dmabuf, list); 12066 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12067 kfree(buf_ptr); 12068 } 12069 12070 /* Enable softirqs again, done with phba->hbalock */ 12071 local_bh_enable(); 12072 12073 /* Return any active mbox cmds */ 12074 del_timer_sync(&psli->mbox_tmo); 12075 12076 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12077 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12078 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12079 12080 return 1; 12081 } 12082 12083 /** 12084 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12085 * @srcp: Source memory pointer. 12086 * @destp: Destination memory pointer. 12087 * @cnt: Number of words required to be copied. 12088 * 12089 * This function is used for copying data between driver memory 12090 * and the SLI memory. This function also changes the endianness 12091 * of each word if native endianness is different from SLI 12092 * endianness. This function can be called with or without 12093 * lock. 12094 **/ 12095 void 12096 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12097 { 12098 uint32_t *src = srcp; 12099 uint32_t *dest = destp; 12100 uint32_t ldata; 12101 int i; 12102 12103 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12104 ldata = *src; 12105 ldata = le32_to_cpu(ldata); 12106 *dest = ldata; 12107 src++; 12108 dest++; 12109 } 12110 } 12111 12112 12113 /** 12114 * lpfc_sli_bemem_bcopy - SLI memory copy function 12115 * @srcp: Source memory pointer. 12116 * @destp: Destination memory pointer. 12117 * @cnt: Number of words required to be copied. 12118 * 12119 * This function is used for copying data between a data structure 12120 * with big endian representation to local endianness. 12121 * This function can be called with or without lock. 12122 **/ 12123 void 12124 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12125 { 12126 uint32_t *src = srcp; 12127 uint32_t *dest = destp; 12128 uint32_t ldata; 12129 int i; 12130 12131 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12132 ldata = *src; 12133 ldata = be32_to_cpu(ldata); 12134 *dest = ldata; 12135 src++; 12136 dest++; 12137 } 12138 } 12139 12140 /** 12141 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12142 * @phba: Pointer to HBA context object. 12143 * @pring: Pointer to driver SLI ring object. 12144 * @mp: Pointer to driver buffer object. 12145 * 12146 * This function is called with no lock held. 12147 * It always return zero after adding the buffer to the postbufq 12148 * buffer list. 12149 **/ 12150 int 12151 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12152 struct lpfc_dmabuf *mp) 12153 { 12154 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12155 later */ 12156 spin_lock_irq(&phba->hbalock); 12157 list_add_tail(&mp->list, &pring->postbufq); 12158 pring->postbufq_cnt++; 12159 spin_unlock_irq(&phba->hbalock); 12160 return 0; 12161 } 12162 12163 /** 12164 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12165 * @phba: Pointer to HBA context object. 12166 * 12167 * When HBQ is enabled, buffers are searched based on tags. This function 12168 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12169 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12170 * does not conflict with tags of buffer posted for unsolicited events. 12171 * The function returns the allocated tag. The function is called with 12172 * no locks held. 12173 **/ 12174 uint32_t 12175 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12176 { 12177 spin_lock_irq(&phba->hbalock); 12178 phba->buffer_tag_count++; 12179 /* 12180 * Always set the QUE_BUFTAG_BIT to distiguish between 12181 * a tag assigned by HBQ. 12182 */ 12183 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12184 spin_unlock_irq(&phba->hbalock); 12185 return phba->buffer_tag_count; 12186 } 12187 12188 /** 12189 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12190 * @phba: Pointer to HBA context object. 12191 * @pring: Pointer to driver SLI ring object. 12192 * @tag: Buffer tag. 12193 * 12194 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12195 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12196 * iocb is posted to the response ring with the tag of the buffer. 12197 * This function searches the pring->postbufq list using the tag 12198 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12199 * iocb. If the buffer is found then lpfc_dmabuf object of the 12200 * buffer is returned to the caller else NULL is returned. 12201 * This function is called with no lock held. 12202 **/ 12203 struct lpfc_dmabuf * 12204 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12205 uint32_t tag) 12206 { 12207 struct lpfc_dmabuf *mp, *next_mp; 12208 struct list_head *slp = &pring->postbufq; 12209 12210 /* Search postbufq, from the beginning, looking for a match on tag */ 12211 spin_lock_irq(&phba->hbalock); 12212 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12213 if (mp->buffer_tag == tag) { 12214 list_del_init(&mp->list); 12215 pring->postbufq_cnt--; 12216 spin_unlock_irq(&phba->hbalock); 12217 return mp; 12218 } 12219 } 12220 12221 spin_unlock_irq(&phba->hbalock); 12222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12223 "0402 Cannot find virtual addr for buffer tag on " 12224 "ring %d Data x%lx x%px x%px x%x\n", 12225 pring->ringno, (unsigned long) tag, 12226 slp->next, slp->prev, pring->postbufq_cnt); 12227 12228 return NULL; 12229 } 12230 12231 /** 12232 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12233 * @phba: Pointer to HBA context object. 12234 * @pring: Pointer to driver SLI ring object. 12235 * @phys: DMA address of the buffer. 12236 * 12237 * This function searches the buffer list using the dma_address 12238 * of unsolicited event to find the driver's lpfc_dmabuf object 12239 * corresponding to the dma_address. The function returns the 12240 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12241 * This function is called by the ct and els unsolicited event 12242 * handlers to get the buffer associated with the unsolicited 12243 * event. 12244 * 12245 * This function is called with no lock held. 12246 **/ 12247 struct lpfc_dmabuf * 12248 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12249 dma_addr_t phys) 12250 { 12251 struct lpfc_dmabuf *mp, *next_mp; 12252 struct list_head *slp = &pring->postbufq; 12253 12254 /* Search postbufq, from the beginning, looking for a match on phys */ 12255 spin_lock_irq(&phba->hbalock); 12256 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12257 if (mp->phys == phys) { 12258 list_del_init(&mp->list); 12259 pring->postbufq_cnt--; 12260 spin_unlock_irq(&phba->hbalock); 12261 return mp; 12262 } 12263 } 12264 12265 spin_unlock_irq(&phba->hbalock); 12266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12267 "0410 Cannot find virtual addr for mapped buf on " 12268 "ring %d Data x%llx x%px x%px x%x\n", 12269 pring->ringno, (unsigned long long)phys, 12270 slp->next, slp->prev, pring->postbufq_cnt); 12271 return NULL; 12272 } 12273 12274 /** 12275 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12276 * @phba: Pointer to HBA context object. 12277 * @cmdiocb: Pointer to driver command iocb object. 12278 * @rspiocb: Pointer to driver response iocb object. 12279 * 12280 * This function is the completion handler for the abort iocbs for 12281 * ELS commands. This function is called from the ELS ring event 12282 * handler with no lock held. This function frees memory resources 12283 * associated with the abort iocb. 12284 **/ 12285 static void 12286 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12287 struct lpfc_iocbq *rspiocb) 12288 { 12289 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12290 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12291 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12292 12293 if (ulp_status) { 12294 /* 12295 * Assume that the port already completed and returned, or 12296 * will return the iocb. Just Log the message. 12297 */ 12298 if (phba->sli_rev < LPFC_SLI_REV4) { 12299 if (cmnd == CMD_ABORT_XRI_CX && 12300 ulp_status == IOSTAT_LOCAL_REJECT && 12301 ulp_word4 == IOERR_ABORT_REQUESTED) { 12302 goto release_iocb; 12303 } 12304 } 12305 } 12306 12307 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12308 "0327 Abort els iocb complete x%px with io cmd xri %x " 12309 "abort tag x%x abort status %x abort code %x\n", 12310 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12311 (phba->sli_rev == LPFC_SLI_REV4) ? 12312 get_wqe_reqtag(cmdiocb) : 12313 cmdiocb->iocb.ulpIoTag, 12314 ulp_status, ulp_word4); 12315 release_iocb: 12316 lpfc_sli_release_iocbq(phba, cmdiocb); 12317 return; 12318 } 12319 12320 /** 12321 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12322 * @phba: Pointer to HBA context object. 12323 * @cmdiocb: Pointer to driver command iocb object. 12324 * @rspiocb: Pointer to driver response iocb object. 12325 * 12326 * The function is called from SLI ring event handler with no 12327 * lock held. This function is the completion handler for ELS commands 12328 * which are aborted. The function frees memory resources used for 12329 * the aborted ELS commands. 12330 **/ 12331 void 12332 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12333 struct lpfc_iocbq *rspiocb) 12334 { 12335 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12336 IOCB_t *irsp; 12337 LPFC_MBOXQ_t *mbox; 12338 u32 ulp_command, ulp_status, ulp_word4, iotag; 12339 12340 ulp_command = get_job_cmnd(phba, cmdiocb); 12341 ulp_status = get_job_ulpstatus(phba, rspiocb); 12342 ulp_word4 = get_job_word4(phba, rspiocb); 12343 12344 if (phba->sli_rev == LPFC_SLI_REV4) { 12345 iotag = get_wqe_reqtag(cmdiocb); 12346 } else { 12347 irsp = &rspiocb->iocb; 12348 iotag = irsp->ulpIoTag; 12349 12350 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12351 * The MBX_REG_LOGIN64 mbox command is freed back to the 12352 * mbox_mem_pool here. 12353 */ 12354 if (cmdiocb->context_un.mbox) { 12355 mbox = cmdiocb->context_un.mbox; 12356 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12357 cmdiocb->context_un.mbox = NULL; 12358 } 12359 } 12360 12361 /* ELS cmd tag <ulpIoTag> completes */ 12362 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12363 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12364 "x%x x%x x%x x%px\n", 12365 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12366 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12367 /* 12368 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12369 * if exchange is busy. 12370 */ 12371 if (ulp_command == CMD_GEN_REQUEST64_CR) 12372 lpfc_ct_free_iocb(phba, cmdiocb); 12373 else 12374 lpfc_els_free_iocb(phba, cmdiocb); 12375 12376 lpfc_nlp_put(ndlp); 12377 } 12378 12379 /** 12380 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12381 * @phba: Pointer to HBA context object. 12382 * @pring: Pointer to driver SLI ring object. 12383 * @cmdiocb: Pointer to driver command iocb object. 12384 * @cmpl: completion function. 12385 * 12386 * This function issues an abort iocb for the provided command iocb. In case 12387 * of unloading, the abort iocb will not be issued to commands on the ELS 12388 * ring. Instead, the callback function shall be changed to those commands 12389 * so that nothing happens when them finishes. This function is called with 12390 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12391 * when the command iocb is an abort request. 12392 * 12393 **/ 12394 int 12395 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12396 struct lpfc_iocbq *cmdiocb, void *cmpl) 12397 { 12398 struct lpfc_vport *vport = cmdiocb->vport; 12399 struct lpfc_iocbq *abtsiocbp; 12400 int retval = IOCB_ERROR; 12401 unsigned long iflags; 12402 struct lpfc_nodelist *ndlp = NULL; 12403 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12404 u16 ulp_context, iotag; 12405 bool ia; 12406 12407 /* 12408 * There are certain command types we don't want to abort. And we 12409 * don't want to abort commands that are already in the process of 12410 * being aborted. 12411 */ 12412 if (ulp_command == CMD_ABORT_XRI_WQE || 12413 ulp_command == CMD_ABORT_XRI_CN || 12414 ulp_command == CMD_CLOSE_XRI_CN || 12415 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12416 return IOCB_ABORTING; 12417 12418 if (!pring) { 12419 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12420 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12421 else 12422 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12423 return retval; 12424 } 12425 12426 /* 12427 * If we're unloading, don't abort iocb on the ELS ring, but change 12428 * the callback so that nothing happens when it finishes. 12429 */ 12430 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12431 pring->ringno == LPFC_ELS_RING) { 12432 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12433 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12434 else 12435 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12436 return retval; 12437 } 12438 12439 /* issue ABTS for this IOCB based on iotag */ 12440 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12441 if (abtsiocbp == NULL) 12442 return IOCB_NORESOURCE; 12443 12444 /* This signals the response to set the correct status 12445 * before calling the completion handler 12446 */ 12447 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12448 12449 if (phba->sli_rev == LPFC_SLI_REV4) { 12450 ulp_context = cmdiocb->sli4_xritag; 12451 iotag = abtsiocbp->iotag; 12452 } else { 12453 iotag = cmdiocb->iocb.ulpIoTag; 12454 if (pring->ringno == LPFC_ELS_RING) { 12455 ndlp = cmdiocb->ndlp; 12456 ulp_context = ndlp->nlp_rpi; 12457 } else { 12458 ulp_context = cmdiocb->iocb.ulpContext; 12459 } 12460 } 12461 12462 /* Just close the exchange under certain conditions. */ 12463 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12464 phba->link_state < LPFC_LINK_UP || 12465 (phba->sli_rev == LPFC_SLI_REV4 && 12466 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12467 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12468 ia = true; 12469 else 12470 ia = false; 12471 12472 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12473 cmdiocb->iocb.ulpClass, 12474 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12475 12476 abtsiocbp->vport = vport; 12477 12478 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12479 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12480 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12481 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12482 12483 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12484 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12485 12486 if (cmpl) 12487 abtsiocbp->cmd_cmpl = cmpl; 12488 else 12489 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12490 abtsiocbp->vport = vport; 12491 12492 if (phba->sli_rev == LPFC_SLI_REV4) { 12493 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12494 if (unlikely(pring == NULL)) 12495 goto abort_iotag_exit; 12496 /* Note: both hbalock and ring_lock need to be set here */ 12497 spin_lock_irqsave(&pring->ring_lock, iflags); 12498 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12499 abtsiocbp, 0); 12500 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12501 } else { 12502 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12503 abtsiocbp, 0); 12504 } 12505 12506 abort_iotag_exit: 12507 12508 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12509 "0339 Abort IO XRI x%x, Original iotag x%x, " 12510 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12511 "retval x%x : IA %d cmd_cmpl %ps\n", 12512 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12513 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12514 retval, ia, abtsiocbp->cmd_cmpl); 12515 if (retval) { 12516 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12517 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12518 } 12519 12520 /* 12521 * Caller to this routine should check for IOCB_ERROR 12522 * and handle it properly. This routine no longer removes 12523 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12524 */ 12525 return retval; 12526 } 12527 12528 /** 12529 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12530 * @phba: pointer to lpfc HBA data structure. 12531 * 12532 * This routine will abort all pending and outstanding iocbs to an HBA. 12533 **/ 12534 void 12535 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12536 { 12537 struct lpfc_sli *psli = &phba->sli; 12538 struct lpfc_sli_ring *pring; 12539 struct lpfc_queue *qp = NULL; 12540 int i; 12541 12542 if (phba->sli_rev != LPFC_SLI_REV4) { 12543 for (i = 0; i < psli->num_rings; i++) { 12544 pring = &psli->sli3_ring[i]; 12545 lpfc_sli_abort_iocb_ring(phba, pring); 12546 } 12547 return; 12548 } 12549 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12550 pring = qp->pring; 12551 if (!pring) 12552 continue; 12553 lpfc_sli_abort_iocb_ring(phba, pring); 12554 } 12555 } 12556 12557 /** 12558 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12559 * @iocbq: Pointer to iocb object. 12560 * @vport: Pointer to driver virtual port object. 12561 * 12562 * This function acts as an iocb filter for functions which abort FCP iocbs. 12563 * 12564 * Return values 12565 * -ENODEV, if a null iocb or vport ptr is encountered 12566 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12567 * driver already started the abort process, or is an abort iocb itself 12568 * 0, passes criteria for aborting the FCP I/O iocb 12569 **/ 12570 static int 12571 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12572 struct lpfc_vport *vport) 12573 { 12574 u8 ulp_command; 12575 12576 /* No null ptr vports */ 12577 if (!iocbq || iocbq->vport != vport) 12578 return -ENODEV; 12579 12580 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12581 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12582 */ 12583 ulp_command = get_job_cmnd(vport->phba, iocbq); 12584 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12585 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12586 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12587 (ulp_command == CMD_ABORT_XRI_CN || 12588 ulp_command == CMD_CLOSE_XRI_CN || 12589 ulp_command == CMD_ABORT_XRI_WQE)) 12590 return -EINVAL; 12591 12592 return 0; 12593 } 12594 12595 /** 12596 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12597 * @iocbq: Pointer to driver iocb object. 12598 * @vport: Pointer to driver virtual port object. 12599 * @tgt_id: SCSI ID of the target. 12600 * @lun_id: LUN ID of the scsi device. 12601 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12602 * 12603 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12604 * host. 12605 * 12606 * It will return 12607 * 0 if the filtering criteria is met for the given iocb and will return 12608 * 1 if the filtering criteria is not met. 12609 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12610 * given iocb is for the SCSI device specified by vport, tgt_id and 12611 * lun_id parameter. 12612 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12613 * given iocb is for the SCSI target specified by vport and tgt_id 12614 * parameters. 12615 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12616 * given iocb is for the SCSI host associated with the given vport. 12617 * This function is called with no locks held. 12618 **/ 12619 static int 12620 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12621 uint16_t tgt_id, uint64_t lun_id, 12622 lpfc_ctx_cmd ctx_cmd) 12623 { 12624 struct lpfc_io_buf *lpfc_cmd; 12625 int rc = 1; 12626 12627 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12628 12629 if (lpfc_cmd->pCmd == NULL) 12630 return rc; 12631 12632 switch (ctx_cmd) { 12633 case LPFC_CTX_LUN: 12634 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12635 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12636 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12637 rc = 0; 12638 break; 12639 case LPFC_CTX_TGT: 12640 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12641 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12642 rc = 0; 12643 break; 12644 case LPFC_CTX_HOST: 12645 rc = 0; 12646 break; 12647 default: 12648 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12649 __func__, ctx_cmd); 12650 break; 12651 } 12652 12653 return rc; 12654 } 12655 12656 /** 12657 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12658 * @vport: Pointer to virtual port. 12659 * @tgt_id: SCSI ID of the target. 12660 * @lun_id: LUN ID of the scsi device. 12661 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12662 * 12663 * This function returns number of FCP commands pending for the vport. 12664 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12665 * commands pending on the vport associated with SCSI device specified 12666 * by tgt_id and lun_id parameters. 12667 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12668 * commands pending on the vport associated with SCSI target specified 12669 * by tgt_id parameter. 12670 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12671 * commands pending on the vport. 12672 * This function returns the number of iocbs which satisfy the filter. 12673 * This function is called without any lock held. 12674 **/ 12675 int 12676 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12677 lpfc_ctx_cmd ctx_cmd) 12678 { 12679 struct lpfc_hba *phba = vport->phba; 12680 struct lpfc_iocbq *iocbq; 12681 int sum, i; 12682 unsigned long iflags; 12683 u8 ulp_command; 12684 12685 spin_lock_irqsave(&phba->hbalock, iflags); 12686 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12687 iocbq = phba->sli.iocbq_lookup[i]; 12688 12689 if (!iocbq || iocbq->vport != vport) 12690 continue; 12691 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12692 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12693 continue; 12694 12695 /* Include counting outstanding aborts */ 12696 ulp_command = get_job_cmnd(phba, iocbq); 12697 if (ulp_command == CMD_ABORT_XRI_CN || 12698 ulp_command == CMD_CLOSE_XRI_CN || 12699 ulp_command == CMD_ABORT_XRI_WQE) { 12700 sum++; 12701 continue; 12702 } 12703 12704 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12705 ctx_cmd) == 0) 12706 sum++; 12707 } 12708 spin_unlock_irqrestore(&phba->hbalock, iflags); 12709 12710 return sum; 12711 } 12712 12713 /** 12714 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12715 * @phba: Pointer to HBA context object 12716 * @cmdiocb: Pointer to command iocb object. 12717 * @rspiocb: Pointer to response iocb object. 12718 * 12719 * This function is called when an aborted FCP iocb completes. This 12720 * function is called by the ring event handler with no lock held. 12721 * This function frees the iocb. 12722 **/ 12723 void 12724 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12725 struct lpfc_iocbq *rspiocb) 12726 { 12727 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12728 "3096 ABORT_XRI_CX completing on rpi x%x " 12729 "original iotag x%x, abort cmd iotag x%x " 12730 "status 0x%x, reason 0x%x\n", 12731 (phba->sli_rev == LPFC_SLI_REV4) ? 12732 cmdiocb->sli4_xritag : 12733 cmdiocb->iocb.un.acxri.abortContextTag, 12734 get_job_abtsiotag(phba, cmdiocb), 12735 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12736 get_job_word4(phba, rspiocb)); 12737 lpfc_sli_release_iocbq(phba, cmdiocb); 12738 return; 12739 } 12740 12741 /** 12742 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12743 * @vport: Pointer to virtual port. 12744 * @tgt_id: SCSI ID of the target. 12745 * @lun_id: LUN ID of the scsi device. 12746 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12747 * 12748 * This function sends an abort command for every SCSI command 12749 * associated with the given virtual port pending on the ring 12750 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12751 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12752 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12753 * followed by lpfc_sli_validate_fcp_iocb. 12754 * 12755 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12756 * FCP iocbs associated with lun specified by tgt_id and lun_id 12757 * parameters 12758 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12759 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12760 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12761 * FCP iocbs associated with virtual port. 12762 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12763 * lpfc_sli4_calc_ring is used. 12764 * This function returns number of iocbs it failed to abort. 12765 * This function is called with no locks held. 12766 **/ 12767 int 12768 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12769 lpfc_ctx_cmd abort_cmd) 12770 { 12771 struct lpfc_hba *phba = vport->phba; 12772 struct lpfc_sli_ring *pring = NULL; 12773 struct lpfc_iocbq *iocbq; 12774 int errcnt = 0, ret_val = 0; 12775 unsigned long iflags; 12776 int i; 12777 12778 /* all I/Os are in process of being flushed */ 12779 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12780 return errcnt; 12781 12782 for (i = 1; i <= phba->sli.last_iotag; i++) { 12783 iocbq = phba->sli.iocbq_lookup[i]; 12784 12785 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12786 continue; 12787 12788 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12789 abort_cmd) != 0) 12790 continue; 12791 12792 spin_lock_irqsave(&phba->hbalock, iflags); 12793 if (phba->sli_rev == LPFC_SLI_REV3) { 12794 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12795 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12796 pring = lpfc_sli4_calc_ring(phba, iocbq); 12797 } 12798 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12799 lpfc_sli_abort_fcp_cmpl); 12800 spin_unlock_irqrestore(&phba->hbalock, iflags); 12801 if (ret_val != IOCB_SUCCESS) 12802 errcnt++; 12803 } 12804 12805 return errcnt; 12806 } 12807 12808 /** 12809 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12810 * @vport: Pointer to virtual port. 12811 * @pring: Pointer to driver SLI ring object. 12812 * @tgt_id: SCSI ID of the target. 12813 * @lun_id: LUN ID of the scsi device. 12814 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12815 * 12816 * This function sends an abort command for every SCSI command 12817 * associated with the given virtual port pending on the ring 12818 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12819 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12820 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12821 * followed by lpfc_sli_validate_fcp_iocb. 12822 * 12823 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12824 * FCP iocbs associated with lun specified by tgt_id and lun_id 12825 * parameters 12826 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12827 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12828 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12829 * FCP iocbs associated with virtual port. 12830 * This function returns number of iocbs it aborted . 12831 * This function is called with no locks held right after a taskmgmt 12832 * command is sent. 12833 **/ 12834 int 12835 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12836 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12837 { 12838 struct lpfc_hba *phba = vport->phba; 12839 struct lpfc_io_buf *lpfc_cmd; 12840 struct lpfc_iocbq *abtsiocbq; 12841 struct lpfc_nodelist *ndlp = NULL; 12842 struct lpfc_iocbq *iocbq; 12843 int sum, i, ret_val; 12844 unsigned long iflags; 12845 struct lpfc_sli_ring *pring_s4 = NULL; 12846 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12847 bool ia; 12848 12849 /* all I/Os are in process of being flushed */ 12850 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12851 return 0; 12852 12853 sum = 0; 12854 12855 spin_lock_irqsave(&phba->hbalock, iflags); 12856 for (i = 1; i <= phba->sli.last_iotag; i++) { 12857 iocbq = phba->sli.iocbq_lookup[i]; 12858 12859 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12860 continue; 12861 12862 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12863 cmd) != 0) 12864 continue; 12865 12866 /* Guard against IO completion being called at same time */ 12867 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12868 spin_lock(&lpfc_cmd->buf_lock); 12869 12870 if (!lpfc_cmd->pCmd) { 12871 spin_unlock(&lpfc_cmd->buf_lock); 12872 continue; 12873 } 12874 12875 if (phba->sli_rev == LPFC_SLI_REV4) { 12876 pring_s4 = 12877 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12878 if (!pring_s4) { 12879 spin_unlock(&lpfc_cmd->buf_lock); 12880 continue; 12881 } 12882 /* Note: both hbalock and ring_lock must be set here */ 12883 spin_lock(&pring_s4->ring_lock); 12884 } 12885 12886 /* 12887 * If the iocbq is already being aborted, don't take a second 12888 * action, but do count it. 12889 */ 12890 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12891 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12892 if (phba->sli_rev == LPFC_SLI_REV4) 12893 spin_unlock(&pring_s4->ring_lock); 12894 spin_unlock(&lpfc_cmd->buf_lock); 12895 continue; 12896 } 12897 12898 /* issue ABTS for this IOCB based on iotag */ 12899 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12900 if (!abtsiocbq) { 12901 if (phba->sli_rev == LPFC_SLI_REV4) 12902 spin_unlock(&pring_s4->ring_lock); 12903 spin_unlock(&lpfc_cmd->buf_lock); 12904 continue; 12905 } 12906 12907 if (phba->sli_rev == LPFC_SLI_REV4) { 12908 iotag = abtsiocbq->iotag; 12909 ulp_context = iocbq->sli4_xritag; 12910 cqid = lpfc_cmd->hdwq->io_cq_map; 12911 } else { 12912 iotag = iocbq->iocb.ulpIoTag; 12913 if (pring->ringno == LPFC_ELS_RING) { 12914 ndlp = iocbq->ndlp; 12915 ulp_context = ndlp->nlp_rpi; 12916 } else { 12917 ulp_context = iocbq->iocb.ulpContext; 12918 } 12919 } 12920 12921 ndlp = lpfc_cmd->rdata->pnode; 12922 12923 if (lpfc_is_link_up(phba) && 12924 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12925 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12926 ia = false; 12927 else 12928 ia = true; 12929 12930 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12931 iocbq->iocb.ulpClass, cqid, 12932 ia, false); 12933 12934 abtsiocbq->vport = vport; 12935 12936 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12937 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12938 if (iocbq->cmd_flag & LPFC_IO_FCP) 12939 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12940 if (iocbq->cmd_flag & LPFC_IO_FOF) 12941 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12942 12943 /* Setup callback routine and issue the command. */ 12944 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12945 12946 /* 12947 * Indicate the IO is being aborted by the driver and set 12948 * the caller's flag into the aborted IO. 12949 */ 12950 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12951 12952 if (phba->sli_rev == LPFC_SLI_REV4) { 12953 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12954 abtsiocbq, 0); 12955 spin_unlock(&pring_s4->ring_lock); 12956 } else { 12957 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12958 abtsiocbq, 0); 12959 } 12960 12961 spin_unlock(&lpfc_cmd->buf_lock); 12962 12963 if (ret_val == IOCB_ERROR) 12964 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12965 else 12966 sum++; 12967 } 12968 spin_unlock_irqrestore(&phba->hbalock, iflags); 12969 return sum; 12970 } 12971 12972 /** 12973 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12974 * @phba: Pointer to HBA context object. 12975 * @cmdiocbq: Pointer to command iocb. 12976 * @rspiocbq: Pointer to response iocb. 12977 * 12978 * This function is the completion handler for iocbs issued using 12979 * lpfc_sli_issue_iocb_wait function. This function is called by the 12980 * ring event handler function without any lock held. This function 12981 * can be called from both worker thread context and interrupt 12982 * context. This function also can be called from other thread which 12983 * cleans up the SLI layer objects. 12984 * This function copy the contents of the response iocb to the 12985 * response iocb memory object provided by the caller of 12986 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12987 * sleeps for the iocb completion. 12988 **/ 12989 static void 12990 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12991 struct lpfc_iocbq *cmdiocbq, 12992 struct lpfc_iocbq *rspiocbq) 12993 { 12994 wait_queue_head_t *pdone_q; 12995 unsigned long iflags; 12996 struct lpfc_io_buf *lpfc_cmd; 12997 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12998 12999 spin_lock_irqsave(&phba->hbalock, iflags); 13000 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13001 13002 /* 13003 * A time out has occurred for the iocb. If a time out 13004 * completion handler has been supplied, call it. Otherwise, 13005 * just free the iocbq. 13006 */ 13007 13008 spin_unlock_irqrestore(&phba->hbalock, iflags); 13009 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13010 cmdiocbq->wait_cmd_cmpl = NULL; 13011 if (cmdiocbq->cmd_cmpl) 13012 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13013 else 13014 lpfc_sli_release_iocbq(phba, cmdiocbq); 13015 return; 13016 } 13017 13018 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13019 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13020 if (cmdiocbq->rsp_iocb && rspiocbq) 13021 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13022 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13023 13024 /* Set the exchange busy flag for task management commands */ 13025 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13026 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13027 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13028 cur_iocbq); 13029 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13030 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13031 else 13032 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13033 } 13034 13035 pdone_q = cmdiocbq->context_un.wait_queue; 13036 if (pdone_q) 13037 wake_up(pdone_q); 13038 spin_unlock_irqrestore(&phba->hbalock, iflags); 13039 return; 13040 } 13041 13042 /** 13043 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13044 * @phba: Pointer to HBA context object.. 13045 * @piocbq: Pointer to command iocb. 13046 * @flag: Flag to test. 13047 * 13048 * This routine grabs the hbalock and then test the cmd_flag to 13049 * see if the passed in flag is set. 13050 * Returns: 13051 * 1 if flag is set. 13052 * 0 if flag is not set. 13053 **/ 13054 static int 13055 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13056 struct lpfc_iocbq *piocbq, uint32_t flag) 13057 { 13058 unsigned long iflags; 13059 int ret; 13060 13061 spin_lock_irqsave(&phba->hbalock, iflags); 13062 ret = piocbq->cmd_flag & flag; 13063 spin_unlock_irqrestore(&phba->hbalock, iflags); 13064 return ret; 13065 13066 } 13067 13068 /** 13069 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13070 * @phba: Pointer to HBA context object.. 13071 * @ring_number: Ring number 13072 * @piocb: Pointer to command iocb. 13073 * @prspiocbq: Pointer to response iocb. 13074 * @timeout: Timeout in number of seconds. 13075 * 13076 * This function issues the iocb to firmware and waits for the 13077 * iocb to complete. The cmd_cmpl field of the shall be used 13078 * to handle iocbs which time out. If the field is NULL, the 13079 * function shall free the iocbq structure. If more clean up is 13080 * needed, the caller is expected to provide a completion function 13081 * that will provide the needed clean up. If the iocb command is 13082 * not completed within timeout seconds, the function will either 13083 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13084 * completion function set in the cmd_cmpl field and then return 13085 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13086 * resources if this function returns IOCB_TIMEDOUT. 13087 * The function waits for the iocb completion using an 13088 * non-interruptible wait. 13089 * This function will sleep while waiting for iocb completion. 13090 * So, this function should not be called from any context which 13091 * does not allow sleeping. Due to the same reason, this function 13092 * cannot be called with interrupt disabled. 13093 * This function assumes that the iocb completions occur while 13094 * this function sleep. So, this function cannot be called from 13095 * the thread which process iocb completion for this ring. 13096 * This function clears the cmd_flag of the iocb object before 13097 * issuing the iocb and the iocb completion handler sets this 13098 * flag and wakes this thread when the iocb completes. 13099 * The contents of the response iocb will be copied to prspiocbq 13100 * by the completion handler when the command completes. 13101 * This function returns IOCB_SUCCESS when success. 13102 * This function is called with no lock held. 13103 **/ 13104 int 13105 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13106 uint32_t ring_number, 13107 struct lpfc_iocbq *piocb, 13108 struct lpfc_iocbq *prspiocbq, 13109 uint32_t timeout) 13110 { 13111 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13112 long timeleft, timeout_req = 0; 13113 int retval = IOCB_SUCCESS; 13114 uint32_t creg_val; 13115 struct lpfc_iocbq *iocb; 13116 int txq_cnt = 0; 13117 int txcmplq_cnt = 0; 13118 struct lpfc_sli_ring *pring; 13119 unsigned long iflags; 13120 bool iocb_completed = true; 13121 13122 if (phba->sli_rev >= LPFC_SLI_REV4) { 13123 lpfc_sli_prep_wqe(phba, piocb); 13124 13125 pring = lpfc_sli4_calc_ring(phba, piocb); 13126 } else 13127 pring = &phba->sli.sli3_ring[ring_number]; 13128 /* 13129 * If the caller has provided a response iocbq buffer, then rsp_iocb 13130 * is NULL or its an error. 13131 */ 13132 if (prspiocbq) { 13133 if (piocb->rsp_iocb) 13134 return IOCB_ERROR; 13135 piocb->rsp_iocb = prspiocbq; 13136 } 13137 13138 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13139 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13140 piocb->context_un.wait_queue = &done_q; 13141 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13142 13143 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13144 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13145 return IOCB_ERROR; 13146 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13147 writel(creg_val, phba->HCregaddr); 13148 readl(phba->HCregaddr); /* flush */ 13149 } 13150 13151 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13152 SLI_IOCB_RET_IOCB); 13153 if (retval == IOCB_SUCCESS) { 13154 timeout_req = msecs_to_jiffies(timeout * 1000); 13155 timeleft = wait_event_timeout(done_q, 13156 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13157 timeout_req); 13158 spin_lock_irqsave(&phba->hbalock, iflags); 13159 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13160 13161 /* 13162 * IOCB timed out. Inform the wake iocb wait 13163 * completion function and set local status 13164 */ 13165 13166 iocb_completed = false; 13167 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13168 } 13169 spin_unlock_irqrestore(&phba->hbalock, iflags); 13170 if (iocb_completed) { 13171 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13172 "0331 IOCB wake signaled\n"); 13173 /* Note: we are not indicating if the IOCB has a success 13174 * status or not - that's for the caller to check. 13175 * IOCB_SUCCESS means just that the command was sent and 13176 * completed. Not that it completed successfully. 13177 * */ 13178 } else if (timeleft == 0) { 13179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13180 "0338 IOCB wait timeout error - no " 13181 "wake response Data x%x\n", timeout); 13182 retval = IOCB_TIMEDOUT; 13183 } else { 13184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13185 "0330 IOCB wake NOT set, " 13186 "Data x%x x%lx\n", 13187 timeout, (timeleft / jiffies)); 13188 retval = IOCB_TIMEDOUT; 13189 } 13190 } else if (retval == IOCB_BUSY) { 13191 if (phba->cfg_log_verbose & LOG_SLI) { 13192 list_for_each_entry(iocb, &pring->txq, list) { 13193 txq_cnt++; 13194 } 13195 list_for_each_entry(iocb, &pring->txcmplq, list) { 13196 txcmplq_cnt++; 13197 } 13198 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13199 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13200 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13201 } 13202 return retval; 13203 } else { 13204 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13205 "0332 IOCB wait issue failed, Data x%x\n", 13206 retval); 13207 retval = IOCB_ERROR; 13208 } 13209 13210 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13211 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13212 return IOCB_ERROR; 13213 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13214 writel(creg_val, phba->HCregaddr); 13215 readl(phba->HCregaddr); /* flush */ 13216 } 13217 13218 if (prspiocbq) 13219 piocb->rsp_iocb = NULL; 13220 13221 piocb->context_un.wait_queue = NULL; 13222 piocb->cmd_cmpl = NULL; 13223 return retval; 13224 } 13225 13226 /** 13227 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13228 * @phba: Pointer to HBA context object. 13229 * @pmboxq: Pointer to driver mailbox object. 13230 * @timeout: Timeout in number of seconds. 13231 * 13232 * This function issues the mailbox to firmware and waits for the 13233 * mailbox command to complete. If the mailbox command is not 13234 * completed within timeout seconds, it returns MBX_TIMEOUT. 13235 * The function waits for the mailbox completion using an 13236 * interruptible wait. If the thread is woken up due to a 13237 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13238 * should not free the mailbox resources, if this function returns 13239 * MBX_TIMEOUT. 13240 * This function will sleep while waiting for mailbox completion. 13241 * So, this function should not be called from any context which 13242 * does not allow sleeping. Due to the same reason, this function 13243 * cannot be called with interrupt disabled. 13244 * This function assumes that the mailbox completion occurs while 13245 * this function sleep. So, this function cannot be called from 13246 * the worker thread which processes mailbox completion. 13247 * This function is called in the context of HBA management 13248 * applications. 13249 * This function returns MBX_SUCCESS when successful. 13250 * This function is called with no lock held. 13251 **/ 13252 int 13253 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13254 uint32_t timeout) 13255 { 13256 struct completion mbox_done; 13257 int retval; 13258 unsigned long flag; 13259 13260 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13261 /* setup wake call as IOCB callback */ 13262 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13263 13264 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13265 init_completion(&mbox_done); 13266 pmboxq->ctx_u.mbox_wait = &mbox_done; 13267 /* now issue the command */ 13268 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13269 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13270 wait_for_completion_timeout(&mbox_done, 13271 msecs_to_jiffies(timeout * 1000)); 13272 13273 spin_lock_irqsave(&phba->hbalock, flag); 13274 pmboxq->ctx_u.mbox_wait = NULL; 13275 /* 13276 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13277 * else do not free the resources. 13278 */ 13279 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13280 retval = MBX_SUCCESS; 13281 } else { 13282 retval = MBX_TIMEOUT; 13283 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13284 } 13285 spin_unlock_irqrestore(&phba->hbalock, flag); 13286 } 13287 return retval; 13288 } 13289 13290 /** 13291 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13292 * @phba: Pointer to HBA context. 13293 * @mbx_action: Mailbox shutdown options. 13294 * 13295 * This function is called to shutdown the driver's mailbox sub-system. 13296 * It first marks the mailbox sub-system is in a block state to prevent 13297 * the asynchronous mailbox command from issued off the pending mailbox 13298 * command queue. If the mailbox command sub-system shutdown is due to 13299 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13300 * the mailbox sub-system flush routine to forcefully bring down the 13301 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13302 * as with offline or HBA function reset), this routine will wait for the 13303 * outstanding mailbox command to complete before invoking the mailbox 13304 * sub-system flush routine to gracefully bring down mailbox sub-system. 13305 **/ 13306 void 13307 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13308 { 13309 struct lpfc_sli *psli = &phba->sli; 13310 unsigned long timeout; 13311 13312 if (mbx_action == LPFC_MBX_NO_WAIT) { 13313 /* delay 100ms for port state */ 13314 msleep(100); 13315 lpfc_sli_mbox_sys_flush(phba); 13316 return; 13317 } 13318 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13319 13320 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13321 local_bh_disable(); 13322 13323 spin_lock_irq(&phba->hbalock); 13324 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13325 13326 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13327 /* Determine how long we might wait for the active mailbox 13328 * command to be gracefully completed by firmware. 13329 */ 13330 if (phba->sli.mbox_active) 13331 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13332 phba->sli.mbox_active) * 13333 1000) + jiffies; 13334 spin_unlock_irq(&phba->hbalock); 13335 13336 /* Enable softirqs again, done with phba->hbalock */ 13337 local_bh_enable(); 13338 13339 while (phba->sli.mbox_active) { 13340 /* Check active mailbox complete status every 2ms */ 13341 msleep(2); 13342 if (time_after(jiffies, timeout)) 13343 /* Timeout, let the mailbox flush routine to 13344 * forcefully release active mailbox command 13345 */ 13346 break; 13347 } 13348 } else { 13349 spin_unlock_irq(&phba->hbalock); 13350 13351 /* Enable softirqs again, done with phba->hbalock */ 13352 local_bh_enable(); 13353 } 13354 13355 lpfc_sli_mbox_sys_flush(phba); 13356 } 13357 13358 /** 13359 * lpfc_sli_eratt_read - read sli-3 error attention events 13360 * @phba: Pointer to HBA context. 13361 * 13362 * This function is called to read the SLI3 device error attention registers 13363 * for possible error attention events. The caller must hold the hostlock 13364 * with spin_lock_irq(). 13365 * 13366 * This function returns 1 when there is Error Attention in the Host Attention 13367 * Register and returns 0 otherwise. 13368 **/ 13369 static int 13370 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13371 { 13372 uint32_t ha_copy; 13373 13374 /* Read chip Host Attention (HA) register */ 13375 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13376 goto unplug_err; 13377 13378 if (ha_copy & HA_ERATT) { 13379 /* Read host status register to retrieve error event */ 13380 if (lpfc_sli_read_hs(phba)) 13381 goto unplug_err; 13382 13383 /* Check if there is a deferred error condition is active */ 13384 if ((HS_FFER1 & phba->work_hs) && 13385 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13386 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13387 set_bit(DEFER_ERATT, &phba->hba_flag); 13388 /* Clear all interrupt enable conditions */ 13389 writel(0, phba->HCregaddr); 13390 readl(phba->HCregaddr); 13391 } 13392 13393 /* Set the driver HA work bitmap */ 13394 phba->work_ha |= HA_ERATT; 13395 /* Indicate polling handles this ERATT */ 13396 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13397 return 1; 13398 } 13399 return 0; 13400 13401 unplug_err: 13402 /* Set the driver HS work bitmap */ 13403 phba->work_hs |= UNPLUG_ERR; 13404 /* Set the driver HA work bitmap */ 13405 phba->work_ha |= HA_ERATT; 13406 /* Indicate polling handles this ERATT */ 13407 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13408 return 1; 13409 } 13410 13411 /** 13412 * lpfc_sli4_eratt_read - read sli-4 error attention events 13413 * @phba: Pointer to HBA context. 13414 * 13415 * This function is called to read the SLI4 device error attention registers 13416 * for possible error attention events. The caller must hold the hostlock 13417 * with spin_lock_irq(). 13418 * 13419 * This function returns 1 when there is Error Attention in the Host Attention 13420 * Register and returns 0 otherwise. 13421 **/ 13422 static int 13423 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13424 { 13425 uint32_t uerr_sta_hi, uerr_sta_lo; 13426 uint32_t if_type, portsmphr; 13427 struct lpfc_register portstat_reg; 13428 u32 logmask; 13429 13430 /* 13431 * For now, use the SLI4 device internal unrecoverable error 13432 * registers for error attention. This can be changed later. 13433 */ 13434 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13435 switch (if_type) { 13436 case LPFC_SLI_INTF_IF_TYPE_0: 13437 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13438 &uerr_sta_lo) || 13439 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13440 &uerr_sta_hi)) { 13441 phba->work_hs |= UNPLUG_ERR; 13442 phba->work_ha |= HA_ERATT; 13443 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13444 return 1; 13445 } 13446 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13447 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13449 "1423 HBA Unrecoverable error: " 13450 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13451 "ue_mask_lo_reg=0x%x, " 13452 "ue_mask_hi_reg=0x%x\n", 13453 uerr_sta_lo, uerr_sta_hi, 13454 phba->sli4_hba.ue_mask_lo, 13455 phba->sli4_hba.ue_mask_hi); 13456 phba->work_status[0] = uerr_sta_lo; 13457 phba->work_status[1] = uerr_sta_hi; 13458 phba->work_ha |= HA_ERATT; 13459 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13460 return 1; 13461 } 13462 break; 13463 case LPFC_SLI_INTF_IF_TYPE_2: 13464 case LPFC_SLI_INTF_IF_TYPE_6: 13465 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13466 &portstat_reg.word0) || 13467 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13468 &portsmphr)){ 13469 phba->work_hs |= UNPLUG_ERR; 13470 phba->work_ha |= HA_ERATT; 13471 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13472 return 1; 13473 } 13474 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13475 phba->work_status[0] = 13476 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13477 phba->work_status[1] = 13478 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13479 logmask = LOG_TRACE_EVENT; 13480 if (phba->work_status[0] == 13481 SLIPORT_ERR1_REG_ERR_CODE_2 && 13482 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13483 logmask = LOG_SLI; 13484 lpfc_printf_log(phba, KERN_ERR, logmask, 13485 "2885 Port Status Event: " 13486 "port status reg 0x%x, " 13487 "port smphr reg 0x%x, " 13488 "error 1=0x%x, error 2=0x%x\n", 13489 portstat_reg.word0, 13490 portsmphr, 13491 phba->work_status[0], 13492 phba->work_status[1]); 13493 phba->work_ha |= HA_ERATT; 13494 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13495 return 1; 13496 } 13497 break; 13498 case LPFC_SLI_INTF_IF_TYPE_1: 13499 default: 13500 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13501 "2886 HBA Error Attention on unsupported " 13502 "if type %d.", if_type); 13503 return 1; 13504 } 13505 13506 return 0; 13507 } 13508 13509 /** 13510 * lpfc_sli_check_eratt - check error attention events 13511 * @phba: Pointer to HBA context. 13512 * 13513 * This function is called from timer soft interrupt context to check HBA's 13514 * error attention register bit for error attention events. 13515 * 13516 * This function returns 1 when there is Error Attention in the Host Attention 13517 * Register and returns 0 otherwise. 13518 **/ 13519 int 13520 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13521 { 13522 uint32_t ha_copy; 13523 13524 /* If somebody is waiting to handle an eratt, don't process it 13525 * here. The brdkill function will do this. 13526 */ 13527 if (phba->link_flag & LS_IGNORE_ERATT) 13528 return 0; 13529 13530 /* Check if interrupt handler handles this ERATT */ 13531 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13532 /* Interrupt handler has handled ERATT */ 13533 return 0; 13534 13535 /* 13536 * If there is deferred error attention, do not check for error 13537 * attention 13538 */ 13539 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13540 return 0; 13541 13542 spin_lock_irq(&phba->hbalock); 13543 /* If PCI channel is offline, don't process it */ 13544 if (unlikely(pci_channel_offline(phba->pcidev))) { 13545 spin_unlock_irq(&phba->hbalock); 13546 return 0; 13547 } 13548 13549 switch (phba->sli_rev) { 13550 case LPFC_SLI_REV2: 13551 case LPFC_SLI_REV3: 13552 /* Read chip Host Attention (HA) register */ 13553 ha_copy = lpfc_sli_eratt_read(phba); 13554 break; 13555 case LPFC_SLI_REV4: 13556 /* Read device Uncoverable Error (UERR) registers */ 13557 ha_copy = lpfc_sli4_eratt_read(phba); 13558 break; 13559 default: 13560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13561 "0299 Invalid SLI revision (%d)\n", 13562 phba->sli_rev); 13563 ha_copy = 0; 13564 break; 13565 } 13566 spin_unlock_irq(&phba->hbalock); 13567 13568 return ha_copy; 13569 } 13570 13571 /** 13572 * lpfc_intr_state_check - Check device state for interrupt handling 13573 * @phba: Pointer to HBA context. 13574 * 13575 * This inline routine checks whether a device or its PCI slot is in a state 13576 * that the interrupt should be handled. 13577 * 13578 * This function returns 0 if the device or the PCI slot is in a state that 13579 * interrupt should be handled, otherwise -EIO. 13580 */ 13581 static inline int 13582 lpfc_intr_state_check(struct lpfc_hba *phba) 13583 { 13584 /* If the pci channel is offline, ignore all the interrupts */ 13585 if (unlikely(pci_channel_offline(phba->pcidev))) 13586 return -EIO; 13587 13588 /* Update device level interrupt statistics */ 13589 phba->sli.slistat.sli_intr++; 13590 13591 /* Ignore all interrupts during initialization. */ 13592 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13593 return -EIO; 13594 13595 return 0; 13596 } 13597 13598 /** 13599 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13600 * @irq: Interrupt number. 13601 * @dev_id: The device context pointer. 13602 * 13603 * This function is directly called from the PCI layer as an interrupt 13604 * service routine when device with SLI-3 interface spec is enabled with 13605 * MSI-X multi-message interrupt mode and there are slow-path events in 13606 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13607 * interrupt mode, this function is called as part of the device-level 13608 * interrupt handler. When the PCI slot is in error recovery or the HBA 13609 * is undergoing initialization, the interrupt handler will not process 13610 * the interrupt. The link attention and ELS ring attention events are 13611 * handled by the worker thread. The interrupt handler signals the worker 13612 * thread and returns for these events. This function is called without 13613 * any lock held. It gets the hbalock to access and update SLI data 13614 * structures. 13615 * 13616 * This function returns IRQ_HANDLED when interrupt is handled else it 13617 * returns IRQ_NONE. 13618 **/ 13619 irqreturn_t 13620 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13621 { 13622 struct lpfc_hba *phba; 13623 uint32_t ha_copy, hc_copy; 13624 uint32_t work_ha_copy; 13625 unsigned long status; 13626 unsigned long iflag; 13627 uint32_t control; 13628 13629 MAILBOX_t *mbox, *pmbox; 13630 struct lpfc_vport *vport; 13631 struct lpfc_nodelist *ndlp; 13632 struct lpfc_dmabuf *mp; 13633 LPFC_MBOXQ_t *pmb; 13634 int rc; 13635 13636 /* 13637 * Get the driver's phba structure from the dev_id and 13638 * assume the HBA is not interrupting. 13639 */ 13640 phba = (struct lpfc_hba *)dev_id; 13641 13642 if (unlikely(!phba)) 13643 return IRQ_NONE; 13644 13645 /* 13646 * Stuff needs to be attented to when this function is invoked as an 13647 * individual interrupt handler in MSI-X multi-message interrupt mode 13648 */ 13649 if (phba->intr_type == MSIX) { 13650 /* Check device state for handling interrupt */ 13651 if (lpfc_intr_state_check(phba)) 13652 return IRQ_NONE; 13653 /* Need to read HA REG for slow-path events */ 13654 spin_lock_irqsave(&phba->hbalock, iflag); 13655 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13656 goto unplug_error; 13657 /* If somebody is waiting to handle an eratt don't process it 13658 * here. The brdkill function will do this. 13659 */ 13660 if (phba->link_flag & LS_IGNORE_ERATT) 13661 ha_copy &= ~HA_ERATT; 13662 /* Check the need for handling ERATT in interrupt handler */ 13663 if (ha_copy & HA_ERATT) { 13664 if (test_and_set_bit(HBA_ERATT_HANDLED, 13665 &phba->hba_flag)) 13666 /* ERATT polling has handled ERATT */ 13667 ha_copy &= ~HA_ERATT; 13668 } 13669 13670 /* 13671 * If there is deferred error attention, do not check for any 13672 * interrupt. 13673 */ 13674 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13675 spin_unlock_irqrestore(&phba->hbalock, iflag); 13676 return IRQ_NONE; 13677 } 13678 13679 /* Clear up only attention source related to slow-path */ 13680 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13681 goto unplug_error; 13682 13683 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13684 HC_LAINT_ENA | HC_ERINT_ENA), 13685 phba->HCregaddr); 13686 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13687 phba->HAregaddr); 13688 writel(hc_copy, phba->HCregaddr); 13689 readl(phba->HAregaddr); /* flush */ 13690 spin_unlock_irqrestore(&phba->hbalock, iflag); 13691 } else 13692 ha_copy = phba->ha_copy; 13693 13694 work_ha_copy = ha_copy & phba->work_ha_mask; 13695 13696 if (work_ha_copy) { 13697 if (work_ha_copy & HA_LATT) { 13698 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13699 /* 13700 * Turn off Link Attention interrupts 13701 * until CLEAR_LA done 13702 */ 13703 spin_lock_irqsave(&phba->hbalock, iflag); 13704 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13705 if (lpfc_readl(phba->HCregaddr, &control)) 13706 goto unplug_error; 13707 control &= ~HC_LAINT_ENA; 13708 writel(control, phba->HCregaddr); 13709 readl(phba->HCregaddr); /* flush */ 13710 spin_unlock_irqrestore(&phba->hbalock, iflag); 13711 } 13712 else 13713 work_ha_copy &= ~HA_LATT; 13714 } 13715 13716 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13717 /* 13718 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13719 * the only slow ring. 13720 */ 13721 status = (work_ha_copy & 13722 (HA_RXMASK << (4*LPFC_ELS_RING))); 13723 status >>= (4*LPFC_ELS_RING); 13724 if (status & HA_RXMASK) { 13725 spin_lock_irqsave(&phba->hbalock, iflag); 13726 if (lpfc_readl(phba->HCregaddr, &control)) 13727 goto unplug_error; 13728 13729 lpfc_debugfs_slow_ring_trc(phba, 13730 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13731 control, status, 13732 (uint32_t)phba->sli.slistat.sli_intr); 13733 13734 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13735 lpfc_debugfs_slow_ring_trc(phba, 13736 "ISR Disable ring:" 13737 "pwork:x%x hawork:x%x wait:x%x", 13738 phba->work_ha, work_ha_copy, 13739 (uint32_t)((unsigned long) 13740 &phba->work_waitq)); 13741 13742 control &= 13743 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13744 writel(control, phba->HCregaddr); 13745 readl(phba->HCregaddr); /* flush */ 13746 } 13747 else { 13748 lpfc_debugfs_slow_ring_trc(phba, 13749 "ISR slow ring: pwork:" 13750 "x%x hawork:x%x wait:x%x", 13751 phba->work_ha, work_ha_copy, 13752 (uint32_t)((unsigned long) 13753 &phba->work_waitq)); 13754 } 13755 spin_unlock_irqrestore(&phba->hbalock, iflag); 13756 } 13757 } 13758 spin_lock_irqsave(&phba->hbalock, iflag); 13759 if (work_ha_copy & HA_ERATT) { 13760 if (lpfc_sli_read_hs(phba)) 13761 goto unplug_error; 13762 /* 13763 * Check if there is a deferred error condition 13764 * is active 13765 */ 13766 if ((HS_FFER1 & phba->work_hs) && 13767 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13768 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13769 phba->work_hs)) { 13770 set_bit(DEFER_ERATT, &phba->hba_flag); 13771 /* Clear all interrupt enable conditions */ 13772 writel(0, phba->HCregaddr); 13773 readl(phba->HCregaddr); 13774 } 13775 } 13776 13777 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13778 pmb = phba->sli.mbox_active; 13779 pmbox = &pmb->u.mb; 13780 mbox = phba->mbox; 13781 vport = pmb->vport; 13782 13783 /* First check out the status word */ 13784 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13785 if (pmbox->mbxOwner != OWN_HOST) { 13786 spin_unlock_irqrestore(&phba->hbalock, iflag); 13787 /* 13788 * Stray Mailbox Interrupt, mbxCommand <cmd> 13789 * mbxStatus <status> 13790 */ 13791 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13792 "(%d):0304 Stray Mailbox " 13793 "Interrupt mbxCommand x%x " 13794 "mbxStatus x%x\n", 13795 (vport ? vport->vpi : 0), 13796 pmbox->mbxCommand, 13797 pmbox->mbxStatus); 13798 /* clear mailbox attention bit */ 13799 work_ha_copy &= ~HA_MBATT; 13800 } else { 13801 phba->sli.mbox_active = NULL; 13802 spin_unlock_irqrestore(&phba->hbalock, iflag); 13803 phba->last_completion_time = jiffies; 13804 del_timer(&phba->sli.mbox_tmo); 13805 if (pmb->mbox_cmpl) { 13806 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13807 MAILBOX_CMD_SIZE); 13808 if (pmb->out_ext_byte_len && 13809 pmb->ext_buf) 13810 lpfc_sli_pcimem_bcopy( 13811 phba->mbox_ext, 13812 pmb->ext_buf, 13813 pmb->out_ext_byte_len); 13814 } 13815 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13816 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13817 13818 lpfc_debugfs_disc_trc(vport, 13819 LPFC_DISC_TRC_MBOX_VPORT, 13820 "MBOX dflt rpi: : " 13821 "status:x%x rpi:x%x", 13822 (uint32_t)pmbox->mbxStatus, 13823 pmbox->un.varWords[0], 0); 13824 13825 if (!pmbox->mbxStatus) { 13826 mp = pmb->ctx_buf; 13827 ndlp = pmb->ctx_ndlp; 13828 13829 /* Reg_LOGIN of dflt RPI was 13830 * successful. new lets get 13831 * rid of the RPI using the 13832 * same mbox buffer. 13833 */ 13834 lpfc_unreg_login(phba, 13835 vport->vpi, 13836 pmbox->un.varWords[0], 13837 pmb); 13838 pmb->mbox_cmpl = 13839 lpfc_mbx_cmpl_dflt_rpi; 13840 pmb->ctx_buf = mp; 13841 pmb->ctx_ndlp = ndlp; 13842 pmb->vport = vport; 13843 rc = lpfc_sli_issue_mbox(phba, 13844 pmb, 13845 MBX_NOWAIT); 13846 if (rc != MBX_BUSY) 13847 lpfc_printf_log(phba, 13848 KERN_ERR, 13849 LOG_TRACE_EVENT, 13850 "0350 rc should have" 13851 "been MBX_BUSY\n"); 13852 if (rc != MBX_NOT_FINISHED) 13853 goto send_current_mbox; 13854 } 13855 } 13856 spin_lock_irqsave( 13857 &phba->pport->work_port_lock, 13858 iflag); 13859 phba->pport->work_port_events &= 13860 ~WORKER_MBOX_TMO; 13861 spin_unlock_irqrestore( 13862 &phba->pport->work_port_lock, 13863 iflag); 13864 13865 /* Do NOT queue MBX_HEARTBEAT to the worker 13866 * thread for processing. 13867 */ 13868 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13869 /* Process mbox now */ 13870 phba->sli.mbox_active = NULL; 13871 phba->sli.sli_flag &= 13872 ~LPFC_SLI_MBOX_ACTIVE; 13873 if (pmb->mbox_cmpl) 13874 pmb->mbox_cmpl(phba, pmb); 13875 } else { 13876 /* Queue to worker thread to process */ 13877 lpfc_mbox_cmpl_put(phba, pmb); 13878 } 13879 } 13880 } else 13881 spin_unlock_irqrestore(&phba->hbalock, iflag); 13882 13883 if ((work_ha_copy & HA_MBATT) && 13884 (phba->sli.mbox_active == NULL)) { 13885 send_current_mbox: 13886 /* Process next mailbox command if there is one */ 13887 do { 13888 rc = lpfc_sli_issue_mbox(phba, NULL, 13889 MBX_NOWAIT); 13890 } while (rc == MBX_NOT_FINISHED); 13891 if (rc != MBX_SUCCESS) 13892 lpfc_printf_log(phba, KERN_ERR, 13893 LOG_TRACE_EVENT, 13894 "0349 rc should be " 13895 "MBX_SUCCESS\n"); 13896 } 13897 13898 spin_lock_irqsave(&phba->hbalock, iflag); 13899 phba->work_ha |= work_ha_copy; 13900 spin_unlock_irqrestore(&phba->hbalock, iflag); 13901 lpfc_worker_wake_up(phba); 13902 } 13903 return IRQ_HANDLED; 13904 unplug_error: 13905 spin_unlock_irqrestore(&phba->hbalock, iflag); 13906 return IRQ_HANDLED; 13907 13908 } /* lpfc_sli_sp_intr_handler */ 13909 13910 /** 13911 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13912 * @irq: Interrupt number. 13913 * @dev_id: The device context pointer. 13914 * 13915 * This function is directly called from the PCI layer as an interrupt 13916 * service routine when device with SLI-3 interface spec is enabled with 13917 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13918 * ring event in the HBA. However, when the device is enabled with either 13919 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13920 * device-level interrupt handler. When the PCI slot is in error recovery 13921 * or the HBA is undergoing initialization, the interrupt handler will not 13922 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13923 * the intrrupt context. This function is called without any lock held. 13924 * It gets the hbalock to access and update SLI data structures. 13925 * 13926 * This function returns IRQ_HANDLED when interrupt is handled else it 13927 * returns IRQ_NONE. 13928 **/ 13929 irqreturn_t 13930 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13931 { 13932 struct lpfc_hba *phba; 13933 uint32_t ha_copy; 13934 unsigned long status; 13935 unsigned long iflag; 13936 struct lpfc_sli_ring *pring; 13937 13938 /* Get the driver's phba structure from the dev_id and 13939 * assume the HBA is not interrupting. 13940 */ 13941 phba = (struct lpfc_hba *) dev_id; 13942 13943 if (unlikely(!phba)) 13944 return IRQ_NONE; 13945 13946 /* 13947 * Stuff needs to be attented to when this function is invoked as an 13948 * individual interrupt handler in MSI-X multi-message interrupt mode 13949 */ 13950 if (phba->intr_type == MSIX) { 13951 /* Check device state for handling interrupt */ 13952 if (lpfc_intr_state_check(phba)) 13953 return IRQ_NONE; 13954 /* Need to read HA REG for FCP ring and other ring events */ 13955 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13956 return IRQ_HANDLED; 13957 13958 /* 13959 * If there is deferred error attention, do not check for 13960 * any interrupt. 13961 */ 13962 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13963 return IRQ_NONE; 13964 13965 /* Clear up only attention source related to fast-path */ 13966 spin_lock_irqsave(&phba->hbalock, iflag); 13967 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13968 phba->HAregaddr); 13969 readl(phba->HAregaddr); /* flush */ 13970 spin_unlock_irqrestore(&phba->hbalock, iflag); 13971 } else 13972 ha_copy = phba->ha_copy; 13973 13974 /* 13975 * Process all events on FCP ring. Take the optimized path for FCP IO. 13976 */ 13977 ha_copy &= ~(phba->work_ha_mask); 13978 13979 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13980 status >>= (4*LPFC_FCP_RING); 13981 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13982 if (status & HA_RXMASK) 13983 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13984 13985 if (phba->cfg_multi_ring_support == 2) { 13986 /* 13987 * Process all events on extra ring. Take the optimized path 13988 * for extra ring IO. 13989 */ 13990 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13991 status >>= (4*LPFC_EXTRA_RING); 13992 if (status & HA_RXMASK) { 13993 lpfc_sli_handle_fast_ring_event(phba, 13994 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13995 status); 13996 } 13997 } 13998 return IRQ_HANDLED; 13999 } /* lpfc_sli_fp_intr_handler */ 14000 14001 /** 14002 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14003 * @irq: Interrupt number. 14004 * @dev_id: The device context pointer. 14005 * 14006 * This function is the HBA device-level interrupt handler to device with 14007 * SLI-3 interface spec, called from the PCI layer when either MSI or 14008 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14009 * requires driver attention. This function invokes the slow-path interrupt 14010 * attention handling function and fast-path interrupt attention handling 14011 * function in turn to process the relevant HBA attention events. This 14012 * function is called without any lock held. It gets the hbalock to access 14013 * and update SLI data structures. 14014 * 14015 * This function returns IRQ_HANDLED when interrupt is handled, else it 14016 * returns IRQ_NONE. 14017 **/ 14018 irqreturn_t 14019 lpfc_sli_intr_handler(int irq, void *dev_id) 14020 { 14021 struct lpfc_hba *phba; 14022 irqreturn_t sp_irq_rc, fp_irq_rc; 14023 unsigned long status1, status2; 14024 uint32_t hc_copy; 14025 14026 /* 14027 * Get the driver's phba structure from the dev_id and 14028 * assume the HBA is not interrupting. 14029 */ 14030 phba = (struct lpfc_hba *) dev_id; 14031 14032 if (unlikely(!phba)) 14033 return IRQ_NONE; 14034 14035 /* Check device state for handling interrupt */ 14036 if (lpfc_intr_state_check(phba)) 14037 return IRQ_NONE; 14038 14039 spin_lock(&phba->hbalock); 14040 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14041 spin_unlock(&phba->hbalock); 14042 return IRQ_HANDLED; 14043 } 14044 14045 if (unlikely(!phba->ha_copy)) { 14046 spin_unlock(&phba->hbalock); 14047 return IRQ_NONE; 14048 } else if (phba->ha_copy & HA_ERATT) { 14049 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14050 /* ERATT polling has handled ERATT */ 14051 phba->ha_copy &= ~HA_ERATT; 14052 } 14053 14054 /* 14055 * If there is deferred error attention, do not check for any interrupt. 14056 */ 14057 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14058 spin_unlock(&phba->hbalock); 14059 return IRQ_NONE; 14060 } 14061 14062 /* Clear attention sources except link and error attentions */ 14063 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14064 spin_unlock(&phba->hbalock); 14065 return IRQ_HANDLED; 14066 } 14067 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14068 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14069 phba->HCregaddr); 14070 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14071 writel(hc_copy, phba->HCregaddr); 14072 readl(phba->HAregaddr); /* flush */ 14073 spin_unlock(&phba->hbalock); 14074 14075 /* 14076 * Invokes slow-path host attention interrupt handling as appropriate. 14077 */ 14078 14079 /* status of events with mailbox and link attention */ 14080 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14081 14082 /* status of events with ELS ring */ 14083 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14084 status2 >>= (4*LPFC_ELS_RING); 14085 14086 if (status1 || (status2 & HA_RXMASK)) 14087 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14088 else 14089 sp_irq_rc = IRQ_NONE; 14090 14091 /* 14092 * Invoke fast-path host attention interrupt handling as appropriate. 14093 */ 14094 14095 /* status of events with FCP ring */ 14096 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14097 status1 >>= (4*LPFC_FCP_RING); 14098 14099 /* status of events with extra ring */ 14100 if (phba->cfg_multi_ring_support == 2) { 14101 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14102 status2 >>= (4*LPFC_EXTRA_RING); 14103 } else 14104 status2 = 0; 14105 14106 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14107 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14108 else 14109 fp_irq_rc = IRQ_NONE; 14110 14111 /* Return device-level interrupt handling status */ 14112 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14113 } /* lpfc_sli_intr_handler */ 14114 14115 /** 14116 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14117 * @phba: pointer to lpfc hba data structure. 14118 * 14119 * This routine is invoked by the worker thread to process all the pending 14120 * SLI4 els abort xri events. 14121 **/ 14122 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14123 { 14124 struct lpfc_cq_event *cq_event; 14125 unsigned long iflags; 14126 14127 /* First, declare the els xri abort event has been handled */ 14128 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14129 14130 /* Now, handle all the els xri abort events */ 14131 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14132 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14133 /* Get the first event from the head of the event queue */ 14134 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14135 cq_event, struct lpfc_cq_event, list); 14136 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14137 iflags); 14138 /* Notify aborted XRI for ELS work queue */ 14139 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14140 14141 /* Free the event processed back to the free pool */ 14142 lpfc_sli4_cq_event_release(phba, cq_event); 14143 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14144 iflags); 14145 } 14146 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14147 } 14148 14149 /** 14150 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14151 * @phba: Pointer to HBA context object. 14152 * @irspiocbq: Pointer to work-queue completion queue entry. 14153 * 14154 * This routine handles an ELS work-queue completion event and construct 14155 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14156 * discovery engine to handle. 14157 * 14158 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14159 **/ 14160 static struct lpfc_iocbq * 14161 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14162 struct lpfc_iocbq *irspiocbq) 14163 { 14164 struct lpfc_sli_ring *pring; 14165 struct lpfc_iocbq *cmdiocbq; 14166 struct lpfc_wcqe_complete *wcqe; 14167 unsigned long iflags; 14168 14169 pring = lpfc_phba_elsring(phba); 14170 if (unlikely(!pring)) 14171 return NULL; 14172 14173 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14174 spin_lock_irqsave(&pring->ring_lock, iflags); 14175 pring->stats.iocb_event++; 14176 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14177 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14178 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14179 if (unlikely(!cmdiocbq)) { 14180 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14181 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14182 "0386 ELS complete with no corresponding " 14183 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14184 wcqe->word0, wcqe->total_data_placed, 14185 wcqe->parameter, wcqe->word3); 14186 lpfc_sli_release_iocbq(phba, irspiocbq); 14187 return NULL; 14188 } 14189 14190 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14191 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14192 14193 /* Put the iocb back on the txcmplq */ 14194 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14195 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14196 14197 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14198 spin_lock_irqsave(&phba->hbalock, iflags); 14199 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14200 spin_unlock_irqrestore(&phba->hbalock, iflags); 14201 } 14202 14203 return irspiocbq; 14204 } 14205 14206 inline struct lpfc_cq_event * 14207 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14208 { 14209 struct lpfc_cq_event *cq_event; 14210 14211 /* Allocate a new internal CQ_EVENT entry */ 14212 cq_event = lpfc_sli4_cq_event_alloc(phba); 14213 if (!cq_event) { 14214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14215 "0602 Failed to alloc CQ_EVENT entry\n"); 14216 return NULL; 14217 } 14218 14219 /* Move the CQE into the event */ 14220 memcpy(&cq_event->cqe, entry, size); 14221 return cq_event; 14222 } 14223 14224 /** 14225 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14226 * @phba: Pointer to HBA context object. 14227 * @mcqe: Pointer to mailbox completion queue entry. 14228 * 14229 * This routine process a mailbox completion queue entry with asynchronous 14230 * event. 14231 * 14232 * Return: true if work posted to worker thread, otherwise false. 14233 **/ 14234 static bool 14235 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14236 { 14237 struct lpfc_cq_event *cq_event; 14238 unsigned long iflags; 14239 14240 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14241 "0392 Async Event: word0:x%x, word1:x%x, " 14242 "word2:x%x, word3:x%x\n", mcqe->word0, 14243 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14244 14245 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14246 if (!cq_event) 14247 return false; 14248 14249 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14250 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14251 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14252 14253 /* Set the async event flag */ 14254 set_bit(ASYNC_EVENT, &phba->hba_flag); 14255 14256 return true; 14257 } 14258 14259 /** 14260 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14261 * @phba: Pointer to HBA context object. 14262 * @mcqe: Pointer to mailbox completion queue entry. 14263 * 14264 * This routine process a mailbox completion queue entry with mailbox 14265 * completion event. 14266 * 14267 * Return: true if work posted to worker thread, otherwise false. 14268 **/ 14269 static bool 14270 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14271 { 14272 uint32_t mcqe_status; 14273 MAILBOX_t *mbox, *pmbox; 14274 struct lpfc_mqe *mqe; 14275 struct lpfc_vport *vport; 14276 struct lpfc_nodelist *ndlp; 14277 struct lpfc_dmabuf *mp; 14278 unsigned long iflags; 14279 LPFC_MBOXQ_t *pmb; 14280 bool workposted = false; 14281 int rc; 14282 14283 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14284 if (!bf_get(lpfc_trailer_completed, mcqe)) 14285 goto out_no_mqe_complete; 14286 14287 /* Get the reference to the active mbox command */ 14288 spin_lock_irqsave(&phba->hbalock, iflags); 14289 pmb = phba->sli.mbox_active; 14290 if (unlikely(!pmb)) { 14291 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14292 "1832 No pending MBOX command to handle\n"); 14293 spin_unlock_irqrestore(&phba->hbalock, iflags); 14294 goto out_no_mqe_complete; 14295 } 14296 spin_unlock_irqrestore(&phba->hbalock, iflags); 14297 mqe = &pmb->u.mqe; 14298 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14299 mbox = phba->mbox; 14300 vport = pmb->vport; 14301 14302 /* Reset heartbeat timer */ 14303 phba->last_completion_time = jiffies; 14304 del_timer(&phba->sli.mbox_tmo); 14305 14306 /* Move mbox data to caller's mailbox region, do endian swapping */ 14307 if (pmb->mbox_cmpl && mbox) 14308 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14309 14310 /* 14311 * For mcqe errors, conditionally move a modified error code to 14312 * the mbox so that the error will not be missed. 14313 */ 14314 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14315 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14316 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14317 bf_set(lpfc_mqe_status, mqe, 14318 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14319 } 14320 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14321 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14322 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14323 "MBOX dflt rpi: status:x%x rpi:x%x", 14324 mcqe_status, 14325 pmbox->un.varWords[0], 0); 14326 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14327 mp = pmb->ctx_buf; 14328 ndlp = pmb->ctx_ndlp; 14329 14330 /* Reg_LOGIN of dflt RPI was successful. Mark the 14331 * node as having an UNREG_LOGIN in progress to stop 14332 * an unsolicited PLOGI from the same NPortId from 14333 * starting another mailbox transaction. 14334 */ 14335 spin_lock_irqsave(&ndlp->lock, iflags); 14336 ndlp->nlp_flag |= NLP_UNREG_INP; 14337 spin_unlock_irqrestore(&ndlp->lock, iflags); 14338 lpfc_unreg_login(phba, vport->vpi, 14339 pmbox->un.varWords[0], pmb); 14340 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14341 pmb->ctx_buf = mp; 14342 14343 /* No reference taken here. This is a default 14344 * RPI reg/immediate unreg cycle. The reference was 14345 * taken in the reg rpi path and is released when 14346 * this mailbox completes. 14347 */ 14348 pmb->ctx_ndlp = ndlp; 14349 pmb->vport = vport; 14350 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14351 if (rc != MBX_BUSY) 14352 lpfc_printf_log(phba, KERN_ERR, 14353 LOG_TRACE_EVENT, 14354 "0385 rc should " 14355 "have been MBX_BUSY\n"); 14356 if (rc != MBX_NOT_FINISHED) 14357 goto send_current_mbox; 14358 } 14359 } 14360 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14361 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14362 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14363 14364 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14365 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14366 spin_lock_irqsave(&phba->hbalock, iflags); 14367 /* Release the mailbox command posting token */ 14368 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14369 phba->sli.mbox_active = NULL; 14370 if (bf_get(lpfc_trailer_consumed, mcqe)) 14371 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14372 spin_unlock_irqrestore(&phba->hbalock, iflags); 14373 14374 /* Post the next mbox command, if there is one */ 14375 lpfc_sli4_post_async_mbox(phba); 14376 14377 /* Process cmpl now */ 14378 if (pmb->mbox_cmpl) 14379 pmb->mbox_cmpl(phba, pmb); 14380 return false; 14381 } 14382 14383 /* There is mailbox completion work to queue to the worker thread */ 14384 spin_lock_irqsave(&phba->hbalock, iflags); 14385 __lpfc_mbox_cmpl_put(phba, pmb); 14386 phba->work_ha |= HA_MBATT; 14387 spin_unlock_irqrestore(&phba->hbalock, iflags); 14388 workposted = true; 14389 14390 send_current_mbox: 14391 spin_lock_irqsave(&phba->hbalock, iflags); 14392 /* Release the mailbox command posting token */ 14393 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14394 /* Setting active mailbox pointer need to be in sync to flag clear */ 14395 phba->sli.mbox_active = NULL; 14396 if (bf_get(lpfc_trailer_consumed, mcqe)) 14397 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14398 spin_unlock_irqrestore(&phba->hbalock, iflags); 14399 /* Wake up worker thread to post the next pending mailbox command */ 14400 lpfc_worker_wake_up(phba); 14401 return workposted; 14402 14403 out_no_mqe_complete: 14404 spin_lock_irqsave(&phba->hbalock, iflags); 14405 if (bf_get(lpfc_trailer_consumed, mcqe)) 14406 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14407 spin_unlock_irqrestore(&phba->hbalock, iflags); 14408 return false; 14409 } 14410 14411 /** 14412 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14413 * @phba: Pointer to HBA context object. 14414 * @cq: Pointer to associated CQ 14415 * @cqe: Pointer to mailbox completion queue entry. 14416 * 14417 * This routine process a mailbox completion queue entry, it invokes the 14418 * proper mailbox complete handling or asynchronous event handling routine 14419 * according to the MCQE's async bit. 14420 * 14421 * Return: true if work posted to worker thread, otherwise false. 14422 **/ 14423 static bool 14424 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14425 struct lpfc_cqe *cqe) 14426 { 14427 struct lpfc_mcqe mcqe; 14428 bool workposted; 14429 14430 cq->CQ_mbox++; 14431 14432 /* Copy the mailbox MCQE and convert endian order as needed */ 14433 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14434 14435 /* Invoke the proper event handling routine */ 14436 if (!bf_get(lpfc_trailer_async, &mcqe)) 14437 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14438 else 14439 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14440 return workposted; 14441 } 14442 14443 /** 14444 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14445 * @phba: Pointer to HBA context object. 14446 * @cq: Pointer to associated CQ 14447 * @wcqe: Pointer to work-queue completion queue entry. 14448 * 14449 * This routine handles an ELS work-queue completion event. 14450 * 14451 * Return: true if work posted to worker thread, otherwise false. 14452 **/ 14453 static bool 14454 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14455 struct lpfc_wcqe_complete *wcqe) 14456 { 14457 struct lpfc_iocbq *irspiocbq; 14458 unsigned long iflags; 14459 struct lpfc_sli_ring *pring = cq->pring; 14460 int txq_cnt = 0; 14461 int txcmplq_cnt = 0; 14462 14463 /* Check for response status */ 14464 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14465 /* Log the error status */ 14466 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14467 "0357 ELS CQE error: status=x%x: " 14468 "CQE: %08x %08x %08x %08x\n", 14469 bf_get(lpfc_wcqe_c_status, wcqe), 14470 wcqe->word0, wcqe->total_data_placed, 14471 wcqe->parameter, wcqe->word3); 14472 } 14473 14474 /* Get an irspiocbq for later ELS response processing use */ 14475 irspiocbq = lpfc_sli_get_iocbq(phba); 14476 if (!irspiocbq) { 14477 if (!list_empty(&pring->txq)) 14478 txq_cnt++; 14479 if (!list_empty(&pring->txcmplq)) 14480 txcmplq_cnt++; 14481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14482 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14483 "els_txcmplq_cnt=%d\n", 14484 txq_cnt, phba->iocb_cnt, 14485 txcmplq_cnt); 14486 return false; 14487 } 14488 14489 /* Save off the slow-path queue event for work thread to process */ 14490 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14491 spin_lock_irqsave(&phba->hbalock, iflags); 14492 list_add_tail(&irspiocbq->cq_event.list, 14493 &phba->sli4_hba.sp_queue_event); 14494 spin_unlock_irqrestore(&phba->hbalock, iflags); 14495 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14496 14497 return true; 14498 } 14499 14500 /** 14501 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14502 * @phba: Pointer to HBA context object. 14503 * @wcqe: Pointer to work-queue completion queue entry. 14504 * 14505 * This routine handles slow-path WQ entry consumed event by invoking the 14506 * proper WQ release routine to the slow-path WQ. 14507 **/ 14508 static void 14509 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14510 struct lpfc_wcqe_release *wcqe) 14511 { 14512 /* sanity check on queue memory */ 14513 if (unlikely(!phba->sli4_hba.els_wq)) 14514 return; 14515 /* Check for the slow-path ELS work queue */ 14516 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14517 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14518 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14519 else 14520 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14521 "2579 Slow-path wqe consume event carries " 14522 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14523 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14524 phba->sli4_hba.els_wq->queue_id); 14525 } 14526 14527 /** 14528 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14529 * @phba: Pointer to HBA context object. 14530 * @cq: Pointer to a WQ completion queue. 14531 * @wcqe: Pointer to work-queue completion queue entry. 14532 * 14533 * This routine handles an XRI abort event. 14534 * 14535 * Return: true if work posted to worker thread, otherwise false. 14536 **/ 14537 static bool 14538 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14539 struct lpfc_queue *cq, 14540 struct sli4_wcqe_xri_aborted *wcqe) 14541 { 14542 bool workposted = false; 14543 struct lpfc_cq_event *cq_event; 14544 unsigned long iflags; 14545 14546 switch (cq->subtype) { 14547 case LPFC_IO: 14548 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14549 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14550 /* Notify aborted XRI for NVME work queue */ 14551 if (phba->nvmet_support) 14552 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14553 } 14554 workposted = false; 14555 break; 14556 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14557 case LPFC_ELS: 14558 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14559 if (!cq_event) { 14560 workposted = false; 14561 break; 14562 } 14563 cq_event->hdwq = cq->hdwq; 14564 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14565 iflags); 14566 list_add_tail(&cq_event->list, 14567 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14568 /* Set the els xri abort event flag */ 14569 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14570 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14571 iflags); 14572 workposted = true; 14573 break; 14574 default: 14575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14576 "0603 Invalid CQ subtype %d: " 14577 "%08x %08x %08x %08x\n", 14578 cq->subtype, wcqe->word0, wcqe->parameter, 14579 wcqe->word2, wcqe->word3); 14580 workposted = false; 14581 break; 14582 } 14583 return workposted; 14584 } 14585 14586 #define FC_RCTL_MDS_DIAGS 0xF4 14587 14588 /** 14589 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14590 * @phba: Pointer to HBA context object. 14591 * @rcqe: Pointer to receive-queue completion queue entry. 14592 * 14593 * This routine process a receive-queue completion queue entry. 14594 * 14595 * Return: true if work posted to worker thread, otherwise false. 14596 **/ 14597 static bool 14598 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14599 { 14600 bool workposted = false; 14601 struct fc_frame_header *fc_hdr; 14602 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14603 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14604 struct lpfc_nvmet_tgtport *tgtp; 14605 struct hbq_dmabuf *dma_buf; 14606 uint32_t status, rq_id; 14607 unsigned long iflags; 14608 14609 /* sanity check on queue memory */ 14610 if (unlikely(!hrq) || unlikely(!drq)) 14611 return workposted; 14612 14613 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14614 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14615 else 14616 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14617 if (rq_id != hrq->queue_id) 14618 goto out; 14619 14620 status = bf_get(lpfc_rcqe_status, rcqe); 14621 switch (status) { 14622 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14623 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14624 "2537 Receive Frame Truncated!!\n"); 14625 fallthrough; 14626 case FC_STATUS_RQ_SUCCESS: 14627 spin_lock_irqsave(&phba->hbalock, iflags); 14628 lpfc_sli4_rq_release(hrq, drq); 14629 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14630 if (!dma_buf) { 14631 hrq->RQ_no_buf_found++; 14632 spin_unlock_irqrestore(&phba->hbalock, iflags); 14633 goto out; 14634 } 14635 hrq->RQ_rcv_buf++; 14636 hrq->RQ_buf_posted--; 14637 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14638 14639 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14640 14641 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14642 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14643 spin_unlock_irqrestore(&phba->hbalock, iflags); 14644 /* Handle MDS Loopback frames */ 14645 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14646 lpfc_sli4_handle_mds_loopback(phba->pport, 14647 dma_buf); 14648 else 14649 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14650 break; 14651 } 14652 14653 /* save off the frame for the work thread to process */ 14654 list_add_tail(&dma_buf->cq_event.list, 14655 &phba->sli4_hba.sp_queue_event); 14656 spin_unlock_irqrestore(&phba->hbalock, iflags); 14657 /* Frame received */ 14658 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14659 workposted = true; 14660 break; 14661 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14662 if (phba->nvmet_support) { 14663 tgtp = phba->targetport->private; 14664 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14665 "6402 RQE Error x%x, posted %d err_cnt " 14666 "%d: %x %x %x\n", 14667 status, hrq->RQ_buf_posted, 14668 hrq->RQ_no_posted_buf, 14669 atomic_read(&tgtp->rcv_fcp_cmd_in), 14670 atomic_read(&tgtp->rcv_fcp_cmd_out), 14671 atomic_read(&tgtp->xmt_fcp_release)); 14672 } 14673 fallthrough; 14674 14675 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14676 hrq->RQ_no_posted_buf++; 14677 /* Post more buffers if possible */ 14678 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14679 workposted = true; 14680 break; 14681 case FC_STATUS_RQ_DMA_FAILURE: 14682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14683 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14684 "x%08x\n", 14685 status, rcqe->word0, rcqe->word1, 14686 rcqe->word2, rcqe->word3); 14687 14688 /* If IV set, no further recovery */ 14689 if (bf_get(lpfc_rcqe_iv, rcqe)) 14690 break; 14691 14692 /* recycle consumed resource */ 14693 spin_lock_irqsave(&phba->hbalock, iflags); 14694 lpfc_sli4_rq_release(hrq, drq); 14695 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14696 if (!dma_buf) { 14697 hrq->RQ_no_buf_found++; 14698 spin_unlock_irqrestore(&phba->hbalock, iflags); 14699 break; 14700 } 14701 hrq->RQ_rcv_buf++; 14702 hrq->RQ_buf_posted--; 14703 spin_unlock_irqrestore(&phba->hbalock, iflags); 14704 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14705 break; 14706 default: 14707 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14708 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14709 "x%08x x%08x x%08x\n", 14710 status, rcqe->word0, rcqe->word1, 14711 rcqe->word2, rcqe->word3); 14712 break; 14713 } 14714 out: 14715 return workposted; 14716 } 14717 14718 /** 14719 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14720 * @phba: Pointer to HBA context object. 14721 * @cq: Pointer to the completion queue. 14722 * @cqe: Pointer to a completion queue entry. 14723 * 14724 * This routine process a slow-path work-queue or receive queue completion queue 14725 * entry. 14726 * 14727 * Return: true if work posted to worker thread, otherwise false. 14728 **/ 14729 static bool 14730 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14731 struct lpfc_cqe *cqe) 14732 { 14733 struct lpfc_cqe cqevt; 14734 bool workposted = false; 14735 14736 /* Copy the work queue CQE and convert endian order if needed */ 14737 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14738 14739 /* Check and process for different type of WCQE and dispatch */ 14740 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14741 case CQE_CODE_COMPL_WQE: 14742 /* Process the WQ/RQ complete event */ 14743 phba->last_completion_time = jiffies; 14744 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14745 (struct lpfc_wcqe_complete *)&cqevt); 14746 break; 14747 case CQE_CODE_RELEASE_WQE: 14748 /* Process the WQ release event */ 14749 lpfc_sli4_sp_handle_rel_wcqe(phba, 14750 (struct lpfc_wcqe_release *)&cqevt); 14751 break; 14752 case CQE_CODE_XRI_ABORTED: 14753 /* Process the WQ XRI abort event */ 14754 phba->last_completion_time = jiffies; 14755 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14756 (struct sli4_wcqe_xri_aborted *)&cqevt); 14757 break; 14758 case CQE_CODE_RECEIVE: 14759 case CQE_CODE_RECEIVE_V1: 14760 /* Process the RQ event */ 14761 phba->last_completion_time = jiffies; 14762 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14763 (struct lpfc_rcqe *)&cqevt); 14764 break; 14765 default: 14766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14767 "0388 Not a valid WCQE code: x%x\n", 14768 bf_get(lpfc_cqe_code, &cqevt)); 14769 break; 14770 } 14771 return workposted; 14772 } 14773 14774 /** 14775 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14776 * @phba: Pointer to HBA context object. 14777 * @eqe: Pointer to fast-path event queue entry. 14778 * @speq: Pointer to slow-path event queue. 14779 * 14780 * This routine process a event queue entry from the slow-path event queue. 14781 * It will check the MajorCode and MinorCode to determine this is for a 14782 * completion event on a completion queue, if not, an error shall be logged 14783 * and just return. Otherwise, it will get to the corresponding completion 14784 * queue and process all the entries on that completion queue, rearm the 14785 * completion queue, and then return. 14786 * 14787 **/ 14788 static void 14789 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14790 struct lpfc_queue *speq) 14791 { 14792 struct lpfc_queue *cq = NULL, *childq; 14793 uint16_t cqid; 14794 int ret = 0; 14795 14796 /* Get the reference to the corresponding CQ */ 14797 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14798 14799 list_for_each_entry(childq, &speq->child_list, list) { 14800 if (childq->queue_id == cqid) { 14801 cq = childq; 14802 break; 14803 } 14804 } 14805 if (unlikely(!cq)) { 14806 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14807 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14808 "0365 Slow-path CQ identifier " 14809 "(%d) does not exist\n", cqid); 14810 return; 14811 } 14812 14813 /* Save EQ associated with this CQ */ 14814 cq->assoc_qp = speq; 14815 14816 if (is_kdump_kernel()) 14817 ret = queue_work(phba->wq, &cq->spwork); 14818 else 14819 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14820 14821 if (!ret) 14822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14823 "0390 Cannot schedule queue work " 14824 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14825 cqid, cq->queue_id, raw_smp_processor_id()); 14826 } 14827 14828 /** 14829 * __lpfc_sli4_process_cq - Process elements of a CQ 14830 * @phba: Pointer to HBA context object. 14831 * @cq: Pointer to CQ to be processed 14832 * @handler: Routine to process each cqe 14833 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14834 * 14835 * This routine processes completion queue entries in a CQ. While a valid 14836 * queue element is found, the handler is called. During processing checks 14837 * are made for periodic doorbell writes to let the hardware know of 14838 * element consumption. 14839 * 14840 * If the max limit on cqes to process is hit, or there are no more valid 14841 * entries, the loop stops. If we processed a sufficient number of elements, 14842 * meaning there is sufficient load, rather than rearming and generating 14843 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14844 * indicates no rescheduling. 14845 * 14846 * Returns True if work scheduled, False otherwise. 14847 **/ 14848 static bool 14849 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14850 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14851 struct lpfc_cqe *), unsigned long *delay) 14852 { 14853 struct lpfc_cqe *cqe; 14854 bool workposted = false; 14855 int count = 0, consumed = 0; 14856 bool arm = true; 14857 14858 /* default - no reschedule */ 14859 *delay = 0; 14860 14861 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14862 goto rearm_and_exit; 14863 14864 /* Process all the entries to the CQ */ 14865 cq->q_flag = 0; 14866 cqe = lpfc_sli4_cq_get(cq); 14867 while (cqe) { 14868 workposted |= handler(phba, cq, cqe); 14869 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14870 14871 consumed++; 14872 if (!(++count % cq->max_proc_limit)) 14873 break; 14874 14875 if (!(count % cq->notify_interval)) { 14876 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14877 LPFC_QUEUE_NOARM); 14878 consumed = 0; 14879 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14880 } 14881 14882 if (count == LPFC_NVMET_CQ_NOTIFY) 14883 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14884 14885 cqe = lpfc_sli4_cq_get(cq); 14886 } 14887 if (count >= phba->cfg_cq_poll_threshold) { 14888 *delay = 1; 14889 arm = false; 14890 } 14891 14892 /* Track the max number of CQEs processed in 1 EQ */ 14893 if (count > cq->CQ_max_cqe) 14894 cq->CQ_max_cqe = count; 14895 14896 cq->assoc_qp->EQ_cqe_cnt += count; 14897 14898 /* Catch the no cq entry condition */ 14899 if (unlikely(count == 0)) 14900 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14901 "0369 No entry from completion queue " 14902 "qid=%d\n", cq->queue_id); 14903 14904 xchg(&cq->queue_claimed, 0); 14905 14906 rearm_and_exit: 14907 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14908 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14909 14910 return workposted; 14911 } 14912 14913 /** 14914 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14915 * @cq: pointer to CQ to process 14916 * 14917 * This routine calls the cq processing routine with a handler specific 14918 * to the type of queue bound to it. 14919 * 14920 * The CQ routine returns two values: the first is the calling status, 14921 * which indicates whether work was queued to the background discovery 14922 * thread. If true, the routine should wakeup the discovery thread; 14923 * the second is the delay parameter. If non-zero, rather than rearming 14924 * the CQ and yet another interrupt, the CQ handler should be queued so 14925 * that it is processed in a subsequent polling action. The value of 14926 * the delay indicates when to reschedule it. 14927 **/ 14928 static void 14929 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14930 { 14931 struct lpfc_hba *phba = cq->phba; 14932 unsigned long delay; 14933 bool workposted = false; 14934 int ret = 0; 14935 14936 /* Process and rearm the CQ */ 14937 switch (cq->type) { 14938 case LPFC_MCQ: 14939 workposted |= __lpfc_sli4_process_cq(phba, cq, 14940 lpfc_sli4_sp_handle_mcqe, 14941 &delay); 14942 break; 14943 case LPFC_WCQ: 14944 if (cq->subtype == LPFC_IO) 14945 workposted |= __lpfc_sli4_process_cq(phba, cq, 14946 lpfc_sli4_fp_handle_cqe, 14947 &delay); 14948 else 14949 workposted |= __lpfc_sli4_process_cq(phba, cq, 14950 lpfc_sli4_sp_handle_cqe, 14951 &delay); 14952 break; 14953 default: 14954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14955 "0370 Invalid completion queue type (%d)\n", 14956 cq->type); 14957 return; 14958 } 14959 14960 if (delay) { 14961 if (is_kdump_kernel()) 14962 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14963 delay); 14964 else 14965 ret = queue_delayed_work_on(cq->chann, phba->wq, 14966 &cq->sched_spwork, delay); 14967 if (!ret) 14968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14969 "0394 Cannot schedule queue work " 14970 "for cqid=%d on CPU %d\n", 14971 cq->queue_id, cq->chann); 14972 } 14973 14974 /* wake up worker thread if there are works to be done */ 14975 if (workposted) 14976 lpfc_worker_wake_up(phba); 14977 } 14978 14979 /** 14980 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14981 * interrupt 14982 * @work: pointer to work element 14983 * 14984 * translates from the work handler and calls the slow-path handler. 14985 **/ 14986 static void 14987 lpfc_sli4_sp_process_cq(struct work_struct *work) 14988 { 14989 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14990 14991 __lpfc_sli4_sp_process_cq(cq); 14992 } 14993 14994 /** 14995 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14996 * @work: pointer to work element 14997 * 14998 * translates from the work handler and calls the slow-path handler. 14999 **/ 15000 static void 15001 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15002 { 15003 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15004 struct lpfc_queue, sched_spwork); 15005 15006 __lpfc_sli4_sp_process_cq(cq); 15007 } 15008 15009 /** 15010 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15011 * @phba: Pointer to HBA context object. 15012 * @cq: Pointer to associated CQ 15013 * @wcqe: Pointer to work-queue completion queue entry. 15014 * 15015 * This routine process a fast-path work queue completion entry from fast-path 15016 * event queue for FCP command response completion. 15017 **/ 15018 static void 15019 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15020 struct lpfc_wcqe_complete *wcqe) 15021 { 15022 struct lpfc_sli_ring *pring = cq->pring; 15023 struct lpfc_iocbq *cmdiocbq; 15024 unsigned long iflags; 15025 15026 /* Check for response status */ 15027 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15028 /* If resource errors reported from HBA, reduce queue 15029 * depth of the SCSI device. 15030 */ 15031 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15032 IOSTAT_LOCAL_REJECT)) && 15033 ((wcqe->parameter & IOERR_PARAM_MASK) == 15034 IOERR_NO_RESOURCES)) 15035 phba->lpfc_rampdown_queue_depth(phba); 15036 15037 /* Log the cmpl status */ 15038 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15039 "0373 FCP CQE cmpl: status=x%x: " 15040 "CQE: %08x %08x %08x %08x\n", 15041 bf_get(lpfc_wcqe_c_status, wcqe), 15042 wcqe->word0, wcqe->total_data_placed, 15043 wcqe->parameter, wcqe->word3); 15044 } 15045 15046 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15047 spin_lock_irqsave(&pring->ring_lock, iflags); 15048 pring->stats.iocb_event++; 15049 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15050 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15051 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15052 if (unlikely(!cmdiocbq)) { 15053 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15054 "0374 FCP complete with no corresponding " 15055 "cmdiocb: iotag (%d)\n", 15056 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15057 return; 15058 } 15059 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15060 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15061 #endif 15062 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15063 spin_lock_irqsave(&phba->hbalock, iflags); 15064 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15065 spin_unlock_irqrestore(&phba->hbalock, iflags); 15066 } 15067 15068 if (cmdiocbq->cmd_cmpl) { 15069 /* For FCP the flag is cleared in cmd_cmpl */ 15070 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15071 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15072 spin_lock_irqsave(&phba->hbalock, iflags); 15073 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15074 spin_unlock_irqrestore(&phba->hbalock, iflags); 15075 } 15076 15077 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15078 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15079 sizeof(struct lpfc_wcqe_complete)); 15080 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15081 } else { 15082 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15083 "0375 FCP cmdiocb not callback function " 15084 "iotag: (%d)\n", 15085 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15086 } 15087 } 15088 15089 /** 15090 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15091 * @phba: Pointer to HBA context object. 15092 * @cq: Pointer to completion queue. 15093 * @wcqe: Pointer to work-queue completion queue entry. 15094 * 15095 * This routine handles an fast-path WQ entry consumed event by invoking the 15096 * proper WQ release routine to the slow-path WQ. 15097 **/ 15098 static void 15099 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15100 struct lpfc_wcqe_release *wcqe) 15101 { 15102 struct lpfc_queue *childwq; 15103 bool wqid_matched = false; 15104 uint16_t hba_wqid; 15105 15106 /* Check for fast-path FCP work queue release */ 15107 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15108 list_for_each_entry(childwq, &cq->child_list, list) { 15109 if (childwq->queue_id == hba_wqid) { 15110 lpfc_sli4_wq_release(childwq, 15111 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15112 if (childwq->q_flag & HBA_NVMET_WQFULL) 15113 lpfc_nvmet_wqfull_process(phba, childwq); 15114 wqid_matched = true; 15115 break; 15116 } 15117 } 15118 /* Report warning log message if no match found */ 15119 if (wqid_matched != true) 15120 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15121 "2580 Fast-path wqe consume event carries " 15122 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15123 } 15124 15125 /** 15126 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15127 * @phba: Pointer to HBA context object. 15128 * @cq: Pointer to completion queue. 15129 * @rcqe: Pointer to receive-queue completion queue entry. 15130 * 15131 * This routine process a receive-queue completion queue entry. 15132 * 15133 * Return: true if work posted to worker thread, otherwise false. 15134 **/ 15135 static bool 15136 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15137 struct lpfc_rcqe *rcqe) 15138 { 15139 bool workposted = false; 15140 struct lpfc_queue *hrq; 15141 struct lpfc_queue *drq; 15142 struct rqb_dmabuf *dma_buf; 15143 struct fc_frame_header *fc_hdr; 15144 struct lpfc_nvmet_tgtport *tgtp; 15145 uint32_t status, rq_id; 15146 unsigned long iflags; 15147 uint32_t fctl, idx; 15148 15149 if ((phba->nvmet_support == 0) || 15150 (phba->sli4_hba.nvmet_cqset == NULL)) 15151 return workposted; 15152 15153 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15154 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15155 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15156 15157 /* sanity check on queue memory */ 15158 if (unlikely(!hrq) || unlikely(!drq)) 15159 return workposted; 15160 15161 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15162 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15163 else 15164 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15165 15166 if ((phba->nvmet_support == 0) || 15167 (rq_id != hrq->queue_id)) 15168 return workposted; 15169 15170 status = bf_get(lpfc_rcqe_status, rcqe); 15171 switch (status) { 15172 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15173 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15174 "6126 Receive Frame Truncated!!\n"); 15175 fallthrough; 15176 case FC_STATUS_RQ_SUCCESS: 15177 spin_lock_irqsave(&phba->hbalock, iflags); 15178 lpfc_sli4_rq_release(hrq, drq); 15179 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15180 if (!dma_buf) { 15181 hrq->RQ_no_buf_found++; 15182 spin_unlock_irqrestore(&phba->hbalock, iflags); 15183 goto out; 15184 } 15185 spin_unlock_irqrestore(&phba->hbalock, iflags); 15186 hrq->RQ_rcv_buf++; 15187 hrq->RQ_buf_posted--; 15188 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15189 15190 /* Just some basic sanity checks on FCP Command frame */ 15191 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15192 fc_hdr->fh_f_ctl[1] << 8 | 15193 fc_hdr->fh_f_ctl[2]); 15194 if (((fctl & 15195 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15196 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15197 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15198 goto drop; 15199 15200 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15201 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15202 lpfc_nvmet_unsol_fcp_event( 15203 phba, idx, dma_buf, cq->isr_timestamp, 15204 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15205 return false; 15206 } 15207 drop: 15208 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15209 break; 15210 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15211 if (phba->nvmet_support) { 15212 tgtp = phba->targetport->private; 15213 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15214 "6401 RQE Error x%x, posted %d err_cnt " 15215 "%d: %x %x %x\n", 15216 status, hrq->RQ_buf_posted, 15217 hrq->RQ_no_posted_buf, 15218 atomic_read(&tgtp->rcv_fcp_cmd_in), 15219 atomic_read(&tgtp->rcv_fcp_cmd_out), 15220 atomic_read(&tgtp->xmt_fcp_release)); 15221 } 15222 fallthrough; 15223 15224 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15225 hrq->RQ_no_posted_buf++; 15226 /* Post more buffers if possible */ 15227 break; 15228 case FC_STATUS_RQ_DMA_FAILURE: 15229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15230 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15231 "x%08x\n", 15232 status, rcqe->word0, rcqe->word1, 15233 rcqe->word2, rcqe->word3); 15234 15235 /* If IV set, no further recovery */ 15236 if (bf_get(lpfc_rcqe_iv, rcqe)) 15237 break; 15238 15239 /* recycle consumed resource */ 15240 spin_lock_irqsave(&phba->hbalock, iflags); 15241 lpfc_sli4_rq_release(hrq, drq); 15242 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15243 if (!dma_buf) { 15244 hrq->RQ_no_buf_found++; 15245 spin_unlock_irqrestore(&phba->hbalock, iflags); 15246 break; 15247 } 15248 hrq->RQ_rcv_buf++; 15249 hrq->RQ_buf_posted--; 15250 spin_unlock_irqrestore(&phba->hbalock, iflags); 15251 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15252 break; 15253 default: 15254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15255 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15256 "x%08x x%08x x%08x\n", 15257 status, rcqe->word0, rcqe->word1, 15258 rcqe->word2, rcqe->word3); 15259 break; 15260 } 15261 out: 15262 return workposted; 15263 } 15264 15265 /** 15266 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15267 * @phba: adapter with cq 15268 * @cq: Pointer to the completion queue. 15269 * @cqe: Pointer to fast-path completion queue entry. 15270 * 15271 * This routine process a fast-path work queue completion entry from fast-path 15272 * event queue for FCP command response completion. 15273 * 15274 * Return: true if work posted to worker thread, otherwise false. 15275 **/ 15276 static bool 15277 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15278 struct lpfc_cqe *cqe) 15279 { 15280 struct lpfc_wcqe_release wcqe; 15281 bool workposted = false; 15282 15283 /* Copy the work queue CQE and convert endian order if needed */ 15284 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15285 15286 /* Check and process for different type of WCQE and dispatch */ 15287 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15288 case CQE_CODE_COMPL_WQE: 15289 case CQE_CODE_NVME_ERSP: 15290 cq->CQ_wq++; 15291 /* Process the WQ complete event */ 15292 phba->last_completion_time = jiffies; 15293 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15294 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15295 (struct lpfc_wcqe_complete *)&wcqe); 15296 break; 15297 case CQE_CODE_RELEASE_WQE: 15298 cq->CQ_release_wqe++; 15299 /* Process the WQ release event */ 15300 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15301 (struct lpfc_wcqe_release *)&wcqe); 15302 break; 15303 case CQE_CODE_XRI_ABORTED: 15304 cq->CQ_xri_aborted++; 15305 /* Process the WQ XRI abort event */ 15306 phba->last_completion_time = jiffies; 15307 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15308 (struct sli4_wcqe_xri_aborted *)&wcqe); 15309 break; 15310 case CQE_CODE_RECEIVE_V1: 15311 case CQE_CODE_RECEIVE: 15312 phba->last_completion_time = jiffies; 15313 if (cq->subtype == LPFC_NVMET) { 15314 workposted = lpfc_sli4_nvmet_handle_rcqe( 15315 phba, cq, (struct lpfc_rcqe *)&wcqe); 15316 } 15317 break; 15318 default: 15319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15320 "0144 Not a valid CQE code: x%x\n", 15321 bf_get(lpfc_wcqe_c_code, &wcqe)); 15322 break; 15323 } 15324 return workposted; 15325 } 15326 15327 /** 15328 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15329 * @cq: Pointer to CQ to be processed 15330 * 15331 * This routine calls the cq processing routine with the handler for 15332 * fast path CQEs. 15333 * 15334 * The CQ routine returns two values: the first is the calling status, 15335 * which indicates whether work was queued to the background discovery 15336 * thread. If true, the routine should wakeup the discovery thread; 15337 * the second is the delay parameter. If non-zero, rather than rearming 15338 * the CQ and yet another interrupt, the CQ handler should be queued so 15339 * that it is processed in a subsequent polling action. The value of 15340 * the delay indicates when to reschedule it. 15341 **/ 15342 static void 15343 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15344 { 15345 struct lpfc_hba *phba = cq->phba; 15346 unsigned long delay; 15347 bool workposted = false; 15348 int ret; 15349 15350 /* process and rearm the CQ */ 15351 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15352 &delay); 15353 15354 if (delay) { 15355 if (is_kdump_kernel()) 15356 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15357 delay); 15358 else 15359 ret = queue_delayed_work_on(cq->chann, phba->wq, 15360 &cq->sched_irqwork, delay); 15361 if (!ret) 15362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15363 "0367 Cannot schedule queue work " 15364 "for cqid=%d on CPU %d\n", 15365 cq->queue_id, cq->chann); 15366 } 15367 15368 /* wake up worker thread if there are works to be done */ 15369 if (workposted) 15370 lpfc_worker_wake_up(phba); 15371 } 15372 15373 /** 15374 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15375 * interrupt 15376 * @work: pointer to work element 15377 * 15378 * translates from the work handler and calls the fast-path handler. 15379 **/ 15380 static void 15381 lpfc_sli4_hba_process_cq(struct work_struct *work) 15382 { 15383 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15384 15385 __lpfc_sli4_hba_process_cq(cq); 15386 } 15387 15388 /** 15389 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15390 * @phba: Pointer to HBA context object. 15391 * @eq: Pointer to the queue structure. 15392 * @eqe: Pointer to fast-path event queue entry. 15393 * @poll_mode: poll_mode to execute processing the cq. 15394 * 15395 * This routine process a event queue entry from the fast-path event queue. 15396 * It will check the MajorCode and MinorCode to determine this is for a 15397 * completion event on a completion queue, if not, an error shall be logged 15398 * and just return. Otherwise, it will get to the corresponding completion 15399 * queue and process all the entries on the completion queue, rearm the 15400 * completion queue, and then return. 15401 **/ 15402 static void 15403 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15404 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15405 { 15406 struct lpfc_queue *cq = NULL; 15407 uint32_t qidx = eq->hdwq; 15408 uint16_t cqid, id; 15409 int ret; 15410 15411 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15413 "0366 Not a valid completion " 15414 "event: majorcode=x%x, minorcode=x%x\n", 15415 bf_get_le32(lpfc_eqe_major_code, eqe), 15416 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15417 return; 15418 } 15419 15420 /* Get the reference to the corresponding CQ */ 15421 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15422 15423 /* Use the fast lookup method first */ 15424 if (cqid <= phba->sli4_hba.cq_max) { 15425 cq = phba->sli4_hba.cq_lookup[cqid]; 15426 if (cq) 15427 goto work_cq; 15428 } 15429 15430 /* Next check for NVMET completion */ 15431 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15432 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15433 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15434 /* Process NVMET unsol rcv */ 15435 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15436 goto process_cq; 15437 } 15438 } 15439 15440 if (phba->sli4_hba.nvmels_cq && 15441 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15442 /* Process NVME unsol rcv */ 15443 cq = phba->sli4_hba.nvmels_cq; 15444 } 15445 15446 /* Otherwise this is a Slow path event */ 15447 if (cq == NULL) { 15448 lpfc_sli4_sp_handle_eqe(phba, eqe, 15449 phba->sli4_hba.hdwq[qidx].hba_eq); 15450 return; 15451 } 15452 15453 process_cq: 15454 if (unlikely(cqid != cq->queue_id)) { 15455 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15456 "0368 Miss-matched fast-path completion " 15457 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15458 cqid, cq->queue_id); 15459 return; 15460 } 15461 15462 work_cq: 15463 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15464 if (phba->ktime_on) 15465 cq->isr_timestamp = ktime_get_ns(); 15466 else 15467 cq->isr_timestamp = 0; 15468 #endif 15469 15470 switch (poll_mode) { 15471 case LPFC_THREADED_IRQ: 15472 __lpfc_sli4_hba_process_cq(cq); 15473 break; 15474 case LPFC_QUEUE_WORK: 15475 default: 15476 if (is_kdump_kernel()) 15477 ret = queue_work(phba->wq, &cq->irqwork); 15478 else 15479 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15480 if (!ret) 15481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15482 "0383 Cannot schedule queue work " 15483 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15484 cqid, cq->queue_id, 15485 raw_smp_processor_id()); 15486 break; 15487 } 15488 } 15489 15490 /** 15491 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15492 * @work: pointer to work element 15493 * 15494 * translates from the work handler and calls the fast-path handler. 15495 **/ 15496 static void 15497 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15498 { 15499 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15500 struct lpfc_queue, sched_irqwork); 15501 15502 __lpfc_sli4_hba_process_cq(cq); 15503 } 15504 15505 /** 15506 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15507 * @irq: Interrupt number. 15508 * @dev_id: The device context pointer. 15509 * 15510 * This function is directly called from the PCI layer as an interrupt 15511 * service routine when device with SLI-4 interface spec is enabled with 15512 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15513 * ring event in the HBA. However, when the device is enabled with either 15514 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15515 * device-level interrupt handler. When the PCI slot is in error recovery 15516 * or the HBA is undergoing initialization, the interrupt handler will not 15517 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15518 * the intrrupt context. This function is called without any lock held. 15519 * It gets the hbalock to access and update SLI data structures. Note that, 15520 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15521 * equal to that of FCP CQ index. 15522 * 15523 * The link attention and ELS ring attention events are handled 15524 * by the worker thread. The interrupt handler signals the worker thread 15525 * and returns for these events. This function is called without any lock 15526 * held. It gets the hbalock to access and update SLI data structures. 15527 * 15528 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15529 * when interrupt is scheduled to be handled from a threaded irq context, or 15530 * else returns IRQ_NONE. 15531 **/ 15532 irqreturn_t 15533 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15534 { 15535 struct lpfc_hba *phba; 15536 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15537 struct lpfc_queue *fpeq; 15538 unsigned long iflag; 15539 int hba_eqidx; 15540 int ecount = 0; 15541 struct lpfc_eq_intr_info *eqi; 15542 15543 /* Get the driver's phba structure from the dev_id */ 15544 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15545 phba = hba_eq_hdl->phba; 15546 hba_eqidx = hba_eq_hdl->idx; 15547 15548 if (unlikely(!phba)) 15549 return IRQ_NONE; 15550 if (unlikely(!phba->sli4_hba.hdwq)) 15551 return IRQ_NONE; 15552 15553 /* Get to the EQ struct associated with this vector */ 15554 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15555 if (unlikely(!fpeq)) 15556 return IRQ_NONE; 15557 15558 /* Check device state for handling interrupt */ 15559 if (unlikely(lpfc_intr_state_check(phba))) { 15560 /* Check again for link_state with lock held */ 15561 spin_lock_irqsave(&phba->hbalock, iflag); 15562 if (phba->link_state < LPFC_LINK_DOWN) 15563 /* Flush, clear interrupt, and rearm the EQ */ 15564 lpfc_sli4_eqcq_flush(phba, fpeq); 15565 spin_unlock_irqrestore(&phba->hbalock, iflag); 15566 return IRQ_NONE; 15567 } 15568 15569 switch (fpeq->poll_mode) { 15570 case LPFC_THREADED_IRQ: 15571 /* CGN mgmt is mutually exclusive from irq processing */ 15572 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15573 return IRQ_WAKE_THREAD; 15574 fallthrough; 15575 case LPFC_QUEUE_WORK: 15576 default: 15577 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15578 eqi->icnt++; 15579 15580 fpeq->last_cpu = raw_smp_processor_id(); 15581 15582 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15583 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15584 phba->cfg_auto_imax && 15585 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15586 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15587 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15588 LPFC_MAX_AUTO_EQ_DELAY); 15589 15590 /* process and rearm the EQ */ 15591 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15592 LPFC_QUEUE_WORK); 15593 15594 if (unlikely(ecount == 0)) { 15595 fpeq->EQ_no_entry++; 15596 if (phba->intr_type == MSIX) 15597 /* MSI-X treated interrupt served as no EQ share INT */ 15598 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15599 "0358 MSI-X interrupt with no EQE\n"); 15600 else 15601 /* Non MSI-X treated on interrupt as EQ share INT */ 15602 return IRQ_NONE; 15603 } 15604 } 15605 15606 return IRQ_HANDLED; 15607 } /* lpfc_sli4_hba_intr_handler */ 15608 15609 /** 15610 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15611 * @irq: Interrupt number. 15612 * @dev_id: The device context pointer. 15613 * 15614 * This function is the device-level interrupt handler to device with SLI-4 15615 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15616 * interrupt mode is enabled and there is an event in the HBA which requires 15617 * driver attention. This function invokes the slow-path interrupt attention 15618 * handling function and fast-path interrupt attention handling function in 15619 * turn to process the relevant HBA attention events. This function is called 15620 * without any lock held. It gets the hbalock to access and update SLI data 15621 * structures. 15622 * 15623 * This function returns IRQ_HANDLED when interrupt is handled, else it 15624 * returns IRQ_NONE. 15625 **/ 15626 irqreturn_t 15627 lpfc_sli4_intr_handler(int irq, void *dev_id) 15628 { 15629 struct lpfc_hba *phba; 15630 irqreturn_t hba_irq_rc; 15631 bool hba_handled = false; 15632 int qidx; 15633 15634 /* Get the driver's phba structure from the dev_id */ 15635 phba = (struct lpfc_hba *)dev_id; 15636 15637 if (unlikely(!phba)) 15638 return IRQ_NONE; 15639 15640 /* 15641 * Invoke fast-path host attention interrupt handling as appropriate. 15642 */ 15643 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15644 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15645 &phba->sli4_hba.hba_eq_hdl[qidx]); 15646 if (hba_irq_rc == IRQ_HANDLED) 15647 hba_handled |= true; 15648 } 15649 15650 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15651 } /* lpfc_sli4_intr_handler */ 15652 15653 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15654 { 15655 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15656 struct lpfc_queue *eq; 15657 15658 rcu_read_lock(); 15659 15660 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15661 lpfc_sli4_poll_eq(eq); 15662 if (!list_empty(&phba->poll_list)) 15663 mod_timer(&phba->cpuhp_poll_timer, 15664 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15665 15666 rcu_read_unlock(); 15667 } 15668 15669 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15670 { 15671 struct lpfc_hba *phba = eq->phba; 15672 15673 /* kickstart slowpath processing if needed */ 15674 if (list_empty(&phba->poll_list)) 15675 mod_timer(&phba->cpuhp_poll_timer, 15676 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15677 15678 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15679 synchronize_rcu(); 15680 } 15681 15682 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15683 { 15684 struct lpfc_hba *phba = eq->phba; 15685 15686 /* Disable slowpath processing for this eq. Kick start the eq 15687 * by RE-ARMING the eq's ASAP 15688 */ 15689 list_del_rcu(&eq->_poll_list); 15690 synchronize_rcu(); 15691 15692 if (list_empty(&phba->poll_list)) 15693 del_timer_sync(&phba->cpuhp_poll_timer); 15694 } 15695 15696 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15697 { 15698 struct lpfc_queue *eq, *next; 15699 15700 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15701 list_del(&eq->_poll_list); 15702 15703 INIT_LIST_HEAD(&phba->poll_list); 15704 synchronize_rcu(); 15705 } 15706 15707 static inline void 15708 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15709 { 15710 if (mode == eq->mode) 15711 return; 15712 /* 15713 * currently this function is only called during a hotplug 15714 * event and the cpu on which this function is executing 15715 * is going offline. By now the hotplug has instructed 15716 * the scheduler to remove this cpu from cpu active mask. 15717 * So we don't need to work about being put aside by the 15718 * scheduler for a high priority process. Yes, the inte- 15719 * rrupts could come but they are known to retire ASAP. 15720 */ 15721 15722 /* Disable polling in the fastpath */ 15723 WRITE_ONCE(eq->mode, mode); 15724 /* flush out the store buffer */ 15725 smp_wmb(); 15726 15727 /* 15728 * Add this eq to the polling list and start polling. For 15729 * a grace period both interrupt handler and poller will 15730 * try to process the eq _but_ that's fine. We have a 15731 * synchronization mechanism in place (queue_claimed) to 15732 * deal with it. This is just a draining phase for int- 15733 * errupt handler (not eq's) as we have guranteed through 15734 * barrier that all the CPUs have seen the new CQ_POLLED 15735 * state. which will effectively disable the REARMING of 15736 * the EQ. The whole idea is eq's die off eventually as 15737 * we are not rearming EQ's anymore. 15738 */ 15739 mode ? lpfc_sli4_add_to_poll_list(eq) : 15740 lpfc_sli4_remove_from_poll_list(eq); 15741 } 15742 15743 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15744 { 15745 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15746 } 15747 15748 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15749 { 15750 struct lpfc_hba *phba = eq->phba; 15751 15752 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15753 15754 /* Kick start for the pending io's in h/w. 15755 * Once we switch back to interrupt processing on a eq 15756 * the io path completion will only arm eq's when it 15757 * receives a completion. But since eq's are in disa- 15758 * rmed state it doesn't receive a completion. This 15759 * creates a deadlock scenaro. 15760 */ 15761 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15762 } 15763 15764 /** 15765 * lpfc_sli4_queue_free - free a queue structure and associated memory 15766 * @queue: The queue structure to free. 15767 * 15768 * This function frees a queue structure and the DMAable memory used for 15769 * the host resident queue. This function must be called after destroying the 15770 * queue on the HBA. 15771 **/ 15772 void 15773 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15774 { 15775 struct lpfc_dmabuf *dmabuf; 15776 15777 if (!queue) 15778 return; 15779 15780 if (!list_empty(&queue->wq_list)) 15781 list_del(&queue->wq_list); 15782 15783 while (!list_empty(&queue->page_list)) { 15784 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15785 list); 15786 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15787 dmabuf->virt, dmabuf->phys); 15788 kfree(dmabuf); 15789 } 15790 if (queue->rqbp) { 15791 lpfc_free_rq_buffer(queue->phba, queue); 15792 kfree(queue->rqbp); 15793 } 15794 15795 if (!list_empty(&queue->cpu_list)) 15796 list_del(&queue->cpu_list); 15797 15798 kfree(queue); 15799 return; 15800 } 15801 15802 /** 15803 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15804 * @phba: The HBA that this queue is being created on. 15805 * @page_size: The size of a queue page 15806 * @entry_size: The size of each queue entry for this queue. 15807 * @entry_count: The number of entries that this queue will handle. 15808 * @cpu: The cpu that will primarily utilize this queue. 15809 * 15810 * This function allocates a queue structure and the DMAable memory used for 15811 * the host resident queue. This function must be called before creating the 15812 * queue on the HBA. 15813 **/ 15814 struct lpfc_queue * 15815 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15816 uint32_t entry_size, uint32_t entry_count, int cpu) 15817 { 15818 struct lpfc_queue *queue; 15819 struct lpfc_dmabuf *dmabuf; 15820 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15821 uint16_t x, pgcnt; 15822 15823 if (!phba->sli4_hba.pc_sli4_params.supported) 15824 hw_page_size = page_size; 15825 15826 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15827 15828 /* If needed, Adjust page count to match the max the adapter supports */ 15829 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15830 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15831 15832 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15833 GFP_KERNEL, cpu_to_node(cpu)); 15834 if (!queue) 15835 return NULL; 15836 15837 INIT_LIST_HEAD(&queue->list); 15838 INIT_LIST_HEAD(&queue->_poll_list); 15839 INIT_LIST_HEAD(&queue->wq_list); 15840 INIT_LIST_HEAD(&queue->wqfull_list); 15841 INIT_LIST_HEAD(&queue->page_list); 15842 INIT_LIST_HEAD(&queue->child_list); 15843 INIT_LIST_HEAD(&queue->cpu_list); 15844 15845 /* Set queue parameters now. If the system cannot provide memory 15846 * resources, the free routine needs to know what was allocated. 15847 */ 15848 queue->page_count = pgcnt; 15849 queue->q_pgs = (void **)&queue[1]; 15850 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15851 queue->entry_size = entry_size; 15852 queue->entry_count = entry_count; 15853 queue->page_size = hw_page_size; 15854 queue->phba = phba; 15855 15856 for (x = 0; x < queue->page_count; x++) { 15857 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15858 dev_to_node(&phba->pcidev->dev)); 15859 if (!dmabuf) 15860 goto out_fail; 15861 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15862 hw_page_size, &dmabuf->phys, 15863 GFP_KERNEL); 15864 if (!dmabuf->virt) { 15865 kfree(dmabuf); 15866 goto out_fail; 15867 } 15868 dmabuf->buffer_tag = x; 15869 list_add_tail(&dmabuf->list, &queue->page_list); 15870 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15871 queue->q_pgs[x] = dmabuf->virt; 15872 } 15873 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15874 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15875 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15876 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15877 15878 /* notify_interval will be set during q creation */ 15879 15880 return queue; 15881 out_fail: 15882 lpfc_sli4_queue_free(queue); 15883 return NULL; 15884 } 15885 15886 /** 15887 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15888 * @phba: HBA structure that indicates port to create a queue on. 15889 * @pci_barset: PCI BAR set flag. 15890 * 15891 * This function shall perform iomap of the specified PCI BAR address to host 15892 * memory address if not already done so and return it. The returned host 15893 * memory address can be NULL. 15894 */ 15895 static void __iomem * 15896 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15897 { 15898 if (!phba->pcidev) 15899 return NULL; 15900 15901 switch (pci_barset) { 15902 case WQ_PCI_BAR_0_AND_1: 15903 return phba->pci_bar0_memmap_p; 15904 case WQ_PCI_BAR_2_AND_3: 15905 return phba->pci_bar2_memmap_p; 15906 case WQ_PCI_BAR_4_AND_5: 15907 return phba->pci_bar4_memmap_p; 15908 default: 15909 break; 15910 } 15911 return NULL; 15912 } 15913 15914 /** 15915 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15916 * @phba: HBA structure that EQs are on. 15917 * @startq: The starting EQ index to modify 15918 * @numq: The number of EQs (consecutive indexes) to modify 15919 * @usdelay: amount of delay 15920 * 15921 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15922 * is set either by writing to a register (if supported by the SLI Port) 15923 * or by mailbox command. The mailbox command allows several EQs to be 15924 * updated at once. 15925 * 15926 * The @phba struct is used to send a mailbox command to HBA. The @startq 15927 * is used to get the starting EQ index to change. The @numq value is 15928 * used to specify how many consecutive EQ indexes, starting at EQ index, 15929 * are to be changed. This function is asynchronous and will wait for any 15930 * mailbox commands to finish before returning. 15931 * 15932 * On success this function will return a zero. If unable to allocate 15933 * enough memory this function will return -ENOMEM. If a mailbox command 15934 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15935 * have had their delay multipler changed. 15936 **/ 15937 void 15938 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15939 uint32_t numq, uint32_t usdelay) 15940 { 15941 struct lpfc_mbx_modify_eq_delay *eq_delay; 15942 LPFC_MBOXQ_t *mbox; 15943 struct lpfc_queue *eq; 15944 int cnt = 0, rc, length; 15945 uint32_t shdr_status, shdr_add_status; 15946 uint32_t dmult; 15947 int qidx; 15948 union lpfc_sli4_cfg_shdr *shdr; 15949 15950 if (startq >= phba->cfg_irq_chann) 15951 return; 15952 15953 if (usdelay > 0xFFFF) { 15954 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15955 "6429 usdelay %d too large. Scaled down to " 15956 "0xFFFF.\n", usdelay); 15957 usdelay = 0xFFFF; 15958 } 15959 15960 /* set values by EQ_DELAY register if supported */ 15961 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15962 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15963 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15964 if (!eq) 15965 continue; 15966 15967 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15968 15969 if (++cnt >= numq) 15970 break; 15971 } 15972 return; 15973 } 15974 15975 /* Otherwise, set values by mailbox cmd */ 15976 15977 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15978 if (!mbox) { 15979 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15980 "6428 Failed allocating mailbox cmd buffer." 15981 " EQ delay was not set.\n"); 15982 return; 15983 } 15984 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15985 sizeof(struct lpfc_sli4_cfg_mhdr)); 15986 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15987 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15988 length, LPFC_SLI4_MBX_EMBED); 15989 eq_delay = &mbox->u.mqe.un.eq_delay; 15990 15991 /* Calculate delay multiper from maximum interrupt per second */ 15992 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15993 if (dmult) 15994 dmult--; 15995 if (dmult > LPFC_DMULT_MAX) 15996 dmult = LPFC_DMULT_MAX; 15997 15998 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15999 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16000 if (!eq) 16001 continue; 16002 eq->q_mode = usdelay; 16003 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16004 eq_delay->u.request.eq[cnt].phase = 0; 16005 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16006 16007 if (++cnt >= numq) 16008 break; 16009 } 16010 eq_delay->u.request.num_eq = cnt; 16011 16012 mbox->vport = phba->pport; 16013 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16014 mbox->ctx_ndlp = NULL; 16015 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16016 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16017 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16018 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16019 if (shdr_status || shdr_add_status || rc) { 16020 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16021 "2512 MODIFY_EQ_DELAY mailbox failed with " 16022 "status x%x add_status x%x, mbx status x%x\n", 16023 shdr_status, shdr_add_status, rc); 16024 } 16025 mempool_free(mbox, phba->mbox_mem_pool); 16026 return; 16027 } 16028 16029 /** 16030 * lpfc_eq_create - Create an Event Queue on the HBA 16031 * @phba: HBA structure that indicates port to create a queue on. 16032 * @eq: The queue structure to use to create the event queue. 16033 * @imax: The maximum interrupt per second limit. 16034 * 16035 * This function creates an event queue, as detailed in @eq, on a port, 16036 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16037 * 16038 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16039 * is used to get the entry count and entry size that are necessary to 16040 * determine the number of pages to allocate and use for this queue. This 16041 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16042 * event queue. This function is asynchronous and will wait for the mailbox 16043 * command to finish before continuing. 16044 * 16045 * On success this function will return a zero. If unable to allocate enough 16046 * memory this function will return -ENOMEM. If the queue create mailbox command 16047 * fails this function will return -ENXIO. 16048 **/ 16049 int 16050 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16051 { 16052 struct lpfc_mbx_eq_create *eq_create; 16053 LPFC_MBOXQ_t *mbox; 16054 int rc, length, status = 0; 16055 struct lpfc_dmabuf *dmabuf; 16056 uint32_t shdr_status, shdr_add_status; 16057 union lpfc_sli4_cfg_shdr *shdr; 16058 uint16_t dmult; 16059 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16060 16061 /* sanity check on queue memory */ 16062 if (!eq) 16063 return -ENODEV; 16064 if (!phba->sli4_hba.pc_sli4_params.supported) 16065 hw_page_size = SLI4_PAGE_SIZE; 16066 16067 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16068 if (!mbox) 16069 return -ENOMEM; 16070 length = (sizeof(struct lpfc_mbx_eq_create) - 16071 sizeof(struct lpfc_sli4_cfg_mhdr)); 16072 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16073 LPFC_MBOX_OPCODE_EQ_CREATE, 16074 length, LPFC_SLI4_MBX_EMBED); 16075 eq_create = &mbox->u.mqe.un.eq_create; 16076 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16077 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16078 eq->page_count); 16079 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16080 LPFC_EQE_SIZE); 16081 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16082 16083 /* Use version 2 of CREATE_EQ if eqav is set */ 16084 if (phba->sli4_hba.pc_sli4_params.eqav) { 16085 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16086 LPFC_Q_CREATE_VERSION_2); 16087 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16088 phba->sli4_hba.pc_sli4_params.eqav); 16089 } 16090 16091 /* don't setup delay multiplier using EQ_CREATE */ 16092 dmult = 0; 16093 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16094 dmult); 16095 switch (eq->entry_count) { 16096 default: 16097 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16098 "0360 Unsupported EQ count. (%d)\n", 16099 eq->entry_count); 16100 if (eq->entry_count < 256) { 16101 status = -EINVAL; 16102 goto out; 16103 } 16104 fallthrough; /* otherwise default to smallest count */ 16105 case 256: 16106 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16107 LPFC_EQ_CNT_256); 16108 break; 16109 case 512: 16110 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16111 LPFC_EQ_CNT_512); 16112 break; 16113 case 1024: 16114 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16115 LPFC_EQ_CNT_1024); 16116 break; 16117 case 2048: 16118 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16119 LPFC_EQ_CNT_2048); 16120 break; 16121 case 4096: 16122 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16123 LPFC_EQ_CNT_4096); 16124 break; 16125 } 16126 list_for_each_entry(dmabuf, &eq->page_list, list) { 16127 memset(dmabuf->virt, 0, hw_page_size); 16128 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16129 putPaddrLow(dmabuf->phys); 16130 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16131 putPaddrHigh(dmabuf->phys); 16132 } 16133 mbox->vport = phba->pport; 16134 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16135 mbox->ctx_buf = NULL; 16136 mbox->ctx_ndlp = NULL; 16137 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16138 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16139 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16140 if (shdr_status || shdr_add_status || rc) { 16141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16142 "2500 EQ_CREATE mailbox failed with " 16143 "status x%x add_status x%x, mbx status x%x\n", 16144 shdr_status, shdr_add_status, rc); 16145 status = -ENXIO; 16146 } 16147 eq->type = LPFC_EQ; 16148 eq->subtype = LPFC_NONE; 16149 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16150 if (eq->queue_id == 0xFFFF) 16151 status = -ENXIO; 16152 eq->host_index = 0; 16153 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16154 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16155 out: 16156 mempool_free(mbox, phba->mbox_mem_pool); 16157 return status; 16158 } 16159 16160 /** 16161 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16162 * @irq: Interrupt number. 16163 * @dev_id: The device context pointer. 16164 * 16165 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16166 * threaded irq context. 16167 * 16168 * Returns 16169 * IRQ_HANDLED - interrupt is handled 16170 * IRQ_NONE - otherwise 16171 **/ 16172 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16173 { 16174 struct lpfc_hba *phba; 16175 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16176 struct lpfc_queue *fpeq; 16177 int ecount = 0; 16178 int hba_eqidx; 16179 struct lpfc_eq_intr_info *eqi; 16180 16181 /* Get the driver's phba structure from the dev_id */ 16182 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16183 phba = hba_eq_hdl->phba; 16184 hba_eqidx = hba_eq_hdl->idx; 16185 16186 if (unlikely(!phba)) 16187 return IRQ_NONE; 16188 if (unlikely(!phba->sli4_hba.hdwq)) 16189 return IRQ_NONE; 16190 16191 /* Get to the EQ struct associated with this vector */ 16192 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16193 if (unlikely(!fpeq)) 16194 return IRQ_NONE; 16195 16196 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16197 eqi->icnt++; 16198 16199 fpeq->last_cpu = raw_smp_processor_id(); 16200 16201 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16202 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16203 phba->cfg_auto_imax && 16204 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16205 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16206 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16207 16208 /* process and rearm the EQ */ 16209 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16210 LPFC_THREADED_IRQ); 16211 16212 if (unlikely(ecount == 0)) { 16213 fpeq->EQ_no_entry++; 16214 if (phba->intr_type == MSIX) 16215 /* MSI-X treated interrupt served as no EQ share INT */ 16216 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16217 "3358 MSI-X interrupt with no EQE\n"); 16218 else 16219 /* Non MSI-X treated on interrupt as EQ share INT */ 16220 return IRQ_NONE; 16221 } 16222 return IRQ_HANDLED; 16223 } 16224 16225 /** 16226 * lpfc_cq_create - Create a Completion Queue on the HBA 16227 * @phba: HBA structure that indicates port to create a queue on. 16228 * @cq: The queue structure to use to create the completion queue. 16229 * @eq: The event queue to bind this completion queue to. 16230 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16231 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16232 * 16233 * This function creates a completion queue, as detailed in @wq, on a port, 16234 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16235 * 16236 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16237 * is used to get the entry count and entry size that are necessary to 16238 * determine the number of pages to allocate and use for this queue. The @eq 16239 * is used to indicate which event queue to bind this completion queue to. This 16240 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16241 * completion queue. This function is asynchronous and will wait for the mailbox 16242 * command to finish before continuing. 16243 * 16244 * On success this function will return a zero. If unable to allocate enough 16245 * memory this function will return -ENOMEM. If the queue create mailbox command 16246 * fails this function will return -ENXIO. 16247 **/ 16248 int 16249 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16250 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16251 { 16252 struct lpfc_mbx_cq_create *cq_create; 16253 struct lpfc_dmabuf *dmabuf; 16254 LPFC_MBOXQ_t *mbox; 16255 int rc, length, status = 0; 16256 uint32_t shdr_status, shdr_add_status; 16257 union lpfc_sli4_cfg_shdr *shdr; 16258 16259 /* sanity check on queue memory */ 16260 if (!cq || !eq) 16261 return -ENODEV; 16262 16263 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16264 if (!mbox) 16265 return -ENOMEM; 16266 length = (sizeof(struct lpfc_mbx_cq_create) - 16267 sizeof(struct lpfc_sli4_cfg_mhdr)); 16268 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16269 LPFC_MBOX_OPCODE_CQ_CREATE, 16270 length, LPFC_SLI4_MBX_EMBED); 16271 cq_create = &mbox->u.mqe.un.cq_create; 16272 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16273 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16274 cq->page_count); 16275 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16276 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16277 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16278 phba->sli4_hba.pc_sli4_params.cqv); 16279 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16280 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16281 (cq->page_size / SLI4_PAGE_SIZE)); 16282 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16283 eq->queue_id); 16284 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16285 phba->sli4_hba.pc_sli4_params.cqav); 16286 } else { 16287 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16288 eq->queue_id); 16289 } 16290 switch (cq->entry_count) { 16291 case 2048: 16292 case 4096: 16293 if (phba->sli4_hba.pc_sli4_params.cqv == 16294 LPFC_Q_CREATE_VERSION_2) { 16295 cq_create->u.request.context.lpfc_cq_context_count = 16296 cq->entry_count; 16297 bf_set(lpfc_cq_context_count, 16298 &cq_create->u.request.context, 16299 LPFC_CQ_CNT_WORD7); 16300 break; 16301 } 16302 fallthrough; 16303 default: 16304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16305 "0361 Unsupported CQ count: " 16306 "entry cnt %d sz %d pg cnt %d\n", 16307 cq->entry_count, cq->entry_size, 16308 cq->page_count); 16309 if (cq->entry_count < 256) { 16310 status = -EINVAL; 16311 goto out; 16312 } 16313 fallthrough; /* otherwise default to smallest count */ 16314 case 256: 16315 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16316 LPFC_CQ_CNT_256); 16317 break; 16318 case 512: 16319 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16320 LPFC_CQ_CNT_512); 16321 break; 16322 case 1024: 16323 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16324 LPFC_CQ_CNT_1024); 16325 break; 16326 } 16327 list_for_each_entry(dmabuf, &cq->page_list, list) { 16328 memset(dmabuf->virt, 0, cq->page_size); 16329 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16330 putPaddrLow(dmabuf->phys); 16331 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16332 putPaddrHigh(dmabuf->phys); 16333 } 16334 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16335 16336 /* The IOCTL status is embedded in the mailbox subheader. */ 16337 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16338 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16339 if (shdr_status || shdr_add_status || rc) { 16340 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16341 "2501 CQ_CREATE mailbox failed with " 16342 "status x%x add_status x%x, mbx status x%x\n", 16343 shdr_status, shdr_add_status, rc); 16344 status = -ENXIO; 16345 goto out; 16346 } 16347 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16348 if (cq->queue_id == 0xFFFF) { 16349 status = -ENXIO; 16350 goto out; 16351 } 16352 /* link the cq onto the parent eq child list */ 16353 list_add_tail(&cq->list, &eq->child_list); 16354 /* Set up completion queue's type and subtype */ 16355 cq->type = type; 16356 cq->subtype = subtype; 16357 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16358 cq->assoc_qid = eq->queue_id; 16359 cq->assoc_qp = eq; 16360 cq->host_index = 0; 16361 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16362 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16363 16364 if (cq->queue_id > phba->sli4_hba.cq_max) 16365 phba->sli4_hba.cq_max = cq->queue_id; 16366 out: 16367 mempool_free(mbox, phba->mbox_mem_pool); 16368 return status; 16369 } 16370 16371 /** 16372 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16373 * @phba: HBA structure that indicates port to create a queue on. 16374 * @cqp: The queue structure array to use to create the completion queues. 16375 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16376 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16377 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16378 * 16379 * This function creates a set of completion queue, s to support MRQ 16380 * as detailed in @cqp, on a port, 16381 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16382 * 16383 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16384 * is used to get the entry count and entry size that are necessary to 16385 * determine the number of pages to allocate and use for this queue. The @eq 16386 * is used to indicate which event queue to bind this completion queue to. This 16387 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16388 * completion queue. This function is asynchronous and will wait for the mailbox 16389 * command to finish before continuing. 16390 * 16391 * On success this function will return a zero. If unable to allocate enough 16392 * memory this function will return -ENOMEM. If the queue create mailbox command 16393 * fails this function will return -ENXIO. 16394 **/ 16395 int 16396 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16397 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16398 uint32_t subtype) 16399 { 16400 struct lpfc_queue *cq; 16401 struct lpfc_queue *eq; 16402 struct lpfc_mbx_cq_create_set *cq_set; 16403 struct lpfc_dmabuf *dmabuf; 16404 LPFC_MBOXQ_t *mbox; 16405 int rc, length, alloclen, status = 0; 16406 int cnt, idx, numcq, page_idx = 0; 16407 uint32_t shdr_status, shdr_add_status; 16408 union lpfc_sli4_cfg_shdr *shdr; 16409 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16410 16411 /* sanity check on queue memory */ 16412 numcq = phba->cfg_nvmet_mrq; 16413 if (!cqp || !hdwq || !numcq) 16414 return -ENODEV; 16415 16416 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16417 if (!mbox) 16418 return -ENOMEM; 16419 16420 length = sizeof(struct lpfc_mbx_cq_create_set); 16421 length += ((numcq * cqp[0]->page_count) * 16422 sizeof(struct dma_address)); 16423 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16424 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16425 LPFC_SLI4_MBX_NEMBED); 16426 if (alloclen < length) { 16427 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16428 "3098 Allocated DMA memory size (%d) is " 16429 "less than the requested DMA memory size " 16430 "(%d)\n", alloclen, length); 16431 status = -ENOMEM; 16432 goto out; 16433 } 16434 cq_set = mbox->sge_array->addr[0]; 16435 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16436 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16437 16438 for (idx = 0; idx < numcq; idx++) { 16439 cq = cqp[idx]; 16440 eq = hdwq[idx].hba_eq; 16441 if (!cq || !eq) { 16442 status = -ENOMEM; 16443 goto out; 16444 } 16445 if (!phba->sli4_hba.pc_sli4_params.supported) 16446 hw_page_size = cq->page_size; 16447 16448 switch (idx) { 16449 case 0: 16450 bf_set(lpfc_mbx_cq_create_set_page_size, 16451 &cq_set->u.request, 16452 (hw_page_size / SLI4_PAGE_SIZE)); 16453 bf_set(lpfc_mbx_cq_create_set_num_pages, 16454 &cq_set->u.request, cq->page_count); 16455 bf_set(lpfc_mbx_cq_create_set_evt, 16456 &cq_set->u.request, 1); 16457 bf_set(lpfc_mbx_cq_create_set_valid, 16458 &cq_set->u.request, 1); 16459 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16460 &cq_set->u.request, 0); 16461 bf_set(lpfc_mbx_cq_create_set_num_cq, 16462 &cq_set->u.request, numcq); 16463 bf_set(lpfc_mbx_cq_create_set_autovalid, 16464 &cq_set->u.request, 16465 phba->sli4_hba.pc_sli4_params.cqav); 16466 switch (cq->entry_count) { 16467 case 2048: 16468 case 4096: 16469 if (phba->sli4_hba.pc_sli4_params.cqv == 16470 LPFC_Q_CREATE_VERSION_2) { 16471 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16472 &cq_set->u.request, 16473 cq->entry_count); 16474 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16475 &cq_set->u.request, 16476 LPFC_CQ_CNT_WORD7); 16477 break; 16478 } 16479 fallthrough; 16480 default: 16481 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16482 "3118 Bad CQ count. (%d)\n", 16483 cq->entry_count); 16484 if (cq->entry_count < 256) { 16485 status = -EINVAL; 16486 goto out; 16487 } 16488 fallthrough; /* otherwise default to smallest */ 16489 case 256: 16490 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16491 &cq_set->u.request, LPFC_CQ_CNT_256); 16492 break; 16493 case 512: 16494 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16495 &cq_set->u.request, LPFC_CQ_CNT_512); 16496 break; 16497 case 1024: 16498 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16499 &cq_set->u.request, LPFC_CQ_CNT_1024); 16500 break; 16501 } 16502 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16503 &cq_set->u.request, eq->queue_id); 16504 break; 16505 case 1: 16506 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16507 &cq_set->u.request, eq->queue_id); 16508 break; 16509 case 2: 16510 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16511 &cq_set->u.request, eq->queue_id); 16512 break; 16513 case 3: 16514 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16515 &cq_set->u.request, eq->queue_id); 16516 break; 16517 case 4: 16518 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16519 &cq_set->u.request, eq->queue_id); 16520 break; 16521 case 5: 16522 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 6: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 7: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 8: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 9: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 10: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 11: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 12: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 13: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 14: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 case 15: 16562 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16563 &cq_set->u.request, eq->queue_id); 16564 break; 16565 } 16566 16567 /* link the cq onto the parent eq child list */ 16568 list_add_tail(&cq->list, &eq->child_list); 16569 /* Set up completion queue's type and subtype */ 16570 cq->type = type; 16571 cq->subtype = subtype; 16572 cq->assoc_qid = eq->queue_id; 16573 cq->assoc_qp = eq; 16574 cq->host_index = 0; 16575 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16576 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16577 cq->entry_count); 16578 cq->chann = idx; 16579 16580 rc = 0; 16581 list_for_each_entry(dmabuf, &cq->page_list, list) { 16582 memset(dmabuf->virt, 0, hw_page_size); 16583 cnt = page_idx + dmabuf->buffer_tag; 16584 cq_set->u.request.page[cnt].addr_lo = 16585 putPaddrLow(dmabuf->phys); 16586 cq_set->u.request.page[cnt].addr_hi = 16587 putPaddrHigh(dmabuf->phys); 16588 rc++; 16589 } 16590 page_idx += rc; 16591 } 16592 16593 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16594 16595 /* The IOCTL status is embedded in the mailbox subheader. */ 16596 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16597 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16598 if (shdr_status || shdr_add_status || rc) { 16599 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16600 "3119 CQ_CREATE_SET mailbox failed with " 16601 "status x%x add_status x%x, mbx status x%x\n", 16602 shdr_status, shdr_add_status, rc); 16603 status = -ENXIO; 16604 goto out; 16605 } 16606 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16607 if (rc == 0xFFFF) { 16608 status = -ENXIO; 16609 goto out; 16610 } 16611 16612 for (idx = 0; idx < numcq; idx++) { 16613 cq = cqp[idx]; 16614 cq->queue_id = rc + idx; 16615 if (cq->queue_id > phba->sli4_hba.cq_max) 16616 phba->sli4_hba.cq_max = cq->queue_id; 16617 } 16618 16619 out: 16620 lpfc_sli4_mbox_cmd_free(phba, mbox); 16621 return status; 16622 } 16623 16624 /** 16625 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16626 * @phba: HBA structure that indicates port to create a queue on. 16627 * @mq: The queue structure to use to create the mailbox queue. 16628 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16629 * @cq: The completion queue to associate with this cq. 16630 * 16631 * This function provides failback (fb) functionality when the 16632 * mq_create_ext fails on older FW generations. It's purpose is identical 16633 * to mq_create_ext otherwise. 16634 * 16635 * This routine cannot fail as all attributes were previously accessed and 16636 * initialized in mq_create_ext. 16637 **/ 16638 static void 16639 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16640 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16641 { 16642 struct lpfc_mbx_mq_create *mq_create; 16643 struct lpfc_dmabuf *dmabuf; 16644 int length; 16645 16646 length = (sizeof(struct lpfc_mbx_mq_create) - 16647 sizeof(struct lpfc_sli4_cfg_mhdr)); 16648 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16649 LPFC_MBOX_OPCODE_MQ_CREATE, 16650 length, LPFC_SLI4_MBX_EMBED); 16651 mq_create = &mbox->u.mqe.un.mq_create; 16652 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16653 mq->page_count); 16654 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16655 cq->queue_id); 16656 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16657 switch (mq->entry_count) { 16658 case 16: 16659 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16660 LPFC_MQ_RING_SIZE_16); 16661 break; 16662 case 32: 16663 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16664 LPFC_MQ_RING_SIZE_32); 16665 break; 16666 case 64: 16667 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16668 LPFC_MQ_RING_SIZE_64); 16669 break; 16670 case 128: 16671 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16672 LPFC_MQ_RING_SIZE_128); 16673 break; 16674 } 16675 list_for_each_entry(dmabuf, &mq->page_list, list) { 16676 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16677 putPaddrLow(dmabuf->phys); 16678 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16679 putPaddrHigh(dmabuf->phys); 16680 } 16681 } 16682 16683 /** 16684 * lpfc_mq_create - Create a mailbox Queue on the HBA 16685 * @phba: HBA structure that indicates port to create a queue on. 16686 * @mq: The queue structure to use to create the mailbox queue. 16687 * @cq: The completion queue to associate with this cq. 16688 * @subtype: The queue's subtype. 16689 * 16690 * This function creates a mailbox queue, as detailed in @mq, on a port, 16691 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16692 * 16693 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16694 * is used to get the entry count and entry size that are necessary to 16695 * determine the number of pages to allocate and use for this queue. This 16696 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16697 * mailbox queue. This function is asynchronous and will wait for the mailbox 16698 * command to finish before continuing. 16699 * 16700 * On success this function will return a zero. If unable to allocate enough 16701 * memory this function will return -ENOMEM. If the queue create mailbox command 16702 * fails this function will return -ENXIO. 16703 **/ 16704 int32_t 16705 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16706 struct lpfc_queue *cq, uint32_t subtype) 16707 { 16708 struct lpfc_mbx_mq_create *mq_create; 16709 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16710 struct lpfc_dmabuf *dmabuf; 16711 LPFC_MBOXQ_t *mbox; 16712 int rc, length, status = 0; 16713 uint32_t shdr_status, shdr_add_status; 16714 union lpfc_sli4_cfg_shdr *shdr; 16715 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16716 16717 /* sanity check on queue memory */ 16718 if (!mq || !cq) 16719 return -ENODEV; 16720 if (!phba->sli4_hba.pc_sli4_params.supported) 16721 hw_page_size = SLI4_PAGE_SIZE; 16722 16723 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16724 if (!mbox) 16725 return -ENOMEM; 16726 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16727 sizeof(struct lpfc_sli4_cfg_mhdr)); 16728 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16729 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16730 length, LPFC_SLI4_MBX_EMBED); 16731 16732 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16733 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16734 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16735 &mq_create_ext->u.request, mq->page_count); 16736 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16737 &mq_create_ext->u.request, 1); 16738 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16739 &mq_create_ext->u.request, 1); 16740 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16741 &mq_create_ext->u.request, 1); 16742 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16743 &mq_create_ext->u.request, 1); 16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16745 &mq_create_ext->u.request, 1); 16746 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16747 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16748 phba->sli4_hba.pc_sli4_params.mqv); 16749 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16750 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16751 cq->queue_id); 16752 else 16753 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16754 cq->queue_id); 16755 switch (mq->entry_count) { 16756 default: 16757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16758 "0362 Unsupported MQ count. (%d)\n", 16759 mq->entry_count); 16760 if (mq->entry_count < 16) { 16761 status = -EINVAL; 16762 goto out; 16763 } 16764 fallthrough; /* otherwise default to smallest count */ 16765 case 16: 16766 bf_set(lpfc_mq_context_ring_size, 16767 &mq_create_ext->u.request.context, 16768 LPFC_MQ_RING_SIZE_16); 16769 break; 16770 case 32: 16771 bf_set(lpfc_mq_context_ring_size, 16772 &mq_create_ext->u.request.context, 16773 LPFC_MQ_RING_SIZE_32); 16774 break; 16775 case 64: 16776 bf_set(lpfc_mq_context_ring_size, 16777 &mq_create_ext->u.request.context, 16778 LPFC_MQ_RING_SIZE_64); 16779 break; 16780 case 128: 16781 bf_set(lpfc_mq_context_ring_size, 16782 &mq_create_ext->u.request.context, 16783 LPFC_MQ_RING_SIZE_128); 16784 break; 16785 } 16786 list_for_each_entry(dmabuf, &mq->page_list, list) { 16787 memset(dmabuf->virt, 0, hw_page_size); 16788 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16789 putPaddrLow(dmabuf->phys); 16790 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16791 putPaddrHigh(dmabuf->phys); 16792 } 16793 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16794 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16795 &mq_create_ext->u.response); 16796 if (rc != MBX_SUCCESS) { 16797 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16798 "2795 MQ_CREATE_EXT failed with " 16799 "status x%x. Failback to MQ_CREATE.\n", 16800 rc); 16801 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16802 mq_create = &mbox->u.mqe.un.mq_create; 16803 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16804 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16805 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16806 &mq_create->u.response); 16807 } 16808 16809 /* The IOCTL status is embedded in the mailbox subheader. */ 16810 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16811 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16812 if (shdr_status || shdr_add_status || rc) { 16813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16814 "2502 MQ_CREATE mailbox failed with " 16815 "status x%x add_status x%x, mbx status x%x\n", 16816 shdr_status, shdr_add_status, rc); 16817 status = -ENXIO; 16818 goto out; 16819 } 16820 if (mq->queue_id == 0xFFFF) { 16821 status = -ENXIO; 16822 goto out; 16823 } 16824 mq->type = LPFC_MQ; 16825 mq->assoc_qid = cq->queue_id; 16826 mq->subtype = subtype; 16827 mq->host_index = 0; 16828 mq->hba_index = 0; 16829 16830 /* link the mq onto the parent cq child list */ 16831 list_add_tail(&mq->list, &cq->child_list); 16832 out: 16833 mempool_free(mbox, phba->mbox_mem_pool); 16834 return status; 16835 } 16836 16837 /** 16838 * lpfc_wq_create - Create a Work Queue on the HBA 16839 * @phba: HBA structure that indicates port to create a queue on. 16840 * @wq: The queue structure to use to create the work queue. 16841 * @cq: The completion queue to bind this work queue to. 16842 * @subtype: The subtype of the work queue indicating its functionality. 16843 * 16844 * This function creates a work queue, as detailed in @wq, on a port, described 16845 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16846 * 16847 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16848 * is used to get the entry count and entry size that are necessary to 16849 * determine the number of pages to allocate and use for this queue. The @cq 16850 * is used to indicate which completion queue to bind this work queue to. This 16851 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16852 * work queue. This function is asynchronous and will wait for the mailbox 16853 * command to finish before continuing. 16854 * 16855 * On success this function will return a zero. If unable to allocate enough 16856 * memory this function will return -ENOMEM. If the queue create mailbox command 16857 * fails this function will return -ENXIO. 16858 **/ 16859 int 16860 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16861 struct lpfc_queue *cq, uint32_t subtype) 16862 { 16863 struct lpfc_mbx_wq_create *wq_create; 16864 struct lpfc_dmabuf *dmabuf; 16865 LPFC_MBOXQ_t *mbox; 16866 int rc, length, status = 0; 16867 uint32_t shdr_status, shdr_add_status; 16868 union lpfc_sli4_cfg_shdr *shdr; 16869 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16870 struct dma_address *page; 16871 void __iomem *bar_memmap_p; 16872 uint32_t db_offset; 16873 uint16_t pci_barset; 16874 uint8_t dpp_barset; 16875 uint32_t dpp_offset; 16876 uint8_t wq_create_version; 16877 #ifdef CONFIG_X86 16878 unsigned long pg_addr; 16879 #endif 16880 16881 /* sanity check on queue memory */ 16882 if (!wq || !cq) 16883 return -ENODEV; 16884 if (!phba->sli4_hba.pc_sli4_params.supported) 16885 hw_page_size = wq->page_size; 16886 16887 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16888 if (!mbox) 16889 return -ENOMEM; 16890 length = (sizeof(struct lpfc_mbx_wq_create) - 16891 sizeof(struct lpfc_sli4_cfg_mhdr)); 16892 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16893 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16894 length, LPFC_SLI4_MBX_EMBED); 16895 wq_create = &mbox->u.mqe.un.wq_create; 16896 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16897 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16898 wq->page_count); 16899 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16900 cq->queue_id); 16901 16902 /* wqv is the earliest version supported, NOT the latest */ 16903 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16904 phba->sli4_hba.pc_sli4_params.wqv); 16905 16906 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16907 (wq->page_size > SLI4_PAGE_SIZE)) 16908 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16909 else 16910 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16911 16912 switch (wq_create_version) { 16913 case LPFC_Q_CREATE_VERSION_1: 16914 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16915 wq->entry_count); 16916 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16917 LPFC_Q_CREATE_VERSION_1); 16918 16919 switch (wq->entry_size) { 16920 default: 16921 case 64: 16922 bf_set(lpfc_mbx_wq_create_wqe_size, 16923 &wq_create->u.request_1, 16924 LPFC_WQ_WQE_SIZE_64); 16925 break; 16926 case 128: 16927 bf_set(lpfc_mbx_wq_create_wqe_size, 16928 &wq_create->u.request_1, 16929 LPFC_WQ_WQE_SIZE_128); 16930 break; 16931 } 16932 /* Request DPP by default */ 16933 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16934 bf_set(lpfc_mbx_wq_create_page_size, 16935 &wq_create->u.request_1, 16936 (wq->page_size / SLI4_PAGE_SIZE)); 16937 page = wq_create->u.request_1.page; 16938 break; 16939 default: 16940 page = wq_create->u.request.page; 16941 break; 16942 } 16943 16944 list_for_each_entry(dmabuf, &wq->page_list, list) { 16945 memset(dmabuf->virt, 0, hw_page_size); 16946 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16947 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16948 } 16949 16950 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16951 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16952 16953 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16954 /* The IOCTL status is embedded in the mailbox subheader. */ 16955 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16956 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16957 if (shdr_status || shdr_add_status || rc) { 16958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16959 "2503 WQ_CREATE mailbox failed with " 16960 "status x%x add_status x%x, mbx status x%x\n", 16961 shdr_status, shdr_add_status, rc); 16962 status = -ENXIO; 16963 goto out; 16964 } 16965 16966 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16967 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16968 &wq_create->u.response); 16969 else 16970 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16971 &wq_create->u.response_1); 16972 16973 if (wq->queue_id == 0xFFFF) { 16974 status = -ENXIO; 16975 goto out; 16976 } 16977 16978 wq->db_format = LPFC_DB_LIST_FORMAT; 16979 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16980 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16981 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16982 &wq_create->u.response); 16983 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16984 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16986 "3265 WQ[%d] doorbell format " 16987 "not supported: x%x\n", 16988 wq->queue_id, wq->db_format); 16989 status = -EINVAL; 16990 goto out; 16991 } 16992 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16993 &wq_create->u.response); 16994 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16995 pci_barset); 16996 if (!bar_memmap_p) { 16997 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16998 "3263 WQ[%d] failed to memmap " 16999 "pci barset:x%x\n", 17000 wq->queue_id, pci_barset); 17001 status = -ENOMEM; 17002 goto out; 17003 } 17004 db_offset = wq_create->u.response.doorbell_offset; 17005 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17006 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17007 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17008 "3252 WQ[%d] doorbell offset " 17009 "not supported: x%x\n", 17010 wq->queue_id, db_offset); 17011 status = -EINVAL; 17012 goto out; 17013 } 17014 wq->db_regaddr = bar_memmap_p + db_offset; 17015 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17016 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17017 "format:x%x\n", wq->queue_id, 17018 pci_barset, db_offset, wq->db_format); 17019 } else 17020 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17021 } else { 17022 /* Check if DPP was honored by the firmware */ 17023 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17024 &wq_create->u.response_1); 17025 if (wq->dpp_enable) { 17026 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17027 &wq_create->u.response_1); 17028 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17029 pci_barset); 17030 if (!bar_memmap_p) { 17031 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17032 "3267 WQ[%d] failed to memmap " 17033 "pci barset:x%x\n", 17034 wq->queue_id, pci_barset); 17035 status = -ENOMEM; 17036 goto out; 17037 } 17038 db_offset = wq_create->u.response_1.doorbell_offset; 17039 wq->db_regaddr = bar_memmap_p + db_offset; 17040 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17041 &wq_create->u.response_1); 17042 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17043 &wq_create->u.response_1); 17044 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17045 dpp_barset); 17046 if (!bar_memmap_p) { 17047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17048 "3268 WQ[%d] failed to memmap " 17049 "pci barset:x%x\n", 17050 wq->queue_id, dpp_barset); 17051 status = -ENOMEM; 17052 goto out; 17053 } 17054 dpp_offset = wq_create->u.response_1.dpp_offset; 17055 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17056 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17057 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17058 "dpp_id:x%x dpp_barset:x%x " 17059 "dpp_offset:x%x\n", 17060 wq->queue_id, pci_barset, db_offset, 17061 wq->dpp_id, dpp_barset, dpp_offset); 17062 17063 #ifdef CONFIG_X86 17064 /* Enable combined writes for DPP aperture */ 17065 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17066 rc = set_memory_wc(pg_addr, 1); 17067 if (rc) { 17068 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17069 "3272 Cannot setup Combined " 17070 "Write on WQ[%d] - disable DPP\n", 17071 wq->queue_id); 17072 phba->cfg_enable_dpp = 0; 17073 } 17074 #else 17075 phba->cfg_enable_dpp = 0; 17076 #endif 17077 } else 17078 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17079 } 17080 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17081 if (wq->pring == NULL) { 17082 status = -ENOMEM; 17083 goto out; 17084 } 17085 wq->type = LPFC_WQ; 17086 wq->assoc_qid = cq->queue_id; 17087 wq->subtype = subtype; 17088 wq->host_index = 0; 17089 wq->hba_index = 0; 17090 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17091 17092 /* link the wq onto the parent cq child list */ 17093 list_add_tail(&wq->list, &cq->child_list); 17094 out: 17095 mempool_free(mbox, phba->mbox_mem_pool); 17096 return status; 17097 } 17098 17099 /** 17100 * lpfc_rq_create - Create a Receive Queue on the HBA 17101 * @phba: HBA structure that indicates port to create a queue on. 17102 * @hrq: The queue structure to use to create the header receive queue. 17103 * @drq: The queue structure to use to create the data receive queue. 17104 * @cq: The completion queue to bind this work queue to. 17105 * @subtype: The subtype of the work queue indicating its functionality. 17106 * 17107 * This function creates a receive buffer queue pair , as detailed in @hrq and 17108 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17109 * to the HBA. 17110 * 17111 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17112 * struct is used to get the entry count that is necessary to determine the 17113 * number of pages to use for this queue. The @cq is used to indicate which 17114 * completion queue to bind received buffers that are posted to these queues to. 17115 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17116 * receive queue pair. This function is asynchronous and will wait for the 17117 * mailbox command to finish before continuing. 17118 * 17119 * On success this function will return a zero. If unable to allocate enough 17120 * memory this function will return -ENOMEM. If the queue create mailbox command 17121 * fails this function will return -ENXIO. 17122 **/ 17123 int 17124 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17125 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17126 { 17127 struct lpfc_mbx_rq_create *rq_create; 17128 struct lpfc_dmabuf *dmabuf; 17129 LPFC_MBOXQ_t *mbox; 17130 int rc, length, status = 0; 17131 uint32_t shdr_status, shdr_add_status; 17132 union lpfc_sli4_cfg_shdr *shdr; 17133 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17134 void __iomem *bar_memmap_p; 17135 uint32_t db_offset; 17136 uint16_t pci_barset; 17137 17138 /* sanity check on queue memory */ 17139 if (!hrq || !drq || !cq) 17140 return -ENODEV; 17141 if (!phba->sli4_hba.pc_sli4_params.supported) 17142 hw_page_size = SLI4_PAGE_SIZE; 17143 17144 if (hrq->entry_count != drq->entry_count) 17145 return -EINVAL; 17146 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17147 if (!mbox) 17148 return -ENOMEM; 17149 length = (sizeof(struct lpfc_mbx_rq_create) - 17150 sizeof(struct lpfc_sli4_cfg_mhdr)); 17151 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17152 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17153 length, LPFC_SLI4_MBX_EMBED); 17154 rq_create = &mbox->u.mqe.un.rq_create; 17155 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17156 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17157 phba->sli4_hba.pc_sli4_params.rqv); 17158 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17159 bf_set(lpfc_rq_context_rqe_count_1, 17160 &rq_create->u.request.context, 17161 hrq->entry_count); 17162 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17163 bf_set(lpfc_rq_context_rqe_size, 17164 &rq_create->u.request.context, 17165 LPFC_RQE_SIZE_8); 17166 bf_set(lpfc_rq_context_page_size, 17167 &rq_create->u.request.context, 17168 LPFC_RQ_PAGE_SIZE_4096); 17169 } else { 17170 switch (hrq->entry_count) { 17171 default: 17172 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17173 "2535 Unsupported RQ count. (%d)\n", 17174 hrq->entry_count); 17175 if (hrq->entry_count < 512) { 17176 status = -EINVAL; 17177 goto out; 17178 } 17179 fallthrough; /* otherwise default to smallest count */ 17180 case 512: 17181 bf_set(lpfc_rq_context_rqe_count, 17182 &rq_create->u.request.context, 17183 LPFC_RQ_RING_SIZE_512); 17184 break; 17185 case 1024: 17186 bf_set(lpfc_rq_context_rqe_count, 17187 &rq_create->u.request.context, 17188 LPFC_RQ_RING_SIZE_1024); 17189 break; 17190 case 2048: 17191 bf_set(lpfc_rq_context_rqe_count, 17192 &rq_create->u.request.context, 17193 LPFC_RQ_RING_SIZE_2048); 17194 break; 17195 case 4096: 17196 bf_set(lpfc_rq_context_rqe_count, 17197 &rq_create->u.request.context, 17198 LPFC_RQ_RING_SIZE_4096); 17199 break; 17200 } 17201 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17202 LPFC_HDR_BUF_SIZE); 17203 } 17204 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17205 cq->queue_id); 17206 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17207 hrq->page_count); 17208 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17209 memset(dmabuf->virt, 0, hw_page_size); 17210 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17211 putPaddrLow(dmabuf->phys); 17212 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17213 putPaddrHigh(dmabuf->phys); 17214 } 17215 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17216 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17217 17218 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17219 /* The IOCTL status is embedded in the mailbox subheader. */ 17220 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17221 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17222 if (shdr_status || shdr_add_status || rc) { 17223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17224 "2504 RQ_CREATE mailbox failed with " 17225 "status x%x add_status x%x, mbx status x%x\n", 17226 shdr_status, shdr_add_status, rc); 17227 status = -ENXIO; 17228 goto out; 17229 } 17230 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17231 if (hrq->queue_id == 0xFFFF) { 17232 status = -ENXIO; 17233 goto out; 17234 } 17235 17236 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17237 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17238 &rq_create->u.response); 17239 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17240 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17242 "3262 RQ [%d] doorbell format not " 17243 "supported: x%x\n", hrq->queue_id, 17244 hrq->db_format); 17245 status = -EINVAL; 17246 goto out; 17247 } 17248 17249 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17250 &rq_create->u.response); 17251 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17252 if (!bar_memmap_p) { 17253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17254 "3269 RQ[%d] failed to memmap pci " 17255 "barset:x%x\n", hrq->queue_id, 17256 pci_barset); 17257 status = -ENOMEM; 17258 goto out; 17259 } 17260 17261 db_offset = rq_create->u.response.doorbell_offset; 17262 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17263 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17264 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17265 "3270 RQ[%d] doorbell offset not " 17266 "supported: x%x\n", hrq->queue_id, 17267 db_offset); 17268 status = -EINVAL; 17269 goto out; 17270 } 17271 hrq->db_regaddr = bar_memmap_p + db_offset; 17272 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17273 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17274 "format:x%x\n", hrq->queue_id, pci_barset, 17275 db_offset, hrq->db_format); 17276 } else { 17277 hrq->db_format = LPFC_DB_RING_FORMAT; 17278 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17279 } 17280 hrq->type = LPFC_HRQ; 17281 hrq->assoc_qid = cq->queue_id; 17282 hrq->subtype = subtype; 17283 hrq->host_index = 0; 17284 hrq->hba_index = 0; 17285 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17286 17287 /* now create the data queue */ 17288 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17289 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17290 length, LPFC_SLI4_MBX_EMBED); 17291 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17292 phba->sli4_hba.pc_sli4_params.rqv); 17293 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17294 bf_set(lpfc_rq_context_rqe_count_1, 17295 &rq_create->u.request.context, hrq->entry_count); 17296 if (subtype == LPFC_NVMET) 17297 rq_create->u.request.context.buffer_size = 17298 LPFC_NVMET_DATA_BUF_SIZE; 17299 else 17300 rq_create->u.request.context.buffer_size = 17301 LPFC_DATA_BUF_SIZE; 17302 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17303 LPFC_RQE_SIZE_8); 17304 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17305 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17306 } else { 17307 switch (drq->entry_count) { 17308 default: 17309 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17310 "2536 Unsupported RQ count. (%d)\n", 17311 drq->entry_count); 17312 if (drq->entry_count < 512) { 17313 status = -EINVAL; 17314 goto out; 17315 } 17316 fallthrough; /* otherwise default to smallest count */ 17317 case 512: 17318 bf_set(lpfc_rq_context_rqe_count, 17319 &rq_create->u.request.context, 17320 LPFC_RQ_RING_SIZE_512); 17321 break; 17322 case 1024: 17323 bf_set(lpfc_rq_context_rqe_count, 17324 &rq_create->u.request.context, 17325 LPFC_RQ_RING_SIZE_1024); 17326 break; 17327 case 2048: 17328 bf_set(lpfc_rq_context_rqe_count, 17329 &rq_create->u.request.context, 17330 LPFC_RQ_RING_SIZE_2048); 17331 break; 17332 case 4096: 17333 bf_set(lpfc_rq_context_rqe_count, 17334 &rq_create->u.request.context, 17335 LPFC_RQ_RING_SIZE_4096); 17336 break; 17337 } 17338 if (subtype == LPFC_NVMET) 17339 bf_set(lpfc_rq_context_buf_size, 17340 &rq_create->u.request.context, 17341 LPFC_NVMET_DATA_BUF_SIZE); 17342 else 17343 bf_set(lpfc_rq_context_buf_size, 17344 &rq_create->u.request.context, 17345 LPFC_DATA_BUF_SIZE); 17346 } 17347 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17348 cq->queue_id); 17349 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17350 drq->page_count); 17351 list_for_each_entry(dmabuf, &drq->page_list, list) { 17352 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17353 putPaddrLow(dmabuf->phys); 17354 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17355 putPaddrHigh(dmabuf->phys); 17356 } 17357 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17358 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17359 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17360 /* The IOCTL status is embedded in the mailbox subheader. */ 17361 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17362 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17363 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17364 if (shdr_status || shdr_add_status || rc) { 17365 status = -ENXIO; 17366 goto out; 17367 } 17368 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17369 if (drq->queue_id == 0xFFFF) { 17370 status = -ENXIO; 17371 goto out; 17372 } 17373 drq->type = LPFC_DRQ; 17374 drq->assoc_qid = cq->queue_id; 17375 drq->subtype = subtype; 17376 drq->host_index = 0; 17377 drq->hba_index = 0; 17378 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17379 17380 /* link the header and data RQs onto the parent cq child list */ 17381 list_add_tail(&hrq->list, &cq->child_list); 17382 list_add_tail(&drq->list, &cq->child_list); 17383 17384 out: 17385 mempool_free(mbox, phba->mbox_mem_pool); 17386 return status; 17387 } 17388 17389 /** 17390 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17391 * @phba: HBA structure that indicates port to create a queue on. 17392 * @hrqp: The queue structure array to use to create the header receive queues. 17393 * @drqp: The queue structure array to use to create the data receive queues. 17394 * @cqp: The completion queue array to bind these receive queues to. 17395 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17396 * 17397 * This function creates a receive buffer queue pair , as detailed in @hrq and 17398 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17399 * to the HBA. 17400 * 17401 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17402 * struct is used to get the entry count that is necessary to determine the 17403 * number of pages to use for this queue. The @cq is used to indicate which 17404 * completion queue to bind received buffers that are posted to these queues to. 17405 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17406 * receive queue pair. This function is asynchronous and will wait for the 17407 * mailbox command to finish before continuing. 17408 * 17409 * On success this function will return a zero. If unable to allocate enough 17410 * memory this function will return -ENOMEM. If the queue create mailbox command 17411 * fails this function will return -ENXIO. 17412 **/ 17413 int 17414 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17415 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17416 uint32_t subtype) 17417 { 17418 struct lpfc_queue *hrq, *drq, *cq; 17419 struct lpfc_mbx_rq_create_v2 *rq_create; 17420 struct lpfc_dmabuf *dmabuf; 17421 LPFC_MBOXQ_t *mbox; 17422 int rc, length, alloclen, status = 0; 17423 int cnt, idx, numrq, page_idx = 0; 17424 uint32_t shdr_status, shdr_add_status; 17425 union lpfc_sli4_cfg_shdr *shdr; 17426 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17427 17428 numrq = phba->cfg_nvmet_mrq; 17429 /* sanity check on array memory */ 17430 if (!hrqp || !drqp || !cqp || !numrq) 17431 return -ENODEV; 17432 if (!phba->sli4_hba.pc_sli4_params.supported) 17433 hw_page_size = SLI4_PAGE_SIZE; 17434 17435 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17436 if (!mbox) 17437 return -ENOMEM; 17438 17439 length = sizeof(struct lpfc_mbx_rq_create_v2); 17440 length += ((2 * numrq * hrqp[0]->page_count) * 17441 sizeof(struct dma_address)); 17442 17443 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17444 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17445 LPFC_SLI4_MBX_NEMBED); 17446 if (alloclen < length) { 17447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17448 "3099 Allocated DMA memory size (%d) is " 17449 "less than the requested DMA memory size " 17450 "(%d)\n", alloclen, length); 17451 status = -ENOMEM; 17452 goto out; 17453 } 17454 17455 17456 17457 rq_create = mbox->sge_array->addr[0]; 17458 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17459 17460 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17461 cnt = 0; 17462 17463 for (idx = 0; idx < numrq; idx++) { 17464 hrq = hrqp[idx]; 17465 drq = drqp[idx]; 17466 cq = cqp[idx]; 17467 17468 /* sanity check on queue memory */ 17469 if (!hrq || !drq || !cq) { 17470 status = -ENODEV; 17471 goto out; 17472 } 17473 17474 if (hrq->entry_count != drq->entry_count) { 17475 status = -EINVAL; 17476 goto out; 17477 } 17478 17479 if (idx == 0) { 17480 bf_set(lpfc_mbx_rq_create_num_pages, 17481 &rq_create->u.request, 17482 hrq->page_count); 17483 bf_set(lpfc_mbx_rq_create_rq_cnt, 17484 &rq_create->u.request, (numrq * 2)); 17485 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17486 1); 17487 bf_set(lpfc_rq_context_base_cq, 17488 &rq_create->u.request.context, 17489 cq->queue_id); 17490 bf_set(lpfc_rq_context_data_size, 17491 &rq_create->u.request.context, 17492 LPFC_NVMET_DATA_BUF_SIZE); 17493 bf_set(lpfc_rq_context_hdr_size, 17494 &rq_create->u.request.context, 17495 LPFC_HDR_BUF_SIZE); 17496 bf_set(lpfc_rq_context_rqe_count_1, 17497 &rq_create->u.request.context, 17498 hrq->entry_count); 17499 bf_set(lpfc_rq_context_rqe_size, 17500 &rq_create->u.request.context, 17501 LPFC_RQE_SIZE_8); 17502 bf_set(lpfc_rq_context_page_size, 17503 &rq_create->u.request.context, 17504 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17505 } 17506 rc = 0; 17507 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17508 memset(dmabuf->virt, 0, hw_page_size); 17509 cnt = page_idx + dmabuf->buffer_tag; 17510 rq_create->u.request.page[cnt].addr_lo = 17511 putPaddrLow(dmabuf->phys); 17512 rq_create->u.request.page[cnt].addr_hi = 17513 putPaddrHigh(dmabuf->phys); 17514 rc++; 17515 } 17516 page_idx += rc; 17517 17518 rc = 0; 17519 list_for_each_entry(dmabuf, &drq->page_list, list) { 17520 memset(dmabuf->virt, 0, hw_page_size); 17521 cnt = page_idx + dmabuf->buffer_tag; 17522 rq_create->u.request.page[cnt].addr_lo = 17523 putPaddrLow(dmabuf->phys); 17524 rq_create->u.request.page[cnt].addr_hi = 17525 putPaddrHigh(dmabuf->phys); 17526 rc++; 17527 } 17528 page_idx += rc; 17529 17530 hrq->db_format = LPFC_DB_RING_FORMAT; 17531 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17532 hrq->type = LPFC_HRQ; 17533 hrq->assoc_qid = cq->queue_id; 17534 hrq->subtype = subtype; 17535 hrq->host_index = 0; 17536 hrq->hba_index = 0; 17537 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17538 17539 drq->db_format = LPFC_DB_RING_FORMAT; 17540 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17541 drq->type = LPFC_DRQ; 17542 drq->assoc_qid = cq->queue_id; 17543 drq->subtype = subtype; 17544 drq->host_index = 0; 17545 drq->hba_index = 0; 17546 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17547 17548 list_add_tail(&hrq->list, &cq->child_list); 17549 list_add_tail(&drq->list, &cq->child_list); 17550 } 17551 17552 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17553 /* The IOCTL status is embedded in the mailbox subheader. */ 17554 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17555 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17556 if (shdr_status || shdr_add_status || rc) { 17557 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17558 "3120 RQ_CREATE mailbox failed with " 17559 "status x%x add_status x%x, mbx status x%x\n", 17560 shdr_status, shdr_add_status, rc); 17561 status = -ENXIO; 17562 goto out; 17563 } 17564 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17565 if (rc == 0xFFFF) { 17566 status = -ENXIO; 17567 goto out; 17568 } 17569 17570 /* Initialize all RQs with associated queue id */ 17571 for (idx = 0; idx < numrq; idx++) { 17572 hrq = hrqp[idx]; 17573 hrq->queue_id = rc + (2 * idx); 17574 drq = drqp[idx]; 17575 drq->queue_id = rc + (2 * idx) + 1; 17576 } 17577 17578 out: 17579 lpfc_sli4_mbox_cmd_free(phba, mbox); 17580 return status; 17581 } 17582 17583 /** 17584 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17585 * @phba: HBA structure that indicates port to destroy a queue on. 17586 * @eq: The queue structure associated with the queue to destroy. 17587 * 17588 * This function destroys a queue, as detailed in @eq by sending an mailbox 17589 * command, specific to the type of queue, to the HBA. 17590 * 17591 * The @eq struct is used to get the queue ID of the queue to destroy. 17592 * 17593 * On success this function will return a zero. If the queue destroy mailbox 17594 * command fails this function will return -ENXIO. 17595 **/ 17596 int 17597 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17598 { 17599 LPFC_MBOXQ_t *mbox; 17600 int rc, length, status = 0; 17601 uint32_t shdr_status, shdr_add_status; 17602 union lpfc_sli4_cfg_shdr *shdr; 17603 17604 /* sanity check on queue memory */ 17605 if (!eq) 17606 return -ENODEV; 17607 17608 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17609 if (!mbox) 17610 return -ENOMEM; 17611 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17612 sizeof(struct lpfc_sli4_cfg_mhdr)); 17613 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17614 LPFC_MBOX_OPCODE_EQ_DESTROY, 17615 length, LPFC_SLI4_MBX_EMBED); 17616 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17617 eq->queue_id); 17618 mbox->vport = eq->phba->pport; 17619 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17620 17621 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17622 /* The IOCTL status is embedded in the mailbox subheader. */ 17623 shdr = (union lpfc_sli4_cfg_shdr *) 17624 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17625 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17626 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17627 if (shdr_status || shdr_add_status || rc) { 17628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17629 "2505 EQ_DESTROY mailbox failed with " 17630 "status x%x add_status x%x, mbx status x%x\n", 17631 shdr_status, shdr_add_status, rc); 17632 status = -ENXIO; 17633 } 17634 17635 /* Remove eq from any list */ 17636 list_del_init(&eq->list); 17637 mempool_free(mbox, eq->phba->mbox_mem_pool); 17638 return status; 17639 } 17640 17641 /** 17642 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17643 * @phba: HBA structure that indicates port to destroy a queue on. 17644 * @cq: The queue structure associated with the queue to destroy. 17645 * 17646 * This function destroys a queue, as detailed in @cq by sending an mailbox 17647 * command, specific to the type of queue, to the HBA. 17648 * 17649 * The @cq struct is used to get the queue ID of the queue to destroy. 17650 * 17651 * On success this function will return a zero. If the queue destroy mailbox 17652 * command fails this function will return -ENXIO. 17653 **/ 17654 int 17655 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17656 { 17657 LPFC_MBOXQ_t *mbox; 17658 int rc, length, status = 0; 17659 uint32_t shdr_status, shdr_add_status; 17660 union lpfc_sli4_cfg_shdr *shdr; 17661 17662 /* sanity check on queue memory */ 17663 if (!cq) 17664 return -ENODEV; 17665 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17666 if (!mbox) 17667 return -ENOMEM; 17668 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17669 sizeof(struct lpfc_sli4_cfg_mhdr)); 17670 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17671 LPFC_MBOX_OPCODE_CQ_DESTROY, 17672 length, LPFC_SLI4_MBX_EMBED); 17673 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17674 cq->queue_id); 17675 mbox->vport = cq->phba->pport; 17676 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17677 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17678 /* The IOCTL status is embedded in the mailbox subheader. */ 17679 shdr = (union lpfc_sli4_cfg_shdr *) 17680 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17681 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17682 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17683 if (shdr_status || shdr_add_status || rc) { 17684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17685 "2506 CQ_DESTROY mailbox failed with " 17686 "status x%x add_status x%x, mbx status x%x\n", 17687 shdr_status, shdr_add_status, rc); 17688 status = -ENXIO; 17689 } 17690 /* Remove cq from any list */ 17691 list_del_init(&cq->list); 17692 mempool_free(mbox, cq->phba->mbox_mem_pool); 17693 return status; 17694 } 17695 17696 /** 17697 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17698 * @phba: HBA structure that indicates port to destroy a queue on. 17699 * @mq: The queue structure associated with the queue to destroy. 17700 * 17701 * This function destroys a queue, as detailed in @mq by sending an mailbox 17702 * command, specific to the type of queue, to the HBA. 17703 * 17704 * The @mq struct is used to get the queue ID of the queue to destroy. 17705 * 17706 * On success this function will return a zero. If the queue destroy mailbox 17707 * command fails this function will return -ENXIO. 17708 **/ 17709 int 17710 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17711 { 17712 LPFC_MBOXQ_t *mbox; 17713 int rc, length, status = 0; 17714 uint32_t shdr_status, shdr_add_status; 17715 union lpfc_sli4_cfg_shdr *shdr; 17716 17717 /* sanity check on queue memory */ 17718 if (!mq) 17719 return -ENODEV; 17720 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17721 if (!mbox) 17722 return -ENOMEM; 17723 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17724 sizeof(struct lpfc_sli4_cfg_mhdr)); 17725 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17726 LPFC_MBOX_OPCODE_MQ_DESTROY, 17727 length, LPFC_SLI4_MBX_EMBED); 17728 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17729 mq->queue_id); 17730 mbox->vport = mq->phba->pport; 17731 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17732 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17733 /* The IOCTL status is embedded in the mailbox subheader. */ 17734 shdr = (union lpfc_sli4_cfg_shdr *) 17735 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17736 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17737 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17738 if (shdr_status || shdr_add_status || rc) { 17739 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17740 "2507 MQ_DESTROY mailbox failed with " 17741 "status x%x add_status x%x, mbx status x%x\n", 17742 shdr_status, shdr_add_status, rc); 17743 status = -ENXIO; 17744 } 17745 /* Remove mq from any list */ 17746 list_del_init(&mq->list); 17747 mempool_free(mbox, mq->phba->mbox_mem_pool); 17748 return status; 17749 } 17750 17751 /** 17752 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17753 * @phba: HBA structure that indicates port to destroy a queue on. 17754 * @wq: The queue structure associated with the queue to destroy. 17755 * 17756 * This function destroys a queue, as detailed in @wq by sending an mailbox 17757 * command, specific to the type of queue, to the HBA. 17758 * 17759 * The @wq struct is used to get the queue ID of the queue to destroy. 17760 * 17761 * On success this function will return a zero. If the queue destroy mailbox 17762 * command fails this function will return -ENXIO. 17763 **/ 17764 int 17765 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17766 { 17767 LPFC_MBOXQ_t *mbox; 17768 int rc, length, status = 0; 17769 uint32_t shdr_status, shdr_add_status; 17770 union lpfc_sli4_cfg_shdr *shdr; 17771 17772 /* sanity check on queue memory */ 17773 if (!wq) 17774 return -ENODEV; 17775 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17776 if (!mbox) 17777 return -ENOMEM; 17778 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17779 sizeof(struct lpfc_sli4_cfg_mhdr)); 17780 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17781 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17782 length, LPFC_SLI4_MBX_EMBED); 17783 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17784 wq->queue_id); 17785 mbox->vport = wq->phba->pport; 17786 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17787 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17788 shdr = (union lpfc_sli4_cfg_shdr *) 17789 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17790 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17791 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17792 if (shdr_status || shdr_add_status || rc) { 17793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17794 "2508 WQ_DESTROY mailbox failed with " 17795 "status x%x add_status x%x, mbx status x%x\n", 17796 shdr_status, shdr_add_status, rc); 17797 status = -ENXIO; 17798 } 17799 /* Remove wq from any list */ 17800 list_del_init(&wq->list); 17801 kfree(wq->pring); 17802 wq->pring = NULL; 17803 mempool_free(mbox, wq->phba->mbox_mem_pool); 17804 return status; 17805 } 17806 17807 /** 17808 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17809 * @phba: HBA structure that indicates port to destroy a queue on. 17810 * @hrq: The queue structure associated with the queue to destroy. 17811 * @drq: The queue structure associated with the queue to destroy. 17812 * 17813 * This function destroys a queue, as detailed in @rq by sending an mailbox 17814 * command, specific to the type of queue, to the HBA. 17815 * 17816 * The @rq struct is used to get the queue ID of the queue to destroy. 17817 * 17818 * On success this function will return a zero. If the queue destroy mailbox 17819 * command fails this function will return -ENXIO. 17820 **/ 17821 int 17822 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17823 struct lpfc_queue *drq) 17824 { 17825 LPFC_MBOXQ_t *mbox; 17826 int rc, length, status = 0; 17827 uint32_t shdr_status, shdr_add_status; 17828 union lpfc_sli4_cfg_shdr *shdr; 17829 17830 /* sanity check on queue memory */ 17831 if (!hrq || !drq) 17832 return -ENODEV; 17833 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17834 if (!mbox) 17835 return -ENOMEM; 17836 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17837 sizeof(struct lpfc_sli4_cfg_mhdr)); 17838 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17839 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17840 length, LPFC_SLI4_MBX_EMBED); 17841 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17842 hrq->queue_id); 17843 mbox->vport = hrq->phba->pport; 17844 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17845 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17846 /* The IOCTL status is embedded in the mailbox subheader. */ 17847 shdr = (union lpfc_sli4_cfg_shdr *) 17848 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17849 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17850 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17851 if (shdr_status || shdr_add_status || rc) { 17852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17853 "2509 RQ_DESTROY mailbox failed with " 17854 "status x%x add_status x%x, mbx status x%x\n", 17855 shdr_status, shdr_add_status, rc); 17856 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17857 return -ENXIO; 17858 } 17859 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17860 drq->queue_id); 17861 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17862 shdr = (union lpfc_sli4_cfg_shdr *) 17863 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17864 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17865 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17866 if (shdr_status || shdr_add_status || rc) { 17867 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17868 "2510 RQ_DESTROY mailbox failed with " 17869 "status x%x add_status x%x, mbx status x%x\n", 17870 shdr_status, shdr_add_status, rc); 17871 status = -ENXIO; 17872 } 17873 list_del_init(&hrq->list); 17874 list_del_init(&drq->list); 17875 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17876 return status; 17877 } 17878 17879 /** 17880 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17881 * @phba: The virtual port for which this call being executed. 17882 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17883 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17884 * @xritag: the xritag that ties this io to the SGL pages. 17885 * 17886 * This routine will post the sgl pages for the IO that has the xritag 17887 * that is in the iocbq structure. The xritag is assigned during iocbq 17888 * creation and persists for as long as the driver is loaded. 17889 * if the caller has fewer than 256 scatter gather segments to map then 17890 * pdma_phys_addr1 should be 0. 17891 * If the caller needs to map more than 256 scatter gather segment then 17892 * pdma_phys_addr1 should be a valid physical address. 17893 * physical address for SGLs must be 64 byte aligned. 17894 * If you are going to map 2 SGL's then the first one must have 256 entries 17895 * the second sgl can have between 1 and 256 entries. 17896 * 17897 * Return codes: 17898 * 0 - Success 17899 * -ENXIO, -ENOMEM - Failure 17900 **/ 17901 int 17902 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17903 dma_addr_t pdma_phys_addr0, 17904 dma_addr_t pdma_phys_addr1, 17905 uint16_t xritag) 17906 { 17907 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17908 LPFC_MBOXQ_t *mbox; 17909 int rc; 17910 uint32_t shdr_status, shdr_add_status; 17911 uint32_t mbox_tmo; 17912 union lpfc_sli4_cfg_shdr *shdr; 17913 17914 if (xritag == NO_XRI) { 17915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17916 "0364 Invalid param:\n"); 17917 return -EINVAL; 17918 } 17919 17920 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17921 if (!mbox) 17922 return -ENOMEM; 17923 17924 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17925 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17926 sizeof(struct lpfc_mbx_post_sgl_pages) - 17927 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17928 17929 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17930 &mbox->u.mqe.un.post_sgl_pages; 17931 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17932 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17933 17934 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17935 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17936 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17937 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17938 17939 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17940 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17941 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17942 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17943 if (!phba->sli4_hba.intr_enable) 17944 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17945 else { 17946 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17947 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17948 } 17949 /* The IOCTL status is embedded in the mailbox subheader. */ 17950 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17951 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17952 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17953 if (!phba->sli4_hba.intr_enable) 17954 mempool_free(mbox, phba->mbox_mem_pool); 17955 else if (rc != MBX_TIMEOUT) 17956 mempool_free(mbox, phba->mbox_mem_pool); 17957 if (shdr_status || shdr_add_status || rc) { 17958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17959 "2511 POST_SGL mailbox failed with " 17960 "status x%x add_status x%x, mbx status x%x\n", 17961 shdr_status, shdr_add_status, rc); 17962 } 17963 return 0; 17964 } 17965 17966 /** 17967 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17968 * @phba: pointer to lpfc hba data structure. 17969 * 17970 * This routine is invoked to post rpi header templates to the 17971 * HBA consistent with the SLI-4 interface spec. This routine 17972 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17973 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17974 * 17975 * Returns 17976 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17977 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17978 **/ 17979 static uint16_t 17980 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17981 { 17982 unsigned long xri; 17983 17984 /* 17985 * Fetch the next logical xri. Because this index is logical, 17986 * the driver starts at 0 each time. 17987 */ 17988 spin_lock_irq(&phba->hbalock); 17989 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17990 phba->sli4_hba.max_cfg_param.max_xri); 17991 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17992 spin_unlock_irq(&phba->hbalock); 17993 return NO_XRI; 17994 } else { 17995 set_bit(xri, phba->sli4_hba.xri_bmask); 17996 phba->sli4_hba.max_cfg_param.xri_used++; 17997 } 17998 spin_unlock_irq(&phba->hbalock); 17999 return xri; 18000 } 18001 18002 /** 18003 * __lpfc_sli4_free_xri - Release an xri for reuse. 18004 * @phba: pointer to lpfc hba data structure. 18005 * @xri: xri to release. 18006 * 18007 * This routine is invoked to release an xri to the pool of 18008 * available rpis maintained by the driver. 18009 **/ 18010 static void 18011 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18012 { 18013 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18014 phba->sli4_hba.max_cfg_param.xri_used--; 18015 } 18016 } 18017 18018 /** 18019 * lpfc_sli4_free_xri - Release an xri for reuse. 18020 * @phba: pointer to lpfc hba data structure. 18021 * @xri: xri to release. 18022 * 18023 * This routine is invoked to release an xri to the pool of 18024 * available rpis maintained by the driver. 18025 **/ 18026 void 18027 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18028 { 18029 spin_lock_irq(&phba->hbalock); 18030 __lpfc_sli4_free_xri(phba, xri); 18031 spin_unlock_irq(&phba->hbalock); 18032 } 18033 18034 /** 18035 * lpfc_sli4_next_xritag - Get an xritag for the io 18036 * @phba: Pointer to HBA context object. 18037 * 18038 * This function gets an xritag for the iocb. If there is no unused xritag 18039 * it will return 0xffff. 18040 * The function returns the allocated xritag if successful, else returns zero. 18041 * Zero is not a valid xritag. 18042 * The caller is not required to hold any lock. 18043 **/ 18044 uint16_t 18045 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18046 { 18047 uint16_t xri_index; 18048 18049 xri_index = lpfc_sli4_alloc_xri(phba); 18050 if (xri_index == NO_XRI) 18051 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18052 "2004 Failed to allocate XRI.last XRITAG is %d" 18053 " Max XRI is %d, Used XRI is %d\n", 18054 xri_index, 18055 phba->sli4_hba.max_cfg_param.max_xri, 18056 phba->sli4_hba.max_cfg_param.xri_used); 18057 return xri_index; 18058 } 18059 18060 /** 18061 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18062 * @phba: pointer to lpfc hba data structure. 18063 * @post_sgl_list: pointer to els sgl entry list. 18064 * @post_cnt: number of els sgl entries on the list. 18065 * 18066 * This routine is invoked to post a block of driver's sgl pages to the 18067 * HBA using non-embedded mailbox command. No Lock is held. This routine 18068 * is only called when the driver is loading and after all IO has been 18069 * stopped. 18070 **/ 18071 static int 18072 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18073 struct list_head *post_sgl_list, 18074 int post_cnt) 18075 { 18076 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18077 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18078 struct sgl_page_pairs *sgl_pg_pairs; 18079 void *viraddr; 18080 LPFC_MBOXQ_t *mbox; 18081 uint32_t reqlen, alloclen, pg_pairs; 18082 uint32_t mbox_tmo; 18083 uint16_t xritag_start = 0; 18084 int rc = 0; 18085 uint32_t shdr_status, shdr_add_status; 18086 union lpfc_sli4_cfg_shdr *shdr; 18087 18088 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18089 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18090 if (reqlen > SLI4_PAGE_SIZE) { 18091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18092 "2559 Block sgl registration required DMA " 18093 "size (%d) great than a page\n", reqlen); 18094 return -ENOMEM; 18095 } 18096 18097 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18098 if (!mbox) 18099 return -ENOMEM; 18100 18101 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18102 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18103 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18104 LPFC_SLI4_MBX_NEMBED); 18105 18106 if (alloclen < reqlen) { 18107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18108 "0285 Allocated DMA memory size (%d) is " 18109 "less than the requested DMA memory " 18110 "size (%d)\n", alloclen, reqlen); 18111 lpfc_sli4_mbox_cmd_free(phba, mbox); 18112 return -ENOMEM; 18113 } 18114 /* Set up the SGL pages in the non-embedded DMA pages */ 18115 viraddr = mbox->sge_array->addr[0]; 18116 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18117 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18118 18119 pg_pairs = 0; 18120 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18121 /* Set up the sge entry */ 18122 sgl_pg_pairs->sgl_pg0_addr_lo = 18123 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18124 sgl_pg_pairs->sgl_pg0_addr_hi = 18125 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18126 sgl_pg_pairs->sgl_pg1_addr_lo = 18127 cpu_to_le32(putPaddrLow(0)); 18128 sgl_pg_pairs->sgl_pg1_addr_hi = 18129 cpu_to_le32(putPaddrHigh(0)); 18130 18131 /* Keep the first xritag on the list */ 18132 if (pg_pairs == 0) 18133 xritag_start = sglq_entry->sli4_xritag; 18134 sgl_pg_pairs++; 18135 pg_pairs++; 18136 } 18137 18138 /* Complete initialization and perform endian conversion. */ 18139 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18140 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18141 sgl->word0 = cpu_to_le32(sgl->word0); 18142 18143 if (!phba->sli4_hba.intr_enable) 18144 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18145 else { 18146 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18147 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18148 } 18149 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18150 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18151 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18152 if (!phba->sli4_hba.intr_enable) 18153 lpfc_sli4_mbox_cmd_free(phba, mbox); 18154 else if (rc != MBX_TIMEOUT) 18155 lpfc_sli4_mbox_cmd_free(phba, mbox); 18156 if (shdr_status || shdr_add_status || rc) { 18157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18158 "2513 POST_SGL_BLOCK mailbox command failed " 18159 "status x%x add_status x%x mbx status x%x\n", 18160 shdr_status, shdr_add_status, rc); 18161 rc = -ENXIO; 18162 } 18163 return rc; 18164 } 18165 18166 /** 18167 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18168 * @phba: pointer to lpfc hba data structure. 18169 * @nblist: pointer to nvme buffer list. 18170 * @count: number of scsi buffers on the list. 18171 * 18172 * This routine is invoked to post a block of @count scsi sgl pages from a 18173 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18174 * No Lock is held. 18175 * 18176 **/ 18177 static int 18178 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18179 int count) 18180 { 18181 struct lpfc_io_buf *lpfc_ncmd; 18182 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18183 struct sgl_page_pairs *sgl_pg_pairs; 18184 void *viraddr; 18185 LPFC_MBOXQ_t *mbox; 18186 uint32_t reqlen, alloclen, pg_pairs; 18187 uint32_t mbox_tmo; 18188 uint16_t xritag_start = 0; 18189 int rc = 0; 18190 uint32_t shdr_status, shdr_add_status; 18191 dma_addr_t pdma_phys_bpl1; 18192 union lpfc_sli4_cfg_shdr *shdr; 18193 18194 /* Calculate the requested length of the dma memory */ 18195 reqlen = count * sizeof(struct sgl_page_pairs) + 18196 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18197 if (reqlen > SLI4_PAGE_SIZE) { 18198 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18199 "6118 Block sgl registration required DMA " 18200 "size (%d) great than a page\n", reqlen); 18201 return -ENOMEM; 18202 } 18203 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18204 if (!mbox) { 18205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18206 "6119 Failed to allocate mbox cmd memory\n"); 18207 return -ENOMEM; 18208 } 18209 18210 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18211 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18212 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18213 reqlen, LPFC_SLI4_MBX_NEMBED); 18214 18215 if (alloclen < reqlen) { 18216 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18217 "6120 Allocated DMA memory size (%d) is " 18218 "less than the requested DMA memory " 18219 "size (%d)\n", alloclen, reqlen); 18220 lpfc_sli4_mbox_cmd_free(phba, mbox); 18221 return -ENOMEM; 18222 } 18223 18224 /* Get the first SGE entry from the non-embedded DMA memory */ 18225 viraddr = mbox->sge_array->addr[0]; 18226 18227 /* Set up the SGL pages in the non-embedded DMA pages */ 18228 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18229 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18230 18231 pg_pairs = 0; 18232 list_for_each_entry(lpfc_ncmd, nblist, list) { 18233 /* Set up the sge entry */ 18234 sgl_pg_pairs->sgl_pg0_addr_lo = 18235 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18236 sgl_pg_pairs->sgl_pg0_addr_hi = 18237 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18238 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18239 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18240 SGL_PAGE_SIZE; 18241 else 18242 pdma_phys_bpl1 = 0; 18243 sgl_pg_pairs->sgl_pg1_addr_lo = 18244 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18245 sgl_pg_pairs->sgl_pg1_addr_hi = 18246 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18247 /* Keep the first xritag on the list */ 18248 if (pg_pairs == 0) 18249 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18250 sgl_pg_pairs++; 18251 pg_pairs++; 18252 } 18253 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18254 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18255 /* Perform endian conversion if necessary */ 18256 sgl->word0 = cpu_to_le32(sgl->word0); 18257 18258 if (!phba->sli4_hba.intr_enable) { 18259 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18260 } else { 18261 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18262 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18263 } 18264 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18265 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18266 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18267 if (!phba->sli4_hba.intr_enable) 18268 lpfc_sli4_mbox_cmd_free(phba, mbox); 18269 else if (rc != MBX_TIMEOUT) 18270 lpfc_sli4_mbox_cmd_free(phba, mbox); 18271 if (shdr_status || shdr_add_status || rc) { 18272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18273 "6125 POST_SGL_BLOCK mailbox command failed " 18274 "status x%x add_status x%x mbx status x%x\n", 18275 shdr_status, shdr_add_status, rc); 18276 rc = -ENXIO; 18277 } 18278 return rc; 18279 } 18280 18281 /** 18282 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18283 * @phba: pointer to lpfc hba data structure. 18284 * @post_nblist: pointer to the nvme buffer list. 18285 * @sb_count: number of nvme buffers. 18286 * 18287 * This routine walks a list of nvme buffers that was passed in. It attempts 18288 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18289 * uses the non-embedded SGL block post mailbox commands to post to the port. 18290 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18291 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18292 * must be local list, thus no lock is needed when manipulate the list. 18293 * 18294 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18295 **/ 18296 int 18297 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18298 struct list_head *post_nblist, int sb_count) 18299 { 18300 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18301 int status, sgl_size; 18302 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18303 dma_addr_t pdma_phys_sgl1; 18304 int last_xritag = NO_XRI; 18305 int cur_xritag; 18306 LIST_HEAD(prep_nblist); 18307 LIST_HEAD(blck_nblist); 18308 LIST_HEAD(nvme_nblist); 18309 18310 /* sanity check */ 18311 if (sb_count <= 0) 18312 return -EINVAL; 18313 18314 sgl_size = phba->cfg_sg_dma_buf_size; 18315 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18316 list_del_init(&lpfc_ncmd->list); 18317 block_cnt++; 18318 if ((last_xritag != NO_XRI) && 18319 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18320 /* a hole in xri block, form a sgl posting block */ 18321 list_splice_init(&prep_nblist, &blck_nblist); 18322 post_cnt = block_cnt - 1; 18323 /* prepare list for next posting block */ 18324 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18325 block_cnt = 1; 18326 } else { 18327 /* prepare list for next posting block */ 18328 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18329 /* enough sgls for non-embed sgl mbox command */ 18330 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18331 list_splice_init(&prep_nblist, &blck_nblist); 18332 post_cnt = block_cnt; 18333 block_cnt = 0; 18334 } 18335 } 18336 num_posting++; 18337 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18338 18339 /* end of repost sgl list condition for NVME buffers */ 18340 if (num_posting == sb_count) { 18341 if (post_cnt == 0) { 18342 /* last sgl posting block */ 18343 list_splice_init(&prep_nblist, &blck_nblist); 18344 post_cnt = block_cnt; 18345 } else if (block_cnt == 1) { 18346 /* last single sgl with non-contiguous xri */ 18347 if (sgl_size > SGL_PAGE_SIZE) 18348 pdma_phys_sgl1 = 18349 lpfc_ncmd->dma_phys_sgl + 18350 SGL_PAGE_SIZE; 18351 else 18352 pdma_phys_sgl1 = 0; 18353 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18354 status = lpfc_sli4_post_sgl( 18355 phba, lpfc_ncmd->dma_phys_sgl, 18356 pdma_phys_sgl1, cur_xritag); 18357 if (status) { 18358 /* Post error. Buffer unavailable. */ 18359 lpfc_ncmd->flags |= 18360 LPFC_SBUF_NOT_POSTED; 18361 } else { 18362 /* Post success. Bffer available. */ 18363 lpfc_ncmd->flags &= 18364 ~LPFC_SBUF_NOT_POSTED; 18365 lpfc_ncmd->status = IOSTAT_SUCCESS; 18366 num_posted++; 18367 } 18368 /* success, put on NVME buffer sgl list */ 18369 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18370 } 18371 } 18372 18373 /* continue until a nembed page worth of sgls */ 18374 if (post_cnt == 0) 18375 continue; 18376 18377 /* post block of NVME buffer list sgls */ 18378 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18379 post_cnt); 18380 18381 /* don't reset xirtag due to hole in xri block */ 18382 if (block_cnt == 0) 18383 last_xritag = NO_XRI; 18384 18385 /* reset NVME buffer post count for next round of posting */ 18386 post_cnt = 0; 18387 18388 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18389 while (!list_empty(&blck_nblist)) { 18390 list_remove_head(&blck_nblist, lpfc_ncmd, 18391 struct lpfc_io_buf, list); 18392 if (status) { 18393 /* Post error. Mark buffer unavailable. */ 18394 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18395 } else { 18396 /* Post success, Mark buffer available. */ 18397 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18398 lpfc_ncmd->status = IOSTAT_SUCCESS; 18399 num_posted++; 18400 } 18401 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18402 } 18403 } 18404 /* Push NVME buffers with sgl posted to the available list */ 18405 lpfc_io_buf_replenish(phba, &nvme_nblist); 18406 18407 return num_posted; 18408 } 18409 18410 /** 18411 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18412 * @phba: pointer to lpfc_hba struct that the frame was received on 18413 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18414 * 18415 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18416 * valid type of frame that the LPFC driver will handle. This function will 18417 * return a zero if the frame is a valid frame or a non zero value when the 18418 * frame does not pass the check. 18419 **/ 18420 static int 18421 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18422 { 18423 /* make rctl_names static to save stack space */ 18424 struct fc_vft_header *fc_vft_hdr; 18425 uint32_t *header = (uint32_t *) fc_hdr; 18426 18427 #define FC_RCTL_MDS_DIAGS 0xF4 18428 18429 switch (fc_hdr->fh_r_ctl) { 18430 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18431 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18432 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18433 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18434 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18435 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18436 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18437 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18438 case FC_RCTL_ELS_REQ: /* extended link services request */ 18439 case FC_RCTL_ELS_REP: /* extended link services reply */ 18440 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18441 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18442 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18443 case FC_RCTL_BA_RMC: /* remove connection */ 18444 case FC_RCTL_BA_ACC: /* basic accept */ 18445 case FC_RCTL_BA_RJT: /* basic reject */ 18446 case FC_RCTL_BA_PRMT: 18447 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18448 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18449 case FC_RCTL_P_RJT: /* port reject */ 18450 case FC_RCTL_F_RJT: /* fabric reject */ 18451 case FC_RCTL_P_BSY: /* port busy */ 18452 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18453 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18454 case FC_RCTL_LCR: /* link credit reset */ 18455 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18456 case FC_RCTL_END: /* end */ 18457 break; 18458 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18459 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18460 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18461 return lpfc_fc_frame_check(phba, fc_hdr); 18462 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18463 default: 18464 goto drop; 18465 } 18466 18467 switch (fc_hdr->fh_type) { 18468 case FC_TYPE_BLS: 18469 case FC_TYPE_ELS: 18470 case FC_TYPE_FCP: 18471 case FC_TYPE_CT: 18472 case FC_TYPE_NVME: 18473 break; 18474 case FC_TYPE_IP: 18475 case FC_TYPE_ILS: 18476 default: 18477 goto drop; 18478 } 18479 18480 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18481 "2538 Received frame rctl:x%x, type:x%x, " 18482 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18483 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18484 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18485 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18486 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18487 be32_to_cpu(header[6])); 18488 return 0; 18489 drop: 18490 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18491 "2539 Dropped frame rctl:x%x type:x%x\n", 18492 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18493 return 1; 18494 } 18495 18496 /** 18497 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18498 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18499 * 18500 * This function processes the FC header to retrieve the VFI from the VF 18501 * header, if one exists. This function will return the VFI if one exists 18502 * or 0 if no VSAN Header exists. 18503 **/ 18504 static uint32_t 18505 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18506 { 18507 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18508 18509 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18510 return 0; 18511 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18512 } 18513 18514 /** 18515 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18516 * @phba: Pointer to the HBA structure to search for the vport on 18517 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18518 * @fcfi: The FC Fabric ID that the frame came from 18519 * @did: Destination ID to match against 18520 * 18521 * This function searches the @phba for a vport that matches the content of the 18522 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18523 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18524 * returns the matching vport pointer or NULL if unable to match frame to a 18525 * vport. 18526 **/ 18527 static struct lpfc_vport * 18528 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18529 uint16_t fcfi, uint32_t did) 18530 { 18531 struct lpfc_vport **vports; 18532 struct lpfc_vport *vport = NULL; 18533 int i; 18534 18535 if (did == Fabric_DID) 18536 return phba->pport; 18537 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18538 phba->link_state != LPFC_HBA_READY) 18539 return phba->pport; 18540 18541 vports = lpfc_create_vport_work_array(phba); 18542 if (vports != NULL) { 18543 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18544 if (phba->fcf.fcfi == fcfi && 18545 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18546 vports[i]->fc_myDID == did) { 18547 vport = vports[i]; 18548 break; 18549 } 18550 } 18551 } 18552 lpfc_destroy_vport_work_array(phba, vports); 18553 return vport; 18554 } 18555 18556 /** 18557 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18558 * @vport: The vport to work on. 18559 * 18560 * This function updates the receive sequence time stamp for this vport. The 18561 * receive sequence time stamp indicates the time that the last frame of the 18562 * the sequence that has been idle for the longest amount of time was received. 18563 * the driver uses this time stamp to indicate if any received sequences have 18564 * timed out. 18565 **/ 18566 static void 18567 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18568 { 18569 struct lpfc_dmabuf *h_buf; 18570 struct hbq_dmabuf *dmabuf = NULL; 18571 18572 /* get the oldest sequence on the rcv list */ 18573 h_buf = list_get_first(&vport->rcv_buffer_list, 18574 struct lpfc_dmabuf, list); 18575 if (!h_buf) 18576 return; 18577 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18578 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18579 } 18580 18581 /** 18582 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18583 * @vport: The vport that the received sequences were sent to. 18584 * 18585 * This function cleans up all outstanding received sequences. This is called 18586 * by the driver when a link event or user action invalidates all the received 18587 * sequences. 18588 **/ 18589 void 18590 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18591 { 18592 struct lpfc_dmabuf *h_buf, *hnext; 18593 struct lpfc_dmabuf *d_buf, *dnext; 18594 struct hbq_dmabuf *dmabuf = NULL; 18595 18596 /* start with the oldest sequence on the rcv list */ 18597 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18598 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18599 list_del_init(&dmabuf->hbuf.list); 18600 list_for_each_entry_safe(d_buf, dnext, 18601 &dmabuf->dbuf.list, list) { 18602 list_del_init(&d_buf->list); 18603 lpfc_in_buf_free(vport->phba, d_buf); 18604 } 18605 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18606 } 18607 } 18608 18609 /** 18610 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18611 * @vport: The vport that the received sequences were sent to. 18612 * 18613 * This function determines whether any received sequences have timed out by 18614 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18615 * indicates that there is at least one timed out sequence this routine will 18616 * go through the received sequences one at a time from most inactive to most 18617 * active to determine which ones need to be cleaned up. Once it has determined 18618 * that a sequence needs to be cleaned up it will simply free up the resources 18619 * without sending an abort. 18620 **/ 18621 void 18622 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18623 { 18624 struct lpfc_dmabuf *h_buf, *hnext; 18625 struct lpfc_dmabuf *d_buf, *dnext; 18626 struct hbq_dmabuf *dmabuf = NULL; 18627 unsigned long timeout; 18628 int abort_count = 0; 18629 18630 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18631 vport->rcv_buffer_time_stamp); 18632 if (list_empty(&vport->rcv_buffer_list) || 18633 time_before(jiffies, timeout)) 18634 return; 18635 /* start with the oldest sequence on the rcv list */ 18636 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18637 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18638 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18639 dmabuf->time_stamp); 18640 if (time_before(jiffies, timeout)) 18641 break; 18642 abort_count++; 18643 list_del_init(&dmabuf->hbuf.list); 18644 list_for_each_entry_safe(d_buf, dnext, 18645 &dmabuf->dbuf.list, list) { 18646 list_del_init(&d_buf->list); 18647 lpfc_in_buf_free(vport->phba, d_buf); 18648 } 18649 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18650 } 18651 if (abort_count) 18652 lpfc_update_rcv_time_stamp(vport); 18653 } 18654 18655 /** 18656 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18657 * @vport: pointer to a vitural port 18658 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18659 * 18660 * This function searches through the existing incomplete sequences that have 18661 * been sent to this @vport. If the frame matches one of the incomplete 18662 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18663 * make up that sequence. If no sequence is found that matches this frame then 18664 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18665 * This function returns a pointer to the first dmabuf in the sequence list that 18666 * the frame was linked to. 18667 **/ 18668 static struct hbq_dmabuf * 18669 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18670 { 18671 struct fc_frame_header *new_hdr; 18672 struct fc_frame_header *temp_hdr; 18673 struct lpfc_dmabuf *d_buf; 18674 struct lpfc_dmabuf *h_buf; 18675 struct hbq_dmabuf *seq_dmabuf = NULL; 18676 struct hbq_dmabuf *temp_dmabuf = NULL; 18677 uint8_t found = 0; 18678 18679 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18680 dmabuf->time_stamp = jiffies; 18681 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18682 18683 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18684 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18685 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18686 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18687 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18688 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18689 continue; 18690 /* found a pending sequence that matches this frame */ 18691 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18692 break; 18693 } 18694 if (!seq_dmabuf) { 18695 /* 18696 * This indicates first frame received for this sequence. 18697 * Queue the buffer on the vport's rcv_buffer_list. 18698 */ 18699 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18700 lpfc_update_rcv_time_stamp(vport); 18701 return dmabuf; 18702 } 18703 temp_hdr = seq_dmabuf->hbuf.virt; 18704 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18705 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18706 list_del_init(&seq_dmabuf->hbuf.list); 18707 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18708 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18709 lpfc_update_rcv_time_stamp(vport); 18710 return dmabuf; 18711 } 18712 /* move this sequence to the tail to indicate a young sequence */ 18713 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18714 seq_dmabuf->time_stamp = jiffies; 18715 lpfc_update_rcv_time_stamp(vport); 18716 if (list_empty(&seq_dmabuf->dbuf.list)) { 18717 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18718 return seq_dmabuf; 18719 } 18720 /* find the correct place in the sequence to insert this frame */ 18721 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18722 while (!found) { 18723 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18724 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18725 /* 18726 * If the frame's sequence count is greater than the frame on 18727 * the list then insert the frame right after this frame 18728 */ 18729 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18730 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18731 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18732 found = 1; 18733 break; 18734 } 18735 18736 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18737 break; 18738 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18739 } 18740 18741 if (found) 18742 return seq_dmabuf; 18743 return NULL; 18744 } 18745 18746 /** 18747 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18748 * @vport: pointer to a vitural port 18749 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18750 * 18751 * This function tries to abort from the partially assembed sequence, described 18752 * by the information from basic abbort @dmabuf. It checks to see whether such 18753 * partially assembled sequence held by the driver. If so, it shall free up all 18754 * the frames from the partially assembled sequence. 18755 * 18756 * Return 18757 * true -- if there is matching partially assembled sequence present and all 18758 * the frames freed with the sequence; 18759 * false -- if there is no matching partially assembled sequence present so 18760 * nothing got aborted in the lower layer driver 18761 **/ 18762 static bool 18763 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18764 struct hbq_dmabuf *dmabuf) 18765 { 18766 struct fc_frame_header *new_hdr; 18767 struct fc_frame_header *temp_hdr; 18768 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18769 struct hbq_dmabuf *seq_dmabuf = NULL; 18770 18771 /* Use the hdr_buf to find the sequence that matches this frame */ 18772 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18773 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18774 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18775 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18776 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18777 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18778 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18779 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18780 continue; 18781 /* found a pending sequence that matches this frame */ 18782 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18783 break; 18784 } 18785 18786 /* Free up all the frames from the partially assembled sequence */ 18787 if (seq_dmabuf) { 18788 list_for_each_entry_safe(d_buf, n_buf, 18789 &seq_dmabuf->dbuf.list, list) { 18790 list_del_init(&d_buf->list); 18791 lpfc_in_buf_free(vport->phba, d_buf); 18792 } 18793 return true; 18794 } 18795 return false; 18796 } 18797 18798 /** 18799 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18800 * @vport: pointer to a vitural port 18801 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18802 * 18803 * This function tries to abort from the assembed sequence from upper level 18804 * protocol, described by the information from basic abbort @dmabuf. It 18805 * checks to see whether such pending context exists at upper level protocol. 18806 * If so, it shall clean up the pending context. 18807 * 18808 * Return 18809 * true -- if there is matching pending context of the sequence cleaned 18810 * at ulp; 18811 * false -- if there is no matching pending context of the sequence present 18812 * at ulp. 18813 **/ 18814 static bool 18815 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18816 { 18817 struct lpfc_hba *phba = vport->phba; 18818 int handled; 18819 18820 /* Accepting abort at ulp with SLI4 only */ 18821 if (phba->sli_rev < LPFC_SLI_REV4) 18822 return false; 18823 18824 /* Register all caring upper level protocols to attend abort */ 18825 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18826 if (handled) 18827 return true; 18828 18829 return false; 18830 } 18831 18832 /** 18833 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18834 * @phba: Pointer to HBA context object. 18835 * @cmd_iocbq: pointer to the command iocbq structure. 18836 * @rsp_iocbq: pointer to the response iocbq structure. 18837 * 18838 * This function handles the sequence abort response iocb command complete 18839 * event. It properly releases the memory allocated to the sequence abort 18840 * accept iocb. 18841 **/ 18842 static void 18843 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18844 struct lpfc_iocbq *cmd_iocbq, 18845 struct lpfc_iocbq *rsp_iocbq) 18846 { 18847 if (cmd_iocbq) { 18848 lpfc_nlp_put(cmd_iocbq->ndlp); 18849 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18850 } 18851 18852 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18853 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18854 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18855 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18856 get_job_ulpstatus(phba, rsp_iocbq), 18857 get_job_word4(phba, rsp_iocbq)); 18858 } 18859 18860 /** 18861 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18862 * @phba: Pointer to HBA context object. 18863 * @xri: xri id in transaction. 18864 * 18865 * This function validates the xri maps to the known range of XRIs allocated an 18866 * used by the driver. 18867 **/ 18868 uint16_t 18869 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18870 uint16_t xri) 18871 { 18872 uint16_t i; 18873 18874 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18875 if (xri == phba->sli4_hba.xri_ids[i]) 18876 return i; 18877 } 18878 return NO_XRI; 18879 } 18880 18881 /** 18882 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18883 * @vport: pointer to a virtual port. 18884 * @fc_hdr: pointer to a FC frame header. 18885 * @aborted: was the partially assembled receive sequence successfully aborted 18886 * 18887 * This function sends a basic response to a previous unsol sequence abort 18888 * event after aborting the sequence handling. 18889 **/ 18890 void 18891 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18892 struct fc_frame_header *fc_hdr, bool aborted) 18893 { 18894 struct lpfc_hba *phba = vport->phba; 18895 struct lpfc_iocbq *ctiocb = NULL; 18896 struct lpfc_nodelist *ndlp; 18897 uint16_t oxid, rxid, xri, lxri; 18898 uint32_t sid, fctl; 18899 union lpfc_wqe128 *icmd; 18900 int rc; 18901 18902 if (!lpfc_is_link_up(phba)) 18903 return; 18904 18905 sid = sli4_sid_from_fc_hdr(fc_hdr); 18906 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18907 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18908 18909 ndlp = lpfc_findnode_did(vport, sid); 18910 if (!ndlp) { 18911 ndlp = lpfc_nlp_init(vport, sid); 18912 if (!ndlp) { 18913 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18914 "1268 Failed to allocate ndlp for " 18915 "oxid:x%x SID:x%x\n", oxid, sid); 18916 return; 18917 } 18918 /* Put ndlp onto vport node list */ 18919 lpfc_enqueue_node(vport, ndlp); 18920 } 18921 18922 /* Allocate buffer for rsp iocb */ 18923 ctiocb = lpfc_sli_get_iocbq(phba); 18924 if (!ctiocb) 18925 return; 18926 18927 icmd = &ctiocb->wqe; 18928 18929 /* Extract the F_CTL field from FC_HDR */ 18930 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18931 18932 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18933 if (!ctiocb->ndlp) { 18934 lpfc_sli_release_iocbq(phba, ctiocb); 18935 return; 18936 } 18937 18938 ctiocb->vport = vport; 18939 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18940 ctiocb->sli4_lxritag = NO_XRI; 18941 ctiocb->sli4_xritag = NO_XRI; 18942 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18943 18944 if (fctl & FC_FC_EX_CTX) 18945 /* Exchange responder sent the abort so we 18946 * own the oxid. 18947 */ 18948 xri = oxid; 18949 else 18950 xri = rxid; 18951 lxri = lpfc_sli4_xri_inrange(phba, xri); 18952 if (lxri != NO_XRI) 18953 lpfc_set_rrq_active(phba, ndlp, lxri, 18954 (xri == oxid) ? rxid : oxid, 0); 18955 /* For BA_ABTS from exchange responder, if the logical xri with 18956 * the oxid maps to the FCP XRI range, the port no longer has 18957 * that exchange context, send a BLS_RJT. Override the IOCB for 18958 * a BA_RJT. 18959 */ 18960 if ((fctl & FC_FC_EX_CTX) && 18961 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18962 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18963 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18964 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18965 FC_BA_RJT_INV_XID); 18966 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18967 FC_BA_RJT_UNABLE); 18968 } 18969 18970 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18971 * the driver no longer has that exchange, send a BLS_RJT. Override 18972 * the IOCB for a BA_RJT. 18973 */ 18974 if (aborted == false) { 18975 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18976 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18977 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18978 FC_BA_RJT_INV_XID); 18979 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18980 FC_BA_RJT_UNABLE); 18981 } 18982 18983 if (fctl & FC_FC_EX_CTX) { 18984 /* ABTS sent by responder to CT exchange, construction 18985 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18986 * field and RX_ID from ABTS for RX_ID field. 18987 */ 18988 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18989 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18990 } else { 18991 /* ABTS sent by initiator to CT exchange, construction 18992 * of BA_ACC will need to allocate a new XRI as for the 18993 * XRI_TAG field. 18994 */ 18995 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18996 } 18997 18998 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18999 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19000 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19001 19002 /* Use CT=VPI */ 19003 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19004 ndlp->nlp_DID); 19005 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19006 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19007 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19008 19009 /* Xmit CT abts response on exchange <xid> */ 19010 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19011 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19012 ctiocb->abort_rctl, oxid, phba->link_state); 19013 19014 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19015 if (rc == IOCB_ERROR) { 19016 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19017 "2925 Failed to issue CT ABTS RSP x%x on " 19018 "xri x%x, Data x%x\n", 19019 ctiocb->abort_rctl, oxid, 19020 phba->link_state); 19021 lpfc_nlp_put(ndlp); 19022 ctiocb->ndlp = NULL; 19023 lpfc_sli_release_iocbq(phba, ctiocb); 19024 } 19025 19026 /* if only usage of this nodelist is BLS response, release initial ref 19027 * to free ndlp when transmit completes 19028 */ 19029 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19030 !(ndlp->nlp_flag & NLP_DROPPED) && 19031 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19032 ndlp->nlp_flag |= NLP_DROPPED; 19033 lpfc_nlp_put(ndlp); 19034 } 19035 } 19036 19037 /** 19038 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19039 * @vport: Pointer to the vport on which this sequence was received 19040 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19041 * 19042 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19043 * receive sequence is only partially assembed by the driver, it shall abort 19044 * the partially assembled frames for the sequence. Otherwise, if the 19045 * unsolicited receive sequence has been completely assembled and passed to 19046 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19047 * unsolicited sequence has been aborted. After that, it will issue a basic 19048 * accept to accept the abort. 19049 **/ 19050 static void 19051 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19052 struct hbq_dmabuf *dmabuf) 19053 { 19054 struct lpfc_hba *phba = vport->phba; 19055 struct fc_frame_header fc_hdr; 19056 uint32_t fctl; 19057 bool aborted; 19058 19059 /* Make a copy of fc_hdr before the dmabuf being released */ 19060 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19061 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19062 19063 if (fctl & FC_FC_EX_CTX) { 19064 /* ABTS by responder to exchange, no cleanup needed */ 19065 aborted = true; 19066 } else { 19067 /* ABTS by initiator to exchange, need to do cleanup */ 19068 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19069 if (aborted == false) 19070 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19071 } 19072 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19073 19074 if (phba->nvmet_support) { 19075 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19076 return; 19077 } 19078 19079 /* Respond with BA_ACC or BA_RJT accordingly */ 19080 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19081 } 19082 19083 /** 19084 * lpfc_seq_complete - Indicates if a sequence is complete 19085 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19086 * 19087 * This function checks the sequence, starting with the frame described by 19088 * @dmabuf, to see if all the frames associated with this sequence are present. 19089 * the frames associated with this sequence are linked to the @dmabuf using the 19090 * dbuf list. This function looks for two major things. 1) That the first frame 19091 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19092 * set. 3) That there are no holes in the sequence count. The function will 19093 * return 1 when the sequence is complete, otherwise it will return 0. 19094 **/ 19095 static int 19096 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19097 { 19098 struct fc_frame_header *hdr; 19099 struct lpfc_dmabuf *d_buf; 19100 struct hbq_dmabuf *seq_dmabuf; 19101 uint32_t fctl; 19102 int seq_count = 0; 19103 19104 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19105 /* make sure first fame of sequence has a sequence count of zero */ 19106 if (hdr->fh_seq_cnt != seq_count) 19107 return 0; 19108 fctl = (hdr->fh_f_ctl[0] << 16 | 19109 hdr->fh_f_ctl[1] << 8 | 19110 hdr->fh_f_ctl[2]); 19111 /* If last frame of sequence we can return success. */ 19112 if (fctl & FC_FC_END_SEQ) 19113 return 1; 19114 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19115 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19116 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19117 /* If there is a hole in the sequence count then fail. */ 19118 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19119 return 0; 19120 fctl = (hdr->fh_f_ctl[0] << 16 | 19121 hdr->fh_f_ctl[1] << 8 | 19122 hdr->fh_f_ctl[2]); 19123 /* If last frame of sequence we can return success. */ 19124 if (fctl & FC_FC_END_SEQ) 19125 return 1; 19126 } 19127 return 0; 19128 } 19129 19130 /** 19131 * lpfc_prep_seq - Prep sequence for ULP processing 19132 * @vport: Pointer to the vport on which this sequence was received 19133 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19134 * 19135 * This function takes a sequence, described by a list of frames, and creates 19136 * a list of iocbq structures to describe the sequence. This iocbq list will be 19137 * used to issue to the generic unsolicited sequence handler. This routine 19138 * returns a pointer to the first iocbq in the list. If the function is unable 19139 * to allocate an iocbq then it throw out the received frames that were not 19140 * able to be described and return a pointer to the first iocbq. If unable to 19141 * allocate any iocbqs (including the first) this function will return NULL. 19142 **/ 19143 static struct lpfc_iocbq * 19144 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19145 { 19146 struct hbq_dmabuf *hbq_buf; 19147 struct lpfc_dmabuf *d_buf, *n_buf; 19148 struct lpfc_iocbq *first_iocbq, *iocbq; 19149 struct fc_frame_header *fc_hdr; 19150 uint32_t sid; 19151 uint32_t len, tot_len; 19152 19153 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19154 /* remove from receive buffer list */ 19155 list_del_init(&seq_dmabuf->hbuf.list); 19156 lpfc_update_rcv_time_stamp(vport); 19157 /* get the Remote Port's SID */ 19158 sid = sli4_sid_from_fc_hdr(fc_hdr); 19159 tot_len = 0; 19160 /* Get an iocbq struct to fill in. */ 19161 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19162 if (first_iocbq) { 19163 /* Initialize the first IOCB. */ 19164 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19165 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19166 IOSTAT_SUCCESS); 19167 first_iocbq->vport = vport; 19168 19169 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19170 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19171 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19172 sli4_did_from_fc_hdr(fc_hdr)); 19173 } 19174 19175 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19176 NO_XRI); 19177 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19178 be16_to_cpu(fc_hdr->fh_ox_id)); 19179 19180 /* put the first buffer into the first iocb */ 19181 tot_len = bf_get(lpfc_rcqe_length, 19182 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19183 19184 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19185 first_iocbq->bpl_dmabuf = NULL; 19186 /* Keep track of the BDE count */ 19187 first_iocbq->wcqe_cmpl.word3 = 1; 19188 19189 if (tot_len > LPFC_DATA_BUF_SIZE) 19190 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19191 LPFC_DATA_BUF_SIZE; 19192 else 19193 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19194 19195 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19196 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19197 sid); 19198 } 19199 iocbq = first_iocbq; 19200 /* 19201 * Each IOCBq can have two Buffers assigned, so go through the list 19202 * of buffers for this sequence and save two buffers in each IOCBq 19203 */ 19204 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19205 if (!iocbq) { 19206 lpfc_in_buf_free(vport->phba, d_buf); 19207 continue; 19208 } 19209 if (!iocbq->bpl_dmabuf) { 19210 iocbq->bpl_dmabuf = d_buf; 19211 iocbq->wcqe_cmpl.word3++; 19212 /* We need to get the size out of the right CQE */ 19213 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19214 len = bf_get(lpfc_rcqe_length, 19215 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19216 iocbq->unsol_rcv_len = len; 19217 iocbq->wcqe_cmpl.total_data_placed += len; 19218 tot_len += len; 19219 } else { 19220 iocbq = lpfc_sli_get_iocbq(vport->phba); 19221 if (!iocbq) { 19222 if (first_iocbq) { 19223 bf_set(lpfc_wcqe_c_status, 19224 &first_iocbq->wcqe_cmpl, 19225 IOSTAT_SUCCESS); 19226 first_iocbq->wcqe_cmpl.parameter = 19227 IOERR_NO_RESOURCES; 19228 } 19229 lpfc_in_buf_free(vport->phba, d_buf); 19230 continue; 19231 } 19232 /* We need to get the size out of the right CQE */ 19233 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19234 len = bf_get(lpfc_rcqe_length, 19235 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19236 iocbq->cmd_dmabuf = d_buf; 19237 iocbq->bpl_dmabuf = NULL; 19238 iocbq->wcqe_cmpl.word3 = 1; 19239 19240 if (len > LPFC_DATA_BUF_SIZE) 19241 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19242 LPFC_DATA_BUF_SIZE; 19243 else 19244 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19245 len; 19246 19247 tot_len += len; 19248 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19249 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19250 sid); 19251 list_add_tail(&iocbq->list, &first_iocbq->list); 19252 } 19253 } 19254 /* Free the sequence's header buffer */ 19255 if (!first_iocbq) 19256 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19257 19258 return first_iocbq; 19259 } 19260 19261 static void 19262 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19263 struct hbq_dmabuf *seq_dmabuf) 19264 { 19265 struct fc_frame_header *fc_hdr; 19266 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19267 struct lpfc_hba *phba = vport->phba; 19268 19269 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19270 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19271 if (!iocbq) { 19272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19273 "2707 Ring %d handler: Failed to allocate " 19274 "iocb Rctl x%x Type x%x received\n", 19275 LPFC_ELS_RING, 19276 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19277 return; 19278 } 19279 if (!lpfc_complete_unsol_iocb(phba, 19280 phba->sli4_hba.els_wq->pring, 19281 iocbq, fc_hdr->fh_r_ctl, 19282 fc_hdr->fh_type)) { 19283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19284 "2540 Ring %d handler: unexpected Rctl " 19285 "x%x Type x%x received\n", 19286 LPFC_ELS_RING, 19287 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19288 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19289 } 19290 19291 /* Free iocb created in lpfc_prep_seq */ 19292 list_for_each_entry_safe(curr_iocb, next_iocb, 19293 &iocbq->list, list) { 19294 list_del_init(&curr_iocb->list); 19295 lpfc_sli_release_iocbq(phba, curr_iocb); 19296 } 19297 lpfc_sli_release_iocbq(phba, iocbq); 19298 } 19299 19300 static void 19301 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19302 struct lpfc_iocbq *rspiocb) 19303 { 19304 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19305 19306 if (pcmd && pcmd->virt) 19307 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19308 kfree(pcmd); 19309 lpfc_sli_release_iocbq(phba, cmdiocb); 19310 lpfc_drain_txq(phba); 19311 } 19312 19313 static void 19314 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19315 struct hbq_dmabuf *dmabuf) 19316 { 19317 struct fc_frame_header *fc_hdr; 19318 struct lpfc_hba *phba = vport->phba; 19319 struct lpfc_iocbq *iocbq = NULL; 19320 union lpfc_wqe128 *pwqe; 19321 struct lpfc_dmabuf *pcmd = NULL; 19322 uint32_t frame_len; 19323 int rc; 19324 unsigned long iflags; 19325 19326 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19327 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19328 19329 /* Send the received frame back */ 19330 iocbq = lpfc_sli_get_iocbq(phba); 19331 if (!iocbq) { 19332 /* Queue cq event and wakeup worker thread to process it */ 19333 spin_lock_irqsave(&phba->hbalock, iflags); 19334 list_add_tail(&dmabuf->cq_event.list, 19335 &phba->sli4_hba.sp_queue_event); 19336 spin_unlock_irqrestore(&phba->hbalock, iflags); 19337 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19338 lpfc_worker_wake_up(phba); 19339 return; 19340 } 19341 19342 /* Allocate buffer for command payload */ 19343 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19344 if (pcmd) 19345 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19346 &pcmd->phys); 19347 if (!pcmd || !pcmd->virt) 19348 goto exit; 19349 19350 INIT_LIST_HEAD(&pcmd->list); 19351 19352 /* copyin the payload */ 19353 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19354 19355 iocbq->cmd_dmabuf = pcmd; 19356 iocbq->vport = vport; 19357 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19358 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19359 iocbq->num_bdes = 0; 19360 19361 pwqe = &iocbq->wqe; 19362 /* fill in BDE's for command */ 19363 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19364 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19365 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19366 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19367 19368 pwqe->send_frame.frame_len = frame_len; 19369 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19370 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19371 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19372 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19373 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19374 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19375 19376 pwqe->generic.wqe_com.word7 = 0; 19377 pwqe->generic.wqe_com.word10 = 0; 19378 19379 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19380 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19381 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19382 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19383 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19384 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19385 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19386 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19387 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19388 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19389 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19390 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19391 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19392 19393 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19394 19395 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19396 if (rc == IOCB_ERROR) 19397 goto exit; 19398 19399 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19400 return; 19401 19402 exit: 19403 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19404 "2023 Unable to process MDS loopback frame\n"); 19405 if (pcmd && pcmd->virt) 19406 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19407 kfree(pcmd); 19408 if (iocbq) 19409 lpfc_sli_release_iocbq(phba, iocbq); 19410 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19411 } 19412 19413 /** 19414 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19415 * @phba: Pointer to HBA context object. 19416 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19417 * 19418 * This function is called with no lock held. This function processes all 19419 * the received buffers and gives it to upper layers when a received buffer 19420 * indicates that it is the final frame in the sequence. The interrupt 19421 * service routine processes received buffers at interrupt contexts. 19422 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19423 * appropriate receive function when the final frame in a sequence is received. 19424 **/ 19425 void 19426 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19427 struct hbq_dmabuf *dmabuf) 19428 { 19429 struct hbq_dmabuf *seq_dmabuf; 19430 struct fc_frame_header *fc_hdr; 19431 struct lpfc_vport *vport; 19432 uint32_t fcfi; 19433 uint32_t did; 19434 19435 /* Process each received buffer */ 19436 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19437 19438 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19439 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19440 vport = phba->pport; 19441 /* Handle MDS Loopback frames */ 19442 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19443 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19444 else 19445 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19446 return; 19447 } 19448 19449 /* check to see if this a valid type of frame */ 19450 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19451 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19452 return; 19453 } 19454 19455 if ((bf_get(lpfc_cqe_code, 19456 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19457 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19458 &dmabuf->cq_event.cqe.rcqe_cmpl); 19459 else 19460 fcfi = bf_get(lpfc_rcqe_fcf_id, 19461 &dmabuf->cq_event.cqe.rcqe_cmpl); 19462 19463 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19464 vport = phba->pport; 19465 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19466 "2023 MDS Loopback %d bytes\n", 19467 bf_get(lpfc_rcqe_length, 19468 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19469 /* Handle MDS Loopback frames */ 19470 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19471 return; 19472 } 19473 19474 /* d_id this frame is directed to */ 19475 did = sli4_did_from_fc_hdr(fc_hdr); 19476 19477 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19478 if (!vport) { 19479 /* throw out the frame */ 19480 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19481 return; 19482 } 19483 19484 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19485 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19486 (did != Fabric_DID)) { 19487 /* 19488 * Throw out the frame if we are not pt2pt. 19489 * The pt2pt protocol allows for discovery frames 19490 * to be received without a registered VPI. 19491 */ 19492 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19493 phba->link_state == LPFC_HBA_READY) { 19494 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19495 return; 19496 } 19497 } 19498 19499 /* Handle the basic abort sequence (BA_ABTS) event */ 19500 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19501 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19502 return; 19503 } 19504 19505 /* Link this frame */ 19506 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19507 if (!seq_dmabuf) { 19508 /* unable to add frame to vport - throw it out */ 19509 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19510 return; 19511 } 19512 /* If not last frame in sequence continue processing frames. */ 19513 if (!lpfc_seq_complete(seq_dmabuf)) 19514 return; 19515 19516 /* Send the complete sequence to the upper layer protocol */ 19517 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19518 } 19519 19520 /** 19521 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19522 * @phba: pointer to lpfc hba data structure. 19523 * 19524 * This routine is invoked to post rpi header templates to the 19525 * HBA consistent with the SLI-4 interface spec. This routine 19526 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19527 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19528 * 19529 * This routine does not require any locks. It's usage is expected 19530 * to be driver load or reset recovery when the driver is 19531 * sequential. 19532 * 19533 * Return codes 19534 * 0 - successful 19535 * -EIO - The mailbox failed to complete successfully. 19536 * When this error occurs, the driver is not guaranteed 19537 * to have any rpi regions posted to the device and 19538 * must either attempt to repost the regions or take a 19539 * fatal error. 19540 **/ 19541 int 19542 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19543 { 19544 struct lpfc_rpi_hdr *rpi_page; 19545 uint32_t rc = 0; 19546 uint16_t lrpi = 0; 19547 19548 /* SLI4 ports that support extents do not require RPI headers. */ 19549 if (!phba->sli4_hba.rpi_hdrs_in_use) 19550 goto exit; 19551 if (phba->sli4_hba.extents_in_use) 19552 return -EIO; 19553 19554 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19555 /* 19556 * Assign the rpi headers a physical rpi only if the driver 19557 * has not initialized those resources. A port reset only 19558 * needs the headers posted. 19559 */ 19560 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19561 LPFC_RPI_RSRC_RDY) 19562 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19563 19564 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19565 if (rc != MBX_SUCCESS) { 19566 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19567 "2008 Error %d posting all rpi " 19568 "headers\n", rc); 19569 rc = -EIO; 19570 break; 19571 } 19572 } 19573 19574 exit: 19575 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19576 LPFC_RPI_RSRC_RDY); 19577 return rc; 19578 } 19579 19580 /** 19581 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19582 * @phba: pointer to lpfc hba data structure. 19583 * @rpi_page: pointer to the rpi memory region. 19584 * 19585 * This routine is invoked to post a single rpi header to the 19586 * HBA consistent with the SLI-4 interface spec. This memory region 19587 * maps up to 64 rpi context regions. 19588 * 19589 * Return codes 19590 * 0 - successful 19591 * -ENOMEM - No available memory 19592 * -EIO - The mailbox failed to complete successfully. 19593 **/ 19594 int 19595 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19596 { 19597 LPFC_MBOXQ_t *mboxq; 19598 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19599 uint32_t rc = 0; 19600 uint32_t shdr_status, shdr_add_status; 19601 union lpfc_sli4_cfg_shdr *shdr; 19602 19603 /* SLI4 ports that support extents do not require RPI headers. */ 19604 if (!phba->sli4_hba.rpi_hdrs_in_use) 19605 return rc; 19606 if (phba->sli4_hba.extents_in_use) 19607 return -EIO; 19608 19609 /* The port is notified of the header region via a mailbox command. */ 19610 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19611 if (!mboxq) { 19612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19613 "2001 Unable to allocate memory for issuing " 19614 "SLI_CONFIG_SPECIAL mailbox command\n"); 19615 return -ENOMEM; 19616 } 19617 19618 /* Post all rpi memory regions to the port. */ 19619 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19620 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19621 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19622 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19623 sizeof(struct lpfc_sli4_cfg_mhdr), 19624 LPFC_SLI4_MBX_EMBED); 19625 19626 19627 /* Post the physical rpi to the port for this rpi header. */ 19628 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19629 rpi_page->start_rpi); 19630 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19631 hdr_tmpl, rpi_page->page_count); 19632 19633 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19634 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19635 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19636 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19637 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19638 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19639 mempool_free(mboxq, phba->mbox_mem_pool); 19640 if (shdr_status || shdr_add_status || rc) { 19641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19642 "2514 POST_RPI_HDR mailbox failed with " 19643 "status x%x add_status x%x, mbx status x%x\n", 19644 shdr_status, shdr_add_status, rc); 19645 rc = -ENXIO; 19646 } else { 19647 /* 19648 * The next_rpi stores the next logical module-64 rpi value used 19649 * to post physical rpis in subsequent rpi postings. 19650 */ 19651 spin_lock_irq(&phba->hbalock); 19652 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19653 spin_unlock_irq(&phba->hbalock); 19654 } 19655 return rc; 19656 } 19657 19658 /** 19659 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19660 * @phba: pointer to lpfc hba data structure. 19661 * 19662 * This routine is invoked to post rpi header templates to the 19663 * HBA consistent with the SLI-4 interface spec. This routine 19664 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19665 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19666 * 19667 * Returns 19668 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19669 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19670 **/ 19671 int 19672 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19673 { 19674 unsigned long rpi; 19675 uint16_t max_rpi, rpi_limit; 19676 uint16_t rpi_remaining, lrpi = 0; 19677 struct lpfc_rpi_hdr *rpi_hdr; 19678 unsigned long iflag; 19679 19680 /* 19681 * Fetch the next logical rpi. Because this index is logical, 19682 * the driver starts at 0 each time. 19683 */ 19684 spin_lock_irqsave(&phba->hbalock, iflag); 19685 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19686 rpi_limit = phba->sli4_hba.next_rpi; 19687 19688 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19689 if (rpi >= rpi_limit) 19690 rpi = LPFC_RPI_ALLOC_ERROR; 19691 else { 19692 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19693 phba->sli4_hba.max_cfg_param.rpi_used++; 19694 phba->sli4_hba.rpi_count++; 19695 } 19696 lpfc_printf_log(phba, KERN_INFO, 19697 LOG_NODE | LOG_DISCOVERY, 19698 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19699 (int) rpi, max_rpi, rpi_limit); 19700 19701 /* 19702 * Don't try to allocate more rpi header regions if the device limit 19703 * has been exhausted. 19704 */ 19705 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19706 (phba->sli4_hba.rpi_count >= max_rpi)) { 19707 spin_unlock_irqrestore(&phba->hbalock, iflag); 19708 return rpi; 19709 } 19710 19711 /* 19712 * RPI header postings are not required for SLI4 ports capable of 19713 * extents. 19714 */ 19715 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19716 spin_unlock_irqrestore(&phba->hbalock, iflag); 19717 return rpi; 19718 } 19719 19720 /* 19721 * If the driver is running low on rpi resources, allocate another 19722 * page now. Note that the next_rpi value is used because 19723 * it represents how many are actually in use whereas max_rpi notes 19724 * how many are supported max by the device. 19725 */ 19726 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19727 spin_unlock_irqrestore(&phba->hbalock, iflag); 19728 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19729 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19730 if (!rpi_hdr) { 19731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19732 "2002 Error Could not grow rpi " 19733 "count\n"); 19734 } else { 19735 lrpi = rpi_hdr->start_rpi; 19736 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19737 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19738 } 19739 } 19740 19741 return rpi; 19742 } 19743 19744 /** 19745 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19746 * @phba: pointer to lpfc hba data structure. 19747 * @rpi: rpi to free 19748 * 19749 * This routine is invoked to release an rpi to the pool of 19750 * available rpis maintained by the driver. 19751 **/ 19752 static void 19753 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19754 { 19755 /* 19756 * if the rpi value indicates a prior unreg has already 19757 * been done, skip the unreg. 19758 */ 19759 if (rpi == LPFC_RPI_ALLOC_ERROR) 19760 return; 19761 19762 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19763 phba->sli4_hba.rpi_count--; 19764 phba->sli4_hba.max_cfg_param.rpi_used--; 19765 } else { 19766 lpfc_printf_log(phba, KERN_INFO, 19767 LOG_NODE | LOG_DISCOVERY, 19768 "2016 rpi %x not inuse\n", 19769 rpi); 19770 } 19771 } 19772 19773 /** 19774 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19775 * @phba: pointer to lpfc hba data structure. 19776 * @rpi: rpi to free 19777 * 19778 * This routine is invoked to release an rpi to the pool of 19779 * available rpis maintained by the driver. 19780 **/ 19781 void 19782 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19783 { 19784 spin_lock_irq(&phba->hbalock); 19785 __lpfc_sli4_free_rpi(phba, rpi); 19786 spin_unlock_irq(&phba->hbalock); 19787 } 19788 19789 /** 19790 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19791 * @phba: pointer to lpfc hba data structure. 19792 * 19793 * This routine is invoked to remove the memory region that 19794 * provided rpi via a bitmask. 19795 **/ 19796 void 19797 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19798 { 19799 kfree(phba->sli4_hba.rpi_bmask); 19800 kfree(phba->sli4_hba.rpi_ids); 19801 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19802 } 19803 19804 /** 19805 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19806 * @ndlp: pointer to lpfc nodelist data structure. 19807 * @cmpl: completion call-back. 19808 * @iocbq: data to load as mbox ctx_u information 19809 * 19810 * This routine is invoked to remove the memory region that 19811 * provided rpi via a bitmask. 19812 **/ 19813 int 19814 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19815 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19816 struct lpfc_iocbq *iocbq) 19817 { 19818 LPFC_MBOXQ_t *mboxq; 19819 struct lpfc_hba *phba = ndlp->phba; 19820 int rc; 19821 19822 /* The port is notified of the header region via a mailbox command. */ 19823 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19824 if (!mboxq) 19825 return -ENOMEM; 19826 19827 /* If cmpl assigned, then this nlp_get pairs with 19828 * lpfc_mbx_cmpl_resume_rpi. 19829 * 19830 * Else cmpl is NULL, then this nlp_get pairs with 19831 * lpfc_sli_def_mbox_cmpl. 19832 */ 19833 if (!lpfc_nlp_get(ndlp)) { 19834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19835 "2122 %s: Failed to get nlp ref\n", 19836 __func__); 19837 mempool_free(mboxq, phba->mbox_mem_pool); 19838 return -EIO; 19839 } 19840 19841 /* Post all rpi memory regions to the port. */ 19842 lpfc_resume_rpi(mboxq, ndlp); 19843 if (cmpl) { 19844 mboxq->mbox_cmpl = cmpl; 19845 mboxq->ctx_u.save_iocb = iocbq; 19846 } else 19847 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19848 mboxq->ctx_ndlp = ndlp; 19849 mboxq->vport = ndlp->vport; 19850 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19851 if (rc == MBX_NOT_FINISHED) { 19852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19853 "2010 Resume RPI Mailbox failed " 19854 "status %d, mbxStatus x%x\n", rc, 19855 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19856 lpfc_nlp_put(ndlp); 19857 mempool_free(mboxq, phba->mbox_mem_pool); 19858 return -EIO; 19859 } 19860 return 0; 19861 } 19862 19863 /** 19864 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19865 * @vport: Pointer to the vport for which the vpi is being initialized 19866 * 19867 * This routine is invoked to activate a vpi with the port. 19868 * 19869 * Returns: 19870 * 0 success 19871 * -Evalue otherwise 19872 **/ 19873 int 19874 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19875 { 19876 LPFC_MBOXQ_t *mboxq; 19877 int rc = 0; 19878 int retval = MBX_SUCCESS; 19879 uint32_t mbox_tmo; 19880 struct lpfc_hba *phba = vport->phba; 19881 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19882 if (!mboxq) 19883 return -ENOMEM; 19884 lpfc_init_vpi(phba, mboxq, vport->vpi); 19885 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19886 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19887 if (rc != MBX_SUCCESS) { 19888 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19889 "2022 INIT VPI Mailbox failed " 19890 "status %d, mbxStatus x%x\n", rc, 19891 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19892 retval = -EIO; 19893 } 19894 if (rc != MBX_TIMEOUT) 19895 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19896 19897 return retval; 19898 } 19899 19900 /** 19901 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19902 * @phba: pointer to lpfc hba data structure. 19903 * @mboxq: Pointer to mailbox object. 19904 * 19905 * This routine is invoked to manually add a single FCF record. The caller 19906 * must pass a completely initialized FCF_Record. This routine takes 19907 * care of the nonembedded mailbox operations. 19908 **/ 19909 static void 19910 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19911 { 19912 void *virt_addr; 19913 union lpfc_sli4_cfg_shdr *shdr; 19914 uint32_t shdr_status, shdr_add_status; 19915 19916 virt_addr = mboxq->sge_array->addr[0]; 19917 /* The IOCTL status is embedded in the mailbox subheader. */ 19918 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19919 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19920 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19921 19922 if ((shdr_status || shdr_add_status) && 19923 (shdr_status != STATUS_FCF_IN_USE)) 19924 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19925 "2558 ADD_FCF_RECORD mailbox failed with " 19926 "status x%x add_status x%x\n", 19927 shdr_status, shdr_add_status); 19928 19929 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19930 } 19931 19932 /** 19933 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19934 * @phba: pointer to lpfc hba data structure. 19935 * @fcf_record: pointer to the initialized fcf record to add. 19936 * 19937 * This routine is invoked to manually add a single FCF record. The caller 19938 * must pass a completely initialized FCF_Record. This routine takes 19939 * care of the nonembedded mailbox operations. 19940 **/ 19941 int 19942 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19943 { 19944 int rc = 0; 19945 LPFC_MBOXQ_t *mboxq; 19946 uint8_t *bytep; 19947 void *virt_addr; 19948 struct lpfc_mbx_sge sge; 19949 uint32_t alloc_len, req_len; 19950 uint32_t fcfindex; 19951 19952 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19953 if (!mboxq) { 19954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19955 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19956 return -ENOMEM; 19957 } 19958 19959 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19960 sizeof(uint32_t); 19961 19962 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19963 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19964 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19965 req_len, LPFC_SLI4_MBX_NEMBED); 19966 if (alloc_len < req_len) { 19967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19968 "2523 Allocated DMA memory size (x%x) is " 19969 "less than the requested DMA memory " 19970 "size (x%x)\n", alloc_len, req_len); 19971 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19972 return -ENOMEM; 19973 } 19974 19975 /* 19976 * Get the first SGE entry from the non-embedded DMA memory. This 19977 * routine only uses a single SGE. 19978 */ 19979 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19980 virt_addr = mboxq->sge_array->addr[0]; 19981 /* 19982 * Configure the FCF record for FCFI 0. This is the driver's 19983 * hardcoded default and gets used in nonFIP mode. 19984 */ 19985 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19986 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19987 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19988 19989 /* 19990 * Copy the fcf_index and the FCF Record Data. The data starts after 19991 * the FCoE header plus word10. The data copy needs to be endian 19992 * correct. 19993 */ 19994 bytep += sizeof(uint32_t); 19995 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19996 mboxq->vport = phba->pport; 19997 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19998 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19999 if (rc == MBX_NOT_FINISHED) { 20000 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20001 "2515 ADD_FCF_RECORD mailbox failed with " 20002 "status 0x%x\n", rc); 20003 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20004 rc = -EIO; 20005 } else 20006 rc = 0; 20007 20008 return rc; 20009 } 20010 20011 /** 20012 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20013 * @phba: pointer to lpfc hba data structure. 20014 * @fcf_record: pointer to the fcf record to write the default data. 20015 * @fcf_index: FCF table entry index. 20016 * 20017 * This routine is invoked to build the driver's default FCF record. The 20018 * values used are hardcoded. This routine handles memory initialization. 20019 * 20020 **/ 20021 void 20022 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20023 struct fcf_record *fcf_record, 20024 uint16_t fcf_index) 20025 { 20026 memset(fcf_record, 0, sizeof(struct fcf_record)); 20027 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20028 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20029 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20030 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20031 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20032 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20033 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20034 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20035 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20036 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20037 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20038 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20039 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20040 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20041 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20042 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20043 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20044 /* Set the VLAN bit map */ 20045 if (phba->valid_vlan) { 20046 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20047 = 1 << (phba->vlan_id % 8); 20048 } 20049 } 20050 20051 /** 20052 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20053 * @phba: pointer to lpfc hba data structure. 20054 * @fcf_index: FCF table entry offset. 20055 * 20056 * This routine is invoked to scan the entire FCF table by reading FCF 20057 * record and processing it one at a time starting from the @fcf_index 20058 * for initial FCF discovery or fast FCF failover rediscovery. 20059 * 20060 * Return 0 if the mailbox command is submitted successfully, none 0 20061 * otherwise. 20062 **/ 20063 int 20064 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20065 { 20066 int rc = 0, error; 20067 LPFC_MBOXQ_t *mboxq; 20068 20069 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20070 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20071 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20072 if (!mboxq) { 20073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20074 "2000 Failed to allocate mbox for " 20075 "READ_FCF cmd\n"); 20076 error = -ENOMEM; 20077 goto fail_fcf_scan; 20078 } 20079 /* Construct the read FCF record mailbox command */ 20080 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20081 if (rc) { 20082 error = -EINVAL; 20083 goto fail_fcf_scan; 20084 } 20085 /* Issue the mailbox command asynchronously */ 20086 mboxq->vport = phba->pport; 20087 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20088 20089 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20090 20091 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20092 if (rc == MBX_NOT_FINISHED) 20093 error = -EIO; 20094 else { 20095 /* Reset eligible FCF count for new scan */ 20096 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20097 phba->fcf.eligible_fcf_cnt = 0; 20098 error = 0; 20099 } 20100 fail_fcf_scan: 20101 if (error) { 20102 if (mboxq) 20103 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20104 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20105 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20106 } 20107 return error; 20108 } 20109 20110 /** 20111 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20112 * @phba: pointer to lpfc hba data structure. 20113 * @fcf_index: FCF table entry offset. 20114 * 20115 * This routine is invoked to read an FCF record indicated by @fcf_index 20116 * and to use it for FLOGI roundrobin FCF failover. 20117 * 20118 * Return 0 if the mailbox command is submitted successfully, none 0 20119 * otherwise. 20120 **/ 20121 int 20122 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20123 { 20124 int rc = 0, error; 20125 LPFC_MBOXQ_t *mboxq; 20126 20127 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20128 if (!mboxq) { 20129 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20130 "2763 Failed to allocate mbox for " 20131 "READ_FCF cmd\n"); 20132 error = -ENOMEM; 20133 goto fail_fcf_read; 20134 } 20135 /* Construct the read FCF record mailbox command */ 20136 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20137 if (rc) { 20138 error = -EINVAL; 20139 goto fail_fcf_read; 20140 } 20141 /* Issue the mailbox command asynchronously */ 20142 mboxq->vport = phba->pport; 20143 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20144 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20145 if (rc == MBX_NOT_FINISHED) 20146 error = -EIO; 20147 else 20148 error = 0; 20149 20150 fail_fcf_read: 20151 if (error && mboxq) 20152 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20153 return error; 20154 } 20155 20156 /** 20157 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20158 * @phba: pointer to lpfc hba data structure. 20159 * @fcf_index: FCF table entry offset. 20160 * 20161 * This routine is invoked to read an FCF record indicated by @fcf_index to 20162 * determine whether it's eligible for FLOGI roundrobin failover list. 20163 * 20164 * Return 0 if the mailbox command is submitted successfully, none 0 20165 * otherwise. 20166 **/ 20167 int 20168 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20169 { 20170 int rc = 0, error; 20171 LPFC_MBOXQ_t *mboxq; 20172 20173 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20174 if (!mboxq) { 20175 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20176 "2758 Failed to allocate mbox for " 20177 "READ_FCF cmd\n"); 20178 error = -ENOMEM; 20179 goto fail_fcf_read; 20180 } 20181 /* Construct the read FCF record mailbox command */ 20182 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20183 if (rc) { 20184 error = -EINVAL; 20185 goto fail_fcf_read; 20186 } 20187 /* Issue the mailbox command asynchronously */ 20188 mboxq->vport = phba->pport; 20189 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20190 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20191 if (rc == MBX_NOT_FINISHED) 20192 error = -EIO; 20193 else 20194 error = 0; 20195 20196 fail_fcf_read: 20197 if (error && mboxq) 20198 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20199 return error; 20200 } 20201 20202 /** 20203 * lpfc_check_next_fcf_pri_level 20204 * @phba: pointer to the lpfc_hba struct for this port. 20205 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20206 * routine when the rr_bmask is empty. The FCF indecies are put into the 20207 * rr_bmask based on their priority level. Starting from the highest priority 20208 * to the lowest. The most likely FCF candidate will be in the highest 20209 * priority group. When this routine is called it searches the fcf_pri list for 20210 * next lowest priority group and repopulates the rr_bmask with only those 20211 * fcf_indexes. 20212 * returns: 20213 * 1=success 0=failure 20214 **/ 20215 static int 20216 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20217 { 20218 uint16_t next_fcf_pri; 20219 uint16_t last_index; 20220 struct lpfc_fcf_pri *fcf_pri; 20221 int rc; 20222 int ret = 0; 20223 20224 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20225 LPFC_SLI4_FCF_TBL_INDX_MAX); 20226 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20227 "3060 Last IDX %d\n", last_index); 20228 20229 /* Verify the priority list has 2 or more entries */ 20230 spin_lock_irq(&phba->hbalock); 20231 if (list_empty(&phba->fcf.fcf_pri_list) || 20232 list_is_singular(&phba->fcf.fcf_pri_list)) { 20233 spin_unlock_irq(&phba->hbalock); 20234 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20235 "3061 Last IDX %d\n", last_index); 20236 return 0; /* Empty rr list */ 20237 } 20238 spin_unlock_irq(&phba->hbalock); 20239 20240 next_fcf_pri = 0; 20241 /* 20242 * Clear the rr_bmask and set all of the bits that are at this 20243 * priority. 20244 */ 20245 memset(phba->fcf.fcf_rr_bmask, 0, 20246 sizeof(*phba->fcf.fcf_rr_bmask)); 20247 spin_lock_irq(&phba->hbalock); 20248 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20249 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20250 continue; 20251 /* 20252 * the 1st priority that has not FLOGI failed 20253 * will be the highest. 20254 */ 20255 if (!next_fcf_pri) 20256 next_fcf_pri = fcf_pri->fcf_rec.priority; 20257 spin_unlock_irq(&phba->hbalock); 20258 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20259 rc = lpfc_sli4_fcf_rr_index_set(phba, 20260 fcf_pri->fcf_rec.fcf_index); 20261 if (rc) 20262 return 0; 20263 } 20264 spin_lock_irq(&phba->hbalock); 20265 } 20266 /* 20267 * if next_fcf_pri was not set above and the list is not empty then 20268 * we have failed flogis on all of them. So reset flogi failed 20269 * and start at the beginning. 20270 */ 20271 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20272 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20273 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20274 /* 20275 * the 1st priority that has not FLOGI failed 20276 * will be the highest. 20277 */ 20278 if (!next_fcf_pri) 20279 next_fcf_pri = fcf_pri->fcf_rec.priority; 20280 spin_unlock_irq(&phba->hbalock); 20281 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20282 rc = lpfc_sli4_fcf_rr_index_set(phba, 20283 fcf_pri->fcf_rec.fcf_index); 20284 if (rc) 20285 return 0; 20286 } 20287 spin_lock_irq(&phba->hbalock); 20288 } 20289 } else 20290 ret = 1; 20291 spin_unlock_irq(&phba->hbalock); 20292 20293 return ret; 20294 } 20295 /** 20296 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20297 * @phba: pointer to lpfc hba data structure. 20298 * 20299 * This routine is to get the next eligible FCF record index in a round 20300 * robin fashion. If the next eligible FCF record index equals to the 20301 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20302 * shall be returned, otherwise, the next eligible FCF record's index 20303 * shall be returned. 20304 **/ 20305 uint16_t 20306 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20307 { 20308 uint16_t next_fcf_index; 20309 20310 initial_priority: 20311 /* Search start from next bit of currently registered FCF index */ 20312 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20313 20314 next_priority: 20315 /* Determine the next fcf index to check */ 20316 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20317 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20318 LPFC_SLI4_FCF_TBL_INDX_MAX, 20319 next_fcf_index); 20320 20321 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20322 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20323 /* 20324 * If we have wrapped then we need to clear the bits that 20325 * have been tested so that we can detect when we should 20326 * change the priority level. 20327 */ 20328 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20329 LPFC_SLI4_FCF_TBL_INDX_MAX); 20330 } 20331 20332 20333 /* Check roundrobin failover list empty condition */ 20334 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20335 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20336 /* 20337 * If next fcf index is not found check if there are lower 20338 * Priority level fcf's in the fcf_priority list. 20339 * Set up the rr_bmask with all of the avaiable fcf bits 20340 * at that level and continue the selection process. 20341 */ 20342 if (lpfc_check_next_fcf_pri_level(phba)) 20343 goto initial_priority; 20344 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20345 "2844 No roundrobin failover FCF available\n"); 20346 20347 return LPFC_FCOE_FCF_NEXT_NONE; 20348 } 20349 20350 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20351 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20352 LPFC_FCF_FLOGI_FAILED) { 20353 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20354 return LPFC_FCOE_FCF_NEXT_NONE; 20355 20356 goto next_priority; 20357 } 20358 20359 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20360 "2845 Get next roundrobin failover FCF (x%x)\n", 20361 next_fcf_index); 20362 20363 return next_fcf_index; 20364 } 20365 20366 /** 20367 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20368 * @phba: pointer to lpfc hba data structure. 20369 * @fcf_index: index into the FCF table to 'set' 20370 * 20371 * This routine sets the FCF record index in to the eligible bmask for 20372 * roundrobin failover search. It checks to make sure that the index 20373 * does not go beyond the range of the driver allocated bmask dimension 20374 * before setting the bit. 20375 * 20376 * Returns 0 if the index bit successfully set, otherwise, it returns 20377 * -EINVAL. 20378 **/ 20379 int 20380 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20381 { 20382 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20383 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20384 "2610 FCF (x%x) reached driver's book " 20385 "keeping dimension:x%x\n", 20386 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20387 return -EINVAL; 20388 } 20389 /* Set the eligible FCF record index bmask */ 20390 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20391 20392 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20393 "2790 Set FCF (x%x) to roundrobin FCF failover " 20394 "bmask\n", fcf_index); 20395 20396 return 0; 20397 } 20398 20399 /** 20400 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20401 * @phba: pointer to lpfc hba data structure. 20402 * @fcf_index: index into the FCF table to 'clear' 20403 * 20404 * This routine clears the FCF record index from the eligible bmask for 20405 * roundrobin failover search. It checks to make sure that the index 20406 * does not go beyond the range of the driver allocated bmask dimension 20407 * before clearing the bit. 20408 **/ 20409 void 20410 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20411 { 20412 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20413 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20414 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20415 "2762 FCF (x%x) reached driver's book " 20416 "keeping dimension:x%x\n", 20417 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20418 return; 20419 } 20420 /* Clear the eligible FCF record index bmask */ 20421 spin_lock_irq(&phba->hbalock); 20422 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20423 list) { 20424 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20425 list_del_init(&fcf_pri->list); 20426 break; 20427 } 20428 } 20429 spin_unlock_irq(&phba->hbalock); 20430 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20431 20432 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20433 "2791 Clear FCF (x%x) from roundrobin failover " 20434 "bmask\n", fcf_index); 20435 } 20436 20437 /** 20438 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20439 * @phba: pointer to lpfc hba data structure. 20440 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20441 * 20442 * This routine is the completion routine for the rediscover FCF table mailbox 20443 * command. If the mailbox command returned failure, it will try to stop the 20444 * FCF rediscover wait timer. 20445 **/ 20446 static void 20447 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20448 { 20449 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20450 uint32_t shdr_status, shdr_add_status; 20451 20452 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20453 20454 shdr_status = bf_get(lpfc_mbox_hdr_status, 20455 &redisc_fcf->header.cfg_shdr.response); 20456 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20457 &redisc_fcf->header.cfg_shdr.response); 20458 if (shdr_status || shdr_add_status) { 20459 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20460 "2746 Requesting for FCF rediscovery failed " 20461 "status x%x add_status x%x\n", 20462 shdr_status, shdr_add_status); 20463 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20464 spin_lock_irq(&phba->hbalock); 20465 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20466 spin_unlock_irq(&phba->hbalock); 20467 /* 20468 * CVL event triggered FCF rediscover request failed, 20469 * last resort to re-try current registered FCF entry. 20470 */ 20471 lpfc_retry_pport_discovery(phba); 20472 } else { 20473 spin_lock_irq(&phba->hbalock); 20474 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20475 spin_unlock_irq(&phba->hbalock); 20476 /* 20477 * DEAD FCF event triggered FCF rediscover request 20478 * failed, last resort to fail over as a link down 20479 * to FCF registration. 20480 */ 20481 lpfc_sli4_fcf_dead_failthrough(phba); 20482 } 20483 } else { 20484 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20485 "2775 Start FCF rediscover quiescent timer\n"); 20486 /* 20487 * Start FCF rediscovery wait timer for pending FCF 20488 * before rescan FCF record table. 20489 */ 20490 lpfc_fcf_redisc_wait_start_timer(phba); 20491 } 20492 20493 mempool_free(mbox, phba->mbox_mem_pool); 20494 } 20495 20496 /** 20497 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20498 * @phba: pointer to lpfc hba data structure. 20499 * 20500 * This routine is invoked to request for rediscovery of the entire FCF table 20501 * by the port. 20502 **/ 20503 int 20504 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20505 { 20506 LPFC_MBOXQ_t *mbox; 20507 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20508 int rc, length; 20509 20510 /* Cancel retry delay timers to all vports before FCF rediscover */ 20511 lpfc_cancel_all_vport_retry_delay_timer(phba); 20512 20513 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20514 if (!mbox) { 20515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20516 "2745 Failed to allocate mbox for " 20517 "requesting FCF rediscover.\n"); 20518 return -ENOMEM; 20519 } 20520 20521 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20522 sizeof(struct lpfc_sli4_cfg_mhdr)); 20523 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20524 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20525 length, LPFC_SLI4_MBX_EMBED); 20526 20527 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20528 /* Set count to 0 for invalidating the entire FCF database */ 20529 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20530 20531 /* Issue the mailbox command asynchronously */ 20532 mbox->vport = phba->pport; 20533 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20534 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20535 20536 if (rc == MBX_NOT_FINISHED) { 20537 mempool_free(mbox, phba->mbox_mem_pool); 20538 return -EIO; 20539 } 20540 return 0; 20541 } 20542 20543 /** 20544 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20545 * @phba: pointer to lpfc hba data structure. 20546 * 20547 * This function is the failover routine as a last resort to the FCF DEAD 20548 * event when driver failed to perform fast FCF failover. 20549 **/ 20550 void 20551 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20552 { 20553 uint32_t link_state; 20554 20555 /* 20556 * Last resort as FCF DEAD event failover will treat this as 20557 * a link down, but save the link state because we don't want 20558 * it to be changed to Link Down unless it is already down. 20559 */ 20560 link_state = phba->link_state; 20561 lpfc_linkdown(phba); 20562 phba->link_state = link_state; 20563 20564 /* Unregister FCF if no devices connected to it */ 20565 lpfc_unregister_unused_fcf(phba); 20566 } 20567 20568 /** 20569 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20570 * @phba: pointer to lpfc hba data structure. 20571 * @rgn23_data: pointer to configure region 23 data. 20572 * 20573 * This function gets SLI3 port configure region 23 data through memory dump 20574 * mailbox command. When it successfully retrieves data, the size of the data 20575 * will be returned, otherwise, 0 will be returned. 20576 **/ 20577 static uint32_t 20578 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20579 { 20580 LPFC_MBOXQ_t *pmb = NULL; 20581 MAILBOX_t *mb; 20582 uint32_t offset = 0; 20583 int rc; 20584 20585 if (!rgn23_data) 20586 return 0; 20587 20588 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20589 if (!pmb) { 20590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20591 "2600 failed to allocate mailbox memory\n"); 20592 return 0; 20593 } 20594 mb = &pmb->u.mb; 20595 20596 do { 20597 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20598 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20599 20600 if (rc != MBX_SUCCESS) { 20601 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20602 "2601 failed to read config " 20603 "region 23, rc 0x%x Status 0x%x\n", 20604 rc, mb->mbxStatus); 20605 mb->un.varDmp.word_cnt = 0; 20606 } 20607 /* 20608 * dump mem may return a zero when finished or we got a 20609 * mailbox error, either way we are done. 20610 */ 20611 if (mb->un.varDmp.word_cnt == 0) 20612 break; 20613 20614 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20615 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20616 20617 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20618 rgn23_data + offset, 20619 mb->un.varDmp.word_cnt); 20620 offset += mb->un.varDmp.word_cnt; 20621 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20622 20623 mempool_free(pmb, phba->mbox_mem_pool); 20624 return offset; 20625 } 20626 20627 /** 20628 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20629 * @phba: pointer to lpfc hba data structure. 20630 * @rgn23_data: pointer to configure region 23 data. 20631 * 20632 * This function gets SLI4 port configure region 23 data through memory dump 20633 * mailbox command. When it successfully retrieves data, the size of the data 20634 * will be returned, otherwise, 0 will be returned. 20635 **/ 20636 static uint32_t 20637 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20638 { 20639 LPFC_MBOXQ_t *mboxq = NULL; 20640 struct lpfc_dmabuf *mp = NULL; 20641 struct lpfc_mqe *mqe; 20642 uint32_t data_length = 0; 20643 int rc; 20644 20645 if (!rgn23_data) 20646 return 0; 20647 20648 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20649 if (!mboxq) { 20650 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20651 "3105 failed to allocate mailbox memory\n"); 20652 return 0; 20653 } 20654 20655 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20656 goto out; 20657 mqe = &mboxq->u.mqe; 20658 mp = mboxq->ctx_buf; 20659 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20660 if (rc) 20661 goto out; 20662 data_length = mqe->un.mb_words[5]; 20663 if (data_length == 0) 20664 goto out; 20665 if (data_length > DMP_RGN23_SIZE) { 20666 data_length = 0; 20667 goto out; 20668 } 20669 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20670 out: 20671 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20672 return data_length; 20673 } 20674 20675 /** 20676 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20677 * @phba: pointer to lpfc hba data structure. 20678 * 20679 * This function read region 23 and parse TLV for port status to 20680 * decide if the user disaled the port. If the TLV indicates the 20681 * port is disabled, the hba_flag is set accordingly. 20682 **/ 20683 void 20684 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20685 { 20686 uint8_t *rgn23_data = NULL; 20687 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20688 uint32_t offset = 0; 20689 20690 /* Get adapter Region 23 data */ 20691 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20692 if (!rgn23_data) 20693 goto out; 20694 20695 if (phba->sli_rev < LPFC_SLI_REV4) 20696 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20697 else { 20698 if_type = bf_get(lpfc_sli_intf_if_type, 20699 &phba->sli4_hba.sli_intf); 20700 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20701 goto out; 20702 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20703 } 20704 20705 if (!data_size) 20706 goto out; 20707 20708 /* Check the region signature first */ 20709 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20711 "2619 Config region 23 has bad signature\n"); 20712 goto out; 20713 } 20714 offset += 4; 20715 20716 /* Check the data structure version */ 20717 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20719 "2620 Config region 23 has bad version\n"); 20720 goto out; 20721 } 20722 offset += 4; 20723 20724 /* Parse TLV entries in the region */ 20725 while (offset < data_size) { 20726 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20727 break; 20728 /* 20729 * If the TLV is not driver specific TLV or driver id is 20730 * not linux driver id, skip the record. 20731 */ 20732 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20733 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20734 (rgn23_data[offset + 3] != 0)) { 20735 offset += rgn23_data[offset + 1] * 4 + 4; 20736 continue; 20737 } 20738 20739 /* Driver found a driver specific TLV in the config region */ 20740 sub_tlv_len = rgn23_data[offset + 1] * 4; 20741 offset += 4; 20742 tlv_offset = 0; 20743 20744 /* 20745 * Search for configured port state sub-TLV. 20746 */ 20747 while ((offset < data_size) && 20748 (tlv_offset < sub_tlv_len)) { 20749 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20750 offset += 4; 20751 tlv_offset += 4; 20752 break; 20753 } 20754 if (rgn23_data[offset] != PORT_STE_TYPE) { 20755 offset += rgn23_data[offset + 1] * 4 + 4; 20756 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20757 continue; 20758 } 20759 20760 /* This HBA contains PORT_STE configured */ 20761 if (!rgn23_data[offset + 2]) 20762 set_bit(LINK_DISABLED, &phba->hba_flag); 20763 20764 goto out; 20765 } 20766 } 20767 20768 out: 20769 kfree(rgn23_data); 20770 return; 20771 } 20772 20773 /** 20774 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20775 * @phba: pointer to lpfc hba data structure 20776 * @shdr_status: wr_object rsp's status field 20777 * @shdr_add_status: wr_object rsp's add_status field 20778 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20779 * @shdr_change_status: wr_object rsp's change_status field 20780 * @shdr_csf: wr_object rsp's csf bit 20781 * 20782 * This routine is intended to be called after a firmware write completes. 20783 * It will log next action items to be performed by the user to instantiate 20784 * the newly downloaded firmware or reason for incompatibility. 20785 **/ 20786 static void 20787 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20788 u32 shdr_add_status, u32 shdr_add_status_2, 20789 u32 shdr_change_status, u32 shdr_csf) 20790 { 20791 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20792 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20793 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20794 "change_status x%02x, csf %01x\n", __func__, 20795 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20796 shdr_status, shdr_add_status, shdr_add_status_2, 20797 shdr_change_status, shdr_csf); 20798 20799 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20800 switch (shdr_add_status_2) { 20801 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20802 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20803 "4199 Firmware write failed: " 20804 "image incompatible with flash x%02x\n", 20805 phba->sli4_hba.flash_id); 20806 break; 20807 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20808 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20809 "4200 Firmware write failed: " 20810 "image incompatible with ASIC " 20811 "architecture x%02x\n", 20812 phba->sli4_hba.asic_rev); 20813 break; 20814 default: 20815 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20816 "4210 Firmware write failed: " 20817 "add_status_2 x%02x\n", 20818 shdr_add_status_2); 20819 break; 20820 } 20821 } else if (!shdr_status && !shdr_add_status) { 20822 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20823 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20824 if (shdr_csf) 20825 shdr_change_status = 20826 LPFC_CHANGE_STATUS_PCI_RESET; 20827 } 20828 20829 switch (shdr_change_status) { 20830 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20831 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20832 "3198 Firmware write complete: System " 20833 "reboot required to instantiate\n"); 20834 break; 20835 case (LPFC_CHANGE_STATUS_FW_RESET): 20836 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20837 "3199 Firmware write complete: " 20838 "Firmware reset required to " 20839 "instantiate\n"); 20840 break; 20841 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20842 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20843 "3200 Firmware write complete: Port " 20844 "Migration or PCI Reset required to " 20845 "instantiate\n"); 20846 break; 20847 case (LPFC_CHANGE_STATUS_PCI_RESET): 20848 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20849 "3201 Firmware write complete: PCI " 20850 "Reset required to instantiate\n"); 20851 break; 20852 default: 20853 break; 20854 } 20855 } 20856 } 20857 20858 /** 20859 * lpfc_wr_object - write an object to the firmware 20860 * @phba: HBA structure that indicates port to create a queue on. 20861 * @dmabuf_list: list of dmabufs to write to the port. 20862 * @size: the total byte value of the objects to write to the port. 20863 * @offset: the current offset to be used to start the transfer. 20864 * 20865 * This routine will create a wr_object mailbox command to send to the port. 20866 * the mailbox command will be constructed using the dma buffers described in 20867 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20868 * BDEs that the imbedded mailbox can support. The @offset variable will be 20869 * used to indicate the starting offset of the transfer and will also return 20870 * the offset after the write object mailbox has completed. @size is used to 20871 * determine the end of the object and whether the eof bit should be set. 20872 * 20873 * Return 0 is successful and offset will contain the new offset to use 20874 * for the next write. 20875 * Return negative value for error cases. 20876 **/ 20877 int 20878 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20879 uint32_t size, uint32_t *offset) 20880 { 20881 struct lpfc_mbx_wr_object *wr_object; 20882 LPFC_MBOXQ_t *mbox; 20883 int rc = 0, i = 0; 20884 int mbox_status = 0; 20885 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20886 uint32_t shdr_change_status = 0, shdr_csf = 0; 20887 uint32_t mbox_tmo; 20888 struct lpfc_dmabuf *dmabuf; 20889 uint32_t written = 0; 20890 bool check_change_status = false; 20891 20892 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20893 if (!mbox) 20894 return -ENOMEM; 20895 20896 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20897 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20898 sizeof(struct lpfc_mbx_wr_object) - 20899 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20900 20901 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20902 wr_object->u.request.write_offset = *offset; 20903 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20904 wr_object->u.request.object_name[0] = 20905 cpu_to_le32(wr_object->u.request.object_name[0]); 20906 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20907 list_for_each_entry(dmabuf, dmabuf_list, list) { 20908 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20909 break; 20910 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20911 wr_object->u.request.bde[i].addrHigh = 20912 putPaddrHigh(dmabuf->phys); 20913 if (written + SLI4_PAGE_SIZE >= size) { 20914 wr_object->u.request.bde[i].tus.f.bdeSize = 20915 (size - written); 20916 written += (size - written); 20917 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20918 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20919 check_change_status = true; 20920 } else { 20921 wr_object->u.request.bde[i].tus.f.bdeSize = 20922 SLI4_PAGE_SIZE; 20923 written += SLI4_PAGE_SIZE; 20924 } 20925 i++; 20926 } 20927 wr_object->u.request.bde_count = i; 20928 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20929 if (!phba->sli4_hba.intr_enable) 20930 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20931 else { 20932 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20933 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20934 } 20935 20936 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20937 rc = mbox_status; 20938 20939 /* The IOCTL status is embedded in the mailbox subheader. */ 20940 shdr_status = bf_get(lpfc_mbox_hdr_status, 20941 &wr_object->header.cfg_shdr.response); 20942 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20943 &wr_object->header.cfg_shdr.response); 20944 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20945 &wr_object->header.cfg_shdr.response); 20946 if (check_change_status) { 20947 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20948 &wr_object->u.response); 20949 shdr_csf = bf_get(lpfc_wr_object_csf, 20950 &wr_object->u.response); 20951 } 20952 20953 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20954 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20955 "3025 Write Object mailbox failed with " 20956 "status x%x add_status x%x, add_status_2 x%x, " 20957 "mbx status x%x\n", 20958 shdr_status, shdr_add_status, shdr_add_status_2, 20959 rc); 20960 rc = -ENXIO; 20961 *offset = shdr_add_status; 20962 } else { 20963 *offset += wr_object->u.response.actual_write_length; 20964 } 20965 20966 if (rc || check_change_status) 20967 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20968 shdr_add_status_2, shdr_change_status, 20969 shdr_csf); 20970 20971 if (!phba->sli4_hba.intr_enable) 20972 mempool_free(mbox, phba->mbox_mem_pool); 20973 else if (mbox_status != MBX_TIMEOUT) 20974 mempool_free(mbox, phba->mbox_mem_pool); 20975 20976 return rc; 20977 } 20978 20979 /** 20980 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20981 * @vport: pointer to vport data structure. 20982 * 20983 * This function iterate through the mailboxq and clean up all REG_LOGIN 20984 * and REG_VPI mailbox commands associated with the vport. This function 20985 * is called when driver want to restart discovery of the vport due to 20986 * a Clear Virtual Link event. 20987 **/ 20988 void 20989 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20990 { 20991 struct lpfc_hba *phba = vport->phba; 20992 LPFC_MBOXQ_t *mb, *nextmb; 20993 struct lpfc_nodelist *ndlp; 20994 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20995 LIST_HEAD(mbox_cmd_list); 20996 uint8_t restart_loop; 20997 20998 /* Clean up internally queued mailbox commands with the vport */ 20999 spin_lock_irq(&phba->hbalock); 21000 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21001 if (mb->vport != vport) 21002 continue; 21003 21004 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21005 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21006 continue; 21007 21008 list_move_tail(&mb->list, &mbox_cmd_list); 21009 } 21010 /* Clean up active mailbox command with the vport */ 21011 mb = phba->sli.mbox_active; 21012 if (mb && (mb->vport == vport)) { 21013 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21014 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21015 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21016 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21017 act_mbx_ndlp = mb->ctx_ndlp; 21018 21019 /* This reference is local to this routine. The 21020 * reference is removed at routine exit. 21021 */ 21022 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21023 21024 /* Unregister the RPI when mailbox complete */ 21025 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21026 } 21027 } 21028 /* Cleanup any mailbox completions which are not yet processed */ 21029 do { 21030 restart_loop = 0; 21031 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21032 /* 21033 * If this mailox is already processed or it is 21034 * for another vport ignore it. 21035 */ 21036 if ((mb->vport != vport) || 21037 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21038 continue; 21039 21040 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21041 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21042 continue; 21043 21044 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21045 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21046 ndlp = mb->ctx_ndlp; 21047 /* Unregister the RPI when mailbox complete */ 21048 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21049 restart_loop = 1; 21050 spin_unlock_irq(&phba->hbalock); 21051 spin_lock(&ndlp->lock); 21052 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21053 spin_unlock(&ndlp->lock); 21054 spin_lock_irq(&phba->hbalock); 21055 break; 21056 } 21057 } 21058 } while (restart_loop); 21059 21060 spin_unlock_irq(&phba->hbalock); 21061 21062 /* Release the cleaned-up mailbox commands */ 21063 while (!list_empty(&mbox_cmd_list)) { 21064 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21065 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21066 ndlp = mb->ctx_ndlp; 21067 mb->ctx_ndlp = NULL; 21068 if (ndlp) { 21069 spin_lock(&ndlp->lock); 21070 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21071 spin_unlock(&ndlp->lock); 21072 lpfc_nlp_put(ndlp); 21073 } 21074 } 21075 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21076 } 21077 21078 /* Release the ndlp with the cleaned-up active mailbox command */ 21079 if (act_mbx_ndlp) { 21080 spin_lock(&act_mbx_ndlp->lock); 21081 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21082 spin_unlock(&act_mbx_ndlp->lock); 21083 lpfc_nlp_put(act_mbx_ndlp); 21084 } 21085 } 21086 21087 /** 21088 * lpfc_drain_txq - Drain the txq 21089 * @phba: Pointer to HBA context object. 21090 * 21091 * This function attempt to submit IOCBs on the txq 21092 * to the adapter. For SLI4 adapters, the txq contains 21093 * ELS IOCBs that have been deferred because the there 21094 * are no SGLs. This congestion can occur with large 21095 * vport counts during node discovery. 21096 **/ 21097 21098 uint32_t 21099 lpfc_drain_txq(struct lpfc_hba *phba) 21100 { 21101 LIST_HEAD(completions); 21102 struct lpfc_sli_ring *pring; 21103 struct lpfc_iocbq *piocbq = NULL; 21104 unsigned long iflags = 0; 21105 char *fail_msg = NULL; 21106 uint32_t txq_cnt = 0; 21107 struct lpfc_queue *wq; 21108 int ret = 0; 21109 21110 if (phba->link_flag & LS_MDS_LOOPBACK) { 21111 /* MDS WQE are posted only to first WQ*/ 21112 wq = phba->sli4_hba.hdwq[0].io_wq; 21113 if (unlikely(!wq)) 21114 return 0; 21115 pring = wq->pring; 21116 } else { 21117 wq = phba->sli4_hba.els_wq; 21118 if (unlikely(!wq)) 21119 return 0; 21120 pring = lpfc_phba_elsring(phba); 21121 } 21122 21123 if (unlikely(!pring) || list_empty(&pring->txq)) 21124 return 0; 21125 21126 spin_lock_irqsave(&pring->ring_lock, iflags); 21127 list_for_each_entry(piocbq, &pring->txq, list) { 21128 txq_cnt++; 21129 } 21130 21131 if (txq_cnt > pring->txq_max) 21132 pring->txq_max = txq_cnt; 21133 21134 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21135 21136 while (!list_empty(&pring->txq)) { 21137 spin_lock_irqsave(&pring->ring_lock, iflags); 21138 21139 piocbq = lpfc_sli_ringtx_get(phba, pring); 21140 if (!piocbq) { 21141 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21143 "2823 txq empty and txq_cnt is %d\n ", 21144 txq_cnt); 21145 break; 21146 } 21147 txq_cnt--; 21148 21149 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21150 21151 if (ret && ret != IOCB_BUSY) { 21152 fail_msg = " - Cannot send IO "; 21153 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21154 } 21155 if (fail_msg) { 21156 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21157 /* Failed means we can't issue and need to cancel */ 21158 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21159 "2822 IOCB failed %s iotag 0x%x " 21160 "xri 0x%x %d flg x%x\n", 21161 fail_msg, piocbq->iotag, 21162 piocbq->sli4_xritag, ret, 21163 piocbq->cmd_flag); 21164 list_add_tail(&piocbq->list, &completions); 21165 fail_msg = NULL; 21166 } 21167 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21168 if (txq_cnt == 0 || ret == IOCB_BUSY) 21169 break; 21170 } 21171 /* Cancel all the IOCBs that cannot be issued */ 21172 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21173 IOERR_SLI_ABORTED); 21174 21175 return txq_cnt; 21176 } 21177 21178 /** 21179 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21180 * @phba: Pointer to HBA context object. 21181 * @pwqeq: Pointer to command WQE. 21182 * @sglq: Pointer to the scatter gather queue object. 21183 * 21184 * This routine converts the bpl or bde that is in the WQE 21185 * to a sgl list for the sli4 hardware. The physical address 21186 * of the bpl/bde is converted back to a virtual address. 21187 * If the WQE contains a BPL then the list of BDE's is 21188 * converted to sli4_sge's. If the WQE contains a single 21189 * BDE then it is converted to a single sli_sge. 21190 * The WQE is still in cpu endianness so the contents of 21191 * the bpl can be used without byte swapping. 21192 * 21193 * Returns valid XRI = Success, NO_XRI = Failure. 21194 */ 21195 static uint16_t 21196 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21197 struct lpfc_sglq *sglq) 21198 { 21199 uint16_t xritag = NO_XRI; 21200 struct ulp_bde64 *bpl = NULL; 21201 struct ulp_bde64 bde; 21202 struct sli4_sge *sgl = NULL; 21203 struct lpfc_dmabuf *dmabuf; 21204 union lpfc_wqe128 *wqe; 21205 int numBdes = 0; 21206 int i = 0; 21207 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21208 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21209 uint32_t cmd; 21210 21211 if (!pwqeq || !sglq) 21212 return xritag; 21213 21214 sgl = (struct sli4_sge *)sglq->sgl; 21215 wqe = &pwqeq->wqe; 21216 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21217 21218 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21219 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21220 return sglq->sli4_xritag; 21221 numBdes = pwqeq->num_bdes; 21222 if (numBdes) { 21223 /* The addrHigh and addrLow fields within the WQE 21224 * have not been byteswapped yet so there is no 21225 * need to swap them back. 21226 */ 21227 if (pwqeq->bpl_dmabuf) 21228 dmabuf = pwqeq->bpl_dmabuf; 21229 else 21230 return xritag; 21231 21232 bpl = (struct ulp_bde64 *)dmabuf->virt; 21233 if (!bpl) 21234 return xritag; 21235 21236 for (i = 0; i < numBdes; i++) { 21237 /* Should already be byte swapped. */ 21238 sgl->addr_hi = bpl->addrHigh; 21239 sgl->addr_lo = bpl->addrLow; 21240 21241 sgl->word2 = le32_to_cpu(sgl->word2); 21242 if ((i+1) == numBdes) 21243 bf_set(lpfc_sli4_sge_last, sgl, 1); 21244 else 21245 bf_set(lpfc_sli4_sge_last, sgl, 0); 21246 /* swap the size field back to the cpu so we 21247 * can assign it to the sgl. 21248 */ 21249 bde.tus.w = le32_to_cpu(bpl->tus.w); 21250 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21251 /* The offsets in the sgl need to be accumulated 21252 * separately for the request and reply lists. 21253 * The request is always first, the reply follows. 21254 */ 21255 switch (cmd) { 21256 case CMD_GEN_REQUEST64_WQE: 21257 /* add up the reply sg entries */ 21258 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21259 inbound++; 21260 /* first inbound? reset the offset */ 21261 if (inbound == 1) 21262 offset = 0; 21263 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21264 bf_set(lpfc_sli4_sge_type, sgl, 21265 LPFC_SGE_TYPE_DATA); 21266 offset += bde.tus.f.bdeSize; 21267 break; 21268 case CMD_FCP_TRSP64_WQE: 21269 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21270 bf_set(lpfc_sli4_sge_type, sgl, 21271 LPFC_SGE_TYPE_DATA); 21272 break; 21273 case CMD_FCP_TSEND64_WQE: 21274 case CMD_FCP_TRECEIVE64_WQE: 21275 bf_set(lpfc_sli4_sge_type, sgl, 21276 bpl->tus.f.bdeFlags); 21277 if (i < 3) 21278 offset = 0; 21279 else 21280 offset += bde.tus.f.bdeSize; 21281 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21282 break; 21283 } 21284 sgl->word2 = cpu_to_le32(sgl->word2); 21285 bpl++; 21286 sgl++; 21287 } 21288 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21289 /* The addrHigh and addrLow fields of the BDE have not 21290 * been byteswapped yet so they need to be swapped 21291 * before putting them in the sgl. 21292 */ 21293 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21294 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21295 sgl->word2 = le32_to_cpu(sgl->word2); 21296 bf_set(lpfc_sli4_sge_last, sgl, 1); 21297 sgl->word2 = cpu_to_le32(sgl->word2); 21298 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21299 } 21300 return sglq->sli4_xritag; 21301 } 21302 21303 /** 21304 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21305 * @phba: Pointer to HBA context object. 21306 * @qp: Pointer to HDW queue. 21307 * @pwqe: Pointer to command WQE. 21308 **/ 21309 int 21310 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21311 struct lpfc_iocbq *pwqe) 21312 { 21313 union lpfc_wqe128 *wqe = &pwqe->wqe; 21314 struct lpfc_async_xchg_ctx *ctxp; 21315 struct lpfc_queue *wq; 21316 struct lpfc_sglq *sglq; 21317 struct lpfc_sli_ring *pring; 21318 unsigned long iflags; 21319 uint32_t ret = 0; 21320 21321 /* NVME_LS and NVME_LS ABTS requests. */ 21322 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21323 pring = phba->sli4_hba.nvmels_wq->pring; 21324 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21325 qp, wq_access); 21326 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21327 if (!sglq) { 21328 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21329 return WQE_BUSY; 21330 } 21331 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21332 pwqe->sli4_xritag = sglq->sli4_xritag; 21333 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21334 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21335 return WQE_ERROR; 21336 } 21337 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21338 pwqe->sli4_xritag); 21339 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21340 if (ret) { 21341 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21342 return ret; 21343 } 21344 21345 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21346 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21347 21348 lpfc_sli4_poll_eq(qp->hba_eq); 21349 return 0; 21350 } 21351 21352 /* NVME_FCREQ and NVME_ABTS requests */ 21353 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21354 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21355 wq = qp->io_wq; 21356 pring = wq->pring; 21357 21358 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21359 21360 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21361 qp, wq_access); 21362 ret = lpfc_sli4_wq_put(wq, wqe); 21363 if (ret) { 21364 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21365 return ret; 21366 } 21367 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21368 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21369 21370 lpfc_sli4_poll_eq(qp->hba_eq); 21371 return 0; 21372 } 21373 21374 /* NVMET requests */ 21375 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21376 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21377 wq = qp->io_wq; 21378 pring = wq->pring; 21379 21380 ctxp = pwqe->context_un.axchg; 21381 sglq = ctxp->ctxbuf->sglq; 21382 if (pwqe->sli4_xritag == NO_XRI) { 21383 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21384 pwqe->sli4_xritag = sglq->sli4_xritag; 21385 } 21386 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21387 pwqe->sli4_xritag); 21388 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21389 21390 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21391 qp, wq_access); 21392 ret = lpfc_sli4_wq_put(wq, wqe); 21393 if (ret) { 21394 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21395 return ret; 21396 } 21397 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21398 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21399 21400 lpfc_sli4_poll_eq(qp->hba_eq); 21401 return 0; 21402 } 21403 return WQE_ERROR; 21404 } 21405 21406 /** 21407 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21408 * @phba: Pointer to HBA context object. 21409 * @cmdiocb: Pointer to driver command iocb object. 21410 * @cmpl: completion function. 21411 * 21412 * Fill the appropriate fields for the abort WQE and call 21413 * internal routine lpfc_sli4_issue_wqe to send the WQE 21414 * This function is called with hbalock held and no ring_lock held. 21415 * 21416 * RETURNS 0 - SUCCESS 21417 **/ 21418 21419 int 21420 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21421 void *cmpl) 21422 { 21423 struct lpfc_vport *vport = cmdiocb->vport; 21424 struct lpfc_iocbq *abtsiocb = NULL; 21425 union lpfc_wqe128 *abtswqe; 21426 struct lpfc_io_buf *lpfc_cmd; 21427 int retval = IOCB_ERROR; 21428 u16 xritag = cmdiocb->sli4_xritag; 21429 21430 /* 21431 * The scsi command can not be in txq and it is in flight because the 21432 * pCmd is still pointing at the SCSI command we have to abort. There 21433 * is no need to search the txcmplq. Just send an abort to the FW. 21434 */ 21435 21436 abtsiocb = __lpfc_sli_get_iocbq(phba); 21437 if (!abtsiocb) 21438 return WQE_NORESOURCE; 21439 21440 /* Indicate the IO is being aborted by the driver. */ 21441 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21442 21443 abtswqe = &abtsiocb->wqe; 21444 memset(abtswqe, 0, sizeof(*abtswqe)); 21445 21446 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21447 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21448 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21449 abtswqe->abort_cmd.rsrvd5 = 0; 21450 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21451 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21452 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21453 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21454 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21455 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21456 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21457 21458 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21459 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21460 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21461 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21462 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21463 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21464 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21465 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21466 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21467 abtsiocb->vport = vport; 21468 abtsiocb->cmd_cmpl = cmpl; 21469 21470 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21471 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21472 21473 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21474 "0359 Abort xri x%x, original iotag x%x, " 21475 "abort cmd iotag x%x retval x%x\n", 21476 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21477 21478 if (retval) { 21479 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21480 __lpfc_sli_release_iocbq(phba, abtsiocb); 21481 } 21482 21483 return retval; 21484 } 21485 21486 #ifdef LPFC_MXP_STAT 21487 /** 21488 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21489 * @phba: pointer to lpfc hba data structure. 21490 * @hwqid: belong to which HWQ. 21491 * 21492 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21493 * 15 seconds after a test case is running. 21494 * 21495 * The user should call lpfc_debugfs_multixripools_write before running a test 21496 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21497 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21498 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21499 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21500 **/ 21501 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21502 { 21503 struct lpfc_sli4_hdw_queue *qp; 21504 struct lpfc_multixri_pool *multixri_pool; 21505 struct lpfc_pvt_pool *pvt_pool; 21506 struct lpfc_pbl_pool *pbl_pool; 21507 u32 txcmplq_cnt; 21508 21509 qp = &phba->sli4_hba.hdwq[hwqid]; 21510 multixri_pool = qp->p_multixri_pool; 21511 if (!multixri_pool) 21512 return; 21513 21514 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21515 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21516 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21517 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21518 21519 multixri_pool->stat_pbl_count = pbl_pool->count; 21520 multixri_pool->stat_pvt_count = pvt_pool->count; 21521 multixri_pool->stat_busy_count = txcmplq_cnt; 21522 } 21523 21524 multixri_pool->stat_snapshot_taken++; 21525 } 21526 #endif 21527 21528 /** 21529 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21530 * @phba: pointer to lpfc hba data structure. 21531 * @hwqid: belong to which HWQ. 21532 * 21533 * This routine moves some XRIs from private to public pool when private pool 21534 * is not busy. 21535 **/ 21536 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21537 { 21538 struct lpfc_multixri_pool *multixri_pool; 21539 u32 io_req_count; 21540 u32 prev_io_req_count; 21541 21542 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21543 if (!multixri_pool) 21544 return; 21545 io_req_count = multixri_pool->io_req_count; 21546 prev_io_req_count = multixri_pool->prev_io_req_count; 21547 21548 if (prev_io_req_count != io_req_count) { 21549 /* Private pool is busy */ 21550 multixri_pool->prev_io_req_count = io_req_count; 21551 } else { 21552 /* Private pool is not busy. 21553 * Move XRIs from private to public pool. 21554 */ 21555 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21556 } 21557 } 21558 21559 /** 21560 * lpfc_adjust_high_watermark - Adjust high watermark 21561 * @phba: pointer to lpfc hba data structure. 21562 * @hwqid: belong to which HWQ. 21563 * 21564 * This routine sets high watermark as number of outstanding XRIs, 21565 * but make sure the new value is between xri_limit/2 and xri_limit. 21566 **/ 21567 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21568 { 21569 u32 new_watermark; 21570 u32 watermark_max; 21571 u32 watermark_min; 21572 u32 xri_limit; 21573 u32 txcmplq_cnt; 21574 u32 abts_io_bufs; 21575 struct lpfc_multixri_pool *multixri_pool; 21576 struct lpfc_sli4_hdw_queue *qp; 21577 21578 qp = &phba->sli4_hba.hdwq[hwqid]; 21579 multixri_pool = qp->p_multixri_pool; 21580 if (!multixri_pool) 21581 return; 21582 xri_limit = multixri_pool->xri_limit; 21583 21584 watermark_max = xri_limit; 21585 watermark_min = xri_limit / 2; 21586 21587 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21588 abts_io_bufs = qp->abts_scsi_io_bufs; 21589 abts_io_bufs += qp->abts_nvme_io_bufs; 21590 21591 new_watermark = txcmplq_cnt + abts_io_bufs; 21592 new_watermark = min(watermark_max, new_watermark); 21593 new_watermark = max(watermark_min, new_watermark); 21594 multixri_pool->pvt_pool.high_watermark = new_watermark; 21595 21596 #ifdef LPFC_MXP_STAT 21597 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21598 new_watermark); 21599 #endif 21600 } 21601 21602 /** 21603 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21604 * @phba: pointer to lpfc hba data structure. 21605 * @hwqid: belong to which HWQ. 21606 * 21607 * This routine is called from hearbeat timer when pvt_pool is idle. 21608 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21609 * The first step moves (all - low_watermark) amount of XRIs. 21610 * The second step moves the rest of XRIs. 21611 **/ 21612 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21613 { 21614 struct lpfc_pbl_pool *pbl_pool; 21615 struct lpfc_pvt_pool *pvt_pool; 21616 struct lpfc_sli4_hdw_queue *qp; 21617 struct lpfc_io_buf *lpfc_ncmd; 21618 struct lpfc_io_buf *lpfc_ncmd_next; 21619 unsigned long iflag; 21620 struct list_head tmp_list; 21621 u32 tmp_count; 21622 21623 qp = &phba->sli4_hba.hdwq[hwqid]; 21624 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21625 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21626 tmp_count = 0; 21627 21628 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21629 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21630 21631 if (pvt_pool->count > pvt_pool->low_watermark) { 21632 /* Step 1: move (all - low_watermark) from pvt_pool 21633 * to pbl_pool 21634 */ 21635 21636 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21637 INIT_LIST_HEAD(&tmp_list); 21638 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21639 &pvt_pool->list, list) { 21640 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21641 tmp_count++; 21642 if (tmp_count >= pvt_pool->low_watermark) 21643 break; 21644 } 21645 21646 /* Move all bufs from pvt_pool to pbl_pool */ 21647 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21648 21649 /* Move all bufs from tmp_list to pvt_pool */ 21650 list_splice(&tmp_list, &pvt_pool->list); 21651 21652 pbl_pool->count += (pvt_pool->count - tmp_count); 21653 pvt_pool->count = tmp_count; 21654 } else { 21655 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21656 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21657 pbl_pool->count += pvt_pool->count; 21658 pvt_pool->count = 0; 21659 } 21660 21661 spin_unlock(&pvt_pool->lock); 21662 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21663 } 21664 21665 /** 21666 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21667 * @phba: pointer to lpfc hba data structure 21668 * @qp: pointer to HDW queue 21669 * @pbl_pool: specified public free XRI pool 21670 * @pvt_pool: specified private free XRI pool 21671 * @count: number of XRIs to move 21672 * 21673 * This routine tries to move some free common bufs from the specified pbl_pool 21674 * to the specified pvt_pool. It might move less than count XRIs if there's not 21675 * enough in public pool. 21676 * 21677 * Return: 21678 * true - if XRIs are successfully moved from the specified pbl_pool to the 21679 * specified pvt_pool 21680 * false - if the specified pbl_pool is empty or locked by someone else 21681 **/ 21682 static bool 21683 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21684 struct lpfc_pbl_pool *pbl_pool, 21685 struct lpfc_pvt_pool *pvt_pool, u32 count) 21686 { 21687 struct lpfc_io_buf *lpfc_ncmd; 21688 struct lpfc_io_buf *lpfc_ncmd_next; 21689 unsigned long iflag; 21690 int ret; 21691 21692 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21693 if (ret) { 21694 if (pbl_pool->count) { 21695 /* Move a batch of XRIs from public to private pool */ 21696 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21697 list_for_each_entry_safe(lpfc_ncmd, 21698 lpfc_ncmd_next, 21699 &pbl_pool->list, 21700 list) { 21701 list_move_tail(&lpfc_ncmd->list, 21702 &pvt_pool->list); 21703 pvt_pool->count++; 21704 pbl_pool->count--; 21705 count--; 21706 if (count == 0) 21707 break; 21708 } 21709 21710 spin_unlock(&pvt_pool->lock); 21711 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21712 return true; 21713 } 21714 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21715 } 21716 21717 return false; 21718 } 21719 21720 /** 21721 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21722 * @phba: pointer to lpfc hba data structure. 21723 * @hwqid: belong to which HWQ. 21724 * @count: number of XRIs to move 21725 * 21726 * This routine tries to find some free common bufs in one of public pools with 21727 * Round Robin method. The search always starts from local hwqid, then the next 21728 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21729 * a batch of free common bufs are moved to private pool on hwqid. 21730 * It might move less than count XRIs if there's not enough in public pool. 21731 **/ 21732 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21733 { 21734 struct lpfc_multixri_pool *multixri_pool; 21735 struct lpfc_multixri_pool *next_multixri_pool; 21736 struct lpfc_pvt_pool *pvt_pool; 21737 struct lpfc_pbl_pool *pbl_pool; 21738 struct lpfc_sli4_hdw_queue *qp; 21739 u32 next_hwqid; 21740 u32 hwq_count; 21741 int ret; 21742 21743 qp = &phba->sli4_hba.hdwq[hwqid]; 21744 multixri_pool = qp->p_multixri_pool; 21745 pvt_pool = &multixri_pool->pvt_pool; 21746 pbl_pool = &multixri_pool->pbl_pool; 21747 21748 /* Check if local pbl_pool is available */ 21749 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21750 if (ret) { 21751 #ifdef LPFC_MXP_STAT 21752 multixri_pool->local_pbl_hit_count++; 21753 #endif 21754 return; 21755 } 21756 21757 hwq_count = phba->cfg_hdw_queue; 21758 21759 /* Get the next hwqid which was found last time */ 21760 next_hwqid = multixri_pool->rrb_next_hwqid; 21761 21762 do { 21763 /* Go to next hwq */ 21764 next_hwqid = (next_hwqid + 1) % hwq_count; 21765 21766 next_multixri_pool = 21767 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21768 pbl_pool = &next_multixri_pool->pbl_pool; 21769 21770 /* Check if the public free xri pool is available */ 21771 ret = _lpfc_move_xri_pbl_to_pvt( 21772 phba, qp, pbl_pool, pvt_pool, count); 21773 21774 /* Exit while-loop if success or all hwqid are checked */ 21775 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21776 21777 /* Starting point for the next time */ 21778 multixri_pool->rrb_next_hwqid = next_hwqid; 21779 21780 if (!ret) { 21781 /* stats: all public pools are empty*/ 21782 multixri_pool->pbl_empty_count++; 21783 } 21784 21785 #ifdef LPFC_MXP_STAT 21786 if (ret) { 21787 if (next_hwqid == hwqid) 21788 multixri_pool->local_pbl_hit_count++; 21789 else 21790 multixri_pool->other_pbl_hit_count++; 21791 } 21792 #endif 21793 } 21794 21795 /** 21796 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21797 * @phba: pointer to lpfc hba data structure. 21798 * @hwqid: belong to which HWQ. 21799 * 21800 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21801 * low watermark. 21802 **/ 21803 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21804 { 21805 struct lpfc_multixri_pool *multixri_pool; 21806 struct lpfc_pvt_pool *pvt_pool; 21807 21808 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21809 pvt_pool = &multixri_pool->pvt_pool; 21810 21811 if (pvt_pool->count < pvt_pool->low_watermark) 21812 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21813 } 21814 21815 /** 21816 * lpfc_release_io_buf - Return one IO buf back to free pool 21817 * @phba: pointer to lpfc hba data structure. 21818 * @lpfc_ncmd: IO buf to be returned. 21819 * @qp: belong to which HWQ. 21820 * 21821 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21822 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21823 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21824 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21825 * lpfc_io_buf_list_put. 21826 **/ 21827 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21828 struct lpfc_sli4_hdw_queue *qp) 21829 { 21830 unsigned long iflag; 21831 struct lpfc_pbl_pool *pbl_pool; 21832 struct lpfc_pvt_pool *pvt_pool; 21833 struct lpfc_epd_pool *epd_pool; 21834 u32 txcmplq_cnt; 21835 u32 xri_owned; 21836 u32 xri_limit; 21837 u32 abts_io_bufs; 21838 21839 /* MUST zero fields if buffer is reused by another protocol */ 21840 lpfc_ncmd->nvmeCmd = NULL; 21841 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21842 21843 if (phba->cfg_xpsgl && !phba->nvmet_support && 21844 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21845 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21846 21847 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21848 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21849 21850 if (phba->cfg_xri_rebalancing) { 21851 if (lpfc_ncmd->expedite) { 21852 /* Return to expedite pool */ 21853 epd_pool = &phba->epd_pool; 21854 spin_lock_irqsave(&epd_pool->lock, iflag); 21855 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21856 epd_pool->count++; 21857 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21858 return; 21859 } 21860 21861 /* Avoid invalid access if an IO sneaks in and is being rejected 21862 * just _after_ xri pools are destroyed in lpfc_offline. 21863 * Nothing much can be done at this point. 21864 */ 21865 if (!qp->p_multixri_pool) 21866 return; 21867 21868 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21869 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21870 21871 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21872 abts_io_bufs = qp->abts_scsi_io_bufs; 21873 abts_io_bufs += qp->abts_nvme_io_bufs; 21874 21875 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21876 xri_limit = qp->p_multixri_pool->xri_limit; 21877 21878 #ifdef LPFC_MXP_STAT 21879 if (xri_owned <= xri_limit) 21880 qp->p_multixri_pool->below_limit_count++; 21881 else 21882 qp->p_multixri_pool->above_limit_count++; 21883 #endif 21884 21885 /* XRI goes to either public or private free xri pool 21886 * based on watermark and xri_limit 21887 */ 21888 if ((pvt_pool->count < pvt_pool->low_watermark) || 21889 (xri_owned < xri_limit && 21890 pvt_pool->count < pvt_pool->high_watermark)) { 21891 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21892 qp, free_pvt_pool); 21893 list_add_tail(&lpfc_ncmd->list, 21894 &pvt_pool->list); 21895 pvt_pool->count++; 21896 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21897 } else { 21898 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21899 qp, free_pub_pool); 21900 list_add_tail(&lpfc_ncmd->list, 21901 &pbl_pool->list); 21902 pbl_pool->count++; 21903 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21904 } 21905 } else { 21906 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21907 qp, free_xri); 21908 list_add_tail(&lpfc_ncmd->list, 21909 &qp->lpfc_io_buf_list_put); 21910 qp->put_io_bufs++; 21911 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21912 iflag); 21913 } 21914 } 21915 21916 /** 21917 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21918 * @phba: pointer to lpfc hba data structure. 21919 * @qp: pointer to HDW queue 21920 * @pvt_pool: pointer to private pool data structure. 21921 * @ndlp: pointer to lpfc nodelist data structure. 21922 * 21923 * This routine tries to get one free IO buf from private pool. 21924 * 21925 * Return: 21926 * pointer to one free IO buf - if private pool is not empty 21927 * NULL - if private pool is empty 21928 **/ 21929 static struct lpfc_io_buf * 21930 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21931 struct lpfc_sli4_hdw_queue *qp, 21932 struct lpfc_pvt_pool *pvt_pool, 21933 struct lpfc_nodelist *ndlp) 21934 { 21935 struct lpfc_io_buf *lpfc_ncmd; 21936 struct lpfc_io_buf *lpfc_ncmd_next; 21937 unsigned long iflag; 21938 21939 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21940 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21941 &pvt_pool->list, list) { 21942 if (lpfc_test_rrq_active( 21943 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21944 continue; 21945 list_del(&lpfc_ncmd->list); 21946 pvt_pool->count--; 21947 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21948 return lpfc_ncmd; 21949 } 21950 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21951 21952 return NULL; 21953 } 21954 21955 /** 21956 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21957 * @phba: pointer to lpfc hba data structure. 21958 * 21959 * This routine tries to get one free IO buf from expedite pool. 21960 * 21961 * Return: 21962 * pointer to one free IO buf - if expedite pool is not empty 21963 * NULL - if expedite pool is empty 21964 **/ 21965 static struct lpfc_io_buf * 21966 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21967 { 21968 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 21969 struct lpfc_io_buf *lpfc_ncmd_next; 21970 unsigned long iflag; 21971 struct lpfc_epd_pool *epd_pool; 21972 21973 epd_pool = &phba->epd_pool; 21974 21975 spin_lock_irqsave(&epd_pool->lock, iflag); 21976 if (epd_pool->count > 0) { 21977 list_for_each_entry_safe(iter, lpfc_ncmd_next, 21978 &epd_pool->list, list) { 21979 list_del(&iter->list); 21980 epd_pool->count--; 21981 lpfc_ncmd = iter; 21982 break; 21983 } 21984 } 21985 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21986 21987 return lpfc_ncmd; 21988 } 21989 21990 /** 21991 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21992 * @phba: pointer to lpfc hba data structure. 21993 * @ndlp: pointer to lpfc nodelist data structure. 21994 * @hwqid: belong to which HWQ 21995 * @expedite: 1 means this request is urgent. 21996 * 21997 * This routine will do the following actions and then return a pointer to 21998 * one free IO buf. 21999 * 22000 * 1. If private free xri count is empty, move some XRIs from public to 22001 * private pool. 22002 * 2. Get one XRI from private free xri pool. 22003 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22004 * get one free xri from expedite pool. 22005 * 22006 * Note: ndlp is only used on SCSI side for RRQ testing. 22007 * The caller should pass NULL for ndlp on NVME side. 22008 * 22009 * Return: 22010 * pointer to one free IO buf - if private pool is not empty 22011 * NULL - if private pool is empty 22012 **/ 22013 static struct lpfc_io_buf * 22014 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22015 struct lpfc_nodelist *ndlp, 22016 int hwqid, int expedite) 22017 { 22018 struct lpfc_sli4_hdw_queue *qp; 22019 struct lpfc_multixri_pool *multixri_pool; 22020 struct lpfc_pvt_pool *pvt_pool; 22021 struct lpfc_io_buf *lpfc_ncmd; 22022 22023 qp = &phba->sli4_hba.hdwq[hwqid]; 22024 lpfc_ncmd = NULL; 22025 if (!qp) { 22026 lpfc_printf_log(phba, KERN_INFO, 22027 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22028 "5556 NULL qp for hwqid x%x\n", hwqid); 22029 return lpfc_ncmd; 22030 } 22031 multixri_pool = qp->p_multixri_pool; 22032 if (!multixri_pool) { 22033 lpfc_printf_log(phba, KERN_INFO, 22034 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22035 "5557 NULL multixri for hwqid x%x\n", hwqid); 22036 return lpfc_ncmd; 22037 } 22038 pvt_pool = &multixri_pool->pvt_pool; 22039 if (!pvt_pool) { 22040 lpfc_printf_log(phba, KERN_INFO, 22041 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22042 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22043 return lpfc_ncmd; 22044 } 22045 multixri_pool->io_req_count++; 22046 22047 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22048 if (pvt_pool->count == 0) 22049 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22050 22051 /* Get one XRI from private free xri pool */ 22052 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22053 22054 if (lpfc_ncmd) { 22055 lpfc_ncmd->hdwq = qp; 22056 lpfc_ncmd->hdwq_no = hwqid; 22057 } else if (expedite) { 22058 /* If we fail to get one from pvt_pool and this is an expedite 22059 * request, get one free xri from expedite pool. 22060 */ 22061 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22062 } 22063 22064 return lpfc_ncmd; 22065 } 22066 22067 static inline struct lpfc_io_buf * 22068 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22069 { 22070 struct lpfc_sli4_hdw_queue *qp; 22071 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22072 22073 qp = &phba->sli4_hba.hdwq[idx]; 22074 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22075 &qp->lpfc_io_buf_list_get, list) { 22076 if (lpfc_test_rrq_active(phba, ndlp, 22077 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22078 continue; 22079 22080 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22081 continue; 22082 22083 list_del_init(&lpfc_cmd->list); 22084 qp->get_io_bufs--; 22085 lpfc_cmd->hdwq = qp; 22086 lpfc_cmd->hdwq_no = idx; 22087 return lpfc_cmd; 22088 } 22089 return NULL; 22090 } 22091 22092 /** 22093 * lpfc_get_io_buf - Get one IO buffer from free pool 22094 * @phba: The HBA for which this call is being executed. 22095 * @ndlp: pointer to lpfc nodelist data structure. 22096 * @hwqid: belong to which HWQ 22097 * @expedite: 1 means this request is urgent. 22098 * 22099 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22100 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22101 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22102 * 22103 * Note: ndlp is only used on SCSI side for RRQ testing. 22104 * The caller should pass NULL for ndlp on NVME side. 22105 * 22106 * Return codes: 22107 * NULL - Error 22108 * Pointer to lpfc_io_buf - Success 22109 **/ 22110 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22111 struct lpfc_nodelist *ndlp, 22112 u32 hwqid, int expedite) 22113 { 22114 struct lpfc_sli4_hdw_queue *qp; 22115 unsigned long iflag; 22116 struct lpfc_io_buf *lpfc_cmd; 22117 22118 qp = &phba->sli4_hba.hdwq[hwqid]; 22119 lpfc_cmd = NULL; 22120 if (!qp) { 22121 lpfc_printf_log(phba, KERN_WARNING, 22122 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22123 "5555 NULL qp for hwqid x%x\n", hwqid); 22124 return lpfc_cmd; 22125 } 22126 22127 if (phba->cfg_xri_rebalancing) 22128 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22129 phba, ndlp, hwqid, expedite); 22130 else { 22131 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22132 qp, alloc_xri_get); 22133 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22134 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22135 if (!lpfc_cmd) { 22136 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22137 qp, alloc_xri_put); 22138 list_splice(&qp->lpfc_io_buf_list_put, 22139 &qp->lpfc_io_buf_list_get); 22140 qp->get_io_bufs += qp->put_io_bufs; 22141 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22142 qp->put_io_bufs = 0; 22143 spin_unlock(&qp->io_buf_list_put_lock); 22144 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22145 expedite) 22146 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22147 } 22148 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22149 } 22150 22151 return lpfc_cmd; 22152 } 22153 22154 /** 22155 * lpfc_read_object - Retrieve object data from HBA 22156 * @phba: The HBA for which this call is being executed. 22157 * @rdobject: Pathname of object data we want to read. 22158 * @datap: Pointer to where data will be copied to. 22159 * @datasz: size of data area 22160 * 22161 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22162 * The data will be truncated if datasz is not large enough. 22163 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22164 * Returns the actual bytes read from the object. 22165 * 22166 * This routine is hard coded to use a poll completion. Unlike other 22167 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22168 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22169 * to use interrupt-based completions, code is needed to fully cleanup 22170 * the memory. 22171 */ 22172 int 22173 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22174 uint32_t datasz) 22175 { 22176 struct lpfc_mbx_read_object *read_object; 22177 LPFC_MBOXQ_t *mbox; 22178 int rc, length, eof, j, byte_cnt = 0; 22179 uint32_t shdr_status, shdr_add_status; 22180 union lpfc_sli4_cfg_shdr *shdr; 22181 struct lpfc_dmabuf *pcmd; 22182 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22183 22184 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22185 if (!mbox) 22186 return -ENOMEM; 22187 length = (sizeof(struct lpfc_mbx_read_object) - 22188 sizeof(struct lpfc_sli4_cfg_mhdr)); 22189 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22190 LPFC_MBOX_OPCODE_READ_OBJECT, 22191 length, LPFC_SLI4_MBX_EMBED); 22192 read_object = &mbox->u.mqe.un.read_object; 22193 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22194 22195 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22196 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22197 read_object->u.request.rd_object_offset = 0; 22198 read_object->u.request.rd_object_cnt = 1; 22199 22200 memset((void *)read_object->u.request.rd_object_name, 0, 22201 LPFC_OBJ_NAME_SZ); 22202 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22203 for (j = 0; j < strlen(rdobject); j++) 22204 read_object->u.request.rd_object_name[j] = 22205 cpu_to_le32(rd_object_name[j]); 22206 22207 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22208 if (pcmd) 22209 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22210 if (!pcmd || !pcmd->virt) { 22211 kfree(pcmd); 22212 mempool_free(mbox, phba->mbox_mem_pool); 22213 return -ENOMEM; 22214 } 22215 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22216 read_object->u.request.rd_object_hbuf[0].pa_lo = 22217 putPaddrLow(pcmd->phys); 22218 read_object->u.request.rd_object_hbuf[0].pa_hi = 22219 putPaddrHigh(pcmd->phys); 22220 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22221 22222 mbox->vport = phba->pport; 22223 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22224 mbox->ctx_ndlp = NULL; 22225 22226 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22227 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22228 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22229 22230 if (shdr_status == STATUS_FAILED && 22231 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22232 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22233 "4674 No port cfg file in FW.\n"); 22234 byte_cnt = -ENOENT; 22235 } else if (shdr_status || shdr_add_status || rc) { 22236 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22237 "2625 READ_OBJECT mailbox failed with " 22238 "status x%x add_status x%x, mbx status x%x\n", 22239 shdr_status, shdr_add_status, rc); 22240 byte_cnt = -ENXIO; 22241 } else { 22242 /* Success */ 22243 length = read_object->u.response.rd_object_actual_rlen; 22244 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22245 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22246 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22247 length, datasz, eof); 22248 22249 /* Detect the port config file exists but is empty */ 22250 if (!length && eof) { 22251 byte_cnt = 0; 22252 goto exit; 22253 } 22254 22255 byte_cnt = length; 22256 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22257 } 22258 22259 exit: 22260 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22261 * Free the pcmd and then cleanup with the correct routine. 22262 */ 22263 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22264 kfree(pcmd); 22265 lpfc_sli4_mbox_cmd_free(phba, mbox); 22266 return byte_cnt; 22267 } 22268 22269 /** 22270 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22271 * @phba: The HBA for which this call is being executed. 22272 * @lpfc_buf: IO buf structure to append the SGL chunk 22273 * 22274 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22275 * and will allocate an SGL chunk if the pool is empty. 22276 * 22277 * Return codes: 22278 * NULL - Error 22279 * Pointer to sli4_hybrid_sgl - Success 22280 **/ 22281 struct sli4_hybrid_sgl * 22282 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22283 { 22284 struct sli4_hybrid_sgl *list_entry = NULL; 22285 struct sli4_hybrid_sgl *tmp = NULL; 22286 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22287 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22288 struct list_head *buf_list = &hdwq->sgl_list; 22289 unsigned long iflags; 22290 22291 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22292 22293 if (likely(!list_empty(buf_list))) { 22294 /* break off 1 chunk from the sgl_list */ 22295 list_for_each_entry_safe(list_entry, tmp, 22296 buf_list, list_node) { 22297 list_move_tail(&list_entry->list_node, 22298 &lpfc_buf->dma_sgl_xtra_list); 22299 break; 22300 } 22301 } else { 22302 /* allocate more */ 22303 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22304 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22305 cpu_to_node(hdwq->io_wq->chann)); 22306 if (!tmp) { 22307 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22308 "8353 error kmalloc memory for HDWQ " 22309 "%d %s\n", 22310 lpfc_buf->hdwq_no, __func__); 22311 return NULL; 22312 } 22313 22314 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22315 GFP_ATOMIC, &tmp->dma_phys_sgl); 22316 if (!tmp->dma_sgl) { 22317 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22318 "8354 error pool_alloc memory for HDWQ " 22319 "%d %s\n", 22320 lpfc_buf->hdwq_no, __func__); 22321 kfree(tmp); 22322 return NULL; 22323 } 22324 22325 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22326 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22327 } 22328 22329 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22330 struct sli4_hybrid_sgl, 22331 list_node); 22332 22333 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22334 22335 return allocated_sgl; 22336 } 22337 22338 /** 22339 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22340 * @phba: The HBA for which this call is being executed. 22341 * @lpfc_buf: IO buf structure with the SGL chunk 22342 * 22343 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22344 * 22345 * Return codes: 22346 * 0 - Success 22347 * -EINVAL - Error 22348 **/ 22349 int 22350 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22351 { 22352 int rc = 0; 22353 struct sli4_hybrid_sgl *list_entry = NULL; 22354 struct sli4_hybrid_sgl *tmp = NULL; 22355 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22356 struct list_head *buf_list = &hdwq->sgl_list; 22357 unsigned long iflags; 22358 22359 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22360 22361 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22362 list_for_each_entry_safe(list_entry, tmp, 22363 &lpfc_buf->dma_sgl_xtra_list, 22364 list_node) { 22365 list_move_tail(&list_entry->list_node, 22366 buf_list); 22367 } 22368 } else { 22369 rc = -EINVAL; 22370 } 22371 22372 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22373 return rc; 22374 } 22375 22376 /** 22377 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22378 * @phba: phba object 22379 * @hdwq: hdwq to cleanup sgl buff resources on 22380 * 22381 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22382 * 22383 * Return codes: 22384 * None 22385 **/ 22386 void 22387 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22388 struct lpfc_sli4_hdw_queue *hdwq) 22389 { 22390 struct list_head *buf_list = &hdwq->sgl_list; 22391 struct sli4_hybrid_sgl *list_entry = NULL; 22392 struct sli4_hybrid_sgl *tmp = NULL; 22393 unsigned long iflags; 22394 22395 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22396 22397 /* Free sgl pool */ 22398 list_for_each_entry_safe(list_entry, tmp, 22399 buf_list, list_node) { 22400 list_del(&list_entry->list_node); 22401 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22402 list_entry->dma_sgl, 22403 list_entry->dma_phys_sgl); 22404 kfree(list_entry); 22405 } 22406 22407 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22408 } 22409 22410 /** 22411 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22412 * @phba: The HBA for which this call is being executed. 22413 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22414 * 22415 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22416 * and will allocate an CMD/RSP buffer if the pool is empty. 22417 * 22418 * Return codes: 22419 * NULL - Error 22420 * Pointer to fcp_cmd_rsp_buf - Success 22421 **/ 22422 struct fcp_cmd_rsp_buf * 22423 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22424 struct lpfc_io_buf *lpfc_buf) 22425 { 22426 struct fcp_cmd_rsp_buf *list_entry = NULL; 22427 struct fcp_cmd_rsp_buf *tmp = NULL; 22428 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22429 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22430 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22431 unsigned long iflags; 22432 22433 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22434 22435 if (likely(!list_empty(buf_list))) { 22436 /* break off 1 chunk from the list */ 22437 list_for_each_entry_safe(list_entry, tmp, 22438 buf_list, 22439 list_node) { 22440 list_move_tail(&list_entry->list_node, 22441 &lpfc_buf->dma_cmd_rsp_list); 22442 break; 22443 } 22444 } else { 22445 /* allocate more */ 22446 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22447 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22448 cpu_to_node(hdwq->io_wq->chann)); 22449 if (!tmp) { 22450 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22451 "8355 error kmalloc memory for HDWQ " 22452 "%d %s\n", 22453 lpfc_buf->hdwq_no, __func__); 22454 return NULL; 22455 } 22456 22457 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22458 GFP_ATOMIC, 22459 &tmp->fcp_cmd_rsp_dma_handle); 22460 22461 if (!tmp->fcp_cmnd) { 22462 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22463 "8356 error pool_alloc memory for HDWQ " 22464 "%d %s\n", 22465 lpfc_buf->hdwq_no, __func__); 22466 kfree(tmp); 22467 return NULL; 22468 } 22469 22470 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22471 sizeof(struct fcp_cmnd32)); 22472 22473 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22474 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22475 } 22476 22477 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22478 struct fcp_cmd_rsp_buf, 22479 list_node); 22480 22481 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22482 22483 return allocated_buf; 22484 } 22485 22486 /** 22487 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22488 * @phba: The HBA for which this call is being executed. 22489 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22490 * 22491 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22492 * 22493 * Return codes: 22494 * 0 - Success 22495 * -EINVAL - Error 22496 **/ 22497 int 22498 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22499 struct lpfc_io_buf *lpfc_buf) 22500 { 22501 int rc = 0; 22502 struct fcp_cmd_rsp_buf *list_entry = NULL; 22503 struct fcp_cmd_rsp_buf *tmp = NULL; 22504 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22505 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22506 unsigned long iflags; 22507 22508 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22509 22510 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22511 list_for_each_entry_safe(list_entry, tmp, 22512 &lpfc_buf->dma_cmd_rsp_list, 22513 list_node) { 22514 list_move_tail(&list_entry->list_node, 22515 buf_list); 22516 } 22517 } else { 22518 rc = -EINVAL; 22519 } 22520 22521 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22522 return rc; 22523 } 22524 22525 /** 22526 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22527 * @phba: phba object 22528 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22529 * 22530 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22531 * 22532 * Return codes: 22533 * None 22534 **/ 22535 void 22536 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22537 struct lpfc_sli4_hdw_queue *hdwq) 22538 { 22539 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22540 struct fcp_cmd_rsp_buf *list_entry = NULL; 22541 struct fcp_cmd_rsp_buf *tmp = NULL; 22542 unsigned long iflags; 22543 22544 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22545 22546 /* Free cmd_rsp buf pool */ 22547 list_for_each_entry_safe(list_entry, tmp, 22548 buf_list, 22549 list_node) { 22550 list_del(&list_entry->list_node); 22551 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22552 list_entry->fcp_cmnd, 22553 list_entry->fcp_cmd_rsp_dma_handle); 22554 kfree(list_entry); 22555 } 22556 22557 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22558 } 22559 22560 /** 22561 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22562 * @phba: phba object 22563 * @job: job entry of the command to be posted. 22564 * 22565 * Fill the common fields of the wqe for each of the command. 22566 * 22567 * Return codes: 22568 * None 22569 **/ 22570 void 22571 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22572 { 22573 u8 cmnd; 22574 u32 *pcmd; 22575 u32 if_type = 0; 22576 u32 abort_tag; 22577 bool fip; 22578 struct lpfc_nodelist *ndlp = NULL; 22579 union lpfc_wqe128 *wqe = &job->wqe; 22580 u8 command_type = ELS_COMMAND_NON_FIP; 22581 22582 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22583 /* The fcp commands will set command type */ 22584 if (job->cmd_flag & LPFC_IO_FCP) 22585 command_type = FCP_COMMAND; 22586 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22587 command_type = ELS_COMMAND_FIP; 22588 else 22589 command_type = ELS_COMMAND_NON_FIP; 22590 22591 abort_tag = job->iotag; 22592 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22593 22594 switch (cmnd) { 22595 case CMD_ELS_REQUEST64_WQE: 22596 ndlp = job->ndlp; 22597 22598 if_type = bf_get(lpfc_sli_intf_if_type, 22599 &phba->sli4_hba.sli_intf); 22600 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22601 pcmd = (u32 *)job->cmd_dmabuf->virt; 22602 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22603 *pcmd == ELS_CMD_SCR || 22604 *pcmd == ELS_CMD_RDF || 22605 *pcmd == ELS_CMD_EDC || 22606 *pcmd == ELS_CMD_RSCN_XMT || 22607 *pcmd == ELS_CMD_FDISC || 22608 *pcmd == ELS_CMD_LOGO || 22609 *pcmd == ELS_CMD_QFPA || 22610 *pcmd == ELS_CMD_UVEM || 22611 *pcmd == ELS_CMD_PLOGI)) { 22612 bf_set(els_req64_sp, &wqe->els_req, 1); 22613 bf_set(els_req64_sid, &wqe->els_req, 22614 job->vport->fc_myDID); 22615 22616 if ((*pcmd == ELS_CMD_FLOGI) && 22617 !(phba->fc_topology == 22618 LPFC_TOPOLOGY_LOOP)) 22619 bf_set(els_req64_sid, &wqe->els_req, 0); 22620 22621 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22622 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22623 phba->vpi_ids[job->vport->vpi]); 22624 } else if (pcmd) { 22625 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22626 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22627 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22628 } 22629 } 22630 22631 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22632 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22633 22634 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22635 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22636 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22637 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22638 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22639 break; 22640 case CMD_XMIT_ELS_RSP64_WQE: 22641 ndlp = job->ndlp; 22642 22643 /* word4 */ 22644 wqe->xmit_els_rsp.word4 = 0; 22645 22646 if_type = bf_get(lpfc_sli_intf_if_type, 22647 &phba->sli4_hba.sli_intf); 22648 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22649 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22650 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22651 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22652 job->vport->fc_myDID); 22653 if (job->vport->fc_myDID == Fabric_DID) { 22654 bf_set(wqe_els_did, 22655 &wqe->xmit_els_rsp.wqe_dest, 0); 22656 } 22657 } 22658 } 22659 22660 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22661 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22662 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22663 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22664 LPFC_WQE_LENLOC_WORD3); 22665 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22666 22667 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22668 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22669 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22670 job->vport->fc_myDID); 22671 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22672 } 22673 22674 if (phba->sli_rev == LPFC_SLI_REV4) { 22675 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22676 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22677 22678 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22679 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22680 phba->vpi_ids[job->vport->vpi]); 22681 } 22682 command_type = OTHER_COMMAND; 22683 break; 22684 case CMD_GEN_REQUEST64_WQE: 22685 /* Word 10 */ 22686 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22687 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22688 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22689 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22690 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22691 command_type = OTHER_COMMAND; 22692 break; 22693 case CMD_XMIT_SEQUENCE64_WQE: 22694 if (phba->link_flag & LS_LOOPBACK_MODE) 22695 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22696 22697 wqe->xmit_sequence.rsvd3 = 0; 22698 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22699 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22700 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22701 LPFC_WQE_IOD_WRITE); 22702 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22703 LPFC_WQE_LENLOC_WORD12); 22704 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22705 command_type = OTHER_COMMAND; 22706 break; 22707 case CMD_XMIT_BLS_RSP64_WQE: 22708 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22709 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22710 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22711 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22712 phba->vpi_ids[phba->pport->vpi]); 22713 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22714 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22715 LPFC_WQE_LENLOC_NONE); 22716 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22717 command_type = OTHER_COMMAND; 22718 break; 22719 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22720 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22721 case CMD_SEND_FRAME: /* mds loopback */ 22722 /* cases already formatted for sli4 wqe - no chgs necessary */ 22723 return; 22724 default: 22725 dump_stack(); 22726 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22727 "6207 Invalid command 0x%x\n", 22728 cmnd); 22729 break; 22730 } 22731 22732 wqe->generic.wqe_com.abort_tag = abort_tag; 22733 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22734 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22735 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22736 } 22737