1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 1217 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1218 empty = list_empty(&phba->active_rrq_list); 1219 list_add_tail(&rrq->list, &phba->active_rrq_list); 1220 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1221 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 return 0; 1225 out: 1226 spin_unlock_irqrestore(&phba->hbalock, iflags); 1227 outnl: 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 int found = 0; 1255 u8 cmnd; 1256 1257 cmnd = get_job_cmnd(phba, piocbq); 1258 1259 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1260 lpfc_cmd = piocbq->io_buf; 1261 ndlp = lpfc_cmd->rdata->pnode; 1262 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1263 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1264 ndlp = piocbq->ndlp; 1265 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1266 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1267 ndlp = NULL; 1268 else 1269 ndlp = piocbq->ndlp; 1270 } else { 1271 ndlp = piocbq->ndlp; 1272 } 1273 1274 spin_lock(&phba->sli4_hba.sgl_list_lock); 1275 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1276 start_sglq = sglq; 1277 while (!found) { 1278 if (!sglq) 1279 break; 1280 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1281 test_bit(sglq->sli4_lxritag, 1282 ndlp->active_rrqs_xri_bitmap)) { 1283 /* This xri has an rrq outstanding for this DID. 1284 * put it back in the list and get another xri. 1285 */ 1286 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1287 sglq = NULL; 1288 list_remove_head(lpfc_els_sgl_list, sglq, 1289 struct lpfc_sglq, list); 1290 if (sglq == start_sglq) { 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 break; 1294 } else 1295 continue; 1296 } 1297 sglq->ndlp = ndlp; 1298 found = 1; 1299 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1300 sglq->state = SGL_ALLOCATED; 1301 } 1302 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1303 return sglq; 1304 } 1305 1306 /** 1307 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1308 * @phba: Pointer to HBA context object. 1309 * @piocbq: Pointer to the iocbq. 1310 * 1311 * This function is called with the sgl_list lock held. This function 1312 * gets a new driver sglq object from the sglq list. If the 1313 * list is not empty then it is successful, it returns pointer to the newly 1314 * allocated sglq object else it returns NULL. 1315 **/ 1316 struct lpfc_sglq * 1317 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1318 { 1319 struct list_head *lpfc_nvmet_sgl_list; 1320 struct lpfc_sglq *sglq = NULL; 1321 1322 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1323 1324 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1325 1326 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1327 if (!sglq) 1328 return NULL; 1329 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1330 sglq->state = SGL_ALLOCATED; 1331 return sglq; 1332 } 1333 1334 /** 1335 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1336 * @phba: Pointer to HBA context object. 1337 * 1338 * This function is called with no lock held. This function 1339 * allocates a new driver iocb object from the iocb pool. If the 1340 * allocation is successful, it returns pointer to the newly 1341 * allocated iocb object else it returns NULL. 1342 **/ 1343 struct lpfc_iocbq * 1344 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1345 { 1346 struct lpfc_iocbq * iocbq = NULL; 1347 unsigned long iflags; 1348 1349 spin_lock_irqsave(&phba->hbalock, iflags); 1350 iocbq = __lpfc_sli_get_iocbq(phba); 1351 spin_unlock_irqrestore(&phba->hbalock, iflags); 1352 return iocbq; 1353 } 1354 1355 /** 1356 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1357 * @phba: Pointer to HBA context object. 1358 * @iocbq: Pointer to driver iocb object. 1359 * 1360 * This function is called to release the driver iocb object 1361 * to the iocb pool. The iotag in the iocb object 1362 * does not change for each use of the iocb object. This function 1363 * clears all other fields of the iocb object when it is freed. 1364 * The sqlq structure that holds the xritag and phys and virtual 1365 * mappings for the scatter gather list is retrieved from the 1366 * active array of sglq. The get of the sglq pointer also clears 1367 * the entry in the array. If the status of the IO indiactes that 1368 * this IO was aborted then the sglq entry it put on the 1369 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1370 * IO has good status or fails for any other reason then the sglq 1371 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1372 * asserted held in the code path calling this routine. 1373 **/ 1374 static void 1375 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1376 { 1377 struct lpfc_sglq *sglq; 1378 unsigned long iflag = 0; 1379 struct lpfc_sli_ring *pring; 1380 1381 if (iocbq->sli4_xritag == NO_XRI) 1382 sglq = NULL; 1383 else 1384 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1385 1386 1387 if (sglq) { 1388 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1389 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1390 iflag); 1391 sglq->state = SGL_FREED; 1392 sglq->ndlp = NULL; 1393 list_add_tail(&sglq->list, 1394 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1395 spin_unlock_irqrestore( 1396 &phba->sli4_hba.sgl_list_lock, iflag); 1397 goto out; 1398 } 1399 1400 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1401 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1402 sglq->state != SGL_XRI_ABORTED) { 1403 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1404 iflag); 1405 1406 /* Check if we can get a reference on ndlp */ 1407 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1408 sglq->ndlp = NULL; 1409 1410 list_add(&sglq->list, 1411 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1412 spin_unlock_irqrestore( 1413 &phba->sli4_hba.sgl_list_lock, iflag); 1414 } else { 1415 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1416 iflag); 1417 sglq->state = SGL_FREED; 1418 sglq->ndlp = NULL; 1419 list_add_tail(&sglq->list, 1420 &phba->sli4_hba.lpfc_els_sgl_list); 1421 spin_unlock_irqrestore( 1422 &phba->sli4_hba.sgl_list_lock, iflag); 1423 pring = lpfc_phba_elsring(phba); 1424 /* Check if TXQ queue needs to be serviced */ 1425 if (pring && (!list_empty(&pring->txq))) 1426 lpfc_worker_wake_up(phba); 1427 } 1428 } 1429 1430 out: 1431 /* 1432 * Clean all volatile data fields, preserve iotag and node struct. 1433 */ 1434 memset_startat(iocbq, 0, wqe); 1435 iocbq->sli4_lxritag = NO_XRI; 1436 iocbq->sli4_xritag = NO_XRI; 1437 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1438 LPFC_IO_NVME_LS); 1439 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1440 } 1441 1442 1443 /** 1444 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1445 * @phba: Pointer to HBA context object. 1446 * @iocbq: Pointer to driver iocb object. 1447 * 1448 * This function is called to release the driver iocb object to the 1449 * iocb pool. The iotag in the iocb object does not change for each 1450 * use of the iocb object. This function clears all other fields of 1451 * the iocb object when it is freed. The hbalock is asserted held in 1452 * the code path calling this routine. 1453 **/ 1454 static void 1455 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1456 { 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset_startat(iocbq, 0, iocb); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 /* Because of bytes adjustment due to shorter timer in 1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1853 * may seem like BW is above 100%. 1854 */ 1855 if (bwpcent > 100) 1856 bwpcent = 100; 1857 1858 if (phba->cmf_max_bytes_per_interval < bw && 1859 bwpcent > 95) 1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1861 "6208 Congestion bandwidth " 1862 "limits removed\n"); 1863 else if ((phba->cmf_max_bytes_per_interval > bw) && 1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1866 "6209 Congestion bandwidth " 1867 "limits in effect\n"); 1868 1869 if (asig) { 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6237 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Alarm: cg:%d " 1873 "Info:%u\n", 1874 bwpcent, bw, pcent, s, cg, 1875 phba->cmf_active_info); 1876 } else if (afpin) { 1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1878 "6238 BW Threshold %lld%% (%lld): " 1879 "%lld%% %s: FPIN Alarm: cg:%d " 1880 "Info:%u\n", 1881 bwpcent, bw, pcent, s, cg, 1882 phba->cmf_active_info); 1883 } else if (sigcnt) { 1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6239 BW Threshold %lld%% (%lld): " 1887 "%lld%% %s: Signal Warning: " 1888 "Cnt %d Max %d: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, sigcnt, 1890 wsigmax, cg, phba->cmf_active_info); 1891 } else if (fpincnt) { 1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6240 BW Threshold %lld%% (%lld): " 1895 "%lld%% %s: FPIN Warning: " 1896 "Cnt %d Max %d: cg:%d Info:%u\n", 1897 bwpcent, bw, pcent, s, fpincnt, 1898 wfpinmax, cg, phba->cmf_active_info); 1899 } else { 1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1901 "6241 BW Threshold %lld%% (%lld): " 1902 "CMF %lld%% %s: cg:%d Info:%u\n", 1903 bwpcent, bw, pcent, s, cg, 1904 phba->cmf_active_info); 1905 } 1906 } else if (info) { 1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1908 "6246 Info Threshold %u\n", info); 1909 } 1910 1911 /* Save BW change to be picked up during next timer interrupt */ 1912 phba->cmf_last_sync_bw = bw; 1913 out: 1914 lpfc_sli_release_iocbq(phba, cmdiocb); 1915 } 1916 1917 /** 1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1919 * @phba: Pointer to HBA context object. 1920 * @ms: ms to set in WQE interval, 0 means use init op 1921 * @total: Total rcv bytes for this interval 1922 * 1923 * This routine is called every CMF timer interrupt. Its purpose is 1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1925 * that may indicate we have congestion (FPINs or Signals). Upon 1926 * completion, the firmware will indicate any BW restrictions the 1927 * driver may need to take. 1928 **/ 1929 int 1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1931 { 1932 union lpfc_wqe128 *wqe; 1933 struct lpfc_iocbq *sync_buf; 1934 unsigned long iflags; 1935 u32 ret_val, cgn_sig_freq; 1936 u32 atot, wtot, max; 1937 u8 warn_sync_period = 0; 1938 1939 /* First address any alarm / warning activity */ 1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1942 1943 spin_lock_irqsave(&phba->hbalock, iflags); 1944 1945 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1946 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1947 phba->link_state < LPFC_LINK_UP) { 1948 ret_val = 0; 1949 goto out_unlock; 1950 } 1951 1952 sync_buf = __lpfc_sli_get_iocbq(phba); 1953 if (!sync_buf) { 1954 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1955 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1956 ret_val = ENOMEM; 1957 goto out_unlock; 1958 } 1959 1960 wqe = &sync_buf->wqe; 1961 1962 /* WQEs are reused. Clear stale data and set key fields to zero */ 1963 memset(wqe, 0, sizeof(*wqe)); 1964 1965 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1966 if (!ms) { 1967 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1968 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1969 phba->fc_eventTag); 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1972 goto initpath; 1973 } 1974 1975 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1976 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1977 1978 /* Check for alarms / warnings */ 1979 if (atot) { 1980 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1981 /* We hit an Signal alarm condition */ 1982 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1983 } else { 1984 /* We hit a FPIN alarm condition */ 1985 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1986 } 1987 } else if (wtot) { 1988 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1989 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1990 cgn_sig_freq = phba->cgn_sig_freq ? phba->cgn_sig_freq : 1991 lpfc_fabric_cgn_frequency; 1992 /* We hit an Signal warning condition */ 1993 max = LPFC_SEC_TO_MSEC / cgn_sig_freq * 1994 lpfc_acqe_cgn_frequency; 1995 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1996 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1997 warn_sync_period = lpfc_acqe_cgn_frequency; 1998 } else { 1999 /* We hit a FPIN warning condition */ 2000 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 2001 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 2002 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 2003 warn_sync_period = 2004 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2005 } 2006 } 2007 2008 /* Update total read blocks during previous timer interval */ 2009 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2010 2011 initpath: 2012 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2013 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2014 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2015 2016 /* Setup reqtag to match the wqe completion. */ 2017 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2018 2019 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2020 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2021 2022 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2023 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2024 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2025 2026 sync_buf->vport = phba->pport; 2027 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2028 sync_buf->cmd_dmabuf = NULL; 2029 sync_buf->rsp_dmabuf = NULL; 2030 sync_buf->bpl_dmabuf = NULL; 2031 sync_buf->sli4_xritag = NO_XRI; 2032 2033 sync_buf->cmd_flag |= LPFC_IO_CMF; 2034 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2035 if (ret_val) { 2036 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2037 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2038 ret_val); 2039 __lpfc_sli_release_iocbq(phba, sync_buf); 2040 } 2041 out_unlock: 2042 spin_unlock_irqrestore(&phba->hbalock, iflags); 2043 return ret_val; 2044 } 2045 2046 /** 2047 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2048 * @phba: Pointer to HBA context object. 2049 * @pring: Pointer to driver SLI ring object. 2050 * 2051 * This function is called with hbalock held and the caller must post the 2052 * iocb without releasing the lock. If the caller releases the lock, 2053 * iocb slot returned by the function is not guaranteed to be available. 2054 * The function returns pointer to the next available iocb slot if there 2055 * is available slot in the ring, else it returns NULL. 2056 * If the get index of the ring is ahead of the put index, the function 2057 * will post an error attention event to the worker thread to take the 2058 * HBA to offline state. 2059 **/ 2060 static IOCB_t * 2061 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2062 { 2063 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2064 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2065 2066 lockdep_assert_held(&phba->hbalock); 2067 2068 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2069 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2070 pring->sli.sli3.next_cmdidx = 0; 2071 2072 if (unlikely(pring->sli.sli3.local_getidx == 2073 pring->sli.sli3.next_cmdidx)) { 2074 2075 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2076 2077 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2079 "0315 Ring %d issue: portCmdGet %d " 2080 "is bigger than cmd ring %d\n", 2081 pring->ringno, 2082 pring->sli.sli3.local_getidx, 2083 max_cmd_idx); 2084 2085 phba->link_state = LPFC_HBA_ERROR; 2086 /* 2087 * All error attention handlers are posted to 2088 * worker thread 2089 */ 2090 phba->work_ha |= HA_ERATT; 2091 phba->work_hs = HS_FFER3; 2092 2093 lpfc_worker_wake_up(phba); 2094 2095 return NULL; 2096 } 2097 2098 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2099 return NULL; 2100 } 2101 2102 return lpfc_cmd_iocb(phba, pring); 2103 } 2104 2105 /** 2106 * lpfc_sli_next_iotag - Get an iotag for the iocb 2107 * @phba: Pointer to HBA context object. 2108 * @iocbq: Pointer to driver iocb object. 2109 * 2110 * This function gets an iotag for the iocb. If there is no unused iotag and 2111 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2112 * array and assigns a new iotag. 2113 * The function returns the allocated iotag if successful, else returns zero. 2114 * Zero is not a valid iotag. 2115 * The caller is not required to hold any lock. 2116 **/ 2117 uint16_t 2118 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2119 { 2120 struct lpfc_iocbq **new_arr; 2121 struct lpfc_iocbq **old_arr; 2122 size_t new_len; 2123 struct lpfc_sli *psli = &phba->sli; 2124 uint16_t iotag; 2125 2126 spin_lock_irq(&phba->hbalock); 2127 iotag = psli->last_iotag; 2128 if(++iotag < psli->iocbq_lookup_len) { 2129 psli->last_iotag = iotag; 2130 psli->iocbq_lookup[iotag] = iocbq; 2131 spin_unlock_irq(&phba->hbalock); 2132 iocbq->iotag = iotag; 2133 return iotag; 2134 } else if (psli->iocbq_lookup_len < (0xffff 2135 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2136 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2137 spin_unlock_irq(&phba->hbalock); 2138 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2139 GFP_KERNEL); 2140 if (new_arr) { 2141 spin_lock_irq(&phba->hbalock); 2142 old_arr = psli->iocbq_lookup; 2143 if (new_len <= psli->iocbq_lookup_len) { 2144 /* highly unprobable case */ 2145 kfree(new_arr); 2146 iotag = psli->last_iotag; 2147 if(++iotag < psli->iocbq_lookup_len) { 2148 psli->last_iotag = iotag; 2149 psli->iocbq_lookup[iotag] = iocbq; 2150 spin_unlock_irq(&phba->hbalock); 2151 iocbq->iotag = iotag; 2152 return iotag; 2153 } 2154 spin_unlock_irq(&phba->hbalock); 2155 return 0; 2156 } 2157 if (psli->iocbq_lookup) 2158 memcpy(new_arr, old_arr, 2159 ((psli->last_iotag + 1) * 2160 sizeof (struct lpfc_iocbq *))); 2161 psli->iocbq_lookup = new_arr; 2162 psli->iocbq_lookup_len = new_len; 2163 psli->last_iotag = iotag; 2164 psli->iocbq_lookup[iotag] = iocbq; 2165 spin_unlock_irq(&phba->hbalock); 2166 iocbq->iotag = iotag; 2167 kfree(old_arr); 2168 return iotag; 2169 } 2170 } else 2171 spin_unlock_irq(&phba->hbalock); 2172 2173 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2174 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2175 psli->last_iotag); 2176 2177 return 0; 2178 } 2179 2180 /** 2181 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2182 * @phba: Pointer to HBA context object. 2183 * @pring: Pointer to driver SLI ring object. 2184 * @iocb: Pointer to iocb slot in the ring. 2185 * @nextiocb: Pointer to driver iocb object which need to be 2186 * posted to firmware. 2187 * 2188 * This function is called to post a new iocb to the firmware. This 2189 * function copies the new iocb to ring iocb slot and updates the 2190 * ring pointers. It adds the new iocb to txcmplq if there is 2191 * a completion call back for this iocb else the function will free the 2192 * iocb object. The hbalock is asserted held in the code path calling 2193 * this routine. 2194 **/ 2195 static void 2196 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2197 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2198 { 2199 /* 2200 * Set up an iotag 2201 */ 2202 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2203 2204 2205 if (pring->ringno == LPFC_ELS_RING) { 2206 lpfc_debugfs_slow_ring_trc(phba, 2207 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2208 *(((uint32_t *) &nextiocb->iocb) + 4), 2209 *(((uint32_t *) &nextiocb->iocb) + 6), 2210 *(((uint32_t *) &nextiocb->iocb) + 7)); 2211 } 2212 2213 /* 2214 * Issue iocb command to adapter 2215 */ 2216 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2217 wmb(); 2218 pring->stats.iocb_cmd++; 2219 2220 /* 2221 * If there is no completion routine to call, we can release the 2222 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2223 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2224 */ 2225 if (nextiocb->cmd_cmpl) 2226 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2227 else 2228 __lpfc_sli_release_iocbq(phba, nextiocb); 2229 2230 /* 2231 * Let the HBA know what IOCB slot will be the next one the 2232 * driver will put a command into. 2233 */ 2234 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2235 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2236 } 2237 2238 /** 2239 * lpfc_sli_update_full_ring - Update the chip attention register 2240 * @phba: Pointer to HBA context object. 2241 * @pring: Pointer to driver SLI ring object. 2242 * 2243 * The caller is not required to hold any lock for calling this function. 2244 * This function updates the chip attention bits for the ring to inform firmware 2245 * that there are pending work to be done for this ring and requests an 2246 * interrupt when there is space available in the ring. This function is 2247 * called when the driver is unable to post more iocbs to the ring due 2248 * to unavailability of space in the ring. 2249 **/ 2250 static void 2251 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2252 { 2253 int ringno = pring->ringno; 2254 2255 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2256 2257 wmb(); 2258 2259 /* 2260 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2261 * The HBA will tell us when an IOCB entry is available. 2262 */ 2263 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2264 readl(phba->CAregaddr); /* flush */ 2265 2266 pring->stats.iocb_cmd_full++; 2267 } 2268 2269 /** 2270 * lpfc_sli_update_ring - Update chip attention register 2271 * @phba: Pointer to HBA context object. 2272 * @pring: Pointer to driver SLI ring object. 2273 * 2274 * This function updates the chip attention register bit for the 2275 * given ring to inform HBA that there is more work to be done 2276 * in this ring. The caller is not required to hold any lock. 2277 **/ 2278 static void 2279 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2280 { 2281 int ringno = pring->ringno; 2282 2283 /* 2284 * Tell the HBA that there is work to do in this ring. 2285 */ 2286 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2287 wmb(); 2288 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2289 readl(phba->CAregaddr); /* flush */ 2290 } 2291 } 2292 2293 /** 2294 * lpfc_sli_resume_iocb - Process iocbs in the txq 2295 * @phba: Pointer to HBA context object. 2296 * @pring: Pointer to driver SLI ring object. 2297 * 2298 * This function is called with hbalock held to post pending iocbs 2299 * in the txq to the firmware. This function is called when driver 2300 * detects space available in the ring. 2301 **/ 2302 static void 2303 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2304 { 2305 IOCB_t *iocb; 2306 struct lpfc_iocbq *nextiocb; 2307 2308 lockdep_assert_held(&phba->hbalock); 2309 2310 /* 2311 * Check to see if: 2312 * (a) there is anything on the txq to send 2313 * (b) link is up 2314 * (c) link attention events can be processed (fcp ring only) 2315 * (d) IOCB processing is not blocked by the outstanding mbox command. 2316 */ 2317 2318 if (lpfc_is_link_up(phba) && 2319 (!list_empty(&pring->txq)) && 2320 (pring->ringno != LPFC_FCP_RING || 2321 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2322 2323 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2324 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2325 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2326 2327 if (iocb) 2328 lpfc_sli_update_ring(phba, pring); 2329 else 2330 lpfc_sli_update_full_ring(phba, pring); 2331 } 2332 2333 return; 2334 } 2335 2336 /** 2337 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2338 * @phba: Pointer to HBA context object. 2339 * @hbqno: HBQ number. 2340 * 2341 * This function is called with hbalock held to get the next 2342 * available slot for the given HBQ. If there is free slot 2343 * available for the HBQ it will return pointer to the next available 2344 * HBQ entry else it will return NULL. 2345 **/ 2346 static struct lpfc_hbq_entry * 2347 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2348 { 2349 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2350 2351 lockdep_assert_held(&phba->hbalock); 2352 2353 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2354 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2355 hbqp->next_hbqPutIdx = 0; 2356 2357 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2358 uint32_t raw_index = phba->hbq_get[hbqno]; 2359 uint32_t getidx = le32_to_cpu(raw_index); 2360 2361 hbqp->local_hbqGetIdx = getidx; 2362 2363 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2364 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2365 "1802 HBQ %d: local_hbqGetIdx " 2366 "%u is > than hbqp->entry_count %u\n", 2367 hbqno, hbqp->local_hbqGetIdx, 2368 hbqp->entry_count); 2369 2370 phba->link_state = LPFC_HBA_ERROR; 2371 return NULL; 2372 } 2373 2374 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2375 return NULL; 2376 } 2377 2378 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2379 hbqp->hbqPutIdx; 2380 } 2381 2382 /** 2383 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2384 * @phba: Pointer to HBA context object. 2385 * 2386 * This function is called with no lock held to free all the 2387 * hbq buffers while uninitializing the SLI interface. It also 2388 * frees the HBQ buffers returned by the firmware but not yet 2389 * processed by the upper layers. 2390 **/ 2391 void 2392 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2393 { 2394 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2395 struct hbq_dmabuf *hbq_buf; 2396 unsigned long flags; 2397 int i, hbq_count; 2398 2399 hbq_count = lpfc_sli_hbq_count(); 2400 /* Return all memory used by all HBQs */ 2401 spin_lock_irqsave(&phba->hbalock, flags); 2402 for (i = 0; i < hbq_count; ++i) { 2403 list_for_each_entry_safe(dmabuf, next_dmabuf, 2404 &phba->hbqs[i].hbq_buffer_list, list) { 2405 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2406 list_del(&hbq_buf->dbuf.list); 2407 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2408 } 2409 phba->hbqs[i].buffer_count = 0; 2410 } 2411 2412 /* Mark the HBQs not in use */ 2413 phba->hbq_in_use = 0; 2414 spin_unlock_irqrestore(&phba->hbalock, flags); 2415 } 2416 2417 /** 2418 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2419 * @phba: Pointer to HBA context object. 2420 * @hbqno: HBQ number. 2421 * @hbq_buf: Pointer to HBQ buffer. 2422 * 2423 * This function is called with the hbalock held to post a 2424 * hbq buffer to the firmware. If the function finds an empty 2425 * slot in the HBQ, it will post the buffer. The function will return 2426 * pointer to the hbq entry if it successfully post the buffer 2427 * else it will return NULL. 2428 **/ 2429 static int 2430 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2431 struct hbq_dmabuf *hbq_buf) 2432 { 2433 lockdep_assert_held(&phba->hbalock); 2434 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2435 } 2436 2437 /** 2438 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2439 * @phba: Pointer to HBA context object. 2440 * @hbqno: HBQ number. 2441 * @hbq_buf: Pointer to HBQ buffer. 2442 * 2443 * This function is called with the hbalock held to post a hbq buffer to the 2444 * firmware. If the function finds an empty slot in the HBQ, it will post the 2445 * buffer and place it on the hbq_buffer_list. The function will return zero if 2446 * it successfully post the buffer else it will return an error. 2447 **/ 2448 static int 2449 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2450 struct hbq_dmabuf *hbq_buf) 2451 { 2452 struct lpfc_hbq_entry *hbqe; 2453 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2454 2455 lockdep_assert_held(&phba->hbalock); 2456 /* Get next HBQ entry slot to use */ 2457 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2458 if (hbqe) { 2459 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2460 2461 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2462 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2463 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2464 hbqe->bde.tus.f.bdeFlags = 0; 2465 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2466 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2467 /* Sync SLIM */ 2468 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2469 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2470 /* flush */ 2471 readl(phba->hbq_put + hbqno); 2472 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2473 return 0; 2474 } else 2475 return -ENOMEM; 2476 } 2477 2478 /** 2479 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2480 * @phba: Pointer to HBA context object. 2481 * @hbqno: HBQ number. 2482 * @hbq_buf: Pointer to HBQ buffer. 2483 * 2484 * This function is called with the hbalock held to post an RQE to the SLI4 2485 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2486 * the hbq_buffer_list and return zero, otherwise it will return an error. 2487 **/ 2488 static int 2489 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2490 struct hbq_dmabuf *hbq_buf) 2491 { 2492 int rc; 2493 struct lpfc_rqe hrqe; 2494 struct lpfc_rqe drqe; 2495 struct lpfc_queue *hrq; 2496 struct lpfc_queue *drq; 2497 2498 if (hbqno != LPFC_ELS_HBQ) 2499 return 1; 2500 hrq = phba->sli4_hba.hdr_rq; 2501 drq = phba->sli4_hba.dat_rq; 2502 2503 lockdep_assert_held(&phba->hbalock); 2504 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2505 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2506 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2507 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2508 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2509 if (rc < 0) 2510 return rc; 2511 hbq_buf->tag = (rc | (hbqno << 16)); 2512 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2513 return 0; 2514 } 2515 2516 /* HBQ for ELS and CT traffic. */ 2517 static struct lpfc_hbq_init lpfc_els_hbq = { 2518 .rn = 1, 2519 .entry_count = 256, 2520 .mask_count = 0, 2521 .profile = 0, 2522 .ring_mask = (1 << LPFC_ELS_RING), 2523 .buffer_count = 0, 2524 .init_count = 40, 2525 .add_count = 40, 2526 }; 2527 2528 /* Array of HBQs */ 2529 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2530 &lpfc_els_hbq, 2531 }; 2532 2533 /** 2534 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2535 * @phba: Pointer to HBA context object. 2536 * @hbqno: HBQ number. 2537 * @count: Number of HBQ buffers to be posted. 2538 * 2539 * This function is called with no lock held to post more hbq buffers to the 2540 * given HBQ. The function returns the number of HBQ buffers successfully 2541 * posted. 2542 **/ 2543 static int 2544 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2545 { 2546 uint32_t i, posted = 0; 2547 unsigned long flags; 2548 struct hbq_dmabuf *hbq_buffer; 2549 LIST_HEAD(hbq_buf_list); 2550 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2551 return 0; 2552 2553 if ((phba->hbqs[hbqno].buffer_count + count) > 2554 lpfc_hbq_defs[hbqno]->entry_count) 2555 count = lpfc_hbq_defs[hbqno]->entry_count - 2556 phba->hbqs[hbqno].buffer_count; 2557 if (!count) 2558 return 0; 2559 /* Allocate HBQ entries */ 2560 for (i = 0; i < count; i++) { 2561 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2562 if (!hbq_buffer) 2563 break; 2564 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2565 } 2566 /* Check whether HBQ is still in use */ 2567 spin_lock_irqsave(&phba->hbalock, flags); 2568 if (!phba->hbq_in_use) 2569 goto err; 2570 while (!list_empty(&hbq_buf_list)) { 2571 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2572 dbuf.list); 2573 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2574 (hbqno << 16)); 2575 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2576 phba->hbqs[hbqno].buffer_count++; 2577 posted++; 2578 } else 2579 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2580 } 2581 spin_unlock_irqrestore(&phba->hbalock, flags); 2582 return posted; 2583 err: 2584 spin_unlock_irqrestore(&phba->hbalock, flags); 2585 while (!list_empty(&hbq_buf_list)) { 2586 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2587 dbuf.list); 2588 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2589 } 2590 return 0; 2591 } 2592 2593 /** 2594 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2595 * @phba: Pointer to HBA context object. 2596 * @qno: HBQ number. 2597 * 2598 * This function posts more buffers to the HBQ. This function 2599 * is called with no lock held. The function returns the number of HBQ entries 2600 * successfully allocated. 2601 **/ 2602 int 2603 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2604 { 2605 if (phba->sli_rev == LPFC_SLI_REV4) 2606 return 0; 2607 else 2608 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2609 lpfc_hbq_defs[qno]->add_count); 2610 } 2611 2612 /** 2613 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2614 * @phba: Pointer to HBA context object. 2615 * @qno: HBQ queue number. 2616 * 2617 * This function is called from SLI initialization code path with 2618 * no lock held to post initial HBQ buffers to firmware. The 2619 * function returns the number of HBQ entries successfully allocated. 2620 **/ 2621 static int 2622 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2623 { 2624 if (phba->sli_rev == LPFC_SLI_REV4) 2625 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2626 lpfc_hbq_defs[qno]->entry_count); 2627 else 2628 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2629 lpfc_hbq_defs[qno]->init_count); 2630 } 2631 2632 /* 2633 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2634 * 2635 * This function removes the first hbq buffer on an hbq list and returns a 2636 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2637 **/ 2638 static struct hbq_dmabuf * 2639 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2640 { 2641 struct lpfc_dmabuf *d_buf; 2642 2643 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2644 if (!d_buf) 2645 return NULL; 2646 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2647 } 2648 2649 /** 2650 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2651 * @phba: Pointer to HBA context object. 2652 * @hrq: HBQ number. 2653 * 2654 * This function removes the first RQ buffer on an RQ buffer list and returns a 2655 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2656 **/ 2657 static struct rqb_dmabuf * 2658 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2659 { 2660 struct lpfc_dmabuf *h_buf; 2661 struct lpfc_rqb *rqbp; 2662 2663 rqbp = hrq->rqbp; 2664 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2665 struct lpfc_dmabuf, list); 2666 if (!h_buf) 2667 return NULL; 2668 rqbp->buffer_count--; 2669 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2670 } 2671 2672 /** 2673 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2674 * @phba: Pointer to HBA context object. 2675 * @tag: Tag of the hbq buffer. 2676 * 2677 * This function searches for the hbq buffer associated with the given tag in 2678 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2679 * otherwise it returns NULL. 2680 **/ 2681 static struct hbq_dmabuf * 2682 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2683 { 2684 struct lpfc_dmabuf *d_buf; 2685 struct hbq_dmabuf *hbq_buf; 2686 uint32_t hbqno; 2687 2688 hbqno = tag >> 16; 2689 if (hbqno >= LPFC_MAX_HBQS) 2690 return NULL; 2691 2692 spin_lock_irq(&phba->hbalock); 2693 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2694 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2695 if (hbq_buf->tag == tag) { 2696 spin_unlock_irq(&phba->hbalock); 2697 return hbq_buf; 2698 } 2699 } 2700 spin_unlock_irq(&phba->hbalock); 2701 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2702 "1803 Bad hbq tag. Data: x%x x%x\n", 2703 tag, phba->hbqs[tag >> 16].buffer_count); 2704 return NULL; 2705 } 2706 2707 /** 2708 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2709 * @phba: Pointer to HBA context object. 2710 * @hbq_buffer: Pointer to HBQ buffer. 2711 * 2712 * This function is called with hbalock. This function gives back 2713 * the hbq buffer to firmware. If the HBQ does not have space to 2714 * post the buffer, it will free the buffer. 2715 **/ 2716 void 2717 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2718 { 2719 uint32_t hbqno; 2720 2721 if (hbq_buffer) { 2722 hbqno = hbq_buffer->tag >> 16; 2723 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2724 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2725 } 2726 } 2727 2728 /** 2729 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2730 * @mbxCommand: mailbox command code. 2731 * 2732 * This function is called by the mailbox event handler function to verify 2733 * that the completed mailbox command is a legitimate mailbox command. If the 2734 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2735 * and the mailbox event handler will take the HBA offline. 2736 **/ 2737 static int 2738 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2739 { 2740 uint8_t ret; 2741 2742 switch (mbxCommand) { 2743 case MBX_LOAD_SM: 2744 case MBX_READ_NV: 2745 case MBX_WRITE_NV: 2746 case MBX_WRITE_VPARMS: 2747 case MBX_RUN_BIU_DIAG: 2748 case MBX_INIT_LINK: 2749 case MBX_DOWN_LINK: 2750 case MBX_CONFIG_LINK: 2751 case MBX_CONFIG_RING: 2752 case MBX_RESET_RING: 2753 case MBX_READ_CONFIG: 2754 case MBX_READ_RCONFIG: 2755 case MBX_READ_SPARM: 2756 case MBX_READ_STATUS: 2757 case MBX_READ_RPI: 2758 case MBX_READ_XRI: 2759 case MBX_READ_REV: 2760 case MBX_READ_LNK_STAT: 2761 case MBX_REG_LOGIN: 2762 case MBX_UNREG_LOGIN: 2763 case MBX_CLEAR_LA: 2764 case MBX_DUMP_MEMORY: 2765 case MBX_DUMP_CONTEXT: 2766 case MBX_RUN_DIAGS: 2767 case MBX_RESTART: 2768 case MBX_UPDATE_CFG: 2769 case MBX_DOWN_LOAD: 2770 case MBX_DEL_LD_ENTRY: 2771 case MBX_RUN_PROGRAM: 2772 case MBX_SET_MASK: 2773 case MBX_SET_VARIABLE: 2774 case MBX_UNREG_D_ID: 2775 case MBX_KILL_BOARD: 2776 case MBX_CONFIG_FARP: 2777 case MBX_BEACON: 2778 case MBX_LOAD_AREA: 2779 case MBX_RUN_BIU_DIAG64: 2780 case MBX_CONFIG_PORT: 2781 case MBX_READ_SPARM64: 2782 case MBX_READ_RPI64: 2783 case MBX_REG_LOGIN64: 2784 case MBX_READ_TOPOLOGY: 2785 case MBX_WRITE_WWN: 2786 case MBX_SET_DEBUG: 2787 case MBX_LOAD_EXP_ROM: 2788 case MBX_ASYNCEVT_ENABLE: 2789 case MBX_REG_VPI: 2790 case MBX_UNREG_VPI: 2791 case MBX_HEARTBEAT: 2792 case MBX_PORT_CAPABILITIES: 2793 case MBX_PORT_IOV_CONTROL: 2794 case MBX_SLI4_CONFIG: 2795 case MBX_SLI4_REQ_FTRS: 2796 case MBX_REG_FCFI: 2797 case MBX_UNREG_FCFI: 2798 case MBX_REG_VFI: 2799 case MBX_UNREG_VFI: 2800 case MBX_INIT_VPI: 2801 case MBX_INIT_VFI: 2802 case MBX_RESUME_RPI: 2803 case MBX_READ_EVENT_LOG_STATUS: 2804 case MBX_READ_EVENT_LOG: 2805 case MBX_SECURITY_MGMT: 2806 case MBX_AUTH_PORT: 2807 case MBX_ACCESS_VDATA: 2808 ret = mbxCommand; 2809 break; 2810 default: 2811 ret = MBX_SHUTDOWN; 2812 break; 2813 } 2814 return ret; 2815 } 2816 2817 /** 2818 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2819 * @phba: Pointer to HBA context object. 2820 * @pmboxq: Pointer to mailbox command. 2821 * 2822 * This is completion handler function for mailbox commands issued from 2823 * lpfc_sli_issue_mbox_wait function. This function is called by the 2824 * mailbox event handler function with no lock held. This function 2825 * will wake up thread waiting on the wait queue pointed by context1 2826 * of the mailbox. 2827 **/ 2828 void 2829 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2830 { 2831 unsigned long drvr_flag; 2832 struct completion *pmbox_done; 2833 2834 /* 2835 * If pmbox_done is empty, the driver thread gave up waiting and 2836 * continued running. 2837 */ 2838 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2839 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2840 pmbox_done = pmboxq->ctx_u.mbox_wait; 2841 if (pmbox_done) 2842 complete(pmbox_done); 2843 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2844 return; 2845 } 2846 2847 /** 2848 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2849 * @phba: Pointer to HBA context object. 2850 * @pmb: Pointer to mailbox object. 2851 * 2852 * This function is the default mailbox completion handler. It 2853 * frees the memory resources associated with the completed mailbox 2854 * command. If the completed command is a REG_LOGIN mailbox command, 2855 * this function will issue a UREG_LOGIN to re-claim the RPI. 2856 **/ 2857 void 2858 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2859 { 2860 struct lpfc_vport *vport = pmb->vport; 2861 struct lpfc_dmabuf *mp; 2862 struct lpfc_nodelist *ndlp; 2863 struct Scsi_Host *shost; 2864 uint16_t rpi, vpi; 2865 int rc; 2866 2867 /* 2868 * If a REG_LOGIN succeeded after node is destroyed or node 2869 * is in re-discovery driver need to cleanup the RPI. 2870 */ 2871 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2872 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2873 !pmb->u.mb.mbxStatus) { 2874 mp = pmb->ctx_buf; 2875 if (mp) { 2876 pmb->ctx_buf = NULL; 2877 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2878 kfree(mp); 2879 } 2880 rpi = pmb->u.mb.un.varWords[0]; 2881 vpi = pmb->u.mb.un.varRegLogin.vpi; 2882 if (phba->sli_rev == LPFC_SLI_REV4) 2883 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2884 lpfc_unreg_login(phba, vpi, rpi, pmb); 2885 pmb->vport = vport; 2886 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2887 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2888 if (rc != MBX_NOT_FINISHED) 2889 return; 2890 } 2891 2892 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2893 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2894 !pmb->u.mb.mbxStatus) { 2895 shost = lpfc_shost_from_vport(vport); 2896 spin_lock_irq(shost->host_lock); 2897 vport->vpi_state |= LPFC_VPI_REGISTERED; 2898 spin_unlock_irq(shost->host_lock); 2899 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2900 } 2901 2902 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2903 ndlp = pmb->ctx_ndlp; 2904 lpfc_nlp_put(ndlp); 2905 } 2906 2907 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2908 ndlp = pmb->ctx_ndlp; 2909 2910 /* Check to see if there are any deferred events to process */ 2911 if (ndlp) { 2912 lpfc_printf_vlog( 2913 vport, 2914 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2915 "1438 UNREG cmpl deferred mbox x%x " 2916 "on NPort x%x Data: x%lx x%x x%px x%lx x%x\n", 2917 ndlp->nlp_rpi, ndlp->nlp_DID, 2918 ndlp->nlp_flag, ndlp->nlp_defer_did, 2919 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2920 2921 if (test_bit(NLP_UNREG_INP, &ndlp->nlp_flag) && 2922 ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING) { 2923 clear_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 2924 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2925 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2926 } 2927 2928 /* The unreg_login mailbox is complete and had a 2929 * reference that has to be released. The PLOGI 2930 * got its own ref. 2931 */ 2932 lpfc_nlp_put(ndlp); 2933 pmb->ctx_ndlp = NULL; 2934 } 2935 } 2936 2937 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2938 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2939 ndlp = pmb->ctx_ndlp; 2940 lpfc_nlp_put(ndlp); 2941 } 2942 2943 /* Check security permission status on INIT_LINK mailbox command */ 2944 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2945 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2947 "2860 SLI authentication is required " 2948 "for INIT_LINK but has not done yet\n"); 2949 2950 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2951 lpfc_sli4_mbox_cmd_free(phba, pmb); 2952 else 2953 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2954 } 2955 /** 2956 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2957 * @phba: Pointer to HBA context object. 2958 * @pmb: Pointer to mailbox object. 2959 * 2960 * This function is the unreg rpi mailbox completion handler. It 2961 * frees the memory resources associated with the completed mailbox 2962 * command. An additional reference is put on the ndlp to prevent 2963 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2964 * the unreg mailbox command completes, this routine puts the 2965 * reference back. 2966 * 2967 **/ 2968 void 2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2970 { 2971 struct lpfc_vport *vport = pmb->vport; 2972 struct lpfc_nodelist *ndlp; 2973 bool unreg_inp; 2974 2975 ndlp = pmb->ctx_ndlp; 2976 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2977 if (phba->sli_rev == LPFC_SLI_REV4 && 2978 (bf_get(lpfc_sli_intf_if_type, 2979 &phba->sli4_hba.sli_intf) >= 2980 LPFC_SLI_INTF_IF_TYPE_2)) { 2981 if (ndlp) { 2982 lpfc_printf_vlog( 2983 vport, KERN_INFO, 2984 LOG_MBOX | LOG_SLI | LOG_NODE, 2985 "0010 UNREG_LOGIN vpi:x%x " 2986 "rpi:%x DID:%x defer x%x flg x%lx " 2987 "x%px\n", 2988 vport->vpi, ndlp->nlp_rpi, 2989 ndlp->nlp_DID, ndlp->nlp_defer_did, 2990 ndlp->nlp_flag, 2991 ndlp); 2992 2993 /* Cleanup the nlp_flag now that the UNREG RPI 2994 * has completed. 2995 */ 2996 unreg_inp = test_and_clear_bit(NLP_UNREG_INP, 2997 &ndlp->nlp_flag); 2998 clear_bit(NLP_LOGO_ACC, &ndlp->nlp_flag); 2999 3000 /* Check to see if there are any deferred 3001 * events to process 3002 */ 3003 if (unreg_inp && 3004 ndlp->nlp_defer_did != 3005 NLP_EVT_NOTHING_PENDING) { 3006 lpfc_printf_vlog( 3007 vport, KERN_INFO, 3008 LOG_MBOX | LOG_SLI | LOG_NODE, 3009 "4111 UNREG cmpl deferred " 3010 "clr x%x on " 3011 "NPort x%x Data: x%x x%px\n", 3012 ndlp->nlp_rpi, ndlp->nlp_DID, 3013 ndlp->nlp_defer_did, ndlp); 3014 ndlp->nlp_defer_did = 3015 NLP_EVT_NOTHING_PENDING; 3016 lpfc_issue_els_plogi( 3017 vport, ndlp->nlp_DID, 0); 3018 } 3019 3020 lpfc_nlp_put(ndlp); 3021 } 3022 } 3023 } 3024 3025 mempool_free(pmb, phba->mbox_mem_pool); 3026 } 3027 3028 /** 3029 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3030 * @phba: Pointer to HBA context object. 3031 * 3032 * This function is called with no lock held. This function processes all 3033 * the completed mailbox commands and gives it to upper layers. The interrupt 3034 * service routine processes mailbox completion interrupt and adds completed 3035 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3036 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3037 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3038 * function returns the mailbox commands to the upper layer by calling the 3039 * completion handler function of each mailbox. 3040 **/ 3041 int 3042 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3043 { 3044 MAILBOX_t *pmbox; 3045 LPFC_MBOXQ_t *pmb; 3046 int rc; 3047 LIST_HEAD(cmplq); 3048 3049 phba->sli.slistat.mbox_event++; 3050 3051 /* Get all completed mailboxe buffers into the cmplq */ 3052 spin_lock_irq(&phba->hbalock); 3053 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3054 spin_unlock_irq(&phba->hbalock); 3055 3056 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3057 do { 3058 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3059 if (pmb == NULL) 3060 break; 3061 3062 pmbox = &pmb->u.mb; 3063 3064 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3065 if (pmb->vport) { 3066 lpfc_debugfs_disc_trc(pmb->vport, 3067 LPFC_DISC_TRC_MBOX_VPORT, 3068 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3069 (uint32_t)pmbox->mbxCommand, 3070 pmbox->un.varWords[0], 3071 pmbox->un.varWords[1]); 3072 } 3073 else { 3074 lpfc_debugfs_disc_trc(phba->pport, 3075 LPFC_DISC_TRC_MBOX, 3076 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3077 (uint32_t)pmbox->mbxCommand, 3078 pmbox->un.varWords[0], 3079 pmbox->un.varWords[1]); 3080 } 3081 } 3082 3083 /* 3084 * It is a fatal error if unknown mbox command completion. 3085 */ 3086 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3087 MBX_SHUTDOWN) { 3088 /* Unknown mailbox command compl */ 3089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3090 "(%d):0323 Unknown Mailbox command " 3091 "x%x (x%x/x%x) Cmpl\n", 3092 pmb->vport ? pmb->vport->vpi : 3093 LPFC_VPORT_UNKNOWN, 3094 pmbox->mbxCommand, 3095 lpfc_sli_config_mbox_subsys_get(phba, 3096 pmb), 3097 lpfc_sli_config_mbox_opcode_get(phba, 3098 pmb)); 3099 phba->link_state = LPFC_HBA_ERROR; 3100 phba->work_hs = HS_FFER3; 3101 lpfc_handle_eratt(phba); 3102 continue; 3103 } 3104 3105 if (pmbox->mbxStatus) { 3106 phba->sli.slistat.mbox_stat_err++; 3107 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3108 /* Mbox cmd cmpl error - RETRYing */ 3109 lpfc_printf_log(phba, KERN_INFO, 3110 LOG_MBOX | LOG_SLI, 3111 "(%d):0305 Mbox cmd cmpl " 3112 "error - RETRYing Data: x%x " 3113 "(x%x/x%x) x%x x%x x%x\n", 3114 pmb->vport ? pmb->vport->vpi : 3115 LPFC_VPORT_UNKNOWN, 3116 pmbox->mbxCommand, 3117 lpfc_sli_config_mbox_subsys_get(phba, 3118 pmb), 3119 lpfc_sli_config_mbox_opcode_get(phba, 3120 pmb), 3121 pmbox->mbxStatus, 3122 pmbox->un.varWords[0], 3123 pmb->vport ? pmb->vport->port_state : 3124 LPFC_VPORT_UNKNOWN); 3125 pmbox->mbxStatus = 0; 3126 pmbox->mbxOwner = OWN_HOST; 3127 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3128 if (rc != MBX_NOT_FINISHED) 3129 continue; 3130 } 3131 } 3132 3133 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3134 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3135 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3136 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3137 "x%x x%x x%x\n", 3138 pmb->vport ? pmb->vport->vpi : 0, 3139 pmbox->mbxCommand, 3140 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3141 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3142 pmb->mbox_cmpl, 3143 *((uint32_t *) pmbox), 3144 pmbox->un.varWords[0], 3145 pmbox->un.varWords[1], 3146 pmbox->un.varWords[2], 3147 pmbox->un.varWords[3], 3148 pmbox->un.varWords[4], 3149 pmbox->un.varWords[5], 3150 pmbox->un.varWords[6], 3151 pmbox->un.varWords[7], 3152 pmbox->un.varWords[8], 3153 pmbox->un.varWords[9], 3154 pmbox->un.varWords[10]); 3155 3156 if (pmb->mbox_cmpl) 3157 pmb->mbox_cmpl(phba,pmb); 3158 } while (1); 3159 return 0; 3160 } 3161 3162 /** 3163 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3164 * @phba: Pointer to HBA context object. 3165 * @pring: Pointer to driver SLI ring object. 3166 * @tag: buffer tag. 3167 * 3168 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3169 * is set in the tag the buffer is posted for a particular exchange, 3170 * the function will return the buffer without replacing the buffer. 3171 * If the buffer is for unsolicited ELS or CT traffic, this function 3172 * returns the buffer and also posts another buffer to the firmware. 3173 **/ 3174 static struct lpfc_dmabuf * 3175 lpfc_sli_get_buff(struct lpfc_hba *phba, 3176 struct lpfc_sli_ring *pring, 3177 uint32_t tag) 3178 { 3179 struct hbq_dmabuf *hbq_entry; 3180 3181 if (tag & QUE_BUFTAG_BIT) 3182 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3183 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3184 if (!hbq_entry) 3185 return NULL; 3186 return &hbq_entry->dbuf; 3187 } 3188 3189 /** 3190 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3191 * containing a NVME LS request. 3192 * @phba: pointer to lpfc hba data structure. 3193 * @piocb: pointer to the iocbq struct representing the sequence starting 3194 * frame. 3195 * 3196 * This routine initially validates the NVME LS, validates there is a login 3197 * with the port that sent the LS, and then calls the appropriate nvme host 3198 * or target LS request handler. 3199 **/ 3200 static void 3201 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3202 { 3203 struct lpfc_nodelist *ndlp; 3204 struct lpfc_dmabuf *d_buf; 3205 struct hbq_dmabuf *nvmebuf; 3206 struct fc_frame_header *fc_hdr; 3207 struct lpfc_async_xchg_ctx *axchg = NULL; 3208 char *failwhy = NULL; 3209 uint32_t oxid, sid, did, fctl, size; 3210 int ret = 1; 3211 3212 d_buf = piocb->cmd_dmabuf; 3213 3214 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3215 fc_hdr = nvmebuf->hbuf.virt; 3216 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3217 sid = sli4_sid_from_fc_hdr(fc_hdr); 3218 did = sli4_did_from_fc_hdr(fc_hdr); 3219 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3220 fc_hdr->fh_f_ctl[1] << 8 | 3221 fc_hdr->fh_f_ctl[2]); 3222 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3223 3224 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3225 oxid, size, sid); 3226 3227 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3228 failwhy = "Driver Unloading"; 3229 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3230 failwhy = "NVME FC4 Disabled"; 3231 } else if (!phba->nvmet_support && !phba->pport->localport) { 3232 failwhy = "No Localport"; 3233 } else if (phba->nvmet_support && !phba->targetport) { 3234 failwhy = "No Targetport"; 3235 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3236 failwhy = "Bad NVME LS R_CTL"; 3237 } else if (unlikely((fctl & 0x00FF0000) != 3238 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3239 failwhy = "Bad NVME LS F_CTL"; 3240 } else { 3241 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3242 if (!axchg) 3243 failwhy = "No CTX memory"; 3244 } 3245 3246 if (unlikely(failwhy)) { 3247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3248 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3249 sid, oxid, failwhy); 3250 goto out_fail; 3251 } 3252 3253 /* validate the source of the LS is logged in */ 3254 ndlp = lpfc_findnode_did(phba->pport, sid); 3255 if (!ndlp || 3256 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3257 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3258 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3259 "6216 NVME Unsol rcv: No ndlp: " 3260 "NPort_ID x%x oxid x%x\n", 3261 sid, oxid); 3262 goto out_fail; 3263 } 3264 3265 axchg->phba = phba; 3266 axchg->ndlp = ndlp; 3267 axchg->size = size; 3268 axchg->oxid = oxid; 3269 axchg->sid = sid; 3270 axchg->wqeq = NULL; 3271 axchg->state = LPFC_NVME_STE_LS_RCV; 3272 axchg->entry_cnt = 1; 3273 axchg->rqb_buffer = (void *)nvmebuf; 3274 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3275 axchg->payload = nvmebuf->dbuf.virt; 3276 INIT_LIST_HEAD(&axchg->list); 3277 3278 if (phba->nvmet_support) { 3279 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3280 spin_lock_irq(&ndlp->lock); 3281 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3282 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3283 spin_unlock_irq(&ndlp->lock); 3284 3285 /* This reference is a single occurrence to hold the 3286 * node valid until the nvmet transport calls 3287 * host_release. 3288 */ 3289 if (!lpfc_nlp_get(ndlp)) 3290 goto out_fail; 3291 3292 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3293 "6206 NVMET unsol ls_req ndlp x%px " 3294 "DID x%x xflags x%x refcnt %d\n", 3295 ndlp, ndlp->nlp_DID, 3296 ndlp->fc4_xpt_flags, 3297 kref_read(&ndlp->kref)); 3298 } else { 3299 spin_unlock_irq(&ndlp->lock); 3300 } 3301 } else { 3302 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3303 } 3304 3305 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3306 if (!ret) 3307 return; 3308 3309 out_fail: 3310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3311 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3312 "NVMe%s handler failed %d\n", 3313 did, sid, oxid, 3314 (phba->nvmet_support) ? "T" : "I", ret); 3315 3316 /* recycle receive buffer */ 3317 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3318 3319 /* If start of new exchange, abort it */ 3320 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3321 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3322 3323 if (ret) 3324 kfree(axchg); 3325 } 3326 3327 /** 3328 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3329 * @phba: Pointer to HBA context object. 3330 * @pring: Pointer to driver SLI ring object. 3331 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3332 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3333 * @fch_type: the type for the first frame of the sequence. 3334 * 3335 * This function is called with no lock held. This function uses the r_ctl and 3336 * type of the received sequence to find the correct callback function to call 3337 * to process the sequence. 3338 **/ 3339 static int 3340 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3341 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3342 uint32_t fch_type) 3343 { 3344 int i; 3345 3346 switch (fch_type) { 3347 case FC_TYPE_NVME: 3348 lpfc_nvme_unsol_ls_handler(phba, saveq); 3349 return 1; 3350 default: 3351 break; 3352 } 3353 3354 /* unSolicited Responses */ 3355 if (pring->prt[0].profile) { 3356 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3357 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3358 saveq); 3359 return 1; 3360 } 3361 /* We must search, based on rctl / type 3362 for the right routine */ 3363 for (i = 0; i < pring->num_mask; i++) { 3364 if ((pring->prt[i].rctl == fch_r_ctl) && 3365 (pring->prt[i].type == fch_type)) { 3366 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3367 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3368 (phba, pring, saveq); 3369 return 1; 3370 } 3371 } 3372 return 0; 3373 } 3374 3375 static void 3376 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3377 struct lpfc_iocbq *saveq) 3378 { 3379 IOCB_t *irsp; 3380 union lpfc_wqe128 *wqe; 3381 u16 i = 0; 3382 3383 irsp = &saveq->iocb; 3384 wqe = &saveq->wqe; 3385 3386 /* Fill wcqe with the IOCB status fields */ 3387 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3388 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3389 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3390 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3391 3392 /* Source ID */ 3393 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3394 3395 /* rx-id of the response frame */ 3396 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3397 3398 /* ox-id of the frame */ 3399 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3400 irsp->unsli3.rcvsli3.ox_id); 3401 3402 /* DID */ 3403 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3404 irsp->un.rcvels.remoteID); 3405 3406 /* unsol data len */ 3407 for (i = 0; i < irsp->ulpBdeCount; i++) { 3408 struct lpfc_hbq_entry *hbqe = NULL; 3409 3410 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3411 if (i == 0) { 3412 hbqe = (struct lpfc_hbq_entry *) 3413 &irsp->un.ulpWord[0]; 3414 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3415 hbqe->bde.tus.f.bdeSize; 3416 } else if (i == 1) { 3417 hbqe = (struct lpfc_hbq_entry *) 3418 &irsp->unsli3.sli3Words[4]; 3419 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3420 } 3421 } 3422 } 3423 } 3424 3425 /** 3426 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3427 * @phba: Pointer to HBA context object. 3428 * @pring: Pointer to driver SLI ring object. 3429 * @saveq: Pointer to the unsolicited iocb. 3430 * 3431 * This function is called with no lock held by the ring event handler 3432 * when there is an unsolicited iocb posted to the response ring by the 3433 * firmware. This function gets the buffer associated with the iocbs 3434 * and calls the event handler for the ring. This function handles both 3435 * qring buffers and hbq buffers. 3436 * When the function returns 1 the caller can free the iocb object otherwise 3437 * upper layer functions will free the iocb objects. 3438 **/ 3439 static int 3440 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3441 struct lpfc_iocbq *saveq) 3442 { 3443 IOCB_t * irsp; 3444 WORD5 * w5p; 3445 dma_addr_t paddr; 3446 uint32_t Rctl, Type; 3447 struct lpfc_iocbq *iocbq; 3448 struct lpfc_dmabuf *dmzbuf; 3449 3450 irsp = &saveq->iocb; 3451 saveq->vport = phba->pport; 3452 3453 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3454 if (pring->lpfc_sli_rcv_async_status) 3455 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3456 else 3457 lpfc_printf_log(phba, 3458 KERN_WARNING, 3459 LOG_SLI, 3460 "0316 Ring %d handler: unexpected " 3461 "ASYNC_STATUS iocb received evt_code " 3462 "0x%x\n", 3463 pring->ringno, 3464 irsp->un.asyncstat.evt_code); 3465 return 1; 3466 } 3467 3468 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3469 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3470 if (irsp->ulpBdeCount > 0) { 3471 dmzbuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->un.ulpWord[3]); 3473 lpfc_in_buf_free(phba, dmzbuf); 3474 } 3475 3476 if (irsp->ulpBdeCount > 1) { 3477 dmzbuf = lpfc_sli_get_buff(phba, pring, 3478 irsp->unsli3.sli3Words[3]); 3479 lpfc_in_buf_free(phba, dmzbuf); 3480 } 3481 3482 if (irsp->ulpBdeCount > 2) { 3483 dmzbuf = lpfc_sli_get_buff(phba, pring, 3484 irsp->unsli3.sli3Words[7]); 3485 lpfc_in_buf_free(phba, dmzbuf); 3486 } 3487 3488 return 1; 3489 } 3490 3491 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3492 if (irsp->ulpBdeCount != 0) { 3493 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3494 irsp->un.ulpWord[3]); 3495 if (!saveq->cmd_dmabuf) 3496 lpfc_printf_log(phba, 3497 KERN_ERR, 3498 LOG_SLI, 3499 "0341 Ring %d Cannot find buffer for " 3500 "an unsolicited iocb. tag 0x%x\n", 3501 pring->ringno, 3502 irsp->un.ulpWord[3]); 3503 } 3504 if (irsp->ulpBdeCount == 2) { 3505 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3506 irsp->unsli3.sli3Words[7]); 3507 if (!saveq->bpl_dmabuf) 3508 lpfc_printf_log(phba, 3509 KERN_ERR, 3510 LOG_SLI, 3511 "0342 Ring %d Cannot find buffer for an" 3512 " unsolicited iocb. tag 0x%x\n", 3513 pring->ringno, 3514 irsp->unsli3.sli3Words[7]); 3515 } 3516 list_for_each_entry(iocbq, &saveq->list, list) { 3517 irsp = &iocbq->iocb; 3518 if (irsp->ulpBdeCount != 0) { 3519 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3520 pring, 3521 irsp->un.ulpWord[3]); 3522 if (!iocbq->cmd_dmabuf) 3523 lpfc_printf_log(phba, 3524 KERN_ERR, 3525 LOG_SLI, 3526 "0343 Ring %d Cannot find " 3527 "buffer for an unsolicited iocb" 3528 ". tag 0x%x\n", pring->ringno, 3529 irsp->un.ulpWord[3]); 3530 } 3531 if (irsp->ulpBdeCount == 2) { 3532 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3533 pring, 3534 irsp->unsli3.sli3Words[7]); 3535 if (!iocbq->bpl_dmabuf) 3536 lpfc_printf_log(phba, 3537 KERN_ERR, 3538 LOG_SLI, 3539 "0344 Ring %d Cannot find " 3540 "buffer for an unsolicited " 3541 "iocb. tag 0x%x\n", 3542 pring->ringno, 3543 irsp->unsli3.sli3Words[7]); 3544 } 3545 } 3546 } else { 3547 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3548 irsp->un.cont64[0].addrLow); 3549 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3550 paddr); 3551 if (irsp->ulpBdeCount == 2) { 3552 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3553 irsp->un.cont64[1].addrLow); 3554 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3555 pring, 3556 paddr); 3557 } 3558 } 3559 3560 if (irsp->ulpBdeCount != 0 && 3561 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3562 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3563 int found = 0; 3564 3565 /* search continue save q for same XRI */ 3566 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3567 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3568 saveq->iocb.unsli3.rcvsli3.ox_id) { 3569 list_add_tail(&saveq->list, &iocbq->list); 3570 found = 1; 3571 break; 3572 } 3573 } 3574 if (!found) 3575 list_add_tail(&saveq->clist, 3576 &pring->iocb_continue_saveq); 3577 3578 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3579 list_del_init(&iocbq->clist); 3580 saveq = iocbq; 3581 irsp = &saveq->iocb; 3582 } else { 3583 return 0; 3584 } 3585 } 3586 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3587 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3588 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3589 Rctl = FC_RCTL_ELS_REQ; 3590 Type = FC_TYPE_ELS; 3591 } else { 3592 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3593 Rctl = w5p->hcsw.Rctl; 3594 Type = w5p->hcsw.Type; 3595 3596 /* Firmware Workaround */ 3597 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3598 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3599 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3600 Rctl = FC_RCTL_ELS_REQ; 3601 Type = FC_TYPE_ELS; 3602 w5p->hcsw.Rctl = Rctl; 3603 w5p->hcsw.Type = Type; 3604 } 3605 } 3606 3607 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3608 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3609 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3610 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3611 saveq->vport = phba->pport; 3612 else 3613 saveq->vport = lpfc_find_vport_by_vpid(phba, 3614 irsp->unsli3.rcvsli3.vpi); 3615 } 3616 3617 /* Prepare WQE with Unsol frame */ 3618 lpfc_sli_prep_unsol_wqe(phba, saveq); 3619 3620 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3621 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3622 "0313 Ring %d handler: unexpected Rctl x%x " 3623 "Type x%x received\n", 3624 pring->ringno, Rctl, Type); 3625 3626 return 1; 3627 } 3628 3629 /** 3630 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3631 * @phba: Pointer to HBA context object. 3632 * @pring: Pointer to driver SLI ring object. 3633 * @prspiocb: Pointer to response iocb object. 3634 * 3635 * This function looks up the iocb_lookup table to get the command iocb 3636 * corresponding to the given response iocb using the iotag of the 3637 * response iocb. The driver calls this function with the hbalock held 3638 * for SLI3 ports or the ring lock held for SLI4 ports. 3639 * This function returns the command iocb object if it finds the command 3640 * iocb else returns NULL. 3641 **/ 3642 static struct lpfc_iocbq * 3643 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3644 struct lpfc_sli_ring *pring, 3645 struct lpfc_iocbq *prspiocb) 3646 { 3647 struct lpfc_iocbq *cmd_iocb = NULL; 3648 u16 iotag; 3649 3650 if (phba->sli_rev == LPFC_SLI_REV4) 3651 iotag = get_wqe_reqtag(prspiocb); 3652 else 3653 iotag = prspiocb->iocb.ulpIoTag; 3654 3655 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3656 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3657 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3658 /* remove from txcmpl queue list */ 3659 list_del_init(&cmd_iocb->list); 3660 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3661 pring->txcmplq_cnt--; 3662 return cmd_iocb; 3663 } 3664 } 3665 3666 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3667 "0317 iotag x%x is out of " 3668 "range: max iotag x%x\n", 3669 iotag, phba->sli.last_iotag); 3670 return NULL; 3671 } 3672 3673 /** 3674 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3675 * @phba: Pointer to HBA context object. 3676 * @pring: Pointer to driver SLI ring object. 3677 * @iotag: IOCB tag. 3678 * 3679 * This function looks up the iocb_lookup table to get the command iocb 3680 * corresponding to the given iotag. The driver calls this function with 3681 * the ring lock held because this function is an SLI4 port only helper. 3682 * This function returns the command iocb object if it finds the command 3683 * iocb else returns NULL. 3684 **/ 3685 static struct lpfc_iocbq * 3686 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3687 struct lpfc_sli_ring *pring, uint16_t iotag) 3688 { 3689 struct lpfc_iocbq *cmd_iocb = NULL; 3690 3691 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3692 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3693 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3694 /* remove from txcmpl queue list */ 3695 list_del_init(&cmd_iocb->list); 3696 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3697 pring->txcmplq_cnt--; 3698 return cmd_iocb; 3699 } 3700 } 3701 3702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3703 "0372 iotag x%x lookup error: max iotag (x%x) " 3704 "cmd_flag x%x\n", 3705 iotag, phba->sli.last_iotag, 3706 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3707 return NULL; 3708 } 3709 3710 /** 3711 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3712 * @phba: Pointer to HBA context object. 3713 * @pring: Pointer to driver SLI ring object. 3714 * @saveq: Pointer to the response iocb to be processed. 3715 * 3716 * This function is called by the ring event handler for non-fcp 3717 * rings when there is a new response iocb in the response ring. 3718 * The caller is not required to hold any locks. This function 3719 * gets the command iocb associated with the response iocb and 3720 * calls the completion handler for the command iocb. If there 3721 * is no completion handler, the function will free the resources 3722 * associated with command iocb. If the response iocb is for 3723 * an already aborted command iocb, the status of the completion 3724 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3725 * This function always returns 1. 3726 **/ 3727 static int 3728 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3729 struct lpfc_iocbq *saveq) 3730 { 3731 struct lpfc_iocbq *cmdiocbp; 3732 unsigned long iflag; 3733 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3734 3735 if (phba->sli_rev == LPFC_SLI_REV4) 3736 spin_lock_irqsave(&pring->ring_lock, iflag); 3737 else 3738 spin_lock_irqsave(&phba->hbalock, iflag); 3739 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3740 if (phba->sli_rev == LPFC_SLI_REV4) 3741 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3742 else 3743 spin_unlock_irqrestore(&phba->hbalock, iflag); 3744 3745 ulp_command = get_job_cmnd(phba, saveq); 3746 ulp_status = get_job_ulpstatus(phba, saveq); 3747 ulp_word4 = get_job_word4(phba, saveq); 3748 ulp_context = get_job_ulpcontext(phba, saveq); 3749 if (phba->sli_rev == LPFC_SLI_REV4) 3750 iotag = get_wqe_reqtag(saveq); 3751 else 3752 iotag = saveq->iocb.ulpIoTag; 3753 3754 if (cmdiocbp) { 3755 ulp_command = get_job_cmnd(phba, cmdiocbp); 3756 if (cmdiocbp->cmd_cmpl) { 3757 /* 3758 * If an ELS command failed send an event to mgmt 3759 * application. 3760 */ 3761 if (ulp_status && 3762 (pring->ringno == LPFC_ELS_RING) && 3763 (ulp_command == CMD_ELS_REQUEST64_CR)) 3764 lpfc_send_els_failure_event(phba, 3765 cmdiocbp, saveq); 3766 3767 /* 3768 * Post all ELS completions to the worker thread. 3769 * All other are passed to the completion callback. 3770 */ 3771 if (pring->ringno == LPFC_ELS_RING) { 3772 if ((phba->sli_rev < LPFC_SLI_REV4) && 3773 (cmdiocbp->cmd_flag & 3774 LPFC_DRIVER_ABORTED)) { 3775 spin_lock_irqsave(&phba->hbalock, 3776 iflag); 3777 cmdiocbp->cmd_flag &= 3778 ~LPFC_DRIVER_ABORTED; 3779 spin_unlock_irqrestore(&phba->hbalock, 3780 iflag); 3781 saveq->iocb.ulpStatus = 3782 IOSTAT_LOCAL_REJECT; 3783 saveq->iocb.un.ulpWord[4] = 3784 IOERR_SLI_ABORTED; 3785 3786 /* Firmware could still be in progress 3787 * of DMAing payload, so don't free data 3788 * buffer till after a hbeat. 3789 */ 3790 spin_lock_irqsave(&phba->hbalock, 3791 iflag); 3792 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3793 spin_unlock_irqrestore(&phba->hbalock, 3794 iflag); 3795 } 3796 if (phba->sli_rev == LPFC_SLI_REV4) { 3797 if (saveq->cmd_flag & 3798 LPFC_EXCHANGE_BUSY) { 3799 /* Set cmdiocb flag for the 3800 * exchange busy so sgl (xri) 3801 * will not be released until 3802 * the abort xri is received 3803 * from hba. 3804 */ 3805 spin_lock_irqsave( 3806 &phba->hbalock, iflag); 3807 cmdiocbp->cmd_flag |= 3808 LPFC_EXCHANGE_BUSY; 3809 spin_unlock_irqrestore( 3810 &phba->hbalock, iflag); 3811 } 3812 if (cmdiocbp->cmd_flag & 3813 LPFC_DRIVER_ABORTED) { 3814 /* 3815 * Clear LPFC_DRIVER_ABORTED 3816 * bit in case it was driver 3817 * initiated abort. 3818 */ 3819 spin_lock_irqsave( 3820 &phba->hbalock, iflag); 3821 cmdiocbp->cmd_flag &= 3822 ~LPFC_DRIVER_ABORTED; 3823 spin_unlock_irqrestore( 3824 &phba->hbalock, iflag); 3825 set_job_ulpstatus(cmdiocbp, 3826 IOSTAT_LOCAL_REJECT); 3827 set_job_ulpword4(cmdiocbp, 3828 IOERR_ABORT_REQUESTED); 3829 /* 3830 * For SLI4, irspiocb contains 3831 * NO_XRI in sli_xritag, it 3832 * shall not affect releasing 3833 * sgl (xri) process. 3834 */ 3835 set_job_ulpstatus(saveq, 3836 IOSTAT_LOCAL_REJECT); 3837 set_job_ulpword4(saveq, 3838 IOERR_SLI_ABORTED); 3839 spin_lock_irqsave( 3840 &phba->hbalock, iflag); 3841 saveq->cmd_flag |= 3842 LPFC_DELAY_MEM_FREE; 3843 spin_unlock_irqrestore( 3844 &phba->hbalock, iflag); 3845 } 3846 } 3847 } 3848 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3849 } else 3850 lpfc_sli_release_iocbq(phba, cmdiocbp); 3851 } else { 3852 /* 3853 * Unknown initiating command based on the response iotag. 3854 * This could be the case on the ELS ring because of 3855 * lpfc_els_abort(). 3856 */ 3857 if (pring->ringno != LPFC_ELS_RING) { 3858 /* 3859 * Ring <ringno> handler: unexpected completion IoTag 3860 * <IoTag> 3861 */ 3862 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3863 "0322 Ring %d handler: " 3864 "unexpected completion IoTag x%x " 3865 "Data: x%x x%x x%x x%x\n", 3866 pring->ringno, iotag, ulp_status, 3867 ulp_word4, ulp_command, ulp_context); 3868 } 3869 } 3870 3871 return 1; 3872 } 3873 3874 /** 3875 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3876 * @phba: Pointer to HBA context object. 3877 * @pring: Pointer to driver SLI ring object. 3878 * 3879 * This function is called from the iocb ring event handlers when 3880 * put pointer is ahead of the get pointer for a ring. This function signal 3881 * an error attention condition to the worker thread and the worker 3882 * thread will transition the HBA to offline state. 3883 **/ 3884 static void 3885 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3886 { 3887 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3888 /* 3889 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3890 * rsp ring <portRspMax> 3891 */ 3892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3893 "0312 Ring %d handler: portRspPut %d " 3894 "is bigger than rsp ring %d\n", 3895 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3896 pring->sli.sli3.numRiocb); 3897 3898 phba->link_state = LPFC_HBA_ERROR; 3899 3900 /* 3901 * All error attention handlers are posted to 3902 * worker thread 3903 */ 3904 phba->work_ha |= HA_ERATT; 3905 phba->work_hs = HS_FFER3; 3906 3907 lpfc_worker_wake_up(phba); 3908 3909 return; 3910 } 3911 3912 /** 3913 * lpfc_poll_eratt - Error attention polling timer timeout handler 3914 * @t: Context to fetch pointer to address of HBA context object from. 3915 * 3916 * This function is invoked by the Error Attention polling timer when the 3917 * timer times out. It will check the SLI Error Attention register for 3918 * possible attention events. If so, it will post an Error Attention event 3919 * and wake up worker thread to process it. Otherwise, it will set up the 3920 * Error Attention polling timer for the next poll. 3921 **/ 3922 void lpfc_poll_eratt(struct timer_list *t) 3923 { 3924 struct lpfc_hba *phba; 3925 uint32_t eratt = 0; 3926 uint64_t sli_intr, cnt; 3927 3928 phba = from_timer(phba, t, eratt_poll); 3929 if (!test_bit(HBA_SETUP, &phba->hba_flag)) 3930 return; 3931 3932 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3933 return; 3934 3935 /* Here we will also keep track of interrupts per sec of the hba */ 3936 sli_intr = phba->sli.slistat.sli_intr; 3937 3938 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3939 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3940 sli_intr); 3941 else 3942 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3943 3944 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3945 do_div(cnt, phba->eratt_poll_interval); 3946 phba->sli.slistat.sli_ips = cnt; 3947 3948 phba->sli.slistat.sli_prev_intr = sli_intr; 3949 3950 /* Check chip HA register for error event */ 3951 eratt = lpfc_sli_check_eratt(phba); 3952 3953 if (eratt) 3954 /* Tell the worker thread there is work to do */ 3955 lpfc_worker_wake_up(phba); 3956 else 3957 /* Restart the timer for next eratt poll */ 3958 mod_timer(&phba->eratt_poll, 3959 jiffies + 3960 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3961 return; 3962 } 3963 3964 3965 /** 3966 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3967 * @phba: Pointer to HBA context object. 3968 * @pring: Pointer to driver SLI ring object. 3969 * @mask: Host attention register mask for this ring. 3970 * 3971 * This function is called from the interrupt context when there is a ring 3972 * event for the fcp ring. The caller does not hold any lock. 3973 * The function processes each response iocb in the response ring until it 3974 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3975 * LE bit set. The function will call the completion handler of the command iocb 3976 * if the response iocb indicates a completion for a command iocb or it is 3977 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3978 * function if this is an unsolicited iocb. 3979 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3980 * to check it explicitly. 3981 */ 3982 int 3983 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3984 struct lpfc_sli_ring *pring, uint32_t mask) 3985 { 3986 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3987 IOCB_t *irsp = NULL; 3988 IOCB_t *entry = NULL; 3989 struct lpfc_iocbq *cmdiocbq = NULL; 3990 struct lpfc_iocbq rspiocbq; 3991 uint32_t status; 3992 uint32_t portRspPut, portRspMax; 3993 int rc = 1; 3994 lpfc_iocb_type type; 3995 unsigned long iflag; 3996 uint32_t rsp_cmpl = 0; 3997 3998 spin_lock_irqsave(&phba->hbalock, iflag); 3999 pring->stats.iocb_event++; 4000 4001 /* 4002 * The next available response entry should never exceed the maximum 4003 * entries. If it does, treat it as an adapter hardware error. 4004 */ 4005 portRspMax = pring->sli.sli3.numRiocb; 4006 portRspPut = le32_to_cpu(pgp->rspPutInx); 4007 if (unlikely(portRspPut >= portRspMax)) { 4008 lpfc_sli_rsp_pointers_error(phba, pring); 4009 spin_unlock_irqrestore(&phba->hbalock, iflag); 4010 return 1; 4011 } 4012 if (phba->fcp_ring_in_use) { 4013 spin_unlock_irqrestore(&phba->hbalock, iflag); 4014 return 1; 4015 } else 4016 phba->fcp_ring_in_use = 1; 4017 4018 rmb(); 4019 while (pring->sli.sli3.rspidx != portRspPut) { 4020 /* 4021 * Fetch an entry off the ring and copy it into a local data 4022 * structure. The copy involves a byte-swap since the 4023 * network byte order and pci byte orders are different. 4024 */ 4025 entry = lpfc_resp_iocb(phba, pring); 4026 phba->last_completion_time = jiffies; 4027 4028 if (++pring->sli.sli3.rspidx >= portRspMax) 4029 pring->sli.sli3.rspidx = 0; 4030 4031 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4032 (uint32_t *) &rspiocbq.iocb, 4033 phba->iocb_rsp_size); 4034 INIT_LIST_HEAD(&(rspiocbq.list)); 4035 irsp = &rspiocbq.iocb; 4036 4037 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4038 pring->stats.iocb_rsp++; 4039 rsp_cmpl++; 4040 4041 if (unlikely(irsp->ulpStatus)) { 4042 /* 4043 * If resource errors reported from HBA, reduce 4044 * queuedepths of the SCSI device. 4045 */ 4046 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4047 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4048 IOERR_NO_RESOURCES)) { 4049 spin_unlock_irqrestore(&phba->hbalock, iflag); 4050 phba->lpfc_rampdown_queue_depth(phba); 4051 spin_lock_irqsave(&phba->hbalock, iflag); 4052 } 4053 4054 /* Rsp ring <ringno> error: IOCB */ 4055 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4056 "0336 Rsp Ring %d error: IOCB Data: " 4057 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4058 pring->ringno, 4059 irsp->un.ulpWord[0], 4060 irsp->un.ulpWord[1], 4061 irsp->un.ulpWord[2], 4062 irsp->un.ulpWord[3], 4063 irsp->un.ulpWord[4], 4064 irsp->un.ulpWord[5], 4065 *(uint32_t *)&irsp->un1, 4066 *((uint32_t *)&irsp->un1 + 1)); 4067 } 4068 4069 switch (type) { 4070 case LPFC_ABORT_IOCB: 4071 case LPFC_SOL_IOCB: 4072 /* 4073 * Idle exchange closed via ABTS from port. No iocb 4074 * resources need to be recovered. 4075 */ 4076 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4077 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4078 "0333 IOCB cmd 0x%x" 4079 " processed. Skipping" 4080 " completion\n", 4081 irsp->ulpCommand); 4082 break; 4083 } 4084 4085 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4086 &rspiocbq); 4087 if (unlikely(!cmdiocbq)) 4088 break; 4089 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4090 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4091 if (cmdiocbq->cmd_cmpl) { 4092 spin_unlock_irqrestore(&phba->hbalock, iflag); 4093 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4094 spin_lock_irqsave(&phba->hbalock, iflag); 4095 } 4096 break; 4097 case LPFC_UNSOL_IOCB: 4098 spin_unlock_irqrestore(&phba->hbalock, iflag); 4099 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4100 spin_lock_irqsave(&phba->hbalock, iflag); 4101 break; 4102 default: 4103 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4104 char adaptermsg[LPFC_MAX_ADPTMSG]; 4105 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4106 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4107 MAX_MSG_DATA); 4108 dev_warn(&((phba->pcidev)->dev), 4109 "lpfc%d: %s\n", 4110 phba->brd_no, adaptermsg); 4111 } else { 4112 /* Unknown IOCB command */ 4113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4114 "0334 Unknown IOCB command " 4115 "Data: x%x, x%x x%x x%x x%x\n", 4116 type, irsp->ulpCommand, 4117 irsp->ulpStatus, 4118 irsp->ulpIoTag, 4119 irsp->ulpContext); 4120 } 4121 break; 4122 } 4123 4124 /* 4125 * The response IOCB has been processed. Update the ring 4126 * pointer in SLIM. If the port response put pointer has not 4127 * been updated, sync the pgp->rspPutInx and fetch the new port 4128 * response put pointer. 4129 */ 4130 writel(pring->sli.sli3.rspidx, 4131 &phba->host_gp[pring->ringno].rspGetInx); 4132 4133 if (pring->sli.sli3.rspidx == portRspPut) 4134 portRspPut = le32_to_cpu(pgp->rspPutInx); 4135 } 4136 4137 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4138 pring->stats.iocb_rsp_full++; 4139 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4140 writel(status, phba->CAregaddr); 4141 readl(phba->CAregaddr); 4142 } 4143 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4144 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4145 pring->stats.iocb_cmd_empty++; 4146 4147 /* Force update of the local copy of cmdGetInx */ 4148 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4149 lpfc_sli_resume_iocb(phba, pring); 4150 4151 if ((pring->lpfc_sli_cmd_available)) 4152 (pring->lpfc_sli_cmd_available) (phba, pring); 4153 4154 } 4155 4156 phba->fcp_ring_in_use = 0; 4157 spin_unlock_irqrestore(&phba->hbalock, iflag); 4158 return rc; 4159 } 4160 4161 /** 4162 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4163 * @phba: Pointer to HBA context object. 4164 * @pring: Pointer to driver SLI ring object. 4165 * @rspiocbp: Pointer to driver response IOCB object. 4166 * 4167 * This function is called from the worker thread when there is a slow-path 4168 * response IOCB to process. This function chains all the response iocbs until 4169 * seeing the iocb with the LE bit set. The function will call 4170 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4171 * completion of a command iocb. The function will call the 4172 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4173 * The function frees the resources or calls the completion handler if this 4174 * iocb is an abort completion. The function returns NULL when the response 4175 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4176 * this function shall chain the iocb on to the iocb_continueq and return the 4177 * response iocb passed in. 4178 **/ 4179 static struct lpfc_iocbq * 4180 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4181 struct lpfc_iocbq *rspiocbp) 4182 { 4183 struct lpfc_iocbq *saveq; 4184 struct lpfc_iocbq *cmdiocb; 4185 struct lpfc_iocbq *next_iocb; 4186 IOCB_t *irsp; 4187 uint32_t free_saveq; 4188 u8 cmd_type; 4189 lpfc_iocb_type type; 4190 unsigned long iflag; 4191 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4192 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4193 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4194 int rc; 4195 4196 spin_lock_irqsave(&phba->hbalock, iflag); 4197 /* First add the response iocb to the countinueq list */ 4198 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4199 pring->iocb_continueq_cnt++; 4200 4201 /* 4202 * By default, the driver expects to free all resources 4203 * associated with this iocb completion. 4204 */ 4205 free_saveq = 1; 4206 saveq = list_get_first(&pring->iocb_continueq, 4207 struct lpfc_iocbq, list); 4208 list_del_init(&pring->iocb_continueq); 4209 pring->iocb_continueq_cnt = 0; 4210 4211 pring->stats.iocb_rsp++; 4212 4213 /* 4214 * If resource errors reported from HBA, reduce 4215 * queuedepths of the SCSI device. 4216 */ 4217 if (ulp_status == IOSTAT_LOCAL_REJECT && 4218 ((ulp_word4 & IOERR_PARAM_MASK) == 4219 IOERR_NO_RESOURCES)) { 4220 spin_unlock_irqrestore(&phba->hbalock, iflag); 4221 phba->lpfc_rampdown_queue_depth(phba); 4222 spin_lock_irqsave(&phba->hbalock, iflag); 4223 } 4224 4225 if (ulp_status) { 4226 /* Rsp ring <ringno> error: IOCB */ 4227 if (phba->sli_rev < LPFC_SLI_REV4) { 4228 irsp = &rspiocbp->iocb; 4229 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4230 "0328 Rsp Ring %d error: ulp_status x%x " 4231 "IOCB Data: " 4232 "x%08x x%08x x%08x x%08x " 4233 "x%08x x%08x x%08x x%08x " 4234 "x%08x x%08x x%08x x%08x " 4235 "x%08x x%08x x%08x x%08x\n", 4236 pring->ringno, ulp_status, 4237 get_job_ulpword(rspiocbp, 0), 4238 get_job_ulpword(rspiocbp, 1), 4239 get_job_ulpword(rspiocbp, 2), 4240 get_job_ulpword(rspiocbp, 3), 4241 get_job_ulpword(rspiocbp, 4), 4242 get_job_ulpword(rspiocbp, 5), 4243 *(((uint32_t *)irsp) + 6), 4244 *(((uint32_t *)irsp) + 7), 4245 *(((uint32_t *)irsp) + 8), 4246 *(((uint32_t *)irsp) + 9), 4247 *(((uint32_t *)irsp) + 10), 4248 *(((uint32_t *)irsp) + 11), 4249 *(((uint32_t *)irsp) + 12), 4250 *(((uint32_t *)irsp) + 13), 4251 *(((uint32_t *)irsp) + 14), 4252 *(((uint32_t *)irsp) + 15)); 4253 } else { 4254 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4255 "0321 Rsp Ring %d error: " 4256 "IOCB Data: " 4257 "x%x x%x x%x x%x\n", 4258 pring->ringno, 4259 rspiocbp->wcqe_cmpl.word0, 4260 rspiocbp->wcqe_cmpl.total_data_placed, 4261 rspiocbp->wcqe_cmpl.parameter, 4262 rspiocbp->wcqe_cmpl.word3); 4263 } 4264 } 4265 4266 4267 /* 4268 * Fetch the iocb command type and call the correct completion 4269 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4270 * get freed back to the lpfc_iocb_list by the discovery 4271 * kernel thread. 4272 */ 4273 cmd_type = ulp_command & CMD_IOCB_MASK; 4274 type = lpfc_sli_iocb_cmd_type(cmd_type); 4275 switch (type) { 4276 case LPFC_SOL_IOCB: 4277 spin_unlock_irqrestore(&phba->hbalock, iflag); 4278 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4279 spin_lock_irqsave(&phba->hbalock, iflag); 4280 break; 4281 case LPFC_UNSOL_IOCB: 4282 spin_unlock_irqrestore(&phba->hbalock, iflag); 4283 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4284 spin_lock_irqsave(&phba->hbalock, iflag); 4285 if (!rc) 4286 free_saveq = 0; 4287 break; 4288 case LPFC_ABORT_IOCB: 4289 cmdiocb = NULL; 4290 if (ulp_command != CMD_XRI_ABORTED_CX) 4291 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4292 saveq); 4293 if (cmdiocb) { 4294 /* Call the specified completion routine */ 4295 if (cmdiocb->cmd_cmpl) { 4296 spin_unlock_irqrestore(&phba->hbalock, iflag); 4297 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4298 spin_lock_irqsave(&phba->hbalock, iflag); 4299 } else { 4300 __lpfc_sli_release_iocbq(phba, cmdiocb); 4301 } 4302 } 4303 break; 4304 case LPFC_UNKNOWN_IOCB: 4305 if (ulp_command == CMD_ADAPTER_MSG) { 4306 char adaptermsg[LPFC_MAX_ADPTMSG]; 4307 4308 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4309 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4310 MAX_MSG_DATA); 4311 dev_warn(&((phba->pcidev)->dev), 4312 "lpfc%d: %s\n", 4313 phba->brd_no, adaptermsg); 4314 } else { 4315 /* Unknown command */ 4316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4317 "0335 Unknown IOCB " 4318 "command Data: x%x " 4319 "x%x x%x x%x\n", 4320 ulp_command, 4321 ulp_status, 4322 get_wqe_reqtag(rspiocbp), 4323 get_job_ulpcontext(phba, rspiocbp)); 4324 } 4325 break; 4326 } 4327 4328 if (free_saveq) { 4329 list_for_each_entry_safe(rspiocbp, next_iocb, 4330 &saveq->list, list) { 4331 list_del_init(&rspiocbp->list); 4332 __lpfc_sli_release_iocbq(phba, rspiocbp); 4333 } 4334 __lpfc_sli_release_iocbq(phba, saveq); 4335 } 4336 rspiocbp = NULL; 4337 spin_unlock_irqrestore(&phba->hbalock, iflag); 4338 return rspiocbp; 4339 } 4340 4341 /** 4342 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4343 * @phba: Pointer to HBA context object. 4344 * @pring: Pointer to driver SLI ring object. 4345 * @mask: Host attention register mask for this ring. 4346 * 4347 * This routine wraps the actual slow_ring event process routine from the 4348 * API jump table function pointer from the lpfc_hba struct. 4349 **/ 4350 void 4351 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4352 struct lpfc_sli_ring *pring, uint32_t mask) 4353 { 4354 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4355 } 4356 4357 /** 4358 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4359 * @phba: Pointer to HBA context object. 4360 * @pring: Pointer to driver SLI ring object. 4361 * @mask: Host attention register mask for this ring. 4362 * 4363 * This function is called from the worker thread when there is a ring event 4364 * for non-fcp rings. The caller does not hold any lock. The function will 4365 * remove each response iocb in the response ring and calls the handle 4366 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4367 **/ 4368 static void 4369 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4370 struct lpfc_sli_ring *pring, uint32_t mask) 4371 { 4372 struct lpfc_pgp *pgp; 4373 IOCB_t *entry; 4374 IOCB_t *irsp = NULL; 4375 struct lpfc_iocbq *rspiocbp = NULL; 4376 uint32_t portRspPut, portRspMax; 4377 unsigned long iflag; 4378 uint32_t status; 4379 4380 pgp = &phba->port_gp[pring->ringno]; 4381 spin_lock_irqsave(&phba->hbalock, iflag); 4382 pring->stats.iocb_event++; 4383 4384 /* 4385 * The next available response entry should never exceed the maximum 4386 * entries. If it does, treat it as an adapter hardware error. 4387 */ 4388 portRspMax = pring->sli.sli3.numRiocb; 4389 portRspPut = le32_to_cpu(pgp->rspPutInx); 4390 if (portRspPut >= portRspMax) { 4391 /* 4392 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4393 * rsp ring <portRspMax> 4394 */ 4395 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4396 "0303 Ring %d handler: portRspPut %d " 4397 "is bigger than rsp ring %d\n", 4398 pring->ringno, portRspPut, portRspMax); 4399 4400 phba->link_state = LPFC_HBA_ERROR; 4401 spin_unlock_irqrestore(&phba->hbalock, iflag); 4402 4403 phba->work_hs = HS_FFER3; 4404 lpfc_handle_eratt(phba); 4405 4406 return; 4407 } 4408 4409 rmb(); 4410 while (pring->sli.sli3.rspidx != portRspPut) { 4411 /* 4412 * Build a completion list and call the appropriate handler. 4413 * The process is to get the next available response iocb, get 4414 * a free iocb from the list, copy the response data into the 4415 * free iocb, insert to the continuation list, and update the 4416 * next response index to slim. This process makes response 4417 * iocb's in the ring available to DMA as fast as possible but 4418 * pays a penalty for a copy operation. Since the iocb is 4419 * only 32 bytes, this penalty is considered small relative to 4420 * the PCI reads for register values and a slim write. When 4421 * the ulpLe field is set, the entire Command has been 4422 * received. 4423 */ 4424 entry = lpfc_resp_iocb(phba, pring); 4425 4426 phba->last_completion_time = jiffies; 4427 rspiocbp = __lpfc_sli_get_iocbq(phba); 4428 if (rspiocbp == NULL) { 4429 printk(KERN_ERR "%s: out of buffers! Failing " 4430 "completion.\n", __func__); 4431 break; 4432 } 4433 4434 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4435 phba->iocb_rsp_size); 4436 irsp = &rspiocbp->iocb; 4437 4438 if (++pring->sli.sli3.rspidx >= portRspMax) 4439 pring->sli.sli3.rspidx = 0; 4440 4441 if (pring->ringno == LPFC_ELS_RING) { 4442 lpfc_debugfs_slow_ring_trc(phba, 4443 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4444 *(((uint32_t *) irsp) + 4), 4445 *(((uint32_t *) irsp) + 6), 4446 *(((uint32_t *) irsp) + 7)); 4447 } 4448 4449 writel(pring->sli.sli3.rspidx, 4450 &phba->host_gp[pring->ringno].rspGetInx); 4451 4452 spin_unlock_irqrestore(&phba->hbalock, iflag); 4453 /* Handle the response IOCB */ 4454 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4455 spin_lock_irqsave(&phba->hbalock, iflag); 4456 4457 /* 4458 * If the port response put pointer has not been updated, sync 4459 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4460 * response put pointer. 4461 */ 4462 if (pring->sli.sli3.rspidx == portRspPut) { 4463 portRspPut = le32_to_cpu(pgp->rspPutInx); 4464 } 4465 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4466 4467 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4468 /* At least one response entry has been freed */ 4469 pring->stats.iocb_rsp_full++; 4470 /* SET RxRE_RSP in Chip Att register */ 4471 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4472 writel(status, phba->CAregaddr); 4473 readl(phba->CAregaddr); /* flush */ 4474 } 4475 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4476 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4477 pring->stats.iocb_cmd_empty++; 4478 4479 /* Force update of the local copy of cmdGetInx */ 4480 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4481 lpfc_sli_resume_iocb(phba, pring); 4482 4483 if ((pring->lpfc_sli_cmd_available)) 4484 (pring->lpfc_sli_cmd_available) (phba, pring); 4485 4486 } 4487 4488 spin_unlock_irqrestore(&phba->hbalock, iflag); 4489 return; 4490 } 4491 4492 /** 4493 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4494 * @phba: Pointer to HBA context object. 4495 * @pring: Pointer to driver SLI ring object. 4496 * @mask: Host attention register mask for this ring. 4497 * 4498 * This function is called from the worker thread when there is a pending 4499 * ELS response iocb on the driver internal slow-path response iocb worker 4500 * queue. The caller does not hold any lock. The function will remove each 4501 * response iocb from the response worker queue and calls the handle 4502 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4503 **/ 4504 static void 4505 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4506 struct lpfc_sli_ring *pring, uint32_t mask) 4507 { 4508 struct lpfc_iocbq *irspiocbq; 4509 struct hbq_dmabuf *dmabuf; 4510 struct lpfc_cq_event *cq_event; 4511 unsigned long iflag; 4512 int count = 0; 4513 4514 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4515 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4516 /* Get the response iocb from the head of work queue */ 4517 spin_lock_irqsave(&phba->hbalock, iflag); 4518 list_remove_head(&phba->sli4_hba.sp_queue_event, 4519 cq_event, struct lpfc_cq_event, list); 4520 spin_unlock_irqrestore(&phba->hbalock, iflag); 4521 4522 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4523 case CQE_CODE_COMPL_WQE: 4524 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4525 cq_event); 4526 /* Translate ELS WCQE to response IOCBQ */ 4527 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4528 irspiocbq); 4529 if (irspiocbq) 4530 lpfc_sli_sp_handle_rspiocb(phba, pring, 4531 irspiocbq); 4532 count++; 4533 break; 4534 case CQE_CODE_RECEIVE: 4535 case CQE_CODE_RECEIVE_V1: 4536 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4537 cq_event); 4538 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4539 count++; 4540 break; 4541 default: 4542 break; 4543 } 4544 4545 /* Limit the number of events to 64 to avoid soft lockups */ 4546 if (count == 64) 4547 break; 4548 } 4549 } 4550 4551 /** 4552 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4553 * @phba: Pointer to HBA context object. 4554 * @pring: Pointer to driver SLI ring object. 4555 * 4556 * This function aborts all iocbs in the given ring and frees all the iocb 4557 * objects in txq. This function issues an abort iocb for all the iocb commands 4558 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4559 * the return of this function. The caller is not required to hold any locks. 4560 **/ 4561 void 4562 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4563 { 4564 LIST_HEAD(tx_completions); 4565 LIST_HEAD(txcmplq_completions); 4566 struct lpfc_iocbq *iocb, *next_iocb; 4567 int offline; 4568 4569 if (pring->ringno == LPFC_ELS_RING) { 4570 lpfc_fabric_abort_hba(phba); 4571 } 4572 offline = pci_channel_offline(phba->pcidev); 4573 4574 /* Error everything on txq and txcmplq 4575 * First do the txq. 4576 */ 4577 if (phba->sli_rev >= LPFC_SLI_REV4) { 4578 spin_lock_irq(&pring->ring_lock); 4579 list_splice_init(&pring->txq, &tx_completions); 4580 pring->txq_cnt = 0; 4581 4582 if (offline) { 4583 list_splice_init(&pring->txcmplq, 4584 &txcmplq_completions); 4585 } else { 4586 /* Next issue ABTS for everything on the txcmplq */ 4587 list_for_each_entry_safe(iocb, next_iocb, 4588 &pring->txcmplq, list) 4589 lpfc_sli_issue_abort_iotag(phba, pring, 4590 iocb, NULL); 4591 } 4592 spin_unlock_irq(&pring->ring_lock); 4593 } else { 4594 spin_lock_irq(&phba->hbalock); 4595 list_splice_init(&pring->txq, &tx_completions); 4596 pring->txq_cnt = 0; 4597 4598 if (offline) { 4599 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4600 } else { 4601 /* Next issue ABTS for everything on the txcmplq */ 4602 list_for_each_entry_safe(iocb, next_iocb, 4603 &pring->txcmplq, list) 4604 lpfc_sli_issue_abort_iotag(phba, pring, 4605 iocb, NULL); 4606 } 4607 spin_unlock_irq(&phba->hbalock); 4608 } 4609 4610 if (offline) { 4611 /* Cancel all the IOCBs from the completions list */ 4612 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4613 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4614 } else { 4615 /* Make sure HBA is alive */ 4616 lpfc_issue_hb_tmo(phba); 4617 } 4618 /* Cancel all the IOCBs from the completions list */ 4619 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4620 IOERR_SLI_ABORTED); 4621 } 4622 4623 /** 4624 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4625 * @phba: Pointer to HBA context object. 4626 * 4627 * This function aborts all iocbs in FCP rings and frees all the iocb 4628 * objects in txq. This function issues an abort iocb for all the iocb commands 4629 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4630 * the return of this function. The caller is not required to hold any locks. 4631 **/ 4632 void 4633 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4634 { 4635 struct lpfc_sli *psli = &phba->sli; 4636 struct lpfc_sli_ring *pring; 4637 uint32_t i; 4638 4639 /* Look on all the FCP Rings for the iotag */ 4640 if (phba->sli_rev >= LPFC_SLI_REV4) { 4641 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4642 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4643 lpfc_sli_abort_iocb_ring(phba, pring); 4644 } 4645 } else { 4646 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4647 lpfc_sli_abort_iocb_ring(phba, pring); 4648 } 4649 } 4650 4651 /** 4652 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4653 * @phba: Pointer to HBA context object. 4654 * 4655 * This function flushes all iocbs in the IO ring and frees all the iocb 4656 * objects in txq and txcmplq. This function will not issue abort iocbs 4657 * for all the iocb commands in txcmplq, they will just be returned with 4658 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4659 * slot has been permanently disabled. 4660 **/ 4661 void 4662 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4663 { 4664 LIST_HEAD(txq); 4665 LIST_HEAD(txcmplq); 4666 struct lpfc_sli *psli = &phba->sli; 4667 struct lpfc_sli_ring *pring; 4668 uint32_t i; 4669 struct lpfc_iocbq *piocb, *next_iocb; 4670 4671 /* Indicate the I/O queues are flushed */ 4672 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4673 4674 /* Look on all the FCP Rings for the iotag */ 4675 if (phba->sli_rev >= LPFC_SLI_REV4) { 4676 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4677 if (!phba->sli4_hba.hdwq || 4678 !phba->sli4_hba.hdwq[i].io_wq) { 4679 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4680 "7777 hdwq's deleted %lx " 4681 "%lx %x %x\n", 4682 phba->pport->load_flag, 4683 phba->hba_flag, 4684 phba->link_state, 4685 phba->sli.sli_flag); 4686 return; 4687 } 4688 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4689 4690 spin_lock_irq(&pring->ring_lock); 4691 /* Retrieve everything on txq */ 4692 list_splice_init(&pring->txq, &txq); 4693 list_for_each_entry_safe(piocb, next_iocb, 4694 &pring->txcmplq, list) 4695 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4696 /* Retrieve everything on the txcmplq */ 4697 list_splice_init(&pring->txcmplq, &txcmplq); 4698 pring->txq_cnt = 0; 4699 pring->txcmplq_cnt = 0; 4700 spin_unlock_irq(&pring->ring_lock); 4701 4702 /* Flush the txq */ 4703 lpfc_sli_cancel_iocbs(phba, &txq, 4704 IOSTAT_LOCAL_REJECT, 4705 IOERR_SLI_DOWN); 4706 /* Flush the txcmplq */ 4707 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4708 IOSTAT_LOCAL_REJECT, 4709 IOERR_SLI_DOWN); 4710 if (unlikely(pci_channel_offline(phba->pcidev))) 4711 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4712 } 4713 } else { 4714 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4715 4716 spin_lock_irq(&phba->hbalock); 4717 /* Retrieve everything on txq */ 4718 list_splice_init(&pring->txq, &txq); 4719 list_for_each_entry_safe(piocb, next_iocb, 4720 &pring->txcmplq, list) 4721 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4722 /* Retrieve everything on the txcmplq */ 4723 list_splice_init(&pring->txcmplq, &txcmplq); 4724 pring->txq_cnt = 0; 4725 pring->txcmplq_cnt = 0; 4726 spin_unlock_irq(&phba->hbalock); 4727 4728 /* Flush the txq */ 4729 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4730 IOERR_SLI_DOWN); 4731 /* Flush the txcmpq */ 4732 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4733 IOERR_SLI_DOWN); 4734 } 4735 } 4736 4737 /** 4738 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4739 * @phba: Pointer to HBA context object. 4740 * @mask: Bit mask to be checked. 4741 * 4742 * This function reads the host status register and compares 4743 * with the provided bit mask to check if HBA completed 4744 * the restart. This function will wait in a loop for the 4745 * HBA to complete restart. If the HBA does not restart within 4746 * 15 iterations, the function will reset the HBA again. The 4747 * function returns 1 when HBA fail to restart otherwise returns 4748 * zero. 4749 **/ 4750 static int 4751 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4752 { 4753 uint32_t status; 4754 int i = 0; 4755 int retval = 0; 4756 4757 /* Read the HBA Host Status Register */ 4758 if (lpfc_readl(phba->HSregaddr, &status)) 4759 return 1; 4760 4761 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4762 4763 /* 4764 * Check status register every 100ms for 5 retries, then every 4765 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4766 * every 2.5 sec for 4. 4767 * Break our of the loop if errors occurred during init. 4768 */ 4769 while (((status & mask) != mask) && 4770 !(status & HS_FFERM) && 4771 i++ < 20) { 4772 4773 if (i <= 5) 4774 msleep(10); 4775 else if (i <= 10) 4776 msleep(500); 4777 else 4778 msleep(2500); 4779 4780 if (i == 15) { 4781 /* Do post */ 4782 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4783 lpfc_sli_brdrestart(phba); 4784 } 4785 /* Read the HBA Host Status Register */ 4786 if (lpfc_readl(phba->HSregaddr, &status)) { 4787 retval = 1; 4788 break; 4789 } 4790 } 4791 4792 /* Check to see if any errors occurred during init */ 4793 if ((status & HS_FFERM) || (i >= 20)) { 4794 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4795 "2751 Adapter failed to restart, " 4796 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4797 status, 4798 readl(phba->MBslimaddr + 0xa8), 4799 readl(phba->MBslimaddr + 0xac)); 4800 phba->link_state = LPFC_HBA_ERROR; 4801 retval = 1; 4802 } 4803 4804 return retval; 4805 } 4806 4807 /** 4808 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4809 * @phba: Pointer to HBA context object. 4810 * @mask: Bit mask to be checked. 4811 * 4812 * This function checks the host status register to check if HBA is 4813 * ready. This function will wait in a loop for the HBA to be ready 4814 * If the HBA is not ready , the function will will reset the HBA PCI 4815 * function again. The function returns 1 when HBA fail to be ready 4816 * otherwise returns zero. 4817 **/ 4818 static int 4819 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4820 { 4821 uint32_t status; 4822 int retval = 0; 4823 4824 /* Read the HBA Host Status Register */ 4825 status = lpfc_sli4_post_status_check(phba); 4826 4827 if (status) { 4828 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4829 lpfc_sli_brdrestart(phba); 4830 status = lpfc_sli4_post_status_check(phba); 4831 } 4832 4833 /* Check to see if any errors occurred during init */ 4834 if (status) { 4835 phba->link_state = LPFC_HBA_ERROR; 4836 retval = 1; 4837 } else 4838 phba->sli4_hba.intr_enable = 0; 4839 4840 clear_bit(HBA_SETUP, &phba->hba_flag); 4841 return retval; 4842 } 4843 4844 /** 4845 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4846 * @phba: Pointer to HBA context object. 4847 * @mask: Bit mask to be checked. 4848 * 4849 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4850 * from the API jump table function pointer from the lpfc_hba struct. 4851 **/ 4852 int 4853 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4854 { 4855 return phba->lpfc_sli_brdready(phba, mask); 4856 } 4857 4858 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4859 4860 /** 4861 * lpfc_reset_barrier - Make HBA ready for HBA reset 4862 * @phba: Pointer to HBA context object. 4863 * 4864 * This function is called before resetting an HBA. This function is called 4865 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4866 **/ 4867 void lpfc_reset_barrier(struct lpfc_hba *phba) 4868 { 4869 uint32_t __iomem *resp_buf; 4870 uint32_t __iomem *mbox_buf; 4871 volatile struct MAILBOX_word0 mbox; 4872 uint32_t hc_copy, ha_copy, resp_data; 4873 int i; 4874 uint8_t hdrtype; 4875 4876 lockdep_assert_held(&phba->hbalock); 4877 4878 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4879 if (hdrtype != PCI_HEADER_TYPE_MFD || 4880 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4881 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4882 return; 4883 4884 /* 4885 * Tell the other part of the chip to suspend temporarily all 4886 * its DMA activity. 4887 */ 4888 resp_buf = phba->MBslimaddr; 4889 4890 /* Disable the error attention */ 4891 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4892 return; 4893 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4894 readl(phba->HCregaddr); /* flush */ 4895 phba->link_flag |= LS_IGNORE_ERATT; 4896 4897 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4898 return; 4899 if (ha_copy & HA_ERATT) { 4900 /* Clear Chip error bit */ 4901 writel(HA_ERATT, phba->HAregaddr); 4902 phba->pport->stopped = 1; 4903 } 4904 4905 mbox.word0 = 0; 4906 mbox.mbxCommand = MBX_KILL_BOARD; 4907 mbox.mbxOwner = OWN_CHIP; 4908 4909 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4910 mbox_buf = phba->MBslimaddr; 4911 writel(mbox.word0, mbox_buf); 4912 4913 for (i = 0; i < 50; i++) { 4914 if (lpfc_readl((resp_buf + 1), &resp_data)) 4915 return; 4916 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4917 mdelay(1); 4918 else 4919 break; 4920 } 4921 resp_data = 0; 4922 if (lpfc_readl((resp_buf + 1), &resp_data)) 4923 return; 4924 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4925 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4926 phba->pport->stopped) 4927 goto restore_hc; 4928 else 4929 goto clear_errat; 4930 } 4931 4932 mbox.mbxOwner = OWN_HOST; 4933 resp_data = 0; 4934 for (i = 0; i < 500; i++) { 4935 if (lpfc_readl(resp_buf, &resp_data)) 4936 return; 4937 if (resp_data != mbox.word0) 4938 mdelay(1); 4939 else 4940 break; 4941 } 4942 4943 clear_errat: 4944 4945 while (++i < 500) { 4946 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4947 return; 4948 if (!(ha_copy & HA_ERATT)) 4949 mdelay(1); 4950 else 4951 break; 4952 } 4953 4954 if (readl(phba->HAregaddr) & HA_ERATT) { 4955 writel(HA_ERATT, phba->HAregaddr); 4956 phba->pport->stopped = 1; 4957 } 4958 4959 restore_hc: 4960 phba->link_flag &= ~LS_IGNORE_ERATT; 4961 writel(hc_copy, phba->HCregaddr); 4962 readl(phba->HCregaddr); /* flush */ 4963 } 4964 4965 /** 4966 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4967 * @phba: Pointer to HBA context object. 4968 * 4969 * This function issues a kill_board mailbox command and waits for 4970 * the error attention interrupt. This function is called for stopping 4971 * the firmware processing. The caller is not required to hold any 4972 * locks. This function calls lpfc_hba_down_post function to free 4973 * any pending commands after the kill. The function will return 1 when it 4974 * fails to kill the board else will return 0. 4975 **/ 4976 int 4977 lpfc_sli_brdkill(struct lpfc_hba *phba) 4978 { 4979 struct lpfc_sli *psli; 4980 LPFC_MBOXQ_t *pmb; 4981 uint32_t status; 4982 uint32_t ha_copy; 4983 int retval; 4984 int i = 0; 4985 4986 psli = &phba->sli; 4987 4988 /* Kill HBA */ 4989 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4990 "0329 Kill HBA Data: x%x x%x\n", 4991 phba->pport->port_state, psli->sli_flag); 4992 4993 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4994 if (!pmb) 4995 return 1; 4996 4997 /* Disable the error attention */ 4998 spin_lock_irq(&phba->hbalock); 4999 if (lpfc_readl(phba->HCregaddr, &status)) { 5000 spin_unlock_irq(&phba->hbalock); 5001 mempool_free(pmb, phba->mbox_mem_pool); 5002 return 1; 5003 } 5004 status &= ~HC_ERINT_ENA; 5005 writel(status, phba->HCregaddr); 5006 readl(phba->HCregaddr); /* flush */ 5007 phba->link_flag |= LS_IGNORE_ERATT; 5008 spin_unlock_irq(&phba->hbalock); 5009 5010 lpfc_kill_board(phba, pmb); 5011 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5012 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5013 5014 if (retval != MBX_SUCCESS) { 5015 if (retval != MBX_BUSY) 5016 mempool_free(pmb, phba->mbox_mem_pool); 5017 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5018 "2752 KILL_BOARD command failed retval %d\n", 5019 retval); 5020 spin_lock_irq(&phba->hbalock); 5021 phba->link_flag &= ~LS_IGNORE_ERATT; 5022 spin_unlock_irq(&phba->hbalock); 5023 return 1; 5024 } 5025 5026 spin_lock_irq(&phba->hbalock); 5027 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5028 spin_unlock_irq(&phba->hbalock); 5029 5030 mempool_free(pmb, phba->mbox_mem_pool); 5031 5032 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5033 * attention every 100ms for 3 seconds. If we don't get ERATT after 5034 * 3 seconds we still set HBA_ERROR state because the status of the 5035 * board is now undefined. 5036 */ 5037 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5038 return 1; 5039 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5040 mdelay(100); 5041 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5042 return 1; 5043 } 5044 5045 del_timer_sync(&psli->mbox_tmo); 5046 if (ha_copy & HA_ERATT) { 5047 writel(HA_ERATT, phba->HAregaddr); 5048 phba->pport->stopped = 1; 5049 } 5050 spin_lock_irq(&phba->hbalock); 5051 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5052 psli->mbox_active = NULL; 5053 phba->link_flag &= ~LS_IGNORE_ERATT; 5054 spin_unlock_irq(&phba->hbalock); 5055 5056 lpfc_hba_down_post(phba); 5057 phba->link_state = LPFC_HBA_ERROR; 5058 5059 return ha_copy & HA_ERATT ? 0 : 1; 5060 } 5061 5062 /** 5063 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5064 * @phba: Pointer to HBA context object. 5065 * 5066 * This function resets the HBA by writing HC_INITFF to the control 5067 * register. After the HBA resets, this function resets all the iocb ring 5068 * indices. This function disables PCI layer parity checking during 5069 * the reset. 5070 * This function returns 0 always. 5071 * The caller is not required to hold any locks. 5072 **/ 5073 int 5074 lpfc_sli_brdreset(struct lpfc_hba *phba) 5075 { 5076 struct lpfc_sli *psli; 5077 struct lpfc_sli_ring *pring; 5078 uint16_t cfg_value; 5079 int i; 5080 5081 psli = &phba->sli; 5082 5083 /* Reset HBA */ 5084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5085 "0325 Reset HBA Data: x%x x%x\n", 5086 (phba->pport) ? phba->pport->port_state : 0, 5087 psli->sli_flag); 5088 5089 /* perform board reset */ 5090 phba->fc_eventTag = 0; 5091 phba->link_events = 0; 5092 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5093 if (phba->pport) { 5094 phba->pport->fc_myDID = 0; 5095 phba->pport->fc_prevDID = 0; 5096 } 5097 5098 /* Turn off parity checking and serr during the physical reset */ 5099 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5100 return -EIO; 5101 5102 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5103 (cfg_value & 5104 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5105 5106 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5107 5108 /* Now toggle INITFF bit in the Host Control Register */ 5109 writel(HC_INITFF, phba->HCregaddr); 5110 mdelay(1); 5111 readl(phba->HCregaddr); /* flush */ 5112 writel(0, phba->HCregaddr); 5113 readl(phba->HCregaddr); /* flush */ 5114 5115 /* Restore PCI cmd register */ 5116 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5117 5118 /* Initialize relevant SLI info */ 5119 for (i = 0; i < psli->num_rings; i++) { 5120 pring = &psli->sli3_ring[i]; 5121 pring->flag = 0; 5122 pring->sli.sli3.rspidx = 0; 5123 pring->sli.sli3.next_cmdidx = 0; 5124 pring->sli.sli3.local_getidx = 0; 5125 pring->sli.sli3.cmdidx = 0; 5126 pring->missbufcnt = 0; 5127 } 5128 5129 phba->link_state = LPFC_WARM_START; 5130 return 0; 5131 } 5132 5133 /** 5134 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5135 * @phba: Pointer to HBA context object. 5136 * 5137 * This function resets a SLI4 HBA. This function disables PCI layer parity 5138 * checking during resets the device. The caller is not required to hold 5139 * any locks. 5140 * 5141 * This function returns 0 on success else returns negative error code. 5142 **/ 5143 int 5144 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5145 { 5146 struct lpfc_sli *psli = &phba->sli; 5147 uint16_t cfg_value; 5148 int rc = 0; 5149 5150 /* Reset HBA */ 5151 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5152 "0295 Reset HBA Data: x%x x%x x%lx\n", 5153 phba->pport->port_state, psli->sli_flag, 5154 phba->hba_flag); 5155 5156 /* perform board reset */ 5157 phba->fc_eventTag = 0; 5158 phba->link_events = 0; 5159 phba->pport->fc_myDID = 0; 5160 phba->pport->fc_prevDID = 0; 5161 clear_bit(HBA_SETUP, &phba->hba_flag); 5162 5163 spin_lock_irq(&phba->hbalock); 5164 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5165 phba->fcf.fcf_flag = 0; 5166 spin_unlock_irq(&phba->hbalock); 5167 5168 /* Now physically reset the device */ 5169 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5170 "0389 Performing PCI function reset!\n"); 5171 5172 /* Turn off parity checking and serr during the physical reset */ 5173 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5174 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5175 "3205 PCI read Config failed\n"); 5176 return -EIO; 5177 } 5178 5179 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5180 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5181 5182 /* Perform FCoE PCI function reset before freeing queue memory */ 5183 rc = lpfc_pci_function_reset(phba); 5184 5185 /* Restore PCI cmd register */ 5186 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5187 5188 return rc; 5189 } 5190 5191 /** 5192 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5193 * @phba: Pointer to HBA context object. 5194 * 5195 * This function is called in the SLI initialization code path to 5196 * restart the HBA. The caller is not required to hold any lock. 5197 * This function writes MBX_RESTART mailbox command to the SLIM and 5198 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5199 * function to free any pending commands. The function enables 5200 * POST only during the first initialization. The function returns zero. 5201 * The function does not guarantee completion of MBX_RESTART mailbox 5202 * command before the return of this function. 5203 **/ 5204 static int 5205 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5206 { 5207 volatile struct MAILBOX_word0 mb; 5208 struct lpfc_sli *psli; 5209 void __iomem *to_slim; 5210 5211 spin_lock_irq(&phba->hbalock); 5212 5213 psli = &phba->sli; 5214 5215 /* Restart HBA */ 5216 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5217 "0337 Restart HBA Data: x%x x%x\n", 5218 (phba->pport) ? phba->pport->port_state : 0, 5219 psli->sli_flag); 5220 5221 mb.word0 = 0; 5222 mb.mbxCommand = MBX_RESTART; 5223 mb.mbxHc = 1; 5224 5225 lpfc_reset_barrier(phba); 5226 5227 to_slim = phba->MBslimaddr; 5228 writel(mb.word0, to_slim); 5229 readl(to_slim); /* flush */ 5230 5231 /* Only skip post after fc_ffinit is completed */ 5232 if (phba->pport && phba->pport->port_state) 5233 mb.word0 = 1; /* This is really setting up word1 */ 5234 else 5235 mb.word0 = 0; /* This is really setting up word1 */ 5236 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5237 writel(mb.word0, to_slim); 5238 readl(to_slim); /* flush */ 5239 5240 lpfc_sli_brdreset(phba); 5241 if (phba->pport) 5242 phba->pport->stopped = 0; 5243 phba->link_state = LPFC_INIT_START; 5244 phba->hba_flag = 0; 5245 spin_unlock_irq(&phba->hbalock); 5246 5247 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5248 psli->stats_start = ktime_get_seconds(); 5249 5250 /* Give the INITFF and Post time to settle. */ 5251 mdelay(100); 5252 5253 lpfc_hba_down_post(phba); 5254 5255 return 0; 5256 } 5257 5258 /** 5259 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5260 * @phba: Pointer to HBA context object. 5261 * 5262 * This function is called in the SLI initialization code path to restart 5263 * a SLI4 HBA. The caller is not required to hold any lock. 5264 * At the end of the function, it calls lpfc_hba_down_post function to 5265 * free any pending commands. 5266 **/ 5267 static int 5268 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5269 { 5270 struct lpfc_sli *psli = &phba->sli; 5271 int rc; 5272 5273 /* Restart HBA */ 5274 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5275 "0296 Restart HBA Data: x%x x%x\n", 5276 phba->pport->port_state, psli->sli_flag); 5277 5278 lpfc_sli4_queue_unset(phba); 5279 5280 rc = lpfc_sli4_brdreset(phba); 5281 if (rc) { 5282 phba->link_state = LPFC_HBA_ERROR; 5283 goto hba_down_queue; 5284 } 5285 5286 spin_lock_irq(&phba->hbalock); 5287 phba->pport->stopped = 0; 5288 phba->link_state = LPFC_INIT_START; 5289 phba->hba_flag = 0; 5290 /* Preserve FA-PWWN expectation */ 5291 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5292 spin_unlock_irq(&phba->hbalock); 5293 5294 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5295 psli->stats_start = ktime_get_seconds(); 5296 5297 hba_down_queue: 5298 lpfc_hba_down_post(phba); 5299 lpfc_sli4_queue_destroy(phba); 5300 5301 return rc; 5302 } 5303 5304 /** 5305 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5306 * @phba: Pointer to HBA context object. 5307 * 5308 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5309 * API jump table function pointer from the lpfc_hba struct. 5310 **/ 5311 int 5312 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5313 { 5314 return phba->lpfc_sli_brdrestart(phba); 5315 } 5316 5317 /** 5318 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5319 * @phba: Pointer to HBA context object. 5320 * 5321 * This function is called after a HBA restart to wait for successful 5322 * restart of the HBA. Successful restart of the HBA is indicated by 5323 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5324 * iteration, the function will restart the HBA again. The function returns 5325 * zero if HBA successfully restarted else returns negative error code. 5326 **/ 5327 int 5328 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5329 { 5330 uint32_t status, i = 0; 5331 5332 /* Read the HBA Host Status Register */ 5333 if (lpfc_readl(phba->HSregaddr, &status)) 5334 return -EIO; 5335 5336 /* Check status register to see what current state is */ 5337 i = 0; 5338 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5339 5340 /* Check every 10ms for 10 retries, then every 100ms for 90 5341 * retries, then every 1 sec for 50 retires for a total of 5342 * ~60 seconds before reset the board again and check every 5343 * 1 sec for 50 retries. The up to 60 seconds before the 5344 * board ready is required by the Falcon FIPS zeroization 5345 * complete, and any reset the board in between shall cause 5346 * restart of zeroization, further delay the board ready. 5347 */ 5348 if (i++ >= 200) { 5349 /* Adapter failed to init, timeout, status reg 5350 <status> */ 5351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5352 "0436 Adapter failed to init, " 5353 "timeout, status reg x%x, " 5354 "FW Data: A8 x%x AC x%x\n", status, 5355 readl(phba->MBslimaddr + 0xa8), 5356 readl(phba->MBslimaddr + 0xac)); 5357 phba->link_state = LPFC_HBA_ERROR; 5358 return -ETIMEDOUT; 5359 } 5360 5361 /* Check to see if any errors occurred during init */ 5362 if (status & HS_FFERM) { 5363 /* ERROR: During chipset initialization */ 5364 /* Adapter failed to init, chipset, status reg 5365 <status> */ 5366 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5367 "0437 Adapter failed to init, " 5368 "chipset, status reg x%x, " 5369 "FW Data: A8 x%x AC x%x\n", status, 5370 readl(phba->MBslimaddr + 0xa8), 5371 readl(phba->MBslimaddr + 0xac)); 5372 phba->link_state = LPFC_HBA_ERROR; 5373 return -EIO; 5374 } 5375 5376 if (i <= 10) 5377 msleep(10); 5378 else if (i <= 100) 5379 msleep(100); 5380 else 5381 msleep(1000); 5382 5383 if (i == 150) { 5384 /* Do post */ 5385 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5386 lpfc_sli_brdrestart(phba); 5387 } 5388 /* Read the HBA Host Status Register */ 5389 if (lpfc_readl(phba->HSregaddr, &status)) 5390 return -EIO; 5391 } 5392 5393 /* Check to see if any errors occurred during init */ 5394 if (status & HS_FFERM) { 5395 /* ERROR: During chipset initialization */ 5396 /* Adapter failed to init, chipset, status reg <status> */ 5397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5398 "0438 Adapter failed to init, chipset, " 5399 "status reg x%x, " 5400 "FW Data: A8 x%x AC x%x\n", status, 5401 readl(phba->MBslimaddr + 0xa8), 5402 readl(phba->MBslimaddr + 0xac)); 5403 phba->link_state = LPFC_HBA_ERROR; 5404 return -EIO; 5405 } 5406 5407 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5408 5409 /* Clear all interrupt enable conditions */ 5410 writel(0, phba->HCregaddr); 5411 readl(phba->HCregaddr); /* flush */ 5412 5413 /* setup host attn register */ 5414 writel(0xffffffff, phba->HAregaddr); 5415 readl(phba->HAregaddr); /* flush */ 5416 return 0; 5417 } 5418 5419 /** 5420 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5421 * 5422 * This function calculates and returns the number of HBQs required to be 5423 * configured. 5424 **/ 5425 int 5426 lpfc_sli_hbq_count(void) 5427 { 5428 return ARRAY_SIZE(lpfc_hbq_defs); 5429 } 5430 5431 /** 5432 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5433 * 5434 * This function adds the number of hbq entries in every HBQ to get 5435 * the total number of hbq entries required for the HBA and returns 5436 * the total count. 5437 **/ 5438 static int 5439 lpfc_sli_hbq_entry_count(void) 5440 { 5441 int hbq_count = lpfc_sli_hbq_count(); 5442 int count = 0; 5443 int i; 5444 5445 for (i = 0; i < hbq_count; ++i) 5446 count += lpfc_hbq_defs[i]->entry_count; 5447 return count; 5448 } 5449 5450 /** 5451 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5452 * 5453 * This function calculates amount of memory required for all hbq entries 5454 * to be configured and returns the total memory required. 5455 **/ 5456 int 5457 lpfc_sli_hbq_size(void) 5458 { 5459 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5460 } 5461 5462 /** 5463 * lpfc_sli_hbq_setup - configure and initialize HBQs 5464 * @phba: Pointer to HBA context object. 5465 * 5466 * This function is called during the SLI initialization to configure 5467 * all the HBQs and post buffers to the HBQ. The caller is not 5468 * required to hold any locks. This function will return zero if successful 5469 * else it will return negative error code. 5470 **/ 5471 static int 5472 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5473 { 5474 int hbq_count = lpfc_sli_hbq_count(); 5475 LPFC_MBOXQ_t *pmb; 5476 MAILBOX_t *pmbox; 5477 uint32_t hbqno; 5478 uint32_t hbq_entry_index; 5479 5480 /* Get a Mailbox buffer to setup mailbox 5481 * commands for HBA initialization 5482 */ 5483 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5484 5485 if (!pmb) 5486 return -ENOMEM; 5487 5488 pmbox = &pmb->u.mb; 5489 5490 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5491 phba->link_state = LPFC_INIT_MBX_CMDS; 5492 phba->hbq_in_use = 1; 5493 5494 hbq_entry_index = 0; 5495 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5496 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5497 phba->hbqs[hbqno].hbqPutIdx = 0; 5498 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5499 phba->hbqs[hbqno].entry_count = 5500 lpfc_hbq_defs[hbqno]->entry_count; 5501 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5502 hbq_entry_index, pmb); 5503 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5504 5505 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5506 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5507 mbxStatus <status>, ring <num> */ 5508 5509 lpfc_printf_log(phba, KERN_ERR, 5510 LOG_SLI | LOG_VPORT, 5511 "1805 Adapter failed to init. " 5512 "Data: x%x x%x x%x\n", 5513 pmbox->mbxCommand, 5514 pmbox->mbxStatus, hbqno); 5515 5516 phba->link_state = LPFC_HBA_ERROR; 5517 mempool_free(pmb, phba->mbox_mem_pool); 5518 return -ENXIO; 5519 } 5520 } 5521 phba->hbq_count = hbq_count; 5522 5523 mempool_free(pmb, phba->mbox_mem_pool); 5524 5525 /* Initially populate or replenish the HBQs */ 5526 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5527 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5528 return 0; 5529 } 5530 5531 /** 5532 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5533 * @phba: Pointer to HBA context object. 5534 * 5535 * This function is called during the SLI initialization to configure 5536 * all the HBQs and post buffers to the HBQ. The caller is not 5537 * required to hold any locks. This function will return zero if successful 5538 * else it will return negative error code. 5539 **/ 5540 static int 5541 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5542 { 5543 phba->hbq_in_use = 1; 5544 /** 5545 * Specific case when the MDS diagnostics is enabled and supported. 5546 * The receive buffer count is truncated to manage the incoming 5547 * traffic. 5548 **/ 5549 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5550 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5551 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5552 else 5553 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5554 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5555 phba->hbq_count = 1; 5556 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5557 /* Initially populate or replenish the HBQs */ 5558 return 0; 5559 } 5560 5561 /** 5562 * lpfc_sli_config_port - Issue config port mailbox command 5563 * @phba: Pointer to HBA context object. 5564 * @sli_mode: sli mode - 2/3 5565 * 5566 * This function is called by the sli initialization code path 5567 * to issue config_port mailbox command. This function restarts the 5568 * HBA firmware and issues a config_port mailbox command to configure 5569 * the SLI interface in the sli mode specified by sli_mode 5570 * variable. The caller is not required to hold any locks. 5571 * The function returns 0 if successful, else returns negative error 5572 * code. 5573 **/ 5574 int 5575 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5576 { 5577 LPFC_MBOXQ_t *pmb; 5578 uint32_t resetcount = 0, rc = 0, done = 0; 5579 5580 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5581 if (!pmb) { 5582 phba->link_state = LPFC_HBA_ERROR; 5583 return -ENOMEM; 5584 } 5585 5586 phba->sli_rev = sli_mode; 5587 while (resetcount < 2 && !done) { 5588 spin_lock_irq(&phba->hbalock); 5589 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5590 spin_unlock_irq(&phba->hbalock); 5591 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5592 lpfc_sli_brdrestart(phba); 5593 rc = lpfc_sli_chipset_init(phba); 5594 if (rc) 5595 break; 5596 5597 spin_lock_irq(&phba->hbalock); 5598 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5599 spin_unlock_irq(&phba->hbalock); 5600 resetcount++; 5601 5602 /* Call pre CONFIG_PORT mailbox command initialization. A 5603 * value of 0 means the call was successful. Any other 5604 * nonzero value is a failure, but if ERESTART is returned, 5605 * the driver may reset the HBA and try again. 5606 */ 5607 rc = lpfc_config_port_prep(phba); 5608 if (rc == -ERESTART) { 5609 phba->link_state = LPFC_LINK_UNKNOWN; 5610 continue; 5611 } else if (rc) 5612 break; 5613 5614 phba->link_state = LPFC_INIT_MBX_CMDS; 5615 lpfc_config_port(phba, pmb); 5616 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5617 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5618 LPFC_SLI3_HBQ_ENABLED | 5619 LPFC_SLI3_CRP_ENABLED | 5620 LPFC_SLI3_DSS_ENABLED); 5621 if (rc != MBX_SUCCESS) { 5622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5623 "0442 Adapter failed to init, mbxCmd x%x " 5624 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5625 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5626 spin_lock_irq(&phba->hbalock); 5627 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5628 spin_unlock_irq(&phba->hbalock); 5629 rc = -ENXIO; 5630 } else { 5631 /* Allow asynchronous mailbox command to go through */ 5632 spin_lock_irq(&phba->hbalock); 5633 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5634 spin_unlock_irq(&phba->hbalock); 5635 done = 1; 5636 5637 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5638 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5639 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5640 "3110 Port did not grant ASABT\n"); 5641 } 5642 } 5643 if (!done) { 5644 rc = -EINVAL; 5645 goto do_prep_failed; 5646 } 5647 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5648 if (!pmb->u.mb.un.varCfgPort.cMA) { 5649 rc = -ENXIO; 5650 goto do_prep_failed; 5651 } 5652 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5653 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5654 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5655 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5656 phba->max_vpi : phba->max_vports; 5657 5658 } else 5659 phba->max_vpi = 0; 5660 if (pmb->u.mb.un.varCfgPort.gerbm) 5661 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5662 if (pmb->u.mb.un.varCfgPort.gcrp) 5663 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5664 5665 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5666 phba->port_gp = phba->mbox->us.s3_pgp.port; 5667 5668 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5669 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5670 phba->cfg_enable_bg = 0; 5671 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5672 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5673 "0443 Adapter did not grant " 5674 "BlockGuard\n"); 5675 } 5676 } 5677 } else { 5678 phba->hbq_get = NULL; 5679 phba->port_gp = phba->mbox->us.s2.port; 5680 phba->max_vpi = 0; 5681 } 5682 do_prep_failed: 5683 mempool_free(pmb, phba->mbox_mem_pool); 5684 return rc; 5685 } 5686 5687 5688 /** 5689 * lpfc_sli_hba_setup - SLI initialization function 5690 * @phba: Pointer to HBA context object. 5691 * 5692 * This function is the main SLI initialization function. This function 5693 * is called by the HBA initialization code, HBA reset code and HBA 5694 * error attention handler code. Caller is not required to hold any 5695 * locks. This function issues config_port mailbox command to configure 5696 * the SLI, setup iocb rings and HBQ rings. In the end the function 5697 * calls the config_port_post function to issue init_link mailbox 5698 * command and to start the discovery. The function will return zero 5699 * if successful, else it will return negative error code. 5700 **/ 5701 int 5702 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5703 { 5704 uint32_t rc; 5705 int i; 5706 int longs; 5707 5708 /* Enable ISR already does config_port because of config_msi mbx */ 5709 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5710 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5711 if (rc) 5712 return -EIO; 5713 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5714 } 5715 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5716 5717 if (phba->sli_rev == 3) { 5718 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5719 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5720 } else { 5721 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5722 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5723 phba->sli3_options = 0; 5724 } 5725 5726 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5727 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5728 phba->sli_rev, phba->max_vpi); 5729 rc = lpfc_sli_ring_map(phba); 5730 5731 if (rc) 5732 goto lpfc_sli_hba_setup_error; 5733 5734 /* Initialize VPIs. */ 5735 if (phba->sli_rev == LPFC_SLI_REV3) { 5736 /* 5737 * The VPI bitmask and physical ID array are allocated 5738 * and initialized once only - at driver load. A port 5739 * reset doesn't need to reinitialize this memory. 5740 */ 5741 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5742 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5743 phba->vpi_bmask = kcalloc(longs, 5744 sizeof(unsigned long), 5745 GFP_KERNEL); 5746 if (!phba->vpi_bmask) { 5747 rc = -ENOMEM; 5748 goto lpfc_sli_hba_setup_error; 5749 } 5750 5751 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5752 sizeof(uint16_t), 5753 GFP_KERNEL); 5754 if (!phba->vpi_ids) { 5755 kfree(phba->vpi_bmask); 5756 rc = -ENOMEM; 5757 goto lpfc_sli_hba_setup_error; 5758 } 5759 for (i = 0; i < phba->max_vpi; i++) 5760 phba->vpi_ids[i] = i; 5761 } 5762 } 5763 5764 /* Init HBQs */ 5765 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5766 rc = lpfc_sli_hbq_setup(phba); 5767 if (rc) 5768 goto lpfc_sli_hba_setup_error; 5769 } 5770 spin_lock_irq(&phba->hbalock); 5771 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5772 spin_unlock_irq(&phba->hbalock); 5773 5774 rc = lpfc_config_port_post(phba); 5775 if (rc) 5776 goto lpfc_sli_hba_setup_error; 5777 5778 return rc; 5779 5780 lpfc_sli_hba_setup_error: 5781 phba->link_state = LPFC_HBA_ERROR; 5782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5783 "0445 Firmware initialization failed\n"); 5784 return rc; 5785 } 5786 5787 /** 5788 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5789 * @phba: Pointer to HBA context object. 5790 * 5791 * This function issue a dump mailbox command to read config region 5792 * 23 and parse the records in the region and populate driver 5793 * data structure. 5794 **/ 5795 static int 5796 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5797 { 5798 LPFC_MBOXQ_t *mboxq; 5799 struct lpfc_dmabuf *mp; 5800 struct lpfc_mqe *mqe; 5801 uint32_t data_length; 5802 int rc; 5803 5804 /* Program the default value of vlan_id and fc_map */ 5805 phba->valid_vlan = 0; 5806 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5807 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5808 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5809 5810 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5811 if (!mboxq) 5812 return -ENOMEM; 5813 5814 mqe = &mboxq->u.mqe; 5815 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5816 rc = -ENOMEM; 5817 goto out_free_mboxq; 5818 } 5819 5820 mp = mboxq->ctx_buf; 5821 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5822 5823 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5824 "(%d):2571 Mailbox cmd x%x Status x%x " 5825 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5826 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5827 "CQ: x%x x%x x%x x%x\n", 5828 mboxq->vport ? mboxq->vport->vpi : 0, 5829 bf_get(lpfc_mqe_command, mqe), 5830 bf_get(lpfc_mqe_status, mqe), 5831 mqe->un.mb_words[0], mqe->un.mb_words[1], 5832 mqe->un.mb_words[2], mqe->un.mb_words[3], 5833 mqe->un.mb_words[4], mqe->un.mb_words[5], 5834 mqe->un.mb_words[6], mqe->un.mb_words[7], 5835 mqe->un.mb_words[8], mqe->un.mb_words[9], 5836 mqe->un.mb_words[10], mqe->un.mb_words[11], 5837 mqe->un.mb_words[12], mqe->un.mb_words[13], 5838 mqe->un.mb_words[14], mqe->un.mb_words[15], 5839 mqe->un.mb_words[16], mqe->un.mb_words[50], 5840 mboxq->mcqe.word0, 5841 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5842 mboxq->mcqe.trailer); 5843 5844 if (rc) { 5845 rc = -EIO; 5846 goto out_free_mboxq; 5847 } 5848 data_length = mqe->un.mb_words[5]; 5849 if (data_length > DMP_RGN23_SIZE) { 5850 rc = -EIO; 5851 goto out_free_mboxq; 5852 } 5853 5854 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5855 rc = 0; 5856 5857 out_free_mboxq: 5858 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5859 return rc; 5860 } 5861 5862 /** 5863 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5864 * @phba: pointer to lpfc hba data structure. 5865 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5866 * @vpd: pointer to the memory to hold resulting port vpd data. 5867 * @vpd_size: On input, the number of bytes allocated to @vpd. 5868 * On output, the number of data bytes in @vpd. 5869 * 5870 * This routine executes a READ_REV SLI4 mailbox command. In 5871 * addition, this routine gets the port vpd data. 5872 * 5873 * Return codes 5874 * 0 - successful 5875 * -ENOMEM - could not allocated memory. 5876 **/ 5877 static int 5878 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5879 uint8_t *vpd, uint32_t *vpd_size) 5880 { 5881 int rc = 0; 5882 uint32_t dma_size; 5883 struct lpfc_dmabuf *dmabuf; 5884 struct lpfc_mqe *mqe; 5885 5886 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5887 if (!dmabuf) 5888 return -ENOMEM; 5889 5890 /* 5891 * Get a DMA buffer for the vpd data resulting from the READ_REV 5892 * mailbox command. 5893 */ 5894 dma_size = *vpd_size; 5895 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5896 &dmabuf->phys, GFP_KERNEL); 5897 if (!dmabuf->virt) { 5898 kfree(dmabuf); 5899 return -ENOMEM; 5900 } 5901 5902 /* 5903 * The SLI4 implementation of READ_REV conflicts at word1, 5904 * bits 31:16 and SLI4 adds vpd functionality not present 5905 * in SLI3. This code corrects the conflicts. 5906 */ 5907 lpfc_read_rev(phba, mboxq); 5908 mqe = &mboxq->u.mqe; 5909 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5910 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5911 mqe->un.read_rev.word1 &= 0x0000FFFF; 5912 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5913 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5914 5915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5916 if (rc) { 5917 dma_free_coherent(&phba->pcidev->dev, dma_size, 5918 dmabuf->virt, dmabuf->phys); 5919 kfree(dmabuf); 5920 return -EIO; 5921 } 5922 5923 /* 5924 * The available vpd length cannot be bigger than the 5925 * DMA buffer passed to the port. Catch the less than 5926 * case and update the caller's size. 5927 */ 5928 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5929 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5930 5931 memcpy(vpd, dmabuf->virt, *vpd_size); 5932 5933 dma_free_coherent(&phba->pcidev->dev, dma_size, 5934 dmabuf->virt, dmabuf->phys); 5935 kfree(dmabuf); 5936 return 0; 5937 } 5938 5939 /** 5940 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5941 * @phba: pointer to lpfc hba data structure. 5942 * 5943 * This routine retrieves SLI4 device physical port name this PCI function 5944 * is attached to. 5945 * 5946 * Return codes 5947 * 0 - successful 5948 * otherwise - failed to retrieve controller attributes 5949 **/ 5950 static int 5951 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5952 { 5953 LPFC_MBOXQ_t *mboxq; 5954 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5955 struct lpfc_controller_attribute *cntl_attr; 5956 void *virtaddr = NULL; 5957 uint32_t alloclen, reqlen; 5958 uint32_t shdr_status, shdr_add_status; 5959 union lpfc_sli4_cfg_shdr *shdr; 5960 int rc; 5961 5962 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5963 if (!mboxq) 5964 return -ENOMEM; 5965 5966 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5967 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5968 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5969 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5970 LPFC_SLI4_MBX_NEMBED); 5971 5972 if (alloclen < reqlen) { 5973 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5974 "3084 Allocated DMA memory size (%d) is " 5975 "less than the requested DMA memory size " 5976 "(%d)\n", alloclen, reqlen); 5977 rc = -ENOMEM; 5978 goto out_free_mboxq; 5979 } 5980 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5981 virtaddr = mboxq->sge_array->addr[0]; 5982 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5983 shdr = &mbx_cntl_attr->cfg_shdr; 5984 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5985 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5986 if (shdr_status || shdr_add_status || rc) { 5987 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5988 "3085 Mailbox x%x (x%x/x%x) failed, " 5989 "rc:x%x, status:x%x, add_status:x%x\n", 5990 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5991 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5992 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5993 rc, shdr_status, shdr_add_status); 5994 rc = -ENXIO; 5995 goto out_free_mboxq; 5996 } 5997 5998 cntl_attr = &mbx_cntl_attr->cntl_attr; 5999 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6000 phba->sli4_hba.lnk_info.lnk_tp = 6001 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6002 phba->sli4_hba.lnk_info.lnk_no = 6003 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6004 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6005 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6006 6007 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6008 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6009 sizeof(phba->BIOSVersion)); 6010 6011 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6012 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6013 "flash_id: x%02x, asic_rev: x%02x\n", 6014 phba->sli4_hba.lnk_info.lnk_tp, 6015 phba->sli4_hba.lnk_info.lnk_no, 6016 phba->BIOSVersion, phba->sli4_hba.flash_id, 6017 phba->sli4_hba.asic_rev); 6018 out_free_mboxq: 6019 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6020 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6021 else 6022 mempool_free(mboxq, phba->mbox_mem_pool); 6023 return rc; 6024 } 6025 6026 /** 6027 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6028 * @phba: pointer to lpfc hba data structure. 6029 * 6030 * This routine retrieves SLI4 device physical port name this PCI function 6031 * is attached to. 6032 * 6033 * Return codes 6034 * 0 - successful 6035 * otherwise - failed to retrieve physical port name 6036 **/ 6037 static int 6038 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6039 { 6040 LPFC_MBOXQ_t *mboxq; 6041 struct lpfc_mbx_get_port_name *get_port_name; 6042 uint32_t shdr_status, shdr_add_status; 6043 union lpfc_sli4_cfg_shdr *shdr; 6044 char cport_name = 0; 6045 int rc; 6046 6047 /* We assume nothing at this point */ 6048 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6049 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6050 6051 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6052 if (!mboxq) 6053 return -ENOMEM; 6054 /* obtain link type and link number via READ_CONFIG */ 6055 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6056 lpfc_sli4_read_config(phba); 6057 6058 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6059 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6060 6061 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6062 goto retrieve_ppname; 6063 6064 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6065 rc = lpfc_sli4_get_ctl_attr(phba); 6066 if (rc) 6067 goto out_free_mboxq; 6068 6069 retrieve_ppname: 6070 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6071 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6072 sizeof(struct lpfc_mbx_get_port_name) - 6073 sizeof(struct lpfc_sli4_cfg_mhdr), 6074 LPFC_SLI4_MBX_EMBED); 6075 get_port_name = &mboxq->u.mqe.un.get_port_name; 6076 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6077 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6078 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6079 phba->sli4_hba.lnk_info.lnk_tp); 6080 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6081 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6082 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6083 if (shdr_status || shdr_add_status || rc) { 6084 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6085 "3087 Mailbox x%x (x%x/x%x) failed: " 6086 "rc:x%x, status:x%x, add_status:x%x\n", 6087 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6088 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6089 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6090 rc, shdr_status, shdr_add_status); 6091 rc = -ENXIO; 6092 goto out_free_mboxq; 6093 } 6094 switch (phba->sli4_hba.lnk_info.lnk_no) { 6095 case LPFC_LINK_NUMBER_0: 6096 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6097 &get_port_name->u.response); 6098 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6099 break; 6100 case LPFC_LINK_NUMBER_1: 6101 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6102 &get_port_name->u.response); 6103 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6104 break; 6105 case LPFC_LINK_NUMBER_2: 6106 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6107 &get_port_name->u.response); 6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6109 break; 6110 case LPFC_LINK_NUMBER_3: 6111 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6112 &get_port_name->u.response); 6113 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6114 break; 6115 default: 6116 break; 6117 } 6118 6119 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6120 phba->Port[0] = cport_name; 6121 phba->Port[1] = '\0'; 6122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6123 "3091 SLI get port name: %s\n", phba->Port); 6124 } 6125 6126 out_free_mboxq: 6127 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6128 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6129 else 6130 mempool_free(mboxq, phba->mbox_mem_pool); 6131 return rc; 6132 } 6133 6134 /** 6135 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6136 * @phba: pointer to lpfc hba data structure. 6137 * 6138 * This routine is called to explicitly arm the SLI4 device's completion and 6139 * event queues 6140 **/ 6141 static void 6142 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6143 { 6144 int qidx; 6145 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6146 struct lpfc_sli4_hdw_queue *qp; 6147 struct lpfc_queue *eq; 6148 6149 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6150 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6151 if (sli4_hba->nvmels_cq) 6152 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6153 LPFC_QUEUE_REARM); 6154 6155 if (sli4_hba->hdwq) { 6156 /* Loop thru all Hardware Queues */ 6157 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6158 qp = &sli4_hba->hdwq[qidx]; 6159 /* ARM the corresponding CQ */ 6160 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6161 LPFC_QUEUE_REARM); 6162 } 6163 6164 /* Loop thru all IRQ vectors */ 6165 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6166 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6167 /* ARM the corresponding EQ */ 6168 sli4_hba->sli4_write_eq_db(phba, eq, 6169 0, LPFC_QUEUE_REARM); 6170 } 6171 } 6172 6173 if (phba->nvmet_support) { 6174 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6175 sli4_hba->sli4_write_cq_db(phba, 6176 sli4_hba->nvmet_cqset[qidx], 0, 6177 LPFC_QUEUE_REARM); 6178 } 6179 } 6180 } 6181 6182 /** 6183 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6184 * @phba: Pointer to HBA context object. 6185 * @type: The resource extent type. 6186 * @extnt_count: buffer to hold port available extent count. 6187 * @extnt_size: buffer to hold element count per extent. 6188 * 6189 * This function calls the port and retrievs the number of available 6190 * extents and their size for a particular extent type. 6191 * 6192 * Returns: 0 if successful. Nonzero otherwise. 6193 **/ 6194 int 6195 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6196 uint16_t *extnt_count, uint16_t *extnt_size) 6197 { 6198 int rc = 0; 6199 uint32_t length; 6200 uint32_t mbox_tmo; 6201 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6202 LPFC_MBOXQ_t *mbox; 6203 6204 *extnt_count = 0; 6205 *extnt_size = 0; 6206 6207 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6208 if (!mbox) 6209 return -ENOMEM; 6210 6211 /* Find out how many extents are available for this resource type */ 6212 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6213 sizeof(struct lpfc_sli4_cfg_mhdr)); 6214 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6215 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6216 length, LPFC_SLI4_MBX_EMBED); 6217 6218 /* Send an extents count of 0 - the GET doesn't use it. */ 6219 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6220 LPFC_SLI4_MBX_EMBED); 6221 if (unlikely(rc)) { 6222 rc = -EIO; 6223 goto err_exit; 6224 } 6225 6226 if (!phba->sli4_hba.intr_enable) 6227 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6228 else { 6229 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6230 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6231 } 6232 if (unlikely(rc)) { 6233 rc = -EIO; 6234 goto err_exit; 6235 } 6236 6237 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6238 if (bf_get(lpfc_mbox_hdr_status, 6239 &rsrc_info->header.cfg_shdr.response)) { 6240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6241 "2930 Failed to get resource extents " 6242 "Status 0x%x Add'l Status 0x%x\n", 6243 bf_get(lpfc_mbox_hdr_status, 6244 &rsrc_info->header.cfg_shdr.response), 6245 bf_get(lpfc_mbox_hdr_add_status, 6246 &rsrc_info->header.cfg_shdr.response)); 6247 rc = -EIO; 6248 goto err_exit; 6249 } 6250 6251 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6252 &rsrc_info->u.rsp); 6253 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6254 &rsrc_info->u.rsp); 6255 6256 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6257 "3162 Retrieved extents type-%d from port: count:%d, " 6258 "size:%d\n", type, *extnt_count, *extnt_size); 6259 6260 err_exit: 6261 mempool_free(mbox, phba->mbox_mem_pool); 6262 return rc; 6263 } 6264 6265 /** 6266 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6267 * @phba: Pointer to HBA context object. 6268 * @type: The extent type to check. 6269 * 6270 * This function reads the current available extents from the port and checks 6271 * if the extent count or extent size has changed since the last access. 6272 * Callers use this routine post port reset to understand if there is a 6273 * extent reprovisioning requirement. 6274 * 6275 * Returns: 6276 * -Error: error indicates problem. 6277 * 1: Extent count or size has changed. 6278 * 0: No changes. 6279 **/ 6280 static int 6281 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6282 { 6283 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6284 uint16_t size_diff, rsrc_ext_size; 6285 int rc = 0; 6286 struct lpfc_rsrc_blks *rsrc_entry; 6287 struct list_head *rsrc_blk_list = NULL; 6288 6289 size_diff = 0; 6290 curr_ext_cnt = 0; 6291 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6292 &rsrc_ext_cnt, 6293 &rsrc_ext_size); 6294 if (unlikely(rc)) 6295 return -EIO; 6296 6297 switch (type) { 6298 case LPFC_RSC_TYPE_FCOE_RPI: 6299 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6300 break; 6301 case LPFC_RSC_TYPE_FCOE_VPI: 6302 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6303 break; 6304 case LPFC_RSC_TYPE_FCOE_XRI: 6305 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6306 break; 6307 case LPFC_RSC_TYPE_FCOE_VFI: 6308 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6309 break; 6310 default: 6311 break; 6312 } 6313 6314 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6315 curr_ext_cnt++; 6316 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6317 size_diff++; 6318 } 6319 6320 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6321 rc = 1; 6322 6323 return rc; 6324 } 6325 6326 /** 6327 * lpfc_sli4_cfg_post_extnts - 6328 * @phba: Pointer to HBA context object. 6329 * @extnt_cnt: number of available extents. 6330 * @type: the extent type (rpi, xri, vfi, vpi). 6331 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6332 * @mbox: pointer to the caller's allocated mailbox structure. 6333 * 6334 * This function executes the extents allocation request. It also 6335 * takes care of the amount of memory needed to allocate or get the 6336 * allocated extents. It is the caller's responsibility to evaluate 6337 * the response. 6338 * 6339 * Returns: 6340 * -Error: Error value describes the condition found. 6341 * 0: if successful 6342 **/ 6343 static int 6344 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6345 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6346 { 6347 int rc = 0; 6348 uint32_t req_len; 6349 uint32_t emb_len; 6350 uint32_t alloc_len, mbox_tmo; 6351 6352 /* Calculate the total requested length of the dma memory */ 6353 req_len = extnt_cnt * sizeof(uint16_t); 6354 6355 /* 6356 * Calculate the size of an embedded mailbox. The uint32_t 6357 * accounts for extents-specific word. 6358 */ 6359 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6360 sizeof(uint32_t); 6361 6362 /* 6363 * Presume the allocation and response will fit into an embedded 6364 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6365 */ 6366 *emb = LPFC_SLI4_MBX_EMBED; 6367 if (req_len > emb_len) { 6368 req_len = extnt_cnt * sizeof(uint16_t) + 6369 sizeof(union lpfc_sli4_cfg_shdr) + 6370 sizeof(uint32_t); 6371 *emb = LPFC_SLI4_MBX_NEMBED; 6372 } 6373 6374 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6375 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6376 req_len, *emb); 6377 if (alloc_len < req_len) { 6378 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6379 "2982 Allocated DMA memory size (x%x) is " 6380 "less than the requested DMA memory " 6381 "size (x%x)\n", alloc_len, req_len); 6382 return -ENOMEM; 6383 } 6384 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6385 if (unlikely(rc)) 6386 return -EIO; 6387 6388 if (!phba->sli4_hba.intr_enable) 6389 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6390 else { 6391 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6392 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6393 } 6394 6395 if (unlikely(rc)) 6396 rc = -EIO; 6397 return rc; 6398 } 6399 6400 /** 6401 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6402 * @phba: Pointer to HBA context object. 6403 * @type: The resource extent type to allocate. 6404 * 6405 * This function allocates the number of elements for the specified 6406 * resource type. 6407 **/ 6408 static int 6409 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6410 { 6411 bool emb = false; 6412 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6413 uint16_t rsrc_id, rsrc_start, j, k; 6414 uint16_t *ids; 6415 int i, rc; 6416 unsigned long longs; 6417 unsigned long *bmask; 6418 struct lpfc_rsrc_blks *rsrc_blks; 6419 LPFC_MBOXQ_t *mbox; 6420 uint32_t length; 6421 struct lpfc_id_range *id_array = NULL; 6422 void *virtaddr = NULL; 6423 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6424 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6425 struct list_head *ext_blk_list; 6426 6427 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6428 &rsrc_cnt, 6429 &rsrc_size); 6430 if (unlikely(rc)) 6431 return -EIO; 6432 6433 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6435 "3009 No available Resource Extents " 6436 "for resource type 0x%x: Count: 0x%x, " 6437 "Size 0x%x\n", type, rsrc_cnt, 6438 rsrc_size); 6439 return -ENOMEM; 6440 } 6441 6442 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6443 "2903 Post resource extents type-0x%x: " 6444 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6445 6446 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6447 if (!mbox) 6448 return -ENOMEM; 6449 6450 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6451 if (unlikely(rc)) { 6452 rc = -EIO; 6453 goto err_exit; 6454 } 6455 6456 /* 6457 * Figure out where the response is located. Then get local pointers 6458 * to the response data. The port does not guarantee to respond to 6459 * all extents counts request so update the local variable with the 6460 * allocated count from the port. 6461 */ 6462 if (emb == LPFC_SLI4_MBX_EMBED) { 6463 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6464 id_array = &rsrc_ext->u.rsp.id[0]; 6465 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6466 } else { 6467 virtaddr = mbox->sge_array->addr[0]; 6468 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6469 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6470 id_array = &n_rsrc->id; 6471 } 6472 6473 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6474 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6475 6476 /* 6477 * Based on the resource size and count, correct the base and max 6478 * resource values. 6479 */ 6480 length = sizeof(struct lpfc_rsrc_blks); 6481 switch (type) { 6482 case LPFC_RSC_TYPE_FCOE_RPI: 6483 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6484 sizeof(unsigned long), 6485 GFP_KERNEL); 6486 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6487 rc = -ENOMEM; 6488 goto err_exit; 6489 } 6490 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6491 sizeof(uint16_t), 6492 GFP_KERNEL); 6493 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6494 kfree(phba->sli4_hba.rpi_bmask); 6495 rc = -ENOMEM; 6496 goto err_exit; 6497 } 6498 6499 /* 6500 * The next_rpi was initialized with the maximum available 6501 * count but the port may allocate a smaller number. Catch 6502 * that case and update the next_rpi. 6503 */ 6504 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6505 6506 /* Initialize local ptrs for common extent processing later. */ 6507 bmask = phba->sli4_hba.rpi_bmask; 6508 ids = phba->sli4_hba.rpi_ids; 6509 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6510 break; 6511 case LPFC_RSC_TYPE_FCOE_VPI: 6512 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6513 GFP_KERNEL); 6514 if (unlikely(!phba->vpi_bmask)) { 6515 rc = -ENOMEM; 6516 goto err_exit; 6517 } 6518 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6519 GFP_KERNEL); 6520 if (unlikely(!phba->vpi_ids)) { 6521 kfree(phba->vpi_bmask); 6522 rc = -ENOMEM; 6523 goto err_exit; 6524 } 6525 6526 /* Initialize local ptrs for common extent processing later. */ 6527 bmask = phba->vpi_bmask; 6528 ids = phba->vpi_ids; 6529 ext_blk_list = &phba->lpfc_vpi_blk_list; 6530 break; 6531 case LPFC_RSC_TYPE_FCOE_XRI: 6532 phba->sli4_hba.xri_bmask = kcalloc(longs, 6533 sizeof(unsigned long), 6534 GFP_KERNEL); 6535 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6536 rc = -ENOMEM; 6537 goto err_exit; 6538 } 6539 phba->sli4_hba.max_cfg_param.xri_used = 0; 6540 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6541 sizeof(uint16_t), 6542 GFP_KERNEL); 6543 if (unlikely(!phba->sli4_hba.xri_ids)) { 6544 kfree(phba->sli4_hba.xri_bmask); 6545 rc = -ENOMEM; 6546 goto err_exit; 6547 } 6548 6549 /* Initialize local ptrs for common extent processing later. */ 6550 bmask = phba->sli4_hba.xri_bmask; 6551 ids = phba->sli4_hba.xri_ids; 6552 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6553 break; 6554 case LPFC_RSC_TYPE_FCOE_VFI: 6555 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6556 sizeof(unsigned long), 6557 GFP_KERNEL); 6558 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6559 rc = -ENOMEM; 6560 goto err_exit; 6561 } 6562 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6563 sizeof(uint16_t), 6564 GFP_KERNEL); 6565 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6566 kfree(phba->sli4_hba.vfi_bmask); 6567 rc = -ENOMEM; 6568 goto err_exit; 6569 } 6570 6571 /* Initialize local ptrs for common extent processing later. */ 6572 bmask = phba->sli4_hba.vfi_bmask; 6573 ids = phba->sli4_hba.vfi_ids; 6574 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6575 break; 6576 default: 6577 /* Unsupported Opcode. Fail call. */ 6578 id_array = NULL; 6579 bmask = NULL; 6580 ids = NULL; 6581 ext_blk_list = NULL; 6582 goto err_exit; 6583 } 6584 6585 /* 6586 * Complete initializing the extent configuration with the 6587 * allocated ids assigned to this function. The bitmask serves 6588 * as an index into the array and manages the available ids. The 6589 * array just stores the ids communicated to the port via the wqes. 6590 */ 6591 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6592 if ((i % 2) == 0) 6593 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6594 &id_array[k]); 6595 else 6596 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6597 &id_array[k]); 6598 6599 rsrc_blks = kzalloc(length, GFP_KERNEL); 6600 if (unlikely(!rsrc_blks)) { 6601 rc = -ENOMEM; 6602 kfree(bmask); 6603 kfree(ids); 6604 goto err_exit; 6605 } 6606 rsrc_blks->rsrc_start = rsrc_id; 6607 rsrc_blks->rsrc_size = rsrc_size; 6608 list_add_tail(&rsrc_blks->list, ext_blk_list); 6609 rsrc_start = rsrc_id; 6610 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6611 phba->sli4_hba.io_xri_start = rsrc_start + 6612 lpfc_sli4_get_iocb_cnt(phba); 6613 } 6614 6615 while (rsrc_id < (rsrc_start + rsrc_size)) { 6616 ids[j] = rsrc_id; 6617 rsrc_id++; 6618 j++; 6619 } 6620 /* Entire word processed. Get next word.*/ 6621 if ((i % 2) == 1) 6622 k++; 6623 } 6624 err_exit: 6625 lpfc_sli4_mbox_cmd_free(phba, mbox); 6626 return rc; 6627 } 6628 6629 6630 6631 /** 6632 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6633 * @phba: Pointer to HBA context object. 6634 * @type: the extent's type. 6635 * 6636 * This function deallocates all extents of a particular resource type. 6637 * SLI4 does not allow for deallocating a particular extent range. It 6638 * is the caller's responsibility to release all kernel memory resources. 6639 **/ 6640 static int 6641 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6642 { 6643 int rc; 6644 uint32_t length, mbox_tmo = 0; 6645 LPFC_MBOXQ_t *mbox; 6646 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6647 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6648 6649 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6650 if (!mbox) 6651 return -ENOMEM; 6652 6653 /* 6654 * This function sends an embedded mailbox because it only sends the 6655 * the resource type. All extents of this type are released by the 6656 * port. 6657 */ 6658 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6659 sizeof(struct lpfc_sli4_cfg_mhdr)); 6660 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6661 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6662 length, LPFC_SLI4_MBX_EMBED); 6663 6664 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6665 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6666 LPFC_SLI4_MBX_EMBED); 6667 if (unlikely(rc)) { 6668 rc = -EIO; 6669 goto out_free_mbox; 6670 } 6671 if (!phba->sli4_hba.intr_enable) 6672 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6673 else { 6674 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6675 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6676 } 6677 if (unlikely(rc)) { 6678 rc = -EIO; 6679 goto out_free_mbox; 6680 } 6681 6682 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6683 if (bf_get(lpfc_mbox_hdr_status, 6684 &dealloc_rsrc->header.cfg_shdr.response)) { 6685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6686 "2919 Failed to release resource extents " 6687 "for type %d - Status 0x%x Add'l Status 0x%x. " 6688 "Resource memory not released.\n", 6689 type, 6690 bf_get(lpfc_mbox_hdr_status, 6691 &dealloc_rsrc->header.cfg_shdr.response), 6692 bf_get(lpfc_mbox_hdr_add_status, 6693 &dealloc_rsrc->header.cfg_shdr.response)); 6694 rc = -EIO; 6695 goto out_free_mbox; 6696 } 6697 6698 /* Release kernel memory resources for the specific type. */ 6699 switch (type) { 6700 case LPFC_RSC_TYPE_FCOE_VPI: 6701 kfree(phba->vpi_bmask); 6702 kfree(phba->vpi_ids); 6703 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6704 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6705 &phba->lpfc_vpi_blk_list, list) { 6706 list_del_init(&rsrc_blk->list); 6707 kfree(rsrc_blk); 6708 } 6709 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6710 break; 6711 case LPFC_RSC_TYPE_FCOE_XRI: 6712 kfree(phba->sli4_hba.xri_bmask); 6713 kfree(phba->sli4_hba.xri_ids); 6714 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6715 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6716 list_del_init(&rsrc_blk->list); 6717 kfree(rsrc_blk); 6718 } 6719 break; 6720 case LPFC_RSC_TYPE_FCOE_VFI: 6721 kfree(phba->sli4_hba.vfi_bmask); 6722 kfree(phba->sli4_hba.vfi_ids); 6723 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6724 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6725 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6726 list_del_init(&rsrc_blk->list); 6727 kfree(rsrc_blk); 6728 } 6729 break; 6730 case LPFC_RSC_TYPE_FCOE_RPI: 6731 /* RPI bitmask and physical id array are cleaned up earlier. */ 6732 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6733 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6734 list_del_init(&rsrc_blk->list); 6735 kfree(rsrc_blk); 6736 } 6737 break; 6738 default: 6739 break; 6740 } 6741 6742 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6743 6744 out_free_mbox: 6745 mempool_free(mbox, phba->mbox_mem_pool); 6746 return rc; 6747 } 6748 6749 static void 6750 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6751 uint32_t feature) 6752 { 6753 uint32_t len; 6754 u32 sig_freq = 0; 6755 6756 len = sizeof(struct lpfc_mbx_set_feature) - 6757 sizeof(struct lpfc_sli4_cfg_mhdr); 6758 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6759 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6760 LPFC_SLI4_MBX_EMBED); 6761 6762 switch (feature) { 6763 case LPFC_SET_UE_RECOVERY: 6764 bf_set(lpfc_mbx_set_feature_UER, 6765 &mbox->u.mqe.un.set_feature, 1); 6766 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6767 mbox->u.mqe.un.set_feature.param_len = 8; 6768 break; 6769 case LPFC_SET_MDS_DIAGS: 6770 bf_set(lpfc_mbx_set_feature_mds, 6771 &mbox->u.mqe.un.set_feature, 1); 6772 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6773 &mbox->u.mqe.un.set_feature, 1); 6774 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6775 mbox->u.mqe.un.set_feature.param_len = 8; 6776 break; 6777 case LPFC_SET_CGN_SIGNAL: 6778 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6779 sig_freq = 0; 6780 else 6781 sig_freq = phba->cgn_sig_freq; 6782 6783 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6784 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6785 &mbox->u.mqe.un.set_feature, sig_freq); 6786 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6787 &mbox->u.mqe.un.set_feature, sig_freq); 6788 } 6789 6790 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6791 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6792 &mbox->u.mqe.un.set_feature, sig_freq); 6793 6794 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6795 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6796 sig_freq = 0; 6797 else 6798 sig_freq = lpfc_acqe_cgn_frequency; 6799 6800 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 6803 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6804 mbox->u.mqe.un.set_feature.param_len = 12; 6805 break; 6806 case LPFC_SET_DUAL_DUMP: 6807 bf_set(lpfc_mbx_set_feature_dd, 6808 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6809 bf_set(lpfc_mbx_set_feature_ddquery, 6810 &mbox->u.mqe.un.set_feature, 0); 6811 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6812 mbox->u.mqe.un.set_feature.param_len = 4; 6813 break; 6814 case LPFC_SET_ENABLE_MI: 6815 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6816 mbox->u.mqe.un.set_feature.param_len = 4; 6817 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6818 phba->pport->cfg_lun_queue_depth); 6819 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6820 phba->sli4_hba.pc_sli4_params.mi_ver); 6821 break; 6822 case LPFC_SET_LD_SIGNAL: 6823 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6824 mbox->u.mqe.un.set_feature.param_len = 16; 6825 bf_set(lpfc_mbx_set_feature_lds_qry, 6826 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6827 break; 6828 case LPFC_SET_ENABLE_CMF: 6829 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6830 mbox->u.mqe.un.set_feature.param_len = 4; 6831 bf_set(lpfc_mbx_set_feature_cmf, 6832 &mbox->u.mqe.un.set_feature, 1); 6833 break; 6834 } 6835 return; 6836 } 6837 6838 /** 6839 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6840 * @phba: Pointer to HBA context object. 6841 * 6842 * Disable FW logging into host memory on the adapter. To 6843 * be done before reading logs from the host memory. 6844 **/ 6845 void 6846 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6847 { 6848 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6849 6850 spin_lock_irq(&phba->ras_fwlog_lock); 6851 ras_fwlog->state = INACTIVE; 6852 spin_unlock_irq(&phba->ras_fwlog_lock); 6853 6854 /* Disable FW logging to host memory */ 6855 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6856 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6857 6858 /* Wait 10ms for firmware to stop using DMA buffer */ 6859 usleep_range(10 * 1000, 20 * 1000); 6860 } 6861 6862 /** 6863 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6864 * @phba: Pointer to HBA context object. 6865 * 6866 * This function is called to free memory allocated for RAS FW logging 6867 * support in the driver. 6868 **/ 6869 void 6870 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6871 { 6872 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6873 struct lpfc_dmabuf *dmabuf, *next; 6874 6875 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6876 list_for_each_entry_safe(dmabuf, next, 6877 &ras_fwlog->fwlog_buff_list, 6878 list) { 6879 list_del(&dmabuf->list); 6880 dma_free_coherent(&phba->pcidev->dev, 6881 LPFC_RAS_MAX_ENTRY_SIZE, 6882 dmabuf->virt, dmabuf->phys); 6883 kfree(dmabuf); 6884 } 6885 } 6886 6887 if (ras_fwlog->lwpd.virt) { 6888 dma_free_coherent(&phba->pcidev->dev, 6889 sizeof(uint32_t) * 2, 6890 ras_fwlog->lwpd.virt, 6891 ras_fwlog->lwpd.phys); 6892 ras_fwlog->lwpd.virt = NULL; 6893 } 6894 6895 spin_lock_irq(&phba->ras_fwlog_lock); 6896 ras_fwlog->state = INACTIVE; 6897 spin_unlock_irq(&phba->ras_fwlog_lock); 6898 } 6899 6900 /** 6901 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6902 * @phba: Pointer to HBA context object. 6903 * @fwlog_buff_count: Count of buffers to be created. 6904 * 6905 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6906 * to update FW log is posted to the adapter. 6907 * Buffer count is calculated based on module param ras_fwlog_buffsize 6908 * Size of each buffer posted to FW is 64K. 6909 **/ 6910 6911 static int 6912 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6913 uint32_t fwlog_buff_count) 6914 { 6915 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6916 struct lpfc_dmabuf *dmabuf; 6917 int rc = 0, i = 0; 6918 6919 /* Initialize List */ 6920 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6921 6922 /* Allocate memory for the LWPD */ 6923 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6924 sizeof(uint32_t) * 2, 6925 &ras_fwlog->lwpd.phys, 6926 GFP_KERNEL); 6927 if (!ras_fwlog->lwpd.virt) { 6928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6929 "6185 LWPD Memory Alloc Failed\n"); 6930 6931 return -ENOMEM; 6932 } 6933 6934 ras_fwlog->fw_buffcount = fwlog_buff_count; 6935 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6936 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6937 GFP_KERNEL); 6938 if (!dmabuf) { 6939 rc = -ENOMEM; 6940 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6941 "6186 Memory Alloc failed FW logging"); 6942 goto free_mem; 6943 } 6944 6945 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6946 LPFC_RAS_MAX_ENTRY_SIZE, 6947 &dmabuf->phys, GFP_KERNEL); 6948 if (!dmabuf->virt) { 6949 kfree(dmabuf); 6950 rc = -ENOMEM; 6951 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6952 "6187 DMA Alloc Failed FW logging"); 6953 goto free_mem; 6954 } 6955 dmabuf->buffer_tag = i; 6956 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6957 } 6958 6959 free_mem: 6960 if (rc) 6961 lpfc_sli4_ras_dma_free(phba); 6962 6963 return rc; 6964 } 6965 6966 /** 6967 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6968 * @phba: pointer to lpfc hba data structure. 6969 * @pmb: pointer to the driver internal queue element for mailbox command. 6970 * 6971 * Completion handler for driver's RAS MBX command to the device. 6972 **/ 6973 static void 6974 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6975 { 6976 MAILBOX_t *mb; 6977 union lpfc_sli4_cfg_shdr *shdr; 6978 uint32_t shdr_status, shdr_add_status; 6979 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6980 6981 mb = &pmb->u.mb; 6982 6983 shdr = (union lpfc_sli4_cfg_shdr *) 6984 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6985 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6986 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6987 6988 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6989 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6990 "6188 FW LOG mailbox " 6991 "completed with status x%x add_status x%x," 6992 " mbx status x%x\n", 6993 shdr_status, shdr_add_status, mb->mbxStatus); 6994 6995 ras_fwlog->ras_hwsupport = false; 6996 goto disable_ras; 6997 } 6998 6999 spin_lock_irq(&phba->ras_fwlog_lock); 7000 ras_fwlog->state = ACTIVE; 7001 spin_unlock_irq(&phba->ras_fwlog_lock); 7002 mempool_free(pmb, phba->mbox_mem_pool); 7003 7004 return; 7005 7006 disable_ras: 7007 /* Free RAS DMA memory */ 7008 lpfc_sli4_ras_dma_free(phba); 7009 mempool_free(pmb, phba->mbox_mem_pool); 7010 } 7011 7012 /** 7013 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7014 * @phba: pointer to lpfc hba data structure. 7015 * @fwlog_level: Logging verbosity level. 7016 * @fwlog_enable: Enable/Disable logging. 7017 * 7018 * Initialize memory and post mailbox command to enable FW logging in host 7019 * memory. 7020 **/ 7021 int 7022 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7023 uint32_t fwlog_level, 7024 uint32_t fwlog_enable) 7025 { 7026 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7027 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7028 struct lpfc_dmabuf *dmabuf; 7029 LPFC_MBOXQ_t *mbox; 7030 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7031 int rc = 0; 7032 7033 spin_lock_irq(&phba->ras_fwlog_lock); 7034 ras_fwlog->state = INACTIVE; 7035 spin_unlock_irq(&phba->ras_fwlog_lock); 7036 7037 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7038 phba->cfg_ras_fwlog_buffsize); 7039 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7040 7041 /* 7042 * If re-enabling FW logging support use earlier allocated 7043 * DMA buffers while posting MBX command. 7044 **/ 7045 if (!ras_fwlog->lwpd.virt) { 7046 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7047 if (rc) { 7048 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7049 "6189 FW Log Memory Allocation Failed"); 7050 return rc; 7051 } 7052 } 7053 7054 /* Setup Mailbox command */ 7055 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7056 if (!mbox) { 7057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7058 "6190 RAS MBX Alloc Failed"); 7059 rc = -ENOMEM; 7060 goto mem_free; 7061 } 7062 7063 ras_fwlog->fw_loglevel = fwlog_level; 7064 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7065 sizeof(struct lpfc_sli4_cfg_mhdr)); 7066 7067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7068 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7069 len, LPFC_SLI4_MBX_EMBED); 7070 7071 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7072 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7073 fwlog_enable); 7074 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7075 ras_fwlog->fw_loglevel); 7076 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7077 ras_fwlog->fw_buffcount); 7078 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7079 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7080 7081 /* Update DMA buffer address */ 7082 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7083 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7084 7085 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7086 putPaddrLow(dmabuf->phys); 7087 7088 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7089 putPaddrHigh(dmabuf->phys); 7090 } 7091 7092 /* Update LPWD address */ 7093 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7094 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7095 7096 spin_lock_irq(&phba->ras_fwlog_lock); 7097 ras_fwlog->state = REG_INPROGRESS; 7098 spin_unlock_irq(&phba->ras_fwlog_lock); 7099 mbox->vport = phba->pport; 7100 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7101 7102 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7103 7104 if (rc == MBX_NOT_FINISHED) { 7105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7106 "6191 FW-Log Mailbox failed. " 7107 "status %d mbxStatus : x%x", rc, 7108 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7109 mempool_free(mbox, phba->mbox_mem_pool); 7110 rc = -EIO; 7111 goto mem_free; 7112 } else 7113 rc = 0; 7114 mem_free: 7115 if (rc) 7116 lpfc_sli4_ras_dma_free(phba); 7117 7118 return rc; 7119 } 7120 7121 /** 7122 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7123 * @phba: Pointer to HBA context object. 7124 * 7125 * Check if RAS is supported on the adapter and initialize it. 7126 **/ 7127 void 7128 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7129 { 7130 /* Check RAS FW Log needs to be enabled or not */ 7131 if (lpfc_check_fwlog_support(phba)) 7132 return; 7133 7134 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7135 LPFC_RAS_ENABLE_LOGGING); 7136 } 7137 7138 /** 7139 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7140 * @phba: Pointer to HBA context object. 7141 * 7142 * This function allocates all SLI4 resource identifiers. 7143 **/ 7144 int 7145 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7146 { 7147 int i, rc, error = 0; 7148 uint16_t count, base; 7149 unsigned long longs; 7150 7151 if (!phba->sli4_hba.rpi_hdrs_in_use) 7152 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7153 if (phba->sli4_hba.extents_in_use) { 7154 /* 7155 * The port supports resource extents. The XRI, VPI, VFI, RPI 7156 * resource extent count must be read and allocated before 7157 * provisioning the resource id arrays. 7158 */ 7159 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7160 LPFC_IDX_RSRC_RDY) { 7161 /* 7162 * Extent-based resources are set - the driver could 7163 * be in a port reset. Figure out if any corrective 7164 * actions need to be taken. 7165 */ 7166 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7167 LPFC_RSC_TYPE_FCOE_VFI); 7168 if (rc != 0) 7169 error++; 7170 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7171 LPFC_RSC_TYPE_FCOE_VPI); 7172 if (rc != 0) 7173 error++; 7174 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7175 LPFC_RSC_TYPE_FCOE_XRI); 7176 if (rc != 0) 7177 error++; 7178 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7179 LPFC_RSC_TYPE_FCOE_RPI); 7180 if (rc != 0) 7181 error++; 7182 7183 /* 7184 * It's possible that the number of resources 7185 * provided to this port instance changed between 7186 * resets. Detect this condition and reallocate 7187 * resources. Otherwise, there is no action. 7188 */ 7189 if (error) { 7190 lpfc_printf_log(phba, KERN_INFO, 7191 LOG_MBOX | LOG_INIT, 7192 "2931 Detected extent resource " 7193 "change. Reallocating all " 7194 "extents.\n"); 7195 rc = lpfc_sli4_dealloc_extent(phba, 7196 LPFC_RSC_TYPE_FCOE_VFI); 7197 rc = lpfc_sli4_dealloc_extent(phba, 7198 LPFC_RSC_TYPE_FCOE_VPI); 7199 rc = lpfc_sli4_dealloc_extent(phba, 7200 LPFC_RSC_TYPE_FCOE_XRI); 7201 rc = lpfc_sli4_dealloc_extent(phba, 7202 LPFC_RSC_TYPE_FCOE_RPI); 7203 } else 7204 return 0; 7205 } 7206 7207 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7208 if (unlikely(rc)) 7209 goto err_exit; 7210 7211 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7212 if (unlikely(rc)) 7213 goto err_exit; 7214 7215 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7216 if (unlikely(rc)) 7217 goto err_exit; 7218 7219 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7220 if (unlikely(rc)) 7221 goto err_exit; 7222 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7223 LPFC_IDX_RSRC_RDY); 7224 return rc; 7225 } else { 7226 /* 7227 * The port does not support resource extents. The XRI, VPI, 7228 * VFI, RPI resource ids were determined from READ_CONFIG. 7229 * Just allocate the bitmasks and provision the resource id 7230 * arrays. If a port reset is active, the resources don't 7231 * need any action - just exit. 7232 */ 7233 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7234 LPFC_IDX_RSRC_RDY) { 7235 lpfc_sli4_dealloc_resource_identifiers(phba); 7236 lpfc_sli4_remove_rpis(phba); 7237 } 7238 /* RPIs. */ 7239 count = phba->sli4_hba.max_cfg_param.max_rpi; 7240 if (count <= 0) { 7241 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7242 "3279 Invalid provisioning of " 7243 "rpi:%d\n", count); 7244 rc = -EINVAL; 7245 goto err_exit; 7246 } 7247 base = phba->sli4_hba.max_cfg_param.rpi_base; 7248 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7249 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7250 sizeof(unsigned long), 7251 GFP_KERNEL); 7252 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7253 rc = -ENOMEM; 7254 goto err_exit; 7255 } 7256 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7257 GFP_KERNEL); 7258 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7259 rc = -ENOMEM; 7260 goto free_rpi_bmask; 7261 } 7262 7263 for (i = 0; i < count; i++) 7264 phba->sli4_hba.rpi_ids[i] = base + i; 7265 7266 /* VPIs. */ 7267 count = phba->sli4_hba.max_cfg_param.max_vpi; 7268 if (count <= 0) { 7269 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7270 "3280 Invalid provisioning of " 7271 "vpi:%d\n", count); 7272 rc = -EINVAL; 7273 goto free_rpi_ids; 7274 } 7275 base = phba->sli4_hba.max_cfg_param.vpi_base; 7276 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7277 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7278 GFP_KERNEL); 7279 if (unlikely(!phba->vpi_bmask)) { 7280 rc = -ENOMEM; 7281 goto free_rpi_ids; 7282 } 7283 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7284 GFP_KERNEL); 7285 if (unlikely(!phba->vpi_ids)) { 7286 rc = -ENOMEM; 7287 goto free_vpi_bmask; 7288 } 7289 7290 for (i = 0; i < count; i++) 7291 phba->vpi_ids[i] = base + i; 7292 7293 /* XRIs. */ 7294 count = phba->sli4_hba.max_cfg_param.max_xri; 7295 if (count <= 0) { 7296 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7297 "3281 Invalid provisioning of " 7298 "xri:%d\n", count); 7299 rc = -EINVAL; 7300 goto free_vpi_ids; 7301 } 7302 base = phba->sli4_hba.max_cfg_param.xri_base; 7303 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7304 phba->sli4_hba.xri_bmask = kcalloc(longs, 7305 sizeof(unsigned long), 7306 GFP_KERNEL); 7307 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7308 rc = -ENOMEM; 7309 goto free_vpi_ids; 7310 } 7311 phba->sli4_hba.max_cfg_param.xri_used = 0; 7312 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7313 GFP_KERNEL); 7314 if (unlikely(!phba->sli4_hba.xri_ids)) { 7315 rc = -ENOMEM; 7316 goto free_xri_bmask; 7317 } 7318 7319 for (i = 0; i < count; i++) 7320 phba->sli4_hba.xri_ids[i] = base + i; 7321 7322 /* VFIs. */ 7323 count = phba->sli4_hba.max_cfg_param.max_vfi; 7324 if (count <= 0) { 7325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7326 "3282 Invalid provisioning of " 7327 "vfi:%d\n", count); 7328 rc = -EINVAL; 7329 goto free_xri_ids; 7330 } 7331 base = phba->sli4_hba.max_cfg_param.vfi_base; 7332 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7333 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7334 sizeof(unsigned long), 7335 GFP_KERNEL); 7336 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7337 rc = -ENOMEM; 7338 goto free_xri_ids; 7339 } 7340 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7341 GFP_KERNEL); 7342 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7343 rc = -ENOMEM; 7344 goto free_vfi_bmask; 7345 } 7346 7347 for (i = 0; i < count; i++) 7348 phba->sli4_hba.vfi_ids[i] = base + i; 7349 7350 /* 7351 * Mark all resources ready. An HBA reset doesn't need 7352 * to reset the initialization. 7353 */ 7354 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7355 LPFC_IDX_RSRC_RDY); 7356 return 0; 7357 } 7358 7359 free_vfi_bmask: 7360 kfree(phba->sli4_hba.vfi_bmask); 7361 phba->sli4_hba.vfi_bmask = NULL; 7362 free_xri_ids: 7363 kfree(phba->sli4_hba.xri_ids); 7364 phba->sli4_hba.xri_ids = NULL; 7365 free_xri_bmask: 7366 kfree(phba->sli4_hba.xri_bmask); 7367 phba->sli4_hba.xri_bmask = NULL; 7368 free_vpi_ids: 7369 kfree(phba->vpi_ids); 7370 phba->vpi_ids = NULL; 7371 free_vpi_bmask: 7372 kfree(phba->vpi_bmask); 7373 phba->vpi_bmask = NULL; 7374 free_rpi_ids: 7375 kfree(phba->sli4_hba.rpi_ids); 7376 phba->sli4_hba.rpi_ids = NULL; 7377 free_rpi_bmask: 7378 kfree(phba->sli4_hba.rpi_bmask); 7379 phba->sli4_hba.rpi_bmask = NULL; 7380 err_exit: 7381 return rc; 7382 } 7383 7384 /** 7385 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7386 * @phba: Pointer to HBA context object. 7387 * 7388 * This function allocates the number of elements for the specified 7389 * resource type. 7390 **/ 7391 int 7392 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7393 { 7394 if (phba->sli4_hba.extents_in_use) { 7395 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7396 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7397 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7398 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7399 } else { 7400 kfree(phba->vpi_bmask); 7401 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7402 kfree(phba->vpi_ids); 7403 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7404 kfree(phba->sli4_hba.xri_bmask); 7405 kfree(phba->sli4_hba.xri_ids); 7406 kfree(phba->sli4_hba.vfi_bmask); 7407 kfree(phba->sli4_hba.vfi_ids); 7408 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7409 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7410 } 7411 7412 return 0; 7413 } 7414 7415 /** 7416 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7417 * @phba: Pointer to HBA context object. 7418 * @type: The resource extent type. 7419 * @extnt_cnt: buffer to hold port extent count response 7420 * @extnt_size: buffer to hold port extent size response. 7421 * 7422 * This function calls the port to read the host allocated extents 7423 * for a particular type. 7424 **/ 7425 int 7426 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7427 uint16_t *extnt_cnt, uint16_t *extnt_size) 7428 { 7429 bool emb; 7430 int rc = 0; 7431 uint16_t curr_blks = 0; 7432 uint32_t req_len, emb_len; 7433 uint32_t alloc_len, mbox_tmo; 7434 struct list_head *blk_list_head; 7435 struct lpfc_rsrc_blks *rsrc_blk; 7436 LPFC_MBOXQ_t *mbox; 7437 void *virtaddr = NULL; 7438 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7439 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7440 union lpfc_sli4_cfg_shdr *shdr; 7441 7442 switch (type) { 7443 case LPFC_RSC_TYPE_FCOE_VPI: 7444 blk_list_head = &phba->lpfc_vpi_blk_list; 7445 break; 7446 case LPFC_RSC_TYPE_FCOE_XRI: 7447 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7448 break; 7449 case LPFC_RSC_TYPE_FCOE_VFI: 7450 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7451 break; 7452 case LPFC_RSC_TYPE_FCOE_RPI: 7453 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7454 break; 7455 default: 7456 return -EIO; 7457 } 7458 7459 /* Count the number of extents currently allocatd for this type. */ 7460 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7461 if (curr_blks == 0) { 7462 /* 7463 * The GET_ALLOCATED mailbox does not return the size, 7464 * just the count. The size should be just the size 7465 * stored in the current allocated block and all sizes 7466 * for an extent type are the same so set the return 7467 * value now. 7468 */ 7469 *extnt_size = rsrc_blk->rsrc_size; 7470 } 7471 curr_blks++; 7472 } 7473 7474 /* 7475 * Calculate the size of an embedded mailbox. The uint32_t 7476 * accounts for extents-specific word. 7477 */ 7478 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7479 sizeof(uint32_t); 7480 7481 /* 7482 * Presume the allocation and response will fit into an embedded 7483 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7484 */ 7485 emb = LPFC_SLI4_MBX_EMBED; 7486 req_len = emb_len; 7487 if (req_len > emb_len) { 7488 req_len = curr_blks * sizeof(uint16_t) + 7489 sizeof(union lpfc_sli4_cfg_shdr) + 7490 sizeof(uint32_t); 7491 emb = LPFC_SLI4_MBX_NEMBED; 7492 } 7493 7494 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7495 if (!mbox) 7496 return -ENOMEM; 7497 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7498 7499 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7500 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7501 req_len, emb); 7502 if (alloc_len < req_len) { 7503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7504 "2983 Allocated DMA memory size (x%x) is " 7505 "less than the requested DMA memory " 7506 "size (x%x)\n", alloc_len, req_len); 7507 rc = -ENOMEM; 7508 goto err_exit; 7509 } 7510 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7511 if (unlikely(rc)) { 7512 rc = -EIO; 7513 goto err_exit; 7514 } 7515 7516 if (!phba->sli4_hba.intr_enable) 7517 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7518 else { 7519 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7520 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7521 } 7522 7523 if (unlikely(rc)) { 7524 rc = -EIO; 7525 goto err_exit; 7526 } 7527 7528 /* 7529 * Figure out where the response is located. Then get local pointers 7530 * to the response data. The port does not guarantee to respond to 7531 * all extents counts request so update the local variable with the 7532 * allocated count from the port. 7533 */ 7534 if (emb == LPFC_SLI4_MBX_EMBED) { 7535 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7536 shdr = &rsrc_ext->header.cfg_shdr; 7537 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7538 } else { 7539 virtaddr = mbox->sge_array->addr[0]; 7540 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7541 shdr = &n_rsrc->cfg_shdr; 7542 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7543 } 7544 7545 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7546 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7547 "2984 Failed to read allocated resources " 7548 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7549 type, 7550 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7551 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7552 rc = -EIO; 7553 goto err_exit; 7554 } 7555 err_exit: 7556 lpfc_sli4_mbox_cmd_free(phba, mbox); 7557 return rc; 7558 } 7559 7560 /** 7561 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7562 * @phba: pointer to lpfc hba data structure. 7563 * @sgl_list: linked link of sgl buffers to post 7564 * @cnt: number of linked list buffers 7565 * 7566 * This routine walks the list of buffers that have been allocated and 7567 * repost them to the port by using SGL block post. This is needed after a 7568 * pci_function_reset/warm_start or start. It attempts to construct blocks 7569 * of buffer sgls which contains contiguous xris and uses the non-embedded 7570 * SGL block post mailbox commands to post them to the port. For single 7571 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7572 * mailbox command for posting. 7573 * 7574 * Returns: 0 = success, non-zero failure. 7575 **/ 7576 static int 7577 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7578 struct list_head *sgl_list, int cnt) 7579 { 7580 struct lpfc_sglq *sglq_entry = NULL; 7581 struct lpfc_sglq *sglq_entry_next = NULL; 7582 struct lpfc_sglq *sglq_entry_first = NULL; 7583 int status = 0, total_cnt; 7584 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7585 int last_xritag = NO_XRI; 7586 LIST_HEAD(prep_sgl_list); 7587 LIST_HEAD(blck_sgl_list); 7588 LIST_HEAD(allc_sgl_list); 7589 LIST_HEAD(post_sgl_list); 7590 LIST_HEAD(free_sgl_list); 7591 7592 spin_lock_irq(&phba->hbalock); 7593 spin_lock(&phba->sli4_hba.sgl_list_lock); 7594 list_splice_init(sgl_list, &allc_sgl_list); 7595 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7596 spin_unlock_irq(&phba->hbalock); 7597 7598 total_cnt = cnt; 7599 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7600 &allc_sgl_list, list) { 7601 list_del_init(&sglq_entry->list); 7602 block_cnt++; 7603 if ((last_xritag != NO_XRI) && 7604 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7605 /* a hole in xri block, form a sgl posting block */ 7606 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7607 post_cnt = block_cnt - 1; 7608 /* prepare list for next posting block */ 7609 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7610 block_cnt = 1; 7611 } else { 7612 /* prepare list for next posting block */ 7613 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7614 /* enough sgls for non-embed sgl mbox command */ 7615 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7616 list_splice_init(&prep_sgl_list, 7617 &blck_sgl_list); 7618 post_cnt = block_cnt; 7619 block_cnt = 0; 7620 } 7621 } 7622 num_posted++; 7623 7624 /* keep track of last sgl's xritag */ 7625 last_xritag = sglq_entry->sli4_xritag; 7626 7627 /* end of repost sgl list condition for buffers */ 7628 if (num_posted == total_cnt) { 7629 if (post_cnt == 0) { 7630 list_splice_init(&prep_sgl_list, 7631 &blck_sgl_list); 7632 post_cnt = block_cnt; 7633 } else if (block_cnt == 1) { 7634 status = lpfc_sli4_post_sgl(phba, 7635 sglq_entry->phys, 0, 7636 sglq_entry->sli4_xritag); 7637 if (!status) { 7638 /* successful, put sgl to posted list */ 7639 list_add_tail(&sglq_entry->list, 7640 &post_sgl_list); 7641 } else { 7642 /* Failure, put sgl to free list */ 7643 lpfc_printf_log(phba, KERN_WARNING, 7644 LOG_SLI, 7645 "3159 Failed to post " 7646 "sgl, xritag:x%x\n", 7647 sglq_entry->sli4_xritag); 7648 list_add_tail(&sglq_entry->list, 7649 &free_sgl_list); 7650 total_cnt--; 7651 } 7652 } 7653 } 7654 7655 /* continue until a nembed page worth of sgls */ 7656 if (post_cnt == 0) 7657 continue; 7658 7659 /* post the buffer list sgls as a block */ 7660 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7661 post_cnt); 7662 7663 if (!status) { 7664 /* success, put sgl list to posted sgl list */ 7665 list_splice_init(&blck_sgl_list, &post_sgl_list); 7666 } else { 7667 /* Failure, put sgl list to free sgl list */ 7668 sglq_entry_first = list_first_entry(&blck_sgl_list, 7669 struct lpfc_sglq, 7670 list); 7671 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7672 "3160 Failed to post sgl-list, " 7673 "xritag:x%x-x%x\n", 7674 sglq_entry_first->sli4_xritag, 7675 (sglq_entry_first->sli4_xritag + 7676 post_cnt - 1)); 7677 list_splice_init(&blck_sgl_list, &free_sgl_list); 7678 total_cnt -= post_cnt; 7679 } 7680 7681 /* don't reset xirtag due to hole in xri block */ 7682 if (block_cnt == 0) 7683 last_xritag = NO_XRI; 7684 7685 /* reset sgl post count for next round of posting */ 7686 post_cnt = 0; 7687 } 7688 7689 /* free the sgls failed to post */ 7690 lpfc_free_sgl_list(phba, &free_sgl_list); 7691 7692 /* push sgls posted to the available list */ 7693 if (!list_empty(&post_sgl_list)) { 7694 spin_lock_irq(&phba->hbalock); 7695 spin_lock(&phba->sli4_hba.sgl_list_lock); 7696 list_splice_init(&post_sgl_list, sgl_list); 7697 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7698 spin_unlock_irq(&phba->hbalock); 7699 } else { 7700 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7701 "3161 Failure to post sgl to port,status %x " 7702 "blkcnt %d totalcnt %d postcnt %d\n", 7703 status, block_cnt, total_cnt, post_cnt); 7704 return -EIO; 7705 } 7706 7707 /* return the number of XRIs actually posted */ 7708 return total_cnt; 7709 } 7710 7711 /** 7712 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7713 * @phba: pointer to lpfc hba data structure. 7714 * 7715 * This routine walks the list of nvme buffers that have been allocated and 7716 * repost them to the port by using SGL block post. This is needed after a 7717 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7718 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7719 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7720 * 7721 * Returns: 0 = success, non-zero failure. 7722 **/ 7723 static int 7724 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7725 { 7726 LIST_HEAD(post_nblist); 7727 int num_posted, rc = 0; 7728 7729 /* get all NVME buffers need to repost to a local list */ 7730 lpfc_io_buf_flush(phba, &post_nblist); 7731 7732 /* post the list of nvme buffer sgls to port if available */ 7733 if (!list_empty(&post_nblist)) { 7734 num_posted = lpfc_sli4_post_io_sgl_list( 7735 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7736 /* failed to post any nvme buffer, return error */ 7737 if (num_posted == 0) 7738 rc = -EIO; 7739 } 7740 return rc; 7741 } 7742 7743 static void 7744 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7745 { 7746 uint32_t len; 7747 7748 len = sizeof(struct lpfc_mbx_set_host_data) - 7749 sizeof(struct lpfc_sli4_cfg_mhdr); 7750 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7751 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7752 LPFC_SLI4_MBX_EMBED); 7753 7754 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7755 mbox->u.mqe.un.set_host_data.param_len = 7756 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7757 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7758 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7759 "Linux %s v"LPFC_DRIVER_VERSION, 7760 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7761 } 7762 7763 int 7764 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7765 struct lpfc_queue *drq, int count, int idx) 7766 { 7767 int rc, i; 7768 struct lpfc_rqe hrqe; 7769 struct lpfc_rqe drqe; 7770 struct lpfc_rqb *rqbp; 7771 unsigned long flags; 7772 struct rqb_dmabuf *rqb_buffer; 7773 LIST_HEAD(rqb_buf_list); 7774 7775 rqbp = hrq->rqbp; 7776 for (i = 0; i < count; i++) { 7777 spin_lock_irqsave(&phba->hbalock, flags); 7778 /* IF RQ is already full, don't bother */ 7779 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7780 spin_unlock_irqrestore(&phba->hbalock, flags); 7781 break; 7782 } 7783 spin_unlock_irqrestore(&phba->hbalock, flags); 7784 7785 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7786 if (!rqb_buffer) 7787 break; 7788 rqb_buffer->hrq = hrq; 7789 rqb_buffer->drq = drq; 7790 rqb_buffer->idx = idx; 7791 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7792 } 7793 7794 spin_lock_irqsave(&phba->hbalock, flags); 7795 while (!list_empty(&rqb_buf_list)) { 7796 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7797 hbuf.list); 7798 7799 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7800 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7801 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7802 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7803 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7804 if (rc < 0) { 7805 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7806 "6421 Cannot post to HRQ %d: %x %x %x " 7807 "DRQ %x %x\n", 7808 hrq->queue_id, 7809 hrq->host_index, 7810 hrq->hba_index, 7811 hrq->entry_count, 7812 drq->host_index, 7813 drq->hba_index); 7814 rqbp->rqb_free_buffer(phba, rqb_buffer); 7815 } else { 7816 list_add_tail(&rqb_buffer->hbuf.list, 7817 &rqbp->rqb_buffer_list); 7818 rqbp->buffer_count++; 7819 } 7820 } 7821 spin_unlock_irqrestore(&phba->hbalock, flags); 7822 return 1; 7823 } 7824 7825 static void 7826 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7827 { 7828 union lpfc_sli4_cfg_shdr *shdr; 7829 u32 shdr_status, shdr_add_status; 7830 7831 shdr = (union lpfc_sli4_cfg_shdr *) 7832 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7833 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7834 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7835 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7836 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7837 "4622 SET_FEATURE (x%x) mbox failed, " 7838 "status x%x add_status x%x, mbx status x%x\n", 7839 LPFC_SET_LD_SIGNAL, shdr_status, 7840 shdr_add_status, pmb->u.mb.mbxStatus); 7841 phba->degrade_activate_threshold = 0; 7842 phba->degrade_deactivate_threshold = 0; 7843 phba->fec_degrade_interval = 0; 7844 goto out; 7845 } 7846 7847 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7848 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7849 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7850 7851 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7852 "4624 Success: da x%x dd x%x interval x%x\n", 7853 phba->degrade_activate_threshold, 7854 phba->degrade_deactivate_threshold, 7855 phba->fec_degrade_interval); 7856 out: 7857 mempool_free(pmb, phba->mbox_mem_pool); 7858 } 7859 7860 int 7861 lpfc_read_lds_params(struct lpfc_hba *phba) 7862 { 7863 LPFC_MBOXQ_t *mboxq; 7864 int rc; 7865 7866 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7867 if (!mboxq) 7868 return -ENOMEM; 7869 7870 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7871 mboxq->vport = phba->pport; 7872 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7873 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7874 if (rc == MBX_NOT_FINISHED) { 7875 mempool_free(mboxq, phba->mbox_mem_pool); 7876 return -EIO; 7877 } 7878 return 0; 7879 } 7880 7881 static void 7882 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7883 { 7884 struct lpfc_vport *vport = pmb->vport; 7885 union lpfc_sli4_cfg_shdr *shdr; 7886 u32 shdr_status, shdr_add_status; 7887 u32 sig, acqe; 7888 7889 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7890 * is done. (2) Mailbox failed and send FPIN support only. 7891 */ 7892 shdr = (union lpfc_sli4_cfg_shdr *) 7893 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7894 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7895 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7896 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7897 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7898 "2516 CGN SET_FEATURE mbox failed with " 7899 "status x%x add_status x%x, mbx status x%x " 7900 "Reset Congestion to FPINs only\n", 7901 shdr_status, shdr_add_status, 7902 pmb->u.mb.mbxStatus); 7903 /* If there is a mbox error, move on to RDF */ 7904 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7905 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7906 goto out; 7907 } 7908 7909 /* Zero out Congestion Signal ACQE counter */ 7910 phba->cgn_acqe_cnt = 0; 7911 7912 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7913 &pmb->u.mqe.un.set_feature); 7914 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7915 &pmb->u.mqe.un.set_feature); 7916 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7917 "4620 SET_FEATURES Success: Freq: %ds %dms " 7918 " Reg: x%x x%x\n", acqe, sig, 7919 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7920 out: 7921 mempool_free(pmb, phba->mbox_mem_pool); 7922 7923 /* Register for FPIN events from the fabric now that the 7924 * EDC common_set_features has completed. 7925 */ 7926 lpfc_issue_els_rdf(vport, 0); 7927 } 7928 7929 int 7930 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7931 { 7932 LPFC_MBOXQ_t *mboxq; 7933 u32 rc; 7934 7935 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7936 if (!mboxq) 7937 goto out_rdf; 7938 7939 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7940 mboxq->vport = phba->pport; 7941 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7942 7943 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7944 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7945 "Reg: x%x x%x\n", 7946 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7947 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7948 7949 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7950 if (rc == MBX_NOT_FINISHED) 7951 goto out; 7952 return 0; 7953 7954 out: 7955 mempool_free(mboxq, phba->mbox_mem_pool); 7956 out_rdf: 7957 /* If there is a mbox error, move on to RDF */ 7958 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7959 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7960 lpfc_issue_els_rdf(phba->pport, 0); 7961 return -EIO; 7962 } 7963 7964 /** 7965 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7966 * @phba: pointer to lpfc hba data structure. 7967 * 7968 * This routine initializes the per-eq idle_stat to dynamically dictate 7969 * polling decisions. 7970 * 7971 * Return codes: 7972 * None 7973 **/ 7974 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7975 { 7976 int i; 7977 struct lpfc_sli4_hdw_queue *hdwq; 7978 struct lpfc_queue *eq; 7979 struct lpfc_idle_stat *idle_stat; 7980 u64 wall; 7981 7982 for_each_present_cpu(i) { 7983 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7984 eq = hdwq->hba_eq; 7985 7986 /* Skip if we've already handled this eq's primary CPU */ 7987 if (eq->chann != i) 7988 continue; 7989 7990 idle_stat = &phba->sli4_hba.idle_stat[i]; 7991 7992 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7993 idle_stat->prev_wall = wall; 7994 7995 if (phba->nvmet_support || 7996 phba->cmf_active_mode != LPFC_CFG_OFF || 7997 phba->intr_type != MSIX) 7998 eq->poll_mode = LPFC_QUEUE_WORK; 7999 else 8000 eq->poll_mode = LPFC_THREADED_IRQ; 8001 } 8002 8003 if (!phba->nvmet_support && phba->intr_type == MSIX) 8004 schedule_delayed_work(&phba->idle_stat_delay_work, 8005 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8006 } 8007 8008 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8009 { 8010 uint32_t if_type; 8011 8012 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8013 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8014 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8015 struct lpfc_register reg_data; 8016 8017 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8018 ®_data.word0)) 8019 return; 8020 8021 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8022 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8023 "2904 Firmware Dump Image Present" 8024 " on Adapter"); 8025 } 8026 } 8027 8028 /** 8029 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8030 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8031 * @entries: Number of rx_info_entry objects to allocate in ring 8032 * 8033 * Return: 8034 * 0 - Success 8035 * ENOMEM - Failure to kmalloc 8036 **/ 8037 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8038 u32 entries) 8039 { 8040 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8041 GFP_KERNEL); 8042 if (!rx_monitor->ring) 8043 return -ENOMEM; 8044 8045 rx_monitor->head_idx = 0; 8046 rx_monitor->tail_idx = 0; 8047 spin_lock_init(&rx_monitor->lock); 8048 rx_monitor->entries = entries; 8049 8050 return 0; 8051 } 8052 8053 /** 8054 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8055 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8056 * 8057 * Called after cancellation of cmf_timer. 8058 **/ 8059 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8060 { 8061 kfree(rx_monitor->ring); 8062 rx_monitor->ring = NULL; 8063 rx_monitor->entries = 0; 8064 rx_monitor->head_idx = 0; 8065 rx_monitor->tail_idx = 0; 8066 } 8067 8068 /** 8069 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8070 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8071 * @entry: Pointer to rx_info_entry 8072 * 8073 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8074 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8075 * 8076 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8077 * 8078 * In cases of old data overflow, we do a best effort of FIFO order. 8079 **/ 8080 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8081 struct rx_info_entry *entry) 8082 { 8083 struct rx_info_entry *ring = rx_monitor->ring; 8084 u32 *head_idx = &rx_monitor->head_idx; 8085 u32 *tail_idx = &rx_monitor->tail_idx; 8086 spinlock_t *ring_lock = &rx_monitor->lock; 8087 u32 ring_size = rx_monitor->entries; 8088 8089 spin_lock(ring_lock); 8090 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8091 *tail_idx = (*tail_idx + 1) % ring_size; 8092 8093 /* Best effort of FIFO saved data */ 8094 if (*tail_idx == *head_idx) 8095 *head_idx = (*head_idx + 1) % ring_size; 8096 8097 spin_unlock(ring_lock); 8098 } 8099 8100 /** 8101 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8102 * @phba: Pointer to lpfc_hba object 8103 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8104 * @buf: Pointer to char buffer that will contain rx monitor info data 8105 * @buf_len: Length buf including null char 8106 * @max_read_entries: Maximum number of entries to read out of ring 8107 * 8108 * Used to dump/read what's in rx_monitor's ring buffer. 8109 * 8110 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8111 * information to kmsg instead of filling out buf. 8112 * 8113 * Return: 8114 * Number of entries read out of the ring 8115 **/ 8116 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8117 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8118 u32 buf_len, u32 max_read_entries) 8119 { 8120 struct rx_info_entry *ring = rx_monitor->ring; 8121 struct rx_info_entry *entry; 8122 u32 *head_idx = &rx_monitor->head_idx; 8123 u32 *tail_idx = &rx_monitor->tail_idx; 8124 spinlock_t *ring_lock = &rx_monitor->lock; 8125 u32 ring_size = rx_monitor->entries; 8126 u32 cnt = 0; 8127 char tmp[DBG_LOG_STR_SZ] = {0}; 8128 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8129 8130 if (!log_to_kmsg) { 8131 /* clear the buffer to be sure */ 8132 memset(buf, 0, buf_len); 8133 8134 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8135 "%-8s%-8s%-8s%-16s\n", 8136 "MaxBPI", "Tot_Data_CMF", 8137 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8138 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8139 "IO_cnt", "Info", "BWutil(ms)"); 8140 } 8141 8142 /* Needs to be _irq because record is called from timer interrupt 8143 * context 8144 */ 8145 spin_lock_irq(ring_lock); 8146 while (*head_idx != *tail_idx) { 8147 entry = &ring[*head_idx]; 8148 8149 /* Read out this entry's data. */ 8150 if (!log_to_kmsg) { 8151 /* If !log_to_kmsg, then store to buf. */ 8152 scnprintf(tmp, sizeof(tmp), 8153 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8154 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8155 *head_idx, entry->max_bytes_per_interval, 8156 entry->cmf_bytes, entry->total_bytes, 8157 entry->rcv_bytes, entry->avg_io_latency, 8158 entry->avg_io_size, entry->max_read_cnt, 8159 entry->cmf_busy, entry->io_cnt, 8160 entry->cmf_info, entry->timer_utilization, 8161 entry->timer_interval); 8162 8163 /* Check for buffer overflow */ 8164 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8165 break; 8166 8167 /* Append entry's data to buffer */ 8168 strlcat(buf, tmp, buf_len); 8169 } else { 8170 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8171 "4410 %02u: MBPI %llu Xmit %llu " 8172 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8173 "BWUtil %u Int %u slot %u\n", 8174 cnt, entry->max_bytes_per_interval, 8175 entry->total_bytes, entry->rcv_bytes, 8176 entry->avg_io_latency, 8177 entry->avg_io_size, entry->cmf_info, 8178 entry->timer_utilization, 8179 entry->timer_interval, *head_idx); 8180 } 8181 8182 *head_idx = (*head_idx + 1) % ring_size; 8183 8184 /* Don't feed more than max_read_entries */ 8185 cnt++; 8186 if (cnt >= max_read_entries) 8187 break; 8188 } 8189 spin_unlock_irq(ring_lock); 8190 8191 return cnt; 8192 } 8193 8194 /** 8195 * lpfc_cmf_setup - Initialize idle_stat tracking 8196 * @phba: Pointer to HBA context object. 8197 * 8198 * This is called from HBA setup during driver load or when the HBA 8199 * comes online. this does all the initialization to support CMF and MI. 8200 **/ 8201 static int 8202 lpfc_cmf_setup(struct lpfc_hba *phba) 8203 { 8204 LPFC_MBOXQ_t *mboxq; 8205 struct lpfc_dmabuf *mp; 8206 struct lpfc_pc_sli4_params *sli4_params; 8207 int rc, cmf, mi_ver; 8208 8209 rc = lpfc_sli4_refresh_params(phba); 8210 if (unlikely(rc)) 8211 return rc; 8212 8213 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8214 if (!mboxq) 8215 return -ENOMEM; 8216 8217 sli4_params = &phba->sli4_hba.pc_sli4_params; 8218 8219 /* Always try to enable MI feature if we can */ 8220 if (sli4_params->mi_ver) { 8221 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8222 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8223 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8224 &mboxq->u.mqe.un.set_feature); 8225 8226 if (rc == MBX_SUCCESS) { 8227 if (mi_ver) { 8228 lpfc_printf_log(phba, 8229 KERN_WARNING, LOG_CGN_MGMT, 8230 "6215 MI is enabled\n"); 8231 sli4_params->mi_ver = mi_ver; 8232 } else { 8233 lpfc_printf_log(phba, 8234 KERN_WARNING, LOG_CGN_MGMT, 8235 "6338 MI is disabled\n"); 8236 sli4_params->mi_ver = 0; 8237 } 8238 } else { 8239 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8240 lpfc_printf_log(phba, KERN_INFO, 8241 LOG_CGN_MGMT | LOG_INIT, 8242 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8243 "failed, rc:x%x mi:x%x\n", 8244 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8245 lpfc_sli_config_mbox_subsys_get 8246 (phba, mboxq), 8247 lpfc_sli_config_mbox_opcode_get 8248 (phba, mboxq), 8249 rc, sli4_params->mi_ver); 8250 } 8251 } else { 8252 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8253 "6217 MI is disabled\n"); 8254 } 8255 8256 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8257 if (sli4_params->mi_ver) 8258 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8259 8260 /* Always try to enable CMF feature if we can */ 8261 if (sli4_params->cmf) { 8262 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8263 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8264 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8265 &mboxq->u.mqe.un.set_feature); 8266 if (rc == MBX_SUCCESS && cmf) { 8267 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8268 "6218 CMF is enabled: mode %d\n", 8269 phba->cmf_active_mode); 8270 } else { 8271 lpfc_printf_log(phba, KERN_WARNING, 8272 LOG_CGN_MGMT | LOG_INIT, 8273 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8274 "failed, rc:x%x dd:x%x\n", 8275 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8276 lpfc_sli_config_mbox_subsys_get 8277 (phba, mboxq), 8278 lpfc_sli_config_mbox_opcode_get 8279 (phba, mboxq), 8280 rc, cmf); 8281 sli4_params->cmf = 0; 8282 phba->cmf_active_mode = LPFC_CFG_OFF; 8283 goto no_cmf; 8284 } 8285 8286 /* Allocate Congestion Information Buffer */ 8287 if (!phba->cgn_i) { 8288 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8289 if (mp) 8290 mp->virt = dma_alloc_coherent 8291 (&phba->pcidev->dev, 8292 sizeof(struct lpfc_cgn_info), 8293 &mp->phys, GFP_KERNEL); 8294 if (!mp || !mp->virt) { 8295 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8296 "2640 Failed to alloc memory " 8297 "for Congestion Info\n"); 8298 kfree(mp); 8299 sli4_params->cmf = 0; 8300 phba->cmf_active_mode = LPFC_CFG_OFF; 8301 goto no_cmf; 8302 } 8303 phba->cgn_i = mp; 8304 8305 /* initialize congestion buffer info */ 8306 lpfc_init_congestion_buf(phba); 8307 lpfc_init_congestion_stat(phba); 8308 8309 /* Zero out Congestion Signal counters */ 8310 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8311 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8312 } 8313 8314 rc = lpfc_sli4_cgn_params_read(phba); 8315 if (rc < 0) { 8316 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8317 "6242 Error reading Cgn Params (%d)\n", 8318 rc); 8319 /* Ensure CGN Mode is off */ 8320 sli4_params->cmf = 0; 8321 } else if (!rc) { 8322 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8323 "6243 CGN Event empty object.\n"); 8324 /* Ensure CGN Mode is off */ 8325 sli4_params->cmf = 0; 8326 } 8327 } else { 8328 no_cmf: 8329 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8330 "6220 CMF is disabled\n"); 8331 } 8332 8333 /* Only register congestion buffer with firmware if BOTH 8334 * CMF and E2E are enabled. 8335 */ 8336 if (sli4_params->cmf && sli4_params->mi_ver) { 8337 rc = lpfc_reg_congestion_buf(phba); 8338 if (rc) { 8339 dma_free_coherent(&phba->pcidev->dev, 8340 sizeof(struct lpfc_cgn_info), 8341 phba->cgn_i->virt, phba->cgn_i->phys); 8342 kfree(phba->cgn_i); 8343 phba->cgn_i = NULL; 8344 /* Ensure CGN Mode is off */ 8345 phba->cmf_active_mode = LPFC_CFG_OFF; 8346 sli4_params->cmf = 0; 8347 return 0; 8348 } 8349 } 8350 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8351 "6470 Setup MI version %d CMF %d mode %d\n", 8352 sli4_params->mi_ver, sli4_params->cmf, 8353 phba->cmf_active_mode); 8354 8355 mempool_free(mboxq, phba->mbox_mem_pool); 8356 8357 /* Initialize atomic counters */ 8358 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8359 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8360 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8361 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8362 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8363 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8364 atomic64_set(&phba->cgn_latency_evt, 0); 8365 8366 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8367 8368 /* Allocate RX Monitor Buffer */ 8369 if (!phba->rx_monitor) { 8370 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8371 GFP_KERNEL); 8372 8373 if (!phba->rx_monitor) { 8374 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8375 "2644 Failed to alloc memory " 8376 "for RX Monitor Buffer\n"); 8377 return -ENOMEM; 8378 } 8379 8380 /* Instruct the rx_monitor object to instantiate its ring */ 8381 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8382 LPFC_MAX_RXMONITOR_ENTRY)) { 8383 kfree(phba->rx_monitor); 8384 phba->rx_monitor = NULL; 8385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8386 "2645 Failed to alloc memory " 8387 "for RX Monitor's Ring\n"); 8388 return -ENOMEM; 8389 } 8390 } 8391 8392 return 0; 8393 } 8394 8395 static int 8396 lpfc_set_host_tm(struct lpfc_hba *phba) 8397 { 8398 LPFC_MBOXQ_t *mboxq; 8399 uint32_t len, rc; 8400 struct timespec64 cur_time; 8401 struct tm broken; 8402 uint32_t month, day, year; 8403 uint32_t hour, minute, second; 8404 struct lpfc_mbx_set_host_date_time *tm; 8405 8406 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8407 if (!mboxq) 8408 return -ENOMEM; 8409 8410 len = sizeof(struct lpfc_mbx_set_host_data) - 8411 sizeof(struct lpfc_sli4_cfg_mhdr); 8412 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8413 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8414 LPFC_SLI4_MBX_EMBED); 8415 8416 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8417 mboxq->u.mqe.un.set_host_data.param_len = 8418 sizeof(struct lpfc_mbx_set_host_date_time); 8419 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8420 ktime_get_real_ts64(&cur_time); 8421 time64_to_tm(cur_time.tv_sec, 0, &broken); 8422 month = broken.tm_mon + 1; 8423 day = broken.tm_mday; 8424 year = broken.tm_year - 100; 8425 hour = broken.tm_hour; 8426 minute = broken.tm_min; 8427 second = broken.tm_sec; 8428 bf_set(lpfc_mbx_set_host_month, tm, month); 8429 bf_set(lpfc_mbx_set_host_day, tm, day); 8430 bf_set(lpfc_mbx_set_host_year, tm, year); 8431 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8432 bf_set(lpfc_mbx_set_host_min, tm, minute); 8433 bf_set(lpfc_mbx_set_host_sec, tm, second); 8434 8435 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8436 mempool_free(mboxq, phba->mbox_mem_pool); 8437 return rc; 8438 } 8439 8440 /** 8441 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8442 * @phba: Pointer to HBA context object. 8443 * 8444 * This function is the main SLI4 device initialization PCI function. This 8445 * function is called by the HBA initialization code, HBA reset code and 8446 * HBA error attention handler code. Caller is not required to hold any 8447 * locks. 8448 **/ 8449 int 8450 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8451 { 8452 int rc, i, cnt, len, dd; 8453 LPFC_MBOXQ_t *mboxq; 8454 struct lpfc_mqe *mqe; 8455 uint8_t *vpd; 8456 uint32_t vpd_size; 8457 uint32_t ftr_rsp = 0; 8458 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8459 struct lpfc_vport *vport = phba->pport; 8460 struct lpfc_dmabuf *mp; 8461 struct lpfc_rqb *rqbp; 8462 u32 flg; 8463 8464 /* Perform a PCI function reset to start from clean */ 8465 rc = lpfc_pci_function_reset(phba); 8466 if (unlikely(rc)) 8467 return -ENODEV; 8468 8469 /* Check the HBA Host Status Register for readyness */ 8470 rc = lpfc_sli4_post_status_check(phba); 8471 if (unlikely(rc)) 8472 return -ENODEV; 8473 else { 8474 spin_lock_irq(&phba->hbalock); 8475 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8476 flg = phba->sli.sli_flag; 8477 spin_unlock_irq(&phba->hbalock); 8478 /* Allow a little time after setting SLI_ACTIVE for any polled 8479 * MBX commands to complete via BSG. 8480 */ 8481 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8482 msleep(20); 8483 spin_lock_irq(&phba->hbalock); 8484 flg = phba->sli.sli_flag; 8485 spin_unlock_irq(&phba->hbalock); 8486 } 8487 } 8488 clear_bit(HBA_SETUP, &phba->hba_flag); 8489 8490 lpfc_sli4_dip(phba); 8491 8492 /* 8493 * Allocate a single mailbox container for initializing the 8494 * port. 8495 */ 8496 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8497 if (!mboxq) 8498 return -ENOMEM; 8499 8500 /* Issue READ_REV to collect vpd and FW information. */ 8501 vpd_size = SLI4_PAGE_SIZE; 8502 vpd = kzalloc(vpd_size, GFP_KERNEL); 8503 if (!vpd) { 8504 rc = -ENOMEM; 8505 goto out_free_mbox; 8506 } 8507 8508 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8509 if (unlikely(rc)) { 8510 kfree(vpd); 8511 goto out_free_mbox; 8512 } 8513 8514 mqe = &mboxq->u.mqe; 8515 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8516 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8517 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8518 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8519 } else { 8520 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8521 } 8522 8523 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8524 LPFC_DCBX_CEE_MODE) 8525 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8526 else 8527 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8528 8529 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8530 8531 if (phba->sli_rev != LPFC_SLI_REV4) { 8532 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8533 "0376 READ_REV Error. SLI Level %d " 8534 "FCoE enabled %d\n", 8535 phba->sli_rev, 8536 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8537 rc = -EIO; 8538 kfree(vpd); 8539 goto out_free_mbox; 8540 } 8541 8542 rc = lpfc_set_host_tm(phba); 8543 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8544 "6468 Set host date / time: Status x%x:\n", rc); 8545 8546 /* 8547 * Continue initialization with default values even if driver failed 8548 * to read FCoE param config regions, only read parameters if the 8549 * board is FCoE 8550 */ 8551 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8552 lpfc_sli4_read_fcoe_params(phba)) 8553 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8554 "2570 Failed to read FCoE parameters\n"); 8555 8556 /* 8557 * Retrieve sli4 device physical port name, failure of doing it 8558 * is considered as non-fatal. 8559 */ 8560 rc = lpfc_sli4_retrieve_pport_name(phba); 8561 if (!rc) 8562 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8563 "3080 Successful retrieving SLI4 device " 8564 "physical port name: %s.\n", phba->Port); 8565 8566 rc = lpfc_sli4_get_ctl_attr(phba); 8567 if (!rc) 8568 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8569 "8351 Successful retrieving SLI4 device " 8570 "CTL ATTR\n"); 8571 8572 /* 8573 * Evaluate the read rev and vpd data. Populate the driver 8574 * state with the results. If this routine fails, the failure 8575 * is not fatal as the driver will use generic values. 8576 */ 8577 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8578 if (unlikely(!rc)) 8579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8580 "0377 Error %d parsing vpd. " 8581 "Using defaults.\n", rc); 8582 kfree(vpd); 8583 8584 /* Save information as VPD data */ 8585 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8586 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8587 8588 /* 8589 * This is because first G7 ASIC doesn't support the standard 8590 * 0x5a NVME cmd descriptor type/subtype 8591 */ 8592 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8593 LPFC_SLI_INTF_IF_TYPE_6) && 8594 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8595 (phba->vpd.rev.smRev == 0) && 8596 (phba->cfg_nvme_embed_cmd == 1)) 8597 phba->cfg_nvme_embed_cmd = 0; 8598 8599 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8600 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8601 &mqe->un.read_rev); 8602 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8603 &mqe->un.read_rev); 8604 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8605 &mqe->un.read_rev); 8606 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8607 &mqe->un.read_rev); 8608 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8609 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8610 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8611 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8612 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8613 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8614 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8615 "(%d):0380 READ_REV Status x%x " 8616 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8617 mboxq->vport ? mboxq->vport->vpi : 0, 8618 bf_get(lpfc_mqe_status, mqe), 8619 phba->vpd.rev.opFwName, 8620 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8621 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8622 8623 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8624 LPFC_SLI_INTF_IF_TYPE_0) { 8625 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8626 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8627 if (rc == MBX_SUCCESS) { 8628 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8629 /* Set 1Sec interval to detect UE */ 8630 phba->eratt_poll_interval = 1; 8631 phba->sli4_hba.ue_to_sr = bf_get( 8632 lpfc_mbx_set_feature_UESR, 8633 &mboxq->u.mqe.un.set_feature); 8634 phba->sli4_hba.ue_to_rp = bf_get( 8635 lpfc_mbx_set_feature_UERP, 8636 &mboxq->u.mqe.un.set_feature); 8637 } 8638 } 8639 8640 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8641 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8642 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8643 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8644 if (rc != MBX_SUCCESS) 8645 phba->mds_diags_support = 0; 8646 } 8647 8648 /* 8649 * Discover the port's supported feature set and match it against the 8650 * hosts requests. 8651 */ 8652 lpfc_request_features(phba, mboxq); 8653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8654 if (unlikely(rc)) { 8655 rc = -EIO; 8656 goto out_free_mbox; 8657 } 8658 8659 /* Disable VMID if app header is not supported */ 8660 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8661 &mqe->un.req_ftrs))) { 8662 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8663 phba->cfg_vmid_app_header = 0; 8664 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8665 "1242 vmid feature not supported\n"); 8666 } 8667 8668 /* 8669 * The port must support FCP initiator mode as this is the 8670 * only mode running in the host. 8671 */ 8672 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8673 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8674 "0378 No support for fcpi mode.\n"); 8675 ftr_rsp++; 8676 } 8677 8678 /* Performance Hints are ONLY for FCoE */ 8679 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8680 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8681 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8682 else 8683 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8684 } 8685 8686 /* 8687 * If the port cannot support the host's requested features 8688 * then turn off the global config parameters to disable the 8689 * feature in the driver. This is not a fatal error. 8690 */ 8691 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8692 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8693 phba->cfg_enable_bg = 0; 8694 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8695 ftr_rsp++; 8696 } 8697 } 8698 8699 if (phba->max_vpi && phba->cfg_enable_npiv && 8700 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8701 ftr_rsp++; 8702 8703 if (ftr_rsp) { 8704 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8705 "0379 Feature Mismatch Data: x%08x %08x " 8706 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8707 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8708 phba->cfg_enable_npiv, phba->max_vpi); 8709 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8710 phba->cfg_enable_bg = 0; 8711 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8712 phba->cfg_enable_npiv = 0; 8713 } 8714 8715 /* These SLI3 features are assumed in SLI4 */ 8716 spin_lock_irq(&phba->hbalock); 8717 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8718 spin_unlock_irq(&phba->hbalock); 8719 8720 /* Always try to enable dual dump feature if we can */ 8721 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8722 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8723 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8724 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8725 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8726 "6448 Dual Dump is enabled\n"); 8727 else 8728 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8729 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8730 "rc:x%x dd:x%x\n", 8731 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8732 lpfc_sli_config_mbox_subsys_get( 8733 phba, mboxq), 8734 lpfc_sli_config_mbox_opcode_get( 8735 phba, mboxq), 8736 rc, dd); 8737 8738 /* 8739 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8740 * calls depends on these resources to complete port setup. 8741 */ 8742 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8743 if (rc) { 8744 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8745 "2920 Failed to alloc Resource IDs " 8746 "rc = x%x\n", rc); 8747 goto out_free_mbox; 8748 } 8749 8750 lpfc_sli4_node_rpi_restore(phba); 8751 8752 lpfc_set_host_data(phba, mboxq); 8753 8754 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8755 if (rc) { 8756 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8757 "2134 Failed to set host os driver version %x", 8758 rc); 8759 } 8760 8761 /* Read the port's service parameters. */ 8762 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8763 if (rc) { 8764 phba->link_state = LPFC_HBA_ERROR; 8765 rc = -ENOMEM; 8766 goto out_free_mbox; 8767 } 8768 8769 mboxq->vport = vport; 8770 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8771 mp = mboxq->ctx_buf; 8772 if (rc == MBX_SUCCESS) { 8773 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8774 rc = 0; 8775 } 8776 8777 /* 8778 * This memory was allocated by the lpfc_read_sparam routine but is 8779 * no longer needed. It is released and ctx_buf NULLed to prevent 8780 * unintended pointer access as the mbox is reused. 8781 */ 8782 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8783 kfree(mp); 8784 mboxq->ctx_buf = NULL; 8785 if (unlikely(rc)) { 8786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8787 "0382 READ_SPARAM command failed " 8788 "status %d, mbxStatus x%x\n", 8789 rc, bf_get(lpfc_mqe_status, mqe)); 8790 phba->link_state = LPFC_HBA_ERROR; 8791 rc = -EIO; 8792 goto out_free_mbox; 8793 } 8794 8795 lpfc_update_vport_wwn(vport); 8796 8797 /* Update the fc_host data structures with new wwn. */ 8798 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8799 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8800 8801 /* Create all the SLI4 queues */ 8802 rc = lpfc_sli4_queue_create(phba); 8803 if (rc) { 8804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8805 "3089 Failed to allocate queues\n"); 8806 rc = -ENODEV; 8807 goto out_free_mbox; 8808 } 8809 /* Set up all the queues to the device */ 8810 rc = lpfc_sli4_queue_setup(phba); 8811 if (unlikely(rc)) { 8812 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8813 "0381 Error %d during queue setup.\n", rc); 8814 goto out_stop_timers; 8815 } 8816 /* Initialize the driver internal SLI layer lists. */ 8817 lpfc_sli4_setup(phba); 8818 lpfc_sli4_queue_init(phba); 8819 8820 /* update host els xri-sgl sizes and mappings */ 8821 rc = lpfc_sli4_els_sgl_update(phba); 8822 if (unlikely(rc)) { 8823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8824 "1400 Failed to update xri-sgl size and " 8825 "mapping: %d\n", rc); 8826 goto out_destroy_queue; 8827 } 8828 8829 /* register the els sgl pool to the port */ 8830 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8831 phba->sli4_hba.els_xri_cnt); 8832 if (unlikely(rc < 0)) { 8833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8834 "0582 Error %d during els sgl post " 8835 "operation\n", rc); 8836 rc = -ENODEV; 8837 goto out_destroy_queue; 8838 } 8839 phba->sli4_hba.els_xri_cnt = rc; 8840 8841 if (phba->nvmet_support) { 8842 /* update host nvmet xri-sgl sizes and mappings */ 8843 rc = lpfc_sli4_nvmet_sgl_update(phba); 8844 if (unlikely(rc)) { 8845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8846 "6308 Failed to update nvmet-sgl size " 8847 "and mapping: %d\n", rc); 8848 goto out_destroy_queue; 8849 } 8850 8851 /* register the nvmet sgl pool to the port */ 8852 rc = lpfc_sli4_repost_sgl_list( 8853 phba, 8854 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8855 phba->sli4_hba.nvmet_xri_cnt); 8856 if (unlikely(rc < 0)) { 8857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8858 "3117 Error %d during nvmet " 8859 "sgl post\n", rc); 8860 rc = -ENODEV; 8861 goto out_destroy_queue; 8862 } 8863 phba->sli4_hba.nvmet_xri_cnt = rc; 8864 8865 /* We allocate an iocbq for every receive context SGL. 8866 * The additional allocation is for abort and ls handling. 8867 */ 8868 cnt = phba->sli4_hba.nvmet_xri_cnt + 8869 phba->sli4_hba.max_cfg_param.max_xri; 8870 } else { 8871 /* update host common xri-sgl sizes and mappings */ 8872 rc = lpfc_sli4_io_sgl_update(phba); 8873 if (unlikely(rc)) { 8874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8875 "6082 Failed to update nvme-sgl size " 8876 "and mapping: %d\n", rc); 8877 goto out_destroy_queue; 8878 } 8879 8880 /* register the allocated common sgl pool to the port */ 8881 rc = lpfc_sli4_repost_io_sgl_list(phba); 8882 if (unlikely(rc)) { 8883 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8884 "6116 Error %d during nvme sgl post " 8885 "operation\n", rc); 8886 /* Some NVME buffers were moved to abort nvme list */ 8887 /* A pci function reset will repost them */ 8888 rc = -ENODEV; 8889 goto out_destroy_queue; 8890 } 8891 /* Each lpfc_io_buf job structure has an iocbq element. 8892 * This cnt provides for abort, els, ct and ls requests. 8893 */ 8894 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8895 } 8896 8897 if (!phba->sli.iocbq_lookup) { 8898 /* Initialize and populate the iocb list per host */ 8899 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8900 "2821 initialize iocb list with %d entries\n", 8901 cnt); 8902 rc = lpfc_init_iocb_list(phba, cnt); 8903 if (rc) { 8904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8905 "1413 Failed to init iocb list.\n"); 8906 goto out_destroy_queue; 8907 } 8908 } 8909 8910 if (phba->nvmet_support) 8911 lpfc_nvmet_create_targetport(phba); 8912 8913 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8914 /* Post initial buffers to all RQs created */ 8915 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8916 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8917 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8918 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8919 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8920 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8921 rqbp->buffer_count = 0; 8922 8923 lpfc_post_rq_buffer( 8924 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8925 phba->sli4_hba.nvmet_mrq_data[i], 8926 phba->cfg_nvmet_mrq_post, i); 8927 } 8928 } 8929 8930 /* Post the rpi header region to the device. */ 8931 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8932 if (unlikely(rc)) { 8933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8934 "0393 Error %d during rpi post operation\n", 8935 rc); 8936 rc = -ENODEV; 8937 goto out_free_iocblist; 8938 } 8939 8940 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8941 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8942 /* 8943 * The FC Port needs to register FCFI (index 0) 8944 */ 8945 lpfc_reg_fcfi(phba, mboxq); 8946 mboxq->vport = phba->pport; 8947 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8948 if (rc != MBX_SUCCESS) 8949 goto out_unset_queue; 8950 rc = 0; 8951 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8952 &mboxq->u.mqe.un.reg_fcfi); 8953 } else { 8954 /* We are a NVME Target mode with MRQ > 1 */ 8955 8956 /* First register the FCFI */ 8957 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8958 mboxq->vport = phba->pport; 8959 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8960 if (rc != MBX_SUCCESS) 8961 goto out_unset_queue; 8962 rc = 0; 8963 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8964 &mboxq->u.mqe.un.reg_fcfi_mrq); 8965 8966 /* Next register the MRQs */ 8967 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8968 mboxq->vport = phba->pport; 8969 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8970 if (rc != MBX_SUCCESS) 8971 goto out_unset_queue; 8972 rc = 0; 8973 } 8974 /* Check if the port is configured to be disabled */ 8975 lpfc_sli_read_link_ste(phba); 8976 } 8977 8978 /* Don't post more new bufs if repost already recovered 8979 * the nvme sgls. 8980 */ 8981 if (phba->nvmet_support == 0) { 8982 if (phba->sli4_hba.io_xri_cnt == 0) { 8983 len = lpfc_new_io_buf( 8984 phba, phba->sli4_hba.io_xri_max); 8985 if (len == 0) { 8986 rc = -ENOMEM; 8987 goto out_unset_queue; 8988 } 8989 8990 if (phba->cfg_xri_rebalancing) 8991 lpfc_create_multixri_pools(phba); 8992 } 8993 } else { 8994 phba->cfg_xri_rebalancing = 0; 8995 } 8996 8997 /* Allow asynchronous mailbox command to go through */ 8998 spin_lock_irq(&phba->hbalock); 8999 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9000 spin_unlock_irq(&phba->hbalock); 9001 9002 /* Post receive buffers to the device */ 9003 lpfc_sli4_rb_setup(phba); 9004 9005 /* Reset HBA FCF states after HBA reset */ 9006 phba->fcf.fcf_flag = 0; 9007 phba->fcf.current_rec.flag = 0; 9008 9009 /* Start the ELS watchdog timer */ 9010 mod_timer(&vport->els_tmofunc, 9011 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9012 9013 /* Start heart beat timer */ 9014 mod_timer(&phba->hb_tmofunc, 9015 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9016 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9017 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9018 phba->last_completion_time = jiffies; 9019 9020 /* start eq_delay heartbeat */ 9021 if (phba->cfg_auto_imax) 9022 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9023 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9024 9025 /* start per phba idle_stat_delay heartbeat */ 9026 lpfc_init_idle_stat_hb(phba); 9027 9028 /* Start error attention (ERATT) polling timer */ 9029 mod_timer(&phba->eratt_poll, 9030 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9031 9032 /* 9033 * The port is ready, set the host's link state to LINK_DOWN 9034 * in preparation for link interrupts. 9035 */ 9036 spin_lock_irq(&phba->hbalock); 9037 phba->link_state = LPFC_LINK_DOWN; 9038 9039 /* Check if physical ports are trunked */ 9040 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9041 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9042 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9043 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9044 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9045 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9046 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9047 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9048 spin_unlock_irq(&phba->hbalock); 9049 9050 /* Arm the CQs and then EQs on device */ 9051 lpfc_sli4_arm_cqeq_intr(phba); 9052 9053 /* Indicate device interrupt mode */ 9054 phba->sli4_hba.intr_enable = 1; 9055 9056 /* Setup CMF after HBA is initialized */ 9057 lpfc_cmf_setup(phba); 9058 9059 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9060 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9061 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9062 "3103 Adapter Link is disabled.\n"); 9063 lpfc_down_link(phba, mboxq); 9064 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9065 if (rc != MBX_SUCCESS) { 9066 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9067 "3104 Adapter failed to issue " 9068 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9069 goto out_io_buff_free; 9070 } 9071 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9072 /* don't perform init_link on SLI4 FC port loopback test */ 9073 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9074 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9075 if (rc) 9076 goto out_io_buff_free; 9077 } 9078 } 9079 mempool_free(mboxq, phba->mbox_mem_pool); 9080 9081 /* Enable RAS FW log support */ 9082 lpfc_sli4_ras_setup(phba); 9083 9084 set_bit(HBA_SETUP, &phba->hba_flag); 9085 return rc; 9086 9087 out_io_buff_free: 9088 /* Free allocated IO Buffers */ 9089 lpfc_io_free(phba); 9090 out_unset_queue: 9091 /* Unset all the queues set up in this routine when error out */ 9092 lpfc_sli4_queue_unset(phba); 9093 out_free_iocblist: 9094 lpfc_free_iocb_list(phba); 9095 out_destroy_queue: 9096 lpfc_sli4_queue_destroy(phba); 9097 out_stop_timers: 9098 lpfc_stop_hba_timers(phba); 9099 out_free_mbox: 9100 mempool_free(mboxq, phba->mbox_mem_pool); 9101 return rc; 9102 } 9103 9104 /** 9105 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9106 * @t: Context to fetch pointer to hba structure from. 9107 * 9108 * This is the callback function for mailbox timer. The mailbox 9109 * timer is armed when a new mailbox command is issued and the timer 9110 * is deleted when the mailbox complete. The function is called by 9111 * the kernel timer code when a mailbox does not complete within 9112 * expected time. This function wakes up the worker thread to 9113 * process the mailbox timeout and returns. All the processing is 9114 * done by the worker thread function lpfc_mbox_timeout_handler. 9115 **/ 9116 void 9117 lpfc_mbox_timeout(struct timer_list *t) 9118 { 9119 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9120 unsigned long iflag; 9121 uint32_t tmo_posted; 9122 9123 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9124 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9125 if (!tmo_posted) 9126 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9127 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9128 9129 if (!tmo_posted) 9130 lpfc_worker_wake_up(phba); 9131 return; 9132 } 9133 9134 /** 9135 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9136 * are pending 9137 * @phba: Pointer to HBA context object. 9138 * 9139 * This function checks if any mailbox completions are present on the mailbox 9140 * completion queue. 9141 **/ 9142 static bool 9143 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9144 { 9145 9146 uint32_t idx; 9147 struct lpfc_queue *mcq; 9148 struct lpfc_mcqe *mcqe; 9149 bool pending_completions = false; 9150 uint8_t qe_valid; 9151 9152 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9153 return false; 9154 9155 /* Check for completions on mailbox completion queue */ 9156 9157 mcq = phba->sli4_hba.mbx_cq; 9158 idx = mcq->hba_index; 9159 qe_valid = mcq->qe_valid; 9160 while (bf_get_le32(lpfc_cqe_valid, 9161 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9162 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9163 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9164 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9165 pending_completions = true; 9166 break; 9167 } 9168 idx = (idx + 1) % mcq->entry_count; 9169 if (mcq->hba_index == idx) 9170 break; 9171 9172 /* if the index wrapped around, toggle the valid bit */ 9173 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9174 qe_valid = (qe_valid) ? 0 : 1; 9175 } 9176 return pending_completions; 9177 9178 } 9179 9180 /** 9181 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9182 * that were missed. 9183 * @phba: Pointer to HBA context object. 9184 * 9185 * For sli4, it is possible to miss an interrupt. As such mbox completions 9186 * maybe missed causing erroneous mailbox timeouts to occur. This function 9187 * checks to see if mbox completions are on the mailbox completion queue 9188 * and will process all the completions associated with the eq for the 9189 * mailbox completion queue. 9190 **/ 9191 static bool 9192 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9193 { 9194 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9195 uint32_t eqidx; 9196 struct lpfc_queue *fpeq = NULL; 9197 struct lpfc_queue *eq; 9198 bool mbox_pending; 9199 9200 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9201 return false; 9202 9203 /* Find the EQ associated with the mbox CQ */ 9204 if (sli4_hba->hdwq) { 9205 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9206 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9207 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9208 fpeq = eq; 9209 break; 9210 } 9211 } 9212 } 9213 if (!fpeq) 9214 return false; 9215 9216 /* Turn off interrupts from this EQ */ 9217 9218 sli4_hba->sli4_eq_clr_intr(fpeq); 9219 9220 /* Check to see if a mbox completion is pending */ 9221 9222 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9223 9224 /* 9225 * If a mbox completion is pending, process all the events on EQ 9226 * associated with the mbox completion queue (this could include 9227 * mailbox commands, async events, els commands, receive queue data 9228 * and fcp commands) 9229 */ 9230 9231 if (mbox_pending) 9232 /* process and rearm the EQ */ 9233 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9234 LPFC_QUEUE_WORK); 9235 else 9236 /* Always clear and re-arm the EQ */ 9237 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9238 9239 return mbox_pending; 9240 9241 } 9242 9243 /** 9244 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9245 * @phba: Pointer to HBA context object. 9246 * 9247 * This function is called from worker thread when a mailbox command times out. 9248 * The caller is not required to hold any locks. This function will reset the 9249 * HBA and recover all the pending commands. 9250 **/ 9251 void 9252 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9253 { 9254 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9255 MAILBOX_t *mb = NULL; 9256 9257 struct lpfc_sli *psli = &phba->sli; 9258 9259 /* If the mailbox completed, process the completion */ 9260 lpfc_sli4_process_missed_mbox_completions(phba); 9261 9262 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9263 return; 9264 9265 if (pmbox != NULL) 9266 mb = &pmbox->u.mb; 9267 /* Check the pmbox pointer first. There is a race condition 9268 * between the mbox timeout handler getting executed in the 9269 * worklist and the mailbox actually completing. When this 9270 * race condition occurs, the mbox_active will be NULL. 9271 */ 9272 spin_lock_irq(&phba->hbalock); 9273 if (pmbox == NULL) { 9274 lpfc_printf_log(phba, KERN_WARNING, 9275 LOG_MBOX | LOG_SLI, 9276 "0353 Active Mailbox cleared - mailbox timeout " 9277 "exiting\n"); 9278 spin_unlock_irq(&phba->hbalock); 9279 return; 9280 } 9281 9282 /* Mbox cmd <mbxCommand> timeout */ 9283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9284 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9285 mb->mbxCommand, 9286 phba->pport->port_state, 9287 phba->sli.sli_flag, 9288 phba->sli.mbox_active); 9289 spin_unlock_irq(&phba->hbalock); 9290 9291 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9292 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9293 * it to fail all outstanding SCSI IO. 9294 */ 9295 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9296 spin_lock_irq(&phba->pport->work_port_lock); 9297 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9298 spin_unlock_irq(&phba->pport->work_port_lock); 9299 spin_lock_irq(&phba->hbalock); 9300 phba->link_state = LPFC_LINK_UNKNOWN; 9301 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9302 spin_unlock_irq(&phba->hbalock); 9303 9304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9305 "0345 Resetting board due to mailbox timeout\n"); 9306 9307 /* Reset the HBA device */ 9308 lpfc_reset_hba(phba); 9309 } 9310 9311 /** 9312 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9313 * @phba: Pointer to HBA context object. 9314 * @pmbox: Pointer to mailbox object. 9315 * @flag: Flag indicating how the mailbox need to be processed. 9316 * 9317 * This function is called by discovery code and HBA management code 9318 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9319 * function gets the hbalock to protect the data structures. 9320 * The mailbox command can be submitted in polling mode, in which case 9321 * this function will wait in a polling loop for the completion of the 9322 * mailbox. 9323 * If the mailbox is submitted in no_wait mode (not polling) the 9324 * function will submit the command and returns immediately without waiting 9325 * for the mailbox completion. The no_wait is supported only when HBA 9326 * is in SLI2/SLI3 mode - interrupts are enabled. 9327 * The SLI interface allows only one mailbox pending at a time. If the 9328 * mailbox is issued in polling mode and there is already a mailbox 9329 * pending, then the function will return an error. If the mailbox is issued 9330 * in NO_WAIT mode and there is a mailbox pending already, the function 9331 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9332 * The sli layer owns the mailbox object until the completion of mailbox 9333 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9334 * return codes the caller owns the mailbox command after the return of 9335 * the function. 9336 **/ 9337 static int 9338 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9339 uint32_t flag) 9340 { 9341 MAILBOX_t *mbx; 9342 struct lpfc_sli *psli = &phba->sli; 9343 uint32_t status, evtctr; 9344 uint32_t ha_copy, hc_copy; 9345 int i; 9346 unsigned long timeout; 9347 unsigned long drvr_flag = 0; 9348 uint32_t word0, ldata; 9349 void __iomem *to_slim; 9350 int processing_queue = 0; 9351 9352 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9353 if (!pmbox) { 9354 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9355 /* processing mbox queue from intr_handler */ 9356 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9357 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9358 return MBX_SUCCESS; 9359 } 9360 processing_queue = 1; 9361 pmbox = lpfc_mbox_get(phba); 9362 if (!pmbox) { 9363 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9364 return MBX_SUCCESS; 9365 } 9366 } 9367 9368 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9369 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9370 if(!pmbox->vport) { 9371 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9372 lpfc_printf_log(phba, KERN_ERR, 9373 LOG_MBOX | LOG_VPORT, 9374 "1806 Mbox x%x failed. No vport\n", 9375 pmbox->u.mb.mbxCommand); 9376 dump_stack(); 9377 goto out_not_finished; 9378 } 9379 } 9380 9381 /* If the PCI channel is in offline state, do not post mbox. */ 9382 if (unlikely(pci_channel_offline(phba->pcidev))) { 9383 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9384 goto out_not_finished; 9385 } 9386 9387 /* If HBA has a deferred error attention, fail the iocb. */ 9388 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9389 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9390 goto out_not_finished; 9391 } 9392 9393 psli = &phba->sli; 9394 9395 mbx = &pmbox->u.mb; 9396 status = MBX_SUCCESS; 9397 9398 if (phba->link_state == LPFC_HBA_ERROR) { 9399 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9400 9401 /* Mbox command <mbxCommand> cannot issue */ 9402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9403 "(%d):0311 Mailbox command x%x cannot " 9404 "issue Data: x%x x%x\n", 9405 pmbox->vport ? pmbox->vport->vpi : 0, 9406 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9407 goto out_not_finished; 9408 } 9409 9410 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9411 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9412 !(hc_copy & HC_MBINT_ENA)) { 9413 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9415 "(%d):2528 Mailbox command x%x cannot " 9416 "issue Data: x%x x%x\n", 9417 pmbox->vport ? pmbox->vport->vpi : 0, 9418 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9419 goto out_not_finished; 9420 } 9421 } 9422 9423 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9424 /* Polling for a mbox command when another one is already active 9425 * is not allowed in SLI. Also, the driver must have established 9426 * SLI2 mode to queue and process multiple mbox commands. 9427 */ 9428 9429 if (flag & MBX_POLL) { 9430 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9431 9432 /* Mbox command <mbxCommand> cannot issue */ 9433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9434 "(%d):2529 Mailbox command x%x " 9435 "cannot issue Data: x%x x%x\n", 9436 pmbox->vport ? pmbox->vport->vpi : 0, 9437 pmbox->u.mb.mbxCommand, 9438 psli->sli_flag, flag); 9439 goto out_not_finished; 9440 } 9441 9442 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9443 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9444 /* Mbox command <mbxCommand> cannot issue */ 9445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9446 "(%d):2530 Mailbox command x%x " 9447 "cannot issue Data: x%x x%x\n", 9448 pmbox->vport ? pmbox->vport->vpi : 0, 9449 pmbox->u.mb.mbxCommand, 9450 psli->sli_flag, flag); 9451 goto out_not_finished; 9452 } 9453 9454 /* Another mailbox command is still being processed, queue this 9455 * command to be processed later. 9456 */ 9457 lpfc_mbox_put(phba, pmbox); 9458 9459 /* Mbox cmd issue - BUSY */ 9460 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9461 "(%d):0308 Mbox cmd issue - BUSY Data: " 9462 "x%x x%x x%x x%x\n", 9463 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9464 mbx->mbxCommand, 9465 phba->pport ? phba->pport->port_state : 0xff, 9466 psli->sli_flag, flag); 9467 9468 psli->slistat.mbox_busy++; 9469 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9470 9471 if (pmbox->vport) { 9472 lpfc_debugfs_disc_trc(pmbox->vport, 9473 LPFC_DISC_TRC_MBOX_VPORT, 9474 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9475 (uint32_t)mbx->mbxCommand, 9476 mbx->un.varWords[0], mbx->un.varWords[1]); 9477 } 9478 else { 9479 lpfc_debugfs_disc_trc(phba->pport, 9480 LPFC_DISC_TRC_MBOX, 9481 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9482 (uint32_t)mbx->mbxCommand, 9483 mbx->un.varWords[0], mbx->un.varWords[1]); 9484 } 9485 9486 return MBX_BUSY; 9487 } 9488 9489 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9490 9491 /* If we are not polling, we MUST be in SLI2 mode */ 9492 if (flag != MBX_POLL) { 9493 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9494 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9495 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9496 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9497 /* Mbox command <mbxCommand> cannot issue */ 9498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9499 "(%d):2531 Mailbox command x%x " 9500 "cannot issue Data: x%x x%x\n", 9501 pmbox->vport ? pmbox->vport->vpi : 0, 9502 pmbox->u.mb.mbxCommand, 9503 psli->sli_flag, flag); 9504 goto out_not_finished; 9505 } 9506 /* timeout active mbox command */ 9507 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9508 1000); 9509 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9510 } 9511 9512 /* Mailbox cmd <cmd> issue */ 9513 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9514 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9515 "x%x\n", 9516 pmbox->vport ? pmbox->vport->vpi : 0, 9517 mbx->mbxCommand, 9518 phba->pport ? phba->pport->port_state : 0xff, 9519 psli->sli_flag, flag); 9520 9521 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9522 if (pmbox->vport) { 9523 lpfc_debugfs_disc_trc(pmbox->vport, 9524 LPFC_DISC_TRC_MBOX_VPORT, 9525 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9526 (uint32_t)mbx->mbxCommand, 9527 mbx->un.varWords[0], mbx->un.varWords[1]); 9528 } 9529 else { 9530 lpfc_debugfs_disc_trc(phba->pport, 9531 LPFC_DISC_TRC_MBOX, 9532 "MBOX Send: cmd:x%x mb:x%x x%x", 9533 (uint32_t)mbx->mbxCommand, 9534 mbx->un.varWords[0], mbx->un.varWords[1]); 9535 } 9536 } 9537 9538 psli->slistat.mbox_cmd++; 9539 evtctr = psli->slistat.mbox_event; 9540 9541 /* next set own bit for the adapter and copy over command word */ 9542 mbx->mbxOwner = OWN_CHIP; 9543 9544 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9545 /* Populate mbox extension offset word. */ 9546 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9547 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9548 = (uint8_t *)phba->mbox_ext 9549 - (uint8_t *)phba->mbox; 9550 } 9551 9552 /* Copy the mailbox extension data */ 9553 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9554 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9555 (uint8_t *)phba->mbox_ext, 9556 pmbox->in_ext_byte_len); 9557 } 9558 /* Copy command data to host SLIM area */ 9559 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9560 } else { 9561 /* Populate mbox extension offset word. */ 9562 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9563 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9564 = MAILBOX_HBA_EXT_OFFSET; 9565 9566 /* Copy the mailbox extension data */ 9567 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9568 lpfc_memcpy_to_slim(phba->MBslimaddr + 9569 MAILBOX_HBA_EXT_OFFSET, 9570 pmbox->ext_buf, pmbox->in_ext_byte_len); 9571 9572 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9573 /* copy command data into host mbox for cmpl */ 9574 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9575 MAILBOX_CMD_SIZE); 9576 9577 /* First copy mbox command data to HBA SLIM, skip past first 9578 word */ 9579 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9580 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9581 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9582 9583 /* Next copy over first word, with mbxOwner set */ 9584 ldata = *((uint32_t *)mbx); 9585 to_slim = phba->MBslimaddr; 9586 writel(ldata, to_slim); 9587 readl(to_slim); /* flush */ 9588 9589 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9590 /* switch over to host mailbox */ 9591 psli->sli_flag |= LPFC_SLI_ACTIVE; 9592 } 9593 9594 wmb(); 9595 9596 switch (flag) { 9597 case MBX_NOWAIT: 9598 /* Set up reference to mailbox command */ 9599 psli->mbox_active = pmbox; 9600 /* Interrupt board to do it */ 9601 writel(CA_MBATT, phba->CAregaddr); 9602 readl(phba->CAregaddr); /* flush */ 9603 /* Don't wait for it to finish, just return */ 9604 break; 9605 9606 case MBX_POLL: 9607 /* Set up null reference to mailbox command */ 9608 psli->mbox_active = NULL; 9609 /* Interrupt board to do it */ 9610 writel(CA_MBATT, phba->CAregaddr); 9611 readl(phba->CAregaddr); /* flush */ 9612 9613 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9614 /* First read mbox status word */ 9615 word0 = *((uint32_t *)phba->mbox); 9616 word0 = le32_to_cpu(word0); 9617 } else { 9618 /* First read mbox status word */ 9619 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9620 spin_unlock_irqrestore(&phba->hbalock, 9621 drvr_flag); 9622 goto out_not_finished; 9623 } 9624 } 9625 9626 /* Read the HBA Host Attention Register */ 9627 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9628 spin_unlock_irqrestore(&phba->hbalock, 9629 drvr_flag); 9630 goto out_not_finished; 9631 } 9632 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9633 1000) + jiffies; 9634 i = 0; 9635 /* Wait for command to complete */ 9636 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9637 (!(ha_copy & HA_MBATT) && 9638 (phba->link_state > LPFC_WARM_START))) { 9639 if (time_after(jiffies, timeout)) { 9640 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9641 spin_unlock_irqrestore(&phba->hbalock, 9642 drvr_flag); 9643 goto out_not_finished; 9644 } 9645 9646 /* Check if we took a mbox interrupt while we were 9647 polling */ 9648 if (((word0 & OWN_CHIP) != OWN_CHIP) 9649 && (evtctr != psli->slistat.mbox_event)) 9650 break; 9651 9652 if (i++ > 10) { 9653 spin_unlock_irqrestore(&phba->hbalock, 9654 drvr_flag); 9655 msleep(1); 9656 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9657 } 9658 9659 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9660 /* First copy command data */ 9661 word0 = *((uint32_t *)phba->mbox); 9662 word0 = le32_to_cpu(word0); 9663 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9664 MAILBOX_t *slimmb; 9665 uint32_t slimword0; 9666 /* Check real SLIM for any errors */ 9667 slimword0 = readl(phba->MBslimaddr); 9668 slimmb = (MAILBOX_t *) & slimword0; 9669 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9670 && slimmb->mbxStatus) { 9671 psli->sli_flag &= 9672 ~LPFC_SLI_ACTIVE; 9673 word0 = slimword0; 9674 } 9675 } 9676 } else { 9677 /* First copy command data */ 9678 word0 = readl(phba->MBslimaddr); 9679 } 9680 /* Read the HBA Host Attention Register */ 9681 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9682 spin_unlock_irqrestore(&phba->hbalock, 9683 drvr_flag); 9684 goto out_not_finished; 9685 } 9686 } 9687 9688 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9689 /* copy results back to user */ 9690 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9691 MAILBOX_CMD_SIZE); 9692 /* Copy the mailbox extension data */ 9693 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9694 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9695 pmbox->ext_buf, 9696 pmbox->out_ext_byte_len); 9697 } 9698 } else { 9699 /* First copy command data */ 9700 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9701 MAILBOX_CMD_SIZE); 9702 /* Copy the mailbox extension data */ 9703 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9704 lpfc_memcpy_from_slim( 9705 pmbox->ext_buf, 9706 phba->MBslimaddr + 9707 MAILBOX_HBA_EXT_OFFSET, 9708 pmbox->out_ext_byte_len); 9709 } 9710 } 9711 9712 writel(HA_MBATT, phba->HAregaddr); 9713 readl(phba->HAregaddr); /* flush */ 9714 9715 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9716 status = mbx->mbxStatus; 9717 } 9718 9719 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9720 return status; 9721 9722 out_not_finished: 9723 if (processing_queue) { 9724 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9725 lpfc_mbox_cmpl_put(phba, pmbox); 9726 } 9727 return MBX_NOT_FINISHED; 9728 } 9729 9730 /** 9731 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9732 * @phba: Pointer to HBA context object. 9733 * 9734 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9735 * the driver internal pending mailbox queue. It will then try to wait out the 9736 * possible outstanding mailbox command before return. 9737 * 9738 * Returns: 9739 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9740 * the outstanding mailbox command timed out. 9741 **/ 9742 static int 9743 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9744 { 9745 struct lpfc_sli *psli = &phba->sli; 9746 LPFC_MBOXQ_t *mboxq; 9747 int rc = 0; 9748 unsigned long timeout = 0; 9749 u32 sli_flag; 9750 u8 cmd, subsys, opcode; 9751 9752 /* Mark the asynchronous mailbox command posting as blocked */ 9753 spin_lock_irq(&phba->hbalock); 9754 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9755 /* Determine how long we might wait for the active mailbox 9756 * command to be gracefully completed by firmware. 9757 */ 9758 if (phba->sli.mbox_active) 9759 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9760 phba->sli.mbox_active) * 9761 1000) + jiffies; 9762 spin_unlock_irq(&phba->hbalock); 9763 9764 /* Make sure the mailbox is really active */ 9765 if (timeout) 9766 lpfc_sli4_process_missed_mbox_completions(phba); 9767 9768 /* Wait for the outstanding mailbox command to complete */ 9769 while (phba->sli.mbox_active) { 9770 /* Check active mailbox complete status every 2ms */ 9771 msleep(2); 9772 if (time_after(jiffies, timeout)) { 9773 /* Timeout, mark the outstanding cmd not complete */ 9774 9775 /* Sanity check sli.mbox_active has not completed or 9776 * cancelled from another context during last 2ms sleep, 9777 * so take hbalock to be sure before logging. 9778 */ 9779 spin_lock_irq(&phba->hbalock); 9780 if (phba->sli.mbox_active) { 9781 mboxq = phba->sli.mbox_active; 9782 cmd = mboxq->u.mb.mbxCommand; 9783 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9784 mboxq); 9785 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9786 mboxq); 9787 sli_flag = psli->sli_flag; 9788 spin_unlock_irq(&phba->hbalock); 9789 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9790 "2352 Mailbox command x%x " 9791 "(x%x/x%x) sli_flag x%x could " 9792 "not complete\n", 9793 cmd, subsys, opcode, 9794 sli_flag); 9795 } else { 9796 spin_unlock_irq(&phba->hbalock); 9797 } 9798 9799 rc = 1; 9800 break; 9801 } 9802 } 9803 9804 /* Can not cleanly block async mailbox command, fails it */ 9805 if (rc) { 9806 spin_lock_irq(&phba->hbalock); 9807 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9808 spin_unlock_irq(&phba->hbalock); 9809 } 9810 return rc; 9811 } 9812 9813 /** 9814 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9815 * @phba: Pointer to HBA context object. 9816 * 9817 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9818 * commands from the driver internal pending mailbox queue. It makes sure 9819 * that there is no outstanding mailbox command before resuming posting 9820 * asynchronous mailbox commands. If, for any reason, there is outstanding 9821 * mailbox command, it will try to wait it out before resuming asynchronous 9822 * mailbox command posting. 9823 **/ 9824 static void 9825 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9826 { 9827 struct lpfc_sli *psli = &phba->sli; 9828 9829 spin_lock_irq(&phba->hbalock); 9830 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9831 /* Asynchronous mailbox posting is not blocked, do nothing */ 9832 spin_unlock_irq(&phba->hbalock); 9833 return; 9834 } 9835 9836 /* Outstanding synchronous mailbox command is guaranteed to be done, 9837 * successful or timeout, after timing-out the outstanding mailbox 9838 * command shall always be removed, so just unblock posting async 9839 * mailbox command and resume 9840 */ 9841 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9842 spin_unlock_irq(&phba->hbalock); 9843 9844 /* wake up worker thread to post asynchronous mailbox command */ 9845 lpfc_worker_wake_up(phba); 9846 } 9847 9848 /** 9849 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9850 * @phba: Pointer to HBA context object. 9851 * @mboxq: Pointer to mailbox object. 9852 * 9853 * The function waits for the bootstrap mailbox register ready bit from 9854 * port for twice the regular mailbox command timeout value. 9855 * 9856 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9857 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9858 * is in an unrecoverable state. 9859 **/ 9860 static int 9861 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9862 { 9863 uint32_t db_ready; 9864 unsigned long timeout; 9865 struct lpfc_register bmbx_reg; 9866 struct lpfc_register portstat_reg = {-1}; 9867 9868 /* Sanity check - there is no point to wait if the port is in an 9869 * unrecoverable state. 9870 */ 9871 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9872 LPFC_SLI_INTF_IF_TYPE_2) { 9873 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9874 &portstat_reg.word0) || 9875 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9876 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9877 "3858 Skipping bmbx ready because " 9878 "Port Status x%x\n", 9879 portstat_reg.word0); 9880 return MBXERR_ERROR; 9881 } 9882 } 9883 9884 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9885 * 1000) + jiffies; 9886 9887 do { 9888 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9889 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9890 if (!db_ready) 9891 mdelay(2); 9892 9893 if (time_after(jiffies, timeout)) 9894 return MBXERR_ERROR; 9895 } while (!db_ready); 9896 9897 return 0; 9898 } 9899 9900 /** 9901 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9902 * @phba: Pointer to HBA context object. 9903 * @mboxq: Pointer to mailbox object. 9904 * 9905 * The function posts a mailbox to the port. The mailbox is expected 9906 * to be comletely filled in and ready for the port to operate on it. 9907 * This routine executes a synchronous completion operation on the 9908 * mailbox by polling for its completion. 9909 * 9910 * The caller must not be holding any locks when calling this routine. 9911 * 9912 * Returns: 9913 * MBX_SUCCESS - mailbox posted successfully 9914 * Any of the MBX error values. 9915 **/ 9916 static int 9917 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9918 { 9919 int rc = MBX_SUCCESS; 9920 unsigned long iflag; 9921 uint32_t mcqe_status; 9922 uint32_t mbx_cmnd; 9923 struct lpfc_sli *psli = &phba->sli; 9924 struct lpfc_mqe *mb = &mboxq->u.mqe; 9925 struct lpfc_bmbx_create *mbox_rgn; 9926 struct dma_address *dma_address; 9927 9928 /* 9929 * Only one mailbox can be active to the bootstrap mailbox region 9930 * at a time and there is no queueing provided. 9931 */ 9932 spin_lock_irqsave(&phba->hbalock, iflag); 9933 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9934 spin_unlock_irqrestore(&phba->hbalock, iflag); 9935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9936 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9937 "cannot issue Data: x%x x%x\n", 9938 mboxq->vport ? mboxq->vport->vpi : 0, 9939 mboxq->u.mb.mbxCommand, 9940 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9941 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9942 psli->sli_flag, MBX_POLL); 9943 return MBXERR_ERROR; 9944 } 9945 /* The server grabs the token and owns it until release */ 9946 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9947 phba->sli.mbox_active = mboxq; 9948 spin_unlock_irqrestore(&phba->hbalock, iflag); 9949 9950 /* wait for bootstrap mbox register for readyness */ 9951 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9952 if (rc) 9953 goto exit; 9954 /* 9955 * Initialize the bootstrap memory region to avoid stale data areas 9956 * in the mailbox post. Then copy the caller's mailbox contents to 9957 * the bmbx mailbox region. 9958 */ 9959 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9960 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9961 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9962 sizeof(struct lpfc_mqe)); 9963 9964 /* Post the high mailbox dma address to the port and wait for ready. */ 9965 dma_address = &phba->sli4_hba.bmbx.dma_address; 9966 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9967 9968 /* wait for bootstrap mbox register for hi-address write done */ 9969 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9970 if (rc) 9971 goto exit; 9972 9973 /* Post the low mailbox dma address to the port. */ 9974 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9975 9976 /* wait for bootstrap mbox register for low address write done */ 9977 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9978 if (rc) 9979 goto exit; 9980 9981 /* 9982 * Read the CQ to ensure the mailbox has completed. 9983 * If so, update the mailbox status so that the upper layers 9984 * can complete the request normally. 9985 */ 9986 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9987 sizeof(struct lpfc_mqe)); 9988 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9989 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9990 sizeof(struct lpfc_mcqe)); 9991 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9992 /* 9993 * When the CQE status indicates a failure and the mailbox status 9994 * indicates success then copy the CQE status into the mailbox status 9995 * (and prefix it with x4000). 9996 */ 9997 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9998 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9999 bf_set(lpfc_mqe_status, mb, 10000 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10001 rc = MBXERR_ERROR; 10002 } else 10003 lpfc_sli4_swap_str(phba, mboxq); 10004 10005 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10006 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10007 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10008 " x%x x%x CQ: x%x x%x x%x x%x\n", 10009 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10010 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10011 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10012 bf_get(lpfc_mqe_status, mb), 10013 mb->un.mb_words[0], mb->un.mb_words[1], 10014 mb->un.mb_words[2], mb->un.mb_words[3], 10015 mb->un.mb_words[4], mb->un.mb_words[5], 10016 mb->un.mb_words[6], mb->un.mb_words[7], 10017 mb->un.mb_words[8], mb->un.mb_words[9], 10018 mb->un.mb_words[10], mb->un.mb_words[11], 10019 mb->un.mb_words[12], mboxq->mcqe.word0, 10020 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10021 mboxq->mcqe.trailer); 10022 exit: 10023 /* We are holding the token, no needed for lock when release */ 10024 spin_lock_irqsave(&phba->hbalock, iflag); 10025 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10026 phba->sli.mbox_active = NULL; 10027 spin_unlock_irqrestore(&phba->hbalock, iflag); 10028 return rc; 10029 } 10030 10031 /** 10032 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10033 * @phba: Pointer to HBA context object. 10034 * @mboxq: Pointer to mailbox object. 10035 * @flag: Flag indicating how the mailbox need to be processed. 10036 * 10037 * This function is called by discovery code and HBA management code to submit 10038 * a mailbox command to firmware with SLI-4 interface spec. 10039 * 10040 * Return codes the caller owns the mailbox command after the return of the 10041 * function. 10042 **/ 10043 static int 10044 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10045 uint32_t flag) 10046 { 10047 struct lpfc_sli *psli = &phba->sli; 10048 unsigned long iflags; 10049 int rc; 10050 10051 /* dump from issue mailbox command if setup */ 10052 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10053 10054 rc = lpfc_mbox_dev_check(phba); 10055 if (unlikely(rc)) { 10056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10057 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10058 "cannot issue Data: x%x x%x\n", 10059 mboxq->vport ? mboxq->vport->vpi : 0, 10060 mboxq->u.mb.mbxCommand, 10061 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10062 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10063 psli->sli_flag, flag); 10064 goto out_not_finished; 10065 } 10066 10067 /* Detect polling mode and jump to a handler */ 10068 if (!phba->sli4_hba.intr_enable) { 10069 if (flag == MBX_POLL) 10070 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10071 else 10072 rc = -EIO; 10073 if (rc != MBX_SUCCESS) 10074 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10075 "(%d):2541 Mailbox command x%x " 10076 "(x%x/x%x) failure: " 10077 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10078 "Data: x%x x%x\n", 10079 mboxq->vport ? mboxq->vport->vpi : 0, 10080 mboxq->u.mb.mbxCommand, 10081 lpfc_sli_config_mbox_subsys_get(phba, 10082 mboxq), 10083 lpfc_sli_config_mbox_opcode_get(phba, 10084 mboxq), 10085 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10086 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10087 bf_get(lpfc_mcqe_ext_status, 10088 &mboxq->mcqe), 10089 psli->sli_flag, flag); 10090 return rc; 10091 } else if (flag == MBX_POLL) { 10092 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10093 "(%d):2542 Try to issue mailbox command " 10094 "x%x (x%x/x%x) synchronously ahead of async " 10095 "mailbox command queue: x%x x%x\n", 10096 mboxq->vport ? mboxq->vport->vpi : 0, 10097 mboxq->u.mb.mbxCommand, 10098 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10099 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10100 psli->sli_flag, flag); 10101 /* Try to block the asynchronous mailbox posting */ 10102 rc = lpfc_sli4_async_mbox_block(phba); 10103 if (!rc) { 10104 /* Successfully blocked, now issue sync mbox cmd */ 10105 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10106 if (rc != MBX_SUCCESS) 10107 lpfc_printf_log(phba, KERN_WARNING, 10108 LOG_MBOX | LOG_SLI, 10109 "(%d):2597 Sync Mailbox command " 10110 "x%x (x%x/x%x) failure: " 10111 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10112 "Data: x%x x%x\n", 10113 mboxq->vport ? mboxq->vport->vpi : 0, 10114 mboxq->u.mb.mbxCommand, 10115 lpfc_sli_config_mbox_subsys_get(phba, 10116 mboxq), 10117 lpfc_sli_config_mbox_opcode_get(phba, 10118 mboxq), 10119 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10120 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10121 bf_get(lpfc_mcqe_ext_status, 10122 &mboxq->mcqe), 10123 psli->sli_flag, flag); 10124 /* Unblock the async mailbox posting afterward */ 10125 lpfc_sli4_async_mbox_unblock(phba); 10126 } 10127 return rc; 10128 } 10129 10130 /* Now, interrupt mode asynchronous mailbox command */ 10131 rc = lpfc_mbox_cmd_check(phba, mboxq); 10132 if (rc) { 10133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10134 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10135 "cannot issue Data: x%x x%x\n", 10136 mboxq->vport ? mboxq->vport->vpi : 0, 10137 mboxq->u.mb.mbxCommand, 10138 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10139 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10140 psli->sli_flag, flag); 10141 goto out_not_finished; 10142 } 10143 10144 /* Put the mailbox command to the driver internal FIFO */ 10145 psli->slistat.mbox_busy++; 10146 spin_lock_irqsave(&phba->hbalock, iflags); 10147 lpfc_mbox_put(phba, mboxq); 10148 spin_unlock_irqrestore(&phba->hbalock, iflags); 10149 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10150 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10151 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10152 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10153 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10154 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10155 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10156 mboxq->u.mb.un.varUnregLogin.rpi, 10157 phba->pport->port_state, 10158 psli->sli_flag, MBX_NOWAIT); 10159 /* Wake up worker thread to transport mailbox command from head */ 10160 lpfc_worker_wake_up(phba); 10161 10162 return MBX_BUSY; 10163 10164 out_not_finished: 10165 return MBX_NOT_FINISHED; 10166 } 10167 10168 /** 10169 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10170 * @phba: Pointer to HBA context object. 10171 * 10172 * This function is called by worker thread to send a mailbox command to 10173 * SLI4 HBA firmware. 10174 * 10175 **/ 10176 int 10177 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10178 { 10179 struct lpfc_sli *psli = &phba->sli; 10180 LPFC_MBOXQ_t *mboxq; 10181 int rc = MBX_SUCCESS; 10182 unsigned long iflags; 10183 struct lpfc_mqe *mqe; 10184 uint32_t mbx_cmnd; 10185 10186 /* Check interrupt mode before post async mailbox command */ 10187 if (unlikely(!phba->sli4_hba.intr_enable)) 10188 return MBX_NOT_FINISHED; 10189 10190 /* Check for mailbox command service token */ 10191 spin_lock_irqsave(&phba->hbalock, iflags); 10192 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10193 spin_unlock_irqrestore(&phba->hbalock, iflags); 10194 return MBX_NOT_FINISHED; 10195 } 10196 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10197 spin_unlock_irqrestore(&phba->hbalock, iflags); 10198 return MBX_NOT_FINISHED; 10199 } 10200 if (unlikely(phba->sli.mbox_active)) { 10201 spin_unlock_irqrestore(&phba->hbalock, iflags); 10202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10203 "0384 There is pending active mailbox cmd\n"); 10204 return MBX_NOT_FINISHED; 10205 } 10206 /* Take the mailbox command service token */ 10207 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10208 10209 /* Get the next mailbox command from head of queue */ 10210 mboxq = lpfc_mbox_get(phba); 10211 10212 /* If no more mailbox command waiting for post, we're done */ 10213 if (!mboxq) { 10214 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10215 spin_unlock_irqrestore(&phba->hbalock, iflags); 10216 return MBX_SUCCESS; 10217 } 10218 phba->sli.mbox_active = mboxq; 10219 spin_unlock_irqrestore(&phba->hbalock, iflags); 10220 10221 /* Check device readiness for posting mailbox command */ 10222 rc = lpfc_mbox_dev_check(phba); 10223 if (unlikely(rc)) 10224 /* Driver clean routine will clean up pending mailbox */ 10225 goto out_not_finished; 10226 10227 /* Prepare the mbox command to be posted */ 10228 mqe = &mboxq->u.mqe; 10229 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10230 10231 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10232 mod_timer(&psli->mbox_tmo, (jiffies + 10233 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10234 10235 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10236 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10237 "x%x x%x\n", 10238 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10239 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10240 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10241 phba->pport->port_state, psli->sli_flag); 10242 10243 if (mbx_cmnd != MBX_HEARTBEAT) { 10244 if (mboxq->vport) { 10245 lpfc_debugfs_disc_trc(mboxq->vport, 10246 LPFC_DISC_TRC_MBOX_VPORT, 10247 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10248 mbx_cmnd, mqe->un.mb_words[0], 10249 mqe->un.mb_words[1]); 10250 } else { 10251 lpfc_debugfs_disc_trc(phba->pport, 10252 LPFC_DISC_TRC_MBOX, 10253 "MBOX Send: cmd:x%x mb:x%x x%x", 10254 mbx_cmnd, mqe->un.mb_words[0], 10255 mqe->un.mb_words[1]); 10256 } 10257 } 10258 psli->slistat.mbox_cmd++; 10259 10260 /* Post the mailbox command to the port */ 10261 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10262 if (rc != MBX_SUCCESS) { 10263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10264 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10265 "cannot issue Data: x%x x%x\n", 10266 mboxq->vport ? mboxq->vport->vpi : 0, 10267 mboxq->u.mb.mbxCommand, 10268 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10269 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10270 psli->sli_flag, MBX_NOWAIT); 10271 goto out_not_finished; 10272 } 10273 10274 return rc; 10275 10276 out_not_finished: 10277 spin_lock_irqsave(&phba->hbalock, iflags); 10278 if (phba->sli.mbox_active) { 10279 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10280 __lpfc_mbox_cmpl_put(phba, mboxq); 10281 /* Release the token */ 10282 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10283 phba->sli.mbox_active = NULL; 10284 } 10285 spin_unlock_irqrestore(&phba->hbalock, iflags); 10286 10287 return MBX_NOT_FINISHED; 10288 } 10289 10290 /** 10291 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10292 * @phba: Pointer to HBA context object. 10293 * @pmbox: Pointer to mailbox object. 10294 * @flag: Flag indicating how the mailbox need to be processed. 10295 * 10296 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10297 * the API jump table function pointer from the lpfc_hba struct. 10298 * 10299 * Return codes the caller owns the mailbox command after the return of the 10300 * function. 10301 **/ 10302 int 10303 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10304 { 10305 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10306 } 10307 10308 /** 10309 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10310 * @phba: The hba struct for which this call is being executed. 10311 * @dev_grp: The HBA PCI-Device group number. 10312 * 10313 * This routine sets up the mbox interface API function jump table in @phba 10314 * struct. 10315 * Returns: 0 - success, -ENODEV - failure. 10316 **/ 10317 int 10318 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10319 { 10320 10321 switch (dev_grp) { 10322 case LPFC_PCI_DEV_LP: 10323 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10324 phba->lpfc_sli_handle_slow_ring_event = 10325 lpfc_sli_handle_slow_ring_event_s3; 10326 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10327 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10328 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10329 break; 10330 case LPFC_PCI_DEV_OC: 10331 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10332 phba->lpfc_sli_handle_slow_ring_event = 10333 lpfc_sli_handle_slow_ring_event_s4; 10334 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10335 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10336 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10337 break; 10338 default: 10339 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10340 "1420 Invalid HBA PCI-device group: 0x%x\n", 10341 dev_grp); 10342 return -ENODEV; 10343 } 10344 return 0; 10345 } 10346 10347 /** 10348 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10349 * @phba: Pointer to HBA context object. 10350 * @pring: Pointer to driver SLI ring object. 10351 * @piocb: Pointer to address of newly added command iocb. 10352 * 10353 * This function is called with hbalock held for SLI3 ports or 10354 * the ring lock held for SLI4 ports to add a command 10355 * iocb to the txq when SLI layer cannot submit the command iocb 10356 * to the ring. 10357 **/ 10358 void 10359 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10360 struct lpfc_iocbq *piocb) 10361 { 10362 if (phba->sli_rev == LPFC_SLI_REV4) 10363 lockdep_assert_held(&pring->ring_lock); 10364 else 10365 lockdep_assert_held(&phba->hbalock); 10366 /* Insert the caller's iocb in the txq tail for later processing. */ 10367 list_add_tail(&piocb->list, &pring->txq); 10368 } 10369 10370 /** 10371 * lpfc_sli_next_iocb - Get the next iocb in the txq 10372 * @phba: Pointer to HBA context object. 10373 * @pring: Pointer to driver SLI ring object. 10374 * @piocb: Pointer to address of newly added command iocb. 10375 * 10376 * This function is called with hbalock held before a new 10377 * iocb is submitted to the firmware. This function checks 10378 * txq to flush the iocbs in txq to Firmware before 10379 * submitting new iocbs to the Firmware. 10380 * If there are iocbs in the txq which need to be submitted 10381 * to firmware, lpfc_sli_next_iocb returns the first element 10382 * of the txq after dequeuing it from txq. 10383 * If there is no iocb in the txq then the function will return 10384 * *piocb and *piocb is set to NULL. Caller needs to check 10385 * *piocb to find if there are more commands in the txq. 10386 **/ 10387 static struct lpfc_iocbq * 10388 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10389 struct lpfc_iocbq **piocb) 10390 { 10391 struct lpfc_iocbq * nextiocb; 10392 10393 lockdep_assert_held(&phba->hbalock); 10394 10395 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10396 if (!nextiocb) { 10397 nextiocb = *piocb; 10398 *piocb = NULL; 10399 } 10400 10401 return nextiocb; 10402 } 10403 10404 /** 10405 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10406 * @phba: Pointer to HBA context object. 10407 * @ring_number: SLI ring number to issue iocb on. 10408 * @piocb: Pointer to command iocb. 10409 * @flag: Flag indicating if this command can be put into txq. 10410 * 10411 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10412 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10413 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10414 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10415 * this function allows only iocbs for posting buffers. This function finds 10416 * next available slot in the command ring and posts the command to the 10417 * available slot and writes the port attention register to request HBA start 10418 * processing new iocb. If there is no slot available in the ring and 10419 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10420 * the function returns IOCB_BUSY. 10421 * 10422 * This function is called with hbalock held. The function will return success 10423 * after it successfully submit the iocb to firmware or after adding to the 10424 * txq. 10425 **/ 10426 static int 10427 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10428 struct lpfc_iocbq *piocb, uint32_t flag) 10429 { 10430 struct lpfc_iocbq *nextiocb; 10431 IOCB_t *iocb; 10432 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10433 10434 lockdep_assert_held(&phba->hbalock); 10435 10436 if (piocb->cmd_cmpl && (!piocb->vport) && 10437 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10438 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10439 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10440 "1807 IOCB x%x failed. No vport\n", 10441 piocb->iocb.ulpCommand); 10442 dump_stack(); 10443 return IOCB_ERROR; 10444 } 10445 10446 10447 /* If the PCI channel is in offline state, do not post iocbs. */ 10448 if (unlikely(pci_channel_offline(phba->pcidev))) 10449 return IOCB_ERROR; 10450 10451 /* If HBA has a deferred error attention, fail the iocb. */ 10452 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10453 return IOCB_ERROR; 10454 10455 /* 10456 * We should never get an IOCB if we are in a < LINK_DOWN state 10457 */ 10458 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10459 return IOCB_ERROR; 10460 10461 /* 10462 * Check to see if we are blocking IOCB processing because of a 10463 * outstanding event. 10464 */ 10465 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10466 goto iocb_busy; 10467 10468 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10469 /* 10470 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10471 * can be issued if the link is not up. 10472 */ 10473 switch (piocb->iocb.ulpCommand) { 10474 case CMD_QUE_RING_BUF_CN: 10475 case CMD_QUE_RING_BUF64_CN: 10476 /* 10477 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10478 * completion, cmd_cmpl MUST be 0. 10479 */ 10480 if (piocb->cmd_cmpl) 10481 piocb->cmd_cmpl = NULL; 10482 fallthrough; 10483 case CMD_CREATE_XRI_CR: 10484 case CMD_CLOSE_XRI_CN: 10485 case CMD_CLOSE_XRI_CX: 10486 break; 10487 default: 10488 goto iocb_busy; 10489 } 10490 10491 /* 10492 * For FCP commands, we must be in a state where we can process link 10493 * attention events. 10494 */ 10495 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10496 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10497 goto iocb_busy; 10498 } 10499 10500 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10501 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10502 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10503 10504 if (iocb) 10505 lpfc_sli_update_ring(phba, pring); 10506 else 10507 lpfc_sli_update_full_ring(phba, pring); 10508 10509 if (!piocb) 10510 return IOCB_SUCCESS; 10511 10512 goto out_busy; 10513 10514 iocb_busy: 10515 pring->stats.iocb_cmd_delay++; 10516 10517 out_busy: 10518 10519 if (!(flag & SLI_IOCB_RET_IOCB)) { 10520 __lpfc_sli_ringtx_put(phba, pring, piocb); 10521 return IOCB_SUCCESS; 10522 } 10523 10524 return IOCB_BUSY; 10525 } 10526 10527 /** 10528 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10529 * @phba: Pointer to HBA context object. 10530 * @ring_number: SLI ring number to issue wqe on. 10531 * @piocb: Pointer to command iocb. 10532 * @flag: Flag indicating if this command can be put into txq. 10533 * 10534 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10535 * send an iocb command to an HBA with SLI-3 interface spec. 10536 * 10537 * This function takes the hbalock before invoking the lockless version. 10538 * The function will return success after it successfully submit the wqe to 10539 * firmware or after adding to the txq. 10540 **/ 10541 static int 10542 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10543 struct lpfc_iocbq *piocb, uint32_t flag) 10544 { 10545 unsigned long iflags; 10546 int rc; 10547 10548 spin_lock_irqsave(&phba->hbalock, iflags); 10549 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10550 spin_unlock_irqrestore(&phba->hbalock, iflags); 10551 10552 return rc; 10553 } 10554 10555 /** 10556 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10557 * @phba: Pointer to HBA context object. 10558 * @ring_number: SLI ring number to issue wqe on. 10559 * @piocb: Pointer to command iocb. 10560 * @flag: Flag indicating if this command can be put into txq. 10561 * 10562 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10563 * an wqe command to an HBA with SLI-4 interface spec. 10564 * 10565 * This function is a lockless version. The function will return success 10566 * after it successfully submit the wqe to firmware or after adding to the 10567 * txq. 10568 **/ 10569 static int 10570 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10571 struct lpfc_iocbq *piocb, uint32_t flag) 10572 { 10573 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10574 10575 lpfc_prep_embed_io(phba, lpfc_cmd); 10576 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10577 } 10578 10579 void 10580 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10581 { 10582 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10583 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10584 struct sli4_sge_le *sgl; 10585 u32 type_size; 10586 10587 /* 128 byte wqe support here */ 10588 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10589 10590 if (phba->fcp_embed_io) { 10591 struct fcp_cmnd *fcp_cmnd; 10592 u32 *ptr; 10593 10594 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10595 10596 /* Word 0-2 - FCP_CMND */ 10597 type_size = le32_to_cpu(sgl->sge_len); 10598 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10599 wqe->generic.bde.tus.w = type_size; 10600 wqe->generic.bde.addrHigh = 0; 10601 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10602 10603 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10604 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10605 10606 /* Word 18-29 FCP CMND Payload */ 10607 ptr = &wqe->words[18]; 10608 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10609 } else { 10610 /* Word 0-2 - Inline BDE */ 10611 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10612 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10613 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10614 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10615 10616 /* Word 10 */ 10617 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10618 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10619 } 10620 10621 /* add the VMID tags as per switch response */ 10622 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10623 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10624 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10625 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10626 (piocb->vmid_tag.cs_ctl_vmid)); 10627 } else if (phba->cfg_vmid_app_header) { 10628 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10629 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10630 wqe->words[31] = piocb->vmid_tag.app_id; 10631 } 10632 } 10633 } 10634 10635 /** 10636 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10637 * @phba: Pointer to HBA context object. 10638 * @ring_number: SLI ring number to issue iocb on. 10639 * @piocb: Pointer to command iocb. 10640 * @flag: Flag indicating if this command can be put into txq. 10641 * 10642 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10643 * an iocb command to an HBA with SLI-4 interface spec. 10644 * 10645 * This function is called with ringlock held. The function will return success 10646 * after it successfully submit the iocb to firmware or after adding to the 10647 * txq. 10648 **/ 10649 static int 10650 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10651 struct lpfc_iocbq *piocb, uint32_t flag) 10652 { 10653 struct lpfc_sglq *sglq; 10654 union lpfc_wqe128 *wqe; 10655 struct lpfc_queue *wq; 10656 struct lpfc_sli_ring *pring; 10657 u32 ulp_command = get_job_cmnd(phba, piocb); 10658 10659 /* Get the WQ */ 10660 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10661 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10662 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10663 } else { 10664 wq = phba->sli4_hba.els_wq; 10665 } 10666 10667 /* Get corresponding ring */ 10668 pring = wq->pring; 10669 10670 /* 10671 * The WQE can be either 64 or 128 bytes, 10672 */ 10673 10674 lockdep_assert_held(&pring->ring_lock); 10675 wqe = &piocb->wqe; 10676 if (piocb->sli4_xritag == NO_XRI) { 10677 if (ulp_command == CMD_ABORT_XRI_CX) 10678 sglq = NULL; 10679 else { 10680 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10681 if (!sglq) { 10682 if (!(flag & SLI_IOCB_RET_IOCB)) { 10683 __lpfc_sli_ringtx_put(phba, 10684 pring, 10685 piocb); 10686 return IOCB_SUCCESS; 10687 } else { 10688 return IOCB_BUSY; 10689 } 10690 } 10691 } 10692 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10693 /* These IO's already have an XRI and a mapped sgl. */ 10694 sglq = NULL; 10695 } 10696 else { 10697 /* 10698 * This is a continuation of a commandi,(CX) so this 10699 * sglq is on the active list 10700 */ 10701 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10702 if (!sglq) 10703 return IOCB_ERROR; 10704 } 10705 10706 if (sglq) { 10707 piocb->sli4_lxritag = sglq->sli4_lxritag; 10708 piocb->sli4_xritag = sglq->sli4_xritag; 10709 10710 /* ABTS sent by initiator to CT exchange, the 10711 * RX_ID field will be filled with the newly 10712 * allocated responder XRI. 10713 */ 10714 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10715 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10716 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10717 piocb->sli4_xritag); 10718 10719 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10720 piocb->sli4_xritag); 10721 10722 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10723 return IOCB_ERROR; 10724 } 10725 10726 if (lpfc_sli4_wq_put(wq, wqe)) 10727 return IOCB_ERROR; 10728 10729 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10730 10731 return 0; 10732 } 10733 10734 /* 10735 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10736 * 10737 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10738 * or IOCB for sli-3 function. 10739 * pointer from the lpfc_hba struct. 10740 * 10741 * Return codes: 10742 * IOCB_ERROR - Error 10743 * IOCB_SUCCESS - Success 10744 * IOCB_BUSY - Busy 10745 **/ 10746 int 10747 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10748 struct lpfc_iocbq *piocb, uint32_t flag) 10749 { 10750 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10751 } 10752 10753 /* 10754 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10755 * 10756 * This routine wraps the actual lockless version for issusing IOCB function 10757 * pointer from the lpfc_hba struct. 10758 * 10759 * Return codes: 10760 * IOCB_ERROR - Error 10761 * IOCB_SUCCESS - Success 10762 * IOCB_BUSY - Busy 10763 **/ 10764 int 10765 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10766 struct lpfc_iocbq *piocb, uint32_t flag) 10767 { 10768 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10769 } 10770 10771 static void 10772 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10773 struct lpfc_vport *vport, 10774 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10775 u32 elscmd, u8 tmo, u8 expect_rsp) 10776 { 10777 struct lpfc_hba *phba = vport->phba; 10778 IOCB_t *cmd; 10779 10780 cmd = &cmdiocbq->iocb; 10781 memset(cmd, 0, sizeof(*cmd)); 10782 10783 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10784 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10785 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10786 10787 if (expect_rsp) { 10788 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10789 cmd->un.elsreq64.remoteID = did; /* DID */ 10790 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10791 cmd->ulpTimeout = tmo; 10792 } else { 10793 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10794 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10795 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10796 cmd->ulpPU = PARM_NPIV_DID; 10797 } 10798 cmd->ulpBdeCount = 1; 10799 cmd->ulpLe = 1; 10800 cmd->ulpClass = CLASS3; 10801 10802 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10803 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10804 if (expect_rsp) { 10805 cmd->un.elsreq64.myID = vport->fc_myDID; 10806 10807 /* For ELS_REQUEST64_CR, use the VPI by default */ 10808 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10809 } 10810 10811 cmd->ulpCt_h = 0; 10812 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10813 if (elscmd == ELS_CMD_ECHO) 10814 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10815 else 10816 cmd->ulpCt_l = 1; /* context = VPI */ 10817 } 10818 } 10819 10820 static void 10821 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10822 struct lpfc_vport *vport, 10823 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10824 u32 elscmd, u8 tmo, u8 expect_rsp) 10825 { 10826 struct lpfc_hba *phba = vport->phba; 10827 union lpfc_wqe128 *wqe; 10828 struct ulp_bde64_le *bde; 10829 u8 els_id; 10830 10831 wqe = &cmdiocbq->wqe; 10832 memset(wqe, 0, sizeof(*wqe)); 10833 10834 /* Word 0 - 2 BDE */ 10835 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10836 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10837 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10838 bde->type_size = cpu_to_le32(cmd_size); 10839 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10840 10841 if (expect_rsp) { 10842 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10843 10844 /* Transfer length */ 10845 wqe->els_req.payload_len = cmd_size; 10846 wqe->els_req.max_response_payload_len = FCELSSIZE; 10847 10848 /* DID */ 10849 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10850 10851 /* Word 11 - ELS_ID */ 10852 switch (elscmd) { 10853 case ELS_CMD_PLOGI: 10854 els_id = LPFC_ELS_ID_PLOGI; 10855 break; 10856 case ELS_CMD_FLOGI: 10857 els_id = LPFC_ELS_ID_FLOGI; 10858 break; 10859 case ELS_CMD_LOGO: 10860 els_id = LPFC_ELS_ID_LOGO; 10861 break; 10862 case ELS_CMD_FDISC: 10863 if (!vport->fc_myDID) { 10864 els_id = LPFC_ELS_ID_FDISC; 10865 break; 10866 } 10867 fallthrough; 10868 default: 10869 els_id = LPFC_ELS_ID_DEFAULT; 10870 break; 10871 } 10872 10873 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10874 } else { 10875 /* DID */ 10876 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10877 10878 /* Transfer length */ 10879 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10880 10881 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10882 CMD_XMIT_ELS_RSP64_WQE); 10883 } 10884 10885 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10886 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10887 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10888 10889 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10890 * For SLI4, since the driver controls VPIs we also want to include 10891 * all ELS pt2pt protocol traffic as well. 10892 */ 10893 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10894 test_bit(FC_PT2PT, &vport->fc_flag)) { 10895 if (expect_rsp) { 10896 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10897 10898 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10899 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10900 phba->vpi_ids[vport->vpi]); 10901 } 10902 10903 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10904 if (elscmd == ELS_CMD_ECHO) 10905 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10906 else 10907 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10908 } 10909 } 10910 10911 void 10912 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10913 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10914 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10915 u8 expect_rsp) 10916 { 10917 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10918 elscmd, tmo, expect_rsp); 10919 } 10920 10921 static void 10922 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10923 u16 rpi, u32 num_entry, u8 tmo) 10924 { 10925 IOCB_t *cmd; 10926 10927 cmd = &cmdiocbq->iocb; 10928 memset(cmd, 0, sizeof(*cmd)); 10929 10930 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10931 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10932 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10933 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10934 10935 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10936 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10937 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10938 10939 cmd->ulpContext = rpi; 10940 cmd->ulpClass = CLASS3; 10941 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10942 cmd->ulpBdeCount = 1; 10943 cmd->ulpLe = 1; 10944 cmd->ulpOwner = OWN_CHIP; 10945 cmd->ulpTimeout = tmo; 10946 } 10947 10948 static void 10949 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10950 u16 rpi, u32 num_entry, u8 tmo) 10951 { 10952 union lpfc_wqe128 *cmdwqe; 10953 struct ulp_bde64_le *bde, *bpl; 10954 u32 xmit_len = 0, total_len = 0, size, type, i; 10955 10956 cmdwqe = &cmdiocbq->wqe; 10957 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10958 10959 /* Calculate total_len and xmit_len */ 10960 bpl = (struct ulp_bde64_le *)bmp->virt; 10961 for (i = 0; i < num_entry; i++) { 10962 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10963 total_len += size; 10964 } 10965 for (i = 0; i < num_entry; i++) { 10966 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10967 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10968 if (type != ULP_BDE64_TYPE_BDE_64) 10969 break; 10970 xmit_len += size; 10971 } 10972 10973 /* Words 0 - 2 */ 10974 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10975 bde->addr_low = bpl->addr_low; 10976 bde->addr_high = bpl->addr_high; 10977 bde->type_size = cpu_to_le32(xmit_len); 10978 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10979 10980 /* Word 3 */ 10981 cmdwqe->gen_req.request_payload_len = xmit_len; 10982 10983 /* Word 5 */ 10984 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10985 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10986 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10987 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10988 10989 /* Word 6 */ 10990 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10991 10992 /* Word 7 */ 10993 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10994 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10995 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10996 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10997 10998 /* Word 12 */ 10999 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11000 } 11001 11002 void 11003 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11004 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11005 { 11006 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11007 } 11008 11009 static void 11010 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11011 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11012 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11013 { 11014 IOCB_t *icmd; 11015 11016 icmd = &cmdiocbq->iocb; 11017 memset(icmd, 0, sizeof(*icmd)); 11018 11019 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11020 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11021 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11022 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11023 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11024 if (last_seq) 11025 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11026 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11027 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11028 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11029 11030 icmd->ulpBdeCount = 1; 11031 icmd->ulpLe = 1; 11032 icmd->ulpClass = CLASS3; 11033 11034 switch (cr_cx_cmd) { 11035 case CMD_XMIT_SEQUENCE64_CR: 11036 icmd->ulpContext = rpi; 11037 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11038 break; 11039 case CMD_XMIT_SEQUENCE64_CX: 11040 icmd->ulpContext = ox_id; 11041 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11042 break; 11043 default: 11044 break; 11045 } 11046 } 11047 11048 static void 11049 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11050 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11051 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11052 { 11053 union lpfc_wqe128 *wqe; 11054 struct ulp_bde64 *bpl; 11055 11056 wqe = &cmdiocbq->wqe; 11057 memset(wqe, 0, sizeof(*wqe)); 11058 11059 /* Words 0 - 2 */ 11060 bpl = (struct ulp_bde64 *)bmp->virt; 11061 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11062 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11063 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11064 11065 /* Word 5 */ 11066 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11067 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11068 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11069 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11070 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11071 11072 /* Word 6 */ 11073 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11074 11075 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11076 CMD_XMIT_SEQUENCE64_WQE); 11077 11078 /* Word 7 */ 11079 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11080 11081 /* Word 9 */ 11082 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11083 11084 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 11085 /* Word 10 */ 11086 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) { 11087 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1); 11088 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1); 11089 wqe->words[31] = LOOPBACK_SRC_APPID; 11090 } 11091 11092 /* Word 12 */ 11093 wqe->xmit_sequence.xmit_len = full_size; 11094 } 11095 else 11096 wqe->xmit_sequence.xmit_len = 11097 wqe->xmit_sequence.bde.tus.f.bdeSize; 11098 } 11099 11100 void 11101 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11102 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11103 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11104 { 11105 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11106 rctl, last_seq, cr_cx_cmd); 11107 } 11108 11109 static void 11110 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11111 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11112 bool wqec) 11113 { 11114 IOCB_t *icmd = NULL; 11115 11116 icmd = &cmdiocbq->iocb; 11117 memset(icmd, 0, sizeof(*icmd)); 11118 11119 /* Word 5 */ 11120 icmd->un.acxri.abortContextTag = ulp_context; 11121 icmd->un.acxri.abortIoTag = iotag; 11122 11123 if (ia) { 11124 /* Word 7 */ 11125 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11126 } else { 11127 /* Word 3 */ 11128 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11129 11130 /* Word 7 */ 11131 icmd->ulpClass = ulp_class; 11132 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11133 } 11134 11135 /* Word 7 */ 11136 icmd->ulpLe = 1; 11137 } 11138 11139 static void 11140 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11141 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11142 bool wqec) 11143 { 11144 union lpfc_wqe128 *wqe; 11145 11146 wqe = &cmdiocbq->wqe; 11147 memset(wqe, 0, sizeof(*wqe)); 11148 11149 /* Word 3 */ 11150 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11151 if (ia) 11152 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11153 else 11154 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11155 11156 /* Word 7 */ 11157 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11158 11159 /* Word 8 */ 11160 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11161 11162 /* Word 9 */ 11163 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11164 11165 /* Word 10 */ 11166 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11167 11168 /* Word 11 */ 11169 if (wqec) 11170 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11171 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11172 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11173 } 11174 11175 void 11176 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11177 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11178 bool ia, bool wqec) 11179 { 11180 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11181 cqid, ia, wqec); 11182 } 11183 11184 /** 11185 * lpfc_sli_api_table_setup - Set up sli api function jump table 11186 * @phba: The hba struct for which this call is being executed. 11187 * @dev_grp: The HBA PCI-Device group number. 11188 * 11189 * This routine sets up the SLI interface API function jump table in @phba 11190 * struct. 11191 * Returns: 0 - success, -ENODEV - failure. 11192 **/ 11193 int 11194 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11195 { 11196 11197 switch (dev_grp) { 11198 case LPFC_PCI_DEV_LP: 11199 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11200 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11201 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11202 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11203 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11204 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11205 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11206 break; 11207 case LPFC_PCI_DEV_OC: 11208 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11209 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11210 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11211 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11212 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11213 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11214 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11215 break; 11216 default: 11217 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11218 "1419 Invalid HBA PCI-device group: 0x%x\n", 11219 dev_grp); 11220 return -ENODEV; 11221 } 11222 return 0; 11223 } 11224 11225 /** 11226 * lpfc_sli4_calc_ring - Calculates which ring to use 11227 * @phba: Pointer to HBA context object. 11228 * @piocb: Pointer to command iocb. 11229 * 11230 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11231 * hba_wqidx, thus we need to calculate the corresponding ring. 11232 * Since ABORTS must go on the same WQ of the command they are 11233 * aborting, we use command's hba_wqidx. 11234 */ 11235 struct lpfc_sli_ring * 11236 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11237 { 11238 struct lpfc_io_buf *lpfc_cmd; 11239 11240 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11241 if (unlikely(!phba->sli4_hba.hdwq)) 11242 return NULL; 11243 /* 11244 * for abort iocb hba_wqidx should already 11245 * be setup based on what work queue we used. 11246 */ 11247 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11248 lpfc_cmd = piocb->io_buf; 11249 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11250 } 11251 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11252 } else { 11253 if (unlikely(!phba->sli4_hba.els_wq)) 11254 return NULL; 11255 piocb->hba_wqidx = 0; 11256 return phba->sli4_hba.els_wq->pring; 11257 } 11258 } 11259 11260 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11261 { 11262 struct lpfc_hba *phba = eq->phba; 11263 11264 /* 11265 * Unlocking an irq is one of the entry point to check 11266 * for re-schedule, but we are good for io submission 11267 * path as midlayer does a get_cpu to glue us in. Flush 11268 * out the invalidate queue so we can see the updated 11269 * value for flag. 11270 */ 11271 smp_rmb(); 11272 11273 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11274 /* We will not likely get the completion for the caller 11275 * during this iteration but i guess that's fine. 11276 * Future io's coming on this eq should be able to 11277 * pick it up. As for the case of single io's, they 11278 * will be handled through a sched from polling timer 11279 * function which is currently triggered every 1msec. 11280 */ 11281 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11282 LPFC_QUEUE_WORK); 11283 } 11284 11285 /** 11286 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11287 * @phba: Pointer to HBA context object. 11288 * @ring_number: Ring number 11289 * @piocb: Pointer to command iocb. 11290 * @flag: Flag indicating if this command can be put into txq. 11291 * 11292 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11293 * function. This function gets the hbalock and calls 11294 * __lpfc_sli_issue_iocb function and will return the error returned 11295 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11296 * functions which do not hold hbalock. 11297 **/ 11298 int 11299 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11300 struct lpfc_iocbq *piocb, uint32_t flag) 11301 { 11302 struct lpfc_sli_ring *pring; 11303 struct lpfc_queue *eq; 11304 unsigned long iflags; 11305 int rc; 11306 11307 /* If the PCI channel is in offline state, do not post iocbs. */ 11308 if (unlikely(pci_channel_offline(phba->pcidev))) 11309 return IOCB_ERROR; 11310 11311 if (phba->sli_rev == LPFC_SLI_REV4) { 11312 lpfc_sli_prep_wqe(phba, piocb); 11313 11314 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11315 11316 pring = lpfc_sli4_calc_ring(phba, piocb); 11317 if (unlikely(pring == NULL)) 11318 return IOCB_ERROR; 11319 11320 spin_lock_irqsave(&pring->ring_lock, iflags); 11321 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11322 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11323 11324 lpfc_sli4_poll_eq(eq); 11325 } else { 11326 /* For now, SLI2/3 will still use hbalock */ 11327 spin_lock_irqsave(&phba->hbalock, iflags); 11328 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11329 spin_unlock_irqrestore(&phba->hbalock, iflags); 11330 } 11331 return rc; 11332 } 11333 11334 /** 11335 * lpfc_extra_ring_setup - Extra ring setup function 11336 * @phba: Pointer to HBA context object. 11337 * 11338 * This function is called while driver attaches with the 11339 * HBA to setup the extra ring. The extra ring is used 11340 * only when driver needs to support target mode functionality 11341 * or IP over FC functionalities. 11342 * 11343 * This function is called with no lock held. SLI3 only. 11344 **/ 11345 static int 11346 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11347 { 11348 struct lpfc_sli *psli; 11349 struct lpfc_sli_ring *pring; 11350 11351 psli = &phba->sli; 11352 11353 /* Adjust cmd/rsp ring iocb entries more evenly */ 11354 11355 /* Take some away from the FCP ring */ 11356 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11357 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11358 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11359 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11360 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11361 11362 /* and give them to the extra ring */ 11363 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11364 11365 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11366 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11367 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11368 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11369 11370 /* Setup default profile for this ring */ 11371 pring->iotag_max = 4096; 11372 pring->num_mask = 1; 11373 pring->prt[0].profile = 0; /* Mask 0 */ 11374 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11375 pring->prt[0].type = phba->cfg_multi_ring_type; 11376 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11377 return 0; 11378 } 11379 11380 static void 11381 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11382 struct lpfc_nodelist *ndlp) 11383 { 11384 unsigned long iflags; 11385 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11386 11387 /* Hold a node reference for outstanding queued work */ 11388 if (!lpfc_nlp_get(ndlp)) 11389 return; 11390 11391 spin_lock_irqsave(&phba->hbalock, iflags); 11392 if (!list_empty(&evtp->evt_listp)) { 11393 spin_unlock_irqrestore(&phba->hbalock, iflags); 11394 lpfc_nlp_put(ndlp); 11395 return; 11396 } 11397 11398 evtp->evt_arg1 = ndlp; 11399 evtp->evt = LPFC_EVT_RECOVER_PORT; 11400 list_add_tail(&evtp->evt_listp, &phba->work_list); 11401 spin_unlock_irqrestore(&phba->hbalock, iflags); 11402 11403 lpfc_worker_wake_up(phba); 11404 } 11405 11406 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11407 * @phba: Pointer to HBA context object. 11408 * @iocbq: Pointer to iocb object. 11409 * 11410 * The async_event handler calls this routine when it receives 11411 * an ASYNC_STATUS_CN event from the port. The port generates 11412 * this event when an Abort Sequence request to an rport fails 11413 * twice in succession. The abort could be originated by the 11414 * driver or by the port. The ABTS could have been for an ELS 11415 * or FCP IO. The port only generates this event when an ABTS 11416 * fails to complete after one retry. 11417 */ 11418 static void 11419 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11420 struct lpfc_iocbq *iocbq) 11421 { 11422 struct lpfc_nodelist *ndlp = NULL; 11423 uint16_t rpi = 0, vpi = 0; 11424 struct lpfc_vport *vport = NULL; 11425 11426 /* The rpi in the ulpContext is vport-sensitive. */ 11427 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11428 rpi = iocbq->iocb.ulpContext; 11429 11430 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11431 "3092 Port generated ABTS async event " 11432 "on vpi %d rpi %d status 0x%x\n", 11433 vpi, rpi, iocbq->iocb.ulpStatus); 11434 11435 vport = lpfc_find_vport_by_vpid(phba, vpi); 11436 if (!vport) 11437 goto err_exit; 11438 ndlp = lpfc_findnode_rpi(vport, rpi); 11439 if (!ndlp) 11440 goto err_exit; 11441 11442 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11443 lpfc_sli_abts_recover_port(vport, ndlp); 11444 return; 11445 11446 err_exit: 11447 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11448 "3095 Event Context not found, no " 11449 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11450 vpi, rpi, iocbq->iocb.ulpStatus, 11451 iocbq->iocb.ulpContext); 11452 } 11453 11454 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11455 * @phba: pointer to HBA context object. 11456 * @ndlp: nodelist pointer for the impacted rport. 11457 * @axri: pointer to the wcqe containing the failed exchange. 11458 * 11459 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11460 * port. The port generates this event when an abort exchange request to an 11461 * rport fails twice in succession with no reply. The abort could be originated 11462 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11463 */ 11464 void 11465 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11466 struct lpfc_nodelist *ndlp, 11467 struct sli4_wcqe_xri_aborted *axri) 11468 { 11469 uint32_t ext_status = 0; 11470 11471 if (!ndlp) { 11472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11473 "3115 Node Context not found, driver " 11474 "ignoring abts err event\n"); 11475 return; 11476 } 11477 11478 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11479 "3116 Port generated FCP XRI ABORT event on " 11480 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11481 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11482 bf_get(lpfc_wcqe_xa_xri, axri), 11483 bf_get(lpfc_wcqe_xa_status, axri), 11484 axri->parameter); 11485 11486 /* 11487 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11488 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11489 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11490 */ 11491 ext_status = axri->parameter & IOERR_PARAM_MASK; 11492 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11493 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11494 lpfc_sli_post_recovery_event(phba, ndlp); 11495 } 11496 11497 /** 11498 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11499 * @phba: Pointer to HBA context object. 11500 * @pring: Pointer to driver SLI ring object. 11501 * @iocbq: Pointer to iocb object. 11502 * 11503 * This function is called by the slow ring event handler 11504 * function when there is an ASYNC event iocb in the ring. 11505 * This function is called with no lock held. 11506 * Currently this function handles only temperature related 11507 * ASYNC events. The function decodes the temperature sensor 11508 * event message and posts events for the management applications. 11509 **/ 11510 static void 11511 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11512 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11513 { 11514 IOCB_t *icmd; 11515 uint16_t evt_code; 11516 struct temp_event temp_event_data; 11517 struct Scsi_Host *shost; 11518 uint32_t *iocb_w; 11519 11520 icmd = &iocbq->iocb; 11521 evt_code = icmd->un.asyncstat.evt_code; 11522 11523 switch (evt_code) { 11524 case ASYNC_TEMP_WARN: 11525 case ASYNC_TEMP_SAFE: 11526 temp_event_data.data = (uint32_t) icmd->ulpContext; 11527 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11528 if (evt_code == ASYNC_TEMP_WARN) { 11529 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11530 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11531 "0347 Adapter is very hot, please take " 11532 "corrective action. temperature : %d Celsius\n", 11533 (uint32_t) icmd->ulpContext); 11534 } else { 11535 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11537 "0340 Adapter temperature is OK now. " 11538 "temperature : %d Celsius\n", 11539 (uint32_t) icmd->ulpContext); 11540 } 11541 11542 /* Send temperature change event to applications */ 11543 shost = lpfc_shost_from_vport(phba->pport); 11544 fc_host_post_vendor_event(shost, fc_get_event_number(), 11545 sizeof(temp_event_data), (char *) &temp_event_data, 11546 LPFC_NL_VENDOR_ID); 11547 break; 11548 case ASYNC_STATUS_CN: 11549 lpfc_sli_abts_err_handler(phba, iocbq); 11550 break; 11551 default: 11552 iocb_w = (uint32_t *) icmd; 11553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11554 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11555 " evt_code 0x%x\n" 11556 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11557 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11558 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11559 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11560 pring->ringno, icmd->un.asyncstat.evt_code, 11561 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11562 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11563 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11564 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11565 11566 break; 11567 } 11568 } 11569 11570 11571 /** 11572 * lpfc_sli4_setup - SLI ring setup function 11573 * @phba: Pointer to HBA context object. 11574 * 11575 * lpfc_sli_setup sets up rings of the SLI interface with 11576 * number of iocbs per ring and iotags. This function is 11577 * called while driver attach to the HBA and before the 11578 * interrupts are enabled. So there is no need for locking. 11579 * 11580 * This function always returns 0. 11581 **/ 11582 int 11583 lpfc_sli4_setup(struct lpfc_hba *phba) 11584 { 11585 struct lpfc_sli_ring *pring; 11586 11587 pring = phba->sli4_hba.els_wq->pring; 11588 pring->num_mask = LPFC_MAX_RING_MASK; 11589 pring->prt[0].profile = 0; /* Mask 0 */ 11590 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11591 pring->prt[0].type = FC_TYPE_ELS; 11592 pring->prt[0].lpfc_sli_rcv_unsol_event = 11593 lpfc_els_unsol_event; 11594 pring->prt[1].profile = 0; /* Mask 1 */ 11595 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11596 pring->prt[1].type = FC_TYPE_ELS; 11597 pring->prt[1].lpfc_sli_rcv_unsol_event = 11598 lpfc_els_unsol_event; 11599 pring->prt[2].profile = 0; /* Mask 2 */ 11600 /* NameServer Inquiry */ 11601 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11602 /* NameServer */ 11603 pring->prt[2].type = FC_TYPE_CT; 11604 pring->prt[2].lpfc_sli_rcv_unsol_event = 11605 lpfc_ct_unsol_event; 11606 pring->prt[3].profile = 0; /* Mask 3 */ 11607 /* NameServer response */ 11608 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11609 /* NameServer */ 11610 pring->prt[3].type = FC_TYPE_CT; 11611 pring->prt[3].lpfc_sli_rcv_unsol_event = 11612 lpfc_ct_unsol_event; 11613 return 0; 11614 } 11615 11616 /** 11617 * lpfc_sli_setup - SLI ring setup function 11618 * @phba: Pointer to HBA context object. 11619 * 11620 * lpfc_sli_setup sets up rings of the SLI interface with 11621 * number of iocbs per ring and iotags. This function is 11622 * called while driver attach to the HBA and before the 11623 * interrupts are enabled. So there is no need for locking. 11624 * 11625 * This function always returns 0. SLI3 only. 11626 **/ 11627 int 11628 lpfc_sli_setup(struct lpfc_hba *phba) 11629 { 11630 int i, totiocbsize = 0; 11631 struct lpfc_sli *psli = &phba->sli; 11632 struct lpfc_sli_ring *pring; 11633 11634 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11635 psli->sli_flag = 0; 11636 11637 psli->iocbq_lookup = NULL; 11638 psli->iocbq_lookup_len = 0; 11639 psli->last_iotag = 0; 11640 11641 for (i = 0; i < psli->num_rings; i++) { 11642 pring = &psli->sli3_ring[i]; 11643 switch (i) { 11644 case LPFC_FCP_RING: /* ring 0 - FCP */ 11645 /* numCiocb and numRiocb are used in config_port */ 11646 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11647 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11648 pring->sli.sli3.numCiocb += 11649 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11650 pring->sli.sli3.numRiocb += 11651 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11652 pring->sli.sli3.numCiocb += 11653 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11654 pring->sli.sli3.numRiocb += 11655 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11656 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11657 SLI3_IOCB_CMD_SIZE : 11658 SLI2_IOCB_CMD_SIZE; 11659 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11660 SLI3_IOCB_RSP_SIZE : 11661 SLI2_IOCB_RSP_SIZE; 11662 pring->iotag_ctr = 0; 11663 pring->iotag_max = 11664 (phba->cfg_hba_queue_depth * 2); 11665 pring->fast_iotag = pring->iotag_max; 11666 pring->num_mask = 0; 11667 break; 11668 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11669 /* numCiocb and numRiocb are used in config_port */ 11670 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11671 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11672 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11673 SLI3_IOCB_CMD_SIZE : 11674 SLI2_IOCB_CMD_SIZE; 11675 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11676 SLI3_IOCB_RSP_SIZE : 11677 SLI2_IOCB_RSP_SIZE; 11678 pring->iotag_max = phba->cfg_hba_queue_depth; 11679 pring->num_mask = 0; 11680 break; 11681 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11682 /* numCiocb and numRiocb are used in config_port */ 11683 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11684 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11685 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11686 SLI3_IOCB_CMD_SIZE : 11687 SLI2_IOCB_CMD_SIZE; 11688 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11689 SLI3_IOCB_RSP_SIZE : 11690 SLI2_IOCB_RSP_SIZE; 11691 pring->fast_iotag = 0; 11692 pring->iotag_ctr = 0; 11693 pring->iotag_max = 4096; 11694 pring->lpfc_sli_rcv_async_status = 11695 lpfc_sli_async_event_handler; 11696 pring->num_mask = LPFC_MAX_RING_MASK; 11697 pring->prt[0].profile = 0; /* Mask 0 */ 11698 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11699 pring->prt[0].type = FC_TYPE_ELS; 11700 pring->prt[0].lpfc_sli_rcv_unsol_event = 11701 lpfc_els_unsol_event; 11702 pring->prt[1].profile = 0; /* Mask 1 */ 11703 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11704 pring->prt[1].type = FC_TYPE_ELS; 11705 pring->prt[1].lpfc_sli_rcv_unsol_event = 11706 lpfc_els_unsol_event; 11707 pring->prt[2].profile = 0; /* Mask 2 */ 11708 /* NameServer Inquiry */ 11709 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11710 /* NameServer */ 11711 pring->prt[2].type = FC_TYPE_CT; 11712 pring->prt[2].lpfc_sli_rcv_unsol_event = 11713 lpfc_ct_unsol_event; 11714 pring->prt[3].profile = 0; /* Mask 3 */ 11715 /* NameServer response */ 11716 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11717 /* NameServer */ 11718 pring->prt[3].type = FC_TYPE_CT; 11719 pring->prt[3].lpfc_sli_rcv_unsol_event = 11720 lpfc_ct_unsol_event; 11721 break; 11722 } 11723 totiocbsize += (pring->sli.sli3.numCiocb * 11724 pring->sli.sli3.sizeCiocb) + 11725 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11726 } 11727 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11728 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11729 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11730 "SLI2 SLIM Data: x%x x%lx\n", 11731 phba->brd_no, totiocbsize, 11732 (unsigned long) MAX_SLIM_IOCB_SIZE); 11733 } 11734 if (phba->cfg_multi_ring_support == 2) 11735 lpfc_extra_ring_setup(phba); 11736 11737 return 0; 11738 } 11739 11740 /** 11741 * lpfc_sli4_queue_init - Queue initialization function 11742 * @phba: Pointer to HBA context object. 11743 * 11744 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11745 * ring. This function also initializes ring indices of each ring. 11746 * This function is called during the initialization of the SLI 11747 * interface of an HBA. 11748 * This function is called with no lock held and always returns 11749 * 1. 11750 **/ 11751 void 11752 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11753 { 11754 struct lpfc_sli *psli; 11755 struct lpfc_sli_ring *pring; 11756 int i; 11757 11758 psli = &phba->sli; 11759 spin_lock_irq(&phba->hbalock); 11760 INIT_LIST_HEAD(&psli->mboxq); 11761 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11762 /* Initialize list headers for txq and txcmplq as double linked lists */ 11763 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11764 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11765 pring->flag = 0; 11766 pring->ringno = LPFC_FCP_RING; 11767 pring->txcmplq_cnt = 0; 11768 INIT_LIST_HEAD(&pring->txq); 11769 INIT_LIST_HEAD(&pring->txcmplq); 11770 INIT_LIST_HEAD(&pring->iocb_continueq); 11771 spin_lock_init(&pring->ring_lock); 11772 } 11773 pring = phba->sli4_hba.els_wq->pring; 11774 pring->flag = 0; 11775 pring->ringno = LPFC_ELS_RING; 11776 pring->txcmplq_cnt = 0; 11777 INIT_LIST_HEAD(&pring->txq); 11778 INIT_LIST_HEAD(&pring->txcmplq); 11779 INIT_LIST_HEAD(&pring->iocb_continueq); 11780 spin_lock_init(&pring->ring_lock); 11781 11782 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11783 pring = phba->sli4_hba.nvmels_wq->pring; 11784 pring->flag = 0; 11785 pring->ringno = LPFC_ELS_RING; 11786 pring->txcmplq_cnt = 0; 11787 INIT_LIST_HEAD(&pring->txq); 11788 INIT_LIST_HEAD(&pring->txcmplq); 11789 INIT_LIST_HEAD(&pring->iocb_continueq); 11790 spin_lock_init(&pring->ring_lock); 11791 } 11792 11793 spin_unlock_irq(&phba->hbalock); 11794 } 11795 11796 /** 11797 * lpfc_sli_queue_init - Queue initialization function 11798 * @phba: Pointer to HBA context object. 11799 * 11800 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11801 * ring. This function also initializes ring indices of each ring. 11802 * This function is called during the initialization of the SLI 11803 * interface of an HBA. 11804 * This function is called with no lock held and always returns 11805 * 1. 11806 **/ 11807 void 11808 lpfc_sli_queue_init(struct lpfc_hba *phba) 11809 { 11810 struct lpfc_sli *psli; 11811 struct lpfc_sli_ring *pring; 11812 int i; 11813 11814 psli = &phba->sli; 11815 spin_lock_irq(&phba->hbalock); 11816 INIT_LIST_HEAD(&psli->mboxq); 11817 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11818 /* Initialize list headers for txq and txcmplq as double linked lists */ 11819 for (i = 0; i < psli->num_rings; i++) { 11820 pring = &psli->sli3_ring[i]; 11821 pring->ringno = i; 11822 pring->sli.sli3.next_cmdidx = 0; 11823 pring->sli.sli3.local_getidx = 0; 11824 pring->sli.sli3.cmdidx = 0; 11825 INIT_LIST_HEAD(&pring->iocb_continueq); 11826 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11827 INIT_LIST_HEAD(&pring->postbufq); 11828 pring->flag = 0; 11829 INIT_LIST_HEAD(&pring->txq); 11830 INIT_LIST_HEAD(&pring->txcmplq); 11831 spin_lock_init(&pring->ring_lock); 11832 } 11833 spin_unlock_irq(&phba->hbalock); 11834 } 11835 11836 /** 11837 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11838 * @phba: Pointer to HBA context object. 11839 * 11840 * This routine flushes the mailbox command subsystem. It will unconditionally 11841 * flush all the mailbox commands in the three possible stages in the mailbox 11842 * command sub-system: pending mailbox command queue; the outstanding mailbox 11843 * command; and completed mailbox command queue. It is caller's responsibility 11844 * to make sure that the driver is in the proper state to flush the mailbox 11845 * command sub-system. Namely, the posting of mailbox commands into the 11846 * pending mailbox command queue from the various clients must be stopped; 11847 * either the HBA is in a state that it will never works on the outstanding 11848 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11849 * mailbox command has been completed. 11850 **/ 11851 static void 11852 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11853 { 11854 LIST_HEAD(completions); 11855 struct lpfc_sli *psli = &phba->sli; 11856 LPFC_MBOXQ_t *pmb; 11857 unsigned long iflag; 11858 11859 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11860 local_bh_disable(); 11861 11862 /* Flush all the mailbox commands in the mbox system */ 11863 spin_lock_irqsave(&phba->hbalock, iflag); 11864 11865 /* The pending mailbox command queue */ 11866 list_splice_init(&phba->sli.mboxq, &completions); 11867 /* The outstanding active mailbox command */ 11868 if (psli->mbox_active) { 11869 list_add_tail(&psli->mbox_active->list, &completions); 11870 psli->mbox_active = NULL; 11871 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11872 } 11873 /* The completed mailbox command queue */ 11874 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11875 spin_unlock_irqrestore(&phba->hbalock, iflag); 11876 11877 /* Enable softirqs again, done with phba->hbalock */ 11878 local_bh_enable(); 11879 11880 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11881 while (!list_empty(&completions)) { 11882 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11883 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11884 if (pmb->mbox_cmpl) 11885 pmb->mbox_cmpl(phba, pmb); 11886 } 11887 } 11888 11889 /** 11890 * lpfc_sli_host_down - Vport cleanup function 11891 * @vport: Pointer to virtual port object. 11892 * 11893 * lpfc_sli_host_down is called to clean up the resources 11894 * associated with a vport before destroying virtual 11895 * port data structures. 11896 * This function does following operations: 11897 * - Free discovery resources associated with this virtual 11898 * port. 11899 * - Free iocbs associated with this virtual port in 11900 * the txq. 11901 * - Send abort for all iocb commands associated with this 11902 * vport in txcmplq. 11903 * 11904 * This function is called with no lock held and always returns 1. 11905 **/ 11906 int 11907 lpfc_sli_host_down(struct lpfc_vport *vport) 11908 { 11909 LIST_HEAD(completions); 11910 struct lpfc_hba *phba = vport->phba; 11911 struct lpfc_sli *psli = &phba->sli; 11912 struct lpfc_queue *qp = NULL; 11913 struct lpfc_sli_ring *pring; 11914 struct lpfc_iocbq *iocb, *next_iocb; 11915 int i; 11916 unsigned long flags = 0; 11917 uint16_t prev_pring_flag; 11918 11919 lpfc_cleanup_discovery_resources(vport); 11920 11921 spin_lock_irqsave(&phba->hbalock, flags); 11922 11923 /* 11924 * Error everything on the txq since these iocbs 11925 * have not been given to the FW yet. 11926 * Also issue ABTS for everything on the txcmplq 11927 */ 11928 if (phba->sli_rev != LPFC_SLI_REV4) { 11929 for (i = 0; i < psli->num_rings; i++) { 11930 pring = &psli->sli3_ring[i]; 11931 prev_pring_flag = pring->flag; 11932 /* Only slow rings */ 11933 if (pring->ringno == LPFC_ELS_RING) { 11934 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11935 /* Set the lpfc data pending flag */ 11936 set_bit(LPFC_DATA_READY, &phba->data_flags); 11937 } 11938 list_for_each_entry_safe(iocb, next_iocb, 11939 &pring->txq, list) { 11940 if (iocb->vport != vport) 11941 continue; 11942 list_move_tail(&iocb->list, &completions); 11943 } 11944 list_for_each_entry_safe(iocb, next_iocb, 11945 &pring->txcmplq, list) { 11946 if (iocb->vport != vport) 11947 continue; 11948 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11949 NULL); 11950 } 11951 pring->flag = prev_pring_flag; 11952 } 11953 } else { 11954 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11955 pring = qp->pring; 11956 if (!pring) 11957 continue; 11958 if (pring == phba->sli4_hba.els_wq->pring) { 11959 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11960 /* Set the lpfc data pending flag */ 11961 set_bit(LPFC_DATA_READY, &phba->data_flags); 11962 } 11963 prev_pring_flag = pring->flag; 11964 spin_lock(&pring->ring_lock); 11965 list_for_each_entry_safe(iocb, next_iocb, 11966 &pring->txq, list) { 11967 if (iocb->vport != vport) 11968 continue; 11969 list_move_tail(&iocb->list, &completions); 11970 } 11971 spin_unlock(&pring->ring_lock); 11972 list_for_each_entry_safe(iocb, next_iocb, 11973 &pring->txcmplq, list) { 11974 if (iocb->vport != vport) 11975 continue; 11976 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11977 NULL); 11978 } 11979 pring->flag = prev_pring_flag; 11980 } 11981 } 11982 spin_unlock_irqrestore(&phba->hbalock, flags); 11983 11984 /* Make sure HBA is alive */ 11985 lpfc_issue_hb_tmo(phba); 11986 11987 /* Cancel all the IOCBs from the completions list */ 11988 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11989 IOERR_SLI_DOWN); 11990 return 1; 11991 } 11992 11993 /** 11994 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11995 * @phba: Pointer to HBA context object. 11996 * 11997 * This function cleans up all iocb, buffers, mailbox commands 11998 * while shutting down the HBA. This function is called with no 11999 * lock held and always returns 1. 12000 * This function does the following to cleanup driver resources: 12001 * - Free discovery resources for each virtual port 12002 * - Cleanup any pending fabric iocbs 12003 * - Iterate through the iocb txq and free each entry 12004 * in the list. 12005 * - Free up any buffer posted to the HBA 12006 * - Free mailbox commands in the mailbox queue. 12007 **/ 12008 int 12009 lpfc_sli_hba_down(struct lpfc_hba *phba) 12010 { 12011 LIST_HEAD(completions); 12012 struct lpfc_sli *psli = &phba->sli; 12013 struct lpfc_queue *qp = NULL; 12014 struct lpfc_sli_ring *pring; 12015 struct lpfc_dmabuf *buf_ptr; 12016 unsigned long flags = 0; 12017 int i; 12018 12019 /* Shutdown the mailbox command sub-system */ 12020 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12021 12022 lpfc_hba_down_prep(phba); 12023 12024 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12025 local_bh_disable(); 12026 12027 lpfc_fabric_abort_hba(phba); 12028 12029 spin_lock_irqsave(&phba->hbalock, flags); 12030 12031 /* 12032 * Error everything on the txq since these iocbs 12033 * have not been given to the FW yet. 12034 */ 12035 if (phba->sli_rev != LPFC_SLI_REV4) { 12036 for (i = 0; i < psli->num_rings; i++) { 12037 pring = &psli->sli3_ring[i]; 12038 /* Only slow rings */ 12039 if (pring->ringno == LPFC_ELS_RING) { 12040 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12041 /* Set the lpfc data pending flag */ 12042 set_bit(LPFC_DATA_READY, &phba->data_flags); 12043 } 12044 list_splice_init(&pring->txq, &completions); 12045 } 12046 } else { 12047 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12048 pring = qp->pring; 12049 if (!pring) 12050 continue; 12051 spin_lock(&pring->ring_lock); 12052 list_splice_init(&pring->txq, &completions); 12053 spin_unlock(&pring->ring_lock); 12054 if (pring == phba->sli4_hba.els_wq->pring) { 12055 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12056 /* Set the lpfc data pending flag */ 12057 set_bit(LPFC_DATA_READY, &phba->data_flags); 12058 } 12059 } 12060 } 12061 spin_unlock_irqrestore(&phba->hbalock, flags); 12062 12063 /* Cancel all the IOCBs from the completions list */ 12064 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12065 IOERR_SLI_DOWN); 12066 12067 spin_lock_irqsave(&phba->hbalock, flags); 12068 list_splice_init(&phba->elsbuf, &completions); 12069 phba->elsbuf_cnt = 0; 12070 phba->elsbuf_prev_cnt = 0; 12071 spin_unlock_irqrestore(&phba->hbalock, flags); 12072 12073 while (!list_empty(&completions)) { 12074 list_remove_head(&completions, buf_ptr, 12075 struct lpfc_dmabuf, list); 12076 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12077 kfree(buf_ptr); 12078 } 12079 12080 /* Enable softirqs again, done with phba->hbalock */ 12081 local_bh_enable(); 12082 12083 /* Return any active mbox cmds */ 12084 del_timer_sync(&psli->mbox_tmo); 12085 12086 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12087 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12088 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12089 12090 return 1; 12091 } 12092 12093 /** 12094 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12095 * @srcp: Source memory pointer. 12096 * @destp: Destination memory pointer. 12097 * @cnt: Number of words required to be copied. 12098 * 12099 * This function is used for copying data between driver memory 12100 * and the SLI memory. This function also changes the endianness 12101 * of each word if native endianness is different from SLI 12102 * endianness. This function can be called with or without 12103 * lock. 12104 **/ 12105 void 12106 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12107 { 12108 uint32_t *src = srcp; 12109 uint32_t *dest = destp; 12110 uint32_t ldata; 12111 int i; 12112 12113 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12114 ldata = *src; 12115 ldata = le32_to_cpu(ldata); 12116 *dest = ldata; 12117 src++; 12118 dest++; 12119 } 12120 } 12121 12122 12123 /** 12124 * lpfc_sli_bemem_bcopy - SLI memory copy function 12125 * @srcp: Source memory pointer. 12126 * @destp: Destination memory pointer. 12127 * @cnt: Number of words required to be copied. 12128 * 12129 * This function is used for copying data between a data structure 12130 * with big endian representation to local endianness. 12131 * This function can be called with or without lock. 12132 **/ 12133 void 12134 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12135 { 12136 uint32_t *src = srcp; 12137 uint32_t *dest = destp; 12138 uint32_t ldata; 12139 int i; 12140 12141 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12142 ldata = *src; 12143 ldata = be32_to_cpu(ldata); 12144 *dest = ldata; 12145 src++; 12146 dest++; 12147 } 12148 } 12149 12150 /** 12151 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12152 * @phba: Pointer to HBA context object. 12153 * @pring: Pointer to driver SLI ring object. 12154 * @mp: Pointer to driver buffer object. 12155 * 12156 * This function is called with no lock held. 12157 * It always return zero after adding the buffer to the postbufq 12158 * buffer list. 12159 **/ 12160 int 12161 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12162 struct lpfc_dmabuf *mp) 12163 { 12164 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12165 later */ 12166 spin_lock_irq(&phba->hbalock); 12167 list_add_tail(&mp->list, &pring->postbufq); 12168 pring->postbufq_cnt++; 12169 spin_unlock_irq(&phba->hbalock); 12170 return 0; 12171 } 12172 12173 /** 12174 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12175 * @phba: Pointer to HBA context object. 12176 * 12177 * When HBQ is enabled, buffers are searched based on tags. This function 12178 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12179 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12180 * does not conflict with tags of buffer posted for unsolicited events. 12181 * The function returns the allocated tag. The function is called with 12182 * no locks held. 12183 **/ 12184 uint32_t 12185 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12186 { 12187 spin_lock_irq(&phba->hbalock); 12188 phba->buffer_tag_count++; 12189 /* 12190 * Always set the QUE_BUFTAG_BIT to distiguish between 12191 * a tag assigned by HBQ. 12192 */ 12193 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12194 spin_unlock_irq(&phba->hbalock); 12195 return phba->buffer_tag_count; 12196 } 12197 12198 /** 12199 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12200 * @phba: Pointer to HBA context object. 12201 * @pring: Pointer to driver SLI ring object. 12202 * @tag: Buffer tag. 12203 * 12204 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12205 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12206 * iocb is posted to the response ring with the tag of the buffer. 12207 * This function searches the pring->postbufq list using the tag 12208 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12209 * iocb. If the buffer is found then lpfc_dmabuf object of the 12210 * buffer is returned to the caller else NULL is returned. 12211 * This function is called with no lock held. 12212 **/ 12213 struct lpfc_dmabuf * 12214 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12215 uint32_t tag) 12216 { 12217 struct lpfc_dmabuf *mp, *next_mp; 12218 struct list_head *slp = &pring->postbufq; 12219 12220 /* Search postbufq, from the beginning, looking for a match on tag */ 12221 spin_lock_irq(&phba->hbalock); 12222 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12223 if (mp->buffer_tag == tag) { 12224 list_del_init(&mp->list); 12225 pring->postbufq_cnt--; 12226 spin_unlock_irq(&phba->hbalock); 12227 return mp; 12228 } 12229 } 12230 12231 spin_unlock_irq(&phba->hbalock); 12232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12233 "0402 Cannot find virtual addr for buffer tag on " 12234 "ring %d Data x%lx x%px x%px x%x\n", 12235 pring->ringno, (unsigned long) tag, 12236 slp->next, slp->prev, pring->postbufq_cnt); 12237 12238 return NULL; 12239 } 12240 12241 /** 12242 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12243 * @phba: Pointer to HBA context object. 12244 * @pring: Pointer to driver SLI ring object. 12245 * @phys: DMA address of the buffer. 12246 * 12247 * This function searches the buffer list using the dma_address 12248 * of unsolicited event to find the driver's lpfc_dmabuf object 12249 * corresponding to the dma_address. The function returns the 12250 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12251 * This function is called by the ct and els unsolicited event 12252 * handlers to get the buffer associated with the unsolicited 12253 * event. 12254 * 12255 * This function is called with no lock held. 12256 **/ 12257 struct lpfc_dmabuf * 12258 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12259 dma_addr_t phys) 12260 { 12261 struct lpfc_dmabuf *mp, *next_mp; 12262 struct list_head *slp = &pring->postbufq; 12263 12264 /* Search postbufq, from the beginning, looking for a match on phys */ 12265 spin_lock_irq(&phba->hbalock); 12266 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12267 if (mp->phys == phys) { 12268 list_del_init(&mp->list); 12269 pring->postbufq_cnt--; 12270 spin_unlock_irq(&phba->hbalock); 12271 return mp; 12272 } 12273 } 12274 12275 spin_unlock_irq(&phba->hbalock); 12276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12277 "0410 Cannot find virtual addr for mapped buf on " 12278 "ring %d Data x%llx x%px x%px x%x\n", 12279 pring->ringno, (unsigned long long)phys, 12280 slp->next, slp->prev, pring->postbufq_cnt); 12281 return NULL; 12282 } 12283 12284 /** 12285 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12286 * @phba: Pointer to HBA context object. 12287 * @cmdiocb: Pointer to driver command iocb object. 12288 * @rspiocb: Pointer to driver response iocb object. 12289 * 12290 * This function is the completion handler for the abort iocbs for 12291 * ELS commands. This function is called from the ELS ring event 12292 * handler with no lock held. This function frees memory resources 12293 * associated with the abort iocb. 12294 **/ 12295 static void 12296 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12297 struct lpfc_iocbq *rspiocb) 12298 { 12299 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12300 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12301 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12302 12303 if (ulp_status) { 12304 /* 12305 * Assume that the port already completed and returned, or 12306 * will return the iocb. Just Log the message. 12307 */ 12308 if (phba->sli_rev < LPFC_SLI_REV4) { 12309 if (cmnd == CMD_ABORT_XRI_CX && 12310 ulp_status == IOSTAT_LOCAL_REJECT && 12311 ulp_word4 == IOERR_ABORT_REQUESTED) { 12312 goto release_iocb; 12313 } 12314 } 12315 } 12316 12317 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12318 "0327 Abort els iocb complete x%px with io cmd xri %x " 12319 "abort tag x%x abort status %x abort code %x\n", 12320 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12321 (phba->sli_rev == LPFC_SLI_REV4) ? 12322 get_wqe_reqtag(cmdiocb) : 12323 cmdiocb->iocb.ulpIoTag, 12324 ulp_status, ulp_word4); 12325 release_iocb: 12326 lpfc_sli_release_iocbq(phba, cmdiocb); 12327 return; 12328 } 12329 12330 /** 12331 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12332 * @phba: Pointer to HBA context object. 12333 * @cmdiocb: Pointer to driver command iocb object. 12334 * @rspiocb: Pointer to driver response iocb object. 12335 * 12336 * The function is called from SLI ring event handler with no 12337 * lock held. This function is the completion handler for ELS commands 12338 * which are aborted. The function frees memory resources used for 12339 * the aborted ELS commands. 12340 **/ 12341 void 12342 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12343 struct lpfc_iocbq *rspiocb) 12344 { 12345 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12346 IOCB_t *irsp; 12347 LPFC_MBOXQ_t *mbox; 12348 u32 ulp_command, ulp_status, ulp_word4, iotag; 12349 12350 ulp_command = get_job_cmnd(phba, cmdiocb); 12351 ulp_status = get_job_ulpstatus(phba, rspiocb); 12352 ulp_word4 = get_job_word4(phba, rspiocb); 12353 12354 if (phba->sli_rev == LPFC_SLI_REV4) { 12355 iotag = get_wqe_reqtag(cmdiocb); 12356 } else { 12357 irsp = &rspiocb->iocb; 12358 iotag = irsp->ulpIoTag; 12359 12360 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12361 * The MBX_REG_LOGIN64 mbox command is freed back to the 12362 * mbox_mem_pool here. 12363 */ 12364 if (cmdiocb->context_un.mbox) { 12365 mbox = cmdiocb->context_un.mbox; 12366 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12367 cmdiocb->context_un.mbox = NULL; 12368 } 12369 } 12370 12371 /* ELS cmd tag <ulpIoTag> completes */ 12372 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12373 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12374 "x%x x%x x%x x%px\n", 12375 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12376 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12377 /* 12378 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12379 * if exchange is busy. 12380 */ 12381 if (ulp_command == CMD_GEN_REQUEST64_CR) 12382 lpfc_ct_free_iocb(phba, cmdiocb); 12383 else 12384 lpfc_els_free_iocb(phba, cmdiocb); 12385 12386 lpfc_nlp_put(ndlp); 12387 } 12388 12389 /** 12390 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12391 * @phba: Pointer to HBA context object. 12392 * @pring: Pointer to driver SLI ring object. 12393 * @cmdiocb: Pointer to driver command iocb object. 12394 * @cmpl: completion function. 12395 * 12396 * This function issues an abort iocb for the provided command iocb. In case 12397 * of unloading, the abort iocb will not be issued to commands on the ELS 12398 * ring. Instead, the callback function shall be changed to those commands 12399 * so that nothing happens when them finishes. This function is called with 12400 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12401 * when the command iocb is an abort request. 12402 * 12403 **/ 12404 int 12405 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12406 struct lpfc_iocbq *cmdiocb, void *cmpl) 12407 { 12408 struct lpfc_vport *vport = cmdiocb->vport; 12409 struct lpfc_iocbq *abtsiocbp; 12410 int retval = IOCB_ERROR; 12411 unsigned long iflags; 12412 struct lpfc_nodelist *ndlp = NULL; 12413 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12414 u16 ulp_context, iotag; 12415 bool ia; 12416 12417 /* 12418 * There are certain command types we don't want to abort. And we 12419 * don't want to abort commands that are already in the process of 12420 * being aborted. 12421 */ 12422 if (ulp_command == CMD_ABORT_XRI_WQE || 12423 ulp_command == CMD_ABORT_XRI_CN || 12424 ulp_command == CMD_CLOSE_XRI_CN || 12425 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12426 return IOCB_ABORTING; 12427 12428 if (!pring) { 12429 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12430 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12431 else 12432 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12433 return retval; 12434 } 12435 12436 /* 12437 * If we're unloading, don't abort iocb on the ELS ring, but change 12438 * the callback so that nothing happens when it finishes. 12439 */ 12440 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12441 pring->ringno == LPFC_ELS_RING) { 12442 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12443 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12444 else 12445 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12446 return retval; 12447 } 12448 12449 /* issue ABTS for this IOCB based on iotag */ 12450 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12451 if (abtsiocbp == NULL) 12452 return IOCB_NORESOURCE; 12453 12454 /* This signals the response to set the correct status 12455 * before calling the completion handler 12456 */ 12457 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12458 12459 if (phba->sli_rev == LPFC_SLI_REV4) { 12460 ulp_context = cmdiocb->sli4_xritag; 12461 iotag = abtsiocbp->iotag; 12462 } else { 12463 iotag = cmdiocb->iocb.ulpIoTag; 12464 if (pring->ringno == LPFC_ELS_RING) { 12465 ndlp = cmdiocb->ndlp; 12466 ulp_context = ndlp->nlp_rpi; 12467 } else { 12468 ulp_context = cmdiocb->iocb.ulpContext; 12469 } 12470 } 12471 12472 /* Just close the exchange under certain conditions. */ 12473 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12474 phba->link_state < LPFC_LINK_UP || 12475 (phba->sli_rev == LPFC_SLI_REV4 && 12476 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12477 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12478 ia = true; 12479 else 12480 ia = false; 12481 12482 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12483 cmdiocb->iocb.ulpClass, 12484 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12485 12486 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12487 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12488 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12489 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12490 12491 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12492 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12493 12494 if (cmpl) 12495 abtsiocbp->cmd_cmpl = cmpl; 12496 else 12497 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12498 abtsiocbp->vport = vport; 12499 12500 if (phba->sli_rev == LPFC_SLI_REV4) { 12501 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12502 if (unlikely(pring == NULL)) 12503 goto abort_iotag_exit; 12504 /* Note: both hbalock and ring_lock need to be set here */ 12505 spin_lock_irqsave(&pring->ring_lock, iflags); 12506 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12507 abtsiocbp, 0); 12508 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12509 } else { 12510 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12511 abtsiocbp, 0); 12512 } 12513 12514 abort_iotag_exit: 12515 12516 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12517 "0339 Abort IO XRI x%x, Original iotag x%x, " 12518 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12519 "retval x%x : IA %d cmd_cmpl %ps\n", 12520 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12521 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12522 retval, ia, abtsiocbp->cmd_cmpl); 12523 if (retval) { 12524 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12525 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12526 } 12527 12528 /* 12529 * Caller to this routine should check for IOCB_ERROR 12530 * and handle it properly. This routine no longer removes 12531 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12532 */ 12533 return retval; 12534 } 12535 12536 /** 12537 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12538 * @phba: pointer to lpfc HBA data structure. 12539 * 12540 * This routine will abort all pending and outstanding iocbs to an HBA. 12541 **/ 12542 void 12543 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12544 { 12545 struct lpfc_sli *psli = &phba->sli; 12546 struct lpfc_sli_ring *pring; 12547 struct lpfc_queue *qp = NULL; 12548 int i; 12549 12550 if (phba->sli_rev != LPFC_SLI_REV4) { 12551 for (i = 0; i < psli->num_rings; i++) { 12552 pring = &psli->sli3_ring[i]; 12553 lpfc_sli_abort_iocb_ring(phba, pring); 12554 } 12555 return; 12556 } 12557 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12558 pring = qp->pring; 12559 if (!pring) 12560 continue; 12561 lpfc_sli_abort_iocb_ring(phba, pring); 12562 } 12563 } 12564 12565 /** 12566 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12567 * @iocbq: Pointer to iocb object. 12568 * @vport: Pointer to driver virtual port object. 12569 * 12570 * This function acts as an iocb filter for functions which abort FCP iocbs. 12571 * 12572 * Return values 12573 * -ENODEV, if a null iocb or vport ptr is encountered 12574 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12575 * driver already started the abort process, or is an abort iocb itself 12576 * 0, passes criteria for aborting the FCP I/O iocb 12577 **/ 12578 static int 12579 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12580 struct lpfc_vport *vport) 12581 { 12582 u8 ulp_command; 12583 12584 /* No null ptr vports */ 12585 if (!iocbq || iocbq->vport != vport) 12586 return -ENODEV; 12587 12588 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12589 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12590 */ 12591 ulp_command = get_job_cmnd(vport->phba, iocbq); 12592 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12593 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12594 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12595 (ulp_command == CMD_ABORT_XRI_CN || 12596 ulp_command == CMD_CLOSE_XRI_CN || 12597 ulp_command == CMD_ABORT_XRI_WQE)) 12598 return -EINVAL; 12599 12600 return 0; 12601 } 12602 12603 /** 12604 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12605 * @iocbq: Pointer to driver iocb object. 12606 * @vport: Pointer to driver virtual port object. 12607 * @tgt_id: SCSI ID of the target. 12608 * @lun_id: LUN ID of the scsi device. 12609 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12610 * 12611 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12612 * host. 12613 * 12614 * It will return 12615 * 0 if the filtering criteria is met for the given iocb and will return 12616 * 1 if the filtering criteria is not met. 12617 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12618 * given iocb is for the SCSI device specified by vport, tgt_id and 12619 * lun_id parameter. 12620 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12621 * given iocb is for the SCSI target specified by vport and tgt_id 12622 * parameters. 12623 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12624 * given iocb is for the SCSI host associated with the given vport. 12625 * This function is called with no locks held. 12626 **/ 12627 static int 12628 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12629 uint16_t tgt_id, uint64_t lun_id, 12630 lpfc_ctx_cmd ctx_cmd) 12631 { 12632 struct lpfc_io_buf *lpfc_cmd; 12633 int rc = 1; 12634 12635 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12636 12637 if (lpfc_cmd->pCmd == NULL) 12638 return rc; 12639 12640 switch (ctx_cmd) { 12641 case LPFC_CTX_LUN: 12642 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12643 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12644 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12645 rc = 0; 12646 break; 12647 case LPFC_CTX_TGT: 12648 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12649 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12650 rc = 0; 12651 break; 12652 case LPFC_CTX_HOST: 12653 rc = 0; 12654 break; 12655 default: 12656 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12657 __func__, ctx_cmd); 12658 break; 12659 } 12660 12661 return rc; 12662 } 12663 12664 /** 12665 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12666 * @vport: Pointer to virtual port. 12667 * @tgt_id: SCSI ID of the target. 12668 * @lun_id: LUN ID of the scsi device. 12669 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12670 * 12671 * This function returns number of FCP commands pending for the vport. 12672 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12673 * commands pending on the vport associated with SCSI device specified 12674 * by tgt_id and lun_id parameters. 12675 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12676 * commands pending on the vport associated with SCSI target specified 12677 * by tgt_id parameter. 12678 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12679 * commands pending on the vport. 12680 * This function returns the number of iocbs which satisfy the filter. 12681 * This function is called without any lock held. 12682 **/ 12683 int 12684 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12685 lpfc_ctx_cmd ctx_cmd) 12686 { 12687 struct lpfc_hba *phba = vport->phba; 12688 struct lpfc_iocbq *iocbq; 12689 int sum, i; 12690 unsigned long iflags; 12691 u8 ulp_command; 12692 12693 spin_lock_irqsave(&phba->hbalock, iflags); 12694 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12695 iocbq = phba->sli.iocbq_lookup[i]; 12696 12697 if (!iocbq || iocbq->vport != vport) 12698 continue; 12699 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12700 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12701 continue; 12702 12703 /* Include counting outstanding aborts */ 12704 ulp_command = get_job_cmnd(phba, iocbq); 12705 if (ulp_command == CMD_ABORT_XRI_CN || 12706 ulp_command == CMD_CLOSE_XRI_CN || 12707 ulp_command == CMD_ABORT_XRI_WQE) { 12708 sum++; 12709 continue; 12710 } 12711 12712 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12713 ctx_cmd) == 0) 12714 sum++; 12715 } 12716 spin_unlock_irqrestore(&phba->hbalock, iflags); 12717 12718 return sum; 12719 } 12720 12721 /** 12722 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12723 * @phba: Pointer to HBA context object 12724 * @cmdiocb: Pointer to command iocb object. 12725 * @rspiocb: Pointer to response iocb object. 12726 * 12727 * This function is called when an aborted FCP iocb completes. This 12728 * function is called by the ring event handler with no lock held. 12729 * This function frees the iocb. 12730 **/ 12731 void 12732 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12733 struct lpfc_iocbq *rspiocb) 12734 { 12735 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12736 "3096 ABORT_XRI_CX completing on rpi x%x " 12737 "original iotag x%x, abort cmd iotag x%x " 12738 "status 0x%x, reason 0x%x\n", 12739 (phba->sli_rev == LPFC_SLI_REV4) ? 12740 cmdiocb->sli4_xritag : 12741 cmdiocb->iocb.un.acxri.abortContextTag, 12742 get_job_abtsiotag(phba, cmdiocb), 12743 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12744 get_job_word4(phba, rspiocb)); 12745 lpfc_sli_release_iocbq(phba, cmdiocb); 12746 return; 12747 } 12748 12749 /** 12750 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12751 * @vport: Pointer to virtual port. 12752 * @tgt_id: SCSI ID of the target. 12753 * @lun_id: LUN ID of the scsi device. 12754 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12755 * 12756 * This function sends an abort command for every SCSI command 12757 * associated with the given virtual port pending on the ring 12758 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12759 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12760 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12761 * followed by lpfc_sli_validate_fcp_iocb. 12762 * 12763 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12764 * FCP iocbs associated with lun specified by tgt_id and lun_id 12765 * parameters 12766 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12767 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12768 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12769 * FCP iocbs associated with virtual port. 12770 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12771 * lpfc_sli4_calc_ring is used. 12772 * This function returns number of iocbs it failed to abort. 12773 * This function is called with no locks held. 12774 **/ 12775 int 12776 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12777 lpfc_ctx_cmd abort_cmd) 12778 { 12779 struct lpfc_hba *phba = vport->phba; 12780 struct lpfc_sli_ring *pring = NULL; 12781 struct lpfc_iocbq *iocbq; 12782 int errcnt = 0, ret_val = 0; 12783 unsigned long iflags; 12784 int i; 12785 12786 /* all I/Os are in process of being flushed */ 12787 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12788 return errcnt; 12789 12790 for (i = 1; i <= phba->sli.last_iotag; i++) { 12791 iocbq = phba->sli.iocbq_lookup[i]; 12792 12793 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12794 continue; 12795 12796 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12797 abort_cmd) != 0) 12798 continue; 12799 12800 spin_lock_irqsave(&phba->hbalock, iflags); 12801 if (phba->sli_rev == LPFC_SLI_REV3) { 12802 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12803 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12804 pring = lpfc_sli4_calc_ring(phba, iocbq); 12805 } 12806 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12807 lpfc_sli_abort_fcp_cmpl); 12808 spin_unlock_irqrestore(&phba->hbalock, iflags); 12809 if (ret_val != IOCB_SUCCESS) 12810 errcnt++; 12811 } 12812 12813 return errcnt; 12814 } 12815 12816 /** 12817 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12818 * @vport: Pointer to virtual port. 12819 * @pring: Pointer to driver SLI ring object. 12820 * @tgt_id: SCSI ID of the target. 12821 * @lun_id: LUN ID of the scsi device. 12822 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12823 * 12824 * This function sends an abort command for every SCSI command 12825 * associated with the given virtual port pending on the ring 12826 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12827 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12828 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12829 * followed by lpfc_sli_validate_fcp_iocb. 12830 * 12831 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12832 * FCP iocbs associated with lun specified by tgt_id and lun_id 12833 * parameters 12834 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12835 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12836 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12837 * FCP iocbs associated with virtual port. 12838 * This function returns number of iocbs it aborted . 12839 * This function is called with no locks held right after a taskmgmt 12840 * command is sent. 12841 **/ 12842 int 12843 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12844 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12845 { 12846 struct lpfc_hba *phba = vport->phba; 12847 struct lpfc_io_buf *lpfc_cmd; 12848 struct lpfc_iocbq *abtsiocbq; 12849 struct lpfc_nodelist *ndlp = NULL; 12850 struct lpfc_iocbq *iocbq; 12851 int sum, i, ret_val; 12852 unsigned long iflags; 12853 struct lpfc_sli_ring *pring_s4 = NULL; 12854 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12855 bool ia; 12856 12857 /* all I/Os are in process of being flushed */ 12858 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12859 return 0; 12860 12861 sum = 0; 12862 12863 spin_lock_irqsave(&phba->hbalock, iflags); 12864 for (i = 1; i <= phba->sli.last_iotag; i++) { 12865 iocbq = phba->sli.iocbq_lookup[i]; 12866 12867 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12868 continue; 12869 12870 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12871 cmd) != 0) 12872 continue; 12873 12874 /* Guard against IO completion being called at same time */ 12875 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12876 spin_lock(&lpfc_cmd->buf_lock); 12877 12878 if (!lpfc_cmd->pCmd) { 12879 spin_unlock(&lpfc_cmd->buf_lock); 12880 continue; 12881 } 12882 12883 if (phba->sli_rev == LPFC_SLI_REV4) { 12884 pring_s4 = 12885 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12886 if (!pring_s4) { 12887 spin_unlock(&lpfc_cmd->buf_lock); 12888 continue; 12889 } 12890 /* Note: both hbalock and ring_lock must be set here */ 12891 spin_lock(&pring_s4->ring_lock); 12892 } 12893 12894 /* 12895 * If the iocbq is already being aborted, don't take a second 12896 * action, but do count it. 12897 */ 12898 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12899 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12900 if (phba->sli_rev == LPFC_SLI_REV4) 12901 spin_unlock(&pring_s4->ring_lock); 12902 spin_unlock(&lpfc_cmd->buf_lock); 12903 continue; 12904 } 12905 12906 /* issue ABTS for this IOCB based on iotag */ 12907 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12908 if (!abtsiocbq) { 12909 if (phba->sli_rev == LPFC_SLI_REV4) 12910 spin_unlock(&pring_s4->ring_lock); 12911 spin_unlock(&lpfc_cmd->buf_lock); 12912 continue; 12913 } 12914 12915 if (phba->sli_rev == LPFC_SLI_REV4) { 12916 iotag = abtsiocbq->iotag; 12917 ulp_context = iocbq->sli4_xritag; 12918 cqid = lpfc_cmd->hdwq->io_cq_map; 12919 } else { 12920 iotag = iocbq->iocb.ulpIoTag; 12921 if (pring->ringno == LPFC_ELS_RING) { 12922 ndlp = iocbq->ndlp; 12923 ulp_context = ndlp->nlp_rpi; 12924 } else { 12925 ulp_context = iocbq->iocb.ulpContext; 12926 } 12927 } 12928 12929 ndlp = lpfc_cmd->rdata->pnode; 12930 12931 if (lpfc_is_link_up(phba) && 12932 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12933 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12934 ia = false; 12935 else 12936 ia = true; 12937 12938 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12939 iocbq->iocb.ulpClass, cqid, 12940 ia, false); 12941 12942 abtsiocbq->vport = vport; 12943 12944 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12945 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12946 if (iocbq->cmd_flag & LPFC_IO_FCP) 12947 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12948 if (iocbq->cmd_flag & LPFC_IO_FOF) 12949 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12950 12951 /* Setup callback routine and issue the command. */ 12952 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12953 12954 /* 12955 * Indicate the IO is being aborted by the driver and set 12956 * the caller's flag into the aborted IO. 12957 */ 12958 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12959 12960 if (phba->sli_rev == LPFC_SLI_REV4) { 12961 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12962 abtsiocbq, 0); 12963 spin_unlock(&pring_s4->ring_lock); 12964 } else { 12965 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12966 abtsiocbq, 0); 12967 } 12968 12969 spin_unlock(&lpfc_cmd->buf_lock); 12970 12971 if (ret_val == IOCB_ERROR) 12972 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12973 else 12974 sum++; 12975 } 12976 spin_unlock_irqrestore(&phba->hbalock, iflags); 12977 return sum; 12978 } 12979 12980 /** 12981 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12982 * @phba: Pointer to HBA context object. 12983 * @cmdiocbq: Pointer to command iocb. 12984 * @rspiocbq: Pointer to response iocb. 12985 * 12986 * This function is the completion handler for iocbs issued using 12987 * lpfc_sli_issue_iocb_wait function. This function is called by the 12988 * ring event handler function without any lock held. This function 12989 * can be called from both worker thread context and interrupt 12990 * context. This function also can be called from other thread which 12991 * cleans up the SLI layer objects. 12992 * This function copy the contents of the response iocb to the 12993 * response iocb memory object provided by the caller of 12994 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12995 * sleeps for the iocb completion. 12996 **/ 12997 static void 12998 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12999 struct lpfc_iocbq *cmdiocbq, 13000 struct lpfc_iocbq *rspiocbq) 13001 { 13002 wait_queue_head_t *pdone_q; 13003 unsigned long iflags; 13004 struct lpfc_io_buf *lpfc_cmd; 13005 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13006 13007 spin_lock_irqsave(&phba->hbalock, iflags); 13008 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13009 13010 /* 13011 * A time out has occurred for the iocb. If a time out 13012 * completion handler has been supplied, call it. Otherwise, 13013 * just free the iocbq. 13014 */ 13015 13016 spin_unlock_irqrestore(&phba->hbalock, iflags); 13017 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13018 cmdiocbq->wait_cmd_cmpl = NULL; 13019 if (cmdiocbq->cmd_cmpl) 13020 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13021 else 13022 lpfc_sli_release_iocbq(phba, cmdiocbq); 13023 return; 13024 } 13025 13026 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13027 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13028 if (cmdiocbq->rsp_iocb && rspiocbq) 13029 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13030 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13031 13032 /* Set the exchange busy flag for task management commands */ 13033 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13034 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13035 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13036 cur_iocbq); 13037 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13038 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13039 else 13040 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13041 } 13042 13043 pdone_q = cmdiocbq->context_un.wait_queue; 13044 if (pdone_q) 13045 wake_up(pdone_q); 13046 spin_unlock_irqrestore(&phba->hbalock, iflags); 13047 return; 13048 } 13049 13050 /** 13051 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13052 * @phba: Pointer to HBA context object.. 13053 * @piocbq: Pointer to command iocb. 13054 * @flag: Flag to test. 13055 * 13056 * This routine grabs the hbalock and then test the cmd_flag to 13057 * see if the passed in flag is set. 13058 * Returns: 13059 * 1 if flag is set. 13060 * 0 if flag is not set. 13061 **/ 13062 static int 13063 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13064 struct lpfc_iocbq *piocbq, uint32_t flag) 13065 { 13066 unsigned long iflags; 13067 int ret; 13068 13069 spin_lock_irqsave(&phba->hbalock, iflags); 13070 ret = piocbq->cmd_flag & flag; 13071 spin_unlock_irqrestore(&phba->hbalock, iflags); 13072 return ret; 13073 13074 } 13075 13076 /** 13077 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13078 * @phba: Pointer to HBA context object.. 13079 * @ring_number: Ring number 13080 * @piocb: Pointer to command iocb. 13081 * @prspiocbq: Pointer to response iocb. 13082 * @timeout: Timeout in number of seconds. 13083 * 13084 * This function issues the iocb to firmware and waits for the 13085 * iocb to complete. The cmd_cmpl field of the shall be used 13086 * to handle iocbs which time out. If the field is NULL, the 13087 * function shall free the iocbq structure. If more clean up is 13088 * needed, the caller is expected to provide a completion function 13089 * that will provide the needed clean up. If the iocb command is 13090 * not completed within timeout seconds, the function will either 13091 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13092 * completion function set in the cmd_cmpl field and then return 13093 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13094 * resources if this function returns IOCB_TIMEDOUT. 13095 * The function waits for the iocb completion using an 13096 * non-interruptible wait. 13097 * This function will sleep while waiting for iocb completion. 13098 * So, this function should not be called from any context which 13099 * does not allow sleeping. Due to the same reason, this function 13100 * cannot be called with interrupt disabled. 13101 * This function assumes that the iocb completions occur while 13102 * this function sleep. So, this function cannot be called from 13103 * the thread which process iocb completion for this ring. 13104 * This function clears the cmd_flag of the iocb object before 13105 * issuing the iocb and the iocb completion handler sets this 13106 * flag and wakes this thread when the iocb completes. 13107 * The contents of the response iocb will be copied to prspiocbq 13108 * by the completion handler when the command completes. 13109 * This function returns IOCB_SUCCESS when success. 13110 * This function is called with no lock held. 13111 **/ 13112 int 13113 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13114 uint32_t ring_number, 13115 struct lpfc_iocbq *piocb, 13116 struct lpfc_iocbq *prspiocbq, 13117 uint32_t timeout) 13118 { 13119 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13120 long timeleft, timeout_req = 0; 13121 int retval = IOCB_SUCCESS; 13122 uint32_t creg_val; 13123 struct lpfc_iocbq *iocb; 13124 int txq_cnt = 0; 13125 int txcmplq_cnt = 0; 13126 struct lpfc_sli_ring *pring; 13127 unsigned long iflags; 13128 bool iocb_completed = true; 13129 13130 if (phba->sli_rev >= LPFC_SLI_REV4) { 13131 lpfc_sli_prep_wqe(phba, piocb); 13132 13133 pring = lpfc_sli4_calc_ring(phba, piocb); 13134 } else 13135 pring = &phba->sli.sli3_ring[ring_number]; 13136 /* 13137 * If the caller has provided a response iocbq buffer, then rsp_iocb 13138 * is NULL or its an error. 13139 */ 13140 if (prspiocbq) { 13141 if (piocb->rsp_iocb) 13142 return IOCB_ERROR; 13143 piocb->rsp_iocb = prspiocbq; 13144 } 13145 13146 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13147 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13148 piocb->context_un.wait_queue = &done_q; 13149 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13150 13151 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13152 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13153 return IOCB_ERROR; 13154 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13155 writel(creg_val, phba->HCregaddr); 13156 readl(phba->HCregaddr); /* flush */ 13157 } 13158 13159 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13160 SLI_IOCB_RET_IOCB); 13161 if (retval == IOCB_SUCCESS) { 13162 timeout_req = msecs_to_jiffies(timeout * 1000); 13163 timeleft = wait_event_timeout(done_q, 13164 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13165 timeout_req); 13166 spin_lock_irqsave(&phba->hbalock, iflags); 13167 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13168 13169 /* 13170 * IOCB timed out. Inform the wake iocb wait 13171 * completion function and set local status 13172 */ 13173 13174 iocb_completed = false; 13175 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13176 } 13177 spin_unlock_irqrestore(&phba->hbalock, iflags); 13178 if (iocb_completed) { 13179 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13180 "0331 IOCB wake signaled\n"); 13181 /* Note: we are not indicating if the IOCB has a success 13182 * status or not - that's for the caller to check. 13183 * IOCB_SUCCESS means just that the command was sent and 13184 * completed. Not that it completed successfully. 13185 * */ 13186 } else if (timeleft == 0) { 13187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13188 "0338 IOCB wait timeout error - no " 13189 "wake response Data x%x\n", timeout); 13190 retval = IOCB_TIMEDOUT; 13191 } else { 13192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13193 "0330 IOCB wake NOT set, " 13194 "Data x%x x%lx\n", 13195 timeout, (timeleft / jiffies)); 13196 retval = IOCB_TIMEDOUT; 13197 } 13198 } else if (retval == IOCB_BUSY) { 13199 if (phba->cfg_log_verbose & LOG_SLI) { 13200 list_for_each_entry(iocb, &pring->txq, list) { 13201 txq_cnt++; 13202 } 13203 list_for_each_entry(iocb, &pring->txcmplq, list) { 13204 txcmplq_cnt++; 13205 } 13206 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13207 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13208 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13209 } 13210 return retval; 13211 } else { 13212 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13213 "0332 IOCB wait issue failed, Data x%x\n", 13214 retval); 13215 retval = IOCB_ERROR; 13216 } 13217 13218 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13219 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13220 return IOCB_ERROR; 13221 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13222 writel(creg_val, phba->HCregaddr); 13223 readl(phba->HCregaddr); /* flush */ 13224 } 13225 13226 if (prspiocbq) 13227 piocb->rsp_iocb = NULL; 13228 13229 piocb->context_un.wait_queue = NULL; 13230 piocb->cmd_cmpl = NULL; 13231 return retval; 13232 } 13233 13234 /** 13235 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13236 * @phba: Pointer to HBA context object. 13237 * @pmboxq: Pointer to driver mailbox object. 13238 * @timeout: Timeout in number of seconds. 13239 * 13240 * This function issues the mailbox to firmware and waits for the 13241 * mailbox command to complete. If the mailbox command is not 13242 * completed within timeout seconds, it returns MBX_TIMEOUT. 13243 * The function waits for the mailbox completion using an 13244 * interruptible wait. If the thread is woken up due to a 13245 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13246 * should not free the mailbox resources, if this function returns 13247 * MBX_TIMEOUT. 13248 * This function will sleep while waiting for mailbox completion. 13249 * So, this function should not be called from any context which 13250 * does not allow sleeping. Due to the same reason, this function 13251 * cannot be called with interrupt disabled. 13252 * This function assumes that the mailbox completion occurs while 13253 * this function sleep. So, this function cannot be called from 13254 * the worker thread which processes mailbox completion. 13255 * This function is called in the context of HBA management 13256 * applications. 13257 * This function returns MBX_SUCCESS when successful. 13258 * This function is called with no lock held. 13259 **/ 13260 int 13261 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13262 uint32_t timeout) 13263 { 13264 struct completion mbox_done; 13265 int retval; 13266 unsigned long flag; 13267 13268 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13269 /* setup wake call as IOCB callback */ 13270 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13271 13272 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13273 init_completion(&mbox_done); 13274 pmboxq->ctx_u.mbox_wait = &mbox_done; 13275 /* now issue the command */ 13276 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13277 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13278 wait_for_completion_timeout(&mbox_done, 13279 msecs_to_jiffies(timeout * 1000)); 13280 13281 spin_lock_irqsave(&phba->hbalock, flag); 13282 pmboxq->ctx_u.mbox_wait = NULL; 13283 /* 13284 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13285 * else do not free the resources. 13286 */ 13287 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13288 retval = MBX_SUCCESS; 13289 } else { 13290 retval = MBX_TIMEOUT; 13291 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13292 } 13293 spin_unlock_irqrestore(&phba->hbalock, flag); 13294 } 13295 return retval; 13296 } 13297 13298 /** 13299 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13300 * @phba: Pointer to HBA context. 13301 * @mbx_action: Mailbox shutdown options. 13302 * 13303 * This function is called to shutdown the driver's mailbox sub-system. 13304 * It first marks the mailbox sub-system is in a block state to prevent 13305 * the asynchronous mailbox command from issued off the pending mailbox 13306 * command queue. If the mailbox command sub-system shutdown is due to 13307 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13308 * the mailbox sub-system flush routine to forcefully bring down the 13309 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13310 * as with offline or HBA function reset), this routine will wait for the 13311 * outstanding mailbox command to complete before invoking the mailbox 13312 * sub-system flush routine to gracefully bring down mailbox sub-system. 13313 **/ 13314 void 13315 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13316 { 13317 struct lpfc_sli *psli = &phba->sli; 13318 unsigned long timeout; 13319 13320 if (mbx_action == LPFC_MBX_NO_WAIT) { 13321 /* delay 100ms for port state */ 13322 msleep(100); 13323 lpfc_sli_mbox_sys_flush(phba); 13324 return; 13325 } 13326 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13327 13328 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13329 local_bh_disable(); 13330 13331 spin_lock_irq(&phba->hbalock); 13332 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13333 13334 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13335 /* Determine how long we might wait for the active mailbox 13336 * command to be gracefully completed by firmware. 13337 */ 13338 if (phba->sli.mbox_active) 13339 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13340 phba->sli.mbox_active) * 13341 1000) + jiffies; 13342 spin_unlock_irq(&phba->hbalock); 13343 13344 /* Enable softirqs again, done with phba->hbalock */ 13345 local_bh_enable(); 13346 13347 while (phba->sli.mbox_active) { 13348 /* Check active mailbox complete status every 2ms */ 13349 msleep(2); 13350 if (time_after(jiffies, timeout)) 13351 /* Timeout, let the mailbox flush routine to 13352 * forcefully release active mailbox command 13353 */ 13354 break; 13355 } 13356 } else { 13357 spin_unlock_irq(&phba->hbalock); 13358 13359 /* Enable softirqs again, done with phba->hbalock */ 13360 local_bh_enable(); 13361 } 13362 13363 lpfc_sli_mbox_sys_flush(phba); 13364 } 13365 13366 /** 13367 * lpfc_sli_eratt_read - read sli-3 error attention events 13368 * @phba: Pointer to HBA context. 13369 * 13370 * This function is called to read the SLI3 device error attention registers 13371 * for possible error attention events. The caller must hold the hostlock 13372 * with spin_lock_irq(). 13373 * 13374 * This function returns 1 when there is Error Attention in the Host Attention 13375 * Register and returns 0 otherwise. 13376 **/ 13377 static int 13378 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13379 { 13380 uint32_t ha_copy; 13381 13382 /* Read chip Host Attention (HA) register */ 13383 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13384 goto unplug_err; 13385 13386 if (ha_copy & HA_ERATT) { 13387 /* Read host status register to retrieve error event */ 13388 if (lpfc_sli_read_hs(phba)) 13389 goto unplug_err; 13390 13391 /* Check if there is a deferred error condition is active */ 13392 if ((HS_FFER1 & phba->work_hs) && 13393 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13394 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13395 set_bit(DEFER_ERATT, &phba->hba_flag); 13396 /* Clear all interrupt enable conditions */ 13397 writel(0, phba->HCregaddr); 13398 readl(phba->HCregaddr); 13399 } 13400 13401 /* Set the driver HA work bitmap */ 13402 phba->work_ha |= HA_ERATT; 13403 /* Indicate polling handles this ERATT */ 13404 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13405 return 1; 13406 } 13407 return 0; 13408 13409 unplug_err: 13410 /* Set the driver HS work bitmap */ 13411 phba->work_hs |= UNPLUG_ERR; 13412 /* Set the driver HA work bitmap */ 13413 phba->work_ha |= HA_ERATT; 13414 /* Indicate polling handles this ERATT */ 13415 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13416 return 1; 13417 } 13418 13419 /** 13420 * lpfc_sli4_eratt_read - read sli-4 error attention events 13421 * @phba: Pointer to HBA context. 13422 * 13423 * This function is called to read the SLI4 device error attention registers 13424 * for possible error attention events. The caller must hold the hostlock 13425 * with spin_lock_irq(). 13426 * 13427 * This function returns 1 when there is Error Attention in the Host Attention 13428 * Register and returns 0 otherwise. 13429 **/ 13430 static int 13431 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13432 { 13433 uint32_t uerr_sta_hi, uerr_sta_lo; 13434 uint32_t if_type, portsmphr; 13435 struct lpfc_register portstat_reg; 13436 u32 logmask; 13437 13438 /* 13439 * For now, use the SLI4 device internal unrecoverable error 13440 * registers for error attention. This can be changed later. 13441 */ 13442 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13443 switch (if_type) { 13444 case LPFC_SLI_INTF_IF_TYPE_0: 13445 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13446 &uerr_sta_lo) || 13447 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13448 &uerr_sta_hi)) { 13449 phba->work_hs |= UNPLUG_ERR; 13450 phba->work_ha |= HA_ERATT; 13451 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13452 return 1; 13453 } 13454 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13455 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13456 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13457 "1423 HBA Unrecoverable error: " 13458 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13459 "ue_mask_lo_reg=0x%x, " 13460 "ue_mask_hi_reg=0x%x\n", 13461 uerr_sta_lo, uerr_sta_hi, 13462 phba->sli4_hba.ue_mask_lo, 13463 phba->sli4_hba.ue_mask_hi); 13464 phba->work_status[0] = uerr_sta_lo; 13465 phba->work_status[1] = uerr_sta_hi; 13466 phba->work_ha |= HA_ERATT; 13467 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13468 return 1; 13469 } 13470 break; 13471 case LPFC_SLI_INTF_IF_TYPE_2: 13472 case LPFC_SLI_INTF_IF_TYPE_6: 13473 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13474 &portstat_reg.word0) || 13475 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13476 &portsmphr)){ 13477 phba->work_hs |= UNPLUG_ERR; 13478 phba->work_ha |= HA_ERATT; 13479 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13480 return 1; 13481 } 13482 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13483 phba->work_status[0] = 13484 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13485 phba->work_status[1] = 13486 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13487 logmask = LOG_TRACE_EVENT; 13488 if (phba->work_status[0] == 13489 SLIPORT_ERR1_REG_ERR_CODE_2 && 13490 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13491 logmask = LOG_SLI; 13492 lpfc_printf_log(phba, KERN_ERR, logmask, 13493 "2885 Port Status Event: " 13494 "port status reg 0x%x, " 13495 "port smphr reg 0x%x, " 13496 "error 1=0x%x, error 2=0x%x\n", 13497 portstat_reg.word0, 13498 portsmphr, 13499 phba->work_status[0], 13500 phba->work_status[1]); 13501 phba->work_ha |= HA_ERATT; 13502 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13503 return 1; 13504 } 13505 break; 13506 case LPFC_SLI_INTF_IF_TYPE_1: 13507 default: 13508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13509 "2886 HBA Error Attention on unsupported " 13510 "if type %d.", if_type); 13511 return 1; 13512 } 13513 13514 return 0; 13515 } 13516 13517 /** 13518 * lpfc_sli_check_eratt - check error attention events 13519 * @phba: Pointer to HBA context. 13520 * 13521 * This function is called from timer soft interrupt context to check HBA's 13522 * error attention register bit for error attention events. 13523 * 13524 * This function returns 1 when there is Error Attention in the Host Attention 13525 * Register and returns 0 otherwise. 13526 **/ 13527 int 13528 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13529 { 13530 uint32_t ha_copy; 13531 13532 /* If somebody is waiting to handle an eratt, don't process it 13533 * here. The brdkill function will do this. 13534 */ 13535 if (phba->link_flag & LS_IGNORE_ERATT) 13536 return 0; 13537 13538 /* Check if interrupt handler handles this ERATT */ 13539 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13540 /* Interrupt handler has handled ERATT */ 13541 return 0; 13542 13543 /* 13544 * If there is deferred error attention, do not check for error 13545 * attention 13546 */ 13547 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13548 return 0; 13549 13550 spin_lock_irq(&phba->hbalock); 13551 /* If PCI channel is offline, don't process it */ 13552 if (unlikely(pci_channel_offline(phba->pcidev))) { 13553 spin_unlock_irq(&phba->hbalock); 13554 return 0; 13555 } 13556 13557 switch (phba->sli_rev) { 13558 case LPFC_SLI_REV2: 13559 case LPFC_SLI_REV3: 13560 /* Read chip Host Attention (HA) register */ 13561 ha_copy = lpfc_sli_eratt_read(phba); 13562 break; 13563 case LPFC_SLI_REV4: 13564 /* Read device Uncoverable Error (UERR) registers */ 13565 ha_copy = lpfc_sli4_eratt_read(phba); 13566 break; 13567 default: 13568 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13569 "0299 Invalid SLI revision (%d)\n", 13570 phba->sli_rev); 13571 ha_copy = 0; 13572 break; 13573 } 13574 spin_unlock_irq(&phba->hbalock); 13575 13576 return ha_copy; 13577 } 13578 13579 /** 13580 * lpfc_intr_state_check - Check device state for interrupt handling 13581 * @phba: Pointer to HBA context. 13582 * 13583 * This inline routine checks whether a device or its PCI slot is in a state 13584 * that the interrupt should be handled. 13585 * 13586 * This function returns 0 if the device or the PCI slot is in a state that 13587 * interrupt should be handled, otherwise -EIO. 13588 */ 13589 static inline int 13590 lpfc_intr_state_check(struct lpfc_hba *phba) 13591 { 13592 /* If the pci channel is offline, ignore all the interrupts */ 13593 if (unlikely(pci_channel_offline(phba->pcidev))) 13594 return -EIO; 13595 13596 /* Update device level interrupt statistics */ 13597 phba->sli.slistat.sli_intr++; 13598 13599 /* Ignore all interrupts during initialization. */ 13600 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13601 return -EIO; 13602 13603 return 0; 13604 } 13605 13606 /** 13607 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13608 * @irq: Interrupt number. 13609 * @dev_id: The device context pointer. 13610 * 13611 * This function is directly called from the PCI layer as an interrupt 13612 * service routine when device with SLI-3 interface spec is enabled with 13613 * MSI-X multi-message interrupt mode and there are slow-path events in 13614 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13615 * interrupt mode, this function is called as part of the device-level 13616 * interrupt handler. When the PCI slot is in error recovery or the HBA 13617 * is undergoing initialization, the interrupt handler will not process 13618 * the interrupt. The link attention and ELS ring attention events are 13619 * handled by the worker thread. The interrupt handler signals the worker 13620 * thread and returns for these events. This function is called without 13621 * any lock held. It gets the hbalock to access and update SLI data 13622 * structures. 13623 * 13624 * This function returns IRQ_HANDLED when interrupt is handled else it 13625 * returns IRQ_NONE. 13626 **/ 13627 irqreturn_t 13628 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13629 { 13630 struct lpfc_hba *phba; 13631 uint32_t ha_copy, hc_copy; 13632 uint32_t work_ha_copy; 13633 unsigned long status; 13634 unsigned long iflag; 13635 uint32_t control; 13636 13637 MAILBOX_t *mbox, *pmbox; 13638 struct lpfc_vport *vport; 13639 struct lpfc_nodelist *ndlp; 13640 struct lpfc_dmabuf *mp; 13641 LPFC_MBOXQ_t *pmb; 13642 int rc; 13643 13644 /* 13645 * Get the driver's phba structure from the dev_id and 13646 * assume the HBA is not interrupting. 13647 */ 13648 phba = (struct lpfc_hba *)dev_id; 13649 13650 if (unlikely(!phba)) 13651 return IRQ_NONE; 13652 13653 /* 13654 * Stuff needs to be attented to when this function is invoked as an 13655 * individual interrupt handler in MSI-X multi-message interrupt mode 13656 */ 13657 if (phba->intr_type == MSIX) { 13658 /* Check device state for handling interrupt */ 13659 if (lpfc_intr_state_check(phba)) 13660 return IRQ_NONE; 13661 /* Need to read HA REG for slow-path events */ 13662 spin_lock_irqsave(&phba->hbalock, iflag); 13663 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13664 goto unplug_error; 13665 /* If somebody is waiting to handle an eratt don't process it 13666 * here. The brdkill function will do this. 13667 */ 13668 if (phba->link_flag & LS_IGNORE_ERATT) 13669 ha_copy &= ~HA_ERATT; 13670 /* Check the need for handling ERATT in interrupt handler */ 13671 if (ha_copy & HA_ERATT) { 13672 if (test_and_set_bit(HBA_ERATT_HANDLED, 13673 &phba->hba_flag)) 13674 /* ERATT polling has handled ERATT */ 13675 ha_copy &= ~HA_ERATT; 13676 } 13677 13678 /* 13679 * If there is deferred error attention, do not check for any 13680 * interrupt. 13681 */ 13682 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13683 spin_unlock_irqrestore(&phba->hbalock, iflag); 13684 return IRQ_NONE; 13685 } 13686 13687 /* Clear up only attention source related to slow-path */ 13688 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13689 goto unplug_error; 13690 13691 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13692 HC_LAINT_ENA | HC_ERINT_ENA), 13693 phba->HCregaddr); 13694 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13695 phba->HAregaddr); 13696 writel(hc_copy, phba->HCregaddr); 13697 readl(phba->HAregaddr); /* flush */ 13698 spin_unlock_irqrestore(&phba->hbalock, iflag); 13699 } else 13700 ha_copy = phba->ha_copy; 13701 13702 work_ha_copy = ha_copy & phba->work_ha_mask; 13703 13704 if (work_ha_copy) { 13705 if (work_ha_copy & HA_LATT) { 13706 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13707 /* 13708 * Turn off Link Attention interrupts 13709 * until CLEAR_LA done 13710 */ 13711 spin_lock_irqsave(&phba->hbalock, iflag); 13712 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13713 if (lpfc_readl(phba->HCregaddr, &control)) 13714 goto unplug_error; 13715 control &= ~HC_LAINT_ENA; 13716 writel(control, phba->HCregaddr); 13717 readl(phba->HCregaddr); /* flush */ 13718 spin_unlock_irqrestore(&phba->hbalock, iflag); 13719 } 13720 else 13721 work_ha_copy &= ~HA_LATT; 13722 } 13723 13724 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13725 /* 13726 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13727 * the only slow ring. 13728 */ 13729 status = (work_ha_copy & 13730 (HA_RXMASK << (4*LPFC_ELS_RING))); 13731 status >>= (4*LPFC_ELS_RING); 13732 if (status & HA_RXMASK) { 13733 spin_lock_irqsave(&phba->hbalock, iflag); 13734 if (lpfc_readl(phba->HCregaddr, &control)) 13735 goto unplug_error; 13736 13737 lpfc_debugfs_slow_ring_trc(phba, 13738 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13739 control, status, 13740 (uint32_t)phba->sli.slistat.sli_intr); 13741 13742 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13743 lpfc_debugfs_slow_ring_trc(phba, 13744 "ISR Disable ring:" 13745 "pwork:x%x hawork:x%x wait:x%x", 13746 phba->work_ha, work_ha_copy, 13747 (uint32_t)((unsigned long) 13748 &phba->work_waitq)); 13749 13750 control &= 13751 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13752 writel(control, phba->HCregaddr); 13753 readl(phba->HCregaddr); /* flush */ 13754 } 13755 else { 13756 lpfc_debugfs_slow_ring_trc(phba, 13757 "ISR slow ring: pwork:" 13758 "x%x hawork:x%x wait:x%x", 13759 phba->work_ha, work_ha_copy, 13760 (uint32_t)((unsigned long) 13761 &phba->work_waitq)); 13762 } 13763 spin_unlock_irqrestore(&phba->hbalock, iflag); 13764 } 13765 } 13766 spin_lock_irqsave(&phba->hbalock, iflag); 13767 if (work_ha_copy & HA_ERATT) { 13768 if (lpfc_sli_read_hs(phba)) 13769 goto unplug_error; 13770 /* 13771 * Check if there is a deferred error condition 13772 * is active 13773 */ 13774 if ((HS_FFER1 & phba->work_hs) && 13775 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13776 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13777 phba->work_hs)) { 13778 set_bit(DEFER_ERATT, &phba->hba_flag); 13779 /* Clear all interrupt enable conditions */ 13780 writel(0, phba->HCregaddr); 13781 readl(phba->HCregaddr); 13782 } 13783 } 13784 13785 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13786 pmb = phba->sli.mbox_active; 13787 pmbox = &pmb->u.mb; 13788 mbox = phba->mbox; 13789 vport = pmb->vport; 13790 13791 /* First check out the status word */ 13792 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13793 if (pmbox->mbxOwner != OWN_HOST) { 13794 spin_unlock_irqrestore(&phba->hbalock, iflag); 13795 /* 13796 * Stray Mailbox Interrupt, mbxCommand <cmd> 13797 * mbxStatus <status> 13798 */ 13799 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13800 "(%d):0304 Stray Mailbox " 13801 "Interrupt mbxCommand x%x " 13802 "mbxStatus x%x\n", 13803 (vport ? vport->vpi : 0), 13804 pmbox->mbxCommand, 13805 pmbox->mbxStatus); 13806 /* clear mailbox attention bit */ 13807 work_ha_copy &= ~HA_MBATT; 13808 } else { 13809 phba->sli.mbox_active = NULL; 13810 spin_unlock_irqrestore(&phba->hbalock, iflag); 13811 phba->last_completion_time = jiffies; 13812 del_timer(&phba->sli.mbox_tmo); 13813 if (pmb->mbox_cmpl) { 13814 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13815 MAILBOX_CMD_SIZE); 13816 if (pmb->out_ext_byte_len && 13817 pmb->ext_buf) 13818 lpfc_sli_pcimem_bcopy( 13819 phba->mbox_ext, 13820 pmb->ext_buf, 13821 pmb->out_ext_byte_len); 13822 } 13823 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13824 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13825 13826 lpfc_debugfs_disc_trc(vport, 13827 LPFC_DISC_TRC_MBOX_VPORT, 13828 "MBOX dflt rpi: : " 13829 "status:x%x rpi:x%x", 13830 (uint32_t)pmbox->mbxStatus, 13831 pmbox->un.varWords[0], 0); 13832 13833 if (!pmbox->mbxStatus) { 13834 mp = pmb->ctx_buf; 13835 ndlp = pmb->ctx_ndlp; 13836 13837 /* Reg_LOGIN of dflt RPI was 13838 * successful. new lets get 13839 * rid of the RPI using the 13840 * same mbox buffer. 13841 */ 13842 lpfc_unreg_login(phba, 13843 vport->vpi, 13844 pmbox->un.varWords[0], 13845 pmb); 13846 pmb->mbox_cmpl = 13847 lpfc_mbx_cmpl_dflt_rpi; 13848 pmb->ctx_buf = mp; 13849 pmb->ctx_ndlp = ndlp; 13850 pmb->vport = vport; 13851 rc = lpfc_sli_issue_mbox(phba, 13852 pmb, 13853 MBX_NOWAIT); 13854 if (rc != MBX_BUSY) 13855 lpfc_printf_log(phba, 13856 KERN_ERR, 13857 LOG_TRACE_EVENT, 13858 "0350 rc should have" 13859 "been MBX_BUSY\n"); 13860 if (rc != MBX_NOT_FINISHED) 13861 goto send_current_mbox; 13862 } 13863 } 13864 spin_lock_irqsave( 13865 &phba->pport->work_port_lock, 13866 iflag); 13867 phba->pport->work_port_events &= 13868 ~WORKER_MBOX_TMO; 13869 spin_unlock_irqrestore( 13870 &phba->pport->work_port_lock, 13871 iflag); 13872 13873 /* Do NOT queue MBX_HEARTBEAT to the worker 13874 * thread for processing. 13875 */ 13876 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13877 /* Process mbox now */ 13878 phba->sli.mbox_active = NULL; 13879 phba->sli.sli_flag &= 13880 ~LPFC_SLI_MBOX_ACTIVE; 13881 if (pmb->mbox_cmpl) 13882 pmb->mbox_cmpl(phba, pmb); 13883 } else { 13884 /* Queue to worker thread to process */ 13885 lpfc_mbox_cmpl_put(phba, pmb); 13886 } 13887 } 13888 } else 13889 spin_unlock_irqrestore(&phba->hbalock, iflag); 13890 13891 if ((work_ha_copy & HA_MBATT) && 13892 (phba->sli.mbox_active == NULL)) { 13893 send_current_mbox: 13894 /* Process next mailbox command if there is one */ 13895 do { 13896 rc = lpfc_sli_issue_mbox(phba, NULL, 13897 MBX_NOWAIT); 13898 } while (rc == MBX_NOT_FINISHED); 13899 if (rc != MBX_SUCCESS) 13900 lpfc_printf_log(phba, KERN_ERR, 13901 LOG_TRACE_EVENT, 13902 "0349 rc should be " 13903 "MBX_SUCCESS\n"); 13904 } 13905 13906 spin_lock_irqsave(&phba->hbalock, iflag); 13907 phba->work_ha |= work_ha_copy; 13908 spin_unlock_irqrestore(&phba->hbalock, iflag); 13909 lpfc_worker_wake_up(phba); 13910 } 13911 return IRQ_HANDLED; 13912 unplug_error: 13913 spin_unlock_irqrestore(&phba->hbalock, iflag); 13914 return IRQ_HANDLED; 13915 13916 } /* lpfc_sli_sp_intr_handler */ 13917 13918 /** 13919 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13920 * @irq: Interrupt number. 13921 * @dev_id: The device context pointer. 13922 * 13923 * This function is directly called from the PCI layer as an interrupt 13924 * service routine when device with SLI-3 interface spec is enabled with 13925 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13926 * ring event in the HBA. However, when the device is enabled with either 13927 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13928 * device-level interrupt handler. When the PCI slot is in error recovery 13929 * or the HBA is undergoing initialization, the interrupt handler will not 13930 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13931 * the intrrupt context. This function is called without any lock held. 13932 * It gets the hbalock to access and update SLI data structures. 13933 * 13934 * This function returns IRQ_HANDLED when interrupt is handled else it 13935 * returns IRQ_NONE. 13936 **/ 13937 irqreturn_t 13938 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13939 { 13940 struct lpfc_hba *phba; 13941 uint32_t ha_copy; 13942 unsigned long status; 13943 unsigned long iflag; 13944 struct lpfc_sli_ring *pring; 13945 13946 /* Get the driver's phba structure from the dev_id and 13947 * assume the HBA is not interrupting. 13948 */ 13949 phba = (struct lpfc_hba *) dev_id; 13950 13951 if (unlikely(!phba)) 13952 return IRQ_NONE; 13953 13954 /* 13955 * Stuff needs to be attented to when this function is invoked as an 13956 * individual interrupt handler in MSI-X multi-message interrupt mode 13957 */ 13958 if (phba->intr_type == MSIX) { 13959 /* Check device state for handling interrupt */ 13960 if (lpfc_intr_state_check(phba)) 13961 return IRQ_NONE; 13962 /* Need to read HA REG for FCP ring and other ring events */ 13963 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13964 return IRQ_HANDLED; 13965 13966 /* 13967 * If there is deferred error attention, do not check for 13968 * any interrupt. 13969 */ 13970 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13971 return IRQ_NONE; 13972 13973 /* Clear up only attention source related to fast-path */ 13974 spin_lock_irqsave(&phba->hbalock, iflag); 13975 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13976 phba->HAregaddr); 13977 readl(phba->HAregaddr); /* flush */ 13978 spin_unlock_irqrestore(&phba->hbalock, iflag); 13979 } else 13980 ha_copy = phba->ha_copy; 13981 13982 /* 13983 * Process all events on FCP ring. Take the optimized path for FCP IO. 13984 */ 13985 ha_copy &= ~(phba->work_ha_mask); 13986 13987 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13988 status >>= (4*LPFC_FCP_RING); 13989 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13990 if (status & HA_RXMASK) 13991 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13992 13993 if (phba->cfg_multi_ring_support == 2) { 13994 /* 13995 * Process all events on extra ring. Take the optimized path 13996 * for extra ring IO. 13997 */ 13998 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13999 status >>= (4*LPFC_EXTRA_RING); 14000 if (status & HA_RXMASK) { 14001 lpfc_sli_handle_fast_ring_event(phba, 14002 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14003 status); 14004 } 14005 } 14006 return IRQ_HANDLED; 14007 } /* lpfc_sli_fp_intr_handler */ 14008 14009 /** 14010 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14011 * @irq: Interrupt number. 14012 * @dev_id: The device context pointer. 14013 * 14014 * This function is the HBA device-level interrupt handler to device with 14015 * SLI-3 interface spec, called from the PCI layer when either MSI or 14016 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14017 * requires driver attention. This function invokes the slow-path interrupt 14018 * attention handling function and fast-path interrupt attention handling 14019 * function in turn to process the relevant HBA attention events. This 14020 * function is called without any lock held. It gets the hbalock to access 14021 * and update SLI data structures. 14022 * 14023 * This function returns IRQ_HANDLED when interrupt is handled, else it 14024 * returns IRQ_NONE. 14025 **/ 14026 irqreturn_t 14027 lpfc_sli_intr_handler(int irq, void *dev_id) 14028 { 14029 struct lpfc_hba *phba; 14030 irqreturn_t sp_irq_rc, fp_irq_rc; 14031 unsigned long status1, status2; 14032 uint32_t hc_copy; 14033 14034 /* 14035 * Get the driver's phba structure from the dev_id and 14036 * assume the HBA is not interrupting. 14037 */ 14038 phba = (struct lpfc_hba *) dev_id; 14039 14040 if (unlikely(!phba)) 14041 return IRQ_NONE; 14042 14043 /* Check device state for handling interrupt */ 14044 if (lpfc_intr_state_check(phba)) 14045 return IRQ_NONE; 14046 14047 spin_lock(&phba->hbalock); 14048 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14049 spin_unlock(&phba->hbalock); 14050 return IRQ_HANDLED; 14051 } 14052 14053 if (unlikely(!phba->ha_copy)) { 14054 spin_unlock(&phba->hbalock); 14055 return IRQ_NONE; 14056 } else if (phba->ha_copy & HA_ERATT) { 14057 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14058 /* ERATT polling has handled ERATT */ 14059 phba->ha_copy &= ~HA_ERATT; 14060 } 14061 14062 /* 14063 * If there is deferred error attention, do not check for any interrupt. 14064 */ 14065 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14066 spin_unlock(&phba->hbalock); 14067 return IRQ_NONE; 14068 } 14069 14070 /* Clear attention sources except link and error attentions */ 14071 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14072 spin_unlock(&phba->hbalock); 14073 return IRQ_HANDLED; 14074 } 14075 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14076 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14077 phba->HCregaddr); 14078 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14079 writel(hc_copy, phba->HCregaddr); 14080 readl(phba->HAregaddr); /* flush */ 14081 spin_unlock(&phba->hbalock); 14082 14083 /* 14084 * Invokes slow-path host attention interrupt handling as appropriate. 14085 */ 14086 14087 /* status of events with mailbox and link attention */ 14088 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14089 14090 /* status of events with ELS ring */ 14091 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14092 status2 >>= (4*LPFC_ELS_RING); 14093 14094 if (status1 || (status2 & HA_RXMASK)) 14095 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14096 else 14097 sp_irq_rc = IRQ_NONE; 14098 14099 /* 14100 * Invoke fast-path host attention interrupt handling as appropriate. 14101 */ 14102 14103 /* status of events with FCP ring */ 14104 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14105 status1 >>= (4*LPFC_FCP_RING); 14106 14107 /* status of events with extra ring */ 14108 if (phba->cfg_multi_ring_support == 2) { 14109 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14110 status2 >>= (4*LPFC_EXTRA_RING); 14111 } else 14112 status2 = 0; 14113 14114 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14115 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14116 else 14117 fp_irq_rc = IRQ_NONE; 14118 14119 /* Return device-level interrupt handling status */ 14120 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14121 } /* lpfc_sli_intr_handler */ 14122 14123 /** 14124 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14125 * @phba: pointer to lpfc hba data structure. 14126 * 14127 * This routine is invoked by the worker thread to process all the pending 14128 * SLI4 els abort xri events. 14129 **/ 14130 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14131 { 14132 struct lpfc_cq_event *cq_event; 14133 unsigned long iflags; 14134 14135 /* First, declare the els xri abort event has been handled */ 14136 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14137 14138 /* Now, handle all the els xri abort events */ 14139 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14140 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14141 /* Get the first event from the head of the event queue */ 14142 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14143 cq_event, struct lpfc_cq_event, list); 14144 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14145 iflags); 14146 /* Notify aborted XRI for ELS work queue */ 14147 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14148 14149 /* Free the event processed back to the free pool */ 14150 lpfc_sli4_cq_event_release(phba, cq_event); 14151 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14152 iflags); 14153 } 14154 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14155 } 14156 14157 /** 14158 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14159 * @phba: Pointer to HBA context object. 14160 * @irspiocbq: Pointer to work-queue completion queue entry. 14161 * 14162 * This routine handles an ELS work-queue completion event and construct 14163 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14164 * discovery engine to handle. 14165 * 14166 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14167 **/ 14168 static struct lpfc_iocbq * 14169 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14170 struct lpfc_iocbq *irspiocbq) 14171 { 14172 struct lpfc_sli_ring *pring; 14173 struct lpfc_iocbq *cmdiocbq; 14174 struct lpfc_wcqe_complete *wcqe; 14175 unsigned long iflags; 14176 14177 pring = lpfc_phba_elsring(phba); 14178 if (unlikely(!pring)) 14179 return NULL; 14180 14181 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14182 spin_lock_irqsave(&pring->ring_lock, iflags); 14183 pring->stats.iocb_event++; 14184 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14185 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14186 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14187 if (unlikely(!cmdiocbq)) { 14188 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14189 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14190 "0386 ELS complete with no corresponding " 14191 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14192 wcqe->word0, wcqe->total_data_placed, 14193 wcqe->parameter, wcqe->word3); 14194 lpfc_sli_release_iocbq(phba, irspiocbq); 14195 return NULL; 14196 } 14197 14198 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14199 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14200 14201 /* Put the iocb back on the txcmplq */ 14202 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14203 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14204 14205 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14206 spin_lock_irqsave(&phba->hbalock, iflags); 14207 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14208 spin_unlock_irqrestore(&phba->hbalock, iflags); 14209 } 14210 14211 return irspiocbq; 14212 } 14213 14214 inline struct lpfc_cq_event * 14215 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14216 { 14217 struct lpfc_cq_event *cq_event; 14218 14219 /* Allocate a new internal CQ_EVENT entry */ 14220 cq_event = lpfc_sli4_cq_event_alloc(phba); 14221 if (!cq_event) { 14222 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14223 "0602 Failed to alloc CQ_EVENT entry\n"); 14224 return NULL; 14225 } 14226 14227 /* Move the CQE into the event */ 14228 memcpy(&cq_event->cqe, entry, size); 14229 return cq_event; 14230 } 14231 14232 /** 14233 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14234 * @phba: Pointer to HBA context object. 14235 * @mcqe: Pointer to mailbox completion queue entry. 14236 * 14237 * This routine process a mailbox completion queue entry with asynchronous 14238 * event. 14239 * 14240 * Return: true if work posted to worker thread, otherwise false. 14241 **/ 14242 static bool 14243 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14244 { 14245 struct lpfc_cq_event *cq_event; 14246 unsigned long iflags; 14247 14248 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14249 "0392 Async Event: word0:x%x, word1:x%x, " 14250 "word2:x%x, word3:x%x\n", mcqe->word0, 14251 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14252 14253 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14254 if (!cq_event) 14255 return false; 14256 14257 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14258 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14259 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14260 14261 /* Set the async event flag */ 14262 set_bit(ASYNC_EVENT, &phba->hba_flag); 14263 14264 return true; 14265 } 14266 14267 /** 14268 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14269 * @phba: Pointer to HBA context object. 14270 * @mcqe: Pointer to mailbox completion queue entry. 14271 * 14272 * This routine process a mailbox completion queue entry with mailbox 14273 * completion event. 14274 * 14275 * Return: true if work posted to worker thread, otherwise false. 14276 **/ 14277 static bool 14278 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14279 { 14280 uint32_t mcqe_status; 14281 MAILBOX_t *mbox, *pmbox; 14282 struct lpfc_mqe *mqe; 14283 struct lpfc_vport *vport; 14284 struct lpfc_nodelist *ndlp; 14285 struct lpfc_dmabuf *mp; 14286 unsigned long iflags; 14287 LPFC_MBOXQ_t *pmb; 14288 bool workposted = false; 14289 int rc; 14290 14291 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14292 if (!bf_get(lpfc_trailer_completed, mcqe)) 14293 goto out_no_mqe_complete; 14294 14295 /* Get the reference to the active mbox command */ 14296 spin_lock_irqsave(&phba->hbalock, iflags); 14297 pmb = phba->sli.mbox_active; 14298 if (unlikely(!pmb)) { 14299 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14300 "1832 No pending MBOX command to handle\n"); 14301 spin_unlock_irqrestore(&phba->hbalock, iflags); 14302 goto out_no_mqe_complete; 14303 } 14304 spin_unlock_irqrestore(&phba->hbalock, iflags); 14305 mqe = &pmb->u.mqe; 14306 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14307 mbox = phba->mbox; 14308 vport = pmb->vport; 14309 14310 /* Reset heartbeat timer */ 14311 phba->last_completion_time = jiffies; 14312 del_timer(&phba->sli.mbox_tmo); 14313 14314 /* Move mbox data to caller's mailbox region, do endian swapping */ 14315 if (pmb->mbox_cmpl && mbox) 14316 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14317 14318 /* 14319 * For mcqe errors, conditionally move a modified error code to 14320 * the mbox so that the error will not be missed. 14321 */ 14322 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14323 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14324 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14325 bf_set(lpfc_mqe_status, mqe, 14326 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14327 } 14328 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14329 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14330 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14331 "MBOX dflt rpi: status:x%x rpi:x%x", 14332 mcqe_status, 14333 pmbox->un.varWords[0], 0); 14334 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14335 mp = pmb->ctx_buf; 14336 ndlp = pmb->ctx_ndlp; 14337 14338 /* Reg_LOGIN of dflt RPI was successful. Mark the 14339 * node as having an UNREG_LOGIN in progress to stop 14340 * an unsolicited PLOGI from the same NPortId from 14341 * starting another mailbox transaction. 14342 */ 14343 set_bit(NLP_UNREG_INP, &ndlp->nlp_flag); 14344 lpfc_unreg_login(phba, vport->vpi, 14345 pmbox->un.varWords[0], pmb); 14346 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14347 pmb->ctx_buf = mp; 14348 14349 /* No reference taken here. This is a default 14350 * RPI reg/immediate unreg cycle. The reference was 14351 * taken in the reg rpi path and is released when 14352 * this mailbox completes. 14353 */ 14354 pmb->ctx_ndlp = ndlp; 14355 pmb->vport = vport; 14356 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14357 if (rc != MBX_BUSY) 14358 lpfc_printf_log(phba, KERN_ERR, 14359 LOG_TRACE_EVENT, 14360 "0385 rc should " 14361 "have been MBX_BUSY\n"); 14362 if (rc != MBX_NOT_FINISHED) 14363 goto send_current_mbox; 14364 } 14365 } 14366 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14367 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14368 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14369 14370 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14371 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14372 spin_lock_irqsave(&phba->hbalock, iflags); 14373 /* Release the mailbox command posting token */ 14374 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14375 phba->sli.mbox_active = NULL; 14376 if (bf_get(lpfc_trailer_consumed, mcqe)) 14377 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14378 spin_unlock_irqrestore(&phba->hbalock, iflags); 14379 14380 /* Post the next mbox command, if there is one */ 14381 lpfc_sli4_post_async_mbox(phba); 14382 14383 /* Process cmpl now */ 14384 if (pmb->mbox_cmpl) 14385 pmb->mbox_cmpl(phba, pmb); 14386 return false; 14387 } 14388 14389 /* There is mailbox completion work to queue to the worker thread */ 14390 spin_lock_irqsave(&phba->hbalock, iflags); 14391 __lpfc_mbox_cmpl_put(phba, pmb); 14392 phba->work_ha |= HA_MBATT; 14393 spin_unlock_irqrestore(&phba->hbalock, iflags); 14394 workposted = true; 14395 14396 send_current_mbox: 14397 spin_lock_irqsave(&phba->hbalock, iflags); 14398 /* Release the mailbox command posting token */ 14399 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14400 /* Setting active mailbox pointer need to be in sync to flag clear */ 14401 phba->sli.mbox_active = NULL; 14402 if (bf_get(lpfc_trailer_consumed, mcqe)) 14403 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14404 spin_unlock_irqrestore(&phba->hbalock, iflags); 14405 /* Wake up worker thread to post the next pending mailbox command */ 14406 lpfc_worker_wake_up(phba); 14407 return workposted; 14408 14409 out_no_mqe_complete: 14410 spin_lock_irqsave(&phba->hbalock, iflags); 14411 if (bf_get(lpfc_trailer_consumed, mcqe)) 14412 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14413 spin_unlock_irqrestore(&phba->hbalock, iflags); 14414 return false; 14415 } 14416 14417 /** 14418 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14419 * @phba: Pointer to HBA context object. 14420 * @cq: Pointer to associated CQ 14421 * @cqe: Pointer to mailbox completion queue entry. 14422 * 14423 * This routine process a mailbox completion queue entry, it invokes the 14424 * proper mailbox complete handling or asynchronous event handling routine 14425 * according to the MCQE's async bit. 14426 * 14427 * Return: true if work posted to worker thread, otherwise false. 14428 **/ 14429 static bool 14430 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14431 struct lpfc_cqe *cqe) 14432 { 14433 struct lpfc_mcqe mcqe; 14434 bool workposted; 14435 14436 cq->CQ_mbox++; 14437 14438 /* Copy the mailbox MCQE and convert endian order as needed */ 14439 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14440 14441 /* Invoke the proper event handling routine */ 14442 if (!bf_get(lpfc_trailer_async, &mcqe)) 14443 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14444 else 14445 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14446 return workposted; 14447 } 14448 14449 /** 14450 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14451 * @phba: Pointer to HBA context object. 14452 * @cq: Pointer to associated CQ 14453 * @wcqe: Pointer to work-queue completion queue entry. 14454 * 14455 * This routine handles an ELS work-queue completion event. 14456 * 14457 * Return: true if work posted to worker thread, otherwise false. 14458 **/ 14459 static bool 14460 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14461 struct lpfc_wcqe_complete *wcqe) 14462 { 14463 struct lpfc_iocbq *irspiocbq; 14464 unsigned long iflags; 14465 struct lpfc_sli_ring *pring = cq->pring; 14466 int txq_cnt = 0; 14467 int txcmplq_cnt = 0; 14468 14469 /* Check for response status */ 14470 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14471 /* Log the error status */ 14472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14473 "0357 ELS CQE error: status=x%x: " 14474 "CQE: %08x %08x %08x %08x\n", 14475 bf_get(lpfc_wcqe_c_status, wcqe), 14476 wcqe->word0, wcqe->total_data_placed, 14477 wcqe->parameter, wcqe->word3); 14478 } 14479 14480 /* Get an irspiocbq for later ELS response processing use */ 14481 irspiocbq = lpfc_sli_get_iocbq(phba); 14482 if (!irspiocbq) { 14483 if (!list_empty(&pring->txq)) 14484 txq_cnt++; 14485 if (!list_empty(&pring->txcmplq)) 14486 txcmplq_cnt++; 14487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14488 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14489 "els_txcmplq_cnt=%d\n", 14490 txq_cnt, phba->iocb_cnt, 14491 txcmplq_cnt); 14492 return false; 14493 } 14494 14495 /* Save off the slow-path queue event for work thread to process */ 14496 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14497 spin_lock_irqsave(&phba->hbalock, iflags); 14498 list_add_tail(&irspiocbq->cq_event.list, 14499 &phba->sli4_hba.sp_queue_event); 14500 spin_unlock_irqrestore(&phba->hbalock, iflags); 14501 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14502 14503 return true; 14504 } 14505 14506 /** 14507 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14508 * @phba: Pointer to HBA context object. 14509 * @wcqe: Pointer to work-queue completion queue entry. 14510 * 14511 * This routine handles slow-path WQ entry consumed event by invoking the 14512 * proper WQ release routine to the slow-path WQ. 14513 **/ 14514 static void 14515 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14516 struct lpfc_wcqe_release *wcqe) 14517 { 14518 /* sanity check on queue memory */ 14519 if (unlikely(!phba->sli4_hba.els_wq)) 14520 return; 14521 /* Check for the slow-path ELS work queue */ 14522 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14523 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14524 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14525 else 14526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14527 "2579 Slow-path wqe consume event carries " 14528 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14529 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14530 phba->sli4_hba.els_wq->queue_id); 14531 } 14532 14533 /** 14534 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14535 * @phba: Pointer to HBA context object. 14536 * @cq: Pointer to a WQ completion queue. 14537 * @wcqe: Pointer to work-queue completion queue entry. 14538 * 14539 * This routine handles an XRI abort event. 14540 * 14541 * Return: true if work posted to worker thread, otherwise false. 14542 **/ 14543 static bool 14544 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14545 struct lpfc_queue *cq, 14546 struct sli4_wcqe_xri_aborted *wcqe) 14547 { 14548 bool workposted = false; 14549 struct lpfc_cq_event *cq_event; 14550 unsigned long iflags; 14551 14552 switch (cq->subtype) { 14553 case LPFC_IO: 14554 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14555 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14556 /* Notify aborted XRI for NVME work queue */ 14557 if (phba->nvmet_support) 14558 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14559 } 14560 workposted = false; 14561 break; 14562 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14563 case LPFC_ELS: 14564 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14565 if (!cq_event) { 14566 workposted = false; 14567 break; 14568 } 14569 cq_event->hdwq = cq->hdwq; 14570 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14571 iflags); 14572 list_add_tail(&cq_event->list, 14573 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14574 /* Set the els xri abort event flag */ 14575 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14576 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14577 iflags); 14578 workposted = true; 14579 break; 14580 default: 14581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14582 "0603 Invalid CQ subtype %d: " 14583 "%08x %08x %08x %08x\n", 14584 cq->subtype, wcqe->word0, wcqe->parameter, 14585 wcqe->word2, wcqe->word3); 14586 workposted = false; 14587 break; 14588 } 14589 return workposted; 14590 } 14591 14592 #define FC_RCTL_MDS_DIAGS 0xF4 14593 14594 /** 14595 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14596 * @phba: Pointer to HBA context object. 14597 * @rcqe: Pointer to receive-queue completion queue entry. 14598 * 14599 * This routine process a receive-queue completion queue entry. 14600 * 14601 * Return: true if work posted to worker thread, otherwise false. 14602 **/ 14603 static bool 14604 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14605 { 14606 bool workposted = false; 14607 struct fc_frame_header *fc_hdr; 14608 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14609 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14610 struct lpfc_nvmet_tgtport *tgtp; 14611 struct hbq_dmabuf *dma_buf; 14612 uint32_t status, rq_id; 14613 unsigned long iflags; 14614 14615 /* sanity check on queue memory */ 14616 if (unlikely(!hrq) || unlikely(!drq)) 14617 return workposted; 14618 14619 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14620 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14621 else 14622 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14623 if (rq_id != hrq->queue_id) 14624 goto out; 14625 14626 status = bf_get(lpfc_rcqe_status, rcqe); 14627 switch (status) { 14628 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14629 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14630 "2537 Receive Frame Truncated!!\n"); 14631 fallthrough; 14632 case FC_STATUS_RQ_SUCCESS: 14633 spin_lock_irqsave(&phba->hbalock, iflags); 14634 lpfc_sli4_rq_release(hrq, drq); 14635 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14636 if (!dma_buf) { 14637 hrq->RQ_no_buf_found++; 14638 spin_unlock_irqrestore(&phba->hbalock, iflags); 14639 goto out; 14640 } 14641 hrq->RQ_rcv_buf++; 14642 hrq->RQ_buf_posted--; 14643 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14644 14645 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14646 14647 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14648 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14649 spin_unlock_irqrestore(&phba->hbalock, iflags); 14650 /* Handle MDS Loopback frames */ 14651 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14652 lpfc_sli4_handle_mds_loopback(phba->pport, 14653 dma_buf); 14654 else 14655 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14656 break; 14657 } 14658 14659 /* save off the frame for the work thread to process */ 14660 list_add_tail(&dma_buf->cq_event.list, 14661 &phba->sli4_hba.sp_queue_event); 14662 spin_unlock_irqrestore(&phba->hbalock, iflags); 14663 /* Frame received */ 14664 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14665 workposted = true; 14666 break; 14667 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14668 if (phba->nvmet_support) { 14669 tgtp = phba->targetport->private; 14670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14671 "6402 RQE Error x%x, posted %d err_cnt " 14672 "%d: %x %x %x\n", 14673 status, hrq->RQ_buf_posted, 14674 hrq->RQ_no_posted_buf, 14675 atomic_read(&tgtp->rcv_fcp_cmd_in), 14676 atomic_read(&tgtp->rcv_fcp_cmd_out), 14677 atomic_read(&tgtp->xmt_fcp_release)); 14678 } 14679 fallthrough; 14680 14681 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14682 hrq->RQ_no_posted_buf++; 14683 /* Post more buffers if possible */ 14684 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14685 workposted = true; 14686 break; 14687 case FC_STATUS_RQ_DMA_FAILURE: 14688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14689 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14690 "x%08x\n", 14691 status, rcqe->word0, rcqe->word1, 14692 rcqe->word2, rcqe->word3); 14693 14694 /* If IV set, no further recovery */ 14695 if (bf_get(lpfc_rcqe_iv, rcqe)) 14696 break; 14697 14698 /* recycle consumed resource */ 14699 spin_lock_irqsave(&phba->hbalock, iflags); 14700 lpfc_sli4_rq_release(hrq, drq); 14701 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14702 if (!dma_buf) { 14703 hrq->RQ_no_buf_found++; 14704 spin_unlock_irqrestore(&phba->hbalock, iflags); 14705 break; 14706 } 14707 hrq->RQ_rcv_buf++; 14708 hrq->RQ_buf_posted--; 14709 spin_unlock_irqrestore(&phba->hbalock, iflags); 14710 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14711 break; 14712 default: 14713 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14714 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14715 "x%08x x%08x x%08x\n", 14716 status, rcqe->word0, rcqe->word1, 14717 rcqe->word2, rcqe->word3); 14718 break; 14719 } 14720 out: 14721 return workposted; 14722 } 14723 14724 /** 14725 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14726 * @phba: Pointer to HBA context object. 14727 * @cq: Pointer to the completion queue. 14728 * @cqe: Pointer to a completion queue entry. 14729 * 14730 * This routine process a slow-path work-queue or receive queue completion queue 14731 * entry. 14732 * 14733 * Return: true if work posted to worker thread, otherwise false. 14734 **/ 14735 static bool 14736 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14737 struct lpfc_cqe *cqe) 14738 { 14739 struct lpfc_cqe cqevt; 14740 bool workposted = false; 14741 14742 /* Copy the work queue CQE and convert endian order if needed */ 14743 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14744 14745 /* Check and process for different type of WCQE and dispatch */ 14746 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14747 case CQE_CODE_COMPL_WQE: 14748 /* Process the WQ/RQ complete event */ 14749 phba->last_completion_time = jiffies; 14750 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14751 (struct lpfc_wcqe_complete *)&cqevt); 14752 break; 14753 case CQE_CODE_RELEASE_WQE: 14754 /* Process the WQ release event */ 14755 lpfc_sli4_sp_handle_rel_wcqe(phba, 14756 (struct lpfc_wcqe_release *)&cqevt); 14757 break; 14758 case CQE_CODE_XRI_ABORTED: 14759 /* Process the WQ XRI abort event */ 14760 phba->last_completion_time = jiffies; 14761 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14762 (struct sli4_wcqe_xri_aborted *)&cqevt); 14763 break; 14764 case CQE_CODE_RECEIVE: 14765 case CQE_CODE_RECEIVE_V1: 14766 /* Process the RQ event */ 14767 phba->last_completion_time = jiffies; 14768 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14769 (struct lpfc_rcqe *)&cqevt); 14770 break; 14771 default: 14772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14773 "0388 Not a valid WCQE code: x%x\n", 14774 bf_get(lpfc_cqe_code, &cqevt)); 14775 break; 14776 } 14777 return workposted; 14778 } 14779 14780 /** 14781 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14782 * @phba: Pointer to HBA context object. 14783 * @eqe: Pointer to fast-path event queue entry. 14784 * @speq: Pointer to slow-path event queue. 14785 * 14786 * This routine process a event queue entry from the slow-path event queue. 14787 * It will check the MajorCode and MinorCode to determine this is for a 14788 * completion event on a completion queue, if not, an error shall be logged 14789 * and just return. Otherwise, it will get to the corresponding completion 14790 * queue and process all the entries on that completion queue, rearm the 14791 * completion queue, and then return. 14792 * 14793 **/ 14794 static void 14795 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14796 struct lpfc_queue *speq) 14797 { 14798 struct lpfc_queue *cq = NULL, *childq; 14799 uint16_t cqid; 14800 int ret = 0; 14801 14802 /* Get the reference to the corresponding CQ */ 14803 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14804 14805 list_for_each_entry(childq, &speq->child_list, list) { 14806 if (childq->queue_id == cqid) { 14807 cq = childq; 14808 break; 14809 } 14810 } 14811 if (unlikely(!cq)) { 14812 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14814 "0365 Slow-path CQ identifier " 14815 "(%d) does not exist\n", cqid); 14816 return; 14817 } 14818 14819 /* Save EQ associated with this CQ */ 14820 cq->assoc_qp = speq; 14821 14822 if (is_kdump_kernel()) 14823 ret = queue_work(phba->wq, &cq->spwork); 14824 else 14825 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14826 14827 if (!ret) 14828 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14829 "0390 Cannot schedule queue work " 14830 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14831 cqid, cq->queue_id, raw_smp_processor_id()); 14832 } 14833 14834 /** 14835 * __lpfc_sli4_process_cq - Process elements of a CQ 14836 * @phba: Pointer to HBA context object. 14837 * @cq: Pointer to CQ to be processed 14838 * @handler: Routine to process each cqe 14839 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14840 * 14841 * This routine processes completion queue entries in a CQ. While a valid 14842 * queue element is found, the handler is called. During processing checks 14843 * are made for periodic doorbell writes to let the hardware know of 14844 * element consumption. 14845 * 14846 * If the max limit on cqes to process is hit, or there are no more valid 14847 * entries, the loop stops. If we processed a sufficient number of elements, 14848 * meaning there is sufficient load, rather than rearming and generating 14849 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14850 * indicates no rescheduling. 14851 * 14852 * Returns True if work scheduled, False otherwise. 14853 **/ 14854 static bool 14855 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14856 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14857 struct lpfc_cqe *), unsigned long *delay) 14858 { 14859 struct lpfc_cqe *cqe; 14860 bool workposted = false; 14861 int count = 0, consumed = 0; 14862 bool arm = true; 14863 14864 /* default - no reschedule */ 14865 *delay = 0; 14866 14867 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14868 goto rearm_and_exit; 14869 14870 /* Process all the entries to the CQ */ 14871 cq->q_flag = 0; 14872 cqe = lpfc_sli4_cq_get(cq); 14873 while (cqe) { 14874 workposted |= handler(phba, cq, cqe); 14875 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14876 14877 consumed++; 14878 if (!(++count % cq->max_proc_limit)) 14879 break; 14880 14881 if (!(count % cq->notify_interval)) { 14882 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14883 LPFC_QUEUE_NOARM); 14884 consumed = 0; 14885 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14886 } 14887 14888 if (count == LPFC_NVMET_CQ_NOTIFY) 14889 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14890 14891 cqe = lpfc_sli4_cq_get(cq); 14892 } 14893 if (count >= phba->cfg_cq_poll_threshold) { 14894 *delay = 1; 14895 arm = false; 14896 } 14897 14898 /* Track the max number of CQEs processed in 1 EQ */ 14899 if (count > cq->CQ_max_cqe) 14900 cq->CQ_max_cqe = count; 14901 14902 cq->assoc_qp->EQ_cqe_cnt += count; 14903 14904 /* Catch the no cq entry condition */ 14905 if (unlikely(count == 0)) 14906 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14907 "0369 No entry from completion queue " 14908 "qid=%d\n", cq->queue_id); 14909 14910 xchg(&cq->queue_claimed, 0); 14911 14912 rearm_and_exit: 14913 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14914 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14915 14916 return workposted; 14917 } 14918 14919 /** 14920 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14921 * @cq: pointer to CQ to process 14922 * 14923 * This routine calls the cq processing routine with a handler specific 14924 * to the type of queue bound to it. 14925 * 14926 * The CQ routine returns two values: the first is the calling status, 14927 * which indicates whether work was queued to the background discovery 14928 * thread. If true, the routine should wakeup the discovery thread; 14929 * the second is the delay parameter. If non-zero, rather than rearming 14930 * the CQ and yet another interrupt, the CQ handler should be queued so 14931 * that it is processed in a subsequent polling action. The value of 14932 * the delay indicates when to reschedule it. 14933 **/ 14934 static void 14935 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14936 { 14937 struct lpfc_hba *phba = cq->phba; 14938 unsigned long delay; 14939 bool workposted = false; 14940 int ret = 0; 14941 14942 /* Process and rearm the CQ */ 14943 switch (cq->type) { 14944 case LPFC_MCQ: 14945 workposted |= __lpfc_sli4_process_cq(phba, cq, 14946 lpfc_sli4_sp_handle_mcqe, 14947 &delay); 14948 break; 14949 case LPFC_WCQ: 14950 if (cq->subtype == LPFC_IO) 14951 workposted |= __lpfc_sli4_process_cq(phba, cq, 14952 lpfc_sli4_fp_handle_cqe, 14953 &delay); 14954 else 14955 workposted |= __lpfc_sli4_process_cq(phba, cq, 14956 lpfc_sli4_sp_handle_cqe, 14957 &delay); 14958 break; 14959 default: 14960 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14961 "0370 Invalid completion queue type (%d)\n", 14962 cq->type); 14963 return; 14964 } 14965 14966 if (delay) { 14967 if (is_kdump_kernel()) 14968 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14969 delay); 14970 else 14971 ret = queue_delayed_work_on(cq->chann, phba->wq, 14972 &cq->sched_spwork, delay); 14973 if (!ret) 14974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14975 "0394 Cannot schedule queue work " 14976 "for cqid=%d on CPU %d\n", 14977 cq->queue_id, cq->chann); 14978 } 14979 14980 /* wake up worker thread if there are works to be done */ 14981 if (workposted) 14982 lpfc_worker_wake_up(phba); 14983 } 14984 14985 /** 14986 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14987 * interrupt 14988 * @work: pointer to work element 14989 * 14990 * translates from the work handler and calls the slow-path handler. 14991 **/ 14992 static void 14993 lpfc_sli4_sp_process_cq(struct work_struct *work) 14994 { 14995 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14996 14997 __lpfc_sli4_sp_process_cq(cq); 14998 } 14999 15000 /** 15001 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15002 * @work: pointer to work element 15003 * 15004 * translates from the work handler and calls the slow-path handler. 15005 **/ 15006 static void 15007 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15008 { 15009 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15010 struct lpfc_queue, sched_spwork); 15011 15012 __lpfc_sli4_sp_process_cq(cq); 15013 } 15014 15015 /** 15016 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15017 * @phba: Pointer to HBA context object. 15018 * @cq: Pointer to associated CQ 15019 * @wcqe: Pointer to work-queue completion queue entry. 15020 * 15021 * This routine process a fast-path work queue completion entry from fast-path 15022 * event queue for FCP command response completion. 15023 **/ 15024 static void 15025 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15026 struct lpfc_wcqe_complete *wcqe) 15027 { 15028 struct lpfc_sli_ring *pring = cq->pring; 15029 struct lpfc_iocbq *cmdiocbq; 15030 unsigned long iflags; 15031 15032 /* Check for response status */ 15033 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15034 /* If resource errors reported from HBA, reduce queue 15035 * depth of the SCSI device. 15036 */ 15037 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15038 IOSTAT_LOCAL_REJECT)) && 15039 ((wcqe->parameter & IOERR_PARAM_MASK) == 15040 IOERR_NO_RESOURCES)) 15041 phba->lpfc_rampdown_queue_depth(phba); 15042 15043 /* Log the cmpl status */ 15044 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15045 "0373 FCP CQE cmpl: status=x%x: " 15046 "CQE: %08x %08x %08x %08x\n", 15047 bf_get(lpfc_wcqe_c_status, wcqe), 15048 wcqe->word0, wcqe->total_data_placed, 15049 wcqe->parameter, wcqe->word3); 15050 } 15051 15052 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15053 spin_lock_irqsave(&pring->ring_lock, iflags); 15054 pring->stats.iocb_event++; 15055 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15056 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15057 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15058 if (unlikely(!cmdiocbq)) { 15059 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15060 "0374 FCP complete with no corresponding " 15061 "cmdiocb: iotag (%d)\n", 15062 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15063 return; 15064 } 15065 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15066 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15067 #endif 15068 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15069 spin_lock_irqsave(&phba->hbalock, iflags); 15070 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15071 spin_unlock_irqrestore(&phba->hbalock, iflags); 15072 } 15073 15074 if (cmdiocbq->cmd_cmpl) { 15075 /* For FCP the flag is cleared in cmd_cmpl */ 15076 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15077 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15078 spin_lock_irqsave(&phba->hbalock, iflags); 15079 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15080 spin_unlock_irqrestore(&phba->hbalock, iflags); 15081 } 15082 15083 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15084 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15085 sizeof(struct lpfc_wcqe_complete)); 15086 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15087 } else { 15088 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15089 "0375 FCP cmdiocb not callback function " 15090 "iotag: (%d)\n", 15091 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15092 } 15093 } 15094 15095 /** 15096 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15097 * @phba: Pointer to HBA context object. 15098 * @cq: Pointer to completion queue. 15099 * @wcqe: Pointer to work-queue completion queue entry. 15100 * 15101 * This routine handles an fast-path WQ entry consumed event by invoking the 15102 * proper WQ release routine to the slow-path WQ. 15103 **/ 15104 static void 15105 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15106 struct lpfc_wcqe_release *wcqe) 15107 { 15108 struct lpfc_queue *childwq; 15109 bool wqid_matched = false; 15110 uint16_t hba_wqid; 15111 15112 /* Check for fast-path FCP work queue release */ 15113 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15114 list_for_each_entry(childwq, &cq->child_list, list) { 15115 if (childwq->queue_id == hba_wqid) { 15116 lpfc_sli4_wq_release(childwq, 15117 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15118 if (childwq->q_flag & HBA_NVMET_WQFULL) 15119 lpfc_nvmet_wqfull_process(phba, childwq); 15120 wqid_matched = true; 15121 break; 15122 } 15123 } 15124 /* Report warning log message if no match found */ 15125 if (wqid_matched != true) 15126 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15127 "2580 Fast-path wqe consume event carries " 15128 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15129 } 15130 15131 /** 15132 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15133 * @phba: Pointer to HBA context object. 15134 * @cq: Pointer to completion queue. 15135 * @rcqe: Pointer to receive-queue completion queue entry. 15136 * 15137 * This routine process a receive-queue completion queue entry. 15138 * 15139 * Return: true if work posted to worker thread, otherwise false. 15140 **/ 15141 static bool 15142 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15143 struct lpfc_rcqe *rcqe) 15144 { 15145 bool workposted = false; 15146 struct lpfc_queue *hrq; 15147 struct lpfc_queue *drq; 15148 struct rqb_dmabuf *dma_buf; 15149 struct fc_frame_header *fc_hdr; 15150 struct lpfc_nvmet_tgtport *tgtp; 15151 uint32_t status, rq_id; 15152 unsigned long iflags; 15153 uint32_t fctl, idx; 15154 15155 if ((phba->nvmet_support == 0) || 15156 (phba->sli4_hba.nvmet_cqset == NULL)) 15157 return workposted; 15158 15159 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15160 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15161 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15162 15163 /* sanity check on queue memory */ 15164 if (unlikely(!hrq) || unlikely(!drq)) 15165 return workposted; 15166 15167 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15168 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15169 else 15170 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15171 15172 if ((phba->nvmet_support == 0) || 15173 (rq_id != hrq->queue_id)) 15174 return workposted; 15175 15176 status = bf_get(lpfc_rcqe_status, rcqe); 15177 switch (status) { 15178 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15180 "6126 Receive Frame Truncated!!\n"); 15181 fallthrough; 15182 case FC_STATUS_RQ_SUCCESS: 15183 spin_lock_irqsave(&phba->hbalock, iflags); 15184 lpfc_sli4_rq_release(hrq, drq); 15185 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15186 if (!dma_buf) { 15187 hrq->RQ_no_buf_found++; 15188 spin_unlock_irqrestore(&phba->hbalock, iflags); 15189 goto out; 15190 } 15191 spin_unlock_irqrestore(&phba->hbalock, iflags); 15192 hrq->RQ_rcv_buf++; 15193 hrq->RQ_buf_posted--; 15194 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15195 15196 /* Just some basic sanity checks on FCP Command frame */ 15197 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15198 fc_hdr->fh_f_ctl[1] << 8 | 15199 fc_hdr->fh_f_ctl[2]); 15200 if (((fctl & 15201 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15202 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15203 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15204 goto drop; 15205 15206 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15207 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15208 lpfc_nvmet_unsol_fcp_event( 15209 phba, idx, dma_buf, cq->isr_timestamp, 15210 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15211 return false; 15212 } 15213 drop: 15214 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15215 break; 15216 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15217 if (phba->nvmet_support) { 15218 tgtp = phba->targetport->private; 15219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15220 "6401 RQE Error x%x, posted %d err_cnt " 15221 "%d: %x %x %x\n", 15222 status, hrq->RQ_buf_posted, 15223 hrq->RQ_no_posted_buf, 15224 atomic_read(&tgtp->rcv_fcp_cmd_in), 15225 atomic_read(&tgtp->rcv_fcp_cmd_out), 15226 atomic_read(&tgtp->xmt_fcp_release)); 15227 } 15228 fallthrough; 15229 15230 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15231 hrq->RQ_no_posted_buf++; 15232 /* Post more buffers if possible */ 15233 break; 15234 case FC_STATUS_RQ_DMA_FAILURE: 15235 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15236 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15237 "x%08x\n", 15238 status, rcqe->word0, rcqe->word1, 15239 rcqe->word2, rcqe->word3); 15240 15241 /* If IV set, no further recovery */ 15242 if (bf_get(lpfc_rcqe_iv, rcqe)) 15243 break; 15244 15245 /* recycle consumed resource */ 15246 spin_lock_irqsave(&phba->hbalock, iflags); 15247 lpfc_sli4_rq_release(hrq, drq); 15248 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15249 if (!dma_buf) { 15250 hrq->RQ_no_buf_found++; 15251 spin_unlock_irqrestore(&phba->hbalock, iflags); 15252 break; 15253 } 15254 hrq->RQ_rcv_buf++; 15255 hrq->RQ_buf_posted--; 15256 spin_unlock_irqrestore(&phba->hbalock, iflags); 15257 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15258 break; 15259 default: 15260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15261 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15262 "x%08x x%08x x%08x\n", 15263 status, rcqe->word0, rcqe->word1, 15264 rcqe->word2, rcqe->word3); 15265 break; 15266 } 15267 out: 15268 return workposted; 15269 } 15270 15271 /** 15272 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15273 * @phba: adapter with cq 15274 * @cq: Pointer to the completion queue. 15275 * @cqe: Pointer to fast-path completion queue entry. 15276 * 15277 * This routine process a fast-path work queue completion entry from fast-path 15278 * event queue for FCP command response completion. 15279 * 15280 * Return: true if work posted to worker thread, otherwise false. 15281 **/ 15282 static bool 15283 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15284 struct lpfc_cqe *cqe) 15285 { 15286 struct lpfc_wcqe_release wcqe; 15287 bool workposted = false; 15288 15289 /* Copy the work queue CQE and convert endian order if needed */ 15290 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15291 15292 /* Check and process for different type of WCQE and dispatch */ 15293 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15294 case CQE_CODE_COMPL_WQE: 15295 case CQE_CODE_NVME_ERSP: 15296 cq->CQ_wq++; 15297 /* Process the WQ complete event */ 15298 phba->last_completion_time = jiffies; 15299 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15300 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15301 (struct lpfc_wcqe_complete *)&wcqe); 15302 break; 15303 case CQE_CODE_RELEASE_WQE: 15304 cq->CQ_release_wqe++; 15305 /* Process the WQ release event */ 15306 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15307 (struct lpfc_wcqe_release *)&wcqe); 15308 break; 15309 case CQE_CODE_XRI_ABORTED: 15310 cq->CQ_xri_aborted++; 15311 /* Process the WQ XRI abort event */ 15312 phba->last_completion_time = jiffies; 15313 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15314 (struct sli4_wcqe_xri_aborted *)&wcqe); 15315 break; 15316 case CQE_CODE_RECEIVE_V1: 15317 case CQE_CODE_RECEIVE: 15318 phba->last_completion_time = jiffies; 15319 if (cq->subtype == LPFC_NVMET) { 15320 workposted = lpfc_sli4_nvmet_handle_rcqe( 15321 phba, cq, (struct lpfc_rcqe *)&wcqe); 15322 } 15323 break; 15324 default: 15325 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15326 "0144 Not a valid CQE code: x%x\n", 15327 bf_get(lpfc_wcqe_c_code, &wcqe)); 15328 break; 15329 } 15330 return workposted; 15331 } 15332 15333 /** 15334 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15335 * @cq: Pointer to CQ to be processed 15336 * 15337 * This routine calls the cq processing routine with the handler for 15338 * fast path CQEs. 15339 * 15340 * The CQ routine returns two values: the first is the calling status, 15341 * which indicates whether work was queued to the background discovery 15342 * thread. If true, the routine should wakeup the discovery thread; 15343 * the second is the delay parameter. If non-zero, rather than rearming 15344 * the CQ and yet another interrupt, the CQ handler should be queued so 15345 * that it is processed in a subsequent polling action. The value of 15346 * the delay indicates when to reschedule it. 15347 **/ 15348 static void 15349 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15350 { 15351 struct lpfc_hba *phba = cq->phba; 15352 unsigned long delay; 15353 bool workposted = false; 15354 int ret; 15355 15356 /* process and rearm the CQ */ 15357 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15358 &delay); 15359 15360 if (delay) { 15361 if (is_kdump_kernel()) 15362 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15363 delay); 15364 else 15365 ret = queue_delayed_work_on(cq->chann, phba->wq, 15366 &cq->sched_irqwork, delay); 15367 if (!ret) 15368 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15369 "0367 Cannot schedule queue work " 15370 "for cqid=%d on CPU %d\n", 15371 cq->queue_id, cq->chann); 15372 } 15373 15374 /* wake up worker thread if there are works to be done */ 15375 if (workposted) 15376 lpfc_worker_wake_up(phba); 15377 } 15378 15379 /** 15380 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15381 * interrupt 15382 * @work: pointer to work element 15383 * 15384 * translates from the work handler and calls the fast-path handler. 15385 **/ 15386 static void 15387 lpfc_sli4_hba_process_cq(struct work_struct *work) 15388 { 15389 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15390 15391 __lpfc_sli4_hba_process_cq(cq); 15392 } 15393 15394 /** 15395 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15396 * @phba: Pointer to HBA context object. 15397 * @eq: Pointer to the queue structure. 15398 * @eqe: Pointer to fast-path event queue entry. 15399 * @poll_mode: poll_mode to execute processing the cq. 15400 * 15401 * This routine process a event queue entry from the fast-path event queue. 15402 * It will check the MajorCode and MinorCode to determine this is for a 15403 * completion event on a completion queue, if not, an error shall be logged 15404 * and just return. Otherwise, it will get to the corresponding completion 15405 * queue and process all the entries on the completion queue, rearm the 15406 * completion queue, and then return. 15407 **/ 15408 static void 15409 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15410 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15411 { 15412 struct lpfc_queue *cq = NULL; 15413 uint32_t qidx = eq->hdwq; 15414 uint16_t cqid, id; 15415 int ret; 15416 15417 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15418 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15419 "0366 Not a valid completion " 15420 "event: majorcode=x%x, minorcode=x%x\n", 15421 bf_get_le32(lpfc_eqe_major_code, eqe), 15422 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15423 return; 15424 } 15425 15426 /* Get the reference to the corresponding CQ */ 15427 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15428 15429 /* Use the fast lookup method first */ 15430 if (cqid <= phba->sli4_hba.cq_max) { 15431 cq = phba->sli4_hba.cq_lookup[cqid]; 15432 if (cq) 15433 goto work_cq; 15434 } 15435 15436 /* Next check for NVMET completion */ 15437 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15438 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15439 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15440 /* Process NVMET unsol rcv */ 15441 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15442 goto process_cq; 15443 } 15444 } 15445 15446 if (phba->sli4_hba.nvmels_cq && 15447 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15448 /* Process NVME unsol rcv */ 15449 cq = phba->sli4_hba.nvmels_cq; 15450 } 15451 15452 /* Otherwise this is a Slow path event */ 15453 if (cq == NULL) { 15454 lpfc_sli4_sp_handle_eqe(phba, eqe, 15455 phba->sli4_hba.hdwq[qidx].hba_eq); 15456 return; 15457 } 15458 15459 process_cq: 15460 if (unlikely(cqid != cq->queue_id)) { 15461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15462 "0368 Miss-matched fast-path completion " 15463 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15464 cqid, cq->queue_id); 15465 return; 15466 } 15467 15468 work_cq: 15469 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15470 if (phba->ktime_on) 15471 cq->isr_timestamp = ktime_get_ns(); 15472 else 15473 cq->isr_timestamp = 0; 15474 #endif 15475 15476 switch (poll_mode) { 15477 case LPFC_THREADED_IRQ: 15478 __lpfc_sli4_hba_process_cq(cq); 15479 break; 15480 case LPFC_QUEUE_WORK: 15481 default: 15482 if (is_kdump_kernel()) 15483 ret = queue_work(phba->wq, &cq->irqwork); 15484 else 15485 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15486 if (!ret) 15487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15488 "0383 Cannot schedule queue work " 15489 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15490 cqid, cq->queue_id, 15491 raw_smp_processor_id()); 15492 break; 15493 } 15494 } 15495 15496 /** 15497 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15498 * @work: pointer to work element 15499 * 15500 * translates from the work handler and calls the fast-path handler. 15501 **/ 15502 static void 15503 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15504 { 15505 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15506 struct lpfc_queue, sched_irqwork); 15507 15508 __lpfc_sli4_hba_process_cq(cq); 15509 } 15510 15511 /** 15512 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15513 * @irq: Interrupt number. 15514 * @dev_id: The device context pointer. 15515 * 15516 * This function is directly called from the PCI layer as an interrupt 15517 * service routine when device with SLI-4 interface spec is enabled with 15518 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15519 * ring event in the HBA. However, when the device is enabled with either 15520 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15521 * device-level interrupt handler. When the PCI slot is in error recovery 15522 * or the HBA is undergoing initialization, the interrupt handler will not 15523 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15524 * the intrrupt context. This function is called without any lock held. 15525 * It gets the hbalock to access and update SLI data structures. Note that, 15526 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15527 * equal to that of FCP CQ index. 15528 * 15529 * The link attention and ELS ring attention events are handled 15530 * by the worker thread. The interrupt handler signals the worker thread 15531 * and returns for these events. This function is called without any lock 15532 * held. It gets the hbalock to access and update SLI data structures. 15533 * 15534 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15535 * when interrupt is scheduled to be handled from a threaded irq context, or 15536 * else returns IRQ_NONE. 15537 **/ 15538 irqreturn_t 15539 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15540 { 15541 struct lpfc_hba *phba; 15542 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15543 struct lpfc_queue *fpeq; 15544 unsigned long iflag; 15545 int hba_eqidx; 15546 int ecount = 0; 15547 struct lpfc_eq_intr_info *eqi; 15548 15549 /* Get the driver's phba structure from the dev_id */ 15550 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15551 phba = hba_eq_hdl->phba; 15552 hba_eqidx = hba_eq_hdl->idx; 15553 15554 if (unlikely(!phba)) 15555 return IRQ_NONE; 15556 if (unlikely(!phba->sli4_hba.hdwq)) 15557 return IRQ_NONE; 15558 15559 /* Get to the EQ struct associated with this vector */ 15560 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15561 if (unlikely(!fpeq)) 15562 return IRQ_NONE; 15563 15564 /* Check device state for handling interrupt */ 15565 if (unlikely(lpfc_intr_state_check(phba))) { 15566 /* Check again for link_state with lock held */ 15567 spin_lock_irqsave(&phba->hbalock, iflag); 15568 if (phba->link_state < LPFC_LINK_DOWN) 15569 /* Flush, clear interrupt, and rearm the EQ */ 15570 lpfc_sli4_eqcq_flush(phba, fpeq); 15571 spin_unlock_irqrestore(&phba->hbalock, iflag); 15572 return IRQ_NONE; 15573 } 15574 15575 switch (fpeq->poll_mode) { 15576 case LPFC_THREADED_IRQ: 15577 /* CGN mgmt is mutually exclusive from irq processing */ 15578 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15579 return IRQ_WAKE_THREAD; 15580 fallthrough; 15581 case LPFC_QUEUE_WORK: 15582 default: 15583 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15584 eqi->icnt++; 15585 15586 fpeq->last_cpu = raw_smp_processor_id(); 15587 15588 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15589 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15590 phba->cfg_auto_imax && 15591 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15592 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15593 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15594 LPFC_MAX_AUTO_EQ_DELAY); 15595 15596 /* process and rearm the EQ */ 15597 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15598 LPFC_QUEUE_WORK); 15599 15600 if (unlikely(ecount == 0)) { 15601 fpeq->EQ_no_entry++; 15602 if (phba->intr_type == MSIX) 15603 /* MSI-X treated interrupt served as no EQ share INT */ 15604 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15605 "0358 MSI-X interrupt with no EQE\n"); 15606 else 15607 /* Non MSI-X treated on interrupt as EQ share INT */ 15608 return IRQ_NONE; 15609 } 15610 } 15611 15612 return IRQ_HANDLED; 15613 } /* lpfc_sli4_hba_intr_handler */ 15614 15615 /** 15616 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15617 * @irq: Interrupt number. 15618 * @dev_id: The device context pointer. 15619 * 15620 * This function is the device-level interrupt handler to device with SLI-4 15621 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15622 * interrupt mode is enabled and there is an event in the HBA which requires 15623 * driver attention. This function invokes the slow-path interrupt attention 15624 * handling function and fast-path interrupt attention handling function in 15625 * turn to process the relevant HBA attention events. This function is called 15626 * without any lock held. It gets the hbalock to access and update SLI data 15627 * structures. 15628 * 15629 * This function returns IRQ_HANDLED when interrupt is handled, else it 15630 * returns IRQ_NONE. 15631 **/ 15632 irqreturn_t 15633 lpfc_sli4_intr_handler(int irq, void *dev_id) 15634 { 15635 struct lpfc_hba *phba; 15636 irqreturn_t hba_irq_rc; 15637 bool hba_handled = false; 15638 int qidx; 15639 15640 /* Get the driver's phba structure from the dev_id */ 15641 phba = (struct lpfc_hba *)dev_id; 15642 15643 if (unlikely(!phba)) 15644 return IRQ_NONE; 15645 15646 /* 15647 * Invoke fast-path host attention interrupt handling as appropriate. 15648 */ 15649 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15650 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15651 &phba->sli4_hba.hba_eq_hdl[qidx]); 15652 if (hba_irq_rc == IRQ_HANDLED) 15653 hba_handled |= true; 15654 } 15655 15656 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15657 } /* lpfc_sli4_intr_handler */ 15658 15659 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15660 { 15661 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15662 struct lpfc_queue *eq; 15663 15664 rcu_read_lock(); 15665 15666 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15667 lpfc_sli4_poll_eq(eq); 15668 if (!list_empty(&phba->poll_list)) 15669 mod_timer(&phba->cpuhp_poll_timer, 15670 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15671 15672 rcu_read_unlock(); 15673 } 15674 15675 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15676 { 15677 struct lpfc_hba *phba = eq->phba; 15678 15679 /* kickstart slowpath processing if needed */ 15680 if (list_empty(&phba->poll_list)) 15681 mod_timer(&phba->cpuhp_poll_timer, 15682 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15683 15684 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15685 synchronize_rcu(); 15686 } 15687 15688 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15689 { 15690 struct lpfc_hba *phba = eq->phba; 15691 15692 /* Disable slowpath processing for this eq. Kick start the eq 15693 * by RE-ARMING the eq's ASAP 15694 */ 15695 list_del_rcu(&eq->_poll_list); 15696 synchronize_rcu(); 15697 15698 if (list_empty(&phba->poll_list)) 15699 del_timer_sync(&phba->cpuhp_poll_timer); 15700 } 15701 15702 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15703 { 15704 struct lpfc_queue *eq, *next; 15705 15706 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15707 list_del(&eq->_poll_list); 15708 15709 INIT_LIST_HEAD(&phba->poll_list); 15710 synchronize_rcu(); 15711 } 15712 15713 static inline void 15714 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15715 { 15716 if (mode == eq->mode) 15717 return; 15718 /* 15719 * currently this function is only called during a hotplug 15720 * event and the cpu on which this function is executing 15721 * is going offline. By now the hotplug has instructed 15722 * the scheduler to remove this cpu from cpu active mask. 15723 * So we don't need to work about being put aside by the 15724 * scheduler for a high priority process. Yes, the inte- 15725 * rrupts could come but they are known to retire ASAP. 15726 */ 15727 15728 /* Disable polling in the fastpath */ 15729 WRITE_ONCE(eq->mode, mode); 15730 /* flush out the store buffer */ 15731 smp_wmb(); 15732 15733 /* 15734 * Add this eq to the polling list and start polling. For 15735 * a grace period both interrupt handler and poller will 15736 * try to process the eq _but_ that's fine. We have a 15737 * synchronization mechanism in place (queue_claimed) to 15738 * deal with it. This is just a draining phase for int- 15739 * errupt handler (not eq's) as we have guranteed through 15740 * barrier that all the CPUs have seen the new CQ_POLLED 15741 * state. which will effectively disable the REARMING of 15742 * the EQ. The whole idea is eq's die off eventually as 15743 * we are not rearming EQ's anymore. 15744 */ 15745 mode ? lpfc_sli4_add_to_poll_list(eq) : 15746 lpfc_sli4_remove_from_poll_list(eq); 15747 } 15748 15749 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15750 { 15751 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15752 } 15753 15754 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15755 { 15756 struct lpfc_hba *phba = eq->phba; 15757 15758 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15759 15760 /* Kick start for the pending io's in h/w. 15761 * Once we switch back to interrupt processing on a eq 15762 * the io path completion will only arm eq's when it 15763 * receives a completion. But since eq's are in disa- 15764 * rmed state it doesn't receive a completion. This 15765 * creates a deadlock scenaro. 15766 */ 15767 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15768 } 15769 15770 /** 15771 * lpfc_sli4_queue_free - free a queue structure and associated memory 15772 * @queue: The queue structure to free. 15773 * 15774 * This function frees a queue structure and the DMAable memory used for 15775 * the host resident queue. This function must be called after destroying the 15776 * queue on the HBA. 15777 **/ 15778 void 15779 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15780 { 15781 struct lpfc_dmabuf *dmabuf; 15782 15783 if (!queue) 15784 return; 15785 15786 if (!list_empty(&queue->wq_list)) 15787 list_del(&queue->wq_list); 15788 15789 while (!list_empty(&queue->page_list)) { 15790 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15791 list); 15792 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15793 dmabuf->virt, dmabuf->phys); 15794 kfree(dmabuf); 15795 } 15796 if (queue->rqbp) { 15797 lpfc_free_rq_buffer(queue->phba, queue); 15798 kfree(queue->rqbp); 15799 } 15800 15801 if (!list_empty(&queue->cpu_list)) 15802 list_del(&queue->cpu_list); 15803 15804 kfree(queue); 15805 return; 15806 } 15807 15808 /** 15809 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15810 * @phba: The HBA that this queue is being created on. 15811 * @page_size: The size of a queue page 15812 * @entry_size: The size of each queue entry for this queue. 15813 * @entry_count: The number of entries that this queue will handle. 15814 * @cpu: The cpu that will primarily utilize this queue. 15815 * 15816 * This function allocates a queue structure and the DMAable memory used for 15817 * the host resident queue. This function must be called before creating the 15818 * queue on the HBA. 15819 **/ 15820 struct lpfc_queue * 15821 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15822 uint32_t entry_size, uint32_t entry_count, int cpu) 15823 { 15824 struct lpfc_queue *queue; 15825 struct lpfc_dmabuf *dmabuf; 15826 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15827 uint16_t x, pgcnt; 15828 15829 if (!phba->sli4_hba.pc_sli4_params.supported) 15830 hw_page_size = page_size; 15831 15832 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15833 15834 /* If needed, Adjust page count to match the max the adapter supports */ 15835 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15836 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15837 15838 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15839 GFP_KERNEL, cpu_to_node(cpu)); 15840 if (!queue) 15841 return NULL; 15842 15843 INIT_LIST_HEAD(&queue->list); 15844 INIT_LIST_HEAD(&queue->_poll_list); 15845 INIT_LIST_HEAD(&queue->wq_list); 15846 INIT_LIST_HEAD(&queue->wqfull_list); 15847 INIT_LIST_HEAD(&queue->page_list); 15848 INIT_LIST_HEAD(&queue->child_list); 15849 INIT_LIST_HEAD(&queue->cpu_list); 15850 15851 /* Set queue parameters now. If the system cannot provide memory 15852 * resources, the free routine needs to know what was allocated. 15853 */ 15854 queue->page_count = pgcnt; 15855 queue->q_pgs = (void **)&queue[1]; 15856 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15857 queue->entry_size = entry_size; 15858 queue->entry_count = entry_count; 15859 queue->page_size = hw_page_size; 15860 queue->phba = phba; 15861 15862 for (x = 0; x < queue->page_count; x++) { 15863 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15864 dev_to_node(&phba->pcidev->dev)); 15865 if (!dmabuf) 15866 goto out_fail; 15867 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15868 hw_page_size, &dmabuf->phys, 15869 GFP_KERNEL); 15870 if (!dmabuf->virt) { 15871 kfree(dmabuf); 15872 goto out_fail; 15873 } 15874 dmabuf->buffer_tag = x; 15875 list_add_tail(&dmabuf->list, &queue->page_list); 15876 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15877 queue->q_pgs[x] = dmabuf->virt; 15878 } 15879 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15880 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15881 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15882 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15883 15884 /* notify_interval will be set during q creation */ 15885 15886 return queue; 15887 out_fail: 15888 lpfc_sli4_queue_free(queue); 15889 return NULL; 15890 } 15891 15892 /** 15893 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15894 * @phba: HBA structure that indicates port to create a queue on. 15895 * @pci_barset: PCI BAR set flag. 15896 * 15897 * This function shall perform iomap of the specified PCI BAR address to host 15898 * memory address if not already done so and return it. The returned host 15899 * memory address can be NULL. 15900 */ 15901 static void __iomem * 15902 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15903 { 15904 if (!phba->pcidev) 15905 return NULL; 15906 15907 switch (pci_barset) { 15908 case WQ_PCI_BAR_0_AND_1: 15909 return phba->pci_bar0_memmap_p; 15910 case WQ_PCI_BAR_2_AND_3: 15911 return phba->pci_bar2_memmap_p; 15912 case WQ_PCI_BAR_4_AND_5: 15913 return phba->pci_bar4_memmap_p; 15914 default: 15915 break; 15916 } 15917 return NULL; 15918 } 15919 15920 /** 15921 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15922 * @phba: HBA structure that EQs are on. 15923 * @startq: The starting EQ index to modify 15924 * @numq: The number of EQs (consecutive indexes) to modify 15925 * @usdelay: amount of delay 15926 * 15927 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15928 * is set either by writing to a register (if supported by the SLI Port) 15929 * or by mailbox command. The mailbox command allows several EQs to be 15930 * updated at once. 15931 * 15932 * The @phba struct is used to send a mailbox command to HBA. The @startq 15933 * is used to get the starting EQ index to change. The @numq value is 15934 * used to specify how many consecutive EQ indexes, starting at EQ index, 15935 * are to be changed. This function is asynchronous and will wait for any 15936 * mailbox commands to finish before returning. 15937 * 15938 * On success this function will return a zero. If unable to allocate 15939 * enough memory this function will return -ENOMEM. If a mailbox command 15940 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15941 * have had their delay multipler changed. 15942 **/ 15943 void 15944 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15945 uint32_t numq, uint32_t usdelay) 15946 { 15947 struct lpfc_mbx_modify_eq_delay *eq_delay; 15948 LPFC_MBOXQ_t *mbox; 15949 struct lpfc_queue *eq; 15950 int cnt = 0, rc, length; 15951 uint32_t shdr_status, shdr_add_status; 15952 uint32_t dmult; 15953 int qidx; 15954 union lpfc_sli4_cfg_shdr *shdr; 15955 15956 if (startq >= phba->cfg_irq_chann) 15957 return; 15958 15959 if (usdelay > 0xFFFF) { 15960 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15961 "6429 usdelay %d too large. Scaled down to " 15962 "0xFFFF.\n", usdelay); 15963 usdelay = 0xFFFF; 15964 } 15965 15966 /* set values by EQ_DELAY register if supported */ 15967 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15968 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15969 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15970 if (!eq) 15971 continue; 15972 15973 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15974 15975 if (++cnt >= numq) 15976 break; 15977 } 15978 return; 15979 } 15980 15981 /* Otherwise, set values by mailbox cmd */ 15982 15983 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15984 if (!mbox) { 15985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15986 "6428 Failed allocating mailbox cmd buffer." 15987 " EQ delay was not set.\n"); 15988 return; 15989 } 15990 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15991 sizeof(struct lpfc_sli4_cfg_mhdr)); 15992 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15993 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15994 length, LPFC_SLI4_MBX_EMBED); 15995 eq_delay = &mbox->u.mqe.un.eq_delay; 15996 15997 /* Calculate delay multiper from maximum interrupt per second */ 15998 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15999 if (dmult) 16000 dmult--; 16001 if (dmult > LPFC_DMULT_MAX) 16002 dmult = LPFC_DMULT_MAX; 16003 16004 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16005 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16006 if (!eq) 16007 continue; 16008 eq->q_mode = usdelay; 16009 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16010 eq_delay->u.request.eq[cnt].phase = 0; 16011 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16012 16013 if (++cnt >= numq) 16014 break; 16015 } 16016 eq_delay->u.request.num_eq = cnt; 16017 16018 mbox->vport = phba->pport; 16019 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16020 mbox->ctx_ndlp = NULL; 16021 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16022 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16023 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16024 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16025 if (shdr_status || shdr_add_status || rc) { 16026 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16027 "2512 MODIFY_EQ_DELAY mailbox failed with " 16028 "status x%x add_status x%x, mbx status x%x\n", 16029 shdr_status, shdr_add_status, rc); 16030 } 16031 mempool_free(mbox, phba->mbox_mem_pool); 16032 return; 16033 } 16034 16035 /** 16036 * lpfc_eq_create - Create an Event Queue on the HBA 16037 * @phba: HBA structure that indicates port to create a queue on. 16038 * @eq: The queue structure to use to create the event queue. 16039 * @imax: The maximum interrupt per second limit. 16040 * 16041 * This function creates an event queue, as detailed in @eq, on a port, 16042 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16043 * 16044 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16045 * is used to get the entry count and entry size that are necessary to 16046 * determine the number of pages to allocate and use for this queue. This 16047 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16048 * event queue. This function is asynchronous and will wait for the mailbox 16049 * command to finish before continuing. 16050 * 16051 * On success this function will return a zero. If unable to allocate enough 16052 * memory this function will return -ENOMEM. If the queue create mailbox command 16053 * fails this function will return -ENXIO. 16054 **/ 16055 int 16056 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16057 { 16058 struct lpfc_mbx_eq_create *eq_create; 16059 LPFC_MBOXQ_t *mbox; 16060 int rc, length, status = 0; 16061 struct lpfc_dmabuf *dmabuf; 16062 uint32_t shdr_status, shdr_add_status; 16063 union lpfc_sli4_cfg_shdr *shdr; 16064 uint16_t dmult; 16065 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16066 16067 /* sanity check on queue memory */ 16068 if (!eq) 16069 return -ENODEV; 16070 if (!phba->sli4_hba.pc_sli4_params.supported) 16071 hw_page_size = SLI4_PAGE_SIZE; 16072 16073 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16074 if (!mbox) 16075 return -ENOMEM; 16076 length = (sizeof(struct lpfc_mbx_eq_create) - 16077 sizeof(struct lpfc_sli4_cfg_mhdr)); 16078 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16079 LPFC_MBOX_OPCODE_EQ_CREATE, 16080 length, LPFC_SLI4_MBX_EMBED); 16081 eq_create = &mbox->u.mqe.un.eq_create; 16082 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16083 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16084 eq->page_count); 16085 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16086 LPFC_EQE_SIZE); 16087 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16088 16089 /* Use version 2 of CREATE_EQ if eqav is set */ 16090 if (phba->sli4_hba.pc_sli4_params.eqav) { 16091 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16092 LPFC_Q_CREATE_VERSION_2); 16093 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16094 phba->sli4_hba.pc_sli4_params.eqav); 16095 } 16096 16097 /* don't setup delay multiplier using EQ_CREATE */ 16098 dmult = 0; 16099 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16100 dmult); 16101 switch (eq->entry_count) { 16102 default: 16103 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16104 "0360 Unsupported EQ count. (%d)\n", 16105 eq->entry_count); 16106 if (eq->entry_count < 256) { 16107 status = -EINVAL; 16108 goto out; 16109 } 16110 fallthrough; /* otherwise default to smallest count */ 16111 case 256: 16112 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16113 LPFC_EQ_CNT_256); 16114 break; 16115 case 512: 16116 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16117 LPFC_EQ_CNT_512); 16118 break; 16119 case 1024: 16120 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16121 LPFC_EQ_CNT_1024); 16122 break; 16123 case 2048: 16124 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16125 LPFC_EQ_CNT_2048); 16126 break; 16127 case 4096: 16128 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16129 LPFC_EQ_CNT_4096); 16130 break; 16131 } 16132 list_for_each_entry(dmabuf, &eq->page_list, list) { 16133 memset(dmabuf->virt, 0, hw_page_size); 16134 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16135 putPaddrLow(dmabuf->phys); 16136 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16137 putPaddrHigh(dmabuf->phys); 16138 } 16139 mbox->vport = phba->pport; 16140 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16141 mbox->ctx_buf = NULL; 16142 mbox->ctx_ndlp = NULL; 16143 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16144 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16145 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16146 if (shdr_status || shdr_add_status || rc) { 16147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16148 "2500 EQ_CREATE mailbox failed with " 16149 "status x%x add_status x%x, mbx status x%x\n", 16150 shdr_status, shdr_add_status, rc); 16151 status = -ENXIO; 16152 } 16153 eq->type = LPFC_EQ; 16154 eq->subtype = LPFC_NONE; 16155 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16156 if (eq->queue_id == 0xFFFF) 16157 status = -ENXIO; 16158 eq->host_index = 0; 16159 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16160 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16161 out: 16162 mempool_free(mbox, phba->mbox_mem_pool); 16163 return status; 16164 } 16165 16166 /** 16167 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16168 * @irq: Interrupt number. 16169 * @dev_id: The device context pointer. 16170 * 16171 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16172 * threaded irq context. 16173 * 16174 * Returns 16175 * IRQ_HANDLED - interrupt is handled 16176 * IRQ_NONE - otherwise 16177 **/ 16178 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16179 { 16180 struct lpfc_hba *phba; 16181 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16182 struct lpfc_queue *fpeq; 16183 int ecount = 0; 16184 int hba_eqidx; 16185 struct lpfc_eq_intr_info *eqi; 16186 16187 /* Get the driver's phba structure from the dev_id */ 16188 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16189 phba = hba_eq_hdl->phba; 16190 hba_eqidx = hba_eq_hdl->idx; 16191 16192 if (unlikely(!phba)) 16193 return IRQ_NONE; 16194 if (unlikely(!phba->sli4_hba.hdwq)) 16195 return IRQ_NONE; 16196 16197 /* Get to the EQ struct associated with this vector */ 16198 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16199 if (unlikely(!fpeq)) 16200 return IRQ_NONE; 16201 16202 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16203 eqi->icnt++; 16204 16205 fpeq->last_cpu = raw_smp_processor_id(); 16206 16207 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16208 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16209 phba->cfg_auto_imax && 16210 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16211 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16212 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16213 16214 /* process and rearm the EQ */ 16215 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16216 LPFC_THREADED_IRQ); 16217 16218 if (unlikely(ecount == 0)) { 16219 fpeq->EQ_no_entry++; 16220 if (phba->intr_type == MSIX) 16221 /* MSI-X treated interrupt served as no EQ share INT */ 16222 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16223 "3358 MSI-X interrupt with no EQE\n"); 16224 else 16225 /* Non MSI-X treated on interrupt as EQ share INT */ 16226 return IRQ_NONE; 16227 } 16228 return IRQ_HANDLED; 16229 } 16230 16231 /** 16232 * lpfc_cq_create - Create a Completion Queue on the HBA 16233 * @phba: HBA structure that indicates port to create a queue on. 16234 * @cq: The queue structure to use to create the completion queue. 16235 * @eq: The event queue to bind this completion queue to. 16236 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16237 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16238 * 16239 * This function creates a completion queue, as detailed in @wq, on a port, 16240 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16241 * 16242 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16243 * is used to get the entry count and entry size that are necessary to 16244 * determine the number of pages to allocate and use for this queue. The @eq 16245 * is used to indicate which event queue to bind this completion queue to. This 16246 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16247 * completion queue. This function is asynchronous and will wait for the mailbox 16248 * command to finish before continuing. 16249 * 16250 * On success this function will return a zero. If unable to allocate enough 16251 * memory this function will return -ENOMEM. If the queue create mailbox command 16252 * fails this function will return -ENXIO. 16253 **/ 16254 int 16255 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16256 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16257 { 16258 struct lpfc_mbx_cq_create *cq_create; 16259 struct lpfc_dmabuf *dmabuf; 16260 LPFC_MBOXQ_t *mbox; 16261 int rc, length, status = 0; 16262 uint32_t shdr_status, shdr_add_status; 16263 union lpfc_sli4_cfg_shdr *shdr; 16264 16265 /* sanity check on queue memory */ 16266 if (!cq || !eq) 16267 return -ENODEV; 16268 16269 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16270 if (!mbox) 16271 return -ENOMEM; 16272 length = (sizeof(struct lpfc_mbx_cq_create) - 16273 sizeof(struct lpfc_sli4_cfg_mhdr)); 16274 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16275 LPFC_MBOX_OPCODE_CQ_CREATE, 16276 length, LPFC_SLI4_MBX_EMBED); 16277 cq_create = &mbox->u.mqe.un.cq_create; 16278 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16279 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16280 cq->page_count); 16281 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16282 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16283 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16284 phba->sli4_hba.pc_sli4_params.cqv); 16285 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16286 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16287 (cq->page_size / SLI4_PAGE_SIZE)); 16288 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16289 eq->queue_id); 16290 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16291 phba->sli4_hba.pc_sli4_params.cqav); 16292 } else { 16293 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16294 eq->queue_id); 16295 } 16296 switch (cq->entry_count) { 16297 case 2048: 16298 case 4096: 16299 if (phba->sli4_hba.pc_sli4_params.cqv == 16300 LPFC_Q_CREATE_VERSION_2) { 16301 cq_create->u.request.context.lpfc_cq_context_count = 16302 cq->entry_count; 16303 bf_set(lpfc_cq_context_count, 16304 &cq_create->u.request.context, 16305 LPFC_CQ_CNT_WORD7); 16306 break; 16307 } 16308 fallthrough; 16309 default: 16310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16311 "0361 Unsupported CQ count: " 16312 "entry cnt %d sz %d pg cnt %d\n", 16313 cq->entry_count, cq->entry_size, 16314 cq->page_count); 16315 if (cq->entry_count < 256) { 16316 status = -EINVAL; 16317 goto out; 16318 } 16319 fallthrough; /* otherwise default to smallest count */ 16320 case 256: 16321 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16322 LPFC_CQ_CNT_256); 16323 break; 16324 case 512: 16325 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16326 LPFC_CQ_CNT_512); 16327 break; 16328 case 1024: 16329 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16330 LPFC_CQ_CNT_1024); 16331 break; 16332 } 16333 list_for_each_entry(dmabuf, &cq->page_list, list) { 16334 memset(dmabuf->virt, 0, cq->page_size); 16335 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16336 putPaddrLow(dmabuf->phys); 16337 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16338 putPaddrHigh(dmabuf->phys); 16339 } 16340 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16341 16342 /* The IOCTL status is embedded in the mailbox subheader. */ 16343 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16344 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16345 if (shdr_status || shdr_add_status || rc) { 16346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16347 "2501 CQ_CREATE mailbox failed with " 16348 "status x%x add_status x%x, mbx status x%x\n", 16349 shdr_status, shdr_add_status, rc); 16350 status = -ENXIO; 16351 goto out; 16352 } 16353 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16354 if (cq->queue_id == 0xFFFF) { 16355 status = -ENXIO; 16356 goto out; 16357 } 16358 /* link the cq onto the parent eq child list */ 16359 list_add_tail(&cq->list, &eq->child_list); 16360 /* Set up completion queue's type and subtype */ 16361 cq->type = type; 16362 cq->subtype = subtype; 16363 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16364 cq->assoc_qid = eq->queue_id; 16365 cq->assoc_qp = eq; 16366 cq->host_index = 0; 16367 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16368 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16369 16370 if (cq->queue_id > phba->sli4_hba.cq_max) 16371 phba->sli4_hba.cq_max = cq->queue_id; 16372 out: 16373 mempool_free(mbox, phba->mbox_mem_pool); 16374 return status; 16375 } 16376 16377 /** 16378 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16379 * @phba: HBA structure that indicates port to create a queue on. 16380 * @cqp: The queue structure array to use to create the completion queues. 16381 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16382 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16383 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16384 * 16385 * This function creates a set of completion queue, s to support MRQ 16386 * as detailed in @cqp, on a port, 16387 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16388 * 16389 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16390 * is used to get the entry count and entry size that are necessary to 16391 * determine the number of pages to allocate and use for this queue. The @eq 16392 * is used to indicate which event queue to bind this completion queue to. This 16393 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16394 * completion queue. This function is asynchronous and will wait for the mailbox 16395 * command to finish before continuing. 16396 * 16397 * On success this function will return a zero. If unable to allocate enough 16398 * memory this function will return -ENOMEM. If the queue create mailbox command 16399 * fails this function will return -ENXIO. 16400 **/ 16401 int 16402 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16403 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16404 uint32_t subtype) 16405 { 16406 struct lpfc_queue *cq; 16407 struct lpfc_queue *eq; 16408 struct lpfc_mbx_cq_create_set *cq_set; 16409 struct lpfc_dmabuf *dmabuf; 16410 LPFC_MBOXQ_t *mbox; 16411 int rc, length, alloclen, status = 0; 16412 int cnt, idx, numcq, page_idx = 0; 16413 uint32_t shdr_status, shdr_add_status; 16414 union lpfc_sli4_cfg_shdr *shdr; 16415 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16416 16417 /* sanity check on queue memory */ 16418 numcq = phba->cfg_nvmet_mrq; 16419 if (!cqp || !hdwq || !numcq) 16420 return -ENODEV; 16421 16422 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16423 if (!mbox) 16424 return -ENOMEM; 16425 16426 length = sizeof(struct lpfc_mbx_cq_create_set); 16427 length += ((numcq * cqp[0]->page_count) * 16428 sizeof(struct dma_address)); 16429 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16430 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16431 LPFC_SLI4_MBX_NEMBED); 16432 if (alloclen < length) { 16433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16434 "3098 Allocated DMA memory size (%d) is " 16435 "less than the requested DMA memory size " 16436 "(%d)\n", alloclen, length); 16437 status = -ENOMEM; 16438 goto out; 16439 } 16440 cq_set = mbox->sge_array->addr[0]; 16441 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16442 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16443 16444 for (idx = 0; idx < numcq; idx++) { 16445 cq = cqp[idx]; 16446 eq = hdwq[idx].hba_eq; 16447 if (!cq || !eq) { 16448 status = -ENOMEM; 16449 goto out; 16450 } 16451 if (!phba->sli4_hba.pc_sli4_params.supported) 16452 hw_page_size = cq->page_size; 16453 16454 switch (idx) { 16455 case 0: 16456 bf_set(lpfc_mbx_cq_create_set_page_size, 16457 &cq_set->u.request, 16458 (hw_page_size / SLI4_PAGE_SIZE)); 16459 bf_set(lpfc_mbx_cq_create_set_num_pages, 16460 &cq_set->u.request, cq->page_count); 16461 bf_set(lpfc_mbx_cq_create_set_evt, 16462 &cq_set->u.request, 1); 16463 bf_set(lpfc_mbx_cq_create_set_valid, 16464 &cq_set->u.request, 1); 16465 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16466 &cq_set->u.request, 0); 16467 bf_set(lpfc_mbx_cq_create_set_num_cq, 16468 &cq_set->u.request, numcq); 16469 bf_set(lpfc_mbx_cq_create_set_autovalid, 16470 &cq_set->u.request, 16471 phba->sli4_hba.pc_sli4_params.cqav); 16472 switch (cq->entry_count) { 16473 case 2048: 16474 case 4096: 16475 if (phba->sli4_hba.pc_sli4_params.cqv == 16476 LPFC_Q_CREATE_VERSION_2) { 16477 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16478 &cq_set->u.request, 16479 cq->entry_count); 16480 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16481 &cq_set->u.request, 16482 LPFC_CQ_CNT_WORD7); 16483 break; 16484 } 16485 fallthrough; 16486 default: 16487 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16488 "3118 Bad CQ count. (%d)\n", 16489 cq->entry_count); 16490 if (cq->entry_count < 256) { 16491 status = -EINVAL; 16492 goto out; 16493 } 16494 fallthrough; /* otherwise default to smallest */ 16495 case 256: 16496 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16497 &cq_set->u.request, LPFC_CQ_CNT_256); 16498 break; 16499 case 512: 16500 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16501 &cq_set->u.request, LPFC_CQ_CNT_512); 16502 break; 16503 case 1024: 16504 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16505 &cq_set->u.request, LPFC_CQ_CNT_1024); 16506 break; 16507 } 16508 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16509 &cq_set->u.request, eq->queue_id); 16510 break; 16511 case 1: 16512 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16513 &cq_set->u.request, eq->queue_id); 16514 break; 16515 case 2: 16516 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16517 &cq_set->u.request, eq->queue_id); 16518 break; 16519 case 3: 16520 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16521 &cq_set->u.request, eq->queue_id); 16522 break; 16523 case 4: 16524 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16525 &cq_set->u.request, eq->queue_id); 16526 break; 16527 case 5: 16528 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16529 &cq_set->u.request, eq->queue_id); 16530 break; 16531 case 6: 16532 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16533 &cq_set->u.request, eq->queue_id); 16534 break; 16535 case 7: 16536 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16537 &cq_set->u.request, eq->queue_id); 16538 break; 16539 case 8: 16540 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16541 &cq_set->u.request, eq->queue_id); 16542 break; 16543 case 9: 16544 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16545 &cq_set->u.request, eq->queue_id); 16546 break; 16547 case 10: 16548 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16549 &cq_set->u.request, eq->queue_id); 16550 break; 16551 case 11: 16552 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16553 &cq_set->u.request, eq->queue_id); 16554 break; 16555 case 12: 16556 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16557 &cq_set->u.request, eq->queue_id); 16558 break; 16559 case 13: 16560 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16561 &cq_set->u.request, eq->queue_id); 16562 break; 16563 case 14: 16564 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16565 &cq_set->u.request, eq->queue_id); 16566 break; 16567 case 15: 16568 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16569 &cq_set->u.request, eq->queue_id); 16570 break; 16571 } 16572 16573 /* link the cq onto the parent eq child list */ 16574 list_add_tail(&cq->list, &eq->child_list); 16575 /* Set up completion queue's type and subtype */ 16576 cq->type = type; 16577 cq->subtype = subtype; 16578 cq->assoc_qid = eq->queue_id; 16579 cq->assoc_qp = eq; 16580 cq->host_index = 0; 16581 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16582 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16583 cq->entry_count); 16584 cq->chann = idx; 16585 16586 rc = 0; 16587 list_for_each_entry(dmabuf, &cq->page_list, list) { 16588 memset(dmabuf->virt, 0, hw_page_size); 16589 cnt = page_idx + dmabuf->buffer_tag; 16590 cq_set->u.request.page[cnt].addr_lo = 16591 putPaddrLow(dmabuf->phys); 16592 cq_set->u.request.page[cnt].addr_hi = 16593 putPaddrHigh(dmabuf->phys); 16594 rc++; 16595 } 16596 page_idx += rc; 16597 } 16598 16599 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16600 16601 /* The IOCTL status is embedded in the mailbox subheader. */ 16602 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16603 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16604 if (shdr_status || shdr_add_status || rc) { 16605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16606 "3119 CQ_CREATE_SET mailbox failed with " 16607 "status x%x add_status x%x, mbx status x%x\n", 16608 shdr_status, shdr_add_status, rc); 16609 status = -ENXIO; 16610 goto out; 16611 } 16612 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16613 if (rc == 0xFFFF) { 16614 status = -ENXIO; 16615 goto out; 16616 } 16617 16618 for (idx = 0; idx < numcq; idx++) { 16619 cq = cqp[idx]; 16620 cq->queue_id = rc + idx; 16621 if (cq->queue_id > phba->sli4_hba.cq_max) 16622 phba->sli4_hba.cq_max = cq->queue_id; 16623 } 16624 16625 out: 16626 lpfc_sli4_mbox_cmd_free(phba, mbox); 16627 return status; 16628 } 16629 16630 /** 16631 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16632 * @phba: HBA structure that indicates port to create a queue on. 16633 * @mq: The queue structure to use to create the mailbox queue. 16634 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16635 * @cq: The completion queue to associate with this cq. 16636 * 16637 * This function provides failback (fb) functionality when the 16638 * mq_create_ext fails on older FW generations. It's purpose is identical 16639 * to mq_create_ext otherwise. 16640 * 16641 * This routine cannot fail as all attributes were previously accessed and 16642 * initialized in mq_create_ext. 16643 **/ 16644 static void 16645 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16646 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16647 { 16648 struct lpfc_mbx_mq_create *mq_create; 16649 struct lpfc_dmabuf *dmabuf; 16650 int length; 16651 16652 length = (sizeof(struct lpfc_mbx_mq_create) - 16653 sizeof(struct lpfc_sli4_cfg_mhdr)); 16654 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16655 LPFC_MBOX_OPCODE_MQ_CREATE, 16656 length, LPFC_SLI4_MBX_EMBED); 16657 mq_create = &mbox->u.mqe.un.mq_create; 16658 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16659 mq->page_count); 16660 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16661 cq->queue_id); 16662 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16663 switch (mq->entry_count) { 16664 case 16: 16665 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16666 LPFC_MQ_RING_SIZE_16); 16667 break; 16668 case 32: 16669 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16670 LPFC_MQ_RING_SIZE_32); 16671 break; 16672 case 64: 16673 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16674 LPFC_MQ_RING_SIZE_64); 16675 break; 16676 case 128: 16677 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16678 LPFC_MQ_RING_SIZE_128); 16679 break; 16680 } 16681 list_for_each_entry(dmabuf, &mq->page_list, list) { 16682 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16683 putPaddrLow(dmabuf->phys); 16684 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16685 putPaddrHigh(dmabuf->phys); 16686 } 16687 } 16688 16689 /** 16690 * lpfc_mq_create - Create a mailbox Queue on the HBA 16691 * @phba: HBA structure that indicates port to create a queue on. 16692 * @mq: The queue structure to use to create the mailbox queue. 16693 * @cq: The completion queue to associate with this cq. 16694 * @subtype: The queue's subtype. 16695 * 16696 * This function creates a mailbox queue, as detailed in @mq, on a port, 16697 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16698 * 16699 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16700 * is used to get the entry count and entry size that are necessary to 16701 * determine the number of pages to allocate and use for this queue. This 16702 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16703 * mailbox queue. This function is asynchronous and will wait for the mailbox 16704 * command to finish before continuing. 16705 * 16706 * On success this function will return a zero. If unable to allocate enough 16707 * memory this function will return -ENOMEM. If the queue create mailbox command 16708 * fails this function will return -ENXIO. 16709 **/ 16710 int32_t 16711 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16712 struct lpfc_queue *cq, uint32_t subtype) 16713 { 16714 struct lpfc_mbx_mq_create *mq_create; 16715 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16716 struct lpfc_dmabuf *dmabuf; 16717 LPFC_MBOXQ_t *mbox; 16718 int rc, length, status = 0; 16719 uint32_t shdr_status, shdr_add_status; 16720 union lpfc_sli4_cfg_shdr *shdr; 16721 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16722 16723 /* sanity check on queue memory */ 16724 if (!mq || !cq) 16725 return -ENODEV; 16726 if (!phba->sli4_hba.pc_sli4_params.supported) 16727 hw_page_size = SLI4_PAGE_SIZE; 16728 16729 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16730 if (!mbox) 16731 return -ENOMEM; 16732 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16733 sizeof(struct lpfc_sli4_cfg_mhdr)); 16734 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16735 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16736 length, LPFC_SLI4_MBX_EMBED); 16737 16738 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16739 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16740 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16741 &mq_create_ext->u.request, mq->page_count); 16742 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16743 &mq_create_ext->u.request, 1); 16744 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16745 &mq_create_ext->u.request, 1); 16746 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16747 &mq_create_ext->u.request, 1); 16748 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16749 &mq_create_ext->u.request, 1); 16750 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16751 &mq_create_ext->u.request, 1); 16752 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16753 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16754 phba->sli4_hba.pc_sli4_params.mqv); 16755 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16756 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16757 cq->queue_id); 16758 else 16759 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16760 cq->queue_id); 16761 switch (mq->entry_count) { 16762 default: 16763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16764 "0362 Unsupported MQ count. (%d)\n", 16765 mq->entry_count); 16766 if (mq->entry_count < 16) { 16767 status = -EINVAL; 16768 goto out; 16769 } 16770 fallthrough; /* otherwise default to smallest count */ 16771 case 16: 16772 bf_set(lpfc_mq_context_ring_size, 16773 &mq_create_ext->u.request.context, 16774 LPFC_MQ_RING_SIZE_16); 16775 break; 16776 case 32: 16777 bf_set(lpfc_mq_context_ring_size, 16778 &mq_create_ext->u.request.context, 16779 LPFC_MQ_RING_SIZE_32); 16780 break; 16781 case 64: 16782 bf_set(lpfc_mq_context_ring_size, 16783 &mq_create_ext->u.request.context, 16784 LPFC_MQ_RING_SIZE_64); 16785 break; 16786 case 128: 16787 bf_set(lpfc_mq_context_ring_size, 16788 &mq_create_ext->u.request.context, 16789 LPFC_MQ_RING_SIZE_128); 16790 break; 16791 } 16792 list_for_each_entry(dmabuf, &mq->page_list, list) { 16793 memset(dmabuf->virt, 0, hw_page_size); 16794 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16795 putPaddrLow(dmabuf->phys); 16796 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16797 putPaddrHigh(dmabuf->phys); 16798 } 16799 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16800 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16801 &mq_create_ext->u.response); 16802 if (rc != MBX_SUCCESS) { 16803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16804 "2795 MQ_CREATE_EXT failed with " 16805 "status x%x. Failback to MQ_CREATE.\n", 16806 rc); 16807 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16808 mq_create = &mbox->u.mqe.un.mq_create; 16809 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16810 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16811 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16812 &mq_create->u.response); 16813 } 16814 16815 /* The IOCTL status is embedded in the mailbox subheader. */ 16816 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16817 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16818 if (shdr_status || shdr_add_status || rc) { 16819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16820 "2502 MQ_CREATE mailbox failed with " 16821 "status x%x add_status x%x, mbx status x%x\n", 16822 shdr_status, shdr_add_status, rc); 16823 status = -ENXIO; 16824 goto out; 16825 } 16826 if (mq->queue_id == 0xFFFF) { 16827 status = -ENXIO; 16828 goto out; 16829 } 16830 mq->type = LPFC_MQ; 16831 mq->assoc_qid = cq->queue_id; 16832 mq->subtype = subtype; 16833 mq->host_index = 0; 16834 mq->hba_index = 0; 16835 16836 /* link the mq onto the parent cq child list */ 16837 list_add_tail(&mq->list, &cq->child_list); 16838 out: 16839 mempool_free(mbox, phba->mbox_mem_pool); 16840 return status; 16841 } 16842 16843 /** 16844 * lpfc_wq_create - Create a Work Queue on the HBA 16845 * @phba: HBA structure that indicates port to create a queue on. 16846 * @wq: The queue structure to use to create the work queue. 16847 * @cq: The completion queue to bind this work queue to. 16848 * @subtype: The subtype of the work queue indicating its functionality. 16849 * 16850 * This function creates a work queue, as detailed in @wq, on a port, described 16851 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16852 * 16853 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16854 * is used to get the entry count and entry size that are necessary to 16855 * determine the number of pages to allocate and use for this queue. The @cq 16856 * is used to indicate which completion queue to bind this work queue to. This 16857 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16858 * work queue. This function is asynchronous and will wait for the mailbox 16859 * command to finish before continuing. 16860 * 16861 * On success this function will return a zero. If unable to allocate enough 16862 * memory this function will return -ENOMEM. If the queue create mailbox command 16863 * fails this function will return -ENXIO. 16864 **/ 16865 int 16866 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16867 struct lpfc_queue *cq, uint32_t subtype) 16868 { 16869 struct lpfc_mbx_wq_create *wq_create; 16870 struct lpfc_dmabuf *dmabuf; 16871 LPFC_MBOXQ_t *mbox; 16872 int rc, length, status = 0; 16873 uint32_t shdr_status, shdr_add_status; 16874 union lpfc_sli4_cfg_shdr *shdr; 16875 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16876 struct dma_address *page; 16877 void __iomem *bar_memmap_p; 16878 uint32_t db_offset; 16879 uint16_t pci_barset; 16880 uint8_t dpp_barset; 16881 uint32_t dpp_offset; 16882 uint8_t wq_create_version; 16883 #ifdef CONFIG_X86 16884 unsigned long pg_addr; 16885 #endif 16886 16887 /* sanity check on queue memory */ 16888 if (!wq || !cq) 16889 return -ENODEV; 16890 if (!phba->sli4_hba.pc_sli4_params.supported) 16891 hw_page_size = wq->page_size; 16892 16893 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16894 if (!mbox) 16895 return -ENOMEM; 16896 length = (sizeof(struct lpfc_mbx_wq_create) - 16897 sizeof(struct lpfc_sli4_cfg_mhdr)); 16898 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16899 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16900 length, LPFC_SLI4_MBX_EMBED); 16901 wq_create = &mbox->u.mqe.un.wq_create; 16902 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16903 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16904 wq->page_count); 16905 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16906 cq->queue_id); 16907 16908 /* wqv is the earliest version supported, NOT the latest */ 16909 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16910 phba->sli4_hba.pc_sli4_params.wqv); 16911 16912 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16913 (wq->page_size > SLI4_PAGE_SIZE)) 16914 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16915 else 16916 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16917 16918 switch (wq_create_version) { 16919 case LPFC_Q_CREATE_VERSION_1: 16920 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16921 wq->entry_count); 16922 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16923 LPFC_Q_CREATE_VERSION_1); 16924 16925 switch (wq->entry_size) { 16926 default: 16927 case 64: 16928 bf_set(lpfc_mbx_wq_create_wqe_size, 16929 &wq_create->u.request_1, 16930 LPFC_WQ_WQE_SIZE_64); 16931 break; 16932 case 128: 16933 bf_set(lpfc_mbx_wq_create_wqe_size, 16934 &wq_create->u.request_1, 16935 LPFC_WQ_WQE_SIZE_128); 16936 break; 16937 } 16938 /* Request DPP by default */ 16939 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16940 bf_set(lpfc_mbx_wq_create_page_size, 16941 &wq_create->u.request_1, 16942 (wq->page_size / SLI4_PAGE_SIZE)); 16943 page = wq_create->u.request_1.page; 16944 break; 16945 default: 16946 page = wq_create->u.request.page; 16947 break; 16948 } 16949 16950 list_for_each_entry(dmabuf, &wq->page_list, list) { 16951 memset(dmabuf->virt, 0, hw_page_size); 16952 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16953 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16954 } 16955 16956 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16957 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16958 16959 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16960 /* The IOCTL status is embedded in the mailbox subheader. */ 16961 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16962 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16963 if (shdr_status || shdr_add_status || rc) { 16964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16965 "2503 WQ_CREATE mailbox failed with " 16966 "status x%x add_status x%x, mbx status x%x\n", 16967 shdr_status, shdr_add_status, rc); 16968 status = -ENXIO; 16969 goto out; 16970 } 16971 16972 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16973 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16974 &wq_create->u.response); 16975 else 16976 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16977 &wq_create->u.response_1); 16978 16979 if (wq->queue_id == 0xFFFF) { 16980 status = -ENXIO; 16981 goto out; 16982 } 16983 16984 wq->db_format = LPFC_DB_LIST_FORMAT; 16985 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16986 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16987 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16988 &wq_create->u.response); 16989 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16990 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16991 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16992 "3265 WQ[%d] doorbell format " 16993 "not supported: x%x\n", 16994 wq->queue_id, wq->db_format); 16995 status = -EINVAL; 16996 goto out; 16997 } 16998 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16999 &wq_create->u.response); 17000 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17001 pci_barset); 17002 if (!bar_memmap_p) { 17003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17004 "3263 WQ[%d] failed to memmap " 17005 "pci barset:x%x\n", 17006 wq->queue_id, pci_barset); 17007 status = -ENOMEM; 17008 goto out; 17009 } 17010 db_offset = wq_create->u.response.doorbell_offset; 17011 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17012 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17013 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17014 "3252 WQ[%d] doorbell offset " 17015 "not supported: x%x\n", 17016 wq->queue_id, db_offset); 17017 status = -EINVAL; 17018 goto out; 17019 } 17020 wq->db_regaddr = bar_memmap_p + db_offset; 17021 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17022 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17023 "format:x%x\n", wq->queue_id, 17024 pci_barset, db_offset, wq->db_format); 17025 } else 17026 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17027 } else { 17028 /* Check if DPP was honored by the firmware */ 17029 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17030 &wq_create->u.response_1); 17031 if (wq->dpp_enable) { 17032 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17033 &wq_create->u.response_1); 17034 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17035 pci_barset); 17036 if (!bar_memmap_p) { 17037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17038 "3267 WQ[%d] failed to memmap " 17039 "pci barset:x%x\n", 17040 wq->queue_id, pci_barset); 17041 status = -ENOMEM; 17042 goto out; 17043 } 17044 db_offset = wq_create->u.response_1.doorbell_offset; 17045 wq->db_regaddr = bar_memmap_p + db_offset; 17046 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17047 &wq_create->u.response_1); 17048 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17049 &wq_create->u.response_1); 17050 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17051 dpp_barset); 17052 if (!bar_memmap_p) { 17053 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17054 "3268 WQ[%d] failed to memmap " 17055 "pci barset:x%x\n", 17056 wq->queue_id, dpp_barset); 17057 status = -ENOMEM; 17058 goto out; 17059 } 17060 dpp_offset = wq_create->u.response_1.dpp_offset; 17061 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17062 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17063 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17064 "dpp_id:x%x dpp_barset:x%x " 17065 "dpp_offset:x%x\n", 17066 wq->queue_id, pci_barset, db_offset, 17067 wq->dpp_id, dpp_barset, dpp_offset); 17068 17069 #ifdef CONFIG_X86 17070 /* Enable combined writes for DPP aperture */ 17071 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17072 rc = set_memory_wc(pg_addr, 1); 17073 if (rc) { 17074 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17075 "3272 Cannot setup Combined " 17076 "Write on WQ[%d] - disable DPP\n", 17077 wq->queue_id); 17078 phba->cfg_enable_dpp = 0; 17079 } 17080 #else 17081 phba->cfg_enable_dpp = 0; 17082 #endif 17083 } else 17084 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17085 } 17086 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17087 if (wq->pring == NULL) { 17088 status = -ENOMEM; 17089 goto out; 17090 } 17091 wq->type = LPFC_WQ; 17092 wq->assoc_qid = cq->queue_id; 17093 wq->subtype = subtype; 17094 wq->host_index = 0; 17095 wq->hba_index = 0; 17096 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17097 17098 /* link the wq onto the parent cq child list */ 17099 list_add_tail(&wq->list, &cq->child_list); 17100 out: 17101 mempool_free(mbox, phba->mbox_mem_pool); 17102 return status; 17103 } 17104 17105 /** 17106 * lpfc_rq_create - Create a Receive Queue on the HBA 17107 * @phba: HBA structure that indicates port to create a queue on. 17108 * @hrq: The queue structure to use to create the header receive queue. 17109 * @drq: The queue structure to use to create the data receive queue. 17110 * @cq: The completion queue to bind this work queue to. 17111 * @subtype: The subtype of the work queue indicating its functionality. 17112 * 17113 * This function creates a receive buffer queue pair , as detailed in @hrq and 17114 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17115 * to the HBA. 17116 * 17117 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17118 * struct is used to get the entry count that is necessary to determine the 17119 * number of pages to use for this queue. The @cq is used to indicate which 17120 * completion queue to bind received buffers that are posted to these queues to. 17121 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17122 * receive queue pair. This function is asynchronous and will wait for the 17123 * mailbox command to finish before continuing. 17124 * 17125 * On success this function will return a zero. If unable to allocate enough 17126 * memory this function will return -ENOMEM. If the queue create mailbox command 17127 * fails this function will return -ENXIO. 17128 **/ 17129 int 17130 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17131 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17132 { 17133 struct lpfc_mbx_rq_create *rq_create; 17134 struct lpfc_dmabuf *dmabuf; 17135 LPFC_MBOXQ_t *mbox; 17136 int rc, length, status = 0; 17137 uint32_t shdr_status, shdr_add_status; 17138 union lpfc_sli4_cfg_shdr *shdr; 17139 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17140 void __iomem *bar_memmap_p; 17141 uint32_t db_offset; 17142 uint16_t pci_barset; 17143 17144 /* sanity check on queue memory */ 17145 if (!hrq || !drq || !cq) 17146 return -ENODEV; 17147 if (!phba->sli4_hba.pc_sli4_params.supported) 17148 hw_page_size = SLI4_PAGE_SIZE; 17149 17150 if (hrq->entry_count != drq->entry_count) 17151 return -EINVAL; 17152 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17153 if (!mbox) 17154 return -ENOMEM; 17155 length = (sizeof(struct lpfc_mbx_rq_create) - 17156 sizeof(struct lpfc_sli4_cfg_mhdr)); 17157 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17158 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17159 length, LPFC_SLI4_MBX_EMBED); 17160 rq_create = &mbox->u.mqe.un.rq_create; 17161 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17162 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17163 phba->sli4_hba.pc_sli4_params.rqv); 17164 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17165 bf_set(lpfc_rq_context_rqe_count_1, 17166 &rq_create->u.request.context, 17167 hrq->entry_count); 17168 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17169 bf_set(lpfc_rq_context_rqe_size, 17170 &rq_create->u.request.context, 17171 LPFC_RQE_SIZE_8); 17172 bf_set(lpfc_rq_context_page_size, 17173 &rq_create->u.request.context, 17174 LPFC_RQ_PAGE_SIZE_4096); 17175 } else { 17176 switch (hrq->entry_count) { 17177 default: 17178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17179 "2535 Unsupported RQ count. (%d)\n", 17180 hrq->entry_count); 17181 if (hrq->entry_count < 512) { 17182 status = -EINVAL; 17183 goto out; 17184 } 17185 fallthrough; /* otherwise default to smallest count */ 17186 case 512: 17187 bf_set(lpfc_rq_context_rqe_count, 17188 &rq_create->u.request.context, 17189 LPFC_RQ_RING_SIZE_512); 17190 break; 17191 case 1024: 17192 bf_set(lpfc_rq_context_rqe_count, 17193 &rq_create->u.request.context, 17194 LPFC_RQ_RING_SIZE_1024); 17195 break; 17196 case 2048: 17197 bf_set(lpfc_rq_context_rqe_count, 17198 &rq_create->u.request.context, 17199 LPFC_RQ_RING_SIZE_2048); 17200 break; 17201 case 4096: 17202 bf_set(lpfc_rq_context_rqe_count, 17203 &rq_create->u.request.context, 17204 LPFC_RQ_RING_SIZE_4096); 17205 break; 17206 } 17207 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17208 LPFC_HDR_BUF_SIZE); 17209 } 17210 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17211 cq->queue_id); 17212 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17213 hrq->page_count); 17214 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17215 memset(dmabuf->virt, 0, hw_page_size); 17216 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17217 putPaddrLow(dmabuf->phys); 17218 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17219 putPaddrHigh(dmabuf->phys); 17220 } 17221 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17222 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17223 17224 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17225 /* The IOCTL status is embedded in the mailbox subheader. */ 17226 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17227 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17228 if (shdr_status || shdr_add_status || rc) { 17229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17230 "2504 RQ_CREATE mailbox failed with " 17231 "status x%x add_status x%x, mbx status x%x\n", 17232 shdr_status, shdr_add_status, rc); 17233 status = -ENXIO; 17234 goto out; 17235 } 17236 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17237 if (hrq->queue_id == 0xFFFF) { 17238 status = -ENXIO; 17239 goto out; 17240 } 17241 17242 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17243 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17244 &rq_create->u.response); 17245 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17246 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17248 "3262 RQ [%d] doorbell format not " 17249 "supported: x%x\n", hrq->queue_id, 17250 hrq->db_format); 17251 status = -EINVAL; 17252 goto out; 17253 } 17254 17255 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17256 &rq_create->u.response); 17257 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17258 if (!bar_memmap_p) { 17259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17260 "3269 RQ[%d] failed to memmap pci " 17261 "barset:x%x\n", hrq->queue_id, 17262 pci_barset); 17263 status = -ENOMEM; 17264 goto out; 17265 } 17266 17267 db_offset = rq_create->u.response.doorbell_offset; 17268 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17269 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17271 "3270 RQ[%d] doorbell offset not " 17272 "supported: x%x\n", hrq->queue_id, 17273 db_offset); 17274 status = -EINVAL; 17275 goto out; 17276 } 17277 hrq->db_regaddr = bar_memmap_p + db_offset; 17278 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17279 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17280 "format:x%x\n", hrq->queue_id, pci_barset, 17281 db_offset, hrq->db_format); 17282 } else { 17283 hrq->db_format = LPFC_DB_RING_FORMAT; 17284 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17285 } 17286 hrq->type = LPFC_HRQ; 17287 hrq->assoc_qid = cq->queue_id; 17288 hrq->subtype = subtype; 17289 hrq->host_index = 0; 17290 hrq->hba_index = 0; 17291 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17292 17293 /* now create the data queue */ 17294 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17295 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17296 length, LPFC_SLI4_MBX_EMBED); 17297 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17298 phba->sli4_hba.pc_sli4_params.rqv); 17299 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17300 bf_set(lpfc_rq_context_rqe_count_1, 17301 &rq_create->u.request.context, hrq->entry_count); 17302 if (subtype == LPFC_NVMET) 17303 rq_create->u.request.context.buffer_size = 17304 LPFC_NVMET_DATA_BUF_SIZE; 17305 else 17306 rq_create->u.request.context.buffer_size = 17307 LPFC_DATA_BUF_SIZE; 17308 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17309 LPFC_RQE_SIZE_8); 17310 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17311 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17312 } else { 17313 switch (drq->entry_count) { 17314 default: 17315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17316 "2536 Unsupported RQ count. (%d)\n", 17317 drq->entry_count); 17318 if (drq->entry_count < 512) { 17319 status = -EINVAL; 17320 goto out; 17321 } 17322 fallthrough; /* otherwise default to smallest count */ 17323 case 512: 17324 bf_set(lpfc_rq_context_rqe_count, 17325 &rq_create->u.request.context, 17326 LPFC_RQ_RING_SIZE_512); 17327 break; 17328 case 1024: 17329 bf_set(lpfc_rq_context_rqe_count, 17330 &rq_create->u.request.context, 17331 LPFC_RQ_RING_SIZE_1024); 17332 break; 17333 case 2048: 17334 bf_set(lpfc_rq_context_rqe_count, 17335 &rq_create->u.request.context, 17336 LPFC_RQ_RING_SIZE_2048); 17337 break; 17338 case 4096: 17339 bf_set(lpfc_rq_context_rqe_count, 17340 &rq_create->u.request.context, 17341 LPFC_RQ_RING_SIZE_4096); 17342 break; 17343 } 17344 if (subtype == LPFC_NVMET) 17345 bf_set(lpfc_rq_context_buf_size, 17346 &rq_create->u.request.context, 17347 LPFC_NVMET_DATA_BUF_SIZE); 17348 else 17349 bf_set(lpfc_rq_context_buf_size, 17350 &rq_create->u.request.context, 17351 LPFC_DATA_BUF_SIZE); 17352 } 17353 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17354 cq->queue_id); 17355 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17356 drq->page_count); 17357 list_for_each_entry(dmabuf, &drq->page_list, list) { 17358 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17359 putPaddrLow(dmabuf->phys); 17360 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17361 putPaddrHigh(dmabuf->phys); 17362 } 17363 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17364 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17365 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17366 /* The IOCTL status is embedded in the mailbox subheader. */ 17367 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17368 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17369 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17370 if (shdr_status || shdr_add_status || rc) { 17371 status = -ENXIO; 17372 goto out; 17373 } 17374 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17375 if (drq->queue_id == 0xFFFF) { 17376 status = -ENXIO; 17377 goto out; 17378 } 17379 drq->type = LPFC_DRQ; 17380 drq->assoc_qid = cq->queue_id; 17381 drq->subtype = subtype; 17382 drq->host_index = 0; 17383 drq->hba_index = 0; 17384 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17385 17386 /* link the header and data RQs onto the parent cq child list */ 17387 list_add_tail(&hrq->list, &cq->child_list); 17388 list_add_tail(&drq->list, &cq->child_list); 17389 17390 out: 17391 mempool_free(mbox, phba->mbox_mem_pool); 17392 return status; 17393 } 17394 17395 /** 17396 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17397 * @phba: HBA structure that indicates port to create a queue on. 17398 * @hrqp: The queue structure array to use to create the header receive queues. 17399 * @drqp: The queue structure array to use to create the data receive queues. 17400 * @cqp: The completion queue array to bind these receive queues to. 17401 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17402 * 17403 * This function creates a receive buffer queue pair , as detailed in @hrq and 17404 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17405 * to the HBA. 17406 * 17407 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17408 * struct is used to get the entry count that is necessary to determine the 17409 * number of pages to use for this queue. The @cq is used to indicate which 17410 * completion queue to bind received buffers that are posted to these queues to. 17411 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17412 * receive queue pair. This function is asynchronous and will wait for the 17413 * mailbox command to finish before continuing. 17414 * 17415 * On success this function will return a zero. If unable to allocate enough 17416 * memory this function will return -ENOMEM. If the queue create mailbox command 17417 * fails this function will return -ENXIO. 17418 **/ 17419 int 17420 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17421 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17422 uint32_t subtype) 17423 { 17424 struct lpfc_queue *hrq, *drq, *cq; 17425 struct lpfc_mbx_rq_create_v2 *rq_create; 17426 struct lpfc_dmabuf *dmabuf; 17427 LPFC_MBOXQ_t *mbox; 17428 int rc, length, alloclen, status = 0; 17429 int cnt, idx, numrq, page_idx = 0; 17430 uint32_t shdr_status, shdr_add_status; 17431 union lpfc_sli4_cfg_shdr *shdr; 17432 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17433 17434 numrq = phba->cfg_nvmet_mrq; 17435 /* sanity check on array memory */ 17436 if (!hrqp || !drqp || !cqp || !numrq) 17437 return -ENODEV; 17438 if (!phba->sli4_hba.pc_sli4_params.supported) 17439 hw_page_size = SLI4_PAGE_SIZE; 17440 17441 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17442 if (!mbox) 17443 return -ENOMEM; 17444 17445 length = sizeof(struct lpfc_mbx_rq_create_v2); 17446 length += ((2 * numrq * hrqp[0]->page_count) * 17447 sizeof(struct dma_address)); 17448 17449 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17450 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17451 LPFC_SLI4_MBX_NEMBED); 17452 if (alloclen < length) { 17453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17454 "3099 Allocated DMA memory size (%d) is " 17455 "less than the requested DMA memory size " 17456 "(%d)\n", alloclen, length); 17457 status = -ENOMEM; 17458 goto out; 17459 } 17460 17461 17462 17463 rq_create = mbox->sge_array->addr[0]; 17464 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17465 17466 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17467 cnt = 0; 17468 17469 for (idx = 0; idx < numrq; idx++) { 17470 hrq = hrqp[idx]; 17471 drq = drqp[idx]; 17472 cq = cqp[idx]; 17473 17474 /* sanity check on queue memory */ 17475 if (!hrq || !drq || !cq) { 17476 status = -ENODEV; 17477 goto out; 17478 } 17479 17480 if (hrq->entry_count != drq->entry_count) { 17481 status = -EINVAL; 17482 goto out; 17483 } 17484 17485 if (idx == 0) { 17486 bf_set(lpfc_mbx_rq_create_num_pages, 17487 &rq_create->u.request, 17488 hrq->page_count); 17489 bf_set(lpfc_mbx_rq_create_rq_cnt, 17490 &rq_create->u.request, (numrq * 2)); 17491 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17492 1); 17493 bf_set(lpfc_rq_context_base_cq, 17494 &rq_create->u.request.context, 17495 cq->queue_id); 17496 bf_set(lpfc_rq_context_data_size, 17497 &rq_create->u.request.context, 17498 LPFC_NVMET_DATA_BUF_SIZE); 17499 bf_set(lpfc_rq_context_hdr_size, 17500 &rq_create->u.request.context, 17501 LPFC_HDR_BUF_SIZE); 17502 bf_set(lpfc_rq_context_rqe_count_1, 17503 &rq_create->u.request.context, 17504 hrq->entry_count); 17505 bf_set(lpfc_rq_context_rqe_size, 17506 &rq_create->u.request.context, 17507 LPFC_RQE_SIZE_8); 17508 bf_set(lpfc_rq_context_page_size, 17509 &rq_create->u.request.context, 17510 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17511 } 17512 rc = 0; 17513 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17514 memset(dmabuf->virt, 0, hw_page_size); 17515 cnt = page_idx + dmabuf->buffer_tag; 17516 rq_create->u.request.page[cnt].addr_lo = 17517 putPaddrLow(dmabuf->phys); 17518 rq_create->u.request.page[cnt].addr_hi = 17519 putPaddrHigh(dmabuf->phys); 17520 rc++; 17521 } 17522 page_idx += rc; 17523 17524 rc = 0; 17525 list_for_each_entry(dmabuf, &drq->page_list, list) { 17526 memset(dmabuf->virt, 0, hw_page_size); 17527 cnt = page_idx + dmabuf->buffer_tag; 17528 rq_create->u.request.page[cnt].addr_lo = 17529 putPaddrLow(dmabuf->phys); 17530 rq_create->u.request.page[cnt].addr_hi = 17531 putPaddrHigh(dmabuf->phys); 17532 rc++; 17533 } 17534 page_idx += rc; 17535 17536 hrq->db_format = LPFC_DB_RING_FORMAT; 17537 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17538 hrq->type = LPFC_HRQ; 17539 hrq->assoc_qid = cq->queue_id; 17540 hrq->subtype = subtype; 17541 hrq->host_index = 0; 17542 hrq->hba_index = 0; 17543 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17544 17545 drq->db_format = LPFC_DB_RING_FORMAT; 17546 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17547 drq->type = LPFC_DRQ; 17548 drq->assoc_qid = cq->queue_id; 17549 drq->subtype = subtype; 17550 drq->host_index = 0; 17551 drq->hba_index = 0; 17552 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17553 17554 list_add_tail(&hrq->list, &cq->child_list); 17555 list_add_tail(&drq->list, &cq->child_list); 17556 } 17557 17558 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17559 /* The IOCTL status is embedded in the mailbox subheader. */ 17560 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17561 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17562 if (shdr_status || shdr_add_status || rc) { 17563 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17564 "3120 RQ_CREATE mailbox failed with " 17565 "status x%x add_status x%x, mbx status x%x\n", 17566 shdr_status, shdr_add_status, rc); 17567 status = -ENXIO; 17568 goto out; 17569 } 17570 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17571 if (rc == 0xFFFF) { 17572 status = -ENXIO; 17573 goto out; 17574 } 17575 17576 /* Initialize all RQs with associated queue id */ 17577 for (idx = 0; idx < numrq; idx++) { 17578 hrq = hrqp[idx]; 17579 hrq->queue_id = rc + (2 * idx); 17580 drq = drqp[idx]; 17581 drq->queue_id = rc + (2 * idx) + 1; 17582 } 17583 17584 out: 17585 lpfc_sli4_mbox_cmd_free(phba, mbox); 17586 return status; 17587 } 17588 17589 /** 17590 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17591 * @phba: HBA structure that indicates port to destroy a queue on. 17592 * @eq: The queue structure associated with the queue to destroy. 17593 * 17594 * This function destroys a queue, as detailed in @eq by sending an mailbox 17595 * command, specific to the type of queue, to the HBA. 17596 * 17597 * The @eq struct is used to get the queue ID of the queue to destroy. 17598 * 17599 * On success this function will return a zero. If the queue destroy mailbox 17600 * command fails this function will return -ENXIO. 17601 **/ 17602 int 17603 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17604 { 17605 LPFC_MBOXQ_t *mbox; 17606 int rc, length, status = 0; 17607 uint32_t shdr_status, shdr_add_status; 17608 union lpfc_sli4_cfg_shdr *shdr; 17609 17610 /* sanity check on queue memory */ 17611 if (!eq) 17612 return -ENODEV; 17613 17614 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17615 goto list_remove; 17616 17617 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17618 if (!mbox) 17619 return -ENOMEM; 17620 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17621 sizeof(struct lpfc_sli4_cfg_mhdr)); 17622 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17623 LPFC_MBOX_OPCODE_EQ_DESTROY, 17624 length, LPFC_SLI4_MBX_EMBED); 17625 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17626 eq->queue_id); 17627 mbox->vport = eq->phba->pport; 17628 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17629 17630 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17631 /* The IOCTL status is embedded in the mailbox subheader. */ 17632 shdr = (union lpfc_sli4_cfg_shdr *) 17633 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17634 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17635 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17636 if (shdr_status || shdr_add_status || rc) { 17637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17638 "2505 EQ_DESTROY mailbox failed with " 17639 "status x%x add_status x%x, mbx status x%x\n", 17640 shdr_status, shdr_add_status, rc); 17641 status = -ENXIO; 17642 } 17643 mempool_free(mbox, eq->phba->mbox_mem_pool); 17644 17645 list_remove: 17646 /* Remove eq from any list */ 17647 list_del_init(&eq->list); 17648 17649 return status; 17650 } 17651 17652 /** 17653 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17654 * @phba: HBA structure that indicates port to destroy a queue on. 17655 * @cq: The queue structure associated with the queue to destroy. 17656 * 17657 * This function destroys a queue, as detailed in @cq by sending an mailbox 17658 * command, specific to the type of queue, to the HBA. 17659 * 17660 * The @cq struct is used to get the queue ID of the queue to destroy. 17661 * 17662 * On success this function will return a zero. If the queue destroy mailbox 17663 * command fails this function will return -ENXIO. 17664 **/ 17665 int 17666 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17667 { 17668 LPFC_MBOXQ_t *mbox; 17669 int rc, length, status = 0; 17670 uint32_t shdr_status, shdr_add_status; 17671 union lpfc_sli4_cfg_shdr *shdr; 17672 17673 /* sanity check on queue memory */ 17674 if (!cq) 17675 return -ENODEV; 17676 17677 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17678 goto list_remove; 17679 17680 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17681 if (!mbox) 17682 return -ENOMEM; 17683 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17684 sizeof(struct lpfc_sli4_cfg_mhdr)); 17685 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17686 LPFC_MBOX_OPCODE_CQ_DESTROY, 17687 length, LPFC_SLI4_MBX_EMBED); 17688 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17689 cq->queue_id); 17690 mbox->vport = cq->phba->pport; 17691 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17692 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17693 /* The IOCTL status is embedded in the mailbox subheader. */ 17694 shdr = (union lpfc_sli4_cfg_shdr *) 17695 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17696 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17697 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17698 if (shdr_status || shdr_add_status || rc) { 17699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17700 "2506 CQ_DESTROY mailbox failed with " 17701 "status x%x add_status x%x, mbx status x%x\n", 17702 shdr_status, shdr_add_status, rc); 17703 status = -ENXIO; 17704 } 17705 mempool_free(mbox, cq->phba->mbox_mem_pool); 17706 17707 list_remove: 17708 /* Remove cq from any list */ 17709 list_del_init(&cq->list); 17710 return status; 17711 } 17712 17713 /** 17714 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17715 * @phba: HBA structure that indicates port to destroy a queue on. 17716 * @mq: The queue structure associated with the queue to destroy. 17717 * 17718 * This function destroys a queue, as detailed in @mq by sending an mailbox 17719 * command, specific to the type of queue, to the HBA. 17720 * 17721 * The @mq struct is used to get the queue ID of the queue to destroy. 17722 * 17723 * On success this function will return a zero. If the queue destroy mailbox 17724 * command fails this function will return -ENXIO. 17725 **/ 17726 int 17727 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17728 { 17729 LPFC_MBOXQ_t *mbox; 17730 int rc, length, status = 0; 17731 uint32_t shdr_status, shdr_add_status; 17732 union lpfc_sli4_cfg_shdr *shdr; 17733 17734 /* sanity check on queue memory */ 17735 if (!mq) 17736 return -ENODEV; 17737 17738 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17739 goto list_remove; 17740 17741 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17742 if (!mbox) 17743 return -ENOMEM; 17744 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17745 sizeof(struct lpfc_sli4_cfg_mhdr)); 17746 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17747 LPFC_MBOX_OPCODE_MQ_DESTROY, 17748 length, LPFC_SLI4_MBX_EMBED); 17749 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17750 mq->queue_id); 17751 mbox->vport = mq->phba->pport; 17752 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17753 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17754 /* The IOCTL status is embedded in the mailbox subheader. */ 17755 shdr = (union lpfc_sli4_cfg_shdr *) 17756 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17757 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17758 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17759 if (shdr_status || shdr_add_status || rc) { 17760 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17761 "2507 MQ_DESTROY mailbox failed with " 17762 "status x%x add_status x%x, mbx status x%x\n", 17763 shdr_status, shdr_add_status, rc); 17764 status = -ENXIO; 17765 } 17766 mempool_free(mbox, mq->phba->mbox_mem_pool); 17767 17768 list_remove: 17769 /* Remove mq from any list */ 17770 list_del_init(&mq->list); 17771 return status; 17772 } 17773 17774 /** 17775 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17776 * @phba: HBA structure that indicates port to destroy a queue on. 17777 * @wq: The queue structure associated with the queue to destroy. 17778 * 17779 * This function destroys a queue, as detailed in @wq by sending an mailbox 17780 * command, specific to the type of queue, to the HBA. 17781 * 17782 * The @wq struct is used to get the queue ID of the queue to destroy. 17783 * 17784 * On success this function will return a zero. If the queue destroy mailbox 17785 * command fails this function will return -ENXIO. 17786 **/ 17787 int 17788 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17789 { 17790 LPFC_MBOXQ_t *mbox; 17791 int rc, length, status = 0; 17792 uint32_t shdr_status, shdr_add_status; 17793 union lpfc_sli4_cfg_shdr *shdr; 17794 17795 /* sanity check on queue memory */ 17796 if (!wq) 17797 return -ENODEV; 17798 17799 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17800 goto list_remove; 17801 17802 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17803 if (!mbox) 17804 return -ENOMEM; 17805 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17806 sizeof(struct lpfc_sli4_cfg_mhdr)); 17807 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17808 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17809 length, LPFC_SLI4_MBX_EMBED); 17810 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17811 wq->queue_id); 17812 mbox->vport = wq->phba->pport; 17813 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17814 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17815 shdr = (union lpfc_sli4_cfg_shdr *) 17816 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17817 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17818 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17819 if (shdr_status || shdr_add_status || rc) { 17820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17821 "2508 WQ_DESTROY mailbox failed with " 17822 "status x%x add_status x%x, mbx status x%x\n", 17823 shdr_status, shdr_add_status, rc); 17824 status = -ENXIO; 17825 } 17826 mempool_free(mbox, wq->phba->mbox_mem_pool); 17827 17828 list_remove: 17829 /* Remove wq from any list */ 17830 list_del_init(&wq->list); 17831 kfree(wq->pring); 17832 wq->pring = NULL; 17833 return status; 17834 } 17835 17836 /** 17837 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17838 * @phba: HBA structure that indicates port to destroy a queue on. 17839 * @hrq: The queue structure associated with the queue to destroy. 17840 * @drq: The queue structure associated with the queue to destroy. 17841 * 17842 * This function destroys a queue, as detailed in @rq by sending an mailbox 17843 * command, specific to the type of queue, to the HBA. 17844 * 17845 * The @rq struct is used to get the queue ID of the queue to destroy. 17846 * 17847 * On success this function will return a zero. If the queue destroy mailbox 17848 * command fails this function will return -ENXIO. 17849 **/ 17850 int 17851 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17852 struct lpfc_queue *drq) 17853 { 17854 LPFC_MBOXQ_t *mbox; 17855 int rc, length, status = 0; 17856 uint32_t shdr_status, shdr_add_status; 17857 union lpfc_sli4_cfg_shdr *shdr; 17858 17859 /* sanity check on queue memory */ 17860 if (!hrq || !drq) 17861 return -ENODEV; 17862 17863 if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) 17864 goto list_remove; 17865 17866 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17867 if (!mbox) 17868 return -ENOMEM; 17869 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17870 sizeof(struct lpfc_sli4_cfg_mhdr)); 17871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17872 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17873 length, LPFC_SLI4_MBX_EMBED); 17874 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17875 hrq->queue_id); 17876 mbox->vport = hrq->phba->pport; 17877 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17878 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17879 /* The IOCTL status is embedded in the mailbox subheader. */ 17880 shdr = (union lpfc_sli4_cfg_shdr *) 17881 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17882 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17883 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17884 if (shdr_status || shdr_add_status || rc) { 17885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17886 "2509 RQ_DESTROY mailbox failed with " 17887 "status x%x add_status x%x, mbx status x%x\n", 17888 shdr_status, shdr_add_status, rc); 17889 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17890 return -ENXIO; 17891 } 17892 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17893 drq->queue_id); 17894 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17895 shdr = (union lpfc_sli4_cfg_shdr *) 17896 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17897 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17898 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17899 if (shdr_status || shdr_add_status || rc) { 17900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17901 "2510 RQ_DESTROY mailbox failed with " 17902 "status x%x add_status x%x, mbx status x%x\n", 17903 shdr_status, shdr_add_status, rc); 17904 status = -ENXIO; 17905 } 17906 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17907 17908 list_remove: 17909 list_del_init(&hrq->list); 17910 list_del_init(&drq->list); 17911 return status; 17912 } 17913 17914 /** 17915 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17916 * @phba: The virtual port for which this call being executed. 17917 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17918 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17919 * @xritag: the xritag that ties this io to the SGL pages. 17920 * 17921 * This routine will post the sgl pages for the IO that has the xritag 17922 * that is in the iocbq structure. The xritag is assigned during iocbq 17923 * creation and persists for as long as the driver is loaded. 17924 * if the caller has fewer than 256 scatter gather segments to map then 17925 * pdma_phys_addr1 should be 0. 17926 * If the caller needs to map more than 256 scatter gather segment then 17927 * pdma_phys_addr1 should be a valid physical address. 17928 * physical address for SGLs must be 64 byte aligned. 17929 * If you are going to map 2 SGL's then the first one must have 256 entries 17930 * the second sgl can have between 1 and 256 entries. 17931 * 17932 * Return codes: 17933 * 0 - Success 17934 * -ENXIO, -ENOMEM - Failure 17935 **/ 17936 int 17937 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17938 dma_addr_t pdma_phys_addr0, 17939 dma_addr_t pdma_phys_addr1, 17940 uint16_t xritag) 17941 { 17942 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17943 LPFC_MBOXQ_t *mbox; 17944 int rc; 17945 uint32_t shdr_status, shdr_add_status; 17946 uint32_t mbox_tmo; 17947 union lpfc_sli4_cfg_shdr *shdr; 17948 17949 if (xritag == NO_XRI) { 17950 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17951 "0364 Invalid param:\n"); 17952 return -EINVAL; 17953 } 17954 17955 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17956 if (!mbox) 17957 return -ENOMEM; 17958 17959 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17960 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17961 sizeof(struct lpfc_mbx_post_sgl_pages) - 17962 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17963 17964 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17965 &mbox->u.mqe.un.post_sgl_pages; 17966 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17967 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17968 17969 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17970 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17971 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17972 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17973 17974 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17975 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17976 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17977 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17978 if (!phba->sli4_hba.intr_enable) 17979 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17980 else { 17981 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17982 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17983 } 17984 /* The IOCTL status is embedded in the mailbox subheader. */ 17985 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17986 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17987 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17988 if (!phba->sli4_hba.intr_enable) 17989 mempool_free(mbox, phba->mbox_mem_pool); 17990 else if (rc != MBX_TIMEOUT) 17991 mempool_free(mbox, phba->mbox_mem_pool); 17992 if (shdr_status || shdr_add_status || rc) { 17993 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17994 "2511 POST_SGL mailbox failed with " 17995 "status x%x add_status x%x, mbx status x%x\n", 17996 shdr_status, shdr_add_status, rc); 17997 } 17998 return 0; 17999 } 18000 18001 /** 18002 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 18003 * @phba: pointer to lpfc hba data structure. 18004 * 18005 * This routine is invoked to post rpi header templates to the 18006 * HBA consistent with the SLI-4 interface spec. This routine 18007 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18008 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18009 * 18010 * Returns 18011 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18012 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18013 **/ 18014 static uint16_t 18015 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18016 { 18017 unsigned long xri; 18018 18019 /* 18020 * Fetch the next logical xri. Because this index is logical, 18021 * the driver starts at 0 each time. 18022 */ 18023 spin_lock_irq(&phba->hbalock); 18024 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18025 phba->sli4_hba.max_cfg_param.max_xri); 18026 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18027 spin_unlock_irq(&phba->hbalock); 18028 return NO_XRI; 18029 } else { 18030 set_bit(xri, phba->sli4_hba.xri_bmask); 18031 phba->sli4_hba.max_cfg_param.xri_used++; 18032 } 18033 spin_unlock_irq(&phba->hbalock); 18034 return xri; 18035 } 18036 18037 /** 18038 * __lpfc_sli4_free_xri - Release an xri for reuse. 18039 * @phba: pointer to lpfc hba data structure. 18040 * @xri: xri to release. 18041 * 18042 * This routine is invoked to release an xri to the pool of 18043 * available rpis maintained by the driver. 18044 **/ 18045 static void 18046 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18047 { 18048 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18049 phba->sli4_hba.max_cfg_param.xri_used--; 18050 } 18051 } 18052 18053 /** 18054 * lpfc_sli4_free_xri - Release an xri for reuse. 18055 * @phba: pointer to lpfc hba data structure. 18056 * @xri: xri to release. 18057 * 18058 * This routine is invoked to release an xri to the pool of 18059 * available rpis maintained by the driver. 18060 **/ 18061 void 18062 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18063 { 18064 spin_lock_irq(&phba->hbalock); 18065 __lpfc_sli4_free_xri(phba, xri); 18066 spin_unlock_irq(&phba->hbalock); 18067 } 18068 18069 /** 18070 * lpfc_sli4_next_xritag - Get an xritag for the io 18071 * @phba: Pointer to HBA context object. 18072 * 18073 * This function gets an xritag for the iocb. If there is no unused xritag 18074 * it will return 0xffff. 18075 * The function returns the allocated xritag if successful, else returns zero. 18076 * Zero is not a valid xritag. 18077 * The caller is not required to hold any lock. 18078 **/ 18079 uint16_t 18080 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18081 { 18082 uint16_t xri_index; 18083 18084 xri_index = lpfc_sli4_alloc_xri(phba); 18085 if (xri_index == NO_XRI) 18086 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18087 "2004 Failed to allocate XRI.last XRITAG is %d" 18088 " Max XRI is %d, Used XRI is %d\n", 18089 xri_index, 18090 phba->sli4_hba.max_cfg_param.max_xri, 18091 phba->sli4_hba.max_cfg_param.xri_used); 18092 return xri_index; 18093 } 18094 18095 /** 18096 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18097 * @phba: pointer to lpfc hba data structure. 18098 * @post_sgl_list: pointer to els sgl entry list. 18099 * @post_cnt: number of els sgl entries on the list. 18100 * 18101 * This routine is invoked to post a block of driver's sgl pages to the 18102 * HBA using non-embedded mailbox command. No Lock is held. This routine 18103 * is only called when the driver is loading and after all IO has been 18104 * stopped. 18105 **/ 18106 static int 18107 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18108 struct list_head *post_sgl_list, 18109 int post_cnt) 18110 { 18111 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18112 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18113 struct sgl_page_pairs *sgl_pg_pairs; 18114 void *viraddr; 18115 LPFC_MBOXQ_t *mbox; 18116 uint32_t reqlen, alloclen, pg_pairs; 18117 uint32_t mbox_tmo; 18118 uint16_t xritag_start = 0; 18119 int rc = 0; 18120 uint32_t shdr_status, shdr_add_status; 18121 union lpfc_sli4_cfg_shdr *shdr; 18122 18123 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18124 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18125 if (reqlen > SLI4_PAGE_SIZE) { 18126 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18127 "2559 Block sgl registration required DMA " 18128 "size (%d) great than a page\n", reqlen); 18129 return -ENOMEM; 18130 } 18131 18132 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18133 if (!mbox) 18134 return -ENOMEM; 18135 18136 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18137 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18138 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18139 LPFC_SLI4_MBX_NEMBED); 18140 18141 if (alloclen < reqlen) { 18142 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18143 "0285 Allocated DMA memory size (%d) is " 18144 "less than the requested DMA memory " 18145 "size (%d)\n", alloclen, reqlen); 18146 lpfc_sli4_mbox_cmd_free(phba, mbox); 18147 return -ENOMEM; 18148 } 18149 /* Set up the SGL pages in the non-embedded DMA pages */ 18150 viraddr = mbox->sge_array->addr[0]; 18151 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18152 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18153 18154 pg_pairs = 0; 18155 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18156 /* Set up the sge entry */ 18157 sgl_pg_pairs->sgl_pg0_addr_lo = 18158 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18159 sgl_pg_pairs->sgl_pg0_addr_hi = 18160 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18161 sgl_pg_pairs->sgl_pg1_addr_lo = 18162 cpu_to_le32(putPaddrLow(0)); 18163 sgl_pg_pairs->sgl_pg1_addr_hi = 18164 cpu_to_le32(putPaddrHigh(0)); 18165 18166 /* Keep the first xritag on the list */ 18167 if (pg_pairs == 0) 18168 xritag_start = sglq_entry->sli4_xritag; 18169 sgl_pg_pairs++; 18170 pg_pairs++; 18171 } 18172 18173 /* Complete initialization and perform endian conversion. */ 18174 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18175 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18176 sgl->word0 = cpu_to_le32(sgl->word0); 18177 18178 if (!phba->sli4_hba.intr_enable) 18179 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18180 else { 18181 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18182 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18183 } 18184 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18185 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18186 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18187 if (!phba->sli4_hba.intr_enable) 18188 lpfc_sli4_mbox_cmd_free(phba, mbox); 18189 else if (rc != MBX_TIMEOUT) 18190 lpfc_sli4_mbox_cmd_free(phba, mbox); 18191 if (shdr_status || shdr_add_status || rc) { 18192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18193 "2513 POST_SGL_BLOCK mailbox command failed " 18194 "status x%x add_status x%x mbx status x%x\n", 18195 shdr_status, shdr_add_status, rc); 18196 rc = -ENXIO; 18197 } 18198 return rc; 18199 } 18200 18201 /** 18202 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18203 * @phba: pointer to lpfc hba data structure. 18204 * @nblist: pointer to nvme buffer list. 18205 * @count: number of scsi buffers on the list. 18206 * 18207 * This routine is invoked to post a block of @count scsi sgl pages from a 18208 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18209 * No Lock is held. 18210 * 18211 **/ 18212 static int 18213 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18214 int count) 18215 { 18216 struct lpfc_io_buf *lpfc_ncmd; 18217 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18218 struct sgl_page_pairs *sgl_pg_pairs; 18219 void *viraddr; 18220 LPFC_MBOXQ_t *mbox; 18221 uint32_t reqlen, alloclen, pg_pairs; 18222 uint32_t mbox_tmo; 18223 uint16_t xritag_start = 0; 18224 int rc = 0; 18225 uint32_t shdr_status, shdr_add_status; 18226 dma_addr_t pdma_phys_bpl1; 18227 union lpfc_sli4_cfg_shdr *shdr; 18228 18229 /* Calculate the requested length of the dma memory */ 18230 reqlen = count * sizeof(struct sgl_page_pairs) + 18231 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18232 if (reqlen > SLI4_PAGE_SIZE) { 18233 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18234 "6118 Block sgl registration required DMA " 18235 "size (%d) great than a page\n", reqlen); 18236 return -ENOMEM; 18237 } 18238 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18239 if (!mbox) { 18240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18241 "6119 Failed to allocate mbox cmd memory\n"); 18242 return -ENOMEM; 18243 } 18244 18245 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18246 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18247 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18248 reqlen, LPFC_SLI4_MBX_NEMBED); 18249 18250 if (alloclen < reqlen) { 18251 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18252 "6120 Allocated DMA memory size (%d) is " 18253 "less than the requested DMA memory " 18254 "size (%d)\n", alloclen, reqlen); 18255 lpfc_sli4_mbox_cmd_free(phba, mbox); 18256 return -ENOMEM; 18257 } 18258 18259 /* Get the first SGE entry from the non-embedded DMA memory */ 18260 viraddr = mbox->sge_array->addr[0]; 18261 18262 /* Set up the SGL pages in the non-embedded DMA pages */ 18263 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18264 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18265 18266 pg_pairs = 0; 18267 list_for_each_entry(lpfc_ncmd, nblist, list) { 18268 /* Set up the sge entry */ 18269 sgl_pg_pairs->sgl_pg0_addr_lo = 18270 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18271 sgl_pg_pairs->sgl_pg0_addr_hi = 18272 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18273 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18274 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18275 SGL_PAGE_SIZE; 18276 else 18277 pdma_phys_bpl1 = 0; 18278 sgl_pg_pairs->sgl_pg1_addr_lo = 18279 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18280 sgl_pg_pairs->sgl_pg1_addr_hi = 18281 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18282 /* Keep the first xritag on the list */ 18283 if (pg_pairs == 0) 18284 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18285 sgl_pg_pairs++; 18286 pg_pairs++; 18287 } 18288 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18289 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18290 /* Perform endian conversion if necessary */ 18291 sgl->word0 = cpu_to_le32(sgl->word0); 18292 18293 if (!phba->sli4_hba.intr_enable) { 18294 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18295 } else { 18296 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18297 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18298 } 18299 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18300 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18301 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18302 if (!phba->sli4_hba.intr_enable) 18303 lpfc_sli4_mbox_cmd_free(phba, mbox); 18304 else if (rc != MBX_TIMEOUT) 18305 lpfc_sli4_mbox_cmd_free(phba, mbox); 18306 if (shdr_status || shdr_add_status || rc) { 18307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18308 "6125 POST_SGL_BLOCK mailbox command failed " 18309 "status x%x add_status x%x mbx status x%x\n", 18310 shdr_status, shdr_add_status, rc); 18311 rc = -ENXIO; 18312 } 18313 return rc; 18314 } 18315 18316 /** 18317 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18318 * @phba: pointer to lpfc hba data structure. 18319 * @post_nblist: pointer to the nvme buffer list. 18320 * @sb_count: number of nvme buffers. 18321 * 18322 * This routine walks a list of nvme buffers that was passed in. It attempts 18323 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18324 * uses the non-embedded SGL block post mailbox commands to post to the port. 18325 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18326 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18327 * must be local list, thus no lock is needed when manipulate the list. 18328 * 18329 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18330 **/ 18331 int 18332 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18333 struct list_head *post_nblist, int sb_count) 18334 { 18335 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18336 int status, sgl_size; 18337 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18338 dma_addr_t pdma_phys_sgl1; 18339 int last_xritag = NO_XRI; 18340 int cur_xritag; 18341 LIST_HEAD(prep_nblist); 18342 LIST_HEAD(blck_nblist); 18343 LIST_HEAD(nvme_nblist); 18344 18345 /* sanity check */ 18346 if (sb_count <= 0) 18347 return -EINVAL; 18348 18349 sgl_size = phba->cfg_sg_dma_buf_size; 18350 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18351 list_del_init(&lpfc_ncmd->list); 18352 block_cnt++; 18353 if ((last_xritag != NO_XRI) && 18354 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18355 /* a hole in xri block, form a sgl posting block */ 18356 list_splice_init(&prep_nblist, &blck_nblist); 18357 post_cnt = block_cnt - 1; 18358 /* prepare list for next posting block */ 18359 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18360 block_cnt = 1; 18361 } else { 18362 /* prepare list for next posting block */ 18363 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18364 /* enough sgls for non-embed sgl mbox command */ 18365 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18366 list_splice_init(&prep_nblist, &blck_nblist); 18367 post_cnt = block_cnt; 18368 block_cnt = 0; 18369 } 18370 } 18371 num_posting++; 18372 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18373 18374 /* end of repost sgl list condition for NVME buffers */ 18375 if (num_posting == sb_count) { 18376 if (post_cnt == 0) { 18377 /* last sgl posting block */ 18378 list_splice_init(&prep_nblist, &blck_nblist); 18379 post_cnt = block_cnt; 18380 } else if (block_cnt == 1) { 18381 /* last single sgl with non-contiguous xri */ 18382 if (sgl_size > SGL_PAGE_SIZE) 18383 pdma_phys_sgl1 = 18384 lpfc_ncmd->dma_phys_sgl + 18385 SGL_PAGE_SIZE; 18386 else 18387 pdma_phys_sgl1 = 0; 18388 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18389 status = lpfc_sli4_post_sgl( 18390 phba, lpfc_ncmd->dma_phys_sgl, 18391 pdma_phys_sgl1, cur_xritag); 18392 if (status) { 18393 /* Post error. Buffer unavailable. */ 18394 lpfc_ncmd->flags |= 18395 LPFC_SBUF_NOT_POSTED; 18396 } else { 18397 /* Post success. Bffer available. */ 18398 lpfc_ncmd->flags &= 18399 ~LPFC_SBUF_NOT_POSTED; 18400 lpfc_ncmd->status = IOSTAT_SUCCESS; 18401 num_posted++; 18402 } 18403 /* success, put on NVME buffer sgl list */ 18404 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18405 } 18406 } 18407 18408 /* continue until a nembed page worth of sgls */ 18409 if (post_cnt == 0) 18410 continue; 18411 18412 /* post block of NVME buffer list sgls */ 18413 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18414 post_cnt); 18415 18416 /* don't reset xirtag due to hole in xri block */ 18417 if (block_cnt == 0) 18418 last_xritag = NO_XRI; 18419 18420 /* reset NVME buffer post count for next round of posting */ 18421 post_cnt = 0; 18422 18423 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18424 while (!list_empty(&blck_nblist)) { 18425 list_remove_head(&blck_nblist, lpfc_ncmd, 18426 struct lpfc_io_buf, list); 18427 if (status) { 18428 /* Post error. Mark buffer unavailable. */ 18429 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18430 } else { 18431 /* Post success, Mark buffer available. */ 18432 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18433 lpfc_ncmd->status = IOSTAT_SUCCESS; 18434 num_posted++; 18435 } 18436 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18437 } 18438 } 18439 /* Push NVME buffers with sgl posted to the available list */ 18440 lpfc_io_buf_replenish(phba, &nvme_nblist); 18441 18442 return num_posted; 18443 } 18444 18445 /** 18446 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18447 * @phba: pointer to lpfc_hba struct that the frame was received on 18448 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18449 * 18450 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18451 * valid type of frame that the LPFC driver will handle. This function will 18452 * return a zero if the frame is a valid frame or a non zero value when the 18453 * frame does not pass the check. 18454 **/ 18455 static int 18456 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18457 { 18458 /* make rctl_names static to save stack space */ 18459 struct fc_vft_header *fc_vft_hdr; 18460 struct fc_app_header *fc_app_hdr; 18461 uint32_t *header = (uint32_t *) fc_hdr; 18462 18463 #define FC_RCTL_MDS_DIAGS 0xF4 18464 18465 switch (fc_hdr->fh_r_ctl) { 18466 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18467 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18468 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18469 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18470 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18471 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18472 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18473 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18474 case FC_RCTL_ELS_REQ: /* extended link services request */ 18475 case FC_RCTL_ELS_REP: /* extended link services reply */ 18476 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18477 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18478 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18479 case FC_RCTL_BA_RMC: /* remove connection */ 18480 case FC_RCTL_BA_ACC: /* basic accept */ 18481 case FC_RCTL_BA_RJT: /* basic reject */ 18482 case FC_RCTL_BA_PRMT: 18483 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18484 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18485 case FC_RCTL_P_RJT: /* port reject */ 18486 case FC_RCTL_F_RJT: /* fabric reject */ 18487 case FC_RCTL_P_BSY: /* port busy */ 18488 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18489 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18490 case FC_RCTL_LCR: /* link credit reset */ 18491 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18492 case FC_RCTL_END: /* end */ 18493 break; 18494 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18495 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18496 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18497 return lpfc_fc_frame_check(phba, fc_hdr); 18498 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18499 default: 18500 goto drop; 18501 } 18502 18503 switch (fc_hdr->fh_type) { 18504 case FC_TYPE_BLS: 18505 case FC_TYPE_ELS: 18506 case FC_TYPE_FCP: 18507 case FC_TYPE_CT: 18508 case FC_TYPE_NVME: 18509 break; 18510 case FC_TYPE_IP: 18511 case FC_TYPE_ILS: 18512 default: 18513 goto drop; 18514 } 18515 18516 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE && 18517 phba->cfg_vmid_app_header)) { 18518 /* Application header is 16B device header */ 18519 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) { 18520 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1); 18521 if (be32_to_cpu(fc_app_hdr->src_app_id) != 18522 LOOPBACK_SRC_APPID) { 18523 lpfc_printf_log(phba, KERN_WARNING, 18524 LOG_ELS | LOG_LIBDFC, 18525 "1932 Loopback src app id " 18526 "not matched, app_id:x%x\n", 18527 be32_to_cpu(fc_app_hdr->src_app_id)); 18528 18529 goto drop; 18530 } 18531 } else { 18532 lpfc_printf_log(phba, KERN_WARNING, 18533 LOG_ELS | LOG_LIBDFC, 18534 "1933 Loopback df_ctl bit not set, " 18535 "df_ctl:x%x\n", 18536 fc_hdr->fh_df_ctl); 18537 18538 goto drop; 18539 } 18540 } 18541 18542 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18543 "2538 Received frame rctl:x%x, type:x%x, " 18544 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18545 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18546 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18547 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18548 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18549 be32_to_cpu(header[6])); 18550 return 0; 18551 drop: 18552 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18553 "2539 Dropped frame rctl:x%x type:x%x\n", 18554 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18555 return 1; 18556 } 18557 18558 /** 18559 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18560 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18561 * 18562 * This function processes the FC header to retrieve the VFI from the VF 18563 * header, if one exists. This function will return the VFI if one exists 18564 * or 0 if no VSAN Header exists. 18565 **/ 18566 static uint32_t 18567 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18568 { 18569 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18570 18571 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18572 return 0; 18573 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18574 } 18575 18576 /** 18577 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18578 * @phba: Pointer to the HBA structure to search for the vport on 18579 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18580 * @fcfi: The FC Fabric ID that the frame came from 18581 * @did: Destination ID to match against 18582 * 18583 * This function searches the @phba for a vport that matches the content of the 18584 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18585 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18586 * returns the matching vport pointer or NULL if unable to match frame to a 18587 * vport. 18588 **/ 18589 static struct lpfc_vport * 18590 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18591 uint16_t fcfi, uint32_t did) 18592 { 18593 struct lpfc_vport **vports; 18594 struct lpfc_vport *vport = NULL; 18595 int i; 18596 18597 if (did == Fabric_DID) 18598 return phba->pport; 18599 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18600 phba->link_state != LPFC_HBA_READY) 18601 return phba->pport; 18602 18603 vports = lpfc_create_vport_work_array(phba); 18604 if (vports != NULL) { 18605 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18606 if (phba->fcf.fcfi == fcfi && 18607 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18608 vports[i]->fc_myDID == did) { 18609 vport = vports[i]; 18610 break; 18611 } 18612 } 18613 } 18614 lpfc_destroy_vport_work_array(phba, vports); 18615 return vport; 18616 } 18617 18618 /** 18619 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18620 * @vport: The vport to work on. 18621 * 18622 * This function updates the receive sequence time stamp for this vport. The 18623 * receive sequence time stamp indicates the time that the last frame of the 18624 * the sequence that has been idle for the longest amount of time was received. 18625 * the driver uses this time stamp to indicate if any received sequences have 18626 * timed out. 18627 **/ 18628 static void 18629 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18630 { 18631 struct lpfc_dmabuf *h_buf; 18632 struct hbq_dmabuf *dmabuf = NULL; 18633 18634 /* get the oldest sequence on the rcv list */ 18635 h_buf = list_get_first(&vport->rcv_buffer_list, 18636 struct lpfc_dmabuf, list); 18637 if (!h_buf) 18638 return; 18639 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18640 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18641 } 18642 18643 /** 18644 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18645 * @vport: The vport that the received sequences were sent to. 18646 * 18647 * This function cleans up all outstanding received sequences. This is called 18648 * by the driver when a link event or user action invalidates all the received 18649 * sequences. 18650 **/ 18651 void 18652 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18653 { 18654 struct lpfc_dmabuf *h_buf, *hnext; 18655 struct lpfc_dmabuf *d_buf, *dnext; 18656 struct hbq_dmabuf *dmabuf = NULL; 18657 18658 /* start with the oldest sequence on the rcv list */ 18659 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18660 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18661 list_del_init(&dmabuf->hbuf.list); 18662 list_for_each_entry_safe(d_buf, dnext, 18663 &dmabuf->dbuf.list, list) { 18664 list_del_init(&d_buf->list); 18665 lpfc_in_buf_free(vport->phba, d_buf); 18666 } 18667 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18668 } 18669 } 18670 18671 /** 18672 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18673 * @vport: The vport that the received sequences were sent to. 18674 * 18675 * This function determines whether any received sequences have timed out by 18676 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18677 * indicates that there is at least one timed out sequence this routine will 18678 * go through the received sequences one at a time from most inactive to most 18679 * active to determine which ones need to be cleaned up. Once it has determined 18680 * that a sequence needs to be cleaned up it will simply free up the resources 18681 * without sending an abort. 18682 **/ 18683 void 18684 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18685 { 18686 struct lpfc_dmabuf *h_buf, *hnext; 18687 struct lpfc_dmabuf *d_buf, *dnext; 18688 struct hbq_dmabuf *dmabuf = NULL; 18689 unsigned long timeout; 18690 int abort_count = 0; 18691 18692 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18693 vport->rcv_buffer_time_stamp); 18694 if (list_empty(&vport->rcv_buffer_list) || 18695 time_before(jiffies, timeout)) 18696 return; 18697 /* start with the oldest sequence on the rcv list */ 18698 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18699 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18700 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18701 dmabuf->time_stamp); 18702 if (time_before(jiffies, timeout)) 18703 break; 18704 abort_count++; 18705 list_del_init(&dmabuf->hbuf.list); 18706 list_for_each_entry_safe(d_buf, dnext, 18707 &dmabuf->dbuf.list, list) { 18708 list_del_init(&d_buf->list); 18709 lpfc_in_buf_free(vport->phba, d_buf); 18710 } 18711 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18712 } 18713 if (abort_count) 18714 lpfc_update_rcv_time_stamp(vport); 18715 } 18716 18717 /** 18718 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18719 * @vport: pointer to a vitural port 18720 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18721 * 18722 * This function searches through the existing incomplete sequences that have 18723 * been sent to this @vport. If the frame matches one of the incomplete 18724 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18725 * make up that sequence. If no sequence is found that matches this frame then 18726 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18727 * This function returns a pointer to the first dmabuf in the sequence list that 18728 * the frame was linked to. 18729 **/ 18730 static struct hbq_dmabuf * 18731 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18732 { 18733 struct fc_frame_header *new_hdr; 18734 struct fc_frame_header *temp_hdr; 18735 struct lpfc_dmabuf *d_buf; 18736 struct lpfc_dmabuf *h_buf; 18737 struct hbq_dmabuf *seq_dmabuf = NULL; 18738 struct hbq_dmabuf *temp_dmabuf = NULL; 18739 uint8_t found = 0; 18740 18741 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18742 dmabuf->time_stamp = jiffies; 18743 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18744 18745 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18746 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18747 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18748 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18749 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18750 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18751 continue; 18752 /* found a pending sequence that matches this frame */ 18753 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18754 break; 18755 } 18756 if (!seq_dmabuf) { 18757 /* 18758 * This indicates first frame received for this sequence. 18759 * Queue the buffer on the vport's rcv_buffer_list. 18760 */ 18761 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18762 lpfc_update_rcv_time_stamp(vport); 18763 return dmabuf; 18764 } 18765 temp_hdr = seq_dmabuf->hbuf.virt; 18766 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18767 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18768 list_del_init(&seq_dmabuf->hbuf.list); 18769 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18770 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18771 lpfc_update_rcv_time_stamp(vport); 18772 return dmabuf; 18773 } 18774 /* move this sequence to the tail to indicate a young sequence */ 18775 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18776 seq_dmabuf->time_stamp = jiffies; 18777 lpfc_update_rcv_time_stamp(vport); 18778 if (list_empty(&seq_dmabuf->dbuf.list)) { 18779 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18780 return seq_dmabuf; 18781 } 18782 /* find the correct place in the sequence to insert this frame */ 18783 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18784 while (!found) { 18785 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18786 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18787 /* 18788 * If the frame's sequence count is greater than the frame on 18789 * the list then insert the frame right after this frame 18790 */ 18791 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18792 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18793 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18794 found = 1; 18795 break; 18796 } 18797 18798 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18799 break; 18800 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18801 } 18802 18803 if (found) 18804 return seq_dmabuf; 18805 return NULL; 18806 } 18807 18808 /** 18809 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18810 * @vport: pointer to a vitural port 18811 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18812 * 18813 * This function tries to abort from the partially assembed sequence, described 18814 * by the information from basic abbort @dmabuf. It checks to see whether such 18815 * partially assembled sequence held by the driver. If so, it shall free up all 18816 * the frames from the partially assembled sequence. 18817 * 18818 * Return 18819 * true -- if there is matching partially assembled sequence present and all 18820 * the frames freed with the sequence; 18821 * false -- if there is no matching partially assembled sequence present so 18822 * nothing got aborted in the lower layer driver 18823 **/ 18824 static bool 18825 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18826 struct hbq_dmabuf *dmabuf) 18827 { 18828 struct fc_frame_header *new_hdr; 18829 struct fc_frame_header *temp_hdr; 18830 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18831 struct hbq_dmabuf *seq_dmabuf = NULL; 18832 18833 /* Use the hdr_buf to find the sequence that matches this frame */ 18834 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18835 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18836 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18837 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18838 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18839 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18840 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18841 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18842 continue; 18843 /* found a pending sequence that matches this frame */ 18844 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18845 break; 18846 } 18847 18848 /* Free up all the frames from the partially assembled sequence */ 18849 if (seq_dmabuf) { 18850 list_for_each_entry_safe(d_buf, n_buf, 18851 &seq_dmabuf->dbuf.list, list) { 18852 list_del_init(&d_buf->list); 18853 lpfc_in_buf_free(vport->phba, d_buf); 18854 } 18855 return true; 18856 } 18857 return false; 18858 } 18859 18860 /** 18861 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18862 * @vport: pointer to a vitural port 18863 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18864 * 18865 * This function tries to abort from the assembed sequence from upper level 18866 * protocol, described by the information from basic abbort @dmabuf. It 18867 * checks to see whether such pending context exists at upper level protocol. 18868 * If so, it shall clean up the pending context. 18869 * 18870 * Return 18871 * true -- if there is matching pending context of the sequence cleaned 18872 * at ulp; 18873 * false -- if there is no matching pending context of the sequence present 18874 * at ulp. 18875 **/ 18876 static bool 18877 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18878 { 18879 struct lpfc_hba *phba = vport->phba; 18880 int handled; 18881 18882 /* Accepting abort at ulp with SLI4 only */ 18883 if (phba->sli_rev < LPFC_SLI_REV4) 18884 return false; 18885 18886 /* Register all caring upper level protocols to attend abort */ 18887 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18888 if (handled) 18889 return true; 18890 18891 return false; 18892 } 18893 18894 /** 18895 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18896 * @phba: Pointer to HBA context object. 18897 * @cmd_iocbq: pointer to the command iocbq structure. 18898 * @rsp_iocbq: pointer to the response iocbq structure. 18899 * 18900 * This function handles the sequence abort response iocb command complete 18901 * event. It properly releases the memory allocated to the sequence abort 18902 * accept iocb. 18903 **/ 18904 static void 18905 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18906 struct lpfc_iocbq *cmd_iocbq, 18907 struct lpfc_iocbq *rsp_iocbq) 18908 { 18909 if (cmd_iocbq) { 18910 lpfc_nlp_put(cmd_iocbq->ndlp); 18911 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18912 } 18913 18914 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18915 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18917 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18918 get_job_ulpstatus(phba, rsp_iocbq), 18919 get_job_word4(phba, rsp_iocbq)); 18920 } 18921 18922 /** 18923 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18924 * @phba: Pointer to HBA context object. 18925 * @xri: xri id in transaction. 18926 * 18927 * This function validates the xri maps to the known range of XRIs allocated an 18928 * used by the driver. 18929 **/ 18930 uint16_t 18931 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18932 uint16_t xri) 18933 { 18934 uint16_t i; 18935 18936 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18937 if (xri == phba->sli4_hba.xri_ids[i]) 18938 return i; 18939 } 18940 return NO_XRI; 18941 } 18942 18943 /** 18944 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18945 * @vport: pointer to a virtual port. 18946 * @fc_hdr: pointer to a FC frame header. 18947 * @aborted: was the partially assembled receive sequence successfully aborted 18948 * 18949 * This function sends a basic response to a previous unsol sequence abort 18950 * event after aborting the sequence handling. 18951 **/ 18952 void 18953 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18954 struct fc_frame_header *fc_hdr, bool aborted) 18955 { 18956 struct lpfc_hba *phba = vport->phba; 18957 struct lpfc_iocbq *ctiocb = NULL; 18958 struct lpfc_nodelist *ndlp; 18959 uint16_t oxid, rxid, xri, lxri; 18960 uint32_t sid, fctl; 18961 union lpfc_wqe128 *icmd; 18962 int rc; 18963 18964 if (!lpfc_is_link_up(phba)) 18965 return; 18966 18967 sid = sli4_sid_from_fc_hdr(fc_hdr); 18968 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18969 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18970 18971 ndlp = lpfc_findnode_did(vport, sid); 18972 if (!ndlp) { 18973 ndlp = lpfc_nlp_init(vport, sid); 18974 if (!ndlp) { 18975 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18976 "1268 Failed to allocate ndlp for " 18977 "oxid:x%x SID:x%x\n", oxid, sid); 18978 return; 18979 } 18980 /* Put ndlp onto vport node list */ 18981 lpfc_enqueue_node(vport, ndlp); 18982 } 18983 18984 /* Allocate buffer for rsp iocb */ 18985 ctiocb = lpfc_sli_get_iocbq(phba); 18986 if (!ctiocb) 18987 return; 18988 18989 icmd = &ctiocb->wqe; 18990 18991 /* Extract the F_CTL field from FC_HDR */ 18992 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18993 18994 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18995 if (!ctiocb->ndlp) { 18996 lpfc_sli_release_iocbq(phba, ctiocb); 18997 return; 18998 } 18999 19000 ctiocb->vport = vport; 19001 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 19002 ctiocb->sli4_lxritag = NO_XRI; 19003 ctiocb->sli4_xritag = NO_XRI; 19004 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 19005 19006 if (fctl & FC_FC_EX_CTX) 19007 /* Exchange responder sent the abort so we 19008 * own the oxid. 19009 */ 19010 xri = oxid; 19011 else 19012 xri = rxid; 19013 lxri = lpfc_sli4_xri_inrange(phba, xri); 19014 if (lxri != NO_XRI) 19015 lpfc_set_rrq_active(phba, ndlp, lxri, 19016 (xri == oxid) ? rxid : oxid, 0); 19017 /* For BA_ABTS from exchange responder, if the logical xri with 19018 * the oxid maps to the FCP XRI range, the port no longer has 19019 * that exchange context, send a BLS_RJT. Override the IOCB for 19020 * a BA_RJT. 19021 */ 19022 if ((fctl & FC_FC_EX_CTX) && 19023 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19024 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19025 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19026 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19027 FC_BA_RJT_INV_XID); 19028 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19029 FC_BA_RJT_UNABLE); 19030 } 19031 19032 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19033 * the driver no longer has that exchange, send a BLS_RJT. Override 19034 * the IOCB for a BA_RJT. 19035 */ 19036 if (aborted == false) { 19037 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19038 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19039 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19040 FC_BA_RJT_INV_XID); 19041 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19042 FC_BA_RJT_UNABLE); 19043 } 19044 19045 if (fctl & FC_FC_EX_CTX) { 19046 /* ABTS sent by responder to CT exchange, construction 19047 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19048 * field and RX_ID from ABTS for RX_ID field. 19049 */ 19050 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19051 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19052 } else { 19053 /* ABTS sent by initiator to CT exchange, construction 19054 * of BA_ACC will need to allocate a new XRI as for the 19055 * XRI_TAG field. 19056 */ 19057 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19058 } 19059 19060 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19061 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19062 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19063 19064 /* Use CT=VPI */ 19065 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19066 ndlp->nlp_DID); 19067 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19068 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19069 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19070 19071 /* Xmit CT abts response on exchange <xid> */ 19072 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19073 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19074 ctiocb->abort_rctl, oxid, phba->link_state); 19075 19076 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19077 if (rc == IOCB_ERROR) { 19078 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19079 "2925 Failed to issue CT ABTS RSP x%x on " 19080 "xri x%x, Data x%x\n", 19081 ctiocb->abort_rctl, oxid, 19082 phba->link_state); 19083 lpfc_nlp_put(ndlp); 19084 ctiocb->ndlp = NULL; 19085 lpfc_sli_release_iocbq(phba, ctiocb); 19086 } 19087 19088 /* if only usage of this nodelist is BLS response, release initial ref 19089 * to free ndlp when transmit completes 19090 */ 19091 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19092 !test_bit(NLP_DROPPED, &ndlp->nlp_flag) && 19093 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19094 set_bit(NLP_DROPPED, &ndlp->nlp_flag); 19095 lpfc_nlp_put(ndlp); 19096 } 19097 } 19098 19099 /** 19100 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19101 * @vport: Pointer to the vport on which this sequence was received 19102 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19103 * 19104 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19105 * receive sequence is only partially assembed by the driver, it shall abort 19106 * the partially assembled frames for the sequence. Otherwise, if the 19107 * unsolicited receive sequence has been completely assembled and passed to 19108 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19109 * unsolicited sequence has been aborted. After that, it will issue a basic 19110 * accept to accept the abort. 19111 **/ 19112 static void 19113 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19114 struct hbq_dmabuf *dmabuf) 19115 { 19116 struct lpfc_hba *phba = vport->phba; 19117 struct fc_frame_header fc_hdr; 19118 uint32_t fctl; 19119 bool aborted; 19120 19121 /* Make a copy of fc_hdr before the dmabuf being released */ 19122 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19123 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19124 19125 if (fctl & FC_FC_EX_CTX) { 19126 /* ABTS by responder to exchange, no cleanup needed */ 19127 aborted = true; 19128 } else { 19129 /* ABTS by initiator to exchange, need to do cleanup */ 19130 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19131 if (aborted == false) 19132 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19133 } 19134 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19135 19136 if (phba->nvmet_support) { 19137 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19138 return; 19139 } 19140 19141 /* Respond with BA_ACC or BA_RJT accordingly */ 19142 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19143 } 19144 19145 /** 19146 * lpfc_seq_complete - Indicates if a sequence is complete 19147 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19148 * 19149 * This function checks the sequence, starting with the frame described by 19150 * @dmabuf, to see if all the frames associated with this sequence are present. 19151 * the frames associated with this sequence are linked to the @dmabuf using the 19152 * dbuf list. This function looks for two major things. 1) That the first frame 19153 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19154 * set. 3) That there are no holes in the sequence count. The function will 19155 * return 1 when the sequence is complete, otherwise it will return 0. 19156 **/ 19157 static int 19158 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19159 { 19160 struct fc_frame_header *hdr; 19161 struct lpfc_dmabuf *d_buf; 19162 struct hbq_dmabuf *seq_dmabuf; 19163 uint32_t fctl; 19164 int seq_count = 0; 19165 19166 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19167 /* make sure first fame of sequence has a sequence count of zero */ 19168 if (hdr->fh_seq_cnt != seq_count) 19169 return 0; 19170 fctl = (hdr->fh_f_ctl[0] << 16 | 19171 hdr->fh_f_ctl[1] << 8 | 19172 hdr->fh_f_ctl[2]); 19173 /* If last frame of sequence we can return success. */ 19174 if (fctl & FC_FC_END_SEQ) 19175 return 1; 19176 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19177 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19178 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19179 /* If there is a hole in the sequence count then fail. */ 19180 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19181 return 0; 19182 fctl = (hdr->fh_f_ctl[0] << 16 | 19183 hdr->fh_f_ctl[1] << 8 | 19184 hdr->fh_f_ctl[2]); 19185 /* If last frame of sequence we can return success. */ 19186 if (fctl & FC_FC_END_SEQ) 19187 return 1; 19188 } 19189 return 0; 19190 } 19191 19192 /** 19193 * lpfc_prep_seq - Prep sequence for ULP processing 19194 * @vport: Pointer to the vport on which this sequence was received 19195 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19196 * 19197 * This function takes a sequence, described by a list of frames, and creates 19198 * a list of iocbq structures to describe the sequence. This iocbq list will be 19199 * used to issue to the generic unsolicited sequence handler. This routine 19200 * returns a pointer to the first iocbq in the list. If the function is unable 19201 * to allocate an iocbq then it throw out the received frames that were not 19202 * able to be described and return a pointer to the first iocbq. If unable to 19203 * allocate any iocbqs (including the first) this function will return NULL. 19204 **/ 19205 static struct lpfc_iocbq * 19206 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19207 { 19208 struct hbq_dmabuf *hbq_buf; 19209 struct lpfc_dmabuf *d_buf, *n_buf; 19210 struct lpfc_iocbq *first_iocbq, *iocbq; 19211 struct fc_frame_header *fc_hdr; 19212 uint32_t sid; 19213 uint32_t len, tot_len; 19214 19215 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19216 /* remove from receive buffer list */ 19217 list_del_init(&seq_dmabuf->hbuf.list); 19218 lpfc_update_rcv_time_stamp(vport); 19219 /* get the Remote Port's SID */ 19220 sid = sli4_sid_from_fc_hdr(fc_hdr); 19221 tot_len = 0; 19222 /* Get an iocbq struct to fill in. */ 19223 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19224 if (first_iocbq) { 19225 /* Initialize the first IOCB. */ 19226 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19227 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19228 IOSTAT_SUCCESS); 19229 first_iocbq->vport = vport; 19230 19231 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19232 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19233 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19234 sli4_did_from_fc_hdr(fc_hdr)); 19235 } 19236 19237 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19238 NO_XRI); 19239 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19240 be16_to_cpu(fc_hdr->fh_ox_id)); 19241 19242 /* put the first buffer into the first iocb */ 19243 tot_len = bf_get(lpfc_rcqe_length, 19244 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19245 19246 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19247 first_iocbq->bpl_dmabuf = NULL; 19248 /* Keep track of the BDE count */ 19249 first_iocbq->wcqe_cmpl.word3 = 1; 19250 19251 if (tot_len > LPFC_DATA_BUF_SIZE) 19252 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19253 LPFC_DATA_BUF_SIZE; 19254 else 19255 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19256 19257 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19258 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19259 sid); 19260 } 19261 iocbq = first_iocbq; 19262 /* 19263 * Each IOCBq can have two Buffers assigned, so go through the list 19264 * of buffers for this sequence and save two buffers in each IOCBq 19265 */ 19266 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19267 if (!iocbq) { 19268 lpfc_in_buf_free(vport->phba, d_buf); 19269 continue; 19270 } 19271 if (!iocbq->bpl_dmabuf) { 19272 iocbq->bpl_dmabuf = d_buf; 19273 iocbq->wcqe_cmpl.word3++; 19274 /* We need to get the size out of the right CQE */ 19275 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19276 len = bf_get(lpfc_rcqe_length, 19277 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19278 iocbq->unsol_rcv_len = len; 19279 iocbq->wcqe_cmpl.total_data_placed += len; 19280 tot_len += len; 19281 } else { 19282 iocbq = lpfc_sli_get_iocbq(vport->phba); 19283 if (!iocbq) { 19284 if (first_iocbq) { 19285 bf_set(lpfc_wcqe_c_status, 19286 &first_iocbq->wcqe_cmpl, 19287 IOSTAT_SUCCESS); 19288 first_iocbq->wcqe_cmpl.parameter = 19289 IOERR_NO_RESOURCES; 19290 } 19291 lpfc_in_buf_free(vport->phba, d_buf); 19292 continue; 19293 } 19294 /* We need to get the size out of the right CQE */ 19295 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19296 len = bf_get(lpfc_rcqe_length, 19297 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19298 iocbq->cmd_dmabuf = d_buf; 19299 iocbq->bpl_dmabuf = NULL; 19300 iocbq->wcqe_cmpl.word3 = 1; 19301 19302 if (len > LPFC_DATA_BUF_SIZE) 19303 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19304 LPFC_DATA_BUF_SIZE; 19305 else 19306 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19307 len; 19308 19309 tot_len += len; 19310 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19311 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19312 sid); 19313 list_add_tail(&iocbq->list, &first_iocbq->list); 19314 } 19315 } 19316 /* Free the sequence's header buffer */ 19317 if (!first_iocbq) 19318 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19319 19320 return first_iocbq; 19321 } 19322 19323 static void 19324 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19325 struct hbq_dmabuf *seq_dmabuf) 19326 { 19327 struct fc_frame_header *fc_hdr; 19328 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19329 struct lpfc_hba *phba = vport->phba; 19330 19331 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19332 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19333 if (!iocbq) { 19334 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19335 "2707 Ring %d handler: Failed to allocate " 19336 "iocb Rctl x%x Type x%x received\n", 19337 LPFC_ELS_RING, 19338 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19339 return; 19340 } 19341 if (!lpfc_complete_unsol_iocb(phba, 19342 phba->sli4_hba.els_wq->pring, 19343 iocbq, fc_hdr->fh_r_ctl, 19344 fc_hdr->fh_type)) { 19345 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19346 "2540 Ring %d handler: unexpected Rctl " 19347 "x%x Type x%x received\n", 19348 LPFC_ELS_RING, 19349 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19350 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19351 } 19352 19353 /* Free iocb created in lpfc_prep_seq */ 19354 list_for_each_entry_safe(curr_iocb, next_iocb, 19355 &iocbq->list, list) { 19356 list_del_init(&curr_iocb->list); 19357 lpfc_sli_release_iocbq(phba, curr_iocb); 19358 } 19359 lpfc_sli_release_iocbq(phba, iocbq); 19360 } 19361 19362 static void 19363 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19364 struct lpfc_iocbq *rspiocb) 19365 { 19366 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19367 19368 if (pcmd && pcmd->virt) 19369 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19370 kfree(pcmd); 19371 lpfc_sli_release_iocbq(phba, cmdiocb); 19372 lpfc_drain_txq(phba); 19373 } 19374 19375 static void 19376 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19377 struct hbq_dmabuf *dmabuf) 19378 { 19379 struct fc_frame_header *fc_hdr; 19380 struct lpfc_hba *phba = vport->phba; 19381 struct lpfc_iocbq *iocbq = NULL; 19382 union lpfc_wqe128 *pwqe; 19383 struct lpfc_dmabuf *pcmd = NULL; 19384 uint32_t frame_len; 19385 int rc; 19386 unsigned long iflags; 19387 19388 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19389 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19390 19391 /* Send the received frame back */ 19392 iocbq = lpfc_sli_get_iocbq(phba); 19393 if (!iocbq) { 19394 /* Queue cq event and wakeup worker thread to process it */ 19395 spin_lock_irqsave(&phba->hbalock, iflags); 19396 list_add_tail(&dmabuf->cq_event.list, 19397 &phba->sli4_hba.sp_queue_event); 19398 spin_unlock_irqrestore(&phba->hbalock, iflags); 19399 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19400 lpfc_worker_wake_up(phba); 19401 return; 19402 } 19403 19404 /* Allocate buffer for command payload */ 19405 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19406 if (pcmd) 19407 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19408 &pcmd->phys); 19409 if (!pcmd || !pcmd->virt) 19410 goto exit; 19411 19412 INIT_LIST_HEAD(&pcmd->list); 19413 19414 /* copyin the payload */ 19415 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19416 19417 iocbq->cmd_dmabuf = pcmd; 19418 iocbq->vport = vport; 19419 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19420 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19421 iocbq->num_bdes = 0; 19422 19423 pwqe = &iocbq->wqe; 19424 /* fill in BDE's for command */ 19425 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19426 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19427 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19428 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19429 19430 pwqe->send_frame.frame_len = frame_len; 19431 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19432 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19433 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19434 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19435 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19436 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19437 19438 pwqe->generic.wqe_com.word7 = 0; 19439 pwqe->generic.wqe_com.word10 = 0; 19440 19441 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19442 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19443 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19444 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19445 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19446 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19447 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19448 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19449 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19450 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19451 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19452 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19453 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19454 19455 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19456 19457 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19458 if (rc == IOCB_ERROR) 19459 goto exit; 19460 19461 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19462 return; 19463 19464 exit: 19465 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19466 "2023 Unable to process MDS loopback frame\n"); 19467 if (pcmd && pcmd->virt) 19468 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19469 kfree(pcmd); 19470 if (iocbq) 19471 lpfc_sli_release_iocbq(phba, iocbq); 19472 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19473 } 19474 19475 /** 19476 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19477 * @phba: Pointer to HBA context object. 19478 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19479 * 19480 * This function is called with no lock held. This function processes all 19481 * the received buffers and gives it to upper layers when a received buffer 19482 * indicates that it is the final frame in the sequence. The interrupt 19483 * service routine processes received buffers at interrupt contexts. 19484 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19485 * appropriate receive function when the final frame in a sequence is received. 19486 **/ 19487 void 19488 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19489 struct hbq_dmabuf *dmabuf) 19490 { 19491 struct hbq_dmabuf *seq_dmabuf; 19492 struct fc_frame_header *fc_hdr; 19493 struct lpfc_vport *vport; 19494 uint32_t fcfi; 19495 uint32_t did; 19496 19497 /* Process each received buffer */ 19498 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19499 19500 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19501 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19502 vport = phba->pport; 19503 /* Handle MDS Loopback frames */ 19504 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19505 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19506 else 19507 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19508 return; 19509 } 19510 19511 /* check to see if this a valid type of frame */ 19512 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19513 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19514 return; 19515 } 19516 19517 if ((bf_get(lpfc_cqe_code, 19518 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19519 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19520 &dmabuf->cq_event.cqe.rcqe_cmpl); 19521 else 19522 fcfi = bf_get(lpfc_rcqe_fcf_id, 19523 &dmabuf->cq_event.cqe.rcqe_cmpl); 19524 19525 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19526 vport = phba->pport; 19527 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19528 "2023 MDS Loopback %d bytes\n", 19529 bf_get(lpfc_rcqe_length, 19530 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19531 /* Handle MDS Loopback frames */ 19532 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19533 return; 19534 } 19535 19536 /* d_id this frame is directed to */ 19537 did = sli4_did_from_fc_hdr(fc_hdr); 19538 19539 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19540 if (!vport) { 19541 /* throw out the frame */ 19542 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19543 return; 19544 } 19545 19546 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19547 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19548 (did != Fabric_DID)) { 19549 /* 19550 * Throw out the frame if we are not pt2pt. 19551 * The pt2pt protocol allows for discovery frames 19552 * to be received without a registered VPI. 19553 */ 19554 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19555 phba->link_state == LPFC_HBA_READY) { 19556 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19557 return; 19558 } 19559 } 19560 19561 /* Handle the basic abort sequence (BA_ABTS) event */ 19562 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19563 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19564 return; 19565 } 19566 19567 /* Link this frame */ 19568 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19569 if (!seq_dmabuf) { 19570 /* unable to add frame to vport - throw it out */ 19571 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19572 return; 19573 } 19574 /* If not last frame in sequence continue processing frames. */ 19575 if (!lpfc_seq_complete(seq_dmabuf)) 19576 return; 19577 19578 /* Send the complete sequence to the upper layer protocol */ 19579 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19580 } 19581 19582 /** 19583 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19584 * @phba: pointer to lpfc hba data structure. 19585 * 19586 * This routine is invoked to post rpi header templates to the 19587 * HBA consistent with the SLI-4 interface spec. This routine 19588 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19589 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19590 * 19591 * This routine does not require any locks. It's usage is expected 19592 * to be driver load or reset recovery when the driver is 19593 * sequential. 19594 * 19595 * Return codes 19596 * 0 - successful 19597 * -EIO - The mailbox failed to complete successfully. 19598 * When this error occurs, the driver is not guaranteed 19599 * to have any rpi regions posted to the device and 19600 * must either attempt to repost the regions or take a 19601 * fatal error. 19602 **/ 19603 int 19604 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19605 { 19606 struct lpfc_rpi_hdr *rpi_page; 19607 uint32_t rc = 0; 19608 uint16_t lrpi = 0; 19609 19610 /* SLI4 ports that support extents do not require RPI headers. */ 19611 if (!phba->sli4_hba.rpi_hdrs_in_use) 19612 goto exit; 19613 if (phba->sli4_hba.extents_in_use) 19614 return -EIO; 19615 19616 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19617 /* 19618 * Assign the rpi headers a physical rpi only if the driver 19619 * has not initialized those resources. A port reset only 19620 * needs the headers posted. 19621 */ 19622 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19623 LPFC_RPI_RSRC_RDY) 19624 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19625 19626 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19627 if (rc != MBX_SUCCESS) { 19628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19629 "2008 Error %d posting all rpi " 19630 "headers\n", rc); 19631 rc = -EIO; 19632 break; 19633 } 19634 } 19635 19636 exit: 19637 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19638 LPFC_RPI_RSRC_RDY); 19639 return rc; 19640 } 19641 19642 /** 19643 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19644 * @phba: pointer to lpfc hba data structure. 19645 * @rpi_page: pointer to the rpi memory region. 19646 * 19647 * This routine is invoked to post a single rpi header to the 19648 * HBA consistent with the SLI-4 interface spec. This memory region 19649 * maps up to 64 rpi context regions. 19650 * 19651 * Return codes 19652 * 0 - successful 19653 * -ENOMEM - No available memory 19654 * -EIO - The mailbox failed to complete successfully. 19655 **/ 19656 int 19657 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19658 { 19659 LPFC_MBOXQ_t *mboxq; 19660 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19661 uint32_t rc = 0; 19662 uint32_t shdr_status, shdr_add_status; 19663 union lpfc_sli4_cfg_shdr *shdr; 19664 19665 /* SLI4 ports that support extents do not require RPI headers. */ 19666 if (!phba->sli4_hba.rpi_hdrs_in_use) 19667 return rc; 19668 if (phba->sli4_hba.extents_in_use) 19669 return -EIO; 19670 19671 /* The port is notified of the header region via a mailbox command. */ 19672 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19673 if (!mboxq) { 19674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19675 "2001 Unable to allocate memory for issuing " 19676 "SLI_CONFIG_SPECIAL mailbox command\n"); 19677 return -ENOMEM; 19678 } 19679 19680 /* Post all rpi memory regions to the port. */ 19681 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19682 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19683 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19684 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19685 sizeof(struct lpfc_sli4_cfg_mhdr), 19686 LPFC_SLI4_MBX_EMBED); 19687 19688 19689 /* Post the physical rpi to the port for this rpi header. */ 19690 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19691 rpi_page->start_rpi); 19692 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19693 hdr_tmpl, rpi_page->page_count); 19694 19695 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19696 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19697 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19698 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19699 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19700 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19701 mempool_free(mboxq, phba->mbox_mem_pool); 19702 if (shdr_status || shdr_add_status || rc) { 19703 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19704 "2514 POST_RPI_HDR mailbox failed with " 19705 "status x%x add_status x%x, mbx status x%x\n", 19706 shdr_status, shdr_add_status, rc); 19707 rc = -ENXIO; 19708 } else { 19709 /* 19710 * The next_rpi stores the next logical module-64 rpi value used 19711 * to post physical rpis in subsequent rpi postings. 19712 */ 19713 spin_lock_irq(&phba->hbalock); 19714 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19715 spin_unlock_irq(&phba->hbalock); 19716 } 19717 return rc; 19718 } 19719 19720 /** 19721 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19722 * @phba: pointer to lpfc hba data structure. 19723 * 19724 * This routine is invoked to post rpi header templates to the 19725 * HBA consistent with the SLI-4 interface spec. This routine 19726 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19727 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19728 * 19729 * Returns 19730 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19731 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19732 **/ 19733 int 19734 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19735 { 19736 unsigned long rpi; 19737 uint16_t max_rpi, rpi_limit; 19738 uint16_t rpi_remaining, lrpi = 0; 19739 struct lpfc_rpi_hdr *rpi_hdr; 19740 unsigned long iflag; 19741 19742 /* 19743 * Fetch the next logical rpi. Because this index is logical, 19744 * the driver starts at 0 each time. 19745 */ 19746 spin_lock_irqsave(&phba->hbalock, iflag); 19747 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19748 rpi_limit = phba->sli4_hba.next_rpi; 19749 19750 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19751 if (rpi >= rpi_limit) 19752 rpi = LPFC_RPI_ALLOC_ERROR; 19753 else { 19754 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19755 phba->sli4_hba.max_cfg_param.rpi_used++; 19756 phba->sli4_hba.rpi_count++; 19757 } 19758 lpfc_printf_log(phba, KERN_INFO, 19759 LOG_NODE | LOG_DISCOVERY, 19760 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19761 (int) rpi, max_rpi, rpi_limit); 19762 19763 /* 19764 * Don't try to allocate more rpi header regions if the device limit 19765 * has been exhausted. 19766 */ 19767 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19768 (phba->sli4_hba.rpi_count >= max_rpi)) { 19769 spin_unlock_irqrestore(&phba->hbalock, iflag); 19770 return rpi; 19771 } 19772 19773 /* 19774 * RPI header postings are not required for SLI4 ports capable of 19775 * extents. 19776 */ 19777 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19778 spin_unlock_irqrestore(&phba->hbalock, iflag); 19779 return rpi; 19780 } 19781 19782 /* 19783 * If the driver is running low on rpi resources, allocate another 19784 * page now. Note that the next_rpi value is used because 19785 * it represents how many are actually in use whereas max_rpi notes 19786 * how many are supported max by the device. 19787 */ 19788 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19789 spin_unlock_irqrestore(&phba->hbalock, iflag); 19790 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19791 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19792 if (!rpi_hdr) { 19793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19794 "2002 Error Could not grow rpi " 19795 "count\n"); 19796 } else { 19797 lrpi = rpi_hdr->start_rpi; 19798 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19799 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19800 } 19801 } 19802 19803 return rpi; 19804 } 19805 19806 /** 19807 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19808 * @phba: pointer to lpfc hba data structure. 19809 * @rpi: rpi to free 19810 * 19811 * This routine is invoked to release an rpi to the pool of 19812 * available rpis maintained by the driver. 19813 **/ 19814 static void 19815 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19816 { 19817 /* 19818 * if the rpi value indicates a prior unreg has already 19819 * been done, skip the unreg. 19820 */ 19821 if (rpi == LPFC_RPI_ALLOC_ERROR) 19822 return; 19823 19824 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19825 phba->sli4_hba.rpi_count--; 19826 phba->sli4_hba.max_cfg_param.rpi_used--; 19827 } else { 19828 lpfc_printf_log(phba, KERN_INFO, 19829 LOG_NODE | LOG_DISCOVERY, 19830 "2016 rpi %x not inuse\n", 19831 rpi); 19832 } 19833 } 19834 19835 /** 19836 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19837 * @phba: pointer to lpfc hba data structure. 19838 * @rpi: rpi to free 19839 * 19840 * This routine is invoked to release an rpi to the pool of 19841 * available rpis maintained by the driver. 19842 **/ 19843 void 19844 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19845 { 19846 spin_lock_irq(&phba->hbalock); 19847 __lpfc_sli4_free_rpi(phba, rpi); 19848 spin_unlock_irq(&phba->hbalock); 19849 } 19850 19851 /** 19852 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19853 * @phba: pointer to lpfc hba data structure. 19854 * 19855 * This routine is invoked to remove the memory region that 19856 * provided rpi via a bitmask. 19857 **/ 19858 void 19859 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19860 { 19861 kfree(phba->sli4_hba.rpi_bmask); 19862 kfree(phba->sli4_hba.rpi_ids); 19863 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19864 } 19865 19866 /** 19867 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19868 * @ndlp: pointer to lpfc nodelist data structure. 19869 * @cmpl: completion call-back. 19870 * @iocbq: data to load as mbox ctx_u information 19871 * 19872 * This routine is invoked to remove the memory region that 19873 * provided rpi via a bitmask. 19874 **/ 19875 int 19876 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19877 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19878 struct lpfc_iocbq *iocbq) 19879 { 19880 LPFC_MBOXQ_t *mboxq; 19881 struct lpfc_hba *phba = ndlp->phba; 19882 int rc; 19883 19884 /* The port is notified of the header region via a mailbox command. */ 19885 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19886 if (!mboxq) 19887 return -ENOMEM; 19888 19889 /* If cmpl assigned, then this nlp_get pairs with 19890 * lpfc_mbx_cmpl_resume_rpi. 19891 * 19892 * Else cmpl is NULL, then this nlp_get pairs with 19893 * lpfc_sli_def_mbox_cmpl. 19894 */ 19895 if (!lpfc_nlp_get(ndlp)) { 19896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19897 "2122 %s: Failed to get nlp ref\n", 19898 __func__); 19899 mempool_free(mboxq, phba->mbox_mem_pool); 19900 return -EIO; 19901 } 19902 19903 /* Post all rpi memory regions to the port. */ 19904 lpfc_resume_rpi(mboxq, ndlp); 19905 if (cmpl) { 19906 mboxq->mbox_cmpl = cmpl; 19907 mboxq->ctx_u.save_iocb = iocbq; 19908 } else 19909 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19910 mboxq->ctx_ndlp = ndlp; 19911 mboxq->vport = ndlp->vport; 19912 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19913 if (rc == MBX_NOT_FINISHED) { 19914 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19915 "2010 Resume RPI Mailbox failed " 19916 "status %d, mbxStatus x%x\n", rc, 19917 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19918 lpfc_nlp_put(ndlp); 19919 mempool_free(mboxq, phba->mbox_mem_pool); 19920 return -EIO; 19921 } 19922 return 0; 19923 } 19924 19925 /** 19926 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19927 * @vport: Pointer to the vport for which the vpi is being initialized 19928 * 19929 * This routine is invoked to activate a vpi with the port. 19930 * 19931 * Returns: 19932 * 0 success 19933 * -Evalue otherwise 19934 **/ 19935 int 19936 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19937 { 19938 LPFC_MBOXQ_t *mboxq; 19939 int rc = 0; 19940 int retval = MBX_SUCCESS; 19941 uint32_t mbox_tmo; 19942 struct lpfc_hba *phba = vport->phba; 19943 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19944 if (!mboxq) 19945 return -ENOMEM; 19946 lpfc_init_vpi(phba, mboxq, vport->vpi); 19947 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19948 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19949 if (rc != MBX_SUCCESS) { 19950 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19951 "2022 INIT VPI Mailbox failed " 19952 "status %d, mbxStatus x%x\n", rc, 19953 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19954 retval = -EIO; 19955 } 19956 if (rc != MBX_TIMEOUT) 19957 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19958 19959 return retval; 19960 } 19961 19962 /** 19963 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19964 * @phba: pointer to lpfc hba data structure. 19965 * @mboxq: Pointer to mailbox object. 19966 * 19967 * This routine is invoked to manually add a single FCF record. The caller 19968 * must pass a completely initialized FCF_Record. This routine takes 19969 * care of the nonembedded mailbox operations. 19970 **/ 19971 static void 19972 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19973 { 19974 void *virt_addr; 19975 union lpfc_sli4_cfg_shdr *shdr; 19976 uint32_t shdr_status, shdr_add_status; 19977 19978 virt_addr = mboxq->sge_array->addr[0]; 19979 /* The IOCTL status is embedded in the mailbox subheader. */ 19980 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19981 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19982 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19983 19984 if ((shdr_status || shdr_add_status) && 19985 (shdr_status != STATUS_FCF_IN_USE)) 19986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19987 "2558 ADD_FCF_RECORD mailbox failed with " 19988 "status x%x add_status x%x\n", 19989 shdr_status, shdr_add_status); 19990 19991 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19992 } 19993 19994 /** 19995 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19996 * @phba: pointer to lpfc hba data structure. 19997 * @fcf_record: pointer to the initialized fcf record to add. 19998 * 19999 * This routine is invoked to manually add a single FCF record. The caller 20000 * must pass a completely initialized FCF_Record. This routine takes 20001 * care of the nonembedded mailbox operations. 20002 **/ 20003 int 20004 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 20005 { 20006 int rc = 0; 20007 LPFC_MBOXQ_t *mboxq; 20008 uint8_t *bytep; 20009 void *virt_addr; 20010 struct lpfc_mbx_sge sge; 20011 uint32_t alloc_len, req_len; 20012 uint32_t fcfindex; 20013 20014 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20015 if (!mboxq) { 20016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20017 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20018 return -ENOMEM; 20019 } 20020 20021 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20022 sizeof(uint32_t); 20023 20024 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20025 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20026 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20027 req_len, LPFC_SLI4_MBX_NEMBED); 20028 if (alloc_len < req_len) { 20029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20030 "2523 Allocated DMA memory size (x%x) is " 20031 "less than the requested DMA memory " 20032 "size (x%x)\n", alloc_len, req_len); 20033 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20034 return -ENOMEM; 20035 } 20036 20037 /* 20038 * Get the first SGE entry from the non-embedded DMA memory. This 20039 * routine only uses a single SGE. 20040 */ 20041 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20042 virt_addr = mboxq->sge_array->addr[0]; 20043 /* 20044 * Configure the FCF record for FCFI 0. This is the driver's 20045 * hardcoded default and gets used in nonFIP mode. 20046 */ 20047 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20048 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20049 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20050 20051 /* 20052 * Copy the fcf_index and the FCF Record Data. The data starts after 20053 * the FCoE header plus word10. The data copy needs to be endian 20054 * correct. 20055 */ 20056 bytep += sizeof(uint32_t); 20057 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20058 mboxq->vport = phba->pport; 20059 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20060 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20061 if (rc == MBX_NOT_FINISHED) { 20062 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20063 "2515 ADD_FCF_RECORD mailbox failed with " 20064 "status 0x%x\n", rc); 20065 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20066 rc = -EIO; 20067 } else 20068 rc = 0; 20069 20070 return rc; 20071 } 20072 20073 /** 20074 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20075 * @phba: pointer to lpfc hba data structure. 20076 * @fcf_record: pointer to the fcf record to write the default data. 20077 * @fcf_index: FCF table entry index. 20078 * 20079 * This routine is invoked to build the driver's default FCF record. The 20080 * values used are hardcoded. This routine handles memory initialization. 20081 * 20082 **/ 20083 void 20084 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20085 struct fcf_record *fcf_record, 20086 uint16_t fcf_index) 20087 { 20088 memset(fcf_record, 0, sizeof(struct fcf_record)); 20089 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20090 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20091 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20092 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20093 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20094 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20095 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20096 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20097 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20098 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20099 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20100 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20101 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20102 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20103 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20104 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20105 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20106 /* Set the VLAN bit map */ 20107 if (phba->valid_vlan) { 20108 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20109 = 1 << (phba->vlan_id % 8); 20110 } 20111 } 20112 20113 /** 20114 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20115 * @phba: pointer to lpfc hba data structure. 20116 * @fcf_index: FCF table entry offset. 20117 * 20118 * This routine is invoked to scan the entire FCF table by reading FCF 20119 * record and processing it one at a time starting from the @fcf_index 20120 * for initial FCF discovery or fast FCF failover rediscovery. 20121 * 20122 * Return 0 if the mailbox command is submitted successfully, none 0 20123 * otherwise. 20124 **/ 20125 int 20126 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20127 { 20128 int rc = 0, error; 20129 LPFC_MBOXQ_t *mboxq; 20130 20131 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20132 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20133 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20134 if (!mboxq) { 20135 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20136 "2000 Failed to allocate mbox for " 20137 "READ_FCF cmd\n"); 20138 error = -ENOMEM; 20139 goto fail_fcf_scan; 20140 } 20141 /* Construct the read FCF record mailbox command */ 20142 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20143 if (rc) { 20144 error = -EINVAL; 20145 goto fail_fcf_scan; 20146 } 20147 /* Issue the mailbox command asynchronously */ 20148 mboxq->vport = phba->pport; 20149 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20150 20151 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20152 20153 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20154 if (rc == MBX_NOT_FINISHED) 20155 error = -EIO; 20156 else { 20157 /* Reset eligible FCF count for new scan */ 20158 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20159 phba->fcf.eligible_fcf_cnt = 0; 20160 error = 0; 20161 } 20162 fail_fcf_scan: 20163 if (error) { 20164 if (mboxq) 20165 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20166 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20167 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20168 } 20169 return error; 20170 } 20171 20172 /** 20173 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20174 * @phba: pointer to lpfc hba data structure. 20175 * @fcf_index: FCF table entry offset. 20176 * 20177 * This routine is invoked to read an FCF record indicated by @fcf_index 20178 * and to use it for FLOGI roundrobin FCF failover. 20179 * 20180 * Return 0 if the mailbox command is submitted successfully, none 0 20181 * otherwise. 20182 **/ 20183 int 20184 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20185 { 20186 int rc = 0, error; 20187 LPFC_MBOXQ_t *mboxq; 20188 20189 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20190 if (!mboxq) { 20191 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20192 "2763 Failed to allocate mbox for " 20193 "READ_FCF cmd\n"); 20194 error = -ENOMEM; 20195 goto fail_fcf_read; 20196 } 20197 /* Construct the read FCF record mailbox command */ 20198 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20199 if (rc) { 20200 error = -EINVAL; 20201 goto fail_fcf_read; 20202 } 20203 /* Issue the mailbox command asynchronously */ 20204 mboxq->vport = phba->pport; 20205 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20206 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20207 if (rc == MBX_NOT_FINISHED) 20208 error = -EIO; 20209 else 20210 error = 0; 20211 20212 fail_fcf_read: 20213 if (error && mboxq) 20214 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20215 return error; 20216 } 20217 20218 /** 20219 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20220 * @phba: pointer to lpfc hba data structure. 20221 * @fcf_index: FCF table entry offset. 20222 * 20223 * This routine is invoked to read an FCF record indicated by @fcf_index to 20224 * determine whether it's eligible for FLOGI roundrobin failover list. 20225 * 20226 * Return 0 if the mailbox command is submitted successfully, none 0 20227 * otherwise. 20228 **/ 20229 int 20230 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20231 { 20232 int rc = 0, error; 20233 LPFC_MBOXQ_t *mboxq; 20234 20235 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20236 if (!mboxq) { 20237 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20238 "2758 Failed to allocate mbox for " 20239 "READ_FCF cmd\n"); 20240 error = -ENOMEM; 20241 goto fail_fcf_read; 20242 } 20243 /* Construct the read FCF record mailbox command */ 20244 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20245 if (rc) { 20246 error = -EINVAL; 20247 goto fail_fcf_read; 20248 } 20249 /* Issue the mailbox command asynchronously */ 20250 mboxq->vport = phba->pport; 20251 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20252 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20253 if (rc == MBX_NOT_FINISHED) 20254 error = -EIO; 20255 else 20256 error = 0; 20257 20258 fail_fcf_read: 20259 if (error && mboxq) 20260 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20261 return error; 20262 } 20263 20264 /** 20265 * lpfc_check_next_fcf_pri_level 20266 * @phba: pointer to the lpfc_hba struct for this port. 20267 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20268 * routine when the rr_bmask is empty. The FCF indecies are put into the 20269 * rr_bmask based on their priority level. Starting from the highest priority 20270 * to the lowest. The most likely FCF candidate will be in the highest 20271 * priority group. When this routine is called it searches the fcf_pri list for 20272 * next lowest priority group and repopulates the rr_bmask with only those 20273 * fcf_indexes. 20274 * returns: 20275 * 1=success 0=failure 20276 **/ 20277 static int 20278 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20279 { 20280 uint16_t next_fcf_pri; 20281 uint16_t last_index; 20282 struct lpfc_fcf_pri *fcf_pri; 20283 int rc; 20284 int ret = 0; 20285 20286 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20287 LPFC_SLI4_FCF_TBL_INDX_MAX); 20288 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20289 "3060 Last IDX %d\n", last_index); 20290 20291 /* Verify the priority list has 2 or more entries */ 20292 spin_lock_irq(&phba->hbalock); 20293 if (list_empty(&phba->fcf.fcf_pri_list) || 20294 list_is_singular(&phba->fcf.fcf_pri_list)) { 20295 spin_unlock_irq(&phba->hbalock); 20296 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20297 "3061 Last IDX %d\n", last_index); 20298 return 0; /* Empty rr list */ 20299 } 20300 spin_unlock_irq(&phba->hbalock); 20301 20302 next_fcf_pri = 0; 20303 /* 20304 * Clear the rr_bmask and set all of the bits that are at this 20305 * priority. 20306 */ 20307 memset(phba->fcf.fcf_rr_bmask, 0, 20308 sizeof(*phba->fcf.fcf_rr_bmask)); 20309 spin_lock_irq(&phba->hbalock); 20310 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20311 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20312 continue; 20313 /* 20314 * the 1st priority that has not FLOGI failed 20315 * will be the highest. 20316 */ 20317 if (!next_fcf_pri) 20318 next_fcf_pri = fcf_pri->fcf_rec.priority; 20319 spin_unlock_irq(&phba->hbalock); 20320 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20321 rc = lpfc_sli4_fcf_rr_index_set(phba, 20322 fcf_pri->fcf_rec.fcf_index); 20323 if (rc) 20324 return 0; 20325 } 20326 spin_lock_irq(&phba->hbalock); 20327 } 20328 /* 20329 * if next_fcf_pri was not set above and the list is not empty then 20330 * we have failed flogis on all of them. So reset flogi failed 20331 * and start at the beginning. 20332 */ 20333 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20334 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20335 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20336 /* 20337 * the 1st priority that has not FLOGI failed 20338 * will be the highest. 20339 */ 20340 if (!next_fcf_pri) 20341 next_fcf_pri = fcf_pri->fcf_rec.priority; 20342 spin_unlock_irq(&phba->hbalock); 20343 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20344 rc = lpfc_sli4_fcf_rr_index_set(phba, 20345 fcf_pri->fcf_rec.fcf_index); 20346 if (rc) 20347 return 0; 20348 } 20349 spin_lock_irq(&phba->hbalock); 20350 } 20351 } else 20352 ret = 1; 20353 spin_unlock_irq(&phba->hbalock); 20354 20355 return ret; 20356 } 20357 /** 20358 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20359 * @phba: pointer to lpfc hba data structure. 20360 * 20361 * This routine is to get the next eligible FCF record index in a round 20362 * robin fashion. If the next eligible FCF record index equals to the 20363 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20364 * shall be returned, otherwise, the next eligible FCF record's index 20365 * shall be returned. 20366 **/ 20367 uint16_t 20368 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20369 { 20370 uint16_t next_fcf_index; 20371 20372 initial_priority: 20373 /* Search start from next bit of currently registered FCF index */ 20374 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20375 20376 next_priority: 20377 /* Determine the next fcf index to check */ 20378 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20379 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20380 LPFC_SLI4_FCF_TBL_INDX_MAX, 20381 next_fcf_index); 20382 20383 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20384 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20385 /* 20386 * If we have wrapped then we need to clear the bits that 20387 * have been tested so that we can detect when we should 20388 * change the priority level. 20389 */ 20390 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20391 LPFC_SLI4_FCF_TBL_INDX_MAX); 20392 } 20393 20394 20395 /* Check roundrobin failover list empty condition */ 20396 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20397 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20398 /* 20399 * If next fcf index is not found check if there are lower 20400 * Priority level fcf's in the fcf_priority list. 20401 * Set up the rr_bmask with all of the avaiable fcf bits 20402 * at that level and continue the selection process. 20403 */ 20404 if (lpfc_check_next_fcf_pri_level(phba)) 20405 goto initial_priority; 20406 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20407 "2844 No roundrobin failover FCF available\n"); 20408 20409 return LPFC_FCOE_FCF_NEXT_NONE; 20410 } 20411 20412 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20413 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20414 LPFC_FCF_FLOGI_FAILED) { 20415 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20416 return LPFC_FCOE_FCF_NEXT_NONE; 20417 20418 goto next_priority; 20419 } 20420 20421 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20422 "2845 Get next roundrobin failover FCF (x%x)\n", 20423 next_fcf_index); 20424 20425 return next_fcf_index; 20426 } 20427 20428 /** 20429 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20430 * @phba: pointer to lpfc hba data structure. 20431 * @fcf_index: index into the FCF table to 'set' 20432 * 20433 * This routine sets the FCF record index in to the eligible bmask for 20434 * roundrobin failover search. It checks to make sure that the index 20435 * does not go beyond the range of the driver allocated bmask dimension 20436 * before setting the bit. 20437 * 20438 * Returns 0 if the index bit successfully set, otherwise, it returns 20439 * -EINVAL. 20440 **/ 20441 int 20442 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20443 { 20444 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20445 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20446 "2610 FCF (x%x) reached driver's book " 20447 "keeping dimension:x%x\n", 20448 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20449 return -EINVAL; 20450 } 20451 /* Set the eligible FCF record index bmask */ 20452 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20453 20454 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20455 "2790 Set FCF (x%x) to roundrobin FCF failover " 20456 "bmask\n", fcf_index); 20457 20458 return 0; 20459 } 20460 20461 /** 20462 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20463 * @phba: pointer to lpfc hba data structure. 20464 * @fcf_index: index into the FCF table to 'clear' 20465 * 20466 * This routine clears the FCF record index from the eligible bmask for 20467 * roundrobin failover search. It checks to make sure that the index 20468 * does not go beyond the range of the driver allocated bmask dimension 20469 * before clearing the bit. 20470 **/ 20471 void 20472 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20473 { 20474 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20475 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20476 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20477 "2762 FCF (x%x) reached driver's book " 20478 "keeping dimension:x%x\n", 20479 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20480 return; 20481 } 20482 /* Clear the eligible FCF record index bmask */ 20483 spin_lock_irq(&phba->hbalock); 20484 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20485 list) { 20486 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20487 list_del_init(&fcf_pri->list); 20488 break; 20489 } 20490 } 20491 spin_unlock_irq(&phba->hbalock); 20492 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20493 20494 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20495 "2791 Clear FCF (x%x) from roundrobin failover " 20496 "bmask\n", fcf_index); 20497 } 20498 20499 /** 20500 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20501 * @phba: pointer to lpfc hba data structure. 20502 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20503 * 20504 * This routine is the completion routine for the rediscover FCF table mailbox 20505 * command. If the mailbox command returned failure, it will try to stop the 20506 * FCF rediscover wait timer. 20507 **/ 20508 static void 20509 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20510 { 20511 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20512 uint32_t shdr_status, shdr_add_status; 20513 20514 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20515 20516 shdr_status = bf_get(lpfc_mbox_hdr_status, 20517 &redisc_fcf->header.cfg_shdr.response); 20518 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20519 &redisc_fcf->header.cfg_shdr.response); 20520 if (shdr_status || shdr_add_status) { 20521 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20522 "2746 Requesting for FCF rediscovery failed " 20523 "status x%x add_status x%x\n", 20524 shdr_status, shdr_add_status); 20525 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20526 spin_lock_irq(&phba->hbalock); 20527 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20528 spin_unlock_irq(&phba->hbalock); 20529 /* 20530 * CVL event triggered FCF rediscover request failed, 20531 * last resort to re-try current registered FCF entry. 20532 */ 20533 lpfc_retry_pport_discovery(phba); 20534 } else { 20535 spin_lock_irq(&phba->hbalock); 20536 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20537 spin_unlock_irq(&phba->hbalock); 20538 /* 20539 * DEAD FCF event triggered FCF rediscover request 20540 * failed, last resort to fail over as a link down 20541 * to FCF registration. 20542 */ 20543 lpfc_sli4_fcf_dead_failthrough(phba); 20544 } 20545 } else { 20546 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20547 "2775 Start FCF rediscover quiescent timer\n"); 20548 /* 20549 * Start FCF rediscovery wait timer for pending FCF 20550 * before rescan FCF record table. 20551 */ 20552 lpfc_fcf_redisc_wait_start_timer(phba); 20553 } 20554 20555 mempool_free(mbox, phba->mbox_mem_pool); 20556 } 20557 20558 /** 20559 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20560 * @phba: pointer to lpfc hba data structure. 20561 * 20562 * This routine is invoked to request for rediscovery of the entire FCF table 20563 * by the port. 20564 **/ 20565 int 20566 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20567 { 20568 LPFC_MBOXQ_t *mbox; 20569 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20570 int rc, length; 20571 20572 /* Cancel retry delay timers to all vports before FCF rediscover */ 20573 lpfc_cancel_all_vport_retry_delay_timer(phba); 20574 20575 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20576 if (!mbox) { 20577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20578 "2745 Failed to allocate mbox for " 20579 "requesting FCF rediscover.\n"); 20580 return -ENOMEM; 20581 } 20582 20583 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20584 sizeof(struct lpfc_sli4_cfg_mhdr)); 20585 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20586 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20587 length, LPFC_SLI4_MBX_EMBED); 20588 20589 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20590 /* Set count to 0 for invalidating the entire FCF database */ 20591 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20592 20593 /* Issue the mailbox command asynchronously */ 20594 mbox->vport = phba->pport; 20595 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20596 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20597 20598 if (rc == MBX_NOT_FINISHED) { 20599 mempool_free(mbox, phba->mbox_mem_pool); 20600 return -EIO; 20601 } 20602 return 0; 20603 } 20604 20605 /** 20606 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20607 * @phba: pointer to lpfc hba data structure. 20608 * 20609 * This function is the failover routine as a last resort to the FCF DEAD 20610 * event when driver failed to perform fast FCF failover. 20611 **/ 20612 void 20613 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20614 { 20615 uint32_t link_state; 20616 20617 /* 20618 * Last resort as FCF DEAD event failover will treat this as 20619 * a link down, but save the link state because we don't want 20620 * it to be changed to Link Down unless it is already down. 20621 */ 20622 link_state = phba->link_state; 20623 lpfc_linkdown(phba); 20624 phba->link_state = link_state; 20625 20626 /* Unregister FCF if no devices connected to it */ 20627 lpfc_unregister_unused_fcf(phba); 20628 } 20629 20630 /** 20631 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20632 * @phba: pointer to lpfc hba data structure. 20633 * @rgn23_data: pointer to configure region 23 data. 20634 * 20635 * This function gets SLI3 port configure region 23 data through memory dump 20636 * mailbox command. When it successfully retrieves data, the size of the data 20637 * will be returned, otherwise, 0 will be returned. 20638 **/ 20639 static uint32_t 20640 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20641 { 20642 LPFC_MBOXQ_t *pmb = NULL; 20643 MAILBOX_t *mb; 20644 uint32_t offset = 0; 20645 int rc; 20646 20647 if (!rgn23_data) 20648 return 0; 20649 20650 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20651 if (!pmb) { 20652 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20653 "2600 failed to allocate mailbox memory\n"); 20654 return 0; 20655 } 20656 mb = &pmb->u.mb; 20657 20658 do { 20659 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20660 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20661 20662 if (rc != MBX_SUCCESS) { 20663 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20664 "2601 failed to read config " 20665 "region 23, rc 0x%x Status 0x%x\n", 20666 rc, mb->mbxStatus); 20667 mb->un.varDmp.word_cnt = 0; 20668 } 20669 /* 20670 * dump mem may return a zero when finished or we got a 20671 * mailbox error, either way we are done. 20672 */ 20673 if (mb->un.varDmp.word_cnt == 0) 20674 break; 20675 20676 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20677 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20678 20679 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20680 rgn23_data + offset, 20681 mb->un.varDmp.word_cnt); 20682 offset += mb->un.varDmp.word_cnt; 20683 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20684 20685 mempool_free(pmb, phba->mbox_mem_pool); 20686 return offset; 20687 } 20688 20689 /** 20690 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20691 * @phba: pointer to lpfc hba data structure. 20692 * @rgn23_data: pointer to configure region 23 data. 20693 * 20694 * This function gets SLI4 port configure region 23 data through memory dump 20695 * mailbox command. When it successfully retrieves data, the size of the data 20696 * will be returned, otherwise, 0 will be returned. 20697 **/ 20698 static uint32_t 20699 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20700 { 20701 LPFC_MBOXQ_t *mboxq = NULL; 20702 struct lpfc_dmabuf *mp = NULL; 20703 struct lpfc_mqe *mqe; 20704 uint32_t data_length = 0; 20705 int rc; 20706 20707 if (!rgn23_data) 20708 return 0; 20709 20710 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20711 if (!mboxq) { 20712 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20713 "3105 failed to allocate mailbox memory\n"); 20714 return 0; 20715 } 20716 20717 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20718 goto out; 20719 mqe = &mboxq->u.mqe; 20720 mp = mboxq->ctx_buf; 20721 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20722 if (rc) 20723 goto out; 20724 data_length = mqe->un.mb_words[5]; 20725 if (data_length == 0) 20726 goto out; 20727 if (data_length > DMP_RGN23_SIZE) { 20728 data_length = 0; 20729 goto out; 20730 } 20731 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20732 out: 20733 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20734 return data_length; 20735 } 20736 20737 /** 20738 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20739 * @phba: pointer to lpfc hba data structure. 20740 * 20741 * This function read region 23 and parse TLV for port status to 20742 * decide if the user disaled the port. If the TLV indicates the 20743 * port is disabled, the hba_flag is set accordingly. 20744 **/ 20745 void 20746 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20747 { 20748 uint8_t *rgn23_data = NULL; 20749 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20750 uint32_t offset = 0; 20751 20752 /* Get adapter Region 23 data */ 20753 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20754 if (!rgn23_data) 20755 goto out; 20756 20757 if (phba->sli_rev < LPFC_SLI_REV4) 20758 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20759 else { 20760 if_type = bf_get(lpfc_sli_intf_if_type, 20761 &phba->sli4_hba.sli_intf); 20762 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20763 goto out; 20764 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20765 } 20766 20767 if (!data_size) 20768 goto out; 20769 20770 /* Check the region signature first */ 20771 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20773 "2619 Config region 23 has bad signature\n"); 20774 goto out; 20775 } 20776 offset += 4; 20777 20778 /* Check the data structure version */ 20779 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20781 "2620 Config region 23 has bad version\n"); 20782 goto out; 20783 } 20784 offset += 4; 20785 20786 /* Parse TLV entries in the region */ 20787 while (offset < data_size) { 20788 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20789 break; 20790 /* 20791 * If the TLV is not driver specific TLV or driver id is 20792 * not linux driver id, skip the record. 20793 */ 20794 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20795 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20796 (rgn23_data[offset + 3] != 0)) { 20797 offset += rgn23_data[offset + 1] * 4 + 4; 20798 continue; 20799 } 20800 20801 /* Driver found a driver specific TLV in the config region */ 20802 sub_tlv_len = rgn23_data[offset + 1] * 4; 20803 offset += 4; 20804 tlv_offset = 0; 20805 20806 /* 20807 * Search for configured port state sub-TLV. 20808 */ 20809 while ((offset < data_size) && 20810 (tlv_offset < sub_tlv_len)) { 20811 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20812 offset += 4; 20813 tlv_offset += 4; 20814 break; 20815 } 20816 if (rgn23_data[offset] != PORT_STE_TYPE) { 20817 offset += rgn23_data[offset + 1] * 4 + 4; 20818 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20819 continue; 20820 } 20821 20822 /* This HBA contains PORT_STE configured */ 20823 if (!rgn23_data[offset + 2]) 20824 set_bit(LINK_DISABLED, &phba->hba_flag); 20825 20826 goto out; 20827 } 20828 } 20829 20830 out: 20831 kfree(rgn23_data); 20832 return; 20833 } 20834 20835 /** 20836 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20837 * @phba: pointer to lpfc hba data structure 20838 * @shdr_status: wr_object rsp's status field 20839 * @shdr_add_status: wr_object rsp's add_status field 20840 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20841 * @shdr_change_status: wr_object rsp's change_status field 20842 * @shdr_csf: wr_object rsp's csf bit 20843 * 20844 * This routine is intended to be called after a firmware write completes. 20845 * It will log next action items to be performed by the user to instantiate 20846 * the newly downloaded firmware or reason for incompatibility. 20847 **/ 20848 static void 20849 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20850 u32 shdr_add_status, u32 shdr_add_status_2, 20851 u32 shdr_change_status, u32 shdr_csf) 20852 { 20853 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20854 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20855 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20856 "change_status x%02x, csf %01x\n", __func__, 20857 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20858 shdr_status, shdr_add_status, shdr_add_status_2, 20859 shdr_change_status, shdr_csf); 20860 20861 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20862 switch (shdr_add_status_2) { 20863 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20864 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20865 "4199 Firmware write failed: " 20866 "image incompatible with flash x%02x\n", 20867 phba->sli4_hba.flash_id); 20868 break; 20869 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20870 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20871 "4200 Firmware write failed: " 20872 "image incompatible with ASIC " 20873 "architecture x%02x\n", 20874 phba->sli4_hba.asic_rev); 20875 break; 20876 default: 20877 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20878 "4210 Firmware write failed: " 20879 "add_status_2 x%02x\n", 20880 shdr_add_status_2); 20881 break; 20882 } 20883 } else if (!shdr_status && !shdr_add_status) { 20884 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20885 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20886 if (shdr_csf) 20887 shdr_change_status = 20888 LPFC_CHANGE_STATUS_PCI_RESET; 20889 } 20890 20891 switch (shdr_change_status) { 20892 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20893 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20894 "3198 Firmware write complete: System " 20895 "reboot required to instantiate\n"); 20896 break; 20897 case (LPFC_CHANGE_STATUS_FW_RESET): 20898 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20899 "3199 Firmware write complete: " 20900 "Firmware reset required to " 20901 "instantiate\n"); 20902 break; 20903 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20904 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20905 "3200 Firmware write complete: Port " 20906 "Migration or PCI Reset required to " 20907 "instantiate\n"); 20908 break; 20909 case (LPFC_CHANGE_STATUS_PCI_RESET): 20910 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20911 "3201 Firmware write complete: PCI " 20912 "Reset required to instantiate\n"); 20913 break; 20914 default: 20915 break; 20916 } 20917 } 20918 } 20919 20920 /** 20921 * lpfc_wr_object - write an object to the firmware 20922 * @phba: HBA structure that indicates port to create a queue on. 20923 * @dmabuf_list: list of dmabufs to write to the port. 20924 * @size: the total byte value of the objects to write to the port. 20925 * @offset: the current offset to be used to start the transfer. 20926 * 20927 * This routine will create a wr_object mailbox command to send to the port. 20928 * the mailbox command will be constructed using the dma buffers described in 20929 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20930 * BDEs that the imbedded mailbox can support. The @offset variable will be 20931 * used to indicate the starting offset of the transfer and will also return 20932 * the offset after the write object mailbox has completed. @size is used to 20933 * determine the end of the object and whether the eof bit should be set. 20934 * 20935 * Return 0 is successful and offset will contain the new offset to use 20936 * for the next write. 20937 * Return negative value for error cases. 20938 **/ 20939 int 20940 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20941 uint32_t size, uint32_t *offset) 20942 { 20943 struct lpfc_mbx_wr_object *wr_object; 20944 LPFC_MBOXQ_t *mbox; 20945 int rc = 0, i = 0; 20946 int mbox_status = 0; 20947 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20948 uint32_t shdr_change_status = 0, shdr_csf = 0; 20949 uint32_t mbox_tmo; 20950 struct lpfc_dmabuf *dmabuf; 20951 uint32_t written = 0; 20952 bool check_change_status = false; 20953 20954 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20955 if (!mbox) 20956 return -ENOMEM; 20957 20958 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20959 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20960 sizeof(struct lpfc_mbx_wr_object) - 20961 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20962 20963 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20964 wr_object->u.request.write_offset = *offset; 20965 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20966 wr_object->u.request.object_name[0] = 20967 cpu_to_le32(wr_object->u.request.object_name[0]); 20968 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20969 list_for_each_entry(dmabuf, dmabuf_list, list) { 20970 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20971 break; 20972 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20973 wr_object->u.request.bde[i].addrHigh = 20974 putPaddrHigh(dmabuf->phys); 20975 if (written + SLI4_PAGE_SIZE >= size) { 20976 wr_object->u.request.bde[i].tus.f.bdeSize = 20977 (size - written); 20978 written += (size - written); 20979 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20980 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20981 check_change_status = true; 20982 } else { 20983 wr_object->u.request.bde[i].tus.f.bdeSize = 20984 SLI4_PAGE_SIZE; 20985 written += SLI4_PAGE_SIZE; 20986 } 20987 i++; 20988 } 20989 wr_object->u.request.bde_count = i; 20990 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20991 if (!phba->sli4_hba.intr_enable) 20992 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20993 else { 20994 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20995 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20996 } 20997 20998 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20999 rc = mbox_status; 21000 21001 /* The IOCTL status is embedded in the mailbox subheader. */ 21002 shdr_status = bf_get(lpfc_mbox_hdr_status, 21003 &wr_object->header.cfg_shdr.response); 21004 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 21005 &wr_object->header.cfg_shdr.response); 21006 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 21007 &wr_object->header.cfg_shdr.response); 21008 if (check_change_status) { 21009 shdr_change_status = bf_get(lpfc_wr_object_change_status, 21010 &wr_object->u.response); 21011 shdr_csf = bf_get(lpfc_wr_object_csf, 21012 &wr_object->u.response); 21013 } 21014 21015 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21016 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21017 "3025 Write Object mailbox failed with " 21018 "status x%x add_status x%x, add_status_2 x%x, " 21019 "mbx status x%x\n", 21020 shdr_status, shdr_add_status, shdr_add_status_2, 21021 rc); 21022 rc = -ENXIO; 21023 *offset = shdr_add_status; 21024 } else { 21025 *offset += wr_object->u.response.actual_write_length; 21026 } 21027 21028 if (rc || check_change_status) 21029 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21030 shdr_add_status_2, shdr_change_status, 21031 shdr_csf); 21032 21033 if (!phba->sli4_hba.intr_enable) 21034 mempool_free(mbox, phba->mbox_mem_pool); 21035 else if (mbox_status != MBX_TIMEOUT) 21036 mempool_free(mbox, phba->mbox_mem_pool); 21037 21038 return rc; 21039 } 21040 21041 /** 21042 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21043 * @vport: pointer to vport data structure. 21044 * 21045 * This function iterate through the mailboxq and clean up all REG_LOGIN 21046 * and REG_VPI mailbox commands associated with the vport. This function 21047 * is called when driver want to restart discovery of the vport due to 21048 * a Clear Virtual Link event. 21049 **/ 21050 void 21051 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21052 { 21053 struct lpfc_hba *phba = vport->phba; 21054 LPFC_MBOXQ_t *mb, *nextmb; 21055 struct lpfc_nodelist *ndlp; 21056 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21057 LIST_HEAD(mbox_cmd_list); 21058 uint8_t restart_loop; 21059 21060 /* Clean up internally queued mailbox commands with the vport */ 21061 spin_lock_irq(&phba->hbalock); 21062 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21063 if (mb->vport != vport) 21064 continue; 21065 21066 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21067 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21068 continue; 21069 21070 list_move_tail(&mb->list, &mbox_cmd_list); 21071 } 21072 /* Clean up active mailbox command with the vport */ 21073 mb = phba->sli.mbox_active; 21074 if (mb && (mb->vport == vport)) { 21075 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21076 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21077 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21078 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21079 act_mbx_ndlp = mb->ctx_ndlp; 21080 21081 /* This reference is local to this routine. The 21082 * reference is removed at routine exit. 21083 */ 21084 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21085 21086 /* Unregister the RPI when mailbox complete */ 21087 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21088 } 21089 } 21090 /* Cleanup any mailbox completions which are not yet processed */ 21091 do { 21092 restart_loop = 0; 21093 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21094 /* 21095 * If this mailox is already processed or it is 21096 * for another vport ignore it. 21097 */ 21098 if ((mb->vport != vport) || 21099 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21100 continue; 21101 21102 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21103 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21104 continue; 21105 21106 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21107 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21108 ndlp = mb->ctx_ndlp; 21109 /* Unregister the RPI when mailbox complete */ 21110 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21111 restart_loop = 1; 21112 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21113 break; 21114 } 21115 } 21116 } while (restart_loop); 21117 21118 spin_unlock_irq(&phba->hbalock); 21119 21120 /* Release the cleaned-up mailbox commands */ 21121 while (!list_empty(&mbox_cmd_list)) { 21122 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21123 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21124 ndlp = mb->ctx_ndlp; 21125 mb->ctx_ndlp = NULL; 21126 if (ndlp) { 21127 clear_bit(NLP_IGNR_REG_CMPL, &ndlp->nlp_flag); 21128 lpfc_nlp_put(ndlp); 21129 } 21130 } 21131 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21132 } 21133 21134 /* Release the ndlp with the cleaned-up active mailbox command */ 21135 if (act_mbx_ndlp) { 21136 clear_bit(NLP_IGNR_REG_CMPL, &act_mbx_ndlp->nlp_flag); 21137 lpfc_nlp_put(act_mbx_ndlp); 21138 } 21139 } 21140 21141 /** 21142 * lpfc_drain_txq - Drain the txq 21143 * @phba: Pointer to HBA context object. 21144 * 21145 * This function attempt to submit IOCBs on the txq 21146 * to the adapter. For SLI4 adapters, the txq contains 21147 * ELS IOCBs that have been deferred because the there 21148 * are no SGLs. This congestion can occur with large 21149 * vport counts during node discovery. 21150 **/ 21151 21152 uint32_t 21153 lpfc_drain_txq(struct lpfc_hba *phba) 21154 { 21155 LIST_HEAD(completions); 21156 struct lpfc_sli_ring *pring; 21157 struct lpfc_iocbq *piocbq = NULL; 21158 unsigned long iflags = 0; 21159 char *fail_msg = NULL; 21160 uint32_t txq_cnt = 0; 21161 struct lpfc_queue *wq; 21162 int ret = 0; 21163 21164 if (phba->link_flag & LS_MDS_LOOPBACK) { 21165 /* MDS WQE are posted only to first WQ*/ 21166 wq = phba->sli4_hba.hdwq[0].io_wq; 21167 if (unlikely(!wq)) 21168 return 0; 21169 pring = wq->pring; 21170 } else { 21171 wq = phba->sli4_hba.els_wq; 21172 if (unlikely(!wq)) 21173 return 0; 21174 pring = lpfc_phba_elsring(phba); 21175 } 21176 21177 if (unlikely(!pring) || list_empty(&pring->txq)) 21178 return 0; 21179 21180 spin_lock_irqsave(&pring->ring_lock, iflags); 21181 list_for_each_entry(piocbq, &pring->txq, list) { 21182 txq_cnt++; 21183 } 21184 21185 if (txq_cnt > pring->txq_max) 21186 pring->txq_max = txq_cnt; 21187 21188 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21189 21190 while (!list_empty(&pring->txq)) { 21191 spin_lock_irqsave(&pring->ring_lock, iflags); 21192 21193 piocbq = lpfc_sli_ringtx_get(phba, pring); 21194 if (!piocbq) { 21195 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21197 "2823 txq empty and txq_cnt is %d\n", 21198 txq_cnt); 21199 break; 21200 } 21201 txq_cnt--; 21202 21203 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21204 21205 if (ret && ret != IOCB_BUSY) { 21206 fail_msg = " - Cannot send IO "; 21207 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21208 } 21209 if (fail_msg) { 21210 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21211 /* Failed means we can't issue and need to cancel */ 21212 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21213 "2822 IOCB failed %s iotag 0x%x " 21214 "xri 0x%x %d flg x%x\n", 21215 fail_msg, piocbq->iotag, 21216 piocbq->sli4_xritag, ret, 21217 piocbq->cmd_flag); 21218 list_add_tail(&piocbq->list, &completions); 21219 fail_msg = NULL; 21220 } 21221 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21222 if (txq_cnt == 0 || ret == IOCB_BUSY) 21223 break; 21224 } 21225 /* Cancel all the IOCBs that cannot be issued */ 21226 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21227 IOERR_SLI_ABORTED); 21228 21229 return txq_cnt; 21230 } 21231 21232 /** 21233 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21234 * @phba: Pointer to HBA context object. 21235 * @pwqeq: Pointer to command WQE. 21236 * @sglq: Pointer to the scatter gather queue object. 21237 * 21238 * This routine converts the bpl or bde that is in the WQE 21239 * to a sgl list for the sli4 hardware. The physical address 21240 * of the bpl/bde is converted back to a virtual address. 21241 * If the WQE contains a BPL then the list of BDE's is 21242 * converted to sli4_sge's. If the WQE contains a single 21243 * BDE then it is converted to a single sli_sge. 21244 * The WQE is still in cpu endianness so the contents of 21245 * the bpl can be used without byte swapping. 21246 * 21247 * Returns valid XRI = Success, NO_XRI = Failure. 21248 */ 21249 static uint16_t 21250 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21251 struct lpfc_sglq *sglq) 21252 { 21253 uint16_t xritag = NO_XRI; 21254 struct ulp_bde64 *bpl = NULL; 21255 struct ulp_bde64 bde; 21256 struct sli4_sge *sgl = NULL; 21257 struct lpfc_dmabuf *dmabuf; 21258 union lpfc_wqe128 *wqe; 21259 int numBdes = 0; 21260 int i = 0; 21261 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21262 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21263 uint32_t cmd; 21264 21265 if (!pwqeq || !sglq) 21266 return xritag; 21267 21268 sgl = (struct sli4_sge *)sglq->sgl; 21269 wqe = &pwqeq->wqe; 21270 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21271 21272 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21273 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21274 return sglq->sli4_xritag; 21275 numBdes = pwqeq->num_bdes; 21276 if (numBdes) { 21277 /* The addrHigh and addrLow fields within the WQE 21278 * have not been byteswapped yet so there is no 21279 * need to swap them back. 21280 */ 21281 if (pwqeq->bpl_dmabuf) 21282 dmabuf = pwqeq->bpl_dmabuf; 21283 else 21284 return xritag; 21285 21286 bpl = (struct ulp_bde64 *)dmabuf->virt; 21287 if (!bpl) 21288 return xritag; 21289 21290 for (i = 0; i < numBdes; i++) { 21291 /* Should already be byte swapped. */ 21292 sgl->addr_hi = bpl->addrHigh; 21293 sgl->addr_lo = bpl->addrLow; 21294 21295 sgl->word2 = le32_to_cpu(sgl->word2); 21296 if ((i+1) == numBdes) 21297 bf_set(lpfc_sli4_sge_last, sgl, 1); 21298 else 21299 bf_set(lpfc_sli4_sge_last, sgl, 0); 21300 /* swap the size field back to the cpu so we 21301 * can assign it to the sgl. 21302 */ 21303 bde.tus.w = le32_to_cpu(bpl->tus.w); 21304 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21305 /* The offsets in the sgl need to be accumulated 21306 * separately for the request and reply lists. 21307 * The request is always first, the reply follows. 21308 */ 21309 switch (cmd) { 21310 case CMD_GEN_REQUEST64_WQE: 21311 /* add up the reply sg entries */ 21312 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21313 inbound++; 21314 /* first inbound? reset the offset */ 21315 if (inbound == 1) 21316 offset = 0; 21317 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21318 bf_set(lpfc_sli4_sge_type, sgl, 21319 LPFC_SGE_TYPE_DATA); 21320 offset += bde.tus.f.bdeSize; 21321 break; 21322 case CMD_FCP_TRSP64_WQE: 21323 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21324 bf_set(lpfc_sli4_sge_type, sgl, 21325 LPFC_SGE_TYPE_DATA); 21326 break; 21327 case CMD_FCP_TSEND64_WQE: 21328 case CMD_FCP_TRECEIVE64_WQE: 21329 bf_set(lpfc_sli4_sge_type, sgl, 21330 bpl->tus.f.bdeFlags); 21331 if (i < 3) 21332 offset = 0; 21333 else 21334 offset += bde.tus.f.bdeSize; 21335 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21336 break; 21337 } 21338 sgl->word2 = cpu_to_le32(sgl->word2); 21339 bpl++; 21340 sgl++; 21341 } 21342 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21343 /* The addrHigh and addrLow fields of the BDE have not 21344 * been byteswapped yet so they need to be swapped 21345 * before putting them in the sgl. 21346 */ 21347 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21348 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21349 sgl->word2 = le32_to_cpu(sgl->word2); 21350 bf_set(lpfc_sli4_sge_last, sgl, 1); 21351 sgl->word2 = cpu_to_le32(sgl->word2); 21352 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21353 } 21354 return sglq->sli4_xritag; 21355 } 21356 21357 /** 21358 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21359 * @phba: Pointer to HBA context object. 21360 * @qp: Pointer to HDW queue. 21361 * @pwqe: Pointer to command WQE. 21362 **/ 21363 int 21364 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21365 struct lpfc_iocbq *pwqe) 21366 { 21367 union lpfc_wqe128 *wqe = &pwqe->wqe; 21368 struct lpfc_async_xchg_ctx *ctxp; 21369 struct lpfc_queue *wq; 21370 struct lpfc_sglq *sglq; 21371 struct lpfc_sli_ring *pring; 21372 unsigned long iflags; 21373 uint32_t ret = 0; 21374 21375 /* NVME_LS and NVME_LS ABTS requests. */ 21376 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21377 pring = phba->sli4_hba.nvmels_wq->pring; 21378 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21379 qp, wq_access); 21380 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21381 if (!sglq) { 21382 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21383 return WQE_BUSY; 21384 } 21385 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21386 pwqe->sli4_xritag = sglq->sli4_xritag; 21387 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21388 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21389 return WQE_ERROR; 21390 } 21391 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21392 pwqe->sli4_xritag); 21393 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21394 if (ret) { 21395 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21396 return ret; 21397 } 21398 21399 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21400 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21401 21402 lpfc_sli4_poll_eq(qp->hba_eq); 21403 return 0; 21404 } 21405 21406 /* NVME_FCREQ and NVME_ABTS requests */ 21407 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21408 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21409 wq = qp->io_wq; 21410 pring = wq->pring; 21411 21412 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21413 21414 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21415 qp, wq_access); 21416 ret = lpfc_sli4_wq_put(wq, wqe); 21417 if (ret) { 21418 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21419 return ret; 21420 } 21421 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21422 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21423 21424 lpfc_sli4_poll_eq(qp->hba_eq); 21425 return 0; 21426 } 21427 21428 /* NVMET requests */ 21429 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21430 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21431 wq = qp->io_wq; 21432 pring = wq->pring; 21433 21434 ctxp = pwqe->context_un.axchg; 21435 sglq = ctxp->ctxbuf->sglq; 21436 if (pwqe->sli4_xritag == NO_XRI) { 21437 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21438 pwqe->sli4_xritag = sglq->sli4_xritag; 21439 } 21440 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21441 pwqe->sli4_xritag); 21442 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21443 21444 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21445 qp, wq_access); 21446 ret = lpfc_sli4_wq_put(wq, wqe); 21447 if (ret) { 21448 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21449 return ret; 21450 } 21451 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21452 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21453 21454 lpfc_sli4_poll_eq(qp->hba_eq); 21455 return 0; 21456 } 21457 return WQE_ERROR; 21458 } 21459 21460 /** 21461 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21462 * @phba: Pointer to HBA context object. 21463 * @cmdiocb: Pointer to driver command iocb object. 21464 * @cmpl: completion function. 21465 * 21466 * Fill the appropriate fields for the abort WQE and call 21467 * internal routine lpfc_sli4_issue_wqe to send the WQE 21468 * This function is called with hbalock held and no ring_lock held. 21469 * 21470 * RETURNS 0 - SUCCESS 21471 **/ 21472 21473 int 21474 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21475 void *cmpl) 21476 { 21477 struct lpfc_vport *vport = cmdiocb->vport; 21478 struct lpfc_iocbq *abtsiocb = NULL; 21479 union lpfc_wqe128 *abtswqe; 21480 struct lpfc_io_buf *lpfc_cmd; 21481 int retval = IOCB_ERROR; 21482 u16 xritag = cmdiocb->sli4_xritag; 21483 21484 /* 21485 * The scsi command can not be in txq and it is in flight because the 21486 * pCmd is still pointing at the SCSI command we have to abort. There 21487 * is no need to search the txcmplq. Just send an abort to the FW. 21488 */ 21489 21490 abtsiocb = __lpfc_sli_get_iocbq(phba); 21491 if (!abtsiocb) 21492 return WQE_NORESOURCE; 21493 21494 /* Indicate the IO is being aborted by the driver. */ 21495 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21496 21497 abtswqe = &abtsiocb->wqe; 21498 memset(abtswqe, 0, sizeof(*abtswqe)); 21499 21500 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21501 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21502 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21503 abtswqe->abort_cmd.rsrvd5 = 0; 21504 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21505 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21506 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21507 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21508 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21509 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21510 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21511 21512 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21513 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21514 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21515 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21516 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21517 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21518 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21519 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21520 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21521 abtsiocb->vport = vport; 21522 abtsiocb->cmd_cmpl = cmpl; 21523 21524 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21525 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21526 21527 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21528 "0359 Abort xri x%x, original iotag x%x, " 21529 "abort cmd iotag x%x retval x%x\n", 21530 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21531 21532 if (retval) { 21533 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21534 __lpfc_sli_release_iocbq(phba, abtsiocb); 21535 } 21536 21537 return retval; 21538 } 21539 21540 #ifdef LPFC_MXP_STAT 21541 /** 21542 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21543 * @phba: pointer to lpfc hba data structure. 21544 * @hwqid: belong to which HWQ. 21545 * 21546 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21547 * 15 seconds after a test case is running. 21548 * 21549 * The user should call lpfc_debugfs_multixripools_write before running a test 21550 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21551 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21552 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21553 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21554 **/ 21555 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21556 { 21557 struct lpfc_sli4_hdw_queue *qp; 21558 struct lpfc_multixri_pool *multixri_pool; 21559 struct lpfc_pvt_pool *pvt_pool; 21560 struct lpfc_pbl_pool *pbl_pool; 21561 u32 txcmplq_cnt; 21562 21563 qp = &phba->sli4_hba.hdwq[hwqid]; 21564 multixri_pool = qp->p_multixri_pool; 21565 if (!multixri_pool) 21566 return; 21567 21568 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21569 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21570 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21571 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21572 21573 multixri_pool->stat_pbl_count = pbl_pool->count; 21574 multixri_pool->stat_pvt_count = pvt_pool->count; 21575 multixri_pool->stat_busy_count = txcmplq_cnt; 21576 } 21577 21578 multixri_pool->stat_snapshot_taken++; 21579 } 21580 #endif 21581 21582 /** 21583 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21584 * @phba: pointer to lpfc hba data structure. 21585 * @hwqid: belong to which HWQ. 21586 * 21587 * This routine moves some XRIs from private to public pool when private pool 21588 * is not busy. 21589 **/ 21590 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21591 { 21592 struct lpfc_multixri_pool *multixri_pool; 21593 u32 io_req_count; 21594 u32 prev_io_req_count; 21595 21596 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21597 if (!multixri_pool) 21598 return; 21599 io_req_count = multixri_pool->io_req_count; 21600 prev_io_req_count = multixri_pool->prev_io_req_count; 21601 21602 if (prev_io_req_count != io_req_count) { 21603 /* Private pool is busy */ 21604 multixri_pool->prev_io_req_count = io_req_count; 21605 } else { 21606 /* Private pool is not busy. 21607 * Move XRIs from private to public pool. 21608 */ 21609 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21610 } 21611 } 21612 21613 /** 21614 * lpfc_adjust_high_watermark - Adjust high watermark 21615 * @phba: pointer to lpfc hba data structure. 21616 * @hwqid: belong to which HWQ. 21617 * 21618 * This routine sets high watermark as number of outstanding XRIs, 21619 * but make sure the new value is between xri_limit/2 and xri_limit. 21620 **/ 21621 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21622 { 21623 u32 new_watermark; 21624 u32 watermark_max; 21625 u32 watermark_min; 21626 u32 xri_limit; 21627 u32 txcmplq_cnt; 21628 u32 abts_io_bufs; 21629 struct lpfc_multixri_pool *multixri_pool; 21630 struct lpfc_sli4_hdw_queue *qp; 21631 21632 qp = &phba->sli4_hba.hdwq[hwqid]; 21633 multixri_pool = qp->p_multixri_pool; 21634 if (!multixri_pool) 21635 return; 21636 xri_limit = multixri_pool->xri_limit; 21637 21638 watermark_max = xri_limit; 21639 watermark_min = xri_limit / 2; 21640 21641 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21642 abts_io_bufs = qp->abts_scsi_io_bufs; 21643 abts_io_bufs += qp->abts_nvme_io_bufs; 21644 21645 new_watermark = txcmplq_cnt + abts_io_bufs; 21646 new_watermark = min(watermark_max, new_watermark); 21647 new_watermark = max(watermark_min, new_watermark); 21648 multixri_pool->pvt_pool.high_watermark = new_watermark; 21649 21650 #ifdef LPFC_MXP_STAT 21651 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21652 new_watermark); 21653 #endif 21654 } 21655 21656 /** 21657 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21658 * @phba: pointer to lpfc hba data structure. 21659 * @hwqid: belong to which HWQ. 21660 * 21661 * This routine is called from hearbeat timer when pvt_pool is idle. 21662 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21663 * The first step moves (all - low_watermark) amount of XRIs. 21664 * The second step moves the rest of XRIs. 21665 **/ 21666 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21667 { 21668 struct lpfc_pbl_pool *pbl_pool; 21669 struct lpfc_pvt_pool *pvt_pool; 21670 struct lpfc_sli4_hdw_queue *qp; 21671 struct lpfc_io_buf *lpfc_ncmd; 21672 struct lpfc_io_buf *lpfc_ncmd_next; 21673 unsigned long iflag; 21674 struct list_head tmp_list; 21675 u32 tmp_count; 21676 21677 qp = &phba->sli4_hba.hdwq[hwqid]; 21678 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21679 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21680 tmp_count = 0; 21681 21682 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21683 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21684 21685 if (pvt_pool->count > pvt_pool->low_watermark) { 21686 /* Step 1: move (all - low_watermark) from pvt_pool 21687 * to pbl_pool 21688 */ 21689 21690 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21691 INIT_LIST_HEAD(&tmp_list); 21692 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21693 &pvt_pool->list, list) { 21694 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21695 tmp_count++; 21696 if (tmp_count >= pvt_pool->low_watermark) 21697 break; 21698 } 21699 21700 /* Move all bufs from pvt_pool to pbl_pool */ 21701 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21702 21703 /* Move all bufs from tmp_list to pvt_pool */ 21704 list_splice(&tmp_list, &pvt_pool->list); 21705 21706 pbl_pool->count += (pvt_pool->count - tmp_count); 21707 pvt_pool->count = tmp_count; 21708 } else { 21709 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21710 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21711 pbl_pool->count += pvt_pool->count; 21712 pvt_pool->count = 0; 21713 } 21714 21715 spin_unlock(&pvt_pool->lock); 21716 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21717 } 21718 21719 /** 21720 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21721 * @phba: pointer to lpfc hba data structure 21722 * @qp: pointer to HDW queue 21723 * @pbl_pool: specified public free XRI pool 21724 * @pvt_pool: specified private free XRI pool 21725 * @count: number of XRIs to move 21726 * 21727 * This routine tries to move some free common bufs from the specified pbl_pool 21728 * to the specified pvt_pool. It might move less than count XRIs if there's not 21729 * enough in public pool. 21730 * 21731 * Return: 21732 * true - if XRIs are successfully moved from the specified pbl_pool to the 21733 * specified pvt_pool 21734 * false - if the specified pbl_pool is empty or locked by someone else 21735 **/ 21736 static bool 21737 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21738 struct lpfc_pbl_pool *pbl_pool, 21739 struct lpfc_pvt_pool *pvt_pool, u32 count) 21740 { 21741 struct lpfc_io_buf *lpfc_ncmd; 21742 struct lpfc_io_buf *lpfc_ncmd_next; 21743 unsigned long iflag; 21744 int ret; 21745 21746 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21747 if (ret) { 21748 if (pbl_pool->count) { 21749 /* Move a batch of XRIs from public to private pool */ 21750 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21751 list_for_each_entry_safe(lpfc_ncmd, 21752 lpfc_ncmd_next, 21753 &pbl_pool->list, 21754 list) { 21755 list_move_tail(&lpfc_ncmd->list, 21756 &pvt_pool->list); 21757 pvt_pool->count++; 21758 pbl_pool->count--; 21759 count--; 21760 if (count == 0) 21761 break; 21762 } 21763 21764 spin_unlock(&pvt_pool->lock); 21765 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21766 return true; 21767 } 21768 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21769 } 21770 21771 return false; 21772 } 21773 21774 /** 21775 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21776 * @phba: pointer to lpfc hba data structure. 21777 * @hwqid: belong to which HWQ. 21778 * @count: number of XRIs to move 21779 * 21780 * This routine tries to find some free common bufs in one of public pools with 21781 * Round Robin method. The search always starts from local hwqid, then the next 21782 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21783 * a batch of free common bufs are moved to private pool on hwqid. 21784 * It might move less than count XRIs if there's not enough in public pool. 21785 **/ 21786 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21787 { 21788 struct lpfc_multixri_pool *multixri_pool; 21789 struct lpfc_multixri_pool *next_multixri_pool; 21790 struct lpfc_pvt_pool *pvt_pool; 21791 struct lpfc_pbl_pool *pbl_pool; 21792 struct lpfc_sli4_hdw_queue *qp; 21793 u32 next_hwqid; 21794 u32 hwq_count; 21795 int ret; 21796 21797 qp = &phba->sli4_hba.hdwq[hwqid]; 21798 multixri_pool = qp->p_multixri_pool; 21799 pvt_pool = &multixri_pool->pvt_pool; 21800 pbl_pool = &multixri_pool->pbl_pool; 21801 21802 /* Check if local pbl_pool is available */ 21803 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21804 if (ret) { 21805 #ifdef LPFC_MXP_STAT 21806 multixri_pool->local_pbl_hit_count++; 21807 #endif 21808 return; 21809 } 21810 21811 hwq_count = phba->cfg_hdw_queue; 21812 21813 /* Get the next hwqid which was found last time */ 21814 next_hwqid = multixri_pool->rrb_next_hwqid; 21815 21816 do { 21817 /* Go to next hwq */ 21818 next_hwqid = (next_hwqid + 1) % hwq_count; 21819 21820 next_multixri_pool = 21821 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21822 pbl_pool = &next_multixri_pool->pbl_pool; 21823 21824 /* Check if the public free xri pool is available */ 21825 ret = _lpfc_move_xri_pbl_to_pvt( 21826 phba, qp, pbl_pool, pvt_pool, count); 21827 21828 /* Exit while-loop if success or all hwqid are checked */ 21829 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21830 21831 /* Starting point for the next time */ 21832 multixri_pool->rrb_next_hwqid = next_hwqid; 21833 21834 if (!ret) { 21835 /* stats: all public pools are empty*/ 21836 multixri_pool->pbl_empty_count++; 21837 } 21838 21839 #ifdef LPFC_MXP_STAT 21840 if (ret) { 21841 if (next_hwqid == hwqid) 21842 multixri_pool->local_pbl_hit_count++; 21843 else 21844 multixri_pool->other_pbl_hit_count++; 21845 } 21846 #endif 21847 } 21848 21849 /** 21850 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21851 * @phba: pointer to lpfc hba data structure. 21852 * @hwqid: belong to which HWQ. 21853 * 21854 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21855 * low watermark. 21856 **/ 21857 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21858 { 21859 struct lpfc_multixri_pool *multixri_pool; 21860 struct lpfc_pvt_pool *pvt_pool; 21861 21862 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21863 pvt_pool = &multixri_pool->pvt_pool; 21864 21865 if (pvt_pool->count < pvt_pool->low_watermark) 21866 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21867 } 21868 21869 /** 21870 * lpfc_release_io_buf - Return one IO buf back to free pool 21871 * @phba: pointer to lpfc hba data structure. 21872 * @lpfc_ncmd: IO buf to be returned. 21873 * @qp: belong to which HWQ. 21874 * 21875 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21876 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21877 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21878 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21879 * lpfc_io_buf_list_put. 21880 **/ 21881 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21882 struct lpfc_sli4_hdw_queue *qp) 21883 { 21884 unsigned long iflag; 21885 struct lpfc_pbl_pool *pbl_pool; 21886 struct lpfc_pvt_pool *pvt_pool; 21887 struct lpfc_epd_pool *epd_pool; 21888 u32 txcmplq_cnt; 21889 u32 xri_owned; 21890 u32 xri_limit; 21891 u32 abts_io_bufs; 21892 21893 /* MUST zero fields if buffer is reused by another protocol */ 21894 lpfc_ncmd->nvmeCmd = NULL; 21895 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21896 21897 if (phba->cfg_xpsgl && !phba->nvmet_support && 21898 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21899 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21900 21901 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21902 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21903 21904 if (phba->cfg_xri_rebalancing) { 21905 if (lpfc_ncmd->expedite) { 21906 /* Return to expedite pool */ 21907 epd_pool = &phba->epd_pool; 21908 spin_lock_irqsave(&epd_pool->lock, iflag); 21909 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21910 epd_pool->count++; 21911 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21912 return; 21913 } 21914 21915 /* Avoid invalid access if an IO sneaks in and is being rejected 21916 * just _after_ xri pools are destroyed in lpfc_offline. 21917 * Nothing much can be done at this point. 21918 */ 21919 if (!qp->p_multixri_pool) 21920 return; 21921 21922 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21923 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21924 21925 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21926 abts_io_bufs = qp->abts_scsi_io_bufs; 21927 abts_io_bufs += qp->abts_nvme_io_bufs; 21928 21929 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21930 xri_limit = qp->p_multixri_pool->xri_limit; 21931 21932 #ifdef LPFC_MXP_STAT 21933 if (xri_owned <= xri_limit) 21934 qp->p_multixri_pool->below_limit_count++; 21935 else 21936 qp->p_multixri_pool->above_limit_count++; 21937 #endif 21938 21939 /* XRI goes to either public or private free xri pool 21940 * based on watermark and xri_limit 21941 */ 21942 if ((pvt_pool->count < pvt_pool->low_watermark) || 21943 (xri_owned < xri_limit && 21944 pvt_pool->count < pvt_pool->high_watermark)) { 21945 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21946 qp, free_pvt_pool); 21947 list_add_tail(&lpfc_ncmd->list, 21948 &pvt_pool->list); 21949 pvt_pool->count++; 21950 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21951 } else { 21952 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21953 qp, free_pub_pool); 21954 list_add_tail(&lpfc_ncmd->list, 21955 &pbl_pool->list); 21956 pbl_pool->count++; 21957 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21958 } 21959 } else { 21960 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21961 qp, free_xri); 21962 list_add_tail(&lpfc_ncmd->list, 21963 &qp->lpfc_io_buf_list_put); 21964 qp->put_io_bufs++; 21965 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21966 iflag); 21967 } 21968 } 21969 21970 /** 21971 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21972 * @phba: pointer to lpfc hba data structure. 21973 * @qp: pointer to HDW queue 21974 * @pvt_pool: pointer to private pool data structure. 21975 * @ndlp: pointer to lpfc nodelist data structure. 21976 * 21977 * This routine tries to get one free IO buf from private pool. 21978 * 21979 * Return: 21980 * pointer to one free IO buf - if private pool is not empty 21981 * NULL - if private pool is empty 21982 **/ 21983 static struct lpfc_io_buf * 21984 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21985 struct lpfc_sli4_hdw_queue *qp, 21986 struct lpfc_pvt_pool *pvt_pool, 21987 struct lpfc_nodelist *ndlp) 21988 { 21989 struct lpfc_io_buf *lpfc_ncmd; 21990 struct lpfc_io_buf *lpfc_ncmd_next; 21991 unsigned long iflag; 21992 21993 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21994 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21995 &pvt_pool->list, list) { 21996 if (lpfc_test_rrq_active( 21997 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21998 continue; 21999 list_del(&lpfc_ncmd->list); 22000 pvt_pool->count--; 22001 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22002 return lpfc_ncmd; 22003 } 22004 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 22005 22006 return NULL; 22007 } 22008 22009 /** 22010 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22011 * @phba: pointer to lpfc hba data structure. 22012 * 22013 * This routine tries to get one free IO buf from expedite pool. 22014 * 22015 * Return: 22016 * pointer to one free IO buf - if expedite pool is not empty 22017 * NULL - if expedite pool is empty 22018 **/ 22019 static struct lpfc_io_buf * 22020 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22021 { 22022 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22023 struct lpfc_io_buf *lpfc_ncmd_next; 22024 unsigned long iflag; 22025 struct lpfc_epd_pool *epd_pool; 22026 22027 epd_pool = &phba->epd_pool; 22028 22029 spin_lock_irqsave(&epd_pool->lock, iflag); 22030 if (epd_pool->count > 0) { 22031 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22032 &epd_pool->list, list) { 22033 list_del(&iter->list); 22034 epd_pool->count--; 22035 lpfc_ncmd = iter; 22036 break; 22037 } 22038 } 22039 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22040 22041 return lpfc_ncmd; 22042 } 22043 22044 /** 22045 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22046 * @phba: pointer to lpfc hba data structure. 22047 * @ndlp: pointer to lpfc nodelist data structure. 22048 * @hwqid: belong to which HWQ 22049 * @expedite: 1 means this request is urgent. 22050 * 22051 * This routine will do the following actions and then return a pointer to 22052 * one free IO buf. 22053 * 22054 * 1. If private free xri count is empty, move some XRIs from public to 22055 * private pool. 22056 * 2. Get one XRI from private free xri pool. 22057 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22058 * get one free xri from expedite pool. 22059 * 22060 * Note: ndlp is only used on SCSI side for RRQ testing. 22061 * The caller should pass NULL for ndlp on NVME side. 22062 * 22063 * Return: 22064 * pointer to one free IO buf - if private pool is not empty 22065 * NULL - if private pool is empty 22066 **/ 22067 static struct lpfc_io_buf * 22068 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22069 struct lpfc_nodelist *ndlp, 22070 int hwqid, int expedite) 22071 { 22072 struct lpfc_sli4_hdw_queue *qp; 22073 struct lpfc_multixri_pool *multixri_pool; 22074 struct lpfc_pvt_pool *pvt_pool; 22075 struct lpfc_io_buf *lpfc_ncmd; 22076 22077 qp = &phba->sli4_hba.hdwq[hwqid]; 22078 lpfc_ncmd = NULL; 22079 if (!qp) { 22080 lpfc_printf_log(phba, KERN_INFO, 22081 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22082 "5556 NULL qp for hwqid x%x\n", hwqid); 22083 return lpfc_ncmd; 22084 } 22085 multixri_pool = qp->p_multixri_pool; 22086 if (!multixri_pool) { 22087 lpfc_printf_log(phba, KERN_INFO, 22088 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22089 "5557 NULL multixri for hwqid x%x\n", hwqid); 22090 return lpfc_ncmd; 22091 } 22092 pvt_pool = &multixri_pool->pvt_pool; 22093 if (!pvt_pool) { 22094 lpfc_printf_log(phba, KERN_INFO, 22095 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22096 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22097 return lpfc_ncmd; 22098 } 22099 multixri_pool->io_req_count++; 22100 22101 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22102 if (pvt_pool->count == 0) 22103 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22104 22105 /* Get one XRI from private free xri pool */ 22106 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22107 22108 if (lpfc_ncmd) { 22109 lpfc_ncmd->hdwq = qp; 22110 lpfc_ncmd->hdwq_no = hwqid; 22111 } else if (expedite) { 22112 /* If we fail to get one from pvt_pool and this is an expedite 22113 * request, get one free xri from expedite pool. 22114 */ 22115 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22116 } 22117 22118 return lpfc_ncmd; 22119 } 22120 22121 static inline struct lpfc_io_buf * 22122 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22123 { 22124 struct lpfc_sli4_hdw_queue *qp; 22125 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22126 22127 qp = &phba->sli4_hba.hdwq[idx]; 22128 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22129 &qp->lpfc_io_buf_list_get, list) { 22130 if (lpfc_test_rrq_active(phba, ndlp, 22131 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22132 continue; 22133 22134 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22135 continue; 22136 22137 list_del_init(&lpfc_cmd->list); 22138 qp->get_io_bufs--; 22139 lpfc_cmd->hdwq = qp; 22140 lpfc_cmd->hdwq_no = idx; 22141 return lpfc_cmd; 22142 } 22143 return NULL; 22144 } 22145 22146 /** 22147 * lpfc_get_io_buf - Get one IO buffer from free pool 22148 * @phba: The HBA for which this call is being executed. 22149 * @ndlp: pointer to lpfc nodelist data structure. 22150 * @hwqid: belong to which HWQ 22151 * @expedite: 1 means this request is urgent. 22152 * 22153 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22154 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22155 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22156 * 22157 * Note: ndlp is only used on SCSI side for RRQ testing. 22158 * The caller should pass NULL for ndlp on NVME side. 22159 * 22160 * Return codes: 22161 * NULL - Error 22162 * Pointer to lpfc_io_buf - Success 22163 **/ 22164 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22165 struct lpfc_nodelist *ndlp, 22166 u32 hwqid, int expedite) 22167 { 22168 struct lpfc_sli4_hdw_queue *qp; 22169 unsigned long iflag; 22170 struct lpfc_io_buf *lpfc_cmd; 22171 22172 qp = &phba->sli4_hba.hdwq[hwqid]; 22173 lpfc_cmd = NULL; 22174 if (!qp) { 22175 lpfc_printf_log(phba, KERN_WARNING, 22176 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22177 "5555 NULL qp for hwqid x%x\n", hwqid); 22178 return lpfc_cmd; 22179 } 22180 22181 if (phba->cfg_xri_rebalancing) 22182 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22183 phba, ndlp, hwqid, expedite); 22184 else { 22185 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22186 qp, alloc_xri_get); 22187 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22188 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22189 if (!lpfc_cmd) { 22190 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22191 qp, alloc_xri_put); 22192 list_splice(&qp->lpfc_io_buf_list_put, 22193 &qp->lpfc_io_buf_list_get); 22194 qp->get_io_bufs += qp->put_io_bufs; 22195 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22196 qp->put_io_bufs = 0; 22197 spin_unlock(&qp->io_buf_list_put_lock); 22198 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22199 expedite) 22200 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22201 } 22202 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22203 } 22204 22205 return lpfc_cmd; 22206 } 22207 22208 /** 22209 * lpfc_read_object - Retrieve object data from HBA 22210 * @phba: The HBA for which this call is being executed. 22211 * @rdobject: Pathname of object data we want to read. 22212 * @datap: Pointer to where data will be copied to. 22213 * @datasz: size of data area 22214 * 22215 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22216 * The data will be truncated if datasz is not large enough. 22217 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22218 * Returns the actual bytes read from the object. 22219 * 22220 * This routine is hard coded to use a poll completion. Unlike other 22221 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22222 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22223 * to use interrupt-based completions, code is needed to fully cleanup 22224 * the memory. 22225 */ 22226 int 22227 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22228 uint32_t datasz) 22229 { 22230 struct lpfc_mbx_read_object *read_object; 22231 LPFC_MBOXQ_t *mbox; 22232 int rc, length, eof, j, byte_cnt = 0; 22233 uint32_t shdr_status, shdr_add_status; 22234 union lpfc_sli4_cfg_shdr *shdr; 22235 struct lpfc_dmabuf *pcmd; 22236 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22237 22238 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22239 if (!mbox) 22240 return -ENOMEM; 22241 length = (sizeof(struct lpfc_mbx_read_object) - 22242 sizeof(struct lpfc_sli4_cfg_mhdr)); 22243 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22244 LPFC_MBOX_OPCODE_READ_OBJECT, 22245 length, LPFC_SLI4_MBX_EMBED); 22246 read_object = &mbox->u.mqe.un.read_object; 22247 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22248 22249 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22250 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22251 read_object->u.request.rd_object_offset = 0; 22252 read_object->u.request.rd_object_cnt = 1; 22253 22254 memset((void *)read_object->u.request.rd_object_name, 0, 22255 LPFC_OBJ_NAME_SZ); 22256 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22257 for (j = 0; j < strlen(rdobject); j++) 22258 read_object->u.request.rd_object_name[j] = 22259 cpu_to_le32(rd_object_name[j]); 22260 22261 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22262 if (pcmd) 22263 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22264 if (!pcmd || !pcmd->virt) { 22265 kfree(pcmd); 22266 mempool_free(mbox, phba->mbox_mem_pool); 22267 return -ENOMEM; 22268 } 22269 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22270 read_object->u.request.rd_object_hbuf[0].pa_lo = 22271 putPaddrLow(pcmd->phys); 22272 read_object->u.request.rd_object_hbuf[0].pa_hi = 22273 putPaddrHigh(pcmd->phys); 22274 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22275 22276 mbox->vport = phba->pport; 22277 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22278 mbox->ctx_ndlp = NULL; 22279 22280 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22281 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22282 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22283 22284 if (shdr_status == STATUS_FAILED && 22285 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22286 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22287 "4674 No port cfg file in FW.\n"); 22288 byte_cnt = -ENOENT; 22289 } else if (shdr_status || shdr_add_status || rc) { 22290 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22291 "2625 READ_OBJECT mailbox failed with " 22292 "status x%x add_status x%x, mbx status x%x\n", 22293 shdr_status, shdr_add_status, rc); 22294 byte_cnt = -ENXIO; 22295 } else { 22296 /* Success */ 22297 length = read_object->u.response.rd_object_actual_rlen; 22298 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22299 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22300 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22301 length, datasz, eof); 22302 22303 /* Detect the port config file exists but is empty */ 22304 if (!length && eof) { 22305 byte_cnt = 0; 22306 goto exit; 22307 } 22308 22309 byte_cnt = length; 22310 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22311 } 22312 22313 exit: 22314 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22315 * Free the pcmd and then cleanup with the correct routine. 22316 */ 22317 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22318 kfree(pcmd); 22319 lpfc_sli4_mbox_cmd_free(phba, mbox); 22320 return byte_cnt; 22321 } 22322 22323 /** 22324 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22325 * @phba: The HBA for which this call is being executed. 22326 * @lpfc_buf: IO buf structure to append the SGL chunk 22327 * 22328 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22329 * and will allocate an SGL chunk if the pool is empty. 22330 * 22331 * Return codes: 22332 * NULL - Error 22333 * Pointer to sli4_hybrid_sgl - Success 22334 **/ 22335 struct sli4_hybrid_sgl * 22336 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22337 { 22338 struct sli4_hybrid_sgl *list_entry = NULL; 22339 struct sli4_hybrid_sgl *tmp = NULL; 22340 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22341 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22342 struct list_head *buf_list = &hdwq->sgl_list; 22343 unsigned long iflags; 22344 22345 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22346 22347 if (likely(!list_empty(buf_list))) { 22348 /* break off 1 chunk from the sgl_list */ 22349 list_for_each_entry_safe(list_entry, tmp, 22350 buf_list, list_node) { 22351 list_move_tail(&list_entry->list_node, 22352 &lpfc_buf->dma_sgl_xtra_list); 22353 break; 22354 } 22355 } else { 22356 /* allocate more */ 22357 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22358 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22359 cpu_to_node(hdwq->io_wq->chann)); 22360 if (!tmp) { 22361 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22362 "8353 error kmalloc memory for HDWQ " 22363 "%d %s\n", 22364 lpfc_buf->hdwq_no, __func__); 22365 return NULL; 22366 } 22367 22368 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22369 GFP_ATOMIC, &tmp->dma_phys_sgl); 22370 if (!tmp->dma_sgl) { 22371 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22372 "8354 error pool_alloc memory for HDWQ " 22373 "%d %s\n", 22374 lpfc_buf->hdwq_no, __func__); 22375 kfree(tmp); 22376 return NULL; 22377 } 22378 22379 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22380 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22381 } 22382 22383 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22384 struct sli4_hybrid_sgl, 22385 list_node); 22386 22387 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22388 22389 return allocated_sgl; 22390 } 22391 22392 /** 22393 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22394 * @phba: The HBA for which this call is being executed. 22395 * @lpfc_buf: IO buf structure with the SGL chunk 22396 * 22397 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22398 * 22399 * Return codes: 22400 * 0 - Success 22401 * -EINVAL - Error 22402 **/ 22403 int 22404 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22405 { 22406 int rc = 0; 22407 struct sli4_hybrid_sgl *list_entry = NULL; 22408 struct sli4_hybrid_sgl *tmp = NULL; 22409 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22410 struct list_head *buf_list = &hdwq->sgl_list; 22411 unsigned long iflags; 22412 22413 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22414 22415 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22416 list_for_each_entry_safe(list_entry, tmp, 22417 &lpfc_buf->dma_sgl_xtra_list, 22418 list_node) { 22419 list_move_tail(&list_entry->list_node, 22420 buf_list); 22421 } 22422 } else { 22423 rc = -EINVAL; 22424 } 22425 22426 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22427 return rc; 22428 } 22429 22430 /** 22431 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22432 * @phba: phba object 22433 * @hdwq: hdwq to cleanup sgl buff resources on 22434 * 22435 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22436 * 22437 * Return codes: 22438 * None 22439 **/ 22440 void 22441 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22442 struct lpfc_sli4_hdw_queue *hdwq) 22443 { 22444 struct list_head *buf_list = &hdwq->sgl_list; 22445 struct sli4_hybrid_sgl *list_entry = NULL; 22446 struct sli4_hybrid_sgl *tmp = NULL; 22447 unsigned long iflags; 22448 22449 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22450 22451 /* Free sgl pool */ 22452 list_for_each_entry_safe(list_entry, tmp, 22453 buf_list, list_node) { 22454 list_del(&list_entry->list_node); 22455 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22456 list_entry->dma_sgl, 22457 list_entry->dma_phys_sgl); 22458 kfree(list_entry); 22459 } 22460 22461 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22462 } 22463 22464 /** 22465 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22466 * @phba: The HBA for which this call is being executed. 22467 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22468 * 22469 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22470 * and will allocate an CMD/RSP buffer if the pool is empty. 22471 * 22472 * Return codes: 22473 * NULL - Error 22474 * Pointer to fcp_cmd_rsp_buf - Success 22475 **/ 22476 struct fcp_cmd_rsp_buf * 22477 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22478 struct lpfc_io_buf *lpfc_buf) 22479 { 22480 struct fcp_cmd_rsp_buf *list_entry = NULL; 22481 struct fcp_cmd_rsp_buf *tmp = NULL; 22482 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22483 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22484 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22485 unsigned long iflags; 22486 22487 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22488 22489 if (likely(!list_empty(buf_list))) { 22490 /* break off 1 chunk from the list */ 22491 list_for_each_entry_safe(list_entry, tmp, 22492 buf_list, 22493 list_node) { 22494 list_move_tail(&list_entry->list_node, 22495 &lpfc_buf->dma_cmd_rsp_list); 22496 break; 22497 } 22498 } else { 22499 /* allocate more */ 22500 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22501 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22502 cpu_to_node(hdwq->io_wq->chann)); 22503 if (!tmp) { 22504 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22505 "8355 error kmalloc memory for HDWQ " 22506 "%d %s\n", 22507 lpfc_buf->hdwq_no, __func__); 22508 return NULL; 22509 } 22510 22511 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22512 GFP_ATOMIC, 22513 &tmp->fcp_cmd_rsp_dma_handle); 22514 22515 if (!tmp->fcp_cmnd) { 22516 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22517 "8356 error pool_alloc memory for HDWQ " 22518 "%d %s\n", 22519 lpfc_buf->hdwq_no, __func__); 22520 kfree(tmp); 22521 return NULL; 22522 } 22523 22524 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22525 sizeof(struct fcp_cmnd32)); 22526 22527 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22528 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22529 } 22530 22531 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22532 struct fcp_cmd_rsp_buf, 22533 list_node); 22534 22535 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22536 22537 return allocated_buf; 22538 } 22539 22540 /** 22541 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22542 * @phba: The HBA for which this call is being executed. 22543 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22544 * 22545 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22546 * 22547 * Return codes: 22548 * 0 - Success 22549 * -EINVAL - Error 22550 **/ 22551 int 22552 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22553 struct lpfc_io_buf *lpfc_buf) 22554 { 22555 int rc = 0; 22556 struct fcp_cmd_rsp_buf *list_entry = NULL; 22557 struct fcp_cmd_rsp_buf *tmp = NULL; 22558 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22559 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22560 unsigned long iflags; 22561 22562 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22563 22564 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22565 list_for_each_entry_safe(list_entry, tmp, 22566 &lpfc_buf->dma_cmd_rsp_list, 22567 list_node) { 22568 list_move_tail(&list_entry->list_node, 22569 buf_list); 22570 } 22571 } else { 22572 rc = -EINVAL; 22573 } 22574 22575 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22576 return rc; 22577 } 22578 22579 /** 22580 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22581 * @phba: phba object 22582 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22583 * 22584 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22585 * 22586 * Return codes: 22587 * None 22588 **/ 22589 void 22590 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22591 struct lpfc_sli4_hdw_queue *hdwq) 22592 { 22593 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22594 struct fcp_cmd_rsp_buf *list_entry = NULL; 22595 struct fcp_cmd_rsp_buf *tmp = NULL; 22596 unsigned long iflags; 22597 22598 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22599 22600 /* Free cmd_rsp buf pool */ 22601 list_for_each_entry_safe(list_entry, tmp, 22602 buf_list, 22603 list_node) { 22604 list_del(&list_entry->list_node); 22605 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22606 list_entry->fcp_cmnd, 22607 list_entry->fcp_cmd_rsp_dma_handle); 22608 kfree(list_entry); 22609 } 22610 22611 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22612 } 22613 22614 /** 22615 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22616 * @phba: phba object 22617 * @job: job entry of the command to be posted. 22618 * 22619 * Fill the common fields of the wqe for each of the command. 22620 * 22621 * Return codes: 22622 * None 22623 **/ 22624 void 22625 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22626 { 22627 u8 cmnd; 22628 u32 *pcmd; 22629 u32 if_type = 0; 22630 u32 abort_tag; 22631 bool fip; 22632 struct lpfc_nodelist *ndlp = NULL; 22633 union lpfc_wqe128 *wqe = &job->wqe; 22634 u8 command_type = ELS_COMMAND_NON_FIP; 22635 22636 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22637 /* The fcp commands will set command type */ 22638 if (job->cmd_flag & LPFC_IO_FCP) 22639 command_type = FCP_COMMAND; 22640 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22641 command_type = ELS_COMMAND_FIP; 22642 else 22643 command_type = ELS_COMMAND_NON_FIP; 22644 22645 abort_tag = job->iotag; 22646 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22647 22648 switch (cmnd) { 22649 case CMD_ELS_REQUEST64_WQE: 22650 ndlp = job->ndlp; 22651 22652 if_type = bf_get(lpfc_sli_intf_if_type, 22653 &phba->sli4_hba.sli_intf); 22654 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22655 pcmd = (u32 *)job->cmd_dmabuf->virt; 22656 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22657 *pcmd == ELS_CMD_SCR || 22658 *pcmd == ELS_CMD_RDF || 22659 *pcmd == ELS_CMD_EDC || 22660 *pcmd == ELS_CMD_RSCN_XMT || 22661 *pcmd == ELS_CMD_FDISC || 22662 *pcmd == ELS_CMD_LOGO || 22663 *pcmd == ELS_CMD_QFPA || 22664 *pcmd == ELS_CMD_UVEM || 22665 *pcmd == ELS_CMD_PLOGI)) { 22666 bf_set(els_req64_sp, &wqe->els_req, 1); 22667 bf_set(els_req64_sid, &wqe->els_req, 22668 job->vport->fc_myDID); 22669 22670 if ((*pcmd == ELS_CMD_FLOGI) && 22671 !(phba->fc_topology == 22672 LPFC_TOPOLOGY_LOOP)) 22673 bf_set(els_req64_sid, &wqe->els_req, 0); 22674 22675 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22676 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22677 phba->vpi_ids[job->vport->vpi]); 22678 } else if (pcmd) { 22679 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22680 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22681 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22682 } 22683 } 22684 22685 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22686 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22687 22688 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22689 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22690 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22691 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22692 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22693 break; 22694 case CMD_XMIT_ELS_RSP64_WQE: 22695 ndlp = job->ndlp; 22696 22697 /* word4 */ 22698 wqe->xmit_els_rsp.word4 = 0; 22699 22700 if_type = bf_get(lpfc_sli_intf_if_type, 22701 &phba->sli4_hba.sli_intf); 22702 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22703 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22704 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22705 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22706 job->vport->fc_myDID); 22707 if (job->vport->fc_myDID == Fabric_DID) { 22708 bf_set(wqe_els_did, 22709 &wqe->xmit_els_rsp.wqe_dest, 0); 22710 } 22711 } 22712 } 22713 22714 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22715 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22716 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22717 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22718 LPFC_WQE_LENLOC_WORD3); 22719 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22720 22721 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22722 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22723 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22724 job->vport->fc_myDID); 22725 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22726 } 22727 22728 if (phba->sli_rev == LPFC_SLI_REV4) { 22729 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22730 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22731 22732 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22733 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22734 phba->vpi_ids[job->vport->vpi]); 22735 } 22736 command_type = OTHER_COMMAND; 22737 break; 22738 case CMD_GEN_REQUEST64_WQE: 22739 /* Word 10 */ 22740 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22741 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22742 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22743 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22744 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22745 command_type = OTHER_COMMAND; 22746 break; 22747 case CMD_XMIT_SEQUENCE64_WQE: 22748 if (phba->link_flag & LS_LOOPBACK_MODE) 22749 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22750 22751 wqe->xmit_sequence.rsvd3 = 0; 22752 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22753 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22754 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22755 LPFC_WQE_IOD_WRITE); 22756 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22757 LPFC_WQE_LENLOC_WORD12); 22758 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22759 command_type = OTHER_COMMAND; 22760 break; 22761 case CMD_XMIT_BLS_RSP64_WQE: 22762 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22763 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22764 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22765 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22766 phba->vpi_ids[phba->pport->vpi]); 22767 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22768 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22769 LPFC_WQE_LENLOC_NONE); 22770 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22771 command_type = OTHER_COMMAND; 22772 break; 22773 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22774 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22775 case CMD_SEND_FRAME: /* mds loopback */ 22776 /* cases already formatted for sli4 wqe - no chgs necessary */ 22777 return; 22778 default: 22779 dump_stack(); 22780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22781 "6207 Invalid command 0x%x\n", 22782 cmnd); 22783 break; 22784 } 22785 22786 wqe->generic.wqe_com.abort_tag = abort_tag; 22787 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22788 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22789 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22790 } 22791