1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/crash_dump.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq * 73 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 74 struct lpfc_iocbq *rspiocbq); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe, 86 enum lpfc_poll_mode poll_mode); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 u8 rearm, enum lpfc_poll_mode poll_mode) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe, poll_mode); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1028 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1029 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!test_bit(FC_UNLOADING, &phba->pport->load_flag))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1183 clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1184 goto outnl; 1185 } 1186 1187 spin_lock_irqsave(&phba->hbalock, iflags); 1188 if (ndlp->vport && test_bit(FC_UNLOADING, &ndlp->vport->load_flag)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 1217 spin_lock_irqsave(&phba->rrq_list_lock, iflags); 1218 empty = list_empty(&phba->active_rrq_list); 1219 list_add_tail(&rrq->list, &phba->active_rrq_list); 1220 spin_unlock_irqrestore(&phba->rrq_list_lock, iflags); 1221 set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 return 0; 1225 out: 1226 spin_unlock_irqrestore(&phba->hbalock, iflags); 1227 outnl: 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 int found = 0; 1255 u8 cmnd; 1256 1257 cmnd = get_job_cmnd(phba, piocbq); 1258 1259 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1260 lpfc_cmd = piocbq->io_buf; 1261 ndlp = lpfc_cmd->rdata->pnode; 1262 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1263 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1264 ndlp = piocbq->ndlp; 1265 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1266 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1267 ndlp = NULL; 1268 else 1269 ndlp = piocbq->ndlp; 1270 } else { 1271 ndlp = piocbq->ndlp; 1272 } 1273 1274 spin_lock(&phba->sli4_hba.sgl_list_lock); 1275 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1276 start_sglq = sglq; 1277 while (!found) { 1278 if (!sglq) 1279 break; 1280 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1281 test_bit(sglq->sli4_lxritag, 1282 ndlp->active_rrqs_xri_bitmap)) { 1283 /* This xri has an rrq outstanding for this DID. 1284 * put it back in the list and get another xri. 1285 */ 1286 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1287 sglq = NULL; 1288 list_remove_head(lpfc_els_sgl_list, sglq, 1289 struct lpfc_sglq, list); 1290 if (sglq == start_sglq) { 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 break; 1294 } else 1295 continue; 1296 } 1297 sglq->ndlp = ndlp; 1298 found = 1; 1299 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1300 sglq->state = SGL_ALLOCATED; 1301 } 1302 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1303 return sglq; 1304 } 1305 1306 /** 1307 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1308 * @phba: Pointer to HBA context object. 1309 * @piocbq: Pointer to the iocbq. 1310 * 1311 * This function is called with the sgl_list lock held. This function 1312 * gets a new driver sglq object from the sglq list. If the 1313 * list is not empty then it is successful, it returns pointer to the newly 1314 * allocated sglq object else it returns NULL. 1315 **/ 1316 struct lpfc_sglq * 1317 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1318 { 1319 struct list_head *lpfc_nvmet_sgl_list; 1320 struct lpfc_sglq *sglq = NULL; 1321 1322 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1323 1324 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1325 1326 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1327 if (!sglq) 1328 return NULL; 1329 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1330 sglq->state = SGL_ALLOCATED; 1331 return sglq; 1332 } 1333 1334 /** 1335 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1336 * @phba: Pointer to HBA context object. 1337 * 1338 * This function is called with no lock held. This function 1339 * allocates a new driver iocb object from the iocb pool. If the 1340 * allocation is successful, it returns pointer to the newly 1341 * allocated iocb object else it returns NULL. 1342 **/ 1343 struct lpfc_iocbq * 1344 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1345 { 1346 struct lpfc_iocbq * iocbq = NULL; 1347 unsigned long iflags; 1348 1349 spin_lock_irqsave(&phba->hbalock, iflags); 1350 iocbq = __lpfc_sli_get_iocbq(phba); 1351 spin_unlock_irqrestore(&phba->hbalock, iflags); 1352 return iocbq; 1353 } 1354 1355 /** 1356 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1357 * @phba: Pointer to HBA context object. 1358 * @iocbq: Pointer to driver iocb object. 1359 * 1360 * This function is called to release the driver iocb object 1361 * to the iocb pool. The iotag in the iocb object 1362 * does not change for each use of the iocb object. This function 1363 * clears all other fields of the iocb object when it is freed. 1364 * The sqlq structure that holds the xritag and phys and virtual 1365 * mappings for the scatter gather list is retrieved from the 1366 * active array of sglq. The get of the sglq pointer also clears 1367 * the entry in the array. If the status of the IO indiactes that 1368 * this IO was aborted then the sglq entry it put on the 1369 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1370 * IO has good status or fails for any other reason then the sglq 1371 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1372 * asserted held in the code path calling this routine. 1373 **/ 1374 static void 1375 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1376 { 1377 struct lpfc_sglq *sglq; 1378 unsigned long iflag = 0; 1379 struct lpfc_sli_ring *pring; 1380 1381 if (iocbq->sli4_xritag == NO_XRI) 1382 sglq = NULL; 1383 else 1384 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1385 1386 1387 if (sglq) { 1388 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1389 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1390 iflag); 1391 sglq->state = SGL_FREED; 1392 sglq->ndlp = NULL; 1393 list_add_tail(&sglq->list, 1394 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1395 spin_unlock_irqrestore( 1396 &phba->sli4_hba.sgl_list_lock, iflag); 1397 goto out; 1398 } 1399 1400 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1401 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1402 sglq->state != SGL_XRI_ABORTED) { 1403 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1404 iflag); 1405 1406 /* Check if we can get a reference on ndlp */ 1407 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1408 sglq->ndlp = NULL; 1409 1410 list_add(&sglq->list, 1411 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1412 spin_unlock_irqrestore( 1413 &phba->sli4_hba.sgl_list_lock, iflag); 1414 } else { 1415 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1416 iflag); 1417 sglq->state = SGL_FREED; 1418 sglq->ndlp = NULL; 1419 list_add_tail(&sglq->list, 1420 &phba->sli4_hba.lpfc_els_sgl_list); 1421 spin_unlock_irqrestore( 1422 &phba->sli4_hba.sgl_list_lock, iflag); 1423 pring = lpfc_phba_elsring(phba); 1424 /* Check if TXQ queue needs to be serviced */ 1425 if (pring && (!list_empty(&pring->txq))) 1426 lpfc_worker_wake_up(phba); 1427 } 1428 } 1429 1430 out: 1431 /* 1432 * Clean all volatile data fields, preserve iotag and node struct. 1433 */ 1434 memset_startat(iocbq, 0, wqe); 1435 iocbq->sli4_lxritag = NO_XRI; 1436 iocbq->sli4_xritag = NO_XRI; 1437 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1438 LPFC_IO_NVME_LS); 1439 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1440 } 1441 1442 1443 /** 1444 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1445 * @phba: Pointer to HBA context object. 1446 * @iocbq: Pointer to driver iocb object. 1447 * 1448 * This function is called to release the driver iocb object to the 1449 * iocb pool. The iotag in the iocb object does not change for each 1450 * use of the iocb object. This function clears all other fields of 1451 * the iocb object when it is freed. The hbalock is asserted held in 1452 * the code path calling this routine. 1453 **/ 1454 static void 1455 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1456 { 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset_startat(iocbq, 0, iocb); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!test_bit(FC_UNLOADING, &piocb->vport->load_flag)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 /* Because of bytes adjustment due to shorter timer in 1852 * lpfc_cmf_timer() the cmf_link_byte_count can be shorter and 1853 * may seem like BW is above 100%. 1854 */ 1855 if (bwpcent > 100) 1856 bwpcent = 100; 1857 1858 if (phba->cmf_max_bytes_per_interval < bw && 1859 bwpcent > 95) 1860 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1861 "6208 Congestion bandwidth " 1862 "limits removed\n"); 1863 else if ((phba->cmf_max_bytes_per_interval > bw) && 1864 ((bwpcent + pcent) <= 100) && ((bwpcent + pcent) > 95)) 1865 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1866 "6209 Congestion bandwidth " 1867 "limits in effect\n"); 1868 1869 if (asig) { 1870 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1871 "6237 BW Threshold %lld%% (%lld): " 1872 "%lld%% %s: Signal Alarm: cg:%d " 1873 "Info:%u\n", 1874 bwpcent, bw, pcent, s, cg, 1875 phba->cmf_active_info); 1876 } else if (afpin) { 1877 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1878 "6238 BW Threshold %lld%% (%lld): " 1879 "%lld%% %s: FPIN Alarm: cg:%d " 1880 "Info:%u\n", 1881 bwpcent, bw, pcent, s, cg, 1882 phba->cmf_active_info); 1883 } else if (sigcnt) { 1884 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1885 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1886 "6239 BW Threshold %lld%% (%lld): " 1887 "%lld%% %s: Signal Warning: " 1888 "Cnt %d Max %d: cg:%d Info:%u\n", 1889 bwpcent, bw, pcent, s, sigcnt, 1890 wsigmax, cg, phba->cmf_active_info); 1891 } else if (fpincnt) { 1892 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1893 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1894 "6240 BW Threshold %lld%% (%lld): " 1895 "%lld%% %s: FPIN Warning: " 1896 "Cnt %d Max %d: cg:%d Info:%u\n", 1897 bwpcent, bw, pcent, s, fpincnt, 1898 wfpinmax, cg, phba->cmf_active_info); 1899 } else { 1900 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1901 "6241 BW Threshold %lld%% (%lld): " 1902 "CMF %lld%% %s: cg:%d Info:%u\n", 1903 bwpcent, bw, pcent, s, cg, 1904 phba->cmf_active_info); 1905 } 1906 } else if (info) { 1907 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1908 "6246 Info Threshold %u\n", info); 1909 } 1910 1911 /* Save BW change to be picked up during next timer interrupt */ 1912 phba->cmf_last_sync_bw = bw; 1913 out: 1914 lpfc_sli_release_iocbq(phba, cmdiocb); 1915 } 1916 1917 /** 1918 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1919 * @phba: Pointer to HBA context object. 1920 * @ms: ms to set in WQE interval, 0 means use init op 1921 * @total: Total rcv bytes for this interval 1922 * 1923 * This routine is called every CMF timer interrupt. Its purpose is 1924 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1925 * that may indicate we have congestion (FPINs or Signals). Upon 1926 * completion, the firmware will indicate any BW restrictions the 1927 * driver may need to take. 1928 **/ 1929 int 1930 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1931 { 1932 union lpfc_wqe128 *wqe; 1933 struct lpfc_iocbq *sync_buf; 1934 unsigned long iflags; 1935 u32 ret_val; 1936 u32 atot, wtot, max; 1937 u8 warn_sync_period = 0; 1938 1939 /* First address any alarm / warning activity */ 1940 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1941 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1942 1943 spin_lock_irqsave(&phba->hbalock, iflags); 1944 1945 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1946 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1947 phba->link_state < LPFC_LINK_UP) { 1948 ret_val = 0; 1949 goto out_unlock; 1950 } 1951 1952 sync_buf = __lpfc_sli_get_iocbq(phba); 1953 if (!sync_buf) { 1954 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1955 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1956 ret_val = ENOMEM; 1957 goto out_unlock; 1958 } 1959 1960 wqe = &sync_buf->wqe; 1961 1962 /* WQEs are reused. Clear stale data and set key fields to zero */ 1963 memset(wqe, 0, sizeof(*wqe)); 1964 1965 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1966 if (!ms) { 1967 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1968 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1969 phba->fc_eventTag); 1970 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1971 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1972 goto initpath; 1973 } 1974 1975 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1976 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1977 1978 /* Check for alarms / warnings */ 1979 if (atot) { 1980 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1981 /* We hit an Signal alarm condition */ 1982 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1983 } else { 1984 /* We hit a FPIN alarm condition */ 1985 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1986 } 1987 } else if (wtot) { 1988 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1989 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1990 /* We hit an Signal warning condition */ 1991 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1992 lpfc_acqe_cgn_frequency; 1993 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1994 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1995 warn_sync_period = lpfc_acqe_cgn_frequency; 1996 } else { 1997 /* We hit a FPIN warning condition */ 1998 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1999 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 2000 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 2001 warn_sync_period = 2002 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 2003 } 2004 } 2005 2006 /* Update total read blocks during previous timer interval */ 2007 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 2008 2009 initpath: 2010 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 2011 wqe->cmf_sync.event_tag = phba->fc_eventTag; 2012 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 2013 2014 /* Setup reqtag to match the wqe completion. */ 2015 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 2016 2017 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 2018 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 2019 2020 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2021 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2022 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2023 2024 sync_buf->vport = phba->pport; 2025 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2026 sync_buf->cmd_dmabuf = NULL; 2027 sync_buf->rsp_dmabuf = NULL; 2028 sync_buf->bpl_dmabuf = NULL; 2029 sync_buf->sli4_xritag = NO_XRI; 2030 2031 sync_buf->cmd_flag |= LPFC_IO_CMF; 2032 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2033 if (ret_val) { 2034 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2035 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2036 ret_val); 2037 __lpfc_sli_release_iocbq(phba, sync_buf); 2038 } 2039 out_unlock: 2040 spin_unlock_irqrestore(&phba->hbalock, iflags); 2041 return ret_val; 2042 } 2043 2044 /** 2045 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2046 * @phba: Pointer to HBA context object. 2047 * @pring: Pointer to driver SLI ring object. 2048 * 2049 * This function is called with hbalock held and the caller must post the 2050 * iocb without releasing the lock. If the caller releases the lock, 2051 * iocb slot returned by the function is not guaranteed to be available. 2052 * The function returns pointer to the next available iocb slot if there 2053 * is available slot in the ring, else it returns NULL. 2054 * If the get index of the ring is ahead of the put index, the function 2055 * will post an error attention event to the worker thread to take the 2056 * HBA to offline state. 2057 **/ 2058 static IOCB_t * 2059 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2060 { 2061 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2062 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2063 2064 lockdep_assert_held(&phba->hbalock); 2065 2066 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2067 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2068 pring->sli.sli3.next_cmdidx = 0; 2069 2070 if (unlikely(pring->sli.sli3.local_getidx == 2071 pring->sli.sli3.next_cmdidx)) { 2072 2073 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2074 2075 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2077 "0315 Ring %d issue: portCmdGet %d " 2078 "is bigger than cmd ring %d\n", 2079 pring->ringno, 2080 pring->sli.sli3.local_getidx, 2081 max_cmd_idx); 2082 2083 phba->link_state = LPFC_HBA_ERROR; 2084 /* 2085 * All error attention handlers are posted to 2086 * worker thread 2087 */ 2088 phba->work_ha |= HA_ERATT; 2089 phba->work_hs = HS_FFER3; 2090 2091 lpfc_worker_wake_up(phba); 2092 2093 return NULL; 2094 } 2095 2096 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2097 return NULL; 2098 } 2099 2100 return lpfc_cmd_iocb(phba, pring); 2101 } 2102 2103 /** 2104 * lpfc_sli_next_iotag - Get an iotag for the iocb 2105 * @phba: Pointer to HBA context object. 2106 * @iocbq: Pointer to driver iocb object. 2107 * 2108 * This function gets an iotag for the iocb. If there is no unused iotag and 2109 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2110 * array and assigns a new iotag. 2111 * The function returns the allocated iotag if successful, else returns zero. 2112 * Zero is not a valid iotag. 2113 * The caller is not required to hold any lock. 2114 **/ 2115 uint16_t 2116 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2117 { 2118 struct lpfc_iocbq **new_arr; 2119 struct lpfc_iocbq **old_arr; 2120 size_t new_len; 2121 struct lpfc_sli *psli = &phba->sli; 2122 uint16_t iotag; 2123 2124 spin_lock_irq(&phba->hbalock); 2125 iotag = psli->last_iotag; 2126 if(++iotag < psli->iocbq_lookup_len) { 2127 psli->last_iotag = iotag; 2128 psli->iocbq_lookup[iotag] = iocbq; 2129 spin_unlock_irq(&phba->hbalock); 2130 iocbq->iotag = iotag; 2131 return iotag; 2132 } else if (psli->iocbq_lookup_len < (0xffff 2133 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2134 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2135 spin_unlock_irq(&phba->hbalock); 2136 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2137 GFP_KERNEL); 2138 if (new_arr) { 2139 spin_lock_irq(&phba->hbalock); 2140 old_arr = psli->iocbq_lookup; 2141 if (new_len <= psli->iocbq_lookup_len) { 2142 /* highly unprobable case */ 2143 kfree(new_arr); 2144 iotag = psli->last_iotag; 2145 if(++iotag < psli->iocbq_lookup_len) { 2146 psli->last_iotag = iotag; 2147 psli->iocbq_lookup[iotag] = iocbq; 2148 spin_unlock_irq(&phba->hbalock); 2149 iocbq->iotag = iotag; 2150 return iotag; 2151 } 2152 spin_unlock_irq(&phba->hbalock); 2153 return 0; 2154 } 2155 if (psli->iocbq_lookup) 2156 memcpy(new_arr, old_arr, 2157 ((psli->last_iotag + 1) * 2158 sizeof (struct lpfc_iocbq *))); 2159 psli->iocbq_lookup = new_arr; 2160 psli->iocbq_lookup_len = new_len; 2161 psli->last_iotag = iotag; 2162 psli->iocbq_lookup[iotag] = iocbq; 2163 spin_unlock_irq(&phba->hbalock); 2164 iocbq->iotag = iotag; 2165 kfree(old_arr); 2166 return iotag; 2167 } 2168 } else 2169 spin_unlock_irq(&phba->hbalock); 2170 2171 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2172 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2173 psli->last_iotag); 2174 2175 return 0; 2176 } 2177 2178 /** 2179 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2180 * @phba: Pointer to HBA context object. 2181 * @pring: Pointer to driver SLI ring object. 2182 * @iocb: Pointer to iocb slot in the ring. 2183 * @nextiocb: Pointer to driver iocb object which need to be 2184 * posted to firmware. 2185 * 2186 * This function is called to post a new iocb to the firmware. This 2187 * function copies the new iocb to ring iocb slot and updates the 2188 * ring pointers. It adds the new iocb to txcmplq if there is 2189 * a completion call back for this iocb else the function will free the 2190 * iocb object. The hbalock is asserted held in the code path calling 2191 * this routine. 2192 **/ 2193 static void 2194 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2195 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2196 { 2197 /* 2198 * Set up an iotag 2199 */ 2200 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2201 2202 2203 if (pring->ringno == LPFC_ELS_RING) { 2204 lpfc_debugfs_slow_ring_trc(phba, 2205 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2206 *(((uint32_t *) &nextiocb->iocb) + 4), 2207 *(((uint32_t *) &nextiocb->iocb) + 6), 2208 *(((uint32_t *) &nextiocb->iocb) + 7)); 2209 } 2210 2211 /* 2212 * Issue iocb command to adapter 2213 */ 2214 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2215 wmb(); 2216 pring->stats.iocb_cmd++; 2217 2218 /* 2219 * If there is no completion routine to call, we can release the 2220 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2221 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2222 */ 2223 if (nextiocb->cmd_cmpl) 2224 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2225 else 2226 __lpfc_sli_release_iocbq(phba, nextiocb); 2227 2228 /* 2229 * Let the HBA know what IOCB slot will be the next one the 2230 * driver will put a command into. 2231 */ 2232 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2233 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2234 } 2235 2236 /** 2237 * lpfc_sli_update_full_ring - Update the chip attention register 2238 * @phba: Pointer to HBA context object. 2239 * @pring: Pointer to driver SLI ring object. 2240 * 2241 * The caller is not required to hold any lock for calling this function. 2242 * This function updates the chip attention bits for the ring to inform firmware 2243 * that there are pending work to be done for this ring and requests an 2244 * interrupt when there is space available in the ring. This function is 2245 * called when the driver is unable to post more iocbs to the ring due 2246 * to unavailability of space in the ring. 2247 **/ 2248 static void 2249 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2250 { 2251 int ringno = pring->ringno; 2252 2253 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2254 2255 wmb(); 2256 2257 /* 2258 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2259 * The HBA will tell us when an IOCB entry is available. 2260 */ 2261 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2262 readl(phba->CAregaddr); /* flush */ 2263 2264 pring->stats.iocb_cmd_full++; 2265 } 2266 2267 /** 2268 * lpfc_sli_update_ring - Update chip attention register 2269 * @phba: Pointer to HBA context object. 2270 * @pring: Pointer to driver SLI ring object. 2271 * 2272 * This function updates the chip attention register bit for the 2273 * given ring to inform HBA that there is more work to be done 2274 * in this ring. The caller is not required to hold any lock. 2275 **/ 2276 static void 2277 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2278 { 2279 int ringno = pring->ringno; 2280 2281 /* 2282 * Tell the HBA that there is work to do in this ring. 2283 */ 2284 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2285 wmb(); 2286 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2287 readl(phba->CAregaddr); /* flush */ 2288 } 2289 } 2290 2291 /** 2292 * lpfc_sli_resume_iocb - Process iocbs in the txq 2293 * @phba: Pointer to HBA context object. 2294 * @pring: Pointer to driver SLI ring object. 2295 * 2296 * This function is called with hbalock held to post pending iocbs 2297 * in the txq to the firmware. This function is called when driver 2298 * detects space available in the ring. 2299 **/ 2300 static void 2301 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2302 { 2303 IOCB_t *iocb; 2304 struct lpfc_iocbq *nextiocb; 2305 2306 lockdep_assert_held(&phba->hbalock); 2307 2308 /* 2309 * Check to see if: 2310 * (a) there is anything on the txq to send 2311 * (b) link is up 2312 * (c) link attention events can be processed (fcp ring only) 2313 * (d) IOCB processing is not blocked by the outstanding mbox command. 2314 */ 2315 2316 if (lpfc_is_link_up(phba) && 2317 (!list_empty(&pring->txq)) && 2318 (pring->ringno != LPFC_FCP_RING || 2319 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2320 2321 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2322 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2323 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2324 2325 if (iocb) 2326 lpfc_sli_update_ring(phba, pring); 2327 else 2328 lpfc_sli_update_full_ring(phba, pring); 2329 } 2330 2331 return; 2332 } 2333 2334 /** 2335 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2336 * @phba: Pointer to HBA context object. 2337 * @hbqno: HBQ number. 2338 * 2339 * This function is called with hbalock held to get the next 2340 * available slot for the given HBQ. If there is free slot 2341 * available for the HBQ it will return pointer to the next available 2342 * HBQ entry else it will return NULL. 2343 **/ 2344 static struct lpfc_hbq_entry * 2345 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2346 { 2347 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2348 2349 lockdep_assert_held(&phba->hbalock); 2350 2351 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2352 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2353 hbqp->next_hbqPutIdx = 0; 2354 2355 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2356 uint32_t raw_index = phba->hbq_get[hbqno]; 2357 uint32_t getidx = le32_to_cpu(raw_index); 2358 2359 hbqp->local_hbqGetIdx = getidx; 2360 2361 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2362 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2363 "1802 HBQ %d: local_hbqGetIdx " 2364 "%u is > than hbqp->entry_count %u\n", 2365 hbqno, hbqp->local_hbqGetIdx, 2366 hbqp->entry_count); 2367 2368 phba->link_state = LPFC_HBA_ERROR; 2369 return NULL; 2370 } 2371 2372 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2373 return NULL; 2374 } 2375 2376 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2377 hbqp->hbqPutIdx; 2378 } 2379 2380 /** 2381 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2382 * @phba: Pointer to HBA context object. 2383 * 2384 * This function is called with no lock held to free all the 2385 * hbq buffers while uninitializing the SLI interface. It also 2386 * frees the HBQ buffers returned by the firmware but not yet 2387 * processed by the upper layers. 2388 **/ 2389 void 2390 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2391 { 2392 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2393 struct hbq_dmabuf *hbq_buf; 2394 unsigned long flags; 2395 int i, hbq_count; 2396 2397 hbq_count = lpfc_sli_hbq_count(); 2398 /* Return all memory used by all HBQs */ 2399 spin_lock_irqsave(&phba->hbalock, flags); 2400 for (i = 0; i < hbq_count; ++i) { 2401 list_for_each_entry_safe(dmabuf, next_dmabuf, 2402 &phba->hbqs[i].hbq_buffer_list, list) { 2403 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2404 list_del(&hbq_buf->dbuf.list); 2405 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2406 } 2407 phba->hbqs[i].buffer_count = 0; 2408 } 2409 2410 /* Mark the HBQs not in use */ 2411 phba->hbq_in_use = 0; 2412 spin_unlock_irqrestore(&phba->hbalock, flags); 2413 } 2414 2415 /** 2416 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2417 * @phba: Pointer to HBA context object. 2418 * @hbqno: HBQ number. 2419 * @hbq_buf: Pointer to HBQ buffer. 2420 * 2421 * This function is called with the hbalock held to post a 2422 * hbq buffer to the firmware. If the function finds an empty 2423 * slot in the HBQ, it will post the buffer. The function will return 2424 * pointer to the hbq entry if it successfully post the buffer 2425 * else it will return NULL. 2426 **/ 2427 static int 2428 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2429 struct hbq_dmabuf *hbq_buf) 2430 { 2431 lockdep_assert_held(&phba->hbalock); 2432 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2433 } 2434 2435 /** 2436 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2437 * @phba: Pointer to HBA context object. 2438 * @hbqno: HBQ number. 2439 * @hbq_buf: Pointer to HBQ buffer. 2440 * 2441 * This function is called with the hbalock held to post a hbq buffer to the 2442 * firmware. If the function finds an empty slot in the HBQ, it will post the 2443 * buffer and place it on the hbq_buffer_list. The function will return zero if 2444 * it successfully post the buffer else it will return an error. 2445 **/ 2446 static int 2447 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2448 struct hbq_dmabuf *hbq_buf) 2449 { 2450 struct lpfc_hbq_entry *hbqe; 2451 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2452 2453 lockdep_assert_held(&phba->hbalock); 2454 /* Get next HBQ entry slot to use */ 2455 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2456 if (hbqe) { 2457 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2458 2459 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2460 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2461 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2462 hbqe->bde.tus.f.bdeFlags = 0; 2463 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2464 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2465 /* Sync SLIM */ 2466 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2467 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2468 /* flush */ 2469 readl(phba->hbq_put + hbqno); 2470 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2471 return 0; 2472 } else 2473 return -ENOMEM; 2474 } 2475 2476 /** 2477 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2478 * @phba: Pointer to HBA context object. 2479 * @hbqno: HBQ number. 2480 * @hbq_buf: Pointer to HBQ buffer. 2481 * 2482 * This function is called with the hbalock held to post an RQE to the SLI4 2483 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2484 * the hbq_buffer_list and return zero, otherwise it will return an error. 2485 **/ 2486 static int 2487 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2488 struct hbq_dmabuf *hbq_buf) 2489 { 2490 int rc; 2491 struct lpfc_rqe hrqe; 2492 struct lpfc_rqe drqe; 2493 struct lpfc_queue *hrq; 2494 struct lpfc_queue *drq; 2495 2496 if (hbqno != LPFC_ELS_HBQ) 2497 return 1; 2498 hrq = phba->sli4_hba.hdr_rq; 2499 drq = phba->sli4_hba.dat_rq; 2500 2501 lockdep_assert_held(&phba->hbalock); 2502 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2503 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2504 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2505 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2506 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2507 if (rc < 0) 2508 return rc; 2509 hbq_buf->tag = (rc | (hbqno << 16)); 2510 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2511 return 0; 2512 } 2513 2514 /* HBQ for ELS and CT traffic. */ 2515 static struct lpfc_hbq_init lpfc_els_hbq = { 2516 .rn = 1, 2517 .entry_count = 256, 2518 .mask_count = 0, 2519 .profile = 0, 2520 .ring_mask = (1 << LPFC_ELS_RING), 2521 .buffer_count = 0, 2522 .init_count = 40, 2523 .add_count = 40, 2524 }; 2525 2526 /* Array of HBQs */ 2527 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2528 &lpfc_els_hbq, 2529 }; 2530 2531 /** 2532 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2533 * @phba: Pointer to HBA context object. 2534 * @hbqno: HBQ number. 2535 * @count: Number of HBQ buffers to be posted. 2536 * 2537 * This function is called with no lock held to post more hbq buffers to the 2538 * given HBQ. The function returns the number of HBQ buffers successfully 2539 * posted. 2540 **/ 2541 static int 2542 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2543 { 2544 uint32_t i, posted = 0; 2545 unsigned long flags; 2546 struct hbq_dmabuf *hbq_buffer; 2547 LIST_HEAD(hbq_buf_list); 2548 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2549 return 0; 2550 2551 if ((phba->hbqs[hbqno].buffer_count + count) > 2552 lpfc_hbq_defs[hbqno]->entry_count) 2553 count = lpfc_hbq_defs[hbqno]->entry_count - 2554 phba->hbqs[hbqno].buffer_count; 2555 if (!count) 2556 return 0; 2557 /* Allocate HBQ entries */ 2558 for (i = 0; i < count; i++) { 2559 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2560 if (!hbq_buffer) 2561 break; 2562 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2563 } 2564 /* Check whether HBQ is still in use */ 2565 spin_lock_irqsave(&phba->hbalock, flags); 2566 if (!phba->hbq_in_use) 2567 goto err; 2568 while (!list_empty(&hbq_buf_list)) { 2569 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2570 dbuf.list); 2571 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2572 (hbqno << 16)); 2573 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2574 phba->hbqs[hbqno].buffer_count++; 2575 posted++; 2576 } else 2577 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2578 } 2579 spin_unlock_irqrestore(&phba->hbalock, flags); 2580 return posted; 2581 err: 2582 spin_unlock_irqrestore(&phba->hbalock, flags); 2583 while (!list_empty(&hbq_buf_list)) { 2584 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2585 dbuf.list); 2586 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2587 } 2588 return 0; 2589 } 2590 2591 /** 2592 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2593 * @phba: Pointer to HBA context object. 2594 * @qno: HBQ number. 2595 * 2596 * This function posts more buffers to the HBQ. This function 2597 * is called with no lock held. The function returns the number of HBQ entries 2598 * successfully allocated. 2599 **/ 2600 int 2601 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2602 { 2603 if (phba->sli_rev == LPFC_SLI_REV4) 2604 return 0; 2605 else 2606 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2607 lpfc_hbq_defs[qno]->add_count); 2608 } 2609 2610 /** 2611 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2612 * @phba: Pointer to HBA context object. 2613 * @qno: HBQ queue number. 2614 * 2615 * This function is called from SLI initialization code path with 2616 * no lock held to post initial HBQ buffers to firmware. The 2617 * function returns the number of HBQ entries successfully allocated. 2618 **/ 2619 static int 2620 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2621 { 2622 if (phba->sli_rev == LPFC_SLI_REV4) 2623 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2624 lpfc_hbq_defs[qno]->entry_count); 2625 else 2626 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2627 lpfc_hbq_defs[qno]->init_count); 2628 } 2629 2630 /* 2631 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2632 * 2633 * This function removes the first hbq buffer on an hbq list and returns a 2634 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2635 **/ 2636 static struct hbq_dmabuf * 2637 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2638 { 2639 struct lpfc_dmabuf *d_buf; 2640 2641 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2642 if (!d_buf) 2643 return NULL; 2644 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2645 } 2646 2647 /** 2648 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2649 * @phba: Pointer to HBA context object. 2650 * @hrq: HBQ number. 2651 * 2652 * This function removes the first RQ buffer on an RQ buffer list and returns a 2653 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2654 **/ 2655 static struct rqb_dmabuf * 2656 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2657 { 2658 struct lpfc_dmabuf *h_buf; 2659 struct lpfc_rqb *rqbp; 2660 2661 rqbp = hrq->rqbp; 2662 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2663 struct lpfc_dmabuf, list); 2664 if (!h_buf) 2665 return NULL; 2666 rqbp->buffer_count--; 2667 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2668 } 2669 2670 /** 2671 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2672 * @phba: Pointer to HBA context object. 2673 * @tag: Tag of the hbq buffer. 2674 * 2675 * This function searches for the hbq buffer associated with the given tag in 2676 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2677 * otherwise it returns NULL. 2678 **/ 2679 static struct hbq_dmabuf * 2680 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2681 { 2682 struct lpfc_dmabuf *d_buf; 2683 struct hbq_dmabuf *hbq_buf; 2684 uint32_t hbqno; 2685 2686 hbqno = tag >> 16; 2687 if (hbqno >= LPFC_MAX_HBQS) 2688 return NULL; 2689 2690 spin_lock_irq(&phba->hbalock); 2691 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2692 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2693 if (hbq_buf->tag == tag) { 2694 spin_unlock_irq(&phba->hbalock); 2695 return hbq_buf; 2696 } 2697 } 2698 spin_unlock_irq(&phba->hbalock); 2699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2700 "1803 Bad hbq tag. Data: x%x x%x\n", 2701 tag, phba->hbqs[tag >> 16].buffer_count); 2702 return NULL; 2703 } 2704 2705 /** 2706 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2707 * @phba: Pointer to HBA context object. 2708 * @hbq_buffer: Pointer to HBQ buffer. 2709 * 2710 * This function is called with hbalock. This function gives back 2711 * the hbq buffer to firmware. If the HBQ does not have space to 2712 * post the buffer, it will free the buffer. 2713 **/ 2714 void 2715 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2716 { 2717 uint32_t hbqno; 2718 2719 if (hbq_buffer) { 2720 hbqno = hbq_buffer->tag >> 16; 2721 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2722 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2723 } 2724 } 2725 2726 /** 2727 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2728 * @mbxCommand: mailbox command code. 2729 * 2730 * This function is called by the mailbox event handler function to verify 2731 * that the completed mailbox command is a legitimate mailbox command. If the 2732 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2733 * and the mailbox event handler will take the HBA offline. 2734 **/ 2735 static int 2736 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2737 { 2738 uint8_t ret; 2739 2740 switch (mbxCommand) { 2741 case MBX_LOAD_SM: 2742 case MBX_READ_NV: 2743 case MBX_WRITE_NV: 2744 case MBX_WRITE_VPARMS: 2745 case MBX_RUN_BIU_DIAG: 2746 case MBX_INIT_LINK: 2747 case MBX_DOWN_LINK: 2748 case MBX_CONFIG_LINK: 2749 case MBX_CONFIG_RING: 2750 case MBX_RESET_RING: 2751 case MBX_READ_CONFIG: 2752 case MBX_READ_RCONFIG: 2753 case MBX_READ_SPARM: 2754 case MBX_READ_STATUS: 2755 case MBX_READ_RPI: 2756 case MBX_READ_XRI: 2757 case MBX_READ_REV: 2758 case MBX_READ_LNK_STAT: 2759 case MBX_REG_LOGIN: 2760 case MBX_UNREG_LOGIN: 2761 case MBX_CLEAR_LA: 2762 case MBX_DUMP_MEMORY: 2763 case MBX_DUMP_CONTEXT: 2764 case MBX_RUN_DIAGS: 2765 case MBX_RESTART: 2766 case MBX_UPDATE_CFG: 2767 case MBX_DOWN_LOAD: 2768 case MBX_DEL_LD_ENTRY: 2769 case MBX_RUN_PROGRAM: 2770 case MBX_SET_MASK: 2771 case MBX_SET_VARIABLE: 2772 case MBX_UNREG_D_ID: 2773 case MBX_KILL_BOARD: 2774 case MBX_CONFIG_FARP: 2775 case MBX_BEACON: 2776 case MBX_LOAD_AREA: 2777 case MBX_RUN_BIU_DIAG64: 2778 case MBX_CONFIG_PORT: 2779 case MBX_READ_SPARM64: 2780 case MBX_READ_RPI64: 2781 case MBX_REG_LOGIN64: 2782 case MBX_READ_TOPOLOGY: 2783 case MBX_WRITE_WWN: 2784 case MBX_SET_DEBUG: 2785 case MBX_LOAD_EXP_ROM: 2786 case MBX_ASYNCEVT_ENABLE: 2787 case MBX_REG_VPI: 2788 case MBX_UNREG_VPI: 2789 case MBX_HEARTBEAT: 2790 case MBX_PORT_CAPABILITIES: 2791 case MBX_PORT_IOV_CONTROL: 2792 case MBX_SLI4_CONFIG: 2793 case MBX_SLI4_REQ_FTRS: 2794 case MBX_REG_FCFI: 2795 case MBX_UNREG_FCFI: 2796 case MBX_REG_VFI: 2797 case MBX_UNREG_VFI: 2798 case MBX_INIT_VPI: 2799 case MBX_INIT_VFI: 2800 case MBX_RESUME_RPI: 2801 case MBX_READ_EVENT_LOG_STATUS: 2802 case MBX_READ_EVENT_LOG: 2803 case MBX_SECURITY_MGMT: 2804 case MBX_AUTH_PORT: 2805 case MBX_ACCESS_VDATA: 2806 ret = mbxCommand; 2807 break; 2808 default: 2809 ret = MBX_SHUTDOWN; 2810 break; 2811 } 2812 return ret; 2813 } 2814 2815 /** 2816 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2817 * @phba: Pointer to HBA context object. 2818 * @pmboxq: Pointer to mailbox command. 2819 * 2820 * This is completion handler function for mailbox commands issued from 2821 * lpfc_sli_issue_mbox_wait function. This function is called by the 2822 * mailbox event handler function with no lock held. This function 2823 * will wake up thread waiting on the wait queue pointed by context1 2824 * of the mailbox. 2825 **/ 2826 void 2827 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2828 { 2829 unsigned long drvr_flag; 2830 struct completion *pmbox_done; 2831 2832 /* 2833 * If pmbox_done is empty, the driver thread gave up waiting and 2834 * continued running. 2835 */ 2836 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2837 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2838 pmbox_done = pmboxq->ctx_u.mbox_wait; 2839 if (pmbox_done) 2840 complete(pmbox_done); 2841 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2842 return; 2843 } 2844 2845 static void 2846 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2847 { 2848 unsigned long iflags; 2849 2850 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2851 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2852 spin_lock_irqsave(&ndlp->lock, iflags); 2853 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2854 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2855 spin_unlock_irqrestore(&ndlp->lock, iflags); 2856 } 2857 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2858 } 2859 2860 void 2861 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2862 { 2863 __lpfc_sli_rpi_release(vport, ndlp); 2864 } 2865 2866 /** 2867 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2868 * @phba: Pointer to HBA context object. 2869 * @pmb: Pointer to mailbox object. 2870 * 2871 * This function is the default mailbox completion handler. It 2872 * frees the memory resources associated with the completed mailbox 2873 * command. If the completed command is a REG_LOGIN mailbox command, 2874 * this function will issue a UREG_LOGIN to re-claim the RPI. 2875 **/ 2876 void 2877 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2878 { 2879 struct lpfc_vport *vport = pmb->vport; 2880 struct lpfc_dmabuf *mp; 2881 struct lpfc_nodelist *ndlp; 2882 struct Scsi_Host *shost; 2883 uint16_t rpi, vpi; 2884 int rc; 2885 2886 /* 2887 * If a REG_LOGIN succeeded after node is destroyed or node 2888 * is in re-discovery driver need to cleanup the RPI. 2889 */ 2890 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2891 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2892 !pmb->u.mb.mbxStatus) { 2893 mp = pmb->ctx_buf; 2894 if (mp) { 2895 pmb->ctx_buf = NULL; 2896 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2897 kfree(mp); 2898 } 2899 rpi = pmb->u.mb.un.varWords[0]; 2900 vpi = pmb->u.mb.un.varRegLogin.vpi; 2901 if (phba->sli_rev == LPFC_SLI_REV4) 2902 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2903 lpfc_unreg_login(phba, vpi, rpi, pmb); 2904 pmb->vport = vport; 2905 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2906 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2907 if (rc != MBX_NOT_FINISHED) 2908 return; 2909 } 2910 2911 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2912 !test_bit(FC_UNLOADING, &phba->pport->load_flag) && 2913 !pmb->u.mb.mbxStatus) { 2914 shost = lpfc_shost_from_vport(vport); 2915 spin_lock_irq(shost->host_lock); 2916 vport->vpi_state |= LPFC_VPI_REGISTERED; 2917 spin_unlock_irq(shost->host_lock); 2918 clear_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); 2919 } 2920 2921 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2922 ndlp = pmb->ctx_ndlp; 2923 lpfc_nlp_put(ndlp); 2924 } 2925 2926 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2927 ndlp = pmb->ctx_ndlp; 2928 2929 /* Check to see if there are any deferred events to process */ 2930 if (ndlp) { 2931 lpfc_printf_vlog( 2932 vport, 2933 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2934 "1438 UNREG cmpl deferred mbox x%x " 2935 "on NPort x%x Data: x%x x%x x%px x%lx x%x\n", 2936 ndlp->nlp_rpi, ndlp->nlp_DID, 2937 ndlp->nlp_flag, ndlp->nlp_defer_did, 2938 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2939 2940 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2941 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2942 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2943 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2944 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2945 } else { 2946 __lpfc_sli_rpi_release(vport, ndlp); 2947 } 2948 2949 /* The unreg_login mailbox is complete and had a 2950 * reference that has to be released. The PLOGI 2951 * got its own ref. 2952 */ 2953 lpfc_nlp_put(ndlp); 2954 pmb->ctx_ndlp = NULL; 2955 } 2956 } 2957 2958 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2959 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2960 ndlp = pmb->ctx_ndlp; 2961 lpfc_nlp_put(ndlp); 2962 } 2963 2964 /* Check security permission status on INIT_LINK mailbox command */ 2965 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2966 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2967 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2968 "2860 SLI authentication is required " 2969 "for INIT_LINK but has not done yet\n"); 2970 2971 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2972 lpfc_sli4_mbox_cmd_free(phba, pmb); 2973 else 2974 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2975 } 2976 /** 2977 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2978 * @phba: Pointer to HBA context object. 2979 * @pmb: Pointer to mailbox object. 2980 * 2981 * This function is the unreg rpi mailbox completion handler. It 2982 * frees the memory resources associated with the completed mailbox 2983 * command. An additional reference is put on the ndlp to prevent 2984 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2985 * the unreg mailbox command completes, this routine puts the 2986 * reference back. 2987 * 2988 **/ 2989 void 2990 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2991 { 2992 struct lpfc_vport *vport = pmb->vport; 2993 struct lpfc_nodelist *ndlp; 2994 2995 ndlp = pmb->ctx_ndlp; 2996 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2997 if (phba->sli_rev == LPFC_SLI_REV4 && 2998 (bf_get(lpfc_sli_intf_if_type, 2999 &phba->sli4_hba.sli_intf) >= 3000 LPFC_SLI_INTF_IF_TYPE_2)) { 3001 if (ndlp) { 3002 lpfc_printf_vlog( 3003 vport, KERN_INFO, 3004 LOG_MBOX | LOG_SLI | LOG_NODE, 3005 "0010 UNREG_LOGIN vpi:x%x " 3006 "rpi:%x DID:%x defer x%x flg x%x " 3007 "x%px\n", 3008 vport->vpi, ndlp->nlp_rpi, 3009 ndlp->nlp_DID, ndlp->nlp_defer_did, 3010 ndlp->nlp_flag, 3011 ndlp); 3012 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 3013 3014 /* Check to see if there are any deferred 3015 * events to process 3016 */ 3017 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 3018 (ndlp->nlp_defer_did != 3019 NLP_EVT_NOTHING_PENDING)) { 3020 lpfc_printf_vlog( 3021 vport, KERN_INFO, 3022 LOG_MBOX | LOG_SLI | LOG_NODE, 3023 "4111 UNREG cmpl deferred " 3024 "clr x%x on " 3025 "NPort x%x Data: x%x x%px\n", 3026 ndlp->nlp_rpi, ndlp->nlp_DID, 3027 ndlp->nlp_defer_did, ndlp); 3028 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3029 ndlp->nlp_defer_did = 3030 NLP_EVT_NOTHING_PENDING; 3031 lpfc_issue_els_plogi( 3032 vport, ndlp->nlp_DID, 0); 3033 } else { 3034 __lpfc_sli_rpi_release(vport, ndlp); 3035 } 3036 lpfc_nlp_put(ndlp); 3037 } 3038 } 3039 } 3040 3041 mempool_free(pmb, phba->mbox_mem_pool); 3042 } 3043 3044 /** 3045 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3046 * @phba: Pointer to HBA context object. 3047 * 3048 * This function is called with no lock held. This function processes all 3049 * the completed mailbox commands and gives it to upper layers. The interrupt 3050 * service routine processes mailbox completion interrupt and adds completed 3051 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3052 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3053 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3054 * function returns the mailbox commands to the upper layer by calling the 3055 * completion handler function of each mailbox. 3056 **/ 3057 int 3058 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3059 { 3060 MAILBOX_t *pmbox; 3061 LPFC_MBOXQ_t *pmb; 3062 int rc; 3063 LIST_HEAD(cmplq); 3064 3065 phba->sli.slistat.mbox_event++; 3066 3067 /* Get all completed mailboxe buffers into the cmplq */ 3068 spin_lock_irq(&phba->hbalock); 3069 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3070 spin_unlock_irq(&phba->hbalock); 3071 3072 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3073 do { 3074 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3075 if (pmb == NULL) 3076 break; 3077 3078 pmbox = &pmb->u.mb; 3079 3080 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3081 if (pmb->vport) { 3082 lpfc_debugfs_disc_trc(pmb->vport, 3083 LPFC_DISC_TRC_MBOX_VPORT, 3084 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3085 (uint32_t)pmbox->mbxCommand, 3086 pmbox->un.varWords[0], 3087 pmbox->un.varWords[1]); 3088 } 3089 else { 3090 lpfc_debugfs_disc_trc(phba->pport, 3091 LPFC_DISC_TRC_MBOX, 3092 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3093 (uint32_t)pmbox->mbxCommand, 3094 pmbox->un.varWords[0], 3095 pmbox->un.varWords[1]); 3096 } 3097 } 3098 3099 /* 3100 * It is a fatal error if unknown mbox command completion. 3101 */ 3102 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3103 MBX_SHUTDOWN) { 3104 /* Unknown mailbox command compl */ 3105 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3106 "(%d):0323 Unknown Mailbox command " 3107 "x%x (x%x/x%x) Cmpl\n", 3108 pmb->vport ? pmb->vport->vpi : 3109 LPFC_VPORT_UNKNOWN, 3110 pmbox->mbxCommand, 3111 lpfc_sli_config_mbox_subsys_get(phba, 3112 pmb), 3113 lpfc_sli_config_mbox_opcode_get(phba, 3114 pmb)); 3115 phba->link_state = LPFC_HBA_ERROR; 3116 phba->work_hs = HS_FFER3; 3117 lpfc_handle_eratt(phba); 3118 continue; 3119 } 3120 3121 if (pmbox->mbxStatus) { 3122 phba->sli.slistat.mbox_stat_err++; 3123 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3124 /* Mbox cmd cmpl error - RETRYing */ 3125 lpfc_printf_log(phba, KERN_INFO, 3126 LOG_MBOX | LOG_SLI, 3127 "(%d):0305 Mbox cmd cmpl " 3128 "error - RETRYing Data: x%x " 3129 "(x%x/x%x) x%x x%x x%x\n", 3130 pmb->vport ? pmb->vport->vpi : 3131 LPFC_VPORT_UNKNOWN, 3132 pmbox->mbxCommand, 3133 lpfc_sli_config_mbox_subsys_get(phba, 3134 pmb), 3135 lpfc_sli_config_mbox_opcode_get(phba, 3136 pmb), 3137 pmbox->mbxStatus, 3138 pmbox->un.varWords[0], 3139 pmb->vport ? pmb->vport->port_state : 3140 LPFC_VPORT_UNKNOWN); 3141 pmbox->mbxStatus = 0; 3142 pmbox->mbxOwner = OWN_HOST; 3143 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3144 if (rc != MBX_NOT_FINISHED) 3145 continue; 3146 } 3147 } 3148 3149 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3150 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3151 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3152 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3153 "x%x x%x x%x\n", 3154 pmb->vport ? pmb->vport->vpi : 0, 3155 pmbox->mbxCommand, 3156 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3157 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3158 pmb->mbox_cmpl, 3159 *((uint32_t *) pmbox), 3160 pmbox->un.varWords[0], 3161 pmbox->un.varWords[1], 3162 pmbox->un.varWords[2], 3163 pmbox->un.varWords[3], 3164 pmbox->un.varWords[4], 3165 pmbox->un.varWords[5], 3166 pmbox->un.varWords[6], 3167 pmbox->un.varWords[7], 3168 pmbox->un.varWords[8], 3169 pmbox->un.varWords[9], 3170 pmbox->un.varWords[10]); 3171 3172 if (pmb->mbox_cmpl) 3173 pmb->mbox_cmpl(phba,pmb); 3174 } while (1); 3175 return 0; 3176 } 3177 3178 /** 3179 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3180 * @phba: Pointer to HBA context object. 3181 * @pring: Pointer to driver SLI ring object. 3182 * @tag: buffer tag. 3183 * 3184 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3185 * is set in the tag the buffer is posted for a particular exchange, 3186 * the function will return the buffer without replacing the buffer. 3187 * If the buffer is for unsolicited ELS or CT traffic, this function 3188 * returns the buffer and also posts another buffer to the firmware. 3189 **/ 3190 static struct lpfc_dmabuf * 3191 lpfc_sli_get_buff(struct lpfc_hba *phba, 3192 struct lpfc_sli_ring *pring, 3193 uint32_t tag) 3194 { 3195 struct hbq_dmabuf *hbq_entry; 3196 3197 if (tag & QUE_BUFTAG_BIT) 3198 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3199 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3200 if (!hbq_entry) 3201 return NULL; 3202 return &hbq_entry->dbuf; 3203 } 3204 3205 /** 3206 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3207 * containing a NVME LS request. 3208 * @phba: pointer to lpfc hba data structure. 3209 * @piocb: pointer to the iocbq struct representing the sequence starting 3210 * frame. 3211 * 3212 * This routine initially validates the NVME LS, validates there is a login 3213 * with the port that sent the LS, and then calls the appropriate nvme host 3214 * or target LS request handler. 3215 **/ 3216 static void 3217 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3218 { 3219 struct lpfc_nodelist *ndlp; 3220 struct lpfc_dmabuf *d_buf; 3221 struct hbq_dmabuf *nvmebuf; 3222 struct fc_frame_header *fc_hdr; 3223 struct lpfc_async_xchg_ctx *axchg = NULL; 3224 char *failwhy = NULL; 3225 uint32_t oxid, sid, did, fctl, size; 3226 int ret = 1; 3227 3228 d_buf = piocb->cmd_dmabuf; 3229 3230 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3231 fc_hdr = nvmebuf->hbuf.virt; 3232 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3233 sid = sli4_sid_from_fc_hdr(fc_hdr); 3234 did = sli4_did_from_fc_hdr(fc_hdr); 3235 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3236 fc_hdr->fh_f_ctl[1] << 8 | 3237 fc_hdr->fh_f_ctl[2]); 3238 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3239 3240 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3241 oxid, size, sid); 3242 3243 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 3244 failwhy = "Driver Unloading"; 3245 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3246 failwhy = "NVME FC4 Disabled"; 3247 } else if (!phba->nvmet_support && !phba->pport->localport) { 3248 failwhy = "No Localport"; 3249 } else if (phba->nvmet_support && !phba->targetport) { 3250 failwhy = "No Targetport"; 3251 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3252 failwhy = "Bad NVME LS R_CTL"; 3253 } else if (unlikely((fctl & 0x00FF0000) != 3254 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3255 failwhy = "Bad NVME LS F_CTL"; 3256 } else { 3257 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3258 if (!axchg) 3259 failwhy = "No CTX memory"; 3260 } 3261 3262 if (unlikely(failwhy)) { 3263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3264 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3265 sid, oxid, failwhy); 3266 goto out_fail; 3267 } 3268 3269 /* validate the source of the LS is logged in */ 3270 ndlp = lpfc_findnode_did(phba->pport, sid); 3271 if (!ndlp || 3272 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3273 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3274 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3275 "6216 NVME Unsol rcv: No ndlp: " 3276 "NPort_ID x%x oxid x%x\n", 3277 sid, oxid); 3278 goto out_fail; 3279 } 3280 3281 axchg->phba = phba; 3282 axchg->ndlp = ndlp; 3283 axchg->size = size; 3284 axchg->oxid = oxid; 3285 axchg->sid = sid; 3286 axchg->wqeq = NULL; 3287 axchg->state = LPFC_NVME_STE_LS_RCV; 3288 axchg->entry_cnt = 1; 3289 axchg->rqb_buffer = (void *)nvmebuf; 3290 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3291 axchg->payload = nvmebuf->dbuf.virt; 3292 INIT_LIST_HEAD(&axchg->list); 3293 3294 if (phba->nvmet_support) { 3295 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3296 spin_lock_irq(&ndlp->lock); 3297 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3298 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3299 spin_unlock_irq(&ndlp->lock); 3300 3301 /* This reference is a single occurrence to hold the 3302 * node valid until the nvmet transport calls 3303 * host_release. 3304 */ 3305 if (!lpfc_nlp_get(ndlp)) 3306 goto out_fail; 3307 3308 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3309 "6206 NVMET unsol ls_req ndlp x%px " 3310 "DID x%x xflags x%x refcnt %d\n", 3311 ndlp, ndlp->nlp_DID, 3312 ndlp->fc4_xpt_flags, 3313 kref_read(&ndlp->kref)); 3314 } else { 3315 spin_unlock_irq(&ndlp->lock); 3316 } 3317 } else { 3318 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3319 } 3320 3321 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3322 if (!ret) 3323 return; 3324 3325 out_fail: 3326 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3327 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3328 "NVMe%s handler failed %d\n", 3329 did, sid, oxid, 3330 (phba->nvmet_support) ? "T" : "I", ret); 3331 3332 /* recycle receive buffer */ 3333 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3334 3335 /* If start of new exchange, abort it */ 3336 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3337 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3338 3339 if (ret) 3340 kfree(axchg); 3341 } 3342 3343 /** 3344 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3345 * @phba: Pointer to HBA context object. 3346 * @pring: Pointer to driver SLI ring object. 3347 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3348 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3349 * @fch_type: the type for the first frame of the sequence. 3350 * 3351 * This function is called with no lock held. This function uses the r_ctl and 3352 * type of the received sequence to find the correct callback function to call 3353 * to process the sequence. 3354 **/ 3355 static int 3356 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3357 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3358 uint32_t fch_type) 3359 { 3360 int i; 3361 3362 switch (fch_type) { 3363 case FC_TYPE_NVME: 3364 lpfc_nvme_unsol_ls_handler(phba, saveq); 3365 return 1; 3366 default: 3367 break; 3368 } 3369 3370 /* unSolicited Responses */ 3371 if (pring->prt[0].profile) { 3372 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3373 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3374 saveq); 3375 return 1; 3376 } 3377 /* We must search, based on rctl / type 3378 for the right routine */ 3379 for (i = 0; i < pring->num_mask; i++) { 3380 if ((pring->prt[i].rctl == fch_r_ctl) && 3381 (pring->prt[i].type == fch_type)) { 3382 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3383 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3384 (phba, pring, saveq); 3385 return 1; 3386 } 3387 } 3388 return 0; 3389 } 3390 3391 static void 3392 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3393 struct lpfc_iocbq *saveq) 3394 { 3395 IOCB_t *irsp; 3396 union lpfc_wqe128 *wqe; 3397 u16 i = 0; 3398 3399 irsp = &saveq->iocb; 3400 wqe = &saveq->wqe; 3401 3402 /* Fill wcqe with the IOCB status fields */ 3403 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3404 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3405 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3406 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3407 3408 /* Source ID */ 3409 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3410 3411 /* rx-id of the response frame */ 3412 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3413 3414 /* ox-id of the frame */ 3415 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3416 irsp->unsli3.rcvsli3.ox_id); 3417 3418 /* DID */ 3419 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3420 irsp->un.rcvels.remoteID); 3421 3422 /* unsol data len */ 3423 for (i = 0; i < irsp->ulpBdeCount; i++) { 3424 struct lpfc_hbq_entry *hbqe = NULL; 3425 3426 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3427 if (i == 0) { 3428 hbqe = (struct lpfc_hbq_entry *) 3429 &irsp->un.ulpWord[0]; 3430 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3431 hbqe->bde.tus.f.bdeSize; 3432 } else if (i == 1) { 3433 hbqe = (struct lpfc_hbq_entry *) 3434 &irsp->unsli3.sli3Words[4]; 3435 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3436 } 3437 } 3438 } 3439 } 3440 3441 /** 3442 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3443 * @phba: Pointer to HBA context object. 3444 * @pring: Pointer to driver SLI ring object. 3445 * @saveq: Pointer to the unsolicited iocb. 3446 * 3447 * This function is called with no lock held by the ring event handler 3448 * when there is an unsolicited iocb posted to the response ring by the 3449 * firmware. This function gets the buffer associated with the iocbs 3450 * and calls the event handler for the ring. This function handles both 3451 * qring buffers and hbq buffers. 3452 * When the function returns 1 the caller can free the iocb object otherwise 3453 * upper layer functions will free the iocb objects. 3454 **/ 3455 static int 3456 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3457 struct lpfc_iocbq *saveq) 3458 { 3459 IOCB_t * irsp; 3460 WORD5 * w5p; 3461 dma_addr_t paddr; 3462 uint32_t Rctl, Type; 3463 struct lpfc_iocbq *iocbq; 3464 struct lpfc_dmabuf *dmzbuf; 3465 3466 irsp = &saveq->iocb; 3467 saveq->vport = phba->pport; 3468 3469 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3470 if (pring->lpfc_sli_rcv_async_status) 3471 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3472 else 3473 lpfc_printf_log(phba, 3474 KERN_WARNING, 3475 LOG_SLI, 3476 "0316 Ring %d handler: unexpected " 3477 "ASYNC_STATUS iocb received evt_code " 3478 "0x%x\n", 3479 pring->ringno, 3480 irsp->un.asyncstat.evt_code); 3481 return 1; 3482 } 3483 3484 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3485 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3486 if (irsp->ulpBdeCount > 0) { 3487 dmzbuf = lpfc_sli_get_buff(phba, pring, 3488 irsp->un.ulpWord[3]); 3489 lpfc_in_buf_free(phba, dmzbuf); 3490 } 3491 3492 if (irsp->ulpBdeCount > 1) { 3493 dmzbuf = lpfc_sli_get_buff(phba, pring, 3494 irsp->unsli3.sli3Words[3]); 3495 lpfc_in_buf_free(phba, dmzbuf); 3496 } 3497 3498 if (irsp->ulpBdeCount > 2) { 3499 dmzbuf = lpfc_sli_get_buff(phba, pring, 3500 irsp->unsli3.sli3Words[7]); 3501 lpfc_in_buf_free(phba, dmzbuf); 3502 } 3503 3504 return 1; 3505 } 3506 3507 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3508 if (irsp->ulpBdeCount != 0) { 3509 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3510 irsp->un.ulpWord[3]); 3511 if (!saveq->cmd_dmabuf) 3512 lpfc_printf_log(phba, 3513 KERN_ERR, 3514 LOG_SLI, 3515 "0341 Ring %d Cannot find buffer for " 3516 "an unsolicited iocb. tag 0x%x\n", 3517 pring->ringno, 3518 irsp->un.ulpWord[3]); 3519 } 3520 if (irsp->ulpBdeCount == 2) { 3521 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3522 irsp->unsli3.sli3Words[7]); 3523 if (!saveq->bpl_dmabuf) 3524 lpfc_printf_log(phba, 3525 KERN_ERR, 3526 LOG_SLI, 3527 "0342 Ring %d Cannot find buffer for an" 3528 " unsolicited iocb. tag 0x%x\n", 3529 pring->ringno, 3530 irsp->unsli3.sli3Words[7]); 3531 } 3532 list_for_each_entry(iocbq, &saveq->list, list) { 3533 irsp = &iocbq->iocb; 3534 if (irsp->ulpBdeCount != 0) { 3535 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3536 pring, 3537 irsp->un.ulpWord[3]); 3538 if (!iocbq->cmd_dmabuf) 3539 lpfc_printf_log(phba, 3540 KERN_ERR, 3541 LOG_SLI, 3542 "0343 Ring %d Cannot find " 3543 "buffer for an unsolicited iocb" 3544 ". tag 0x%x\n", pring->ringno, 3545 irsp->un.ulpWord[3]); 3546 } 3547 if (irsp->ulpBdeCount == 2) { 3548 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3549 pring, 3550 irsp->unsli3.sli3Words[7]); 3551 if (!iocbq->bpl_dmabuf) 3552 lpfc_printf_log(phba, 3553 KERN_ERR, 3554 LOG_SLI, 3555 "0344 Ring %d Cannot find " 3556 "buffer for an unsolicited " 3557 "iocb. tag 0x%x\n", 3558 pring->ringno, 3559 irsp->unsli3.sli3Words[7]); 3560 } 3561 } 3562 } else { 3563 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3564 irsp->un.cont64[0].addrLow); 3565 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3566 paddr); 3567 if (irsp->ulpBdeCount == 2) { 3568 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3569 irsp->un.cont64[1].addrLow); 3570 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3571 pring, 3572 paddr); 3573 } 3574 } 3575 3576 if (irsp->ulpBdeCount != 0 && 3577 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3578 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3579 int found = 0; 3580 3581 /* search continue save q for same XRI */ 3582 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3583 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3584 saveq->iocb.unsli3.rcvsli3.ox_id) { 3585 list_add_tail(&saveq->list, &iocbq->list); 3586 found = 1; 3587 break; 3588 } 3589 } 3590 if (!found) 3591 list_add_tail(&saveq->clist, 3592 &pring->iocb_continue_saveq); 3593 3594 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3595 list_del_init(&iocbq->clist); 3596 saveq = iocbq; 3597 irsp = &saveq->iocb; 3598 } else { 3599 return 0; 3600 } 3601 } 3602 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3603 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3604 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3605 Rctl = FC_RCTL_ELS_REQ; 3606 Type = FC_TYPE_ELS; 3607 } else { 3608 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3609 Rctl = w5p->hcsw.Rctl; 3610 Type = w5p->hcsw.Type; 3611 3612 /* Firmware Workaround */ 3613 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3614 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3615 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3616 Rctl = FC_RCTL_ELS_REQ; 3617 Type = FC_TYPE_ELS; 3618 w5p->hcsw.Rctl = Rctl; 3619 w5p->hcsw.Type = Type; 3620 } 3621 } 3622 3623 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3624 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3625 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3626 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3627 saveq->vport = phba->pport; 3628 else 3629 saveq->vport = lpfc_find_vport_by_vpid(phba, 3630 irsp->unsli3.rcvsli3.vpi); 3631 } 3632 3633 /* Prepare WQE with Unsol frame */ 3634 lpfc_sli_prep_unsol_wqe(phba, saveq); 3635 3636 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3637 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3638 "0313 Ring %d handler: unexpected Rctl x%x " 3639 "Type x%x received\n", 3640 pring->ringno, Rctl, Type); 3641 3642 return 1; 3643 } 3644 3645 /** 3646 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3647 * @phba: Pointer to HBA context object. 3648 * @pring: Pointer to driver SLI ring object. 3649 * @prspiocb: Pointer to response iocb object. 3650 * 3651 * This function looks up the iocb_lookup table to get the command iocb 3652 * corresponding to the given response iocb using the iotag of the 3653 * response iocb. The driver calls this function with the hbalock held 3654 * for SLI3 ports or the ring lock held for SLI4 ports. 3655 * This function returns the command iocb object if it finds the command 3656 * iocb else returns NULL. 3657 **/ 3658 static struct lpfc_iocbq * 3659 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3660 struct lpfc_sli_ring *pring, 3661 struct lpfc_iocbq *prspiocb) 3662 { 3663 struct lpfc_iocbq *cmd_iocb = NULL; 3664 u16 iotag; 3665 3666 if (phba->sli_rev == LPFC_SLI_REV4) 3667 iotag = get_wqe_reqtag(prspiocb); 3668 else 3669 iotag = prspiocb->iocb.ulpIoTag; 3670 3671 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3672 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3673 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3674 /* remove from txcmpl queue list */ 3675 list_del_init(&cmd_iocb->list); 3676 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3677 pring->txcmplq_cnt--; 3678 return cmd_iocb; 3679 } 3680 } 3681 3682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3683 "0317 iotag x%x is out of " 3684 "range: max iotag x%x\n", 3685 iotag, phba->sli.last_iotag); 3686 return NULL; 3687 } 3688 3689 /** 3690 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3691 * @phba: Pointer to HBA context object. 3692 * @pring: Pointer to driver SLI ring object. 3693 * @iotag: IOCB tag. 3694 * 3695 * This function looks up the iocb_lookup table to get the command iocb 3696 * corresponding to the given iotag. The driver calls this function with 3697 * the ring lock held because this function is an SLI4 port only helper. 3698 * This function returns the command iocb object if it finds the command 3699 * iocb else returns NULL. 3700 **/ 3701 static struct lpfc_iocbq * 3702 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3703 struct lpfc_sli_ring *pring, uint16_t iotag) 3704 { 3705 struct lpfc_iocbq *cmd_iocb = NULL; 3706 3707 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3708 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3709 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3710 /* remove from txcmpl queue list */ 3711 list_del_init(&cmd_iocb->list); 3712 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3713 pring->txcmplq_cnt--; 3714 return cmd_iocb; 3715 } 3716 } 3717 3718 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3719 "0372 iotag x%x lookup error: max iotag (x%x) " 3720 "cmd_flag x%x\n", 3721 iotag, phba->sli.last_iotag, 3722 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3723 return NULL; 3724 } 3725 3726 /** 3727 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3728 * @phba: Pointer to HBA context object. 3729 * @pring: Pointer to driver SLI ring object. 3730 * @saveq: Pointer to the response iocb to be processed. 3731 * 3732 * This function is called by the ring event handler for non-fcp 3733 * rings when there is a new response iocb in the response ring. 3734 * The caller is not required to hold any locks. This function 3735 * gets the command iocb associated with the response iocb and 3736 * calls the completion handler for the command iocb. If there 3737 * is no completion handler, the function will free the resources 3738 * associated with command iocb. If the response iocb is for 3739 * an already aborted command iocb, the status of the completion 3740 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3741 * This function always returns 1. 3742 **/ 3743 static int 3744 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3745 struct lpfc_iocbq *saveq) 3746 { 3747 struct lpfc_iocbq *cmdiocbp; 3748 unsigned long iflag; 3749 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3750 3751 if (phba->sli_rev == LPFC_SLI_REV4) 3752 spin_lock_irqsave(&pring->ring_lock, iflag); 3753 else 3754 spin_lock_irqsave(&phba->hbalock, iflag); 3755 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3756 if (phba->sli_rev == LPFC_SLI_REV4) 3757 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3758 else 3759 spin_unlock_irqrestore(&phba->hbalock, iflag); 3760 3761 ulp_command = get_job_cmnd(phba, saveq); 3762 ulp_status = get_job_ulpstatus(phba, saveq); 3763 ulp_word4 = get_job_word4(phba, saveq); 3764 ulp_context = get_job_ulpcontext(phba, saveq); 3765 if (phba->sli_rev == LPFC_SLI_REV4) 3766 iotag = get_wqe_reqtag(saveq); 3767 else 3768 iotag = saveq->iocb.ulpIoTag; 3769 3770 if (cmdiocbp) { 3771 ulp_command = get_job_cmnd(phba, cmdiocbp); 3772 if (cmdiocbp->cmd_cmpl) { 3773 /* 3774 * If an ELS command failed send an event to mgmt 3775 * application. 3776 */ 3777 if (ulp_status && 3778 (pring->ringno == LPFC_ELS_RING) && 3779 (ulp_command == CMD_ELS_REQUEST64_CR)) 3780 lpfc_send_els_failure_event(phba, 3781 cmdiocbp, saveq); 3782 3783 /* 3784 * Post all ELS completions to the worker thread. 3785 * All other are passed to the completion callback. 3786 */ 3787 if (pring->ringno == LPFC_ELS_RING) { 3788 if ((phba->sli_rev < LPFC_SLI_REV4) && 3789 (cmdiocbp->cmd_flag & 3790 LPFC_DRIVER_ABORTED)) { 3791 spin_lock_irqsave(&phba->hbalock, 3792 iflag); 3793 cmdiocbp->cmd_flag &= 3794 ~LPFC_DRIVER_ABORTED; 3795 spin_unlock_irqrestore(&phba->hbalock, 3796 iflag); 3797 saveq->iocb.ulpStatus = 3798 IOSTAT_LOCAL_REJECT; 3799 saveq->iocb.un.ulpWord[4] = 3800 IOERR_SLI_ABORTED; 3801 3802 /* Firmware could still be in progress 3803 * of DMAing payload, so don't free data 3804 * buffer till after a hbeat. 3805 */ 3806 spin_lock_irqsave(&phba->hbalock, 3807 iflag); 3808 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3809 spin_unlock_irqrestore(&phba->hbalock, 3810 iflag); 3811 } 3812 if (phba->sli_rev == LPFC_SLI_REV4) { 3813 if (saveq->cmd_flag & 3814 LPFC_EXCHANGE_BUSY) { 3815 /* Set cmdiocb flag for the 3816 * exchange busy so sgl (xri) 3817 * will not be released until 3818 * the abort xri is received 3819 * from hba. 3820 */ 3821 spin_lock_irqsave( 3822 &phba->hbalock, iflag); 3823 cmdiocbp->cmd_flag |= 3824 LPFC_EXCHANGE_BUSY; 3825 spin_unlock_irqrestore( 3826 &phba->hbalock, iflag); 3827 } 3828 if (cmdiocbp->cmd_flag & 3829 LPFC_DRIVER_ABORTED) { 3830 /* 3831 * Clear LPFC_DRIVER_ABORTED 3832 * bit in case it was driver 3833 * initiated abort. 3834 */ 3835 spin_lock_irqsave( 3836 &phba->hbalock, iflag); 3837 cmdiocbp->cmd_flag &= 3838 ~LPFC_DRIVER_ABORTED; 3839 spin_unlock_irqrestore( 3840 &phba->hbalock, iflag); 3841 set_job_ulpstatus(cmdiocbp, 3842 IOSTAT_LOCAL_REJECT); 3843 set_job_ulpword4(cmdiocbp, 3844 IOERR_ABORT_REQUESTED); 3845 /* 3846 * For SLI4, irspiocb contains 3847 * NO_XRI in sli_xritag, it 3848 * shall not affect releasing 3849 * sgl (xri) process. 3850 */ 3851 set_job_ulpstatus(saveq, 3852 IOSTAT_LOCAL_REJECT); 3853 set_job_ulpword4(saveq, 3854 IOERR_SLI_ABORTED); 3855 spin_lock_irqsave( 3856 &phba->hbalock, iflag); 3857 saveq->cmd_flag |= 3858 LPFC_DELAY_MEM_FREE; 3859 spin_unlock_irqrestore( 3860 &phba->hbalock, iflag); 3861 } 3862 } 3863 } 3864 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3865 } else 3866 lpfc_sli_release_iocbq(phba, cmdiocbp); 3867 } else { 3868 /* 3869 * Unknown initiating command based on the response iotag. 3870 * This could be the case on the ELS ring because of 3871 * lpfc_els_abort(). 3872 */ 3873 if (pring->ringno != LPFC_ELS_RING) { 3874 /* 3875 * Ring <ringno> handler: unexpected completion IoTag 3876 * <IoTag> 3877 */ 3878 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3879 "0322 Ring %d handler: " 3880 "unexpected completion IoTag x%x " 3881 "Data: x%x x%x x%x x%x\n", 3882 pring->ringno, iotag, ulp_status, 3883 ulp_word4, ulp_command, ulp_context); 3884 } 3885 } 3886 3887 return 1; 3888 } 3889 3890 /** 3891 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3892 * @phba: Pointer to HBA context object. 3893 * @pring: Pointer to driver SLI ring object. 3894 * 3895 * This function is called from the iocb ring event handlers when 3896 * put pointer is ahead of the get pointer for a ring. This function signal 3897 * an error attention condition to the worker thread and the worker 3898 * thread will transition the HBA to offline state. 3899 **/ 3900 static void 3901 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3902 { 3903 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3904 /* 3905 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3906 * rsp ring <portRspMax> 3907 */ 3908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3909 "0312 Ring %d handler: portRspPut %d " 3910 "is bigger than rsp ring %d\n", 3911 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3912 pring->sli.sli3.numRiocb); 3913 3914 phba->link_state = LPFC_HBA_ERROR; 3915 3916 /* 3917 * All error attention handlers are posted to 3918 * worker thread 3919 */ 3920 phba->work_ha |= HA_ERATT; 3921 phba->work_hs = HS_FFER3; 3922 3923 lpfc_worker_wake_up(phba); 3924 3925 return; 3926 } 3927 3928 /** 3929 * lpfc_poll_eratt - Error attention polling timer timeout handler 3930 * @t: Context to fetch pointer to address of HBA context object from. 3931 * 3932 * This function is invoked by the Error Attention polling timer when the 3933 * timer times out. It will check the SLI Error Attention register for 3934 * possible attention events. If so, it will post an Error Attention event 3935 * and wake up worker thread to process it. Otherwise, it will set up the 3936 * Error Attention polling timer for the next poll. 3937 **/ 3938 void lpfc_poll_eratt(struct timer_list *t) 3939 { 3940 struct lpfc_hba *phba; 3941 uint32_t eratt = 0; 3942 uint64_t sli_intr, cnt; 3943 3944 phba = from_timer(phba, t, eratt_poll); 3945 if (!test_bit(HBA_SETUP, &phba->hba_flag)) 3946 return; 3947 3948 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 3949 return; 3950 3951 /* Here we will also keep track of interrupts per sec of the hba */ 3952 sli_intr = phba->sli.slistat.sli_intr; 3953 3954 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3955 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3956 sli_intr); 3957 else 3958 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3959 3960 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3961 do_div(cnt, phba->eratt_poll_interval); 3962 phba->sli.slistat.sli_ips = cnt; 3963 3964 phba->sli.slistat.sli_prev_intr = sli_intr; 3965 3966 /* Check chip HA register for error event */ 3967 eratt = lpfc_sli_check_eratt(phba); 3968 3969 if (eratt) 3970 /* Tell the worker thread there is work to do */ 3971 lpfc_worker_wake_up(phba); 3972 else 3973 /* Restart the timer for next eratt poll */ 3974 mod_timer(&phba->eratt_poll, 3975 jiffies + 3976 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3977 return; 3978 } 3979 3980 3981 /** 3982 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3983 * @phba: Pointer to HBA context object. 3984 * @pring: Pointer to driver SLI ring object. 3985 * @mask: Host attention register mask for this ring. 3986 * 3987 * This function is called from the interrupt context when there is a ring 3988 * event for the fcp ring. The caller does not hold any lock. 3989 * The function processes each response iocb in the response ring until it 3990 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3991 * LE bit set. The function will call the completion handler of the command iocb 3992 * if the response iocb indicates a completion for a command iocb or it is 3993 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3994 * function if this is an unsolicited iocb. 3995 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3996 * to check it explicitly. 3997 */ 3998 int 3999 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 4000 struct lpfc_sli_ring *pring, uint32_t mask) 4001 { 4002 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 4003 IOCB_t *irsp = NULL; 4004 IOCB_t *entry = NULL; 4005 struct lpfc_iocbq *cmdiocbq = NULL; 4006 struct lpfc_iocbq rspiocbq; 4007 uint32_t status; 4008 uint32_t portRspPut, portRspMax; 4009 int rc = 1; 4010 lpfc_iocb_type type; 4011 unsigned long iflag; 4012 uint32_t rsp_cmpl = 0; 4013 4014 spin_lock_irqsave(&phba->hbalock, iflag); 4015 pring->stats.iocb_event++; 4016 4017 /* 4018 * The next available response entry should never exceed the maximum 4019 * entries. If it does, treat it as an adapter hardware error. 4020 */ 4021 portRspMax = pring->sli.sli3.numRiocb; 4022 portRspPut = le32_to_cpu(pgp->rspPutInx); 4023 if (unlikely(portRspPut >= portRspMax)) { 4024 lpfc_sli_rsp_pointers_error(phba, pring); 4025 spin_unlock_irqrestore(&phba->hbalock, iflag); 4026 return 1; 4027 } 4028 if (phba->fcp_ring_in_use) { 4029 spin_unlock_irqrestore(&phba->hbalock, iflag); 4030 return 1; 4031 } else 4032 phba->fcp_ring_in_use = 1; 4033 4034 rmb(); 4035 while (pring->sli.sli3.rspidx != portRspPut) { 4036 /* 4037 * Fetch an entry off the ring and copy it into a local data 4038 * structure. The copy involves a byte-swap since the 4039 * network byte order and pci byte orders are different. 4040 */ 4041 entry = lpfc_resp_iocb(phba, pring); 4042 phba->last_completion_time = jiffies; 4043 4044 if (++pring->sli.sli3.rspidx >= portRspMax) 4045 pring->sli.sli3.rspidx = 0; 4046 4047 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4048 (uint32_t *) &rspiocbq.iocb, 4049 phba->iocb_rsp_size); 4050 INIT_LIST_HEAD(&(rspiocbq.list)); 4051 irsp = &rspiocbq.iocb; 4052 4053 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4054 pring->stats.iocb_rsp++; 4055 rsp_cmpl++; 4056 4057 if (unlikely(irsp->ulpStatus)) { 4058 /* 4059 * If resource errors reported from HBA, reduce 4060 * queuedepths of the SCSI device. 4061 */ 4062 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4063 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4064 IOERR_NO_RESOURCES)) { 4065 spin_unlock_irqrestore(&phba->hbalock, iflag); 4066 phba->lpfc_rampdown_queue_depth(phba); 4067 spin_lock_irqsave(&phba->hbalock, iflag); 4068 } 4069 4070 /* Rsp ring <ringno> error: IOCB */ 4071 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4072 "0336 Rsp Ring %d error: IOCB Data: " 4073 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4074 pring->ringno, 4075 irsp->un.ulpWord[0], 4076 irsp->un.ulpWord[1], 4077 irsp->un.ulpWord[2], 4078 irsp->un.ulpWord[3], 4079 irsp->un.ulpWord[4], 4080 irsp->un.ulpWord[5], 4081 *(uint32_t *)&irsp->un1, 4082 *((uint32_t *)&irsp->un1 + 1)); 4083 } 4084 4085 switch (type) { 4086 case LPFC_ABORT_IOCB: 4087 case LPFC_SOL_IOCB: 4088 /* 4089 * Idle exchange closed via ABTS from port. No iocb 4090 * resources need to be recovered. 4091 */ 4092 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4094 "0333 IOCB cmd 0x%x" 4095 " processed. Skipping" 4096 " completion\n", 4097 irsp->ulpCommand); 4098 break; 4099 } 4100 4101 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4102 &rspiocbq); 4103 if (unlikely(!cmdiocbq)) 4104 break; 4105 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4106 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4107 if (cmdiocbq->cmd_cmpl) { 4108 spin_unlock_irqrestore(&phba->hbalock, iflag); 4109 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4110 spin_lock_irqsave(&phba->hbalock, iflag); 4111 } 4112 break; 4113 case LPFC_UNSOL_IOCB: 4114 spin_unlock_irqrestore(&phba->hbalock, iflag); 4115 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4116 spin_lock_irqsave(&phba->hbalock, iflag); 4117 break; 4118 default: 4119 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4120 char adaptermsg[LPFC_MAX_ADPTMSG]; 4121 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4122 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4123 MAX_MSG_DATA); 4124 dev_warn(&((phba->pcidev)->dev), 4125 "lpfc%d: %s\n", 4126 phba->brd_no, adaptermsg); 4127 } else { 4128 /* Unknown IOCB command */ 4129 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4130 "0334 Unknown IOCB command " 4131 "Data: x%x, x%x x%x x%x x%x\n", 4132 type, irsp->ulpCommand, 4133 irsp->ulpStatus, 4134 irsp->ulpIoTag, 4135 irsp->ulpContext); 4136 } 4137 break; 4138 } 4139 4140 /* 4141 * The response IOCB has been processed. Update the ring 4142 * pointer in SLIM. If the port response put pointer has not 4143 * been updated, sync the pgp->rspPutInx and fetch the new port 4144 * response put pointer. 4145 */ 4146 writel(pring->sli.sli3.rspidx, 4147 &phba->host_gp[pring->ringno].rspGetInx); 4148 4149 if (pring->sli.sli3.rspidx == portRspPut) 4150 portRspPut = le32_to_cpu(pgp->rspPutInx); 4151 } 4152 4153 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4154 pring->stats.iocb_rsp_full++; 4155 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4156 writel(status, phba->CAregaddr); 4157 readl(phba->CAregaddr); 4158 } 4159 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4160 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4161 pring->stats.iocb_cmd_empty++; 4162 4163 /* Force update of the local copy of cmdGetInx */ 4164 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4165 lpfc_sli_resume_iocb(phba, pring); 4166 4167 if ((pring->lpfc_sli_cmd_available)) 4168 (pring->lpfc_sli_cmd_available) (phba, pring); 4169 4170 } 4171 4172 phba->fcp_ring_in_use = 0; 4173 spin_unlock_irqrestore(&phba->hbalock, iflag); 4174 return rc; 4175 } 4176 4177 /** 4178 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4179 * @phba: Pointer to HBA context object. 4180 * @pring: Pointer to driver SLI ring object. 4181 * @rspiocbp: Pointer to driver response IOCB object. 4182 * 4183 * This function is called from the worker thread when there is a slow-path 4184 * response IOCB to process. This function chains all the response iocbs until 4185 * seeing the iocb with the LE bit set. The function will call 4186 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4187 * completion of a command iocb. The function will call the 4188 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4189 * The function frees the resources or calls the completion handler if this 4190 * iocb is an abort completion. The function returns NULL when the response 4191 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4192 * this function shall chain the iocb on to the iocb_continueq and return the 4193 * response iocb passed in. 4194 **/ 4195 static struct lpfc_iocbq * 4196 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4197 struct lpfc_iocbq *rspiocbp) 4198 { 4199 struct lpfc_iocbq *saveq; 4200 struct lpfc_iocbq *cmdiocb; 4201 struct lpfc_iocbq *next_iocb; 4202 IOCB_t *irsp; 4203 uint32_t free_saveq; 4204 u8 cmd_type; 4205 lpfc_iocb_type type; 4206 unsigned long iflag; 4207 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4208 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4209 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4210 int rc; 4211 4212 spin_lock_irqsave(&phba->hbalock, iflag); 4213 /* First add the response iocb to the countinueq list */ 4214 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4215 pring->iocb_continueq_cnt++; 4216 4217 /* 4218 * By default, the driver expects to free all resources 4219 * associated with this iocb completion. 4220 */ 4221 free_saveq = 1; 4222 saveq = list_get_first(&pring->iocb_continueq, 4223 struct lpfc_iocbq, list); 4224 list_del_init(&pring->iocb_continueq); 4225 pring->iocb_continueq_cnt = 0; 4226 4227 pring->stats.iocb_rsp++; 4228 4229 /* 4230 * If resource errors reported from HBA, reduce 4231 * queuedepths of the SCSI device. 4232 */ 4233 if (ulp_status == IOSTAT_LOCAL_REJECT && 4234 ((ulp_word4 & IOERR_PARAM_MASK) == 4235 IOERR_NO_RESOURCES)) { 4236 spin_unlock_irqrestore(&phba->hbalock, iflag); 4237 phba->lpfc_rampdown_queue_depth(phba); 4238 spin_lock_irqsave(&phba->hbalock, iflag); 4239 } 4240 4241 if (ulp_status) { 4242 /* Rsp ring <ringno> error: IOCB */ 4243 if (phba->sli_rev < LPFC_SLI_REV4) { 4244 irsp = &rspiocbp->iocb; 4245 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4246 "0328 Rsp Ring %d error: ulp_status x%x " 4247 "IOCB Data: " 4248 "x%08x x%08x x%08x x%08x " 4249 "x%08x x%08x x%08x x%08x " 4250 "x%08x x%08x x%08x x%08x " 4251 "x%08x x%08x x%08x x%08x\n", 4252 pring->ringno, ulp_status, 4253 get_job_ulpword(rspiocbp, 0), 4254 get_job_ulpword(rspiocbp, 1), 4255 get_job_ulpword(rspiocbp, 2), 4256 get_job_ulpword(rspiocbp, 3), 4257 get_job_ulpword(rspiocbp, 4), 4258 get_job_ulpword(rspiocbp, 5), 4259 *(((uint32_t *)irsp) + 6), 4260 *(((uint32_t *)irsp) + 7), 4261 *(((uint32_t *)irsp) + 8), 4262 *(((uint32_t *)irsp) + 9), 4263 *(((uint32_t *)irsp) + 10), 4264 *(((uint32_t *)irsp) + 11), 4265 *(((uint32_t *)irsp) + 12), 4266 *(((uint32_t *)irsp) + 13), 4267 *(((uint32_t *)irsp) + 14), 4268 *(((uint32_t *)irsp) + 15)); 4269 } else { 4270 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4271 "0321 Rsp Ring %d error: " 4272 "IOCB Data: " 4273 "x%x x%x x%x x%x\n", 4274 pring->ringno, 4275 rspiocbp->wcqe_cmpl.word0, 4276 rspiocbp->wcqe_cmpl.total_data_placed, 4277 rspiocbp->wcqe_cmpl.parameter, 4278 rspiocbp->wcqe_cmpl.word3); 4279 } 4280 } 4281 4282 4283 /* 4284 * Fetch the iocb command type and call the correct completion 4285 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4286 * get freed back to the lpfc_iocb_list by the discovery 4287 * kernel thread. 4288 */ 4289 cmd_type = ulp_command & CMD_IOCB_MASK; 4290 type = lpfc_sli_iocb_cmd_type(cmd_type); 4291 switch (type) { 4292 case LPFC_SOL_IOCB: 4293 spin_unlock_irqrestore(&phba->hbalock, iflag); 4294 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4295 spin_lock_irqsave(&phba->hbalock, iflag); 4296 break; 4297 case LPFC_UNSOL_IOCB: 4298 spin_unlock_irqrestore(&phba->hbalock, iflag); 4299 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4300 spin_lock_irqsave(&phba->hbalock, iflag); 4301 if (!rc) 4302 free_saveq = 0; 4303 break; 4304 case LPFC_ABORT_IOCB: 4305 cmdiocb = NULL; 4306 if (ulp_command != CMD_XRI_ABORTED_CX) 4307 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4308 saveq); 4309 if (cmdiocb) { 4310 /* Call the specified completion routine */ 4311 if (cmdiocb->cmd_cmpl) { 4312 spin_unlock_irqrestore(&phba->hbalock, iflag); 4313 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4314 spin_lock_irqsave(&phba->hbalock, iflag); 4315 } else { 4316 __lpfc_sli_release_iocbq(phba, cmdiocb); 4317 } 4318 } 4319 break; 4320 case LPFC_UNKNOWN_IOCB: 4321 if (ulp_command == CMD_ADAPTER_MSG) { 4322 char adaptermsg[LPFC_MAX_ADPTMSG]; 4323 4324 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4325 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4326 MAX_MSG_DATA); 4327 dev_warn(&((phba->pcidev)->dev), 4328 "lpfc%d: %s\n", 4329 phba->brd_no, adaptermsg); 4330 } else { 4331 /* Unknown command */ 4332 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4333 "0335 Unknown IOCB " 4334 "command Data: x%x " 4335 "x%x x%x x%x\n", 4336 ulp_command, 4337 ulp_status, 4338 get_wqe_reqtag(rspiocbp), 4339 get_job_ulpcontext(phba, rspiocbp)); 4340 } 4341 break; 4342 } 4343 4344 if (free_saveq) { 4345 list_for_each_entry_safe(rspiocbp, next_iocb, 4346 &saveq->list, list) { 4347 list_del_init(&rspiocbp->list); 4348 __lpfc_sli_release_iocbq(phba, rspiocbp); 4349 } 4350 __lpfc_sli_release_iocbq(phba, saveq); 4351 } 4352 rspiocbp = NULL; 4353 spin_unlock_irqrestore(&phba->hbalock, iflag); 4354 return rspiocbp; 4355 } 4356 4357 /** 4358 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4359 * @phba: Pointer to HBA context object. 4360 * @pring: Pointer to driver SLI ring object. 4361 * @mask: Host attention register mask for this ring. 4362 * 4363 * This routine wraps the actual slow_ring event process routine from the 4364 * API jump table function pointer from the lpfc_hba struct. 4365 **/ 4366 void 4367 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4368 struct lpfc_sli_ring *pring, uint32_t mask) 4369 { 4370 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4371 } 4372 4373 /** 4374 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4375 * @phba: Pointer to HBA context object. 4376 * @pring: Pointer to driver SLI ring object. 4377 * @mask: Host attention register mask for this ring. 4378 * 4379 * This function is called from the worker thread when there is a ring event 4380 * for non-fcp rings. The caller does not hold any lock. The function will 4381 * remove each response iocb in the response ring and calls the handle 4382 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4383 **/ 4384 static void 4385 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4386 struct lpfc_sli_ring *pring, uint32_t mask) 4387 { 4388 struct lpfc_pgp *pgp; 4389 IOCB_t *entry; 4390 IOCB_t *irsp = NULL; 4391 struct lpfc_iocbq *rspiocbp = NULL; 4392 uint32_t portRspPut, portRspMax; 4393 unsigned long iflag; 4394 uint32_t status; 4395 4396 pgp = &phba->port_gp[pring->ringno]; 4397 spin_lock_irqsave(&phba->hbalock, iflag); 4398 pring->stats.iocb_event++; 4399 4400 /* 4401 * The next available response entry should never exceed the maximum 4402 * entries. If it does, treat it as an adapter hardware error. 4403 */ 4404 portRspMax = pring->sli.sli3.numRiocb; 4405 portRspPut = le32_to_cpu(pgp->rspPutInx); 4406 if (portRspPut >= portRspMax) { 4407 /* 4408 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4409 * rsp ring <portRspMax> 4410 */ 4411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4412 "0303 Ring %d handler: portRspPut %d " 4413 "is bigger than rsp ring %d\n", 4414 pring->ringno, portRspPut, portRspMax); 4415 4416 phba->link_state = LPFC_HBA_ERROR; 4417 spin_unlock_irqrestore(&phba->hbalock, iflag); 4418 4419 phba->work_hs = HS_FFER3; 4420 lpfc_handle_eratt(phba); 4421 4422 return; 4423 } 4424 4425 rmb(); 4426 while (pring->sli.sli3.rspidx != portRspPut) { 4427 /* 4428 * Build a completion list and call the appropriate handler. 4429 * The process is to get the next available response iocb, get 4430 * a free iocb from the list, copy the response data into the 4431 * free iocb, insert to the continuation list, and update the 4432 * next response index to slim. This process makes response 4433 * iocb's in the ring available to DMA as fast as possible but 4434 * pays a penalty for a copy operation. Since the iocb is 4435 * only 32 bytes, this penalty is considered small relative to 4436 * the PCI reads for register values and a slim write. When 4437 * the ulpLe field is set, the entire Command has been 4438 * received. 4439 */ 4440 entry = lpfc_resp_iocb(phba, pring); 4441 4442 phba->last_completion_time = jiffies; 4443 rspiocbp = __lpfc_sli_get_iocbq(phba); 4444 if (rspiocbp == NULL) { 4445 printk(KERN_ERR "%s: out of buffers! Failing " 4446 "completion.\n", __func__); 4447 break; 4448 } 4449 4450 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4451 phba->iocb_rsp_size); 4452 irsp = &rspiocbp->iocb; 4453 4454 if (++pring->sli.sli3.rspidx >= portRspMax) 4455 pring->sli.sli3.rspidx = 0; 4456 4457 if (pring->ringno == LPFC_ELS_RING) { 4458 lpfc_debugfs_slow_ring_trc(phba, 4459 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4460 *(((uint32_t *) irsp) + 4), 4461 *(((uint32_t *) irsp) + 6), 4462 *(((uint32_t *) irsp) + 7)); 4463 } 4464 4465 writel(pring->sli.sli3.rspidx, 4466 &phba->host_gp[pring->ringno].rspGetInx); 4467 4468 spin_unlock_irqrestore(&phba->hbalock, iflag); 4469 /* Handle the response IOCB */ 4470 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4471 spin_lock_irqsave(&phba->hbalock, iflag); 4472 4473 /* 4474 * If the port response put pointer has not been updated, sync 4475 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4476 * response put pointer. 4477 */ 4478 if (pring->sli.sli3.rspidx == portRspPut) { 4479 portRspPut = le32_to_cpu(pgp->rspPutInx); 4480 } 4481 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4482 4483 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4484 /* At least one response entry has been freed */ 4485 pring->stats.iocb_rsp_full++; 4486 /* SET RxRE_RSP in Chip Att register */ 4487 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4488 writel(status, phba->CAregaddr); 4489 readl(phba->CAregaddr); /* flush */ 4490 } 4491 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4492 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4493 pring->stats.iocb_cmd_empty++; 4494 4495 /* Force update of the local copy of cmdGetInx */ 4496 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4497 lpfc_sli_resume_iocb(phba, pring); 4498 4499 if ((pring->lpfc_sli_cmd_available)) 4500 (pring->lpfc_sli_cmd_available) (phba, pring); 4501 4502 } 4503 4504 spin_unlock_irqrestore(&phba->hbalock, iflag); 4505 return; 4506 } 4507 4508 /** 4509 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4510 * @phba: Pointer to HBA context object. 4511 * @pring: Pointer to driver SLI ring object. 4512 * @mask: Host attention register mask for this ring. 4513 * 4514 * This function is called from the worker thread when there is a pending 4515 * ELS response iocb on the driver internal slow-path response iocb worker 4516 * queue. The caller does not hold any lock. The function will remove each 4517 * response iocb from the response worker queue and calls the handle 4518 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4519 **/ 4520 static void 4521 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4522 struct lpfc_sli_ring *pring, uint32_t mask) 4523 { 4524 struct lpfc_iocbq *irspiocbq; 4525 struct hbq_dmabuf *dmabuf; 4526 struct lpfc_cq_event *cq_event; 4527 unsigned long iflag; 4528 int count = 0; 4529 4530 clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 4531 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4532 /* Get the response iocb from the head of work queue */ 4533 spin_lock_irqsave(&phba->hbalock, iflag); 4534 list_remove_head(&phba->sli4_hba.sp_queue_event, 4535 cq_event, struct lpfc_cq_event, list); 4536 spin_unlock_irqrestore(&phba->hbalock, iflag); 4537 4538 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4539 case CQE_CODE_COMPL_WQE: 4540 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4541 cq_event); 4542 /* Translate ELS WCQE to response IOCBQ */ 4543 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4544 irspiocbq); 4545 if (irspiocbq) 4546 lpfc_sli_sp_handle_rspiocb(phba, pring, 4547 irspiocbq); 4548 count++; 4549 break; 4550 case CQE_CODE_RECEIVE: 4551 case CQE_CODE_RECEIVE_V1: 4552 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4553 cq_event); 4554 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4555 count++; 4556 break; 4557 default: 4558 break; 4559 } 4560 4561 /* Limit the number of events to 64 to avoid soft lockups */ 4562 if (count == 64) 4563 break; 4564 } 4565 } 4566 4567 /** 4568 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4569 * @phba: Pointer to HBA context object. 4570 * @pring: Pointer to driver SLI ring object. 4571 * 4572 * This function aborts all iocbs in the given ring and frees all the iocb 4573 * objects in txq. This function issues an abort iocb for all the iocb commands 4574 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4575 * the return of this function. The caller is not required to hold any locks. 4576 **/ 4577 void 4578 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4579 { 4580 LIST_HEAD(tx_completions); 4581 LIST_HEAD(txcmplq_completions); 4582 struct lpfc_iocbq *iocb, *next_iocb; 4583 int offline; 4584 4585 if (pring->ringno == LPFC_ELS_RING) { 4586 lpfc_fabric_abort_hba(phba); 4587 } 4588 offline = pci_channel_offline(phba->pcidev); 4589 4590 /* Error everything on txq and txcmplq 4591 * First do the txq. 4592 */ 4593 if (phba->sli_rev >= LPFC_SLI_REV4) { 4594 spin_lock_irq(&pring->ring_lock); 4595 list_splice_init(&pring->txq, &tx_completions); 4596 pring->txq_cnt = 0; 4597 4598 if (offline) { 4599 list_splice_init(&pring->txcmplq, 4600 &txcmplq_completions); 4601 } else { 4602 /* Next issue ABTS for everything on the txcmplq */ 4603 list_for_each_entry_safe(iocb, next_iocb, 4604 &pring->txcmplq, list) 4605 lpfc_sli_issue_abort_iotag(phba, pring, 4606 iocb, NULL); 4607 } 4608 spin_unlock_irq(&pring->ring_lock); 4609 } else { 4610 spin_lock_irq(&phba->hbalock); 4611 list_splice_init(&pring->txq, &tx_completions); 4612 pring->txq_cnt = 0; 4613 4614 if (offline) { 4615 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4616 } else { 4617 /* Next issue ABTS for everything on the txcmplq */ 4618 list_for_each_entry_safe(iocb, next_iocb, 4619 &pring->txcmplq, list) 4620 lpfc_sli_issue_abort_iotag(phba, pring, 4621 iocb, NULL); 4622 } 4623 spin_unlock_irq(&phba->hbalock); 4624 } 4625 4626 if (offline) { 4627 /* Cancel all the IOCBs from the completions list */ 4628 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4629 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4630 } else { 4631 /* Make sure HBA is alive */ 4632 lpfc_issue_hb_tmo(phba); 4633 } 4634 /* Cancel all the IOCBs from the completions list */ 4635 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4636 IOERR_SLI_ABORTED); 4637 } 4638 4639 /** 4640 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4641 * @phba: Pointer to HBA context object. 4642 * 4643 * This function aborts all iocbs in FCP rings and frees all the iocb 4644 * objects in txq. This function issues an abort iocb for all the iocb commands 4645 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4646 * the return of this function. The caller is not required to hold any locks. 4647 **/ 4648 void 4649 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4650 { 4651 struct lpfc_sli *psli = &phba->sli; 4652 struct lpfc_sli_ring *pring; 4653 uint32_t i; 4654 4655 /* Look on all the FCP Rings for the iotag */ 4656 if (phba->sli_rev >= LPFC_SLI_REV4) { 4657 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4658 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4659 lpfc_sli_abort_iocb_ring(phba, pring); 4660 } 4661 } else { 4662 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4663 lpfc_sli_abort_iocb_ring(phba, pring); 4664 } 4665 } 4666 4667 /** 4668 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4669 * @phba: Pointer to HBA context object. 4670 * 4671 * This function flushes all iocbs in the IO ring and frees all the iocb 4672 * objects in txq and txcmplq. This function will not issue abort iocbs 4673 * for all the iocb commands in txcmplq, they will just be returned with 4674 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4675 * slot has been permanently disabled. 4676 **/ 4677 void 4678 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4679 { 4680 LIST_HEAD(txq); 4681 LIST_HEAD(txcmplq); 4682 struct lpfc_sli *psli = &phba->sli; 4683 struct lpfc_sli_ring *pring; 4684 uint32_t i; 4685 struct lpfc_iocbq *piocb, *next_iocb; 4686 4687 /* Indicate the I/O queues are flushed */ 4688 set_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 4689 4690 /* Look on all the FCP Rings for the iotag */ 4691 if (phba->sli_rev >= LPFC_SLI_REV4) { 4692 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4693 if (!phba->sli4_hba.hdwq || 4694 !phba->sli4_hba.hdwq[i].io_wq) { 4695 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4696 "7777 hdwq's deleted %lx " 4697 "%lx %x %x\n", 4698 phba->pport->load_flag, 4699 phba->hba_flag, 4700 phba->link_state, 4701 phba->sli.sli_flag); 4702 return; 4703 } 4704 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4705 4706 spin_lock_irq(&pring->ring_lock); 4707 /* Retrieve everything on txq */ 4708 list_splice_init(&pring->txq, &txq); 4709 list_for_each_entry_safe(piocb, next_iocb, 4710 &pring->txcmplq, list) 4711 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4712 /* Retrieve everything on the txcmplq */ 4713 list_splice_init(&pring->txcmplq, &txcmplq); 4714 pring->txq_cnt = 0; 4715 pring->txcmplq_cnt = 0; 4716 spin_unlock_irq(&pring->ring_lock); 4717 4718 /* Flush the txq */ 4719 lpfc_sli_cancel_iocbs(phba, &txq, 4720 IOSTAT_LOCAL_REJECT, 4721 IOERR_SLI_DOWN); 4722 /* Flush the txcmplq */ 4723 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4724 IOSTAT_LOCAL_REJECT, 4725 IOERR_SLI_DOWN); 4726 if (unlikely(pci_channel_offline(phba->pcidev))) 4727 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4728 } 4729 } else { 4730 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4731 4732 spin_lock_irq(&phba->hbalock); 4733 /* Retrieve everything on txq */ 4734 list_splice_init(&pring->txq, &txq); 4735 list_for_each_entry_safe(piocb, next_iocb, 4736 &pring->txcmplq, list) 4737 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4738 /* Retrieve everything on the txcmplq */ 4739 list_splice_init(&pring->txcmplq, &txcmplq); 4740 pring->txq_cnt = 0; 4741 pring->txcmplq_cnt = 0; 4742 spin_unlock_irq(&phba->hbalock); 4743 4744 /* Flush the txq */ 4745 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4746 IOERR_SLI_DOWN); 4747 /* Flush the txcmpq */ 4748 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4749 IOERR_SLI_DOWN); 4750 } 4751 } 4752 4753 /** 4754 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4755 * @phba: Pointer to HBA context object. 4756 * @mask: Bit mask to be checked. 4757 * 4758 * This function reads the host status register and compares 4759 * with the provided bit mask to check if HBA completed 4760 * the restart. This function will wait in a loop for the 4761 * HBA to complete restart. If the HBA does not restart within 4762 * 15 iterations, the function will reset the HBA again. The 4763 * function returns 1 when HBA fail to restart otherwise returns 4764 * zero. 4765 **/ 4766 static int 4767 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4768 { 4769 uint32_t status; 4770 int i = 0; 4771 int retval = 0; 4772 4773 /* Read the HBA Host Status Register */ 4774 if (lpfc_readl(phba->HSregaddr, &status)) 4775 return 1; 4776 4777 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 4778 4779 /* 4780 * Check status register every 100ms for 5 retries, then every 4781 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4782 * every 2.5 sec for 4. 4783 * Break our of the loop if errors occurred during init. 4784 */ 4785 while (((status & mask) != mask) && 4786 !(status & HS_FFERM) && 4787 i++ < 20) { 4788 4789 if (i <= 5) 4790 msleep(10); 4791 else if (i <= 10) 4792 msleep(500); 4793 else 4794 msleep(2500); 4795 4796 if (i == 15) { 4797 /* Do post */ 4798 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4799 lpfc_sli_brdrestart(phba); 4800 } 4801 /* Read the HBA Host Status Register */ 4802 if (lpfc_readl(phba->HSregaddr, &status)) { 4803 retval = 1; 4804 break; 4805 } 4806 } 4807 4808 /* Check to see if any errors occurred during init */ 4809 if ((status & HS_FFERM) || (i >= 20)) { 4810 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4811 "2751 Adapter failed to restart, " 4812 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4813 status, 4814 readl(phba->MBslimaddr + 0xa8), 4815 readl(phba->MBslimaddr + 0xac)); 4816 phba->link_state = LPFC_HBA_ERROR; 4817 retval = 1; 4818 } 4819 4820 return retval; 4821 } 4822 4823 /** 4824 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4825 * @phba: Pointer to HBA context object. 4826 * @mask: Bit mask to be checked. 4827 * 4828 * This function checks the host status register to check if HBA is 4829 * ready. This function will wait in a loop for the HBA to be ready 4830 * If the HBA is not ready , the function will will reset the HBA PCI 4831 * function again. The function returns 1 when HBA fail to be ready 4832 * otherwise returns zero. 4833 **/ 4834 static int 4835 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4836 { 4837 uint32_t status; 4838 int retval = 0; 4839 4840 /* Read the HBA Host Status Register */ 4841 status = lpfc_sli4_post_status_check(phba); 4842 4843 if (status) { 4844 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4845 lpfc_sli_brdrestart(phba); 4846 status = lpfc_sli4_post_status_check(phba); 4847 } 4848 4849 /* Check to see if any errors occurred during init */ 4850 if (status) { 4851 phba->link_state = LPFC_HBA_ERROR; 4852 retval = 1; 4853 } else 4854 phba->sli4_hba.intr_enable = 0; 4855 4856 clear_bit(HBA_SETUP, &phba->hba_flag); 4857 return retval; 4858 } 4859 4860 /** 4861 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4862 * @phba: Pointer to HBA context object. 4863 * @mask: Bit mask to be checked. 4864 * 4865 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4866 * from the API jump table function pointer from the lpfc_hba struct. 4867 **/ 4868 int 4869 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4870 { 4871 return phba->lpfc_sli_brdready(phba, mask); 4872 } 4873 4874 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4875 4876 /** 4877 * lpfc_reset_barrier - Make HBA ready for HBA reset 4878 * @phba: Pointer to HBA context object. 4879 * 4880 * This function is called before resetting an HBA. This function is called 4881 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4882 **/ 4883 void lpfc_reset_barrier(struct lpfc_hba *phba) 4884 { 4885 uint32_t __iomem *resp_buf; 4886 uint32_t __iomem *mbox_buf; 4887 volatile struct MAILBOX_word0 mbox; 4888 uint32_t hc_copy, ha_copy, resp_data; 4889 int i; 4890 uint8_t hdrtype; 4891 4892 lockdep_assert_held(&phba->hbalock); 4893 4894 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4895 if (hdrtype != PCI_HEADER_TYPE_MFD || 4896 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4897 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4898 return; 4899 4900 /* 4901 * Tell the other part of the chip to suspend temporarily all 4902 * its DMA activity. 4903 */ 4904 resp_buf = phba->MBslimaddr; 4905 4906 /* Disable the error attention */ 4907 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4908 return; 4909 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4910 readl(phba->HCregaddr); /* flush */ 4911 phba->link_flag |= LS_IGNORE_ERATT; 4912 4913 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4914 return; 4915 if (ha_copy & HA_ERATT) { 4916 /* Clear Chip error bit */ 4917 writel(HA_ERATT, phba->HAregaddr); 4918 phba->pport->stopped = 1; 4919 } 4920 4921 mbox.word0 = 0; 4922 mbox.mbxCommand = MBX_KILL_BOARD; 4923 mbox.mbxOwner = OWN_CHIP; 4924 4925 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4926 mbox_buf = phba->MBslimaddr; 4927 writel(mbox.word0, mbox_buf); 4928 4929 for (i = 0; i < 50; i++) { 4930 if (lpfc_readl((resp_buf + 1), &resp_data)) 4931 return; 4932 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4933 mdelay(1); 4934 else 4935 break; 4936 } 4937 resp_data = 0; 4938 if (lpfc_readl((resp_buf + 1), &resp_data)) 4939 return; 4940 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4941 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4942 phba->pport->stopped) 4943 goto restore_hc; 4944 else 4945 goto clear_errat; 4946 } 4947 4948 mbox.mbxOwner = OWN_HOST; 4949 resp_data = 0; 4950 for (i = 0; i < 500; i++) { 4951 if (lpfc_readl(resp_buf, &resp_data)) 4952 return; 4953 if (resp_data != mbox.word0) 4954 mdelay(1); 4955 else 4956 break; 4957 } 4958 4959 clear_errat: 4960 4961 while (++i < 500) { 4962 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4963 return; 4964 if (!(ha_copy & HA_ERATT)) 4965 mdelay(1); 4966 else 4967 break; 4968 } 4969 4970 if (readl(phba->HAregaddr) & HA_ERATT) { 4971 writel(HA_ERATT, phba->HAregaddr); 4972 phba->pport->stopped = 1; 4973 } 4974 4975 restore_hc: 4976 phba->link_flag &= ~LS_IGNORE_ERATT; 4977 writel(hc_copy, phba->HCregaddr); 4978 readl(phba->HCregaddr); /* flush */ 4979 } 4980 4981 /** 4982 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4983 * @phba: Pointer to HBA context object. 4984 * 4985 * This function issues a kill_board mailbox command and waits for 4986 * the error attention interrupt. This function is called for stopping 4987 * the firmware processing. The caller is not required to hold any 4988 * locks. This function calls lpfc_hba_down_post function to free 4989 * any pending commands after the kill. The function will return 1 when it 4990 * fails to kill the board else will return 0. 4991 **/ 4992 int 4993 lpfc_sli_brdkill(struct lpfc_hba *phba) 4994 { 4995 struct lpfc_sli *psli; 4996 LPFC_MBOXQ_t *pmb; 4997 uint32_t status; 4998 uint32_t ha_copy; 4999 int retval; 5000 int i = 0; 5001 5002 psli = &phba->sli; 5003 5004 /* Kill HBA */ 5005 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5006 "0329 Kill HBA Data: x%x x%x\n", 5007 phba->pport->port_state, psli->sli_flag); 5008 5009 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5010 if (!pmb) 5011 return 1; 5012 5013 /* Disable the error attention */ 5014 spin_lock_irq(&phba->hbalock); 5015 if (lpfc_readl(phba->HCregaddr, &status)) { 5016 spin_unlock_irq(&phba->hbalock); 5017 mempool_free(pmb, phba->mbox_mem_pool); 5018 return 1; 5019 } 5020 status &= ~HC_ERINT_ENA; 5021 writel(status, phba->HCregaddr); 5022 readl(phba->HCregaddr); /* flush */ 5023 phba->link_flag |= LS_IGNORE_ERATT; 5024 spin_unlock_irq(&phba->hbalock); 5025 5026 lpfc_kill_board(phba, pmb); 5027 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 5028 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 5029 5030 if (retval != MBX_SUCCESS) { 5031 if (retval != MBX_BUSY) 5032 mempool_free(pmb, phba->mbox_mem_pool); 5033 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5034 "2752 KILL_BOARD command failed retval %d\n", 5035 retval); 5036 spin_lock_irq(&phba->hbalock); 5037 phba->link_flag &= ~LS_IGNORE_ERATT; 5038 spin_unlock_irq(&phba->hbalock); 5039 return 1; 5040 } 5041 5042 spin_lock_irq(&phba->hbalock); 5043 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5044 spin_unlock_irq(&phba->hbalock); 5045 5046 mempool_free(pmb, phba->mbox_mem_pool); 5047 5048 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5049 * attention every 100ms for 3 seconds. If we don't get ERATT after 5050 * 3 seconds we still set HBA_ERROR state because the status of the 5051 * board is now undefined. 5052 */ 5053 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5054 return 1; 5055 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5056 mdelay(100); 5057 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5058 return 1; 5059 } 5060 5061 del_timer_sync(&psli->mbox_tmo); 5062 if (ha_copy & HA_ERATT) { 5063 writel(HA_ERATT, phba->HAregaddr); 5064 phba->pport->stopped = 1; 5065 } 5066 spin_lock_irq(&phba->hbalock); 5067 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5068 psli->mbox_active = NULL; 5069 phba->link_flag &= ~LS_IGNORE_ERATT; 5070 spin_unlock_irq(&phba->hbalock); 5071 5072 lpfc_hba_down_post(phba); 5073 phba->link_state = LPFC_HBA_ERROR; 5074 5075 return ha_copy & HA_ERATT ? 0 : 1; 5076 } 5077 5078 /** 5079 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5080 * @phba: Pointer to HBA context object. 5081 * 5082 * This function resets the HBA by writing HC_INITFF to the control 5083 * register. After the HBA resets, this function resets all the iocb ring 5084 * indices. This function disables PCI layer parity checking during 5085 * the reset. 5086 * This function returns 0 always. 5087 * The caller is not required to hold any locks. 5088 **/ 5089 int 5090 lpfc_sli_brdreset(struct lpfc_hba *phba) 5091 { 5092 struct lpfc_sli *psli; 5093 struct lpfc_sli_ring *pring; 5094 uint16_t cfg_value; 5095 int i; 5096 5097 psli = &phba->sli; 5098 5099 /* Reset HBA */ 5100 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5101 "0325 Reset HBA Data: x%x x%x\n", 5102 (phba->pport) ? phba->pport->port_state : 0, 5103 psli->sli_flag); 5104 5105 /* perform board reset */ 5106 phba->fc_eventTag = 0; 5107 phba->link_events = 0; 5108 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5109 if (phba->pport) { 5110 phba->pport->fc_myDID = 0; 5111 phba->pport->fc_prevDID = 0; 5112 } 5113 5114 /* Turn off parity checking and serr during the physical reset */ 5115 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5116 return -EIO; 5117 5118 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5119 (cfg_value & 5120 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5121 5122 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5123 5124 /* Now toggle INITFF bit in the Host Control Register */ 5125 writel(HC_INITFF, phba->HCregaddr); 5126 mdelay(1); 5127 readl(phba->HCregaddr); /* flush */ 5128 writel(0, phba->HCregaddr); 5129 readl(phba->HCregaddr); /* flush */ 5130 5131 /* Restore PCI cmd register */ 5132 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5133 5134 /* Initialize relevant SLI info */ 5135 for (i = 0; i < psli->num_rings; i++) { 5136 pring = &psli->sli3_ring[i]; 5137 pring->flag = 0; 5138 pring->sli.sli3.rspidx = 0; 5139 pring->sli.sli3.next_cmdidx = 0; 5140 pring->sli.sli3.local_getidx = 0; 5141 pring->sli.sli3.cmdidx = 0; 5142 pring->missbufcnt = 0; 5143 } 5144 5145 phba->link_state = LPFC_WARM_START; 5146 return 0; 5147 } 5148 5149 /** 5150 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5151 * @phba: Pointer to HBA context object. 5152 * 5153 * This function resets a SLI4 HBA. This function disables PCI layer parity 5154 * checking during resets the device. The caller is not required to hold 5155 * any locks. 5156 * 5157 * This function returns 0 on success else returns negative error code. 5158 **/ 5159 int 5160 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5161 { 5162 struct lpfc_sli *psli = &phba->sli; 5163 uint16_t cfg_value; 5164 int rc = 0; 5165 5166 /* Reset HBA */ 5167 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5168 "0295 Reset HBA Data: x%x x%x x%lx\n", 5169 phba->pport->port_state, psli->sli_flag, 5170 phba->hba_flag); 5171 5172 /* perform board reset */ 5173 phba->fc_eventTag = 0; 5174 phba->link_events = 0; 5175 phba->pport->fc_myDID = 0; 5176 phba->pport->fc_prevDID = 0; 5177 clear_bit(HBA_SETUP, &phba->hba_flag); 5178 5179 spin_lock_irq(&phba->hbalock); 5180 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5181 phba->fcf.fcf_flag = 0; 5182 spin_unlock_irq(&phba->hbalock); 5183 5184 /* Now physically reset the device */ 5185 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5186 "0389 Performing PCI function reset!\n"); 5187 5188 /* Turn off parity checking and serr during the physical reset */ 5189 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5190 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5191 "3205 PCI read Config failed\n"); 5192 return -EIO; 5193 } 5194 5195 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5196 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5197 5198 /* Perform FCoE PCI function reset before freeing queue memory */ 5199 rc = lpfc_pci_function_reset(phba); 5200 5201 /* Restore PCI cmd register */ 5202 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5203 5204 return rc; 5205 } 5206 5207 /** 5208 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5209 * @phba: Pointer to HBA context object. 5210 * 5211 * This function is called in the SLI initialization code path to 5212 * restart the HBA. The caller is not required to hold any lock. 5213 * This function writes MBX_RESTART mailbox command to the SLIM and 5214 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5215 * function to free any pending commands. The function enables 5216 * POST only during the first initialization. The function returns zero. 5217 * The function does not guarantee completion of MBX_RESTART mailbox 5218 * command before the return of this function. 5219 **/ 5220 static int 5221 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5222 { 5223 volatile struct MAILBOX_word0 mb; 5224 struct lpfc_sli *psli; 5225 void __iomem *to_slim; 5226 5227 spin_lock_irq(&phba->hbalock); 5228 5229 psli = &phba->sli; 5230 5231 /* Restart HBA */ 5232 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5233 "0337 Restart HBA Data: x%x x%x\n", 5234 (phba->pport) ? phba->pport->port_state : 0, 5235 psli->sli_flag); 5236 5237 mb.word0 = 0; 5238 mb.mbxCommand = MBX_RESTART; 5239 mb.mbxHc = 1; 5240 5241 lpfc_reset_barrier(phba); 5242 5243 to_slim = phba->MBslimaddr; 5244 writel(mb.word0, to_slim); 5245 readl(to_slim); /* flush */ 5246 5247 /* Only skip post after fc_ffinit is completed */ 5248 if (phba->pport && phba->pport->port_state) 5249 mb.word0 = 1; /* This is really setting up word1 */ 5250 else 5251 mb.word0 = 0; /* This is really setting up word1 */ 5252 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5253 writel(mb.word0, to_slim); 5254 readl(to_slim); /* flush */ 5255 5256 lpfc_sli_brdreset(phba); 5257 if (phba->pport) 5258 phba->pport->stopped = 0; 5259 phba->link_state = LPFC_INIT_START; 5260 phba->hba_flag = 0; 5261 spin_unlock_irq(&phba->hbalock); 5262 5263 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5264 psli->stats_start = ktime_get_seconds(); 5265 5266 /* Give the INITFF and Post time to settle. */ 5267 mdelay(100); 5268 5269 lpfc_hba_down_post(phba); 5270 5271 return 0; 5272 } 5273 5274 /** 5275 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5276 * @phba: Pointer to HBA context object. 5277 * 5278 * This function is called in the SLI initialization code path to restart 5279 * a SLI4 HBA. The caller is not required to hold any lock. 5280 * At the end of the function, it calls lpfc_hba_down_post function to 5281 * free any pending commands. 5282 **/ 5283 static int 5284 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5285 { 5286 struct lpfc_sli *psli = &phba->sli; 5287 int rc; 5288 5289 /* Restart HBA */ 5290 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5291 "0296 Restart HBA Data: x%x x%x\n", 5292 phba->pport->port_state, psli->sli_flag); 5293 5294 rc = lpfc_sli4_brdreset(phba); 5295 if (rc) { 5296 phba->link_state = LPFC_HBA_ERROR; 5297 goto hba_down_queue; 5298 } 5299 5300 spin_lock_irq(&phba->hbalock); 5301 phba->pport->stopped = 0; 5302 phba->link_state = LPFC_INIT_START; 5303 phba->hba_flag = 0; 5304 /* Preserve FA-PWWN expectation */ 5305 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5306 spin_unlock_irq(&phba->hbalock); 5307 5308 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5309 psli->stats_start = ktime_get_seconds(); 5310 5311 hba_down_queue: 5312 lpfc_hba_down_post(phba); 5313 lpfc_sli4_queue_destroy(phba); 5314 5315 return rc; 5316 } 5317 5318 /** 5319 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5320 * @phba: Pointer to HBA context object. 5321 * 5322 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5323 * API jump table function pointer from the lpfc_hba struct. 5324 **/ 5325 int 5326 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5327 { 5328 return phba->lpfc_sli_brdrestart(phba); 5329 } 5330 5331 /** 5332 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5333 * @phba: Pointer to HBA context object. 5334 * 5335 * This function is called after a HBA restart to wait for successful 5336 * restart of the HBA. Successful restart of the HBA is indicated by 5337 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5338 * iteration, the function will restart the HBA again. The function returns 5339 * zero if HBA successfully restarted else returns negative error code. 5340 **/ 5341 int 5342 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5343 { 5344 uint32_t status, i = 0; 5345 5346 /* Read the HBA Host Status Register */ 5347 if (lpfc_readl(phba->HSregaddr, &status)) 5348 return -EIO; 5349 5350 /* Check status register to see what current state is */ 5351 i = 0; 5352 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5353 5354 /* Check every 10ms for 10 retries, then every 100ms for 90 5355 * retries, then every 1 sec for 50 retires for a total of 5356 * ~60 seconds before reset the board again and check every 5357 * 1 sec for 50 retries. The up to 60 seconds before the 5358 * board ready is required by the Falcon FIPS zeroization 5359 * complete, and any reset the board in between shall cause 5360 * restart of zeroization, further delay the board ready. 5361 */ 5362 if (i++ >= 200) { 5363 /* Adapter failed to init, timeout, status reg 5364 <status> */ 5365 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5366 "0436 Adapter failed to init, " 5367 "timeout, status reg x%x, " 5368 "FW Data: A8 x%x AC x%x\n", status, 5369 readl(phba->MBslimaddr + 0xa8), 5370 readl(phba->MBslimaddr + 0xac)); 5371 phba->link_state = LPFC_HBA_ERROR; 5372 return -ETIMEDOUT; 5373 } 5374 5375 /* Check to see if any errors occurred during init */ 5376 if (status & HS_FFERM) { 5377 /* ERROR: During chipset initialization */ 5378 /* Adapter failed to init, chipset, status reg 5379 <status> */ 5380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5381 "0437 Adapter failed to init, " 5382 "chipset, status reg x%x, " 5383 "FW Data: A8 x%x AC x%x\n", status, 5384 readl(phba->MBslimaddr + 0xa8), 5385 readl(phba->MBslimaddr + 0xac)); 5386 phba->link_state = LPFC_HBA_ERROR; 5387 return -EIO; 5388 } 5389 5390 if (i <= 10) 5391 msleep(10); 5392 else if (i <= 100) 5393 msleep(100); 5394 else 5395 msleep(1000); 5396 5397 if (i == 150) { 5398 /* Do post */ 5399 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5400 lpfc_sli_brdrestart(phba); 5401 } 5402 /* Read the HBA Host Status Register */ 5403 if (lpfc_readl(phba->HSregaddr, &status)) 5404 return -EIO; 5405 } 5406 5407 /* Check to see if any errors occurred during init */ 5408 if (status & HS_FFERM) { 5409 /* ERROR: During chipset initialization */ 5410 /* Adapter failed to init, chipset, status reg <status> */ 5411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5412 "0438 Adapter failed to init, chipset, " 5413 "status reg x%x, " 5414 "FW Data: A8 x%x AC x%x\n", status, 5415 readl(phba->MBslimaddr + 0xa8), 5416 readl(phba->MBslimaddr + 0xac)); 5417 phba->link_state = LPFC_HBA_ERROR; 5418 return -EIO; 5419 } 5420 5421 set_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5422 5423 /* Clear all interrupt enable conditions */ 5424 writel(0, phba->HCregaddr); 5425 readl(phba->HCregaddr); /* flush */ 5426 5427 /* setup host attn register */ 5428 writel(0xffffffff, phba->HAregaddr); 5429 readl(phba->HAregaddr); /* flush */ 5430 return 0; 5431 } 5432 5433 /** 5434 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5435 * 5436 * This function calculates and returns the number of HBQs required to be 5437 * configured. 5438 **/ 5439 int 5440 lpfc_sli_hbq_count(void) 5441 { 5442 return ARRAY_SIZE(lpfc_hbq_defs); 5443 } 5444 5445 /** 5446 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5447 * 5448 * This function adds the number of hbq entries in every HBQ to get 5449 * the total number of hbq entries required for the HBA and returns 5450 * the total count. 5451 **/ 5452 static int 5453 lpfc_sli_hbq_entry_count(void) 5454 { 5455 int hbq_count = lpfc_sli_hbq_count(); 5456 int count = 0; 5457 int i; 5458 5459 for (i = 0; i < hbq_count; ++i) 5460 count += lpfc_hbq_defs[i]->entry_count; 5461 return count; 5462 } 5463 5464 /** 5465 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5466 * 5467 * This function calculates amount of memory required for all hbq entries 5468 * to be configured and returns the total memory required. 5469 **/ 5470 int 5471 lpfc_sli_hbq_size(void) 5472 { 5473 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5474 } 5475 5476 /** 5477 * lpfc_sli_hbq_setup - configure and initialize HBQs 5478 * @phba: Pointer to HBA context object. 5479 * 5480 * This function is called during the SLI initialization to configure 5481 * all the HBQs and post buffers to the HBQ. The caller is not 5482 * required to hold any locks. This function will return zero if successful 5483 * else it will return negative error code. 5484 **/ 5485 static int 5486 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5487 { 5488 int hbq_count = lpfc_sli_hbq_count(); 5489 LPFC_MBOXQ_t *pmb; 5490 MAILBOX_t *pmbox; 5491 uint32_t hbqno; 5492 uint32_t hbq_entry_index; 5493 5494 /* Get a Mailbox buffer to setup mailbox 5495 * commands for HBA initialization 5496 */ 5497 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5498 5499 if (!pmb) 5500 return -ENOMEM; 5501 5502 pmbox = &pmb->u.mb; 5503 5504 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5505 phba->link_state = LPFC_INIT_MBX_CMDS; 5506 phba->hbq_in_use = 1; 5507 5508 hbq_entry_index = 0; 5509 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5510 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5511 phba->hbqs[hbqno].hbqPutIdx = 0; 5512 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5513 phba->hbqs[hbqno].entry_count = 5514 lpfc_hbq_defs[hbqno]->entry_count; 5515 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5516 hbq_entry_index, pmb); 5517 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5518 5519 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5520 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5521 mbxStatus <status>, ring <num> */ 5522 5523 lpfc_printf_log(phba, KERN_ERR, 5524 LOG_SLI | LOG_VPORT, 5525 "1805 Adapter failed to init. " 5526 "Data: x%x x%x x%x\n", 5527 pmbox->mbxCommand, 5528 pmbox->mbxStatus, hbqno); 5529 5530 phba->link_state = LPFC_HBA_ERROR; 5531 mempool_free(pmb, phba->mbox_mem_pool); 5532 return -ENXIO; 5533 } 5534 } 5535 phba->hbq_count = hbq_count; 5536 5537 mempool_free(pmb, phba->mbox_mem_pool); 5538 5539 /* Initially populate or replenish the HBQs */ 5540 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5541 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5542 return 0; 5543 } 5544 5545 /** 5546 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5547 * @phba: Pointer to HBA context object. 5548 * 5549 * This function is called during the SLI initialization to configure 5550 * all the HBQs and post buffers to the HBQ. The caller is not 5551 * required to hold any locks. This function will return zero if successful 5552 * else it will return negative error code. 5553 **/ 5554 static int 5555 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5556 { 5557 phba->hbq_in_use = 1; 5558 /** 5559 * Specific case when the MDS diagnostics is enabled and supported. 5560 * The receive buffer count is truncated to manage the incoming 5561 * traffic. 5562 **/ 5563 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5564 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5565 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5566 else 5567 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5568 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5569 phba->hbq_count = 1; 5570 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5571 /* Initially populate or replenish the HBQs */ 5572 return 0; 5573 } 5574 5575 /** 5576 * lpfc_sli_config_port - Issue config port mailbox command 5577 * @phba: Pointer to HBA context object. 5578 * @sli_mode: sli mode - 2/3 5579 * 5580 * This function is called by the sli initialization code path 5581 * to issue config_port mailbox command. This function restarts the 5582 * HBA firmware and issues a config_port mailbox command to configure 5583 * the SLI interface in the sli mode specified by sli_mode 5584 * variable. The caller is not required to hold any locks. 5585 * The function returns 0 if successful, else returns negative error 5586 * code. 5587 **/ 5588 int 5589 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5590 { 5591 LPFC_MBOXQ_t *pmb; 5592 uint32_t resetcount = 0, rc = 0, done = 0; 5593 5594 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5595 if (!pmb) { 5596 phba->link_state = LPFC_HBA_ERROR; 5597 return -ENOMEM; 5598 } 5599 5600 phba->sli_rev = sli_mode; 5601 while (resetcount < 2 && !done) { 5602 spin_lock_irq(&phba->hbalock); 5603 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5604 spin_unlock_irq(&phba->hbalock); 5605 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5606 lpfc_sli_brdrestart(phba); 5607 rc = lpfc_sli_chipset_init(phba); 5608 if (rc) 5609 break; 5610 5611 spin_lock_irq(&phba->hbalock); 5612 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5613 spin_unlock_irq(&phba->hbalock); 5614 resetcount++; 5615 5616 /* Call pre CONFIG_PORT mailbox command initialization. A 5617 * value of 0 means the call was successful. Any other 5618 * nonzero value is a failure, but if ERESTART is returned, 5619 * the driver may reset the HBA and try again. 5620 */ 5621 rc = lpfc_config_port_prep(phba); 5622 if (rc == -ERESTART) { 5623 phba->link_state = LPFC_LINK_UNKNOWN; 5624 continue; 5625 } else if (rc) 5626 break; 5627 5628 phba->link_state = LPFC_INIT_MBX_CMDS; 5629 lpfc_config_port(phba, pmb); 5630 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5631 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5632 LPFC_SLI3_HBQ_ENABLED | 5633 LPFC_SLI3_CRP_ENABLED | 5634 LPFC_SLI3_DSS_ENABLED); 5635 if (rc != MBX_SUCCESS) { 5636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5637 "0442 Adapter failed to init, mbxCmd x%x " 5638 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5639 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5640 spin_lock_irq(&phba->hbalock); 5641 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5642 spin_unlock_irq(&phba->hbalock); 5643 rc = -ENXIO; 5644 } else { 5645 /* Allow asynchronous mailbox command to go through */ 5646 spin_lock_irq(&phba->hbalock); 5647 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5648 spin_unlock_irq(&phba->hbalock); 5649 done = 1; 5650 5651 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5652 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5653 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5654 "3110 Port did not grant ASABT\n"); 5655 } 5656 } 5657 if (!done) { 5658 rc = -EINVAL; 5659 goto do_prep_failed; 5660 } 5661 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5662 if (!pmb->u.mb.un.varCfgPort.cMA) { 5663 rc = -ENXIO; 5664 goto do_prep_failed; 5665 } 5666 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5667 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5668 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5669 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5670 phba->max_vpi : phba->max_vports; 5671 5672 } else 5673 phba->max_vpi = 0; 5674 if (pmb->u.mb.un.varCfgPort.gerbm) 5675 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5676 if (pmb->u.mb.un.varCfgPort.gcrp) 5677 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5678 5679 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5680 phba->port_gp = phba->mbox->us.s3_pgp.port; 5681 5682 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5683 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5684 phba->cfg_enable_bg = 0; 5685 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5687 "0443 Adapter did not grant " 5688 "BlockGuard\n"); 5689 } 5690 } 5691 } else { 5692 phba->hbq_get = NULL; 5693 phba->port_gp = phba->mbox->us.s2.port; 5694 phba->max_vpi = 0; 5695 } 5696 do_prep_failed: 5697 mempool_free(pmb, phba->mbox_mem_pool); 5698 return rc; 5699 } 5700 5701 5702 /** 5703 * lpfc_sli_hba_setup - SLI initialization function 5704 * @phba: Pointer to HBA context object. 5705 * 5706 * This function is the main SLI initialization function. This function 5707 * is called by the HBA initialization code, HBA reset code and HBA 5708 * error attention handler code. Caller is not required to hold any 5709 * locks. This function issues config_port mailbox command to configure 5710 * the SLI, setup iocb rings and HBQ rings. In the end the function 5711 * calls the config_port_post function to issue init_link mailbox 5712 * command and to start the discovery. The function will return zero 5713 * if successful, else it will return negative error code. 5714 **/ 5715 int 5716 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5717 { 5718 uint32_t rc; 5719 int i; 5720 int longs; 5721 5722 /* Enable ISR already does config_port because of config_msi mbx */ 5723 if (test_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag)) { 5724 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5725 if (rc) 5726 return -EIO; 5727 clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); 5728 } 5729 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5730 5731 if (phba->sli_rev == 3) { 5732 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5733 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5734 } else { 5735 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5736 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5737 phba->sli3_options = 0; 5738 } 5739 5740 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5741 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5742 phba->sli_rev, phba->max_vpi); 5743 rc = lpfc_sli_ring_map(phba); 5744 5745 if (rc) 5746 goto lpfc_sli_hba_setup_error; 5747 5748 /* Initialize VPIs. */ 5749 if (phba->sli_rev == LPFC_SLI_REV3) { 5750 /* 5751 * The VPI bitmask and physical ID array are allocated 5752 * and initialized once only - at driver load. A port 5753 * reset doesn't need to reinitialize this memory. 5754 */ 5755 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5756 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5757 phba->vpi_bmask = kcalloc(longs, 5758 sizeof(unsigned long), 5759 GFP_KERNEL); 5760 if (!phba->vpi_bmask) { 5761 rc = -ENOMEM; 5762 goto lpfc_sli_hba_setup_error; 5763 } 5764 5765 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5766 sizeof(uint16_t), 5767 GFP_KERNEL); 5768 if (!phba->vpi_ids) { 5769 kfree(phba->vpi_bmask); 5770 rc = -ENOMEM; 5771 goto lpfc_sli_hba_setup_error; 5772 } 5773 for (i = 0; i < phba->max_vpi; i++) 5774 phba->vpi_ids[i] = i; 5775 } 5776 } 5777 5778 /* Init HBQs */ 5779 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5780 rc = lpfc_sli_hbq_setup(phba); 5781 if (rc) 5782 goto lpfc_sli_hba_setup_error; 5783 } 5784 spin_lock_irq(&phba->hbalock); 5785 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5786 spin_unlock_irq(&phba->hbalock); 5787 5788 rc = lpfc_config_port_post(phba); 5789 if (rc) 5790 goto lpfc_sli_hba_setup_error; 5791 5792 return rc; 5793 5794 lpfc_sli_hba_setup_error: 5795 phba->link_state = LPFC_HBA_ERROR; 5796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5797 "0445 Firmware initialization failed\n"); 5798 return rc; 5799 } 5800 5801 /** 5802 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5803 * @phba: Pointer to HBA context object. 5804 * 5805 * This function issue a dump mailbox command to read config region 5806 * 23 and parse the records in the region and populate driver 5807 * data structure. 5808 **/ 5809 static int 5810 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5811 { 5812 LPFC_MBOXQ_t *mboxq; 5813 struct lpfc_dmabuf *mp; 5814 struct lpfc_mqe *mqe; 5815 uint32_t data_length; 5816 int rc; 5817 5818 /* Program the default value of vlan_id and fc_map */ 5819 phba->valid_vlan = 0; 5820 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5821 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5822 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5823 5824 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5825 if (!mboxq) 5826 return -ENOMEM; 5827 5828 mqe = &mboxq->u.mqe; 5829 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5830 rc = -ENOMEM; 5831 goto out_free_mboxq; 5832 } 5833 5834 mp = mboxq->ctx_buf; 5835 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5836 5837 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5838 "(%d):2571 Mailbox cmd x%x Status x%x " 5839 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5840 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5841 "CQ: x%x x%x x%x x%x\n", 5842 mboxq->vport ? mboxq->vport->vpi : 0, 5843 bf_get(lpfc_mqe_command, mqe), 5844 bf_get(lpfc_mqe_status, mqe), 5845 mqe->un.mb_words[0], mqe->un.mb_words[1], 5846 mqe->un.mb_words[2], mqe->un.mb_words[3], 5847 mqe->un.mb_words[4], mqe->un.mb_words[5], 5848 mqe->un.mb_words[6], mqe->un.mb_words[7], 5849 mqe->un.mb_words[8], mqe->un.mb_words[9], 5850 mqe->un.mb_words[10], mqe->un.mb_words[11], 5851 mqe->un.mb_words[12], mqe->un.mb_words[13], 5852 mqe->un.mb_words[14], mqe->un.mb_words[15], 5853 mqe->un.mb_words[16], mqe->un.mb_words[50], 5854 mboxq->mcqe.word0, 5855 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5856 mboxq->mcqe.trailer); 5857 5858 if (rc) { 5859 rc = -EIO; 5860 goto out_free_mboxq; 5861 } 5862 data_length = mqe->un.mb_words[5]; 5863 if (data_length > DMP_RGN23_SIZE) { 5864 rc = -EIO; 5865 goto out_free_mboxq; 5866 } 5867 5868 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5869 rc = 0; 5870 5871 out_free_mboxq: 5872 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5873 return rc; 5874 } 5875 5876 /** 5877 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5878 * @phba: pointer to lpfc hba data structure. 5879 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5880 * @vpd: pointer to the memory to hold resulting port vpd data. 5881 * @vpd_size: On input, the number of bytes allocated to @vpd. 5882 * On output, the number of data bytes in @vpd. 5883 * 5884 * This routine executes a READ_REV SLI4 mailbox command. In 5885 * addition, this routine gets the port vpd data. 5886 * 5887 * Return codes 5888 * 0 - successful 5889 * -ENOMEM - could not allocated memory. 5890 **/ 5891 static int 5892 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5893 uint8_t *vpd, uint32_t *vpd_size) 5894 { 5895 int rc = 0; 5896 uint32_t dma_size; 5897 struct lpfc_dmabuf *dmabuf; 5898 struct lpfc_mqe *mqe; 5899 5900 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5901 if (!dmabuf) 5902 return -ENOMEM; 5903 5904 /* 5905 * Get a DMA buffer for the vpd data resulting from the READ_REV 5906 * mailbox command. 5907 */ 5908 dma_size = *vpd_size; 5909 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5910 &dmabuf->phys, GFP_KERNEL); 5911 if (!dmabuf->virt) { 5912 kfree(dmabuf); 5913 return -ENOMEM; 5914 } 5915 5916 /* 5917 * The SLI4 implementation of READ_REV conflicts at word1, 5918 * bits 31:16 and SLI4 adds vpd functionality not present 5919 * in SLI3. This code corrects the conflicts. 5920 */ 5921 lpfc_read_rev(phba, mboxq); 5922 mqe = &mboxq->u.mqe; 5923 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5924 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5925 mqe->un.read_rev.word1 &= 0x0000FFFF; 5926 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5927 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5928 5929 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5930 if (rc) { 5931 dma_free_coherent(&phba->pcidev->dev, dma_size, 5932 dmabuf->virt, dmabuf->phys); 5933 kfree(dmabuf); 5934 return -EIO; 5935 } 5936 5937 /* 5938 * The available vpd length cannot be bigger than the 5939 * DMA buffer passed to the port. Catch the less than 5940 * case and update the caller's size. 5941 */ 5942 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5943 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5944 5945 memcpy(vpd, dmabuf->virt, *vpd_size); 5946 5947 dma_free_coherent(&phba->pcidev->dev, dma_size, 5948 dmabuf->virt, dmabuf->phys); 5949 kfree(dmabuf); 5950 return 0; 5951 } 5952 5953 /** 5954 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5955 * @phba: pointer to lpfc hba data structure. 5956 * 5957 * This routine retrieves SLI4 device physical port name this PCI function 5958 * is attached to. 5959 * 5960 * Return codes 5961 * 0 - successful 5962 * otherwise - failed to retrieve controller attributes 5963 **/ 5964 static int 5965 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5966 { 5967 LPFC_MBOXQ_t *mboxq; 5968 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5969 struct lpfc_controller_attribute *cntl_attr; 5970 void *virtaddr = NULL; 5971 uint32_t alloclen, reqlen; 5972 uint32_t shdr_status, shdr_add_status; 5973 union lpfc_sli4_cfg_shdr *shdr; 5974 int rc; 5975 5976 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5977 if (!mboxq) 5978 return -ENOMEM; 5979 5980 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5981 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5982 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5983 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5984 LPFC_SLI4_MBX_NEMBED); 5985 5986 if (alloclen < reqlen) { 5987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5988 "3084 Allocated DMA memory size (%d) is " 5989 "less than the requested DMA memory size " 5990 "(%d)\n", alloclen, reqlen); 5991 rc = -ENOMEM; 5992 goto out_free_mboxq; 5993 } 5994 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5995 virtaddr = mboxq->sge_array->addr[0]; 5996 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5997 shdr = &mbx_cntl_attr->cfg_shdr; 5998 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5999 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6000 if (shdr_status || shdr_add_status || rc) { 6001 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6002 "3085 Mailbox x%x (x%x/x%x) failed, " 6003 "rc:x%x, status:x%x, add_status:x%x\n", 6004 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6005 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6006 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6007 rc, shdr_status, shdr_add_status); 6008 rc = -ENXIO; 6009 goto out_free_mboxq; 6010 } 6011 6012 cntl_attr = &mbx_cntl_attr->cntl_attr; 6013 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6014 phba->sli4_hba.lnk_info.lnk_tp = 6015 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6016 phba->sli4_hba.lnk_info.lnk_no = 6017 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6018 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6019 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6020 6021 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6022 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6023 sizeof(phba->BIOSVersion)); 6024 6025 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6026 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6027 "flash_id: x%02x, asic_rev: x%02x\n", 6028 phba->sli4_hba.lnk_info.lnk_tp, 6029 phba->sli4_hba.lnk_info.lnk_no, 6030 phba->BIOSVersion, phba->sli4_hba.flash_id, 6031 phba->sli4_hba.asic_rev); 6032 out_free_mboxq: 6033 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6034 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6035 else 6036 mempool_free(mboxq, phba->mbox_mem_pool); 6037 return rc; 6038 } 6039 6040 /** 6041 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6042 * @phba: pointer to lpfc hba data structure. 6043 * 6044 * This routine retrieves SLI4 device physical port name this PCI function 6045 * is attached to. 6046 * 6047 * Return codes 6048 * 0 - successful 6049 * otherwise - failed to retrieve physical port name 6050 **/ 6051 static int 6052 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6053 { 6054 LPFC_MBOXQ_t *mboxq; 6055 struct lpfc_mbx_get_port_name *get_port_name; 6056 uint32_t shdr_status, shdr_add_status; 6057 union lpfc_sli4_cfg_shdr *shdr; 6058 char cport_name = 0; 6059 int rc; 6060 6061 /* We assume nothing at this point */ 6062 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6063 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6064 6065 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6066 if (!mboxq) 6067 return -ENOMEM; 6068 /* obtain link type and link number via READ_CONFIG */ 6069 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6070 lpfc_sli4_read_config(phba); 6071 6072 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6073 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6074 6075 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6076 goto retrieve_ppname; 6077 6078 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6079 rc = lpfc_sli4_get_ctl_attr(phba); 6080 if (rc) 6081 goto out_free_mboxq; 6082 6083 retrieve_ppname: 6084 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6085 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6086 sizeof(struct lpfc_mbx_get_port_name) - 6087 sizeof(struct lpfc_sli4_cfg_mhdr), 6088 LPFC_SLI4_MBX_EMBED); 6089 get_port_name = &mboxq->u.mqe.un.get_port_name; 6090 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6091 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6092 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6093 phba->sli4_hba.lnk_info.lnk_tp); 6094 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6095 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6096 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6097 if (shdr_status || shdr_add_status || rc) { 6098 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6099 "3087 Mailbox x%x (x%x/x%x) failed: " 6100 "rc:x%x, status:x%x, add_status:x%x\n", 6101 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6102 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6103 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6104 rc, shdr_status, shdr_add_status); 6105 rc = -ENXIO; 6106 goto out_free_mboxq; 6107 } 6108 switch (phba->sli4_hba.lnk_info.lnk_no) { 6109 case LPFC_LINK_NUMBER_0: 6110 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6111 &get_port_name->u.response); 6112 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6113 break; 6114 case LPFC_LINK_NUMBER_1: 6115 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6116 &get_port_name->u.response); 6117 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6118 break; 6119 case LPFC_LINK_NUMBER_2: 6120 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6121 &get_port_name->u.response); 6122 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6123 break; 6124 case LPFC_LINK_NUMBER_3: 6125 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6126 &get_port_name->u.response); 6127 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6128 break; 6129 default: 6130 break; 6131 } 6132 6133 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6134 phba->Port[0] = cport_name; 6135 phba->Port[1] = '\0'; 6136 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6137 "3091 SLI get port name: %s\n", phba->Port); 6138 } 6139 6140 out_free_mboxq: 6141 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6142 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6143 else 6144 mempool_free(mboxq, phba->mbox_mem_pool); 6145 return rc; 6146 } 6147 6148 /** 6149 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6150 * @phba: pointer to lpfc hba data structure. 6151 * 6152 * This routine is called to explicitly arm the SLI4 device's completion and 6153 * event queues 6154 **/ 6155 static void 6156 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6157 { 6158 int qidx; 6159 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6160 struct lpfc_sli4_hdw_queue *qp; 6161 struct lpfc_queue *eq; 6162 6163 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6164 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6165 if (sli4_hba->nvmels_cq) 6166 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6167 LPFC_QUEUE_REARM); 6168 6169 if (sli4_hba->hdwq) { 6170 /* Loop thru all Hardware Queues */ 6171 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6172 qp = &sli4_hba->hdwq[qidx]; 6173 /* ARM the corresponding CQ */ 6174 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6175 LPFC_QUEUE_REARM); 6176 } 6177 6178 /* Loop thru all IRQ vectors */ 6179 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6180 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6181 /* ARM the corresponding EQ */ 6182 sli4_hba->sli4_write_eq_db(phba, eq, 6183 0, LPFC_QUEUE_REARM); 6184 } 6185 } 6186 6187 if (phba->nvmet_support) { 6188 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6189 sli4_hba->sli4_write_cq_db(phba, 6190 sli4_hba->nvmet_cqset[qidx], 0, 6191 LPFC_QUEUE_REARM); 6192 } 6193 } 6194 } 6195 6196 /** 6197 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6198 * @phba: Pointer to HBA context object. 6199 * @type: The resource extent type. 6200 * @extnt_count: buffer to hold port available extent count. 6201 * @extnt_size: buffer to hold element count per extent. 6202 * 6203 * This function calls the port and retrievs the number of available 6204 * extents and their size for a particular extent type. 6205 * 6206 * Returns: 0 if successful. Nonzero otherwise. 6207 **/ 6208 int 6209 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6210 uint16_t *extnt_count, uint16_t *extnt_size) 6211 { 6212 int rc = 0; 6213 uint32_t length; 6214 uint32_t mbox_tmo; 6215 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6216 LPFC_MBOXQ_t *mbox; 6217 6218 *extnt_count = 0; 6219 *extnt_size = 0; 6220 6221 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6222 if (!mbox) 6223 return -ENOMEM; 6224 6225 /* Find out how many extents are available for this resource type */ 6226 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6227 sizeof(struct lpfc_sli4_cfg_mhdr)); 6228 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6229 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6230 length, LPFC_SLI4_MBX_EMBED); 6231 6232 /* Send an extents count of 0 - the GET doesn't use it. */ 6233 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6234 LPFC_SLI4_MBX_EMBED); 6235 if (unlikely(rc)) { 6236 rc = -EIO; 6237 goto err_exit; 6238 } 6239 6240 if (!phba->sli4_hba.intr_enable) 6241 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6242 else { 6243 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6244 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6245 } 6246 if (unlikely(rc)) { 6247 rc = -EIO; 6248 goto err_exit; 6249 } 6250 6251 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6252 if (bf_get(lpfc_mbox_hdr_status, 6253 &rsrc_info->header.cfg_shdr.response)) { 6254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6255 "2930 Failed to get resource extents " 6256 "Status 0x%x Add'l Status 0x%x\n", 6257 bf_get(lpfc_mbox_hdr_status, 6258 &rsrc_info->header.cfg_shdr.response), 6259 bf_get(lpfc_mbox_hdr_add_status, 6260 &rsrc_info->header.cfg_shdr.response)); 6261 rc = -EIO; 6262 goto err_exit; 6263 } 6264 6265 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6266 &rsrc_info->u.rsp); 6267 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6268 &rsrc_info->u.rsp); 6269 6270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6271 "3162 Retrieved extents type-%d from port: count:%d, " 6272 "size:%d\n", type, *extnt_count, *extnt_size); 6273 6274 err_exit: 6275 mempool_free(mbox, phba->mbox_mem_pool); 6276 return rc; 6277 } 6278 6279 /** 6280 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6281 * @phba: Pointer to HBA context object. 6282 * @type: The extent type to check. 6283 * 6284 * This function reads the current available extents from the port and checks 6285 * if the extent count or extent size has changed since the last access. 6286 * Callers use this routine post port reset to understand if there is a 6287 * extent reprovisioning requirement. 6288 * 6289 * Returns: 6290 * -Error: error indicates problem. 6291 * 1: Extent count or size has changed. 6292 * 0: No changes. 6293 **/ 6294 static int 6295 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6296 { 6297 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6298 uint16_t size_diff, rsrc_ext_size; 6299 int rc = 0; 6300 struct lpfc_rsrc_blks *rsrc_entry; 6301 struct list_head *rsrc_blk_list = NULL; 6302 6303 size_diff = 0; 6304 curr_ext_cnt = 0; 6305 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6306 &rsrc_ext_cnt, 6307 &rsrc_ext_size); 6308 if (unlikely(rc)) 6309 return -EIO; 6310 6311 switch (type) { 6312 case LPFC_RSC_TYPE_FCOE_RPI: 6313 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6314 break; 6315 case LPFC_RSC_TYPE_FCOE_VPI: 6316 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6317 break; 6318 case LPFC_RSC_TYPE_FCOE_XRI: 6319 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6320 break; 6321 case LPFC_RSC_TYPE_FCOE_VFI: 6322 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6323 break; 6324 default: 6325 break; 6326 } 6327 6328 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6329 curr_ext_cnt++; 6330 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6331 size_diff++; 6332 } 6333 6334 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6335 rc = 1; 6336 6337 return rc; 6338 } 6339 6340 /** 6341 * lpfc_sli4_cfg_post_extnts - 6342 * @phba: Pointer to HBA context object. 6343 * @extnt_cnt: number of available extents. 6344 * @type: the extent type (rpi, xri, vfi, vpi). 6345 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6346 * @mbox: pointer to the caller's allocated mailbox structure. 6347 * 6348 * This function executes the extents allocation request. It also 6349 * takes care of the amount of memory needed to allocate or get the 6350 * allocated extents. It is the caller's responsibility to evaluate 6351 * the response. 6352 * 6353 * Returns: 6354 * -Error: Error value describes the condition found. 6355 * 0: if successful 6356 **/ 6357 static int 6358 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6359 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6360 { 6361 int rc = 0; 6362 uint32_t req_len; 6363 uint32_t emb_len; 6364 uint32_t alloc_len, mbox_tmo; 6365 6366 /* Calculate the total requested length of the dma memory */ 6367 req_len = extnt_cnt * sizeof(uint16_t); 6368 6369 /* 6370 * Calculate the size of an embedded mailbox. The uint32_t 6371 * accounts for extents-specific word. 6372 */ 6373 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6374 sizeof(uint32_t); 6375 6376 /* 6377 * Presume the allocation and response will fit into an embedded 6378 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6379 */ 6380 *emb = LPFC_SLI4_MBX_EMBED; 6381 if (req_len > emb_len) { 6382 req_len = extnt_cnt * sizeof(uint16_t) + 6383 sizeof(union lpfc_sli4_cfg_shdr) + 6384 sizeof(uint32_t); 6385 *emb = LPFC_SLI4_MBX_NEMBED; 6386 } 6387 6388 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6389 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6390 req_len, *emb); 6391 if (alloc_len < req_len) { 6392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6393 "2982 Allocated DMA memory size (x%x) is " 6394 "less than the requested DMA memory " 6395 "size (x%x)\n", alloc_len, req_len); 6396 return -ENOMEM; 6397 } 6398 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6399 if (unlikely(rc)) 6400 return -EIO; 6401 6402 if (!phba->sli4_hba.intr_enable) 6403 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6404 else { 6405 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6406 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6407 } 6408 6409 if (unlikely(rc)) 6410 rc = -EIO; 6411 return rc; 6412 } 6413 6414 /** 6415 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6416 * @phba: Pointer to HBA context object. 6417 * @type: The resource extent type to allocate. 6418 * 6419 * This function allocates the number of elements for the specified 6420 * resource type. 6421 **/ 6422 static int 6423 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6424 { 6425 bool emb = false; 6426 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6427 uint16_t rsrc_id, rsrc_start, j, k; 6428 uint16_t *ids; 6429 int i, rc; 6430 unsigned long longs; 6431 unsigned long *bmask; 6432 struct lpfc_rsrc_blks *rsrc_blks; 6433 LPFC_MBOXQ_t *mbox; 6434 uint32_t length; 6435 struct lpfc_id_range *id_array = NULL; 6436 void *virtaddr = NULL; 6437 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6438 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6439 struct list_head *ext_blk_list; 6440 6441 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6442 &rsrc_cnt, 6443 &rsrc_size); 6444 if (unlikely(rc)) 6445 return -EIO; 6446 6447 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6449 "3009 No available Resource Extents " 6450 "for resource type 0x%x: Count: 0x%x, " 6451 "Size 0x%x\n", type, rsrc_cnt, 6452 rsrc_size); 6453 return -ENOMEM; 6454 } 6455 6456 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6457 "2903 Post resource extents type-0x%x: " 6458 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6459 6460 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6461 if (!mbox) 6462 return -ENOMEM; 6463 6464 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6465 if (unlikely(rc)) { 6466 rc = -EIO; 6467 goto err_exit; 6468 } 6469 6470 /* 6471 * Figure out where the response is located. Then get local pointers 6472 * to the response data. The port does not guarantee to respond to 6473 * all extents counts request so update the local variable with the 6474 * allocated count from the port. 6475 */ 6476 if (emb == LPFC_SLI4_MBX_EMBED) { 6477 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6478 id_array = &rsrc_ext->u.rsp.id[0]; 6479 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6480 } else { 6481 virtaddr = mbox->sge_array->addr[0]; 6482 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6483 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6484 id_array = &n_rsrc->id; 6485 } 6486 6487 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6488 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6489 6490 /* 6491 * Based on the resource size and count, correct the base and max 6492 * resource values. 6493 */ 6494 length = sizeof(struct lpfc_rsrc_blks); 6495 switch (type) { 6496 case LPFC_RSC_TYPE_FCOE_RPI: 6497 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6498 sizeof(unsigned long), 6499 GFP_KERNEL); 6500 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6501 rc = -ENOMEM; 6502 goto err_exit; 6503 } 6504 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6505 sizeof(uint16_t), 6506 GFP_KERNEL); 6507 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6508 kfree(phba->sli4_hba.rpi_bmask); 6509 rc = -ENOMEM; 6510 goto err_exit; 6511 } 6512 6513 /* 6514 * The next_rpi was initialized with the maximum available 6515 * count but the port may allocate a smaller number. Catch 6516 * that case and update the next_rpi. 6517 */ 6518 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6519 6520 /* Initialize local ptrs for common extent processing later. */ 6521 bmask = phba->sli4_hba.rpi_bmask; 6522 ids = phba->sli4_hba.rpi_ids; 6523 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6524 break; 6525 case LPFC_RSC_TYPE_FCOE_VPI: 6526 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6527 GFP_KERNEL); 6528 if (unlikely(!phba->vpi_bmask)) { 6529 rc = -ENOMEM; 6530 goto err_exit; 6531 } 6532 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6533 GFP_KERNEL); 6534 if (unlikely(!phba->vpi_ids)) { 6535 kfree(phba->vpi_bmask); 6536 rc = -ENOMEM; 6537 goto err_exit; 6538 } 6539 6540 /* Initialize local ptrs for common extent processing later. */ 6541 bmask = phba->vpi_bmask; 6542 ids = phba->vpi_ids; 6543 ext_blk_list = &phba->lpfc_vpi_blk_list; 6544 break; 6545 case LPFC_RSC_TYPE_FCOE_XRI: 6546 phba->sli4_hba.xri_bmask = kcalloc(longs, 6547 sizeof(unsigned long), 6548 GFP_KERNEL); 6549 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6550 rc = -ENOMEM; 6551 goto err_exit; 6552 } 6553 phba->sli4_hba.max_cfg_param.xri_used = 0; 6554 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6555 sizeof(uint16_t), 6556 GFP_KERNEL); 6557 if (unlikely(!phba->sli4_hba.xri_ids)) { 6558 kfree(phba->sli4_hba.xri_bmask); 6559 rc = -ENOMEM; 6560 goto err_exit; 6561 } 6562 6563 /* Initialize local ptrs for common extent processing later. */ 6564 bmask = phba->sli4_hba.xri_bmask; 6565 ids = phba->sli4_hba.xri_ids; 6566 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6567 break; 6568 case LPFC_RSC_TYPE_FCOE_VFI: 6569 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6570 sizeof(unsigned long), 6571 GFP_KERNEL); 6572 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6573 rc = -ENOMEM; 6574 goto err_exit; 6575 } 6576 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6577 sizeof(uint16_t), 6578 GFP_KERNEL); 6579 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6580 kfree(phba->sli4_hba.vfi_bmask); 6581 rc = -ENOMEM; 6582 goto err_exit; 6583 } 6584 6585 /* Initialize local ptrs for common extent processing later. */ 6586 bmask = phba->sli4_hba.vfi_bmask; 6587 ids = phba->sli4_hba.vfi_ids; 6588 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6589 break; 6590 default: 6591 /* Unsupported Opcode. Fail call. */ 6592 id_array = NULL; 6593 bmask = NULL; 6594 ids = NULL; 6595 ext_blk_list = NULL; 6596 goto err_exit; 6597 } 6598 6599 /* 6600 * Complete initializing the extent configuration with the 6601 * allocated ids assigned to this function. The bitmask serves 6602 * as an index into the array and manages the available ids. The 6603 * array just stores the ids communicated to the port via the wqes. 6604 */ 6605 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6606 if ((i % 2) == 0) 6607 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6608 &id_array[k]); 6609 else 6610 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6611 &id_array[k]); 6612 6613 rsrc_blks = kzalloc(length, GFP_KERNEL); 6614 if (unlikely(!rsrc_blks)) { 6615 rc = -ENOMEM; 6616 kfree(bmask); 6617 kfree(ids); 6618 goto err_exit; 6619 } 6620 rsrc_blks->rsrc_start = rsrc_id; 6621 rsrc_blks->rsrc_size = rsrc_size; 6622 list_add_tail(&rsrc_blks->list, ext_blk_list); 6623 rsrc_start = rsrc_id; 6624 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6625 phba->sli4_hba.io_xri_start = rsrc_start + 6626 lpfc_sli4_get_iocb_cnt(phba); 6627 } 6628 6629 while (rsrc_id < (rsrc_start + rsrc_size)) { 6630 ids[j] = rsrc_id; 6631 rsrc_id++; 6632 j++; 6633 } 6634 /* Entire word processed. Get next word.*/ 6635 if ((i % 2) == 1) 6636 k++; 6637 } 6638 err_exit: 6639 lpfc_sli4_mbox_cmd_free(phba, mbox); 6640 return rc; 6641 } 6642 6643 6644 6645 /** 6646 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6647 * @phba: Pointer to HBA context object. 6648 * @type: the extent's type. 6649 * 6650 * This function deallocates all extents of a particular resource type. 6651 * SLI4 does not allow for deallocating a particular extent range. It 6652 * is the caller's responsibility to release all kernel memory resources. 6653 **/ 6654 static int 6655 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6656 { 6657 int rc; 6658 uint32_t length, mbox_tmo = 0; 6659 LPFC_MBOXQ_t *mbox; 6660 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6661 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6662 6663 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6664 if (!mbox) 6665 return -ENOMEM; 6666 6667 /* 6668 * This function sends an embedded mailbox because it only sends the 6669 * the resource type. All extents of this type are released by the 6670 * port. 6671 */ 6672 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6673 sizeof(struct lpfc_sli4_cfg_mhdr)); 6674 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6675 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6676 length, LPFC_SLI4_MBX_EMBED); 6677 6678 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6679 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6680 LPFC_SLI4_MBX_EMBED); 6681 if (unlikely(rc)) { 6682 rc = -EIO; 6683 goto out_free_mbox; 6684 } 6685 if (!phba->sli4_hba.intr_enable) 6686 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6687 else { 6688 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6689 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6690 } 6691 if (unlikely(rc)) { 6692 rc = -EIO; 6693 goto out_free_mbox; 6694 } 6695 6696 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6697 if (bf_get(lpfc_mbox_hdr_status, 6698 &dealloc_rsrc->header.cfg_shdr.response)) { 6699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6700 "2919 Failed to release resource extents " 6701 "for type %d - Status 0x%x Add'l Status 0x%x. " 6702 "Resource memory not released.\n", 6703 type, 6704 bf_get(lpfc_mbox_hdr_status, 6705 &dealloc_rsrc->header.cfg_shdr.response), 6706 bf_get(lpfc_mbox_hdr_add_status, 6707 &dealloc_rsrc->header.cfg_shdr.response)); 6708 rc = -EIO; 6709 goto out_free_mbox; 6710 } 6711 6712 /* Release kernel memory resources for the specific type. */ 6713 switch (type) { 6714 case LPFC_RSC_TYPE_FCOE_VPI: 6715 kfree(phba->vpi_bmask); 6716 kfree(phba->vpi_ids); 6717 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6718 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6719 &phba->lpfc_vpi_blk_list, list) { 6720 list_del_init(&rsrc_blk->list); 6721 kfree(rsrc_blk); 6722 } 6723 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6724 break; 6725 case LPFC_RSC_TYPE_FCOE_XRI: 6726 kfree(phba->sli4_hba.xri_bmask); 6727 kfree(phba->sli4_hba.xri_ids); 6728 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6729 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6730 list_del_init(&rsrc_blk->list); 6731 kfree(rsrc_blk); 6732 } 6733 break; 6734 case LPFC_RSC_TYPE_FCOE_VFI: 6735 kfree(phba->sli4_hba.vfi_bmask); 6736 kfree(phba->sli4_hba.vfi_ids); 6737 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6738 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6739 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6740 list_del_init(&rsrc_blk->list); 6741 kfree(rsrc_blk); 6742 } 6743 break; 6744 case LPFC_RSC_TYPE_FCOE_RPI: 6745 /* RPI bitmask and physical id array are cleaned up earlier. */ 6746 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6747 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6748 list_del_init(&rsrc_blk->list); 6749 kfree(rsrc_blk); 6750 } 6751 break; 6752 default: 6753 break; 6754 } 6755 6756 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6757 6758 out_free_mbox: 6759 mempool_free(mbox, phba->mbox_mem_pool); 6760 return rc; 6761 } 6762 6763 static void 6764 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6765 uint32_t feature) 6766 { 6767 uint32_t len; 6768 u32 sig_freq = 0; 6769 6770 len = sizeof(struct lpfc_mbx_set_feature) - 6771 sizeof(struct lpfc_sli4_cfg_mhdr); 6772 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6773 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6774 LPFC_SLI4_MBX_EMBED); 6775 6776 switch (feature) { 6777 case LPFC_SET_UE_RECOVERY: 6778 bf_set(lpfc_mbx_set_feature_UER, 6779 &mbox->u.mqe.un.set_feature, 1); 6780 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6781 mbox->u.mqe.un.set_feature.param_len = 8; 6782 break; 6783 case LPFC_SET_MDS_DIAGS: 6784 bf_set(lpfc_mbx_set_feature_mds, 6785 &mbox->u.mqe.un.set_feature, 1); 6786 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6787 &mbox->u.mqe.un.set_feature, 1); 6788 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6789 mbox->u.mqe.un.set_feature.param_len = 8; 6790 break; 6791 case LPFC_SET_CGN_SIGNAL: 6792 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6793 sig_freq = 0; 6794 else 6795 sig_freq = phba->cgn_sig_freq; 6796 6797 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6798 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6799 &mbox->u.mqe.un.set_feature, sig_freq); 6800 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 } 6803 6804 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6805 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6806 &mbox->u.mqe.un.set_feature, sig_freq); 6807 6808 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6809 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6810 sig_freq = 0; 6811 else 6812 sig_freq = lpfc_acqe_cgn_frequency; 6813 6814 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6815 &mbox->u.mqe.un.set_feature, sig_freq); 6816 6817 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6818 mbox->u.mqe.un.set_feature.param_len = 12; 6819 break; 6820 case LPFC_SET_DUAL_DUMP: 6821 bf_set(lpfc_mbx_set_feature_dd, 6822 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6823 bf_set(lpfc_mbx_set_feature_ddquery, 6824 &mbox->u.mqe.un.set_feature, 0); 6825 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6826 mbox->u.mqe.un.set_feature.param_len = 4; 6827 break; 6828 case LPFC_SET_ENABLE_MI: 6829 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6830 mbox->u.mqe.un.set_feature.param_len = 4; 6831 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6832 phba->pport->cfg_lun_queue_depth); 6833 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6834 phba->sli4_hba.pc_sli4_params.mi_ver); 6835 break; 6836 case LPFC_SET_LD_SIGNAL: 6837 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6838 mbox->u.mqe.un.set_feature.param_len = 16; 6839 bf_set(lpfc_mbx_set_feature_lds_qry, 6840 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6841 break; 6842 case LPFC_SET_ENABLE_CMF: 6843 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6844 mbox->u.mqe.un.set_feature.param_len = 4; 6845 bf_set(lpfc_mbx_set_feature_cmf, 6846 &mbox->u.mqe.un.set_feature, 1); 6847 break; 6848 } 6849 return; 6850 } 6851 6852 /** 6853 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6854 * @phba: Pointer to HBA context object. 6855 * 6856 * Disable FW logging into host memory on the adapter. To 6857 * be done before reading logs from the host memory. 6858 **/ 6859 void 6860 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6861 { 6862 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6863 6864 spin_lock_irq(&phba->ras_fwlog_lock); 6865 ras_fwlog->state = INACTIVE; 6866 spin_unlock_irq(&phba->ras_fwlog_lock); 6867 6868 /* Disable FW logging to host memory */ 6869 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6870 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6871 6872 /* Wait 10ms for firmware to stop using DMA buffer */ 6873 usleep_range(10 * 1000, 20 * 1000); 6874 } 6875 6876 /** 6877 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6878 * @phba: Pointer to HBA context object. 6879 * 6880 * This function is called to free memory allocated for RAS FW logging 6881 * support in the driver. 6882 **/ 6883 void 6884 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6885 { 6886 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6887 struct lpfc_dmabuf *dmabuf, *next; 6888 6889 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6890 list_for_each_entry_safe(dmabuf, next, 6891 &ras_fwlog->fwlog_buff_list, 6892 list) { 6893 list_del(&dmabuf->list); 6894 dma_free_coherent(&phba->pcidev->dev, 6895 LPFC_RAS_MAX_ENTRY_SIZE, 6896 dmabuf->virt, dmabuf->phys); 6897 kfree(dmabuf); 6898 } 6899 } 6900 6901 if (ras_fwlog->lwpd.virt) { 6902 dma_free_coherent(&phba->pcidev->dev, 6903 sizeof(uint32_t) * 2, 6904 ras_fwlog->lwpd.virt, 6905 ras_fwlog->lwpd.phys); 6906 ras_fwlog->lwpd.virt = NULL; 6907 } 6908 6909 spin_lock_irq(&phba->ras_fwlog_lock); 6910 ras_fwlog->state = INACTIVE; 6911 spin_unlock_irq(&phba->ras_fwlog_lock); 6912 } 6913 6914 /** 6915 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6916 * @phba: Pointer to HBA context object. 6917 * @fwlog_buff_count: Count of buffers to be created. 6918 * 6919 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6920 * to update FW log is posted to the adapter. 6921 * Buffer count is calculated based on module param ras_fwlog_buffsize 6922 * Size of each buffer posted to FW is 64K. 6923 **/ 6924 6925 static int 6926 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6927 uint32_t fwlog_buff_count) 6928 { 6929 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6930 struct lpfc_dmabuf *dmabuf; 6931 int rc = 0, i = 0; 6932 6933 /* Initialize List */ 6934 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6935 6936 /* Allocate memory for the LWPD */ 6937 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6938 sizeof(uint32_t) * 2, 6939 &ras_fwlog->lwpd.phys, 6940 GFP_KERNEL); 6941 if (!ras_fwlog->lwpd.virt) { 6942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6943 "6185 LWPD Memory Alloc Failed\n"); 6944 6945 return -ENOMEM; 6946 } 6947 6948 ras_fwlog->fw_buffcount = fwlog_buff_count; 6949 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6950 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6951 GFP_KERNEL); 6952 if (!dmabuf) { 6953 rc = -ENOMEM; 6954 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6955 "6186 Memory Alloc failed FW logging"); 6956 goto free_mem; 6957 } 6958 6959 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6960 LPFC_RAS_MAX_ENTRY_SIZE, 6961 &dmabuf->phys, GFP_KERNEL); 6962 if (!dmabuf->virt) { 6963 kfree(dmabuf); 6964 rc = -ENOMEM; 6965 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6966 "6187 DMA Alloc Failed FW logging"); 6967 goto free_mem; 6968 } 6969 dmabuf->buffer_tag = i; 6970 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6971 } 6972 6973 free_mem: 6974 if (rc) 6975 lpfc_sli4_ras_dma_free(phba); 6976 6977 return rc; 6978 } 6979 6980 /** 6981 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6982 * @phba: pointer to lpfc hba data structure. 6983 * @pmb: pointer to the driver internal queue element for mailbox command. 6984 * 6985 * Completion handler for driver's RAS MBX command to the device. 6986 **/ 6987 static void 6988 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6989 { 6990 MAILBOX_t *mb; 6991 union lpfc_sli4_cfg_shdr *shdr; 6992 uint32_t shdr_status, shdr_add_status; 6993 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6994 6995 mb = &pmb->u.mb; 6996 6997 shdr = (union lpfc_sli4_cfg_shdr *) 6998 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6999 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7000 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7001 7002 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 7003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7004 "6188 FW LOG mailbox " 7005 "completed with status x%x add_status x%x," 7006 " mbx status x%x\n", 7007 shdr_status, shdr_add_status, mb->mbxStatus); 7008 7009 ras_fwlog->ras_hwsupport = false; 7010 goto disable_ras; 7011 } 7012 7013 spin_lock_irq(&phba->ras_fwlog_lock); 7014 ras_fwlog->state = ACTIVE; 7015 spin_unlock_irq(&phba->ras_fwlog_lock); 7016 mempool_free(pmb, phba->mbox_mem_pool); 7017 7018 return; 7019 7020 disable_ras: 7021 /* Free RAS DMA memory */ 7022 lpfc_sli4_ras_dma_free(phba); 7023 mempool_free(pmb, phba->mbox_mem_pool); 7024 } 7025 7026 /** 7027 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7028 * @phba: pointer to lpfc hba data structure. 7029 * @fwlog_level: Logging verbosity level. 7030 * @fwlog_enable: Enable/Disable logging. 7031 * 7032 * Initialize memory and post mailbox command to enable FW logging in host 7033 * memory. 7034 **/ 7035 int 7036 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7037 uint32_t fwlog_level, 7038 uint32_t fwlog_enable) 7039 { 7040 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7041 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7042 struct lpfc_dmabuf *dmabuf; 7043 LPFC_MBOXQ_t *mbox; 7044 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7045 int rc = 0; 7046 7047 spin_lock_irq(&phba->ras_fwlog_lock); 7048 ras_fwlog->state = INACTIVE; 7049 spin_unlock_irq(&phba->ras_fwlog_lock); 7050 7051 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7052 phba->cfg_ras_fwlog_buffsize); 7053 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7054 7055 /* 7056 * If re-enabling FW logging support use earlier allocated 7057 * DMA buffers while posting MBX command. 7058 **/ 7059 if (!ras_fwlog->lwpd.virt) { 7060 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7061 if (rc) { 7062 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7063 "6189 FW Log Memory Allocation Failed"); 7064 return rc; 7065 } 7066 } 7067 7068 /* Setup Mailbox command */ 7069 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7070 if (!mbox) { 7071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7072 "6190 RAS MBX Alloc Failed"); 7073 rc = -ENOMEM; 7074 goto mem_free; 7075 } 7076 7077 ras_fwlog->fw_loglevel = fwlog_level; 7078 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7079 sizeof(struct lpfc_sli4_cfg_mhdr)); 7080 7081 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7082 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7083 len, LPFC_SLI4_MBX_EMBED); 7084 7085 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7086 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7087 fwlog_enable); 7088 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7089 ras_fwlog->fw_loglevel); 7090 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7091 ras_fwlog->fw_buffcount); 7092 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7093 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7094 7095 /* Update DMA buffer address */ 7096 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7097 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7098 7099 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7100 putPaddrLow(dmabuf->phys); 7101 7102 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7103 putPaddrHigh(dmabuf->phys); 7104 } 7105 7106 /* Update LPWD address */ 7107 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7108 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7109 7110 spin_lock_irq(&phba->ras_fwlog_lock); 7111 ras_fwlog->state = REG_INPROGRESS; 7112 spin_unlock_irq(&phba->ras_fwlog_lock); 7113 mbox->vport = phba->pport; 7114 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7115 7116 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7117 7118 if (rc == MBX_NOT_FINISHED) { 7119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7120 "6191 FW-Log Mailbox failed. " 7121 "status %d mbxStatus : x%x", rc, 7122 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7123 mempool_free(mbox, phba->mbox_mem_pool); 7124 rc = -EIO; 7125 goto mem_free; 7126 } else 7127 rc = 0; 7128 mem_free: 7129 if (rc) 7130 lpfc_sli4_ras_dma_free(phba); 7131 7132 return rc; 7133 } 7134 7135 /** 7136 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7137 * @phba: Pointer to HBA context object. 7138 * 7139 * Check if RAS is supported on the adapter and initialize it. 7140 **/ 7141 void 7142 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7143 { 7144 /* Check RAS FW Log needs to be enabled or not */ 7145 if (lpfc_check_fwlog_support(phba)) 7146 return; 7147 7148 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7149 LPFC_RAS_ENABLE_LOGGING); 7150 } 7151 7152 /** 7153 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7154 * @phba: Pointer to HBA context object. 7155 * 7156 * This function allocates all SLI4 resource identifiers. 7157 **/ 7158 int 7159 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7160 { 7161 int i, rc, error = 0; 7162 uint16_t count, base; 7163 unsigned long longs; 7164 7165 if (!phba->sli4_hba.rpi_hdrs_in_use) 7166 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7167 if (phba->sli4_hba.extents_in_use) { 7168 /* 7169 * The port supports resource extents. The XRI, VPI, VFI, RPI 7170 * resource extent count must be read and allocated before 7171 * provisioning the resource id arrays. 7172 */ 7173 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7174 LPFC_IDX_RSRC_RDY) { 7175 /* 7176 * Extent-based resources are set - the driver could 7177 * be in a port reset. Figure out if any corrective 7178 * actions need to be taken. 7179 */ 7180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7181 LPFC_RSC_TYPE_FCOE_VFI); 7182 if (rc != 0) 7183 error++; 7184 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7185 LPFC_RSC_TYPE_FCOE_VPI); 7186 if (rc != 0) 7187 error++; 7188 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7189 LPFC_RSC_TYPE_FCOE_XRI); 7190 if (rc != 0) 7191 error++; 7192 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7193 LPFC_RSC_TYPE_FCOE_RPI); 7194 if (rc != 0) 7195 error++; 7196 7197 /* 7198 * It's possible that the number of resources 7199 * provided to this port instance changed between 7200 * resets. Detect this condition and reallocate 7201 * resources. Otherwise, there is no action. 7202 */ 7203 if (error) { 7204 lpfc_printf_log(phba, KERN_INFO, 7205 LOG_MBOX | LOG_INIT, 7206 "2931 Detected extent resource " 7207 "change. Reallocating all " 7208 "extents.\n"); 7209 rc = lpfc_sli4_dealloc_extent(phba, 7210 LPFC_RSC_TYPE_FCOE_VFI); 7211 rc = lpfc_sli4_dealloc_extent(phba, 7212 LPFC_RSC_TYPE_FCOE_VPI); 7213 rc = lpfc_sli4_dealloc_extent(phba, 7214 LPFC_RSC_TYPE_FCOE_XRI); 7215 rc = lpfc_sli4_dealloc_extent(phba, 7216 LPFC_RSC_TYPE_FCOE_RPI); 7217 } else 7218 return 0; 7219 } 7220 7221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7222 if (unlikely(rc)) 7223 goto err_exit; 7224 7225 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7226 if (unlikely(rc)) 7227 goto err_exit; 7228 7229 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7230 if (unlikely(rc)) 7231 goto err_exit; 7232 7233 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7234 if (unlikely(rc)) 7235 goto err_exit; 7236 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7237 LPFC_IDX_RSRC_RDY); 7238 return rc; 7239 } else { 7240 /* 7241 * The port does not support resource extents. The XRI, VPI, 7242 * VFI, RPI resource ids were determined from READ_CONFIG. 7243 * Just allocate the bitmasks and provision the resource id 7244 * arrays. If a port reset is active, the resources don't 7245 * need any action - just exit. 7246 */ 7247 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7248 LPFC_IDX_RSRC_RDY) { 7249 lpfc_sli4_dealloc_resource_identifiers(phba); 7250 lpfc_sli4_remove_rpis(phba); 7251 } 7252 /* RPIs. */ 7253 count = phba->sli4_hba.max_cfg_param.max_rpi; 7254 if (count <= 0) { 7255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7256 "3279 Invalid provisioning of " 7257 "rpi:%d\n", count); 7258 rc = -EINVAL; 7259 goto err_exit; 7260 } 7261 base = phba->sli4_hba.max_cfg_param.rpi_base; 7262 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7263 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7264 sizeof(unsigned long), 7265 GFP_KERNEL); 7266 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7267 rc = -ENOMEM; 7268 goto err_exit; 7269 } 7270 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7271 GFP_KERNEL); 7272 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7273 rc = -ENOMEM; 7274 goto free_rpi_bmask; 7275 } 7276 7277 for (i = 0; i < count; i++) 7278 phba->sli4_hba.rpi_ids[i] = base + i; 7279 7280 /* VPIs. */ 7281 count = phba->sli4_hba.max_cfg_param.max_vpi; 7282 if (count <= 0) { 7283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7284 "3280 Invalid provisioning of " 7285 "vpi:%d\n", count); 7286 rc = -EINVAL; 7287 goto free_rpi_ids; 7288 } 7289 base = phba->sli4_hba.max_cfg_param.vpi_base; 7290 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7291 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7292 GFP_KERNEL); 7293 if (unlikely(!phba->vpi_bmask)) { 7294 rc = -ENOMEM; 7295 goto free_rpi_ids; 7296 } 7297 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7298 GFP_KERNEL); 7299 if (unlikely(!phba->vpi_ids)) { 7300 rc = -ENOMEM; 7301 goto free_vpi_bmask; 7302 } 7303 7304 for (i = 0; i < count; i++) 7305 phba->vpi_ids[i] = base + i; 7306 7307 /* XRIs. */ 7308 count = phba->sli4_hba.max_cfg_param.max_xri; 7309 if (count <= 0) { 7310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7311 "3281 Invalid provisioning of " 7312 "xri:%d\n", count); 7313 rc = -EINVAL; 7314 goto free_vpi_ids; 7315 } 7316 base = phba->sli4_hba.max_cfg_param.xri_base; 7317 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7318 phba->sli4_hba.xri_bmask = kcalloc(longs, 7319 sizeof(unsigned long), 7320 GFP_KERNEL); 7321 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7322 rc = -ENOMEM; 7323 goto free_vpi_ids; 7324 } 7325 phba->sli4_hba.max_cfg_param.xri_used = 0; 7326 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7327 GFP_KERNEL); 7328 if (unlikely(!phba->sli4_hba.xri_ids)) { 7329 rc = -ENOMEM; 7330 goto free_xri_bmask; 7331 } 7332 7333 for (i = 0; i < count; i++) 7334 phba->sli4_hba.xri_ids[i] = base + i; 7335 7336 /* VFIs. */ 7337 count = phba->sli4_hba.max_cfg_param.max_vfi; 7338 if (count <= 0) { 7339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7340 "3282 Invalid provisioning of " 7341 "vfi:%d\n", count); 7342 rc = -EINVAL; 7343 goto free_xri_ids; 7344 } 7345 base = phba->sli4_hba.max_cfg_param.vfi_base; 7346 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7347 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7348 sizeof(unsigned long), 7349 GFP_KERNEL); 7350 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7351 rc = -ENOMEM; 7352 goto free_xri_ids; 7353 } 7354 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7355 GFP_KERNEL); 7356 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7357 rc = -ENOMEM; 7358 goto free_vfi_bmask; 7359 } 7360 7361 for (i = 0; i < count; i++) 7362 phba->sli4_hba.vfi_ids[i] = base + i; 7363 7364 /* 7365 * Mark all resources ready. An HBA reset doesn't need 7366 * to reset the initialization. 7367 */ 7368 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7369 LPFC_IDX_RSRC_RDY); 7370 return 0; 7371 } 7372 7373 free_vfi_bmask: 7374 kfree(phba->sli4_hba.vfi_bmask); 7375 phba->sli4_hba.vfi_bmask = NULL; 7376 free_xri_ids: 7377 kfree(phba->sli4_hba.xri_ids); 7378 phba->sli4_hba.xri_ids = NULL; 7379 free_xri_bmask: 7380 kfree(phba->sli4_hba.xri_bmask); 7381 phba->sli4_hba.xri_bmask = NULL; 7382 free_vpi_ids: 7383 kfree(phba->vpi_ids); 7384 phba->vpi_ids = NULL; 7385 free_vpi_bmask: 7386 kfree(phba->vpi_bmask); 7387 phba->vpi_bmask = NULL; 7388 free_rpi_ids: 7389 kfree(phba->sli4_hba.rpi_ids); 7390 phba->sli4_hba.rpi_ids = NULL; 7391 free_rpi_bmask: 7392 kfree(phba->sli4_hba.rpi_bmask); 7393 phba->sli4_hba.rpi_bmask = NULL; 7394 err_exit: 7395 return rc; 7396 } 7397 7398 /** 7399 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7400 * @phba: Pointer to HBA context object. 7401 * 7402 * This function allocates the number of elements for the specified 7403 * resource type. 7404 **/ 7405 int 7406 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7407 { 7408 if (phba->sli4_hba.extents_in_use) { 7409 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7410 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7411 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7412 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7413 } else { 7414 kfree(phba->vpi_bmask); 7415 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7416 kfree(phba->vpi_ids); 7417 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7418 kfree(phba->sli4_hba.xri_bmask); 7419 kfree(phba->sli4_hba.xri_ids); 7420 kfree(phba->sli4_hba.vfi_bmask); 7421 kfree(phba->sli4_hba.vfi_ids); 7422 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7423 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7424 } 7425 7426 return 0; 7427 } 7428 7429 /** 7430 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7431 * @phba: Pointer to HBA context object. 7432 * @type: The resource extent type. 7433 * @extnt_cnt: buffer to hold port extent count response 7434 * @extnt_size: buffer to hold port extent size response. 7435 * 7436 * This function calls the port to read the host allocated extents 7437 * for a particular type. 7438 **/ 7439 int 7440 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7441 uint16_t *extnt_cnt, uint16_t *extnt_size) 7442 { 7443 bool emb; 7444 int rc = 0; 7445 uint16_t curr_blks = 0; 7446 uint32_t req_len, emb_len; 7447 uint32_t alloc_len, mbox_tmo; 7448 struct list_head *blk_list_head; 7449 struct lpfc_rsrc_blks *rsrc_blk; 7450 LPFC_MBOXQ_t *mbox; 7451 void *virtaddr = NULL; 7452 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7453 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7454 union lpfc_sli4_cfg_shdr *shdr; 7455 7456 switch (type) { 7457 case LPFC_RSC_TYPE_FCOE_VPI: 7458 blk_list_head = &phba->lpfc_vpi_blk_list; 7459 break; 7460 case LPFC_RSC_TYPE_FCOE_XRI: 7461 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7462 break; 7463 case LPFC_RSC_TYPE_FCOE_VFI: 7464 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7465 break; 7466 case LPFC_RSC_TYPE_FCOE_RPI: 7467 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7468 break; 7469 default: 7470 return -EIO; 7471 } 7472 7473 /* Count the number of extents currently allocatd for this type. */ 7474 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7475 if (curr_blks == 0) { 7476 /* 7477 * The GET_ALLOCATED mailbox does not return the size, 7478 * just the count. The size should be just the size 7479 * stored in the current allocated block and all sizes 7480 * for an extent type are the same so set the return 7481 * value now. 7482 */ 7483 *extnt_size = rsrc_blk->rsrc_size; 7484 } 7485 curr_blks++; 7486 } 7487 7488 /* 7489 * Calculate the size of an embedded mailbox. The uint32_t 7490 * accounts for extents-specific word. 7491 */ 7492 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7493 sizeof(uint32_t); 7494 7495 /* 7496 * Presume the allocation and response will fit into an embedded 7497 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7498 */ 7499 emb = LPFC_SLI4_MBX_EMBED; 7500 req_len = emb_len; 7501 if (req_len > emb_len) { 7502 req_len = curr_blks * sizeof(uint16_t) + 7503 sizeof(union lpfc_sli4_cfg_shdr) + 7504 sizeof(uint32_t); 7505 emb = LPFC_SLI4_MBX_NEMBED; 7506 } 7507 7508 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7509 if (!mbox) 7510 return -ENOMEM; 7511 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7512 7513 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7514 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7515 req_len, emb); 7516 if (alloc_len < req_len) { 7517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7518 "2983 Allocated DMA memory size (x%x) is " 7519 "less than the requested DMA memory " 7520 "size (x%x)\n", alloc_len, req_len); 7521 rc = -ENOMEM; 7522 goto err_exit; 7523 } 7524 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7525 if (unlikely(rc)) { 7526 rc = -EIO; 7527 goto err_exit; 7528 } 7529 7530 if (!phba->sli4_hba.intr_enable) 7531 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7532 else { 7533 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7534 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7535 } 7536 7537 if (unlikely(rc)) { 7538 rc = -EIO; 7539 goto err_exit; 7540 } 7541 7542 /* 7543 * Figure out where the response is located. Then get local pointers 7544 * to the response data. The port does not guarantee to respond to 7545 * all extents counts request so update the local variable with the 7546 * allocated count from the port. 7547 */ 7548 if (emb == LPFC_SLI4_MBX_EMBED) { 7549 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7550 shdr = &rsrc_ext->header.cfg_shdr; 7551 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7552 } else { 7553 virtaddr = mbox->sge_array->addr[0]; 7554 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7555 shdr = &n_rsrc->cfg_shdr; 7556 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7557 } 7558 7559 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7561 "2984 Failed to read allocated resources " 7562 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7563 type, 7564 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7565 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7566 rc = -EIO; 7567 goto err_exit; 7568 } 7569 err_exit: 7570 lpfc_sli4_mbox_cmd_free(phba, mbox); 7571 return rc; 7572 } 7573 7574 /** 7575 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7576 * @phba: pointer to lpfc hba data structure. 7577 * @sgl_list: linked link of sgl buffers to post 7578 * @cnt: number of linked list buffers 7579 * 7580 * This routine walks the list of buffers that have been allocated and 7581 * repost them to the port by using SGL block post. This is needed after a 7582 * pci_function_reset/warm_start or start. It attempts to construct blocks 7583 * of buffer sgls which contains contiguous xris and uses the non-embedded 7584 * SGL block post mailbox commands to post them to the port. For single 7585 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7586 * mailbox command for posting. 7587 * 7588 * Returns: 0 = success, non-zero failure. 7589 **/ 7590 static int 7591 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7592 struct list_head *sgl_list, int cnt) 7593 { 7594 struct lpfc_sglq *sglq_entry = NULL; 7595 struct lpfc_sglq *sglq_entry_next = NULL; 7596 struct lpfc_sglq *sglq_entry_first = NULL; 7597 int status = 0, total_cnt; 7598 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7599 int last_xritag = NO_XRI; 7600 LIST_HEAD(prep_sgl_list); 7601 LIST_HEAD(blck_sgl_list); 7602 LIST_HEAD(allc_sgl_list); 7603 LIST_HEAD(post_sgl_list); 7604 LIST_HEAD(free_sgl_list); 7605 7606 spin_lock_irq(&phba->hbalock); 7607 spin_lock(&phba->sli4_hba.sgl_list_lock); 7608 list_splice_init(sgl_list, &allc_sgl_list); 7609 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7610 spin_unlock_irq(&phba->hbalock); 7611 7612 total_cnt = cnt; 7613 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7614 &allc_sgl_list, list) { 7615 list_del_init(&sglq_entry->list); 7616 block_cnt++; 7617 if ((last_xritag != NO_XRI) && 7618 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7619 /* a hole in xri block, form a sgl posting block */ 7620 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7621 post_cnt = block_cnt - 1; 7622 /* prepare list for next posting block */ 7623 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7624 block_cnt = 1; 7625 } else { 7626 /* prepare list for next posting block */ 7627 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7628 /* enough sgls for non-embed sgl mbox command */ 7629 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7630 list_splice_init(&prep_sgl_list, 7631 &blck_sgl_list); 7632 post_cnt = block_cnt; 7633 block_cnt = 0; 7634 } 7635 } 7636 num_posted++; 7637 7638 /* keep track of last sgl's xritag */ 7639 last_xritag = sglq_entry->sli4_xritag; 7640 7641 /* end of repost sgl list condition for buffers */ 7642 if (num_posted == total_cnt) { 7643 if (post_cnt == 0) { 7644 list_splice_init(&prep_sgl_list, 7645 &blck_sgl_list); 7646 post_cnt = block_cnt; 7647 } else if (block_cnt == 1) { 7648 status = lpfc_sli4_post_sgl(phba, 7649 sglq_entry->phys, 0, 7650 sglq_entry->sli4_xritag); 7651 if (!status) { 7652 /* successful, put sgl to posted list */ 7653 list_add_tail(&sglq_entry->list, 7654 &post_sgl_list); 7655 } else { 7656 /* Failure, put sgl to free list */ 7657 lpfc_printf_log(phba, KERN_WARNING, 7658 LOG_SLI, 7659 "3159 Failed to post " 7660 "sgl, xritag:x%x\n", 7661 sglq_entry->sli4_xritag); 7662 list_add_tail(&sglq_entry->list, 7663 &free_sgl_list); 7664 total_cnt--; 7665 } 7666 } 7667 } 7668 7669 /* continue until a nembed page worth of sgls */ 7670 if (post_cnt == 0) 7671 continue; 7672 7673 /* post the buffer list sgls as a block */ 7674 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7675 post_cnt); 7676 7677 if (!status) { 7678 /* success, put sgl list to posted sgl list */ 7679 list_splice_init(&blck_sgl_list, &post_sgl_list); 7680 } else { 7681 /* Failure, put sgl list to free sgl list */ 7682 sglq_entry_first = list_first_entry(&blck_sgl_list, 7683 struct lpfc_sglq, 7684 list); 7685 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7686 "3160 Failed to post sgl-list, " 7687 "xritag:x%x-x%x\n", 7688 sglq_entry_first->sli4_xritag, 7689 (sglq_entry_first->sli4_xritag + 7690 post_cnt - 1)); 7691 list_splice_init(&blck_sgl_list, &free_sgl_list); 7692 total_cnt -= post_cnt; 7693 } 7694 7695 /* don't reset xirtag due to hole in xri block */ 7696 if (block_cnt == 0) 7697 last_xritag = NO_XRI; 7698 7699 /* reset sgl post count for next round of posting */ 7700 post_cnt = 0; 7701 } 7702 7703 /* free the sgls failed to post */ 7704 lpfc_free_sgl_list(phba, &free_sgl_list); 7705 7706 /* push sgls posted to the available list */ 7707 if (!list_empty(&post_sgl_list)) { 7708 spin_lock_irq(&phba->hbalock); 7709 spin_lock(&phba->sli4_hba.sgl_list_lock); 7710 list_splice_init(&post_sgl_list, sgl_list); 7711 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7712 spin_unlock_irq(&phba->hbalock); 7713 } else { 7714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7715 "3161 Failure to post sgl to port,status %x " 7716 "blkcnt %d totalcnt %d postcnt %d\n", 7717 status, block_cnt, total_cnt, post_cnt); 7718 return -EIO; 7719 } 7720 7721 /* return the number of XRIs actually posted */ 7722 return total_cnt; 7723 } 7724 7725 /** 7726 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7727 * @phba: pointer to lpfc hba data structure. 7728 * 7729 * This routine walks the list of nvme buffers that have been allocated and 7730 * repost them to the port by using SGL block post. This is needed after a 7731 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7732 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7733 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7734 * 7735 * Returns: 0 = success, non-zero failure. 7736 **/ 7737 static int 7738 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7739 { 7740 LIST_HEAD(post_nblist); 7741 int num_posted, rc = 0; 7742 7743 /* get all NVME buffers need to repost to a local list */ 7744 lpfc_io_buf_flush(phba, &post_nblist); 7745 7746 /* post the list of nvme buffer sgls to port if available */ 7747 if (!list_empty(&post_nblist)) { 7748 num_posted = lpfc_sli4_post_io_sgl_list( 7749 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7750 /* failed to post any nvme buffer, return error */ 7751 if (num_posted == 0) 7752 rc = -EIO; 7753 } 7754 return rc; 7755 } 7756 7757 static void 7758 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7759 { 7760 uint32_t len; 7761 7762 len = sizeof(struct lpfc_mbx_set_host_data) - 7763 sizeof(struct lpfc_sli4_cfg_mhdr); 7764 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7765 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7766 LPFC_SLI4_MBX_EMBED); 7767 7768 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7769 mbox->u.mqe.un.set_host_data.param_len = 7770 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7771 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7772 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7773 "Linux %s v"LPFC_DRIVER_VERSION, 7774 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? "FCoE" : "FC"); 7775 } 7776 7777 int 7778 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7779 struct lpfc_queue *drq, int count, int idx) 7780 { 7781 int rc, i; 7782 struct lpfc_rqe hrqe; 7783 struct lpfc_rqe drqe; 7784 struct lpfc_rqb *rqbp; 7785 unsigned long flags; 7786 struct rqb_dmabuf *rqb_buffer; 7787 LIST_HEAD(rqb_buf_list); 7788 7789 rqbp = hrq->rqbp; 7790 for (i = 0; i < count; i++) { 7791 spin_lock_irqsave(&phba->hbalock, flags); 7792 /* IF RQ is already full, don't bother */ 7793 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7794 spin_unlock_irqrestore(&phba->hbalock, flags); 7795 break; 7796 } 7797 spin_unlock_irqrestore(&phba->hbalock, flags); 7798 7799 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7800 if (!rqb_buffer) 7801 break; 7802 rqb_buffer->hrq = hrq; 7803 rqb_buffer->drq = drq; 7804 rqb_buffer->idx = idx; 7805 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7806 } 7807 7808 spin_lock_irqsave(&phba->hbalock, flags); 7809 while (!list_empty(&rqb_buf_list)) { 7810 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7811 hbuf.list); 7812 7813 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7814 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7815 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7816 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7817 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7818 if (rc < 0) { 7819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7820 "6421 Cannot post to HRQ %d: %x %x %x " 7821 "DRQ %x %x\n", 7822 hrq->queue_id, 7823 hrq->host_index, 7824 hrq->hba_index, 7825 hrq->entry_count, 7826 drq->host_index, 7827 drq->hba_index); 7828 rqbp->rqb_free_buffer(phba, rqb_buffer); 7829 } else { 7830 list_add_tail(&rqb_buffer->hbuf.list, 7831 &rqbp->rqb_buffer_list); 7832 rqbp->buffer_count++; 7833 } 7834 } 7835 spin_unlock_irqrestore(&phba->hbalock, flags); 7836 return 1; 7837 } 7838 7839 static void 7840 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7841 { 7842 union lpfc_sli4_cfg_shdr *shdr; 7843 u32 shdr_status, shdr_add_status; 7844 7845 shdr = (union lpfc_sli4_cfg_shdr *) 7846 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7847 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7848 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7849 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7850 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7851 "4622 SET_FEATURE (x%x) mbox failed, " 7852 "status x%x add_status x%x, mbx status x%x\n", 7853 LPFC_SET_LD_SIGNAL, shdr_status, 7854 shdr_add_status, pmb->u.mb.mbxStatus); 7855 phba->degrade_activate_threshold = 0; 7856 phba->degrade_deactivate_threshold = 0; 7857 phba->fec_degrade_interval = 0; 7858 goto out; 7859 } 7860 7861 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7862 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7863 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7864 7865 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7866 "4624 Success: da x%x dd x%x interval x%x\n", 7867 phba->degrade_activate_threshold, 7868 phba->degrade_deactivate_threshold, 7869 phba->fec_degrade_interval); 7870 out: 7871 mempool_free(pmb, phba->mbox_mem_pool); 7872 } 7873 7874 int 7875 lpfc_read_lds_params(struct lpfc_hba *phba) 7876 { 7877 LPFC_MBOXQ_t *mboxq; 7878 int rc; 7879 7880 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7881 if (!mboxq) 7882 return -ENOMEM; 7883 7884 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7885 mboxq->vport = phba->pport; 7886 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7887 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7888 if (rc == MBX_NOT_FINISHED) { 7889 mempool_free(mboxq, phba->mbox_mem_pool); 7890 return -EIO; 7891 } 7892 return 0; 7893 } 7894 7895 static void 7896 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7897 { 7898 struct lpfc_vport *vport = pmb->vport; 7899 union lpfc_sli4_cfg_shdr *shdr; 7900 u32 shdr_status, shdr_add_status; 7901 u32 sig, acqe; 7902 7903 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7904 * is done. (2) Mailbox failed and send FPIN support only. 7905 */ 7906 shdr = (union lpfc_sli4_cfg_shdr *) 7907 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7908 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7909 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7910 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7911 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7912 "2516 CGN SET_FEATURE mbox failed with " 7913 "status x%x add_status x%x, mbx status x%x " 7914 "Reset Congestion to FPINs only\n", 7915 shdr_status, shdr_add_status, 7916 pmb->u.mb.mbxStatus); 7917 /* If there is a mbox error, move on to RDF */ 7918 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7919 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7920 goto out; 7921 } 7922 7923 /* Zero out Congestion Signal ACQE counter */ 7924 phba->cgn_acqe_cnt = 0; 7925 7926 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7927 &pmb->u.mqe.un.set_feature); 7928 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7929 &pmb->u.mqe.un.set_feature); 7930 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7931 "4620 SET_FEATURES Success: Freq: %ds %dms " 7932 " Reg: x%x x%x\n", acqe, sig, 7933 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7934 out: 7935 mempool_free(pmb, phba->mbox_mem_pool); 7936 7937 /* Register for FPIN events from the fabric now that the 7938 * EDC common_set_features has completed. 7939 */ 7940 lpfc_issue_els_rdf(vport, 0); 7941 } 7942 7943 int 7944 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7945 { 7946 LPFC_MBOXQ_t *mboxq; 7947 u32 rc; 7948 7949 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7950 if (!mboxq) 7951 goto out_rdf; 7952 7953 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7954 mboxq->vport = phba->pport; 7955 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7956 7957 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7958 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7959 "Reg: x%x x%x\n", 7960 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7961 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7962 7963 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7964 if (rc == MBX_NOT_FINISHED) 7965 goto out; 7966 return 0; 7967 7968 out: 7969 mempool_free(mboxq, phba->mbox_mem_pool); 7970 out_rdf: 7971 /* If there is a mbox error, move on to RDF */ 7972 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7973 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7974 lpfc_issue_els_rdf(phba->pport, 0); 7975 return -EIO; 7976 } 7977 7978 /** 7979 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7980 * @phba: pointer to lpfc hba data structure. 7981 * 7982 * This routine initializes the per-eq idle_stat to dynamically dictate 7983 * polling decisions. 7984 * 7985 * Return codes: 7986 * None 7987 **/ 7988 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7989 { 7990 int i; 7991 struct lpfc_sli4_hdw_queue *hdwq; 7992 struct lpfc_queue *eq; 7993 struct lpfc_idle_stat *idle_stat; 7994 u64 wall; 7995 7996 for_each_present_cpu(i) { 7997 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7998 eq = hdwq->hba_eq; 7999 8000 /* Skip if we've already handled this eq's primary CPU */ 8001 if (eq->chann != i) 8002 continue; 8003 8004 idle_stat = &phba->sli4_hba.idle_stat[i]; 8005 8006 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8007 idle_stat->prev_wall = wall; 8008 8009 if (phba->nvmet_support || 8010 phba->cmf_active_mode != LPFC_CFG_OFF || 8011 phba->intr_type != MSIX) 8012 eq->poll_mode = LPFC_QUEUE_WORK; 8013 else 8014 eq->poll_mode = LPFC_THREADED_IRQ; 8015 } 8016 8017 if (!phba->nvmet_support && phba->intr_type == MSIX) 8018 schedule_delayed_work(&phba->idle_stat_delay_work, 8019 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8020 } 8021 8022 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8023 { 8024 uint32_t if_type; 8025 8026 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8027 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8028 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8029 struct lpfc_register reg_data; 8030 8031 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8032 ®_data.word0)) 8033 return; 8034 8035 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8036 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8037 "2904 Firmware Dump Image Present" 8038 " on Adapter"); 8039 } 8040 } 8041 8042 /** 8043 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8044 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8045 * @entries: Number of rx_info_entry objects to allocate in ring 8046 * 8047 * Return: 8048 * 0 - Success 8049 * ENOMEM - Failure to kmalloc 8050 **/ 8051 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8052 u32 entries) 8053 { 8054 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8055 GFP_KERNEL); 8056 if (!rx_monitor->ring) 8057 return -ENOMEM; 8058 8059 rx_monitor->head_idx = 0; 8060 rx_monitor->tail_idx = 0; 8061 spin_lock_init(&rx_monitor->lock); 8062 rx_monitor->entries = entries; 8063 8064 return 0; 8065 } 8066 8067 /** 8068 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8069 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8070 * 8071 * Called after cancellation of cmf_timer. 8072 **/ 8073 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8074 { 8075 kfree(rx_monitor->ring); 8076 rx_monitor->ring = NULL; 8077 rx_monitor->entries = 0; 8078 rx_monitor->head_idx = 0; 8079 rx_monitor->tail_idx = 0; 8080 } 8081 8082 /** 8083 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8084 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8085 * @entry: Pointer to rx_info_entry 8086 * 8087 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8088 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8089 * 8090 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8091 * 8092 * In cases of old data overflow, we do a best effort of FIFO order. 8093 **/ 8094 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8095 struct rx_info_entry *entry) 8096 { 8097 struct rx_info_entry *ring = rx_monitor->ring; 8098 u32 *head_idx = &rx_monitor->head_idx; 8099 u32 *tail_idx = &rx_monitor->tail_idx; 8100 spinlock_t *ring_lock = &rx_monitor->lock; 8101 u32 ring_size = rx_monitor->entries; 8102 8103 spin_lock(ring_lock); 8104 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8105 *tail_idx = (*tail_idx + 1) % ring_size; 8106 8107 /* Best effort of FIFO saved data */ 8108 if (*tail_idx == *head_idx) 8109 *head_idx = (*head_idx + 1) % ring_size; 8110 8111 spin_unlock(ring_lock); 8112 } 8113 8114 /** 8115 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8116 * @phba: Pointer to lpfc_hba object 8117 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8118 * @buf: Pointer to char buffer that will contain rx monitor info data 8119 * @buf_len: Length buf including null char 8120 * @max_read_entries: Maximum number of entries to read out of ring 8121 * 8122 * Used to dump/read what's in rx_monitor's ring buffer. 8123 * 8124 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8125 * information to kmsg instead of filling out buf. 8126 * 8127 * Return: 8128 * Number of entries read out of the ring 8129 **/ 8130 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8131 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8132 u32 buf_len, u32 max_read_entries) 8133 { 8134 struct rx_info_entry *ring = rx_monitor->ring; 8135 struct rx_info_entry *entry; 8136 u32 *head_idx = &rx_monitor->head_idx; 8137 u32 *tail_idx = &rx_monitor->tail_idx; 8138 spinlock_t *ring_lock = &rx_monitor->lock; 8139 u32 ring_size = rx_monitor->entries; 8140 u32 cnt = 0; 8141 char tmp[DBG_LOG_STR_SZ] = {0}; 8142 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8143 8144 if (!log_to_kmsg) { 8145 /* clear the buffer to be sure */ 8146 memset(buf, 0, buf_len); 8147 8148 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8149 "%-8s%-8s%-8s%-16s\n", 8150 "MaxBPI", "Tot_Data_CMF", 8151 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8152 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8153 "IO_cnt", "Info", "BWutil(ms)"); 8154 } 8155 8156 /* Needs to be _irq because record is called from timer interrupt 8157 * context 8158 */ 8159 spin_lock_irq(ring_lock); 8160 while (*head_idx != *tail_idx) { 8161 entry = &ring[*head_idx]; 8162 8163 /* Read out this entry's data. */ 8164 if (!log_to_kmsg) { 8165 /* If !log_to_kmsg, then store to buf. */ 8166 scnprintf(tmp, sizeof(tmp), 8167 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8168 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8169 *head_idx, entry->max_bytes_per_interval, 8170 entry->cmf_bytes, entry->total_bytes, 8171 entry->rcv_bytes, entry->avg_io_latency, 8172 entry->avg_io_size, entry->max_read_cnt, 8173 entry->cmf_busy, entry->io_cnt, 8174 entry->cmf_info, entry->timer_utilization, 8175 entry->timer_interval); 8176 8177 /* Check for buffer overflow */ 8178 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8179 break; 8180 8181 /* Append entry's data to buffer */ 8182 strlcat(buf, tmp, buf_len); 8183 } else { 8184 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8185 "4410 %02u: MBPI %llu Xmit %llu " 8186 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8187 "BWUtil %u Int %u slot %u\n", 8188 cnt, entry->max_bytes_per_interval, 8189 entry->total_bytes, entry->rcv_bytes, 8190 entry->avg_io_latency, 8191 entry->avg_io_size, entry->cmf_info, 8192 entry->timer_utilization, 8193 entry->timer_interval, *head_idx); 8194 } 8195 8196 *head_idx = (*head_idx + 1) % ring_size; 8197 8198 /* Don't feed more than max_read_entries */ 8199 cnt++; 8200 if (cnt >= max_read_entries) 8201 break; 8202 } 8203 spin_unlock_irq(ring_lock); 8204 8205 return cnt; 8206 } 8207 8208 /** 8209 * lpfc_cmf_setup - Initialize idle_stat tracking 8210 * @phba: Pointer to HBA context object. 8211 * 8212 * This is called from HBA setup during driver load or when the HBA 8213 * comes online. this does all the initialization to support CMF and MI. 8214 **/ 8215 static int 8216 lpfc_cmf_setup(struct lpfc_hba *phba) 8217 { 8218 LPFC_MBOXQ_t *mboxq; 8219 struct lpfc_dmabuf *mp; 8220 struct lpfc_pc_sli4_params *sli4_params; 8221 int rc, cmf, mi_ver; 8222 8223 rc = lpfc_sli4_refresh_params(phba); 8224 if (unlikely(rc)) 8225 return rc; 8226 8227 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8228 if (!mboxq) 8229 return -ENOMEM; 8230 8231 sli4_params = &phba->sli4_hba.pc_sli4_params; 8232 8233 /* Always try to enable MI feature if we can */ 8234 if (sli4_params->mi_ver) { 8235 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8236 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8237 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8238 &mboxq->u.mqe.un.set_feature); 8239 8240 if (rc == MBX_SUCCESS) { 8241 if (mi_ver) { 8242 lpfc_printf_log(phba, 8243 KERN_WARNING, LOG_CGN_MGMT, 8244 "6215 MI is enabled\n"); 8245 sli4_params->mi_ver = mi_ver; 8246 } else { 8247 lpfc_printf_log(phba, 8248 KERN_WARNING, LOG_CGN_MGMT, 8249 "6338 MI is disabled\n"); 8250 sli4_params->mi_ver = 0; 8251 } 8252 } else { 8253 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8254 lpfc_printf_log(phba, KERN_INFO, 8255 LOG_CGN_MGMT | LOG_INIT, 8256 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8257 "failed, rc:x%x mi:x%x\n", 8258 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8259 lpfc_sli_config_mbox_subsys_get 8260 (phba, mboxq), 8261 lpfc_sli_config_mbox_opcode_get 8262 (phba, mboxq), 8263 rc, sli4_params->mi_ver); 8264 } 8265 } else { 8266 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8267 "6217 MI is disabled\n"); 8268 } 8269 8270 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8271 if (sli4_params->mi_ver) 8272 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8273 8274 /* Always try to enable CMF feature if we can */ 8275 if (sli4_params->cmf) { 8276 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8277 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8278 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8279 &mboxq->u.mqe.un.set_feature); 8280 if (rc == MBX_SUCCESS && cmf) { 8281 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8282 "6218 CMF is enabled: mode %d\n", 8283 phba->cmf_active_mode); 8284 } else { 8285 lpfc_printf_log(phba, KERN_WARNING, 8286 LOG_CGN_MGMT | LOG_INIT, 8287 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8288 "failed, rc:x%x dd:x%x\n", 8289 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8290 lpfc_sli_config_mbox_subsys_get 8291 (phba, mboxq), 8292 lpfc_sli_config_mbox_opcode_get 8293 (phba, mboxq), 8294 rc, cmf); 8295 sli4_params->cmf = 0; 8296 phba->cmf_active_mode = LPFC_CFG_OFF; 8297 goto no_cmf; 8298 } 8299 8300 /* Allocate Congestion Information Buffer */ 8301 if (!phba->cgn_i) { 8302 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8303 if (mp) 8304 mp->virt = dma_alloc_coherent 8305 (&phba->pcidev->dev, 8306 sizeof(struct lpfc_cgn_info), 8307 &mp->phys, GFP_KERNEL); 8308 if (!mp || !mp->virt) { 8309 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8310 "2640 Failed to alloc memory " 8311 "for Congestion Info\n"); 8312 kfree(mp); 8313 sli4_params->cmf = 0; 8314 phba->cmf_active_mode = LPFC_CFG_OFF; 8315 goto no_cmf; 8316 } 8317 phba->cgn_i = mp; 8318 8319 /* initialize congestion buffer info */ 8320 lpfc_init_congestion_buf(phba); 8321 lpfc_init_congestion_stat(phba); 8322 8323 /* Zero out Congestion Signal counters */ 8324 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8325 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8326 } 8327 8328 rc = lpfc_sli4_cgn_params_read(phba); 8329 if (rc < 0) { 8330 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8331 "6242 Error reading Cgn Params (%d)\n", 8332 rc); 8333 /* Ensure CGN Mode is off */ 8334 sli4_params->cmf = 0; 8335 } else if (!rc) { 8336 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8337 "6243 CGN Event empty object.\n"); 8338 /* Ensure CGN Mode is off */ 8339 sli4_params->cmf = 0; 8340 } 8341 } else { 8342 no_cmf: 8343 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8344 "6220 CMF is disabled\n"); 8345 } 8346 8347 /* Only register congestion buffer with firmware if BOTH 8348 * CMF and E2E are enabled. 8349 */ 8350 if (sli4_params->cmf && sli4_params->mi_ver) { 8351 rc = lpfc_reg_congestion_buf(phba); 8352 if (rc) { 8353 dma_free_coherent(&phba->pcidev->dev, 8354 sizeof(struct lpfc_cgn_info), 8355 phba->cgn_i->virt, phba->cgn_i->phys); 8356 kfree(phba->cgn_i); 8357 phba->cgn_i = NULL; 8358 /* Ensure CGN Mode is off */ 8359 phba->cmf_active_mode = LPFC_CFG_OFF; 8360 sli4_params->cmf = 0; 8361 return 0; 8362 } 8363 } 8364 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8365 "6470 Setup MI version %d CMF %d mode %d\n", 8366 sli4_params->mi_ver, sli4_params->cmf, 8367 phba->cmf_active_mode); 8368 8369 mempool_free(mboxq, phba->mbox_mem_pool); 8370 8371 /* Initialize atomic counters */ 8372 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8373 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8374 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8375 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8376 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8377 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8378 atomic64_set(&phba->cgn_latency_evt, 0); 8379 8380 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8381 8382 /* Allocate RX Monitor Buffer */ 8383 if (!phba->rx_monitor) { 8384 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8385 GFP_KERNEL); 8386 8387 if (!phba->rx_monitor) { 8388 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8389 "2644 Failed to alloc memory " 8390 "for RX Monitor Buffer\n"); 8391 return -ENOMEM; 8392 } 8393 8394 /* Instruct the rx_monitor object to instantiate its ring */ 8395 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8396 LPFC_MAX_RXMONITOR_ENTRY)) { 8397 kfree(phba->rx_monitor); 8398 phba->rx_monitor = NULL; 8399 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8400 "2645 Failed to alloc memory " 8401 "for RX Monitor's Ring\n"); 8402 return -ENOMEM; 8403 } 8404 } 8405 8406 return 0; 8407 } 8408 8409 static int 8410 lpfc_set_host_tm(struct lpfc_hba *phba) 8411 { 8412 LPFC_MBOXQ_t *mboxq; 8413 uint32_t len, rc; 8414 struct timespec64 cur_time; 8415 struct tm broken; 8416 uint32_t month, day, year; 8417 uint32_t hour, minute, second; 8418 struct lpfc_mbx_set_host_date_time *tm; 8419 8420 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8421 if (!mboxq) 8422 return -ENOMEM; 8423 8424 len = sizeof(struct lpfc_mbx_set_host_data) - 8425 sizeof(struct lpfc_sli4_cfg_mhdr); 8426 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8427 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8428 LPFC_SLI4_MBX_EMBED); 8429 8430 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8431 mboxq->u.mqe.un.set_host_data.param_len = 8432 sizeof(struct lpfc_mbx_set_host_date_time); 8433 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8434 ktime_get_real_ts64(&cur_time); 8435 time64_to_tm(cur_time.tv_sec, 0, &broken); 8436 month = broken.tm_mon + 1; 8437 day = broken.tm_mday; 8438 year = broken.tm_year - 100; 8439 hour = broken.tm_hour; 8440 minute = broken.tm_min; 8441 second = broken.tm_sec; 8442 bf_set(lpfc_mbx_set_host_month, tm, month); 8443 bf_set(lpfc_mbx_set_host_day, tm, day); 8444 bf_set(lpfc_mbx_set_host_year, tm, year); 8445 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8446 bf_set(lpfc_mbx_set_host_min, tm, minute); 8447 bf_set(lpfc_mbx_set_host_sec, tm, second); 8448 8449 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8450 mempool_free(mboxq, phba->mbox_mem_pool); 8451 return rc; 8452 } 8453 8454 /** 8455 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8456 * @phba: Pointer to HBA context object. 8457 * 8458 * This function is the main SLI4 device initialization PCI function. This 8459 * function is called by the HBA initialization code, HBA reset code and 8460 * HBA error attention handler code. Caller is not required to hold any 8461 * locks. 8462 **/ 8463 int 8464 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8465 { 8466 int rc, i, cnt, len, dd; 8467 LPFC_MBOXQ_t *mboxq; 8468 struct lpfc_mqe *mqe; 8469 uint8_t *vpd; 8470 uint32_t vpd_size; 8471 uint32_t ftr_rsp = 0; 8472 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8473 struct lpfc_vport *vport = phba->pport; 8474 struct lpfc_dmabuf *mp; 8475 struct lpfc_rqb *rqbp; 8476 u32 flg; 8477 8478 /* Perform a PCI function reset to start from clean */ 8479 rc = lpfc_pci_function_reset(phba); 8480 if (unlikely(rc)) 8481 return -ENODEV; 8482 8483 /* Check the HBA Host Status Register for readyness */ 8484 rc = lpfc_sli4_post_status_check(phba); 8485 if (unlikely(rc)) 8486 return -ENODEV; 8487 else { 8488 spin_lock_irq(&phba->hbalock); 8489 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8490 flg = phba->sli.sli_flag; 8491 spin_unlock_irq(&phba->hbalock); 8492 /* Allow a little time after setting SLI_ACTIVE for any polled 8493 * MBX commands to complete via BSG. 8494 */ 8495 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8496 msleep(20); 8497 spin_lock_irq(&phba->hbalock); 8498 flg = phba->sli.sli_flag; 8499 spin_unlock_irq(&phba->hbalock); 8500 } 8501 } 8502 clear_bit(HBA_SETUP, &phba->hba_flag); 8503 8504 lpfc_sli4_dip(phba); 8505 8506 /* 8507 * Allocate a single mailbox container for initializing the 8508 * port. 8509 */ 8510 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8511 if (!mboxq) 8512 return -ENOMEM; 8513 8514 /* Issue READ_REV to collect vpd and FW information. */ 8515 vpd_size = SLI4_PAGE_SIZE; 8516 vpd = kzalloc(vpd_size, GFP_KERNEL); 8517 if (!vpd) { 8518 rc = -ENOMEM; 8519 goto out_free_mbox; 8520 } 8521 8522 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8523 if (unlikely(rc)) { 8524 kfree(vpd); 8525 goto out_free_mbox; 8526 } 8527 8528 mqe = &mboxq->u.mqe; 8529 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8530 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8531 set_bit(HBA_FCOE_MODE, &phba->hba_flag); 8532 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8533 } else { 8534 clear_bit(HBA_FCOE_MODE, &phba->hba_flag); 8535 } 8536 8537 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8538 LPFC_DCBX_CEE_MODE) 8539 set_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8540 else 8541 clear_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 8542 8543 clear_bit(HBA_IOQ_FLUSH, &phba->hba_flag); 8544 8545 if (phba->sli_rev != LPFC_SLI_REV4) { 8546 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8547 "0376 READ_REV Error. SLI Level %d " 8548 "FCoE enabled %d\n", 8549 phba->sli_rev, 8550 test_bit(HBA_FCOE_MODE, &phba->hba_flag) ? 1 : 0); 8551 rc = -EIO; 8552 kfree(vpd); 8553 goto out_free_mbox; 8554 } 8555 8556 rc = lpfc_set_host_tm(phba); 8557 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8558 "6468 Set host date / time: Status x%x:\n", rc); 8559 8560 /* 8561 * Continue initialization with default values even if driver failed 8562 * to read FCoE param config regions, only read parameters if the 8563 * board is FCoE 8564 */ 8565 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 8566 lpfc_sli4_read_fcoe_params(phba)) 8567 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8568 "2570 Failed to read FCoE parameters\n"); 8569 8570 /* 8571 * Retrieve sli4 device physical port name, failure of doing it 8572 * is considered as non-fatal. 8573 */ 8574 rc = lpfc_sli4_retrieve_pport_name(phba); 8575 if (!rc) 8576 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8577 "3080 Successful retrieving SLI4 device " 8578 "physical port name: %s.\n", phba->Port); 8579 8580 rc = lpfc_sli4_get_ctl_attr(phba); 8581 if (!rc) 8582 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8583 "8351 Successful retrieving SLI4 device " 8584 "CTL ATTR\n"); 8585 8586 /* 8587 * Evaluate the read rev and vpd data. Populate the driver 8588 * state with the results. If this routine fails, the failure 8589 * is not fatal as the driver will use generic values. 8590 */ 8591 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8592 if (unlikely(!rc)) 8593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8594 "0377 Error %d parsing vpd. " 8595 "Using defaults.\n", rc); 8596 kfree(vpd); 8597 8598 /* Save information as VPD data */ 8599 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8600 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8601 8602 /* 8603 * This is because first G7 ASIC doesn't support the standard 8604 * 0x5a NVME cmd descriptor type/subtype 8605 */ 8606 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8607 LPFC_SLI_INTF_IF_TYPE_6) && 8608 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8609 (phba->vpd.rev.smRev == 0) && 8610 (phba->cfg_nvme_embed_cmd == 1)) 8611 phba->cfg_nvme_embed_cmd = 0; 8612 8613 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8614 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8615 &mqe->un.read_rev); 8616 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8617 &mqe->un.read_rev); 8618 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8619 &mqe->un.read_rev); 8620 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8621 &mqe->un.read_rev); 8622 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8623 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8624 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8625 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8626 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8627 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8628 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8629 "(%d):0380 READ_REV Status x%x " 8630 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8631 mboxq->vport ? mboxq->vport->vpi : 0, 8632 bf_get(lpfc_mqe_status, mqe), 8633 phba->vpd.rev.opFwName, 8634 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8635 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8636 8637 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8638 LPFC_SLI_INTF_IF_TYPE_0) { 8639 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8640 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8641 if (rc == MBX_SUCCESS) { 8642 set_bit(HBA_RECOVERABLE_UE, &phba->hba_flag); 8643 /* Set 1Sec interval to detect UE */ 8644 phba->eratt_poll_interval = 1; 8645 phba->sli4_hba.ue_to_sr = bf_get( 8646 lpfc_mbx_set_feature_UESR, 8647 &mboxq->u.mqe.un.set_feature); 8648 phba->sli4_hba.ue_to_rp = bf_get( 8649 lpfc_mbx_set_feature_UERP, 8650 &mboxq->u.mqe.un.set_feature); 8651 } 8652 } 8653 8654 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8655 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8656 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8657 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8658 if (rc != MBX_SUCCESS) 8659 phba->mds_diags_support = 0; 8660 } 8661 8662 /* 8663 * Discover the port's supported feature set and match it against the 8664 * hosts requests. 8665 */ 8666 lpfc_request_features(phba, mboxq); 8667 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8668 if (unlikely(rc)) { 8669 rc = -EIO; 8670 goto out_free_mbox; 8671 } 8672 8673 /* Disable VMID if app header is not supported */ 8674 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8675 &mqe->un.req_ftrs))) { 8676 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8677 phba->cfg_vmid_app_header = 0; 8678 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8679 "1242 vmid feature not supported\n"); 8680 } 8681 8682 /* 8683 * The port must support FCP initiator mode as this is the 8684 * only mode running in the host. 8685 */ 8686 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8687 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8688 "0378 No support for fcpi mode.\n"); 8689 ftr_rsp++; 8690 } 8691 8692 /* Performance Hints are ONLY for FCoE */ 8693 if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8694 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8695 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8696 else 8697 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8698 } 8699 8700 /* 8701 * If the port cannot support the host's requested features 8702 * then turn off the global config parameters to disable the 8703 * feature in the driver. This is not a fatal error. 8704 */ 8705 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8706 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8707 phba->cfg_enable_bg = 0; 8708 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8709 ftr_rsp++; 8710 } 8711 } 8712 8713 if (phba->max_vpi && phba->cfg_enable_npiv && 8714 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8715 ftr_rsp++; 8716 8717 if (ftr_rsp) { 8718 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8719 "0379 Feature Mismatch Data: x%08x %08x " 8720 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8721 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8722 phba->cfg_enable_npiv, phba->max_vpi); 8723 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8724 phba->cfg_enable_bg = 0; 8725 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8726 phba->cfg_enable_npiv = 0; 8727 } 8728 8729 /* These SLI3 features are assumed in SLI4 */ 8730 spin_lock_irq(&phba->hbalock); 8731 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8732 spin_unlock_irq(&phba->hbalock); 8733 8734 /* Always try to enable dual dump feature if we can */ 8735 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8736 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8737 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8738 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8739 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8740 "6448 Dual Dump is enabled\n"); 8741 else 8742 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8743 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8744 "rc:x%x dd:x%x\n", 8745 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8746 lpfc_sli_config_mbox_subsys_get( 8747 phba, mboxq), 8748 lpfc_sli_config_mbox_opcode_get( 8749 phba, mboxq), 8750 rc, dd); 8751 /* 8752 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8753 * calls depends on these resources to complete port setup. 8754 */ 8755 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8756 if (rc) { 8757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8758 "2920 Failed to alloc Resource IDs " 8759 "rc = x%x\n", rc); 8760 goto out_free_mbox; 8761 } 8762 8763 lpfc_set_host_data(phba, mboxq); 8764 8765 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8766 if (rc) { 8767 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8768 "2134 Failed to set host os driver version %x", 8769 rc); 8770 } 8771 8772 /* Read the port's service parameters. */ 8773 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8774 if (rc) { 8775 phba->link_state = LPFC_HBA_ERROR; 8776 rc = -ENOMEM; 8777 goto out_free_mbox; 8778 } 8779 8780 mboxq->vport = vport; 8781 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8782 mp = mboxq->ctx_buf; 8783 if (rc == MBX_SUCCESS) { 8784 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8785 rc = 0; 8786 } 8787 8788 /* 8789 * This memory was allocated by the lpfc_read_sparam routine but is 8790 * no longer needed. It is released and ctx_buf NULLed to prevent 8791 * unintended pointer access as the mbox is reused. 8792 */ 8793 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8794 kfree(mp); 8795 mboxq->ctx_buf = NULL; 8796 if (unlikely(rc)) { 8797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8798 "0382 READ_SPARAM command failed " 8799 "status %d, mbxStatus x%x\n", 8800 rc, bf_get(lpfc_mqe_status, mqe)); 8801 phba->link_state = LPFC_HBA_ERROR; 8802 rc = -EIO; 8803 goto out_free_mbox; 8804 } 8805 8806 lpfc_update_vport_wwn(vport); 8807 8808 /* Update the fc_host data structures with new wwn. */ 8809 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8810 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8811 8812 /* Create all the SLI4 queues */ 8813 rc = lpfc_sli4_queue_create(phba); 8814 if (rc) { 8815 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8816 "3089 Failed to allocate queues\n"); 8817 rc = -ENODEV; 8818 goto out_free_mbox; 8819 } 8820 /* Set up all the queues to the device */ 8821 rc = lpfc_sli4_queue_setup(phba); 8822 if (unlikely(rc)) { 8823 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8824 "0381 Error %d during queue setup.\n", rc); 8825 goto out_stop_timers; 8826 } 8827 /* Initialize the driver internal SLI layer lists. */ 8828 lpfc_sli4_setup(phba); 8829 lpfc_sli4_queue_init(phba); 8830 8831 /* update host els xri-sgl sizes and mappings */ 8832 rc = lpfc_sli4_els_sgl_update(phba); 8833 if (unlikely(rc)) { 8834 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8835 "1400 Failed to update xri-sgl size and " 8836 "mapping: %d\n", rc); 8837 goto out_destroy_queue; 8838 } 8839 8840 /* register the els sgl pool to the port */ 8841 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8842 phba->sli4_hba.els_xri_cnt); 8843 if (unlikely(rc < 0)) { 8844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8845 "0582 Error %d during els sgl post " 8846 "operation\n", rc); 8847 rc = -ENODEV; 8848 goto out_destroy_queue; 8849 } 8850 phba->sli4_hba.els_xri_cnt = rc; 8851 8852 if (phba->nvmet_support) { 8853 /* update host nvmet xri-sgl sizes and mappings */ 8854 rc = lpfc_sli4_nvmet_sgl_update(phba); 8855 if (unlikely(rc)) { 8856 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8857 "6308 Failed to update nvmet-sgl size " 8858 "and mapping: %d\n", rc); 8859 goto out_destroy_queue; 8860 } 8861 8862 /* register the nvmet sgl pool to the port */ 8863 rc = lpfc_sli4_repost_sgl_list( 8864 phba, 8865 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8866 phba->sli4_hba.nvmet_xri_cnt); 8867 if (unlikely(rc < 0)) { 8868 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8869 "3117 Error %d during nvmet " 8870 "sgl post\n", rc); 8871 rc = -ENODEV; 8872 goto out_destroy_queue; 8873 } 8874 phba->sli4_hba.nvmet_xri_cnt = rc; 8875 8876 /* We allocate an iocbq for every receive context SGL. 8877 * The additional allocation is for abort and ls handling. 8878 */ 8879 cnt = phba->sli4_hba.nvmet_xri_cnt + 8880 phba->sli4_hba.max_cfg_param.max_xri; 8881 } else { 8882 /* update host common xri-sgl sizes and mappings */ 8883 rc = lpfc_sli4_io_sgl_update(phba); 8884 if (unlikely(rc)) { 8885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8886 "6082 Failed to update nvme-sgl size " 8887 "and mapping: %d\n", rc); 8888 goto out_destroy_queue; 8889 } 8890 8891 /* register the allocated common sgl pool to the port */ 8892 rc = lpfc_sli4_repost_io_sgl_list(phba); 8893 if (unlikely(rc)) { 8894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8895 "6116 Error %d during nvme sgl post " 8896 "operation\n", rc); 8897 /* Some NVME buffers were moved to abort nvme list */ 8898 /* A pci function reset will repost them */ 8899 rc = -ENODEV; 8900 goto out_destroy_queue; 8901 } 8902 /* Each lpfc_io_buf job structure has an iocbq element. 8903 * This cnt provides for abort, els, ct and ls requests. 8904 */ 8905 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8906 } 8907 8908 if (!phba->sli.iocbq_lookup) { 8909 /* Initialize and populate the iocb list per host */ 8910 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8911 "2821 initialize iocb list with %d entries\n", 8912 cnt); 8913 rc = lpfc_init_iocb_list(phba, cnt); 8914 if (rc) { 8915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8916 "1413 Failed to init iocb list.\n"); 8917 goto out_destroy_queue; 8918 } 8919 } 8920 8921 if (phba->nvmet_support) 8922 lpfc_nvmet_create_targetport(phba); 8923 8924 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8925 /* Post initial buffers to all RQs created */ 8926 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8927 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8928 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8929 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8930 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8931 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8932 rqbp->buffer_count = 0; 8933 8934 lpfc_post_rq_buffer( 8935 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8936 phba->sli4_hba.nvmet_mrq_data[i], 8937 phba->cfg_nvmet_mrq_post, i); 8938 } 8939 } 8940 8941 /* Post the rpi header region to the device. */ 8942 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8943 if (unlikely(rc)) { 8944 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8945 "0393 Error %d during rpi post operation\n", 8946 rc); 8947 rc = -ENODEV; 8948 goto out_free_iocblist; 8949 } 8950 lpfc_sli4_node_prep(phba); 8951 8952 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { 8953 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8954 /* 8955 * The FC Port needs to register FCFI (index 0) 8956 */ 8957 lpfc_reg_fcfi(phba, mboxq); 8958 mboxq->vport = phba->pport; 8959 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8960 if (rc != MBX_SUCCESS) 8961 goto out_unset_queue; 8962 rc = 0; 8963 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8964 &mboxq->u.mqe.un.reg_fcfi); 8965 } else { 8966 /* We are a NVME Target mode with MRQ > 1 */ 8967 8968 /* First register the FCFI */ 8969 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8970 mboxq->vport = phba->pport; 8971 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8972 if (rc != MBX_SUCCESS) 8973 goto out_unset_queue; 8974 rc = 0; 8975 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8976 &mboxq->u.mqe.un.reg_fcfi_mrq); 8977 8978 /* Next register the MRQs */ 8979 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8980 mboxq->vport = phba->pport; 8981 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8982 if (rc != MBX_SUCCESS) 8983 goto out_unset_queue; 8984 rc = 0; 8985 } 8986 /* Check if the port is configured to be disabled */ 8987 lpfc_sli_read_link_ste(phba); 8988 } 8989 8990 /* Don't post more new bufs if repost already recovered 8991 * the nvme sgls. 8992 */ 8993 if (phba->nvmet_support == 0) { 8994 if (phba->sli4_hba.io_xri_cnt == 0) { 8995 len = lpfc_new_io_buf( 8996 phba, phba->sli4_hba.io_xri_max); 8997 if (len == 0) { 8998 rc = -ENOMEM; 8999 goto out_unset_queue; 9000 } 9001 9002 if (phba->cfg_xri_rebalancing) 9003 lpfc_create_multixri_pools(phba); 9004 } 9005 } else { 9006 phba->cfg_xri_rebalancing = 0; 9007 } 9008 9009 /* Allow asynchronous mailbox command to go through */ 9010 spin_lock_irq(&phba->hbalock); 9011 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9012 spin_unlock_irq(&phba->hbalock); 9013 9014 /* Post receive buffers to the device */ 9015 lpfc_sli4_rb_setup(phba); 9016 9017 /* Reset HBA FCF states after HBA reset */ 9018 phba->fcf.fcf_flag = 0; 9019 phba->fcf.current_rec.flag = 0; 9020 9021 /* Start the ELS watchdog timer */ 9022 mod_timer(&vport->els_tmofunc, 9023 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9024 9025 /* Start heart beat timer */ 9026 mod_timer(&phba->hb_tmofunc, 9027 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9028 clear_bit(HBA_HBEAT_INP, &phba->hba_flag); 9029 clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); 9030 phba->last_completion_time = jiffies; 9031 9032 /* start eq_delay heartbeat */ 9033 if (phba->cfg_auto_imax) 9034 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9035 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9036 9037 /* start per phba idle_stat_delay heartbeat */ 9038 lpfc_init_idle_stat_hb(phba); 9039 9040 /* Start error attention (ERATT) polling timer */ 9041 mod_timer(&phba->eratt_poll, 9042 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9043 9044 /* 9045 * The port is ready, set the host's link state to LINK_DOWN 9046 * in preparation for link interrupts. 9047 */ 9048 spin_lock_irq(&phba->hbalock); 9049 phba->link_state = LPFC_LINK_DOWN; 9050 9051 /* Check if physical ports are trunked */ 9052 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9053 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9054 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9055 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9056 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9057 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9058 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9059 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9060 spin_unlock_irq(&phba->hbalock); 9061 9062 /* Arm the CQs and then EQs on device */ 9063 lpfc_sli4_arm_cqeq_intr(phba); 9064 9065 /* Indicate device interrupt mode */ 9066 phba->sli4_hba.intr_enable = 1; 9067 9068 /* Setup CMF after HBA is initialized */ 9069 lpfc_cmf_setup(phba); 9070 9071 if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag) && 9072 test_bit(LINK_DISABLED, &phba->hba_flag)) { 9073 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9074 "3103 Adapter Link is disabled.\n"); 9075 lpfc_down_link(phba, mboxq); 9076 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9077 if (rc != MBX_SUCCESS) { 9078 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9079 "3104 Adapter failed to issue " 9080 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9081 goto out_io_buff_free; 9082 } 9083 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9084 /* don't perform init_link on SLI4 FC port loopback test */ 9085 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9086 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9087 if (rc) 9088 goto out_io_buff_free; 9089 } 9090 } 9091 mempool_free(mboxq, phba->mbox_mem_pool); 9092 9093 /* Enable RAS FW log support */ 9094 lpfc_sli4_ras_setup(phba); 9095 9096 set_bit(HBA_SETUP, &phba->hba_flag); 9097 return rc; 9098 9099 out_io_buff_free: 9100 /* Free allocated IO Buffers */ 9101 lpfc_io_free(phba); 9102 out_unset_queue: 9103 /* Unset all the queues set up in this routine when error out */ 9104 lpfc_sli4_queue_unset(phba); 9105 out_free_iocblist: 9106 lpfc_free_iocb_list(phba); 9107 out_destroy_queue: 9108 lpfc_sli4_queue_destroy(phba); 9109 out_stop_timers: 9110 lpfc_stop_hba_timers(phba); 9111 out_free_mbox: 9112 mempool_free(mboxq, phba->mbox_mem_pool); 9113 return rc; 9114 } 9115 9116 /** 9117 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9118 * @t: Context to fetch pointer to hba structure from. 9119 * 9120 * This is the callback function for mailbox timer. The mailbox 9121 * timer is armed when a new mailbox command is issued and the timer 9122 * is deleted when the mailbox complete. The function is called by 9123 * the kernel timer code when a mailbox does not complete within 9124 * expected time. This function wakes up the worker thread to 9125 * process the mailbox timeout and returns. All the processing is 9126 * done by the worker thread function lpfc_mbox_timeout_handler. 9127 **/ 9128 void 9129 lpfc_mbox_timeout(struct timer_list *t) 9130 { 9131 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9132 unsigned long iflag; 9133 uint32_t tmo_posted; 9134 9135 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9136 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9137 if (!tmo_posted) 9138 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9139 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9140 9141 if (!tmo_posted) 9142 lpfc_worker_wake_up(phba); 9143 return; 9144 } 9145 9146 /** 9147 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9148 * are pending 9149 * @phba: Pointer to HBA context object. 9150 * 9151 * This function checks if any mailbox completions are present on the mailbox 9152 * completion queue. 9153 **/ 9154 static bool 9155 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9156 { 9157 9158 uint32_t idx; 9159 struct lpfc_queue *mcq; 9160 struct lpfc_mcqe *mcqe; 9161 bool pending_completions = false; 9162 uint8_t qe_valid; 9163 9164 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9165 return false; 9166 9167 /* Check for completions on mailbox completion queue */ 9168 9169 mcq = phba->sli4_hba.mbx_cq; 9170 idx = mcq->hba_index; 9171 qe_valid = mcq->qe_valid; 9172 while (bf_get_le32(lpfc_cqe_valid, 9173 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9174 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9175 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9176 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9177 pending_completions = true; 9178 break; 9179 } 9180 idx = (idx + 1) % mcq->entry_count; 9181 if (mcq->hba_index == idx) 9182 break; 9183 9184 /* if the index wrapped around, toggle the valid bit */ 9185 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9186 qe_valid = (qe_valid) ? 0 : 1; 9187 } 9188 return pending_completions; 9189 9190 } 9191 9192 /** 9193 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9194 * that were missed. 9195 * @phba: Pointer to HBA context object. 9196 * 9197 * For sli4, it is possible to miss an interrupt. As such mbox completions 9198 * maybe missed causing erroneous mailbox timeouts to occur. This function 9199 * checks to see if mbox completions are on the mailbox completion queue 9200 * and will process all the completions associated with the eq for the 9201 * mailbox completion queue. 9202 **/ 9203 static bool 9204 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9205 { 9206 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9207 uint32_t eqidx; 9208 struct lpfc_queue *fpeq = NULL; 9209 struct lpfc_queue *eq; 9210 bool mbox_pending; 9211 9212 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9213 return false; 9214 9215 /* Find the EQ associated with the mbox CQ */ 9216 if (sli4_hba->hdwq) { 9217 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9218 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9219 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9220 fpeq = eq; 9221 break; 9222 } 9223 } 9224 } 9225 if (!fpeq) 9226 return false; 9227 9228 /* Turn off interrupts from this EQ */ 9229 9230 sli4_hba->sli4_eq_clr_intr(fpeq); 9231 9232 /* Check to see if a mbox completion is pending */ 9233 9234 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9235 9236 /* 9237 * If a mbox completion is pending, process all the events on EQ 9238 * associated with the mbox completion queue (this could include 9239 * mailbox commands, async events, els commands, receive queue data 9240 * and fcp commands) 9241 */ 9242 9243 if (mbox_pending) 9244 /* process and rearm the EQ */ 9245 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 9246 LPFC_QUEUE_WORK); 9247 else 9248 /* Always clear and re-arm the EQ */ 9249 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9250 9251 return mbox_pending; 9252 9253 } 9254 9255 /** 9256 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9257 * @phba: Pointer to HBA context object. 9258 * 9259 * This function is called from worker thread when a mailbox command times out. 9260 * The caller is not required to hold any locks. This function will reset the 9261 * HBA and recover all the pending commands. 9262 **/ 9263 void 9264 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9265 { 9266 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9267 MAILBOX_t *mb = NULL; 9268 9269 struct lpfc_sli *psli = &phba->sli; 9270 9271 /* If the mailbox completed, process the completion */ 9272 lpfc_sli4_process_missed_mbox_completions(phba); 9273 9274 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9275 return; 9276 9277 if (pmbox != NULL) 9278 mb = &pmbox->u.mb; 9279 /* Check the pmbox pointer first. There is a race condition 9280 * between the mbox timeout handler getting executed in the 9281 * worklist and the mailbox actually completing. When this 9282 * race condition occurs, the mbox_active will be NULL. 9283 */ 9284 spin_lock_irq(&phba->hbalock); 9285 if (pmbox == NULL) { 9286 lpfc_printf_log(phba, KERN_WARNING, 9287 LOG_MBOX | LOG_SLI, 9288 "0353 Active Mailbox cleared - mailbox timeout " 9289 "exiting\n"); 9290 spin_unlock_irq(&phba->hbalock); 9291 return; 9292 } 9293 9294 /* Mbox cmd <mbxCommand> timeout */ 9295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9296 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9297 mb->mbxCommand, 9298 phba->pport->port_state, 9299 phba->sli.sli_flag, 9300 phba->sli.mbox_active); 9301 spin_unlock_irq(&phba->hbalock); 9302 9303 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9304 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9305 * it to fail all outstanding SCSI IO. 9306 */ 9307 set_bit(MBX_TMO_ERR, &phba->bit_flags); 9308 spin_lock_irq(&phba->pport->work_port_lock); 9309 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9310 spin_unlock_irq(&phba->pport->work_port_lock); 9311 spin_lock_irq(&phba->hbalock); 9312 phba->link_state = LPFC_LINK_UNKNOWN; 9313 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9314 spin_unlock_irq(&phba->hbalock); 9315 9316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9317 "0345 Resetting board due to mailbox timeout\n"); 9318 9319 /* Reset the HBA device */ 9320 lpfc_reset_hba(phba); 9321 } 9322 9323 /** 9324 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9325 * @phba: Pointer to HBA context object. 9326 * @pmbox: Pointer to mailbox object. 9327 * @flag: Flag indicating how the mailbox need to be processed. 9328 * 9329 * This function is called by discovery code and HBA management code 9330 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9331 * function gets the hbalock to protect the data structures. 9332 * The mailbox command can be submitted in polling mode, in which case 9333 * this function will wait in a polling loop for the completion of the 9334 * mailbox. 9335 * If the mailbox is submitted in no_wait mode (not polling) the 9336 * function will submit the command and returns immediately without waiting 9337 * for the mailbox completion. The no_wait is supported only when HBA 9338 * is in SLI2/SLI3 mode - interrupts are enabled. 9339 * The SLI interface allows only one mailbox pending at a time. If the 9340 * mailbox is issued in polling mode and there is already a mailbox 9341 * pending, then the function will return an error. If the mailbox is issued 9342 * in NO_WAIT mode and there is a mailbox pending already, the function 9343 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9344 * The sli layer owns the mailbox object until the completion of mailbox 9345 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9346 * return codes the caller owns the mailbox command after the return of 9347 * the function. 9348 **/ 9349 static int 9350 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9351 uint32_t flag) 9352 { 9353 MAILBOX_t *mbx; 9354 struct lpfc_sli *psli = &phba->sli; 9355 uint32_t status, evtctr; 9356 uint32_t ha_copy, hc_copy; 9357 int i; 9358 unsigned long timeout; 9359 unsigned long drvr_flag = 0; 9360 uint32_t word0, ldata; 9361 void __iomem *to_slim; 9362 int processing_queue = 0; 9363 9364 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9365 if (!pmbox) { 9366 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9367 /* processing mbox queue from intr_handler */ 9368 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9369 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9370 return MBX_SUCCESS; 9371 } 9372 processing_queue = 1; 9373 pmbox = lpfc_mbox_get(phba); 9374 if (!pmbox) { 9375 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9376 return MBX_SUCCESS; 9377 } 9378 } 9379 9380 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9381 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9382 if(!pmbox->vport) { 9383 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9384 lpfc_printf_log(phba, KERN_ERR, 9385 LOG_MBOX | LOG_VPORT, 9386 "1806 Mbox x%x failed. No vport\n", 9387 pmbox->u.mb.mbxCommand); 9388 dump_stack(); 9389 goto out_not_finished; 9390 } 9391 } 9392 9393 /* If the PCI channel is in offline state, do not post mbox. */ 9394 if (unlikely(pci_channel_offline(phba->pcidev))) { 9395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9396 goto out_not_finished; 9397 } 9398 9399 /* If HBA has a deferred error attention, fail the iocb. */ 9400 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 9401 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9402 goto out_not_finished; 9403 } 9404 9405 psli = &phba->sli; 9406 9407 mbx = &pmbox->u.mb; 9408 status = MBX_SUCCESS; 9409 9410 if (phba->link_state == LPFC_HBA_ERROR) { 9411 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9412 9413 /* Mbox command <mbxCommand> cannot issue */ 9414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9415 "(%d):0311 Mailbox command x%x cannot " 9416 "issue Data: x%x x%x\n", 9417 pmbox->vport ? pmbox->vport->vpi : 0, 9418 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9419 goto out_not_finished; 9420 } 9421 9422 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9423 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9424 !(hc_copy & HC_MBINT_ENA)) { 9425 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9427 "(%d):2528 Mailbox command x%x cannot " 9428 "issue Data: x%x x%x\n", 9429 pmbox->vport ? pmbox->vport->vpi : 0, 9430 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9431 goto out_not_finished; 9432 } 9433 } 9434 9435 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9436 /* Polling for a mbox command when another one is already active 9437 * is not allowed in SLI. Also, the driver must have established 9438 * SLI2 mode to queue and process multiple mbox commands. 9439 */ 9440 9441 if (flag & MBX_POLL) { 9442 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9443 9444 /* Mbox command <mbxCommand> cannot issue */ 9445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9446 "(%d):2529 Mailbox command x%x " 9447 "cannot issue Data: x%x x%x\n", 9448 pmbox->vport ? pmbox->vport->vpi : 0, 9449 pmbox->u.mb.mbxCommand, 9450 psli->sli_flag, flag); 9451 goto out_not_finished; 9452 } 9453 9454 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9455 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9456 /* Mbox command <mbxCommand> cannot issue */ 9457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9458 "(%d):2530 Mailbox command x%x " 9459 "cannot issue Data: x%x x%x\n", 9460 pmbox->vport ? pmbox->vport->vpi : 0, 9461 pmbox->u.mb.mbxCommand, 9462 psli->sli_flag, flag); 9463 goto out_not_finished; 9464 } 9465 9466 /* Another mailbox command is still being processed, queue this 9467 * command to be processed later. 9468 */ 9469 lpfc_mbox_put(phba, pmbox); 9470 9471 /* Mbox cmd issue - BUSY */ 9472 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9473 "(%d):0308 Mbox cmd issue - BUSY Data: " 9474 "x%x x%x x%x x%x\n", 9475 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9476 mbx->mbxCommand, 9477 phba->pport ? phba->pport->port_state : 0xff, 9478 psli->sli_flag, flag); 9479 9480 psli->slistat.mbox_busy++; 9481 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9482 9483 if (pmbox->vport) { 9484 lpfc_debugfs_disc_trc(pmbox->vport, 9485 LPFC_DISC_TRC_MBOX_VPORT, 9486 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9487 (uint32_t)mbx->mbxCommand, 9488 mbx->un.varWords[0], mbx->un.varWords[1]); 9489 } 9490 else { 9491 lpfc_debugfs_disc_trc(phba->pport, 9492 LPFC_DISC_TRC_MBOX, 9493 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9494 (uint32_t)mbx->mbxCommand, 9495 mbx->un.varWords[0], mbx->un.varWords[1]); 9496 } 9497 9498 return MBX_BUSY; 9499 } 9500 9501 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9502 9503 /* If we are not polling, we MUST be in SLI2 mode */ 9504 if (flag != MBX_POLL) { 9505 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9506 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9507 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9508 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9509 /* Mbox command <mbxCommand> cannot issue */ 9510 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9511 "(%d):2531 Mailbox command x%x " 9512 "cannot issue Data: x%x x%x\n", 9513 pmbox->vport ? pmbox->vport->vpi : 0, 9514 pmbox->u.mb.mbxCommand, 9515 psli->sli_flag, flag); 9516 goto out_not_finished; 9517 } 9518 /* timeout active mbox command */ 9519 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9520 1000); 9521 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9522 } 9523 9524 /* Mailbox cmd <cmd> issue */ 9525 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9526 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9527 "x%x\n", 9528 pmbox->vport ? pmbox->vport->vpi : 0, 9529 mbx->mbxCommand, 9530 phba->pport ? phba->pport->port_state : 0xff, 9531 psli->sli_flag, flag); 9532 9533 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9534 if (pmbox->vport) { 9535 lpfc_debugfs_disc_trc(pmbox->vport, 9536 LPFC_DISC_TRC_MBOX_VPORT, 9537 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9538 (uint32_t)mbx->mbxCommand, 9539 mbx->un.varWords[0], mbx->un.varWords[1]); 9540 } 9541 else { 9542 lpfc_debugfs_disc_trc(phba->pport, 9543 LPFC_DISC_TRC_MBOX, 9544 "MBOX Send: cmd:x%x mb:x%x x%x", 9545 (uint32_t)mbx->mbxCommand, 9546 mbx->un.varWords[0], mbx->un.varWords[1]); 9547 } 9548 } 9549 9550 psli->slistat.mbox_cmd++; 9551 evtctr = psli->slistat.mbox_event; 9552 9553 /* next set own bit for the adapter and copy over command word */ 9554 mbx->mbxOwner = OWN_CHIP; 9555 9556 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9557 /* Populate mbox extension offset word. */ 9558 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9559 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9560 = (uint8_t *)phba->mbox_ext 9561 - (uint8_t *)phba->mbox; 9562 } 9563 9564 /* Copy the mailbox extension data */ 9565 if (pmbox->in_ext_byte_len && pmbox->ext_buf) { 9566 lpfc_sli_pcimem_bcopy(pmbox->ext_buf, 9567 (uint8_t *)phba->mbox_ext, 9568 pmbox->in_ext_byte_len); 9569 } 9570 /* Copy command data to host SLIM area */ 9571 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9572 } else { 9573 /* Populate mbox extension offset word. */ 9574 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9575 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9576 = MAILBOX_HBA_EXT_OFFSET; 9577 9578 /* Copy the mailbox extension data */ 9579 if (pmbox->in_ext_byte_len && pmbox->ext_buf) 9580 lpfc_memcpy_to_slim(phba->MBslimaddr + 9581 MAILBOX_HBA_EXT_OFFSET, 9582 pmbox->ext_buf, pmbox->in_ext_byte_len); 9583 9584 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9585 /* copy command data into host mbox for cmpl */ 9586 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9587 MAILBOX_CMD_SIZE); 9588 9589 /* First copy mbox command data to HBA SLIM, skip past first 9590 word */ 9591 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9592 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9593 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9594 9595 /* Next copy over first word, with mbxOwner set */ 9596 ldata = *((uint32_t *)mbx); 9597 to_slim = phba->MBslimaddr; 9598 writel(ldata, to_slim); 9599 readl(to_slim); /* flush */ 9600 9601 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9602 /* switch over to host mailbox */ 9603 psli->sli_flag |= LPFC_SLI_ACTIVE; 9604 } 9605 9606 wmb(); 9607 9608 switch (flag) { 9609 case MBX_NOWAIT: 9610 /* Set up reference to mailbox command */ 9611 psli->mbox_active = pmbox; 9612 /* Interrupt board to do it */ 9613 writel(CA_MBATT, phba->CAregaddr); 9614 readl(phba->CAregaddr); /* flush */ 9615 /* Don't wait for it to finish, just return */ 9616 break; 9617 9618 case MBX_POLL: 9619 /* Set up null reference to mailbox command */ 9620 psli->mbox_active = NULL; 9621 /* Interrupt board to do it */ 9622 writel(CA_MBATT, phba->CAregaddr); 9623 readl(phba->CAregaddr); /* flush */ 9624 9625 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9626 /* First read mbox status word */ 9627 word0 = *((uint32_t *)phba->mbox); 9628 word0 = le32_to_cpu(word0); 9629 } else { 9630 /* First read mbox status word */ 9631 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9632 spin_unlock_irqrestore(&phba->hbalock, 9633 drvr_flag); 9634 goto out_not_finished; 9635 } 9636 } 9637 9638 /* Read the HBA Host Attention Register */ 9639 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9640 spin_unlock_irqrestore(&phba->hbalock, 9641 drvr_flag); 9642 goto out_not_finished; 9643 } 9644 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9645 1000) + jiffies; 9646 i = 0; 9647 /* Wait for command to complete */ 9648 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9649 (!(ha_copy & HA_MBATT) && 9650 (phba->link_state > LPFC_WARM_START))) { 9651 if (time_after(jiffies, timeout)) { 9652 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9653 spin_unlock_irqrestore(&phba->hbalock, 9654 drvr_flag); 9655 goto out_not_finished; 9656 } 9657 9658 /* Check if we took a mbox interrupt while we were 9659 polling */ 9660 if (((word0 & OWN_CHIP) != OWN_CHIP) 9661 && (evtctr != psli->slistat.mbox_event)) 9662 break; 9663 9664 if (i++ > 10) { 9665 spin_unlock_irqrestore(&phba->hbalock, 9666 drvr_flag); 9667 msleep(1); 9668 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9669 } 9670 9671 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9672 /* First copy command data */ 9673 word0 = *((uint32_t *)phba->mbox); 9674 word0 = le32_to_cpu(word0); 9675 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9676 MAILBOX_t *slimmb; 9677 uint32_t slimword0; 9678 /* Check real SLIM for any errors */ 9679 slimword0 = readl(phba->MBslimaddr); 9680 slimmb = (MAILBOX_t *) & slimword0; 9681 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9682 && slimmb->mbxStatus) { 9683 psli->sli_flag &= 9684 ~LPFC_SLI_ACTIVE; 9685 word0 = slimword0; 9686 } 9687 } 9688 } else { 9689 /* First copy command data */ 9690 word0 = readl(phba->MBslimaddr); 9691 } 9692 /* Read the HBA Host Attention Register */ 9693 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9694 spin_unlock_irqrestore(&phba->hbalock, 9695 drvr_flag); 9696 goto out_not_finished; 9697 } 9698 } 9699 9700 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9701 /* copy results back to user */ 9702 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9703 MAILBOX_CMD_SIZE); 9704 /* Copy the mailbox extension data */ 9705 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9706 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9707 pmbox->ext_buf, 9708 pmbox->out_ext_byte_len); 9709 } 9710 } else { 9711 /* First copy command data */ 9712 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9713 MAILBOX_CMD_SIZE); 9714 /* Copy the mailbox extension data */ 9715 if (pmbox->out_ext_byte_len && pmbox->ext_buf) { 9716 lpfc_memcpy_from_slim( 9717 pmbox->ext_buf, 9718 phba->MBslimaddr + 9719 MAILBOX_HBA_EXT_OFFSET, 9720 pmbox->out_ext_byte_len); 9721 } 9722 } 9723 9724 writel(HA_MBATT, phba->HAregaddr); 9725 readl(phba->HAregaddr); /* flush */ 9726 9727 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9728 status = mbx->mbxStatus; 9729 } 9730 9731 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9732 return status; 9733 9734 out_not_finished: 9735 if (processing_queue) { 9736 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9737 lpfc_mbox_cmpl_put(phba, pmbox); 9738 } 9739 return MBX_NOT_FINISHED; 9740 } 9741 9742 /** 9743 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9744 * @phba: Pointer to HBA context object. 9745 * 9746 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9747 * the driver internal pending mailbox queue. It will then try to wait out the 9748 * possible outstanding mailbox command before return. 9749 * 9750 * Returns: 9751 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9752 * the outstanding mailbox command timed out. 9753 **/ 9754 static int 9755 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9756 { 9757 struct lpfc_sli *psli = &phba->sli; 9758 LPFC_MBOXQ_t *mboxq; 9759 int rc = 0; 9760 unsigned long timeout = 0; 9761 u32 sli_flag; 9762 u8 cmd, subsys, opcode; 9763 9764 /* Mark the asynchronous mailbox command posting as blocked */ 9765 spin_lock_irq(&phba->hbalock); 9766 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9767 /* Determine how long we might wait for the active mailbox 9768 * command to be gracefully completed by firmware. 9769 */ 9770 if (phba->sli.mbox_active) 9771 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9772 phba->sli.mbox_active) * 9773 1000) + jiffies; 9774 spin_unlock_irq(&phba->hbalock); 9775 9776 /* Make sure the mailbox is really active */ 9777 if (timeout) 9778 lpfc_sli4_process_missed_mbox_completions(phba); 9779 9780 /* Wait for the outstanding mailbox command to complete */ 9781 while (phba->sli.mbox_active) { 9782 /* Check active mailbox complete status every 2ms */ 9783 msleep(2); 9784 if (time_after(jiffies, timeout)) { 9785 /* Timeout, mark the outstanding cmd not complete */ 9786 9787 /* Sanity check sli.mbox_active has not completed or 9788 * cancelled from another context during last 2ms sleep, 9789 * so take hbalock to be sure before logging. 9790 */ 9791 spin_lock_irq(&phba->hbalock); 9792 if (phba->sli.mbox_active) { 9793 mboxq = phba->sli.mbox_active; 9794 cmd = mboxq->u.mb.mbxCommand; 9795 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9796 mboxq); 9797 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9798 mboxq); 9799 sli_flag = psli->sli_flag; 9800 spin_unlock_irq(&phba->hbalock); 9801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9802 "2352 Mailbox command x%x " 9803 "(x%x/x%x) sli_flag x%x could " 9804 "not complete\n", 9805 cmd, subsys, opcode, 9806 sli_flag); 9807 } else { 9808 spin_unlock_irq(&phba->hbalock); 9809 } 9810 9811 rc = 1; 9812 break; 9813 } 9814 } 9815 9816 /* Can not cleanly block async mailbox command, fails it */ 9817 if (rc) { 9818 spin_lock_irq(&phba->hbalock); 9819 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9820 spin_unlock_irq(&phba->hbalock); 9821 } 9822 return rc; 9823 } 9824 9825 /** 9826 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9827 * @phba: Pointer to HBA context object. 9828 * 9829 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9830 * commands from the driver internal pending mailbox queue. It makes sure 9831 * that there is no outstanding mailbox command before resuming posting 9832 * asynchronous mailbox commands. If, for any reason, there is outstanding 9833 * mailbox command, it will try to wait it out before resuming asynchronous 9834 * mailbox command posting. 9835 **/ 9836 static void 9837 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9838 { 9839 struct lpfc_sli *psli = &phba->sli; 9840 9841 spin_lock_irq(&phba->hbalock); 9842 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9843 /* Asynchronous mailbox posting is not blocked, do nothing */ 9844 spin_unlock_irq(&phba->hbalock); 9845 return; 9846 } 9847 9848 /* Outstanding synchronous mailbox command is guaranteed to be done, 9849 * successful or timeout, after timing-out the outstanding mailbox 9850 * command shall always be removed, so just unblock posting async 9851 * mailbox command and resume 9852 */ 9853 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9854 spin_unlock_irq(&phba->hbalock); 9855 9856 /* wake up worker thread to post asynchronous mailbox command */ 9857 lpfc_worker_wake_up(phba); 9858 } 9859 9860 /** 9861 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9862 * @phba: Pointer to HBA context object. 9863 * @mboxq: Pointer to mailbox object. 9864 * 9865 * The function waits for the bootstrap mailbox register ready bit from 9866 * port for twice the regular mailbox command timeout value. 9867 * 9868 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9869 * MBXERR_ERROR - wait for bootstrap mailbox register timed out or port 9870 * is in an unrecoverable state. 9871 **/ 9872 static int 9873 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9874 { 9875 uint32_t db_ready; 9876 unsigned long timeout; 9877 struct lpfc_register bmbx_reg; 9878 struct lpfc_register portstat_reg = {-1}; 9879 9880 /* Sanity check - there is no point to wait if the port is in an 9881 * unrecoverable state. 9882 */ 9883 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= 9884 LPFC_SLI_INTF_IF_TYPE_2) { 9885 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 9886 &portstat_reg.word0) || 9887 lpfc_sli4_unrecoverable_port(&portstat_reg)) { 9888 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9889 "3858 Skipping bmbx ready because " 9890 "Port Status x%x\n", 9891 portstat_reg.word0); 9892 return MBXERR_ERROR; 9893 } 9894 } 9895 9896 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9897 * 1000) + jiffies; 9898 9899 do { 9900 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9901 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9902 if (!db_ready) 9903 mdelay(2); 9904 9905 if (time_after(jiffies, timeout)) 9906 return MBXERR_ERROR; 9907 } while (!db_ready); 9908 9909 return 0; 9910 } 9911 9912 /** 9913 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9914 * @phba: Pointer to HBA context object. 9915 * @mboxq: Pointer to mailbox object. 9916 * 9917 * The function posts a mailbox to the port. The mailbox is expected 9918 * to be comletely filled in and ready for the port to operate on it. 9919 * This routine executes a synchronous completion operation on the 9920 * mailbox by polling for its completion. 9921 * 9922 * The caller must not be holding any locks when calling this routine. 9923 * 9924 * Returns: 9925 * MBX_SUCCESS - mailbox posted successfully 9926 * Any of the MBX error values. 9927 **/ 9928 static int 9929 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9930 { 9931 int rc = MBX_SUCCESS; 9932 unsigned long iflag; 9933 uint32_t mcqe_status; 9934 uint32_t mbx_cmnd; 9935 struct lpfc_sli *psli = &phba->sli; 9936 struct lpfc_mqe *mb = &mboxq->u.mqe; 9937 struct lpfc_bmbx_create *mbox_rgn; 9938 struct dma_address *dma_address; 9939 9940 /* 9941 * Only one mailbox can be active to the bootstrap mailbox region 9942 * at a time and there is no queueing provided. 9943 */ 9944 spin_lock_irqsave(&phba->hbalock, iflag); 9945 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9946 spin_unlock_irqrestore(&phba->hbalock, iflag); 9947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9948 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9949 "cannot issue Data: x%x x%x\n", 9950 mboxq->vport ? mboxq->vport->vpi : 0, 9951 mboxq->u.mb.mbxCommand, 9952 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9953 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9954 psli->sli_flag, MBX_POLL); 9955 return MBXERR_ERROR; 9956 } 9957 /* The server grabs the token and owns it until release */ 9958 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9959 phba->sli.mbox_active = mboxq; 9960 spin_unlock_irqrestore(&phba->hbalock, iflag); 9961 9962 /* wait for bootstrap mbox register for readyness */ 9963 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9964 if (rc) 9965 goto exit; 9966 /* 9967 * Initialize the bootstrap memory region to avoid stale data areas 9968 * in the mailbox post. Then copy the caller's mailbox contents to 9969 * the bmbx mailbox region. 9970 */ 9971 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9972 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9973 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9974 sizeof(struct lpfc_mqe)); 9975 9976 /* Post the high mailbox dma address to the port and wait for ready. */ 9977 dma_address = &phba->sli4_hba.bmbx.dma_address; 9978 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9979 9980 /* wait for bootstrap mbox register for hi-address write done */ 9981 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9982 if (rc) 9983 goto exit; 9984 9985 /* Post the low mailbox dma address to the port. */ 9986 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9987 9988 /* wait for bootstrap mbox register for low address write done */ 9989 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9990 if (rc) 9991 goto exit; 9992 9993 /* 9994 * Read the CQ to ensure the mailbox has completed. 9995 * If so, update the mailbox status so that the upper layers 9996 * can complete the request normally. 9997 */ 9998 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9999 sizeof(struct lpfc_mqe)); 10000 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 10001 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 10002 sizeof(struct lpfc_mcqe)); 10003 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 10004 /* 10005 * When the CQE status indicates a failure and the mailbox status 10006 * indicates success then copy the CQE status into the mailbox status 10007 * (and prefix it with x4000). 10008 */ 10009 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10010 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10011 bf_set(lpfc_mqe_status, mb, 10012 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10013 rc = MBXERR_ERROR; 10014 } else 10015 lpfc_sli4_swap_str(phba, mboxq); 10016 10017 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10018 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10019 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10020 " x%x x%x CQ: x%x x%x x%x x%x\n", 10021 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10022 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10023 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10024 bf_get(lpfc_mqe_status, mb), 10025 mb->un.mb_words[0], mb->un.mb_words[1], 10026 mb->un.mb_words[2], mb->un.mb_words[3], 10027 mb->un.mb_words[4], mb->un.mb_words[5], 10028 mb->un.mb_words[6], mb->un.mb_words[7], 10029 mb->un.mb_words[8], mb->un.mb_words[9], 10030 mb->un.mb_words[10], mb->un.mb_words[11], 10031 mb->un.mb_words[12], mboxq->mcqe.word0, 10032 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10033 mboxq->mcqe.trailer); 10034 exit: 10035 /* We are holding the token, no needed for lock when release */ 10036 spin_lock_irqsave(&phba->hbalock, iflag); 10037 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10038 phba->sli.mbox_active = NULL; 10039 spin_unlock_irqrestore(&phba->hbalock, iflag); 10040 return rc; 10041 } 10042 10043 /** 10044 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10045 * @phba: Pointer to HBA context object. 10046 * @mboxq: Pointer to mailbox object. 10047 * @flag: Flag indicating how the mailbox need to be processed. 10048 * 10049 * This function is called by discovery code and HBA management code to submit 10050 * a mailbox command to firmware with SLI-4 interface spec. 10051 * 10052 * Return codes the caller owns the mailbox command after the return of the 10053 * function. 10054 **/ 10055 static int 10056 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10057 uint32_t flag) 10058 { 10059 struct lpfc_sli *psli = &phba->sli; 10060 unsigned long iflags; 10061 int rc; 10062 10063 /* dump from issue mailbox command if setup */ 10064 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10065 10066 rc = lpfc_mbox_dev_check(phba); 10067 if (unlikely(rc)) { 10068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10069 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10070 "cannot issue Data: x%x x%x\n", 10071 mboxq->vport ? mboxq->vport->vpi : 0, 10072 mboxq->u.mb.mbxCommand, 10073 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10074 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10075 psli->sli_flag, flag); 10076 goto out_not_finished; 10077 } 10078 10079 /* Detect polling mode and jump to a handler */ 10080 if (!phba->sli4_hba.intr_enable) { 10081 if (flag == MBX_POLL) 10082 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10083 else 10084 rc = -EIO; 10085 if (rc != MBX_SUCCESS) 10086 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10087 "(%d):2541 Mailbox command x%x " 10088 "(x%x/x%x) failure: " 10089 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10090 "Data: x%x x%x\n", 10091 mboxq->vport ? mboxq->vport->vpi : 0, 10092 mboxq->u.mb.mbxCommand, 10093 lpfc_sli_config_mbox_subsys_get(phba, 10094 mboxq), 10095 lpfc_sli_config_mbox_opcode_get(phba, 10096 mboxq), 10097 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10098 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10099 bf_get(lpfc_mcqe_ext_status, 10100 &mboxq->mcqe), 10101 psli->sli_flag, flag); 10102 return rc; 10103 } else if (flag == MBX_POLL) { 10104 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10105 "(%d):2542 Try to issue mailbox command " 10106 "x%x (x%x/x%x) synchronously ahead of async " 10107 "mailbox command queue: x%x x%x\n", 10108 mboxq->vport ? mboxq->vport->vpi : 0, 10109 mboxq->u.mb.mbxCommand, 10110 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10111 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10112 psli->sli_flag, flag); 10113 /* Try to block the asynchronous mailbox posting */ 10114 rc = lpfc_sli4_async_mbox_block(phba); 10115 if (!rc) { 10116 /* Successfully blocked, now issue sync mbox cmd */ 10117 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10118 if (rc != MBX_SUCCESS) 10119 lpfc_printf_log(phba, KERN_WARNING, 10120 LOG_MBOX | LOG_SLI, 10121 "(%d):2597 Sync Mailbox command " 10122 "x%x (x%x/x%x) failure: " 10123 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10124 "Data: x%x x%x\n", 10125 mboxq->vport ? mboxq->vport->vpi : 0, 10126 mboxq->u.mb.mbxCommand, 10127 lpfc_sli_config_mbox_subsys_get(phba, 10128 mboxq), 10129 lpfc_sli_config_mbox_opcode_get(phba, 10130 mboxq), 10131 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10132 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10133 bf_get(lpfc_mcqe_ext_status, 10134 &mboxq->mcqe), 10135 psli->sli_flag, flag); 10136 /* Unblock the async mailbox posting afterward */ 10137 lpfc_sli4_async_mbox_unblock(phba); 10138 } 10139 return rc; 10140 } 10141 10142 /* Now, interrupt mode asynchronous mailbox command */ 10143 rc = lpfc_mbox_cmd_check(phba, mboxq); 10144 if (rc) { 10145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10146 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10147 "cannot issue Data: x%x x%x\n", 10148 mboxq->vport ? mboxq->vport->vpi : 0, 10149 mboxq->u.mb.mbxCommand, 10150 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10151 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10152 psli->sli_flag, flag); 10153 goto out_not_finished; 10154 } 10155 10156 /* Put the mailbox command to the driver internal FIFO */ 10157 psli->slistat.mbox_busy++; 10158 spin_lock_irqsave(&phba->hbalock, iflags); 10159 lpfc_mbox_put(phba, mboxq); 10160 spin_unlock_irqrestore(&phba->hbalock, iflags); 10161 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10162 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10163 "x%x (x%x/x%x) x%x x%x x%x x%x\n", 10164 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10165 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10166 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10167 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10168 mboxq->u.mb.un.varUnregLogin.rpi, 10169 phba->pport->port_state, 10170 psli->sli_flag, MBX_NOWAIT); 10171 /* Wake up worker thread to transport mailbox command from head */ 10172 lpfc_worker_wake_up(phba); 10173 10174 return MBX_BUSY; 10175 10176 out_not_finished: 10177 return MBX_NOT_FINISHED; 10178 } 10179 10180 /** 10181 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10182 * @phba: Pointer to HBA context object. 10183 * 10184 * This function is called by worker thread to send a mailbox command to 10185 * SLI4 HBA firmware. 10186 * 10187 **/ 10188 int 10189 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10190 { 10191 struct lpfc_sli *psli = &phba->sli; 10192 LPFC_MBOXQ_t *mboxq; 10193 int rc = MBX_SUCCESS; 10194 unsigned long iflags; 10195 struct lpfc_mqe *mqe; 10196 uint32_t mbx_cmnd; 10197 10198 /* Check interrupt mode before post async mailbox command */ 10199 if (unlikely(!phba->sli4_hba.intr_enable)) 10200 return MBX_NOT_FINISHED; 10201 10202 /* Check for mailbox command service token */ 10203 spin_lock_irqsave(&phba->hbalock, iflags); 10204 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10205 spin_unlock_irqrestore(&phba->hbalock, iflags); 10206 return MBX_NOT_FINISHED; 10207 } 10208 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10209 spin_unlock_irqrestore(&phba->hbalock, iflags); 10210 return MBX_NOT_FINISHED; 10211 } 10212 if (unlikely(phba->sli.mbox_active)) { 10213 spin_unlock_irqrestore(&phba->hbalock, iflags); 10214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10215 "0384 There is pending active mailbox cmd\n"); 10216 return MBX_NOT_FINISHED; 10217 } 10218 /* Take the mailbox command service token */ 10219 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10220 10221 /* Get the next mailbox command from head of queue */ 10222 mboxq = lpfc_mbox_get(phba); 10223 10224 /* If no more mailbox command waiting for post, we're done */ 10225 if (!mboxq) { 10226 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10227 spin_unlock_irqrestore(&phba->hbalock, iflags); 10228 return MBX_SUCCESS; 10229 } 10230 phba->sli.mbox_active = mboxq; 10231 spin_unlock_irqrestore(&phba->hbalock, iflags); 10232 10233 /* Check device readiness for posting mailbox command */ 10234 rc = lpfc_mbox_dev_check(phba); 10235 if (unlikely(rc)) 10236 /* Driver clean routine will clean up pending mailbox */ 10237 goto out_not_finished; 10238 10239 /* Prepare the mbox command to be posted */ 10240 mqe = &mboxq->u.mqe; 10241 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10242 10243 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10244 mod_timer(&psli->mbox_tmo, (jiffies + 10245 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10246 10247 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10248 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10249 "x%x x%x\n", 10250 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10251 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10252 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10253 phba->pport->port_state, psli->sli_flag); 10254 10255 if (mbx_cmnd != MBX_HEARTBEAT) { 10256 if (mboxq->vport) { 10257 lpfc_debugfs_disc_trc(mboxq->vport, 10258 LPFC_DISC_TRC_MBOX_VPORT, 10259 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10260 mbx_cmnd, mqe->un.mb_words[0], 10261 mqe->un.mb_words[1]); 10262 } else { 10263 lpfc_debugfs_disc_trc(phba->pport, 10264 LPFC_DISC_TRC_MBOX, 10265 "MBOX Send: cmd:x%x mb:x%x x%x", 10266 mbx_cmnd, mqe->un.mb_words[0], 10267 mqe->un.mb_words[1]); 10268 } 10269 } 10270 psli->slistat.mbox_cmd++; 10271 10272 /* Post the mailbox command to the port */ 10273 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10274 if (rc != MBX_SUCCESS) { 10275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10276 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10277 "cannot issue Data: x%x x%x\n", 10278 mboxq->vport ? mboxq->vport->vpi : 0, 10279 mboxq->u.mb.mbxCommand, 10280 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10281 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10282 psli->sli_flag, MBX_NOWAIT); 10283 goto out_not_finished; 10284 } 10285 10286 return rc; 10287 10288 out_not_finished: 10289 spin_lock_irqsave(&phba->hbalock, iflags); 10290 if (phba->sli.mbox_active) { 10291 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10292 __lpfc_mbox_cmpl_put(phba, mboxq); 10293 /* Release the token */ 10294 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10295 phba->sli.mbox_active = NULL; 10296 } 10297 spin_unlock_irqrestore(&phba->hbalock, iflags); 10298 10299 return MBX_NOT_FINISHED; 10300 } 10301 10302 /** 10303 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10304 * @phba: Pointer to HBA context object. 10305 * @pmbox: Pointer to mailbox object. 10306 * @flag: Flag indicating how the mailbox need to be processed. 10307 * 10308 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10309 * the API jump table function pointer from the lpfc_hba struct. 10310 * 10311 * Return codes the caller owns the mailbox command after the return of the 10312 * function. 10313 **/ 10314 int 10315 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10316 { 10317 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10318 } 10319 10320 /** 10321 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10322 * @phba: The hba struct for which this call is being executed. 10323 * @dev_grp: The HBA PCI-Device group number. 10324 * 10325 * This routine sets up the mbox interface API function jump table in @phba 10326 * struct. 10327 * Returns: 0 - success, -ENODEV - failure. 10328 **/ 10329 int 10330 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10331 { 10332 10333 switch (dev_grp) { 10334 case LPFC_PCI_DEV_LP: 10335 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10336 phba->lpfc_sli_handle_slow_ring_event = 10337 lpfc_sli_handle_slow_ring_event_s3; 10338 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10339 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10340 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10341 break; 10342 case LPFC_PCI_DEV_OC: 10343 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10344 phba->lpfc_sli_handle_slow_ring_event = 10345 lpfc_sli_handle_slow_ring_event_s4; 10346 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10347 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10348 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10349 break; 10350 default: 10351 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10352 "1420 Invalid HBA PCI-device group: 0x%x\n", 10353 dev_grp); 10354 return -ENODEV; 10355 } 10356 return 0; 10357 } 10358 10359 /** 10360 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10361 * @phba: Pointer to HBA context object. 10362 * @pring: Pointer to driver SLI ring object. 10363 * @piocb: Pointer to address of newly added command iocb. 10364 * 10365 * This function is called with hbalock held for SLI3 ports or 10366 * the ring lock held for SLI4 ports to add a command 10367 * iocb to the txq when SLI layer cannot submit the command iocb 10368 * to the ring. 10369 **/ 10370 void 10371 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10372 struct lpfc_iocbq *piocb) 10373 { 10374 if (phba->sli_rev == LPFC_SLI_REV4) 10375 lockdep_assert_held(&pring->ring_lock); 10376 else 10377 lockdep_assert_held(&phba->hbalock); 10378 /* Insert the caller's iocb in the txq tail for later processing. */ 10379 list_add_tail(&piocb->list, &pring->txq); 10380 } 10381 10382 /** 10383 * lpfc_sli_next_iocb - Get the next iocb in the txq 10384 * @phba: Pointer to HBA context object. 10385 * @pring: Pointer to driver SLI ring object. 10386 * @piocb: Pointer to address of newly added command iocb. 10387 * 10388 * This function is called with hbalock held before a new 10389 * iocb is submitted to the firmware. This function checks 10390 * txq to flush the iocbs in txq to Firmware before 10391 * submitting new iocbs to the Firmware. 10392 * If there are iocbs in the txq which need to be submitted 10393 * to firmware, lpfc_sli_next_iocb returns the first element 10394 * of the txq after dequeuing it from txq. 10395 * If there is no iocb in the txq then the function will return 10396 * *piocb and *piocb is set to NULL. Caller needs to check 10397 * *piocb to find if there are more commands in the txq. 10398 **/ 10399 static struct lpfc_iocbq * 10400 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10401 struct lpfc_iocbq **piocb) 10402 { 10403 struct lpfc_iocbq * nextiocb; 10404 10405 lockdep_assert_held(&phba->hbalock); 10406 10407 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10408 if (!nextiocb) { 10409 nextiocb = *piocb; 10410 *piocb = NULL; 10411 } 10412 10413 return nextiocb; 10414 } 10415 10416 /** 10417 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10418 * @phba: Pointer to HBA context object. 10419 * @ring_number: SLI ring number to issue iocb on. 10420 * @piocb: Pointer to command iocb. 10421 * @flag: Flag indicating if this command can be put into txq. 10422 * 10423 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10424 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10425 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10426 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10427 * this function allows only iocbs for posting buffers. This function finds 10428 * next available slot in the command ring and posts the command to the 10429 * available slot and writes the port attention register to request HBA start 10430 * processing new iocb. If there is no slot available in the ring and 10431 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10432 * the function returns IOCB_BUSY. 10433 * 10434 * This function is called with hbalock held. The function will return success 10435 * after it successfully submit the iocb to firmware or after adding to the 10436 * txq. 10437 **/ 10438 static int 10439 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10440 struct lpfc_iocbq *piocb, uint32_t flag) 10441 { 10442 struct lpfc_iocbq *nextiocb; 10443 IOCB_t *iocb; 10444 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10445 10446 lockdep_assert_held(&phba->hbalock); 10447 10448 if (piocb->cmd_cmpl && (!piocb->vport) && 10449 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10450 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10452 "1807 IOCB x%x failed. No vport\n", 10453 piocb->iocb.ulpCommand); 10454 dump_stack(); 10455 return IOCB_ERROR; 10456 } 10457 10458 10459 /* If the PCI channel is in offline state, do not post iocbs. */ 10460 if (unlikely(pci_channel_offline(phba->pcidev))) 10461 return IOCB_ERROR; 10462 10463 /* If HBA has a deferred error attention, fail the iocb. */ 10464 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 10465 return IOCB_ERROR; 10466 10467 /* 10468 * We should never get an IOCB if we are in a < LINK_DOWN state 10469 */ 10470 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10471 return IOCB_ERROR; 10472 10473 /* 10474 * Check to see if we are blocking IOCB processing because of a 10475 * outstanding event. 10476 */ 10477 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10478 goto iocb_busy; 10479 10480 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10481 /* 10482 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10483 * can be issued if the link is not up. 10484 */ 10485 switch (piocb->iocb.ulpCommand) { 10486 case CMD_QUE_RING_BUF_CN: 10487 case CMD_QUE_RING_BUF64_CN: 10488 /* 10489 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10490 * completion, cmd_cmpl MUST be 0. 10491 */ 10492 if (piocb->cmd_cmpl) 10493 piocb->cmd_cmpl = NULL; 10494 fallthrough; 10495 case CMD_CREATE_XRI_CR: 10496 case CMD_CLOSE_XRI_CN: 10497 case CMD_CLOSE_XRI_CX: 10498 break; 10499 default: 10500 goto iocb_busy; 10501 } 10502 10503 /* 10504 * For FCP commands, we must be in a state where we can process link 10505 * attention events. 10506 */ 10507 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10508 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10509 goto iocb_busy; 10510 } 10511 10512 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10513 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10514 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10515 10516 if (iocb) 10517 lpfc_sli_update_ring(phba, pring); 10518 else 10519 lpfc_sli_update_full_ring(phba, pring); 10520 10521 if (!piocb) 10522 return IOCB_SUCCESS; 10523 10524 goto out_busy; 10525 10526 iocb_busy: 10527 pring->stats.iocb_cmd_delay++; 10528 10529 out_busy: 10530 10531 if (!(flag & SLI_IOCB_RET_IOCB)) { 10532 __lpfc_sli_ringtx_put(phba, pring, piocb); 10533 return IOCB_SUCCESS; 10534 } 10535 10536 return IOCB_BUSY; 10537 } 10538 10539 /** 10540 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10541 * @phba: Pointer to HBA context object. 10542 * @ring_number: SLI ring number to issue wqe on. 10543 * @piocb: Pointer to command iocb. 10544 * @flag: Flag indicating if this command can be put into txq. 10545 * 10546 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10547 * send an iocb command to an HBA with SLI-3 interface spec. 10548 * 10549 * This function takes the hbalock before invoking the lockless version. 10550 * The function will return success after it successfully submit the wqe to 10551 * firmware or after adding to the txq. 10552 **/ 10553 static int 10554 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10555 struct lpfc_iocbq *piocb, uint32_t flag) 10556 { 10557 unsigned long iflags; 10558 int rc; 10559 10560 spin_lock_irqsave(&phba->hbalock, iflags); 10561 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10562 spin_unlock_irqrestore(&phba->hbalock, iflags); 10563 10564 return rc; 10565 } 10566 10567 /** 10568 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10569 * @phba: Pointer to HBA context object. 10570 * @ring_number: SLI ring number to issue wqe on. 10571 * @piocb: Pointer to command iocb. 10572 * @flag: Flag indicating if this command can be put into txq. 10573 * 10574 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10575 * an wqe command to an HBA with SLI-4 interface spec. 10576 * 10577 * This function is a lockless version. The function will return success 10578 * after it successfully submit the wqe to firmware or after adding to the 10579 * txq. 10580 **/ 10581 static int 10582 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10583 struct lpfc_iocbq *piocb, uint32_t flag) 10584 { 10585 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10586 10587 lpfc_prep_embed_io(phba, lpfc_cmd); 10588 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10589 } 10590 10591 void 10592 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10593 { 10594 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10595 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10596 struct sli4_sge_le *sgl; 10597 u32 type_size; 10598 10599 /* 128 byte wqe support here */ 10600 sgl = (struct sli4_sge_le *)lpfc_cmd->dma_sgl; 10601 10602 if (phba->fcp_embed_io) { 10603 struct fcp_cmnd *fcp_cmnd; 10604 u32 *ptr; 10605 10606 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10607 10608 /* Word 0-2 - FCP_CMND */ 10609 type_size = le32_to_cpu(sgl->sge_len); 10610 type_size |= ULP_BDE64_TYPE_BDE_IMMED; 10611 wqe->generic.bde.tus.w = type_size; 10612 wqe->generic.bde.addrHigh = 0; 10613 wqe->generic.bde.addrLow = 72; /* Word 18 */ 10614 10615 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10616 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10617 10618 /* Word 18-29 FCP CMND Payload */ 10619 ptr = &wqe->words[18]; 10620 lpfc_sli_pcimem_bcopy(fcp_cmnd, ptr, le32_to_cpu(sgl->sge_len)); 10621 } else { 10622 /* Word 0-2 - Inline BDE */ 10623 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10624 wqe->generic.bde.tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 10625 wqe->generic.bde.addrHigh = le32_to_cpu(sgl->addr_hi); 10626 wqe->generic.bde.addrLow = le32_to_cpu(sgl->addr_lo); 10627 10628 /* Word 10 */ 10629 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10630 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10631 } 10632 10633 /* add the VMID tags as per switch response */ 10634 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10635 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10636 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10637 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10638 (piocb->vmid_tag.cs_ctl_vmid)); 10639 } else if (phba->cfg_vmid_app_header) { 10640 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10641 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10642 wqe->words[31] = piocb->vmid_tag.app_id; 10643 } 10644 } 10645 } 10646 10647 /** 10648 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10649 * @phba: Pointer to HBA context object. 10650 * @ring_number: SLI ring number to issue iocb on. 10651 * @piocb: Pointer to command iocb. 10652 * @flag: Flag indicating if this command can be put into txq. 10653 * 10654 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10655 * an iocb command to an HBA with SLI-4 interface spec. 10656 * 10657 * This function is called with ringlock held. The function will return success 10658 * after it successfully submit the iocb to firmware or after adding to the 10659 * txq. 10660 **/ 10661 static int 10662 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10663 struct lpfc_iocbq *piocb, uint32_t flag) 10664 { 10665 struct lpfc_sglq *sglq; 10666 union lpfc_wqe128 *wqe; 10667 struct lpfc_queue *wq; 10668 struct lpfc_sli_ring *pring; 10669 u32 ulp_command = get_job_cmnd(phba, piocb); 10670 10671 /* Get the WQ */ 10672 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10673 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10674 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10675 } else { 10676 wq = phba->sli4_hba.els_wq; 10677 } 10678 10679 /* Get corresponding ring */ 10680 pring = wq->pring; 10681 10682 /* 10683 * The WQE can be either 64 or 128 bytes, 10684 */ 10685 10686 lockdep_assert_held(&pring->ring_lock); 10687 wqe = &piocb->wqe; 10688 if (piocb->sli4_xritag == NO_XRI) { 10689 if (ulp_command == CMD_ABORT_XRI_CX) 10690 sglq = NULL; 10691 else { 10692 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10693 if (!sglq) { 10694 if (!(flag & SLI_IOCB_RET_IOCB)) { 10695 __lpfc_sli_ringtx_put(phba, 10696 pring, 10697 piocb); 10698 return IOCB_SUCCESS; 10699 } else { 10700 return IOCB_BUSY; 10701 } 10702 } 10703 } 10704 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10705 /* These IO's already have an XRI and a mapped sgl. */ 10706 sglq = NULL; 10707 } 10708 else { 10709 /* 10710 * This is a continuation of a commandi,(CX) so this 10711 * sglq is on the active list 10712 */ 10713 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10714 if (!sglq) 10715 return IOCB_ERROR; 10716 } 10717 10718 if (sglq) { 10719 piocb->sli4_lxritag = sglq->sli4_lxritag; 10720 piocb->sli4_xritag = sglq->sli4_xritag; 10721 10722 /* ABTS sent by initiator to CT exchange, the 10723 * RX_ID field will be filled with the newly 10724 * allocated responder XRI. 10725 */ 10726 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10727 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10728 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10729 piocb->sli4_xritag); 10730 10731 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10732 piocb->sli4_xritag); 10733 10734 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10735 return IOCB_ERROR; 10736 } 10737 10738 if (lpfc_sli4_wq_put(wq, wqe)) 10739 return IOCB_ERROR; 10740 10741 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10742 10743 return 0; 10744 } 10745 10746 /* 10747 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10748 * 10749 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10750 * or IOCB for sli-3 function. 10751 * pointer from the lpfc_hba struct. 10752 * 10753 * Return codes: 10754 * IOCB_ERROR - Error 10755 * IOCB_SUCCESS - Success 10756 * IOCB_BUSY - Busy 10757 **/ 10758 int 10759 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10760 struct lpfc_iocbq *piocb, uint32_t flag) 10761 { 10762 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10763 } 10764 10765 /* 10766 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10767 * 10768 * This routine wraps the actual lockless version for issusing IOCB function 10769 * pointer from the lpfc_hba struct. 10770 * 10771 * Return codes: 10772 * IOCB_ERROR - Error 10773 * IOCB_SUCCESS - Success 10774 * IOCB_BUSY - Busy 10775 **/ 10776 int 10777 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10778 struct lpfc_iocbq *piocb, uint32_t flag) 10779 { 10780 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10781 } 10782 10783 static void 10784 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10785 struct lpfc_vport *vport, 10786 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10787 u32 elscmd, u8 tmo, u8 expect_rsp) 10788 { 10789 struct lpfc_hba *phba = vport->phba; 10790 IOCB_t *cmd; 10791 10792 cmd = &cmdiocbq->iocb; 10793 memset(cmd, 0, sizeof(*cmd)); 10794 10795 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10796 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10797 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10798 10799 if (expect_rsp) { 10800 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10801 cmd->un.elsreq64.remoteID = did; /* DID */ 10802 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10803 cmd->ulpTimeout = tmo; 10804 } else { 10805 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10806 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10807 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10808 cmd->ulpPU = PARM_NPIV_DID; 10809 } 10810 cmd->ulpBdeCount = 1; 10811 cmd->ulpLe = 1; 10812 cmd->ulpClass = CLASS3; 10813 10814 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10815 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10816 if (expect_rsp) { 10817 cmd->un.elsreq64.myID = vport->fc_myDID; 10818 10819 /* For ELS_REQUEST64_CR, use the VPI by default */ 10820 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10821 } 10822 10823 cmd->ulpCt_h = 0; 10824 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10825 if (elscmd == ELS_CMD_ECHO) 10826 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10827 else 10828 cmd->ulpCt_l = 1; /* context = VPI */ 10829 } 10830 } 10831 10832 static void 10833 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10834 struct lpfc_vport *vport, 10835 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10836 u32 elscmd, u8 tmo, u8 expect_rsp) 10837 { 10838 struct lpfc_hba *phba = vport->phba; 10839 union lpfc_wqe128 *wqe; 10840 struct ulp_bde64_le *bde; 10841 u8 els_id; 10842 10843 wqe = &cmdiocbq->wqe; 10844 memset(wqe, 0, sizeof(*wqe)); 10845 10846 /* Word 0 - 2 BDE */ 10847 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10848 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10849 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10850 bde->type_size = cpu_to_le32(cmd_size); 10851 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10852 10853 if (expect_rsp) { 10854 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10855 10856 /* Transfer length */ 10857 wqe->els_req.payload_len = cmd_size; 10858 wqe->els_req.max_response_payload_len = FCELSSIZE; 10859 10860 /* DID */ 10861 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10862 10863 /* Word 11 - ELS_ID */ 10864 switch (elscmd) { 10865 case ELS_CMD_PLOGI: 10866 els_id = LPFC_ELS_ID_PLOGI; 10867 break; 10868 case ELS_CMD_FLOGI: 10869 els_id = LPFC_ELS_ID_FLOGI; 10870 break; 10871 case ELS_CMD_LOGO: 10872 els_id = LPFC_ELS_ID_LOGO; 10873 break; 10874 case ELS_CMD_FDISC: 10875 if (!vport->fc_myDID) { 10876 els_id = LPFC_ELS_ID_FDISC; 10877 break; 10878 } 10879 fallthrough; 10880 default: 10881 els_id = LPFC_ELS_ID_DEFAULT; 10882 break; 10883 } 10884 10885 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10886 } else { 10887 /* DID */ 10888 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10889 10890 /* Transfer length */ 10891 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10892 10893 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10894 CMD_XMIT_ELS_RSP64_WQE); 10895 } 10896 10897 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10898 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10899 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10900 10901 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10902 * For SLI4, since the driver controls VPIs we also want to include 10903 * all ELS pt2pt protocol traffic as well. 10904 */ 10905 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10906 test_bit(FC_PT2PT, &vport->fc_flag)) { 10907 if (expect_rsp) { 10908 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10909 10910 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10911 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10912 phba->vpi_ids[vport->vpi]); 10913 } 10914 10915 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10916 if (elscmd == ELS_CMD_ECHO) 10917 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10918 else 10919 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10920 } 10921 } 10922 10923 void 10924 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10925 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10926 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10927 u8 expect_rsp) 10928 { 10929 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10930 elscmd, tmo, expect_rsp); 10931 } 10932 10933 static void 10934 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10935 u16 rpi, u32 num_entry, u8 tmo) 10936 { 10937 IOCB_t *cmd; 10938 10939 cmd = &cmdiocbq->iocb; 10940 memset(cmd, 0, sizeof(*cmd)); 10941 10942 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10943 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10944 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10945 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10946 10947 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10948 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10949 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10950 10951 cmd->ulpContext = rpi; 10952 cmd->ulpClass = CLASS3; 10953 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10954 cmd->ulpBdeCount = 1; 10955 cmd->ulpLe = 1; 10956 cmd->ulpOwner = OWN_CHIP; 10957 cmd->ulpTimeout = tmo; 10958 } 10959 10960 static void 10961 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10962 u16 rpi, u32 num_entry, u8 tmo) 10963 { 10964 union lpfc_wqe128 *cmdwqe; 10965 struct ulp_bde64_le *bde, *bpl; 10966 u32 xmit_len = 0, total_len = 0, size, type, i; 10967 10968 cmdwqe = &cmdiocbq->wqe; 10969 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10970 10971 /* Calculate total_len and xmit_len */ 10972 bpl = (struct ulp_bde64_le *)bmp->virt; 10973 for (i = 0; i < num_entry; i++) { 10974 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10975 total_len += size; 10976 } 10977 for (i = 0; i < num_entry; i++) { 10978 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10979 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10980 if (type != ULP_BDE64_TYPE_BDE_64) 10981 break; 10982 xmit_len += size; 10983 } 10984 10985 /* Words 0 - 2 */ 10986 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10987 bde->addr_low = bpl->addr_low; 10988 bde->addr_high = bpl->addr_high; 10989 bde->type_size = cpu_to_le32(xmit_len); 10990 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10991 10992 /* Word 3 */ 10993 cmdwqe->gen_req.request_payload_len = xmit_len; 10994 10995 /* Word 5 */ 10996 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10997 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10998 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10999 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 11000 11001 /* Word 6 */ 11002 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 11003 11004 /* Word 7 */ 11005 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 11006 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 11007 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11008 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11009 11010 /* Word 12 */ 11011 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11012 } 11013 11014 void 11015 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11016 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11017 { 11018 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11019 } 11020 11021 static void 11022 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11023 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11024 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11025 { 11026 IOCB_t *icmd; 11027 11028 icmd = &cmdiocbq->iocb; 11029 memset(icmd, 0, sizeof(*icmd)); 11030 11031 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11032 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11033 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11034 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11035 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11036 if (last_seq) 11037 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11038 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11039 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11040 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11041 11042 icmd->ulpBdeCount = 1; 11043 icmd->ulpLe = 1; 11044 icmd->ulpClass = CLASS3; 11045 11046 switch (cr_cx_cmd) { 11047 case CMD_XMIT_SEQUENCE64_CR: 11048 icmd->ulpContext = rpi; 11049 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11050 break; 11051 case CMD_XMIT_SEQUENCE64_CX: 11052 icmd->ulpContext = ox_id; 11053 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11054 break; 11055 default: 11056 break; 11057 } 11058 } 11059 11060 static void 11061 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11062 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11063 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11064 { 11065 union lpfc_wqe128 *wqe; 11066 struct ulp_bde64 *bpl; 11067 11068 wqe = &cmdiocbq->wqe; 11069 memset(wqe, 0, sizeof(*wqe)); 11070 11071 /* Words 0 - 2 */ 11072 bpl = (struct ulp_bde64 *)bmp->virt; 11073 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11074 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11075 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11076 11077 /* Word 5 */ 11078 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11079 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11080 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11081 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11082 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11083 11084 /* Word 6 */ 11085 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11086 11087 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11088 CMD_XMIT_SEQUENCE64_WQE); 11089 11090 /* Word 7 */ 11091 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11092 11093 /* Word 9 */ 11094 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11095 11096 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) { 11097 /* Word 10 */ 11098 if (cmdiocbq->cmd_flag & LPFC_IO_VMID) { 11099 bf_set(wqe_appid, &wqe->xmit_sequence.wqe_com, 1); 11100 bf_set(wqe_wqes, &wqe->xmit_sequence.wqe_com, 1); 11101 wqe->words[31] = LOOPBACK_SRC_APPID; 11102 } 11103 11104 /* Word 12 */ 11105 wqe->xmit_sequence.xmit_len = full_size; 11106 } 11107 else 11108 wqe->xmit_sequence.xmit_len = 11109 wqe->xmit_sequence.bde.tus.f.bdeSize; 11110 } 11111 11112 void 11113 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11114 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11115 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11116 { 11117 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11118 rctl, last_seq, cr_cx_cmd); 11119 } 11120 11121 static void 11122 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11123 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11124 bool wqec) 11125 { 11126 IOCB_t *icmd = NULL; 11127 11128 icmd = &cmdiocbq->iocb; 11129 memset(icmd, 0, sizeof(*icmd)); 11130 11131 /* Word 5 */ 11132 icmd->un.acxri.abortContextTag = ulp_context; 11133 icmd->un.acxri.abortIoTag = iotag; 11134 11135 if (ia) { 11136 /* Word 7 */ 11137 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11138 } else { 11139 /* Word 3 */ 11140 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11141 11142 /* Word 7 */ 11143 icmd->ulpClass = ulp_class; 11144 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11145 } 11146 11147 /* Word 7 */ 11148 icmd->ulpLe = 1; 11149 } 11150 11151 static void 11152 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11153 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11154 bool wqec) 11155 { 11156 union lpfc_wqe128 *wqe; 11157 11158 wqe = &cmdiocbq->wqe; 11159 memset(wqe, 0, sizeof(*wqe)); 11160 11161 /* Word 3 */ 11162 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11163 if (ia) 11164 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11165 else 11166 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11167 11168 /* Word 7 */ 11169 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11170 11171 /* Word 8 */ 11172 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11173 11174 /* Word 9 */ 11175 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11176 11177 /* Word 10 */ 11178 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11179 11180 /* Word 11 */ 11181 if (wqec) 11182 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11183 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11184 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11185 } 11186 11187 void 11188 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11189 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11190 bool ia, bool wqec) 11191 { 11192 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11193 cqid, ia, wqec); 11194 } 11195 11196 /** 11197 * lpfc_sli_api_table_setup - Set up sli api function jump table 11198 * @phba: The hba struct for which this call is being executed. 11199 * @dev_grp: The HBA PCI-Device group number. 11200 * 11201 * This routine sets up the SLI interface API function jump table in @phba 11202 * struct. 11203 * Returns: 0 - success, -ENODEV - failure. 11204 **/ 11205 int 11206 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11207 { 11208 11209 switch (dev_grp) { 11210 case LPFC_PCI_DEV_LP: 11211 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11212 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11213 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11214 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11215 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11216 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11217 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11218 break; 11219 case LPFC_PCI_DEV_OC: 11220 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11221 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11222 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11223 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11224 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11225 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11226 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11227 break; 11228 default: 11229 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11230 "1419 Invalid HBA PCI-device group: 0x%x\n", 11231 dev_grp); 11232 return -ENODEV; 11233 } 11234 return 0; 11235 } 11236 11237 /** 11238 * lpfc_sli4_calc_ring - Calculates which ring to use 11239 * @phba: Pointer to HBA context object. 11240 * @piocb: Pointer to command iocb. 11241 * 11242 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11243 * hba_wqidx, thus we need to calculate the corresponding ring. 11244 * Since ABORTS must go on the same WQ of the command they are 11245 * aborting, we use command's hba_wqidx. 11246 */ 11247 struct lpfc_sli_ring * 11248 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11249 { 11250 struct lpfc_io_buf *lpfc_cmd; 11251 11252 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11253 if (unlikely(!phba->sli4_hba.hdwq)) 11254 return NULL; 11255 /* 11256 * for abort iocb hba_wqidx should already 11257 * be setup based on what work queue we used. 11258 */ 11259 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11260 lpfc_cmd = piocb->io_buf; 11261 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11262 } 11263 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11264 } else { 11265 if (unlikely(!phba->sli4_hba.els_wq)) 11266 return NULL; 11267 piocb->hba_wqidx = 0; 11268 return phba->sli4_hba.els_wq->pring; 11269 } 11270 } 11271 11272 inline void lpfc_sli4_poll_eq(struct lpfc_queue *eq) 11273 { 11274 struct lpfc_hba *phba = eq->phba; 11275 11276 /* 11277 * Unlocking an irq is one of the entry point to check 11278 * for re-schedule, but we are good for io submission 11279 * path as midlayer does a get_cpu to glue us in. Flush 11280 * out the invalidate queue so we can see the updated 11281 * value for flag. 11282 */ 11283 smp_rmb(); 11284 11285 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 11286 /* We will not likely get the completion for the caller 11287 * during this iteration but i guess that's fine. 11288 * Future io's coming on this eq should be able to 11289 * pick it up. As for the case of single io's, they 11290 * will be handled through a sched from polling timer 11291 * function which is currently triggered every 1msec. 11292 */ 11293 lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM, 11294 LPFC_QUEUE_WORK); 11295 } 11296 11297 /** 11298 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11299 * @phba: Pointer to HBA context object. 11300 * @ring_number: Ring number 11301 * @piocb: Pointer to command iocb. 11302 * @flag: Flag indicating if this command can be put into txq. 11303 * 11304 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11305 * function. This function gets the hbalock and calls 11306 * __lpfc_sli_issue_iocb function and will return the error returned 11307 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11308 * functions which do not hold hbalock. 11309 **/ 11310 int 11311 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11312 struct lpfc_iocbq *piocb, uint32_t flag) 11313 { 11314 struct lpfc_sli_ring *pring; 11315 struct lpfc_queue *eq; 11316 unsigned long iflags; 11317 int rc; 11318 11319 /* If the PCI channel is in offline state, do not post iocbs. */ 11320 if (unlikely(pci_channel_offline(phba->pcidev))) 11321 return IOCB_ERROR; 11322 11323 if (phba->sli_rev == LPFC_SLI_REV4) { 11324 lpfc_sli_prep_wqe(phba, piocb); 11325 11326 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11327 11328 pring = lpfc_sli4_calc_ring(phba, piocb); 11329 if (unlikely(pring == NULL)) 11330 return IOCB_ERROR; 11331 11332 spin_lock_irqsave(&pring->ring_lock, iflags); 11333 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11334 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11335 11336 lpfc_sli4_poll_eq(eq); 11337 } else { 11338 /* For now, SLI2/3 will still use hbalock */ 11339 spin_lock_irqsave(&phba->hbalock, iflags); 11340 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11341 spin_unlock_irqrestore(&phba->hbalock, iflags); 11342 } 11343 return rc; 11344 } 11345 11346 /** 11347 * lpfc_extra_ring_setup - Extra ring setup function 11348 * @phba: Pointer to HBA context object. 11349 * 11350 * This function is called while driver attaches with the 11351 * HBA to setup the extra ring. The extra ring is used 11352 * only when driver needs to support target mode functionality 11353 * or IP over FC functionalities. 11354 * 11355 * This function is called with no lock held. SLI3 only. 11356 **/ 11357 static int 11358 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11359 { 11360 struct lpfc_sli *psli; 11361 struct lpfc_sli_ring *pring; 11362 11363 psli = &phba->sli; 11364 11365 /* Adjust cmd/rsp ring iocb entries more evenly */ 11366 11367 /* Take some away from the FCP ring */ 11368 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11369 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11370 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11371 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11372 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11373 11374 /* and give them to the extra ring */ 11375 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11376 11377 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11378 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11379 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11380 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11381 11382 /* Setup default profile for this ring */ 11383 pring->iotag_max = 4096; 11384 pring->num_mask = 1; 11385 pring->prt[0].profile = 0; /* Mask 0 */ 11386 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11387 pring->prt[0].type = phba->cfg_multi_ring_type; 11388 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11389 return 0; 11390 } 11391 11392 static void 11393 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11394 struct lpfc_nodelist *ndlp) 11395 { 11396 unsigned long iflags; 11397 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11398 11399 /* Hold a node reference for outstanding queued work */ 11400 if (!lpfc_nlp_get(ndlp)) 11401 return; 11402 11403 spin_lock_irqsave(&phba->hbalock, iflags); 11404 if (!list_empty(&evtp->evt_listp)) { 11405 spin_unlock_irqrestore(&phba->hbalock, iflags); 11406 lpfc_nlp_put(ndlp); 11407 return; 11408 } 11409 11410 evtp->evt_arg1 = ndlp; 11411 evtp->evt = LPFC_EVT_RECOVER_PORT; 11412 list_add_tail(&evtp->evt_listp, &phba->work_list); 11413 spin_unlock_irqrestore(&phba->hbalock, iflags); 11414 11415 lpfc_worker_wake_up(phba); 11416 } 11417 11418 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11419 * @phba: Pointer to HBA context object. 11420 * @iocbq: Pointer to iocb object. 11421 * 11422 * The async_event handler calls this routine when it receives 11423 * an ASYNC_STATUS_CN event from the port. The port generates 11424 * this event when an Abort Sequence request to an rport fails 11425 * twice in succession. The abort could be originated by the 11426 * driver or by the port. The ABTS could have been for an ELS 11427 * or FCP IO. The port only generates this event when an ABTS 11428 * fails to complete after one retry. 11429 */ 11430 static void 11431 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11432 struct lpfc_iocbq *iocbq) 11433 { 11434 struct lpfc_nodelist *ndlp = NULL; 11435 uint16_t rpi = 0, vpi = 0; 11436 struct lpfc_vport *vport = NULL; 11437 11438 /* The rpi in the ulpContext is vport-sensitive. */ 11439 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11440 rpi = iocbq->iocb.ulpContext; 11441 11442 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11443 "3092 Port generated ABTS async event " 11444 "on vpi %d rpi %d status 0x%x\n", 11445 vpi, rpi, iocbq->iocb.ulpStatus); 11446 11447 vport = lpfc_find_vport_by_vpid(phba, vpi); 11448 if (!vport) 11449 goto err_exit; 11450 ndlp = lpfc_findnode_rpi(vport, rpi); 11451 if (!ndlp) 11452 goto err_exit; 11453 11454 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11455 lpfc_sli_abts_recover_port(vport, ndlp); 11456 return; 11457 11458 err_exit: 11459 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11460 "3095 Event Context not found, no " 11461 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11462 vpi, rpi, iocbq->iocb.ulpStatus, 11463 iocbq->iocb.ulpContext); 11464 } 11465 11466 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11467 * @phba: pointer to HBA context object. 11468 * @ndlp: nodelist pointer for the impacted rport. 11469 * @axri: pointer to the wcqe containing the failed exchange. 11470 * 11471 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11472 * port. The port generates this event when an abort exchange request to an 11473 * rport fails twice in succession with no reply. The abort could be originated 11474 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11475 */ 11476 void 11477 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11478 struct lpfc_nodelist *ndlp, 11479 struct sli4_wcqe_xri_aborted *axri) 11480 { 11481 uint32_t ext_status = 0; 11482 11483 if (!ndlp) { 11484 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11485 "3115 Node Context not found, driver " 11486 "ignoring abts err event\n"); 11487 return; 11488 } 11489 11490 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11491 "3116 Port generated FCP XRI ABORT event on " 11492 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11493 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11494 bf_get(lpfc_wcqe_xa_xri, axri), 11495 bf_get(lpfc_wcqe_xa_status, axri), 11496 axri->parameter); 11497 11498 /* 11499 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11500 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11501 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11502 */ 11503 ext_status = axri->parameter & IOERR_PARAM_MASK; 11504 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11505 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11506 lpfc_sli_post_recovery_event(phba, ndlp); 11507 } 11508 11509 /** 11510 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11511 * @phba: Pointer to HBA context object. 11512 * @pring: Pointer to driver SLI ring object. 11513 * @iocbq: Pointer to iocb object. 11514 * 11515 * This function is called by the slow ring event handler 11516 * function when there is an ASYNC event iocb in the ring. 11517 * This function is called with no lock held. 11518 * Currently this function handles only temperature related 11519 * ASYNC events. The function decodes the temperature sensor 11520 * event message and posts events for the management applications. 11521 **/ 11522 static void 11523 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11524 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11525 { 11526 IOCB_t *icmd; 11527 uint16_t evt_code; 11528 struct temp_event temp_event_data; 11529 struct Scsi_Host *shost; 11530 uint32_t *iocb_w; 11531 11532 icmd = &iocbq->iocb; 11533 evt_code = icmd->un.asyncstat.evt_code; 11534 11535 switch (evt_code) { 11536 case ASYNC_TEMP_WARN: 11537 case ASYNC_TEMP_SAFE: 11538 temp_event_data.data = (uint32_t) icmd->ulpContext; 11539 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11540 if (evt_code == ASYNC_TEMP_WARN) { 11541 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11542 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11543 "0347 Adapter is very hot, please take " 11544 "corrective action. temperature : %d Celsius\n", 11545 (uint32_t) icmd->ulpContext); 11546 } else { 11547 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11548 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11549 "0340 Adapter temperature is OK now. " 11550 "temperature : %d Celsius\n", 11551 (uint32_t) icmd->ulpContext); 11552 } 11553 11554 /* Send temperature change event to applications */ 11555 shost = lpfc_shost_from_vport(phba->pport); 11556 fc_host_post_vendor_event(shost, fc_get_event_number(), 11557 sizeof(temp_event_data), (char *) &temp_event_data, 11558 LPFC_NL_VENDOR_ID); 11559 break; 11560 case ASYNC_STATUS_CN: 11561 lpfc_sli_abts_err_handler(phba, iocbq); 11562 break; 11563 default: 11564 iocb_w = (uint32_t *) icmd; 11565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11566 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11567 " evt_code 0x%x\n" 11568 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11569 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11570 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11571 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11572 pring->ringno, icmd->un.asyncstat.evt_code, 11573 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11574 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11575 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11576 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11577 11578 break; 11579 } 11580 } 11581 11582 11583 /** 11584 * lpfc_sli4_setup - SLI ring setup function 11585 * @phba: Pointer to HBA context object. 11586 * 11587 * lpfc_sli_setup sets up rings of the SLI interface with 11588 * number of iocbs per ring and iotags. This function is 11589 * called while driver attach to the HBA and before the 11590 * interrupts are enabled. So there is no need for locking. 11591 * 11592 * This function always returns 0. 11593 **/ 11594 int 11595 lpfc_sli4_setup(struct lpfc_hba *phba) 11596 { 11597 struct lpfc_sli_ring *pring; 11598 11599 pring = phba->sli4_hba.els_wq->pring; 11600 pring->num_mask = LPFC_MAX_RING_MASK; 11601 pring->prt[0].profile = 0; /* Mask 0 */ 11602 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11603 pring->prt[0].type = FC_TYPE_ELS; 11604 pring->prt[0].lpfc_sli_rcv_unsol_event = 11605 lpfc_els_unsol_event; 11606 pring->prt[1].profile = 0; /* Mask 1 */ 11607 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11608 pring->prt[1].type = FC_TYPE_ELS; 11609 pring->prt[1].lpfc_sli_rcv_unsol_event = 11610 lpfc_els_unsol_event; 11611 pring->prt[2].profile = 0; /* Mask 2 */ 11612 /* NameServer Inquiry */ 11613 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11614 /* NameServer */ 11615 pring->prt[2].type = FC_TYPE_CT; 11616 pring->prt[2].lpfc_sli_rcv_unsol_event = 11617 lpfc_ct_unsol_event; 11618 pring->prt[3].profile = 0; /* Mask 3 */ 11619 /* NameServer response */ 11620 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11621 /* NameServer */ 11622 pring->prt[3].type = FC_TYPE_CT; 11623 pring->prt[3].lpfc_sli_rcv_unsol_event = 11624 lpfc_ct_unsol_event; 11625 return 0; 11626 } 11627 11628 /** 11629 * lpfc_sli_setup - SLI ring setup function 11630 * @phba: Pointer to HBA context object. 11631 * 11632 * lpfc_sli_setup sets up rings of the SLI interface with 11633 * number of iocbs per ring and iotags. This function is 11634 * called while driver attach to the HBA and before the 11635 * interrupts are enabled. So there is no need for locking. 11636 * 11637 * This function always returns 0. SLI3 only. 11638 **/ 11639 int 11640 lpfc_sli_setup(struct lpfc_hba *phba) 11641 { 11642 int i, totiocbsize = 0; 11643 struct lpfc_sli *psli = &phba->sli; 11644 struct lpfc_sli_ring *pring; 11645 11646 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11647 psli->sli_flag = 0; 11648 11649 psli->iocbq_lookup = NULL; 11650 psli->iocbq_lookup_len = 0; 11651 psli->last_iotag = 0; 11652 11653 for (i = 0; i < psli->num_rings; i++) { 11654 pring = &psli->sli3_ring[i]; 11655 switch (i) { 11656 case LPFC_FCP_RING: /* ring 0 - FCP */ 11657 /* numCiocb and numRiocb are used in config_port */ 11658 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11659 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11660 pring->sli.sli3.numCiocb += 11661 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11662 pring->sli.sli3.numRiocb += 11663 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11664 pring->sli.sli3.numCiocb += 11665 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11666 pring->sli.sli3.numRiocb += 11667 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11668 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11669 SLI3_IOCB_CMD_SIZE : 11670 SLI2_IOCB_CMD_SIZE; 11671 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11672 SLI3_IOCB_RSP_SIZE : 11673 SLI2_IOCB_RSP_SIZE; 11674 pring->iotag_ctr = 0; 11675 pring->iotag_max = 11676 (phba->cfg_hba_queue_depth * 2); 11677 pring->fast_iotag = pring->iotag_max; 11678 pring->num_mask = 0; 11679 break; 11680 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11681 /* numCiocb and numRiocb are used in config_port */ 11682 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11683 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11684 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11685 SLI3_IOCB_CMD_SIZE : 11686 SLI2_IOCB_CMD_SIZE; 11687 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11688 SLI3_IOCB_RSP_SIZE : 11689 SLI2_IOCB_RSP_SIZE; 11690 pring->iotag_max = phba->cfg_hba_queue_depth; 11691 pring->num_mask = 0; 11692 break; 11693 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11694 /* numCiocb and numRiocb are used in config_port */ 11695 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11696 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11697 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11698 SLI3_IOCB_CMD_SIZE : 11699 SLI2_IOCB_CMD_SIZE; 11700 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11701 SLI3_IOCB_RSP_SIZE : 11702 SLI2_IOCB_RSP_SIZE; 11703 pring->fast_iotag = 0; 11704 pring->iotag_ctr = 0; 11705 pring->iotag_max = 4096; 11706 pring->lpfc_sli_rcv_async_status = 11707 lpfc_sli_async_event_handler; 11708 pring->num_mask = LPFC_MAX_RING_MASK; 11709 pring->prt[0].profile = 0; /* Mask 0 */ 11710 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11711 pring->prt[0].type = FC_TYPE_ELS; 11712 pring->prt[0].lpfc_sli_rcv_unsol_event = 11713 lpfc_els_unsol_event; 11714 pring->prt[1].profile = 0; /* Mask 1 */ 11715 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11716 pring->prt[1].type = FC_TYPE_ELS; 11717 pring->prt[1].lpfc_sli_rcv_unsol_event = 11718 lpfc_els_unsol_event; 11719 pring->prt[2].profile = 0; /* Mask 2 */ 11720 /* NameServer Inquiry */ 11721 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11722 /* NameServer */ 11723 pring->prt[2].type = FC_TYPE_CT; 11724 pring->prt[2].lpfc_sli_rcv_unsol_event = 11725 lpfc_ct_unsol_event; 11726 pring->prt[3].profile = 0; /* Mask 3 */ 11727 /* NameServer response */ 11728 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11729 /* NameServer */ 11730 pring->prt[3].type = FC_TYPE_CT; 11731 pring->prt[3].lpfc_sli_rcv_unsol_event = 11732 lpfc_ct_unsol_event; 11733 break; 11734 } 11735 totiocbsize += (pring->sli.sli3.numCiocb * 11736 pring->sli.sli3.sizeCiocb) + 11737 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11738 } 11739 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11740 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11741 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11742 "SLI2 SLIM Data: x%x x%lx\n", 11743 phba->brd_no, totiocbsize, 11744 (unsigned long) MAX_SLIM_IOCB_SIZE); 11745 } 11746 if (phba->cfg_multi_ring_support == 2) 11747 lpfc_extra_ring_setup(phba); 11748 11749 return 0; 11750 } 11751 11752 /** 11753 * lpfc_sli4_queue_init - Queue initialization function 11754 * @phba: Pointer to HBA context object. 11755 * 11756 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11757 * ring. This function also initializes ring indices of each ring. 11758 * This function is called during the initialization of the SLI 11759 * interface of an HBA. 11760 * This function is called with no lock held and always returns 11761 * 1. 11762 **/ 11763 void 11764 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11765 { 11766 struct lpfc_sli *psli; 11767 struct lpfc_sli_ring *pring; 11768 int i; 11769 11770 psli = &phba->sli; 11771 spin_lock_irq(&phba->hbalock); 11772 INIT_LIST_HEAD(&psli->mboxq); 11773 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11774 /* Initialize list headers for txq and txcmplq as double linked lists */ 11775 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11776 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11777 pring->flag = 0; 11778 pring->ringno = LPFC_FCP_RING; 11779 pring->txcmplq_cnt = 0; 11780 INIT_LIST_HEAD(&pring->txq); 11781 INIT_LIST_HEAD(&pring->txcmplq); 11782 INIT_LIST_HEAD(&pring->iocb_continueq); 11783 spin_lock_init(&pring->ring_lock); 11784 } 11785 pring = phba->sli4_hba.els_wq->pring; 11786 pring->flag = 0; 11787 pring->ringno = LPFC_ELS_RING; 11788 pring->txcmplq_cnt = 0; 11789 INIT_LIST_HEAD(&pring->txq); 11790 INIT_LIST_HEAD(&pring->txcmplq); 11791 INIT_LIST_HEAD(&pring->iocb_continueq); 11792 spin_lock_init(&pring->ring_lock); 11793 11794 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11795 pring = phba->sli4_hba.nvmels_wq->pring; 11796 pring->flag = 0; 11797 pring->ringno = LPFC_ELS_RING; 11798 pring->txcmplq_cnt = 0; 11799 INIT_LIST_HEAD(&pring->txq); 11800 INIT_LIST_HEAD(&pring->txcmplq); 11801 INIT_LIST_HEAD(&pring->iocb_continueq); 11802 spin_lock_init(&pring->ring_lock); 11803 } 11804 11805 spin_unlock_irq(&phba->hbalock); 11806 } 11807 11808 /** 11809 * lpfc_sli_queue_init - Queue initialization function 11810 * @phba: Pointer to HBA context object. 11811 * 11812 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11813 * ring. This function also initializes ring indices of each ring. 11814 * This function is called during the initialization of the SLI 11815 * interface of an HBA. 11816 * This function is called with no lock held and always returns 11817 * 1. 11818 **/ 11819 void 11820 lpfc_sli_queue_init(struct lpfc_hba *phba) 11821 { 11822 struct lpfc_sli *psli; 11823 struct lpfc_sli_ring *pring; 11824 int i; 11825 11826 psli = &phba->sli; 11827 spin_lock_irq(&phba->hbalock); 11828 INIT_LIST_HEAD(&psli->mboxq); 11829 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11830 /* Initialize list headers for txq and txcmplq as double linked lists */ 11831 for (i = 0; i < psli->num_rings; i++) { 11832 pring = &psli->sli3_ring[i]; 11833 pring->ringno = i; 11834 pring->sli.sli3.next_cmdidx = 0; 11835 pring->sli.sli3.local_getidx = 0; 11836 pring->sli.sli3.cmdidx = 0; 11837 INIT_LIST_HEAD(&pring->iocb_continueq); 11838 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11839 INIT_LIST_HEAD(&pring->postbufq); 11840 pring->flag = 0; 11841 INIT_LIST_HEAD(&pring->txq); 11842 INIT_LIST_HEAD(&pring->txcmplq); 11843 spin_lock_init(&pring->ring_lock); 11844 } 11845 spin_unlock_irq(&phba->hbalock); 11846 } 11847 11848 /** 11849 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11850 * @phba: Pointer to HBA context object. 11851 * 11852 * This routine flushes the mailbox command subsystem. It will unconditionally 11853 * flush all the mailbox commands in the three possible stages in the mailbox 11854 * command sub-system: pending mailbox command queue; the outstanding mailbox 11855 * command; and completed mailbox command queue. It is caller's responsibility 11856 * to make sure that the driver is in the proper state to flush the mailbox 11857 * command sub-system. Namely, the posting of mailbox commands into the 11858 * pending mailbox command queue from the various clients must be stopped; 11859 * either the HBA is in a state that it will never works on the outstanding 11860 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11861 * mailbox command has been completed. 11862 **/ 11863 static void 11864 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11865 { 11866 LIST_HEAD(completions); 11867 struct lpfc_sli *psli = &phba->sli; 11868 LPFC_MBOXQ_t *pmb; 11869 unsigned long iflag; 11870 11871 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11872 local_bh_disable(); 11873 11874 /* Flush all the mailbox commands in the mbox system */ 11875 spin_lock_irqsave(&phba->hbalock, iflag); 11876 11877 /* The pending mailbox command queue */ 11878 list_splice_init(&phba->sli.mboxq, &completions); 11879 /* The outstanding active mailbox command */ 11880 if (psli->mbox_active) { 11881 list_add_tail(&psli->mbox_active->list, &completions); 11882 psli->mbox_active = NULL; 11883 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11884 } 11885 /* The completed mailbox command queue */ 11886 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11887 spin_unlock_irqrestore(&phba->hbalock, iflag); 11888 11889 /* Enable softirqs again, done with phba->hbalock */ 11890 local_bh_enable(); 11891 11892 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11893 while (!list_empty(&completions)) { 11894 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11895 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11896 if (pmb->mbox_cmpl) 11897 pmb->mbox_cmpl(phba, pmb); 11898 } 11899 } 11900 11901 /** 11902 * lpfc_sli_host_down - Vport cleanup function 11903 * @vport: Pointer to virtual port object. 11904 * 11905 * lpfc_sli_host_down is called to clean up the resources 11906 * associated with a vport before destroying virtual 11907 * port data structures. 11908 * This function does following operations: 11909 * - Free discovery resources associated with this virtual 11910 * port. 11911 * - Free iocbs associated with this virtual port in 11912 * the txq. 11913 * - Send abort for all iocb commands associated with this 11914 * vport in txcmplq. 11915 * 11916 * This function is called with no lock held and always returns 1. 11917 **/ 11918 int 11919 lpfc_sli_host_down(struct lpfc_vport *vport) 11920 { 11921 LIST_HEAD(completions); 11922 struct lpfc_hba *phba = vport->phba; 11923 struct lpfc_sli *psli = &phba->sli; 11924 struct lpfc_queue *qp = NULL; 11925 struct lpfc_sli_ring *pring; 11926 struct lpfc_iocbq *iocb, *next_iocb; 11927 int i; 11928 unsigned long flags = 0; 11929 uint16_t prev_pring_flag; 11930 11931 lpfc_cleanup_discovery_resources(vport); 11932 11933 spin_lock_irqsave(&phba->hbalock, flags); 11934 11935 /* 11936 * Error everything on the txq since these iocbs 11937 * have not been given to the FW yet. 11938 * Also issue ABTS for everything on the txcmplq 11939 */ 11940 if (phba->sli_rev != LPFC_SLI_REV4) { 11941 for (i = 0; i < psli->num_rings; i++) { 11942 pring = &psli->sli3_ring[i]; 11943 prev_pring_flag = pring->flag; 11944 /* Only slow rings */ 11945 if (pring->ringno == LPFC_ELS_RING) { 11946 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11947 /* Set the lpfc data pending flag */ 11948 set_bit(LPFC_DATA_READY, &phba->data_flags); 11949 } 11950 list_for_each_entry_safe(iocb, next_iocb, 11951 &pring->txq, list) { 11952 if (iocb->vport != vport) 11953 continue; 11954 list_move_tail(&iocb->list, &completions); 11955 } 11956 list_for_each_entry_safe(iocb, next_iocb, 11957 &pring->txcmplq, list) { 11958 if (iocb->vport != vport) 11959 continue; 11960 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11961 NULL); 11962 } 11963 pring->flag = prev_pring_flag; 11964 } 11965 } else { 11966 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11967 pring = qp->pring; 11968 if (!pring) 11969 continue; 11970 if (pring == phba->sli4_hba.els_wq->pring) { 11971 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11972 /* Set the lpfc data pending flag */ 11973 set_bit(LPFC_DATA_READY, &phba->data_flags); 11974 } 11975 prev_pring_flag = pring->flag; 11976 spin_lock(&pring->ring_lock); 11977 list_for_each_entry_safe(iocb, next_iocb, 11978 &pring->txq, list) { 11979 if (iocb->vport != vport) 11980 continue; 11981 list_move_tail(&iocb->list, &completions); 11982 } 11983 spin_unlock(&pring->ring_lock); 11984 list_for_each_entry_safe(iocb, next_iocb, 11985 &pring->txcmplq, list) { 11986 if (iocb->vport != vport) 11987 continue; 11988 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11989 NULL); 11990 } 11991 pring->flag = prev_pring_flag; 11992 } 11993 } 11994 spin_unlock_irqrestore(&phba->hbalock, flags); 11995 11996 /* Make sure HBA is alive */ 11997 lpfc_issue_hb_tmo(phba); 11998 11999 /* Cancel all the IOCBs from the completions list */ 12000 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12001 IOERR_SLI_DOWN); 12002 return 1; 12003 } 12004 12005 /** 12006 * lpfc_sli_hba_down - Resource cleanup function for the HBA 12007 * @phba: Pointer to HBA context object. 12008 * 12009 * This function cleans up all iocb, buffers, mailbox commands 12010 * while shutting down the HBA. This function is called with no 12011 * lock held and always returns 1. 12012 * This function does the following to cleanup driver resources: 12013 * - Free discovery resources for each virtual port 12014 * - Cleanup any pending fabric iocbs 12015 * - Iterate through the iocb txq and free each entry 12016 * in the list. 12017 * - Free up any buffer posted to the HBA 12018 * - Free mailbox commands in the mailbox queue. 12019 **/ 12020 int 12021 lpfc_sli_hba_down(struct lpfc_hba *phba) 12022 { 12023 LIST_HEAD(completions); 12024 struct lpfc_sli *psli = &phba->sli; 12025 struct lpfc_queue *qp = NULL; 12026 struct lpfc_sli_ring *pring; 12027 struct lpfc_dmabuf *buf_ptr; 12028 unsigned long flags = 0; 12029 int i; 12030 12031 /* Shutdown the mailbox command sub-system */ 12032 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 12033 12034 lpfc_hba_down_prep(phba); 12035 12036 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12037 local_bh_disable(); 12038 12039 lpfc_fabric_abort_hba(phba); 12040 12041 spin_lock_irqsave(&phba->hbalock, flags); 12042 12043 /* 12044 * Error everything on the txq since these iocbs 12045 * have not been given to the FW yet. 12046 */ 12047 if (phba->sli_rev != LPFC_SLI_REV4) { 12048 for (i = 0; i < psli->num_rings; i++) { 12049 pring = &psli->sli3_ring[i]; 12050 /* Only slow rings */ 12051 if (pring->ringno == LPFC_ELS_RING) { 12052 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12053 /* Set the lpfc data pending flag */ 12054 set_bit(LPFC_DATA_READY, &phba->data_flags); 12055 } 12056 list_splice_init(&pring->txq, &completions); 12057 } 12058 } else { 12059 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12060 pring = qp->pring; 12061 if (!pring) 12062 continue; 12063 spin_lock(&pring->ring_lock); 12064 list_splice_init(&pring->txq, &completions); 12065 spin_unlock(&pring->ring_lock); 12066 if (pring == phba->sli4_hba.els_wq->pring) { 12067 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12068 /* Set the lpfc data pending flag */ 12069 set_bit(LPFC_DATA_READY, &phba->data_flags); 12070 } 12071 } 12072 } 12073 spin_unlock_irqrestore(&phba->hbalock, flags); 12074 12075 /* Cancel all the IOCBs from the completions list */ 12076 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12077 IOERR_SLI_DOWN); 12078 12079 spin_lock_irqsave(&phba->hbalock, flags); 12080 list_splice_init(&phba->elsbuf, &completions); 12081 phba->elsbuf_cnt = 0; 12082 phba->elsbuf_prev_cnt = 0; 12083 spin_unlock_irqrestore(&phba->hbalock, flags); 12084 12085 while (!list_empty(&completions)) { 12086 list_remove_head(&completions, buf_ptr, 12087 struct lpfc_dmabuf, list); 12088 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12089 kfree(buf_ptr); 12090 } 12091 12092 /* Enable softirqs again, done with phba->hbalock */ 12093 local_bh_enable(); 12094 12095 /* Return any active mbox cmds */ 12096 del_timer_sync(&psli->mbox_tmo); 12097 12098 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12099 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12100 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12101 12102 return 1; 12103 } 12104 12105 /** 12106 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12107 * @srcp: Source memory pointer. 12108 * @destp: Destination memory pointer. 12109 * @cnt: Number of words required to be copied. 12110 * 12111 * This function is used for copying data between driver memory 12112 * and the SLI memory. This function also changes the endianness 12113 * of each word if native endianness is different from SLI 12114 * endianness. This function can be called with or without 12115 * lock. 12116 **/ 12117 void 12118 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12119 { 12120 uint32_t *src = srcp; 12121 uint32_t *dest = destp; 12122 uint32_t ldata; 12123 int i; 12124 12125 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12126 ldata = *src; 12127 ldata = le32_to_cpu(ldata); 12128 *dest = ldata; 12129 src++; 12130 dest++; 12131 } 12132 } 12133 12134 12135 /** 12136 * lpfc_sli_bemem_bcopy - SLI memory copy function 12137 * @srcp: Source memory pointer. 12138 * @destp: Destination memory pointer. 12139 * @cnt: Number of words required to be copied. 12140 * 12141 * This function is used for copying data between a data structure 12142 * with big endian representation to local endianness. 12143 * This function can be called with or without lock. 12144 **/ 12145 void 12146 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12147 { 12148 uint32_t *src = srcp; 12149 uint32_t *dest = destp; 12150 uint32_t ldata; 12151 int i; 12152 12153 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12154 ldata = *src; 12155 ldata = be32_to_cpu(ldata); 12156 *dest = ldata; 12157 src++; 12158 dest++; 12159 } 12160 } 12161 12162 /** 12163 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12164 * @phba: Pointer to HBA context object. 12165 * @pring: Pointer to driver SLI ring object. 12166 * @mp: Pointer to driver buffer object. 12167 * 12168 * This function is called with no lock held. 12169 * It always return zero after adding the buffer to the postbufq 12170 * buffer list. 12171 **/ 12172 int 12173 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12174 struct lpfc_dmabuf *mp) 12175 { 12176 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12177 later */ 12178 spin_lock_irq(&phba->hbalock); 12179 list_add_tail(&mp->list, &pring->postbufq); 12180 pring->postbufq_cnt++; 12181 spin_unlock_irq(&phba->hbalock); 12182 return 0; 12183 } 12184 12185 /** 12186 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12187 * @phba: Pointer to HBA context object. 12188 * 12189 * When HBQ is enabled, buffers are searched based on tags. This function 12190 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12191 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12192 * does not conflict with tags of buffer posted for unsolicited events. 12193 * The function returns the allocated tag. The function is called with 12194 * no locks held. 12195 **/ 12196 uint32_t 12197 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12198 { 12199 spin_lock_irq(&phba->hbalock); 12200 phba->buffer_tag_count++; 12201 /* 12202 * Always set the QUE_BUFTAG_BIT to distiguish between 12203 * a tag assigned by HBQ. 12204 */ 12205 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12206 spin_unlock_irq(&phba->hbalock); 12207 return phba->buffer_tag_count; 12208 } 12209 12210 /** 12211 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12212 * @phba: Pointer to HBA context object. 12213 * @pring: Pointer to driver SLI ring object. 12214 * @tag: Buffer tag. 12215 * 12216 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12217 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12218 * iocb is posted to the response ring with the tag of the buffer. 12219 * This function searches the pring->postbufq list using the tag 12220 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12221 * iocb. If the buffer is found then lpfc_dmabuf object of the 12222 * buffer is returned to the caller else NULL is returned. 12223 * This function is called with no lock held. 12224 **/ 12225 struct lpfc_dmabuf * 12226 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12227 uint32_t tag) 12228 { 12229 struct lpfc_dmabuf *mp, *next_mp; 12230 struct list_head *slp = &pring->postbufq; 12231 12232 /* Search postbufq, from the beginning, looking for a match on tag */ 12233 spin_lock_irq(&phba->hbalock); 12234 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12235 if (mp->buffer_tag == tag) { 12236 list_del_init(&mp->list); 12237 pring->postbufq_cnt--; 12238 spin_unlock_irq(&phba->hbalock); 12239 return mp; 12240 } 12241 } 12242 12243 spin_unlock_irq(&phba->hbalock); 12244 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12245 "0402 Cannot find virtual addr for buffer tag on " 12246 "ring %d Data x%lx x%px x%px x%x\n", 12247 pring->ringno, (unsigned long) tag, 12248 slp->next, slp->prev, pring->postbufq_cnt); 12249 12250 return NULL; 12251 } 12252 12253 /** 12254 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12255 * @phba: Pointer to HBA context object. 12256 * @pring: Pointer to driver SLI ring object. 12257 * @phys: DMA address of the buffer. 12258 * 12259 * This function searches the buffer list using the dma_address 12260 * of unsolicited event to find the driver's lpfc_dmabuf object 12261 * corresponding to the dma_address. The function returns the 12262 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12263 * This function is called by the ct and els unsolicited event 12264 * handlers to get the buffer associated with the unsolicited 12265 * event. 12266 * 12267 * This function is called with no lock held. 12268 **/ 12269 struct lpfc_dmabuf * 12270 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12271 dma_addr_t phys) 12272 { 12273 struct lpfc_dmabuf *mp, *next_mp; 12274 struct list_head *slp = &pring->postbufq; 12275 12276 /* Search postbufq, from the beginning, looking for a match on phys */ 12277 spin_lock_irq(&phba->hbalock); 12278 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12279 if (mp->phys == phys) { 12280 list_del_init(&mp->list); 12281 pring->postbufq_cnt--; 12282 spin_unlock_irq(&phba->hbalock); 12283 return mp; 12284 } 12285 } 12286 12287 spin_unlock_irq(&phba->hbalock); 12288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12289 "0410 Cannot find virtual addr for mapped buf on " 12290 "ring %d Data x%llx x%px x%px x%x\n", 12291 pring->ringno, (unsigned long long)phys, 12292 slp->next, slp->prev, pring->postbufq_cnt); 12293 return NULL; 12294 } 12295 12296 /** 12297 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12298 * @phba: Pointer to HBA context object. 12299 * @cmdiocb: Pointer to driver command iocb object. 12300 * @rspiocb: Pointer to driver response iocb object. 12301 * 12302 * This function is the completion handler for the abort iocbs for 12303 * ELS commands. This function is called from the ELS ring event 12304 * handler with no lock held. This function frees memory resources 12305 * associated with the abort iocb. 12306 **/ 12307 static void 12308 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12309 struct lpfc_iocbq *rspiocb) 12310 { 12311 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12312 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12313 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12314 12315 if (ulp_status) { 12316 /* 12317 * Assume that the port already completed and returned, or 12318 * will return the iocb. Just Log the message. 12319 */ 12320 if (phba->sli_rev < LPFC_SLI_REV4) { 12321 if (cmnd == CMD_ABORT_XRI_CX && 12322 ulp_status == IOSTAT_LOCAL_REJECT && 12323 ulp_word4 == IOERR_ABORT_REQUESTED) { 12324 goto release_iocb; 12325 } 12326 } 12327 } 12328 12329 lpfc_printf_log(phba, KERN_INFO, LOG_ELS | LOG_SLI, 12330 "0327 Abort els iocb complete x%px with io cmd xri %x " 12331 "abort tag x%x abort status %x abort code %x\n", 12332 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12333 (phba->sli_rev == LPFC_SLI_REV4) ? 12334 get_wqe_reqtag(cmdiocb) : 12335 cmdiocb->iocb.ulpIoTag, 12336 ulp_status, ulp_word4); 12337 release_iocb: 12338 lpfc_sli_release_iocbq(phba, cmdiocb); 12339 return; 12340 } 12341 12342 /** 12343 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12344 * @phba: Pointer to HBA context object. 12345 * @cmdiocb: Pointer to driver command iocb object. 12346 * @rspiocb: Pointer to driver response iocb object. 12347 * 12348 * The function is called from SLI ring event handler with no 12349 * lock held. This function is the completion handler for ELS commands 12350 * which are aborted. The function frees memory resources used for 12351 * the aborted ELS commands. 12352 **/ 12353 void 12354 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12355 struct lpfc_iocbq *rspiocb) 12356 { 12357 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12358 IOCB_t *irsp; 12359 LPFC_MBOXQ_t *mbox; 12360 u32 ulp_command, ulp_status, ulp_word4, iotag; 12361 12362 ulp_command = get_job_cmnd(phba, cmdiocb); 12363 ulp_status = get_job_ulpstatus(phba, rspiocb); 12364 ulp_word4 = get_job_word4(phba, rspiocb); 12365 12366 if (phba->sli_rev == LPFC_SLI_REV4) { 12367 iotag = get_wqe_reqtag(cmdiocb); 12368 } else { 12369 irsp = &rspiocb->iocb; 12370 iotag = irsp->ulpIoTag; 12371 12372 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12373 * The MBX_REG_LOGIN64 mbox command is freed back to the 12374 * mbox_mem_pool here. 12375 */ 12376 if (cmdiocb->context_un.mbox) { 12377 mbox = cmdiocb->context_un.mbox; 12378 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12379 cmdiocb->context_un.mbox = NULL; 12380 } 12381 } 12382 12383 /* ELS cmd tag <ulpIoTag> completes */ 12384 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12385 "0139 Ignoring ELS cmd code x%x ref cnt x%x Data: " 12386 "x%x x%x x%x x%px\n", 12387 ulp_command, kref_read(&cmdiocb->ndlp->kref), 12388 ulp_status, ulp_word4, iotag, cmdiocb->ndlp); 12389 /* 12390 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12391 * if exchange is busy. 12392 */ 12393 if (ulp_command == CMD_GEN_REQUEST64_CR) 12394 lpfc_ct_free_iocb(phba, cmdiocb); 12395 else 12396 lpfc_els_free_iocb(phba, cmdiocb); 12397 12398 lpfc_nlp_put(ndlp); 12399 } 12400 12401 /** 12402 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12403 * @phba: Pointer to HBA context object. 12404 * @pring: Pointer to driver SLI ring object. 12405 * @cmdiocb: Pointer to driver command iocb object. 12406 * @cmpl: completion function. 12407 * 12408 * This function issues an abort iocb for the provided command iocb. In case 12409 * of unloading, the abort iocb will not be issued to commands on the ELS 12410 * ring. Instead, the callback function shall be changed to those commands 12411 * so that nothing happens when them finishes. This function is called with 12412 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12413 * when the command iocb is an abort request. 12414 * 12415 **/ 12416 int 12417 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12418 struct lpfc_iocbq *cmdiocb, void *cmpl) 12419 { 12420 struct lpfc_vport *vport = cmdiocb->vport; 12421 struct lpfc_iocbq *abtsiocbp; 12422 int retval = IOCB_ERROR; 12423 unsigned long iflags; 12424 struct lpfc_nodelist *ndlp = NULL; 12425 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12426 u16 ulp_context, iotag; 12427 bool ia; 12428 12429 /* 12430 * There are certain command types we don't want to abort. And we 12431 * don't want to abort commands that are already in the process of 12432 * being aborted. 12433 */ 12434 if (ulp_command == CMD_ABORT_XRI_WQE || 12435 ulp_command == CMD_ABORT_XRI_CN || 12436 ulp_command == CMD_CLOSE_XRI_CN || 12437 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12438 return IOCB_ABORTING; 12439 12440 if (!pring) { 12441 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12442 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12443 else 12444 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12445 return retval; 12446 } 12447 12448 /* 12449 * If we're unloading, don't abort iocb on the ELS ring, but change 12450 * the callback so that nothing happens when it finishes. 12451 */ 12452 if (test_bit(FC_UNLOADING, &vport->load_flag) && 12453 pring->ringno == LPFC_ELS_RING) { 12454 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12455 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12456 else 12457 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12458 return retval; 12459 } 12460 12461 /* issue ABTS for this IOCB based on iotag */ 12462 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12463 if (abtsiocbp == NULL) 12464 return IOCB_NORESOURCE; 12465 12466 /* This signals the response to set the correct status 12467 * before calling the completion handler 12468 */ 12469 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12470 12471 if (phba->sli_rev == LPFC_SLI_REV4) { 12472 ulp_context = cmdiocb->sli4_xritag; 12473 iotag = abtsiocbp->iotag; 12474 } else { 12475 iotag = cmdiocb->iocb.ulpIoTag; 12476 if (pring->ringno == LPFC_ELS_RING) { 12477 ndlp = cmdiocb->ndlp; 12478 ulp_context = ndlp->nlp_rpi; 12479 } else { 12480 ulp_context = cmdiocb->iocb.ulpContext; 12481 } 12482 } 12483 12484 /* Just close the exchange under certain conditions. */ 12485 if (test_bit(FC_UNLOADING, &vport->load_flag) || 12486 phba->link_state < LPFC_LINK_UP || 12487 (phba->sli_rev == LPFC_SLI_REV4 && 12488 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12489 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12490 ia = true; 12491 else 12492 ia = false; 12493 12494 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12495 cmdiocb->iocb.ulpClass, 12496 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12497 12498 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12499 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12500 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12501 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12502 12503 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12504 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12505 12506 if (cmpl) 12507 abtsiocbp->cmd_cmpl = cmpl; 12508 else 12509 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12510 abtsiocbp->vport = vport; 12511 12512 if (phba->sli_rev == LPFC_SLI_REV4) { 12513 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12514 if (unlikely(pring == NULL)) 12515 goto abort_iotag_exit; 12516 /* Note: both hbalock and ring_lock need to be set here */ 12517 spin_lock_irqsave(&pring->ring_lock, iflags); 12518 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12519 abtsiocbp, 0); 12520 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12521 } else { 12522 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12523 abtsiocbp, 0); 12524 } 12525 12526 abort_iotag_exit: 12527 12528 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12529 "0339 Abort IO XRI x%x, Original iotag x%x, " 12530 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12531 "retval x%x : IA %d cmd_cmpl %ps\n", 12532 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12533 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12534 retval, ia, abtsiocbp->cmd_cmpl); 12535 if (retval) { 12536 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12537 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12538 } 12539 12540 /* 12541 * Caller to this routine should check for IOCB_ERROR 12542 * and handle it properly. This routine no longer removes 12543 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12544 */ 12545 return retval; 12546 } 12547 12548 /** 12549 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12550 * @phba: pointer to lpfc HBA data structure. 12551 * 12552 * This routine will abort all pending and outstanding iocbs to an HBA. 12553 **/ 12554 void 12555 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12556 { 12557 struct lpfc_sli *psli = &phba->sli; 12558 struct lpfc_sli_ring *pring; 12559 struct lpfc_queue *qp = NULL; 12560 int i; 12561 12562 if (phba->sli_rev != LPFC_SLI_REV4) { 12563 for (i = 0; i < psli->num_rings; i++) { 12564 pring = &psli->sli3_ring[i]; 12565 lpfc_sli_abort_iocb_ring(phba, pring); 12566 } 12567 return; 12568 } 12569 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12570 pring = qp->pring; 12571 if (!pring) 12572 continue; 12573 lpfc_sli_abort_iocb_ring(phba, pring); 12574 } 12575 } 12576 12577 /** 12578 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12579 * @iocbq: Pointer to iocb object. 12580 * @vport: Pointer to driver virtual port object. 12581 * 12582 * This function acts as an iocb filter for functions which abort FCP iocbs. 12583 * 12584 * Return values 12585 * -ENODEV, if a null iocb or vport ptr is encountered 12586 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12587 * driver already started the abort process, or is an abort iocb itself 12588 * 0, passes criteria for aborting the FCP I/O iocb 12589 **/ 12590 static int 12591 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12592 struct lpfc_vport *vport) 12593 { 12594 u8 ulp_command; 12595 12596 /* No null ptr vports */ 12597 if (!iocbq || iocbq->vport != vport) 12598 return -ENODEV; 12599 12600 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12601 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12602 */ 12603 ulp_command = get_job_cmnd(vport->phba, iocbq); 12604 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12605 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12606 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12607 (ulp_command == CMD_ABORT_XRI_CN || 12608 ulp_command == CMD_CLOSE_XRI_CN || 12609 ulp_command == CMD_ABORT_XRI_WQE)) 12610 return -EINVAL; 12611 12612 return 0; 12613 } 12614 12615 /** 12616 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12617 * @iocbq: Pointer to driver iocb object. 12618 * @vport: Pointer to driver virtual port object. 12619 * @tgt_id: SCSI ID of the target. 12620 * @lun_id: LUN ID of the scsi device. 12621 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12622 * 12623 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12624 * host. 12625 * 12626 * It will return 12627 * 0 if the filtering criteria is met for the given iocb and will return 12628 * 1 if the filtering criteria is not met. 12629 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12630 * given iocb is for the SCSI device specified by vport, tgt_id and 12631 * lun_id parameter. 12632 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12633 * given iocb is for the SCSI target specified by vport and tgt_id 12634 * parameters. 12635 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12636 * given iocb is for the SCSI host associated with the given vport. 12637 * This function is called with no locks held. 12638 **/ 12639 static int 12640 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12641 uint16_t tgt_id, uint64_t lun_id, 12642 lpfc_ctx_cmd ctx_cmd) 12643 { 12644 struct lpfc_io_buf *lpfc_cmd; 12645 int rc = 1; 12646 12647 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12648 12649 if (lpfc_cmd->pCmd == NULL) 12650 return rc; 12651 12652 switch (ctx_cmd) { 12653 case LPFC_CTX_LUN: 12654 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12655 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12656 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12657 rc = 0; 12658 break; 12659 case LPFC_CTX_TGT: 12660 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12661 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12662 rc = 0; 12663 break; 12664 case LPFC_CTX_HOST: 12665 rc = 0; 12666 break; 12667 default: 12668 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12669 __func__, ctx_cmd); 12670 break; 12671 } 12672 12673 return rc; 12674 } 12675 12676 /** 12677 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12678 * @vport: Pointer to virtual port. 12679 * @tgt_id: SCSI ID of the target. 12680 * @lun_id: LUN ID of the scsi device. 12681 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12682 * 12683 * This function returns number of FCP commands pending for the vport. 12684 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12685 * commands pending on the vport associated with SCSI device specified 12686 * by tgt_id and lun_id parameters. 12687 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12688 * commands pending on the vport associated with SCSI target specified 12689 * by tgt_id parameter. 12690 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12691 * commands pending on the vport. 12692 * This function returns the number of iocbs which satisfy the filter. 12693 * This function is called without any lock held. 12694 **/ 12695 int 12696 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12697 lpfc_ctx_cmd ctx_cmd) 12698 { 12699 struct lpfc_hba *phba = vport->phba; 12700 struct lpfc_iocbq *iocbq; 12701 int sum, i; 12702 unsigned long iflags; 12703 u8 ulp_command; 12704 12705 spin_lock_irqsave(&phba->hbalock, iflags); 12706 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12707 iocbq = phba->sli.iocbq_lookup[i]; 12708 12709 if (!iocbq || iocbq->vport != vport) 12710 continue; 12711 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12712 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12713 continue; 12714 12715 /* Include counting outstanding aborts */ 12716 ulp_command = get_job_cmnd(phba, iocbq); 12717 if (ulp_command == CMD_ABORT_XRI_CN || 12718 ulp_command == CMD_CLOSE_XRI_CN || 12719 ulp_command == CMD_ABORT_XRI_WQE) { 12720 sum++; 12721 continue; 12722 } 12723 12724 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12725 ctx_cmd) == 0) 12726 sum++; 12727 } 12728 spin_unlock_irqrestore(&phba->hbalock, iflags); 12729 12730 return sum; 12731 } 12732 12733 /** 12734 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12735 * @phba: Pointer to HBA context object 12736 * @cmdiocb: Pointer to command iocb object. 12737 * @rspiocb: Pointer to response iocb object. 12738 * 12739 * This function is called when an aborted FCP iocb completes. This 12740 * function is called by the ring event handler with no lock held. 12741 * This function frees the iocb. 12742 **/ 12743 void 12744 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12745 struct lpfc_iocbq *rspiocb) 12746 { 12747 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12748 "3096 ABORT_XRI_CX completing on rpi x%x " 12749 "original iotag x%x, abort cmd iotag x%x " 12750 "status 0x%x, reason 0x%x\n", 12751 (phba->sli_rev == LPFC_SLI_REV4) ? 12752 cmdiocb->sli4_xritag : 12753 cmdiocb->iocb.un.acxri.abortContextTag, 12754 get_job_abtsiotag(phba, cmdiocb), 12755 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12756 get_job_word4(phba, rspiocb)); 12757 lpfc_sli_release_iocbq(phba, cmdiocb); 12758 return; 12759 } 12760 12761 /** 12762 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12763 * @vport: Pointer to virtual port. 12764 * @tgt_id: SCSI ID of the target. 12765 * @lun_id: LUN ID of the scsi device. 12766 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12767 * 12768 * This function sends an abort command for every SCSI command 12769 * associated with the given virtual port pending on the ring 12770 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12771 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12772 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12773 * followed by lpfc_sli_validate_fcp_iocb. 12774 * 12775 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12776 * FCP iocbs associated with lun specified by tgt_id and lun_id 12777 * parameters 12778 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12779 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12780 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12781 * FCP iocbs associated with virtual port. 12782 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12783 * lpfc_sli4_calc_ring is used. 12784 * This function returns number of iocbs it failed to abort. 12785 * This function is called with no locks held. 12786 **/ 12787 int 12788 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12789 lpfc_ctx_cmd abort_cmd) 12790 { 12791 struct lpfc_hba *phba = vport->phba; 12792 struct lpfc_sli_ring *pring = NULL; 12793 struct lpfc_iocbq *iocbq; 12794 int errcnt = 0, ret_val = 0; 12795 unsigned long iflags; 12796 int i; 12797 12798 /* all I/Os are in process of being flushed */ 12799 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12800 return errcnt; 12801 12802 for (i = 1; i <= phba->sli.last_iotag; i++) { 12803 iocbq = phba->sli.iocbq_lookup[i]; 12804 12805 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12806 continue; 12807 12808 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12809 abort_cmd) != 0) 12810 continue; 12811 12812 spin_lock_irqsave(&phba->hbalock, iflags); 12813 if (phba->sli_rev == LPFC_SLI_REV3) { 12814 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12815 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12816 pring = lpfc_sli4_calc_ring(phba, iocbq); 12817 } 12818 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12819 lpfc_sli_abort_fcp_cmpl); 12820 spin_unlock_irqrestore(&phba->hbalock, iflags); 12821 if (ret_val != IOCB_SUCCESS) 12822 errcnt++; 12823 } 12824 12825 return errcnt; 12826 } 12827 12828 /** 12829 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12830 * @vport: Pointer to virtual port. 12831 * @pring: Pointer to driver SLI ring object. 12832 * @tgt_id: SCSI ID of the target. 12833 * @lun_id: LUN ID of the scsi device. 12834 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12835 * 12836 * This function sends an abort command for every SCSI command 12837 * associated with the given virtual port pending on the ring 12838 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12839 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12840 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12841 * followed by lpfc_sli_validate_fcp_iocb. 12842 * 12843 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12844 * FCP iocbs associated with lun specified by tgt_id and lun_id 12845 * parameters 12846 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12847 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12848 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12849 * FCP iocbs associated with virtual port. 12850 * This function returns number of iocbs it aborted . 12851 * This function is called with no locks held right after a taskmgmt 12852 * command is sent. 12853 **/ 12854 int 12855 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12856 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12857 { 12858 struct lpfc_hba *phba = vport->phba; 12859 struct lpfc_io_buf *lpfc_cmd; 12860 struct lpfc_iocbq *abtsiocbq; 12861 struct lpfc_nodelist *ndlp = NULL; 12862 struct lpfc_iocbq *iocbq; 12863 int sum, i, ret_val; 12864 unsigned long iflags; 12865 struct lpfc_sli_ring *pring_s4 = NULL; 12866 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12867 bool ia; 12868 12869 /* all I/Os are in process of being flushed */ 12870 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) 12871 return 0; 12872 12873 sum = 0; 12874 12875 spin_lock_irqsave(&phba->hbalock, iflags); 12876 for (i = 1; i <= phba->sli.last_iotag; i++) { 12877 iocbq = phba->sli.iocbq_lookup[i]; 12878 12879 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12880 continue; 12881 12882 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12883 cmd) != 0) 12884 continue; 12885 12886 /* Guard against IO completion being called at same time */ 12887 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12888 spin_lock(&lpfc_cmd->buf_lock); 12889 12890 if (!lpfc_cmd->pCmd) { 12891 spin_unlock(&lpfc_cmd->buf_lock); 12892 continue; 12893 } 12894 12895 if (phba->sli_rev == LPFC_SLI_REV4) { 12896 pring_s4 = 12897 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12898 if (!pring_s4) { 12899 spin_unlock(&lpfc_cmd->buf_lock); 12900 continue; 12901 } 12902 /* Note: both hbalock and ring_lock must be set here */ 12903 spin_lock(&pring_s4->ring_lock); 12904 } 12905 12906 /* 12907 * If the iocbq is already being aborted, don't take a second 12908 * action, but do count it. 12909 */ 12910 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12911 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12912 if (phba->sli_rev == LPFC_SLI_REV4) 12913 spin_unlock(&pring_s4->ring_lock); 12914 spin_unlock(&lpfc_cmd->buf_lock); 12915 continue; 12916 } 12917 12918 /* issue ABTS for this IOCB based on iotag */ 12919 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12920 if (!abtsiocbq) { 12921 if (phba->sli_rev == LPFC_SLI_REV4) 12922 spin_unlock(&pring_s4->ring_lock); 12923 spin_unlock(&lpfc_cmd->buf_lock); 12924 continue; 12925 } 12926 12927 if (phba->sli_rev == LPFC_SLI_REV4) { 12928 iotag = abtsiocbq->iotag; 12929 ulp_context = iocbq->sli4_xritag; 12930 cqid = lpfc_cmd->hdwq->io_cq_map; 12931 } else { 12932 iotag = iocbq->iocb.ulpIoTag; 12933 if (pring->ringno == LPFC_ELS_RING) { 12934 ndlp = iocbq->ndlp; 12935 ulp_context = ndlp->nlp_rpi; 12936 } else { 12937 ulp_context = iocbq->iocb.ulpContext; 12938 } 12939 } 12940 12941 ndlp = lpfc_cmd->rdata->pnode; 12942 12943 if (lpfc_is_link_up(phba) && 12944 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12945 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12946 ia = false; 12947 else 12948 ia = true; 12949 12950 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12951 iocbq->iocb.ulpClass, cqid, 12952 ia, false); 12953 12954 abtsiocbq->vport = vport; 12955 12956 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12957 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12958 if (iocbq->cmd_flag & LPFC_IO_FCP) 12959 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12960 if (iocbq->cmd_flag & LPFC_IO_FOF) 12961 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12962 12963 /* Setup callback routine and issue the command. */ 12964 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12965 12966 /* 12967 * Indicate the IO is being aborted by the driver and set 12968 * the caller's flag into the aborted IO. 12969 */ 12970 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12971 12972 if (phba->sli_rev == LPFC_SLI_REV4) { 12973 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12974 abtsiocbq, 0); 12975 spin_unlock(&pring_s4->ring_lock); 12976 } else { 12977 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12978 abtsiocbq, 0); 12979 } 12980 12981 spin_unlock(&lpfc_cmd->buf_lock); 12982 12983 if (ret_val == IOCB_ERROR) 12984 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12985 else 12986 sum++; 12987 } 12988 spin_unlock_irqrestore(&phba->hbalock, iflags); 12989 return sum; 12990 } 12991 12992 /** 12993 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12994 * @phba: Pointer to HBA context object. 12995 * @cmdiocbq: Pointer to command iocb. 12996 * @rspiocbq: Pointer to response iocb. 12997 * 12998 * This function is the completion handler for iocbs issued using 12999 * lpfc_sli_issue_iocb_wait function. This function is called by the 13000 * ring event handler function without any lock held. This function 13001 * can be called from both worker thread context and interrupt 13002 * context. This function also can be called from other thread which 13003 * cleans up the SLI layer objects. 13004 * This function copy the contents of the response iocb to the 13005 * response iocb memory object provided by the caller of 13006 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 13007 * sleeps for the iocb completion. 13008 **/ 13009 static void 13010 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 13011 struct lpfc_iocbq *cmdiocbq, 13012 struct lpfc_iocbq *rspiocbq) 13013 { 13014 wait_queue_head_t *pdone_q; 13015 unsigned long iflags; 13016 struct lpfc_io_buf *lpfc_cmd; 13017 size_t offset = offsetof(struct lpfc_iocbq, wqe); 13018 13019 spin_lock_irqsave(&phba->hbalock, iflags); 13020 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 13021 13022 /* 13023 * A time out has occurred for the iocb. If a time out 13024 * completion handler has been supplied, call it. Otherwise, 13025 * just free the iocbq. 13026 */ 13027 13028 spin_unlock_irqrestore(&phba->hbalock, iflags); 13029 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 13030 cmdiocbq->wait_cmd_cmpl = NULL; 13031 if (cmdiocbq->cmd_cmpl) 13032 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 13033 else 13034 lpfc_sli_release_iocbq(phba, cmdiocbq); 13035 return; 13036 } 13037 13038 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13039 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13040 if (cmdiocbq->rsp_iocb && rspiocbq) 13041 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13042 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13043 13044 /* Set the exchange busy flag for task management commands */ 13045 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13046 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13047 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13048 cur_iocbq); 13049 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13050 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13051 else 13052 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13053 } 13054 13055 pdone_q = cmdiocbq->context_un.wait_queue; 13056 if (pdone_q) 13057 wake_up(pdone_q); 13058 spin_unlock_irqrestore(&phba->hbalock, iflags); 13059 return; 13060 } 13061 13062 /** 13063 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13064 * @phba: Pointer to HBA context object.. 13065 * @piocbq: Pointer to command iocb. 13066 * @flag: Flag to test. 13067 * 13068 * This routine grabs the hbalock and then test the cmd_flag to 13069 * see if the passed in flag is set. 13070 * Returns: 13071 * 1 if flag is set. 13072 * 0 if flag is not set. 13073 **/ 13074 static int 13075 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13076 struct lpfc_iocbq *piocbq, uint32_t flag) 13077 { 13078 unsigned long iflags; 13079 int ret; 13080 13081 spin_lock_irqsave(&phba->hbalock, iflags); 13082 ret = piocbq->cmd_flag & flag; 13083 spin_unlock_irqrestore(&phba->hbalock, iflags); 13084 return ret; 13085 13086 } 13087 13088 /** 13089 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13090 * @phba: Pointer to HBA context object.. 13091 * @ring_number: Ring number 13092 * @piocb: Pointer to command iocb. 13093 * @prspiocbq: Pointer to response iocb. 13094 * @timeout: Timeout in number of seconds. 13095 * 13096 * This function issues the iocb to firmware and waits for the 13097 * iocb to complete. The cmd_cmpl field of the shall be used 13098 * to handle iocbs which time out. If the field is NULL, the 13099 * function shall free the iocbq structure. If more clean up is 13100 * needed, the caller is expected to provide a completion function 13101 * that will provide the needed clean up. If the iocb command is 13102 * not completed within timeout seconds, the function will either 13103 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13104 * completion function set in the cmd_cmpl field and then return 13105 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13106 * resources if this function returns IOCB_TIMEDOUT. 13107 * The function waits for the iocb completion using an 13108 * non-interruptible wait. 13109 * This function will sleep while waiting for iocb completion. 13110 * So, this function should not be called from any context which 13111 * does not allow sleeping. Due to the same reason, this function 13112 * cannot be called with interrupt disabled. 13113 * This function assumes that the iocb completions occur while 13114 * this function sleep. So, this function cannot be called from 13115 * the thread which process iocb completion for this ring. 13116 * This function clears the cmd_flag of the iocb object before 13117 * issuing the iocb and the iocb completion handler sets this 13118 * flag and wakes this thread when the iocb completes. 13119 * The contents of the response iocb will be copied to prspiocbq 13120 * by the completion handler when the command completes. 13121 * This function returns IOCB_SUCCESS when success. 13122 * This function is called with no lock held. 13123 **/ 13124 int 13125 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13126 uint32_t ring_number, 13127 struct lpfc_iocbq *piocb, 13128 struct lpfc_iocbq *prspiocbq, 13129 uint32_t timeout) 13130 { 13131 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13132 long timeleft, timeout_req = 0; 13133 int retval = IOCB_SUCCESS; 13134 uint32_t creg_val; 13135 struct lpfc_iocbq *iocb; 13136 int txq_cnt = 0; 13137 int txcmplq_cnt = 0; 13138 struct lpfc_sli_ring *pring; 13139 unsigned long iflags; 13140 bool iocb_completed = true; 13141 13142 if (phba->sli_rev >= LPFC_SLI_REV4) { 13143 lpfc_sli_prep_wqe(phba, piocb); 13144 13145 pring = lpfc_sli4_calc_ring(phba, piocb); 13146 } else 13147 pring = &phba->sli.sli3_ring[ring_number]; 13148 /* 13149 * If the caller has provided a response iocbq buffer, then rsp_iocb 13150 * is NULL or its an error. 13151 */ 13152 if (prspiocbq) { 13153 if (piocb->rsp_iocb) 13154 return IOCB_ERROR; 13155 piocb->rsp_iocb = prspiocbq; 13156 } 13157 13158 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13159 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13160 piocb->context_un.wait_queue = &done_q; 13161 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13162 13163 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13164 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13165 return IOCB_ERROR; 13166 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13167 writel(creg_val, phba->HCregaddr); 13168 readl(phba->HCregaddr); /* flush */ 13169 } 13170 13171 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13172 SLI_IOCB_RET_IOCB); 13173 if (retval == IOCB_SUCCESS) { 13174 timeout_req = msecs_to_jiffies(timeout * 1000); 13175 timeleft = wait_event_timeout(done_q, 13176 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13177 timeout_req); 13178 spin_lock_irqsave(&phba->hbalock, iflags); 13179 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13180 13181 /* 13182 * IOCB timed out. Inform the wake iocb wait 13183 * completion function and set local status 13184 */ 13185 13186 iocb_completed = false; 13187 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13188 } 13189 spin_unlock_irqrestore(&phba->hbalock, iflags); 13190 if (iocb_completed) { 13191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13192 "0331 IOCB wake signaled\n"); 13193 /* Note: we are not indicating if the IOCB has a success 13194 * status or not - that's for the caller to check. 13195 * IOCB_SUCCESS means just that the command was sent and 13196 * completed. Not that it completed successfully. 13197 * */ 13198 } else if (timeleft == 0) { 13199 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13200 "0338 IOCB wait timeout error - no " 13201 "wake response Data x%x\n", timeout); 13202 retval = IOCB_TIMEDOUT; 13203 } else { 13204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13205 "0330 IOCB wake NOT set, " 13206 "Data x%x x%lx\n", 13207 timeout, (timeleft / jiffies)); 13208 retval = IOCB_TIMEDOUT; 13209 } 13210 } else if (retval == IOCB_BUSY) { 13211 if (phba->cfg_log_verbose & LOG_SLI) { 13212 list_for_each_entry(iocb, &pring->txq, list) { 13213 txq_cnt++; 13214 } 13215 list_for_each_entry(iocb, &pring->txcmplq, list) { 13216 txcmplq_cnt++; 13217 } 13218 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13219 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13220 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13221 } 13222 return retval; 13223 } else { 13224 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13225 "0332 IOCB wait issue failed, Data x%x\n", 13226 retval); 13227 retval = IOCB_ERROR; 13228 } 13229 13230 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13231 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13232 return IOCB_ERROR; 13233 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13234 writel(creg_val, phba->HCregaddr); 13235 readl(phba->HCregaddr); /* flush */ 13236 } 13237 13238 if (prspiocbq) 13239 piocb->rsp_iocb = NULL; 13240 13241 piocb->context_un.wait_queue = NULL; 13242 piocb->cmd_cmpl = NULL; 13243 return retval; 13244 } 13245 13246 /** 13247 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13248 * @phba: Pointer to HBA context object. 13249 * @pmboxq: Pointer to driver mailbox object. 13250 * @timeout: Timeout in number of seconds. 13251 * 13252 * This function issues the mailbox to firmware and waits for the 13253 * mailbox command to complete. If the mailbox command is not 13254 * completed within timeout seconds, it returns MBX_TIMEOUT. 13255 * The function waits for the mailbox completion using an 13256 * interruptible wait. If the thread is woken up due to a 13257 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13258 * should not free the mailbox resources, if this function returns 13259 * MBX_TIMEOUT. 13260 * This function will sleep while waiting for mailbox completion. 13261 * So, this function should not be called from any context which 13262 * does not allow sleeping. Due to the same reason, this function 13263 * cannot be called with interrupt disabled. 13264 * This function assumes that the mailbox completion occurs while 13265 * this function sleep. So, this function cannot be called from 13266 * the worker thread which processes mailbox completion. 13267 * This function is called in the context of HBA management 13268 * applications. 13269 * This function returns MBX_SUCCESS when successful. 13270 * This function is called with no lock held. 13271 **/ 13272 int 13273 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13274 uint32_t timeout) 13275 { 13276 struct completion mbox_done; 13277 int retval; 13278 unsigned long flag; 13279 13280 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13281 /* setup wake call as IOCB callback */ 13282 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13283 13284 /* setup ctx_u field to pass wait_queue pointer to wake function */ 13285 init_completion(&mbox_done); 13286 pmboxq->ctx_u.mbox_wait = &mbox_done; 13287 /* now issue the command */ 13288 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13289 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13290 wait_for_completion_timeout(&mbox_done, 13291 msecs_to_jiffies(timeout * 1000)); 13292 13293 spin_lock_irqsave(&phba->hbalock, flag); 13294 pmboxq->ctx_u.mbox_wait = NULL; 13295 /* 13296 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13297 * else do not free the resources. 13298 */ 13299 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13300 retval = MBX_SUCCESS; 13301 } else { 13302 retval = MBX_TIMEOUT; 13303 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13304 } 13305 spin_unlock_irqrestore(&phba->hbalock, flag); 13306 } 13307 return retval; 13308 } 13309 13310 /** 13311 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13312 * @phba: Pointer to HBA context. 13313 * @mbx_action: Mailbox shutdown options. 13314 * 13315 * This function is called to shutdown the driver's mailbox sub-system. 13316 * It first marks the mailbox sub-system is in a block state to prevent 13317 * the asynchronous mailbox command from issued off the pending mailbox 13318 * command queue. If the mailbox command sub-system shutdown is due to 13319 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13320 * the mailbox sub-system flush routine to forcefully bring down the 13321 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13322 * as with offline or HBA function reset), this routine will wait for the 13323 * outstanding mailbox command to complete before invoking the mailbox 13324 * sub-system flush routine to gracefully bring down mailbox sub-system. 13325 **/ 13326 void 13327 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13328 { 13329 struct lpfc_sli *psli = &phba->sli; 13330 unsigned long timeout; 13331 13332 if (mbx_action == LPFC_MBX_NO_WAIT) { 13333 /* delay 100ms for port state */ 13334 msleep(100); 13335 lpfc_sli_mbox_sys_flush(phba); 13336 return; 13337 } 13338 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13339 13340 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13341 local_bh_disable(); 13342 13343 spin_lock_irq(&phba->hbalock); 13344 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13345 13346 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13347 /* Determine how long we might wait for the active mailbox 13348 * command to be gracefully completed by firmware. 13349 */ 13350 if (phba->sli.mbox_active) 13351 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13352 phba->sli.mbox_active) * 13353 1000) + jiffies; 13354 spin_unlock_irq(&phba->hbalock); 13355 13356 /* Enable softirqs again, done with phba->hbalock */ 13357 local_bh_enable(); 13358 13359 while (phba->sli.mbox_active) { 13360 /* Check active mailbox complete status every 2ms */ 13361 msleep(2); 13362 if (time_after(jiffies, timeout)) 13363 /* Timeout, let the mailbox flush routine to 13364 * forcefully release active mailbox command 13365 */ 13366 break; 13367 } 13368 } else { 13369 spin_unlock_irq(&phba->hbalock); 13370 13371 /* Enable softirqs again, done with phba->hbalock */ 13372 local_bh_enable(); 13373 } 13374 13375 lpfc_sli_mbox_sys_flush(phba); 13376 } 13377 13378 /** 13379 * lpfc_sli_eratt_read - read sli-3 error attention events 13380 * @phba: Pointer to HBA context. 13381 * 13382 * This function is called to read the SLI3 device error attention registers 13383 * for possible error attention events. The caller must hold the hostlock 13384 * with spin_lock_irq(). 13385 * 13386 * This function returns 1 when there is Error Attention in the Host Attention 13387 * Register and returns 0 otherwise. 13388 **/ 13389 static int 13390 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13391 { 13392 uint32_t ha_copy; 13393 13394 /* Read chip Host Attention (HA) register */ 13395 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13396 goto unplug_err; 13397 13398 if (ha_copy & HA_ERATT) { 13399 /* Read host status register to retrieve error event */ 13400 if (lpfc_sli_read_hs(phba)) 13401 goto unplug_err; 13402 13403 /* Check if there is a deferred error condition is active */ 13404 if ((HS_FFER1 & phba->work_hs) && 13405 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13406 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13407 set_bit(DEFER_ERATT, &phba->hba_flag); 13408 /* Clear all interrupt enable conditions */ 13409 writel(0, phba->HCregaddr); 13410 readl(phba->HCregaddr); 13411 } 13412 13413 /* Set the driver HA work bitmap */ 13414 phba->work_ha |= HA_ERATT; 13415 /* Indicate polling handles this ERATT */ 13416 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13417 return 1; 13418 } 13419 return 0; 13420 13421 unplug_err: 13422 /* Set the driver HS work bitmap */ 13423 phba->work_hs |= UNPLUG_ERR; 13424 /* Set the driver HA work bitmap */ 13425 phba->work_ha |= HA_ERATT; 13426 /* Indicate polling handles this ERATT */ 13427 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13428 return 1; 13429 } 13430 13431 /** 13432 * lpfc_sli4_eratt_read - read sli-4 error attention events 13433 * @phba: Pointer to HBA context. 13434 * 13435 * This function is called to read the SLI4 device error attention registers 13436 * for possible error attention events. The caller must hold the hostlock 13437 * with spin_lock_irq(). 13438 * 13439 * This function returns 1 when there is Error Attention in the Host Attention 13440 * Register and returns 0 otherwise. 13441 **/ 13442 static int 13443 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13444 { 13445 uint32_t uerr_sta_hi, uerr_sta_lo; 13446 uint32_t if_type, portsmphr; 13447 struct lpfc_register portstat_reg; 13448 u32 logmask; 13449 13450 /* 13451 * For now, use the SLI4 device internal unrecoverable error 13452 * registers for error attention. This can be changed later. 13453 */ 13454 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13455 switch (if_type) { 13456 case LPFC_SLI_INTF_IF_TYPE_0: 13457 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13458 &uerr_sta_lo) || 13459 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13460 &uerr_sta_hi)) { 13461 phba->work_hs |= UNPLUG_ERR; 13462 phba->work_ha |= HA_ERATT; 13463 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13464 return 1; 13465 } 13466 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13467 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13468 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13469 "1423 HBA Unrecoverable error: " 13470 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13471 "ue_mask_lo_reg=0x%x, " 13472 "ue_mask_hi_reg=0x%x\n", 13473 uerr_sta_lo, uerr_sta_hi, 13474 phba->sli4_hba.ue_mask_lo, 13475 phba->sli4_hba.ue_mask_hi); 13476 phba->work_status[0] = uerr_sta_lo; 13477 phba->work_status[1] = uerr_sta_hi; 13478 phba->work_ha |= HA_ERATT; 13479 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13480 return 1; 13481 } 13482 break; 13483 case LPFC_SLI_INTF_IF_TYPE_2: 13484 case LPFC_SLI_INTF_IF_TYPE_6: 13485 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13486 &portstat_reg.word0) || 13487 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13488 &portsmphr)){ 13489 phba->work_hs |= UNPLUG_ERR; 13490 phba->work_ha |= HA_ERATT; 13491 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13492 return 1; 13493 } 13494 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13495 phba->work_status[0] = 13496 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13497 phba->work_status[1] = 13498 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13499 logmask = LOG_TRACE_EVENT; 13500 if (phba->work_status[0] == 13501 SLIPORT_ERR1_REG_ERR_CODE_2 && 13502 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13503 logmask = LOG_SLI; 13504 lpfc_printf_log(phba, KERN_ERR, logmask, 13505 "2885 Port Status Event: " 13506 "port status reg 0x%x, " 13507 "port smphr reg 0x%x, " 13508 "error 1=0x%x, error 2=0x%x\n", 13509 portstat_reg.word0, 13510 portsmphr, 13511 phba->work_status[0], 13512 phba->work_status[1]); 13513 phba->work_ha |= HA_ERATT; 13514 set_bit(HBA_ERATT_HANDLED, &phba->hba_flag); 13515 return 1; 13516 } 13517 break; 13518 case LPFC_SLI_INTF_IF_TYPE_1: 13519 default: 13520 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13521 "2886 HBA Error Attention on unsupported " 13522 "if type %d.", if_type); 13523 return 1; 13524 } 13525 13526 return 0; 13527 } 13528 13529 /** 13530 * lpfc_sli_check_eratt - check error attention events 13531 * @phba: Pointer to HBA context. 13532 * 13533 * This function is called from timer soft interrupt context to check HBA's 13534 * error attention register bit for error attention events. 13535 * 13536 * This function returns 1 when there is Error Attention in the Host Attention 13537 * Register and returns 0 otherwise. 13538 **/ 13539 int 13540 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13541 { 13542 uint32_t ha_copy; 13543 13544 /* If somebody is waiting to handle an eratt, don't process it 13545 * here. The brdkill function will do this. 13546 */ 13547 if (phba->link_flag & LS_IGNORE_ERATT) 13548 return 0; 13549 13550 /* Check if interrupt handler handles this ERATT */ 13551 if (test_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 13552 /* Interrupt handler has handled ERATT */ 13553 return 0; 13554 13555 /* 13556 * If there is deferred error attention, do not check for error 13557 * attention 13558 */ 13559 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13560 return 0; 13561 13562 spin_lock_irq(&phba->hbalock); 13563 /* If PCI channel is offline, don't process it */ 13564 if (unlikely(pci_channel_offline(phba->pcidev))) { 13565 spin_unlock_irq(&phba->hbalock); 13566 return 0; 13567 } 13568 13569 switch (phba->sli_rev) { 13570 case LPFC_SLI_REV2: 13571 case LPFC_SLI_REV3: 13572 /* Read chip Host Attention (HA) register */ 13573 ha_copy = lpfc_sli_eratt_read(phba); 13574 break; 13575 case LPFC_SLI_REV4: 13576 /* Read device Uncoverable Error (UERR) registers */ 13577 ha_copy = lpfc_sli4_eratt_read(phba); 13578 break; 13579 default: 13580 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13581 "0299 Invalid SLI revision (%d)\n", 13582 phba->sli_rev); 13583 ha_copy = 0; 13584 break; 13585 } 13586 spin_unlock_irq(&phba->hbalock); 13587 13588 return ha_copy; 13589 } 13590 13591 /** 13592 * lpfc_intr_state_check - Check device state for interrupt handling 13593 * @phba: Pointer to HBA context. 13594 * 13595 * This inline routine checks whether a device or its PCI slot is in a state 13596 * that the interrupt should be handled. 13597 * 13598 * This function returns 0 if the device or the PCI slot is in a state that 13599 * interrupt should be handled, otherwise -EIO. 13600 */ 13601 static inline int 13602 lpfc_intr_state_check(struct lpfc_hba *phba) 13603 { 13604 /* If the pci channel is offline, ignore all the interrupts */ 13605 if (unlikely(pci_channel_offline(phba->pcidev))) 13606 return -EIO; 13607 13608 /* Update device level interrupt statistics */ 13609 phba->sli.slistat.sli_intr++; 13610 13611 /* Ignore all interrupts during initialization. */ 13612 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13613 return -EIO; 13614 13615 return 0; 13616 } 13617 13618 /** 13619 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13620 * @irq: Interrupt number. 13621 * @dev_id: The device context pointer. 13622 * 13623 * This function is directly called from the PCI layer as an interrupt 13624 * service routine when device with SLI-3 interface spec is enabled with 13625 * MSI-X multi-message interrupt mode and there are slow-path events in 13626 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13627 * interrupt mode, this function is called as part of the device-level 13628 * interrupt handler. When the PCI slot is in error recovery or the HBA 13629 * is undergoing initialization, the interrupt handler will not process 13630 * the interrupt. The link attention and ELS ring attention events are 13631 * handled by the worker thread. The interrupt handler signals the worker 13632 * thread and returns for these events. This function is called without 13633 * any lock held. It gets the hbalock to access and update SLI data 13634 * structures. 13635 * 13636 * This function returns IRQ_HANDLED when interrupt is handled else it 13637 * returns IRQ_NONE. 13638 **/ 13639 irqreturn_t 13640 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13641 { 13642 struct lpfc_hba *phba; 13643 uint32_t ha_copy, hc_copy; 13644 uint32_t work_ha_copy; 13645 unsigned long status; 13646 unsigned long iflag; 13647 uint32_t control; 13648 13649 MAILBOX_t *mbox, *pmbox; 13650 struct lpfc_vport *vport; 13651 struct lpfc_nodelist *ndlp; 13652 struct lpfc_dmabuf *mp; 13653 LPFC_MBOXQ_t *pmb; 13654 int rc; 13655 13656 /* 13657 * Get the driver's phba structure from the dev_id and 13658 * assume the HBA is not interrupting. 13659 */ 13660 phba = (struct lpfc_hba *)dev_id; 13661 13662 if (unlikely(!phba)) 13663 return IRQ_NONE; 13664 13665 /* 13666 * Stuff needs to be attented to when this function is invoked as an 13667 * individual interrupt handler in MSI-X multi-message interrupt mode 13668 */ 13669 if (phba->intr_type == MSIX) { 13670 /* Check device state for handling interrupt */ 13671 if (lpfc_intr_state_check(phba)) 13672 return IRQ_NONE; 13673 /* Need to read HA REG for slow-path events */ 13674 spin_lock_irqsave(&phba->hbalock, iflag); 13675 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13676 goto unplug_error; 13677 /* If somebody is waiting to handle an eratt don't process it 13678 * here. The brdkill function will do this. 13679 */ 13680 if (phba->link_flag & LS_IGNORE_ERATT) 13681 ha_copy &= ~HA_ERATT; 13682 /* Check the need for handling ERATT in interrupt handler */ 13683 if (ha_copy & HA_ERATT) { 13684 if (test_and_set_bit(HBA_ERATT_HANDLED, 13685 &phba->hba_flag)) 13686 /* ERATT polling has handled ERATT */ 13687 ha_copy &= ~HA_ERATT; 13688 } 13689 13690 /* 13691 * If there is deferred error attention, do not check for any 13692 * interrupt. 13693 */ 13694 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 13695 spin_unlock_irqrestore(&phba->hbalock, iflag); 13696 return IRQ_NONE; 13697 } 13698 13699 /* Clear up only attention source related to slow-path */ 13700 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13701 goto unplug_error; 13702 13703 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13704 HC_LAINT_ENA | HC_ERINT_ENA), 13705 phba->HCregaddr); 13706 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13707 phba->HAregaddr); 13708 writel(hc_copy, phba->HCregaddr); 13709 readl(phba->HAregaddr); /* flush */ 13710 spin_unlock_irqrestore(&phba->hbalock, iflag); 13711 } else 13712 ha_copy = phba->ha_copy; 13713 13714 work_ha_copy = ha_copy & phba->work_ha_mask; 13715 13716 if (work_ha_copy) { 13717 if (work_ha_copy & HA_LATT) { 13718 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13719 /* 13720 * Turn off Link Attention interrupts 13721 * until CLEAR_LA done 13722 */ 13723 spin_lock_irqsave(&phba->hbalock, iflag); 13724 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13725 if (lpfc_readl(phba->HCregaddr, &control)) 13726 goto unplug_error; 13727 control &= ~HC_LAINT_ENA; 13728 writel(control, phba->HCregaddr); 13729 readl(phba->HCregaddr); /* flush */ 13730 spin_unlock_irqrestore(&phba->hbalock, iflag); 13731 } 13732 else 13733 work_ha_copy &= ~HA_LATT; 13734 } 13735 13736 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13737 /* 13738 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13739 * the only slow ring. 13740 */ 13741 status = (work_ha_copy & 13742 (HA_RXMASK << (4*LPFC_ELS_RING))); 13743 status >>= (4*LPFC_ELS_RING); 13744 if (status & HA_RXMASK) { 13745 spin_lock_irqsave(&phba->hbalock, iflag); 13746 if (lpfc_readl(phba->HCregaddr, &control)) 13747 goto unplug_error; 13748 13749 lpfc_debugfs_slow_ring_trc(phba, 13750 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13751 control, status, 13752 (uint32_t)phba->sli.slistat.sli_intr); 13753 13754 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13755 lpfc_debugfs_slow_ring_trc(phba, 13756 "ISR Disable ring:" 13757 "pwork:x%x hawork:x%x wait:x%x", 13758 phba->work_ha, work_ha_copy, 13759 (uint32_t)((unsigned long) 13760 &phba->work_waitq)); 13761 13762 control &= 13763 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13764 writel(control, phba->HCregaddr); 13765 readl(phba->HCregaddr); /* flush */ 13766 } 13767 else { 13768 lpfc_debugfs_slow_ring_trc(phba, 13769 "ISR slow ring: pwork:" 13770 "x%x hawork:x%x wait:x%x", 13771 phba->work_ha, work_ha_copy, 13772 (uint32_t)((unsigned long) 13773 &phba->work_waitq)); 13774 } 13775 spin_unlock_irqrestore(&phba->hbalock, iflag); 13776 } 13777 } 13778 spin_lock_irqsave(&phba->hbalock, iflag); 13779 if (work_ha_copy & HA_ERATT) { 13780 if (lpfc_sli_read_hs(phba)) 13781 goto unplug_error; 13782 /* 13783 * Check if there is a deferred error condition 13784 * is active 13785 */ 13786 if ((HS_FFER1 & phba->work_hs) && 13787 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13788 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13789 phba->work_hs)) { 13790 set_bit(DEFER_ERATT, &phba->hba_flag); 13791 /* Clear all interrupt enable conditions */ 13792 writel(0, phba->HCregaddr); 13793 readl(phba->HCregaddr); 13794 } 13795 } 13796 13797 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13798 pmb = phba->sli.mbox_active; 13799 pmbox = &pmb->u.mb; 13800 mbox = phba->mbox; 13801 vport = pmb->vport; 13802 13803 /* First check out the status word */ 13804 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13805 if (pmbox->mbxOwner != OWN_HOST) { 13806 spin_unlock_irqrestore(&phba->hbalock, iflag); 13807 /* 13808 * Stray Mailbox Interrupt, mbxCommand <cmd> 13809 * mbxStatus <status> 13810 */ 13811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13812 "(%d):0304 Stray Mailbox " 13813 "Interrupt mbxCommand x%x " 13814 "mbxStatus x%x\n", 13815 (vport ? vport->vpi : 0), 13816 pmbox->mbxCommand, 13817 pmbox->mbxStatus); 13818 /* clear mailbox attention bit */ 13819 work_ha_copy &= ~HA_MBATT; 13820 } else { 13821 phba->sli.mbox_active = NULL; 13822 spin_unlock_irqrestore(&phba->hbalock, iflag); 13823 phba->last_completion_time = jiffies; 13824 del_timer(&phba->sli.mbox_tmo); 13825 if (pmb->mbox_cmpl) { 13826 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13827 MAILBOX_CMD_SIZE); 13828 if (pmb->out_ext_byte_len && 13829 pmb->ext_buf) 13830 lpfc_sli_pcimem_bcopy( 13831 phba->mbox_ext, 13832 pmb->ext_buf, 13833 pmb->out_ext_byte_len); 13834 } 13835 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13836 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13837 13838 lpfc_debugfs_disc_trc(vport, 13839 LPFC_DISC_TRC_MBOX_VPORT, 13840 "MBOX dflt rpi: : " 13841 "status:x%x rpi:x%x", 13842 (uint32_t)pmbox->mbxStatus, 13843 pmbox->un.varWords[0], 0); 13844 13845 if (!pmbox->mbxStatus) { 13846 mp = pmb->ctx_buf; 13847 ndlp = pmb->ctx_ndlp; 13848 13849 /* Reg_LOGIN of dflt RPI was 13850 * successful. new lets get 13851 * rid of the RPI using the 13852 * same mbox buffer. 13853 */ 13854 lpfc_unreg_login(phba, 13855 vport->vpi, 13856 pmbox->un.varWords[0], 13857 pmb); 13858 pmb->mbox_cmpl = 13859 lpfc_mbx_cmpl_dflt_rpi; 13860 pmb->ctx_buf = mp; 13861 pmb->ctx_ndlp = ndlp; 13862 pmb->vport = vport; 13863 rc = lpfc_sli_issue_mbox(phba, 13864 pmb, 13865 MBX_NOWAIT); 13866 if (rc != MBX_BUSY) 13867 lpfc_printf_log(phba, 13868 KERN_ERR, 13869 LOG_TRACE_EVENT, 13870 "0350 rc should have" 13871 "been MBX_BUSY\n"); 13872 if (rc != MBX_NOT_FINISHED) 13873 goto send_current_mbox; 13874 } 13875 } 13876 spin_lock_irqsave( 13877 &phba->pport->work_port_lock, 13878 iflag); 13879 phba->pport->work_port_events &= 13880 ~WORKER_MBOX_TMO; 13881 spin_unlock_irqrestore( 13882 &phba->pport->work_port_lock, 13883 iflag); 13884 13885 /* Do NOT queue MBX_HEARTBEAT to the worker 13886 * thread for processing. 13887 */ 13888 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13889 /* Process mbox now */ 13890 phba->sli.mbox_active = NULL; 13891 phba->sli.sli_flag &= 13892 ~LPFC_SLI_MBOX_ACTIVE; 13893 if (pmb->mbox_cmpl) 13894 pmb->mbox_cmpl(phba, pmb); 13895 } else { 13896 /* Queue to worker thread to process */ 13897 lpfc_mbox_cmpl_put(phba, pmb); 13898 } 13899 } 13900 } else 13901 spin_unlock_irqrestore(&phba->hbalock, iflag); 13902 13903 if ((work_ha_copy & HA_MBATT) && 13904 (phba->sli.mbox_active == NULL)) { 13905 send_current_mbox: 13906 /* Process next mailbox command if there is one */ 13907 do { 13908 rc = lpfc_sli_issue_mbox(phba, NULL, 13909 MBX_NOWAIT); 13910 } while (rc == MBX_NOT_FINISHED); 13911 if (rc != MBX_SUCCESS) 13912 lpfc_printf_log(phba, KERN_ERR, 13913 LOG_TRACE_EVENT, 13914 "0349 rc should be " 13915 "MBX_SUCCESS\n"); 13916 } 13917 13918 spin_lock_irqsave(&phba->hbalock, iflag); 13919 phba->work_ha |= work_ha_copy; 13920 spin_unlock_irqrestore(&phba->hbalock, iflag); 13921 lpfc_worker_wake_up(phba); 13922 } 13923 return IRQ_HANDLED; 13924 unplug_error: 13925 spin_unlock_irqrestore(&phba->hbalock, iflag); 13926 return IRQ_HANDLED; 13927 13928 } /* lpfc_sli_sp_intr_handler */ 13929 13930 /** 13931 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13932 * @irq: Interrupt number. 13933 * @dev_id: The device context pointer. 13934 * 13935 * This function is directly called from the PCI layer as an interrupt 13936 * service routine when device with SLI-3 interface spec is enabled with 13937 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13938 * ring event in the HBA. However, when the device is enabled with either 13939 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13940 * device-level interrupt handler. When the PCI slot is in error recovery 13941 * or the HBA is undergoing initialization, the interrupt handler will not 13942 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13943 * the intrrupt context. This function is called without any lock held. 13944 * It gets the hbalock to access and update SLI data structures. 13945 * 13946 * This function returns IRQ_HANDLED when interrupt is handled else it 13947 * returns IRQ_NONE. 13948 **/ 13949 irqreturn_t 13950 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13951 { 13952 struct lpfc_hba *phba; 13953 uint32_t ha_copy; 13954 unsigned long status; 13955 unsigned long iflag; 13956 struct lpfc_sli_ring *pring; 13957 13958 /* Get the driver's phba structure from the dev_id and 13959 * assume the HBA is not interrupting. 13960 */ 13961 phba = (struct lpfc_hba *) dev_id; 13962 13963 if (unlikely(!phba)) 13964 return IRQ_NONE; 13965 13966 /* 13967 * Stuff needs to be attented to when this function is invoked as an 13968 * individual interrupt handler in MSI-X multi-message interrupt mode 13969 */ 13970 if (phba->intr_type == MSIX) { 13971 /* Check device state for handling interrupt */ 13972 if (lpfc_intr_state_check(phba)) 13973 return IRQ_NONE; 13974 /* Need to read HA REG for FCP ring and other ring events */ 13975 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13976 return IRQ_HANDLED; 13977 13978 /* 13979 * If there is deferred error attention, do not check for 13980 * any interrupt. 13981 */ 13982 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) 13983 return IRQ_NONE; 13984 13985 /* Clear up only attention source related to fast-path */ 13986 spin_lock_irqsave(&phba->hbalock, iflag); 13987 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13988 phba->HAregaddr); 13989 readl(phba->HAregaddr); /* flush */ 13990 spin_unlock_irqrestore(&phba->hbalock, iflag); 13991 } else 13992 ha_copy = phba->ha_copy; 13993 13994 /* 13995 * Process all events on FCP ring. Take the optimized path for FCP IO. 13996 */ 13997 ha_copy &= ~(phba->work_ha_mask); 13998 13999 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14000 status >>= (4*LPFC_FCP_RING); 14001 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 14002 if (status & HA_RXMASK) 14003 lpfc_sli_handle_fast_ring_event(phba, pring, status); 14004 14005 if (phba->cfg_multi_ring_support == 2) { 14006 /* 14007 * Process all events on extra ring. Take the optimized path 14008 * for extra ring IO. 14009 */ 14010 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14011 status >>= (4*LPFC_EXTRA_RING); 14012 if (status & HA_RXMASK) { 14013 lpfc_sli_handle_fast_ring_event(phba, 14014 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 14015 status); 14016 } 14017 } 14018 return IRQ_HANDLED; 14019 } /* lpfc_sli_fp_intr_handler */ 14020 14021 /** 14022 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 14023 * @irq: Interrupt number. 14024 * @dev_id: The device context pointer. 14025 * 14026 * This function is the HBA device-level interrupt handler to device with 14027 * SLI-3 interface spec, called from the PCI layer when either MSI or 14028 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14029 * requires driver attention. This function invokes the slow-path interrupt 14030 * attention handling function and fast-path interrupt attention handling 14031 * function in turn to process the relevant HBA attention events. This 14032 * function is called without any lock held. It gets the hbalock to access 14033 * and update SLI data structures. 14034 * 14035 * This function returns IRQ_HANDLED when interrupt is handled, else it 14036 * returns IRQ_NONE. 14037 **/ 14038 irqreturn_t 14039 lpfc_sli_intr_handler(int irq, void *dev_id) 14040 { 14041 struct lpfc_hba *phba; 14042 irqreturn_t sp_irq_rc, fp_irq_rc; 14043 unsigned long status1, status2; 14044 uint32_t hc_copy; 14045 14046 /* 14047 * Get the driver's phba structure from the dev_id and 14048 * assume the HBA is not interrupting. 14049 */ 14050 phba = (struct lpfc_hba *) dev_id; 14051 14052 if (unlikely(!phba)) 14053 return IRQ_NONE; 14054 14055 /* Check device state for handling interrupt */ 14056 if (lpfc_intr_state_check(phba)) 14057 return IRQ_NONE; 14058 14059 spin_lock(&phba->hbalock); 14060 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14061 spin_unlock(&phba->hbalock); 14062 return IRQ_HANDLED; 14063 } 14064 14065 if (unlikely(!phba->ha_copy)) { 14066 spin_unlock(&phba->hbalock); 14067 return IRQ_NONE; 14068 } else if (phba->ha_copy & HA_ERATT) { 14069 if (test_and_set_bit(HBA_ERATT_HANDLED, &phba->hba_flag)) 14070 /* ERATT polling has handled ERATT */ 14071 phba->ha_copy &= ~HA_ERATT; 14072 } 14073 14074 /* 14075 * If there is deferred error attention, do not check for any interrupt. 14076 */ 14077 if (unlikely(test_bit(DEFER_ERATT, &phba->hba_flag))) { 14078 spin_unlock(&phba->hbalock); 14079 return IRQ_NONE; 14080 } 14081 14082 /* Clear attention sources except link and error attentions */ 14083 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14084 spin_unlock(&phba->hbalock); 14085 return IRQ_HANDLED; 14086 } 14087 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14088 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14089 phba->HCregaddr); 14090 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14091 writel(hc_copy, phba->HCregaddr); 14092 readl(phba->HAregaddr); /* flush */ 14093 spin_unlock(&phba->hbalock); 14094 14095 /* 14096 * Invokes slow-path host attention interrupt handling as appropriate. 14097 */ 14098 14099 /* status of events with mailbox and link attention */ 14100 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14101 14102 /* status of events with ELS ring */ 14103 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14104 status2 >>= (4*LPFC_ELS_RING); 14105 14106 if (status1 || (status2 & HA_RXMASK)) 14107 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14108 else 14109 sp_irq_rc = IRQ_NONE; 14110 14111 /* 14112 * Invoke fast-path host attention interrupt handling as appropriate. 14113 */ 14114 14115 /* status of events with FCP ring */ 14116 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14117 status1 >>= (4*LPFC_FCP_RING); 14118 14119 /* status of events with extra ring */ 14120 if (phba->cfg_multi_ring_support == 2) { 14121 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14122 status2 >>= (4*LPFC_EXTRA_RING); 14123 } else 14124 status2 = 0; 14125 14126 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14127 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14128 else 14129 fp_irq_rc = IRQ_NONE; 14130 14131 /* Return device-level interrupt handling status */ 14132 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14133 } /* lpfc_sli_intr_handler */ 14134 14135 /** 14136 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14137 * @phba: pointer to lpfc hba data structure. 14138 * 14139 * This routine is invoked by the worker thread to process all the pending 14140 * SLI4 els abort xri events. 14141 **/ 14142 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14143 { 14144 struct lpfc_cq_event *cq_event; 14145 unsigned long iflags; 14146 14147 /* First, declare the els xri abort event has been handled */ 14148 clear_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14149 14150 /* Now, handle all the els xri abort events */ 14151 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14152 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14153 /* Get the first event from the head of the event queue */ 14154 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14155 cq_event, struct lpfc_cq_event, list); 14156 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14157 iflags); 14158 /* Notify aborted XRI for ELS work queue */ 14159 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14160 14161 /* Free the event processed back to the free pool */ 14162 lpfc_sli4_cq_event_release(phba, cq_event); 14163 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14164 iflags); 14165 } 14166 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14167 } 14168 14169 /** 14170 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14171 * @phba: Pointer to HBA context object. 14172 * @irspiocbq: Pointer to work-queue completion queue entry. 14173 * 14174 * This routine handles an ELS work-queue completion event and construct 14175 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14176 * discovery engine to handle. 14177 * 14178 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14179 **/ 14180 static struct lpfc_iocbq * 14181 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14182 struct lpfc_iocbq *irspiocbq) 14183 { 14184 struct lpfc_sli_ring *pring; 14185 struct lpfc_iocbq *cmdiocbq; 14186 struct lpfc_wcqe_complete *wcqe; 14187 unsigned long iflags; 14188 14189 pring = lpfc_phba_elsring(phba); 14190 if (unlikely(!pring)) 14191 return NULL; 14192 14193 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14194 spin_lock_irqsave(&pring->ring_lock, iflags); 14195 pring->stats.iocb_event++; 14196 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14197 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14198 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14199 if (unlikely(!cmdiocbq)) { 14200 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14201 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14202 "0386 ELS complete with no corresponding " 14203 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14204 wcqe->word0, wcqe->total_data_placed, 14205 wcqe->parameter, wcqe->word3); 14206 lpfc_sli_release_iocbq(phba, irspiocbq); 14207 return NULL; 14208 } 14209 14210 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14211 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14212 14213 /* Put the iocb back on the txcmplq */ 14214 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14215 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14216 14217 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14218 spin_lock_irqsave(&phba->hbalock, iflags); 14219 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14220 spin_unlock_irqrestore(&phba->hbalock, iflags); 14221 } 14222 14223 return irspiocbq; 14224 } 14225 14226 inline struct lpfc_cq_event * 14227 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14228 { 14229 struct lpfc_cq_event *cq_event; 14230 14231 /* Allocate a new internal CQ_EVENT entry */ 14232 cq_event = lpfc_sli4_cq_event_alloc(phba); 14233 if (!cq_event) { 14234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14235 "0602 Failed to alloc CQ_EVENT entry\n"); 14236 return NULL; 14237 } 14238 14239 /* Move the CQE into the event */ 14240 memcpy(&cq_event->cqe, entry, size); 14241 return cq_event; 14242 } 14243 14244 /** 14245 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14246 * @phba: Pointer to HBA context object. 14247 * @mcqe: Pointer to mailbox completion queue entry. 14248 * 14249 * This routine process a mailbox completion queue entry with asynchronous 14250 * event. 14251 * 14252 * Return: true if work posted to worker thread, otherwise false. 14253 **/ 14254 static bool 14255 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14256 { 14257 struct lpfc_cq_event *cq_event; 14258 unsigned long iflags; 14259 14260 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14261 "0392 Async Event: word0:x%x, word1:x%x, " 14262 "word2:x%x, word3:x%x\n", mcqe->word0, 14263 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14264 14265 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14266 if (!cq_event) 14267 return false; 14268 14269 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14270 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14271 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14272 14273 /* Set the async event flag */ 14274 set_bit(ASYNC_EVENT, &phba->hba_flag); 14275 14276 return true; 14277 } 14278 14279 /** 14280 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14281 * @phba: Pointer to HBA context object. 14282 * @mcqe: Pointer to mailbox completion queue entry. 14283 * 14284 * This routine process a mailbox completion queue entry with mailbox 14285 * completion event. 14286 * 14287 * Return: true if work posted to worker thread, otherwise false. 14288 **/ 14289 static bool 14290 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14291 { 14292 uint32_t mcqe_status; 14293 MAILBOX_t *mbox, *pmbox; 14294 struct lpfc_mqe *mqe; 14295 struct lpfc_vport *vport; 14296 struct lpfc_nodelist *ndlp; 14297 struct lpfc_dmabuf *mp; 14298 unsigned long iflags; 14299 LPFC_MBOXQ_t *pmb; 14300 bool workposted = false; 14301 int rc; 14302 14303 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14304 if (!bf_get(lpfc_trailer_completed, mcqe)) 14305 goto out_no_mqe_complete; 14306 14307 /* Get the reference to the active mbox command */ 14308 spin_lock_irqsave(&phba->hbalock, iflags); 14309 pmb = phba->sli.mbox_active; 14310 if (unlikely(!pmb)) { 14311 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14312 "1832 No pending MBOX command to handle\n"); 14313 spin_unlock_irqrestore(&phba->hbalock, iflags); 14314 goto out_no_mqe_complete; 14315 } 14316 spin_unlock_irqrestore(&phba->hbalock, iflags); 14317 mqe = &pmb->u.mqe; 14318 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14319 mbox = phba->mbox; 14320 vport = pmb->vport; 14321 14322 /* Reset heartbeat timer */ 14323 phba->last_completion_time = jiffies; 14324 del_timer(&phba->sli.mbox_tmo); 14325 14326 /* Move mbox data to caller's mailbox region, do endian swapping */ 14327 if (pmb->mbox_cmpl && mbox) 14328 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14329 14330 /* 14331 * For mcqe errors, conditionally move a modified error code to 14332 * the mbox so that the error will not be missed. 14333 */ 14334 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14335 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14336 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14337 bf_set(lpfc_mqe_status, mqe, 14338 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14339 } 14340 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14341 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14342 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14343 "MBOX dflt rpi: status:x%x rpi:x%x", 14344 mcqe_status, 14345 pmbox->un.varWords[0], 0); 14346 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14347 mp = pmb->ctx_buf; 14348 ndlp = pmb->ctx_ndlp; 14349 14350 /* Reg_LOGIN of dflt RPI was successful. Mark the 14351 * node as having an UNREG_LOGIN in progress to stop 14352 * an unsolicited PLOGI from the same NPortId from 14353 * starting another mailbox transaction. 14354 */ 14355 spin_lock_irqsave(&ndlp->lock, iflags); 14356 ndlp->nlp_flag |= NLP_UNREG_INP; 14357 spin_unlock_irqrestore(&ndlp->lock, iflags); 14358 lpfc_unreg_login(phba, vport->vpi, 14359 pmbox->un.varWords[0], pmb); 14360 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14361 pmb->ctx_buf = mp; 14362 14363 /* No reference taken here. This is a default 14364 * RPI reg/immediate unreg cycle. The reference was 14365 * taken in the reg rpi path and is released when 14366 * this mailbox completes. 14367 */ 14368 pmb->ctx_ndlp = ndlp; 14369 pmb->vport = vport; 14370 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14371 if (rc != MBX_BUSY) 14372 lpfc_printf_log(phba, KERN_ERR, 14373 LOG_TRACE_EVENT, 14374 "0385 rc should " 14375 "have been MBX_BUSY\n"); 14376 if (rc != MBX_NOT_FINISHED) 14377 goto send_current_mbox; 14378 } 14379 } 14380 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14381 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14382 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14383 14384 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14385 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14386 spin_lock_irqsave(&phba->hbalock, iflags); 14387 /* Release the mailbox command posting token */ 14388 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14389 phba->sli.mbox_active = NULL; 14390 if (bf_get(lpfc_trailer_consumed, mcqe)) 14391 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14392 spin_unlock_irqrestore(&phba->hbalock, iflags); 14393 14394 /* Post the next mbox command, if there is one */ 14395 lpfc_sli4_post_async_mbox(phba); 14396 14397 /* Process cmpl now */ 14398 if (pmb->mbox_cmpl) 14399 pmb->mbox_cmpl(phba, pmb); 14400 return false; 14401 } 14402 14403 /* There is mailbox completion work to queue to the worker thread */ 14404 spin_lock_irqsave(&phba->hbalock, iflags); 14405 __lpfc_mbox_cmpl_put(phba, pmb); 14406 phba->work_ha |= HA_MBATT; 14407 spin_unlock_irqrestore(&phba->hbalock, iflags); 14408 workposted = true; 14409 14410 send_current_mbox: 14411 spin_lock_irqsave(&phba->hbalock, iflags); 14412 /* Release the mailbox command posting token */ 14413 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14414 /* Setting active mailbox pointer need to be in sync to flag clear */ 14415 phba->sli.mbox_active = NULL; 14416 if (bf_get(lpfc_trailer_consumed, mcqe)) 14417 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14418 spin_unlock_irqrestore(&phba->hbalock, iflags); 14419 /* Wake up worker thread to post the next pending mailbox command */ 14420 lpfc_worker_wake_up(phba); 14421 return workposted; 14422 14423 out_no_mqe_complete: 14424 spin_lock_irqsave(&phba->hbalock, iflags); 14425 if (bf_get(lpfc_trailer_consumed, mcqe)) 14426 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14427 spin_unlock_irqrestore(&phba->hbalock, iflags); 14428 return false; 14429 } 14430 14431 /** 14432 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14433 * @phba: Pointer to HBA context object. 14434 * @cq: Pointer to associated CQ 14435 * @cqe: Pointer to mailbox completion queue entry. 14436 * 14437 * This routine process a mailbox completion queue entry, it invokes the 14438 * proper mailbox complete handling or asynchronous event handling routine 14439 * according to the MCQE's async bit. 14440 * 14441 * Return: true if work posted to worker thread, otherwise false. 14442 **/ 14443 static bool 14444 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14445 struct lpfc_cqe *cqe) 14446 { 14447 struct lpfc_mcqe mcqe; 14448 bool workposted; 14449 14450 cq->CQ_mbox++; 14451 14452 /* Copy the mailbox MCQE and convert endian order as needed */ 14453 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14454 14455 /* Invoke the proper event handling routine */ 14456 if (!bf_get(lpfc_trailer_async, &mcqe)) 14457 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14458 else 14459 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14460 return workposted; 14461 } 14462 14463 /** 14464 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14465 * @phba: Pointer to HBA context object. 14466 * @cq: Pointer to associated CQ 14467 * @wcqe: Pointer to work-queue completion queue entry. 14468 * 14469 * This routine handles an ELS work-queue completion event. 14470 * 14471 * Return: true if work posted to worker thread, otherwise false. 14472 **/ 14473 static bool 14474 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14475 struct lpfc_wcqe_complete *wcqe) 14476 { 14477 struct lpfc_iocbq *irspiocbq; 14478 unsigned long iflags; 14479 struct lpfc_sli_ring *pring = cq->pring; 14480 int txq_cnt = 0; 14481 int txcmplq_cnt = 0; 14482 14483 /* Check for response status */ 14484 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14485 /* Log the error status */ 14486 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14487 "0357 ELS CQE error: status=x%x: " 14488 "CQE: %08x %08x %08x %08x\n", 14489 bf_get(lpfc_wcqe_c_status, wcqe), 14490 wcqe->word0, wcqe->total_data_placed, 14491 wcqe->parameter, wcqe->word3); 14492 } 14493 14494 /* Get an irspiocbq for later ELS response processing use */ 14495 irspiocbq = lpfc_sli_get_iocbq(phba); 14496 if (!irspiocbq) { 14497 if (!list_empty(&pring->txq)) 14498 txq_cnt++; 14499 if (!list_empty(&pring->txcmplq)) 14500 txcmplq_cnt++; 14501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14502 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14503 "els_txcmplq_cnt=%d\n", 14504 txq_cnt, phba->iocb_cnt, 14505 txcmplq_cnt); 14506 return false; 14507 } 14508 14509 /* Save off the slow-path queue event for work thread to process */ 14510 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14511 spin_lock_irqsave(&phba->hbalock, iflags); 14512 list_add_tail(&irspiocbq->cq_event.list, 14513 &phba->sli4_hba.sp_queue_event); 14514 spin_unlock_irqrestore(&phba->hbalock, iflags); 14515 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14516 14517 return true; 14518 } 14519 14520 /** 14521 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14522 * @phba: Pointer to HBA context object. 14523 * @wcqe: Pointer to work-queue completion queue entry. 14524 * 14525 * This routine handles slow-path WQ entry consumed event by invoking the 14526 * proper WQ release routine to the slow-path WQ. 14527 **/ 14528 static void 14529 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14530 struct lpfc_wcqe_release *wcqe) 14531 { 14532 /* sanity check on queue memory */ 14533 if (unlikely(!phba->sli4_hba.els_wq)) 14534 return; 14535 /* Check for the slow-path ELS work queue */ 14536 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14537 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14538 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14539 else 14540 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14541 "2579 Slow-path wqe consume event carries " 14542 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14543 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14544 phba->sli4_hba.els_wq->queue_id); 14545 } 14546 14547 /** 14548 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14549 * @phba: Pointer to HBA context object. 14550 * @cq: Pointer to a WQ completion queue. 14551 * @wcqe: Pointer to work-queue completion queue entry. 14552 * 14553 * This routine handles an XRI abort event. 14554 * 14555 * Return: true if work posted to worker thread, otherwise false. 14556 **/ 14557 static bool 14558 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14559 struct lpfc_queue *cq, 14560 struct sli4_wcqe_xri_aborted *wcqe) 14561 { 14562 bool workposted = false; 14563 struct lpfc_cq_event *cq_event; 14564 unsigned long iflags; 14565 14566 switch (cq->subtype) { 14567 case LPFC_IO: 14568 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14569 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14570 /* Notify aborted XRI for NVME work queue */ 14571 if (phba->nvmet_support) 14572 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14573 } 14574 workposted = false; 14575 break; 14576 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14577 case LPFC_ELS: 14578 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14579 if (!cq_event) { 14580 workposted = false; 14581 break; 14582 } 14583 cq_event->hdwq = cq->hdwq; 14584 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14585 iflags); 14586 list_add_tail(&cq_event->list, 14587 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14588 /* Set the els xri abort event flag */ 14589 set_bit(ELS_XRI_ABORT_EVENT, &phba->hba_flag); 14590 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14591 iflags); 14592 workposted = true; 14593 break; 14594 default: 14595 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14596 "0603 Invalid CQ subtype %d: " 14597 "%08x %08x %08x %08x\n", 14598 cq->subtype, wcqe->word0, wcqe->parameter, 14599 wcqe->word2, wcqe->word3); 14600 workposted = false; 14601 break; 14602 } 14603 return workposted; 14604 } 14605 14606 #define FC_RCTL_MDS_DIAGS 0xF4 14607 14608 /** 14609 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14610 * @phba: Pointer to HBA context object. 14611 * @rcqe: Pointer to receive-queue completion queue entry. 14612 * 14613 * This routine process a receive-queue completion queue entry. 14614 * 14615 * Return: true if work posted to worker thread, otherwise false. 14616 **/ 14617 static bool 14618 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14619 { 14620 bool workposted = false; 14621 struct fc_frame_header *fc_hdr; 14622 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14623 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14624 struct lpfc_nvmet_tgtport *tgtp; 14625 struct hbq_dmabuf *dma_buf; 14626 uint32_t status, rq_id; 14627 unsigned long iflags; 14628 14629 /* sanity check on queue memory */ 14630 if (unlikely(!hrq) || unlikely(!drq)) 14631 return workposted; 14632 14633 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14634 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14635 else 14636 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14637 if (rq_id != hrq->queue_id) 14638 goto out; 14639 14640 status = bf_get(lpfc_rcqe_status, rcqe); 14641 switch (status) { 14642 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14643 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14644 "2537 Receive Frame Truncated!!\n"); 14645 fallthrough; 14646 case FC_STATUS_RQ_SUCCESS: 14647 spin_lock_irqsave(&phba->hbalock, iflags); 14648 lpfc_sli4_rq_release(hrq, drq); 14649 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14650 if (!dma_buf) { 14651 hrq->RQ_no_buf_found++; 14652 spin_unlock_irqrestore(&phba->hbalock, iflags); 14653 goto out; 14654 } 14655 hrq->RQ_rcv_buf++; 14656 hrq->RQ_buf_posted--; 14657 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14658 14659 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14660 14661 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14662 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14663 spin_unlock_irqrestore(&phba->hbalock, iflags); 14664 /* Handle MDS Loopback frames */ 14665 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 14666 lpfc_sli4_handle_mds_loopback(phba->pport, 14667 dma_buf); 14668 else 14669 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14670 break; 14671 } 14672 14673 /* save off the frame for the work thread to process */ 14674 list_add_tail(&dma_buf->cq_event.list, 14675 &phba->sli4_hba.sp_queue_event); 14676 spin_unlock_irqrestore(&phba->hbalock, iflags); 14677 /* Frame received */ 14678 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 14679 workposted = true; 14680 break; 14681 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14682 if (phba->nvmet_support) { 14683 tgtp = phba->targetport->private; 14684 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14685 "6402 RQE Error x%x, posted %d err_cnt " 14686 "%d: %x %x %x\n", 14687 status, hrq->RQ_buf_posted, 14688 hrq->RQ_no_posted_buf, 14689 atomic_read(&tgtp->rcv_fcp_cmd_in), 14690 atomic_read(&tgtp->rcv_fcp_cmd_out), 14691 atomic_read(&tgtp->xmt_fcp_release)); 14692 } 14693 fallthrough; 14694 14695 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14696 hrq->RQ_no_posted_buf++; 14697 /* Post more buffers if possible */ 14698 set_bit(HBA_POST_RECEIVE_BUFFER, &phba->hba_flag); 14699 workposted = true; 14700 break; 14701 case FC_STATUS_RQ_DMA_FAILURE: 14702 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14703 "2564 RQE DMA Error x%x, x%08x x%08x x%08x " 14704 "x%08x\n", 14705 status, rcqe->word0, rcqe->word1, 14706 rcqe->word2, rcqe->word3); 14707 14708 /* If IV set, no further recovery */ 14709 if (bf_get(lpfc_rcqe_iv, rcqe)) 14710 break; 14711 14712 /* recycle consumed resource */ 14713 spin_lock_irqsave(&phba->hbalock, iflags); 14714 lpfc_sli4_rq_release(hrq, drq); 14715 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14716 if (!dma_buf) { 14717 hrq->RQ_no_buf_found++; 14718 spin_unlock_irqrestore(&phba->hbalock, iflags); 14719 break; 14720 } 14721 hrq->RQ_rcv_buf++; 14722 hrq->RQ_buf_posted--; 14723 spin_unlock_irqrestore(&phba->hbalock, iflags); 14724 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14725 break; 14726 default: 14727 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14728 "2565 Unexpected RQE Status x%x, w0-3 x%08x " 14729 "x%08x x%08x x%08x\n", 14730 status, rcqe->word0, rcqe->word1, 14731 rcqe->word2, rcqe->word3); 14732 break; 14733 } 14734 out: 14735 return workposted; 14736 } 14737 14738 /** 14739 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14740 * @phba: Pointer to HBA context object. 14741 * @cq: Pointer to the completion queue. 14742 * @cqe: Pointer to a completion queue entry. 14743 * 14744 * This routine process a slow-path work-queue or receive queue completion queue 14745 * entry. 14746 * 14747 * Return: true if work posted to worker thread, otherwise false. 14748 **/ 14749 static bool 14750 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14751 struct lpfc_cqe *cqe) 14752 { 14753 struct lpfc_cqe cqevt; 14754 bool workposted = false; 14755 14756 /* Copy the work queue CQE and convert endian order if needed */ 14757 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14758 14759 /* Check and process for different type of WCQE and dispatch */ 14760 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14761 case CQE_CODE_COMPL_WQE: 14762 /* Process the WQ/RQ complete event */ 14763 phba->last_completion_time = jiffies; 14764 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14765 (struct lpfc_wcqe_complete *)&cqevt); 14766 break; 14767 case CQE_CODE_RELEASE_WQE: 14768 /* Process the WQ release event */ 14769 lpfc_sli4_sp_handle_rel_wcqe(phba, 14770 (struct lpfc_wcqe_release *)&cqevt); 14771 break; 14772 case CQE_CODE_XRI_ABORTED: 14773 /* Process the WQ XRI abort event */ 14774 phba->last_completion_time = jiffies; 14775 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14776 (struct sli4_wcqe_xri_aborted *)&cqevt); 14777 break; 14778 case CQE_CODE_RECEIVE: 14779 case CQE_CODE_RECEIVE_V1: 14780 /* Process the RQ event */ 14781 phba->last_completion_time = jiffies; 14782 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14783 (struct lpfc_rcqe *)&cqevt); 14784 break; 14785 default: 14786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14787 "0388 Not a valid WCQE code: x%x\n", 14788 bf_get(lpfc_cqe_code, &cqevt)); 14789 break; 14790 } 14791 return workposted; 14792 } 14793 14794 /** 14795 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14796 * @phba: Pointer to HBA context object. 14797 * @eqe: Pointer to fast-path event queue entry. 14798 * @speq: Pointer to slow-path event queue. 14799 * 14800 * This routine process a event queue entry from the slow-path event queue. 14801 * It will check the MajorCode and MinorCode to determine this is for a 14802 * completion event on a completion queue, if not, an error shall be logged 14803 * and just return. Otherwise, it will get to the corresponding completion 14804 * queue and process all the entries on that completion queue, rearm the 14805 * completion queue, and then return. 14806 * 14807 **/ 14808 static void 14809 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14810 struct lpfc_queue *speq) 14811 { 14812 struct lpfc_queue *cq = NULL, *childq; 14813 uint16_t cqid; 14814 int ret = 0; 14815 14816 /* Get the reference to the corresponding CQ */ 14817 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14818 14819 list_for_each_entry(childq, &speq->child_list, list) { 14820 if (childq->queue_id == cqid) { 14821 cq = childq; 14822 break; 14823 } 14824 } 14825 if (unlikely(!cq)) { 14826 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14828 "0365 Slow-path CQ identifier " 14829 "(%d) does not exist\n", cqid); 14830 return; 14831 } 14832 14833 /* Save EQ associated with this CQ */ 14834 cq->assoc_qp = speq; 14835 14836 if (is_kdump_kernel()) 14837 ret = queue_work(phba->wq, &cq->spwork); 14838 else 14839 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14840 14841 if (!ret) 14842 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14843 "0390 Cannot schedule queue work " 14844 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14845 cqid, cq->queue_id, raw_smp_processor_id()); 14846 } 14847 14848 /** 14849 * __lpfc_sli4_process_cq - Process elements of a CQ 14850 * @phba: Pointer to HBA context object. 14851 * @cq: Pointer to CQ to be processed 14852 * @handler: Routine to process each cqe 14853 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14854 * 14855 * This routine processes completion queue entries in a CQ. While a valid 14856 * queue element is found, the handler is called. During processing checks 14857 * are made for periodic doorbell writes to let the hardware know of 14858 * element consumption. 14859 * 14860 * If the max limit on cqes to process is hit, or there are no more valid 14861 * entries, the loop stops. If we processed a sufficient number of elements, 14862 * meaning there is sufficient load, rather than rearming and generating 14863 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14864 * indicates no rescheduling. 14865 * 14866 * Returns True if work scheduled, False otherwise. 14867 **/ 14868 static bool 14869 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14870 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14871 struct lpfc_cqe *), unsigned long *delay) 14872 { 14873 struct lpfc_cqe *cqe; 14874 bool workposted = false; 14875 int count = 0, consumed = 0; 14876 bool arm = true; 14877 14878 /* default - no reschedule */ 14879 *delay = 0; 14880 14881 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14882 goto rearm_and_exit; 14883 14884 /* Process all the entries to the CQ */ 14885 cq->q_flag = 0; 14886 cqe = lpfc_sli4_cq_get(cq); 14887 while (cqe) { 14888 workposted |= handler(phba, cq, cqe); 14889 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14890 14891 consumed++; 14892 if (!(++count % cq->max_proc_limit)) 14893 break; 14894 14895 if (!(count % cq->notify_interval)) { 14896 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14897 LPFC_QUEUE_NOARM); 14898 consumed = 0; 14899 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14900 } 14901 14902 if (count == LPFC_NVMET_CQ_NOTIFY) 14903 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14904 14905 cqe = lpfc_sli4_cq_get(cq); 14906 } 14907 if (count >= phba->cfg_cq_poll_threshold) { 14908 *delay = 1; 14909 arm = false; 14910 } 14911 14912 /* Track the max number of CQEs processed in 1 EQ */ 14913 if (count > cq->CQ_max_cqe) 14914 cq->CQ_max_cqe = count; 14915 14916 cq->assoc_qp->EQ_cqe_cnt += count; 14917 14918 /* Catch the no cq entry condition */ 14919 if (unlikely(count == 0)) 14920 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14921 "0369 No entry from completion queue " 14922 "qid=%d\n", cq->queue_id); 14923 14924 xchg(&cq->queue_claimed, 0); 14925 14926 rearm_and_exit: 14927 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14928 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14929 14930 return workposted; 14931 } 14932 14933 /** 14934 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14935 * @cq: pointer to CQ to process 14936 * 14937 * This routine calls the cq processing routine with a handler specific 14938 * to the type of queue bound to it. 14939 * 14940 * The CQ routine returns two values: the first is the calling status, 14941 * which indicates whether work was queued to the background discovery 14942 * thread. If true, the routine should wakeup the discovery thread; 14943 * the second is the delay parameter. If non-zero, rather than rearming 14944 * the CQ and yet another interrupt, the CQ handler should be queued so 14945 * that it is processed in a subsequent polling action. The value of 14946 * the delay indicates when to reschedule it. 14947 **/ 14948 static void 14949 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14950 { 14951 struct lpfc_hba *phba = cq->phba; 14952 unsigned long delay; 14953 bool workposted = false; 14954 int ret = 0; 14955 14956 /* Process and rearm the CQ */ 14957 switch (cq->type) { 14958 case LPFC_MCQ: 14959 workposted |= __lpfc_sli4_process_cq(phba, cq, 14960 lpfc_sli4_sp_handle_mcqe, 14961 &delay); 14962 break; 14963 case LPFC_WCQ: 14964 if (cq->subtype == LPFC_IO) 14965 workposted |= __lpfc_sli4_process_cq(phba, cq, 14966 lpfc_sli4_fp_handle_cqe, 14967 &delay); 14968 else 14969 workposted |= __lpfc_sli4_process_cq(phba, cq, 14970 lpfc_sli4_sp_handle_cqe, 14971 &delay); 14972 break; 14973 default: 14974 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14975 "0370 Invalid completion queue type (%d)\n", 14976 cq->type); 14977 return; 14978 } 14979 14980 if (delay) { 14981 if (is_kdump_kernel()) 14982 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14983 delay); 14984 else 14985 ret = queue_delayed_work_on(cq->chann, phba->wq, 14986 &cq->sched_spwork, delay); 14987 if (!ret) 14988 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14989 "0394 Cannot schedule queue work " 14990 "for cqid=%d on CPU %d\n", 14991 cq->queue_id, cq->chann); 14992 } 14993 14994 /* wake up worker thread if there are works to be done */ 14995 if (workposted) 14996 lpfc_worker_wake_up(phba); 14997 } 14998 14999 /** 15000 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 15001 * interrupt 15002 * @work: pointer to work element 15003 * 15004 * translates from the work handler and calls the slow-path handler. 15005 **/ 15006 static void 15007 lpfc_sli4_sp_process_cq(struct work_struct *work) 15008 { 15009 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 15010 15011 __lpfc_sli4_sp_process_cq(cq); 15012 } 15013 15014 /** 15015 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 15016 * @work: pointer to work element 15017 * 15018 * translates from the work handler and calls the slow-path handler. 15019 **/ 15020 static void 15021 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 15022 { 15023 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15024 struct lpfc_queue, sched_spwork); 15025 15026 __lpfc_sli4_sp_process_cq(cq); 15027 } 15028 15029 /** 15030 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 15031 * @phba: Pointer to HBA context object. 15032 * @cq: Pointer to associated CQ 15033 * @wcqe: Pointer to work-queue completion queue entry. 15034 * 15035 * This routine process a fast-path work queue completion entry from fast-path 15036 * event queue for FCP command response completion. 15037 **/ 15038 static void 15039 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15040 struct lpfc_wcqe_complete *wcqe) 15041 { 15042 struct lpfc_sli_ring *pring = cq->pring; 15043 struct lpfc_iocbq *cmdiocbq; 15044 unsigned long iflags; 15045 15046 /* Check for response status */ 15047 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15048 /* If resource errors reported from HBA, reduce queue 15049 * depth of the SCSI device. 15050 */ 15051 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15052 IOSTAT_LOCAL_REJECT)) && 15053 ((wcqe->parameter & IOERR_PARAM_MASK) == 15054 IOERR_NO_RESOURCES)) 15055 phba->lpfc_rampdown_queue_depth(phba); 15056 15057 /* Log the cmpl status */ 15058 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15059 "0373 FCP CQE cmpl: status=x%x: " 15060 "CQE: %08x %08x %08x %08x\n", 15061 bf_get(lpfc_wcqe_c_status, wcqe), 15062 wcqe->word0, wcqe->total_data_placed, 15063 wcqe->parameter, wcqe->word3); 15064 } 15065 15066 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15067 spin_lock_irqsave(&pring->ring_lock, iflags); 15068 pring->stats.iocb_event++; 15069 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15070 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15071 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15072 if (unlikely(!cmdiocbq)) { 15073 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15074 "0374 FCP complete with no corresponding " 15075 "cmdiocb: iotag (%d)\n", 15076 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15077 return; 15078 } 15079 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15080 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15081 #endif 15082 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15083 spin_lock_irqsave(&phba->hbalock, iflags); 15084 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15085 spin_unlock_irqrestore(&phba->hbalock, iflags); 15086 } 15087 15088 if (cmdiocbq->cmd_cmpl) { 15089 /* For FCP the flag is cleared in cmd_cmpl */ 15090 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15091 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15092 spin_lock_irqsave(&phba->hbalock, iflags); 15093 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15094 spin_unlock_irqrestore(&phba->hbalock, iflags); 15095 } 15096 15097 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15098 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15099 sizeof(struct lpfc_wcqe_complete)); 15100 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15101 } else { 15102 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15103 "0375 FCP cmdiocb not callback function " 15104 "iotag: (%d)\n", 15105 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15106 } 15107 } 15108 15109 /** 15110 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15111 * @phba: Pointer to HBA context object. 15112 * @cq: Pointer to completion queue. 15113 * @wcqe: Pointer to work-queue completion queue entry. 15114 * 15115 * This routine handles an fast-path WQ entry consumed event by invoking the 15116 * proper WQ release routine to the slow-path WQ. 15117 **/ 15118 static void 15119 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15120 struct lpfc_wcqe_release *wcqe) 15121 { 15122 struct lpfc_queue *childwq; 15123 bool wqid_matched = false; 15124 uint16_t hba_wqid; 15125 15126 /* Check for fast-path FCP work queue release */ 15127 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15128 list_for_each_entry(childwq, &cq->child_list, list) { 15129 if (childwq->queue_id == hba_wqid) { 15130 lpfc_sli4_wq_release(childwq, 15131 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15132 if (childwq->q_flag & HBA_NVMET_WQFULL) 15133 lpfc_nvmet_wqfull_process(phba, childwq); 15134 wqid_matched = true; 15135 break; 15136 } 15137 } 15138 /* Report warning log message if no match found */ 15139 if (wqid_matched != true) 15140 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15141 "2580 Fast-path wqe consume event carries " 15142 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15143 } 15144 15145 /** 15146 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15147 * @phba: Pointer to HBA context object. 15148 * @cq: Pointer to completion queue. 15149 * @rcqe: Pointer to receive-queue completion queue entry. 15150 * 15151 * This routine process a receive-queue completion queue entry. 15152 * 15153 * Return: true if work posted to worker thread, otherwise false. 15154 **/ 15155 static bool 15156 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15157 struct lpfc_rcqe *rcqe) 15158 { 15159 bool workposted = false; 15160 struct lpfc_queue *hrq; 15161 struct lpfc_queue *drq; 15162 struct rqb_dmabuf *dma_buf; 15163 struct fc_frame_header *fc_hdr; 15164 struct lpfc_nvmet_tgtport *tgtp; 15165 uint32_t status, rq_id; 15166 unsigned long iflags; 15167 uint32_t fctl, idx; 15168 15169 if ((phba->nvmet_support == 0) || 15170 (phba->sli4_hba.nvmet_cqset == NULL)) 15171 return workposted; 15172 15173 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15174 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15175 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15176 15177 /* sanity check on queue memory */ 15178 if (unlikely(!hrq) || unlikely(!drq)) 15179 return workposted; 15180 15181 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15182 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15183 else 15184 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15185 15186 if ((phba->nvmet_support == 0) || 15187 (rq_id != hrq->queue_id)) 15188 return workposted; 15189 15190 status = bf_get(lpfc_rcqe_status, rcqe); 15191 switch (status) { 15192 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15194 "6126 Receive Frame Truncated!!\n"); 15195 fallthrough; 15196 case FC_STATUS_RQ_SUCCESS: 15197 spin_lock_irqsave(&phba->hbalock, iflags); 15198 lpfc_sli4_rq_release(hrq, drq); 15199 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15200 if (!dma_buf) { 15201 hrq->RQ_no_buf_found++; 15202 spin_unlock_irqrestore(&phba->hbalock, iflags); 15203 goto out; 15204 } 15205 spin_unlock_irqrestore(&phba->hbalock, iflags); 15206 hrq->RQ_rcv_buf++; 15207 hrq->RQ_buf_posted--; 15208 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15209 15210 /* Just some basic sanity checks on FCP Command frame */ 15211 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15212 fc_hdr->fh_f_ctl[1] << 8 | 15213 fc_hdr->fh_f_ctl[2]); 15214 if (((fctl & 15215 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15216 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15217 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15218 goto drop; 15219 15220 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15221 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15222 lpfc_nvmet_unsol_fcp_event( 15223 phba, idx, dma_buf, cq->isr_timestamp, 15224 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15225 return false; 15226 } 15227 drop: 15228 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15229 break; 15230 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15231 if (phba->nvmet_support) { 15232 tgtp = phba->targetport->private; 15233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15234 "6401 RQE Error x%x, posted %d err_cnt " 15235 "%d: %x %x %x\n", 15236 status, hrq->RQ_buf_posted, 15237 hrq->RQ_no_posted_buf, 15238 atomic_read(&tgtp->rcv_fcp_cmd_in), 15239 atomic_read(&tgtp->rcv_fcp_cmd_out), 15240 atomic_read(&tgtp->xmt_fcp_release)); 15241 } 15242 fallthrough; 15243 15244 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15245 hrq->RQ_no_posted_buf++; 15246 /* Post more buffers if possible */ 15247 break; 15248 case FC_STATUS_RQ_DMA_FAILURE: 15249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15250 "2575 RQE DMA Error x%x, x%08x x%08x x%08x " 15251 "x%08x\n", 15252 status, rcqe->word0, rcqe->word1, 15253 rcqe->word2, rcqe->word3); 15254 15255 /* If IV set, no further recovery */ 15256 if (bf_get(lpfc_rcqe_iv, rcqe)) 15257 break; 15258 15259 /* recycle consumed resource */ 15260 spin_lock_irqsave(&phba->hbalock, iflags); 15261 lpfc_sli4_rq_release(hrq, drq); 15262 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15263 if (!dma_buf) { 15264 hrq->RQ_no_buf_found++; 15265 spin_unlock_irqrestore(&phba->hbalock, iflags); 15266 break; 15267 } 15268 hrq->RQ_rcv_buf++; 15269 hrq->RQ_buf_posted--; 15270 spin_unlock_irqrestore(&phba->hbalock, iflags); 15271 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15272 break; 15273 default: 15274 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15275 "2576 Unexpected RQE Status x%x, w0-3 x%08x " 15276 "x%08x x%08x x%08x\n", 15277 status, rcqe->word0, rcqe->word1, 15278 rcqe->word2, rcqe->word3); 15279 break; 15280 } 15281 out: 15282 return workposted; 15283 } 15284 15285 /** 15286 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15287 * @phba: adapter with cq 15288 * @cq: Pointer to the completion queue. 15289 * @cqe: Pointer to fast-path completion queue entry. 15290 * 15291 * This routine process a fast-path work queue completion entry from fast-path 15292 * event queue for FCP command response completion. 15293 * 15294 * Return: true if work posted to worker thread, otherwise false. 15295 **/ 15296 static bool 15297 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15298 struct lpfc_cqe *cqe) 15299 { 15300 struct lpfc_wcqe_release wcqe; 15301 bool workposted = false; 15302 15303 /* Copy the work queue CQE and convert endian order if needed */ 15304 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15305 15306 /* Check and process for different type of WCQE and dispatch */ 15307 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15308 case CQE_CODE_COMPL_WQE: 15309 case CQE_CODE_NVME_ERSP: 15310 cq->CQ_wq++; 15311 /* Process the WQ complete event */ 15312 phba->last_completion_time = jiffies; 15313 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15314 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15315 (struct lpfc_wcqe_complete *)&wcqe); 15316 break; 15317 case CQE_CODE_RELEASE_WQE: 15318 cq->CQ_release_wqe++; 15319 /* Process the WQ release event */ 15320 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15321 (struct lpfc_wcqe_release *)&wcqe); 15322 break; 15323 case CQE_CODE_XRI_ABORTED: 15324 cq->CQ_xri_aborted++; 15325 /* Process the WQ XRI abort event */ 15326 phba->last_completion_time = jiffies; 15327 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15328 (struct sli4_wcqe_xri_aborted *)&wcqe); 15329 break; 15330 case CQE_CODE_RECEIVE_V1: 15331 case CQE_CODE_RECEIVE: 15332 phba->last_completion_time = jiffies; 15333 if (cq->subtype == LPFC_NVMET) { 15334 workposted = lpfc_sli4_nvmet_handle_rcqe( 15335 phba, cq, (struct lpfc_rcqe *)&wcqe); 15336 } 15337 break; 15338 default: 15339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15340 "0144 Not a valid CQE code: x%x\n", 15341 bf_get(lpfc_wcqe_c_code, &wcqe)); 15342 break; 15343 } 15344 return workposted; 15345 } 15346 15347 /** 15348 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15349 * @cq: Pointer to CQ to be processed 15350 * 15351 * This routine calls the cq processing routine with the handler for 15352 * fast path CQEs. 15353 * 15354 * The CQ routine returns two values: the first is the calling status, 15355 * which indicates whether work was queued to the background discovery 15356 * thread. If true, the routine should wakeup the discovery thread; 15357 * the second is the delay parameter. If non-zero, rather than rearming 15358 * the CQ and yet another interrupt, the CQ handler should be queued so 15359 * that it is processed in a subsequent polling action. The value of 15360 * the delay indicates when to reschedule it. 15361 **/ 15362 static void 15363 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 15364 { 15365 struct lpfc_hba *phba = cq->phba; 15366 unsigned long delay; 15367 bool workposted = false; 15368 int ret; 15369 15370 /* process and rearm the CQ */ 15371 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15372 &delay); 15373 15374 if (delay) { 15375 if (is_kdump_kernel()) 15376 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15377 delay); 15378 else 15379 ret = queue_delayed_work_on(cq->chann, phba->wq, 15380 &cq->sched_irqwork, delay); 15381 if (!ret) 15382 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15383 "0367 Cannot schedule queue work " 15384 "for cqid=%d on CPU %d\n", 15385 cq->queue_id, cq->chann); 15386 } 15387 15388 /* wake up worker thread if there are works to be done */ 15389 if (workposted) 15390 lpfc_worker_wake_up(phba); 15391 } 15392 15393 /** 15394 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15395 * interrupt 15396 * @work: pointer to work element 15397 * 15398 * translates from the work handler and calls the fast-path handler. 15399 **/ 15400 static void 15401 lpfc_sli4_hba_process_cq(struct work_struct *work) 15402 { 15403 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15404 15405 __lpfc_sli4_hba_process_cq(cq); 15406 } 15407 15408 /** 15409 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15410 * @phba: Pointer to HBA context object. 15411 * @eq: Pointer to the queue structure. 15412 * @eqe: Pointer to fast-path event queue entry. 15413 * @poll_mode: poll_mode to execute processing the cq. 15414 * 15415 * This routine process a event queue entry from the fast-path event queue. 15416 * It will check the MajorCode and MinorCode to determine this is for a 15417 * completion event on a completion queue, if not, an error shall be logged 15418 * and just return. Otherwise, it will get to the corresponding completion 15419 * queue and process all the entries on the completion queue, rearm the 15420 * completion queue, and then return. 15421 **/ 15422 static void 15423 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15424 struct lpfc_eqe *eqe, enum lpfc_poll_mode poll_mode) 15425 { 15426 struct lpfc_queue *cq = NULL; 15427 uint32_t qidx = eq->hdwq; 15428 uint16_t cqid, id; 15429 int ret; 15430 15431 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15432 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15433 "0366 Not a valid completion " 15434 "event: majorcode=x%x, minorcode=x%x\n", 15435 bf_get_le32(lpfc_eqe_major_code, eqe), 15436 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15437 return; 15438 } 15439 15440 /* Get the reference to the corresponding CQ */ 15441 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15442 15443 /* Use the fast lookup method first */ 15444 if (cqid <= phba->sli4_hba.cq_max) { 15445 cq = phba->sli4_hba.cq_lookup[cqid]; 15446 if (cq) 15447 goto work_cq; 15448 } 15449 15450 /* Next check for NVMET completion */ 15451 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15452 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15453 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15454 /* Process NVMET unsol rcv */ 15455 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15456 goto process_cq; 15457 } 15458 } 15459 15460 if (phba->sli4_hba.nvmels_cq && 15461 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15462 /* Process NVME unsol rcv */ 15463 cq = phba->sli4_hba.nvmels_cq; 15464 } 15465 15466 /* Otherwise this is a Slow path event */ 15467 if (cq == NULL) { 15468 lpfc_sli4_sp_handle_eqe(phba, eqe, 15469 phba->sli4_hba.hdwq[qidx].hba_eq); 15470 return; 15471 } 15472 15473 process_cq: 15474 if (unlikely(cqid != cq->queue_id)) { 15475 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15476 "0368 Miss-matched fast-path completion " 15477 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15478 cqid, cq->queue_id); 15479 return; 15480 } 15481 15482 work_cq: 15483 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15484 if (phba->ktime_on) 15485 cq->isr_timestamp = ktime_get_ns(); 15486 else 15487 cq->isr_timestamp = 0; 15488 #endif 15489 15490 switch (poll_mode) { 15491 case LPFC_THREADED_IRQ: 15492 __lpfc_sli4_hba_process_cq(cq); 15493 break; 15494 case LPFC_QUEUE_WORK: 15495 default: 15496 if (is_kdump_kernel()) 15497 ret = queue_work(phba->wq, &cq->irqwork); 15498 else 15499 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15500 if (!ret) 15501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15502 "0383 Cannot schedule queue work " 15503 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15504 cqid, cq->queue_id, 15505 raw_smp_processor_id()); 15506 break; 15507 } 15508 } 15509 15510 /** 15511 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15512 * @work: pointer to work element 15513 * 15514 * translates from the work handler and calls the fast-path handler. 15515 **/ 15516 static void 15517 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15518 { 15519 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15520 struct lpfc_queue, sched_irqwork); 15521 15522 __lpfc_sli4_hba_process_cq(cq); 15523 } 15524 15525 /** 15526 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15527 * @irq: Interrupt number. 15528 * @dev_id: The device context pointer. 15529 * 15530 * This function is directly called from the PCI layer as an interrupt 15531 * service routine when device with SLI-4 interface spec is enabled with 15532 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15533 * ring event in the HBA. However, when the device is enabled with either 15534 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15535 * device-level interrupt handler. When the PCI slot is in error recovery 15536 * or the HBA is undergoing initialization, the interrupt handler will not 15537 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15538 * the intrrupt context. This function is called without any lock held. 15539 * It gets the hbalock to access and update SLI data structures. Note that, 15540 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15541 * equal to that of FCP CQ index. 15542 * 15543 * The link attention and ELS ring attention events are handled 15544 * by the worker thread. The interrupt handler signals the worker thread 15545 * and returns for these events. This function is called without any lock 15546 * held. It gets the hbalock to access and update SLI data structures. 15547 * 15548 * This function returns IRQ_HANDLED when interrupt is handled, IRQ_WAKE_THREAD 15549 * when interrupt is scheduled to be handled from a threaded irq context, or 15550 * else returns IRQ_NONE. 15551 **/ 15552 irqreturn_t 15553 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15554 { 15555 struct lpfc_hba *phba; 15556 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15557 struct lpfc_queue *fpeq; 15558 unsigned long iflag; 15559 int hba_eqidx; 15560 int ecount = 0; 15561 struct lpfc_eq_intr_info *eqi; 15562 15563 /* Get the driver's phba structure from the dev_id */ 15564 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15565 phba = hba_eq_hdl->phba; 15566 hba_eqidx = hba_eq_hdl->idx; 15567 15568 if (unlikely(!phba)) 15569 return IRQ_NONE; 15570 if (unlikely(!phba->sli4_hba.hdwq)) 15571 return IRQ_NONE; 15572 15573 /* Get to the EQ struct associated with this vector */ 15574 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15575 if (unlikely(!fpeq)) 15576 return IRQ_NONE; 15577 15578 /* Check device state for handling interrupt */ 15579 if (unlikely(lpfc_intr_state_check(phba))) { 15580 /* Check again for link_state with lock held */ 15581 spin_lock_irqsave(&phba->hbalock, iflag); 15582 if (phba->link_state < LPFC_LINK_DOWN) 15583 /* Flush, clear interrupt, and rearm the EQ */ 15584 lpfc_sli4_eqcq_flush(phba, fpeq); 15585 spin_unlock_irqrestore(&phba->hbalock, iflag); 15586 return IRQ_NONE; 15587 } 15588 15589 switch (fpeq->poll_mode) { 15590 case LPFC_THREADED_IRQ: 15591 /* CGN mgmt is mutually exclusive from irq processing */ 15592 if (phba->cmf_active_mode == LPFC_CFG_OFF) 15593 return IRQ_WAKE_THREAD; 15594 fallthrough; 15595 case LPFC_QUEUE_WORK: 15596 default: 15597 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15598 eqi->icnt++; 15599 15600 fpeq->last_cpu = raw_smp_processor_id(); 15601 15602 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15603 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15604 phba->cfg_auto_imax && 15605 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15606 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15607 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, 15608 LPFC_MAX_AUTO_EQ_DELAY); 15609 15610 /* process and rearm the EQ */ 15611 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 15612 LPFC_QUEUE_WORK); 15613 15614 if (unlikely(ecount == 0)) { 15615 fpeq->EQ_no_entry++; 15616 if (phba->intr_type == MSIX) 15617 /* MSI-X treated interrupt served as no EQ share INT */ 15618 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15619 "0358 MSI-X interrupt with no EQE\n"); 15620 else 15621 /* Non MSI-X treated on interrupt as EQ share INT */ 15622 return IRQ_NONE; 15623 } 15624 } 15625 15626 return IRQ_HANDLED; 15627 } /* lpfc_sli4_hba_intr_handler */ 15628 15629 /** 15630 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15631 * @irq: Interrupt number. 15632 * @dev_id: The device context pointer. 15633 * 15634 * This function is the device-level interrupt handler to device with SLI-4 15635 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15636 * interrupt mode is enabled and there is an event in the HBA which requires 15637 * driver attention. This function invokes the slow-path interrupt attention 15638 * handling function and fast-path interrupt attention handling function in 15639 * turn to process the relevant HBA attention events. This function is called 15640 * without any lock held. It gets the hbalock to access and update SLI data 15641 * structures. 15642 * 15643 * This function returns IRQ_HANDLED when interrupt is handled, else it 15644 * returns IRQ_NONE. 15645 **/ 15646 irqreturn_t 15647 lpfc_sli4_intr_handler(int irq, void *dev_id) 15648 { 15649 struct lpfc_hba *phba; 15650 irqreturn_t hba_irq_rc; 15651 bool hba_handled = false; 15652 int qidx; 15653 15654 /* Get the driver's phba structure from the dev_id */ 15655 phba = (struct lpfc_hba *)dev_id; 15656 15657 if (unlikely(!phba)) 15658 return IRQ_NONE; 15659 15660 /* 15661 * Invoke fast-path host attention interrupt handling as appropriate. 15662 */ 15663 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15664 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15665 &phba->sli4_hba.hba_eq_hdl[qidx]); 15666 if (hba_irq_rc == IRQ_HANDLED) 15667 hba_handled |= true; 15668 } 15669 15670 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15671 } /* lpfc_sli4_intr_handler */ 15672 15673 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15674 { 15675 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15676 struct lpfc_queue *eq; 15677 15678 rcu_read_lock(); 15679 15680 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15681 lpfc_sli4_poll_eq(eq); 15682 if (!list_empty(&phba->poll_list)) 15683 mod_timer(&phba->cpuhp_poll_timer, 15684 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15685 15686 rcu_read_unlock(); 15687 } 15688 15689 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15690 { 15691 struct lpfc_hba *phba = eq->phba; 15692 15693 /* kickstart slowpath processing if needed */ 15694 if (list_empty(&phba->poll_list)) 15695 mod_timer(&phba->cpuhp_poll_timer, 15696 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15697 15698 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15699 synchronize_rcu(); 15700 } 15701 15702 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15703 { 15704 struct lpfc_hba *phba = eq->phba; 15705 15706 /* Disable slowpath processing for this eq. Kick start the eq 15707 * by RE-ARMING the eq's ASAP 15708 */ 15709 list_del_rcu(&eq->_poll_list); 15710 synchronize_rcu(); 15711 15712 if (list_empty(&phba->poll_list)) 15713 del_timer_sync(&phba->cpuhp_poll_timer); 15714 } 15715 15716 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15717 { 15718 struct lpfc_queue *eq, *next; 15719 15720 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15721 list_del(&eq->_poll_list); 15722 15723 INIT_LIST_HEAD(&phba->poll_list); 15724 synchronize_rcu(); 15725 } 15726 15727 static inline void 15728 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15729 { 15730 if (mode == eq->mode) 15731 return; 15732 /* 15733 * currently this function is only called during a hotplug 15734 * event and the cpu on which this function is executing 15735 * is going offline. By now the hotplug has instructed 15736 * the scheduler to remove this cpu from cpu active mask. 15737 * So we don't need to work about being put aside by the 15738 * scheduler for a high priority process. Yes, the inte- 15739 * rrupts could come but they are known to retire ASAP. 15740 */ 15741 15742 /* Disable polling in the fastpath */ 15743 WRITE_ONCE(eq->mode, mode); 15744 /* flush out the store buffer */ 15745 smp_wmb(); 15746 15747 /* 15748 * Add this eq to the polling list and start polling. For 15749 * a grace period both interrupt handler and poller will 15750 * try to process the eq _but_ that's fine. We have a 15751 * synchronization mechanism in place (queue_claimed) to 15752 * deal with it. This is just a draining phase for int- 15753 * errupt handler (not eq's) as we have guranteed through 15754 * barrier that all the CPUs have seen the new CQ_POLLED 15755 * state. which will effectively disable the REARMING of 15756 * the EQ. The whole idea is eq's die off eventually as 15757 * we are not rearming EQ's anymore. 15758 */ 15759 mode ? lpfc_sli4_add_to_poll_list(eq) : 15760 lpfc_sli4_remove_from_poll_list(eq); 15761 } 15762 15763 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15764 { 15765 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15766 } 15767 15768 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15769 { 15770 struct lpfc_hba *phba = eq->phba; 15771 15772 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15773 15774 /* Kick start for the pending io's in h/w. 15775 * Once we switch back to interrupt processing on a eq 15776 * the io path completion will only arm eq's when it 15777 * receives a completion. But since eq's are in disa- 15778 * rmed state it doesn't receive a completion. This 15779 * creates a deadlock scenaro. 15780 */ 15781 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15782 } 15783 15784 /** 15785 * lpfc_sli4_queue_free - free a queue structure and associated memory 15786 * @queue: The queue structure to free. 15787 * 15788 * This function frees a queue structure and the DMAable memory used for 15789 * the host resident queue. This function must be called after destroying the 15790 * queue on the HBA. 15791 **/ 15792 void 15793 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15794 { 15795 struct lpfc_dmabuf *dmabuf; 15796 15797 if (!queue) 15798 return; 15799 15800 if (!list_empty(&queue->wq_list)) 15801 list_del(&queue->wq_list); 15802 15803 while (!list_empty(&queue->page_list)) { 15804 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15805 list); 15806 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15807 dmabuf->virt, dmabuf->phys); 15808 kfree(dmabuf); 15809 } 15810 if (queue->rqbp) { 15811 lpfc_free_rq_buffer(queue->phba, queue); 15812 kfree(queue->rqbp); 15813 } 15814 15815 if (!list_empty(&queue->cpu_list)) 15816 list_del(&queue->cpu_list); 15817 15818 kfree(queue); 15819 return; 15820 } 15821 15822 /** 15823 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15824 * @phba: The HBA that this queue is being created on. 15825 * @page_size: The size of a queue page 15826 * @entry_size: The size of each queue entry for this queue. 15827 * @entry_count: The number of entries that this queue will handle. 15828 * @cpu: The cpu that will primarily utilize this queue. 15829 * 15830 * This function allocates a queue structure and the DMAable memory used for 15831 * the host resident queue. This function must be called before creating the 15832 * queue on the HBA. 15833 **/ 15834 struct lpfc_queue * 15835 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15836 uint32_t entry_size, uint32_t entry_count, int cpu) 15837 { 15838 struct lpfc_queue *queue; 15839 struct lpfc_dmabuf *dmabuf; 15840 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15841 uint16_t x, pgcnt; 15842 15843 if (!phba->sli4_hba.pc_sli4_params.supported) 15844 hw_page_size = page_size; 15845 15846 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15847 15848 /* If needed, Adjust page count to match the max the adapter supports */ 15849 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15850 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15851 15852 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15853 GFP_KERNEL, cpu_to_node(cpu)); 15854 if (!queue) 15855 return NULL; 15856 15857 INIT_LIST_HEAD(&queue->list); 15858 INIT_LIST_HEAD(&queue->_poll_list); 15859 INIT_LIST_HEAD(&queue->wq_list); 15860 INIT_LIST_HEAD(&queue->wqfull_list); 15861 INIT_LIST_HEAD(&queue->page_list); 15862 INIT_LIST_HEAD(&queue->child_list); 15863 INIT_LIST_HEAD(&queue->cpu_list); 15864 15865 /* Set queue parameters now. If the system cannot provide memory 15866 * resources, the free routine needs to know what was allocated. 15867 */ 15868 queue->page_count = pgcnt; 15869 queue->q_pgs = (void **)&queue[1]; 15870 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15871 queue->entry_size = entry_size; 15872 queue->entry_count = entry_count; 15873 queue->page_size = hw_page_size; 15874 queue->phba = phba; 15875 15876 for (x = 0; x < queue->page_count; x++) { 15877 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15878 dev_to_node(&phba->pcidev->dev)); 15879 if (!dmabuf) 15880 goto out_fail; 15881 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15882 hw_page_size, &dmabuf->phys, 15883 GFP_KERNEL); 15884 if (!dmabuf->virt) { 15885 kfree(dmabuf); 15886 goto out_fail; 15887 } 15888 dmabuf->buffer_tag = x; 15889 list_add_tail(&dmabuf->list, &queue->page_list); 15890 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15891 queue->q_pgs[x] = dmabuf->virt; 15892 } 15893 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15894 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15895 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15896 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15897 15898 /* notify_interval will be set during q creation */ 15899 15900 return queue; 15901 out_fail: 15902 lpfc_sli4_queue_free(queue); 15903 return NULL; 15904 } 15905 15906 /** 15907 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15908 * @phba: HBA structure that indicates port to create a queue on. 15909 * @pci_barset: PCI BAR set flag. 15910 * 15911 * This function shall perform iomap of the specified PCI BAR address to host 15912 * memory address if not already done so and return it. The returned host 15913 * memory address can be NULL. 15914 */ 15915 static void __iomem * 15916 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15917 { 15918 if (!phba->pcidev) 15919 return NULL; 15920 15921 switch (pci_barset) { 15922 case WQ_PCI_BAR_0_AND_1: 15923 return phba->pci_bar0_memmap_p; 15924 case WQ_PCI_BAR_2_AND_3: 15925 return phba->pci_bar2_memmap_p; 15926 case WQ_PCI_BAR_4_AND_5: 15927 return phba->pci_bar4_memmap_p; 15928 default: 15929 break; 15930 } 15931 return NULL; 15932 } 15933 15934 /** 15935 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15936 * @phba: HBA structure that EQs are on. 15937 * @startq: The starting EQ index to modify 15938 * @numq: The number of EQs (consecutive indexes) to modify 15939 * @usdelay: amount of delay 15940 * 15941 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15942 * is set either by writing to a register (if supported by the SLI Port) 15943 * or by mailbox command. The mailbox command allows several EQs to be 15944 * updated at once. 15945 * 15946 * The @phba struct is used to send a mailbox command to HBA. The @startq 15947 * is used to get the starting EQ index to change. The @numq value is 15948 * used to specify how many consecutive EQ indexes, starting at EQ index, 15949 * are to be changed. This function is asynchronous and will wait for any 15950 * mailbox commands to finish before returning. 15951 * 15952 * On success this function will return a zero. If unable to allocate 15953 * enough memory this function will return -ENOMEM. If a mailbox command 15954 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15955 * have had their delay multipler changed. 15956 **/ 15957 void 15958 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15959 uint32_t numq, uint32_t usdelay) 15960 { 15961 struct lpfc_mbx_modify_eq_delay *eq_delay; 15962 LPFC_MBOXQ_t *mbox; 15963 struct lpfc_queue *eq; 15964 int cnt = 0, rc, length; 15965 uint32_t shdr_status, shdr_add_status; 15966 uint32_t dmult; 15967 int qidx; 15968 union lpfc_sli4_cfg_shdr *shdr; 15969 15970 if (startq >= phba->cfg_irq_chann) 15971 return; 15972 15973 if (usdelay > 0xFFFF) { 15974 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15975 "6429 usdelay %d too large. Scaled down to " 15976 "0xFFFF.\n", usdelay); 15977 usdelay = 0xFFFF; 15978 } 15979 15980 /* set values by EQ_DELAY register if supported */ 15981 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15982 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15983 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15984 if (!eq) 15985 continue; 15986 15987 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15988 15989 if (++cnt >= numq) 15990 break; 15991 } 15992 return; 15993 } 15994 15995 /* Otherwise, set values by mailbox cmd */ 15996 15997 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15998 if (!mbox) { 15999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16000 "6428 Failed allocating mailbox cmd buffer." 16001 " EQ delay was not set.\n"); 16002 return; 16003 } 16004 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 16005 sizeof(struct lpfc_sli4_cfg_mhdr)); 16006 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16007 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 16008 length, LPFC_SLI4_MBX_EMBED); 16009 eq_delay = &mbox->u.mqe.un.eq_delay; 16010 16011 /* Calculate delay multiper from maximum interrupt per second */ 16012 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 16013 if (dmult) 16014 dmult--; 16015 if (dmult > LPFC_DMULT_MAX) 16016 dmult = LPFC_DMULT_MAX; 16017 16018 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 16019 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 16020 if (!eq) 16021 continue; 16022 eq->q_mode = usdelay; 16023 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 16024 eq_delay->u.request.eq[cnt].phase = 0; 16025 eq_delay->u.request.eq[cnt].delay_multi = dmult; 16026 16027 if (++cnt >= numq) 16028 break; 16029 } 16030 eq_delay->u.request.num_eq = cnt; 16031 16032 mbox->vport = phba->pport; 16033 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16034 mbox->ctx_ndlp = NULL; 16035 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16036 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 16037 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16038 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16039 if (shdr_status || shdr_add_status || rc) { 16040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16041 "2512 MODIFY_EQ_DELAY mailbox failed with " 16042 "status x%x add_status x%x, mbx status x%x\n", 16043 shdr_status, shdr_add_status, rc); 16044 } 16045 mempool_free(mbox, phba->mbox_mem_pool); 16046 return; 16047 } 16048 16049 /** 16050 * lpfc_eq_create - Create an Event Queue on the HBA 16051 * @phba: HBA structure that indicates port to create a queue on. 16052 * @eq: The queue structure to use to create the event queue. 16053 * @imax: The maximum interrupt per second limit. 16054 * 16055 * This function creates an event queue, as detailed in @eq, on a port, 16056 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16057 * 16058 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16059 * is used to get the entry count and entry size that are necessary to 16060 * determine the number of pages to allocate and use for this queue. This 16061 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16062 * event queue. This function is asynchronous and will wait for the mailbox 16063 * command to finish before continuing. 16064 * 16065 * On success this function will return a zero. If unable to allocate enough 16066 * memory this function will return -ENOMEM. If the queue create mailbox command 16067 * fails this function will return -ENXIO. 16068 **/ 16069 int 16070 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16071 { 16072 struct lpfc_mbx_eq_create *eq_create; 16073 LPFC_MBOXQ_t *mbox; 16074 int rc, length, status = 0; 16075 struct lpfc_dmabuf *dmabuf; 16076 uint32_t shdr_status, shdr_add_status; 16077 union lpfc_sli4_cfg_shdr *shdr; 16078 uint16_t dmult; 16079 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16080 16081 /* sanity check on queue memory */ 16082 if (!eq) 16083 return -ENODEV; 16084 if (!phba->sli4_hba.pc_sli4_params.supported) 16085 hw_page_size = SLI4_PAGE_SIZE; 16086 16087 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16088 if (!mbox) 16089 return -ENOMEM; 16090 length = (sizeof(struct lpfc_mbx_eq_create) - 16091 sizeof(struct lpfc_sli4_cfg_mhdr)); 16092 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16093 LPFC_MBOX_OPCODE_EQ_CREATE, 16094 length, LPFC_SLI4_MBX_EMBED); 16095 eq_create = &mbox->u.mqe.un.eq_create; 16096 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16097 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16098 eq->page_count); 16099 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16100 LPFC_EQE_SIZE); 16101 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16102 16103 /* Use version 2 of CREATE_EQ if eqav is set */ 16104 if (phba->sli4_hba.pc_sli4_params.eqav) { 16105 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16106 LPFC_Q_CREATE_VERSION_2); 16107 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16108 phba->sli4_hba.pc_sli4_params.eqav); 16109 } 16110 16111 /* don't setup delay multiplier using EQ_CREATE */ 16112 dmult = 0; 16113 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16114 dmult); 16115 switch (eq->entry_count) { 16116 default: 16117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16118 "0360 Unsupported EQ count. (%d)\n", 16119 eq->entry_count); 16120 if (eq->entry_count < 256) { 16121 status = -EINVAL; 16122 goto out; 16123 } 16124 fallthrough; /* otherwise default to smallest count */ 16125 case 256: 16126 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16127 LPFC_EQ_CNT_256); 16128 break; 16129 case 512: 16130 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16131 LPFC_EQ_CNT_512); 16132 break; 16133 case 1024: 16134 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16135 LPFC_EQ_CNT_1024); 16136 break; 16137 case 2048: 16138 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16139 LPFC_EQ_CNT_2048); 16140 break; 16141 case 4096: 16142 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16143 LPFC_EQ_CNT_4096); 16144 break; 16145 } 16146 list_for_each_entry(dmabuf, &eq->page_list, list) { 16147 memset(dmabuf->virt, 0, hw_page_size); 16148 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16149 putPaddrLow(dmabuf->phys); 16150 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16151 putPaddrHigh(dmabuf->phys); 16152 } 16153 mbox->vport = phba->pport; 16154 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16155 mbox->ctx_buf = NULL; 16156 mbox->ctx_ndlp = NULL; 16157 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16158 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16159 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16160 if (shdr_status || shdr_add_status || rc) { 16161 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16162 "2500 EQ_CREATE mailbox failed with " 16163 "status x%x add_status x%x, mbx status x%x\n", 16164 shdr_status, shdr_add_status, rc); 16165 status = -ENXIO; 16166 } 16167 eq->type = LPFC_EQ; 16168 eq->subtype = LPFC_NONE; 16169 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16170 if (eq->queue_id == 0xFFFF) 16171 status = -ENXIO; 16172 eq->host_index = 0; 16173 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16174 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16175 out: 16176 mempool_free(mbox, phba->mbox_mem_pool); 16177 return status; 16178 } 16179 16180 /** 16181 * lpfc_sli4_hba_intr_handler_th - SLI4 HBA threaded interrupt handler 16182 * @irq: Interrupt number. 16183 * @dev_id: The device context pointer. 16184 * 16185 * This routine is a mirror of lpfc_sli4_hba_intr_handler, but executed within 16186 * threaded irq context. 16187 * 16188 * Returns 16189 * IRQ_HANDLED - interrupt is handled 16190 * IRQ_NONE - otherwise 16191 **/ 16192 irqreturn_t lpfc_sli4_hba_intr_handler_th(int irq, void *dev_id) 16193 { 16194 struct lpfc_hba *phba; 16195 struct lpfc_hba_eq_hdl *hba_eq_hdl; 16196 struct lpfc_queue *fpeq; 16197 int ecount = 0; 16198 int hba_eqidx; 16199 struct lpfc_eq_intr_info *eqi; 16200 16201 /* Get the driver's phba structure from the dev_id */ 16202 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 16203 phba = hba_eq_hdl->phba; 16204 hba_eqidx = hba_eq_hdl->idx; 16205 16206 if (unlikely(!phba)) 16207 return IRQ_NONE; 16208 if (unlikely(!phba->sli4_hba.hdwq)) 16209 return IRQ_NONE; 16210 16211 /* Get to the EQ struct associated with this vector */ 16212 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 16213 if (unlikely(!fpeq)) 16214 return IRQ_NONE; 16215 16216 eqi = per_cpu_ptr(phba->sli4_hba.eq_info, raw_smp_processor_id()); 16217 eqi->icnt++; 16218 16219 fpeq->last_cpu = raw_smp_processor_id(); 16220 16221 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 16222 fpeq->q_flag & HBA_EQ_DELAY_CHK && 16223 phba->cfg_auto_imax && 16224 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 16225 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 16226 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 16227 16228 /* process and rearm the EQ */ 16229 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM, 16230 LPFC_THREADED_IRQ); 16231 16232 if (unlikely(ecount == 0)) { 16233 fpeq->EQ_no_entry++; 16234 if (phba->intr_type == MSIX) 16235 /* MSI-X treated interrupt served as no EQ share INT */ 16236 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16237 "3358 MSI-X interrupt with no EQE\n"); 16238 else 16239 /* Non MSI-X treated on interrupt as EQ share INT */ 16240 return IRQ_NONE; 16241 } 16242 return IRQ_HANDLED; 16243 } 16244 16245 /** 16246 * lpfc_cq_create - Create a Completion Queue on the HBA 16247 * @phba: HBA structure that indicates port to create a queue on. 16248 * @cq: The queue structure to use to create the completion queue. 16249 * @eq: The event queue to bind this completion queue to. 16250 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16251 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16252 * 16253 * This function creates a completion queue, as detailed in @wq, on a port, 16254 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16255 * 16256 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16257 * is used to get the entry count and entry size that are necessary to 16258 * determine the number of pages to allocate and use for this queue. The @eq 16259 * is used to indicate which event queue to bind this completion queue to. This 16260 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16261 * completion queue. This function is asynchronous and will wait for the mailbox 16262 * command to finish before continuing. 16263 * 16264 * On success this function will return a zero. If unable to allocate enough 16265 * memory this function will return -ENOMEM. If the queue create mailbox command 16266 * fails this function will return -ENXIO. 16267 **/ 16268 int 16269 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16270 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16271 { 16272 struct lpfc_mbx_cq_create *cq_create; 16273 struct lpfc_dmabuf *dmabuf; 16274 LPFC_MBOXQ_t *mbox; 16275 int rc, length, status = 0; 16276 uint32_t shdr_status, shdr_add_status; 16277 union lpfc_sli4_cfg_shdr *shdr; 16278 16279 /* sanity check on queue memory */ 16280 if (!cq || !eq) 16281 return -ENODEV; 16282 16283 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16284 if (!mbox) 16285 return -ENOMEM; 16286 length = (sizeof(struct lpfc_mbx_cq_create) - 16287 sizeof(struct lpfc_sli4_cfg_mhdr)); 16288 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16289 LPFC_MBOX_OPCODE_CQ_CREATE, 16290 length, LPFC_SLI4_MBX_EMBED); 16291 cq_create = &mbox->u.mqe.un.cq_create; 16292 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16293 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16294 cq->page_count); 16295 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16296 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16297 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16298 phba->sli4_hba.pc_sli4_params.cqv); 16299 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16300 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16301 (cq->page_size / SLI4_PAGE_SIZE)); 16302 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16303 eq->queue_id); 16304 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16305 phba->sli4_hba.pc_sli4_params.cqav); 16306 } else { 16307 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16308 eq->queue_id); 16309 } 16310 switch (cq->entry_count) { 16311 case 2048: 16312 case 4096: 16313 if (phba->sli4_hba.pc_sli4_params.cqv == 16314 LPFC_Q_CREATE_VERSION_2) { 16315 cq_create->u.request.context.lpfc_cq_context_count = 16316 cq->entry_count; 16317 bf_set(lpfc_cq_context_count, 16318 &cq_create->u.request.context, 16319 LPFC_CQ_CNT_WORD7); 16320 break; 16321 } 16322 fallthrough; 16323 default: 16324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16325 "0361 Unsupported CQ count: " 16326 "entry cnt %d sz %d pg cnt %d\n", 16327 cq->entry_count, cq->entry_size, 16328 cq->page_count); 16329 if (cq->entry_count < 256) { 16330 status = -EINVAL; 16331 goto out; 16332 } 16333 fallthrough; /* otherwise default to smallest count */ 16334 case 256: 16335 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16336 LPFC_CQ_CNT_256); 16337 break; 16338 case 512: 16339 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16340 LPFC_CQ_CNT_512); 16341 break; 16342 case 1024: 16343 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16344 LPFC_CQ_CNT_1024); 16345 break; 16346 } 16347 list_for_each_entry(dmabuf, &cq->page_list, list) { 16348 memset(dmabuf->virt, 0, cq->page_size); 16349 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16350 putPaddrLow(dmabuf->phys); 16351 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16352 putPaddrHigh(dmabuf->phys); 16353 } 16354 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16355 16356 /* The IOCTL status is embedded in the mailbox subheader. */ 16357 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16358 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16359 if (shdr_status || shdr_add_status || rc) { 16360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16361 "2501 CQ_CREATE mailbox failed with " 16362 "status x%x add_status x%x, mbx status x%x\n", 16363 shdr_status, shdr_add_status, rc); 16364 status = -ENXIO; 16365 goto out; 16366 } 16367 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16368 if (cq->queue_id == 0xFFFF) { 16369 status = -ENXIO; 16370 goto out; 16371 } 16372 /* link the cq onto the parent eq child list */ 16373 list_add_tail(&cq->list, &eq->child_list); 16374 /* Set up completion queue's type and subtype */ 16375 cq->type = type; 16376 cq->subtype = subtype; 16377 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16378 cq->assoc_qid = eq->queue_id; 16379 cq->assoc_qp = eq; 16380 cq->host_index = 0; 16381 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16382 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16383 16384 if (cq->queue_id > phba->sli4_hba.cq_max) 16385 phba->sli4_hba.cq_max = cq->queue_id; 16386 out: 16387 mempool_free(mbox, phba->mbox_mem_pool); 16388 return status; 16389 } 16390 16391 /** 16392 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16393 * @phba: HBA structure that indicates port to create a queue on. 16394 * @cqp: The queue structure array to use to create the completion queues. 16395 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16396 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16397 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16398 * 16399 * This function creates a set of completion queue, s to support MRQ 16400 * as detailed in @cqp, on a port, 16401 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16402 * 16403 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16404 * is used to get the entry count and entry size that are necessary to 16405 * determine the number of pages to allocate and use for this queue. The @eq 16406 * is used to indicate which event queue to bind this completion queue to. This 16407 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16408 * completion queue. This function is asynchronous and will wait for the mailbox 16409 * command to finish before continuing. 16410 * 16411 * On success this function will return a zero. If unable to allocate enough 16412 * memory this function will return -ENOMEM. If the queue create mailbox command 16413 * fails this function will return -ENXIO. 16414 **/ 16415 int 16416 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16417 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16418 uint32_t subtype) 16419 { 16420 struct lpfc_queue *cq; 16421 struct lpfc_queue *eq; 16422 struct lpfc_mbx_cq_create_set *cq_set; 16423 struct lpfc_dmabuf *dmabuf; 16424 LPFC_MBOXQ_t *mbox; 16425 int rc, length, alloclen, status = 0; 16426 int cnt, idx, numcq, page_idx = 0; 16427 uint32_t shdr_status, shdr_add_status; 16428 union lpfc_sli4_cfg_shdr *shdr; 16429 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16430 16431 /* sanity check on queue memory */ 16432 numcq = phba->cfg_nvmet_mrq; 16433 if (!cqp || !hdwq || !numcq) 16434 return -ENODEV; 16435 16436 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16437 if (!mbox) 16438 return -ENOMEM; 16439 16440 length = sizeof(struct lpfc_mbx_cq_create_set); 16441 length += ((numcq * cqp[0]->page_count) * 16442 sizeof(struct dma_address)); 16443 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16444 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16445 LPFC_SLI4_MBX_NEMBED); 16446 if (alloclen < length) { 16447 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16448 "3098 Allocated DMA memory size (%d) is " 16449 "less than the requested DMA memory size " 16450 "(%d)\n", alloclen, length); 16451 status = -ENOMEM; 16452 goto out; 16453 } 16454 cq_set = mbox->sge_array->addr[0]; 16455 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16456 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16457 16458 for (idx = 0; idx < numcq; idx++) { 16459 cq = cqp[idx]; 16460 eq = hdwq[idx].hba_eq; 16461 if (!cq || !eq) { 16462 status = -ENOMEM; 16463 goto out; 16464 } 16465 if (!phba->sli4_hba.pc_sli4_params.supported) 16466 hw_page_size = cq->page_size; 16467 16468 switch (idx) { 16469 case 0: 16470 bf_set(lpfc_mbx_cq_create_set_page_size, 16471 &cq_set->u.request, 16472 (hw_page_size / SLI4_PAGE_SIZE)); 16473 bf_set(lpfc_mbx_cq_create_set_num_pages, 16474 &cq_set->u.request, cq->page_count); 16475 bf_set(lpfc_mbx_cq_create_set_evt, 16476 &cq_set->u.request, 1); 16477 bf_set(lpfc_mbx_cq_create_set_valid, 16478 &cq_set->u.request, 1); 16479 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16480 &cq_set->u.request, 0); 16481 bf_set(lpfc_mbx_cq_create_set_num_cq, 16482 &cq_set->u.request, numcq); 16483 bf_set(lpfc_mbx_cq_create_set_autovalid, 16484 &cq_set->u.request, 16485 phba->sli4_hba.pc_sli4_params.cqav); 16486 switch (cq->entry_count) { 16487 case 2048: 16488 case 4096: 16489 if (phba->sli4_hba.pc_sli4_params.cqv == 16490 LPFC_Q_CREATE_VERSION_2) { 16491 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16492 &cq_set->u.request, 16493 cq->entry_count); 16494 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16495 &cq_set->u.request, 16496 LPFC_CQ_CNT_WORD7); 16497 break; 16498 } 16499 fallthrough; 16500 default: 16501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16502 "3118 Bad CQ count. (%d)\n", 16503 cq->entry_count); 16504 if (cq->entry_count < 256) { 16505 status = -EINVAL; 16506 goto out; 16507 } 16508 fallthrough; /* otherwise default to smallest */ 16509 case 256: 16510 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16511 &cq_set->u.request, LPFC_CQ_CNT_256); 16512 break; 16513 case 512: 16514 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16515 &cq_set->u.request, LPFC_CQ_CNT_512); 16516 break; 16517 case 1024: 16518 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16519 &cq_set->u.request, LPFC_CQ_CNT_1024); 16520 break; 16521 } 16522 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16523 &cq_set->u.request, eq->queue_id); 16524 break; 16525 case 1: 16526 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16527 &cq_set->u.request, eq->queue_id); 16528 break; 16529 case 2: 16530 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16531 &cq_set->u.request, eq->queue_id); 16532 break; 16533 case 3: 16534 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16535 &cq_set->u.request, eq->queue_id); 16536 break; 16537 case 4: 16538 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16539 &cq_set->u.request, eq->queue_id); 16540 break; 16541 case 5: 16542 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16543 &cq_set->u.request, eq->queue_id); 16544 break; 16545 case 6: 16546 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16547 &cq_set->u.request, eq->queue_id); 16548 break; 16549 case 7: 16550 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16551 &cq_set->u.request, eq->queue_id); 16552 break; 16553 case 8: 16554 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16555 &cq_set->u.request, eq->queue_id); 16556 break; 16557 case 9: 16558 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16559 &cq_set->u.request, eq->queue_id); 16560 break; 16561 case 10: 16562 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16563 &cq_set->u.request, eq->queue_id); 16564 break; 16565 case 11: 16566 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16567 &cq_set->u.request, eq->queue_id); 16568 break; 16569 case 12: 16570 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16571 &cq_set->u.request, eq->queue_id); 16572 break; 16573 case 13: 16574 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16575 &cq_set->u.request, eq->queue_id); 16576 break; 16577 case 14: 16578 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16579 &cq_set->u.request, eq->queue_id); 16580 break; 16581 case 15: 16582 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16583 &cq_set->u.request, eq->queue_id); 16584 break; 16585 } 16586 16587 /* link the cq onto the parent eq child list */ 16588 list_add_tail(&cq->list, &eq->child_list); 16589 /* Set up completion queue's type and subtype */ 16590 cq->type = type; 16591 cq->subtype = subtype; 16592 cq->assoc_qid = eq->queue_id; 16593 cq->assoc_qp = eq; 16594 cq->host_index = 0; 16595 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16596 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16597 cq->entry_count); 16598 cq->chann = idx; 16599 16600 rc = 0; 16601 list_for_each_entry(dmabuf, &cq->page_list, list) { 16602 memset(dmabuf->virt, 0, hw_page_size); 16603 cnt = page_idx + dmabuf->buffer_tag; 16604 cq_set->u.request.page[cnt].addr_lo = 16605 putPaddrLow(dmabuf->phys); 16606 cq_set->u.request.page[cnt].addr_hi = 16607 putPaddrHigh(dmabuf->phys); 16608 rc++; 16609 } 16610 page_idx += rc; 16611 } 16612 16613 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16614 16615 /* The IOCTL status is embedded in the mailbox subheader. */ 16616 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16617 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16618 if (shdr_status || shdr_add_status || rc) { 16619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16620 "3119 CQ_CREATE_SET mailbox failed with " 16621 "status x%x add_status x%x, mbx status x%x\n", 16622 shdr_status, shdr_add_status, rc); 16623 status = -ENXIO; 16624 goto out; 16625 } 16626 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16627 if (rc == 0xFFFF) { 16628 status = -ENXIO; 16629 goto out; 16630 } 16631 16632 for (idx = 0; idx < numcq; idx++) { 16633 cq = cqp[idx]; 16634 cq->queue_id = rc + idx; 16635 if (cq->queue_id > phba->sli4_hba.cq_max) 16636 phba->sli4_hba.cq_max = cq->queue_id; 16637 } 16638 16639 out: 16640 lpfc_sli4_mbox_cmd_free(phba, mbox); 16641 return status; 16642 } 16643 16644 /** 16645 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16646 * @phba: HBA structure that indicates port to create a queue on. 16647 * @mq: The queue structure to use to create the mailbox queue. 16648 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16649 * @cq: The completion queue to associate with this cq. 16650 * 16651 * This function provides failback (fb) functionality when the 16652 * mq_create_ext fails on older FW generations. It's purpose is identical 16653 * to mq_create_ext otherwise. 16654 * 16655 * This routine cannot fail as all attributes were previously accessed and 16656 * initialized in mq_create_ext. 16657 **/ 16658 static void 16659 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16660 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16661 { 16662 struct lpfc_mbx_mq_create *mq_create; 16663 struct lpfc_dmabuf *dmabuf; 16664 int length; 16665 16666 length = (sizeof(struct lpfc_mbx_mq_create) - 16667 sizeof(struct lpfc_sli4_cfg_mhdr)); 16668 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16669 LPFC_MBOX_OPCODE_MQ_CREATE, 16670 length, LPFC_SLI4_MBX_EMBED); 16671 mq_create = &mbox->u.mqe.un.mq_create; 16672 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16673 mq->page_count); 16674 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16675 cq->queue_id); 16676 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16677 switch (mq->entry_count) { 16678 case 16: 16679 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16680 LPFC_MQ_RING_SIZE_16); 16681 break; 16682 case 32: 16683 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16684 LPFC_MQ_RING_SIZE_32); 16685 break; 16686 case 64: 16687 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16688 LPFC_MQ_RING_SIZE_64); 16689 break; 16690 case 128: 16691 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16692 LPFC_MQ_RING_SIZE_128); 16693 break; 16694 } 16695 list_for_each_entry(dmabuf, &mq->page_list, list) { 16696 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16697 putPaddrLow(dmabuf->phys); 16698 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16699 putPaddrHigh(dmabuf->phys); 16700 } 16701 } 16702 16703 /** 16704 * lpfc_mq_create - Create a mailbox Queue on the HBA 16705 * @phba: HBA structure that indicates port to create a queue on. 16706 * @mq: The queue structure to use to create the mailbox queue. 16707 * @cq: The completion queue to associate with this cq. 16708 * @subtype: The queue's subtype. 16709 * 16710 * This function creates a mailbox queue, as detailed in @mq, on a port, 16711 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16712 * 16713 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16714 * is used to get the entry count and entry size that are necessary to 16715 * determine the number of pages to allocate and use for this queue. This 16716 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16717 * mailbox queue. This function is asynchronous and will wait for the mailbox 16718 * command to finish before continuing. 16719 * 16720 * On success this function will return a zero. If unable to allocate enough 16721 * memory this function will return -ENOMEM. If the queue create mailbox command 16722 * fails this function will return -ENXIO. 16723 **/ 16724 int32_t 16725 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16726 struct lpfc_queue *cq, uint32_t subtype) 16727 { 16728 struct lpfc_mbx_mq_create *mq_create; 16729 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16730 struct lpfc_dmabuf *dmabuf; 16731 LPFC_MBOXQ_t *mbox; 16732 int rc, length, status = 0; 16733 uint32_t shdr_status, shdr_add_status; 16734 union lpfc_sli4_cfg_shdr *shdr; 16735 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16736 16737 /* sanity check on queue memory */ 16738 if (!mq || !cq) 16739 return -ENODEV; 16740 if (!phba->sli4_hba.pc_sli4_params.supported) 16741 hw_page_size = SLI4_PAGE_SIZE; 16742 16743 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16744 if (!mbox) 16745 return -ENOMEM; 16746 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16747 sizeof(struct lpfc_sli4_cfg_mhdr)); 16748 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16749 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16750 length, LPFC_SLI4_MBX_EMBED); 16751 16752 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16753 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16754 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16755 &mq_create_ext->u.request, mq->page_count); 16756 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16757 &mq_create_ext->u.request, 1); 16758 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16759 &mq_create_ext->u.request, 1); 16760 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16761 &mq_create_ext->u.request, 1); 16762 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16763 &mq_create_ext->u.request, 1); 16764 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16765 &mq_create_ext->u.request, 1); 16766 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16767 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16768 phba->sli4_hba.pc_sli4_params.mqv); 16769 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16770 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16771 cq->queue_id); 16772 else 16773 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16774 cq->queue_id); 16775 switch (mq->entry_count) { 16776 default: 16777 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16778 "0362 Unsupported MQ count. (%d)\n", 16779 mq->entry_count); 16780 if (mq->entry_count < 16) { 16781 status = -EINVAL; 16782 goto out; 16783 } 16784 fallthrough; /* otherwise default to smallest count */ 16785 case 16: 16786 bf_set(lpfc_mq_context_ring_size, 16787 &mq_create_ext->u.request.context, 16788 LPFC_MQ_RING_SIZE_16); 16789 break; 16790 case 32: 16791 bf_set(lpfc_mq_context_ring_size, 16792 &mq_create_ext->u.request.context, 16793 LPFC_MQ_RING_SIZE_32); 16794 break; 16795 case 64: 16796 bf_set(lpfc_mq_context_ring_size, 16797 &mq_create_ext->u.request.context, 16798 LPFC_MQ_RING_SIZE_64); 16799 break; 16800 case 128: 16801 bf_set(lpfc_mq_context_ring_size, 16802 &mq_create_ext->u.request.context, 16803 LPFC_MQ_RING_SIZE_128); 16804 break; 16805 } 16806 list_for_each_entry(dmabuf, &mq->page_list, list) { 16807 memset(dmabuf->virt, 0, hw_page_size); 16808 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16809 putPaddrLow(dmabuf->phys); 16810 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16811 putPaddrHigh(dmabuf->phys); 16812 } 16813 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16814 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16815 &mq_create_ext->u.response); 16816 if (rc != MBX_SUCCESS) { 16817 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16818 "2795 MQ_CREATE_EXT failed with " 16819 "status x%x. Failback to MQ_CREATE.\n", 16820 rc); 16821 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16822 mq_create = &mbox->u.mqe.un.mq_create; 16823 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16824 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16825 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16826 &mq_create->u.response); 16827 } 16828 16829 /* The IOCTL status is embedded in the mailbox subheader. */ 16830 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16831 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16832 if (shdr_status || shdr_add_status || rc) { 16833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16834 "2502 MQ_CREATE mailbox failed with " 16835 "status x%x add_status x%x, mbx status x%x\n", 16836 shdr_status, shdr_add_status, rc); 16837 status = -ENXIO; 16838 goto out; 16839 } 16840 if (mq->queue_id == 0xFFFF) { 16841 status = -ENXIO; 16842 goto out; 16843 } 16844 mq->type = LPFC_MQ; 16845 mq->assoc_qid = cq->queue_id; 16846 mq->subtype = subtype; 16847 mq->host_index = 0; 16848 mq->hba_index = 0; 16849 16850 /* link the mq onto the parent cq child list */ 16851 list_add_tail(&mq->list, &cq->child_list); 16852 out: 16853 mempool_free(mbox, phba->mbox_mem_pool); 16854 return status; 16855 } 16856 16857 /** 16858 * lpfc_wq_create - Create a Work Queue on the HBA 16859 * @phba: HBA structure that indicates port to create a queue on. 16860 * @wq: The queue structure to use to create the work queue. 16861 * @cq: The completion queue to bind this work queue to. 16862 * @subtype: The subtype of the work queue indicating its functionality. 16863 * 16864 * This function creates a work queue, as detailed in @wq, on a port, described 16865 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16866 * 16867 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16868 * is used to get the entry count and entry size that are necessary to 16869 * determine the number of pages to allocate and use for this queue. The @cq 16870 * is used to indicate which completion queue to bind this work queue to. This 16871 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16872 * work queue. This function is asynchronous and will wait for the mailbox 16873 * command to finish before continuing. 16874 * 16875 * On success this function will return a zero. If unable to allocate enough 16876 * memory this function will return -ENOMEM. If the queue create mailbox command 16877 * fails this function will return -ENXIO. 16878 **/ 16879 int 16880 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16881 struct lpfc_queue *cq, uint32_t subtype) 16882 { 16883 struct lpfc_mbx_wq_create *wq_create; 16884 struct lpfc_dmabuf *dmabuf; 16885 LPFC_MBOXQ_t *mbox; 16886 int rc, length, status = 0; 16887 uint32_t shdr_status, shdr_add_status; 16888 union lpfc_sli4_cfg_shdr *shdr; 16889 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16890 struct dma_address *page; 16891 void __iomem *bar_memmap_p; 16892 uint32_t db_offset; 16893 uint16_t pci_barset; 16894 uint8_t dpp_barset; 16895 uint32_t dpp_offset; 16896 uint8_t wq_create_version; 16897 #ifdef CONFIG_X86 16898 unsigned long pg_addr; 16899 #endif 16900 16901 /* sanity check on queue memory */ 16902 if (!wq || !cq) 16903 return -ENODEV; 16904 if (!phba->sli4_hba.pc_sli4_params.supported) 16905 hw_page_size = wq->page_size; 16906 16907 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16908 if (!mbox) 16909 return -ENOMEM; 16910 length = (sizeof(struct lpfc_mbx_wq_create) - 16911 sizeof(struct lpfc_sli4_cfg_mhdr)); 16912 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16913 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16914 length, LPFC_SLI4_MBX_EMBED); 16915 wq_create = &mbox->u.mqe.un.wq_create; 16916 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16917 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16918 wq->page_count); 16919 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16920 cq->queue_id); 16921 16922 /* wqv is the earliest version supported, NOT the latest */ 16923 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16924 phba->sli4_hba.pc_sli4_params.wqv); 16925 16926 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16927 (wq->page_size > SLI4_PAGE_SIZE)) 16928 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16929 else 16930 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16931 16932 switch (wq_create_version) { 16933 case LPFC_Q_CREATE_VERSION_1: 16934 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16935 wq->entry_count); 16936 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16937 LPFC_Q_CREATE_VERSION_1); 16938 16939 switch (wq->entry_size) { 16940 default: 16941 case 64: 16942 bf_set(lpfc_mbx_wq_create_wqe_size, 16943 &wq_create->u.request_1, 16944 LPFC_WQ_WQE_SIZE_64); 16945 break; 16946 case 128: 16947 bf_set(lpfc_mbx_wq_create_wqe_size, 16948 &wq_create->u.request_1, 16949 LPFC_WQ_WQE_SIZE_128); 16950 break; 16951 } 16952 /* Request DPP by default */ 16953 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16954 bf_set(lpfc_mbx_wq_create_page_size, 16955 &wq_create->u.request_1, 16956 (wq->page_size / SLI4_PAGE_SIZE)); 16957 page = wq_create->u.request_1.page; 16958 break; 16959 default: 16960 page = wq_create->u.request.page; 16961 break; 16962 } 16963 16964 list_for_each_entry(dmabuf, &wq->page_list, list) { 16965 memset(dmabuf->virt, 0, hw_page_size); 16966 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16967 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16968 } 16969 16970 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16971 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16972 16973 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16974 /* The IOCTL status is embedded in the mailbox subheader. */ 16975 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16976 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16977 if (shdr_status || shdr_add_status || rc) { 16978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16979 "2503 WQ_CREATE mailbox failed with " 16980 "status x%x add_status x%x, mbx status x%x\n", 16981 shdr_status, shdr_add_status, rc); 16982 status = -ENXIO; 16983 goto out; 16984 } 16985 16986 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16987 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16988 &wq_create->u.response); 16989 else 16990 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16991 &wq_create->u.response_1); 16992 16993 if (wq->queue_id == 0xFFFF) { 16994 status = -ENXIO; 16995 goto out; 16996 } 16997 16998 wq->db_format = LPFC_DB_LIST_FORMAT; 16999 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 17000 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17001 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 17002 &wq_create->u.response); 17003 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 17004 (wq->db_format != LPFC_DB_RING_FORMAT)) { 17005 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17006 "3265 WQ[%d] doorbell format " 17007 "not supported: x%x\n", 17008 wq->queue_id, wq->db_format); 17009 status = -EINVAL; 17010 goto out; 17011 } 17012 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 17013 &wq_create->u.response); 17014 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17015 pci_barset); 17016 if (!bar_memmap_p) { 17017 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17018 "3263 WQ[%d] failed to memmap " 17019 "pci barset:x%x\n", 17020 wq->queue_id, pci_barset); 17021 status = -ENOMEM; 17022 goto out; 17023 } 17024 db_offset = wq_create->u.response.doorbell_offset; 17025 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 17026 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 17027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17028 "3252 WQ[%d] doorbell offset " 17029 "not supported: x%x\n", 17030 wq->queue_id, db_offset); 17031 status = -EINVAL; 17032 goto out; 17033 } 17034 wq->db_regaddr = bar_memmap_p + db_offset; 17035 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17036 "3264 WQ[%d]: barset:x%x, offset:x%x, " 17037 "format:x%x\n", wq->queue_id, 17038 pci_barset, db_offset, wq->db_format); 17039 } else 17040 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17041 } else { 17042 /* Check if DPP was honored by the firmware */ 17043 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 17044 &wq_create->u.response_1); 17045 if (wq->dpp_enable) { 17046 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 17047 &wq_create->u.response_1); 17048 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17049 pci_barset); 17050 if (!bar_memmap_p) { 17051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17052 "3267 WQ[%d] failed to memmap " 17053 "pci barset:x%x\n", 17054 wq->queue_id, pci_barset); 17055 status = -ENOMEM; 17056 goto out; 17057 } 17058 db_offset = wq_create->u.response_1.doorbell_offset; 17059 wq->db_regaddr = bar_memmap_p + db_offset; 17060 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 17061 &wq_create->u.response_1); 17062 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 17063 &wq_create->u.response_1); 17064 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 17065 dpp_barset); 17066 if (!bar_memmap_p) { 17067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17068 "3268 WQ[%d] failed to memmap " 17069 "pci barset:x%x\n", 17070 wq->queue_id, dpp_barset); 17071 status = -ENOMEM; 17072 goto out; 17073 } 17074 dpp_offset = wq_create->u.response_1.dpp_offset; 17075 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 17076 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17077 "3271 WQ[%d]: barset:x%x, offset:x%x, " 17078 "dpp_id:x%x dpp_barset:x%x " 17079 "dpp_offset:x%x\n", 17080 wq->queue_id, pci_barset, db_offset, 17081 wq->dpp_id, dpp_barset, dpp_offset); 17082 17083 #ifdef CONFIG_X86 17084 /* Enable combined writes for DPP aperture */ 17085 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 17086 rc = set_memory_wc(pg_addr, 1); 17087 if (rc) { 17088 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17089 "3272 Cannot setup Combined " 17090 "Write on WQ[%d] - disable DPP\n", 17091 wq->queue_id); 17092 phba->cfg_enable_dpp = 0; 17093 } 17094 #else 17095 phba->cfg_enable_dpp = 0; 17096 #endif 17097 } else 17098 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17099 } 17100 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17101 if (wq->pring == NULL) { 17102 status = -ENOMEM; 17103 goto out; 17104 } 17105 wq->type = LPFC_WQ; 17106 wq->assoc_qid = cq->queue_id; 17107 wq->subtype = subtype; 17108 wq->host_index = 0; 17109 wq->hba_index = 0; 17110 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17111 17112 /* link the wq onto the parent cq child list */ 17113 list_add_tail(&wq->list, &cq->child_list); 17114 out: 17115 mempool_free(mbox, phba->mbox_mem_pool); 17116 return status; 17117 } 17118 17119 /** 17120 * lpfc_rq_create - Create a Receive Queue on the HBA 17121 * @phba: HBA structure that indicates port to create a queue on. 17122 * @hrq: The queue structure to use to create the header receive queue. 17123 * @drq: The queue structure to use to create the data receive queue. 17124 * @cq: The completion queue to bind this work queue to. 17125 * @subtype: The subtype of the work queue indicating its functionality. 17126 * 17127 * This function creates a receive buffer queue pair , as detailed in @hrq and 17128 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17129 * to the HBA. 17130 * 17131 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17132 * struct is used to get the entry count that is necessary to determine the 17133 * number of pages to use for this queue. The @cq is used to indicate which 17134 * completion queue to bind received buffers that are posted to these queues to. 17135 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17136 * receive queue pair. This function is asynchronous and will wait for the 17137 * mailbox command to finish before continuing. 17138 * 17139 * On success this function will return a zero. If unable to allocate enough 17140 * memory this function will return -ENOMEM. If the queue create mailbox command 17141 * fails this function will return -ENXIO. 17142 **/ 17143 int 17144 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17145 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17146 { 17147 struct lpfc_mbx_rq_create *rq_create; 17148 struct lpfc_dmabuf *dmabuf; 17149 LPFC_MBOXQ_t *mbox; 17150 int rc, length, status = 0; 17151 uint32_t shdr_status, shdr_add_status; 17152 union lpfc_sli4_cfg_shdr *shdr; 17153 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17154 void __iomem *bar_memmap_p; 17155 uint32_t db_offset; 17156 uint16_t pci_barset; 17157 17158 /* sanity check on queue memory */ 17159 if (!hrq || !drq || !cq) 17160 return -ENODEV; 17161 if (!phba->sli4_hba.pc_sli4_params.supported) 17162 hw_page_size = SLI4_PAGE_SIZE; 17163 17164 if (hrq->entry_count != drq->entry_count) 17165 return -EINVAL; 17166 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17167 if (!mbox) 17168 return -ENOMEM; 17169 length = (sizeof(struct lpfc_mbx_rq_create) - 17170 sizeof(struct lpfc_sli4_cfg_mhdr)); 17171 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17172 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17173 length, LPFC_SLI4_MBX_EMBED); 17174 rq_create = &mbox->u.mqe.un.rq_create; 17175 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17176 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17177 phba->sli4_hba.pc_sli4_params.rqv); 17178 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17179 bf_set(lpfc_rq_context_rqe_count_1, 17180 &rq_create->u.request.context, 17181 hrq->entry_count); 17182 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17183 bf_set(lpfc_rq_context_rqe_size, 17184 &rq_create->u.request.context, 17185 LPFC_RQE_SIZE_8); 17186 bf_set(lpfc_rq_context_page_size, 17187 &rq_create->u.request.context, 17188 LPFC_RQ_PAGE_SIZE_4096); 17189 } else { 17190 switch (hrq->entry_count) { 17191 default: 17192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17193 "2535 Unsupported RQ count. (%d)\n", 17194 hrq->entry_count); 17195 if (hrq->entry_count < 512) { 17196 status = -EINVAL; 17197 goto out; 17198 } 17199 fallthrough; /* otherwise default to smallest count */ 17200 case 512: 17201 bf_set(lpfc_rq_context_rqe_count, 17202 &rq_create->u.request.context, 17203 LPFC_RQ_RING_SIZE_512); 17204 break; 17205 case 1024: 17206 bf_set(lpfc_rq_context_rqe_count, 17207 &rq_create->u.request.context, 17208 LPFC_RQ_RING_SIZE_1024); 17209 break; 17210 case 2048: 17211 bf_set(lpfc_rq_context_rqe_count, 17212 &rq_create->u.request.context, 17213 LPFC_RQ_RING_SIZE_2048); 17214 break; 17215 case 4096: 17216 bf_set(lpfc_rq_context_rqe_count, 17217 &rq_create->u.request.context, 17218 LPFC_RQ_RING_SIZE_4096); 17219 break; 17220 } 17221 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17222 LPFC_HDR_BUF_SIZE); 17223 } 17224 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17225 cq->queue_id); 17226 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17227 hrq->page_count); 17228 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17229 memset(dmabuf->virt, 0, hw_page_size); 17230 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17231 putPaddrLow(dmabuf->phys); 17232 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17233 putPaddrHigh(dmabuf->phys); 17234 } 17235 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17236 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17237 17238 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17239 /* The IOCTL status is embedded in the mailbox subheader. */ 17240 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17241 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17242 if (shdr_status || shdr_add_status || rc) { 17243 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17244 "2504 RQ_CREATE mailbox failed with " 17245 "status x%x add_status x%x, mbx status x%x\n", 17246 shdr_status, shdr_add_status, rc); 17247 status = -ENXIO; 17248 goto out; 17249 } 17250 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17251 if (hrq->queue_id == 0xFFFF) { 17252 status = -ENXIO; 17253 goto out; 17254 } 17255 17256 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17257 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17258 &rq_create->u.response); 17259 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17260 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17262 "3262 RQ [%d] doorbell format not " 17263 "supported: x%x\n", hrq->queue_id, 17264 hrq->db_format); 17265 status = -EINVAL; 17266 goto out; 17267 } 17268 17269 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17270 &rq_create->u.response); 17271 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17272 if (!bar_memmap_p) { 17273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17274 "3269 RQ[%d] failed to memmap pci " 17275 "barset:x%x\n", hrq->queue_id, 17276 pci_barset); 17277 status = -ENOMEM; 17278 goto out; 17279 } 17280 17281 db_offset = rq_create->u.response.doorbell_offset; 17282 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17283 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17284 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17285 "3270 RQ[%d] doorbell offset not " 17286 "supported: x%x\n", hrq->queue_id, 17287 db_offset); 17288 status = -EINVAL; 17289 goto out; 17290 } 17291 hrq->db_regaddr = bar_memmap_p + db_offset; 17292 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17293 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17294 "format:x%x\n", hrq->queue_id, pci_barset, 17295 db_offset, hrq->db_format); 17296 } else { 17297 hrq->db_format = LPFC_DB_RING_FORMAT; 17298 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17299 } 17300 hrq->type = LPFC_HRQ; 17301 hrq->assoc_qid = cq->queue_id; 17302 hrq->subtype = subtype; 17303 hrq->host_index = 0; 17304 hrq->hba_index = 0; 17305 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17306 17307 /* now create the data queue */ 17308 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17309 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17310 length, LPFC_SLI4_MBX_EMBED); 17311 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17312 phba->sli4_hba.pc_sli4_params.rqv); 17313 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17314 bf_set(lpfc_rq_context_rqe_count_1, 17315 &rq_create->u.request.context, hrq->entry_count); 17316 if (subtype == LPFC_NVMET) 17317 rq_create->u.request.context.buffer_size = 17318 LPFC_NVMET_DATA_BUF_SIZE; 17319 else 17320 rq_create->u.request.context.buffer_size = 17321 LPFC_DATA_BUF_SIZE; 17322 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17323 LPFC_RQE_SIZE_8); 17324 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17325 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17326 } else { 17327 switch (drq->entry_count) { 17328 default: 17329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17330 "2536 Unsupported RQ count. (%d)\n", 17331 drq->entry_count); 17332 if (drq->entry_count < 512) { 17333 status = -EINVAL; 17334 goto out; 17335 } 17336 fallthrough; /* otherwise default to smallest count */ 17337 case 512: 17338 bf_set(lpfc_rq_context_rqe_count, 17339 &rq_create->u.request.context, 17340 LPFC_RQ_RING_SIZE_512); 17341 break; 17342 case 1024: 17343 bf_set(lpfc_rq_context_rqe_count, 17344 &rq_create->u.request.context, 17345 LPFC_RQ_RING_SIZE_1024); 17346 break; 17347 case 2048: 17348 bf_set(lpfc_rq_context_rqe_count, 17349 &rq_create->u.request.context, 17350 LPFC_RQ_RING_SIZE_2048); 17351 break; 17352 case 4096: 17353 bf_set(lpfc_rq_context_rqe_count, 17354 &rq_create->u.request.context, 17355 LPFC_RQ_RING_SIZE_4096); 17356 break; 17357 } 17358 if (subtype == LPFC_NVMET) 17359 bf_set(lpfc_rq_context_buf_size, 17360 &rq_create->u.request.context, 17361 LPFC_NVMET_DATA_BUF_SIZE); 17362 else 17363 bf_set(lpfc_rq_context_buf_size, 17364 &rq_create->u.request.context, 17365 LPFC_DATA_BUF_SIZE); 17366 } 17367 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17368 cq->queue_id); 17369 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17370 drq->page_count); 17371 list_for_each_entry(dmabuf, &drq->page_list, list) { 17372 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17373 putPaddrLow(dmabuf->phys); 17374 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17375 putPaddrHigh(dmabuf->phys); 17376 } 17377 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17378 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17379 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17380 /* The IOCTL status is embedded in the mailbox subheader. */ 17381 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17382 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17383 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17384 if (shdr_status || shdr_add_status || rc) { 17385 status = -ENXIO; 17386 goto out; 17387 } 17388 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17389 if (drq->queue_id == 0xFFFF) { 17390 status = -ENXIO; 17391 goto out; 17392 } 17393 drq->type = LPFC_DRQ; 17394 drq->assoc_qid = cq->queue_id; 17395 drq->subtype = subtype; 17396 drq->host_index = 0; 17397 drq->hba_index = 0; 17398 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17399 17400 /* link the header and data RQs onto the parent cq child list */ 17401 list_add_tail(&hrq->list, &cq->child_list); 17402 list_add_tail(&drq->list, &cq->child_list); 17403 17404 out: 17405 mempool_free(mbox, phba->mbox_mem_pool); 17406 return status; 17407 } 17408 17409 /** 17410 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17411 * @phba: HBA structure that indicates port to create a queue on. 17412 * @hrqp: The queue structure array to use to create the header receive queues. 17413 * @drqp: The queue structure array to use to create the data receive queues. 17414 * @cqp: The completion queue array to bind these receive queues to. 17415 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17416 * 17417 * This function creates a receive buffer queue pair , as detailed in @hrq and 17418 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17419 * to the HBA. 17420 * 17421 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17422 * struct is used to get the entry count that is necessary to determine the 17423 * number of pages to use for this queue. The @cq is used to indicate which 17424 * completion queue to bind received buffers that are posted to these queues to. 17425 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17426 * receive queue pair. This function is asynchronous and will wait for the 17427 * mailbox command to finish before continuing. 17428 * 17429 * On success this function will return a zero. If unable to allocate enough 17430 * memory this function will return -ENOMEM. If the queue create mailbox command 17431 * fails this function will return -ENXIO. 17432 **/ 17433 int 17434 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17435 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17436 uint32_t subtype) 17437 { 17438 struct lpfc_queue *hrq, *drq, *cq; 17439 struct lpfc_mbx_rq_create_v2 *rq_create; 17440 struct lpfc_dmabuf *dmabuf; 17441 LPFC_MBOXQ_t *mbox; 17442 int rc, length, alloclen, status = 0; 17443 int cnt, idx, numrq, page_idx = 0; 17444 uint32_t shdr_status, shdr_add_status; 17445 union lpfc_sli4_cfg_shdr *shdr; 17446 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17447 17448 numrq = phba->cfg_nvmet_mrq; 17449 /* sanity check on array memory */ 17450 if (!hrqp || !drqp || !cqp || !numrq) 17451 return -ENODEV; 17452 if (!phba->sli4_hba.pc_sli4_params.supported) 17453 hw_page_size = SLI4_PAGE_SIZE; 17454 17455 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17456 if (!mbox) 17457 return -ENOMEM; 17458 17459 length = sizeof(struct lpfc_mbx_rq_create_v2); 17460 length += ((2 * numrq * hrqp[0]->page_count) * 17461 sizeof(struct dma_address)); 17462 17463 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17464 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17465 LPFC_SLI4_MBX_NEMBED); 17466 if (alloclen < length) { 17467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17468 "3099 Allocated DMA memory size (%d) is " 17469 "less than the requested DMA memory size " 17470 "(%d)\n", alloclen, length); 17471 status = -ENOMEM; 17472 goto out; 17473 } 17474 17475 17476 17477 rq_create = mbox->sge_array->addr[0]; 17478 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17479 17480 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17481 cnt = 0; 17482 17483 for (idx = 0; idx < numrq; idx++) { 17484 hrq = hrqp[idx]; 17485 drq = drqp[idx]; 17486 cq = cqp[idx]; 17487 17488 /* sanity check on queue memory */ 17489 if (!hrq || !drq || !cq) { 17490 status = -ENODEV; 17491 goto out; 17492 } 17493 17494 if (hrq->entry_count != drq->entry_count) { 17495 status = -EINVAL; 17496 goto out; 17497 } 17498 17499 if (idx == 0) { 17500 bf_set(lpfc_mbx_rq_create_num_pages, 17501 &rq_create->u.request, 17502 hrq->page_count); 17503 bf_set(lpfc_mbx_rq_create_rq_cnt, 17504 &rq_create->u.request, (numrq * 2)); 17505 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17506 1); 17507 bf_set(lpfc_rq_context_base_cq, 17508 &rq_create->u.request.context, 17509 cq->queue_id); 17510 bf_set(lpfc_rq_context_data_size, 17511 &rq_create->u.request.context, 17512 LPFC_NVMET_DATA_BUF_SIZE); 17513 bf_set(lpfc_rq_context_hdr_size, 17514 &rq_create->u.request.context, 17515 LPFC_HDR_BUF_SIZE); 17516 bf_set(lpfc_rq_context_rqe_count_1, 17517 &rq_create->u.request.context, 17518 hrq->entry_count); 17519 bf_set(lpfc_rq_context_rqe_size, 17520 &rq_create->u.request.context, 17521 LPFC_RQE_SIZE_8); 17522 bf_set(lpfc_rq_context_page_size, 17523 &rq_create->u.request.context, 17524 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17525 } 17526 rc = 0; 17527 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17528 memset(dmabuf->virt, 0, hw_page_size); 17529 cnt = page_idx + dmabuf->buffer_tag; 17530 rq_create->u.request.page[cnt].addr_lo = 17531 putPaddrLow(dmabuf->phys); 17532 rq_create->u.request.page[cnt].addr_hi = 17533 putPaddrHigh(dmabuf->phys); 17534 rc++; 17535 } 17536 page_idx += rc; 17537 17538 rc = 0; 17539 list_for_each_entry(dmabuf, &drq->page_list, list) { 17540 memset(dmabuf->virt, 0, hw_page_size); 17541 cnt = page_idx + dmabuf->buffer_tag; 17542 rq_create->u.request.page[cnt].addr_lo = 17543 putPaddrLow(dmabuf->phys); 17544 rq_create->u.request.page[cnt].addr_hi = 17545 putPaddrHigh(dmabuf->phys); 17546 rc++; 17547 } 17548 page_idx += rc; 17549 17550 hrq->db_format = LPFC_DB_RING_FORMAT; 17551 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17552 hrq->type = LPFC_HRQ; 17553 hrq->assoc_qid = cq->queue_id; 17554 hrq->subtype = subtype; 17555 hrq->host_index = 0; 17556 hrq->hba_index = 0; 17557 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17558 17559 drq->db_format = LPFC_DB_RING_FORMAT; 17560 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17561 drq->type = LPFC_DRQ; 17562 drq->assoc_qid = cq->queue_id; 17563 drq->subtype = subtype; 17564 drq->host_index = 0; 17565 drq->hba_index = 0; 17566 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17567 17568 list_add_tail(&hrq->list, &cq->child_list); 17569 list_add_tail(&drq->list, &cq->child_list); 17570 } 17571 17572 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17573 /* The IOCTL status is embedded in the mailbox subheader. */ 17574 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17575 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17576 if (shdr_status || shdr_add_status || rc) { 17577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17578 "3120 RQ_CREATE mailbox failed with " 17579 "status x%x add_status x%x, mbx status x%x\n", 17580 shdr_status, shdr_add_status, rc); 17581 status = -ENXIO; 17582 goto out; 17583 } 17584 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17585 if (rc == 0xFFFF) { 17586 status = -ENXIO; 17587 goto out; 17588 } 17589 17590 /* Initialize all RQs with associated queue id */ 17591 for (idx = 0; idx < numrq; idx++) { 17592 hrq = hrqp[idx]; 17593 hrq->queue_id = rc + (2 * idx); 17594 drq = drqp[idx]; 17595 drq->queue_id = rc + (2 * idx) + 1; 17596 } 17597 17598 out: 17599 lpfc_sli4_mbox_cmd_free(phba, mbox); 17600 return status; 17601 } 17602 17603 /** 17604 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17605 * @phba: HBA structure that indicates port to destroy a queue on. 17606 * @eq: The queue structure associated with the queue to destroy. 17607 * 17608 * This function destroys a queue, as detailed in @eq by sending an mailbox 17609 * command, specific to the type of queue, to the HBA. 17610 * 17611 * The @eq struct is used to get the queue ID of the queue to destroy. 17612 * 17613 * On success this function will return a zero. If the queue destroy mailbox 17614 * command fails this function will return -ENXIO. 17615 **/ 17616 int 17617 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17618 { 17619 LPFC_MBOXQ_t *mbox; 17620 int rc, length, status = 0; 17621 uint32_t shdr_status, shdr_add_status; 17622 union lpfc_sli4_cfg_shdr *shdr; 17623 17624 /* sanity check on queue memory */ 17625 if (!eq) 17626 return -ENODEV; 17627 17628 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17629 if (!mbox) 17630 return -ENOMEM; 17631 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17632 sizeof(struct lpfc_sli4_cfg_mhdr)); 17633 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17634 LPFC_MBOX_OPCODE_EQ_DESTROY, 17635 length, LPFC_SLI4_MBX_EMBED); 17636 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17637 eq->queue_id); 17638 mbox->vport = eq->phba->pport; 17639 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17640 17641 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17642 /* The IOCTL status is embedded in the mailbox subheader. */ 17643 shdr = (union lpfc_sli4_cfg_shdr *) 17644 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17645 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17646 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17647 if (shdr_status || shdr_add_status || rc) { 17648 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17649 "2505 EQ_DESTROY mailbox failed with " 17650 "status x%x add_status x%x, mbx status x%x\n", 17651 shdr_status, shdr_add_status, rc); 17652 status = -ENXIO; 17653 } 17654 17655 /* Remove eq from any list */ 17656 list_del_init(&eq->list); 17657 mempool_free(mbox, eq->phba->mbox_mem_pool); 17658 return status; 17659 } 17660 17661 /** 17662 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17663 * @phba: HBA structure that indicates port to destroy a queue on. 17664 * @cq: The queue structure associated with the queue to destroy. 17665 * 17666 * This function destroys a queue, as detailed in @cq by sending an mailbox 17667 * command, specific to the type of queue, to the HBA. 17668 * 17669 * The @cq struct is used to get the queue ID of the queue to destroy. 17670 * 17671 * On success this function will return a zero. If the queue destroy mailbox 17672 * command fails this function will return -ENXIO. 17673 **/ 17674 int 17675 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17676 { 17677 LPFC_MBOXQ_t *mbox; 17678 int rc, length, status = 0; 17679 uint32_t shdr_status, shdr_add_status; 17680 union lpfc_sli4_cfg_shdr *shdr; 17681 17682 /* sanity check on queue memory */ 17683 if (!cq) 17684 return -ENODEV; 17685 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17686 if (!mbox) 17687 return -ENOMEM; 17688 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17689 sizeof(struct lpfc_sli4_cfg_mhdr)); 17690 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17691 LPFC_MBOX_OPCODE_CQ_DESTROY, 17692 length, LPFC_SLI4_MBX_EMBED); 17693 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17694 cq->queue_id); 17695 mbox->vport = cq->phba->pport; 17696 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17697 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17698 /* The IOCTL status is embedded in the mailbox subheader. */ 17699 shdr = (union lpfc_sli4_cfg_shdr *) 17700 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17701 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17702 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17703 if (shdr_status || shdr_add_status || rc) { 17704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17705 "2506 CQ_DESTROY mailbox failed with " 17706 "status x%x add_status x%x, mbx status x%x\n", 17707 shdr_status, shdr_add_status, rc); 17708 status = -ENXIO; 17709 } 17710 /* Remove cq from any list */ 17711 list_del_init(&cq->list); 17712 mempool_free(mbox, cq->phba->mbox_mem_pool); 17713 return status; 17714 } 17715 17716 /** 17717 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17718 * @phba: HBA structure that indicates port to destroy a queue on. 17719 * @mq: The queue structure associated with the queue to destroy. 17720 * 17721 * This function destroys a queue, as detailed in @mq by sending an mailbox 17722 * command, specific to the type of queue, to the HBA. 17723 * 17724 * The @mq struct is used to get the queue ID of the queue to destroy. 17725 * 17726 * On success this function will return a zero. If the queue destroy mailbox 17727 * command fails this function will return -ENXIO. 17728 **/ 17729 int 17730 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17731 { 17732 LPFC_MBOXQ_t *mbox; 17733 int rc, length, status = 0; 17734 uint32_t shdr_status, shdr_add_status; 17735 union lpfc_sli4_cfg_shdr *shdr; 17736 17737 /* sanity check on queue memory */ 17738 if (!mq) 17739 return -ENODEV; 17740 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17741 if (!mbox) 17742 return -ENOMEM; 17743 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17744 sizeof(struct lpfc_sli4_cfg_mhdr)); 17745 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17746 LPFC_MBOX_OPCODE_MQ_DESTROY, 17747 length, LPFC_SLI4_MBX_EMBED); 17748 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17749 mq->queue_id); 17750 mbox->vport = mq->phba->pport; 17751 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17752 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17753 /* The IOCTL status is embedded in the mailbox subheader. */ 17754 shdr = (union lpfc_sli4_cfg_shdr *) 17755 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17756 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17757 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17758 if (shdr_status || shdr_add_status || rc) { 17759 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17760 "2507 MQ_DESTROY mailbox failed with " 17761 "status x%x add_status x%x, mbx status x%x\n", 17762 shdr_status, shdr_add_status, rc); 17763 status = -ENXIO; 17764 } 17765 /* Remove mq from any list */ 17766 list_del_init(&mq->list); 17767 mempool_free(mbox, mq->phba->mbox_mem_pool); 17768 return status; 17769 } 17770 17771 /** 17772 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17773 * @phba: HBA structure that indicates port to destroy a queue on. 17774 * @wq: The queue structure associated with the queue to destroy. 17775 * 17776 * This function destroys a queue, as detailed in @wq by sending an mailbox 17777 * command, specific to the type of queue, to the HBA. 17778 * 17779 * The @wq struct is used to get the queue ID of the queue to destroy. 17780 * 17781 * On success this function will return a zero. If the queue destroy mailbox 17782 * command fails this function will return -ENXIO. 17783 **/ 17784 int 17785 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17786 { 17787 LPFC_MBOXQ_t *mbox; 17788 int rc, length, status = 0; 17789 uint32_t shdr_status, shdr_add_status; 17790 union lpfc_sli4_cfg_shdr *shdr; 17791 17792 /* sanity check on queue memory */ 17793 if (!wq) 17794 return -ENODEV; 17795 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17796 if (!mbox) 17797 return -ENOMEM; 17798 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17799 sizeof(struct lpfc_sli4_cfg_mhdr)); 17800 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17801 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17802 length, LPFC_SLI4_MBX_EMBED); 17803 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17804 wq->queue_id); 17805 mbox->vport = wq->phba->pport; 17806 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17807 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17808 shdr = (union lpfc_sli4_cfg_shdr *) 17809 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17810 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17811 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17812 if (shdr_status || shdr_add_status || rc) { 17813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17814 "2508 WQ_DESTROY mailbox failed with " 17815 "status x%x add_status x%x, mbx status x%x\n", 17816 shdr_status, shdr_add_status, rc); 17817 status = -ENXIO; 17818 } 17819 /* Remove wq from any list */ 17820 list_del_init(&wq->list); 17821 kfree(wq->pring); 17822 wq->pring = NULL; 17823 mempool_free(mbox, wq->phba->mbox_mem_pool); 17824 return status; 17825 } 17826 17827 /** 17828 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17829 * @phba: HBA structure that indicates port to destroy a queue on. 17830 * @hrq: The queue structure associated with the queue to destroy. 17831 * @drq: The queue structure associated with the queue to destroy. 17832 * 17833 * This function destroys a queue, as detailed in @rq by sending an mailbox 17834 * command, specific to the type of queue, to the HBA. 17835 * 17836 * The @rq struct is used to get the queue ID of the queue to destroy. 17837 * 17838 * On success this function will return a zero. If the queue destroy mailbox 17839 * command fails this function will return -ENXIO. 17840 **/ 17841 int 17842 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17843 struct lpfc_queue *drq) 17844 { 17845 LPFC_MBOXQ_t *mbox; 17846 int rc, length, status = 0; 17847 uint32_t shdr_status, shdr_add_status; 17848 union lpfc_sli4_cfg_shdr *shdr; 17849 17850 /* sanity check on queue memory */ 17851 if (!hrq || !drq) 17852 return -ENODEV; 17853 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17854 if (!mbox) 17855 return -ENOMEM; 17856 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17857 sizeof(struct lpfc_sli4_cfg_mhdr)); 17858 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17859 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17860 length, LPFC_SLI4_MBX_EMBED); 17861 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17862 hrq->queue_id); 17863 mbox->vport = hrq->phba->pport; 17864 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17865 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17866 /* The IOCTL status is embedded in the mailbox subheader. */ 17867 shdr = (union lpfc_sli4_cfg_shdr *) 17868 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17869 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17870 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17871 if (shdr_status || shdr_add_status || rc) { 17872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17873 "2509 RQ_DESTROY mailbox failed with " 17874 "status x%x add_status x%x, mbx status x%x\n", 17875 shdr_status, shdr_add_status, rc); 17876 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17877 return -ENXIO; 17878 } 17879 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17880 drq->queue_id); 17881 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17882 shdr = (union lpfc_sli4_cfg_shdr *) 17883 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17884 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17885 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17886 if (shdr_status || shdr_add_status || rc) { 17887 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17888 "2510 RQ_DESTROY mailbox failed with " 17889 "status x%x add_status x%x, mbx status x%x\n", 17890 shdr_status, shdr_add_status, rc); 17891 status = -ENXIO; 17892 } 17893 list_del_init(&hrq->list); 17894 list_del_init(&drq->list); 17895 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17896 return status; 17897 } 17898 17899 /** 17900 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17901 * @phba: The virtual port for which this call being executed. 17902 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17903 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17904 * @xritag: the xritag that ties this io to the SGL pages. 17905 * 17906 * This routine will post the sgl pages for the IO that has the xritag 17907 * that is in the iocbq structure. The xritag is assigned during iocbq 17908 * creation and persists for as long as the driver is loaded. 17909 * if the caller has fewer than 256 scatter gather segments to map then 17910 * pdma_phys_addr1 should be 0. 17911 * If the caller needs to map more than 256 scatter gather segment then 17912 * pdma_phys_addr1 should be a valid physical address. 17913 * physical address for SGLs must be 64 byte aligned. 17914 * If you are going to map 2 SGL's then the first one must have 256 entries 17915 * the second sgl can have between 1 and 256 entries. 17916 * 17917 * Return codes: 17918 * 0 - Success 17919 * -ENXIO, -ENOMEM - Failure 17920 **/ 17921 int 17922 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17923 dma_addr_t pdma_phys_addr0, 17924 dma_addr_t pdma_phys_addr1, 17925 uint16_t xritag) 17926 { 17927 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17928 LPFC_MBOXQ_t *mbox; 17929 int rc; 17930 uint32_t shdr_status, shdr_add_status; 17931 uint32_t mbox_tmo; 17932 union lpfc_sli4_cfg_shdr *shdr; 17933 17934 if (xritag == NO_XRI) { 17935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17936 "0364 Invalid param:\n"); 17937 return -EINVAL; 17938 } 17939 17940 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17941 if (!mbox) 17942 return -ENOMEM; 17943 17944 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17945 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17946 sizeof(struct lpfc_mbx_post_sgl_pages) - 17947 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17948 17949 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17950 &mbox->u.mqe.un.post_sgl_pages; 17951 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17952 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17953 17954 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17955 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17956 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17957 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17958 17959 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17960 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17961 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17962 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17963 if (!phba->sli4_hba.intr_enable) 17964 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17965 else { 17966 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17967 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17968 } 17969 /* The IOCTL status is embedded in the mailbox subheader. */ 17970 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17971 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17972 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17973 if (!phba->sli4_hba.intr_enable) 17974 mempool_free(mbox, phba->mbox_mem_pool); 17975 else if (rc != MBX_TIMEOUT) 17976 mempool_free(mbox, phba->mbox_mem_pool); 17977 if (shdr_status || shdr_add_status || rc) { 17978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17979 "2511 POST_SGL mailbox failed with " 17980 "status x%x add_status x%x, mbx status x%x\n", 17981 shdr_status, shdr_add_status, rc); 17982 } 17983 return 0; 17984 } 17985 17986 /** 17987 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17988 * @phba: pointer to lpfc hba data structure. 17989 * 17990 * This routine is invoked to post rpi header templates to the 17991 * HBA consistent with the SLI-4 interface spec. This routine 17992 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17993 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17994 * 17995 * Returns 17996 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17997 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17998 **/ 17999 static uint16_t 18000 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 18001 { 18002 unsigned long xri; 18003 18004 /* 18005 * Fetch the next logical xri. Because this index is logical, 18006 * the driver starts at 0 each time. 18007 */ 18008 spin_lock_irq(&phba->hbalock); 18009 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 18010 phba->sli4_hba.max_cfg_param.max_xri); 18011 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 18012 spin_unlock_irq(&phba->hbalock); 18013 return NO_XRI; 18014 } else { 18015 set_bit(xri, phba->sli4_hba.xri_bmask); 18016 phba->sli4_hba.max_cfg_param.xri_used++; 18017 } 18018 spin_unlock_irq(&phba->hbalock); 18019 return xri; 18020 } 18021 18022 /** 18023 * __lpfc_sli4_free_xri - Release an xri for reuse. 18024 * @phba: pointer to lpfc hba data structure. 18025 * @xri: xri to release. 18026 * 18027 * This routine is invoked to release an xri to the pool of 18028 * available rpis maintained by the driver. 18029 **/ 18030 static void 18031 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18032 { 18033 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 18034 phba->sli4_hba.max_cfg_param.xri_used--; 18035 } 18036 } 18037 18038 /** 18039 * lpfc_sli4_free_xri - Release an xri for reuse. 18040 * @phba: pointer to lpfc hba data structure. 18041 * @xri: xri to release. 18042 * 18043 * This routine is invoked to release an xri to the pool of 18044 * available rpis maintained by the driver. 18045 **/ 18046 void 18047 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 18048 { 18049 spin_lock_irq(&phba->hbalock); 18050 __lpfc_sli4_free_xri(phba, xri); 18051 spin_unlock_irq(&phba->hbalock); 18052 } 18053 18054 /** 18055 * lpfc_sli4_next_xritag - Get an xritag for the io 18056 * @phba: Pointer to HBA context object. 18057 * 18058 * This function gets an xritag for the iocb. If there is no unused xritag 18059 * it will return 0xffff. 18060 * The function returns the allocated xritag if successful, else returns zero. 18061 * Zero is not a valid xritag. 18062 * The caller is not required to hold any lock. 18063 **/ 18064 uint16_t 18065 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 18066 { 18067 uint16_t xri_index; 18068 18069 xri_index = lpfc_sli4_alloc_xri(phba); 18070 if (xri_index == NO_XRI) 18071 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18072 "2004 Failed to allocate XRI.last XRITAG is %d" 18073 " Max XRI is %d, Used XRI is %d\n", 18074 xri_index, 18075 phba->sli4_hba.max_cfg_param.max_xri, 18076 phba->sli4_hba.max_cfg_param.xri_used); 18077 return xri_index; 18078 } 18079 18080 /** 18081 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 18082 * @phba: pointer to lpfc hba data structure. 18083 * @post_sgl_list: pointer to els sgl entry list. 18084 * @post_cnt: number of els sgl entries on the list. 18085 * 18086 * This routine is invoked to post a block of driver's sgl pages to the 18087 * HBA using non-embedded mailbox command. No Lock is held. This routine 18088 * is only called when the driver is loading and after all IO has been 18089 * stopped. 18090 **/ 18091 static int 18092 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18093 struct list_head *post_sgl_list, 18094 int post_cnt) 18095 { 18096 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18097 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18098 struct sgl_page_pairs *sgl_pg_pairs; 18099 void *viraddr; 18100 LPFC_MBOXQ_t *mbox; 18101 uint32_t reqlen, alloclen, pg_pairs; 18102 uint32_t mbox_tmo; 18103 uint16_t xritag_start = 0; 18104 int rc = 0; 18105 uint32_t shdr_status, shdr_add_status; 18106 union lpfc_sli4_cfg_shdr *shdr; 18107 18108 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18109 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18110 if (reqlen > SLI4_PAGE_SIZE) { 18111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18112 "2559 Block sgl registration required DMA " 18113 "size (%d) great than a page\n", reqlen); 18114 return -ENOMEM; 18115 } 18116 18117 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18118 if (!mbox) 18119 return -ENOMEM; 18120 18121 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18122 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18123 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18124 LPFC_SLI4_MBX_NEMBED); 18125 18126 if (alloclen < reqlen) { 18127 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18128 "0285 Allocated DMA memory size (%d) is " 18129 "less than the requested DMA memory " 18130 "size (%d)\n", alloclen, reqlen); 18131 lpfc_sli4_mbox_cmd_free(phba, mbox); 18132 return -ENOMEM; 18133 } 18134 /* Set up the SGL pages in the non-embedded DMA pages */ 18135 viraddr = mbox->sge_array->addr[0]; 18136 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18137 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18138 18139 pg_pairs = 0; 18140 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18141 /* Set up the sge entry */ 18142 sgl_pg_pairs->sgl_pg0_addr_lo = 18143 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18144 sgl_pg_pairs->sgl_pg0_addr_hi = 18145 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18146 sgl_pg_pairs->sgl_pg1_addr_lo = 18147 cpu_to_le32(putPaddrLow(0)); 18148 sgl_pg_pairs->sgl_pg1_addr_hi = 18149 cpu_to_le32(putPaddrHigh(0)); 18150 18151 /* Keep the first xritag on the list */ 18152 if (pg_pairs == 0) 18153 xritag_start = sglq_entry->sli4_xritag; 18154 sgl_pg_pairs++; 18155 pg_pairs++; 18156 } 18157 18158 /* Complete initialization and perform endian conversion. */ 18159 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18160 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18161 sgl->word0 = cpu_to_le32(sgl->word0); 18162 18163 if (!phba->sli4_hba.intr_enable) 18164 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18165 else { 18166 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18167 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18168 } 18169 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18170 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18171 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18172 if (!phba->sli4_hba.intr_enable) 18173 lpfc_sli4_mbox_cmd_free(phba, mbox); 18174 else if (rc != MBX_TIMEOUT) 18175 lpfc_sli4_mbox_cmd_free(phba, mbox); 18176 if (shdr_status || shdr_add_status || rc) { 18177 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18178 "2513 POST_SGL_BLOCK mailbox command failed " 18179 "status x%x add_status x%x mbx status x%x\n", 18180 shdr_status, shdr_add_status, rc); 18181 rc = -ENXIO; 18182 } 18183 return rc; 18184 } 18185 18186 /** 18187 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18188 * @phba: pointer to lpfc hba data structure. 18189 * @nblist: pointer to nvme buffer list. 18190 * @count: number of scsi buffers on the list. 18191 * 18192 * This routine is invoked to post a block of @count scsi sgl pages from a 18193 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18194 * No Lock is held. 18195 * 18196 **/ 18197 static int 18198 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18199 int count) 18200 { 18201 struct lpfc_io_buf *lpfc_ncmd; 18202 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18203 struct sgl_page_pairs *sgl_pg_pairs; 18204 void *viraddr; 18205 LPFC_MBOXQ_t *mbox; 18206 uint32_t reqlen, alloclen, pg_pairs; 18207 uint32_t mbox_tmo; 18208 uint16_t xritag_start = 0; 18209 int rc = 0; 18210 uint32_t shdr_status, shdr_add_status; 18211 dma_addr_t pdma_phys_bpl1; 18212 union lpfc_sli4_cfg_shdr *shdr; 18213 18214 /* Calculate the requested length of the dma memory */ 18215 reqlen = count * sizeof(struct sgl_page_pairs) + 18216 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18217 if (reqlen > SLI4_PAGE_SIZE) { 18218 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18219 "6118 Block sgl registration required DMA " 18220 "size (%d) great than a page\n", reqlen); 18221 return -ENOMEM; 18222 } 18223 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18224 if (!mbox) { 18225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18226 "6119 Failed to allocate mbox cmd memory\n"); 18227 return -ENOMEM; 18228 } 18229 18230 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18231 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18232 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18233 reqlen, LPFC_SLI4_MBX_NEMBED); 18234 18235 if (alloclen < reqlen) { 18236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18237 "6120 Allocated DMA memory size (%d) is " 18238 "less than the requested DMA memory " 18239 "size (%d)\n", alloclen, reqlen); 18240 lpfc_sli4_mbox_cmd_free(phba, mbox); 18241 return -ENOMEM; 18242 } 18243 18244 /* Get the first SGE entry from the non-embedded DMA memory */ 18245 viraddr = mbox->sge_array->addr[0]; 18246 18247 /* Set up the SGL pages in the non-embedded DMA pages */ 18248 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18249 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18250 18251 pg_pairs = 0; 18252 list_for_each_entry(lpfc_ncmd, nblist, list) { 18253 /* Set up the sge entry */ 18254 sgl_pg_pairs->sgl_pg0_addr_lo = 18255 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18256 sgl_pg_pairs->sgl_pg0_addr_hi = 18257 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18258 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18259 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18260 SGL_PAGE_SIZE; 18261 else 18262 pdma_phys_bpl1 = 0; 18263 sgl_pg_pairs->sgl_pg1_addr_lo = 18264 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18265 sgl_pg_pairs->sgl_pg1_addr_hi = 18266 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18267 /* Keep the first xritag on the list */ 18268 if (pg_pairs == 0) 18269 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18270 sgl_pg_pairs++; 18271 pg_pairs++; 18272 } 18273 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18274 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18275 /* Perform endian conversion if necessary */ 18276 sgl->word0 = cpu_to_le32(sgl->word0); 18277 18278 if (!phba->sli4_hba.intr_enable) { 18279 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18280 } else { 18281 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18282 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18283 } 18284 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18285 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18286 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18287 if (!phba->sli4_hba.intr_enable) 18288 lpfc_sli4_mbox_cmd_free(phba, mbox); 18289 else if (rc != MBX_TIMEOUT) 18290 lpfc_sli4_mbox_cmd_free(phba, mbox); 18291 if (shdr_status || shdr_add_status || rc) { 18292 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18293 "6125 POST_SGL_BLOCK mailbox command failed " 18294 "status x%x add_status x%x mbx status x%x\n", 18295 shdr_status, shdr_add_status, rc); 18296 rc = -ENXIO; 18297 } 18298 return rc; 18299 } 18300 18301 /** 18302 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18303 * @phba: pointer to lpfc hba data structure. 18304 * @post_nblist: pointer to the nvme buffer list. 18305 * @sb_count: number of nvme buffers. 18306 * 18307 * This routine walks a list of nvme buffers that was passed in. It attempts 18308 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18309 * uses the non-embedded SGL block post mailbox commands to post to the port. 18310 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18311 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18312 * must be local list, thus no lock is needed when manipulate the list. 18313 * 18314 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18315 **/ 18316 int 18317 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18318 struct list_head *post_nblist, int sb_count) 18319 { 18320 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18321 int status, sgl_size; 18322 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18323 dma_addr_t pdma_phys_sgl1; 18324 int last_xritag = NO_XRI; 18325 int cur_xritag; 18326 LIST_HEAD(prep_nblist); 18327 LIST_HEAD(blck_nblist); 18328 LIST_HEAD(nvme_nblist); 18329 18330 /* sanity check */ 18331 if (sb_count <= 0) 18332 return -EINVAL; 18333 18334 sgl_size = phba->cfg_sg_dma_buf_size; 18335 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18336 list_del_init(&lpfc_ncmd->list); 18337 block_cnt++; 18338 if ((last_xritag != NO_XRI) && 18339 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18340 /* a hole in xri block, form a sgl posting block */ 18341 list_splice_init(&prep_nblist, &blck_nblist); 18342 post_cnt = block_cnt - 1; 18343 /* prepare list for next posting block */ 18344 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18345 block_cnt = 1; 18346 } else { 18347 /* prepare list for next posting block */ 18348 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18349 /* enough sgls for non-embed sgl mbox command */ 18350 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18351 list_splice_init(&prep_nblist, &blck_nblist); 18352 post_cnt = block_cnt; 18353 block_cnt = 0; 18354 } 18355 } 18356 num_posting++; 18357 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18358 18359 /* end of repost sgl list condition for NVME buffers */ 18360 if (num_posting == sb_count) { 18361 if (post_cnt == 0) { 18362 /* last sgl posting block */ 18363 list_splice_init(&prep_nblist, &blck_nblist); 18364 post_cnt = block_cnt; 18365 } else if (block_cnt == 1) { 18366 /* last single sgl with non-contiguous xri */ 18367 if (sgl_size > SGL_PAGE_SIZE) 18368 pdma_phys_sgl1 = 18369 lpfc_ncmd->dma_phys_sgl + 18370 SGL_PAGE_SIZE; 18371 else 18372 pdma_phys_sgl1 = 0; 18373 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18374 status = lpfc_sli4_post_sgl( 18375 phba, lpfc_ncmd->dma_phys_sgl, 18376 pdma_phys_sgl1, cur_xritag); 18377 if (status) { 18378 /* Post error. Buffer unavailable. */ 18379 lpfc_ncmd->flags |= 18380 LPFC_SBUF_NOT_POSTED; 18381 } else { 18382 /* Post success. Bffer available. */ 18383 lpfc_ncmd->flags &= 18384 ~LPFC_SBUF_NOT_POSTED; 18385 lpfc_ncmd->status = IOSTAT_SUCCESS; 18386 num_posted++; 18387 } 18388 /* success, put on NVME buffer sgl list */ 18389 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18390 } 18391 } 18392 18393 /* continue until a nembed page worth of sgls */ 18394 if (post_cnt == 0) 18395 continue; 18396 18397 /* post block of NVME buffer list sgls */ 18398 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18399 post_cnt); 18400 18401 /* don't reset xirtag due to hole in xri block */ 18402 if (block_cnt == 0) 18403 last_xritag = NO_XRI; 18404 18405 /* reset NVME buffer post count for next round of posting */ 18406 post_cnt = 0; 18407 18408 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18409 while (!list_empty(&blck_nblist)) { 18410 list_remove_head(&blck_nblist, lpfc_ncmd, 18411 struct lpfc_io_buf, list); 18412 if (status) { 18413 /* Post error. Mark buffer unavailable. */ 18414 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18415 } else { 18416 /* Post success, Mark buffer available. */ 18417 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18418 lpfc_ncmd->status = IOSTAT_SUCCESS; 18419 num_posted++; 18420 } 18421 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18422 } 18423 } 18424 /* Push NVME buffers with sgl posted to the available list */ 18425 lpfc_io_buf_replenish(phba, &nvme_nblist); 18426 18427 return num_posted; 18428 } 18429 18430 /** 18431 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18432 * @phba: pointer to lpfc_hba struct that the frame was received on 18433 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18434 * 18435 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18436 * valid type of frame that the LPFC driver will handle. This function will 18437 * return a zero if the frame is a valid frame or a non zero value when the 18438 * frame does not pass the check. 18439 **/ 18440 static int 18441 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18442 { 18443 /* make rctl_names static to save stack space */ 18444 struct fc_vft_header *fc_vft_hdr; 18445 struct fc_app_header *fc_app_hdr; 18446 uint32_t *header = (uint32_t *) fc_hdr; 18447 18448 #define FC_RCTL_MDS_DIAGS 0xF4 18449 18450 switch (fc_hdr->fh_r_ctl) { 18451 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18452 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18453 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18454 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18455 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18456 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18457 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18458 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18459 case FC_RCTL_ELS_REQ: /* extended link services request */ 18460 case FC_RCTL_ELS_REP: /* extended link services reply */ 18461 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18462 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18463 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18464 case FC_RCTL_BA_RMC: /* remove connection */ 18465 case FC_RCTL_BA_ACC: /* basic accept */ 18466 case FC_RCTL_BA_RJT: /* basic reject */ 18467 case FC_RCTL_BA_PRMT: 18468 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18469 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18470 case FC_RCTL_P_RJT: /* port reject */ 18471 case FC_RCTL_F_RJT: /* fabric reject */ 18472 case FC_RCTL_P_BSY: /* port busy */ 18473 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18474 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18475 case FC_RCTL_LCR: /* link credit reset */ 18476 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18477 case FC_RCTL_END: /* end */ 18478 break; 18479 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18480 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18481 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18482 return lpfc_fc_frame_check(phba, fc_hdr); 18483 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18484 default: 18485 goto drop; 18486 } 18487 18488 switch (fc_hdr->fh_type) { 18489 case FC_TYPE_BLS: 18490 case FC_TYPE_ELS: 18491 case FC_TYPE_FCP: 18492 case FC_TYPE_CT: 18493 case FC_TYPE_NVME: 18494 break; 18495 case FC_TYPE_IP: 18496 case FC_TYPE_ILS: 18497 default: 18498 goto drop; 18499 } 18500 18501 if (unlikely(phba->link_flag == LS_LOOPBACK_MODE && 18502 phba->cfg_vmid_app_header)) { 18503 /* Application header is 16B device header */ 18504 if (fc_hdr->fh_df_ctl & LPFC_FC_16B_DEVICE_HEADER) { 18505 fc_app_hdr = (struct fc_app_header *) (fc_hdr + 1); 18506 if (be32_to_cpu(fc_app_hdr->src_app_id) != 18507 LOOPBACK_SRC_APPID) { 18508 lpfc_printf_log(phba, KERN_WARNING, 18509 LOG_ELS | LOG_LIBDFC, 18510 "1932 Loopback src app id " 18511 "not matched, app_id:x%x\n", 18512 be32_to_cpu(fc_app_hdr->src_app_id)); 18513 18514 goto drop; 18515 } 18516 } else { 18517 lpfc_printf_log(phba, KERN_WARNING, 18518 LOG_ELS | LOG_LIBDFC, 18519 "1933 Loopback df_ctl bit not set, " 18520 "df_ctl:x%x\n", 18521 fc_hdr->fh_df_ctl); 18522 18523 goto drop; 18524 } 18525 } 18526 18527 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18528 "2538 Received frame rctl:x%x, type:x%x, " 18529 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18530 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18531 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18532 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18533 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18534 be32_to_cpu(header[6])); 18535 return 0; 18536 drop: 18537 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18538 "2539 Dropped frame rctl:x%x type:x%x\n", 18539 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18540 return 1; 18541 } 18542 18543 /** 18544 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18545 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18546 * 18547 * This function processes the FC header to retrieve the VFI from the VF 18548 * header, if one exists. This function will return the VFI if one exists 18549 * or 0 if no VSAN Header exists. 18550 **/ 18551 static uint32_t 18552 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18553 { 18554 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18555 18556 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18557 return 0; 18558 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18559 } 18560 18561 /** 18562 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18563 * @phba: Pointer to the HBA structure to search for the vport on 18564 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18565 * @fcfi: The FC Fabric ID that the frame came from 18566 * @did: Destination ID to match against 18567 * 18568 * This function searches the @phba for a vport that matches the content of the 18569 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18570 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18571 * returns the matching vport pointer or NULL if unable to match frame to a 18572 * vport. 18573 **/ 18574 static struct lpfc_vport * 18575 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18576 uint16_t fcfi, uint32_t did) 18577 { 18578 struct lpfc_vport **vports; 18579 struct lpfc_vport *vport = NULL; 18580 int i; 18581 18582 if (did == Fabric_DID) 18583 return phba->pport; 18584 if (test_bit(FC_PT2PT, &phba->pport->fc_flag) && 18585 phba->link_state != LPFC_HBA_READY) 18586 return phba->pport; 18587 18588 vports = lpfc_create_vport_work_array(phba); 18589 if (vports != NULL) { 18590 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18591 if (phba->fcf.fcfi == fcfi && 18592 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18593 vports[i]->fc_myDID == did) { 18594 vport = vports[i]; 18595 break; 18596 } 18597 } 18598 } 18599 lpfc_destroy_vport_work_array(phba, vports); 18600 return vport; 18601 } 18602 18603 /** 18604 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18605 * @vport: The vport to work on. 18606 * 18607 * This function updates the receive sequence time stamp for this vport. The 18608 * receive sequence time stamp indicates the time that the last frame of the 18609 * the sequence that has been idle for the longest amount of time was received. 18610 * the driver uses this time stamp to indicate if any received sequences have 18611 * timed out. 18612 **/ 18613 static void 18614 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18615 { 18616 struct lpfc_dmabuf *h_buf; 18617 struct hbq_dmabuf *dmabuf = NULL; 18618 18619 /* get the oldest sequence on the rcv list */ 18620 h_buf = list_get_first(&vport->rcv_buffer_list, 18621 struct lpfc_dmabuf, list); 18622 if (!h_buf) 18623 return; 18624 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18625 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18626 } 18627 18628 /** 18629 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18630 * @vport: The vport that the received sequences were sent to. 18631 * 18632 * This function cleans up all outstanding received sequences. This is called 18633 * by the driver when a link event or user action invalidates all the received 18634 * sequences. 18635 **/ 18636 void 18637 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18638 { 18639 struct lpfc_dmabuf *h_buf, *hnext; 18640 struct lpfc_dmabuf *d_buf, *dnext; 18641 struct hbq_dmabuf *dmabuf = NULL; 18642 18643 /* start with the oldest sequence on the rcv list */ 18644 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18645 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18646 list_del_init(&dmabuf->hbuf.list); 18647 list_for_each_entry_safe(d_buf, dnext, 18648 &dmabuf->dbuf.list, list) { 18649 list_del_init(&d_buf->list); 18650 lpfc_in_buf_free(vport->phba, d_buf); 18651 } 18652 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18653 } 18654 } 18655 18656 /** 18657 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18658 * @vport: The vport that the received sequences were sent to. 18659 * 18660 * This function determines whether any received sequences have timed out by 18661 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18662 * indicates that there is at least one timed out sequence this routine will 18663 * go through the received sequences one at a time from most inactive to most 18664 * active to determine which ones need to be cleaned up. Once it has determined 18665 * that a sequence needs to be cleaned up it will simply free up the resources 18666 * without sending an abort. 18667 **/ 18668 void 18669 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18670 { 18671 struct lpfc_dmabuf *h_buf, *hnext; 18672 struct lpfc_dmabuf *d_buf, *dnext; 18673 struct hbq_dmabuf *dmabuf = NULL; 18674 unsigned long timeout; 18675 int abort_count = 0; 18676 18677 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18678 vport->rcv_buffer_time_stamp); 18679 if (list_empty(&vport->rcv_buffer_list) || 18680 time_before(jiffies, timeout)) 18681 return; 18682 /* start with the oldest sequence on the rcv list */ 18683 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18684 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18685 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18686 dmabuf->time_stamp); 18687 if (time_before(jiffies, timeout)) 18688 break; 18689 abort_count++; 18690 list_del_init(&dmabuf->hbuf.list); 18691 list_for_each_entry_safe(d_buf, dnext, 18692 &dmabuf->dbuf.list, list) { 18693 list_del_init(&d_buf->list); 18694 lpfc_in_buf_free(vport->phba, d_buf); 18695 } 18696 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18697 } 18698 if (abort_count) 18699 lpfc_update_rcv_time_stamp(vport); 18700 } 18701 18702 /** 18703 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18704 * @vport: pointer to a vitural port 18705 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18706 * 18707 * This function searches through the existing incomplete sequences that have 18708 * been sent to this @vport. If the frame matches one of the incomplete 18709 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18710 * make up that sequence. If no sequence is found that matches this frame then 18711 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18712 * This function returns a pointer to the first dmabuf in the sequence list that 18713 * the frame was linked to. 18714 **/ 18715 static struct hbq_dmabuf * 18716 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18717 { 18718 struct fc_frame_header *new_hdr; 18719 struct fc_frame_header *temp_hdr; 18720 struct lpfc_dmabuf *d_buf; 18721 struct lpfc_dmabuf *h_buf; 18722 struct hbq_dmabuf *seq_dmabuf = NULL; 18723 struct hbq_dmabuf *temp_dmabuf = NULL; 18724 uint8_t found = 0; 18725 18726 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18727 dmabuf->time_stamp = jiffies; 18728 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18729 18730 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18731 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18732 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18733 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18734 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18735 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18736 continue; 18737 /* found a pending sequence that matches this frame */ 18738 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18739 break; 18740 } 18741 if (!seq_dmabuf) { 18742 /* 18743 * This indicates first frame received for this sequence. 18744 * Queue the buffer on the vport's rcv_buffer_list. 18745 */ 18746 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18747 lpfc_update_rcv_time_stamp(vport); 18748 return dmabuf; 18749 } 18750 temp_hdr = seq_dmabuf->hbuf.virt; 18751 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18752 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18753 list_del_init(&seq_dmabuf->hbuf.list); 18754 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18755 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18756 lpfc_update_rcv_time_stamp(vport); 18757 return dmabuf; 18758 } 18759 /* move this sequence to the tail to indicate a young sequence */ 18760 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18761 seq_dmabuf->time_stamp = jiffies; 18762 lpfc_update_rcv_time_stamp(vport); 18763 if (list_empty(&seq_dmabuf->dbuf.list)) { 18764 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18765 return seq_dmabuf; 18766 } 18767 /* find the correct place in the sequence to insert this frame */ 18768 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18769 while (!found) { 18770 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18771 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18772 /* 18773 * If the frame's sequence count is greater than the frame on 18774 * the list then insert the frame right after this frame 18775 */ 18776 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18777 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18778 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18779 found = 1; 18780 break; 18781 } 18782 18783 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18784 break; 18785 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18786 } 18787 18788 if (found) 18789 return seq_dmabuf; 18790 return NULL; 18791 } 18792 18793 /** 18794 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18795 * @vport: pointer to a vitural port 18796 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18797 * 18798 * This function tries to abort from the partially assembed sequence, described 18799 * by the information from basic abbort @dmabuf. It checks to see whether such 18800 * partially assembled sequence held by the driver. If so, it shall free up all 18801 * the frames from the partially assembled sequence. 18802 * 18803 * Return 18804 * true -- if there is matching partially assembled sequence present and all 18805 * the frames freed with the sequence; 18806 * false -- if there is no matching partially assembled sequence present so 18807 * nothing got aborted in the lower layer driver 18808 **/ 18809 static bool 18810 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18811 struct hbq_dmabuf *dmabuf) 18812 { 18813 struct fc_frame_header *new_hdr; 18814 struct fc_frame_header *temp_hdr; 18815 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18816 struct hbq_dmabuf *seq_dmabuf = NULL; 18817 18818 /* Use the hdr_buf to find the sequence that matches this frame */ 18819 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18820 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18821 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18822 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18823 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18824 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18825 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18826 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18827 continue; 18828 /* found a pending sequence that matches this frame */ 18829 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18830 break; 18831 } 18832 18833 /* Free up all the frames from the partially assembled sequence */ 18834 if (seq_dmabuf) { 18835 list_for_each_entry_safe(d_buf, n_buf, 18836 &seq_dmabuf->dbuf.list, list) { 18837 list_del_init(&d_buf->list); 18838 lpfc_in_buf_free(vport->phba, d_buf); 18839 } 18840 return true; 18841 } 18842 return false; 18843 } 18844 18845 /** 18846 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18847 * @vport: pointer to a vitural port 18848 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18849 * 18850 * This function tries to abort from the assembed sequence from upper level 18851 * protocol, described by the information from basic abbort @dmabuf. It 18852 * checks to see whether such pending context exists at upper level protocol. 18853 * If so, it shall clean up the pending context. 18854 * 18855 * Return 18856 * true -- if there is matching pending context of the sequence cleaned 18857 * at ulp; 18858 * false -- if there is no matching pending context of the sequence present 18859 * at ulp. 18860 **/ 18861 static bool 18862 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18863 { 18864 struct lpfc_hba *phba = vport->phba; 18865 int handled; 18866 18867 /* Accepting abort at ulp with SLI4 only */ 18868 if (phba->sli_rev < LPFC_SLI_REV4) 18869 return false; 18870 18871 /* Register all caring upper level protocols to attend abort */ 18872 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18873 if (handled) 18874 return true; 18875 18876 return false; 18877 } 18878 18879 /** 18880 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18881 * @phba: Pointer to HBA context object. 18882 * @cmd_iocbq: pointer to the command iocbq structure. 18883 * @rsp_iocbq: pointer to the response iocbq structure. 18884 * 18885 * This function handles the sequence abort response iocb command complete 18886 * event. It properly releases the memory allocated to the sequence abort 18887 * accept iocb. 18888 **/ 18889 static void 18890 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18891 struct lpfc_iocbq *cmd_iocbq, 18892 struct lpfc_iocbq *rsp_iocbq) 18893 { 18894 if (cmd_iocbq) { 18895 lpfc_nlp_put(cmd_iocbq->ndlp); 18896 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18897 } 18898 18899 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18900 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18901 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18902 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18903 get_job_ulpstatus(phba, rsp_iocbq), 18904 get_job_word4(phba, rsp_iocbq)); 18905 } 18906 18907 /** 18908 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18909 * @phba: Pointer to HBA context object. 18910 * @xri: xri id in transaction. 18911 * 18912 * This function validates the xri maps to the known range of XRIs allocated an 18913 * used by the driver. 18914 **/ 18915 uint16_t 18916 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18917 uint16_t xri) 18918 { 18919 uint16_t i; 18920 18921 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18922 if (xri == phba->sli4_hba.xri_ids[i]) 18923 return i; 18924 } 18925 return NO_XRI; 18926 } 18927 18928 /** 18929 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18930 * @vport: pointer to a virtual port. 18931 * @fc_hdr: pointer to a FC frame header. 18932 * @aborted: was the partially assembled receive sequence successfully aborted 18933 * 18934 * This function sends a basic response to a previous unsol sequence abort 18935 * event after aborting the sequence handling. 18936 **/ 18937 void 18938 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18939 struct fc_frame_header *fc_hdr, bool aborted) 18940 { 18941 struct lpfc_hba *phba = vport->phba; 18942 struct lpfc_iocbq *ctiocb = NULL; 18943 struct lpfc_nodelist *ndlp; 18944 uint16_t oxid, rxid, xri, lxri; 18945 uint32_t sid, fctl; 18946 union lpfc_wqe128 *icmd; 18947 int rc; 18948 18949 if (!lpfc_is_link_up(phba)) 18950 return; 18951 18952 sid = sli4_sid_from_fc_hdr(fc_hdr); 18953 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18954 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18955 18956 ndlp = lpfc_findnode_did(vport, sid); 18957 if (!ndlp) { 18958 ndlp = lpfc_nlp_init(vport, sid); 18959 if (!ndlp) { 18960 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18961 "1268 Failed to allocate ndlp for " 18962 "oxid:x%x SID:x%x\n", oxid, sid); 18963 return; 18964 } 18965 /* Put ndlp onto vport node list */ 18966 lpfc_enqueue_node(vport, ndlp); 18967 } 18968 18969 /* Allocate buffer for rsp iocb */ 18970 ctiocb = lpfc_sli_get_iocbq(phba); 18971 if (!ctiocb) 18972 return; 18973 18974 icmd = &ctiocb->wqe; 18975 18976 /* Extract the F_CTL field from FC_HDR */ 18977 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18978 18979 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18980 if (!ctiocb->ndlp) { 18981 lpfc_sli_release_iocbq(phba, ctiocb); 18982 return; 18983 } 18984 18985 ctiocb->vport = vport; 18986 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18987 ctiocb->sli4_lxritag = NO_XRI; 18988 ctiocb->sli4_xritag = NO_XRI; 18989 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18990 18991 if (fctl & FC_FC_EX_CTX) 18992 /* Exchange responder sent the abort so we 18993 * own the oxid. 18994 */ 18995 xri = oxid; 18996 else 18997 xri = rxid; 18998 lxri = lpfc_sli4_xri_inrange(phba, xri); 18999 if (lxri != NO_XRI) 19000 lpfc_set_rrq_active(phba, ndlp, lxri, 19001 (xri == oxid) ? rxid : oxid, 0); 19002 /* For BA_ABTS from exchange responder, if the logical xri with 19003 * the oxid maps to the FCP XRI range, the port no longer has 19004 * that exchange context, send a BLS_RJT. Override the IOCB for 19005 * a BA_RJT. 19006 */ 19007 if ((fctl & FC_FC_EX_CTX) && 19008 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 19009 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19010 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19011 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19012 FC_BA_RJT_INV_XID); 19013 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19014 FC_BA_RJT_UNABLE); 19015 } 19016 19017 /* If BA_ABTS failed to abort a partially assembled receive sequence, 19018 * the driver no longer has that exchange, send a BLS_RJT. Override 19019 * the IOCB for a BA_RJT. 19020 */ 19021 if (aborted == false) { 19022 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 19023 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 19024 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 19025 FC_BA_RJT_INV_XID); 19026 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 19027 FC_BA_RJT_UNABLE); 19028 } 19029 19030 if (fctl & FC_FC_EX_CTX) { 19031 /* ABTS sent by responder to CT exchange, construction 19032 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 19033 * field and RX_ID from ABTS for RX_ID field. 19034 */ 19035 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 19036 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 19037 } else { 19038 /* ABTS sent by initiator to CT exchange, construction 19039 * of BA_ACC will need to allocate a new XRI as for the 19040 * XRI_TAG field. 19041 */ 19042 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 19043 } 19044 19045 /* OX_ID is invariable to who sent ABTS to CT exchange */ 19046 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 19047 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 19048 19049 /* Use CT=VPI */ 19050 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 19051 ndlp->nlp_DID); 19052 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 19053 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 19054 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 19055 19056 /* Xmit CT abts response on exchange <xid> */ 19057 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 19058 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 19059 ctiocb->abort_rctl, oxid, phba->link_state); 19060 19061 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 19062 if (rc == IOCB_ERROR) { 19063 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19064 "2925 Failed to issue CT ABTS RSP x%x on " 19065 "xri x%x, Data x%x\n", 19066 ctiocb->abort_rctl, oxid, 19067 phba->link_state); 19068 lpfc_nlp_put(ndlp); 19069 ctiocb->ndlp = NULL; 19070 lpfc_sli_release_iocbq(phba, ctiocb); 19071 } 19072 19073 /* if only usage of this nodelist is BLS response, release initial ref 19074 * to free ndlp when transmit completes 19075 */ 19076 if (ndlp->nlp_state == NLP_STE_UNUSED_NODE && 19077 !(ndlp->nlp_flag & NLP_DROPPED) && 19078 !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) { 19079 ndlp->nlp_flag |= NLP_DROPPED; 19080 lpfc_nlp_put(ndlp); 19081 } 19082 } 19083 19084 /** 19085 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 19086 * @vport: Pointer to the vport on which this sequence was received 19087 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19088 * 19089 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 19090 * receive sequence is only partially assembed by the driver, it shall abort 19091 * the partially assembled frames for the sequence. Otherwise, if the 19092 * unsolicited receive sequence has been completely assembled and passed to 19093 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 19094 * unsolicited sequence has been aborted. After that, it will issue a basic 19095 * accept to accept the abort. 19096 **/ 19097 static void 19098 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 19099 struct hbq_dmabuf *dmabuf) 19100 { 19101 struct lpfc_hba *phba = vport->phba; 19102 struct fc_frame_header fc_hdr; 19103 uint32_t fctl; 19104 bool aborted; 19105 19106 /* Make a copy of fc_hdr before the dmabuf being released */ 19107 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 19108 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 19109 19110 if (fctl & FC_FC_EX_CTX) { 19111 /* ABTS by responder to exchange, no cleanup needed */ 19112 aborted = true; 19113 } else { 19114 /* ABTS by initiator to exchange, need to do cleanup */ 19115 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 19116 if (aborted == false) 19117 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 19118 } 19119 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19120 19121 if (phba->nvmet_support) { 19122 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 19123 return; 19124 } 19125 19126 /* Respond with BA_ACC or BA_RJT accordingly */ 19127 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 19128 } 19129 19130 /** 19131 * lpfc_seq_complete - Indicates if a sequence is complete 19132 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19133 * 19134 * This function checks the sequence, starting with the frame described by 19135 * @dmabuf, to see if all the frames associated with this sequence are present. 19136 * the frames associated with this sequence are linked to the @dmabuf using the 19137 * dbuf list. This function looks for two major things. 1) That the first frame 19138 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19139 * set. 3) That there are no holes in the sequence count. The function will 19140 * return 1 when the sequence is complete, otherwise it will return 0. 19141 **/ 19142 static int 19143 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19144 { 19145 struct fc_frame_header *hdr; 19146 struct lpfc_dmabuf *d_buf; 19147 struct hbq_dmabuf *seq_dmabuf; 19148 uint32_t fctl; 19149 int seq_count = 0; 19150 19151 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19152 /* make sure first fame of sequence has a sequence count of zero */ 19153 if (hdr->fh_seq_cnt != seq_count) 19154 return 0; 19155 fctl = (hdr->fh_f_ctl[0] << 16 | 19156 hdr->fh_f_ctl[1] << 8 | 19157 hdr->fh_f_ctl[2]); 19158 /* If last frame of sequence we can return success. */ 19159 if (fctl & FC_FC_END_SEQ) 19160 return 1; 19161 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19162 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19163 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19164 /* If there is a hole in the sequence count then fail. */ 19165 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19166 return 0; 19167 fctl = (hdr->fh_f_ctl[0] << 16 | 19168 hdr->fh_f_ctl[1] << 8 | 19169 hdr->fh_f_ctl[2]); 19170 /* If last frame of sequence we can return success. */ 19171 if (fctl & FC_FC_END_SEQ) 19172 return 1; 19173 } 19174 return 0; 19175 } 19176 19177 /** 19178 * lpfc_prep_seq - Prep sequence for ULP processing 19179 * @vport: Pointer to the vport on which this sequence was received 19180 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19181 * 19182 * This function takes a sequence, described by a list of frames, and creates 19183 * a list of iocbq structures to describe the sequence. This iocbq list will be 19184 * used to issue to the generic unsolicited sequence handler. This routine 19185 * returns a pointer to the first iocbq in the list. If the function is unable 19186 * to allocate an iocbq then it throw out the received frames that were not 19187 * able to be described and return a pointer to the first iocbq. If unable to 19188 * allocate any iocbqs (including the first) this function will return NULL. 19189 **/ 19190 static struct lpfc_iocbq * 19191 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19192 { 19193 struct hbq_dmabuf *hbq_buf; 19194 struct lpfc_dmabuf *d_buf, *n_buf; 19195 struct lpfc_iocbq *first_iocbq, *iocbq; 19196 struct fc_frame_header *fc_hdr; 19197 uint32_t sid; 19198 uint32_t len, tot_len; 19199 19200 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19201 /* remove from receive buffer list */ 19202 list_del_init(&seq_dmabuf->hbuf.list); 19203 lpfc_update_rcv_time_stamp(vport); 19204 /* get the Remote Port's SID */ 19205 sid = sli4_sid_from_fc_hdr(fc_hdr); 19206 tot_len = 0; 19207 /* Get an iocbq struct to fill in. */ 19208 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19209 if (first_iocbq) { 19210 /* Initialize the first IOCB. */ 19211 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19212 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19213 IOSTAT_SUCCESS); 19214 first_iocbq->vport = vport; 19215 19216 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19217 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19218 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19219 sli4_did_from_fc_hdr(fc_hdr)); 19220 } 19221 19222 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19223 NO_XRI); 19224 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19225 be16_to_cpu(fc_hdr->fh_ox_id)); 19226 19227 /* put the first buffer into the first iocb */ 19228 tot_len = bf_get(lpfc_rcqe_length, 19229 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19230 19231 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19232 first_iocbq->bpl_dmabuf = NULL; 19233 /* Keep track of the BDE count */ 19234 first_iocbq->wcqe_cmpl.word3 = 1; 19235 19236 if (tot_len > LPFC_DATA_BUF_SIZE) 19237 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19238 LPFC_DATA_BUF_SIZE; 19239 else 19240 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19241 19242 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19243 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19244 sid); 19245 } 19246 iocbq = first_iocbq; 19247 /* 19248 * Each IOCBq can have two Buffers assigned, so go through the list 19249 * of buffers for this sequence and save two buffers in each IOCBq 19250 */ 19251 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19252 if (!iocbq) { 19253 lpfc_in_buf_free(vport->phba, d_buf); 19254 continue; 19255 } 19256 if (!iocbq->bpl_dmabuf) { 19257 iocbq->bpl_dmabuf = d_buf; 19258 iocbq->wcqe_cmpl.word3++; 19259 /* We need to get the size out of the right CQE */ 19260 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19261 len = bf_get(lpfc_rcqe_length, 19262 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19263 iocbq->unsol_rcv_len = len; 19264 iocbq->wcqe_cmpl.total_data_placed += len; 19265 tot_len += len; 19266 } else { 19267 iocbq = lpfc_sli_get_iocbq(vport->phba); 19268 if (!iocbq) { 19269 if (first_iocbq) { 19270 bf_set(lpfc_wcqe_c_status, 19271 &first_iocbq->wcqe_cmpl, 19272 IOSTAT_SUCCESS); 19273 first_iocbq->wcqe_cmpl.parameter = 19274 IOERR_NO_RESOURCES; 19275 } 19276 lpfc_in_buf_free(vport->phba, d_buf); 19277 continue; 19278 } 19279 /* We need to get the size out of the right CQE */ 19280 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19281 len = bf_get(lpfc_rcqe_length, 19282 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19283 iocbq->cmd_dmabuf = d_buf; 19284 iocbq->bpl_dmabuf = NULL; 19285 iocbq->wcqe_cmpl.word3 = 1; 19286 19287 if (len > LPFC_DATA_BUF_SIZE) 19288 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19289 LPFC_DATA_BUF_SIZE; 19290 else 19291 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19292 len; 19293 19294 tot_len += len; 19295 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19296 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19297 sid); 19298 list_add_tail(&iocbq->list, &first_iocbq->list); 19299 } 19300 } 19301 /* Free the sequence's header buffer */ 19302 if (!first_iocbq) 19303 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19304 19305 return first_iocbq; 19306 } 19307 19308 static void 19309 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19310 struct hbq_dmabuf *seq_dmabuf) 19311 { 19312 struct fc_frame_header *fc_hdr; 19313 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19314 struct lpfc_hba *phba = vport->phba; 19315 19316 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19317 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19318 if (!iocbq) { 19319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19320 "2707 Ring %d handler: Failed to allocate " 19321 "iocb Rctl x%x Type x%x received\n", 19322 LPFC_ELS_RING, 19323 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19324 return; 19325 } 19326 if (!lpfc_complete_unsol_iocb(phba, 19327 phba->sli4_hba.els_wq->pring, 19328 iocbq, fc_hdr->fh_r_ctl, 19329 fc_hdr->fh_type)) { 19330 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19331 "2540 Ring %d handler: unexpected Rctl " 19332 "x%x Type x%x received\n", 19333 LPFC_ELS_RING, 19334 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19335 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19336 } 19337 19338 /* Free iocb created in lpfc_prep_seq */ 19339 list_for_each_entry_safe(curr_iocb, next_iocb, 19340 &iocbq->list, list) { 19341 list_del_init(&curr_iocb->list); 19342 lpfc_sli_release_iocbq(phba, curr_iocb); 19343 } 19344 lpfc_sli_release_iocbq(phba, iocbq); 19345 } 19346 19347 static void 19348 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19349 struct lpfc_iocbq *rspiocb) 19350 { 19351 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19352 19353 if (pcmd && pcmd->virt) 19354 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19355 kfree(pcmd); 19356 lpfc_sli_release_iocbq(phba, cmdiocb); 19357 lpfc_drain_txq(phba); 19358 } 19359 19360 static void 19361 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19362 struct hbq_dmabuf *dmabuf) 19363 { 19364 struct fc_frame_header *fc_hdr; 19365 struct lpfc_hba *phba = vport->phba; 19366 struct lpfc_iocbq *iocbq = NULL; 19367 union lpfc_wqe128 *pwqe; 19368 struct lpfc_dmabuf *pcmd = NULL; 19369 uint32_t frame_len; 19370 int rc; 19371 unsigned long iflags; 19372 19373 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19374 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19375 19376 /* Send the received frame back */ 19377 iocbq = lpfc_sli_get_iocbq(phba); 19378 if (!iocbq) { 19379 /* Queue cq event and wakeup worker thread to process it */ 19380 spin_lock_irqsave(&phba->hbalock, iflags); 19381 list_add_tail(&dmabuf->cq_event.list, 19382 &phba->sli4_hba.sp_queue_event); 19383 spin_unlock_irqrestore(&phba->hbalock, iflags); 19384 set_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); 19385 lpfc_worker_wake_up(phba); 19386 return; 19387 } 19388 19389 /* Allocate buffer for command payload */ 19390 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19391 if (pcmd) 19392 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19393 &pcmd->phys); 19394 if (!pcmd || !pcmd->virt) 19395 goto exit; 19396 19397 INIT_LIST_HEAD(&pcmd->list); 19398 19399 /* copyin the payload */ 19400 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19401 19402 iocbq->cmd_dmabuf = pcmd; 19403 iocbq->vport = vport; 19404 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19405 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19406 iocbq->num_bdes = 0; 19407 19408 pwqe = &iocbq->wqe; 19409 /* fill in BDE's for command */ 19410 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19411 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19412 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19413 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19414 19415 pwqe->send_frame.frame_len = frame_len; 19416 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19417 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19418 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19419 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19420 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19421 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19422 19423 pwqe->generic.wqe_com.word7 = 0; 19424 pwqe->generic.wqe_com.word10 = 0; 19425 19426 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19427 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19428 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19429 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19430 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19431 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19432 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19433 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19434 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19435 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19436 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19437 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19438 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19439 19440 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19441 19442 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19443 if (rc == IOCB_ERROR) 19444 goto exit; 19445 19446 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19447 return; 19448 19449 exit: 19450 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19451 "2023 Unable to process MDS loopback frame\n"); 19452 if (pcmd && pcmd->virt) 19453 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19454 kfree(pcmd); 19455 if (iocbq) 19456 lpfc_sli_release_iocbq(phba, iocbq); 19457 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19458 } 19459 19460 /** 19461 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19462 * @phba: Pointer to HBA context object. 19463 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19464 * 19465 * This function is called with no lock held. This function processes all 19466 * the received buffers and gives it to upper layers when a received buffer 19467 * indicates that it is the final frame in the sequence. The interrupt 19468 * service routine processes received buffers at interrupt contexts. 19469 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19470 * appropriate receive function when the final frame in a sequence is received. 19471 **/ 19472 void 19473 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19474 struct hbq_dmabuf *dmabuf) 19475 { 19476 struct hbq_dmabuf *seq_dmabuf; 19477 struct fc_frame_header *fc_hdr; 19478 struct lpfc_vport *vport; 19479 uint32_t fcfi; 19480 uint32_t did; 19481 19482 /* Process each received buffer */ 19483 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19484 19485 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19486 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19487 vport = phba->pport; 19488 /* Handle MDS Loopback frames */ 19489 if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) 19490 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19491 else 19492 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19493 return; 19494 } 19495 19496 /* check to see if this a valid type of frame */ 19497 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19498 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19499 return; 19500 } 19501 19502 if ((bf_get(lpfc_cqe_code, 19503 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19504 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19505 &dmabuf->cq_event.cqe.rcqe_cmpl); 19506 else 19507 fcfi = bf_get(lpfc_rcqe_fcf_id, 19508 &dmabuf->cq_event.cqe.rcqe_cmpl); 19509 19510 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19511 vport = phba->pport; 19512 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19513 "2023 MDS Loopback %d bytes\n", 19514 bf_get(lpfc_rcqe_length, 19515 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19516 /* Handle MDS Loopback frames */ 19517 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19518 return; 19519 } 19520 19521 /* d_id this frame is directed to */ 19522 did = sli4_did_from_fc_hdr(fc_hdr); 19523 19524 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19525 if (!vport) { 19526 /* throw out the frame */ 19527 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19528 return; 19529 } 19530 19531 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19532 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19533 (did != Fabric_DID)) { 19534 /* 19535 * Throw out the frame if we are not pt2pt. 19536 * The pt2pt protocol allows for discovery frames 19537 * to be received without a registered VPI. 19538 */ 19539 if (!test_bit(FC_PT2PT, &vport->fc_flag) || 19540 phba->link_state == LPFC_HBA_READY) { 19541 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19542 return; 19543 } 19544 } 19545 19546 /* Handle the basic abort sequence (BA_ABTS) event */ 19547 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19548 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19549 return; 19550 } 19551 19552 /* Link this frame */ 19553 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19554 if (!seq_dmabuf) { 19555 /* unable to add frame to vport - throw it out */ 19556 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19557 return; 19558 } 19559 /* If not last frame in sequence continue processing frames. */ 19560 if (!lpfc_seq_complete(seq_dmabuf)) 19561 return; 19562 19563 /* Send the complete sequence to the upper layer protocol */ 19564 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19565 } 19566 19567 /** 19568 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19569 * @phba: pointer to lpfc hba data structure. 19570 * 19571 * This routine is invoked to post rpi header templates to the 19572 * HBA consistent with the SLI-4 interface spec. This routine 19573 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19574 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19575 * 19576 * This routine does not require any locks. It's usage is expected 19577 * to be driver load or reset recovery when the driver is 19578 * sequential. 19579 * 19580 * Return codes 19581 * 0 - successful 19582 * -EIO - The mailbox failed to complete successfully. 19583 * When this error occurs, the driver is not guaranteed 19584 * to have any rpi regions posted to the device and 19585 * must either attempt to repost the regions or take a 19586 * fatal error. 19587 **/ 19588 int 19589 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19590 { 19591 struct lpfc_rpi_hdr *rpi_page; 19592 uint32_t rc = 0; 19593 uint16_t lrpi = 0; 19594 19595 /* SLI4 ports that support extents do not require RPI headers. */ 19596 if (!phba->sli4_hba.rpi_hdrs_in_use) 19597 goto exit; 19598 if (phba->sli4_hba.extents_in_use) 19599 return -EIO; 19600 19601 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19602 /* 19603 * Assign the rpi headers a physical rpi only if the driver 19604 * has not initialized those resources. A port reset only 19605 * needs the headers posted. 19606 */ 19607 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19608 LPFC_RPI_RSRC_RDY) 19609 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19610 19611 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19612 if (rc != MBX_SUCCESS) { 19613 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19614 "2008 Error %d posting all rpi " 19615 "headers\n", rc); 19616 rc = -EIO; 19617 break; 19618 } 19619 } 19620 19621 exit: 19622 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19623 LPFC_RPI_RSRC_RDY); 19624 return rc; 19625 } 19626 19627 /** 19628 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19629 * @phba: pointer to lpfc hba data structure. 19630 * @rpi_page: pointer to the rpi memory region. 19631 * 19632 * This routine is invoked to post a single rpi header to the 19633 * HBA consistent with the SLI-4 interface spec. This memory region 19634 * maps up to 64 rpi context regions. 19635 * 19636 * Return codes 19637 * 0 - successful 19638 * -ENOMEM - No available memory 19639 * -EIO - The mailbox failed to complete successfully. 19640 **/ 19641 int 19642 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19643 { 19644 LPFC_MBOXQ_t *mboxq; 19645 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19646 uint32_t rc = 0; 19647 uint32_t shdr_status, shdr_add_status; 19648 union lpfc_sli4_cfg_shdr *shdr; 19649 19650 /* SLI4 ports that support extents do not require RPI headers. */ 19651 if (!phba->sli4_hba.rpi_hdrs_in_use) 19652 return rc; 19653 if (phba->sli4_hba.extents_in_use) 19654 return -EIO; 19655 19656 /* The port is notified of the header region via a mailbox command. */ 19657 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19658 if (!mboxq) { 19659 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19660 "2001 Unable to allocate memory for issuing " 19661 "SLI_CONFIG_SPECIAL mailbox command\n"); 19662 return -ENOMEM; 19663 } 19664 19665 /* Post all rpi memory regions to the port. */ 19666 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19667 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19668 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19669 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19670 sizeof(struct lpfc_sli4_cfg_mhdr), 19671 LPFC_SLI4_MBX_EMBED); 19672 19673 19674 /* Post the physical rpi to the port for this rpi header. */ 19675 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19676 rpi_page->start_rpi); 19677 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19678 hdr_tmpl, rpi_page->page_count); 19679 19680 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19681 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19682 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19683 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19684 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19685 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19686 mempool_free(mboxq, phba->mbox_mem_pool); 19687 if (shdr_status || shdr_add_status || rc) { 19688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19689 "2514 POST_RPI_HDR mailbox failed with " 19690 "status x%x add_status x%x, mbx status x%x\n", 19691 shdr_status, shdr_add_status, rc); 19692 rc = -ENXIO; 19693 } else { 19694 /* 19695 * The next_rpi stores the next logical module-64 rpi value used 19696 * to post physical rpis in subsequent rpi postings. 19697 */ 19698 spin_lock_irq(&phba->hbalock); 19699 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19700 spin_unlock_irq(&phba->hbalock); 19701 } 19702 return rc; 19703 } 19704 19705 /** 19706 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19707 * @phba: pointer to lpfc hba data structure. 19708 * 19709 * This routine is invoked to post rpi header templates to the 19710 * HBA consistent with the SLI-4 interface spec. This routine 19711 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19712 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19713 * 19714 * Returns 19715 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19716 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19717 **/ 19718 int 19719 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19720 { 19721 unsigned long rpi; 19722 uint16_t max_rpi, rpi_limit; 19723 uint16_t rpi_remaining, lrpi = 0; 19724 struct lpfc_rpi_hdr *rpi_hdr; 19725 unsigned long iflag; 19726 19727 /* 19728 * Fetch the next logical rpi. Because this index is logical, 19729 * the driver starts at 0 each time. 19730 */ 19731 spin_lock_irqsave(&phba->hbalock, iflag); 19732 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19733 rpi_limit = phba->sli4_hba.next_rpi; 19734 19735 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19736 if (rpi >= rpi_limit) 19737 rpi = LPFC_RPI_ALLOC_ERROR; 19738 else { 19739 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19740 phba->sli4_hba.max_cfg_param.rpi_used++; 19741 phba->sli4_hba.rpi_count++; 19742 } 19743 lpfc_printf_log(phba, KERN_INFO, 19744 LOG_NODE | LOG_DISCOVERY, 19745 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19746 (int) rpi, max_rpi, rpi_limit); 19747 19748 /* 19749 * Don't try to allocate more rpi header regions if the device limit 19750 * has been exhausted. 19751 */ 19752 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19753 (phba->sli4_hba.rpi_count >= max_rpi)) { 19754 spin_unlock_irqrestore(&phba->hbalock, iflag); 19755 return rpi; 19756 } 19757 19758 /* 19759 * RPI header postings are not required for SLI4 ports capable of 19760 * extents. 19761 */ 19762 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19763 spin_unlock_irqrestore(&phba->hbalock, iflag); 19764 return rpi; 19765 } 19766 19767 /* 19768 * If the driver is running low on rpi resources, allocate another 19769 * page now. Note that the next_rpi value is used because 19770 * it represents how many are actually in use whereas max_rpi notes 19771 * how many are supported max by the device. 19772 */ 19773 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19774 spin_unlock_irqrestore(&phba->hbalock, iflag); 19775 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19776 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19777 if (!rpi_hdr) { 19778 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19779 "2002 Error Could not grow rpi " 19780 "count\n"); 19781 } else { 19782 lrpi = rpi_hdr->start_rpi; 19783 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19784 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19785 } 19786 } 19787 19788 return rpi; 19789 } 19790 19791 /** 19792 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19793 * @phba: pointer to lpfc hba data structure. 19794 * @rpi: rpi to free 19795 * 19796 * This routine is invoked to release an rpi to the pool of 19797 * available rpis maintained by the driver. 19798 **/ 19799 static void 19800 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19801 { 19802 /* 19803 * if the rpi value indicates a prior unreg has already 19804 * been done, skip the unreg. 19805 */ 19806 if (rpi == LPFC_RPI_ALLOC_ERROR) 19807 return; 19808 19809 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19810 phba->sli4_hba.rpi_count--; 19811 phba->sli4_hba.max_cfg_param.rpi_used--; 19812 } else { 19813 lpfc_printf_log(phba, KERN_INFO, 19814 LOG_NODE | LOG_DISCOVERY, 19815 "2016 rpi %x not inuse\n", 19816 rpi); 19817 } 19818 } 19819 19820 /** 19821 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19822 * @phba: pointer to lpfc hba data structure. 19823 * @rpi: rpi to free 19824 * 19825 * This routine is invoked to release an rpi to the pool of 19826 * available rpis maintained by the driver. 19827 **/ 19828 void 19829 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19830 { 19831 spin_lock_irq(&phba->hbalock); 19832 __lpfc_sli4_free_rpi(phba, rpi); 19833 spin_unlock_irq(&phba->hbalock); 19834 } 19835 19836 /** 19837 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19838 * @phba: pointer to lpfc hba data structure. 19839 * 19840 * This routine is invoked to remove the memory region that 19841 * provided rpi via a bitmask. 19842 **/ 19843 void 19844 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19845 { 19846 kfree(phba->sli4_hba.rpi_bmask); 19847 kfree(phba->sli4_hba.rpi_ids); 19848 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19849 } 19850 19851 /** 19852 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19853 * @ndlp: pointer to lpfc nodelist data structure. 19854 * @cmpl: completion call-back. 19855 * @iocbq: data to load as mbox ctx_u information 19856 * 19857 * This routine is invoked to remove the memory region that 19858 * provided rpi via a bitmask. 19859 **/ 19860 int 19861 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19862 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), 19863 struct lpfc_iocbq *iocbq) 19864 { 19865 LPFC_MBOXQ_t *mboxq; 19866 struct lpfc_hba *phba = ndlp->phba; 19867 int rc; 19868 19869 /* The port is notified of the header region via a mailbox command. */ 19870 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19871 if (!mboxq) 19872 return -ENOMEM; 19873 19874 /* If cmpl assigned, then this nlp_get pairs with 19875 * lpfc_mbx_cmpl_resume_rpi. 19876 * 19877 * Else cmpl is NULL, then this nlp_get pairs with 19878 * lpfc_sli_def_mbox_cmpl. 19879 */ 19880 if (!lpfc_nlp_get(ndlp)) { 19881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19882 "2122 %s: Failed to get nlp ref\n", 19883 __func__); 19884 mempool_free(mboxq, phba->mbox_mem_pool); 19885 return -EIO; 19886 } 19887 19888 /* Post all rpi memory regions to the port. */ 19889 lpfc_resume_rpi(mboxq, ndlp); 19890 if (cmpl) { 19891 mboxq->mbox_cmpl = cmpl; 19892 mboxq->ctx_u.save_iocb = iocbq; 19893 } else 19894 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19895 mboxq->ctx_ndlp = ndlp; 19896 mboxq->vport = ndlp->vport; 19897 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19898 if (rc == MBX_NOT_FINISHED) { 19899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19900 "2010 Resume RPI Mailbox failed " 19901 "status %d, mbxStatus x%x\n", rc, 19902 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19903 lpfc_nlp_put(ndlp); 19904 mempool_free(mboxq, phba->mbox_mem_pool); 19905 return -EIO; 19906 } 19907 return 0; 19908 } 19909 19910 /** 19911 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19912 * @vport: Pointer to the vport for which the vpi is being initialized 19913 * 19914 * This routine is invoked to activate a vpi with the port. 19915 * 19916 * Returns: 19917 * 0 success 19918 * -Evalue otherwise 19919 **/ 19920 int 19921 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19922 { 19923 LPFC_MBOXQ_t *mboxq; 19924 int rc = 0; 19925 int retval = MBX_SUCCESS; 19926 uint32_t mbox_tmo; 19927 struct lpfc_hba *phba = vport->phba; 19928 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19929 if (!mboxq) 19930 return -ENOMEM; 19931 lpfc_init_vpi(phba, mboxq, vport->vpi); 19932 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19933 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19934 if (rc != MBX_SUCCESS) { 19935 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19936 "2022 INIT VPI Mailbox failed " 19937 "status %d, mbxStatus x%x\n", rc, 19938 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19939 retval = -EIO; 19940 } 19941 if (rc != MBX_TIMEOUT) 19942 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19943 19944 return retval; 19945 } 19946 19947 /** 19948 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19949 * @phba: pointer to lpfc hba data structure. 19950 * @mboxq: Pointer to mailbox object. 19951 * 19952 * This routine is invoked to manually add a single FCF record. The caller 19953 * must pass a completely initialized FCF_Record. This routine takes 19954 * care of the nonembedded mailbox operations. 19955 **/ 19956 static void 19957 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19958 { 19959 void *virt_addr; 19960 union lpfc_sli4_cfg_shdr *shdr; 19961 uint32_t shdr_status, shdr_add_status; 19962 19963 virt_addr = mboxq->sge_array->addr[0]; 19964 /* The IOCTL status is embedded in the mailbox subheader. */ 19965 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19966 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19967 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19968 19969 if ((shdr_status || shdr_add_status) && 19970 (shdr_status != STATUS_FCF_IN_USE)) 19971 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19972 "2558 ADD_FCF_RECORD mailbox failed with " 19973 "status x%x add_status x%x\n", 19974 shdr_status, shdr_add_status); 19975 19976 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19977 } 19978 19979 /** 19980 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19981 * @phba: pointer to lpfc hba data structure. 19982 * @fcf_record: pointer to the initialized fcf record to add. 19983 * 19984 * This routine is invoked to manually add a single FCF record. The caller 19985 * must pass a completely initialized FCF_Record. This routine takes 19986 * care of the nonembedded mailbox operations. 19987 **/ 19988 int 19989 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19990 { 19991 int rc = 0; 19992 LPFC_MBOXQ_t *mboxq; 19993 uint8_t *bytep; 19994 void *virt_addr; 19995 struct lpfc_mbx_sge sge; 19996 uint32_t alloc_len, req_len; 19997 uint32_t fcfindex; 19998 19999 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20000 if (!mboxq) { 20001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20002 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 20003 return -ENOMEM; 20004 } 20005 20006 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 20007 sizeof(uint32_t); 20008 20009 /* Allocate DMA memory and set up the non-embedded mailbox command */ 20010 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 20011 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 20012 req_len, LPFC_SLI4_MBX_NEMBED); 20013 if (alloc_len < req_len) { 20014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20015 "2523 Allocated DMA memory size (x%x) is " 20016 "less than the requested DMA memory " 20017 "size (x%x)\n", alloc_len, req_len); 20018 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20019 return -ENOMEM; 20020 } 20021 20022 /* 20023 * Get the first SGE entry from the non-embedded DMA memory. This 20024 * routine only uses a single SGE. 20025 */ 20026 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 20027 virt_addr = mboxq->sge_array->addr[0]; 20028 /* 20029 * Configure the FCF record for FCFI 0. This is the driver's 20030 * hardcoded default and gets used in nonFIP mode. 20031 */ 20032 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 20033 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 20034 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 20035 20036 /* 20037 * Copy the fcf_index and the FCF Record Data. The data starts after 20038 * the FCoE header plus word10. The data copy needs to be endian 20039 * correct. 20040 */ 20041 bytep += sizeof(uint32_t); 20042 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 20043 mboxq->vport = phba->pport; 20044 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 20045 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20046 if (rc == MBX_NOT_FINISHED) { 20047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20048 "2515 ADD_FCF_RECORD mailbox failed with " 20049 "status 0x%x\n", rc); 20050 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20051 rc = -EIO; 20052 } else 20053 rc = 0; 20054 20055 return rc; 20056 } 20057 20058 /** 20059 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 20060 * @phba: pointer to lpfc hba data structure. 20061 * @fcf_record: pointer to the fcf record to write the default data. 20062 * @fcf_index: FCF table entry index. 20063 * 20064 * This routine is invoked to build the driver's default FCF record. The 20065 * values used are hardcoded. This routine handles memory initialization. 20066 * 20067 **/ 20068 void 20069 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 20070 struct fcf_record *fcf_record, 20071 uint16_t fcf_index) 20072 { 20073 memset(fcf_record, 0, sizeof(struct fcf_record)); 20074 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 20075 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 20076 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 20077 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 20078 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 20079 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 20080 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 20081 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 20082 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 20083 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 20084 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 20085 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 20086 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 20087 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 20088 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 20089 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 20090 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 20091 /* Set the VLAN bit map */ 20092 if (phba->valid_vlan) { 20093 fcf_record->vlan_bitmap[phba->vlan_id / 8] 20094 = 1 << (phba->vlan_id % 8); 20095 } 20096 } 20097 20098 /** 20099 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 20100 * @phba: pointer to lpfc hba data structure. 20101 * @fcf_index: FCF table entry offset. 20102 * 20103 * This routine is invoked to scan the entire FCF table by reading FCF 20104 * record and processing it one at a time starting from the @fcf_index 20105 * for initial FCF discovery or fast FCF failover rediscovery. 20106 * 20107 * Return 0 if the mailbox command is submitted successfully, none 0 20108 * otherwise. 20109 **/ 20110 int 20111 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20112 { 20113 int rc = 0, error; 20114 LPFC_MBOXQ_t *mboxq; 20115 20116 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 20117 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 20118 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20119 if (!mboxq) { 20120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20121 "2000 Failed to allocate mbox for " 20122 "READ_FCF cmd\n"); 20123 error = -ENOMEM; 20124 goto fail_fcf_scan; 20125 } 20126 /* Construct the read FCF record mailbox command */ 20127 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20128 if (rc) { 20129 error = -EINVAL; 20130 goto fail_fcf_scan; 20131 } 20132 /* Issue the mailbox command asynchronously */ 20133 mboxq->vport = phba->pport; 20134 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20135 20136 set_bit(FCF_TS_INPROG, &phba->hba_flag); 20137 20138 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20139 if (rc == MBX_NOT_FINISHED) 20140 error = -EIO; 20141 else { 20142 /* Reset eligible FCF count for new scan */ 20143 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20144 phba->fcf.eligible_fcf_cnt = 0; 20145 error = 0; 20146 } 20147 fail_fcf_scan: 20148 if (error) { 20149 if (mboxq) 20150 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20151 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20152 clear_bit(FCF_TS_INPROG, &phba->hba_flag); 20153 } 20154 return error; 20155 } 20156 20157 /** 20158 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20159 * @phba: pointer to lpfc hba data structure. 20160 * @fcf_index: FCF table entry offset. 20161 * 20162 * This routine is invoked to read an FCF record indicated by @fcf_index 20163 * and to use it for FLOGI roundrobin FCF failover. 20164 * 20165 * Return 0 if the mailbox command is submitted successfully, none 0 20166 * otherwise. 20167 **/ 20168 int 20169 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20170 { 20171 int rc = 0, error; 20172 LPFC_MBOXQ_t *mboxq; 20173 20174 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20175 if (!mboxq) { 20176 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20177 "2763 Failed to allocate mbox for " 20178 "READ_FCF cmd\n"); 20179 error = -ENOMEM; 20180 goto fail_fcf_read; 20181 } 20182 /* Construct the read FCF record mailbox command */ 20183 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20184 if (rc) { 20185 error = -EINVAL; 20186 goto fail_fcf_read; 20187 } 20188 /* Issue the mailbox command asynchronously */ 20189 mboxq->vport = phba->pport; 20190 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20191 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20192 if (rc == MBX_NOT_FINISHED) 20193 error = -EIO; 20194 else 20195 error = 0; 20196 20197 fail_fcf_read: 20198 if (error && mboxq) 20199 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20200 return error; 20201 } 20202 20203 /** 20204 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20205 * @phba: pointer to lpfc hba data structure. 20206 * @fcf_index: FCF table entry offset. 20207 * 20208 * This routine is invoked to read an FCF record indicated by @fcf_index to 20209 * determine whether it's eligible for FLOGI roundrobin failover list. 20210 * 20211 * Return 0 if the mailbox command is submitted successfully, none 0 20212 * otherwise. 20213 **/ 20214 int 20215 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20216 { 20217 int rc = 0, error; 20218 LPFC_MBOXQ_t *mboxq; 20219 20220 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20221 if (!mboxq) { 20222 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20223 "2758 Failed to allocate mbox for " 20224 "READ_FCF cmd\n"); 20225 error = -ENOMEM; 20226 goto fail_fcf_read; 20227 } 20228 /* Construct the read FCF record mailbox command */ 20229 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20230 if (rc) { 20231 error = -EINVAL; 20232 goto fail_fcf_read; 20233 } 20234 /* Issue the mailbox command asynchronously */ 20235 mboxq->vport = phba->pport; 20236 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20237 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20238 if (rc == MBX_NOT_FINISHED) 20239 error = -EIO; 20240 else 20241 error = 0; 20242 20243 fail_fcf_read: 20244 if (error && mboxq) 20245 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20246 return error; 20247 } 20248 20249 /** 20250 * lpfc_check_next_fcf_pri_level 20251 * @phba: pointer to the lpfc_hba struct for this port. 20252 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20253 * routine when the rr_bmask is empty. The FCF indecies are put into the 20254 * rr_bmask based on their priority level. Starting from the highest priority 20255 * to the lowest. The most likely FCF candidate will be in the highest 20256 * priority group. When this routine is called it searches the fcf_pri list for 20257 * next lowest priority group and repopulates the rr_bmask with only those 20258 * fcf_indexes. 20259 * returns: 20260 * 1=success 0=failure 20261 **/ 20262 static int 20263 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20264 { 20265 uint16_t next_fcf_pri; 20266 uint16_t last_index; 20267 struct lpfc_fcf_pri *fcf_pri; 20268 int rc; 20269 int ret = 0; 20270 20271 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20272 LPFC_SLI4_FCF_TBL_INDX_MAX); 20273 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20274 "3060 Last IDX %d\n", last_index); 20275 20276 /* Verify the priority list has 2 or more entries */ 20277 spin_lock_irq(&phba->hbalock); 20278 if (list_empty(&phba->fcf.fcf_pri_list) || 20279 list_is_singular(&phba->fcf.fcf_pri_list)) { 20280 spin_unlock_irq(&phba->hbalock); 20281 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20282 "3061 Last IDX %d\n", last_index); 20283 return 0; /* Empty rr list */ 20284 } 20285 spin_unlock_irq(&phba->hbalock); 20286 20287 next_fcf_pri = 0; 20288 /* 20289 * Clear the rr_bmask and set all of the bits that are at this 20290 * priority. 20291 */ 20292 memset(phba->fcf.fcf_rr_bmask, 0, 20293 sizeof(*phba->fcf.fcf_rr_bmask)); 20294 spin_lock_irq(&phba->hbalock); 20295 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20296 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20297 continue; 20298 /* 20299 * the 1st priority that has not FLOGI failed 20300 * will be the highest. 20301 */ 20302 if (!next_fcf_pri) 20303 next_fcf_pri = fcf_pri->fcf_rec.priority; 20304 spin_unlock_irq(&phba->hbalock); 20305 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20306 rc = lpfc_sli4_fcf_rr_index_set(phba, 20307 fcf_pri->fcf_rec.fcf_index); 20308 if (rc) 20309 return 0; 20310 } 20311 spin_lock_irq(&phba->hbalock); 20312 } 20313 /* 20314 * if next_fcf_pri was not set above and the list is not empty then 20315 * we have failed flogis on all of them. So reset flogi failed 20316 * and start at the beginning. 20317 */ 20318 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20319 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20320 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20321 /* 20322 * the 1st priority that has not FLOGI failed 20323 * will be the highest. 20324 */ 20325 if (!next_fcf_pri) 20326 next_fcf_pri = fcf_pri->fcf_rec.priority; 20327 spin_unlock_irq(&phba->hbalock); 20328 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20329 rc = lpfc_sli4_fcf_rr_index_set(phba, 20330 fcf_pri->fcf_rec.fcf_index); 20331 if (rc) 20332 return 0; 20333 } 20334 spin_lock_irq(&phba->hbalock); 20335 } 20336 } else 20337 ret = 1; 20338 spin_unlock_irq(&phba->hbalock); 20339 20340 return ret; 20341 } 20342 /** 20343 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20344 * @phba: pointer to lpfc hba data structure. 20345 * 20346 * This routine is to get the next eligible FCF record index in a round 20347 * robin fashion. If the next eligible FCF record index equals to the 20348 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20349 * shall be returned, otherwise, the next eligible FCF record's index 20350 * shall be returned. 20351 **/ 20352 uint16_t 20353 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20354 { 20355 uint16_t next_fcf_index; 20356 20357 initial_priority: 20358 /* Search start from next bit of currently registered FCF index */ 20359 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20360 20361 next_priority: 20362 /* Determine the next fcf index to check */ 20363 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20364 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20365 LPFC_SLI4_FCF_TBL_INDX_MAX, 20366 next_fcf_index); 20367 20368 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20369 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20370 /* 20371 * If we have wrapped then we need to clear the bits that 20372 * have been tested so that we can detect when we should 20373 * change the priority level. 20374 */ 20375 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20376 LPFC_SLI4_FCF_TBL_INDX_MAX); 20377 } 20378 20379 20380 /* Check roundrobin failover list empty condition */ 20381 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20382 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20383 /* 20384 * If next fcf index is not found check if there are lower 20385 * Priority level fcf's in the fcf_priority list. 20386 * Set up the rr_bmask with all of the avaiable fcf bits 20387 * at that level and continue the selection process. 20388 */ 20389 if (lpfc_check_next_fcf_pri_level(phba)) 20390 goto initial_priority; 20391 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20392 "2844 No roundrobin failover FCF available\n"); 20393 20394 return LPFC_FCOE_FCF_NEXT_NONE; 20395 } 20396 20397 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20398 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20399 LPFC_FCF_FLOGI_FAILED) { 20400 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20401 return LPFC_FCOE_FCF_NEXT_NONE; 20402 20403 goto next_priority; 20404 } 20405 20406 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20407 "2845 Get next roundrobin failover FCF (x%x)\n", 20408 next_fcf_index); 20409 20410 return next_fcf_index; 20411 } 20412 20413 /** 20414 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20415 * @phba: pointer to lpfc hba data structure. 20416 * @fcf_index: index into the FCF table to 'set' 20417 * 20418 * This routine sets the FCF record index in to the eligible bmask for 20419 * roundrobin failover search. It checks to make sure that the index 20420 * does not go beyond the range of the driver allocated bmask dimension 20421 * before setting the bit. 20422 * 20423 * Returns 0 if the index bit successfully set, otherwise, it returns 20424 * -EINVAL. 20425 **/ 20426 int 20427 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20428 { 20429 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20430 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20431 "2610 FCF (x%x) reached driver's book " 20432 "keeping dimension:x%x\n", 20433 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20434 return -EINVAL; 20435 } 20436 /* Set the eligible FCF record index bmask */ 20437 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20438 20439 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20440 "2790 Set FCF (x%x) to roundrobin FCF failover " 20441 "bmask\n", fcf_index); 20442 20443 return 0; 20444 } 20445 20446 /** 20447 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20448 * @phba: pointer to lpfc hba data structure. 20449 * @fcf_index: index into the FCF table to 'clear' 20450 * 20451 * This routine clears the FCF record index from the eligible bmask for 20452 * roundrobin failover search. It checks to make sure that the index 20453 * does not go beyond the range of the driver allocated bmask dimension 20454 * before clearing the bit. 20455 **/ 20456 void 20457 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20458 { 20459 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20460 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20461 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20462 "2762 FCF (x%x) reached driver's book " 20463 "keeping dimension:x%x\n", 20464 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20465 return; 20466 } 20467 /* Clear the eligible FCF record index bmask */ 20468 spin_lock_irq(&phba->hbalock); 20469 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20470 list) { 20471 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20472 list_del_init(&fcf_pri->list); 20473 break; 20474 } 20475 } 20476 spin_unlock_irq(&phba->hbalock); 20477 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20478 20479 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20480 "2791 Clear FCF (x%x) from roundrobin failover " 20481 "bmask\n", fcf_index); 20482 } 20483 20484 /** 20485 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20486 * @phba: pointer to lpfc hba data structure. 20487 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20488 * 20489 * This routine is the completion routine for the rediscover FCF table mailbox 20490 * command. If the mailbox command returned failure, it will try to stop the 20491 * FCF rediscover wait timer. 20492 **/ 20493 static void 20494 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20495 { 20496 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20497 uint32_t shdr_status, shdr_add_status; 20498 20499 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20500 20501 shdr_status = bf_get(lpfc_mbox_hdr_status, 20502 &redisc_fcf->header.cfg_shdr.response); 20503 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20504 &redisc_fcf->header.cfg_shdr.response); 20505 if (shdr_status || shdr_add_status) { 20506 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20507 "2746 Requesting for FCF rediscovery failed " 20508 "status x%x add_status x%x\n", 20509 shdr_status, shdr_add_status); 20510 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20511 spin_lock_irq(&phba->hbalock); 20512 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20513 spin_unlock_irq(&phba->hbalock); 20514 /* 20515 * CVL event triggered FCF rediscover request failed, 20516 * last resort to re-try current registered FCF entry. 20517 */ 20518 lpfc_retry_pport_discovery(phba); 20519 } else { 20520 spin_lock_irq(&phba->hbalock); 20521 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20522 spin_unlock_irq(&phba->hbalock); 20523 /* 20524 * DEAD FCF event triggered FCF rediscover request 20525 * failed, last resort to fail over as a link down 20526 * to FCF registration. 20527 */ 20528 lpfc_sli4_fcf_dead_failthrough(phba); 20529 } 20530 } else { 20531 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20532 "2775 Start FCF rediscover quiescent timer\n"); 20533 /* 20534 * Start FCF rediscovery wait timer for pending FCF 20535 * before rescan FCF record table. 20536 */ 20537 lpfc_fcf_redisc_wait_start_timer(phba); 20538 } 20539 20540 mempool_free(mbox, phba->mbox_mem_pool); 20541 } 20542 20543 /** 20544 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20545 * @phba: pointer to lpfc hba data structure. 20546 * 20547 * This routine is invoked to request for rediscovery of the entire FCF table 20548 * by the port. 20549 **/ 20550 int 20551 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20552 { 20553 LPFC_MBOXQ_t *mbox; 20554 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20555 int rc, length; 20556 20557 /* Cancel retry delay timers to all vports before FCF rediscover */ 20558 lpfc_cancel_all_vport_retry_delay_timer(phba); 20559 20560 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20561 if (!mbox) { 20562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20563 "2745 Failed to allocate mbox for " 20564 "requesting FCF rediscover.\n"); 20565 return -ENOMEM; 20566 } 20567 20568 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20569 sizeof(struct lpfc_sli4_cfg_mhdr)); 20570 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20571 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20572 length, LPFC_SLI4_MBX_EMBED); 20573 20574 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20575 /* Set count to 0 for invalidating the entire FCF database */ 20576 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20577 20578 /* Issue the mailbox command asynchronously */ 20579 mbox->vport = phba->pport; 20580 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20581 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20582 20583 if (rc == MBX_NOT_FINISHED) { 20584 mempool_free(mbox, phba->mbox_mem_pool); 20585 return -EIO; 20586 } 20587 return 0; 20588 } 20589 20590 /** 20591 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20592 * @phba: pointer to lpfc hba data structure. 20593 * 20594 * This function is the failover routine as a last resort to the FCF DEAD 20595 * event when driver failed to perform fast FCF failover. 20596 **/ 20597 void 20598 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20599 { 20600 uint32_t link_state; 20601 20602 /* 20603 * Last resort as FCF DEAD event failover will treat this as 20604 * a link down, but save the link state because we don't want 20605 * it to be changed to Link Down unless it is already down. 20606 */ 20607 link_state = phba->link_state; 20608 lpfc_linkdown(phba); 20609 phba->link_state = link_state; 20610 20611 /* Unregister FCF if no devices connected to it */ 20612 lpfc_unregister_unused_fcf(phba); 20613 } 20614 20615 /** 20616 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20617 * @phba: pointer to lpfc hba data structure. 20618 * @rgn23_data: pointer to configure region 23 data. 20619 * 20620 * This function gets SLI3 port configure region 23 data through memory dump 20621 * mailbox command. When it successfully retrieves data, the size of the data 20622 * will be returned, otherwise, 0 will be returned. 20623 **/ 20624 static uint32_t 20625 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20626 { 20627 LPFC_MBOXQ_t *pmb = NULL; 20628 MAILBOX_t *mb; 20629 uint32_t offset = 0; 20630 int rc; 20631 20632 if (!rgn23_data) 20633 return 0; 20634 20635 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20636 if (!pmb) { 20637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20638 "2600 failed to allocate mailbox memory\n"); 20639 return 0; 20640 } 20641 mb = &pmb->u.mb; 20642 20643 do { 20644 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20645 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20646 20647 if (rc != MBX_SUCCESS) { 20648 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20649 "2601 failed to read config " 20650 "region 23, rc 0x%x Status 0x%x\n", 20651 rc, mb->mbxStatus); 20652 mb->un.varDmp.word_cnt = 0; 20653 } 20654 /* 20655 * dump mem may return a zero when finished or we got a 20656 * mailbox error, either way we are done. 20657 */ 20658 if (mb->un.varDmp.word_cnt == 0) 20659 break; 20660 20661 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20662 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20663 20664 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20665 rgn23_data + offset, 20666 mb->un.varDmp.word_cnt); 20667 offset += mb->un.varDmp.word_cnt; 20668 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20669 20670 mempool_free(pmb, phba->mbox_mem_pool); 20671 return offset; 20672 } 20673 20674 /** 20675 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20676 * @phba: pointer to lpfc hba data structure. 20677 * @rgn23_data: pointer to configure region 23 data. 20678 * 20679 * This function gets SLI4 port configure region 23 data through memory dump 20680 * mailbox command. When it successfully retrieves data, the size of the data 20681 * will be returned, otherwise, 0 will be returned. 20682 **/ 20683 static uint32_t 20684 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20685 { 20686 LPFC_MBOXQ_t *mboxq = NULL; 20687 struct lpfc_dmabuf *mp = NULL; 20688 struct lpfc_mqe *mqe; 20689 uint32_t data_length = 0; 20690 int rc; 20691 20692 if (!rgn23_data) 20693 return 0; 20694 20695 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20696 if (!mboxq) { 20697 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20698 "3105 failed to allocate mailbox memory\n"); 20699 return 0; 20700 } 20701 20702 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20703 goto out; 20704 mqe = &mboxq->u.mqe; 20705 mp = mboxq->ctx_buf; 20706 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20707 if (rc) 20708 goto out; 20709 data_length = mqe->un.mb_words[5]; 20710 if (data_length == 0) 20711 goto out; 20712 if (data_length > DMP_RGN23_SIZE) { 20713 data_length = 0; 20714 goto out; 20715 } 20716 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20717 out: 20718 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20719 return data_length; 20720 } 20721 20722 /** 20723 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20724 * @phba: pointer to lpfc hba data structure. 20725 * 20726 * This function read region 23 and parse TLV for port status to 20727 * decide if the user disaled the port. If the TLV indicates the 20728 * port is disabled, the hba_flag is set accordingly. 20729 **/ 20730 void 20731 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20732 { 20733 uint8_t *rgn23_data = NULL; 20734 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20735 uint32_t offset = 0; 20736 20737 /* Get adapter Region 23 data */ 20738 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20739 if (!rgn23_data) 20740 goto out; 20741 20742 if (phba->sli_rev < LPFC_SLI_REV4) 20743 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20744 else { 20745 if_type = bf_get(lpfc_sli_intf_if_type, 20746 &phba->sli4_hba.sli_intf); 20747 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20748 goto out; 20749 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20750 } 20751 20752 if (!data_size) 20753 goto out; 20754 20755 /* Check the region signature first */ 20756 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20757 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20758 "2619 Config region 23 has bad signature\n"); 20759 goto out; 20760 } 20761 offset += 4; 20762 20763 /* Check the data structure version */ 20764 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20766 "2620 Config region 23 has bad version\n"); 20767 goto out; 20768 } 20769 offset += 4; 20770 20771 /* Parse TLV entries in the region */ 20772 while (offset < data_size) { 20773 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20774 break; 20775 /* 20776 * If the TLV is not driver specific TLV or driver id is 20777 * not linux driver id, skip the record. 20778 */ 20779 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20780 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20781 (rgn23_data[offset + 3] != 0)) { 20782 offset += rgn23_data[offset + 1] * 4 + 4; 20783 continue; 20784 } 20785 20786 /* Driver found a driver specific TLV in the config region */ 20787 sub_tlv_len = rgn23_data[offset + 1] * 4; 20788 offset += 4; 20789 tlv_offset = 0; 20790 20791 /* 20792 * Search for configured port state sub-TLV. 20793 */ 20794 while ((offset < data_size) && 20795 (tlv_offset < sub_tlv_len)) { 20796 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20797 offset += 4; 20798 tlv_offset += 4; 20799 break; 20800 } 20801 if (rgn23_data[offset] != PORT_STE_TYPE) { 20802 offset += rgn23_data[offset + 1] * 4 + 4; 20803 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20804 continue; 20805 } 20806 20807 /* This HBA contains PORT_STE configured */ 20808 if (!rgn23_data[offset + 2]) 20809 set_bit(LINK_DISABLED, &phba->hba_flag); 20810 20811 goto out; 20812 } 20813 } 20814 20815 out: 20816 kfree(rgn23_data); 20817 return; 20818 } 20819 20820 /** 20821 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20822 * @phba: pointer to lpfc hba data structure 20823 * @shdr_status: wr_object rsp's status field 20824 * @shdr_add_status: wr_object rsp's add_status field 20825 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20826 * @shdr_change_status: wr_object rsp's change_status field 20827 * @shdr_csf: wr_object rsp's csf bit 20828 * 20829 * This routine is intended to be called after a firmware write completes. 20830 * It will log next action items to be performed by the user to instantiate 20831 * the newly downloaded firmware or reason for incompatibility. 20832 **/ 20833 static void 20834 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20835 u32 shdr_add_status, u32 shdr_add_status_2, 20836 u32 shdr_change_status, u32 shdr_csf) 20837 { 20838 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20839 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20840 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20841 "change_status x%02x, csf %01x\n", __func__, 20842 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20843 shdr_status, shdr_add_status, shdr_add_status_2, 20844 shdr_change_status, shdr_csf); 20845 20846 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20847 switch (shdr_add_status_2) { 20848 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20849 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20850 "4199 Firmware write failed: " 20851 "image incompatible with flash x%02x\n", 20852 phba->sli4_hba.flash_id); 20853 break; 20854 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20855 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20856 "4200 Firmware write failed: " 20857 "image incompatible with ASIC " 20858 "architecture x%02x\n", 20859 phba->sli4_hba.asic_rev); 20860 break; 20861 default: 20862 lpfc_log_msg(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20863 "4210 Firmware write failed: " 20864 "add_status_2 x%02x\n", 20865 shdr_add_status_2); 20866 break; 20867 } 20868 } else if (!shdr_status && !shdr_add_status) { 20869 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20870 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20871 if (shdr_csf) 20872 shdr_change_status = 20873 LPFC_CHANGE_STATUS_PCI_RESET; 20874 } 20875 20876 switch (shdr_change_status) { 20877 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20878 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20879 "3198 Firmware write complete: System " 20880 "reboot required to instantiate\n"); 20881 break; 20882 case (LPFC_CHANGE_STATUS_FW_RESET): 20883 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20884 "3199 Firmware write complete: " 20885 "Firmware reset required to " 20886 "instantiate\n"); 20887 break; 20888 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20889 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20890 "3200 Firmware write complete: Port " 20891 "Migration or PCI Reset required to " 20892 "instantiate\n"); 20893 break; 20894 case (LPFC_CHANGE_STATUS_PCI_RESET): 20895 lpfc_log_msg(phba, KERN_NOTICE, LOG_MBOX | LOG_SLI, 20896 "3201 Firmware write complete: PCI " 20897 "Reset required to instantiate\n"); 20898 break; 20899 default: 20900 break; 20901 } 20902 } 20903 } 20904 20905 /** 20906 * lpfc_wr_object - write an object to the firmware 20907 * @phba: HBA structure that indicates port to create a queue on. 20908 * @dmabuf_list: list of dmabufs to write to the port. 20909 * @size: the total byte value of the objects to write to the port. 20910 * @offset: the current offset to be used to start the transfer. 20911 * 20912 * This routine will create a wr_object mailbox command to send to the port. 20913 * the mailbox command will be constructed using the dma buffers described in 20914 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20915 * BDEs that the imbedded mailbox can support. The @offset variable will be 20916 * used to indicate the starting offset of the transfer and will also return 20917 * the offset after the write object mailbox has completed. @size is used to 20918 * determine the end of the object and whether the eof bit should be set. 20919 * 20920 * Return 0 is successful and offset will contain the new offset to use 20921 * for the next write. 20922 * Return negative value for error cases. 20923 **/ 20924 int 20925 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20926 uint32_t size, uint32_t *offset) 20927 { 20928 struct lpfc_mbx_wr_object *wr_object; 20929 LPFC_MBOXQ_t *mbox; 20930 int rc = 0, i = 0; 20931 int mbox_status = 0; 20932 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20933 uint32_t shdr_change_status = 0, shdr_csf = 0; 20934 uint32_t mbox_tmo; 20935 struct lpfc_dmabuf *dmabuf; 20936 uint32_t written = 0; 20937 bool check_change_status = false; 20938 20939 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20940 if (!mbox) 20941 return -ENOMEM; 20942 20943 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20944 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20945 sizeof(struct lpfc_mbx_wr_object) - 20946 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20947 20948 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20949 wr_object->u.request.write_offset = *offset; 20950 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20951 wr_object->u.request.object_name[0] = 20952 cpu_to_le32(wr_object->u.request.object_name[0]); 20953 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20954 list_for_each_entry(dmabuf, dmabuf_list, list) { 20955 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20956 break; 20957 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20958 wr_object->u.request.bde[i].addrHigh = 20959 putPaddrHigh(dmabuf->phys); 20960 if (written + SLI4_PAGE_SIZE >= size) { 20961 wr_object->u.request.bde[i].tus.f.bdeSize = 20962 (size - written); 20963 written += (size - written); 20964 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20965 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20966 check_change_status = true; 20967 } else { 20968 wr_object->u.request.bde[i].tus.f.bdeSize = 20969 SLI4_PAGE_SIZE; 20970 written += SLI4_PAGE_SIZE; 20971 } 20972 i++; 20973 } 20974 wr_object->u.request.bde_count = i; 20975 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20976 if (!phba->sli4_hba.intr_enable) 20977 mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20978 else { 20979 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20980 mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20981 } 20982 20983 /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ 20984 rc = mbox_status; 20985 20986 /* The IOCTL status is embedded in the mailbox subheader. */ 20987 shdr_status = bf_get(lpfc_mbox_hdr_status, 20988 &wr_object->header.cfg_shdr.response); 20989 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20990 &wr_object->header.cfg_shdr.response); 20991 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20992 &wr_object->header.cfg_shdr.response); 20993 if (check_change_status) { 20994 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20995 &wr_object->u.response); 20996 shdr_csf = bf_get(lpfc_wr_object_csf, 20997 &wr_object->u.response); 20998 } 20999 21000 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 21001 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21002 "3025 Write Object mailbox failed with " 21003 "status x%x add_status x%x, add_status_2 x%x, " 21004 "mbx status x%x\n", 21005 shdr_status, shdr_add_status, shdr_add_status_2, 21006 rc); 21007 rc = -ENXIO; 21008 *offset = shdr_add_status; 21009 } else { 21010 *offset += wr_object->u.response.actual_write_length; 21011 } 21012 21013 if (rc || check_change_status) 21014 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 21015 shdr_add_status_2, shdr_change_status, 21016 shdr_csf); 21017 21018 if (!phba->sli4_hba.intr_enable) 21019 mempool_free(mbox, phba->mbox_mem_pool); 21020 else if (mbox_status != MBX_TIMEOUT) 21021 mempool_free(mbox, phba->mbox_mem_pool); 21022 21023 return rc; 21024 } 21025 21026 /** 21027 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 21028 * @vport: pointer to vport data structure. 21029 * 21030 * This function iterate through the mailboxq and clean up all REG_LOGIN 21031 * and REG_VPI mailbox commands associated with the vport. This function 21032 * is called when driver want to restart discovery of the vport due to 21033 * a Clear Virtual Link event. 21034 **/ 21035 void 21036 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 21037 { 21038 struct lpfc_hba *phba = vport->phba; 21039 LPFC_MBOXQ_t *mb, *nextmb; 21040 struct lpfc_nodelist *ndlp; 21041 struct lpfc_nodelist *act_mbx_ndlp = NULL; 21042 LIST_HEAD(mbox_cmd_list); 21043 uint8_t restart_loop; 21044 21045 /* Clean up internally queued mailbox commands with the vport */ 21046 spin_lock_irq(&phba->hbalock); 21047 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 21048 if (mb->vport != vport) 21049 continue; 21050 21051 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21052 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21053 continue; 21054 21055 list_move_tail(&mb->list, &mbox_cmd_list); 21056 } 21057 /* Clean up active mailbox command with the vport */ 21058 mb = phba->sli.mbox_active; 21059 if (mb && (mb->vport == vport)) { 21060 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 21061 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 21062 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21063 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21064 act_mbx_ndlp = mb->ctx_ndlp; 21065 21066 /* This reference is local to this routine. The 21067 * reference is removed at routine exit. 21068 */ 21069 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 21070 21071 /* Unregister the RPI when mailbox complete */ 21072 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21073 } 21074 } 21075 /* Cleanup any mailbox completions which are not yet processed */ 21076 do { 21077 restart_loop = 0; 21078 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 21079 /* 21080 * If this mailox is already processed or it is 21081 * for another vport ignore it. 21082 */ 21083 if ((mb->vport != vport) || 21084 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 21085 continue; 21086 21087 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 21088 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 21089 continue; 21090 21091 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21092 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21093 ndlp = mb->ctx_ndlp; 21094 /* Unregister the RPI when mailbox complete */ 21095 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 21096 restart_loop = 1; 21097 spin_unlock_irq(&phba->hbalock); 21098 spin_lock(&ndlp->lock); 21099 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21100 spin_unlock(&ndlp->lock); 21101 spin_lock_irq(&phba->hbalock); 21102 break; 21103 } 21104 } 21105 } while (restart_loop); 21106 21107 spin_unlock_irq(&phba->hbalock); 21108 21109 /* Release the cleaned-up mailbox commands */ 21110 while (!list_empty(&mbox_cmd_list)) { 21111 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 21112 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 21113 ndlp = mb->ctx_ndlp; 21114 mb->ctx_ndlp = NULL; 21115 if (ndlp) { 21116 spin_lock(&ndlp->lock); 21117 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21118 spin_unlock(&ndlp->lock); 21119 lpfc_nlp_put(ndlp); 21120 } 21121 } 21122 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 21123 } 21124 21125 /* Release the ndlp with the cleaned-up active mailbox command */ 21126 if (act_mbx_ndlp) { 21127 spin_lock(&act_mbx_ndlp->lock); 21128 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 21129 spin_unlock(&act_mbx_ndlp->lock); 21130 lpfc_nlp_put(act_mbx_ndlp); 21131 } 21132 } 21133 21134 /** 21135 * lpfc_drain_txq - Drain the txq 21136 * @phba: Pointer to HBA context object. 21137 * 21138 * This function attempt to submit IOCBs on the txq 21139 * to the adapter. For SLI4 adapters, the txq contains 21140 * ELS IOCBs that have been deferred because the there 21141 * are no SGLs. This congestion can occur with large 21142 * vport counts during node discovery. 21143 **/ 21144 21145 uint32_t 21146 lpfc_drain_txq(struct lpfc_hba *phba) 21147 { 21148 LIST_HEAD(completions); 21149 struct lpfc_sli_ring *pring; 21150 struct lpfc_iocbq *piocbq = NULL; 21151 unsigned long iflags = 0; 21152 char *fail_msg = NULL; 21153 uint32_t txq_cnt = 0; 21154 struct lpfc_queue *wq; 21155 int ret = 0; 21156 21157 if (phba->link_flag & LS_MDS_LOOPBACK) { 21158 /* MDS WQE are posted only to first WQ*/ 21159 wq = phba->sli4_hba.hdwq[0].io_wq; 21160 if (unlikely(!wq)) 21161 return 0; 21162 pring = wq->pring; 21163 } else { 21164 wq = phba->sli4_hba.els_wq; 21165 if (unlikely(!wq)) 21166 return 0; 21167 pring = lpfc_phba_elsring(phba); 21168 } 21169 21170 if (unlikely(!pring) || list_empty(&pring->txq)) 21171 return 0; 21172 21173 spin_lock_irqsave(&pring->ring_lock, iflags); 21174 list_for_each_entry(piocbq, &pring->txq, list) { 21175 txq_cnt++; 21176 } 21177 21178 if (txq_cnt > pring->txq_max) 21179 pring->txq_max = txq_cnt; 21180 21181 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21182 21183 while (!list_empty(&pring->txq)) { 21184 spin_lock_irqsave(&pring->ring_lock, iflags); 21185 21186 piocbq = lpfc_sli_ringtx_get(phba, pring); 21187 if (!piocbq) { 21188 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21189 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21190 "2823 txq empty and txq_cnt is %d\n", 21191 txq_cnt); 21192 break; 21193 } 21194 txq_cnt--; 21195 21196 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21197 21198 if (ret && ret != IOCB_BUSY) { 21199 fail_msg = " - Cannot send IO "; 21200 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21201 } 21202 if (fail_msg) { 21203 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21204 /* Failed means we can't issue and need to cancel */ 21205 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21206 "2822 IOCB failed %s iotag 0x%x " 21207 "xri 0x%x %d flg x%x\n", 21208 fail_msg, piocbq->iotag, 21209 piocbq->sli4_xritag, ret, 21210 piocbq->cmd_flag); 21211 list_add_tail(&piocbq->list, &completions); 21212 fail_msg = NULL; 21213 } 21214 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21215 if (txq_cnt == 0 || ret == IOCB_BUSY) 21216 break; 21217 } 21218 /* Cancel all the IOCBs that cannot be issued */ 21219 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21220 IOERR_SLI_ABORTED); 21221 21222 return txq_cnt; 21223 } 21224 21225 /** 21226 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21227 * @phba: Pointer to HBA context object. 21228 * @pwqeq: Pointer to command WQE. 21229 * @sglq: Pointer to the scatter gather queue object. 21230 * 21231 * This routine converts the bpl or bde that is in the WQE 21232 * to a sgl list for the sli4 hardware. The physical address 21233 * of the bpl/bde is converted back to a virtual address. 21234 * If the WQE contains a BPL then the list of BDE's is 21235 * converted to sli4_sge's. If the WQE contains a single 21236 * BDE then it is converted to a single sli_sge. 21237 * The WQE is still in cpu endianness so the contents of 21238 * the bpl can be used without byte swapping. 21239 * 21240 * Returns valid XRI = Success, NO_XRI = Failure. 21241 */ 21242 static uint16_t 21243 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21244 struct lpfc_sglq *sglq) 21245 { 21246 uint16_t xritag = NO_XRI; 21247 struct ulp_bde64 *bpl = NULL; 21248 struct ulp_bde64 bde; 21249 struct sli4_sge *sgl = NULL; 21250 struct lpfc_dmabuf *dmabuf; 21251 union lpfc_wqe128 *wqe; 21252 int numBdes = 0; 21253 int i = 0; 21254 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21255 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21256 uint32_t cmd; 21257 21258 if (!pwqeq || !sglq) 21259 return xritag; 21260 21261 sgl = (struct sli4_sge *)sglq->sgl; 21262 wqe = &pwqeq->wqe; 21263 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21264 21265 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21266 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21267 return sglq->sli4_xritag; 21268 numBdes = pwqeq->num_bdes; 21269 if (numBdes) { 21270 /* The addrHigh and addrLow fields within the WQE 21271 * have not been byteswapped yet so there is no 21272 * need to swap them back. 21273 */ 21274 if (pwqeq->bpl_dmabuf) 21275 dmabuf = pwqeq->bpl_dmabuf; 21276 else 21277 return xritag; 21278 21279 bpl = (struct ulp_bde64 *)dmabuf->virt; 21280 if (!bpl) 21281 return xritag; 21282 21283 for (i = 0; i < numBdes; i++) { 21284 /* Should already be byte swapped. */ 21285 sgl->addr_hi = bpl->addrHigh; 21286 sgl->addr_lo = bpl->addrLow; 21287 21288 sgl->word2 = le32_to_cpu(sgl->word2); 21289 if ((i+1) == numBdes) 21290 bf_set(lpfc_sli4_sge_last, sgl, 1); 21291 else 21292 bf_set(lpfc_sli4_sge_last, sgl, 0); 21293 /* swap the size field back to the cpu so we 21294 * can assign it to the sgl. 21295 */ 21296 bde.tus.w = le32_to_cpu(bpl->tus.w); 21297 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21298 /* The offsets in the sgl need to be accumulated 21299 * separately for the request and reply lists. 21300 * The request is always first, the reply follows. 21301 */ 21302 switch (cmd) { 21303 case CMD_GEN_REQUEST64_WQE: 21304 /* add up the reply sg entries */ 21305 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21306 inbound++; 21307 /* first inbound? reset the offset */ 21308 if (inbound == 1) 21309 offset = 0; 21310 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21311 bf_set(lpfc_sli4_sge_type, sgl, 21312 LPFC_SGE_TYPE_DATA); 21313 offset += bde.tus.f.bdeSize; 21314 break; 21315 case CMD_FCP_TRSP64_WQE: 21316 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21317 bf_set(lpfc_sli4_sge_type, sgl, 21318 LPFC_SGE_TYPE_DATA); 21319 break; 21320 case CMD_FCP_TSEND64_WQE: 21321 case CMD_FCP_TRECEIVE64_WQE: 21322 bf_set(lpfc_sli4_sge_type, sgl, 21323 bpl->tus.f.bdeFlags); 21324 if (i < 3) 21325 offset = 0; 21326 else 21327 offset += bde.tus.f.bdeSize; 21328 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21329 break; 21330 } 21331 sgl->word2 = cpu_to_le32(sgl->word2); 21332 bpl++; 21333 sgl++; 21334 } 21335 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21336 /* The addrHigh and addrLow fields of the BDE have not 21337 * been byteswapped yet so they need to be swapped 21338 * before putting them in the sgl. 21339 */ 21340 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21341 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21342 sgl->word2 = le32_to_cpu(sgl->word2); 21343 bf_set(lpfc_sli4_sge_last, sgl, 1); 21344 sgl->word2 = cpu_to_le32(sgl->word2); 21345 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21346 } 21347 return sglq->sli4_xritag; 21348 } 21349 21350 /** 21351 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21352 * @phba: Pointer to HBA context object. 21353 * @qp: Pointer to HDW queue. 21354 * @pwqe: Pointer to command WQE. 21355 **/ 21356 int 21357 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21358 struct lpfc_iocbq *pwqe) 21359 { 21360 union lpfc_wqe128 *wqe = &pwqe->wqe; 21361 struct lpfc_async_xchg_ctx *ctxp; 21362 struct lpfc_queue *wq; 21363 struct lpfc_sglq *sglq; 21364 struct lpfc_sli_ring *pring; 21365 unsigned long iflags; 21366 uint32_t ret = 0; 21367 21368 /* NVME_LS and NVME_LS ABTS requests. */ 21369 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21370 pring = phba->sli4_hba.nvmels_wq->pring; 21371 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21372 qp, wq_access); 21373 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21374 if (!sglq) { 21375 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21376 return WQE_BUSY; 21377 } 21378 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21379 pwqe->sli4_xritag = sglq->sli4_xritag; 21380 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21381 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21382 return WQE_ERROR; 21383 } 21384 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21385 pwqe->sli4_xritag); 21386 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21387 if (ret) { 21388 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21389 return ret; 21390 } 21391 21392 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21393 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21394 21395 lpfc_sli4_poll_eq(qp->hba_eq); 21396 return 0; 21397 } 21398 21399 /* NVME_FCREQ and NVME_ABTS requests */ 21400 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21401 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21402 wq = qp->io_wq; 21403 pring = wq->pring; 21404 21405 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21406 21407 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21408 qp, wq_access); 21409 ret = lpfc_sli4_wq_put(wq, wqe); 21410 if (ret) { 21411 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21412 return ret; 21413 } 21414 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21415 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21416 21417 lpfc_sli4_poll_eq(qp->hba_eq); 21418 return 0; 21419 } 21420 21421 /* NVMET requests */ 21422 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21423 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21424 wq = qp->io_wq; 21425 pring = wq->pring; 21426 21427 ctxp = pwqe->context_un.axchg; 21428 sglq = ctxp->ctxbuf->sglq; 21429 if (pwqe->sli4_xritag == NO_XRI) { 21430 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21431 pwqe->sli4_xritag = sglq->sli4_xritag; 21432 } 21433 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21434 pwqe->sli4_xritag); 21435 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21436 21437 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21438 qp, wq_access); 21439 ret = lpfc_sli4_wq_put(wq, wqe); 21440 if (ret) { 21441 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21442 return ret; 21443 } 21444 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21445 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21446 21447 lpfc_sli4_poll_eq(qp->hba_eq); 21448 return 0; 21449 } 21450 return WQE_ERROR; 21451 } 21452 21453 /** 21454 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21455 * @phba: Pointer to HBA context object. 21456 * @cmdiocb: Pointer to driver command iocb object. 21457 * @cmpl: completion function. 21458 * 21459 * Fill the appropriate fields for the abort WQE and call 21460 * internal routine lpfc_sli4_issue_wqe to send the WQE 21461 * This function is called with hbalock held and no ring_lock held. 21462 * 21463 * RETURNS 0 - SUCCESS 21464 **/ 21465 21466 int 21467 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21468 void *cmpl) 21469 { 21470 struct lpfc_vport *vport = cmdiocb->vport; 21471 struct lpfc_iocbq *abtsiocb = NULL; 21472 union lpfc_wqe128 *abtswqe; 21473 struct lpfc_io_buf *lpfc_cmd; 21474 int retval = IOCB_ERROR; 21475 u16 xritag = cmdiocb->sli4_xritag; 21476 21477 /* 21478 * The scsi command can not be in txq and it is in flight because the 21479 * pCmd is still pointing at the SCSI command we have to abort. There 21480 * is no need to search the txcmplq. Just send an abort to the FW. 21481 */ 21482 21483 abtsiocb = __lpfc_sli_get_iocbq(phba); 21484 if (!abtsiocb) 21485 return WQE_NORESOURCE; 21486 21487 /* Indicate the IO is being aborted by the driver. */ 21488 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21489 21490 abtswqe = &abtsiocb->wqe; 21491 memset(abtswqe, 0, sizeof(*abtswqe)); 21492 21493 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21494 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21495 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21496 abtswqe->abort_cmd.rsrvd5 = 0; 21497 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21498 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21499 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21500 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21501 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21502 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21503 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21504 21505 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21506 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21507 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21508 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21509 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21510 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21511 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21512 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21513 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21514 abtsiocb->vport = vport; 21515 abtsiocb->cmd_cmpl = cmpl; 21516 21517 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21518 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21519 21520 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21521 "0359 Abort xri x%x, original iotag x%x, " 21522 "abort cmd iotag x%x retval x%x\n", 21523 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21524 21525 if (retval) { 21526 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21527 __lpfc_sli_release_iocbq(phba, abtsiocb); 21528 } 21529 21530 return retval; 21531 } 21532 21533 #ifdef LPFC_MXP_STAT 21534 /** 21535 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21536 * @phba: pointer to lpfc hba data structure. 21537 * @hwqid: belong to which HWQ. 21538 * 21539 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21540 * 15 seconds after a test case is running. 21541 * 21542 * The user should call lpfc_debugfs_multixripools_write before running a test 21543 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21544 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21545 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21546 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21547 **/ 21548 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21549 { 21550 struct lpfc_sli4_hdw_queue *qp; 21551 struct lpfc_multixri_pool *multixri_pool; 21552 struct lpfc_pvt_pool *pvt_pool; 21553 struct lpfc_pbl_pool *pbl_pool; 21554 u32 txcmplq_cnt; 21555 21556 qp = &phba->sli4_hba.hdwq[hwqid]; 21557 multixri_pool = qp->p_multixri_pool; 21558 if (!multixri_pool) 21559 return; 21560 21561 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21562 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21563 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21564 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21565 21566 multixri_pool->stat_pbl_count = pbl_pool->count; 21567 multixri_pool->stat_pvt_count = pvt_pool->count; 21568 multixri_pool->stat_busy_count = txcmplq_cnt; 21569 } 21570 21571 multixri_pool->stat_snapshot_taken++; 21572 } 21573 #endif 21574 21575 /** 21576 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21577 * @phba: pointer to lpfc hba data structure. 21578 * @hwqid: belong to which HWQ. 21579 * 21580 * This routine moves some XRIs from private to public pool when private pool 21581 * is not busy. 21582 **/ 21583 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21584 { 21585 struct lpfc_multixri_pool *multixri_pool; 21586 u32 io_req_count; 21587 u32 prev_io_req_count; 21588 21589 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21590 if (!multixri_pool) 21591 return; 21592 io_req_count = multixri_pool->io_req_count; 21593 prev_io_req_count = multixri_pool->prev_io_req_count; 21594 21595 if (prev_io_req_count != io_req_count) { 21596 /* Private pool is busy */ 21597 multixri_pool->prev_io_req_count = io_req_count; 21598 } else { 21599 /* Private pool is not busy. 21600 * Move XRIs from private to public pool. 21601 */ 21602 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21603 } 21604 } 21605 21606 /** 21607 * lpfc_adjust_high_watermark - Adjust high watermark 21608 * @phba: pointer to lpfc hba data structure. 21609 * @hwqid: belong to which HWQ. 21610 * 21611 * This routine sets high watermark as number of outstanding XRIs, 21612 * but make sure the new value is between xri_limit/2 and xri_limit. 21613 **/ 21614 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21615 { 21616 u32 new_watermark; 21617 u32 watermark_max; 21618 u32 watermark_min; 21619 u32 xri_limit; 21620 u32 txcmplq_cnt; 21621 u32 abts_io_bufs; 21622 struct lpfc_multixri_pool *multixri_pool; 21623 struct lpfc_sli4_hdw_queue *qp; 21624 21625 qp = &phba->sli4_hba.hdwq[hwqid]; 21626 multixri_pool = qp->p_multixri_pool; 21627 if (!multixri_pool) 21628 return; 21629 xri_limit = multixri_pool->xri_limit; 21630 21631 watermark_max = xri_limit; 21632 watermark_min = xri_limit / 2; 21633 21634 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21635 abts_io_bufs = qp->abts_scsi_io_bufs; 21636 abts_io_bufs += qp->abts_nvme_io_bufs; 21637 21638 new_watermark = txcmplq_cnt + abts_io_bufs; 21639 new_watermark = min(watermark_max, new_watermark); 21640 new_watermark = max(watermark_min, new_watermark); 21641 multixri_pool->pvt_pool.high_watermark = new_watermark; 21642 21643 #ifdef LPFC_MXP_STAT 21644 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21645 new_watermark); 21646 #endif 21647 } 21648 21649 /** 21650 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21651 * @phba: pointer to lpfc hba data structure. 21652 * @hwqid: belong to which HWQ. 21653 * 21654 * This routine is called from hearbeat timer when pvt_pool is idle. 21655 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21656 * The first step moves (all - low_watermark) amount of XRIs. 21657 * The second step moves the rest of XRIs. 21658 **/ 21659 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21660 { 21661 struct lpfc_pbl_pool *pbl_pool; 21662 struct lpfc_pvt_pool *pvt_pool; 21663 struct lpfc_sli4_hdw_queue *qp; 21664 struct lpfc_io_buf *lpfc_ncmd; 21665 struct lpfc_io_buf *lpfc_ncmd_next; 21666 unsigned long iflag; 21667 struct list_head tmp_list; 21668 u32 tmp_count; 21669 21670 qp = &phba->sli4_hba.hdwq[hwqid]; 21671 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21672 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21673 tmp_count = 0; 21674 21675 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21676 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21677 21678 if (pvt_pool->count > pvt_pool->low_watermark) { 21679 /* Step 1: move (all - low_watermark) from pvt_pool 21680 * to pbl_pool 21681 */ 21682 21683 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21684 INIT_LIST_HEAD(&tmp_list); 21685 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21686 &pvt_pool->list, list) { 21687 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21688 tmp_count++; 21689 if (tmp_count >= pvt_pool->low_watermark) 21690 break; 21691 } 21692 21693 /* Move all bufs from pvt_pool to pbl_pool */ 21694 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21695 21696 /* Move all bufs from tmp_list to pvt_pool */ 21697 list_splice(&tmp_list, &pvt_pool->list); 21698 21699 pbl_pool->count += (pvt_pool->count - tmp_count); 21700 pvt_pool->count = tmp_count; 21701 } else { 21702 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21703 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21704 pbl_pool->count += pvt_pool->count; 21705 pvt_pool->count = 0; 21706 } 21707 21708 spin_unlock(&pvt_pool->lock); 21709 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21710 } 21711 21712 /** 21713 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21714 * @phba: pointer to lpfc hba data structure 21715 * @qp: pointer to HDW queue 21716 * @pbl_pool: specified public free XRI pool 21717 * @pvt_pool: specified private free XRI pool 21718 * @count: number of XRIs to move 21719 * 21720 * This routine tries to move some free common bufs from the specified pbl_pool 21721 * to the specified pvt_pool. It might move less than count XRIs if there's not 21722 * enough in public pool. 21723 * 21724 * Return: 21725 * true - if XRIs are successfully moved from the specified pbl_pool to the 21726 * specified pvt_pool 21727 * false - if the specified pbl_pool is empty or locked by someone else 21728 **/ 21729 static bool 21730 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21731 struct lpfc_pbl_pool *pbl_pool, 21732 struct lpfc_pvt_pool *pvt_pool, u32 count) 21733 { 21734 struct lpfc_io_buf *lpfc_ncmd; 21735 struct lpfc_io_buf *lpfc_ncmd_next; 21736 unsigned long iflag; 21737 int ret; 21738 21739 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21740 if (ret) { 21741 if (pbl_pool->count) { 21742 /* Move a batch of XRIs from public to private pool */ 21743 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21744 list_for_each_entry_safe(lpfc_ncmd, 21745 lpfc_ncmd_next, 21746 &pbl_pool->list, 21747 list) { 21748 list_move_tail(&lpfc_ncmd->list, 21749 &pvt_pool->list); 21750 pvt_pool->count++; 21751 pbl_pool->count--; 21752 count--; 21753 if (count == 0) 21754 break; 21755 } 21756 21757 spin_unlock(&pvt_pool->lock); 21758 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21759 return true; 21760 } 21761 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21762 } 21763 21764 return false; 21765 } 21766 21767 /** 21768 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21769 * @phba: pointer to lpfc hba data structure. 21770 * @hwqid: belong to which HWQ. 21771 * @count: number of XRIs to move 21772 * 21773 * This routine tries to find some free common bufs in one of public pools with 21774 * Round Robin method. The search always starts from local hwqid, then the next 21775 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21776 * a batch of free common bufs are moved to private pool on hwqid. 21777 * It might move less than count XRIs if there's not enough in public pool. 21778 **/ 21779 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21780 { 21781 struct lpfc_multixri_pool *multixri_pool; 21782 struct lpfc_multixri_pool *next_multixri_pool; 21783 struct lpfc_pvt_pool *pvt_pool; 21784 struct lpfc_pbl_pool *pbl_pool; 21785 struct lpfc_sli4_hdw_queue *qp; 21786 u32 next_hwqid; 21787 u32 hwq_count; 21788 int ret; 21789 21790 qp = &phba->sli4_hba.hdwq[hwqid]; 21791 multixri_pool = qp->p_multixri_pool; 21792 pvt_pool = &multixri_pool->pvt_pool; 21793 pbl_pool = &multixri_pool->pbl_pool; 21794 21795 /* Check if local pbl_pool is available */ 21796 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21797 if (ret) { 21798 #ifdef LPFC_MXP_STAT 21799 multixri_pool->local_pbl_hit_count++; 21800 #endif 21801 return; 21802 } 21803 21804 hwq_count = phba->cfg_hdw_queue; 21805 21806 /* Get the next hwqid which was found last time */ 21807 next_hwqid = multixri_pool->rrb_next_hwqid; 21808 21809 do { 21810 /* Go to next hwq */ 21811 next_hwqid = (next_hwqid + 1) % hwq_count; 21812 21813 next_multixri_pool = 21814 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21815 pbl_pool = &next_multixri_pool->pbl_pool; 21816 21817 /* Check if the public free xri pool is available */ 21818 ret = _lpfc_move_xri_pbl_to_pvt( 21819 phba, qp, pbl_pool, pvt_pool, count); 21820 21821 /* Exit while-loop if success or all hwqid are checked */ 21822 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21823 21824 /* Starting point for the next time */ 21825 multixri_pool->rrb_next_hwqid = next_hwqid; 21826 21827 if (!ret) { 21828 /* stats: all public pools are empty*/ 21829 multixri_pool->pbl_empty_count++; 21830 } 21831 21832 #ifdef LPFC_MXP_STAT 21833 if (ret) { 21834 if (next_hwqid == hwqid) 21835 multixri_pool->local_pbl_hit_count++; 21836 else 21837 multixri_pool->other_pbl_hit_count++; 21838 } 21839 #endif 21840 } 21841 21842 /** 21843 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21844 * @phba: pointer to lpfc hba data structure. 21845 * @hwqid: belong to which HWQ. 21846 * 21847 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21848 * low watermark. 21849 **/ 21850 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21851 { 21852 struct lpfc_multixri_pool *multixri_pool; 21853 struct lpfc_pvt_pool *pvt_pool; 21854 21855 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21856 pvt_pool = &multixri_pool->pvt_pool; 21857 21858 if (pvt_pool->count < pvt_pool->low_watermark) 21859 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21860 } 21861 21862 /** 21863 * lpfc_release_io_buf - Return one IO buf back to free pool 21864 * @phba: pointer to lpfc hba data structure. 21865 * @lpfc_ncmd: IO buf to be returned. 21866 * @qp: belong to which HWQ. 21867 * 21868 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21869 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21870 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21871 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21872 * lpfc_io_buf_list_put. 21873 **/ 21874 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21875 struct lpfc_sli4_hdw_queue *qp) 21876 { 21877 unsigned long iflag; 21878 struct lpfc_pbl_pool *pbl_pool; 21879 struct lpfc_pvt_pool *pvt_pool; 21880 struct lpfc_epd_pool *epd_pool; 21881 u32 txcmplq_cnt; 21882 u32 xri_owned; 21883 u32 xri_limit; 21884 u32 abts_io_bufs; 21885 21886 /* MUST zero fields if buffer is reused by another protocol */ 21887 lpfc_ncmd->nvmeCmd = NULL; 21888 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21889 21890 if (phba->cfg_xpsgl && !phba->nvmet_support && 21891 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21892 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21893 21894 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21895 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21896 21897 if (phba->cfg_xri_rebalancing) { 21898 if (lpfc_ncmd->expedite) { 21899 /* Return to expedite pool */ 21900 epd_pool = &phba->epd_pool; 21901 spin_lock_irqsave(&epd_pool->lock, iflag); 21902 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21903 epd_pool->count++; 21904 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21905 return; 21906 } 21907 21908 /* Avoid invalid access if an IO sneaks in and is being rejected 21909 * just _after_ xri pools are destroyed in lpfc_offline. 21910 * Nothing much can be done at this point. 21911 */ 21912 if (!qp->p_multixri_pool) 21913 return; 21914 21915 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21916 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21917 21918 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21919 abts_io_bufs = qp->abts_scsi_io_bufs; 21920 abts_io_bufs += qp->abts_nvme_io_bufs; 21921 21922 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21923 xri_limit = qp->p_multixri_pool->xri_limit; 21924 21925 #ifdef LPFC_MXP_STAT 21926 if (xri_owned <= xri_limit) 21927 qp->p_multixri_pool->below_limit_count++; 21928 else 21929 qp->p_multixri_pool->above_limit_count++; 21930 #endif 21931 21932 /* XRI goes to either public or private free xri pool 21933 * based on watermark and xri_limit 21934 */ 21935 if ((pvt_pool->count < pvt_pool->low_watermark) || 21936 (xri_owned < xri_limit && 21937 pvt_pool->count < pvt_pool->high_watermark)) { 21938 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21939 qp, free_pvt_pool); 21940 list_add_tail(&lpfc_ncmd->list, 21941 &pvt_pool->list); 21942 pvt_pool->count++; 21943 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21944 } else { 21945 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21946 qp, free_pub_pool); 21947 list_add_tail(&lpfc_ncmd->list, 21948 &pbl_pool->list); 21949 pbl_pool->count++; 21950 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21951 } 21952 } else { 21953 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21954 qp, free_xri); 21955 list_add_tail(&lpfc_ncmd->list, 21956 &qp->lpfc_io_buf_list_put); 21957 qp->put_io_bufs++; 21958 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21959 iflag); 21960 } 21961 } 21962 21963 /** 21964 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21965 * @phba: pointer to lpfc hba data structure. 21966 * @qp: pointer to HDW queue 21967 * @pvt_pool: pointer to private pool data structure. 21968 * @ndlp: pointer to lpfc nodelist data structure. 21969 * 21970 * This routine tries to get one free IO buf from private pool. 21971 * 21972 * Return: 21973 * pointer to one free IO buf - if private pool is not empty 21974 * NULL - if private pool is empty 21975 **/ 21976 static struct lpfc_io_buf * 21977 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21978 struct lpfc_sli4_hdw_queue *qp, 21979 struct lpfc_pvt_pool *pvt_pool, 21980 struct lpfc_nodelist *ndlp) 21981 { 21982 struct lpfc_io_buf *lpfc_ncmd; 21983 struct lpfc_io_buf *lpfc_ncmd_next; 21984 unsigned long iflag; 21985 21986 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21987 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21988 &pvt_pool->list, list) { 21989 if (lpfc_test_rrq_active( 21990 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21991 continue; 21992 list_del(&lpfc_ncmd->list); 21993 pvt_pool->count--; 21994 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21995 return lpfc_ncmd; 21996 } 21997 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21998 21999 return NULL; 22000 } 22001 22002 /** 22003 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 22004 * @phba: pointer to lpfc hba data structure. 22005 * 22006 * This routine tries to get one free IO buf from expedite pool. 22007 * 22008 * Return: 22009 * pointer to one free IO buf - if expedite pool is not empty 22010 * NULL - if expedite pool is empty 22011 **/ 22012 static struct lpfc_io_buf * 22013 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 22014 { 22015 struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; 22016 struct lpfc_io_buf *lpfc_ncmd_next; 22017 unsigned long iflag; 22018 struct lpfc_epd_pool *epd_pool; 22019 22020 epd_pool = &phba->epd_pool; 22021 22022 spin_lock_irqsave(&epd_pool->lock, iflag); 22023 if (epd_pool->count > 0) { 22024 list_for_each_entry_safe(iter, lpfc_ncmd_next, 22025 &epd_pool->list, list) { 22026 list_del(&iter->list); 22027 epd_pool->count--; 22028 lpfc_ncmd = iter; 22029 break; 22030 } 22031 } 22032 spin_unlock_irqrestore(&epd_pool->lock, iflag); 22033 22034 return lpfc_ncmd; 22035 } 22036 22037 /** 22038 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 22039 * @phba: pointer to lpfc hba data structure. 22040 * @ndlp: pointer to lpfc nodelist data structure. 22041 * @hwqid: belong to which HWQ 22042 * @expedite: 1 means this request is urgent. 22043 * 22044 * This routine will do the following actions and then return a pointer to 22045 * one free IO buf. 22046 * 22047 * 1. If private free xri count is empty, move some XRIs from public to 22048 * private pool. 22049 * 2. Get one XRI from private free xri pool. 22050 * 3. If we fail to get one from pvt_pool and this is an expedite request, 22051 * get one free xri from expedite pool. 22052 * 22053 * Note: ndlp is only used on SCSI side for RRQ testing. 22054 * The caller should pass NULL for ndlp on NVME side. 22055 * 22056 * Return: 22057 * pointer to one free IO buf - if private pool is not empty 22058 * NULL - if private pool is empty 22059 **/ 22060 static struct lpfc_io_buf * 22061 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 22062 struct lpfc_nodelist *ndlp, 22063 int hwqid, int expedite) 22064 { 22065 struct lpfc_sli4_hdw_queue *qp; 22066 struct lpfc_multixri_pool *multixri_pool; 22067 struct lpfc_pvt_pool *pvt_pool; 22068 struct lpfc_io_buf *lpfc_ncmd; 22069 22070 qp = &phba->sli4_hba.hdwq[hwqid]; 22071 lpfc_ncmd = NULL; 22072 if (!qp) { 22073 lpfc_printf_log(phba, KERN_INFO, 22074 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22075 "5556 NULL qp for hwqid x%x\n", hwqid); 22076 return lpfc_ncmd; 22077 } 22078 multixri_pool = qp->p_multixri_pool; 22079 if (!multixri_pool) { 22080 lpfc_printf_log(phba, KERN_INFO, 22081 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22082 "5557 NULL multixri for hwqid x%x\n", hwqid); 22083 return lpfc_ncmd; 22084 } 22085 pvt_pool = &multixri_pool->pvt_pool; 22086 if (!pvt_pool) { 22087 lpfc_printf_log(phba, KERN_INFO, 22088 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22089 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 22090 return lpfc_ncmd; 22091 } 22092 multixri_pool->io_req_count++; 22093 22094 /* If pvt_pool is empty, move some XRIs from public to private pool */ 22095 if (pvt_pool->count == 0) 22096 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 22097 22098 /* Get one XRI from private free xri pool */ 22099 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 22100 22101 if (lpfc_ncmd) { 22102 lpfc_ncmd->hdwq = qp; 22103 lpfc_ncmd->hdwq_no = hwqid; 22104 } else if (expedite) { 22105 /* If we fail to get one from pvt_pool and this is an expedite 22106 * request, get one free xri from expedite pool. 22107 */ 22108 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 22109 } 22110 22111 return lpfc_ncmd; 22112 } 22113 22114 static inline struct lpfc_io_buf * 22115 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 22116 { 22117 struct lpfc_sli4_hdw_queue *qp; 22118 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 22119 22120 qp = &phba->sli4_hba.hdwq[idx]; 22121 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 22122 &qp->lpfc_io_buf_list_get, list) { 22123 if (lpfc_test_rrq_active(phba, ndlp, 22124 lpfc_cmd->cur_iocbq.sli4_lxritag)) 22125 continue; 22126 22127 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 22128 continue; 22129 22130 list_del_init(&lpfc_cmd->list); 22131 qp->get_io_bufs--; 22132 lpfc_cmd->hdwq = qp; 22133 lpfc_cmd->hdwq_no = idx; 22134 return lpfc_cmd; 22135 } 22136 return NULL; 22137 } 22138 22139 /** 22140 * lpfc_get_io_buf - Get one IO buffer from free pool 22141 * @phba: The HBA for which this call is being executed. 22142 * @ndlp: pointer to lpfc nodelist data structure. 22143 * @hwqid: belong to which HWQ 22144 * @expedite: 1 means this request is urgent. 22145 * 22146 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22147 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22148 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22149 * 22150 * Note: ndlp is only used on SCSI side for RRQ testing. 22151 * The caller should pass NULL for ndlp on NVME side. 22152 * 22153 * Return codes: 22154 * NULL - Error 22155 * Pointer to lpfc_io_buf - Success 22156 **/ 22157 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22158 struct lpfc_nodelist *ndlp, 22159 u32 hwqid, int expedite) 22160 { 22161 struct lpfc_sli4_hdw_queue *qp; 22162 unsigned long iflag; 22163 struct lpfc_io_buf *lpfc_cmd; 22164 22165 qp = &phba->sli4_hba.hdwq[hwqid]; 22166 lpfc_cmd = NULL; 22167 if (!qp) { 22168 lpfc_printf_log(phba, KERN_WARNING, 22169 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22170 "5555 NULL qp for hwqid x%x\n", hwqid); 22171 return lpfc_cmd; 22172 } 22173 22174 if (phba->cfg_xri_rebalancing) 22175 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22176 phba, ndlp, hwqid, expedite); 22177 else { 22178 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22179 qp, alloc_xri_get); 22180 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22181 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22182 if (!lpfc_cmd) { 22183 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22184 qp, alloc_xri_put); 22185 list_splice(&qp->lpfc_io_buf_list_put, 22186 &qp->lpfc_io_buf_list_get); 22187 qp->get_io_bufs += qp->put_io_bufs; 22188 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22189 qp->put_io_bufs = 0; 22190 spin_unlock(&qp->io_buf_list_put_lock); 22191 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22192 expedite) 22193 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22194 } 22195 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22196 } 22197 22198 return lpfc_cmd; 22199 } 22200 22201 /** 22202 * lpfc_read_object - Retrieve object data from HBA 22203 * @phba: The HBA for which this call is being executed. 22204 * @rdobject: Pathname of object data we want to read. 22205 * @datap: Pointer to where data will be copied to. 22206 * @datasz: size of data area 22207 * 22208 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22209 * The data will be truncated if datasz is not large enough. 22210 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22211 * Returns the actual bytes read from the object. 22212 * 22213 * This routine is hard coded to use a poll completion. Unlike other 22214 * sli4_config mailboxes, it uses lpfc_mbuf memory which is not 22215 * cleaned up in lpfc_sli4_cmd_mbox_free. If this routine is modified 22216 * to use interrupt-based completions, code is needed to fully cleanup 22217 * the memory. 22218 */ 22219 int 22220 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22221 uint32_t datasz) 22222 { 22223 struct lpfc_mbx_read_object *read_object; 22224 LPFC_MBOXQ_t *mbox; 22225 int rc, length, eof, j, byte_cnt = 0; 22226 uint32_t shdr_status, shdr_add_status; 22227 union lpfc_sli4_cfg_shdr *shdr; 22228 struct lpfc_dmabuf *pcmd; 22229 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22230 22231 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22232 if (!mbox) 22233 return -ENOMEM; 22234 length = (sizeof(struct lpfc_mbx_read_object) - 22235 sizeof(struct lpfc_sli4_cfg_mhdr)); 22236 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22237 LPFC_MBOX_OPCODE_READ_OBJECT, 22238 length, LPFC_SLI4_MBX_EMBED); 22239 read_object = &mbox->u.mqe.un.read_object; 22240 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22241 22242 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22243 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22244 read_object->u.request.rd_object_offset = 0; 22245 read_object->u.request.rd_object_cnt = 1; 22246 22247 memset((void *)read_object->u.request.rd_object_name, 0, 22248 LPFC_OBJ_NAME_SZ); 22249 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22250 for (j = 0; j < strlen(rdobject); j++) 22251 read_object->u.request.rd_object_name[j] = 22252 cpu_to_le32(rd_object_name[j]); 22253 22254 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22255 if (pcmd) 22256 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22257 if (!pcmd || !pcmd->virt) { 22258 kfree(pcmd); 22259 mempool_free(mbox, phba->mbox_mem_pool); 22260 return -ENOMEM; 22261 } 22262 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22263 read_object->u.request.rd_object_hbuf[0].pa_lo = 22264 putPaddrLow(pcmd->phys); 22265 read_object->u.request.rd_object_hbuf[0].pa_hi = 22266 putPaddrHigh(pcmd->phys); 22267 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22268 22269 mbox->vport = phba->pport; 22270 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22271 mbox->ctx_ndlp = NULL; 22272 22273 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22274 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22275 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22276 22277 if (shdr_status == STATUS_FAILED && 22278 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22279 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22280 "4674 No port cfg file in FW.\n"); 22281 byte_cnt = -ENOENT; 22282 } else if (shdr_status || shdr_add_status || rc) { 22283 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22284 "2625 READ_OBJECT mailbox failed with " 22285 "status x%x add_status x%x, mbx status x%x\n", 22286 shdr_status, shdr_add_status, rc); 22287 byte_cnt = -ENXIO; 22288 } else { 22289 /* Success */ 22290 length = read_object->u.response.rd_object_actual_rlen; 22291 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22292 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22293 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22294 length, datasz, eof); 22295 22296 /* Detect the port config file exists but is empty */ 22297 if (!length && eof) { 22298 byte_cnt = 0; 22299 goto exit; 22300 } 22301 22302 byte_cnt = length; 22303 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22304 } 22305 22306 exit: 22307 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22308 * Free the pcmd and then cleanup with the correct routine. 22309 */ 22310 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22311 kfree(pcmd); 22312 lpfc_sli4_mbox_cmd_free(phba, mbox); 22313 return byte_cnt; 22314 } 22315 22316 /** 22317 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22318 * @phba: The HBA for which this call is being executed. 22319 * @lpfc_buf: IO buf structure to append the SGL chunk 22320 * 22321 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22322 * and will allocate an SGL chunk if the pool is empty. 22323 * 22324 * Return codes: 22325 * NULL - Error 22326 * Pointer to sli4_hybrid_sgl - Success 22327 **/ 22328 struct sli4_hybrid_sgl * 22329 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22330 { 22331 struct sli4_hybrid_sgl *list_entry = NULL; 22332 struct sli4_hybrid_sgl *tmp = NULL; 22333 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22334 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22335 struct list_head *buf_list = &hdwq->sgl_list; 22336 unsigned long iflags; 22337 22338 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22339 22340 if (likely(!list_empty(buf_list))) { 22341 /* break off 1 chunk from the sgl_list */ 22342 list_for_each_entry_safe(list_entry, tmp, 22343 buf_list, list_node) { 22344 list_move_tail(&list_entry->list_node, 22345 &lpfc_buf->dma_sgl_xtra_list); 22346 break; 22347 } 22348 } else { 22349 /* allocate more */ 22350 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22351 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22352 cpu_to_node(hdwq->io_wq->chann)); 22353 if (!tmp) { 22354 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22355 "8353 error kmalloc memory for HDWQ " 22356 "%d %s\n", 22357 lpfc_buf->hdwq_no, __func__); 22358 return NULL; 22359 } 22360 22361 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22362 GFP_ATOMIC, &tmp->dma_phys_sgl); 22363 if (!tmp->dma_sgl) { 22364 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22365 "8354 error pool_alloc memory for HDWQ " 22366 "%d %s\n", 22367 lpfc_buf->hdwq_no, __func__); 22368 kfree(tmp); 22369 return NULL; 22370 } 22371 22372 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22373 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22374 } 22375 22376 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22377 struct sli4_hybrid_sgl, 22378 list_node); 22379 22380 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22381 22382 return allocated_sgl; 22383 } 22384 22385 /** 22386 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22387 * @phba: The HBA for which this call is being executed. 22388 * @lpfc_buf: IO buf structure with the SGL chunk 22389 * 22390 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22391 * 22392 * Return codes: 22393 * 0 - Success 22394 * -EINVAL - Error 22395 **/ 22396 int 22397 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22398 { 22399 int rc = 0; 22400 struct sli4_hybrid_sgl *list_entry = NULL; 22401 struct sli4_hybrid_sgl *tmp = NULL; 22402 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22403 struct list_head *buf_list = &hdwq->sgl_list; 22404 unsigned long iflags; 22405 22406 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22407 22408 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22409 list_for_each_entry_safe(list_entry, tmp, 22410 &lpfc_buf->dma_sgl_xtra_list, 22411 list_node) { 22412 list_move_tail(&list_entry->list_node, 22413 buf_list); 22414 } 22415 } else { 22416 rc = -EINVAL; 22417 } 22418 22419 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22420 return rc; 22421 } 22422 22423 /** 22424 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22425 * @phba: phba object 22426 * @hdwq: hdwq to cleanup sgl buff resources on 22427 * 22428 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22429 * 22430 * Return codes: 22431 * None 22432 **/ 22433 void 22434 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22435 struct lpfc_sli4_hdw_queue *hdwq) 22436 { 22437 struct list_head *buf_list = &hdwq->sgl_list; 22438 struct sli4_hybrid_sgl *list_entry = NULL; 22439 struct sli4_hybrid_sgl *tmp = NULL; 22440 unsigned long iflags; 22441 22442 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22443 22444 /* Free sgl pool */ 22445 list_for_each_entry_safe(list_entry, tmp, 22446 buf_list, list_node) { 22447 list_del(&list_entry->list_node); 22448 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22449 list_entry->dma_sgl, 22450 list_entry->dma_phys_sgl); 22451 kfree(list_entry); 22452 } 22453 22454 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22455 } 22456 22457 /** 22458 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22459 * @phba: The HBA for which this call is being executed. 22460 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22461 * 22462 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22463 * and will allocate an CMD/RSP buffer if the pool is empty. 22464 * 22465 * Return codes: 22466 * NULL - Error 22467 * Pointer to fcp_cmd_rsp_buf - Success 22468 **/ 22469 struct fcp_cmd_rsp_buf * 22470 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22471 struct lpfc_io_buf *lpfc_buf) 22472 { 22473 struct fcp_cmd_rsp_buf *list_entry = NULL; 22474 struct fcp_cmd_rsp_buf *tmp = NULL; 22475 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22476 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22477 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22478 unsigned long iflags; 22479 22480 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22481 22482 if (likely(!list_empty(buf_list))) { 22483 /* break off 1 chunk from the list */ 22484 list_for_each_entry_safe(list_entry, tmp, 22485 buf_list, 22486 list_node) { 22487 list_move_tail(&list_entry->list_node, 22488 &lpfc_buf->dma_cmd_rsp_list); 22489 break; 22490 } 22491 } else { 22492 /* allocate more */ 22493 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22494 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22495 cpu_to_node(hdwq->io_wq->chann)); 22496 if (!tmp) { 22497 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22498 "8355 error kmalloc memory for HDWQ " 22499 "%d %s\n", 22500 lpfc_buf->hdwq_no, __func__); 22501 return NULL; 22502 } 22503 22504 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22505 GFP_ATOMIC, 22506 &tmp->fcp_cmd_rsp_dma_handle); 22507 22508 if (!tmp->fcp_cmnd) { 22509 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22510 "8356 error pool_alloc memory for HDWQ " 22511 "%d %s\n", 22512 lpfc_buf->hdwq_no, __func__); 22513 kfree(tmp); 22514 return NULL; 22515 } 22516 22517 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22518 sizeof(struct fcp_cmnd32)); 22519 22520 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22521 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22522 } 22523 22524 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22525 struct fcp_cmd_rsp_buf, 22526 list_node); 22527 22528 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22529 22530 return allocated_buf; 22531 } 22532 22533 /** 22534 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22535 * @phba: The HBA for which this call is being executed. 22536 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22537 * 22538 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22539 * 22540 * Return codes: 22541 * 0 - Success 22542 * -EINVAL - Error 22543 **/ 22544 int 22545 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22546 struct lpfc_io_buf *lpfc_buf) 22547 { 22548 int rc = 0; 22549 struct fcp_cmd_rsp_buf *list_entry = NULL; 22550 struct fcp_cmd_rsp_buf *tmp = NULL; 22551 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22552 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22553 unsigned long iflags; 22554 22555 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22556 22557 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22558 list_for_each_entry_safe(list_entry, tmp, 22559 &lpfc_buf->dma_cmd_rsp_list, 22560 list_node) { 22561 list_move_tail(&list_entry->list_node, 22562 buf_list); 22563 } 22564 } else { 22565 rc = -EINVAL; 22566 } 22567 22568 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22569 return rc; 22570 } 22571 22572 /** 22573 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22574 * @phba: phba object 22575 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22576 * 22577 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22578 * 22579 * Return codes: 22580 * None 22581 **/ 22582 void 22583 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22584 struct lpfc_sli4_hdw_queue *hdwq) 22585 { 22586 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22587 struct fcp_cmd_rsp_buf *list_entry = NULL; 22588 struct fcp_cmd_rsp_buf *tmp = NULL; 22589 unsigned long iflags; 22590 22591 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22592 22593 /* Free cmd_rsp buf pool */ 22594 list_for_each_entry_safe(list_entry, tmp, 22595 buf_list, 22596 list_node) { 22597 list_del(&list_entry->list_node); 22598 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22599 list_entry->fcp_cmnd, 22600 list_entry->fcp_cmd_rsp_dma_handle); 22601 kfree(list_entry); 22602 } 22603 22604 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22605 } 22606 22607 /** 22608 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22609 * @phba: phba object 22610 * @job: job entry of the command to be posted. 22611 * 22612 * Fill the common fields of the wqe for each of the command. 22613 * 22614 * Return codes: 22615 * None 22616 **/ 22617 void 22618 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22619 { 22620 u8 cmnd; 22621 u32 *pcmd; 22622 u32 if_type = 0; 22623 u32 abort_tag; 22624 bool fip; 22625 struct lpfc_nodelist *ndlp = NULL; 22626 union lpfc_wqe128 *wqe = &job->wqe; 22627 u8 command_type = ELS_COMMAND_NON_FIP; 22628 22629 fip = test_bit(HBA_FIP_SUPPORT, &phba->hba_flag); 22630 /* The fcp commands will set command type */ 22631 if (job->cmd_flag & LPFC_IO_FCP) 22632 command_type = FCP_COMMAND; 22633 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22634 command_type = ELS_COMMAND_FIP; 22635 else 22636 command_type = ELS_COMMAND_NON_FIP; 22637 22638 abort_tag = job->iotag; 22639 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22640 22641 switch (cmnd) { 22642 case CMD_ELS_REQUEST64_WQE: 22643 ndlp = job->ndlp; 22644 22645 if_type = bf_get(lpfc_sli_intf_if_type, 22646 &phba->sli4_hba.sli_intf); 22647 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22648 pcmd = (u32 *)job->cmd_dmabuf->virt; 22649 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22650 *pcmd == ELS_CMD_SCR || 22651 *pcmd == ELS_CMD_RDF || 22652 *pcmd == ELS_CMD_EDC || 22653 *pcmd == ELS_CMD_RSCN_XMT || 22654 *pcmd == ELS_CMD_FDISC || 22655 *pcmd == ELS_CMD_LOGO || 22656 *pcmd == ELS_CMD_QFPA || 22657 *pcmd == ELS_CMD_UVEM || 22658 *pcmd == ELS_CMD_PLOGI)) { 22659 bf_set(els_req64_sp, &wqe->els_req, 1); 22660 bf_set(els_req64_sid, &wqe->els_req, 22661 job->vport->fc_myDID); 22662 22663 if ((*pcmd == ELS_CMD_FLOGI) && 22664 !(phba->fc_topology == 22665 LPFC_TOPOLOGY_LOOP)) 22666 bf_set(els_req64_sid, &wqe->els_req, 0); 22667 22668 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22669 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22670 phba->vpi_ids[job->vport->vpi]); 22671 } else if (pcmd) { 22672 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22673 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22674 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22675 } 22676 } 22677 22678 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22679 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22680 22681 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22682 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22683 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22684 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22685 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22686 break; 22687 case CMD_XMIT_ELS_RSP64_WQE: 22688 ndlp = job->ndlp; 22689 22690 /* word4 */ 22691 wqe->xmit_els_rsp.word4 = 0; 22692 22693 if_type = bf_get(lpfc_sli_intf_if_type, 22694 &phba->sli4_hba.sli_intf); 22695 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22696 if (test_bit(FC_PT2PT, &job->vport->fc_flag)) { 22697 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22698 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22699 job->vport->fc_myDID); 22700 if (job->vport->fc_myDID == Fabric_DID) { 22701 bf_set(wqe_els_did, 22702 &wqe->xmit_els_rsp.wqe_dest, 0); 22703 } 22704 } 22705 } 22706 22707 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22708 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22709 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22710 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22711 LPFC_WQE_LENLOC_WORD3); 22712 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22713 22714 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22715 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22716 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22717 job->vport->fc_myDID); 22718 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22719 } 22720 22721 if (phba->sli_rev == LPFC_SLI_REV4) { 22722 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22723 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22724 22725 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22726 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22727 phba->vpi_ids[job->vport->vpi]); 22728 } 22729 command_type = OTHER_COMMAND; 22730 break; 22731 case CMD_GEN_REQUEST64_WQE: 22732 /* Word 10 */ 22733 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22734 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22735 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22736 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22737 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22738 command_type = OTHER_COMMAND; 22739 break; 22740 case CMD_XMIT_SEQUENCE64_WQE: 22741 if (phba->link_flag & LS_LOOPBACK_MODE) 22742 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22743 22744 wqe->xmit_sequence.rsvd3 = 0; 22745 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22746 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22747 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22748 LPFC_WQE_IOD_WRITE); 22749 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22750 LPFC_WQE_LENLOC_WORD12); 22751 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22752 command_type = OTHER_COMMAND; 22753 break; 22754 case CMD_XMIT_BLS_RSP64_WQE: 22755 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22756 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22757 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22758 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22759 phba->vpi_ids[phba->pport->vpi]); 22760 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22761 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22762 LPFC_WQE_LENLOC_NONE); 22763 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22764 command_type = OTHER_COMMAND; 22765 break; 22766 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22767 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22768 case CMD_SEND_FRAME: /* mds loopback */ 22769 /* cases already formatted for sli4 wqe - no chgs necessary */ 22770 return; 22771 default: 22772 dump_stack(); 22773 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22774 "6207 Invalid command 0x%x\n", 22775 cmnd); 22776 break; 22777 } 22778 22779 wqe->generic.wqe_com.abort_tag = abort_tag; 22780 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22781 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22782 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22783 } 22784